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Abstract

The conservation of energy is one of the most important ways of ensuring future demand for
energy can be met. The usage of air conditioning and other power-consuming luxuries are
increasingly common as the average standard of living rises worldwide. Rather than wasting
energy on just cooling, a better solution is available. The effective utilization of a combination
of sun shields and air conditioning can save a lot of energy and money.
At the Department for Energy and Building Design (EBD), a measurement system has been
developed for outdoor sunshields (e.g.: Italian and Venetian blinds); however this system is
incapable of measuring indoor sunshields. Therefore the measurement system has to have real
room conditions, if a curtain is installed in a room, the measurement system should not disturb
the natural air circulation. In the 1990’s the PASYS system was developed to measure indoor
shields in a comparable way. The system described in this thesis is a further development to
the PASYS system, in which only one wall facing the outside instead of five. Measurements
were made and a model for the behavior of the room was developed. There are two identical
rooms; one is used as a reference room without any installed sunshades, and the other is used
for measurements. With this system, the disadvantage of using only one room and having
to wait for the same weather conditions to measure the room with and without sunshields is
eliminated, as both rooms can be measured at the same time.
Characteristics and parameter identification mechanisms are shown for the PASSYS and EBD
lab rooms. Various sophisticated methods were used for the PASSYS room and a large amount
of effort was spend on error correction.
A modeling process was required for parameter identification, starting with the most basic
model. Two methods were evaluated - the capacity model and the time-shift model. Physical
aspects that influence energy balance were added to each model step-by-step. It will be illus-
trated that the capacity model reached its limits and there is no longer any way of improving
it further.
The pros and cons of each model are discussed, with the time-shift model left at the end to
be developed further. The goal of this system is to measure the U- and g-values for different
types of indoor sunshields and windows. In this part of the project, only the g-value calcula-
tion was included, then the total energy balance between the rooms were compared and the
Newton-Raphson method was used to calculate the g-value by equating the difference of the
energy to zero. Beside this g-vale, a few others are calculated to ensure that the calculations
are reasonable and accurate.
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1 Introduction

1.1 Background

Solar radiation is a reliable source of heat all year round as sunlight is always available. Be-
cause of the irradiation the incorrect dimensioning of a house can lead to excessive internal
temperatures, especially when the external temperature is high. Cooling is a common solution
to reducing room temperature to a moderate level, but this consumes a large amount of energy.
Preventing the entry of solar radiation into the building in the first place is a better solution;
while the initial investment is higher, energy consumption is greatly reduced, to the point where
it is close to not having a sunshield at all. Other benefits include:

• Lower running costs

• Reduced dependence on electric power

• Less use of Freon

• Lower depreciation costs

• Better work environment due to less noise as a result of the absence of active ventilation
(e.g.: air conditioning)

[8]
Since well insulated windows were invented, the construction of buildings with wholly glass
facades have become increasingly common. Such designs present no problems with heating
during winter but can get excessively hot during summer which requires a large amount of
energy for cooling. There are two ways of preventing heat from entering the building; using
indoor or outdoor sunshields. The system described in this work is designed to measure indoor
sunshields under realistic conditions.
Very rarely is solar protection a consideration in the design phase of a building; it is usually
only considered after excessively high temperatures have been identified as an issue. In the
past there was only a big interest for office and industrial buildings in using proper sunshields,
since low energy or “Passivhaus” for single family houses are more common and a lot of effort
was used to reduce the energy costs for heating during winter. There should not be losing
sight of the amount of cooling energy during summer. The houses are well insulated and the
risk of overheating during summer is high. For such buildings an indoor solution is probably
more convenient as a outdoor sunshield. A proper sun protection is unavoidable, otherwise the
total annual energy per m2 would not be below the limit for the “Passivhaus”-standard. This
fast growing market makes proper indoor sunshields measurements necessary, there are a lot
of different building designs, for all this it is no longer only a question of design which curtain
or blind is used, also the energy aspect has to be considered.
Many manufacturers and retailers of sunshields only have rough estimations of their products’
characteristics, which makes it difficult for architects to design buildings with sunshields because

1



1 Introduction

they are unable to exactly determine their effect. The goal of this project is to overcome the
lack of information by figuring out how well sunshields work under realistic conditions.

1.2 Energy use in buildings

Annual energy use in the building and service sector totalled 150 TWh in 1999, approximately
40 % of total energy used in Sweden. For a standard house, energy consumption totalled
4800 kWh, which is split into several areas (see Figure 1.1).

Figure 1.1: Energy consumption in private households

There has been significant progress in energy conservation since the 1970’s, demonstrated by
the fact that energy consumption in buildings has remained practically constant even though
the heated area has increased by more than 50 %. The specific gross energy for single- or
twin-dwelling buildings was about 330 − 340 kWh/(yr,m2) in 1970; 210 − 220 kWh/(yr,m2)
in 1994; and less than 120 kWh/(yr,m2), inclusive of all electricity consuming devices such as
ventilation, heat pump etc for a “Passivhaus” today, which is the newest standard for low energy
buildings. To reduce the effects of the climate change it is necessary to change the energy supply
compared to the whole energy production, as much as possible must be renewable therefore a
constant growing energy consumption is not adequate any more.
Approximately 77 % of energy is used for heating and there have been large efforts made in the
last century to reduce this. Windows with a lower U-value were developed, home insulation
was improved and the “Passivhaus” standard was established in Austria, Germany and is now
increasingly common in Sweden. A “Passivhaus” uses energy-saving equipment to reduce the
amount of energy used to heat the building during winter, and can achieve an annual heating
power usage of approximately 15 kWh/(yr,m2). In general, countries that experience more
extreme temperatures in summer and winter are more likely to have overheating issues. This
is because the airtight construction and air-air heat exchanger system used to keep a building
warm during winter does not work well at dissipating heat during the summer. It is not possible
to open a window or increase the air ventilation over the dimension limit to keep the annual
energy consumption low, a large cooling system cannot be used and blinds are the only solution
to keeping the indoor temperature at a cozy level (≈ 22 ◦C).
While saving energy is always important, the type of energy being saved (e.g.: hydroelectricity,
biogas, oil or gas) should be considered as each one would have a varying impact on the
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1 Introduction

environment. The distribution of the energy will be one of the biggest problems, in countries
like Sweden where electricity is cheap, there is less sense for saving and house heating is realize
as electric heating. The blackout’s in the last years in Italy and USA only highlighted the
problem, some grids work most of the time at the 100 % limit or even above, if a small error
occur, like a grid is cut and there is no energy transport possible any more, another grid is
overloaded and the security system shut the whole area down. In the past those errors mostly
occurred during wintertime when a lot of energy for heating was needed, if the energy for
cooling during summer is increasing and reach the same amount as the heating energy, these
problems can happen in summer too. Therefore a cooling way without using energy should be
used like blinds or curtains. While the increasing demand for electricity is also due to other
factors such as the increased use of electrical equipment in the household and office buildings
(e.g.: TV’s, photocopiers, computers etc.), they only make up a minor part of total energy
demand; therefore a reduction in energy usage in this area would only have a minor effect
on total energy demand. As a result, energy-reduction efforts should be targeted at activities
responsible for a large chunk of total energy demand, such as cooling. The split of energy usage
among different activities in Figure 1.1 is valid for countries such as Sweden and Austria.1

1.3 Goals and limitations

This system has been designed and built to measure indoor sunshields such as curtains and
blinds in conditions as realistic as possible. A lot of effort during the design stage was used to
provide a natural air circulation, this should not be disturbed by the installed ventilation system
for cooling or heating of the room, depending on the actual room temperature. With a system
for outdoor shields it is not possible to measure the behavior in realistic conditions, it would be
possible to measure the g- and U-value, it wouldn’t be possible to consider that the shields heat
up and change the “natural” air circulation and this change the behavior of the room. Even a
blind-window or curtain-window combination has a different g- and U-value as the product of
both systems at ones. Such parameters are hard to calculate and simulate, therefore a blind
temperature must be estimated, the blind work as a long wave radiator, with this value and
the spectral range of the window the total U-value could be calculated, a regressive calculation
would be necessary. That’s a big advantage of the measurement system, it take care of all this
effects.
As mentioned in the beginning of this chapter, a lot of effort was put in to ensuring that the
natural circulation of air was not disturbed, and that the room temperature was constant in all
weather conditions. This is difficult, as realistically the temperature cannot be constant under
all weather conditions across all levels of the room, due to the following reasons. If there is solar
irradiation and the installed cooling system works, cold air immediately goes down and cools
the lower levels of the room by a few degrees; if the cooling system is not designed this way, the
general room temperature will get too hot. On the other hand, if it is cold outside and heating
is required to keep the room temperature within an acceptable range, warm air rises and the
top levels of the room will reach above average temperatures. The stratification phenomenon
is unavoidable especially if there are two different conditions - (e.g.: cooling and heating). This
occurs in all rooms, even though it is not noticed in most cases due to temperatures only being
measured at one level in each room and the variance in temperature not being obvious as long

1http://www.ebd.lth.se/fileadmin/energi_byggnadsdesign/images/Personal/Johan_S/Energy_

20efficient_20household_20appliances_01.pdf
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1 Introduction

as they are not too large.
The temperature in the test room is measured at three different levels (ground, middle, top)
and the arithmetic average is used as room temperature. As acceptable setup, values of the
controlling system and positions of the temperature sensors (it is a different system as the
measurement system, see chapter 3) where used at which the arithmetic room temperature was
almost constant under all conditions. If the suns heats up the air, which results in it rising to
the top of the room (with the top temperature sensor reading this higher value as the average),
the cooling system should cool the air at the lower levels in the same manner (with the lower
temperature sensor reading this lower value as the average), resulting in the same arithmetic
value under all conditions, and vice versa. This control technique has an ideal side effect, with
the sun heating up the dark floor hence storing a large amount of energy, while the cooling
reduces the energy from the floor.

4



2 State of the art (PASSYS)

2.1 Introduction

The European commission started the PASSYS project (Passive Solar Systems and Component
Testing) in 1985 with the aim of testing passive solar components and developing calculation
methods. The PASLINK Network (formed in 1986) emerged from PASSYS, with the funda-
mental aim of developing and improving methods for obtaining the thermal and solar properties
of building/sunshade components. The PASSYS standardized test cells are used for measure-
ments under realistic conditions with a controllable test environment, but it was determined
that the measurements should also be obtainable under different and especially dynamic out-
door conditions.
As a result, a special room was developed (Figure 2.1). 35 of these rooms were built in 10
countries (Denmark, Germany, Belgium, France, Italy, Greece, Netherlands, Spain, Portugal
and the UK) across Europe. Various building facades were utilised, and the thermal properties
determined by outdoor tests at different locations across Europe. While the evaluation of the
solar gain factor (g-value) of passive solar components was the main purpose, but it was also
possible to measure the U-value and thermal capacity. The test cells provided a well controlled
environment in a realistic room size without occupancy effects. At the beginning of PASSYS
the test methodology were based on steady state evaluations, but as the project progressed
it became clear, that dynamic testing and analysis methods were required for high quality
performance in real climates. [1],[11]

Figure 2.1: Room construction of PASSYS system [1]

5



2 State of the art (PASSYS)

In February 1994, at the end of the PASSYS project, a European Economic Interest Grouping
(E.E.I.G.) PASLINK was founded. Its goal was quality assurance and improvement of the test
methods. To reduce the test duration and improve the measurement accuracy, several equip-
ments were developed, e.g. the pseudo adiabatic shell (PAS) developed by Belgian Building
Research Institutes (BBRI), heat flux sensitive tiles suggested by TN0 Building and Construc-
tion Research, and several arrangements of mobile cold boxes applied at ITW, TN0 and BBRI.
With these tools, test periods of around 2 weeks are feasible.
[6]

2.2 Detailed room description

The main features of this room design are:

• controllable climate within the room

• realistic room size

• the room is located in a real outdoor climate

• two rooms (not at each place)

• not occupied

• well-insulated, exchangeable south wall

Each PASSYS test cell has a test room of 13.8 m2 ground area and 38 m3 air volume, with an
adjoining room to the north. The measuring and air-conditioning equipment are contained in
this service room (see Figure 2.2).

Figure 2.2: Details of room construction [6]

On the outer part of the envelope, a rigid steel frame is suited, which supports the form of
the structure. Thick insulation layers of 400 mm extruded polystyrene foam and mineral wool
are located between the steel beams on the inner part of the envelope. Because of this well
insulation the U-value is less than 0.1 W/(m2K) and the thermal conductance (U·A) is less
then 8 W/K. When testing components with a U-value of 0.3 W/(m2K), the ratio of the heat

6



2 State of the art (PASSYS)

flux through the test components to that through the test room envelope is about 0.3. As a
result of the good insulation the time constant of the test room is about 4 days. Consequently,
each part of the test procedure lasts at least 1 week. This gives a total test duration of 8 weeks
according to the new calibration and component test procedures.
Inside, the walls are covered with chipboard panels, 2 mm thick metal plates, and are painted
blue to ensure stable optical properties. The outer surfaces are covered with weatherproof
stainless steel plates.
The test room is sealed against air infiltration (air-change rate < 0.01 l/h). The south aper-
ture area, with a size of 7.6 m2, contains the test specimen, fixed in a removable and insulated
frame. For calibration purposes, a well insulated panel of polystyrene (400 mm) instead of the
measuring device is incorporated into the frame.

Experiments showed that the air-conditioning of the test room is a difficult task. The accuracy
of the test results is directly affected by the precision of heat flow measurements. For heating,
an electric heater was proposed to be installed in the room. The cooling task is much more
difficult. For accuracy reasons, water was chosen as heat transfer medium, as the temperature
and flow rate of water can be measured more accurately than those of gas (e.g.: air) and the
specific heat is well known. In the test room, heating and cooling power is distributed mainly
through convection; because of the low temperatures radiation only plays a minor part. Each
PASSYS test cell has its own heating and cooling system, shown in Figure 2.2. This system
can be divided into three subsystems with the following specifications:

• cooling system: max. cooling power at 40 ◦C ambient
and 22 ◦C test room temperature, 2.3 kW

• heating system: max. heating power of 1.9 kW

• air distribution system: adjustable air flow rate up to 1600 m3/h [12]

The central data acquisition system controls the heating and cooling system. Two separate
power transducers, one for the fan and the other for the electric resistances, measure the in-
coming heat, while the outgoing heat is determined by the measurement of inlet and outlet
temperature and volume flow rate of the cooling fluid Q = cp · ∆T · flow. Different control
strategies such as constant heating power or constant test room temperature can be used, and
will be discussed in chapter 2.6.2. Temperature measurements are performed with either Pt100
or thermocouples. A standardized calibration procedure is performed by heating or cooling
the test room at different power levels for the heating procedure a reference heater is used to
calibrate the system.

Each test site has a standardized meteorological station, which can measure wind direction
at a 10 m height, wind velocity, and the global solar irradiances on a horizontal as well as on a
vertical, south facing plane. Long wave radiation is measured by a pyrgeometer, diffuse solar
radiation by a pyranometer, and outdoor ambient air temperature by both a shielded and a
ventilated air temperature sensor, and the relative humidity. Sensors measure the temperatures
of the surfaces at 23 different positions inside as well as outside. The indoor climate in the test
room is recorded using specially developed double shielded air temperature sensors at 7 precise
locations within the room. Heat flux sensors are used to quantify the heat transmission flows
through the test component. A hot air anemometer is used to measure the air velocity. For

7
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continuous measurement of the air infiltration rate, specific equipment for injection of tracer
gas and sampling of the air at 4 locations was developed. All data are measured, computed
and stored, on a common piece of hardware, which is also used for the regulation of the heating
and cooling system. Up to 300 sensors can be measured with a high accuracy voltmeter at a
1 minute sample rate, with a high frequency sampling of selected sensors using a sample rate
of 3 seconds being possible. All test rooms in Europe have standardized equipment, which
guarantees comparable and exchangeable measurement results. [6],[12]

2.3 Further Improvements

2.3.1 The pseudo adiabatic shell (PAS)

There are two problems, the low heat flux ratio and the large time constant, both of which can
be overcome by inserting a pseudo adiabatic shell (PAS). In Figure 2.3 a vertical section of the
test room with the installed PAS is shown.

Figure 2.3: PAS module [6]

The PAS is an electric heating foil that compensates the heat loss through the test room
envelope. Figure 2.4 illustrates how the heat foil is located between the outside original envelope
and a 10 mm polystyrene layer.

The mean temperature difference between the aluminum plates is measured by thermopile sen-
sors. These sensors use two unequal metals which are soldered together at one point (electrical
and thermal contact) and only a thermal contact at a second point, and the measured voltage
is assumed to be proportional to the temperature difference. The heating foil is controlled with
the thermopile voltage a way that the resulting heat flux is almost zero. If the temperature of
the inner aluminum wall is higher, the heating foil is switched on.
Calibration is still necessary before the first measurement, in order to identify thermo physical
properties such as the U·A-value or thermal capacities of the test room. There is no difference
between the calibration process with PAS or without, but the number of unknown parameters
is decreased from about 10 to about 5. From calibration experiments, it was determined that
the PAS has a U·A-value of 24.3 W/K, with an uncertainty of approximately 0.3 W/K. With

8



2 State of the art (PASSYS)

Figure 2.4: Detail of PAS module [6]

PAS, higher accuracy is obtained and the duration of the test sequence able to be reduced sig-
nificantly. Instead of approximately four weeks, all the important data necessary to determine
the main thermal parameters can be collected within one week. This reduction of measurement
time has a big influence on costs. During the design phase of the PAS panels, several improve-
ments were discovered, as well as within the heating foil control and the arrangement of the
thermocouples.
The panels were split into four separate parts per wall, with each part having its own controlled
heating foils. The temperature difference between the aluminum plates (each panel) was mea-
sured with one thermopile, which consisted of 16 thermocouples connected in series. Moreover,
two thermocouples were used to measure the internal surface temperature per panel. Each PAS
element was removable, in case an error occurred within a thermo element or the heating foil.
If the whole PAS-system is installed as an add-on on the inner wall, a lot of space is lost; this
can be overcome by dismantling parts of the existing frame/envelope before installation of the
PAS-system.

2.3.2 The use of heat flux sensitive tiles (HFS)

In principle, the PASSYS cell is a calorimeter and the PAS module can be considered as a heat
flux sensor. TN0 (Building and Construction Research, Delft, Netherlands), on the other hand,
had the idea of substituting the PAS with a number of heat flux sensors in the form of tiles.
These elements are only a few millimeters thick. The construction of the heat flux sensitive
tiles is shown in Figure 2.5.

Rubber foam is applied inside the original envelope layer to embed flat cables and connectors,
and fill gaps. The layer on which the tiles are mounted are made up of a plastic material with
low thermal conductivity (pertinax) which is bonded to an aluminum plate as a substrate; this
aluminum plate equalizes the surface temperature. A spirally wound thermopile inside each
tile is placed near a corner of the tile where the heat flux is supposed to equal the average heat
flux through the tile. Thermocouples measure this temperature. The small thermal inertia
of the tiles allows direct measurements of rapid changes. There is a uneven flux distribution
because of corner effects, thermal bridges and solar radiation effect on floor and inner walls
when windows are tested. If a grid of heat flux sensors is set up, then the approximation of
the flux through the test cell is more accurate. This solution has the disadvantage of the tiles
being costly o manufacture and install.

9
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Figure 2.5: Arrangement with HFS inside of the wall [6]

2.3.3 Development of a large area heat flux sensor (LAH)

The “Institut für Thermodynamik und Wärmetechnik” (ITW) developed a large area heat flux
sensor (LAH), with the main aim of finding a sensor with a good spatial resolution and rela-
tively low construction costs. Different prototypes were analyzed and tested in the laboratory.
This type of sensor differs from a conventional heat flux sensor in that the plate is passed by
the heat flux vertically instead of across. For homogenous materials, isotherms are parallel to
the surface, if any material with another thermal conductivity then the substrate-conductivity
is inserted, a perturbation of the flux causes. The LAH use this effect of no longer parallel
isotherms and the temperature gradients in any section parallel to the surface can be used as
a measurement point.

The physical construction is shown in Figure 2.6 a.). Small aluminum bars with a diameter
of 5 mm are inserted in rigid polystyrene plates (thickness of 10 mm), and a 2 mm aluminum
plate covers the surface of the LAH. A thermopile below the two bars measure the temperature
difference, within one of the thermocouple junctions placed directly under a bar (Junction 2),
the other junction is located in the polystyrene between the bars (Junction 1). Figure 2.6 b.)
shows the isothermal lines calculated using the finite differences calculation method.

Figure 2.6: a.) Physical realization of LAH; b.) Isotherm curves of LAH [6]

The temperature profile between the two bars is shown in Figure 2.7. The temperature dif-
ference between T1 and T2 is the result of this construction and responsible for the output
voltage. In this case, a heat flux density of 10 W/m2 was used, with 1.1 K being the calculated
temperature difference between the thermocouple junctions. This value is higher than in reality
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due to the thermal contact-resistances between the aluminum surface and the aluminum bars
(adhesive tape).

Figure 2.7: Temperature profile on the plane of the LAH [6]

For the LAH, a thermopile made from constantan wire, partly copper-coated via a galvanizing
process, was used. The junctions are alternatively located below the aluminum bars and the
polystyrene. The arrangement of the thermopile at one LAH element is shown in Figure 2.8.

Figure 2.8: Prototype of LAH [6]

The sensitivity of the whole arrangement (7.6 m2) is 2 mV per W/m2, therefore all the ther-
mopiles are connected in series. The calibration result at a mean temperature of 17.2 ◦C is
shown in Figure 2.9. The LAH can be used to cover the whole inner surface of the PASSYS
cells in the same way as the heat flux sensitive tiles (HFS).

The following chapters describe the room measurement system, the kind of modeling used for
the PASSYS cell and the software/analysis tools.
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Figure 2.9: Calibration result of LAH (17.2 ◦C mean temperature) [6]

2.4 Measurement Methods

During the first phase (1986-1990), different test evaluation methods were tried. Depending on
the simulations and results of the test, these methods were then compared. The methods ranged
from simple steady state methods to more sophisticated transient parameter identification
techniques. The categories are as follows:

2.4.1 Integrated absolute method

The heat loss coefficient or thermal transmission coefficient (U·A-value) and the total solar
heat gain factor or solar transmittance (g·A-value) of a component are the main concerns of a
building designer as these two factors have a key influence on the energy balance in rooms and
buildings.
These parameters are defined as follows:

• U · A (W/K) gives the heat flow rate in Watts (W ) in the steady state divided by the
temperature difference (K) between the ambiance’s on each side of the system or com-
ponent.

• g · A (m2) is the heat flow rate (W ) transmitted through the component to the internal
environment under steady state conditions, caused by solar radiation incident on the
outside surface, divided by the intensity of incident solar radiation (W/m2) on the plane
of the component. [1],[7]

It must be considered that g·A includes both effects, direct solar transmission, (e.g.: through
glazings) and those due to solar radiation on opaque parts of the component structure. It can
be considered as an equivalent open area that provides the same amount of solar transmitted
energy as through the component (equ.(2.1)).

gopen ·Aopen = gcomponent ·Acomponent (2.1)
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The ability of the component to accumulate heat, expressed as thermal capacity (C) and a
thermal coupling to the test room, is not considered in equ.(2.1).

While many passive solar system concepts are quite simple, the involved thermal processes are
very complex and the experimental determination of these properties is not straight forward.
The performance depends on numerous diverse factors, such as relative area, the building’s
thermal mass, orientation and position of the component, to mention a few examples. The
isolation of these factors and the understanding of how the component interacts with its sur-
rounding is the primary task of experiments.
Because of the simultaneous operation of a mixture of heat transfer mechanisms, such as ther-
mal radiation and free convection, it is not possible to measure the heat loss factor (U·A) or the
solar gain (g·A) directly. Based on the measurement of the net heat flow through the building
component, these quantities can be determined indirectly. The test cells are well equipped to
measure this quantity.
After a long integration time the measured values are obtained to solve the steady state heat
balance equ.(2.2). A physical illustration of this equation is shown in Figure 2.10.

Figure 2.10: Schematic view of PASSYS cell [1]

The first term on the left side of equ.(2.2) represent the losses through the measuring object,
while the second shows the irradiation energy going through. On the right side, the first term
represents the losses from the test room to the outside, while the second the losses from the
test room-service room. The last two parts are the heating and cooling energies. It is possible
to assume a constant room temperature because it is controlled via cooling and heating, then
both sides must be equal.

− (UA)psc · (Ttr − Te) + (gA)psc ·Gpsc =

(UA)tr,e · (Ttr − Ts,e) + (UA)tr,sr · (Ttr − Tsr)− Phe + Pco

(2.2)

All the different temperatures (e.g.: Ttr,Ts,e, the heating (Phe) and cooling-energy (Pco))
are measured. If (UA)tr,e and (UA)tr,sr, are obtained via calibration and it is assumed that
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two or more measurements with different conditions are available, equ.(2.2) yields the values
for (UA)obj and (gA)obj . In steady state measurements, the temperatures of the test room
and service room are kept at the same level (Ttr-Tsr)≈0 and this part of equ.(2.2) becomes
negligible. The advantage of this operation is that it is straightforward. The disadvantage
is that there needs to be time between each measurement in order, to avoid the influence of
transient effects, therefore a sufficiently long period is necessary. It has to be considered that
the test cells have a time constant to the order of two days due to the high insulation level, but
other heavy and heavily insulated components may also have as high inertia. Another obvious
disadvantage is, that this method only yields the steady state characteristics. [1],[2],[5]

2.4.2 Integrated absolute method, with first order correction

In this variant a first order thermal capacity is added to the steady state equation as a first
order correction for transient effects, e.g.:

C · (T (t)− T (t− dt))

dt
(2.3)

This part is added to equ.(2.2) with C as a first order approximation of the heat capacity.
The quantity dt stands for the time period of integration (time step) between two successive
measuring points. From this point onwards, new terms can be added to the equation in order to
further reduce the necessary duration of integration, and this brings it closer to a full dynamic
parameter identification method- see further on. [5]

2.4.3 Transient comparative method

This method requires two test cells, which have to be in identical conditions, with the second
cell with adiabatic components being the reference room. Both rooms are run in parallel, while
one cell contains the actual test component. The indoor temperature is kept equal and constant
via controlled cooling and heating in both rooms. This mean that the heat fluxes through the
test cell envelopes are the same under all conditions. The difference between the cells in heating
or cooling power is now the transient heat flow through the test component. It is an elegant
principle, but there are still some drawbacks:

• the need of a second cell

• the question of which indoor temperature should be kept, a somehow equal weighted
mean of air and surface temperature

• the possibility of inaccurate power measurements, in the case of combined heating and
cooling

The direct result of this method is still only a transient heat flow through the component,
which still has to be processed by a parameter identification in order to obtain the required
transient and steady state properties. If equ.(2.4) is integrated over a long enough period, the
parameters can be found. The right side describes the energy difference between the rooms; if
Ttr, Te and Gpsc are measured, the transmission coefficient and the solar transmittance can be
calculated.
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− (UA)psc · (Ttr − Te) + (gA)psc ·Gpsc = − (Phe − Phe,ref ) + (Pco − Pco,ref ) (2.4)

2.4.4 Transient absolute method: parameter identification

A transient mathematical model of the cell and test component is assumed with the parameter
identification approach. The parameters of the model, e.g. resistances, capacitances, define
the dynamic, and steady-state, thermal and solar properties of the test room. First, an initial
guess of the parameter values is made. The output of the actual test (for instance, the test
room temperature as a function of time) is compared with the model output for the same input
conditions.

In the case of the test cell, the main input variables (e.g.: outdoor temperature, solar ra-
diation, cooling and heating power, solar radiation) are taken to be measured as functions of
time. Via statistical deviation analysis of the values between the model and the measured out-
puts, the parameter values are progressively adjusted in order to improve the agreement. By
iterating this process, the parameters for the model are found, which gives the best agreement
between model calculations and measurement (Figure 2.11). This iterative process is carried
out with specialized software tools. The identification technique has common characteristics
with linear regression analysis.

Figure 2.11: Parameter identification flow chart [1]

In this analysis, the set of parameters (coefficients) of the model (equation) is found using
analytical calculations. If the model is non-linear or complex, the coefficients can only be ob-
tained via an iterative process. This method is mainly suited to operate, under dynamic test
conditions, due to the varying outdoor conditions and the large inertia of the test cell, hence
giving it a great advantage. [5]

Figure 2.12 shows an example of the iteration process. This figure shows the measured output
variable as a function of time, and the following calculated output behavior:

1. In the first iteration step which is based on guessed parameter values, is a strong deviation
from the measured output.
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2. After n iterations with improved parameter values, there is less, but still significant
deviation from the measured output.

3. At the end of convergence, with best fit parameter values, there is minimum deviation
from the measured output.

Figure 2.12 shows that the adjusted model, while not exact, produces the best possible fit and a
satisfactory representation of the observed behavior of the tested system. With this scheme it is
not necessary to wait until dynamic effects have been canceled out, unlike using the steady-state
method with long integration periods. In fact dynamic effects are explicitly considered in the
analysis. The consequence that, test durations can be much shorter. Parameter identification
requires the right choice of software tools to obtain statistical information on the reliabilities of
the identified parameter values. Measurement errors or model errors, and correlation between
parameters may affect the reliability.

Figure 2.12: An example of the iterative parameter identification process [1]

Choosing an adequate dynamic mathematical model for the system is another majorly signif-
icant. Extensive attention has been paid to choosing a suitable model for the whole system
(both the test cell and the components). [1]

2.5 Test room model

The choice of an adequate dynamic mathematical model is one of the major points of attention.
Commonly, lumped parameter models have been chosen for the evaluations. Such a model can
be represented as a network of thermal resistances (R) or conductance’s (H=1/R) and thermal
capacitances (C), with heat flows from sources (e.g.: heating power, solar radiation) connected
to specific points, represented as nodes. The complexity of the model can vary between a
very simple first order RC-model, to a multi-node model with a large number of resistances,
capacitances and connections with external heat flow sources.
The main requirements for an appropriate model for the test room and the test component are
as follows:
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• The model should be able to accurately reproduce the steady-state and dynamic process,
to identify parameters like U-value, g-value and time constants; and the result must be
sufficiently accurate and precise.

• It should be possible to separate physical properties, i.e.: the heat loss rate through
the test cell envelope should be distinct from the heat loss rate and the solar energy
transmission rate through the test component. It should be possible to relate the identified
physical properties to definitions per international standards.

• It should not be excessively detailed, in the sense that it leads to over-parameterization.
This means that some of the parameters cannot be identified because of strong correlation
with other free parameters in the model.

• Prior knowledge should be able to be utilised.

• It should allow the option of adding non-linearity such as a specific thermal resistance
that varies according to temperature or with wind velocity, or solar transmittance varying
according to solar and sky conditions.

• The model should be capable of reproducing the dynamic behavior of the system with
sufficient accuracy.

Sufficient accuracy means that the inconsistency between measurement and calculation, should
only consist of noise originating from measurement errors. The contribution by “noise” result-
ing from an inadequate model should be negligible.

By adopting these requirements the created model should be transparent, which means that
the main elements of the heat balance in the test room and the test component should be
recognized. Figure 2.13 shows the three different branches of the model between test room,
service room and component used within the test cell. The branches are connected at the test
room air node.

Figure 2.13: Three branches of the test cell model [1]

Figure 2.14, show the currently used RC-model which corresponds to Figure 2.13. The upper
string represents the test room envelope; the middle string, the partition with the service room;
and the bottom string, the test-component. It has to be considered that the identification of the
large number of parameters shown in the model does not mean that each individual parameter
necessarily has a physical meaning.
It is assumed in this model that part of the solar radiation (Gpsc) penetrates via transmission
through a window in the test component directly into the test room and is absorbed with solar
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heat gain factor at the indoor surface of the test room envelope (node number 2). At the same
time, part of the solar radiation is absorbed with a solar heat gain factor at the external surface
of the test component between conductance Hpsc3 and Hpsc4, leading to an indirect contribution
to the heat balance in the test room. Of course, the practical behaviors will usually be more
complicated. There will be direct thermal radiative coupling between the indoor facing surfaces
of the test room envelope and the test component. The RC-network between the measured out-
door and indoor environments are actually “black box” models. The individual values are only
needed to obtain a satisfactory dynamic behavior.

Also being considered are other models in the category of more general, less tailor-made math-
ematical descriptions. These may have advantages with respect to flexibility, being capable of
dealing with a wide variety of components and/or with respect to efficiency, fewer amounts of
parameters or nodes in the model. The models can be reduced in complexity, e.g.: to sup-
press apparent high correlation between specific individual parameters. This can be simply
done by sticking specific parameters to their initial values, i.e.: removing these from the list of
optimizing-parameters which are supposed to be fitted in the iteration process, for instance in
the case of two resistances in series without significant thermal capacity between them. Any
available a prior knowledge of the physical and structural properties of the tested system may
also be used to decrease the number of free parameters.
On the other hand, it will be more difficult to anticipate in the model the expected occurrence
of non-linear effects. [5]

Figure 2.14: Lumped parameter model of test cell and component [5]

2.6 Control Strategy and evaluation

Now that the test can be carried out, parameter identification is needed. Sufficient temperature
variation in the lowest frequency range is a key requirement for steady state properties.

18



2 State of the art (PASSYS)

“Lowest frequency range” means changes slower than a few times the largest time constant of
the test room and component. “Sufficient” means that a temperature difference should be much
larger than the uncertainty in indoor and outdoor temperatures. This uncertainty consists of
not only the measurement error which is around 0.1 K, but also the model error. Uniform
indoor and outdoor environmental temperatures are assumed while in reality the real indoor
and outdoor temperatures are usually more complex. The outdoor temperature is a mixture
of sky, ground and local air temperature; the indoor temperature is a mixture of surface and
air temperatures. The model error can easily be in the order of 1 K. The indoor temperature
is usually highly correlated to external environmental factors such as solar radiation, therefore
it is not possible to get a clear separation between the heat loss, governed by the temperature
difference, and the solar gain, governed by the radiation intensity. De-coupling can be achieved
by providing significantly different levels of internal temperature, a sufficiently long period (a
few days) with high power in the test room and a period of similar length with low power,
and chosen power levels to yield a temperature variation in the order of at least 10 K (20 K is
preferred).
For the evaluation of dynamic characteristics, it is necessary that variations cover the range of
frequencies corresponding with the range of characteristic times within the system. In the case
of the test cell and component, the corresponding range is from 20 minutes up to 50 hours.
Finally, in order to isolate the heat balance characteristics from components in the test cell,
it is necessary for the heat flow through the test room envelope to be determined. To achieve
this, prior calibration tests are carried out.

2.6.1 Calibration

The actual tests are preceded by a calibration of the test cell using a homogeneous, well insulated
opaque calibration panel (typically 400 mm of expanded polystyrene sandwiched between two
layers of plywood) mounted in the test cell aperture. With this wall, a full heating or cooling
test sequence is carried out while the heat flow through the calibration panel with a heat
flux meter on its inside surface is measured. Since the heating power to the test room is
known, the thermal characteristics of the test cell envelope can be determined. For parameter
identification, the model shown in Figure 2.14 can be used, which yields the parameters of the
test room and partition of the service room. To exclude the calibration wall from the model,
this part of the model is replaced by the output of the heat flux sensor on the inner surface of
the calibration wall. Figure 2.15 shows the corresponding model for the calibration of the test
room parameters.

During the evaluation of the actual test, the parameters in the model representing the test
room envelope and the partition to the service room are fixed.
It has to be considered when analyzing test results that the interaction between component
and test room may complicate the evaluation.

2.6.2 The test sequence

To obtain the intended effect on the test room temperature, different power levels are needed.
There is a choice between temperature or power levels. In the case of power levels, changes
in the levels lead to a less rapid response by the system than in the case of temperature set
points. On the other hand, due to interaction of the dynamics of the heating or cooling system,

19



2 State of the art (PASSYS)

Figure 2.15: Lumped parameter model with calibration wall [5]

a temperature control may lead to a biased identification of the dynamic characteristics. For
this reason, power control is chosen whenever possible, despite a number of control disadvan-
tages.

To identify the dynamic characteristics of the test room, a dynamic power control is used.
The dynamic on/off power sequence is organized such that the sequence covers the whole band
of relevant frequencies; therefore the “on” and “off” periods are chosen at logarithmically
equal intervals and shuffled in a quasi-random order (ROLBS sequence: randomly ordered log.
distributed binary sequence, see Figure 2.16).

Figure 2.16: ROLBS control strategy [5]
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All previously mentioned elements have been combined into the test sequence. The test takes
nine weeks, which consists of one initialization week followed by 4 parts with a total length of
8 weeks.

Figure 2.17 shows a schematic view of the procedure, which is split into the following parts:

• part 0: 1 week, initialization at constant test room temperature

• part 1: 2 weeks, minimum power

• part 2: 2 weeks, high power

• part 3: 2 weeks, moderate power

• part 4: 2 weeks, dynamic power

[5],[1]

Figure 2.17: Schematic view of the test strategy [5]

In moderate weather conditions and/or components with low solar gains, heating power is
used. In the case of high outdoor temperatures and/or high solar gains, the cooling system is
required. As already mentioned, the aim is to maximize the temperature difference between
the high and low power parts of the sequence by at least 20 K.
For a steady-state situation, the heat balance equation can be written like equ.(2.2) or in a
slightly different form:

Qpsc = Phc − (UA)tr,e ·∆Ttr,e − (UA)tr,sr ·∆Ttr,sr (2.5)

where Qpsc=(UA)psc·Tpsc-(gA)psc· Gpsc is the net heat loss in Watts from the test room through
the component to the exterior, Phc is the heating/cooling power (W) supplied to the test room,
(UA)psc is the UA-value (W/K) of the component, Tpsc the temperature difference between the
air node in the test room (Ttr,a) and the external air temperature (Te), (gA)psc the gA-value
(m2) of the component and Gpsc the intensity of solar radiation (W/m2) in the plane of the
component.
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Dividing both the left hand and right hand sides in equ.(2.5) by ∆Tpsc gives

Qpsc

∆Tpsc
= (UA)psc − (gA)psc

Gpsc

∆Tpsc
(2.6)

A graphical (X,Y) plot, with Y=Qpsc/∆Tpsc and X=Gpsc/∆Tpsc, gives the linear relationship

Y = (UA)psc − (gA)psc ·X (2.7)

where (UA)psc is the intercept of the curve with the Y-axis, and (gA)psc is the slope of the
curve shown in Figure 2.18. In principle, only two different measurements points are needed
to obtain the characteristics. With more points, the UA- and g-values are obtained by linear
regression analysis, as illustrated below. [1],[10]

Figure 2.18: Steady state analysis [1]
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3.1 Introduction

During fall 2004, construction of a new full scale laboratory at Lund University began and
was completed by summer 2005. The building was financed through a grant to the Division of
Energy and Building Design by the Delegation of Energy Supply in South of Sweden (DESS).
The goal of the laboratory is to find solutions to reduce the electricity used in buildings, which
would reduce their running costs. The complex is designed for testing building components
e.g.: glazing and shading systems. The laboratory contains four test rooms (numbering 106-
109, see Figure 3.1 & Figure 3.2) and is a 220 m2 free-standing one-storey building, with a
roof that has space to test solar components and systems, solar heating, photovoltaic systems
and hybrid systems. There are four by a climate controlled chamber (105) surrounded rooms,
if it is possible the temperature of these rooms (106-109) is kept at the same level as the
chamber-temperature. The rooms are constructed using insulated sandwich panels which are
homogeneous, with low thermal mass and no thermal bridges. The south wall is removable
for the placement of different measurement objects. The four rooms consist of two identical
pairs - 106 & 107 and 108 and 109. One pair is equipped with a modern office ventilation and
lighting system for the study of visual and thermal comfort, while the other is designed for the
advanced study of the impact of curtains or other forms of solar shading systems on energy use.
A combination of a heat pump and solar thermal collectors is used to heat the laboratory, with
high and low temperature solar collectors able to be connected to the system. The thermal
energy can be used to produce hot water or to charge the ground source borehole for the heat
pump.
Separate collector test loops are also installed to analyze solar thermal and hybrid collectors.
Using this system, it is possible to simulate operating temperatures from below the dew point
of air to that as high as 90 degrees Celsius.
Among the evaluable measures are:

• Modern window systems with variable sunshade and daylight performances

• Solar thermal systems for hot water production

• Energy-efficient appliances

• Heat pumps (both ground source and air-to-air)

• New solar collector designs

• Hybrid photovoltaic - thermal collectors

• Grid-connected PV systems

• Improved storage and system technologies for active solar systems [3]
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The building is also equipped to house two smaller test boxes placed on top of each other. These
will replace the earlier twin-boxes used for to determine g-values of shading devices in the Solar
Shading Project. The roof holds a 120 m2 platform used to test solar components and solar
systems, for both solar heating and photovoltaic (PV) systems. A small combi-system installed
in the building for student laboratory work and demonstration purposes has four permanently
installed solar panels from Borö on the solar roof connected to a 750 l hot water storage tank.
The tank is used to produce domestic hot water (DHW) and low-temperature water for space
heating. A 1300 l storage tank is used for component testing of solar panels. [17]

Figure 3.1: Laboratory plan [3]

Figure 3.2: Laboratory section plan [3]

3.2 Laboratory description (Test rooms)

The two pairs of test rooms are surrounded by a temperature-controlled climate chamber. As
mentioned in the previous chapter, one pair is designed for calorimetric measurements, which
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enables it to measure the effect of shading devices. The other pair is constructed in the style of
an average office room, where it is possible to evaluate certain aspects of visual and/or thermal
effects. The rooms measure 2.7 m x 4.0 m x 3.1 m (w x l x h), which is representative of typical
single person offices. The four south walls are removable, for the attachment of different types
of window or facade materials, see Figure 3.3.

Figure 3.3: The south facade [3]

The room walls are constructed using a sandwich method, on a core of 120 mm extruded
polystyrene and a surface of 0.5 mm vacuum-glued steel plates. This method of construction
guarantees extremely low thermal mass and avoids the creation of thermal bridges. To deter-
mine the heat flow through the wall, thermocouple piles measure the temperature difference
between the two surfaces (inside and outside) of the sandwich panels in equally distributed
points. This construction principle is shown in Figure 3.4.

Figure 3.4: Thermocouples are mounted inside the wall to measure the heat flow through the
wall [3]

The rooms were pre-fabricated and mounted directly into the facade opening of a factory, like a
chest of drawers (see Figure 3.5) compared to other test cells, like the PASSYS cell, is that the
rooms are surrounded by a large climate guard (room 105) to minimize heat flows through all
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walls except the south wall. Because of this, all thermal losses should be through the replaceable
south facade.
With the “adiabatic” walls and the homogenous wall construction it is possible to assure a very
high quality calorimetric measurement. It is therefore expected that the cells are better than
the PASSYS cells.
The initial removable facade design is fully glazed with a thermally isolated aluminum frame
and six windows. Four of the windows can be opened, the two in the middle are side-hung
and the top ones are bottom-hung. All four rooms are initially equipped with 80 mm exterior
motorized venetian blinds with grey lamellas, see Figure 3.3. [17]

Figure 3.5: Test room mounting [3]

In the calorimetric room-pair, steel surface plates are glued directly on to the polystyrene on
the walls and ceiling. The floor surface is made of 9 mm anti-slip phenolic-coated plywood.
The south surface is made of solar-controlled double glazing windows from Pilkington (6 mm
HP Brilliant 66 - 15 argon - 4 clear glass), with a centre of glass U-value of 1.1 W/

(
m2K

)
,

resulting in total solar energy transmittance (g-value) of 0.34 and a visual transmittance of
approximately 67%.
The air in the rooms is circulated in a closed loop. A fan and duct unit is placed inside the
room and the air is diffused via a diagonally across the room textile hose, see Figure 3.6. To
keep the temperature at a constant level, there is an electric heater (rectangular box above fan,
Figure 3.7) or an air-water heat exchanger (cooling, rectangular box at bottom). Both systems
are placed close to the circulation fan (blue device). The specifications for the calorimetric
rooms were:

• Air temperature range: 16 ◦C — 27 ◦C

• Precision of temperature control: ±1 ◦C

• Heating power: 0.6 kW

• Cooling power: 2.7 kW
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• Air tightness: 0.2 ach at 50 Pa and airtight facade module [3]

Figure 3.6: Air distribution hose [3]

For each room the indoor air temperature, water flow, inlet and outlet water temperature, and
the amount of electricity is measured. Using the water flow and temperature difference of the
water, the cooling energy can be calculated, the measured electricity is corresponding to the
heating energy in the room, it includes each electric consumer inside. Both are measured con-
tinuously using the building’s own Siemens (Desigo Insight) monitoring system. This system is
only used for controlling purpose, with the evaluation done by a LOGGER (Campbell Scientific
CR1000), which is described later. The flow diagram of the Siemens system is shown in Figure
3.8.

3.2.1 The controlling system

There are three different systems which work together in some part, the Siemens system, MBUS
system and the LOGGER, a schematic model is shown in Figure 3.9. The MBUS system mea-
sures the water flow, inlet and outlet water temperature, with which it is possible to calculate
the cooling energy Qcooling = cp ·∆T · flow.

The Siemens system measures the electricity used in the room and the room temperature.
PT100 are used as sensors for temperature measurement, with four sensors in different posi-
tions in each room- two at a top level, one close to the duct for the air circulation and one at
the bottom. This arrangement guarantees a fast reaction to different impact behaviors. The
two top level sensors take care of increasing temperatures (stratification, rising warm air), and
as a result the room starts cooling quickly if there is sun irradiation. The sensor close to the
duct acts as a sort of negative feedback; if the cooling system starts working, this sensor realizes
this immediately and damp out oscillations, while the bottom sensor is for averaging purposes,
without which the mean room temperature would be too high.
For the controlling of temperature, the SIEMENS system uses two PID (proportional, integral,
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Figure 3.7: Cooling-, heating-system in room 108 or 109 [3]

derivative-controller), one for the heating system and one for the cooling system. There are two
room temperature set points, one which denotes the point at which the cooling should start
(higher level) and the other for the heating.
While the SIEMENS system is able to monitor all parameters which are measured by this sys-
tem, there is the problem that these parameters are not sufficient for modeling room behaviors,
which can lead to important parameters e.g.: solar irradiation missing. This is the reason a
separate system which specialises in data collection is used (LOGGER); this system doesn’t
take part in any controlling.

Figure 3.8: User interface of the Siemens system for cooling and heating [3]
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Figure 3.9: Schematic model of controlling and acquisition system

3.2.2 The acquisition system

The system which takes care of logging all important data, needed to model room be-
havior and extract the relevant data (g- and U-value), is the Campbell Scientific CR1000
LOGGER (for more information, e.g.: interfaces of the logger, programming, etc. refer to:
http://www.campbellsci.com/)2. This system measures numerous different parameters and
while not all of them are used in the model right now, they may be required in a more com-
plicated model and some of them can be used to check if the room is working correctly. All
measured values are listed in Tab. A.1 along with a description. There is one case of measure-
ment which is not an error but should be discussed to ascertain the reason behind it, which
is as follows. The LOGGER system use three different sensors in each room to measure room
temperature. The sensors are of a thermocouple type and they are placed at three different lev-
els (57 cm above the floor, in the middle of the room and 34 cm below the ceiling); as discussed
in the chapter before, the controlling system uses four PT100 at four different places. There
being two different systems this is the reason the LOGGER system measures small (≈ 0.5 ◦C)
variations in room temperature, even though the SIEMENS system keeps the average room
temperature stable. Due to different room working situations, cooling or heating, the stratifi-
cation is different, therefore it is a balancing act between the two systems to keep the LOGGER
average temperatures at a constant level.[4]

The LOGGER measures all parameters in 30 sec. intervals, which are averaged in 6 min.
or 1h steps (average of 12 or 120 values). The 6 min. average is stored in a Datat-
able called CR1000 2 #6min YYYY MM DD hh mm ss.dat, the 1 h average is stored in
CR1000 2 #oview YYYY MM DD hh mm ss.dat. The convention is as follows Y. . .Year,
M. . .Month, D. . .Day, h. . .hour, m. . .min, s. . .sec. These files can be read with a self writ-
ten MATBLAB program which is used for analyzing and modeling. The program is described
in the next section and the program code is shown in the APPENDIX.

25’th of June 2009
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4 The MATLAB program

MATLAB3 is a program for computing, calculation and analyzing data in every field of en-
gineering. The purpose of this chapter is not to explain how to program or calculate using
MATLAB, but to describe the code which was written to analyze and model room behaviors.
To use the program, the files need to be copied or the program copied from the Appendix and
stored under the right names. The program consists of six files. “calorimain.fig” and “calori-
main.m” are the main files, with the “*.fig” telling MATLAB how the GUI should look and
the “*.m” file being the corresponding code driving the functions by the pressing of individual
buttons. The files “Modeling.m” and “Calculation.m” contain the code for the different room
models e.g.: capacity and time-shift-model (described in Chapter 5). “strsplit.m” is the code
for splitting a string in different pieces and is used to separate the header of the LOGGER-file
into different parts. The last m-file “xticklabel rotate.m” is for the formatting of the x-axes,
especially for the 45 ◦ tilt of the date and time stamps. [9]
The first section describes the GUI (general user interface), which, under stable working con-
ditions, is the only point of interaction between the user and the program. The second part
describes how the modeling and calculation of the g-value is implemented so that a user can
modify this part of the program, if necessary, to create a more sophisticated and accurate
model.
If once MATLAB is started up, the following window appears on the screen (Figure 4.1). By
pressing on the GUIDE button marked in red the window shown in Figure 4.2 pops up. Click
on the tab “Open Existing GUI”. If the list of “Recently opened files:” is empty or the path
to the file “calorimain.fig” is not listed, click ”Browse. . . ” and select the path where the file is
stored.

Figure 4.1: MATLAB start window

3http://www.mathworks.com/ (5’th of June 2009)
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4 The MATLAB program

Figure 4.2: GUIDE quick start

The GUIDE editor then opens (Figure 4.3). In this window, the layout of the GUI can be
changed or new buttons, slides and axes added. By clicking on the “Run”button (green arrow,
red rectangle on the right) the program will start running. If something in the program has to
be altered, it is then necessary to open the “M-file EDITOR” (red rectangle on the left). Up
to this point, only the programming part has been used; now that program is working, it can
be used to analyze data.

After clicking the run-button the program is now running and the following window will be
shown (Figure 4.4). First the dat-file which needs to be read has to be selected by clicking the
“open” button (1. in Figure 4.4). A browser window will then open and the path and file can
be selected. In the next step, the program lists all the available parameters in the listbox (2a.)
e.g.: average room temperature, cooling energy etc.
It can read both types of LOGGER-files the 6 min. as well as the 1 h overview, for displaying
some logged values (e.g.: average room temp, water flow) there is no difference from the program
side. If the option(s) “Model’s” and/or “Calculation” is chosen (Figure 4.4), the program will
only work for 1 h overview data as the modeling process is optimized for 1 h steps- for example,
the time shift would be 3 mins. instead of 30 mins. and this does not work. If nothing appears
in this box and a “ping” sound is emitted there are maybe not a number entries (“NAN”)
in the LOGGER-file and the program cannot function. When this occurs, the error-message
displayed in Figure 4.5, will appear in the MATLAB command window. It is then necessary
to replace this value with a real number; if it is a value which is not used in the model, the
“NAN’s” can simply be replaced by -1, otherwise a real value if the modeling/calculation is
used to create real parameters.
If parameters are shown in listbox 2a. as expected, then there are two different options. One is
to have a look at an unlimited number of parameters by selecting them in the listbox (multiple
selections can be done by pressing the SHIFT or CTRL keys) then clicking “Read Listbox”.
The listbox for “Chose Start and Stop Date” (4.) will then list all 6 minute or hourly time
steps, and the different selected values for the whole period stored in the dat-file will appear in
the plot (6.). By selecting two of them (by pressing the CTRL key)- one for the start, and one
for the stop value, a separate figure with only the specific range can be plotted. If the button
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4 The MATLAB program

Figure 4.3: GUIDE editor

“Separate Figure” is clicked, the start and stop time is marked with two vertical dashed red
lines.

Figure 4.4: Blank user interface
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4 The MATLAB program

The other option is to only select the options “Model’s”, or both the “Model’s” and “Calculation
of g and U-value” options at the same time (2b.), because the calculation only works for the
model and therefore both buttons have to be marked. The order is as follow: after marking one
or both buttons, click “Read Listbox” and the whole time period of the time-shift and capacity-
model for which the necessary parameters are stored in the dat-file will appear in the plot (6.).
The next step is to select the time stamps for which the calculation should be performed (4.;
Choose Start and Stop Date) and/or for which range the model should be printed. Next, click
“Read Listbox”, because the calculation is performed by clicking this button and it will account
for the selected time scale. Finally, the button “Separate Figure” should be clicked to display
the model in a new window and to see the calculations in the command window which will
be as follows (Figure 4.6). There will be several g-values calculated and what they mean is
described in Chapter 6.

Figure 4.5: Error message during the reading process, if there is not a number (“NAN”) present
in the LOGGER-file

The following two pictures (Figure 4.7; Figure 4.8) are examples of how the first case can look.
There is only one thing which needs to be considered when a time range is selected- the period
should be more than 5 steps (30 min. for the 6 min. model, and 5 h for the 1 h model), otherwise
MATLAB will encounter problems labeling the x-axis. Figure 4.8 illustrates the detailed plot
between the two vertical red lines (“Start and Stop marker”) in Figure 4.7.
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4 The MATLAB program

Figure 4.6: Results of different g-value calculations

Figure 4.7: Description of case one, print of logged parameters, e.g.: water flow room 108 &
109
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4 The MATLAB program

Figure 4.8: Detailed print of the selection in Fig.4.7 (between red the vertical dashed lines)
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5 Modeling

In the previous chapter the MATLAB program was used to analyze data. The next step is to
use the program. This chapter discusses the entire modeling process, starting with the analysis
of a few basic forms of thermal room behaviors. By keeping these behaviors in mind, it is easier
to understand the modeling and why each step is performed. The modeling will be outlined in
small steps from the basic model to more sophisticated versions. Two different models will be
examined, the capacity model and the time-shift-model, and the advantages and disadvantages
of each discussed. At the end it will be shown which model yields better results.

During the modeling process, it was found that a angle-dependent g-value and calibration
constants for the cooling energy were required, the need for which were discovered during
the modeling process and included from the beginning on, to avoid too many modeling steps.
Otherwise at the point where the need of one of those parameters came up, the whole modeling
would have been described form the start of the thesis, that’s why they were included from the
basic model on and at certain sections 5.2.4, 5.2.5 the need for this is described.

5.1 Thermal room behaviors

Two forms of thermal behaviors are discussed. The first one is generally stable because the
same origin value is reached in the long run even if it changes during the day. The other is
dynamic and the same point is not reached daily, (nor is it possible to run this kind of test
every day as the preparation and evaluation of measurements requires more than a day).
Every attempt is made to use the same time range for the whole modeling process in order
to make proper comparison, therefore the vertical solar irradiation (red line in Figure 5.1) is
plotted in all figure in which it is needed, or is useful for understanding.
Figure 5.1 shows average room temperature against solar radiation, being the mean value of
the three measured temperature levels (top, middle and bottom). The red line shows the
vertical solar irradiation; while the weather conditions during the first two days were perfect,
the third day was slightly cloudy but it is good to evaluate the rooms under different conditions.
As shown, the temperature over a long run is stable, which is important for further modeling
steps, as it means that there is no energy stored in the air. Even on a day where the temperature
is almost stable, it can fluctuate by ±0.5 ◦C. This is due to the sun heating up the air in the
room, the average temperature is increased. The cooling system then starts working, cooling
the air and this causes a change in stratification, especially compared to a more moderate
situation such as night time.

Figure 5.2 shows the heat losses through all surfaces except the south front (test object), and
also shows the influence of the stratification process. At noon, when the cooling system works
the most, heat losses reach negative values (−10 W), which is why the floor is cooled down
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Figure 5.1: Room temperature against vertical solar radiation

dramatically compared to the surrounding temperature outside of the rooms. The surrounding
room temperature is 20 ◦C that means that the average room temperature (see Figure 5.1) is
always a little too low and energy is coming into the room. This effect increases during the day
because of the cooling. In the evening, when the cooling works as a lower level, the heat at the
top of the room has a bigger influence and energy is going out. This effect decreases through
the night and the cycle repeats the next day.

Next a closer look at the “dynamic” behaviors is taken and it is shown how quickly the rooms
react when the temperature leaves the set point. Two different systems are working in each
room: the heating system with a maximum power of 600 W and the cooling system with a
maximum power of 2700 W. The next two figures illustrate how the different levels of the
systems affect the thermal characteristics of the rooms Figure 5.3 shows the room behavior
when the cooling is operating. For this measurement, the internal cooling and heating were
switched to manual mode and turned off. To heat the room up, electric heaters were placed
in the room, and when the temperature reached approximately 42 ◦C (there is no specific
reason for this particular temperature) the heaters were removed and the cooling and heating
switched to automatic mode. As illustrated, the end temperature is approximately 19 ◦C which
corresponds to the controlled temperature in the first figure in this section. The time constant
is roughly 5 h. An important point is that both rooms behave identically, as this is important
for the measurement of test objects.

The opposite procedure is shown in Figure 5.4. The cooling and heating was switched to manual
and turned off, and the windows were opened to cool down the room as it was February and
the outside temperature was sufficiently cold to cool the room. When the temperature reached
8 ◦C (no specific reason for this point) the windows were closed but the internal system was not
switched to automatic mode; instead, the cooling was left on manual and off , and the heater
was physically separated from the controlling. The heater was directly plugged into a plug
socket (working at 100%, this is equal to 600 W) without the thyristor-switch, which controls

37



5 Modeling

Figure 5.2: Heat losses through surfaces against vertical solar irradiation

the amount of heating used to reach the set temperature in a range of 0%—100%. The reason
the thyristor switch was bypassed is because the purpose of heating was not to heat only to a
set temperature, and the SIEMENS program does not allow switching the heating to manual
and 100%. The portion of the graph within the gray area from 2009-02-15 09:00:00 onwards
was not used for the time constant measurement as sun irradiation caused the room to heat up
faster than before. As a result, an end temperature of 38 ◦C was estimated instead of 42 ◦C,
which gives a total temperature difference of 30 ◦C and a time constant of approximately 5.5 h.
As mentioned at the beginning of this chapter there are two different system values for cooling
and heating, which explains the different time constants. The heating with 600 W provides a
similar effect to that of a nice sunny day; as shown later in this chapter, a g0-value of 0.31
is used and the glass area is around 2.7 m2. If there is sun irradiation of around 650 W/m2

with g0 and a glass size of ≈ 2.7 m2, the energy coming into the room is 550 W and the room
will behave in a similar manner for this irradiation condition. Using the following reaction
calculation, if the temperature range should be within 1 ◦C the room has to react in:

∆T1 ◦C = ∆T30 ◦C ·
(

1− e−
t
τ

)
→ t = ln

(
1− 1 ◦C

30 ◦C

)
· 330 min. ≈ 11 min.

(5.1)

If the room temperature does not exceed the ±1 ◦C range, then the cooling has 11 min. to get
rid of the sun’s effects.

Having looked at thermal behaviors and knowing that the rooms are able to keep the room
temperature stable under high sun irradiation conditions and dynamic conditions, we move on
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Figure 5.3: Time constant measurement for the cooling process

to the most important part of this work. In the next chapter the entire modeling process is
explained.

5.2 Modeling process

The modeling process is split into three steps. First, we discuss the basic model and the
improvements made to it. Two different approaches were evaluated, the first being the capacity
model and the second the time-shift model. We take a closer look at the advantages and
disadvantages of each model and discuss why each model could or could not be used to obtain
the parameters (g- and U-values) in the final calculation.
The entire modeling process was carried out in a manner similar to a recursive calculation
process. From the basic model onwards, if there were improvements or solutions to an issue
at any particular step that were not part of the existing model, it was implemented in the
model and the whole modeling process restarted. This is the reason for the influence of an
angle dependent g-value being shown at the end of this chapter, as this principle is shown in all
three modelling steps. For ease of understanding, only the final model will be explained, and
a comparison of what the results would look like if an angle-dependent g-value was not used
displayed, to show why it was needed.
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Figure 5.4: Time constant measurement for heating with 600 W

5.2.1 The basic model

Figure 5.5 shows the vertical solar irradiation [W/m2] and cooling energy [W ]. The fact that
cooling has a time shift is important for understanding why the basic model behaves as it
does, and why the time-shift model was used. Due to the sensor arrangement (PT100) there
is no way of avoiding this time shift. This is because it takes time (up to when the minimum
level is reached) for the temperature control to realize the room has heated up from the sun.
Furthermore, not all energy from the sun gets transferred to the air and instead heats up the
surfaces in the room, which results in energy stored in these surfaces and later radiated back
into the room, which also causes a time-shift effect.

The basic model (equ.(5.2); Figure 5.6) consists of five terms:

1. Energy coming through the window: g·G·Aglass; g. . . g-value, G. . . vert. sun irradiation,
Aglass. . . glass size of the window (2.667 m2)

2. Energy going out through the window and frame: U·∆T ·Atotal; U. . . U-value,
∆T. . . temperature difference between inside and outside, Atotal . . . total size of glass and
frame

3. Cooling energy: Qcooling

4. Heating energy (The circulation fan, at 200 W—240 W, heats the room): Qheating

5. Losses through surfaces: Qlosses
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Figure 5.5: Time shift between solar irradiation and cooling energy

Qtot = g ·G ·Aglass − U ·∆T ·Atotal −Qcooling + Qheating −Qlosses (5.2)

The losses through the window and walls (2. and 5. term) have a lesser influence compared
to the amount of energy coming in through the window and taken care of by the cooling (1.
and 3. term). The heating energy is a constant factor, which has no influence on dynamic
characteristics. The brown line shows a combination of the first two parts in the Qtot equation.
The perfect equation for describing the room’s behaviors should net to zero (green line), but this
solution is not sophisticated enough to account for all factors to give exactly zero. However,
because sun irradiation and the cooling are major parts in this balance equation, it is clear
why the green curve in the figure has a positive peak in the morning and a negative peak
in the evening. Furthermore, Figure 5.5 illustrates a positive energy balance in the morning
when the cooling is not powerful enough, and a negative energy balance in the evening when
the cooling is stronger than sun irradiation. This is illustrated by the green line (Figure 5.6)
and is representative of what would happen under perfect conditions. While analysis would
be much more complex if there are disturbances (e.g.: clouds on the third day), the perfect
conditions during the first two days were chosen to see how the system/model reacts under
perfect conditions.

5.2.2 The capacity model

As discussed the basic model, two factors are responsible for Qtot in the basic model not equating
to zero. One was the delayed reaction of the cooling and the other the stored energy in surfaces.
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Figure 5.6: Basic model Qtot = g ·G ·Aglass − U ·∆T ·Atotal −Qcooling + Qheating −Qlosses

It therefore makes sense to include a term in the model which takes care of the stored energy,
which is done by extending the basic model using the following term:

6. With regards to the energy stored in surfaces, the temperature difference between the old
timestamp (index i-1) and the new (index i) is taken and multiplied by a specific heat
constant: cp · (Ti− Ti−1); cp . . . specific heat constant, Ti;i−1 . . . temperature for different
timestamps.

The whole model then looks as follows:

Qtot = g ·G ·Aglass − U ·∆T ·Atotal −Qcooling + Qheating −Qlosses − cp · (Ti − Ti−1) (5.3)

The way this extension to the model influences the total energy balance is shown Figure 5.7,
which shows vertical solar irradiation total energy of the basic model (green), the total energy
of the capacity model (dark blue) and the negative value of the capacitance. The negative value
makes it easier to compare the overlapping parts with the basic model, to see which parts rid
of by with this extension.
As shown, the model only works around noon and the basic peaks were removed assuming
cp 40 was used; this was not a calculated number but found using trial an error to see if the
model works in principle. If it is smaller in real life, the effect would not be large enough to
make a significant impact; conversely, if the number is much larger, then there would be a huge
negative peak during noon. Some may argue that using only one capacity term for all different
surfaces is an oversimplification because different surfaces are made from different materials,
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and hence have different specific constants; this has been accounted for in the model.
During the initial steps in creating this model, all surfaces where represented by different terms
in the equation; the floor and the other areas of the room are still separated in the MATLAB
program and only use the same cp and there is no difference between using them separately or
combined. The justification for this simplification is that all the capacity process are correlated
hence one surface heating up would result in all the others following in more or less the same
heating shape, therefore the lack of a need for separating them. Instead of using four terms with
different cp, one can be used and the cp adjusted correspondingly. Because of the correlation
and similarity of all the shapes of the capacity effect it isn’t possible to spread this effect out;
the capacity peaks as shown in Figure 5.7 are high enough but not broad enough. The only
takes care of the unbalanced energy during noon.

Because of all these effects there was no way of getting a better fit with this kind of model and
no further steps were taken.

Figure 5.7: Capacity model Qtot = g ·G ·Aglass−U ·∆T ·Atotal−Qcooling +Qheating−Qlosses−
cp · (Ti − Ti−1)

Another model has to be found and tested to see if there is a better way to fit and zero out the
energy. This was done using the next part, the time-shift model.
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5.2.3 The time-shift-model

As mentioned in the basic model, there were two reasons for the effects not zeroing out. One
was the stored energy in the surfaces, which the last model attempted to account for, but
was unsuccessful. The other was the cooling system started too late; even if it is physically
incorrect, there is no rule that disallows the sun irradiation from being shifted forwards and
backwards. A forward shift would not make sense as it would increase the gap between cooling
and room heating by irradiation. This model shifts the irradiation back by 1 h and allows either
no shift or a 1 h shift. For example the sun irradiation from 10 a.m. was used and shifted in
the model to 11 a.m. The influence of this shift is drawn in Figure 5.8.
The equation for this model is as follows:

Qtot = gi−1 ·Gi−1 ·Aglass − U ·∆T ·Atotal −Qcooling + Qheating −Qlosses, (5.4)

The changes to the basic model are the i-1 indices for g and G. This allows shifts in full time
step periods (meaning only hourly or 6 min. steps), but for which the modeling is not optimized.
The red and light green lines are known from the time-shift explanation at the beginning of
the modeling process. The brown line is the solution to the first two parts of equ.(5.4). The
difference between this model and the basic model is that if the vertical sun irradiation is at
maximum, this part of the equation should be maximum as well, but this has been shifted 1 h
back. The cooling energy has been printed for a better comparison. If cooling and irradiation
are compared, the cooling starts too late; if the brown line and the cooling is compared then it
is recognized that the cooling starts too early; which is exactly what the total energy balance
(Qtot) shows. Instead of a positive disbalance in the morning and negative in the evening, the
situation is now the opposite and the cooling starts too early compared to the irradiation. This
means that a full 1 h shift is too much, but as has been mentioned the LOGGER only logs in
1 h steps, so it is not possible to shift half an hour by setting the index to 0.5. A trick is thus
is necessary.
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Figure 5.8: Time-shift-model (no shift, 1h shift)

This trick is explained in the following step of the modeling process, where the time steps were
weighted: 50% of the old values and 50% of the actual values were used as the shift rate.

Qtot = gi−1 · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass −U ·∆T ·Atotal −Qcooling +Qheating −Qlosses (5.5)

This equation explains how the shift in the program was solved, Figure 5.9 shows a really good
result, even the phase between the cooling and the shifted energy coming into the room (brown)
is low. As they are in phase right now, there is no better way to fit the two curves with this
model. Compared to the total energy (brown), the deviation of Qtot from zero is really low and
are two positive and two negative peaks, which will zero out over the span of a few days. This
step of modeling was approved as being sufficiently accurate and it was decided that it was
time to proceed to the next stage of this work, which is to compare the two rooms to see if they
work equally and the compared measurements are acceptable. Before this step is explained,
the result of the angle-dependent g-value is shown to clarify why it was used in all the previous
steps of modeling, from the basic model to this stage of the time-shift model.
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Figure 5.9: Weighted time-shift-model

5.2.4 The angle-dependent g-value influence g(Θ)

As been mentioned a few times, the angle-dependent g-value was included during the whole
modeling process. The reasoning behind this is now discussed. This dependency actually exists
in the real world and was not including as a modeling step to remove undesirable effects. The
angle-dependency was included as follows:

g (Θ) = g0 ·
(

1− b0 ·
(

1

cos (Θ)
− 1

))
(5.6)

g0=0.31 and b0=0.2. Θ is the angle between the normal projection of the window and the
sun irradiation “azimuthally” angle, Θ is deduced from the actual time, when at 6 a.m. and
p.m. the angle is 90◦, and at 12 a.m. the angle is 0◦, with 15◦ steps between each hour. For
time-steps before 6 h a.m. or p.m., g(Θ) would be negative therefore the values are set to zero.
In Figure 5.10, the shapes of the angle-dependent g-value and the constant g-value are show,
with the zeroing outside of the 6 a.m., p.m. range. In each model the product of g·G was
obtained; this dependency results in a dampening of the sun irradiance in the morning and
evening. This makes the sun irradiation during summer, where the sun rises before 6 a.m. and
sets after 6 p.m., effectless in the model. More sophisticated models exists which use equ.(5.6)
only between a angle of ±60◦, and between 60◦ to 90◦ switch to another equation which is
smoother in the change to zero.
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Figure 5.10: g(Θ)- and gconst-curve for 24h

By looking at Figure 5.9 it can be seen that there is still some parts of this effect left; during
the morning and evening there are some small positive peaks, which would be worse with a
constant g-value. The exact impact of this effect can be seen in Figure 5.11, where the light blue
line is from the weighted time-shift with included g(Θ) model, and the green is with a constant
g-value. To remove the morning and evening peak could possibly be achieved by increasing b0

but as a result g0 also has to be increased, otherwise the whole curve would be too low. Even
so, there is still the problem of the second negative peak during the day which would increase
a lot with an increasing b0, which is why this was a good compromise.
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Figure 5.11: Influence of angle dependent g-value

5.2.5 Room comparison

Now that an acceptable model had been created, both rooms had to be compared. For this
measurement in one room one and two 300 W electric heaters were placed. The point of this
measurement was to determine the difference in cooling energy, if there is sun irradiation plus
300 W of heating in one room and only sun irradiation in the other room, the difference in
cooling energy should measure 300 W. As illustrated Figure 5.12 there are a few steps: one
300 W heater, no heater, one 300 W again and two 300 W heaters (in that order). The objective
of this was to figure out why there is a difference between the heating and cooling energy and
what kind of error it is- a proportional or a constant one. If the cooling is used 1.1 times
then it almost matches the heating energy. This pattern repeated on the measurements taken
up to 1200 W. With this method of measurement it was not possible to figure out why the
measurement is wrong and where the error is- if room 108, 109 or both have measurement
errors.
To figure out where the error was, a 100 mm thick wall with a Styrofoam material (calibration
wall) inside the south wall of room 109 was placed and the same done in 108, then the same
kind of measurement carried out, but instead of using the difference in values between the
rooms, only the absolute values of one room were used.
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Figure 5.12: Difference measurement without calibration factors

The result of this measurement was, that room 108 required a calibration constant of 1.15 and
room 109 1.1. With these two values, the measurement for the same period as that in Figure
5.12 was re-analyzed and the result shown in Figure 5.13. Both figures look almost the same
with the difference being that even if the heater is removed, the heating and cooling energy fits
better with the different calibration constants (red line at second step in both Figures 5.12 &
5.13).
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Figure 5.13: Difference measurement with calibration constants

It would of course be incorrect to say that the measurement was wrong and instead of finding
the error, take the easy way out and include some parameters in the model, then tick this off
as solved.
For the measurement of the cooling energy, two different types of sensors were used. One was
a flow meter for water flow and the other a thermocouple for the inlet and outlet water tem-
perature. To check if one of those sensors measured wrongly, the water flow was reduced by
switching the circulation pump to a lower power mode. To get the same amount of cooling
energy with reduced water flow, the temperature difference between the inlet and outlet must
increase. If the temperature measurement measure wrong and because of the increased tem-
peratures the influence of the error should decrease and this should decrease the % of cooling
error, as in Figure 5.14 shown this wasn’t the case. In the marked area which contained no
changes other than water flow (less flow), this corresponded to an increasing difference in water
temperature but the error was still the same.

There is also the MBUS system which measures the water flow with the same sensor as the
LOGGER, but it use PT100 sensors for the measurement of inlet and outlet temperature.
Comparing these two systems is a way of figuring out if only the LOGGER measured wrongly.
The result is shown in Figure 5.15. Both systems measured exactly the same; in the first part
there was around 1100 W of electric heaters plus 240 W for the circulation fan in the room, while
in the second period there was only the fan. A problem of the water temperature measurement
is that both systems (PT100, Thermocouple) measure dry, which means they do not directly
measure the water temperature, but the copper temperature of the tube. Even if the sensors
are well shielded from the surroundings, to avoid being affected by ambient air temperature,
this cannot rule out that effect.
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5 Modeling

Figure 5.14: Influence of the water flow change on the measurement error

At this stage of the project, there was no other way rule out that effect the measurement error
and use the calibration constants for the correction. Other steps would have been too time
consuming, which is also why constants were included in the whole modeling process.

Figure 5.15: Comparison of cooling energy measurements between the MBUS and LOGGER
systems
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6 Parameter identification

Following the entire modeling process is the final step in this work, and the main purpose of
the measurement system - to obtain the g-value and U-value. The comparison of measurements
between the two rooms was the first step in this direction. At this stage of the project, only the
process of identifying the g-value had been carried out via a comparison of the measurements
of total energy between both rooms. There are currently eight different g-value calculations,

the following three and three weighted version of this
(∑

g·G∑
G

)
and two for control purpose:

1. needed g-value only for room 108 that Qtot108 zero out

2. needed g-value only for room 109 that Qtot109 zero out

3. needed g-value for room 108 that the Qtot difference between the rooms zero out

The third calculation is correlated to the first two because there is no difference if each room
itself zero out, this would mean the difference is zero as well. Or if only the difference is
calculated without taking care if Qtot is zero. The equation for cases 1. and 2. is as follows:

Qtot = 0 = multiple · gi−1 · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass

−U ·∆T ·Atotal −Qcooling + Qheating −Qlosses

(6.1)

and for case 3.:

Qdiff = 0 = gi−1 · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass

−U ·∆T109 ·Atotal −Qcooling109 + Qheating109 −Qlosses109

−(multiple · gi−1 · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass

−U ·∆T108 ·Atotal −Qcooling108 + Qheating108 −Qlosses108)

(6.2)

The solution with the multiple was chosen because it is easier to implement in terms of pro-
gramming. Instead of calculating a new g-value for each hour, only one parameter needs to be
calculated and the new g-value is the product of the original one and the multiple.
The Newton-Raphson algorithm was used to solve the equation and zero out the absolute value
or difference as it is a quick and robust method as long as no local singularities. Figure 6.1
illustrates the schematic function of this algorithm. 4

As an attempt to create a well defined scenario for g-value measurement, 1
2 of the window size

in one room was covered, as shown in Figure 6.2 a.). Each room contained six windows- two
small ones at the top and bottom respectively which were covered with styrofoam to reduce
the effect of sun irradiation; and two large windows in the middle. While the small windows at
the top and bottom of both rooms were identical and permanent, the large windows were not.
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6 Parameter identification

Figure 6.1: Schematic view of the Newton Raphson method

The large windows in one room were covered with aluminum foil on the outside, as aluminum
foil has a high reflectance and the tight placement on the outside of the window should not
affect the U-value; while the other had uncovered windows.

Figure 6.2: a.) Window layout, b.) Effect of aluminum covers

At the first view, it was mentioned that only half of the g-value should be measured if half of
the window is transparent/uncovered. However, the measurement results shown in Figure 6.3
gave a multiple factor of ≈0.7 instead of 0.5. The blue line shows the reference room 109 with
no covered windows. The brown line is the adjusted g-value of room 108, which is way too high
during noon as the cooling only had a reduced amount of sun irradiation to take care of. If we
take into account the fact that the model still considers that the entire window is uncovered
with full sun irradiation, and make corresponding adjustments, we get the corrected Qtot for
room 108, illustrated by the green line. This gives a difference of zero between the blue and
green lines. Before the adjustment, the deviation was 2.3 kWh for all 3 days; it was 0.62 Wh
after.
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6 Parameter identification

Further analysis uncovered the reasons for this difference. Both panes of glass reflect some
sunlight back outside, shown in Figure 6.2 b.), which illustrates two red arrows being reflected
back out, such as in the case of a window not covered by aluminum foil. In the lower case the
reflection from the inner glass is reflected back to the room. Furthermore, light reflected off the
walls of the room is also reflected back into the rooms, represented by the orange arrows. This
measurement only accounts for half of the glass but does not consider the aluminum frame of
the windows. If the ratio of glass to frame is 70% to 30% and 50% of the glass is covered,
this would correspond to 35% less sun irradiation. All these effects combined may result in the
measured 30% less irradiation and explain 0.7 as a multiple.
As of this moment eight different g-values have been calculated, with three having been
explained- the g-value zeroing out the total energy for each room (cases 1 and 2), and the
third zeroing out the difference of Qtot. Three of the remaining five are weighted g-values cal-
culated using

∑
g·G∑
G , which gives the g values around noon more weight. This is calculated for

the difference as well as each room individually.

Figure 6.3: Results of the g-value calculation
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7 Conclusion

The entire system consisted of many different parts, and it was a gradual process with many
distinct steps/stages of getting each of them to work, and of eliminating the errors in each
stage.
The whole project can be split into three steps. The first was the measurement system involved
the measurement of various temperatures as well as the water flow and electricity consumption
in the rooms. Going further would have been pointless if this part had not worked correctly.
The next and biggest step was the modeling, in which two variants to the basic model were
evaluated: the capacity model and the time-shift model. The capacity model did not fulfill the
necessary requirements and it was not feasible to develop it into a more sophisticated model that
would give reliable results, hence no further work was done on it. Instead, the time-shift model
was chosen for further development around the principle of time-shifts between sun irradiation
and the cooling energy. Further development into the weighted shift version resulted in a good
and acceptable model which zeroed out most, except a few remaining peaks.
Besides these two models there were two other findings during the modeling process. One
was the angle-dependent g-value, g(Θ) and the other was an error in the measurement of
cooling energy, found towards the end of the modeling process during the comparison of both
rooms. The systems had measured inaccurately by 10% (room 108) and 15% (room 109). The
assumption that room temperature is stable in the long run means that only the measurement
could have been wrong, otherwise the temperature would have slowly increased. significant
amount of effort was spent on finding the error and even a comparison between the MBUS and
LOGGER systems could not unearth where the error lay. This is also why constants were used
in the entire modeling process.
The third and last step was the parameterization of the g-value, where the Newthon-Raphson
method was used. To date, eight different g-values have been calculated: one to zero out the
difference in the total energy between the rooms, two values to zero out each individual room,
three were weighted version of the previous g-values and the last two were only for control
purposes. How the weighted version differs is that the sum of g·G is divided by the sum of G
for the period analyzed, which gives more weight to the g-value around noon.
A possible future development should be around the measurement of the inlet and outlet water
temperature. Currently, both the MBUS and LOGGER systems measure with different sensors
(PT100 and thermocouples) but both measure dry, which means that the water temperature is
not measured directly, but instead taken using the temperature of the copper tube. Even if the
tubes are well insulated, there is no way of being sure that the surrounding environment has
no effect on it. Therefore a wet sensor should be trailed at some stage, by exposing it directly
to the water flow and hence directly measuring the water temperature. If a difference is found
between the wet sensor reading and that of the dry sensor, then the origin of the error has been
identified; if there is no difference, the only other possible location of the error lies in the water
flow sensor.
To even further develop the model, a specialised version which takes into account more physical
aspects of a specific room could be a possible option. Combining the capacity and time-shift
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7 Conclusion

models could be a way of removing two effects at the same time - the stored energy in surfaces
and the time-shift between irradiation and cooling. The most important part is the U-value,
which has not been included thus far and the parameterization of the measuring object is
the purpose of the rooms. Therefore a way of obtaining this value was devised. The inside
and outside glass temperature is measured the whole time, during the night when there is no
sunshine, the difference of the glass temperature between the rooms can give information of
the U-value. This has to be incorporated process so that the U-value is calculated first, then
followed by calculation of the g-value using the Newton-Raphson method.
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Appendix A LOGGER table 6min. and 1 h

Table position LOGGER name Description

1 RECNBR number of data set

2 T8luft Avg arithmetic average room temperature room 108

3 T8glas Avg arithmetic average of inside glass temperature room 108

4 DT8glas Avg glass temp. diff. between inside & outside middle level 108

5 T9luft Avg arithmetic average room temperature room 109

6 T9glas Avg arithmetic average of inside glass temperature room 108

7 DT9glas Avg glass temp. diff. between inside & outside middle level 109

8 Q108 Avg heat losses through all surfaces except south wall room 108

9 Q109 Avg heat losses through all surfaces except south wall room 108

10 TluftUte Avg outside air temperature

11 RefT Avg reference temperature for thermocouples

12 VertSol Avg vertical sun irradiation

13 VertSolDiff Avg diffuse sun irradiation

14 VertSolMark Avg infrared ground irradiation

15 Pyrgeometer Avg vertical infrared radiation

16 PyrgeTest Avg measured value without const. multipl. for vert. infr. rad. [mV]

17 Wflow108 Avg water flow for coolingwater room 108

18 Wflow109 Avg water flow for coolingwater room 109

19 Qkyla108 Avg cooling energy room 108

20 Qkyla109 Avg cooling energy room 109

21 El108 Avg total electricity consumption room 108

22 El109 Avg total electricity consumption room 109

23 Q tempWall Avg

24 Q8Ceil Avg heatlosses through ceiling room 108

25 Q8Floor Avg heatlosses through floor room 108

26 Q8WWall Avg heatlosses through west wall room 108

27 Q8EWall Avg heatlosses through east wall room 108

28 Q9Ceil Avg heatlosses through ceiling room 109

29 Q9Floor Avg heatlosses through floor room 109

30 Q9WWall Avg heatlosses through west wall room 109

31 Q9EWall Avg heatlosses through east wall room 109

32 LoggerT Avg LOGGER temperature

33 T8luftUpp Avg air temperature 34 cm below the ceiling room 108

34 T8luftMitt Avg air temperature in the middle of the high room 108

35 T8luftNert Avg air temperature 57 cm above the floor room 108
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Appendix A LOGGER table 6 min. and 1 h

... symbolises that the range between 51-60, 61-70, 71-80 and 83-90 is not used;
the first range is reserved for more sensor values in the rooms; and
the other spaces are for values in a more sophisticated model.

Table position LOGGER name Description

36 T8glasInMitt Avg glass temperature at the inside middle window room 108

37 T8glasInNert Avg glass temperature at the inside botom window room 108

38 T8glasUtMitt Avg glass temperature at the outside middle window room 108

39 T9luftUpp Avg air temperature 34 cm below the ceiling room 109

40 T9luftMitt Avg air temperature in the middle of the high room 108

41 T9luftNer Avg air temperature 57 cm above the floor room 109

42 T9glasInUpp Avg temperature at the top window inside at the glas room 109

43 T9glasInMitt Avg glass temperature at the inside middle window room 109

44 T9glasInNert Avg glass temperature at the inside botom window room 109

45 T9glasUtmitt Avg glass temperature at the outside middle window room 109

46 T w108ut Avg outlet cooling water temperature room 108

47 T w108in Avg inlet cooling water temperature room 108

48 T w109ut Avg outlet cooling water temperature room 109

49 T w109in Avg inlet cooling water temperature room 109

50 DeltaTW8 Avg ∆T between in and outlet of cooling water room 108

51 DeltaTW9 Avg ∆T between in and outlet of cooling water room 109
...

...
...

60 · · · g(i−1) · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass − U ·∆T ·Atotal room 108

61 · · · Qtot weighted time-shift model room 108
...

...
...

70 · · · g(i−1) · (0.5 ·Gi + 0.5 ·Gi−1) ·Aglass − U ·∆T ·Atotal room 109

71 · · · Qtot weighted time-shift model room 109
...

...
...

80 · · · Qtot = g ·G ·Aglass − U ·∆T ·Atotal room 108

81 · · · Qtot capacity model room 108

82 · · · stored energy in surfaces, except south wall room 108

83 · · · Qtot+stored energy room 108
...

...
...

90 · · · Qtot = g ·G ·Aglass − U ·∆T ·Atotal room 109

91 · · · Qtot capacity model room 109

92 · · · stored energy in surfaces, except south wall room 109

93 · · · Qtot+stored energy room 109

Table A.1: LOGGER data table (6 min. and 1 h)
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Appendix B MATLAB Code

B.1 Main program (“calorimain”)

1 %Author : Markus Heimberger
%June 2009

3 function varargout = ca l o r ima in expo r t ( vararg in )
% CALORIMAIN EXPORT M− f i l e f o r c a l o r i m a i n e x p o r t . f i g

5 % CALORIMAIN EXPORT, by i t s e l f , c r e a t e s a new CALORIMAIN EXPORT or r a i s e s
the e x i s t i n g

% s i n g l e t o n ∗ .
7 %

% H = CALORIMAIN EXPORT r e t u r n s the handle to a new CALORIMAIN EXPORT or the
handle to

9 % the e x i s t i n g s i n g l e t o n ∗ .
%

11 % CALORIMAIN EXPORT( ’CALLBACK’ , hObject , eventData , handles , . . . ) c a l l s the
l o c a l

% f u n c t i o n named CALLBACK in CALORIMAIN EXPORT.M with the g iven input
arguments .

13 %
% CALORIMAIN EXPORT( ’ Property ’ , ’ Value ’ , . . . ) c r e a t e s a new CALORIMAIN EXPORT

or r a i s e s the
15 % e x i s t i n g s i n g l e t o n ∗ . S t a r t i n g from the l e f t , p rope r ty v a l u e p a i r s are

% a p p l i e d to the GUI b e f o r e ca lor imain expor t OpeningFunct ion g e t s c a l l e d .
An

17 % unrecognized prop er t y name or i n v a l i d v a l u e makes pr oper ty a p p l i c a t i o n
% sto p . A l l i n p u t s are passed to ca lor imain export OpeningFcn v i a va rarg in .

19 %
% ∗See GUI Options on GUIDE’ s Tools menu . Choose ”GUI a l l o w s only one

21 % i n s t a n c e to run ( s i n g l e t o n ) ” .
%

23 % See a l s o : GUIDE, GUIDATA, GUIHANDLES

25 % Edit the above t e x t to modify the response to h e l p c a l o r i m a i n e x p o r t

27 % Last Modi f ied by GUIDE v2 .5 27−Jul−2009 10 :12 :55

29 % Begin i n i t i a l i z a t i o n code − DO NOT EDIT
gu i S i n g l e t on = 1 ;

31 gu i S t a t e = s t r u c t ( ’ gui Name ’ , mfilename , . . .
’ g u i S i n g l e t on ’ , gu i S ing l e t on , . . .

33 ’ gui OpeningFcn ’ , @calorimain export OpeningFcn , . . .
’ gui OutputFcn ’ , @calorimain export OutputFcn , . . .

35 ’ gui LayoutFcn ’ , @calor imain export LayoutFcn , . . .
’ gu i Ca l lback ’ , [ ] ) ;

37 i f nargin && i s cha r ( vararg in {1})
gu i S t a t e . gu i Ca l lback = s t r 2 f unc ( vararg in {1}) ;

39 end
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41 i f nargout
[ varargout {1 :nargout } ] = gui mainfcn ( gu i Sta te , vararg in { :} ) ;

43 else
gui mainfcn ( gu i Sta te , vararg in { :} ) ;

45 end
% End i n i t i a l i z a t i o n code − DO NOT EDIT

47

49
% −−− Executes j u s t b e f o r e c a l o r i m a i n e x p o r t i s made v i s i b l e .

51 function ca lor imain export OpeningFcn ( hObject , eventdata , handles , vara rg in )
% This f u n c t i o n has no output args , see OutputFcn .

53 % hObject handle to f i g u r e
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

55 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)
% vara rg i n command l i n e arguments to c a l o r i m a i n e x p o r t ( see VARARGIN)

57
% Choose d e f a u l t command l i n e output f o r c a l o r i m a i n e x p o r t

59 handles . output = hObject ;

61 % Update hand les s t r u c t u r e
guidata ( hObject , handles ) ;

63
% UIWAIT makes c a l o r i m a i n e x p o r t wai t f o r user response ( see UIRESUME)

65 % u i w a i t ( hand les . f i g u r e 1 ) ;

67
% −−− Outputs from t h i s f u n c t i o n are re turned to the command l i n e .

69 function varargout = calor imain export OutputFcn ( hObject , eventdata , handles )
% varargout c e l l array f o r r e t u r n i n g output args ( see VARARGOUT) ;

71 % hObject handle to f i g u r e
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

73 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

75 % Get d e f a u l t command l i n e output from hand les s t r u c t u r e
varargout {1} = handles . output ;

77
%Debug s w i t c h hidden f i e l d s f o r debuging on

79 handles . Debug= ’ Off ’ ;
gu idata ( hObject , handles ) ;

81

83 % −−− Executes on but ton p r e s s in open .
function open Cal lback ( hObject , eventdata , handles )

85 % hObject handle to open ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

87 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

89 %=====================================================================
% reading f i l e and s t o r e LOGGER data in d i f f e r e n t v a r i a b l e s

91 % Date and time i s s t o r e d in hand les . Date
% a l l the sensor datas are s t o r e d in hand les . DataTable

93
[ FileName , PathName , F i l t e r I nd ex ] =uiget f i l e ( ’D: / Lund/Master Thes i s /Logger Data /∗ .

tx t ’ , ’Open Logger− f i l e ’ ) ;%d e f a u l t f i l e path and f i l e type
95

%i f f i l e s e l e c t i o n i s c a n c e l l e d , pathname shou ld be zero
97 %and noth ing shou ld happen

i f PathName == 0
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99 return
end

101
set ( handles . s e l e c t e dF i l e , ’ S t r ing ’ , [ PathName , FileName ] ) ;%s e t path and f i l e −name

on GUI ( s e l e c t e d f i l e p a t h )
103

FID = fopen ( [ PathName , FileName ] ) ;
105 headerStr ing1 = fscanf (FID , ’%s /n ’ ) ; % reads header data i n t o a s t r i n g f i r s t

header l i n e
headerStr ing2 = fscanf (FID , ’%s /n ’ ) ; % reads header data i n t o a s t r i n g second

header l i n e
107 s ize ( f indstr ( headerStr ing2 , ’ ” ’ ) ) ;

109 Header 1 =s t r s p l i t ( ’ , ’ , headerStr ing1 , ’ omit ’ ) ; %s p l i t header s t r i n g i n t o
s e p a r a t e p a r t s

handles . Header 2 =s t r s p l i t ( ’ , ’ , headerStr ing2 , ’ omit ’ ) ;
111

i =1;
113 run=1;

while run
115 Date Time=fscanf (FID , ’%s /n ’ ) ; %format o f Date Time e . g . : ”2009−07−02

i f strcmp (Date Time , ’ ’ ) %break i f Date Time i s empty
117 break ;

else
119 handles .Day( i , : )= Date Time ( length (Date Time )−9: length (Date Time ) ) ; % e . g

. : 2009−07−02
end

121 Date Time=fscanf (FID , ’%s /n ’ ) ; %format o f Date Time now
0 6 : 0 0 : 0 0 ” , 1 2 . 2 3 , 1 2 4 . 1 2 3 , . . . .

handles . Time( i , : )=Date Time ( 1 : 8 ) ; %tak e on ly the f i r s t 8 c h a r c t e r s o f
Date Time e . g . : 0 6 : 0 0 : 0 0

123 i=i +1;
end

125
handles . Date=s t r c a t ( handles .Day ,{ ’ ’ } , handles . Time ( ) ) ; %put Day and Time

t o g e t h e r to one s t r i n g
127 handles . TableData=csvread ( [ PathName , FileName ] , 2 , 1 ) ; %read LOGGER data i n t o

TableData s t a r t a t 3 ’ rd row and 2 ’ nd column
guidata ( hObject , handles ) ; %s t o r e a l l hand les a t hObject t h a t o the r f u n c t i o n s

have a cce s s
129 fc lose (FID) ;

% end o f read f i l e
131 %=====================================================================

133 set ( handles . l i s t b , ’ S t r ing ’ , handles . Header 2 ( 3 : length ( handles . Header 2 ) ) ) ;%show
a v a i b l e LOGGER data in l i s t b o x ( A v a i l a b l e LOGGER Data )

135
% −−− Executes on s e l e c t i o n change in l i s t b o x 1 .

137 function l i s t b ox1 Ca l l b a ck ( handleToListbox , eventdata , handles )
% hObject handle to l i s t b o x 1 ( see GCBO)

139 % eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB
% hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

141
% Hints : c o n t e n t s = g e t ( hObject , ’ S tr ing ’ ) r e t u r n s l i s t b o x 1 c o n t e n t s as c e l l array

143 % c o n t e n t s { g e t ( hObject , ’ Value ’ ) } r e t u r n s s e l e c t e d item from l i s t b o x 1
va l s = get ( handles . handleToListbox , ’ Value ’ ) ;

145
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147 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s .
function l i s tbox1 CreateFcn ( handleToListbox , eventdata , handles )

149 % hObject handle to l i s t b o x 1 ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

151 % hand les empty − hand les not c r e a t e d u n t i l a f t e r a l l CreateFcns c a l l e d

153 % Hint : l i s t b o x c o n t r o l s u s u a l l y have a whi te background on Windows .
% See ISPC and COMPUTER.

155 i f i s p c && i s e qua l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’
de fau l tUicontro lBackgroundColor ’ ) )
set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

157 end

159
% −−− Executes on but ton p r e s s in ReadListBox .

161 function ReadListBox Callback ( hObject , eventdata , handles )
%l i s t e=g e t ( handleToListbox , ’ S tr ing ’ ) ;

163 %[ msg{1: numel ( v a l s ) ,1}]= l i s t e { v a l s } ;
%msgbox (msg) )

165 % hObject handle to ReadListBox ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

167 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

169 handles . va l s = get ( handles . l i s t b , ’ Value ’ ) ; %read s e l e c t e d parameters from
A v a i l a b l e LOGGER Data l i s t b o x

plot ( handles . TableData ( : , handles . va l s+1) , ’ LineWidth ’ , 2) ; %p l o t s e l c t e d Data in
l e f t p l o t

171

173 guidata ( hObject , handles ) ;%s t o r e a l l new hand les in hObject

175 %f u n c t i o n c a l l f o r modeling c a l c u l a t i o n
%time−s h i f t and c a p a c i t y model

177 %#########################################################################
%#########################################################################

179 %#########################################################################
i f (get ( handles . Energy , ’ Value ’ ) == get ( handles . Energy , ’Max ’ ) )

181 Modeling ( hObject ) ;
end

183 %#########################################################################
%#########################################################################

185 %#########################################################################

187 handles=guidata ( hObject ) ; %read the new c a l c u l a t e d hand les from hObject
%e . g .60 or 61 and s t o r e them in hand les

189

191 %=====================================================================
% p l o t f o r m a t t i n g f o r smal p l o t on l e f t s i d e

193 set ( handles . axes1 , ’XGrid ’ , ’ on ’ , ’YGrid ’ , ’ on ’ ) ;
axis t i g h t ; %p l o t range to max and min v a l u e o f Data

195 t i c k 1=get ( handles . axes1 , ’XTick ’ ) ;
set ( handles . axes1 , ’ XTickLabel ’ , handles . Date ( t i ck1 , : ) ) ; %s e t Date as X l a b l e

197 x t i c k l a b e l r o t a t e ( [ ] , [ 4 5 , 8 0 , 1 5 0 , 5 0 0 , 4 5 0 ] , [ ] , ’ Fonts i z e ’ ,10) %r o t a t e X l a b l e 45 ◦

l egendObject = legend ( handles . Header 2 ( handles . va l s+2) , ’ Locat ion ’ , ’ Best ’ ) ;
199 t i t l e ( ’Measured Data ’ ) ;

xlabel ( ’Time ’ ) ;
201 ylabel ( ’Measured Value ’ ) ;
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203 % END p l o t f o r m a t t i n g f o r smal p l o t on l e f t s i d e
%=====================================================================

205
set ( handles . l i s tbDate , ’ S t r ing ’ , handles . Date ) ; %show date & time in l i s t b o x to

s e l e c t 2 f o r s e p a r a t e p r i n t
207 guidata ( hObject , handles ) ;

209
% −−− Executes on s e l e c t i o n change in l i s t b .

211 function l i s t b Ca l l b a c k ( hObject , eventdata , handles )
% hObject handle to l i s t b ( see GCBO)

213 % eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB
% hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

215
% Hints : c o n t e n t s = g e t ( hObject , ’ S tr ing ’ ) r e t u r n s l i s t b c o n t e n t s as c e l l array

217 % c o n t e n t s { g e t ( hObject , ’ Value ’ ) } r e t u r n s s e l e c t e d item from l i s t b

219
% −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s .

221 function l i s t b Crea t eFcn ( hObject , eventdata , handles )
% hObject handle to l i s t b ( see GCBO)

223 % eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB
% hand les empty − hand les not c r e a t e d u n t i l a f t e r a l l CreateFcns c a l l e d

225
% Hint : l i s t b o x c o n t r o l s u s u a l l y have a whi te background on Windows .

227 % See ISPC and COMPUTER.
i f i s p c && i s e qua l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
229 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
231

233 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s .
function axes1 CreateFcn ( hObject , eventdata , handles )

235 % hObject handle to axes1 ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

237 % hand les empty − hand les not c r e a t e d u n t i l a f t e r a l l CreateFcns c a l l e d

239 % Hint : p l a c e code in OpeningFcn to p o p u l a t e axes1
%s e t ( hObject , ’ S tr ing ’ , va l s , ’ V i s i b l e ’ , hand les . Debug ) ;

241

243 % −−− Executes on s e l e c t i o n change in l i s t b D a t e .
function l i s t bDat e Ca l l ba ck ( hObject , eventdata , handles )

245 % hObject handle to l i s t b D a t e ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

247 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

249 % Hints : c o n t e n t s = g e t ( hObject , ’ S tr ing ’ ) r e t u r n s l i s t b D a t e c o n t e n t s as c e l l
array

% c o n t e n t s { g e t ( hObject , ’ Value ’ ) } r e t u r n s s e l e c t e d item from l i s t b D a t e
251

%=====================================================================
253 %drawing o f red v e r t i c a l l i n e s f o r time p er i ode s e l c t i o n

255 VLines = f i ndob j ( ’ type ’ , ’ l i n e ’ , ’Marker ’ , ’ none ’ , ’ L ineSty l e ’ , ’−− ’ ) ; %f i n d red
v e r t i c a l l i n e s in smal p l o t

delete ( VLines ) ; %d e l e t e t h i s l i n e s
257 Range=get ( hObject , ’ Value ’ ) ; %read s e l e c t e d v a l u e o f Date l i s t b o x
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YRange=get ( handles . axes1 , ’YLim ’ ) ;
259 Rsize=s ize (Range ) ;

261 for i =1: Rs ize (1 , 2 )
l ine ( [ Range (1 , i ) , Range (1 , i ) ] , YRange , ’ Color ’ , ’ r ’ , ’ Linewidth ’ , 2 , ’ L i n e s t y l e ’ , ’
−− ’ ) ; %p l o t new red l i n e s

263 end

265 %END drawing o f red v e r t i c a l l i n e s f o r time per iode s e l c t i o n
%=====================================================================

267

269 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l p r o p e r t i e s .
function l i s tbDate CreateFcn ( hObject , eventdata , handles )

271 % hObject handle to l i s t b D a t e ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

273 % hand les empty − hand les not c r e a t e d u n t i l a f t e r a l l CreateFcns c a l l e d

275 % Hint : l i s t b o x c o n t r o l s u s u a l l y have a whi te background on Windows .
% See ISPC and COMPUTER.

277 i f i s p c && i s e qua l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’
de fau l tUicontro lBackgroundColor ’ ) )
set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

279 end

281

283 %=====================================================================
%p r i n t f i g u r e in new window

285
% −−− Executes on but ton p r e s s in SepFigure .

287 function SepFigure Cal lback ( hObject , eventdata , handles )
% hObject handle to SepFigure ( see GCBO)

289 % eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB
% hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

291 ChosenDate=get ( handles . l i s tbDate , ’ Value ’ ) ; %read s e l e c t e d Date in l i s t b o x
A=s ize ( ChosenDate ) ;

293 i f A(1 ,2 ) ˜= 2 %c o n t r o l i f e x a c t l y 2 Dates are s e l e c t e d
msgboxText{1} = ’You have not chosen 2 va lue s ’ ;

295 msgbox (msgboxText , ’ Input not a l lowed ’ , ’ e r r o r ’ ) ;
else %i f 2 are s e l e c t e d p r i n t in s e p a r a t e p l o t

297 s c r s z = get (0 , ’ Sc r e enS i z e ’ ) ;
SepPrint=f igure ( ’ Po s i t i on ’ , [ 1 s c r s z (2 ) s c r s z (3 ) s c r s z (4 ) −70]) ;

299 SepAxes=axes ( ’ Units ’ , ’ p i x e l s ’ , ’ Po s i t i on ’ , [1+80 s c r s z (2 )+80 s c r s z (3 )−150 s c r s z (4 )
−70−150]) ;

301 guidata ( hObject , handles ) ;%s t o r e a l l new hand les in hObject

303 %f u n c t i o n c a l l f o r g and U Value c a l c u l a t i o n
%f o r time s h i f t model on ly

305 %#########################################################################
%#########################################################################

307 %#########################################################################
i f (get ( handles . Energy , ’ Value ’ ) == get ( handles . Energy , ’Max ’ ) ) %i f r a d i o b u t t o n

Model ’ s & C a l c u l a t i o n i s s e l e c t e d c a l l f u n c t i o n C a l c u l a t i o n and c a l c u l a t e
d i f f e r e n t Model ’ s

309 i f (get ( handles . Calc , ’ Value ’ ) == get ( handles . Calc , ’Max ’ ) )
Ca l cu l a t i on ( hObject , ChosenDate ) ;

311 end
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%#########################################################################
313 %#########################################################################

%#########################################################################
315 handles=guidata ( hObject ) ; %read the new c a l c u l a t e d hand les from hObject

%e . g . g or U v a l u e
317

%=====================================================================
319 % DIFFERENT PLOT ( s e p a r a t e window )

321 plot ( [ handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) . . .
handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,61) . . .

323 handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,71) , . . .
] , ’ LineWidth ’ , 2) ;

325 legend ( ’ ve r t . Sol−i r r a d i a t i o n ’ , ’Q { to t } 108 ’ , ’Q { to t } 108 ’ , ’ Locat ion ’ , ’ Best ’ ) ;
%d e f a u l t l e g end e n t r i e s

else
327 SepPlot=plot ( ’ v6 ’ , handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) , handles .

va l s+1) , ’ LineWidth ’ , 2) ;
l egendObject = legend ( handles . Header 2 ( handles . va l s+2) , ’ Locat ion ’ , ’ Best ’ ) ;

329 end

331 set ( SepAxes , ’XGrid ’ , ’ on ’ , ’YGrid ’ , ’ on ’ ) ;
axis t i g h t

333 t i c k 1=get ( SepAxes , ’XTick ’ ) ;

335 set ( SepAxes , ’ XTickLabel ’ , handles . Date ( t i c k1+ChosenDate (1 , 1 ) −1 ,:) ) ;
x t i c k l a b e l r o t a t e ( [ ] , 4 5 , [ ] , ’ Font s i z e ’ , 10)

337
t i t l e ( ’Measured Data ’ , ’ Fonts i z e ’ , 16) ;

339 xlabel ( ’Time ’ , ’ Fonts i z e ’ , 14) ;
ylabel ( ’ Energy [W] , [W/mˆ2 ] ’ , ’ Fonts i z e ’ , 14) ;

341
end

343 %END DIFFERENT PLOT’ S
%====================================================================

345

347 % −−− Executes on but ton p r e s s in Calc .
function Calc Cal lback ( hObject , eventdata , handles )

349 % hObject handle to Calc ( see GCBO)
% eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB

351 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

353 % Hint : g e t ( hObject , ’ Value ’ ) r e t u r n s t o g g l e s t a t e o f Calc

355
% −−− Executes on but ton p r e s s in Energy .

357 function Energy Cal lback ( hObject , eventdata , handles )
% hObject handle to Energy ( see GCBO)

359 % eventda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n o f MATLAB
% hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

361
% Hint : g e t ( hObject , ’ Value ’ ) r e t u r n s t o g g l e s t a t e o f Energy

363

365
% −−− Creates and r e t u r n s a handle to the GUI f i g u r e .

367 function h1 = calor imain export LayoutFcn ( po l i c y )
% p o l i c y − c r e a t e a new f i g u r e or use a s i n g l e t o n . ’new ’ or ’ reuse ’ .
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369
p e r s i s t e n t h s i ng l e t on ;

371 i f strcmpi ( po l i cy , ’ r euse ’ ) & i shand l e ( h s i ng l e t on )
h1 = hs ing l e t on ;

373 return ;
end

375
appdata = [ ] ;

377 appdata . GUIDEOptions = s t r u c t ( . . .
’ a c t i v e h ’ , [ ] , . . .

379 ’ t a g i n f o ’ , s t r u c t ( . . .
’ f i g u r e ’ , 2 , . . .

381 ’ pushbutton ’ , 4 , . . .
’ l i s t b o x ’ , 5 , . . .

383 ’ t ex t ’ , 6 , . . .
’ axes ’ , 2 , . . .

385 ’ u ipane l ’ , 7 , . . .
’ rad iobutton ’ , 3 , . . .

387 ’ e d i t ’ , 2) , . . .
’ o v e r r i d e ’ , 0 , . . .

389 ’ r e l e a s e ’ , 13 , . . .
’ r e s i z e ’ , ’ none ’ , . . .

391 ’ a c c e s s i b i l i t y ’ , ’ c a l l b a ck ’ , . . .
’ m f i l e ’ , 1 , . . .

393 ’ c a l l b a ck s ’ , 1 , . . .
’ s i n g l e t o n ’ , 1 , . . .

395 ’ s y s c o l o r f i g ’ , 1 , . . .
’ b l ock ing ’ , 0 , . . .

397 ’ l a s t Sav edF i l e ’ , ’C:\Dokumente und E in s t e l l ungen \heimbe\Desktop\Thes i s Latex\
Markus\appendix\ ca l o r ima in expo r t .m’ ) ;

appdata . las tVal idTag = ’ f i g u r e 1 ’ ;
399 appdata . GUIDELayoutEditor = [ ] ;

401 h1 = f igure ( . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

403 ’ Color ’ , [ 0 .831372549019608 0.815686274509804 0 . 7 8 4313725490196 ] , . . .
’ Colormap ’ , [ 0 0 0 . 5625 ; 0 0 0 . 6 25 ; 0 0 0 . 6875 ; 0 0 0 . 7 5 ; 0 0 0 . 8125 ; 0 0 0 . 8 75 ; 0 0

0 . 9375 ; 0 0 1 ;0 0 .0625 1 ;0 0 .125 1 ;0 0 .1875 1 ;0 0 .25 1 ;0 0 .3125 1 ;0 0 .375 1 ;0
0 .4375 1 ;0 0 .5 1 ;0 0 .5625 1 ;0 0 .625 1 ;0 0 .6875 1 ;0 0 .75 1 ;0 0 .8125 1 ;0 0 .875
1 ;0 0 .9375 1 ;0 1 1 ; 0 . 0625 1 1 ; 0 . 1 25 1 0 . 9375 ; 0 . 1 875 1 0 . 8 7 5 ; 0 . 2 5 1
0 . 8125 ; 0 . 3 125 1 0 . 7 5 ; 0 . 3 7 5 1 0 . 6875 ; 0 . 4 375 1 0 . 6 2 5 ; 0 . 5 1 0 . 5 625 ; 0 . 5 625 1
0 . 5 ; 0 . 6 2 5 1 0 . 4375 ; 0 . 6 875 1 0 . 3 7 5 ; 0 . 7 5 1 0 . 3125 ; 0 . 8 125 1 0 . 2 5 ; 0 . 8 7 5 1
0 . 1875 ; 0 . 9 375 1 0 . 1 25 ; 1 1 0 . 0625 ; 1 1 0 ;1 0 .9375 0 ;1 0 .875 0 ;1 0 .8125 0 ;1 0 .75
0 ;1 0 .6875 0 ;1 0 .625 0 ;1 0 .5625 0 ;1 0 .5 0 ; 1 0 .4375 0 ;1 0 .375 0 ;1 0 .3125 0 ;1

0 .25 0 ;1 0 .1875 0 ;1 0 .125 0 ;1 0 .0625 0 ;1 0 0 ; 0 . 9375 0 0 ; 0 . 8 75 0 0 ; 0 . 8125 0
0 ; 0 . 7 5 0 0 ; 0 . 6875 0 0 ; 0 . 6 25 0 0 ; 0 . 5625 0 0 ] , . . .

405 ’ IntegerHandle ’ , ’ o f f ’ , . . .
’ InvertHardcopy ’ ,get (0 , ’ d e f au l t f i gu r e Inve r tHardcopy ’ ) , . . .

407 ’MenuBar ’ , ’ none ’ , . . .
’Name ’ , ’ ca l o r ima in ’ , . . .

409 ’ NumberTitle ’ , ’ o f f ’ , . . .
’ PaperPos i t ion ’ ,get (0 , ’ d e f au l t f i g u r ePape rPo s i t i o n ’ ) , . . .

411 ’ Po s i t i on ’ , [ 1 0 3 . 8 9.00000000000002 241 52 . 4 6 1 5 384615385 ] , . . .
’ Res i ze ’ , ’ o f f ’ , . . .

413 ’ Hand l eV i s i b i l i t y ’ , ’ c a l l b a ck ’ , . . .
’Tag ’ , ’ f i g u r e 1 ’ , . . .

415 ’ UserData ’ , [ ] , . . .
’ Behavior ’ ,get (0 , ’ d e f au l t f i g u r eBehav i o r ’ ) , . . .

417 ’ V i s i b l e ’ , ’ on ’ , . . .
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’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;
419

appdata = [ ] ;
421 appdata . las tVal idTag = ’ open ’ ;

423 h2 = uicontrol ( . . .
’ Parent ’ , h1 , . . .

425 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ open Cal lback ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .

427 ’ Po s i t i on ’ , [ 184 47.8461538461538 15 .4 2 . 8 4 6 1 5 384615385 ] , . . .
’ S t r ing ’ , ’ open ’ , . . .

429 ’Tag ’ , ’ open ’ , . . .
’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .

431 ’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

433 appdata = [ ] ;
appdata . las tVal idTag = ’ s e l e c t e dF i l e ’ ;

435
h3 = uicontrol ( . . .

437 ’ Parent ’ , h1 , . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

439 ’ Po s i t i on ’ , [ 1 7 0 . 2 43.1538461538462 43 4 . 1 5 3 84 615384615 ] , . . .
’ S t r ing ’ , ’ S e l e c t ed F i l epath ’ , . . .

441 ’ S ty l e ’ , ’ t ex t ’ , . . .
’Tag ’ , ’ s e l e c t e dF i l e ’ , . . .

443 ’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

445
appdata = [ ] ;

447 appdata . las tVal idTag = ’ u ipane l2 ’ ;

449 h4 = uipane l ( . . .
’ Parent ’ , h1 , . . .

451 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ T i t l e ’ , ’Read ’ , . . .

453 ’Tag ’ , ’ u ipane l2 ’ , . . .
’ UserData ’ , [ ] , . . .

455 ’ Behavior ’ ,get (0 , ’ d e f au l tu ipane lBehav io r ’ ) , . . .
’ C l ipp ing ’ , ’ on ’ , . . .

457 ’ Po s i t i on ’ , [ 1 6 8 . 8 42.7692307692308 45 .6 9 . 6 1 5 3 8 461538462 ] , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

459
appdata = [ ] ;

461 appdata . las tVal idTag = ’ l i s t bDat e ’ ;

463 h5 = uicontrol ( . . .
’ Parent ’ , h1 , . . .

465 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ BackgroundColor ’ , [ 1 1 1 ] , . . .

467 ’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ l i s t bDat e Ca l l ba ck ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .
’Max ’ , 3 , . . .

469 ’Min ’ , 1 , . . .
’ Po s i t i on ’ , [ 1 3 3 . 6 12.7692307692308 30 .2 3 4 . 6 9 2 3 076923077 ] , . . .

471 ’ S t r ing ’ ,{ ’ L i s tbox ’ } , . . .
’ S ty l e ’ , ’ l i s t b o x ’ , . . .

473 ’ Value ’ , 1 , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ c a l o r ima in expo r t ( ’ ’ l i s tbDate CreateFcn ’ ’ , gcbo

, [ ] , gu idata ( gcbo ) ) ’ , appdata} , . . .
475 ’Tag ’ , ’ l i s t bDat e ’ , . . .
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’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) ) ;
477

appdata = [ ] ;
479 appdata . las tVal idTag = ’ u ipane l4 ’ ;

481 h6 = uipane l ( . . .
’ Parent ’ , h1 , . . .

483 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ T i t l e ’ , ’PRINT ’ , . . .

485 ’Tag ’ , ’ u ipane l4 ’ , . . .
’ UserData ’ , [ ] , . . .

487 ’ Behavior ’ ,get (0 , ’ d e f au l tu ipane lBehav io r ’ ) , . . .
’ C l ipp ing ’ , ’ on ’ , . . .

489 ’ Po s i t i on ’ , [−0.2 3.46153846153846 166 .2 4 8 . 9 2 3 076 9230769 ] , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

491
appdata = [ ] ;

493 appdata . las tVal idTag = ’ axes1 ’ ;

495 h7 = axes ( . . .
’ Parent ’ , h6 , . . .

497 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ Po s i t i on ’ , [ 5 . 4 1.84615384615385 124 45 . 9 2 3 076 9230769 ] , . . .

499 ’ CameraPosition ’ , [ 0 . 5 0 . 5 9 . 1 6 0 2 54 03784439 ] , . . .
’ CameraPositionMode ’ ,get (0 , ’ defaultaxesCameraPosit ionMode ’ ) , . . .

501 ’ Color ’ ,get (0 , ’ d e f au l t axe sCo l o r ’ ) , . . .
’ ColorOrder ’ ,get (0 , ’ de fau l taxesCo lorOrder ’ ) , . . .

503 ’ Loose Inse t ’ , [ 3 0 . 9 6 6 5.74538461538462 22 .629 3 . 9 1 7 30 769230769 ] , . . .
’ XColor ’ ,get (0 , ’ de fau l taxesXColor ’ ) , . . .

505 ’ YColor ’ ,get (0 , ’ de fau l taxesYColor ’ ) , . . .
’ ZColor ’ ,get (0 , ’ de fau l taxesZCo lo r ’ ) , . . .

507 ’ CreateFcn ’ , {@local CreateFcn , ’ c a l o r ima in expo r t ( ’ ’ axes1 CreateFcn ’ ’ , gcbo , [ ] ,
gu idata ( gcbo ) ) ’ , appdata} , . . .

’Tag ’ , ’ axes1 ’ , . . .
509 ’ Behavior ’ ,get (0 , ’ de fau l taxe sBehav io r ’ ) ) ;

511 h8 = get ( h7 , ’ t i t l e ’ ) ;

513 set ( h8 , . . .
’ Parent ’ , h7 , . . .

515 ’ Units ’ , ’ data ’ , . . .
’ FontUnits ’ , ’ po in t s ’ , . . .

517 ’ BackgroundColor ’ , ’ none ’ , . . .
’ Color ’ , [ 0 0 0 ] , . . .

519 ’ EdgeColor ’ , ’ none ’ , . . .
’ EraseMode ’ , ’ normal ’ , . . .

521 ’DVIMode ’ , ’ auto ’ , . . .
’ FontAngle ’ , ’ normal ’ , . . .

523 ’FontName ’ , ’ He lve t i c a ’ , . . .
’ FontSize ’ , 1 0 , . . .

525 ’ FontWeight ’ , ’ normal ’ , . . .
’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

527 ’ L ineSty l e ’ , ’− ’ , . . .
’ LineWidth ’ , 0 . 5 , . . .

529 ’Margin ’ , 2 , . . .
’ Po s i t i on ’ , [ 0 .499193548387097 1.0108877721943 1 . 0 0 0 0 5459937205 ] , . . .

531 ’ Rotation ’ , 0 , . . .
’ S t r ing ’ , ’ ’ , . . .

533 ’ I n t e r p r e t e r ’ , ’ tex ’ , . . .
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’ Vert i ca lAl ignment ’ , ’ bottom ’ , . . .
535 ’ButtonDownFcn ’ , [ ] , . . .

’ CreateFcn ’ , {@local CreateFcn , [ ] , ’ ’ } , . . .
537 ’ DeleteFcn ’ , [ ] , . . .

’ BusyAction ’ , ’ queue ’ , . . .
539 ’ Hand l eV i s i b i l i t y ’ , ’ o f f ’ , . . .

’ HelpTopicKey ’ , ’ ’ , . . .
541 ’ HitTest ’ , ’ on ’ , . . .

’ I n t e r r u p t i b l e ’ , ’ on ’ , . . .
543 ’ S e l e c t i o nH i gh l i g h t ’ , ’ on ’ , . . .

’ S e r i a l i z a b l e ’ , ’ on ’ , . . .
545 ’Tag ’ , ’ ’ , . . .

’ UserData ’ , [ ] , . . .
547 ’ Behavior ’ , s t r u c t ( ) , . . .

’ V i s i b l e ’ , ’ on ’ , . . .
549 ’ XLimInclude ’ , ’ on ’ , . . .

’ YLimInclude ’ , ’ on ’ , . . .
551 ’ ZLimInclude ’ , ’ on ’ , . . .

’ CLimInclude ’ , ’ on ’ , . . .
553 ’ ALimInclude ’ , ’ on ’ , . . .

’ C l ipp ing ’ , ’ o f f ’ ) ;
555

h9 = get ( h7 , ’ x l ab e l ’ ) ;
557

set ( h9 , . . .
559 ’ Parent ’ , h7 , . . .

’ Units ’ , ’ data ’ , . . .
561 ’ FontUnits ’ , ’ po in t s ’ , . . .

’ BackgroundColor ’ , ’ none ’ , . . .
563 ’ Color ’ , [ 0 0 0 ] , . . .

’ EdgeColor ’ , ’ none ’ , . . .
565 ’ EraseMode ’ , ’ normal ’ , . . .

’DVIMode ’ , ’ auto ’ , . . .
567 ’ FontAngle ’ , ’ normal ’ , . . .

’FontName ’ , ’ He lve t i c a ’ , . . .
569 ’ FontSize ’ , 1 0 , . . .

’ FontWeight ’ , ’ normal ’ , . . .
571 ’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

’ L ineSty l e ’ , ’− ’ , . . .
573 ’ LineWidth ’ , 0 . 5 , . . .

’Margin ’ , 2 , . . .
575 ’ Po s i t i on ’ , [ 0 .499193548387097 −0.0393634840871022 1 . 0 0 0 05 459937205 ] , . . .

’ Rotation ’ , 0 , . . .
577 ’ S t r ing ’ , ’ ’ , . . .

’ I n t e r p r e t e r ’ , ’ tex ’ , . . .
579 ’ Vert i ca lAl ignment ’ , ’ cap ’ , . . .

’ButtonDownFcn ’ , [ ] , . . .
581 ’ CreateFcn ’ , {@local CreateFcn , [ ] , ’ ’ } , . . .

’ DeleteFcn ’ , [ ] , . . .
583 ’ BusyAction ’ , ’ queue ’ , . . .

’ Hand l eV i s i b i l i t y ’ , ’ o f f ’ , . . .
585 ’ HelpTopicKey ’ , ’ ’ , . . .

’ HitTest ’ , ’ on ’ , . . .
587 ’ I n t e r r u p t i b l e ’ , ’ on ’ , . . .

’ S e l e c t i o nH i gh l i g h t ’ , ’ on ’ , . . .
589 ’ S e r i a l i z a b l e ’ , ’ on ’ , . . .

’Tag ’ , ’ ’ , . . .
591 ’ UserData ’ , [ ] , . . .

’ Behavior ’ , s t r u c t ( ) , . . .
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593 ’ V i s i b l e ’ , ’ on ’ , . . .
’ XLimInclude ’ , ’ on ’ , . . .

595 ’ YLimInclude ’ , ’ on ’ , . . .
’ ZLimInclude ’ , ’ on ’ , . . .

597 ’ CLimInclude ’ , ’ on ’ , . . .
’ ALimInclude ’ , ’ on ’ , . . .

599 ’ C l ipp ing ’ , ’ o f f ’ ) ;

601 h10 = get ( h7 , ’ y l ab e l ’ ) ;

603 set ( h10 , . . .
’ Parent ’ , h7 , . . .

605 ’ Units ’ , ’ data ’ , . . .
’ FontUnits ’ , ’ po in t s ’ , . . .

607 ’ BackgroundColor ’ , ’ none ’ , . . .
’ Color ’ , [ 0 0 0 ] , . . .

609 ’ EdgeColor ’ , ’ none ’ , . . .
’ EraseMode ’ , ’ normal ’ , . . .

611 ’DVIMode ’ , ’ auto ’ , . . .
’ FontAngle ’ , ’ normal ’ , . . .

613 ’FontName ’ , ’ He lve t i c a ’ , . . .
’ FontSize ’ , 1 0 , . . .

615 ’ FontWeight ’ , ’ normal ’ , . . .
’ Hor izontalAl ignment ’ , ’ c en t e r ’ , . . .

617 ’ L ineSty l e ’ , ’− ’ , . . .
’ LineWidth ’ , 0 . 5 , . . .

619 ’Margin ’ , 2 , . . .
’ Po s i t i on ’ , [−0.0459677419354839 0.498324958123953 1 . 0 0 0 054 59937205 ] , . . .

621 ’ Rotation ’ , 9 0 , . . .
’ S t r ing ’ , ’ ’ , . . .

623 ’ I n t e r p r e t e r ’ , ’ tex ’ , . . .
’ Vert i ca lAl ignment ’ , ’ bottom ’ , . . .

625 ’ButtonDownFcn ’ , [ ] , . . .
’ CreateFcn ’ , {@local CreateFcn , [ ] , ’ ’ } , . . .

627 ’ DeleteFcn ’ , [ ] , . . .
’ BusyAction ’ , ’ queue ’ , . . .

629 ’ Hand l eV i s i b i l i t y ’ , ’ o f f ’ , . . .
’ HelpTopicKey ’ , ’ ’ , . . .

631 ’ HitTest ’ , ’ on ’ , . . .
’ I n t e r r u p t i b l e ’ , ’ on ’ , . . .

633 ’ S e l e c t i o nH i gh l i g h t ’ , ’ on ’ , . . .
’ S e r i a l i z a b l e ’ , ’ on ’ , . . .

635 ’Tag ’ , ’ ’ , . . .
’ UserData ’ , [ ] , . . .

637 ’ Behavior ’ , s t r u c t ( ) , . . .
’ V i s i b l e ’ , ’ on ’ , . . .

639 ’ XLimInclude ’ , ’ on ’ , . . .
’ YLimInclude ’ , ’ on ’ , . . .

641 ’ ZLimInclude ’ , ’ on ’ , . . .
’ CLimInclude ’ , ’ on ’ , . . .

643 ’ ALimInclude ’ , ’ on ’ , . . .
’ C l ipp ing ’ , ’ o f f ’ ) ;

645
h11 = get ( h7 , ’ z l a b e l ’ ) ;

647
set ( h11 , . . .

649 ’ Parent ’ , h7 , . . .
’ Units ’ , ’ data ’ , . . .

651 ’ FontUnits ’ , ’ po in t s ’ , . . .
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’ BackgroundColor ’ , ’ none ’ , . . .
653 ’ Color ’ , [ 0 0 0 ] , . . .

’ EdgeColor ’ , ’ none ’ , . . .
655 ’ EraseMode ’ , ’ normal ’ , . . .

’DVIMode ’ , ’ auto ’ , . . .
657 ’ FontAngle ’ , ’ normal ’ , . . .

’FontName ’ , ’ He lve t i c a ’ , . . .
659 ’ FontSize ’ , 1 0 , . . .

’ FontWeight ’ , ’ normal ’ , . . .
661 ’ Hor izontalAl ignment ’ , ’ r i g h t ’ , . . .

’ L ineSty l e ’ , ’− ’ , . . .
663 ’ LineWidth ’ , 0 . 5 , . . .

’Margin ’ , 2 , . . .
665 ’ Po s i t i on ’ , [−0.0459677419354839 1.02093802345059 1 . 0 0 0 05 459937205 ] , . . .

’ Rotation ’ , 0 , . . .
667 ’ S t r ing ’ , ’ ’ , . . .

’ I n t e r p r e t e r ’ , ’ tex ’ , . . .
669 ’ Vert i ca lAl ignment ’ , ’ middle ’ , . . .

’ButtonDownFcn ’ , [ ] , . . .
671 ’ CreateFcn ’ , {@local CreateFcn , [ ] , ’ ’ } , . . .

’ DeleteFcn ’ , [ ] , . . .
673 ’ BusyAction ’ , ’ queue ’ , . . .

’ Hand l eV i s i b i l i t y ’ , ’ o f f ’ , . . .
675 ’ HelpTopicKey ’ , ’ ’ , . . .

’ HitTest ’ , ’ on ’ , . . .
677 ’ I n t e r r u p t i b l e ’ , ’ on ’ , . . .

’ S e l e c t i o nH i gh l i g h t ’ , ’ on ’ , . . .
679 ’ S e r i a l i z a b l e ’ , ’ on ’ , . . .

’Tag ’ , ’ ’ , . . .
681 ’ UserData ’ , [ ] , . . .

’ Behavior ’ , s t r u c t ( ) , . . .
683 ’ V i s i b l e ’ , ’ o f f ’ , . . .

’ XLimInclude ’ , ’ on ’ , . . .
685 ’ YLimInclude ’ , ’ on ’ , . . .

’ ZLimInclude ’ , ’ on ’ , . . .
687 ’ CLimInclude ’ , ’ on ’ , . . .

’ ALimInclude ’ , ’ on ’ , . . .
689 ’ C l ipp ing ’ , ’ o f f ’ ) ;

691 appdata = [ ] ;
appdata . las tVal idTag = ’ text4 ’ ;

693
h12 = uicontrol ( . . .

695 ’ Parent ’ , h6 , . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

697 ’ Po s i t i on ’ , [ 1 3 4 . 8 44 26 .4 2 . 1 5 3 8 4 615384615 ] , . . .
’ S t r ing ’ , ’ Chose Star t and Stop Date ’ , . . .

699 ’ S ty l e ’ , ’ t ex t ’ , . . .
’Tag ’ , ’ t ext4 ’ , . . .

701 ’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

703
appdata = [ ] ;

705 appdata . las tVal idTag = ’ SepFigure ’ ;

707 h13 = uicontrol ( . . .
’ Parent ’ , h6 , . . .

709 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ SepFigure Cal lback ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .
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711 ’ Po s i t i on ’ , [ 1 3 6 . 4 4.53846153846154 23 .2 2 . 7 6 9 2 3 076923077 ] , . . .
’ S t r ing ’ , ’ Separate Figure ’ , . . .

713 ’Tag ’ , ’ SepFigure ’ , . . .
’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .

715 ’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

717 appdata = [ ] ;
appdata . las tVal idTag = ’ l i s t b ’ ;

719
h14 = uicontrol ( . . .

721 ’ Parent ’ , h1 , . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

723 ’ BackgroundColor ’ , [ 1 1 1 ] , . . .
’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ l i s t b Ca l l b a c k ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .

725 ’CData ’ , [ ] , . . .
’Max ’ , 5 , . . .

727 ’Min ’ , 1 , . . .
’ Po s i t i on ’ , [ 1 7 8 . 6 14.7692307692308 26 .2 2 3 . 1 5 3 8 461538462 ] , . . .

729 ’ S t r ing ’ ,{ ’ Ava i l ab l e ’ ; ’LOGGER’ ; ’Data ’ } , . . .
’ S ty l e ’ , ’ l i s t b o x ’ , . . .

731 ’ Value ’ , 1 , . . .
’ CreateFcn ’ , {@local CreateFcn , ’ c a l o r ima in expo r t ( ’ ’ l i s t b Crea t eFcn ’ ’ , gcbo , [ ] ,

gu idata ( gcbo ) ) ’ , appdata} , . . .
733 ’Tag ’ , ’ l i s t b ’ , . . .

’ UserData ’ , [ ] , . . .
735 ’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) ) ;

737 appdata = [ ] ;
appdata . las tVal idTag = ’ ReadListBox ’ ;

739
h15 = uicontrol ( . . .

741 ’ Parent ’ , h1 , . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

743 ’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ ReadListBox Callback ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’
, . . .

’CData ’ , [ ] , . . .
745 ’ Po s i t i on ’ , [ 1 8 1 . 6 4.53846153846154 20 .2 3 . 9 2 3 0 7 692307692 ] , . . .

’ S t r ing ’ , ’Read Listbox ’ , . . .
747 ’Tag ’ , ’ ReadListBox ’ , . . .

’ UserData ’ , [ ] , . . .
749 ’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .

’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;
751

appdata = [ ] ;
753 appdata . las tVal idTag = ’ u ipane l6 ’ ;

755 h16 = uipane l ( . . .
’ Parent ’ , h1 , . . .

757 ’ Units ’ , ’ c ha r a c t e r s ’ , . . .
’ T i t l e ’ , ’Data ’ , . . .

759 ’Tag ’ , ’ u ipane l6 ’ , . . .
’ Behavior ’ ,get (0 , ’ d e f au l tu ipane lBehav io r ’ ) , . . .

761 ’ C l ipp ing ’ , ’ on ’ , . . .
’ Po s i t i on ’ , [ 1 6 9 . 8 3.53846153846154 40 .2 3 8 . 1 5 3 8 461538462 ] , . . .

763 ’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

765 appdata = [ ] ;
appdata . las tVal idTag = ’ Energy ’ ;

767
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h17 = uicontrol ( . . .
769 ’ Parent ’ , h16 , . . .

’ Units ’ , ’ c ha r a c t e r s ’ , . . .
771 ’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ Energy Cal lback ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .

’ Po s i t i on ’ , [ 4 . 6 7.61538461538462 24 .6 2 . 6 9 2 3 07 69230769 ] , . . .
773 ’ S t r ing ’ , ’Model ’ ’ s ’ , . . .

’ S ty l e ’ , ’ rad iobutton ’ , . . .
775 ’Tag ’ , ’ Energy ’ , . . .

’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .
777 ’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

779 appdata = [ ] ;
appdata . las tVal idTag = ’ Calc ’ ;

781
h18 = uicontrol ( . . .

783 ’ Parent ’ , h16 , . . .
’ Units ’ , ’ c ha r a c t e r s ’ , . . .

785 ’ Cal lback ’ , ’ c a l o r ima in expo r t ( ’ ’ Ca lc Cal lback ’ ’ , gcbo , [ ] , gu idata ( gcbo ) ) ’ , . . .
’ Po s i t i on ’ , [ 4 . 6 5.23076923076923 32 .8 2 . 3 8 4 6 15 38461538 ] , . . .

787 ’ S t r ing ’ , ’ Ca l cu l a t i on o f g and U−value ’ , . . .
’ S ty l e ’ , ’ rad iobutton ’ , . . .

789 ’Tag ’ , ’ Calc ’ , . . .
’ Behavior ’ ,get (0 , ’ d e f au l t u i c on t r o lBehav i o r ’ ) , . . .

791 ’ CreateFcn ’ , {@local CreateFcn , ’ ’ , appdata} ) ;

793
hs i ng l e t on = h1 ;

795

797 % −−− Set a p p l i c a t i o n data f i r s t then c a l l i n g the CreateFcn .
function l o ca l Crea teFcn ( hObject , eventdata , c r ea t e f cn , appdata )

799
i f ˜isempty ( appdata )

801 names = f i e ldnames ( appdata ) ;
for i =1: length ( names )

803 name = char ( names ( i ) ) ;
setappdata ( hObject , name , g e t f i e l d ( appdata , name) ) ;

805 end
end

807
i f ˜isempty ( c r e a t e f c n )

809 eval ( c r e a t e f c n ) ;
end

811

813 % −−− Handles d e f a u l t GUIDE GUI c r e a t i o n and c a l l b a c k d i s p a t c h
function varargout = gui main fcn ( gu i Sta te , vararg in )

815

817 % GUI MAINFCN p r o v i d e s t h e s e command l i n e APIs f o r d e a l i n g wi th GUIs
%

819 % CALORIMAIN EXPORT, by i t s e l f , c r e a t e s a new CALORIMAIN EXPORT or r a i s e s
the e x i s t i n g

% s i n g l e t o n ∗ .
821 %

% H = CALORIMAIN EXPORT r e t u r n s the handle to a new CALORIMAIN EXPORT or the
handle to

823 % the e x i s t i n g s i n g l e t o n ∗ .
%

77



Appendix B MATLAB Code

825 % CALORIMAIN EXPORT( ’CALLBACK’ , hObject , eventData , handles , . . . ) c a l l s the
l o c a l

% f u n c t i o n named CALLBACK in CALORIMAIN EXPORT.M with the g iven input
arguments .

827 %
% CALORIMAIN EXPORT( ’ Property ’ , ’ Value ’ , . . . ) c r e a t e s a new CALORIMAIN EXPORT

or r a i s e s the
829 % e x i s t i n g s i n g l e t o n ∗ . S t a r t i n g from the l e f t , p rope r ty v a l u e p a i r s are

% a p p l i e d to the GUI b e f o r e unt i t l ed Op en ing Fun c t ion g e t s c a l l e d . An
831 % unrecognized prop er t y name or i n v a l i d v a l u e makes pr oper ty a p p l i c a t i o n

% sto p . A l l i n p u t s are passed to unt i t l ed OpeningFcn v i a var arg in .
833 %

% ∗See GUI Options on GUIDE’ s Tools menu . Choose ”GUI a l l o w s only one
835 % i n s t a n c e to run ( s i n g l e t o n ) ” .

837 % Copyright 1984−2005 The MathWorks , Inc .
% $Revis ion : 1 . 4 . 6 . 1 2 $ $Date : 2005/06/21 19 :41 :16 $

839
gu i S t a t eF i e l d s = { ’ gui Name ’

841 ’ g u i S i n g l e t on ’
’ gui OpeningFcn ’

843 ’ gui OutputFcn ’
’ gui LayoutFcn ’

845 ’ gu i Ca l lback ’ } ;
g u i M f i l e = ’ ’ ;

847 for i =1: length ( g u i S t a t eF i e l d s )
i f ˜ i s f i e l d ( gu i Sta te , g u i S t a t eF i e l d s { i })

849 error ( ’ Could not f i nd f i e l d %s in the gu i S t a t e s t r u c t in GUI M− f i l e %s ’ ,
g u i S t a t eF i e l d s { i } , g u i M f i l e ) ;

e l s e i f i s e q u a l ( g u i S t a t eF i e l d s { i } , ’ gui Name ’ )
851 gu i M f i l e = [ gu i S t a t e . ( g u i S t a t eF i e l d s { i }) , ’ .m’ ] ;

end
853 end

855 numargin = length ( vararg in ) ;

857 i f numargin == 0
% CALORIMAIN EXPORT

859 % c r e a t e the GUI
gu i Create = 1 ;

861 e l s e i f i s e q u a l ( i shand l e ( vararg in {1}) , 1) && i sp c && iscom ( vararg in {1}) && i s e qua l
( vararg in {1} , gcbo )
% CALORIMAIN EXPORT(ACTIVEX, . . . )

863 vin {1} = gu i S t a t e . gui Name ;
vin {2} = [ get ( vararg in {1} . Peer , ’Tag ’ ) , ’ ’ , va ra rg in {end } ] ;

865 vin {3} = vararg in {1} ;
v in {4} = vararg in {end−1};

867 vin {5} = guidata ( vararg in {1} . Peer ) ;
feval ( vin { :} ) ;

869 return ;
e l s e i f i s c h a r ( vararg in {1}) && numargin>1 && i s e qua l ( i shand l e ( vararg in {2}) , 1)

871 % CALORIMAIN EXPORT( ’CALLBACK’ , hObject , eventData , handles , . . . )
gu i Create = 0 ;

873 else
% CALORIMAIN EXPORT ( . . . )

875 % c r e a t e the GUI and hand vara rg i n to the opening fcn
gu i Create = 1 ;

877 end
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879 i f gu i Create == 0
vararg in {1} = gu i S t a t e . gu i Ca l lback ;

881 i f nargout
[ varargout {1 :nargout } ] = feval ( vararg in { :} ) ;

883 else
feval ( vararg in { :} ) ;

885 end
else

887 i f gu i S t a t e . gu i S i n g l e t on
gu i S ing l e tonOpt = ’ reuse ’ ;

889 else
gu i S ing l e tonOpt = ’new ’ ;

891 end

893 % Open f i g f i l e wi th s t o r e d s e t t i n g s . Note : This e x e c u t e s a l l component
% s p e c i f i c CreateFunct ions wi th an empty HANDLES s t r u c t u r e .

895
% Do f e v a l on l a y o u t code in m− f i l e i f i t e x i s t s

897 i f ˜isempty ( gu i S t a t e . gui LayoutFcn )
gu i hF igure = feval ( gu i S t a t e . gui LayoutFcn , gu i S ing l e tonOpt ) ;

899 % o p e n f i g ( c a l l e d by l o c a l o p e n f i g be low ) does t h i s f o r g u i s w i thout
% the LayoutFcn . Be sure to do i t here so g u i s show up on screen .

901 movegui ( gu i hFigure , ’ onscreen ’ )
else

903 gu i hF igure = l o c a l o p e n f i g ( gu i S t a t e . gui Name , gu i S ing l e tonOpt ) ;
% I f the f i g u r e has I n G U I I n i t i a l i z a t i o n i t was not c o m p l e t e l y c r e a t e d

905 % on the l a s t pass . De l e t e t h i s handle and t r y again .
i f i sappdata ( gui hFigure , ’ I nGUI I n i t i a l i z a t i o n ’ )

907 delete ( gu i hF igure ) ;
gu i hF igure = l o c a l o p e n f i g ( gu i S t a t e . gui Name , gu i S ing l e tonOpt ) ;

909 end
end

911
% Set f l a g to i n d i c a t e s t a r t i n g GUI i n i t i a l i z a t i o n

913 setappdata ( gui hFigure , ’ I nGUI I n i t i a l i z a t i o n ’ , 1 ) ;

915 % Fetch GUIDE A p p l i c a t i o n o p t i o n s
gui Opt ions = getappdata ( gui hFigure , ’GUIDEOptions ’ ) ;

917
i f ˜ isappdata ( gui hFigure , ’GUIOnScreen ’ )

919 % Adjust background c o l o r
i f gui Opt ions . s y s c o l o r f i g

921 set ( gu i hFigure , ’ Color ’ , get (0 , ’ DefaultUicontro lBackgroundColor ’ ) ) ;
end

923
% Generate HANDLES s t r u c t u r e and s t o r e wi th GUIDATA. I f t h e r e i s

925 % user s e t GUI data a lready , keep t h a t a l s o .
data = guidata ( gu i hF igure ) ;

927 handles = gu ihand le s ( gu i hF igure ) ;
i f ˜isempty ( handles )

929 i f isempty ( data )
data = handles ;

931 else
names = f i e ldnames ( handles ) ;

933 for k=1: length ( names )
data . ( char ( names (k ) ) )=handles . ( char ( names (k ) ) ) ;

935 end
end

937 end
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guidata ( gui hFigure , data ) ;
939 end

941 % I f user s p e c i f i e d ’ V i s i b l e ’ , ’ o f f ’ in p/v pairs , don ’ t make the f i g u r e
% v i s i b l e .

943 gui MakeVis ib l e = 1 ;
for ind =1:2 : length ( vararg in )

945 i f length ( vararg in ) == ind
break ;

947 end
l en1 = min( length ( ’ v i s i b l e ’ ) , length ( vararg in { ind }) ) ;

949 l en2 = min( length ( ’ o f f ’ ) , length ( vararg in { ind+1}) ) ;
i f i s c h a r ( vara rg in { ind }) && i s cha r ( vararg in { ind+1}) && . . .

951 strncmpi ( vararg in { ind } , ’ v i s i b l e ’ , l en1 ) && len2 > 1
i f strncmpi ( vararg in { ind+1} , ’ o f f ’ , l en2 )

953 gui MakeVis ib l e = 0 ;
e l s e i f strncmpi ( vararg in { ind+1} , ’ on ’ , l en2 )

955 gui MakeVis ib l e = 1 ;
end

957 end
end

959
% Check f o r f i g u r e param v a l u e p a i r s

961 for index =1:2 : length ( vararg in )
i f length ( vararg in ) == index | | ˜ i s c ha r ( vararg in { index })

963 break ;
end

965 t ry set ( gu i hFigure , vararg in { index } , va ra rg in { index+1}) , catch break ,
end

end
967

% I f handle v i s i b i l i t y i s s e t to ’ c a l l b a c k ’ , turn i t on u n t i l f i n i s h e d
969 % with OpeningFcn

gu i Hand l eV i s i b i l i t y = get ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ ) ;
971 i f strcmp ( gu i Hand l eV i s i b i l i t y , ’ c a l l b a ck ’ )

set ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ , ’ on ’ ) ;
973 end

975 feval ( gu i S t a t e . gui OpeningFcn , gui hFigure , [ ] , gu idata ( gu i hF igure ) ,
vara rg in { :} ) ;

977 i f i s hand l e ( gu i hF igure )
% Update handle v i s i b i l i t y

979 set ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ , g u i Hand l eV i s i b i l i t y ) ;

981 % Make f i g u r e v i s i b l e
i f gui MakeVis ib l e

983 set ( gu i hFigure , ’ V i s i b l e ’ , ’ on ’ )
i f gui Opt ions . s i n g l e t o n

985 setappdata ( gui hFigure , ’GUIOnScreen ’ , 1) ;
end

987 end

989 % Done wi th GUI i n i t i a l i z a t i o n
rmappdata ( gui hFigure , ’ I nGUI I n i t i a l i z a t i o n ’ ) ;

991 end

993 % I f handle v i s i b i l i t y i s s e t to ’ c a l l b a c k ’ , turn i t on u n t i l f i n i s h e d wi th
% OutputFcn
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995 i f i s hand l e ( gu i hF igure )
g u i Hand l eV i s i b i l i t y = get ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ ) ;

997 i f strcmp ( gu i Hand l eV i s i b i l i t y , ’ c a l l b a ck ’ )
set ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ , ’ on ’ ) ;

999 end
gui Handles = guidata ( gu i hF igure ) ;

1001 else
gui Handles = [ ] ;

1003 end

1005 i f nargout
[ varargout {1 :nargout } ] = feval ( gu i S t a t e . gui OutputFcn , gui hFigure , [ ] ,

gu i Handles ) ;
1007 else

feval ( gu i S t a t e . gui OutputFcn , gui hFigure , [ ] , gu i Handles ) ;
1009 end

1011 i f i s hand l e ( gu i hF igure )
set ( gu i hFigure , ’ Hand l eV i s i b i l i t y ’ , g u i Hand l eV i s i b i l i t y ) ;

1013 end
end

1015
function gu i hF igure = l o c a l o p e n f i g (name , s i n g l e t on )

1017
% t h i s a p p l i c a t i o n data i s used to i n d i c a t e the running mode o f a GUIDE

1019 % GUI to d i s t i n g u i s h i t from the de s i g n mode o f the GUI in GUIDE.
setappdata (0 , ’OpenGuiWhenRunning ’ , 1 ) ;

1021
% o p e n f i g wi th t h r e e arguments was new from R13 . Try to c a l l t h a t f i r s t , i f

1023 % f a i l e d , t r y the o l d o p e n f i g .
t ry

1025 gu i hF igure = open f i g (name , s i ng l e t on , ’ auto ’ ) ;
catch

1027 % OPENFIG did not accep t 3 rd input argument u n t i l R13 ,
% t o g g l e d e f a u l t f i g u r e v i s i b l e to prevent the f i g u r e

1029 % from showing up too soon .
gu i O ldDe f au l tV i s i b l e = get (0 , ’ d e f a u l tF i g u r eV i s i b l e ’ ) ;

1031 set (0 , ’ d e f a u l tF i g u r eV i s i b l e ’ , ’ o f f ’ ) ;
gu i hF igure = open f i g (name , s i n g l e t on ) ;

1033 set (0 , ’ d e f a u l tF i g u r eV i s i b l e ’ , gu i O ldDe f au l tV i s i b l e ) ;
end

1035 rmappdata (0 , ’OpenGuiWhenRunning ’ ) ;
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B.2 Modeling

function Modeling ( hObject )
2

handles=guidata ( hObject ) ;% read data from hObject and s t o r e i t in hand les
4

%ang le dependent g−v a l u e c a l c u l a t i o n
6 %ang le depending on time during day

Hour=handles . Time ( : , 1 : 2 ) ; %s e p a r a t e hour
8 Minute=handles . Time ( : , 4 : 5 ) ;%s e p a r a t e minutes

Hour=str2num(Hour ) ; %change hour s t r i n g to number
10 Minute=str2num(Minute ) /60 ;

Time=Hour+Minute ; %combine hour and minute
12 deta=(12−Time) ∗15/180∗pi ; %c a l c u l a t e d e l t a depending on time

gc=cos ( deta ) ;
14 zero=find ( gc < 0 .001 ) ; %r e p l a c e 0 in gc , bc o f 1/ gc would g i v e i n f .

gc ( zero ) =0.16667; %0 in gc r e p l a c e d by 0.167 bc f o r t h i s e q u i a t i o n
below g i v e s a lmost zero

16 handles . g=0.31∗(1−0.2∗(1 ./( gc )−1) ) ; %g0 =0.31; b0 =0.2

18
%Temperatures in wal l , c e i l i n g , f l o o r #########################

20
handles . T8 c e i l= handles . TableData ( : , 2 4 ) /(6∗15 .13∗40 e−3) ; %6 bc o f 6

t h e r m o p i l e s in s e r i e , 15.13 Håkans cons t in l o g g e r program ( h o r i z o n t a l
) , 40uV/K cons t o f one t h e r m o p i l e

22 handles . T8 f l oo r=handles . TableData ( : , 2 5 ) /(6∗15 .13∗40 e−3) ;
handles . T8 WWall=handles . TableData ( : , 2 6 ) /(8∗13 .15∗40 e−3) ; %in w a l l s 8

t h e r m o p i l e s in s e r i e , and 13.15 as cons t in l o g g e r program
24 handles . T8 EWall=handles . TableData ( : , 2 7 ) /(8∗13 .15∗40 e−3) ;

26 handles . T9 c e i l= handles . TableData ( : , 2 8 ) /(6∗15 .13∗40 e−3) ; %6 bc o f 6
t h e r m o p i l e s in s e r i e , 15.13 Håkans cons t in l o g g e r program ( h o r i z o n t a l
) , 40uV/K cons t o f one t h e r m o p i l e

handles . T9 f l oo r=handles . TableData ( : , 2 9 ) /(6∗15 .13∗40 e−3) ;
28 handles . T9 WWall=handles . TableData ( : , 3 0 ) /(8∗13 .15∗40 e−3) ; %in w a l l s 8

t h e r m o p i l e s in s e r i e , and 13.15 as cons t in l o g g e r program
handles . T9 EWall=handles . TableData ( : , 3 1 ) /(8∗13 .15∗40 e−3) ;

30

32 A=s ize ( handles . TableData ) ;
%Temperature d i f f e r e n t s in wal l , c e i l i n g , f l o o r #################

34 for i =2:A(1)
handles . DT8 cei l ( i ) = handles . T8 c e i l ( i )−handles . T8 c e i l ( i −1) ;

36 handles . DT8 f loor ( i )= handles . T8 f l oo r ( i )−handles . T8 f l oo r ( i −1) ;
handles .DT8 WWall( i )= handles . T8 WWall ( i )−handles . T8 WWall ( i −1) ;

38 handles . DT8 EWall ( i )= handles . T8 EWall ( i )−handles . T8 EWall ( i −1) ;
handles . G las in8 ( i ) = handles . TableData ( i , 3 6 )−handles . TableData ( i −1 ,36) ;

40 handles . Glas out8 ( i )= handles . TableData ( i , 3 8 )−handles . TableData ( i −1 ,38) ;

42 handles . DT9 cei l ( i ) = handles . T9 c e i l ( i )−handles . T9 c e i l ( i −1) ;
handles . DT9 f loor ( i )= handles . T9 f l oo r ( i )−handles . T9 f l oo r ( i −1) ;

44 handles .DT9 WWall( i )= handles . T9 WWall ( i )−handles . T9 WWall ( i −1) ;
handles . DT9 EWall ( i )= handles . T9 EWall ( i )−handles . T9 EWall ( i −1) ;

46 handles . G las in9 ( i ) = handles . TableData ( i , 4 3 )−handles . TableData ( i −1 ,43) ;
handles . Glas out9 ( i )= handles . TableData ( i , 4 5 )−handles . TableData ( i −1 ,45) ;

48 end

82



Appendix B MATLAB Code

50 %time s h i f t mode l l #####################################
for i =2:A(1)

52 handles . TableData ( i , 6 0 )= ( handles . g ( i −1) ∗2 .667) ∗ ( ( handles . TableData ( i
−1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )−1∗( handles . TableData ( i , 2 )
−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A t i m e s h i f t i n c l u d e d

0.5 o l d v a l u e 0 .5 new v a l u e
handles . TableData ( i , 7 0 )= ( handles . g ( i −1) ∗2 .667) ∗ ( ( handles .

TableData ( i −1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )−1∗( handles .
TableData ( i , 5 )−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A
t i m e s h i f t i n c l u d e d 0.5 o l d v a l u e 0.5 new v a l u e

54 end

56 handles . TableData ( : , 6 1 )=handles . TableData ( : , 6 0 )+handles . TableData ( : , 2 1 )−
handles . TableData ( : , 1 9 ) ∗1.15+ handles . TableData ( : , 8 ) ; %6 1 . . . t o t a l energy
108 1.15 c a l i b r a t i o n cons tant f o r c o o l i n g

handles . TableData ( : , 7 1 )=handles . TableData ( : , 7 0 )+handles . TableData ( : , 2 2 )−
handles . TableData ( : , 2 0 ) ∗1.1+ handles . TableData ( : , 9 ) ; %7 1 . . . t o t a l energy
109 1.1 c a l i b r a t i o n cons tant f o r c o o l i n g

58
%end time s h i f t mode l l ##################################

60
%c a p a c i t y model l #####################################

62 handles . TableData ( : , 8 0 )=(handles . g ∗2 .667) . ∗ ( handles . TableData ( : , 1 2 ) )−1∗(
handles . TableData ( : , 2 )−handles . TableData ( : , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A

handles . TableData ( : , 9 0 )=(handles . g ∗2 .667) . ∗ ( handles . TableData ( : , 1 2 ) )−1∗(
handles . TableData ( : , 5 )−handles . TableData ( : , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A

64
handles . TableData ( : , 8 1 )=handles . TableData ( : , 8 0 )+handles . TableData ( : , 2 1 )−

handles . TableData ( : , 1 9 )+handles . TableData ( : , 8 ) ; %8 1 . . . t o t a l energy 108
66 handles . TableData ( : , 9 1 )=handles . TableData ( : , 9 0 )+handles . TableData ( : , 2 2 )−

handles . TableData ( : , 2 0 )+handles . TableData ( : , 9 ) ; %9 1 . . . t o t a l energy 109

68 handles . TableData ( : , 8 2 ) =(( handles . DT8 cei l+handles .DT8 WWall+handles .
DT8 EWall ) ’∗40+ handles . DT8 floor ’∗40 ) ; %l o s s e s trough wal l , f l o o r ,
c e i l i n g 108 t imes cons tant

handles . TableData ( : , 9 2 ) =(( handles . DT9 cei l+handles .DT9 WWall+handles .
DT9 EWall ) ’∗40+ handles . DT9 floor ’∗40 ) ; %l o s s e s trough wal l , f l o o r ,
c e i l i n g 109 t imes cons tant

70
handles . TableData ( : , 8 3 )=handles . TableData ( : , 8 1 )+handles . TableData ( : , 8 2 ) ; %

t o t a l energy + l o s s e s trough the s u r f a c e s
72 handles . TableData ( : , 9 3 )=handles . TableData ( : , 9 1 )+handles . TableData ( : , 9 2 ) ; %

t o t a l energy + l o s s e s trough the s u r f a c e s

74 %end time s h i f t mode l l ##################################
plot ( [ handles . TableData ( : , 6 1 ) , handles . TableData ( : , 7 1 ) , handles . TableData

( : , 8 3 ) , handles . TableData ( : , 9 3 ) ] , ’ LineWidth ’ , 2) ;
76

guidata ( hObject , handles ) ;
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B.3 Calculations

1 function Calcu la t i on ( hObject , ChosenDate )

3 handles=guidata ( hObject ) ;

5 %=====================================================================
%c a l c u l a t i o n o f g−v a l u e wi th Newton Raphson method

7 %x { i+1}=x i−f ( x ) / f ’ ( x )
%avarage Qtot108−Qtot109 out to zero

9
mu l t i p l i e r =1;

11 o ld=0;
A=s ize ( handles . TableData ) ;

13 while abs ( mu l t i p l i e r−o ld ) >0.001
o ld=mu l t i p l i e r ;

15 for i =2:A(1)
handles . TableData ( i , 6 0 )=mu l t i p l i e r ∗( handles . g ( i −1) ∗2 .667) ∗ ( ( handles .

TableData ( i −1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )−1∗( handles
. TableData ( i , 2 )−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A

t i m e s h i f t i n c l u d e d 0.5 o l d v a l u e 0.5 new v a l u e
17 handles . TableData ( i , 7 0 )= ( handles . g ( i −1) ∗2 .667) ∗ ( ( handles .

TableData ( i −1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )−1∗( handles
. TableData ( i , 5 )−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G−U∗ de l taT ∗A

t i m e s h i f t i n c l u d e d 0.5 o l d v a l u e 0.5 new v a l u e
end

19 d i f=sum( ( handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,60)+handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,21)−handles . TableData (
ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,19) ∗1.15+ handles . TableData (
ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,8 ) ) . . .

−(handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,70)+
handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,22)−
handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,20)
∗1.1+ handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,9 )
) ) ; %d i f f e r e n c e o f Q tot o f time s h i f t model between the
two rooms

21
prime=sum( ( handles . g ( ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ) ∗2 .667) . ∗ ( ( handles

. TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0.5+( handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0 . 5 ) ) ; %s l o p e o f the

curve
23 mu l t i p l i e r=old−d i f /prime ; %new m u l t i p l i e r

end
25 mu l t i p l i e r d i f f =1/mu l t i p l i e r

%==================================================================
27 % room 108 only Newton Raphson , avarage Q tot109 out to zero

mu l t i p l i e r 8 =1;
29 o ld 8 =0;

A=s ize ( handles . TableData ) ;
31 while abs ( mu l t i p l i e r 8−o ld 8 ) >0.001

o ld 8=mu l t i p l i e r 8 ;
33 for i =2:A(1)

handles . TableData ( i , 6 0 )=(handles . g ( i −1) ∗2 .667) ∗mu l t i p l i e r 8 ∗ ( (
handles . TableData ( i −1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )
−1∗( handles . TableData ( i , 2 )−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G
−U∗ de l taT ∗A t i m e s h i f t i n c l u d e d 0.5 o l d v a l u e 0.5 new v a l u e

35 end
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d i f 8=sum( ( handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,60)+
handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,21)−handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,19) ∗1.15+ handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,8 ) ) ) ;

37

39 prime 8=sum( ( handles . g ( ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ) ∗2 .667) . ∗ ( (
handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0.5+( handles
. TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0 . 5 ) ) ;

mu l t i p l i e r 8=old 8−d i f 8 / prime 8 ;
41 end

mu l t i p l i e r 8
43

% end room 108 only
45 %==================================================================

47 %==================================================================
% room 109 only Newton Raphson , avarage Q tot109 out to zero

49 mu l t i p l i e r 9 =1;
o ld 9 =0;

51 A=s ize ( handles . TableData ) ;
while abs ( mu l t i p l i e r 9−o ld 9 ) >0.001

53 o ld 9=mu l t i p l i e r 9 ;
for i =2:A(1)

55 handles . TableData ( i , 7 5 )=(handles . g ( i −1) ∗2 .667) ∗mu l t i p l i e r 9 ∗ ( (
handles . TableData ( i −1 ,12) ) ∗0.5+( handles . TableData ( i , 1 2 ) ) ∗0 . 5 )
−1∗( handles . TableData ( i , 5 )−handles . TableData ( i , 1 0 ) ) ∗8 . 3 7 ; %A∗g∗G
−U∗ de l taT ∗A t i m e s h i f t i n c l u d e d 0.5 o l d v a l u e 0.5 new v a l u e

end
57 d i f 9=sum( ( handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,75)+

handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,22)−handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,20) ∗1.1+ handles .
TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,9 ) ) ) ;

59
prime 9=sum( ( handles . g ( ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ) ∗2 .667) . ∗ ( (

handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0.5+( handles
. TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ∗0 . 5 ) ) ;

61 mu l t i p l i e r 9=old 9−d i f 9 / prime 9 ;
end

63 mu l t i p l i e r 9

65 % end room 109 only
%==================================================================

67 %end o f g−v a l u e c a l c u l a t i o n
%==================================================================

69 %average g−Value c a l c u l a t i o n
%weigh ted g−v a l u e =( g i ∗ S o l l i r r a d i a t i o n ) / S o l i r r a d i a t i o n

71 i r r ad=sum( handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) ) ;
sum g=sum( handles . TableData (ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ,12) .∗ handles . g (

ChosenDate (1 , 1 ) : ChosenDate (1 , 2 ) ) ) ;
73 %room 108

sum g108=sum g∗mu l t i p l i e r 8 ;
75 weight g108=sum g108/ i r r ad

%room 109
77 sum g109=sum g∗mu l t i p l i e r 9 ;

weight g109=sum g109/ i r r ad
79 %d i f f e r e n c e & g 0 c o r r e c t e d

we i g h t d i f f=weight g109−weight g108 %r e f e r n c e room − measure room
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81 g zero108 =0.31∗mu l t i p l i e r 8 %c o r r e c t e d g 0 f o r 108
g zero109 =0.31∗mu l t i p l i e r 9 %c o r r e c t e d g 0 f o r 109

83
fpr intf ( ’=====================\n ’ )

85
guidata ( hObject , handles ) ; %s t o r e new hand les f o r main program ( ca lor imain )
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B.4 String Split

function par t s = s t r s p l i t ( s p l i t s t r , s t r , opt ion )
2 %STRSPLIT S p l i t s t r i n g i n t o p i e c e s .

%
4 % STRSPLIT(SPLITSTR, STR, OPTION) s p l i t s the s t r i n g STR at every occurrence

% of SPLITSTR and r e t u r n s the r e s u l t as a c e l l array o f s t r i n g s . By d e f a u l t ,
6 % SPLITSTR i s not i n c l u d e d in the output .

%
8 % STRSPLIT(SPLITSTR, STR, OPTION) can be used to c o n t r o l how SPLITSTR i s

% i n c l u d e d in the output . I f OPTION i s ’ inc lude ’ , SPLITSTR w i l l be i n c l u d e d
10 % as a s e p a r a t e s t r i n g . I f OPTION i s ’ append ’ , SPLITSTR w i l l be appended to

% each output s t r i n g , as i f the input s t r i n g was s p l i t a t the p o s i t i o n r i g h t
12 % a f t e r the occurrence SPLITSTR. I f OPTION i s ’ omit ’ , SPLITSTR w i l l not be

% i n c l u d e d in the output .
14

% Author : Peter J . Acklam
16 % Time−stamp : 2004−09−22 08 :48 :01 +0200

% E−mail : pjack lam@onl ine . no
18 % URL: h t t p :// home . o n l i n e . no/˜ pjacklam

20 nargs in = nargin ;
error (nargchk (2 , 3 , nargs in ) ) ;

22 i f nargs in < 3
opt ion = ’ omit ’ ;

24 else
opt ion = lower ( opt ion ) ;

26 end

28 s p l i t l e n = length ( s p l i t s t r ) ;
par t s = {} ;

30
while 1

32
k = s t r f i n d ( s t r , s p l i t s t r ) ;

34 i f isempty ( k )
par t s {end+1} = s t r ;

36 break
end

38
switch opt ion

40 case ’ i n c lude ’
par t s (end+1:end+2) = { s t r ( 1 : k (1 )−1) , s p l i t s t r } ;

42 case ’ append ’
par t s {end+1} = s t r (1 : k (1 )+s p l i t l e n −1) ;

44 case ’ omit ’
par t s {end+1} = s t r (1 : k (1 )−1) ;

46 otherwi s e
error ( [ ’ I nva l i d opt ion s t r i n g −− ’ , opt ion ] ) ;

48 end

50
s t r = s t r ( k (1 )+s p l i t l e n : end) ;

52
end
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B.5 X-tick rotate (“45◦”)

function hText = x t i c k l a b e l r o t a t e (XTick , rot , vara rg in )
2 %hText = x t i c k l a b e l r o t a t e ( XTick , rot , XTickLabel , va rarg in ) Rotate XTickLabel

%
4 % Syntax : x t i c k l a b e l r o t a t e

%
6 % Input :

% { opt } XTick − v e c t o r array o f XTick p o s i t i o n s & v a l u e s ( numeric )
8 % uses curren t XTick v a l u e s or XTickLabel c e l l array by

% d e f a u l t ( i f empty )
10 % { opt } r o t − ang l e o f r o t a t i o n in degrees , 90 ◦ by d e f a u l t

% { opt } XTickLabel − c e l l array o f l a b e l s t r i n g s
12 % { opt } [ var ] − ” Property−v a l u e ” p a i r s passed to t e x t genera tor

% ex : ’ i n t e r p r e t e r ’ , ’ none ’
14 % ’ Color ’ , ’m’ , ’ Fontweight ’ , ’ bo ld ’

%
16 % Output : hText − handle v e c t o r to t e x t l a b e l s

%
18 % Example 1 : Rotate e x i s t i n g XTickLabels a t t h e i r curren t p o s i t i o n by 90 ◦

% x t i c k l a b e l r o t a t e
20 %

% Example 2 : Rotate e x i s t i n g XTickLabels a t t h e i r curren t p o s i t i o n by 45 ◦ and
change

22 % f o n t s i z e
% x t i c k l a b e l r o t a t e ( [ ] , 4 5 , [ ] , ’ Fonts i ze ’ , 1 4 )

24 %
% Example 3 : Set the p o s i t i o n s o f the XTicks and r o t a t e them 90 ◦

26 % f i g u r e ; p l o t ( [ 1 9 6 0 : 2 0 0 4 ] , randn (45 ,1) ) ; x l im ( [1960 2004]) ;
% x t i c k l a b e l r o t a t e ( [ 1 9 6 0 : 2 : 2 0 0 4 ] ) ;

28 %
% Example 4 : Use t e x t l a b e l s a t XTick p o s i t i o n s r o t a t e d 45 ◦ wi thou t t e x

i n t e r p r e t e r
30 % x t i c k l a b e l r o t a t e ( XTick , 45 , NameFields , ’ i n t e r p r e t e r ’ , ’ none ’ ) ;

%
32 % Example 5 : Use t e x t l a b e l s r o t a t e d 90 ◦ at current p o s i t i o n s

% x t i c k l a b e l r o t a t e ( [ ] , 9 0 , NameFields ) ;
34 %

% Note : you can not re−run x t i c k l a b e l r o t a t e on the same graph .
36 %

38

40 % This i s a modi f i ed v e r s i o n o f x t i c k l a b e l r o t a t e 9 0 by Denis G i l b e r t
% M o d i f i c a t i o n s i n c l u d e Text l a b e l s ( in the form of c e l l array )

42 % A r b i t r a r y ang l e r o t a t i o n
% Output o f t e x t hand les

44 % R e s i z i n g o f axes and t i t l e / x l a b e l / y l a b e l p o s i t i o n s to
maintain same o v e r a l l s i z e

% and keep t e x t on p l o t
46 % ( hand les sma l l window r e s i z i n g a f t e r , but not w e l l

due to p r o p o r t i o n a l placement wi th
% f i x e d f o n t s i z e . To f i x t h i s would r e q u i r e a s e r i o u s

r e s i z e f u n c t i o n )
48 % Uses curren t XTick by d e f a u l t

% Uses curren t XTickLabel i s d i f f e r e n t from XTick v a l u e s (
meaning has been a l r e a d y d e f i n e d )

50
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% Brian FG Katz
52 % b f g k a t z @ h o t m a i l . com

% 23−05−03
54 % Modif ied 03−11−06 a f t e r user comment

% Allow f o r e x i s i t i n g XTickLabel c e l l array
56 % Modif ied 03−03−2006

% Allow f o r l a b e l s top l o c a t e d ( a f t e r user comment)
58 % Allow case f o r s i n g l e XTickLabelName ( a f t e r user comment)

% Reduced the degree o f r e s i z i n g
60

% Other m− f i l e s r e q u i r e d : c e l l 2 m a t
62 % Sub f unc t io ns : none

% MAT− f i l e s r e q u i r e d : none
64 %

% See a l s o : x t i c k l a b e l r o t a t e 9 0 , TEXT, SET
66

% Based on x t i c k l a b e l r o t a t e 9 0
68 % Author : Denis G i l b e r t , Ph .D. , p h y s i c a l oceanography

% Maurice Lamontagne I n s t i t u t e , Dept . o f F i s h e r i e s and Oceans Canada
70 % emai l : g i l b e r t d @ d f o−mpo . gc . ca Web: h t t p ://www. qc . dfo−mpo . gc . ca/ iml /

% February 1998; Last r e v i s i o n : 24−Mar−2003
72

% check to see i f x t i c k l a b e l r o t a t e has a l r e a d y been here ( no o t her reason f o r
t h i s to happen )

74 i f isempty (get (gca , ’ XTickLabel ’ ) ) ,
error ( ’ x t i c k l a b e l r o t a t e : can not process , e i t h e r x t i c k l a b e l r o t a t e has

a l r eady been run or XTickLabel f i e l d has been erased ’ ) ;
76 end

78 % i f no XTickLabel AND no XTick are d e f i n e d use the curren t XTickLabel
%i f nargin < 3 & (˜ e x i s t ( ’ XTick ’ ) | i sempty ( XTick ) ) ,

80 % Modif ied wi th forum comment by ”Nathan Pust ” a l l o w the curren t t e x t l a b e l s to
be used and p rop er t y v a l u e p a i r s to be changed f o r t h o s e l a b e l s

i f (nargin < 3 | | isempty ( vararg in {1}) ) & (˜ exist ( ’XTick ’ ) | isempty (XTick ) ) ,
82 xTickLabels = get (gca , ’ XTickLabel ’ ) ; % use curren t XTickLabel

i f ˜ i s c e l l ( xTickLabels )
84 % remove t r a i l i n g spaces i f e x i s t ( t y p i c a l wi th auto genera ted

XTickLabel )
temp1 = num2cel l ( xTickLabels , 2 ) ;

86 for loop = 1 : length ( temp1 ) ,
temp1{ loop } = deblank ( temp1{ loop }) ;

88 end
xTickLabels = temp1 ;

90 end
vararg in = vararg in ( 2 : length ( vararg in ) ) ;

92 end

94 % i f no XTick i s d e f i n e d use the current XTick
i f (˜ exist ( ’XTick ’ ) | isempty (XTick ) ) ,

96 XTick = get (gca , ’XTick ’ ) ; % use curren t XTick
end

98
%Make XTick a column v e c t o r

100 XTick = XTick ( : ) ;

102 i f ˜exist ( ’ xTickLabels ’ ) ,
% Define the x t i c k L a b e l s

104 % I f Xt ickLabe l i s passed as a c e l l array then use the t e x t
i f ( length ( vararg in )>0) & ( i s c e l l ( vararg in {1}) ) ,
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106 xTickLabels = vararg in {1} ;
va ra rg in = vararg in ( 2 : length ( vararg in ) ) ;

108 else
xTickLabels = num2str(XTick ) ;

110 end
end

112
i f length (XTick ) ˜= length ( xTickLabels ) ,

114 error ( ’ x t i c k l a b e l r o t a t e : must have same number o f e lements in ”XTick” and ”
XTickLabel” ’ ) ;

end
116

%Set the Xt ick l o c a t i o n s and s e t XTick labe l to an empty s t r i n g
118 set (gca , ’XTick ’ ,XTick , ’ XTickLabel ’ , ’ ’ )

120 i f nargin < 2 ,
ro t (1 , 1 ) = 90 ;

122 end

124 % Determine the l o c a t i o n o f the l a b e l s based on the p o s i t i o n
% o f the x l a b e l

126 hxLabel = get (gca , ’ XLabel ’ ) ; % Handle to x l a b e l
xLabe lStr ing = get ( hxLabel , ’ S t r ing ’ ) ;

128
% i f ˜ isempty ( x L a b e l S t r i n g )

130 % warning ( ’You may need to manual ly r e s e t the XLABEL v e r t i c a l p o s i t i o n ’ )
% end

132
set ( hxLabel , ’ Units ’ , ’ data ’ ) ;

134 xLabe lPos i t i on = get ( hxLabel , ’ Po s i t i on ’ ) ;
y = xLabe lPos i t i on (2 ) ;

136
%CODE below was modi f i ed f o l l o w i n g s u g g e s t i o n s from Urs Schwarz

138 y=repmat (y , s ize (XTick , 1 ) , 1 ) ;
% r e t r i e v e current ax i s ’ f o n t s i z e

140 f s = get (gca , ’ f o n t s i z e ’ ) ;

142 % Place the new xTickLabe l s by c r e a t i n g TEXT o b j e c t s
hText = text (XTick , y , xTickLabels , ’ f o n t s i z e ’ , f s ) ;

144
% Rotate the t e x t o b j e c t s by ROT d egr ees

146 %s e t ( hText , ’ Rotation ’ , rot , ’ Horizonta lAl ignment ’ , ’ r i g h t ’ , v ara rg in { :} )
% Modif ied wi th modi f i ed forum comment by ”Korey Y” to d e a l wi th l a b e l s a t top

148 % Further e d i t s added f o r a x i s p o s i t i o n
xAxisLocat ion = get (gca , ’ XAxisLocation ’ ) ;

150 i f strcmp ( xAxisLocation , ’ bottom ’ )
set ( hText , ’ Rotation ’ , r o t ( 1 , 1 ) , ’ Hor izontalAl ignment ’ , ’ r i g h t ’ , va ra rg in { :} )

152 else
set ( hText , ’ Rotation ’ , r o t ( 1 , 1 ) , ’ Hor izontalAl ignment ’ , ’ l e f t ’ , va ra rg in { :} )

154 end

156 % Adjust the s i z e o f the a x i s to accomodate f o r l o n g e s t l a b e l ( l i k e i f they are
t e x t ones )

% This approach keeps the top o f the graph at the same p l a c e and t r i e s to keep
x l a b e l a t the same p l a c e

158 % This approach keeps the r i g h t s i d e o f the graph at the same p l a c e

160 set (get (gca , ’ x l ab e l ’ ) , ’ un i t s ’ , ’ data ’ ) ;
l abxo r i gpo s da ta = get (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ ) ;
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162 set (get (gca , ’ y l ab e l ’ ) , ’ un i t s ’ , ’ data ’ ) ;
l abyo r i gpo s da ta = get (get (gca , ’ y l ab e l ’ ) , ’ p o s i t i o n ’ ) ;

164 set (get (gca , ’ t i t l e ’ ) , ’ un i t s ’ , ’ data ’ ) ;
l a b t o r i gpo s da t a = get (get (gca , ’ t i t l e ’ ) , ’ p o s i t i o n ’ ) ;

166
set (gca , ’ un i t s ’ , ’ p i x e l ’ ) ;

168 set ( hText , ’ un i t s ’ , ’ p i x e l ’ ) ;
set (get (gca , ’ x l ab e l ’ ) , ’ un i t s ’ , ’ p i x e l ’ ) ;

170 set (get (gca , ’ y l ab e l ’ ) , ’ un i t s ’ , ’ p i x e l ’ ) ;

172 o r i gpo s = get (gca , ’ p o s i t i o n ’ ) ;

174 % t e x t s i z e s = c e l l 2 m a t ( g e t ( hText , ’ ex ten t ’ ) ) ;
% Modif ied wi th forum comment from ” Peter Pan” to d e a l wi th case when only one

XTickLabelName i s g i ven .
176 x = get ( hText , ’ extent ’ ) ;

i f i s c e l l ( x ) == true
178 t e x t s i z e s = ce l l 2mat ( x ) ;

else
180 t e x t s i z e s = x ;

end
182

l a r g e s t = max( t e x t s i z e s ( : , 3 ) ) ;
184 l o ng e s t = max( t e x t s i z e s ( : , 4 ) ) ;

186 l a b o r i g e x t = get (get (gca , ’ x l ab e l ’ ) , ’ extent ’ ) ;
l abo r i gpo s = get (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ ) ;

188
l a byo r i g ex t = get (get (gca , ’ y l ab e l ’ ) , ’ extent ’ ) ;

190 l abyo r i gpo s = get (get (gca , ’ y l ab e l ’ ) , ’ p o s i t i o n ’ ) ;
l e f t l a b d i s t = labyo r i gpo s (1 ) + l abyo r i g ex t (1 ) ;

192
% assume f i r s t en try i s the f a r t h e s t l e f t

194 l e f t p o s = get ( hText (1 ) , ’ p o s i t i o n ’ ) ;
l e f t e x t = get ( hText (1 ) , ’ extent ’ ) ;

196 l e f t d i s t = l e f t p o s (1 ) + l e f t e x t (1 ) ;
i f l e f t d i s t > 0 , l e f t d i s t = 0 ; end % only c o r r e c t f o r o f f screen

problems
198

% b o t d i s t = o r i g p o s (2) + l a b o r i g p o s (2) ;
200 % newpos = [ o r i g p o s (1)− l e f t d i s t l o n g e s t+b o t d i s t o r i g p o s (3)+l e f t d i s t o r i g p o s (4)−

l o n g e s t+o r i g p o s (2)−b o t d i s t ]
%

202 % Modif ied to a l l o w f o r top a x i s l a b e l s and to minimize a x i s r e s i z i n g
i f strcmp ( xAxisLocation , ’ bottom ’ )

204 newpos = [ o r i gpo s (1 )−(min( l e f t d i s t , l abyo r i gpo s (1 ) ) )+labyor i gpo s (1 ) . . .
o r i gpo s (2 ) +(( l ong e s t+l abo r i gpo s (2 ) )−get (gca , ’ FontSize ’ ) ) . . .

206 o r i gpo s (3 )−(min( l e f t d i s t , l abyo r i gpo s (1 ) ) )+labyor i gpo s (1 )− l a r g e s t . . .
o r i gpo s (4 )−(( l ong e s t+l abo r i gpo s (2 ) )−get (gca , ’ FontSize ’ ) ) ] ;

208 else
newpos = [ o r i gpo s (1 )−(min( l e f t d i s t , l abyo r i gpo s (1 ) ) )+labyor i gpo s (1 ) . . .

210 o r i gpo s (2 ) . . .
o r i gpo s (3 )−(min( l e f t d i s t , l abyo r i gpo s (1 ) ) )+labyor i gpo s (1 )− l a r g e s t . . .

212 o r i gpo s (4 )−( l ong e s t )+get (gca , ’ FontSize ’ ) ] ;
end

214 A=s ize ( ro t ) ;
i f A(1 ,2 ) ==5;

216 newpos= [ ro t ( 1 , 2 : 5 ) ] ;
end
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218 set (gca , ’ p o s i t i o n ’ , newpos ) ;

220 % r e a d j u s t p o s i t i o n o f t e x t l a b e l s a f t e r r e s i z e o f p l o t
set ( hText , ’ un i t s ’ , ’ data ’ ) ;

222 for loop= 1 : length ( hText ) ,
set ( hText ( loop ) , ’ p o s i t i o n ’ , [ XTick ( loop ) , y ( loop ) ] ) ;

224 end

226 % a d j u s t p o s i t i o n o f x l a b e l and y l a b e l
l abo r i gpo s = get (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ ) ;

228 set (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ , [ l abo r i gpo s (1 ) l abo r i gpo s (2 )−l o ng e s t 0 ] ) ;

230 % s w i t c h to data coord and f i x i t a l l
set (get (gca , ’ y l ab e l ’ ) , ’ un i t s ’ , ’ data ’ ) ;

232 set (get (gca , ’ y l ab e l ’ ) , ’ p o s i t i o n ’ , l abyo r i gpo s da ta ) ;
set (get (gca , ’ t i t l e ’ ) , ’ p o s i t i o n ’ , l a b t o r i gpo s da t a ) ;

234
set (get (gca , ’ x l ab e l ’ ) , ’ un i t s ’ , ’ data ’ ) ;

236 l abxor igpos data new = get (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ ) ;
set (get (gca , ’ x l ab e l ’ ) , ’ p o s i t i o n ’ , [ l abxo r i gpo s da ta (1 ) labxor igpos data new (2) ] )

;
238

240 % Reset a l l u n i t s to normal ized to a l l o w f u t u r e r e s i z i n g
set (get (gca , ’ x l ab e l ’ ) , ’ un i t s ’ , ’ normal ized ’ ) ;

242 set (get (gca , ’ y l ab e l ’ ) , ’ un i t s ’ , ’ normal ized ’ ) ;
set (get (gca , ’ t i t l e ’ ) , ’ un i t s ’ , ’ normal ized ’ ) ;

244 set ( hText , ’ un i t s ’ , ’ normal ized ’ ) ;
set (gca , ’ un i t s ’ , ’ normal ized ’ ) ;

246
i f nargout < 1 ,

248 clear hText
end

92



Appendix C LOGGER code

1 ’CR1000 S e r i e s Data logger Markus1 . 2 . CR1
’ date : 2009 06 05

3 ’ program author : H̊akan Håkansson & Markus Heimberger

5 CONSTMM = 22 ’T [ ◦C ]
CONST NN = 8 ’Q [W]

7 CONST PP = 2 ’ So l [W/m2]
CONST CalConstVert=13.15 ’ Heat f l o w in f l o o r and c e i l i n g

9 CONST CalConstHor=15.13 ’ Heat f l o w in w a l l s
CONST Pyrconst1=219.9 ’ cons tant f o r pyranometer which one measure beam

11 CONST Pyrconst2=105.6 ’ cons tant f o r pyranometer which one measure d i f f u s e
CONST Pyrconst3= 1 ’ , Licor , d u b b e l a v l ä s t

13 CONST PyrgConst=238.663 ’ 4 .19uV/(W/mˆ2)
Public LoggerT , RefT ’ PTemp r e f t e m p e r a t u r i l o g g e r , M u l t i p l e x e r

15 Public Q8Ceil , Q8Floor , Q8WWall , Q8EWall
Public Q9Ceil , Q9Floor , Q9WWall , Q9EWall

17 Public Q108 , Q109
Public Q tempWall

19 Public VertSolMark
Public T8luft , T8glas , T9luft , T9solSk , T9glas , DT8glas , DT9glas

21 Public Wflow108 , Wflow109 ,WAvgRun8, WAvgRun9 ’ ( Running averages )
Public Qkyla108 , Qkyla109 , DeltaTW8 , DeltaTW9

23 Public El108 , El109 ’ New e l c t r i c Pulscount
Public Pyrgeometer , PyrgeTest , Pyr Ref , Pyr RefTest

25 Public PyrMux(PP) , Pyran (PP)

27 Dim T Mux(MM) ’ Temperatures
Dim V ThPile (NN) ’ V tempThPile ’ Vol tage from t e r m o p i l e s

29 Dim m ’ uppr äknings v a r i a b e l (MM)
Dim n ’ (NN)

31 Dim p ’ (PP)

33 Alias T Mux(1)=T8luftUpp
Alias T Mux(2)=T8luftMitt

35 Alias T Mux(3)=T8luftNert
Alias T Mux(4)=T8glasInUpp

37 Alias T Mux(5)=T8glasInMitt
Alias T Mux(6)=T8glasInNert

39 Alias T Mux(7)=T8glasUtmitt
Alias T Mux(8)=T9luftUpp

41 Alias T Mux(9)=T9luftMitt
Alias T Mux(10)=T9luftNert

43 Alias T Mux(11)=T9solSkUpp
Alias T Mux(12)=T9solSkMitt

45 Alias T Mux(13)=T9solSkNert
Alias T Mux(14)=T9glasInUpp

47 Alias T Mux(15)=T9glasInMitt
Alias T Mux(16)=T9glasInNert

49 Alias T Mux(17)=T9glasUtmitt
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Alias T Mux(18)=TluftUte
51 Alias T Mux(19)=T w108ut

Alias T Mux(20)=T w108in
53 Alias T Mux(21)=T w109ut

Alias T Mux(22)=T w109in
55 Alias Pyran (1 )=VertSol

Alias Pyran (2 )=Ver tSo lD i f f
57

59 ’ Def ine Data Tables−− Data Tables −− DataTables−− Data Tables
DataTable(#6min ,1 ,−1) ’#6MIN t a b e l l

61 Datainterval (0 , 6 ,Min,−1) ’ data i n t e r v a l l 6min . average
Average (1 , T8luft , FP2 , Fa l se )

63 Average (1 , T8glas , FP2 , Fa l se )
Average (1 , DT8glas , FP2 , Fa l se )

65 Average (1 , T9luft , FP2 , Fa l se )
Average (1 , T9glas , FP2 , Fa l se )

67 Average (1 , DT9glas , FP2 , Fa l se )
Average (1 ,Q108 ,FP2 , Fa l se )

69 Average (1 ,Q109 ,FP2 , Fa l se )
Average (1 , TluftUte , FP2 , Fa l se )

71 Average (1 ,RefT ,FP2 , Fa l se )
Average (1 , VertSol , FP2 , Fa l se )

73 Average (1 , Ver tSo lDi f f , FP2 , Fa l se )
Average (1 , VertSolMark ,FP2 , Fa l se )

75 Average (1 , Pyrgeometer , FP2 , Fa l se )
Average (1 , PyrgeTest , FP2 , Fa l se )

77 Average (1 ,Wflow108 ,FP2 , Fa l se )
Average (1 ,Wflow109 ,FP2 , Fa l se )

79 Average (1 , Qkyla108 ,FP2 , Fa l se )
Average (1 , Qkyla109 ,FP2 , Fa l se )

81 Average (1 , El108 ,FP2 , Fa l se )
Average (1 , El109 ,FP2 , Fa l se )

83 Average (1 , Q tempWall , FP2 , Fa l se )
Average (1 , Q8Ceil , FP2 , Fa l se )

85 Average (1 , Q8Floor , FP2 , Fa l se )
Average (1 ,Q8WWall , FP2 , Fa l se )

87 Average (1 ,Q8EWall , FP2 , Fa l se )
Average (1 , Q9Ceil , FP2 , Fa l se )

89 Average (1 , Q9Floor , FP2 , Fa l se )
Average (1 ,Q9WWall , FP2 , Fa l se )

91 Average (1 , LoggerT ,FP2 , Fa l se )

93 ’ c o n t r o l v a l u e s
Average (1 , T8luftUpp ,FP2 , Fa l se )

95 Average (1 , T8luftMitt , FP2 , Fa l se )
Average (1 , T8luftNert , FP2 , Fa l se )

97 Average (1 , T8glasInMitt , FP2 , Fa l se )
Average (1 , T8glasInNert , FP2 , Fa l se )

99 Average (1 , T8glasUtmitt , FP2 , Fa l se )
Average (1 , T9luftUpp ,FP2 , Fa l se )

101 Average (1 , T9luftMitt , FP2 , Fa l se )
Average (1 , T9luftNert , FP2 , Fa l se )

103 Average (1 , T9glasInUpp ,FP2 , Fa l se )
Average (1 , T9glasInMitt , FP2 , Fa l se )

105 Average (1 , T9glasInNert , FP2 , Fa l se )
Average (1 , T9glasUtmitt , FP2 , Fa l se )

107 Average (1 , T w108ut , FP2 , Fa l se )
Average (1 , T w108in , FP2 , Fa l se )
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109 Average (1 , T w109ut , FP2 , Fa l se )
Average (1 , T w109in , FP2 , Fa l se )

111 Average (1 ,DeltaTW8 ,FP2 , Fa l se )
Average (1 ,DeltaTW9 ,FP2 , Fa l se )

113 EndTable ’ End #6MIN =============================

115
DataTable( o view ,1 ,−1) ’ O VIEW

117 DataInterval (0 ,60 ,Min,−1) ’ hour l y mean f o r key v a r i a b l e s
Average (1 , T8luft , FP2 , Fa l se )

119 Average (1 , T8glas , FP2 , Fa l se )
Average (1 , DT8glas , FP2 , Fa l se )

121 Average (1 , T9luft , FP2 , Fa l se )
Average (1 , T9glas , FP2 , Fa l se )

123 Average (1 , DT9glas , FP2 , Fa l se )
Average (1 ,Q108 ,FP2 , Fa l se )

125 Average (1 ,Q109 ,FP2 , Fa l se )
Average (1 , TluftUte , FP2 , Fa l se )

127 Average (1 ,RefT ,FP2 , Fa l se )
Average (1 , VertSol , FP2 , Fa l se )

129 Average (1 , Ver tSo lDi f f , FP2 , Fa l se )
Average (1 , VertSolMark ,FP2 , Fa l se )

131 Average (1 , Pyrgeometer , FP2 , Fa l se )
Average (1 , PyrgeTest , FP2 , Fa l se )

133 Average (1 ,Wflow108 ,FP2 , Fa l se )
Average (1 ,Wflow109 ,FP2 , Fa l se )

135 Average (1 , Qkyla108 ,FP2 , Fa l se )
Average (1 , Qkyla109 ,FP2 , Fa l se )

137 Average (1 , El108 ,FP2 , Fa l se )
Average (1 , El109 ,FP2 , Fa l se )

139 Average (1 , Q tempWall , FP2 , Fa l se )
Average (1 , Q8Ceil , FP2 , Fa l se )

141 Average (1 , Q8Floor , FP2 , Fa l se )
Average (1 ,Q8WWall , FP2 , Fa l se )

143 Average (1 ,Q8EWall , FP2 , Fa l se )
Average (1 , Q9Ceil , FP2 , Fa l se )

145 Average (1 , Q9Floor , FP2 , Fa l se )
Average (1 ,Q9WWall , FP2 , Fa l se )

147 Average (1 , LoggerT ,FP2 , Fa l se )

149 ’ c o n t r o l v a l u e s
Average (1 , T8luftUpp ,FP2 , Fa l se )

151 Average (1 , T8luftMitt , FP2 , Fa l se )
Average (1 , T8luftNert , FP2 , Fa l se )

153 Average (1 , T8glasInMitt , FP2 , Fa l se )
Average (1 , T8glasInNert , FP2 , Fa l se )

155 Average (1 , T8glasUtmitt , FP2 , Fa l se )
Average (1 , T9luftUpp ,FP2 , Fa l se )

157 Average (1 , T9luftMitt , FP2 , Fa l se )
Average (1 , T9luftNert , FP2 , Fa l se )

159 Average (1 , T9glasInUpp ,FP2 , Fa l se )
Average (1 , T9glasInMitt , FP2 , Fa l se )

161 Average (1 , T9glasInNert , FP2 , Fa l se )
Average (1 , T9glasUtmitt , FP2 , Fa l se )

163 Average (1 , T w108ut , FP2 , Fa l se )
Average (1 , T w108in , FP2 , Fa l se )

165 Average (1 , T w109ut , FP2 , Fa l se )
Average (1 , T w109in , FP2 , Fa l se )

167 Average (1 ,DeltaTW8 ,FP2 , Fa l se )
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Average (1 ,DeltaTW9 ,FP2 , Fa l se )
169 EndTable ’ End O VIEW =======================

171
’ Def ine Subrout ines ’ Sub ’ EndSub

173 ’Main P r o g r a m
BeginProg

175 Scan (30 , Sec , 3 , 0 ) ’ scannar l o g g e r o m u l t i p l e x
VoltDiff ( VertSolMark , 1 ,mV25C, 3 , True ,0 , 250 ,10 ,0 )

177 VoltDiff ( Pyrgeometer , 1 ,mV2 5C, 5 , True ,0 ,250 , PyrgConst , 0 ) ’
Pyrgeometer

VoltDiff ( PyrgeTest , 1 ,mV2 5C, 5 , True ,0 , 250 ,1 , 0 ) ’ measurement o f
Pyrgeometer

179 VoltDiff ( Pyr Ref , 1 ,mV2 5C, 6 , True , 0 , 250 , 238 . 095 , 0 )
VoltDiff ( Pyr RefTest , 1 ,mV2 5C, 6 , True ,0 , 250 ,1 , 0 )

181 PanelTemp(LoggerT ,250 ) ’ pane l temperature in l o g g e r ( f o r check )
Therm107 (RefT , 1 , 16 ,Vx2 , 0 , 2 5 0 , 1 . 0 , 0 ) ’<−− SE16 and E x i t a t i o n Vx2

183
’ 30 sec scan i n t e r v a l 2500ml per p u l s e /30 s = 83.3333 ml per p u l s e /

s
185 PulseCount (Wflow108 , 1 , 1 , 2 , 0 , 83 . 3333 , 0 ) ’ reps , P1 , s w i t c h c l o su re ,

, m u l t i p l i e r
PulseCount (Wflow109 , 1 , 2 , 2 , 0 , 83 . 3333 , 0 ) ’ reps , P2 , s w i t c h c l o su re ,

, m u l t i p l i e r
187 AvgRun (WAvgRun8, 1 ,Wflow108 , 1 2 ) ’ Running average 12∗30 s = 6 min

AvgRun (WAvgRun9, 1 ,Wflow109 , 1 2 )
189 PulseCount ( El108 , 1 , 17 , 0 , 0 , 120 , 0 ) ’ E l e c t r i c power in W Contro l

por t <−−C7
PulseCount ( El109 , 1 , 18 , 0 , 0 , 120 , 0 ) ’ E l e c t r i c power in W Contro l

por t <−−C8
191 PortSet ( 1 , 1 ) ’ por t C1 high f o r MUX scan counter r e s e t <−− C1

For m=1 to MM ’ 22 Thermocouples on MUX
193 Pulseport (2 ,15000) ’ f i r s t M MUX channe l s

TCDiff (T Mux(m) ,1 ,mV2 5 , 1 ,TypeT , RefT , True , 0 , 2 50 , 1 , 0 ) ’
termoelement

195 Next m
’ 2 Extra r e a d i n g s o f wheather data se nsor s on south w a l l

197 Pulseport (2 ,15000)
’ no v a r i a b l e on which one por t 23 i s saved unknown connect ion

199 Pulseport (2 ,15000)
VoltDiff (PyrMux(2) ,1 ,mV7 5 , 1 , 0 , 0 , 2 50 , 1 , 0 )

201 Pyran (2 )=PyrMux(2) ∗Pyrconst2
For n=1 to NN ’ThermoPILE channe l s on

M u l t i p l e x e r (8)
203 Pulseport (2 ,15000) ’ scan , and time d e l a y <−−C2

VoltDiff ( V ThPile (n) ,1 ,mV7 5 , 1 , 0 , 0 , 2 50 , 1 , 0 )
205 Next n

Portset ( 1 , 0 ) ’ s e t por t 1
207

VoltDiff (PyrMux(1) ,1 ,mV7 5 , 2 , 0 , 0 , 2 50 , 1 , 0 )
209 Pyran (1 )=PyrMux(1) ∗Pyrconst1

211 ’ Measuring o f t e s t c a l i b r a t i o n w a l l i f needed
VoltDiff (Q tempWall , 1 ,mV25, 4 , True , 0 , 2 50 , 1 , 0 ) ’ <==m u l t i p l i e r !,<−−

Ch4
213 ’ Q8Ceil , Q8Floor , Q8WWall , Q8EWall , Q9Ceil , Q9Floor , Q9WWall ,

Q9EWall
Q8Ceil=V ThPile (1 ) ∗CalConstHor ’ 108

215 Q8Floor=V ThPile (2 ) ∗CalConstHor ’ 108
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Q8WWall=V ThPile (3 ) ∗CalConstVert ’ 108
217 Q8EWall=V ThPile (4 ) ∗CalConstVert ’ 108

Q9Ceil=V ThPile (5 ) ∗CalConstHor ’ 109
219 Q9Floor=V ThPile (6 ) ∗CalConstHor ’ 109

Q9WWall=V ThPile (7 ) ∗CalConstVert ’ 109
221 Q9EWall=V ThPile (8 ) ∗CalConstVert ’ 109

Q108= Q8EWall+Q8WWall+Q8Floor+Q8Ceil
223 Q109= Q9EWall+Q9WWall+Q9Floor+Q9Ceil

T8 lu f t=(T8luftUpp+T8luftMitt+T8luftNert ) /3 ’ mean v a l u e f o r 3
l e v e l s

225 T8glas=(T8glasInUpp+T8glasInMitt+T8glasInNert ) /3 ’ mean v a l u e f o r
3 l e v e l s

T9lu f t=(T9luftUpp+T9luftMitt+T9luftNert ) /3 ’ mean v a l u e f o r 3
l e v e l s

227 T9solSk=(T9solSkUpp+T9solSkMitt+T9solSkNert ) /3 ’ mean v a l u e f o r 3
l e v e l s

T9glas=(T9glasInUpp+T9glasInMitt+T9glasInNert ) /3 ’ mean v a l u e f o r
3 l e v e l s

229 DT8glas=T8glasUtMitt−T8glasInMitt ’ Temperature d i f f between panes
at mid l e v e l 108

DT9glas=T9glasUtMitt−T9glasInMitt ’ Temperature d i f f between panes
at mid l e v e l 109

231 DeltaTW8=(T w108ut−T w108in )
DeltaTW9=(T w109ut−T w109in )

233 Qkyla108=DeltaTW8∗WAvgRun8∗4 .18
Qkyla109=DeltaTW9∗WAvgRun9∗4 .18

235
CallTable #6min ’ c a l l 6min data t a b l e

237 CallTable o view ’ c a l l 1h data t a b l e

239
NextScan ’ next scan

241 EndProg
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D.1 Circuit for level adaption

Figure D.1: Circuit plan for electric and water-flow pulse measurement
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D.2 Circuit board layout

Figure D.2: Circuit board layout
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D.3 Device plan

Figure D.3: Device plan
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