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Applying Model-Integrated
Computing on Time-Triggered

Application Development

Designing and implementing a distributed embedded real-time system is a
challenging task. A possible approach to cope with the complexity is to em-
ploy tools in the design and implementation process, that relieve the designer
from lower level issues like matching system parameters and determining
communication message schedules.
This thesis presents a variation of the model-based tool suite Generic Mod-
eling Environment (GME) for the time-triggered real-time communication
system TTP/A.
The tool builds on the Generic Modeling Environment (GME) an integrated
modelling tool that supports a meta-level design technology. Due to the
generic nature of the tool suite, the work presented in this thesis also applies,
in general, to other real-time communication systems with minor modifica-
tions.
Besides this, this work presents a comprehensive definition of the conceptual
model of TTP/A applications, which makes up the major theoretical part.





Model-Integrated Computing für die
Entwicklung zeitgesteuerter
Applikationen in verteilten

Echtzeitsystemen

Der Entwurf und die Implementierung von verteilten, eingebetteten Echt-
zeitsystemen stellt eine besondere Herausforderung für Konstrukteure dar.
Ein möglicher Ansatz, um die Komplexität beherrschen zu können, ist der
Einsatz von Software-Tools, die den Prozess des Entwurfs und der Imple-
mentierung unterstützen. Folglich wird der Entwickler durch die Automati-
sierung der zugrunde liegenden Eigenschaften des Zielsystems entlastet, wie
beispielsweise die Berechnung von Konfigurationsparametern für das System
oder die Generierung von Nachrichten- und Jobfahrplänen.
Diese Diplomarbeit präsentiert eine Variation der Modell-basierten Tool-
Suite Generic Modeling Environment (GME) auf Basis des zeitgesteuerten
Echtzeit-Kommunikationssystems TTP/A.
Aufbauend auf der Generic Modeling Environment (GME) wird ein neues,
integriertes Modellierungswerkzeug geschaffen, das Meta-Level Modellierung
bietet. Auf Grund der Generizität der Tool-Suite ist die hier vorgestellte Ar-
beit auch für beliebige Echtzeit-Kommunikationssysteme mit geringfügigen
Anpassungen anwendbar.
Darüber hinaus beinhaltet diese Arbeit eine umfassende Abhandlung über
das konzeptuelle Model von TTP/A Applikationen, was den theoretischen
Hauptteil dieser Arbeit ausmacht.
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Chapter 1

Introduction

Software Engineering is a relatively young field in technical sciences, which
has evolved during the past few decades. This is a short time compared
to the mature, well-established engineering fields like architecture or engine
construction, which have undergone centuries or even millennia of evolution.
Over the time those engineering fields fostered a huge knowledge base and
several design principles, and industrial standards like the DIN manifested.

Albeit notable exceptions such as UML, software engineering lacks of uni-
form and standardized methodologies of designing software components. Due
to fast technology life cycles and different problem solution approaches, we
cannot expect the validity of any know-how over some time. Thus, the de-
tails of implementation are subject to rapid changes, and techniques become
out-dated.

It is impossible for a human being, in that case the software engineer, to keep
pace with all developments in his or her field. There is one possibility to come
across that limitation of human cognitive performance: simplification or
abstraction. A given system is not described in its details of implementation
and specific technology, but in a higher-level abstract formalism.

For instance, the software engineering community produced a unified mod-
elling language, which explains structure, interrelation, use cases etc. for
software components: UML [UML04]. This notational style abstracts from
concrete programming languages, used middle-ware or target technologies as
well as programming paradigms. Conversely, it is a formal base, from which
all these implementation specific details can be derived. For example, the
computer aided software engineering tools (CASE tools) are able to produce
software components from a higher-level specification like UML.

1
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According to its origin, UML had been mainly designed for software devel-
opment projects. As this thesis deals with distributed embedded real-time
systems, we would like to mention more ”hardware-level” approaches. For in-
stance, the field of chip design provoked such higher-level description formal-
ism by means of the programming language C++, namely SystemC [Sys05].
The design of some circuitry is not expressed in a hardware description lan-
guage like VHDL [VHD00], but in C++, which entails a more ”software-
engineering-like” point of view on hardware design.

Before we proceed, we should think about the reasons, why we would like
to use abstraction respectively modelling in the development of distributed
embedded systems.

1.1 The struggle of designing

Setting up a distributed embedded system may often be a sumptuous task.
In distributed embedded real-time systems the sources of possibles errors are
manifold. Accordingly, debugging is a challenge for system integrators as
well as programmers.

In a field test [Dej05] with about 100 students implementing and setting
up a time-triggered real-time system on a distributed 8-bit microcontroller
platform, we gathered experience about the many possible sources of mal-
functions. We shall briefly outline the major issues.

• hardware failures, e. g., broken cables etc.

• firmware configuration errors, e. g., incorrectly set fuse-bits

• programming errors

• configuration error regarding compiler options as well as linker settings

• inconsistent communication schedules.

Even though, this field test was conducted within an under-graduate course
in the bachelor studies of computer engineering, we may assume, that the
professional programmers in the industrial field will come across the same
concerns, as they deal with the same matter.

While each of those (sub-)problems can be handled, the actual system be-
comes very complex, indeed.
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1.2 Motivation for a tool

We identified the need for an integrated development tool, which assists the
designer from the first draft of the application’s model to the definition of
the global communication schedule as well as the local job specification and
the compilation and linking of the resulting source code. The intentions are

1. to accelerate the design and implementation phase of an embedded
system’s software

2. to reduce the opportunities of errors creeping in during the whole de-
velopment process

The first goal might especially appeal to the academic research, where it is
the attention to have shorter development cycles, so that we can implement
several diversitive approaches to a problem fastly and efficiently, when con-
ducting research among the field of embedded systems. Nonetheless, this
matter is of interest in the industrial field, too. However, here the second
goal is of upmost importance. The less errors we have to remove in source
code, the less resources the debugging consumes. Thus, the application of a
integrated tool will relieve a project’s budget and other resources.

1.3 Requirements

Due to the great variety of embedded system hardware, communication tech-
nologies and fields of applications, such a tool has to be highly flexible
concerning the configuration and the extensibility in order to be useful in
different domains, e. g., for a time-triggered real-time field-bus system like
TTP/A [Kop01] as well as CAN [Bos91] and LIN [vdW00].

Preferably, that tool should entail

• an appealing graphical user interface

• expressiveness in meta-modelling and modelling, e. g., in UML-related
notation

• a mechanism for formal validation of meta-models

• a validation mechanism for domain-specific constraints imposed by the
meta-model
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• support for extensibility by means of plug-ins, which consequently gives
some degree of flexibility when changing between different plug-ins

In our point of view all those requirements are mandatory for the ”ideal”
modelling tool. When full-filling those requirements, we would be able to ele-
vate a generic tool to an integrated development environment (IDE) according
to our needs for distributed time-triggered real-time embedded systems.

1.4 Outline

In chapter 2 we introduce the concept of model integrated computing (MIC),
and how it contributes to the software development projects of distributed
embedded real-time systems.

Chapter 3 deals with the major part of that work. It evolves the conceptual
model of TTP/A applications. The contained sections discuss the fundamen-
tal design, functional and temporal requirements, as well as the relation and
the restrictions between the defined entities.

The following chapter 4 focuses the implementation of that conceptual model
called MetaTTPA by means of the generic modelling environment GME.
Moreover, it explains, how such generic modelling tool can be transformed
into an integrated environment (IDE) for TTP/A applications following the
concept of MIC. Additionally, it introduces two software components inte-
grated into GME.

Finally, chapter 5 gives a short summary and mentions ideas for future work
concerning the field of meta-modelling and modelling of TTP/A applications.



Chapter 2

Model Integrated Computing

2.1 Domain-specific modelling

When we look at the market of modelling tools, we find several promi-
nent products from well-known vendors. For instance, Rational Rose
(http://www.rational.com/) is a visual modelling tool especially for soft-
ware development projects; Simulink (http://www.mathworks.com) is a
hierarchical block-diagram design and simulation tool with its main applica-
tion in signal processing; and LabVIEW (http://www.ni.com) is a graph-
ical programming development environment.

Even though, these tools have been designed for different fields of application
and contain other terminology, they share one common property. Each tool
is an integrated set of tools for modelling, model analysis, simulation, and
code-generation, that helps to design and implement any target system for
its own specific, well-definied engineering field.

In other words, these tools capture specifications of target systems in the form
of domain-specific models. Furthermore, they support the design process by
automating analysis and simulating system behavior. In addition, they can
automatically generate, configure, and integrate target system components,
such as source code, glue code, or database schemas.

Despite their enormous power and feature set, domain-specific modelling
tools suffer from one significant block, which detains a broad acceptance:
the high costs. Consequently, such tools are available only for domains
with large markets and high volume, so that the initial investment costs can
be balanced.

5
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2.2 Generic notational formalisms

In some sense, modelling among different domains incorporates the same
concepts. No matter, if we deal with traditional software engineering or
embedded systems, we find concepts like

entities / objects atomic entities or objects, which embody a given prop-
erty or object of a system.

containment hierarchical relations among entities, which state, that any
entity A is part of another entity B.

associations non-hierarchical relations among entities, which model some
kinds of real-world relations, e. g., communication.

inheritance a concept imported from the object-oriented programming
paradigm; used to express derivation and similarity among different
types of entities, or to re-use existing entities.

multiplicity a numerical attribute for containment and association rela-
tions, which gives information how many entities may take part in
some kind of relation.

attributes each concepts above can be equipped with textual or numerical
attributes in order to include additional information.

Consequently, we could take into consideration, that we do not use domain-
specific modelling and its tools, but we use a generic notational formalism
like UML to specify a rule set according to the domain for the models of a
target system. However, would this be enough?

For instance, if we define in the rule set, that an object of type A is allowed
to contain objects of type B (but we have no such rule regarding objects
of type C), then a generic notational formalism like UML is able to express
this relation by means of the concepts of the containment. In the model of
the target system we would not be able to let an object of type A have an
object of type C. The same applies to connective rules. Objects must not
be connected by a given type of connection, unless explicitly specified in the
rule-set.

While we can even express such conditions with ”ordinary” UML, what about
more complex relations between objects according to a domain-specific point
of view? Let’s say, we have objects of the type ”Task” and connection rela-
tions ”Phase” and ”Dataflow” between ”Task”s. But a ”Phase” must not be
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declared between a pair of ”Task”s, if and only if those ”Task”s are already
connected by a ”Dataflow”. How could we model this constraint in UML?
UML does not care about ”Task”s, ”Phase”s and ”Dataflow”s, hence it does
not include such a domain-specific point of view, but it provides the standard
notation of ”Class”es, ”Connection”s etc.

In short, the generic notational formalism’s capabilities of sufficiently ex-
pressing models of domain-specific target systems are limited. The lack of
the appropriate terminology of the given field must be bypassed by generic
concepts, which impose an unnecessary degree of complexity. Moreover, it is
hard (or even unfeasible) to express specific constraints, as this is not within
the reach of the generic notation.

2.3 Meta-Modelling

Contrary to domain-specific modelling as well as generic notations, the model
integrated computing (MIC) deals with meta-models. In that case, the mod-
elling formalism is not tied down to any specific domain, but it is so generic,
that we can easily produce a meta-model, which describes the entities, rela-
tions and constraints of the given domain. Figure 2.1 illustrates the func-
tioning of meta-modelling.

As we can see, meta-modelling allows some kind of ”boot-strapping” or re-
cursion of models. Firstly, we have one generic model – the meta-meta-model,
which models the meta-model of a given domain. Additionally to the con-
cepts stated in section 2.2, such meta-model includes the familiar terminology
of a given domain as well as integrity constraints, which a concrete domain
model has to full-fill. Finally, we use that meta-model in order to specify a
concrete target system with a domain-specific point of view.

It must be mentioned, that the meta-meta-model and the meta-model use
the same notational language. This is a generic language, which does not
involve any domain-specific concepts. But this generic language builds the
meta-model, which defines the domain-specific notational language. The
model of the target system is just expressed in the domain-specific language
formed by the meta-model. Even though, all these languages might use
different notation and terminology, in most modelling environments they use
a closely related style, e. g., UML-like diagrams.

All these steps take place within the same generic integrated modelling tool.
Thus, when defining a meta-model for a given domain or engineering field,
that generic modelling tool transforms into a modelling tool for that domain.
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Meta-Modelling language

Meta-Meta-Model

Meta-Modelling language

Meta-Model

Domain Modelling language

Model

Target System Component

1

Figure 2.1: Structure of MIC systems

However, the tool can be re-transformed for applications in another field, if
we define another meta-model for that field. So, a generic modelling tool is
highly flexible and extensible due to the meta-modelling approach of MIC.

2.4 Meta-Modelling for embedded systems

Finally, when we have defined a model for a target system, most modelling
tools support a further processing of the model, which produces the software
component, i. e., some software part of the overall system, for usage in the
target system. Such a component would be a piece of source code, if we
dealt with modelling of software engineering projects. Probably, we define
the layout of an electronic circuit in the domain-specific model, while the
meta-model consists of electronic components, e. g., AND- and OR-Gates
etc. Then, the target system component is a Intel-HEX-File, which can be
loaded onto an FPGA.
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To sum up, a generic modelling tool turns into an integrated development
environment for a specific domain or engineering field due to the mechanism
of meta-modelling in MIC and the further processing.

Consequently, it is obvious, that we can adapt any given generic modelling
tool into such an IDE for embedded systems, moreover for distributed em-
bedded real-time systems. All we need to do is to define the meta-model for
the design of such embedded systems. Additionally, we would like to extract
some useful source code, communication schedules, or other data from the
model, so that this product can be used in the overall development process.
For that purpose, we would create the model processor or model transformer
or model parser and integrate it into the tool.

2.5 Related Work

Recent summits like the MoDELS/UML 2005 conference on model driven
design [MoD05] in general and the MARTES 2005 workshop on modeling
and analysis of real-time and embedded systems [MAR05] testify the high
interest of industry and academic researchers in the field of modelling. In
this section we will shortly examine a few up-to-date promising approaches.

2.5.1 Modeling UML Architectures with Coloured
Petri Nets

Pettit and Gomma [Rob05] propose a method for early design analysis,
in which hierarchically oriented Coloured Petri Nets (CPN) [Jen97] are
used for capturing dynamic aspects of a given object-oriented architecture
expressed in UML. Therefore, the UML model is transformed based on
appropriate stereotypes and templates into CPN. On the resulting model
existing analysis tools can be used. For Petri nets there exist syntax
level analysis methods for validating control invariant and deadlock free-
dom, but the main interest is the usage of powerful simulation based state
space and performance analysis provided by the tool named DesignCPN
(http://www.daimi.au.dk/designCPN/).

Pettit and Gomma argue for the motivation of their work that object-oriented
architecture design can be augmented, so that the confidence that the design
will cover functional and performance requirements can be increased. Using
this technique, object-oriented artifacts by means of the Unified Modeling
Language [UML04] are still captured. Furthermore, this native modelling

http://www.daimi.au.dk/designCPN/
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language is then enhanced by seamlessly integrating an underlying formal
representation capable of providing the necessary analytical tools. There-
fore, the particular method used in Pettit’s and Gomma’s research is the
integration of CPNs with object-oriented architecture designs captured in
terms of UML behavioural models.

The basis of the model is a communication diagram containing a collection
of active and passive objects along with the message communication that
occurs between the objects. In order to generate a CPN from the UML
representation some information must be captured (by means of UML).

Stereotype : Each object must be stereotyped to indicate its fundamental
behaviour. The stereotypes also determine the structure of the CPN
template used to model the object.

Execution Type : Objects must be declared as either passive or active by
means of a tagged value. This distinction is used to determine whether
an object maintains its own thread of control within the system. Within
the CPN model, each active object is given its own control token to
model its thread of control and to represent its concurrent execution
within the system.

state chart : State-dependent objects are assigned a UML state chart in
order to capture the state behaviour of that object. This information
is even used in the CPN representation to simulate state behaviour of
the respective object.

Processing and Activation Time : Some information about timing are
also including, namely the estimated processing time of an object as
well as the period of the activation.

Communication issues : As objects might correspond by means of mes-
sages, the UML representation has to capture appropriate informa-
tion. For instance, this is an I/O Mapping, operation types (reader or
writer in the communication), communication type (asynchronous or
synchronous) etc.

For each stereotype and tagged value pairs a pre-defined CPN template is
specified corresponding to the object’s behavioural roles. In the transfor-
mation process each UML item is replaced by the corresponding CPN tem-
plate. Such CPN templates have consistent interfaces and can be inserted
into the resulting CPN model of the software architecture and connected in
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a component-based fashion. The templates are then customized using the
information from the UML specification items.

Once the underlying CPN model has been constructed, test cases are created
based on use case scenarios from the UML model. These test cases are used
to exercise the CPN model for the purpose of simulating the execution of
the architecture and for analyzing the resulting behaviour. Results from
the simulation are used to assess the object architecture in terms of desired
output and desired performance. For this purpose, the tool DesignCPN
(http://www.daimi.au.dk/designCPN/) is used.

Additionally, someone could conduct performance analysis with respect to
timing and concurrency on the CPN model with DesginCPN’s performance
tool [LW99]. For instance, we could conduct end-to-end timing analysis of a
system with multiple concurrent objects. These results can then be compared
with performance requirements to determine if the system in fact satisfies the
necessary throughput and timing requirements. By being able to conduct this
form of analysis from the concurrent software design and adjust the design
accordingly, someone gains confidence that the final design will satisfy the
necessary performance requirements of the system.

2.5.2 Pure UML based modelling

Similar to this work, where it’s the intention to introduce an integrated de-
velopment environment for distributed embedded real-time systems based
on meta-modelling, Kovacs, Pinter and Majzik propose another platform-
specific development tool that can be extended by or interfaced to a purely
UML-based visual design toolkit [KPM05]. As a case study, they present
their approach for time-triggered systems (TTA) [KB03]. On the basis of
the design language (respectively the conceptual model) of those systems,
meta-model extensions of UML class diagrams are proposed and the nec-
essary transformations are specified and implemented. The authors show
that the design flow of time-triggered systems immediately benefits from the
UML-based approach, existing methods of automatic code generation from
UML activity diagrams can easily be tailored to support the platform-specific
operating system TTP-OS and communication layer FT-COM [TTT05] used
in TTA applications.

http://www.daimi.au.dk/designCPN/
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Overview of the Time-Triggered Architecture (TTA)

The Time-Triggered Architecture (TTA) embodies a computing paradigm for
the design and implementation of distributed real-time embedded systems.
It defines a hardware and software architecture and an appropriate design
methodology. As its name suggests, the main characteristic of a TTA system
is that communication and task execution are initiated at pre-defined points
in time.

From the hardware point of view, a system is decomposed into clusters with
individual hosts in each cluster. The hosts are interconnected by either a
redundant bus or a redundant star topology. Hosts consist of stand-alone
computers that are attached to an independent communication controller
(CC).

The communication in a cluster applies the time-triggered protocol
TTP/C [TTA03]. The communication controllers decide autonomously based
on the Message Description List (MEDL) when a message is transmitted to
or received from other hosts.

Software Development with TTA

In the TTA the perspectives of system-level, which deals with integration of
the hosts within a cluster, and the level of node development, which only
concerns a host locally, are strictly seperated.

• The cluster design tool TTPplan [TTT06b] is used to define the param-
eters of the cluster, namely the hosts, subsystems, message, message
types and cluster modes. Relation among those entities are stated, so
that a MEDL can be generated.

• The node design tool TTPbuild [TTT06a] is used to construct the in-
ternal behaviour of a host according to the MEDL generated at cluster
level. Tasks are identified that make up the subsystems, process in-
coming and outgoing messages. The configuration for TTP-OS and
FT-COM can be extracted. The output of TTPbuild is available as
program code skeletons that can be completed by the application spe-
cific program code of the tasks.

Figure 2.2 depicts the cooperation of both design tools.

Instead of supporting a visual design, the user interface of both tools consists
of a sophisticated set of tables, that can be filled in to supply all information.
Therefore, a visual design language by means of UML might be desirable.
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Figure 2.2: The work-flow in the TTA software development environment
(TTTech)

UML Profile for TTA

The terminology and the concepts of TTA are reproduced by means of UML
notation. The native mechanism of UML in order to extend the meta-model
is the concept of the stereotype, that provides a facility of defining subclasses
of UML meta-classes – a stereotyped model element is considered as instance
of a meta-class that does not exist in UML’s built-in meta-model.

The new stereotypes together with the necessary constraints form the UML
Profile for TTA. These constraints force the accordance of a model to TTA-
specific conditions and are expressed in OCL [OCL04] – UML’s native con-
straint definition language. Certainly, it’s beyond the scope of this thesis to
mention all the details of that UML Profile for TTA. At this point we will
refer to the original literature [KPM05].

Integration of the tools

In Kovacs’ case study, a UML CASE tool – Rational Rose (http://www.
rational.com/) – was used as the visual modelling tool in order to produce
models based on the UML Profile for TTA. The UML CASE tool and the
TTA design tools (TTPbuild and TTPplan) are not compatible by default,
but they can exchange information by means of the XMI (XML Metadata In-

http://www.rational.com/
http://www.rational.com/
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terchange) [XMI02]. Thus, a transformation is defined and implemented that
processes the XMI output of the CASE tool, extracts the relevant informa-
tion and feeds the model repository of TTPplan and TTPbuild by using their
respective programming interfaces. The cooperation of all tools is depicted
in figure 2.3.
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Figure 2.3: Cooperation of visual modelling and TTA software development
tools

2.5.3 OMG’s efforts

Not only academic researchers consider application development supported
by modelling, but even popular organization like the OMG (Object Manage-
ment Group). The more recent Model Driven Architecture (MDA) [MDA05]
initiative puts forward the idea, that future software development in general
will focus on models, thus keeping application development and underlying
platform technology as separate as possible.

The MDA is a collection of paradigms combined with appropriate modelling
languages and meta-models. At the core of MDA are the concepts of mod-
els, of meta-models defining the abstract languages in which the models are
captured, and of transformations that take one or more models and produce
one or more other models from them. The means of representation are de-
sign languages like the Unified Modeling Language (UML) [UML04] or the
Meta-Object Facility (MOF) [MOF02].
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In this work we deal with distributed embedded real-time systems. Certainly,
the range of MDA is very broad and concerns several fields of software de-
velopment. However, there exist several UML profiles, which taylor the lan-
guages to the needs of the specified domain. Hence, even for the domain
of real-time systems the MDA offers an approach for modelling, namely the
UML profile for Schedulability, Performance and Time (UML-SPT) [SPT05]
– or the more recent improvement and enlargement of UML-SPT, the UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms [QoS04].

2.6 Meta-Modelling Environments

In this section we will shortly examine a few meta-modelling tools as candi-
dates for a model-integrated approach in creating embedded applications.

2.6.1 AToM3

AToM3 means “A Tool for Multi-formalism and Meta-modelling” and is un-
der development at the Modelling Simulation and Design Lab (MSDL) in the
School of Computer Science of McGill University [dLV02]. AToM3 is written
in Python and is thus available under the General Public License (GPL) for
all platforms supporting that language. The main component is the Pro-
cessor, which is responsible for loading, saving, creating, and manipulating
models, as well as for code generation. Its meta-meta-model is formulated
in Entity Relationship (ER) and allows the modelling of meta-models in a
graphical notation. The ER formalism can be extended with constraints,
which can be specified using Python functions or (in future releases) OCL.

AToM3 uses Graph Grammar to implement formalism transformation and
simulation [BH04], so the users can specify a simulator in a graphical way. Al-
ternatively, it supports the specification of the simulator by means of Python
code. AToM3 provides code generation based on the graphical specifications.

2.6.2 MetaEdit+

MetaEdit+ is a commercial Meta-CASE tool developed by the company
“MetaCase Consulting”, Finland (http://www.metacase.com).

Working with MetaEdit+ involves two parts:

http://www.metacase.com
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• specifying the meta-model using Method Workbench — in their defini-
tion, the method takes the role of the meta-model; generally, it is more
complicated than a meta-model formalism and may include additional
features like code generators.

• designing the actual model with the CASE tool of MetaEdit+, which
follows the previously defined method (meta-model).

Even the meta-meta-modelling language in MetaEdit+ named GOPRR
(Graph, Object, Property, Relationship and Role) is proprietary. The
name implies the main entities in the meta-meta-modelling language, namely
graphs, objects, relationships, roles. Specification of a method invokes sep-
arate tools in order to declare and modify these main entities and to set
up their interrelations. Code generation on the basis of the actual model
following the method is also supported by MetaEdit+.

MetaEdit+ can look back on a successful series of applications, such as
development of mobile phone software for NOKIA, and development of e-
commerce platforms for PECUNET. It is available on all major platforms.
However, it is commercial and consequently not desirable for this work.

2.6.3 DOME

The DOME (Domain Modelling Environment) (http://www.htc.
honeywell.com/dome/) is an open-source tool, although developed and
maintained by a commercial company: Honeywell. DOME is implemented
in Smalltalk and available on different platforms including Windows and
Linux. It consists of a set of tools, each tailored to a specific aspect of
meta-modelling.

DOME Tool Specification : This is used in order to construct a new
meta-model with the DOME Specification Language – DOME’s built
in meta-meta-modelling language.

ProtoDOME : This is the tool, where the user edits the actual model based
on the meta-model specification.

Projector and Alter : Projector is a data-flow-based graphical language
and Alter is its textual counterpart. They provide functionality needed
to write complex model transformation, for instance code generation,
simulation and test execution.

http://www.htc.honeywell.com/dome/
http://www.htc.honeywell.com/dome/
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2.6.4 DiaGen

Contrary to the other tools introduced so far, DiaGen [Dia05] is not a tool
by its own, but an open-source Java-based framework in order to rapidly
develop a diagram editor for a specific domain. The diagrams will take the
role of a model. DiaGen consists of two parts:

• A framework of java classes which provides generic functionalities for
editing and analyzing diagrams.

• The Generator : it produces Java Source code for most of the function-
alities according to the specification of the diagram language.

In order to design a new diagram editor, the user follows these procedures:

• Define a formal syntax for the diagram using the specification grammar
provided by DiaGen. Generally, the users defines, what components
will appear in the diagram and how they will be connected.

• Generating Java source code according to the meta-model specified in
the diagram specification language by means of the Generator.

• Adopt the generated source code to the needs of the target domain by
manually editing the code.

• Compile the source code and let the diagram editor for the given domain
be constructed.

The approach taken by DiaGen seems to be innovative, however it lacks of
other features compared to other modelling tools, for instance a built-in con-
straint definition language. Nevertheless, constraints could be implemented
directly into the diagram editor by adding the constraint checking function
in the Java source code.

2.6.5 GME

We will shortly argue, why GME is the tool suite of choice when it comes
to the “optimal” generic modelling tool. All in all, GME suits all the needs
listed in section 1.3.

The Generic Modeling Environment (GME) [LaBK+01] was developed at
the ISIS group at the University of Vanderbilt. GME supports modelling
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and meta-modelling on the basis of a UML-style notation [LBM+01]. The
concepts are realized in an open-source tool running on the MS Windows
platform and providing a graphical user interface and model editor.

Practically, designing an application with GME involves two steps:

1. A meta-model of the intended application domain is created.

2. This (domain-specific) meta-model is used in order to express
application-specific models of target applications.

At that point we must mention, that GME does not incorporate any other
notation than its own to produce domain-specific meta-models as well as
application-specific models, which are ”instances” of the according meta-
model. GME allows some kind of ”boot-strapping” or recursion of models
– we have one basic GME model, which models GME models, which model
other GME models by themselves.

Additionally, GME provides aspects. With aspects it is possible to mask
specific parts of a model. As a result, we can concentrate on that information,
which is only relevant at the moment. We will not be confused by an over-
loaded workspace. Moreover, aspects are not pre-configured. Conversely,
they are defined as part of a meta-model, thus enabling to exactly specifying
the masking operation according to the given domain.

Finally, GME is a highly flexible and extensible architecture, because it sup-
ports the integration of customized plug-ins or - in its own terminology -
interpreters.

2.6.6 Comparison

Table 2.1 lists the features of the meta-modelling tools introduced in previous
sections.

In the end, we choose GME as the tool to build an integrated development en-
vironment for distributed embedded real-time system on basis of the TTP/A
communication subsystem.

The most important reason for our decision for GME is its built-in sup-
port of a validation mechanism by implementing OCL constraints [OCL04].
With GME we can impose domain-specific constraints on a meta-model. As
GME provides built-in support of OCL, there is even no need to use another
external OCL constraint checking tool, but we can remain in one environ-
ment. In short, GME allows us to write a domain-specific meta-model, define
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domain-specific constraints, and eventually we produce application-specific
models from the meta-model and let GME ensure the compliance with those
constraints.

Moreover, the extensibility mechanism is of interest, too. In chapter 4 we will
understand, why this is so important, and how it is used to transform GME
into an integrated development environment (IDE) for TTP/A application
development.



Chapter 3

The conceptual model

This section covers the conceptual model, which is the theoretical basis of
TTP/A applications. It defines a terminology and ”design patterns”, how
a TTP/A application on distributed embedded real-time systems should be
modelled. These rules have been transformed into a GME model, which
serves as meta-model for TTP/A application models – MetaTTPA.

The conceptual model has undergone several revisions ([EPS04] and [Pau04]).
With the usage of GME it has reached a new level of maturity, and finally
it encapsulates all special features supported by the TTP/A communication
protocol [Kop01].

First, we will give an overview of the fieldbus communication system TTP/A,
which is the underlaying communication protocol of TTP/A applications.
Further information can be found in the original documentation [Kop01].

3.1 Overview of TTP/A

TTP/A is a time-triggered fieldbus protocol, which meets the given tim-
ing requirements due to its real-time character. TTP/A is standardized as
part of the Object Management Group Smart Transducer Interface Stan-
dard [OMG02].

21
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3.1.1 Communication System

Generally, each communication partner – often called host or node – on the
communication system allocates the bus a-priori following a static commu-
nication schedule. The time line is divided into slots according to the Time
Division Multiple Access (TDMA) paradigm. During each slot one commu-
nication partner can have assigned the bus exclusively. Such slot is the unit
for transmission of one byte of data. Figure 3.1 depicts the sequence of some
slots, which make up a round, in that case a multipartner round (see below).

Actuator�

Local Sensor�
Application�

Local Sensor�
Application�

e.g., Control�

Sensor�

Distributed Interface File System�

Local Sensor�
Application�

Distributed�
Application�

Figure 3. Logical Network Structure

ules. In [15] we have described the representation and use
of the IFS CP interfaces based on XML-based descrip-
tions. In the following we will describe the structure of
the SPLIF and SRLIF, which establish the real-time ser-
vice.
Each port in the service file specifies a pointer into the

local I/O file of the node. The I/O file hosts the actual in-
put values and the output values of the local services. The
input values can be provided either by a local or remote
service – in the latter case, the communication system will
update this value periodically
Besides the ports, the service file contains service con-

figuration data (e. g., parameters for a PID control algo-
rithm) and diagnostic data such as intermediate results or
sensor logs.

5. Communication System

The communication system that performs the updates
of the IFS data is not bound to a specific implementation
as long as it provides deterministic timing behavior in or-
der to fulfill the timing requirements.
We use the time-triggered fieldbus protocol TTP/A,

since it meets the timing requirements and supports low-
cost implementations of network nodes. TTP/A is stan-
dardized as part of the Object Management Group Smart
Transducer Interface Standard [14].

5.1. Principles of Operation

In TTP/A, the bus allocation is controlled by a Time
Division Multiple Access (TDMA) scheme. Communica-
tion is organized into rounds consisting of several TDMA
slots. A slot is the unit for transmission of one byte of
data. Data bytes are transmitted in a standard UART for-
mat. Each communication round is started by the master
with a so-called fireworks byte. The fireworks byte de-
fines the type of the round and is a reference signal for
clock synchronization. The protocol supports eight differ-
ent firework bytes encoded in a message of one byte using
a redundant bit code supporting error detection. Gener-
ally, there are two types of rounds:

Multipartner round: This round consists of a configu-
ration dependent number of slots and an assigned sender
node for each slot. The configuration of a round is
defined in a datastructure called “RODL” (ROund De-
scriptor List). The RODL defines which node transmits
in a certain slot, the operation in each individual slot
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Figure 4. Example for a TTP/A multipartner
round

(read, write, execute), and the receiving nodes of a slot.
RODLsmust be configured in the slave nodes prior to the
execution of the corresponding multipartner round. An
example for a multipartner round is depicted in Figure 4.

Master/slave round: A master/slave round is a special
round with a fixed layout that establishes a connection
between the master and a particular slave for accessing
data of the node’s IFS, e. g., the RODL information. In
a master/slave round the master addresses a data record
using a hierarchical IFS address and specifies one of the
following actions: reading from, writing to, or executing
a record.
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The master/slave rounds implement the DM and the
CP interface to the transducer nodes. The RS interface is
provided by periodical multipartner rounds. Master/slave
rounds are scheduled periodically between multipartner
rounds as depicted in Figure 5 in order to enable main-
tenance and monitoring activities during system operation
without a probe effect [5].

6. Case Study

The case study implements a distributed application
performing a robust distance measurement. We will show
how an application can be modeled according to the pre-
sented concepts, providing XML-based descriptions for
services and applications and defining an actual low-level
mapping of services to the IFS.

6.1. Application Specification

The case study hardware comprises three infrared (IR)
distance sensors and a display. The application shall per-
form a reliable distance measurement from the three dis-
tance sensors, fuse the measurements and display the re-
sult onto the display. All of the three distance sensors
have to perform synchronous measurements. According

Figure 3.1: TTP/A Multi-Parnter Round
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the master on the bus. Obviously, TTP/A is a master/slave architecture.
The collection of at least one master and several slaves build a TTP/A cluster.
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for clock synchronization. The protocol provides 8 different firework bytes
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service – in the latter case, the communication system will
update this value periodically
Besides the ports, the service file contains service con-

figuration data (e. g., parameters for a PID control algo-
rithm) and diagnostic data such as intermediate results or
sensor logs.

5. Communication System

The communication system that performs the updates
of the IFS data is not bound to a specific implementation
as long as it provides deterministic timing behavior in or-
der to fulfill the timing requirements.
We use the time-triggered fieldbus protocol TTP/A,

since it meets the timing requirements and supports low-
cost implementations of network nodes. TTP/A is stan-
dardized as part of the Object Management Group Smart
Transducer Interface Standard [14].

5.1. Principles of Operation

In TTP/A, the bus allocation is controlled by a Time
Division Multiple Access (TDMA) scheme. Communica-
tion is organized into rounds consisting of several TDMA
slots. A slot is the unit for transmission of one byte of
data. Data bytes are transmitted in a standard UART for-
mat. Each communication round is started by the master
with a so-called fireworks byte. The fireworks byte de-
fines the type of the round and is a reference signal for
clock synchronization. The protocol supports eight differ-
ent firework bytes encoded in a message of one byte using
a redundant bit code supporting error detection. Gener-
ally, there are two types of rounds:

Multipartner round: This round consists of a configu-
ration dependent number of slots and an assigned sender
node for each slot. The configuration of a round is
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(read, write, execute), and the receiving nodes of a slot.
RODLsmust be configured in the slave nodes prior to the
execution of the corresponding multipartner round. An
example for a multipartner round is depicted in Figure 4.

Master/slave round: A master/slave round is a special
round with a fixed layout that establishes a connection
between the master and a particular slave for accessing
data of the node’s IFS, e. g., the RODL information. In
a master/slave round the master addresses a data record
using a hierarchical IFS address and specifies one of the
following actions: reading from, writing to, or executing
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The master/slave rounds implement the DM and the
CP interface to the transducer nodes. The RS interface is
provided by periodical multipartner rounds. Master/slave
rounds are scheduled periodically between multipartner
rounds as depicted in Figure 5 in order to enable main-
tenance and monitoring activities during system operation
without a probe effect [5].

6. Case Study

The case study implements a distributed application
performing a robust distance measurement. We will show
how an application can be modeled according to the pre-
sented concepts, providing XML-based descriptions for
services and applications and defining an actual low-level
mapping of services to the IFS.

6.1. Application Specification

The case study hardware comprises three infrared (IR)
distance sensors and a display. The application shall per-
form a reliable distance measurement from the three dis-
tance sensors, fuse the measurements and display the re-
sult onto the display. All of the three distance sensors
have to perform synchronous measurements. According

Figure 3.2: TTP/A Round Sequence
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multipartner round Such round is made up of a a-priori given number of
consecutive slots, whereas the bus arbitration is already arranged. This
configuration is defined in a data structure called Round Descriptor List
(RODL), which is hosted on every communication partner from its own
point of view. The RODLs determine which node transmits and which
nodes receive during a certain slot, or which service is to be executed.
Figure 3.1 illustrates a multipartner round.

master/slave rounds These rounds serve in order to access specific data
from any slave in the cluster. The layout of those rounds is fixed.
Firstly, during the master/slave address round the master addresses
one slave and determines a specific chunk in the slave’s memory, which
should be read (sent back to the master) or written (stored at the
chunk). Secondly, that slave answers in the following master/slave
data round with the appropriate data or acknowledge.

Figure 3.2 shows an example of a sequence of different TTP/A rounds. More-
over, this specific sequence is the recommended schedule for TTP/A appli-
cations. That schedule – called Rounds Sequence (ROSE) – is only present
in the master, as the master is responsible for announcing the type of round
with the fireworks byte.

3.1.2 Interface File System

In TTP/A, a node’s memory area is logically structured, either completely
or parts of it. This structure on every node is called the local Interface File
System (IFS). Consequently, a TTP/A cluster’s IFS is made up of the IFS of
all nodes in it. The IFS is the source and destination of the communication
data conveyed over the bus. All relevant application-specific data consumed
or produced by a node are mapped into its IFS.

The IFS of a single node may contain up to 64 files with a maximum of 256
records of 4 byte size for each file. The current revision of TTP/A reserves 2
files in slaves, 4 files in the master for special purpose. Moreover, the RODL
of each host and the ROSE are IFS files themselves.

The layout of a IFS file is statically defined, but all files can have arbitrary
lengths. However, the first record in every file is the header record, which
includes protocol specific data.
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3.2 Decomposition

In TTP/A, a real-time application is decomposed into a set of jobs S. Each
job s is a unit of distribution, and is made up of one or more tasks, thus a
job s = {s′1, s′2, . . .} ∈ S is a representative for its set of consisting tasks, and
should be understood as single entity.

The set of distributed nodes H represents the hosts in the TTP/A cluster
hosting the jobs. Each job is made up of one or more executing tasks. How-
ever, a job with its physically executing tasks must only be run on exactly
one node. Note, that a job is not physically present, it is just an abstraction
of a set of tasks.

Usually, in TTP/A we find a 1-to-1 mapping between jobs and tasks; in other
words: a job is (in most cases) only implemented by one single task. The
hosts are connected via a real-time communication system running TTP/A.

Formally, we denote a job s ∈ S hosted on host h ∈ H as s( h. Obviously,
as a job s is made up of several tasks s′i, all those tasks are hosted on the
same host h: s( h ⇔ ∀s′i ∈ s, s′i ( h. Please keep in mind, that the term
”job” is an abstraction of a set of tasks. A job is not physically executed by
a host’s processors, but its consisting tasks are.

Furthermore, we name the decomposition for a whole TTP/A cluster Q ⊆
S ×H and the jobs hosted on one specific host h as Q(h). Then, we define
the decomposition more formally as

Q(h) = {s = {s′1, s′2, . . .} ∈ S | s( h} Q =
⋃
h∈H

Q(h)

with [
⋂
h∈H

Q(h) = ∅] ∧ [∀h ∈ H | Q(h) 6= ∅]

(3.1)

Please note, that in our current model a host must execute at least one job.
”Empty nodes”, which are present in the cluster, though, but not executing
any jobs and reserved for later usage are not supported in the conceptual
model, yet. This restriction is arbitrary, indeed. However, it leads to the
following condition: because a node must host at least one job, the number
of hosts is less equal the number of jobs

∀h ∈ H | Q(h) 6= ∅ ⇒ |H| ≤ |S| (3.2)

Every host is equipped with an Interface File System (IFS). The host’s com-
munication subsystem sends data from the IFS through the communication
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network interface (CNI) over the communication system, while other host’s
communication subsystems are listening and place the received data in their
IFS. These activities take place at pre-defined points of time, which are de-
fined in the Round Description List (RODL).

The communication subsystem with its temporally controlled behavior op-
erates independently from the overlaying application software, thus form-
ing a temporal firewall [Kop97]. The application software consisting of the
job’s executing tasks uses the Interface File System to obtain and distribute
application-specific data, i. e., to communicate with other tasks, while disre-
garding communication issues of the underlaying communication system.

3.3 Interfaces

From the point of view of the tasks, each job defines interfaces to its host’s
IFS in order to access application-specific data, and all tasks of that job
contribute to the interfaces. We will call the entities ports, which an interface
is made up of. We distinguish the following interfaces (see fig. 3.3):

Hard real-time support: A hard real-time system is a
real-time system in which a guarantee can be given that a
certain action will always finish before a given deadline.
Many embedded systems require hard real-time behavior
in order to avoid damage to man or machine.

Support of low-cost embedded systems: Although
state-of-the-art technology provides powerful 32 bit ar-
chitectures, the presented modeling approach shall also
support applications on networks of small 8-bit micro-
controllers such as the ATMEL AVR, Microchip PIC,
and the Motorola HC08 families. Still, 8-bit microcon-
trollers have the greatest share in the volume market for
microcontrollers.1

Two-level design approach: The two-level design ap-
proach proposes the separation of the implementation of
subsystems and the integration of these subsystem into
an overall system. Thus, the implementor of a subsystem
focuses on local issues such as interfacing local sensors
and actuators, while the system integrator focuses on the
interaction of the subsystems.

In order to support a two-level design approach the archi-
tecture must support composability [12]. An architecture
is composable with respect to a specified property if the
system integration does not invalidate this property when
it was established at the subsystem level.

Reuse of existing systems: Many projects require that
legacy code and legacy components must be included
into an application. Thus, the presented modeling ap-
proach shall support the reuse of existing solutions.

3. Conceptual Model

A distributed embedded application will be first de-
scribed functionally, i. e., by a set of interconnected real-
time services. A service is described by its interfaces, its
function, and properties like timing behavior or reliability
requirements.
The interfaces of a service are divided into the follow-

ing categories:

Service Providing Linking Interface (SPLIF): This in-
terface provides the real-time service results to other ser-
vices (cf. [11]).

Service Requesting Linking Interface (SRLIF): A ser-
vice that requires real-time input information requests
these data via the SRLIF (cf. [11]).

Diagnostic and Management (DM): This interface is
used to set parameters and to retrieve information about
intermediate and debugging data, e. g., for the purpose
of fault diagnosis. Access of the DM interface does not
change the (a priori specified) timing behavior of the ser-
vice.

Configuration and Planning (CP): This interface is
used during the integration phase to generate the “glue”

1Source: Gartner Dataquest (August 2003)

between the nearly autonomous services (e. g., commu-
nication schedules). The CP interface is not time critical.

Local interfaces: The term local interfaces subsumes all
kinds of devices, such as sensors, actuators, displays,
and input devices, for which the service creates a unified
access via the SPLIF or SRLIF services. For example,
the service may instrument a physical sensor element by
reading the measurement, calibrating the value, and ex-
porting the measurement via its SPLIF.

Figure 1 depicts the interfaces of a service in a block
diagram.

Service�

CP + DM IF�

S
R

LI
F� S

P
LIF�

RT� input� RT� output�

Local�
Interfaces�

Figure 1. Interfaces of a Service

A particular component may comprise only a subset
of the above described interface categories. Typically, a
smart sensor service will implement a SPLIF, CP, DM,
and a local interface to the physical sensor. An actuator,
in contrast, will implement an SRLIF, CP, DM, and a local
interface to the physical actuator.
Data flow over the SPLIF and SRLIF is performed us-

ing ports. A port is specified by a name, a description, and
the structure of the data transmitted over the port (e. g., a
16bit measurement value from a sensor). The port struc-
ture consists of the data type of the expected input or, re-
spectively, the produced output.
The functional behavior of a service is implemented by

a service task. The task of a service consumes the data at
its SRLIF and produces an output at its SPLIF after termi-
nation. The data at the SRLIF must not be changed during
task execution and the data at the SPLIF must not be read
during task execution. The behavior of a task may also
depend on configurations via the DM interface, whereas
this configuration is not allowed to change during task ex-
ecution.
An application consists of one or more services that in-

teract with each other via the real-time interfaces SPLIF
and SRLIF. One or more services are implemented per
node, whereas nodes are loosely coupled via a real-time
communication system. Services that require local data
exchange communicate via a shared memory interface.
Services that are required to exchange data between dif-
ferent nodes communicate via the node’s communication
interface.
The representation of an application by its services

deals with the functional and data flow parts of the appli-

Figure 3.3: Interfaces of a job (from [EPS04])

Service Providing Linking Interface (SPLIF): This interface provides
the real-time services to other jobs [JKK+02].

Service Requesting Linking Interface (SRLIF): A job that requires
real-time input requests these data via the SRLIF [JKK+02].

Diagnostic and Management (DM): This interface is used to set pa-
rameters and to retrieve information about intermediate and debug-
ging data, e. g., for the purpose of fault diagnosis. Access of the DM
interface does not change the (a-priori specified) timing behavior of the
service.
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Configuration and Planning (CP): This interface is used during the in-
tegration phase to generate the “glue” between the nearly autonomous
services, e. g., communication schedules. The CP interface is not time
critical.

Local interfaces: The term local interfaces subsumes all kinds of devices,
such as sensors, actuators, displays, and input devices, for which the
job creates a unified access via the SPLIF or SRLIF services. For exam-
ple, the job may instrument a physical sensor element by reading the
measurement, calibrating the value, and ex- porting the measurement
via its SPLIF.

Concerning the TTP/A protocol, the DM and CP are implemented in the
master/slave rounds. Complementary, the multipartner rounds form the
SPLIF and SRLIF, which together are also called real-time service (RS).
Local interfaces are created by the local job’s tasks, which handle the physi-
cal sensor, actuators etc.

3.4 IFS Management

The ports of all interfaces are mapped into the Interface File System, thus
forming an own Interface File for each task, the so called task file. At this
point it must be mentioned, that task files belong to their appropriate tasks,
but not to jobs as a whole.

Additionally, each host possesses one outstanding file, where all ports of task
files are mapped – the I/O file [EHK+02]. The host’s CNI performs sending
and receiving operations only from and to this special I/O file.

Through the mapping each task gathers the data indirectly from the I/O
file, but not from his own task file directly. As a result, we have one central
chunk in the IFS, where all communication from all tasks goes in and out.
The ports in the task files are just references to the “real” ports in the I/O
file. We can think of some kind of 2-tier access. Nonetheless, the access to
the ports in the I/O file is transparent for the local task, as the mapping is
realized through references.

Additionally, we can conduct communication between tasks hosted on the
same node without using the real-time communication system (see fig. 3.4).
Due to the 2-tier access to all real-time data, two (and even more) tasks (no
matter, whether they belong to the same job or not) hosted on the same
node can direct their local reference to the same port in the I/O file. As a
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result, this implements some kind of shared memory between the involved
tasks, though, due to the transparency of the 2-tier access each tasks is not
aware of that fact.

3.3 Interface between Protocol and Application 3 PROGRAMMING MODEL

Recort 0 Recort 1 Recort 2 Recort 3 Recort 5 Recort 6

...

...

RODL

I/O Data (0x10)

Service 1 (0x30)

Service 2 (0x31)

Figure 19: I/O file referenced by Services and RODL entry

int my_inittask(void)

{

/* do initialization */

return 0; /* do always return 0 */

}

ADD_INITTASK(my_inittask_h, my_inittask, 3, (1<<TTPA_STATE_UNSYNC));

The syntax for adding a initialization task is ADD_INITTASK(taskhandle, task, order, states ).
The taskhandle parameter gives the name of a sched task t structure (located in Flash memory)
where the given parameters are stored. The task parameter is a functionpointer to the given ini-
tialization task. Order gives the order in which initialization tasks are executed. The order is given
as a decimal number ranging from 0 to 15. 0 and 1 would be typically used to initialize/enable
external SRAM. 2 is used to initialize UART and Transceiver. 4 is used by the protocol code to
copy the containts of the EEPROM and Flash to SRAM. 8 is used to set up Timer for TTP/A.

States is a bit-vector of all states for which the initialization function is called (typically (1<<TTPA STATE UNSYNC)).

Note that an initialization task must always return 0, otherwise it is called again.

Example definiton of a background task:

int my_bgtask(void)

{

/* ... */

if(ready) {

return 0;

} else {

34

Figure 3.4: I/O file referenced by task files

3.5 Functional and Temporal Requirements

The specification of a distributed embedded real-time system does not only
involve the description of its functional “behavior”. Temporal require-
ments like service execution deadlines, periodicity have to be considered,
too [Kop97].

That distinction was a major factor in the design of MetaTTPA, thus it
found its manifestation in the conceptual model.

3.5.1 Scopes

As mentioned before, the conceptual model defines functional and temporal
requirements, each TTP/A application has to full-fill. Those requirements
appear in different scopes of observation within a TTP/A application.

job level Such functional and temporal requirements only concern jobs for
themselves.

application level Beyond the scope of jobs we define the application level.
On the one hand, here we find requirements, which reveal their util-
ity only on global scope, but not on any single job. On the other
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hand ”application level” follows from the composition (cf. ”compos-
ability” [Kop97]) of job level requirements.

Table 3.1 gives a summarisation of functional and temporal requirements
among job and application level.

level functional temporal

job local algorithms job execution deadline
application dataflow among jobs deadlines between jobs

phases between jobs

Table 3.1: Functional and temporal requirements in job level and application
level scope.

3.5.2 Job Level

Functionality of jobs

By now, the conceptual model of TTP/A handles jobs as black boxes,
except the fact that they are made up of several tasks. Unlike [KPM05],
it does not concern the single jobs respectively their tasks, yet. The local
algorithms executed by the job’s tasks are neither subject of the meta-model
nor the application-specific model. There is no modelling formalism for the
interiors of tasks present in the conceptual model, so far.

The reason is, that the functionality of a job is hidden behind its inter-
faces [Kop97]. Consequently, we do not need to care about what (algorithm)
a job is doing, but when (temporal) it provides respectively requires which
kind (functional) of data.

Deadlines with jobs

Concerning the job level scope it is only necessary to specify, when a job is
to be finished with its execution, i. e., the execution of all its consisting tasks
– this is the job execution deadline. Obviously, a job will have an “ordinary”
execution time, which says how long the job, i. e., all its tasks, actually takes
to execute, whereas the deadline specifies the instant, when the job is to be
finished. In order to full-fill the deadline, the job has to finish before the
deadline, hence the job execution time must be lower than the deadline.
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Generally, in the conceptual model a deadline may assume two different
types.

periodic A periodic deadline d of value υs(d) for a job s means, that s has to
be finished with the execution at most every υs(d) time units. So, this
introduces some sense of periodicity, whereas it does not reference the
beginning of a period. Usually, the period incorporates the duration
between two consecutive multipartner rounds with the same fireworks
byte code. Thus, the equation of a periodic deadline is defined as

Requirement 1 (periodic job deadlines)

∆(MPc, MP ′
c) + Tc(s) ≤ υs(d)

whereas ∆(MPc, MP ′
c) means the duration between two consecutive

multipartner rounds with fireworks byte code c, Tc(s) is the instant
when job s has finished relatively to the beginning of the actual mul-
tipartner round of type c, and υs(d) marks the value of the deadline d
of job s.

offset Contrary to periodic deadlines, an offset deadline d determines the
time υs(d), that a job s has to be finished, taking the beginning of one
multipartner round c as the reference. We describe such a requirement
as

Requirement 2 (offset job deadlines)

Tc(s) ≤ υs(d)

with the symbols having the same meaning as above.

3.5.3 Application Level

Deadlines on Application Level

Nonetheless, deadlines occur on application level scope, too. On global appli-
cation level scope a deadline d between a pair of jobs (s, r), whereas s sends
data to r, specifies the critical instant of time υ(s,r)(d), until s has completely
sent all data to r – from the other point of view, r has received all data from
s. Certainly, such deadlines can assume the same kinds – periodic and offset
like their job level counterparts with appropriate meanings (see sec. 3.5.2).
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With the familiar symbols from the previous section we write the equations
for periodic (req. 3) and offset (req. 4) deadlines in application-level scope.
The symbol �(s, r) embodies the transmission activity from any service s to
service r.

Requirement 3 (periodic transmission deadlines)

∆(MPc, MP ′
c) + Tc(�(s, r)) ≤ υ(s,r)(d)

Requirement 4 (offset transmission deadlines)

Tc(�(s, r)) ≤ υ(s,r)(d)

Phases

Another temporal requirement in application level scope are phases.

A phase p between a pair of jobs (a, b) defines a time span, that the start of
execution of both tasks has to deviate approximately, no matter which job
is started first – so, phases are non-directional / non-hierachical relations.
Due to the TDMA schema of TTP/A, we can not achieve a fine-grained
resolution of the difference of starting points. The resolution is dependent
on the slot length, which in turn is dependent on the transmission speed,
because starting points can only be assigned to the beginning of a whole
slot. Therefore, we can only express phases “approximately” (in slot duration
quanta). In the following we will define the concept of phases in formal way.

We name the starting point of a job Sc(x) of any job x in the multipartner
round c. As a phase p is defined as the duration between two job’s starting
points, we express a phase p between two jobs a and b in a given schedule
as ∆p(Sc(a), Sc(b)) or in a more symbolic way a||pb, concerning the actual
value of that phase within a given schedule υ(a||pb). With the specified
time value φ(p) of a phase p, whereas φ has the context of the temporal
requirement like deadlines imposed by the target application’s specification
(not the actual schedule), we can set up an equation of full-filling a phase
relation. Concerning starting points this is

∆p(Sc(a), Sc(b)) u φ(p) (3.3)

and with regard to the more symbolic way of notation we have

υc(a||pb) u φ(p) (3.4)
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Unlike earlier revisions of the conceptual model ([EPS04] and [Pau04]), now
the transitivity among jobs in phase does not apply any more (by default).

For instance, given a set of three (and even more) jobs {x, y, z, . . .}, transi-
tivity according to any phase p says that

x||py ∧ y||pz ⇒ x||pz (3.5)

If we consider a value for the phase p, we will discover, that the rule of tran-
sitivity leads into a contradiction. Let’s say, that φ(p) = 1, and we assume
any combination of starting points {Sc(x) = 0, Sc(y) = 1, Sc(z) = 2}. Then
the phases according to that schedule evaluate with respect to equation 3.3

∆p(Sc(x), Sc(y)) = 1 x||py
∆p(Sc(y), Sc(z)) = 1 y||pz
∆p(Sc(x), Sc(z)) = 2 x ∦p z

 x||py ∧ y||pz ; x||pz

As we can see, the rule of transitivity in equation 3.5 does not hold any more,
because x ∦p z. Maybe we could try to avoid this effect, when we let service c
start earlier than before. Let’s say, {Sc(x) = 0, Sc(y) = 1, Sc(z) = 0}. Then
we have the following situation

∆p(Sc(x), Sc(y)) = 1 x||py
∆p(Sc(y), Sc(z)) = 1 y||pz
∆p(Sc(x), Sc(z)) = 0 x ∦p z

 x||py ∧ y||pz ; x||pz

Again, we can not satisfy the rule of transitivity. No matter what combina-
tion of starting points we choose in our schedule for all jobs, the transitivity
among jobs in phase does not hold for more than two jobs.

If we want to provide transitivity for phases, we have to weaken the re-
quirement from equation 3.3 resp. 3.4, so that a phase can still hold, even
though the starting points of all involved jobs (the transitive closure of that
phase) are not that ideally distributed. For that purpose, we re-define the
requirement of a phase.

Requirement 5 (phases between tasks)

∆p(Sc(a), Sc(b)) = φ(p) + δ(a,b) with − φ(p) ≤ δ(a,b) ≤ φ(p)

As can be seen, we substitute the “approximately” by “equal”, but we in-
troduce a variation in the specified phase value by transforming φ(p) →
φ(p) + δ(a,b). Thus, in the worst case the difference between the starting
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points of a pair of jobs might either vanish to 0, or it might take the double
amount than originally intended. For instance, with that modification the
transitivity rule defined in equation 3.5 will hold for our previous examples
with {Sc(x) = 0, Sc(y) = 1, Sc(z) = 2} and {Sc(x) = 0, Sc(y) = 1, Sc(z) = 0}.
It must be mentioned, that δ is depended on a pair of specific jobs (a, b), but
not on the phase in general. In other words, δ can be different for every pair
of jobs. Otherwise, the modification would have been abolished.

Thus, with that modification of the phase requirement we create more pos-
sible combinations, when assigning the starting points in the schedule for a
given set of jobs in phase. So far, the problem of transitivity of phases has
not been solved “properly” in the conceptual model, yet. We just introduced
that little work-around in order to force the full-filling of the transitivity
among jobs in phase.

Dataflow

Finally, dataflow is the major concern in TTP/A application modelling. The
dataflow gives information, how application-specific data passes along
the jobs respectively their executing tasks. Consequently, this implies
a causality or precedence, even ordering between jobs. Additionally, dataflow
will manifest in the communication schedule, as the carried information of the
dataflow will be conveyed over the real-time communication system during
some specific TTP/A slots.

A dataflow relation f(src,dst) between a pair of jobs is a directed connection.
This says, that the originating job, i. e., one specific task of that job, sends
data to the sinking task of some job. For instance, if we let service a send to
b, we write f(a,b), whereas a takes the role of the sender src and b embodies
the receiver dst.

However, concerning the interfaces (sec. 3.3) of job, a job obtains its real-
time data through the SRLIF respectively distributes its data via the SPLIF.
Additionally, interfaces are made up of ports. So, if we say, that a job sends
to another one, this implies that the data passes a port of the sender’s SPLIF
and enters an opposing port at the SRLIF of the receiver.

Consequently, the definition above, which simply says that a job sends to
another one, is not precise enough, because ports and interfaces are involved.
Nevertheless, we will accept that imprecise formulation in order to reduce
complexity in the notation.

In the current revision of the conceptual model, dataflow features two direc-
tions.
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forward feed All dataflows with the direction “forward feed” contribute to
the application’s main stream. Forward feed is the type of dataflow,
which appears most. Such dataflow relations build a precedence or
ordering among jobs, and therefore contribute to automatic scheduling
generation with TTP/A scheduling algorithms.

A job s can not be executed, until it has received all incoming forward
feed N+(s) from opposing, sending jobs.

Requirement 6 (ordering of main stream (incoming))

∀f ∈ N+(s) : Tc(f) < Sc(s)

Consequently, forward feed can be time-critical. A deadline between to
jobs (a, b) is only reasonable, if there also exists forward feed dataflow
between (a, b).

After execution, job s sends its outgoing forward feed N−(s),
whereas each dataflow in N−(s) is part of the incoming forward feed
of some other receiving jobs Rs.

Requirement 7 (ordering of main stream (outgoing))

∀[f(s,r) ∈ N−(s)] ⊆ N+(r), r ∈ Rs : Tc(s) < Sc(f(s,r))

backward feed Typically backward feed occurs relatively sparsely. It has
been introduced in order to solve the problem of cycle resolution, when
it comes to automatic scheduling using the TTP/A specific scheduling
algorithms.

The most likely usage for a backward feed is a dataflow between two
jobs, so that the backward dataflow embodies the feedback of a con-
trol loop. Backward feed is not relevant to automatic scheduling gen-
eration, though, it must be included in the schedule. It is not time-
critical.

We will denote backward feed dataflow like fB
(s,r), with (s, r) being a

pair of jobs involved in that dataflow.

It must be mentioned, that incoming and outgoing feed N+, N− are made
up of dataflow relations, which originate and end in ports. So, we denote
π ∈ N+(s) respectively π ∈ N−(s) for a port π of a job s, which is part of
the SRLIF respectively SPLIF of that job. Alternatively, we could describe
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a dataflow fa,b as the pair of ports (πa, πb) of the involved jobs a and b,
whereas πa ∈ N−(a) and πb ∈ N+(b). According to the term of the “degree
of a vertex” in graph theory, we define the number of incoming dataflow
for one specific port d+(π), respectively d−(π) for the number of outgoing
dataflow of the port π. To sum up, we could even express the number of
incoming dataflow feed of a given job s like

|N+(s)| =
∑
π∈s

d+(π) (3.6)

Concerning the number of outgoing dataflow feed we might write

|N−(s)| =
∑
π∈s

d−(π) (3.7)

Moreover, the TTP/A protocol supports even more features like speed-up
and multiplexed virtual channels, which have been integrated in the concept
of dataflow in the conceptual model.

With speed-ups we can increase the throughput of data conveyed over the
real-time communication system per TTP/A slot. A speed-up is a factor,
that the transmission speed will be multiplied for the assigned slots occupied
by a given dataflow. TTP/A provides several factors: {4, 8, 16, 32} times the
original transmission speed of the communication system. Actually, speed-
ups have no relevance for the conceptual models, as it is handled by the
TTP/A protocol stack. Consequently, the speed-up factor is simply an at-
tribute of the dataflow. Dataflow with speed-up does not behave differently
towards the conceptual model, than dataflow without (factor = 1).

Finally, multiplexed virtual channels entail an additional degree of complex-
ity to the conceptual model, even though rarely used. Multiplexing provides
slots in slots, furthermore it can be combined with speed-ups.
Given a specific TTP/A slot, this slot can be used differently in consecutive
multiparnter rounds. Currently, TTP/A enables a periodicity λ of 4 or 8
for a multiplexed slot. For instance, if we have a multiplexing period of 4,
that slot is available for 4 different configurations. Maybe in the first itera-
tion service s′ sends to r′, in the second iteration s′′ occupies the slot with a
sending operation and r′′1 and r′′2 read the bus, etc. Regarding the commu-
nication schedule, the overall structure of bus utilization remains the same.
However, that outstanding slot may be used differently in every iteration of
the multipartner round, which virtually entails some sort of “sub-schedule”
for that specific slot.
From the point of view of the conceptual model, multiplexed virtual channels
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S set of jobs
FF set of forward feed dataflow
FB set of backward feed dataflow
FM set of multiplexed dataflow
F FF ∪ FB ∪ FM

D set of deadlines (periodic and offset)
P set of phases

V set of vertices in the precedence graph
E set of directed vertices in the precedence graph
A set of undirected vertices in the precedence graph

Table 3.2: sets of dependencies

incorporate a specific type of dataflow. All in all, they behave the same way as
ordinary dataflow, however multiplexed virtual channels are not time-critical.
They are defined like dataflow between a pair of jobs, but they include addi-
tional attributes for the periodicity and impose a few additional constraints
on the conceptual model (see sec. 3.6.2). Another difference appears with
automatic scheduling generation, because several dataflow relationships have
to be compressed into one slot, but this is not the matter of the conceptual
model.

3.6 Interoperation of the entities

The previous section listed all types of entities, which occur in the concep-
tual model. Now, we want to examine their interoperation within TTP/A
applications.

3.6.1 Precedence Graph

We will introduce a graphical representation of TTP/A applications based
on the conceptual model. For that purpose, we introduce some terminology
from graph theory in the modelling.

A TTP/A application can be represented by means of graphs – the so called
precedence graphs [Pau04]. Generally, in precedence graphs a job is repre-
sented by a vertex, and an edge embodies a specific relationship between the
two adjacent vertices / jobs. In table 3.2 we name sets, which include the
entities of the conceptual model and the precedence graph in each application
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model.

So, we denote the transformation from conceptual model to precedence graph
in a symbolic way.

V � S

E � F ∪D

A � P

(3.8)

ActuatorPIDFusion

Sensor1

Sensor2

Sensor3

f(S1,F )

f(S2,F )

f(S3,F )

fF,P )

p(S1,S2)

p(S2,S3)

f(P,A)

fB
(A,P )

p(S1,S3)

dupddacc

1

Figure 3.5: Illustration of Smart Fusion in the conceptual model

At this point we introduce an example target application for better illus-
tration. Figure 3.5 shows a precedence graph of a Smart Fusion [Elm02]
application with control elements.

As we can see from figure 3.5, this application runs 6 jobs, and these jobs
are related by dataflow, deadline and phase dependencies.

The jobs Sensor{1, 2, 3} ∈ S read some sensor value from their local inter-
faces and afterwards ship that data over the communication system to the
job Fusion ∈ S (in different time slots, not at the same time), which is mod-
elled by the three dataflows f(S{1,2,3},F ) ∈ FF from the “sensor” jobs to the
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“fusion” job. Thus, these three jobs start the main stream of forward feed
dataflows. Additionally, the three sensor jobs are “in phase”, depicted by the
undirected edges between the job vertices. When we introduced the weaker
requirement of transitivity (req. 5), we enabled distinct transitivity between
more than two jobs. As we have phases between (Sensor1, Sensor2) and
(Sensor2, Sensor3), this implies a phase between (Sensor1, Sensor3) ac-
cording to the rule of transitivity in equation 3.5. Therefore, p(S1,S3) ∈ P need
not to be included in the precedence graph in order to reduce complexity,
which is depicted by the slashed edge.

Afterwards, the “fusion” job continuous the main stream with the dataflow
f(F,P ) ∈ FF to “PID”, which in turn goes ahead with the dataflow f(P,A) ∈
FF . Eventually, the main stream ends in the job “Actuator”. Moreover,
we find one backward feed dataflow fB

(A,P ) ∈ FB between the “PID” and
“Actuator” jobs. Consequently, that application contains a control loop,
and fB

(A,P ) embodies the feed back from the actuator job “Actuator” to the
PID controller job “PID”.

The remaining two dependencies are the deadlines dacc ∈ D and dupd ∈
D. The first expresses, that the dataflow f(F,P ) has to be transmitted from
“Fusion” to “PID” within υ(F,P )(dacc) time units, taking the beginning of the
multipartner round as reference – in other words, this is an offset deadline.
On the other hand, dupd is a periodic deadline involving only one job, meaning
that the service “Actuator” has to be executed every υA(dupd) time units.

3.6.2 Restrictions

There exist several restrictions or so called constraints, which assure the
integrity of the modelled target application. Integrity means, that the ap-
plication expressed by means of jobs and dependency relations (for instance
with a precedence graph) is actually feasible in a real target system, and can
further be transformed into some reasonable target system component like
source code or the communication schedule according to the philosophy of
MIC (see sec. 2.4).

Notational issues

If we define the integrity rules of dataflows, phases and deadlines among
services, we prepare a suitable notation, first.



38 CHAPTER 3. CONCEPTUAL MODEL

e ∈ E � f ∈ F

e ∈ E � d ∈ D

u, w ∈ V � a, b ∈ S

 e = (u, w) � f(a,b)

f(a,b) = (πa, πb) with πa ∈ N−(a), πb ∈ N+(b)

Obviously, we combine the notation of precedence graphs with the conceptual
model formalism, due to the coherence between the conceptual model and
precedence graph representation (defined in equations 3.8).

Dataflows and Deadlines

Constraint 1

u 6= w ⇒ @f(a,b) ∈ F with a = b

Constraint 2

∃d(a,b) ∈ D ∧ a 6= b ⇒ ∃f(a,b) ∈ ((F ∪ FB) with a 6= b

First of all, in constraint 1 we determine, that there can never be dataflow
of any type (forward / backward feed, multiplexed) from one single job to
itself. In terms of graph terminology we can say, that a precedence graph
can not have loops made of “dataflow edges” attached to its vertices.

However, that need not apply to deadlines. As we learn from figure 3.5, there
may exist deadlines originating and ending in the same job like dupd. This
circumstance is even expressed in constraint 2. Furthermore, it says that
whenever we find a deadline between two different jobs, there must also be
at least one dataflow of the forward or backward feed type between that two
jobs. Otherwise, as a 2-job deadline concerns the communication between
them, and without communication that deadline would be useless. Multi-
plexed dataflow does not contribute, because multiplexed virtual channels
are not time-critical in gernal.

Ports

Constraint 3

∃f(a,b) | a 6= b ⇒ [(d−(πa) > 0) ∧ (d+(πb) = 1)]
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Concerning the utilization of ports, which are the terminating points of every
dataflow and part of a job’s interfaces, constraint 3 assumes, that a port is
either used for output or for input. The general distinction between incoming
or outgoing ports is manifested in constraint 4.

Constraint 4
π ∈ N−(s)⊗ π ∈ N+(s)
d−(π) > 0⊗ d+(π) = 1

In addition to this it must be mentioned, that a given port π can have
exactly one incoming dataflow. Thus, the “incoming degree” of that port (or
the number of incoming dataflows) is exactly d+(π) = 1.

Contrary to incoming ports, an outgoing port could have several outgoing
dataflows: d−(π) > 0. Because TTP/A performs a TDMA schema, several
hosts could read the data at the same time from the bus, while always one
host transmits exclusively. Accordingly, the port of the sending job must
allow several dataflow to other services in order to model that multiple read-
ing.

Finally, if there exists a dataflow, then the two attached ports must be belong
to different jobs. This coheres with constraint 1, which claims, that a job can
not possess dataflow from itself to itself. Even though, we can have several
dataflows between two jobs, we can only define one dataflow for each specific
pair of ports (constraint 5).

Constraint 5

| {f(a,b) ∈ [F ∪ FB] | f(a,b) = (πa, πb), πa ∈ N−(a), πb ∈ N+(b)} | = 1

Phases

In the conceptual model there occurs one important constraint (7), which is
expressed best with graph terminology of the precedence graph representa-
tion (constraint 6).

For that purpose, we need the definition of the transitive closure of phases,
first.

ε(p) = {s ∈ S | p(s,s′) ∈ P; s, s′ ∈ S} (3.9)

The transitive closure ε(p) of a phase p includes all jobs, so that each job s
takes part in the same phase relationship p. As we can see from figure 3.5,
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we can optionally model redundant phases like p(S1,S3), which follow from
the transitivity of p(S1,S2) and p(S2,S3). Despite the redundancy imposed by
transitivity, the transitive closure is stripped down to single occurrences of
jobs involved in the phase. For instance, in the smart fusion application
depicted in figure 3.5 the transitive closure of the phase p is the set ε(p) =
{Sensor1, Sensor2, Sensor3}, even though p might span over all sensor jobs
redundantly by {p(S1,S2), p(S2,S3), p(S1,S3)}.

Constraint 6

@{u, w ∈ V | [(u w ∈ E) ∨ (w  u ∈ E)] ∧ u! w ∈ A}

From the point of view of precedence graphs, constraint 6 describes a condi-
tion, that avoids a path of directed edges (in both directions) between two
jobs, if that jobs are also reachable by another path of undirected edges. Re-
garding the mapping of precedence graph terminology and conceptual model
notation (see eq. 3.8), this constraint determines, that there must not be a
dataflow feed either directly or indirectly between two jobs a, b, if that jobs
belong to the transitive closure of the same phase p: a ∈ ε(p)∧ b ∈ ε(p) with
a, b ∈ S and p ∈ P. To sum up, we re-write constraint 6 in the context of the
conceptual model in constraint 7.

Constraint 7

@{a, b ∈ S | a, b ∈ ε(p) ⇒ [f(a,b) ∨ f(a,s1), f(s2,s3), . . . , f(sn,b)] ∈ F}
with p ∈ P, si ∈ S, i = 1 . . . n

Multiplexed virtual channels

Multiplexed virtual channels are made up of multiplexed dataflows, which
behave the same way like their forward and backward feed counterparts. Con-
sequently, the constraints 1 and 2 are valid, too. Moreover, the constraints 3
and 4 have to hold. However, as multiplexed virtual channels allow some
kind of “sub-schedule” (see sec. 3.5.3), a multiplexed dataflow belongs to one
specific iteration of the multiplexed slot, but a port can be used differently in
each iteration. Thus, constraints 3 and 4 have to apply just per iteration.
For instance, among several consecutive iterations each port involved in the
multiplexed virtual channel could be used for sending operation, in the next
iteration for receive operation, then idle, then receiving again etc.

We will give a more formal notation of multiplexed virtual channels.
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γ[i] = {f(a,b)[i] ∈ FM}
Γ =

⋃
0≤i<λΓ

γ[i]

with
⋂

0≤i<λΓ

γ[i] = ∅

(3.10)

As we can see from that definitions, a multiplexed virtual channel Γ is made
up of the virtual channels γ[i] of the specific iteration 0 ≤ i < λΓ. Each
virtual channel γ[i] contains a set of multiplexed dataflow. Moreover, a
multiplexed dataflow must only belong to one virtual channel, therefore, the
intersection of all virtual channels is the empty set.

However, there is one constraint, which has to apply to the “sub-schedule” of
multiplexed virtual channel. As well as in the “first-order” schedule, the slot
in every iteration must be used for sending operations exclusively by one
job. Otherwise, we would have collisions on the bus, even with multiplexed
virtual channels. Consequently, there can only be one sending job with one
sending port in every iteration, but several other receiving jobs. We manifest
that fact in constraint 8.

Constraint 8

∀γ[i] [∃s ∈ S, πs ∈ N−(s) | (∀f ∈ FM) ∈ γ[i] = (πs, πr)]
with r ∈ Rs, πr ∈ N+(r)

3.7 Validity & Feasibility

In this section we deal with the matter of validity of model specifications
against the constraints as well as the feasibility of a target application’s
schedule according to the functional and temporal requirements.

3.7.1 Summary of restrictions and dependencies

For better notation in the following sections, we sum up all integrity con-
straints and requirements to sets.

We denote the set of constraints as C.

C = {ζi | 1 ≤ i ≤ 8}
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This embodies the collection of all the 8 constraints defined along the sec-
tion 3.6.2, whereas a single constraint is called ζi and i is the index.

Accordingly, we introduce the set of requirements R, which is the col-
lection of all the 7 functional and temporal requirements explained along
section 3.5.

R = {ρi | 1 ≤ i ≤ 7}
Here, ρi denotes a single requirement with index i.

3.7.2 ASPEC and validity

So far, we have dealt with the model of a target application. This model
embodies the functional and temporal specification of target application,
i. e., TTP/A applications, according to the conceptual model. Thus, we will
introduce the term application specification or ASPEC. In formal notation
we write an application specification A as a triple

A = (S, F, T)

whereas S is the same as the set of jobs S, F is the set of sets of functional
requirements F, and T takes the role of the set of sets of temporal require-
ments. According to the terminology of the conceptual model we substitute
the placeholders S, F, T with the sets of table 3.2.

A = (S, F, T) =
S = S

F = F

T = P ∪D

= (S, F, [P ∪D]) (3.11)

At that point, we have integrated all entities of the conceptual model into
one term of “application specification A”. However, we have not pointed out,
how the integrity constraints C contribute to a valid application specification.

Obviously, each constraint ζ ∈ C has to evaluate to “true” (= t) concerning
the model of a given target application, hence the application specification A
of the target application. Therefore, we will give a formal definition of such
“validity checking” or semantic constraint checking function MC regarding
the set of model integrity constraints C.

MC : A → B = {t, f} (3.12)

In other words, the semantic constraint checking function MC determines,
whether a given application specification A is valid against the set of con-
straints C, if and only if that function evaluates to boolean true t. Of course,
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that function can even be applied for the evaluation of a single constraint
ζ ∈ C – we will call it M′

C, then. To sum up, we formulate validity of
an application specification A against the set of integrity constraints C in
equation 3.13.

MC(A) = t ⇐⇒ ∀ζ ∈ C | M′
C(ζ, A) = t (3.13)

3.7.3 CCONF and feasibility

By now, we have defined the application specification with the conceptual
model as a modelling formalism for distributed real-time embedded systems.
However, model integrated computing (MIC) is far more powerful. We could
even produce additional information from the target model on basis of the
target model, for instance, source code, communication schedules, and cluster
configurations as a whole.

Eventually, we will deal with communication schedules and cluster configu-
rations or CCONF as part of the conceptual model. In the following sections
we will give a formal definition of that entities of the conceptual model.

Schedules

The communication schedule Ψ or simply schedule is a function, which as-
signs a pair of a start point Sc and ending point Tc in the given multipartner
round c for each job and functional requirement. So, we write a definition of
the schedule function.

Ψ : (S ∪ F) → (N× N) (3.14)

The structure of such an entry is defined as follows:

[χ : (Sc(χ), Tc(χ))] with χ ∈ S ∪ F (3.15)

For example, we list a part of a possible schedule for the Smart-Fusion Ap-
plication in figure 3.5.

Ψ(A) = {[Sensor1 : (1, 1)], [Fusion : (5, 7)], [f(S1,F ) : (2, 2)], . . .}

As we can see, the job service Sensor1 starts at the TTP/A slot no. 1 and
ends within the same slot. Thus, the execution of that job occupies only one
TTP/A slot. On the contrary, the fusion job Fusion starts at slot no. 5 and
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ends in 7, which makes up a job execution time of 3 slots. The same applies to
dataflow f(S1,F ), which is transmitted within one slot. Consequently, we learn
that the execution respectively transmission time |χ| (measured in TTP/A
slots) of any χ ∈ (S ∪ F) in a given mutlipartner round c is calculated

|χ| = ∆c(Sc(χ), Tc(χ)) + 1 with χ ∈ (S ∪ F) (3.16)

Cluster configurations

Meanwhile, we have finalized all terminology in order to constitute the cluster
configuration of a target application. The cluster configuration C of a given
application specification A in a target system platform, which is embodied
by the decomposition Q, is a pair of the decomposition and a schedule Ψ(A)
of that application.

C(A) = (Q, Ψ(A)) (3.17)

As we can see in equation 3.17, the definition of the cluster configuration is
related to that of the application specification in equation 3.11. In addition
to this, we have to assure the feasibility of a cluster configuration against the
requirements R mentioned along section 3.5.

Feasibility

Similar to the semantic constraint checking function MC we introduce a se-
mantic CCONF checking function MR. Furthermore, the CCONF checking
function applies to each functional and temporal requirement ρ ∈ R – at this
scope we will call the “requirement-specific” evaluation function M′

R.

MR : C(A) → B = {t, f} (3.18)

The purpose of these functions is to evaluate the compliance of the sched-
ule Ψ(A) in the cluster configuration C(A) to the functional and temporal
requirements τ ∈ T specified in the application specification.

In other words, MR examines the schedule in that way, whether all jobs com-
plete execution before the expiration of some deadline, and whether trans-
mission deadlines hold, and jobs in phase deviate with their starting points
properly.

These requirements τ ∈ T obey those functional temporal requirements ρτ ∈
R defined in the conceptual model, whereas the index τ denotes, that each
type of requirement, i. e., deadline, phase, has to comply to the appropriate
requirement.
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Thus, a cluster configuration is feasible, if and only if each functional and
temporal requirement is full-filled for the given cluster configuration and its
application specification.

MR(C(A)) = t ⇐⇒ ∀τ ∈ T, ρτ ∈ R | M′
R(τ, ρτ , Ψ(A)) = t (3.19)
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Chapter 4

Setting up a model-based tool
suite

In the previous chapters we have outlined, how model integrated computing
(MIC) can be used to elevate a generic modelling tool to an integrated de-
velopment environment (IDE) for a specific domain in the engineering field
of distributed embedded real-time systems. Furthermore, we have given a
comprehensive definition of the conceptual model, which is the theoretical
basis and the “template” for a meta-model of TTP/A applications.

Now, in this chapter we deal with a concrete implementation of the con-
ceptual model as meta-model, and we describe an IDE for TTP/A Applica-
tion Development. This is provided by the Generic Modeling Environment
(GME).

It is beyond the scope of that work to appreciate every feature of GME.
For that purpose we shall reference to the original documentation of
GME ([LaBK+01]) and to its development project (http://www.isis.
vanderbilt.edu/projects/gme/). We will just deal with the matter of
GME, as far as it is needed for our intentions. It must be mentioned, that
most content of that chapter has already been covered in earlier sections,
especially when we come to the conceptual model’s implementation in GME
called MetaTTPA. We will not repeat every detail there, but we will just
take a look into the “new shape” of the conceptual model and its constraints,
which is entailed by the usage of GME.

47
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4.1 The role of GME

In section 2.3 we proposed the structure of MIC systems in figure 2.1. At that
place we declared a “work-flow” when using model integrated computing,
beginning with meta-meta-models, coming to meta-models and target system
models and eventually producing some target system component, which is of
interest in the development process of the embedded system.

With the application of GME we present an implementation of that structure
according to GME’s features. In figure 4.1 we learn, how the placeholders of
the MIC structure is substituted by concrete entities regarding TTP/A.

Meta-Modelling language

Meta-Meta-Model

Meta-Modelling language

Meta-Model

Domain Modelling language

Model

Target System Component

GME

MetaGME

GME

MetaTTPA

conceptual model

ASPEC

RODL ROSE

Source Code

CCONF

MC

MR

1

Figure 4.1: MIC with GME

As wee can see, the meta-modelling language is the built-in notational style
of GME, which is a UML-related formalism. This language is used to ex-
press the meta-meta-model MetaGME, which is delivered as part of the tool
suite and used to model all domain-specific meta-models. In addition, the
actual meta-model is the implementation of the conceptual model and is
called MetaTTPA. It is defined by means of the GME notation language and
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checked against validity constraints of MetaGME. Finally, every TTP/A ap-
plication is modelled in the application specification, which is part of the
conceptual model and thus checked against the integrity constraints of the
conceptual model C introduced in the previous chapters. The constraint
checking function MC is realized through GME’s built in constraint checking
mechanism, although the set of integrity constraints is stated in MetaTTPA.

However, it must be mentioned that functional and temporal requirements
are ensured separately by a GME extension, though part of the GME tool
suite – in the next section we learn, that this is done by “schedulers”. Despite
GME’s powerful constraint specification and validation mechanism, that fea-
ture is not sufficient for the complex semantic CCONF checking function MR.
Thus, it must be outsourced and realized by an own module or “plug-in”,
which hooks into GME’s modular architecture – a so called GME interpreter.

The target system components are produced within the GME tool suite.
They consist of the cluster configuration including decomposition and a
schedule cohering the application specification. From the cluster configu-
ration we can extract the RODLs for every TTP/A node and the ROSE for
the master, and last but not least translate that specifications into source
code. All this work is realized by means of GME intepreters within the GME
tool suite.

4.2 Working with GME

As GME full-fills all the requirements as generic modelling tool (cf. sec-
tion 1.3), it is even extensible and flexible by means of a modular architec-
ture, which supports the integration of customized modules or – in GME’s
terminology – interpreters. Such interpreters may implement any useful be-
havior. In our case we designed interpreters so, that they contribute to the
MIC system’s work-flow. Figure 4.2 illustrates the work-flow of modelling
target applications with GME.

As we learn from figure 4.2, the user begins the modelling process with the
application specification (ASPEC) in the GME tool suite. This is the domain-
specific model of any target application, i. e., the Smart-Fusion Application
or an obstacle collision avoidance application.

Before the user runs the scheduler, he or she triggers the constraint checking
function MC for the current application specification A. Although these con-
straints are declared in MetaTTPA, it is GME’s built-in constraint checking
mechanism that performs that task.
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Figure 4.2: modelling work-flow with GME

If the ASPEC is valid according to the integrity constraints C, the user will
proceed by starting the scheduler. That scheduler is a GME interpreter itself.
Currently, we implemented the Straight Forward Scheduler, which realizes the
Straight Forward Scheduling Algorithm (see sec. 4.4.2). Each TTP/A sched-
uler is a GME interpreter and produces the cluster configuration (CCONF)
C, which is described in MetaTTPA and even operated within GME. More-
over, the scheduler is that interpreter, which conducts the semantic CCONF
checking function MR. After it has executed its built-in scheduling algorithm
and wrote the model of the CCONF into the GME workspace, it evaluates
that cluster configuration against the temporal and functional requirements
imposed by the application specification (see sec. 3.7). Afterwards, the sched-
uler reports the result of MR to the user.

Finally, the user invokes the code generator, which is an interpreter, too.
Currently, there exists one code generator, the TTP/A C-Code Generator.
It takes a “feasible” CCONF from the GME workspace (the momentarily
open GME project) as input and transforms that model into C source code.
As a result, the system creates C source code files for each target host. Such
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code file contains definitions of IFS Files, the host-specific RODL, the ROSE
(only in the master’s source code file), as well as “code stubs” for each job,
i. e., C function headers for the tasks of each job. In other words, the source
code includes everything we need to compile and link the target application,
except the code of the jobs themselves.

Even though the generation of ASPEC, CCONF etc. is uni-directional, some
steps in the whole process can be skipped in order to avoid the automatic
generation features of the interpreters, and use the IDE in a more manual
way. For example, the user could have skipped the definition of an ASPEC
and begun directly with a CCONF. In that case, the user has to design
the RODL for each node by himself. Another example, the user is enabled
to generate a CCONF with a scheduler, edit the CCONF manually and
eventually generate the source code.

As mentioned before, we have already implemented one scheduling inter-
preter and one code generator. However, it would be possible to develop
another scheduling interpreter, which implements another scheduling algo-
rithm compatible to the conceptual model (MetaTTPA). The user would
have the choice between several schedulers to have the CCONF generated,
unless the user models the CCONF by himself.
The same applies to code generators. For instance, if we intend not to pro-
duce C source code, but Assembler code, we need to use an alternate GME
interpreter working as the code generator.

The user is enabled to combine pairs of schedulers and code generators
in order to easily achieve diversitive results. The whole work-flow is highly
flexible due to GME’s architecture of extensibility via “plug-ins”.

It must be mentioned, that all these steps take place within the GME tool
suite. There is no other tool involved from the modelling entry when speci-
fying the ASPEC until the extraction of source code. Therefore, this is what
makes GME to an integrated development environment (IDE) for distributed
embedded real-time systems, in that case for TTP/A target systems.

4.3 MetaTTPA

In this section we will take a look, how the conceptual model of TTP/A
including functional and temporal requirements plus integrity constraints is
realized by means of GME’s notational formalism.

Generally, MetaTTPA includes 3 GME root models, which embody entities
from the conceptual model or other TTP/A-specific entities.
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• the model of the application specification (ASPEC)

• the model of the cluster configuration (CCONF)

• the model of the ROSE

The purpose of each GME model is obvious, they comply to the counterparts
in the conceptual model. As models in GME are hierarchical, each root model
covers the GME-style definition of the conceptual model, thus forming a
container for the corresponding rule set in the conceptual model.

4.3.1 ASPEC in MetaTTPA

Figure 4.3 shows the definition of the application specification (ASPEC) in
MetaTTPA, which makes up a part of the meta-model. According to the
MIC structure introduced in figure 2.1, the meta-model is defined in the
Meta-Modelling Language. In this case this language is the GME notational
formalism [Gen05] (see figure 4.1). The similarity of GME with UML class
diagrams [UML04] is remarkable.
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Period : enum
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Datatype : enum
SpeedUp : enum
Feed : enum
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Figure 4.3: meta-definition of ASPECs in MetaTTPA
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As we expect the reader to be used to UML notation, we will not particularly
explain the meaning of that illustration.
This part of the meta-model defines the application specification in the con-
ceptual model, which has already been covered extensively among chapter 3.

However, we learn from figure 4.3, that there are some irregularities in the
ASPEC meta-model regarding the original conceptual model. For instance,
the decomposition of a TTP/A cluster is declared in the ASPEC, but not in
the CCONF as determined in the conceptual model. This fact hides in the
UML-style connection “hosts” between the “Task”1 and “Host” class symbol.
Consequently, the user specifies the decomposition within the application
specification and not the cluster configuration. MetaTTPA has been designed
with this little discrepancy on behalf of practical reasons, although, this has
no influence on the consistency of the conceptual model.

4.3.2 CCONF in MetaTTPA

Figure 4.4 depicts the meta-model excerpt of the cluster configuration
(CCONF). Compared to the definition, the cluster configuration in the meta-
model appears differently than the cluster configuration C in the conceptual
model, even though they carry the same information.

The cluster configuration’s implementation in GME focuses at “Slot”s, in
that case this is the model of TTP/A slot. Instead of directly entering a
schedule Ψ(A) as a list of transmissions and job executions, we define, which
activities take place during such a TTP/A slot and which host conducts
that activity. For instance, in slot 2 host A executes service s and at the
same time host B occupies the bus with a sending operation. Therefore, we
have two entries in that slot model, one says that host A “executes” and B
“transmits”. If any activity takes longer than one slot, that operation will
be present in consecutive slots, and the sequence of slots, where that activity
is entered makes up the whole service execution or dataflow transmission.

So, the point of view is more locally concentrated around single slots. The
global schedule results from the conjunction of the activities during each slot.
Furthermore, both types of connections (“transmits”, “executes”) include
references to the actual hosts respectively service tasks, which are involved.
As a result, this maps the decomposition.

To sum up, the GME cluster configuration carries the same information of
the schedule and the decomposition, hence it coheres with the conceptual

1Please note, that the term of the “job” is not included in MetaTTPA, as jobs are just
representative for a set of physically executing tasks.
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Figure 4.4: meta-definition of CCONFs in MetaTTPA

model.

4.3.3 ROSE in MetaTTPA

Figure 4.5 illustrates the meta-model of the ROSE in MetaTTPA.

Even though the ROSE does not contribute to the ASPEC or CCONF of
a target application model, it is included in the meta-model and finally in
target models for completeness, indeed. Actually, the structure of the ROSE
will rarely deviate from the recommended TTP/A round sequence in fig-
ure 3.2. Anyhow, with this definition in MetaTTPA it is possible to describe
larger ROSEs with a more complicated structure in the target model, i. e., an
arbitrary sequence of multipartner rounds with different fireworks bytes com-
bined with the MSA/MSD rounds.
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Figure 4.5: meta-definition of ROSE in MetaTTPA

4.3.4 Aspects

MetaTTPA offers 5 aspects, which differently show to and hide information
from the user in order to present a manageable workspace. We will list them
in the following.

• Decomposition

• Dependencies

• IFS Management

• Schedule

• ROSE View

The “Schedule” aspect and the “ROSE View” just concern the CCONF
respectively the ROSE models. In no other aspect it is possible to display
and edit the models of that entities of MetaTTPA. On the contrary, the
other three aspects deal with the ASPEC. Obviously, it is very practical to
enable a filtered view in the complex matter of the application specification.
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Consequently, “Decomposition” deals with the same theme of the conceptual
model, as its name suggests. In the aspect of “Dependencies” the user models
the functional and temporal requirements, hence relations among the entities
of the conceptual model, i. e., phases, deadlines etc. Last but not least, the
“IFS Management” handles the mapping of IFS chunks within one host, if
several tasks share memory (see section 3.4).

4.3.5 Attributes

Purpose

As GME is a UML-related notation formalism, it supports the concept of
attributes for each entity in MetaTTPA. In that case, attributes are used
to model information concerning the conceptual model, which can not be
expressed by means of connections, multiplicity, or containment etc.

Generally, MetaTTPA offers attributes in order to determine concrete values
of functional and temporal requirements, i. e., the value of deadlines
(deadline time), service execution times, phase offsets etc. Furthermore, that
meta-model includes attributes, which handle TTP/A-related specifications.
For instance, a “Host” object contains a boolean attribute named “Master”.
If the attribute has the value “true”, this host is the master node in the
TTP/A cluster.

Essential attributes

Even though completely ignored in the conceptual model, two inconspicu-
ous attributes are of upmost importance for scheduling and the semantic
CCONF checking function:

• the Frequency attribute in “Host”s

• the Baudrate attribute in the ASPEC root model

These two integer values define the pace of time in the TTP/A cluster. Be-
cause TTP/A follows the TDMA paradigm, the communication is divided
into slots. The slots carry a fixed size of bits (see [Kop01]). The duration of
a slot is dependent on the duration of each single bit, which in turn follows
from the transmission speed – the baudrate – of the communication system.
Therefore, that attribute is mandatory, because it is a factor for calculating
the number of slots, a given activity, i. e., a service execution, deadline, will
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occupy.
According to this, the performance of a single node is determined by its core
frequency. It makes a statement about the number of slots, a service task
execution will last according to the specified value in the target model.

All these quantities have to be considered, when it comes to the scheduling
and generation of cluster configurations as well as the feasibility checking of
that schedule, because the attributes contribute to the information, when
an activity will actually start and terminate, and wether this is sufficient
regarding temporal requirements.

Data types

The figures 4.3, 4.4, and 4.5 also illustrate the attributes of each GME entity.
In most cases, the meaning of the attributes is self-explanatory due to their
names. Otherwise, the user will be assisted by useful explanations of the
attributes when working with the GME tool suit, as descriptions of that
entities can by included in the meta-model. It must be mentioned, that one
attribute definition can be re-used among different entities. For instance, the
“Unit” is contained by “Task”s, “Phase”s, and “Deadline”s.

We also learn from the pictures, what data types the attributes possess. The
data type “boolean” is obvious, “field” attributes may accept values of the
types “integer”, “double”, or textual data (strings). In the next section 4.3.6
we will learn, what value ranges such attributes may assume.

Enumerations

Finally, we come across some “enumerations”. These are attributes with a
pre-defined set of possible values, which has been determined in the meta-
model. As a result, any faulty user-input is excluded, because only the offered
values can be chosen by the user. We will quickly list the possible values for
each attribute.

Datatype That attribute determines the data type of the data conveyed
via dataflow as well as the connected ports. For instance, the C-code
protocol stack of TTP/A declares ifs_uint8_t, which is an unsigned,
8-bit wide integer type. All possible entries of the enumeration are
defined in the TTP/A protocol specification [Kop01].

SpeedUp This enumeration offers the speed-up factor of a transmission to
the user. TTP/A currently supports factors of {4, 8, 16, 32} and no
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speed-up at all (cmp sec. 3.5.3).

Feed The user declares a dataflow as forward or backward feed with this
attribute.

Period Similar to the speed-up, this attribute offers a selection of the pe-
riods of multiplexed virtual channels. TTP/A allows periods of 4 or 8
iterations in its current implementation (cmp. sec. 3.5.3).

DLType The type of a deadline. As mentioned in section 3.5.2, deadlines
can be “periodic” or “offset”.

Unit Because the user most likely does not want to enter time-related val-
ues like service execution times or deadlines measured in number of
TTP/A slots, MetaTTPA offers the specification of such values in met-
ric units. So, this enumeration includes timely dimension ranging from
“ns” (nano second) to “sec” (second). Moreover, especially for service
tasks the unit “cycles” is available. So, a task execution time can be
given by the number of processor cycles the local algorithm takes for
operation.

4.3.6 Constraints

As mentioned earlier, GME provides a built-in constraint checking mecha-
nism. That constraints are defined within the GME models.

In that case MetaTTPA includes all in all about 45 OCL constraints [OCL04],
whereas the major part embodies the set of integrity constraints introduced
in section 3.6.2 for the application specification as well as the cluster config-
uration.

Besides this, that meta-model is equipped with 10 so called trivial constraints.
Actually, these trivial constraints do not contribute to ensure validity of
target models. Their purpose is to perform a value check on attribute
values. As a result, the target model is resistant against faulty user input.

The purpose of that enlargement of MetaTTPA are practical reasons. If such
value checks can be conducted within the GME tool suit by means of the
constraint checking mechanism, we need not check the value of each attribute
in the TTP/A interpreters in order to ensure correctly configured target
system components. Therefore, the interpreters are slim and stripped down
of unnecessary value checking code. The tables 4.1 and 4.2 list the trivial
constraints in the GME models of the application specification respectively
cluster configuration.
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Name Context Description

VC Frequency Host

The value of that attribute must be
a positive double respectively
integer.

VC Baudrate ASPEC root
VC DLTime Deadline
VC Jitter Deadline, Phase
VC Offset Phase
VC ExecTime Task
VC InitValue Port The initial value must be a hexadec-

imal number.
Cycle Unit Task Only Tasks can use the unit “cy-

cles”.

Table 4.1: trivial constaints in the ASPEC

Name Context Description

VC MuxCode transmits The multiplexer code must be
greater than 0, but less than the pe-
riod of the multiplexed virtual chan-
nel.

VC SlotID Slot A Slot-ID must be between 0 and 64.

Table 4.2: trivial constaints in the CCONF

4.4 The interpreters

Eventually, we briefly discuss the TTP/A-specific GME interpreters. In ear-
lier sections (see sec. 4.2) their purpose in the modelling work-flow has been
outlined. Therefore, there is not much left to tell about them. Anyhow, it is
beyond the scope of that document to go into the technical software design of
that modules. This will be subject of an upcoming developer documentation
of the TTP/A schedulers.

Even though their functionality is quite straightforward, the interpreters are
realized by means of several technologies. They take advantage of the Builder
Object Network (BON) (version 2) [Gen05], which encapsulates the COM-
access to GME’s interiors. Hence, they are implemented in C++ on the
Windows Platform and seamlessly integrated in the GME tool suite. Conse-
quently, the user does not notice their presence, until he triggers the schedul-
ing or code generation.
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4.4.1 The TTP/A C-Code Generator

The TTP/A C-Code Generator implements a “code generator” according to
the GME work-flow introduced in figure 4.2. As it names suggests, it trans-
forms a feasible cluster configuration into C-Code. That C-Code corresponds
to the current protocol stack implementation of TTP/A.

For each node in the TTP/A cluster the code generator creates a source code
file, where it places the following items according to the protocol stack:

• type declaration of the host’s I/O file.

• a variable definition, which is an instance of the I/O file type. More-
over, that structure is initialized with the initial values given in the
“InitValue” attribute of the corresponding ports.

• type declaration of all task files (one structure for each task). That
structures are made up of the data type ifs_addr_t.

• a variable definition for each task file with their appropriate type. Each
variable is initialized with the address of the mapped port in the I/O
file. Thus, the task file ports reference the ports in the I/O file as
proposed in section 3.4.

• macros IFS_ADDAPPLFILE, which “register” each IFS file with the as-
sociated service task function. Thus, this creates a link between a task
file instance and its associated service task funktion. However, the I/O
file does not belong to any function, because it is global.

• “service task templates”. These are C-functions, which only include
the header but no code in the body. They embody service tasks and
will contain their local algorithms written by the programmer.

For further information on the TTP/A C-Code protocol implementation see
[EHK+02]. It documents that “source code framework”, how IFS files are
declared in source code, how we link IFS files with tasks etc.

4.4.2 The Straight Forward Scheduler

The Straight Forward Scheduler is a GME interpreter, too, which takes the
role of a scheduler in the TTP/A modelling process. It name results from the
fact, that it implements the Straight Forward Scheduling Algorithm, formerly
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known as “TTP/A Scheduling Algorithm” introduced in [Pau04]. However,
since its first appearance it has evolved due to the enlargement of the con-
ceptual model on behalf of the application of GME. Because the purpose of
the scheduling interpreter has already been discussed sufficiently in earlier
sections, here will just deal with that recent revision of that algorithm.

Generally, the Straight Forward Scheduling Algorithm is a constructive greedy
heuristic, which may not always produce optimal schedules. However, a
schedule Ψ(A) calculated with that scheduling algorithm evaluates to “fea-
sible” by means of the semantic CCONF checking function MR(C) in most
cases. So, even though that algorithm might not produce optimal results, it
guarantees the compliance of the schedule to all temporal requirements, in
case it finishes successfully.

The main ideas behind the Straight Forward Scheduling Algorithm are the
requirements 6 and 7 in section 3.5.3. They say, that a service can not be
executed, unless it has received all its incoming dataflow. After execution it
dispatches all its outgoing dataflow.

We will list the functionality of the algorithm in natural language in the
following.

1. find all services with all incoming forward-feed dataflow already ar-
rived or no (incoming forward-feed) dataflow at all

2. if some of that services are in phase, add the offset to the starting point
of that service with the later deadline or to the service with no deadline

3. add the starting point of the services in the schedule

4. at the ending point of each services append the sending operation of
all outgoing dataflow to the schedule, but concern collision on the bus
(in that case a dataflow has to occupy the next free slot).

5. mark the services as done

6. unless all services are marked, go to (1)

7. append a sending operation for each backward-feed dataflow

8. reserve slots for each multiplexed virtual channel

9. create the sub-schedule for each multiplexed virtual channel
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Chapter 5

Conclusion

5.1 Summary

We described the adaption of the generic modelling tool GME to an inte-
grated development environment in order to support software development
projects for distributed real-time embedded systems. TTP/A is the basic
transmission protocol in this case study, which has evolved to a versatile and
efficient time-triggered real-time communication subsystem.

We proposed the conceptual model in its most recent level of maturity, which
describes the way TTP/A applications should be designed. Moreover, we
introduced an implementation of that conceptual model in GME by means
of a GME meta-model named MetaTTPA, which is used to describe concrete
TTP/A target applications. That meta-model covers the terminology, rule
set, functional and temporal requirements, as well as integrity constraints
according to the conceptual model.

GME was the tool of choice, because it provides a flexible and extensible
modular architecture and an additional powerful OCL constraint checking
mechanism. Thus, its yet rich feature set could be extended by means of
customized plug-ins or interpreters. In our case study we designed such
additional interpreters, which contribute to the work-flow of model integrated
computing (MIC) concerning our target systems equipped with TTP/A. The
scheduling and code generating interpreters transform the generic modelling
tool suite into a specialized integrated development environment (IDE).

We introduced one implementation of each type of TTP/A-specific inter-
preters. The first automatically creates schedules using the Straight Forward
Scheduling Algorithm and writes the cluster configuration, which in turn is

63
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semantically checked against functional and temporal requirements imposed
by the application specification. The second interpreter takes a feasible clus-
ter configuration as input and produces C source code files including RODL,
ROSE, IFS files, and service task templates. Its name is the TTP/A C-Code
Generator.

As a result, the whole modelling process beginning with the modelling of
the application specification, to cluster configurations until the production
of target system components, i. e., the source code files, takes place within
one tool suite. Eventually, this makes GME to an integrated development
environment (IDE) for TTP/A application development.

5.2 Outlook

One idea for my future work is the analysis of existing source code in order
to re-construct an application specification and cluster configuration. In the
end, we would have a bi-directional work-flow. On field of application for
this feature would be re-modelling of TTP/A source code projects into the
modelling formalism, so that we can conduct better maintenance and re-
usage of legacy code.

The conceptual model already suits to these needs. The major develop-
ment of that idea would focus on the scheduling and code generating in-
terpreters, which have to be designed to support the modelling in both di-
rections. Maybe, the meta-model would have been modified for practical
reasons.

Another challenge is to extend the conceptual model to include service-level
functional requirements. As a consequence the meta-model would be en-
riched, too.

The local algorithms, which are ignored and hidden behind the service’s
interfaces at the moment, shall become part of the application specification.
So far, we have just been enabled to generate the service task templates, but
no embedded code. With this enrichment, it will be possible to include the
automatic source code generation of local algorithms by GME interpreters.
As a result, we would be able to completely model a TTP/A application
in GME notation and let the whole source code of a target application be
generated by the GME interpreters.
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