
DISSERTATION

Query Answering in
Expressive Description Logics

Techniques and Complexity Results

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

O. Univ. Prof.Dipl.-Ing. Dr.Thomas Eiter
Institut für Informationssysteme 184/3
Abteilung für Wissenbasierte Systeme

und weiterer Betreuung durch

Prof.Dipl.-Ing. Dr.Diego Calvanese
Freie Universität Bozen

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

María Magdalena Ortiz de la Fuente
Matrikelnummer 0527305

Lerchenfelder Straße 39/37
1070 Wien

Wien, am 29. April 2010 ...
María Magdalena Ortiz de la Fuente

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

To my parents, Jesús and Rosa Elena,
to my sister, Rosa Elena,
and to my brother, Jesús.

Acknowledgements

I want to thank Thomas Eiter, my supervisor, for many reasons. I am grateful for all he has
taught me, for his guidance, for how much time he has invested in this, and for all his support,
encouragement and patience. To Diego Calvanese, for all his advise, for helping me learn so
much, for being always willing to work with me—even when his schedule does not allow it—and
for his friendship and support. Special thanks also to Carsten Lutz for the pleasant collaboration,
and for contributing to making many algorithms and ideas in this thesis a bit more presentable.

I am very grateful to all the people who made possible not only this thesis, but also the
years that lead to it. I am most grateful to the Mexican Science and Technology Council
(CONACYT) for its support. Thank you to the Knowledge Base Systems group and to the
Faculty of Informatics for letting me be part of the team. Special thanks to the people in and
around the group, for all the coffee, sushi, and time together that made this important part of
my life not only possible, but happy. Thank you to all those, too many to name, whose support
has brought me all this way, specially to my family. And thank you, of course, to Mantas, for
having so, so much to thank him for.

Abstract

Description Logics (DLs) are a family of logics specially tailored for knowledge representation
and reasoning. They allow to model a domain of discourse by means of knowledge bases, which
structure knowledge in terms of classes of objects (called concepts), and binary relations (called
roles) between objects. DLs are appreciated for their ability to formally represent complex
knowledge, but they generally do not provide means to access it. The traditional reasoning
services are geared towards supporting domain conceptualization, and they are not sufficient
in important applications where DLs are used to model data repositories. This has motivated
research efforts aimed at extending DL reasoning services to support access by means of database-
like query languages.

Query answering in DLs has received considerable attention in the last years. However, for
expressive DLs that extend the full ALC with different combinations of additional concept and
role constructors, few algorithms were available. Moreover, the existing approaches were com-
putationally very demanding, and the precise computational costs of query answering remained
unknown. In this thesis we study query answering in expressive DLs, explore novel reasoning
techniques with the emphasis on worst-case optimal algorithms, and derive new computational
complexity results. We explore two kinds of reasoning techniques.

First we use rich models of automata on infinite forests to develop a query answering algo-
rithm that supports most of the popular constructs. This allows us to significantly push the
frontier of decidability and complexity upper bounds, with respect to both the query language
(two-way positive regular path queries) and the DLs (logics that support rich role assertions and
different combinations of nominals, inverses and counting, such as ZIQ, ZOQ, ZOI, SRIQ,
SROI and SROQ).

As second tool we employ knots, an instance of a technique known as mosaics in modal logic,
to develop algorithms that allow for a more refined control of the sources of complexity, improving
some existing upper bounds. For example, we show that for ALCH query answering is feasible
in single exponential time—thus not harder than satisfiability testing—and that this positive
result extends SH provided that the number of transitive roles involved in the query atoms is
bounded. Our knot-based algorithms are optimal in data complexity, and support knowledge
compilation and encodings into Datalog; this makes them appealing for implementation.

As an additional result we identify transitive roles and role inclusions as a combination
of constructors that makes query answering 2ExpTime hard—that is, provably harder than
satisfiability testing—in any extension of ALC. This new source of complexity, in combination
an analogous result for inverse roles due to Lutz, allows us to precisely characterize the precise
computational complexity of query answering in a very wide range of expressive DLs.

vii

Kurzfassung

Description Logics (DLs) sind eine Familie von Logiken die speziell entwickelt wurden, um Wis-
sen zu repräsentieren und Schlüsse daraus zu ziehen. Sie erlauben es, einen bestimmten Wissens-
bereich mittels einer Wissensbasis zu modellieren. Diese strukturiert das Wissen in Klassen von
Objekten (Konzepte genannt) und in binären Relationen zwischen Objekten (Rollen genannt).
DLs werden vorallem geschätzt, weil sie es erlauben, komplexes Wissen formal darzustellen,
wenn auch sie es für gewöhnlich nicht erlauben, auf dieses Wissen flexibel zuzugreifen. Die tradi-
tionellen Inferenzdienste sind auf die Domainkonzeptualisierung ausgerichtet, aber in wichtigen
Anwendungen, in denen DLs für Datenzugriff verwendet werden, reichen diese nicht aus. Das
hat eine Forschungsrichtung motiviert, die das Ziel hat, die traditionellen Inferenzdienste für
DLs auf den Datenzugriff mittels Datenbankanfragesprachen auszuweiten.

Das Problem, Antworten auf Datenbankanfragen in DLs zu berechnen hat in den letzten
Jahren großes Interesse geweckt. Allerdings sind noch wenige Algorithmen vorgeschlagen wor-
den, die dieses Problem für ausdrucksstarke DLs lösen, die ALC mit verschiedenen Konzept- und
Rollenkonstruktoren erweitern. Außerdem wären die bisher verfügbaren Techniken sehr kom-
plex, und die genaue Komplexität des Problem war noch offen. In dieser Dissertation analysieren
wir die Anfragebeantwortung in ausdrucksstarken DLs, wir schlagen neue worst-case optimale
Inferenztechniken vor, und wir leiten neue Komplexitätsresultate für das Problem ab. Wir gehen
das Problem mit zwei verschiedenen Techniken an.

Erstens verwenden wir ausdrucksstarke Automatenmodelle auf unendlichen Wäldern (eine
Verallgemeinerung von Bäumen) und entwickeln einen neuen Algorithmus, der eine Vielzahl
(tatsächlich fast alle) der verwendeten Konstrukte behandeln kann. Dieser ermöglicht es uns,
die Entscheidbarkeitsgrenze und die oberen Komplexitätsschranken stark zu verbessern, sowohl
bezüglich der Anfragesprache (two-way positive regular path queries), als auch bezüglich der DL
(Logiken mit ausdrucksstarken Aussagen über Rollen, mit verschiedenen Kombinationen von
Nominalkonzepten, inversen Rollen und beschränkten Rollen, wie zum Beispiel ZIQ, ZOQ,
ZOI, SRIQ, SROI und SROQ).

Zweitens verwenden wir sogenannte knots, die eine Instanz der Mosaik-Technik aus der
Modallogik sind, für Algorithmen. Die entwickelten Algorithmen erlauben es uns, einige
der Komplexitätsquellen besser zu kontrollieren und somit obere Komplexitätsschranken zu
verbessern. Wir zeigen zum Beispiel, dass für ALCH die Anfragebeantwortung in einfacher
exponentieller Zeit möglich ist und damit nicht härter als das Erfüllbarkeitsproblem in dieser
Logik. Weiters zeigen wir, dass sich dieses positive Resultat auch auf SH erweitern lässt unter
der Voraussetzung, dass die Anzahl transitiver Rollen in der Anfrage von vornherein beschränkt
ist. Unsere knot-basierten Algorithmen sind optimal bezüglich der Datenkomplexität und un-
terstützen Wissenskompilierung und eine Kodierung von Anfragen in Datalog, wodurch eine

ix

unmittelbare praktische Implementierung möglich ist.
Als weiteres Resultat identifizieren wir transitive Rollen und Rolleninklusionen als eine Kom-

bination von Konstrukten, welche die Anfragenbeantwortung 2ExpTime-hart macht, d.h., be-
weisbar härter als das Erfüllbarkeitsproblem. Dieses Resultat gilt für alle Erweiterungen von
ALC. Diese neue Komplexitätsquelle, in Kombination mit einem verwandten Resultat von Lutz
für inverse Rollen, erlaubt es uns, die genaue Komplexität der Anfragenbeantwortung für eine
grosse Anzahl von ausdrucksstarken DLs exakt zu bestimmen.

Contents

Contents xi

1 Introduction 1

1.1 Motivation . 2
1.2 State of the Art . 4
1.3 Goal of the Thesis and Main Results . 5
1.4 Structure of this Thesis . 6

2 Query Answering in Description Logic Knowledge Bases 9

2.1 Expressive Description Logics . 9
2.1.1 The Basic Expressive Description Logics ALC and ALCH 11
2.1.2 The SH Family and other Extensions of ALCH 15
2.1.3 The Z Family . 18
2.1.4 The SR Family . 21
2.1.5 Negation Normal Form . 25
2.1.6 Reasoning in DLs . 25

2.2 Queries over Description Logic knowledge bases 26
2.2.1 Syntax and Semantics of Queries . 26
2.2.2 Reasoning with Queries . 28
2.2.3 Query Languages . 30

2.3 Measuring the Complexity of Reasoning . 34
2.3.1 Complexity Classes . 34
2.3.2 Combined and Data Complexity . 35

2.4 Trees and Forests . 36

3 Reasoning with Automata for the ZOIQ Family 37

3.1 From Knowledge Bases to Concepts . 38
3.2 Canonical Models . 41

3.2.1 Syntactic Closure . 41
3.2.2 Canonical Model Property . 42

3.3 Satisfiability via Automata . 54
3.3.1 Representing Canonical Models as Forests 54
3.3.2 Fully Enriched Automata on Infinite Forests 56
3.3.3 Reducing Concept Satisfiability to FEA emptiness 58

3.4 Complexity of Deciding Satisfiability . 65

xi

3.5 Related Work and Discussion . 66

4 Reasoning about Queries using Automata 69

4.1 Query Entailment via Automata . 70
4.1.1 Representing Query Matches . 70
4.1.2 Recognizing Query Matches using Automata 71
4.1.3 Reducing Query Entailment to Automata Emptiness 77

4.2 Complexity of Reasoning with Queries . 84
4.2.1 Deciding Query Entailment . 85
4.2.2 Deciding Query Containment . 85

4.3 Related Work and Discussion . 85
4.3.1 The Rolling-up Technique . 86
4.3.2 Modified Tableau in the Style of Carin 86

5 Reasoning in the SR family 89

5.1 Reducing SROIQ to ZOIQ . 90
5.1.1 The Rewriting Ψ . 91

5.2 Deciding KB satisfiability . 93
5.3 Deciding Query Entailment and Containment . 93
5.4 Related Work and Discussion . 95

6 Querying DLs with Inverse Roles 97

6.1 Canonical Models for ALCHI . 98
6.1.1 Syntactic Closure and Types . 98

6.2 From General to Simple KBs . 100
6.3 Reasoning in simple ALCHI KBs using Knots 104

6.3.1 Knots . 104
6.3.2 Satisfiability of Simple ALCHI KBs using Knots 105

6.4 Query Answering by Knot Elimination . 106
6.4.1 Non-Entailment of a Set of Tree-shaped Queries 106
6.4.2 From Standard Entailment to Directed Entailment 110

6.5 Complexity of Query Answering . 112
6.5.1 Combined Complexity . 113
6.5.2 Data Complexity . 114

6.6 Related Work and Discussion . 114
6.6.1 Related Techniques . 115

7 Querying DLs with Transitive Roles and Role Hierarchies 117
7.1 Canonical Models for SH . 118

7.1.1 Syntactic Closure and Types . 118
7.1.2 Canonical Models . 119
7.1.3 ABox Completions . 121

7.2 Reasoning in SH Using Knots . 121
7.2.1 Representing forest bases for SH with Knots 122

7.3 Query Answering for SH by Knot Compilation 125
7.3.1 Subqueries and Rooted Matches . 126
7.3.2 Subquery Entailment at Knots and Types 128
7.3.3 Query Entailment over full KBs . 136

7.4 Computational Complexity . 140
7.4.1 Upper Bound . 140

7.4.2 Lower Bound . 141
7.4.3 Improving the Upper Bound . 150
7.4.4 Encoding into Datalog . 155

7.5 Discussion and Conclusion . 156
7.5.1 Comparing the Knot-Based Approaches 156
7.5.2 Data Complexity . 156
7.5.3 Datalog Encoding and Knowledge Compilation 157
7.5.4 Related Work . 157

8 Summary and Conclusions 159
8.1 Discussion . 159

8.1.1 Automata Theoretic Techniques for Query Answering 160
8.1.2 The knot approach to query answering . 160
8.1.3 Transitive roles and the complexity of query answering 161

8.2 The Complexity of Query Answering in Expressive DLs 162

Bibliography 165

Chapter 1

Introduction

Representing knowledge about different domains and drawing inferences from this knowledge
has been recognized a central challenge of Artificial Intelligence since its earliest days, and has
evolved into the area that is now called Knowledge Representation and Reasoning. One of the
fundamental goals of the field is to identify suitable formalisms, that on the one hand have
sufficient expressive power to present the desired knowledge in a convenient form, and on the
other hand allow for automatization of reasoning services that infer—as efficiently as possible—
implicit information from the described knowledge More often than not, such formalisms are
logics, broadly understood as formal languages with a precisely defined syntax and semantics.
The identification of suitable logics, however, is a non-trivial process and a universal logic is
elusive. Indeed, different application areas call for different levels of expressiveness and different
reasoning services. Since, in general, more expressiveness comes at the price of less efficient
reasoning, compromises must be made and the choice of a ‘good trade-off’ can vary from one
setting to another.

This perspective of logics as means for knowledge representation and reasoning, and the study
of different logics in terms of their trade-off between expressiveness and efficient inference, is a
hallmark of Description Logics (DLs), the family of languages studied in this thesis. Description
Logics emerged in the late 1980s as an attempt to use formal logic (understood as the study
of formal languages with a precisely defined syntax and semantics) as a tool for identifying
knowledge representation formalisms, and to overcome certain limitations of other non-logic
formalisms that lacked well-defined semantics. In little more than 20 years, they have evolved
into a rich family of logics, and are now recognized as one of the most prominent family of
formalisms for Knowledge Representation and Reasoning. The study of Description Logics is an
active field of research, marked by the steady emergence of new challenges resulting from their
deployment in new application areas.

Description Logics were designed to model a domain of discourse by means of concepts, which
are classes of objects sharing common properties, and roles, which describe binary relations
between the objects in the classes. The domain of discourse is then described by means of
a knowledge base, which has an intensional component that constrains the relations between
concepts and roles, and an extensional component that asserts the participation of specific objects
in the concepts and roles. DLs are accompanied by various reasoning services that are aimed
at extracting implicit information from a knowledge base. We refer to [BCM+03] for a more
extensive introduction to DLs.

1

There is a wide range of Description Logics that differ in their set of constructors for concepts
and roles, and in the kind of statements they allow in knowledge bases. They can be roughly
classified into two main types: light-weight DLs whose syntax is rather limited, but for which
most reasoning problems can be efficiently solved, and expressive DLs that support a rich set of
constructors and a flexible syntax, at the expense of higher computational complexity. Perhaps
the most prominent reasoning task in DLs is determining concept subsumption, that is, given
a pair of concepts C1 and C2, checking whether the knowledge base implies that every object
that is an instance of C1 is also an instance of C2. In the case of expressive logics, deciding
satisfiability (i.e., consistency) of a knowledge base can be viewed as a core reasoning task as
other traditional problems efficiently reduce to it.

In the last decade, Description Logics have made their way into a few novel application areas.
In particular, DLs and their reasoning facilities have been applied for many data management
problems, including conceptual modeling, integration of data sources, and access to data sources
by means of queries (see, e.g., [BLR03] and its references). In such contexts, it is common to view
the intensional component of a DL knowledge base as a rich schema describing the organization
of the data, and the extensional component as a (partial) instance of the described schema.
The intensional component then acts as a high-level conceptual view of the data repository,
that can be exploited to access the data in it. This perspective has also been advocated in
the Semantic Web, a favorite application area for DLs, where it has led to the emergence of
Ontology Based Data Access [PLC+08]. This trend brought along some new research challenges
and, in particular, query answering in Description Logics has become a topic of active research,
cf. [CDGL08, CDGL+07, GR09, GHLS08, Gli07, Lut08a, EGOŠ08, ELOŠ09b].

1.1 Motivation

Expressive DLs provide very rich means to structure knowledge, but provide virtually no tools to
query a knowledge base. In particular, they allow one to ask whether an object is an instance of a
concept, or whether a pair of objects are related by a role. However, a query, even a rather basic
one, is expected to allow to join pieces of information in the spirit of SQL or Datalog queries that
are common in databases. Unfortunately, the latter query languages are orthogonal to DLs in
terms of expressiveness, and thus cannot be (directly) expressed in DLs. Indeed, many DLs can
be viewed as fragments of the two-variable fragment of first-order logic, while the above query
languages and their extensions require an unbounded number of variables. Furthermore, DLs
allow only for a limited form of universal and existential quantification, analogous to the guarded
quantification present in modal logics, which results in a relatively restricted way of talking about
the relations between objects. The restriction placed in DLs ensure some positive features. Most
DLs have some form of forest or tree model property, which means that a satisfiable knowledge
base always has a model that resembles a tree and enjoys certain regularity. This property is
usually admitted to be the crucial reason why modal and description logics are computationally
so robust, and can be enriched with so many constructors without compromising the decidability
of the formalism [Var97].

These notions will be made precise along the thesis, but for now we illustrate them with a
simple example. We build a knowledge base describing genealogical relations between characters
of the Greek mythology. It contains the following intensional information: every mortal has a
(female) mother and a (male) father, every hero has a divine ancestor, and every princess has
an ancestor who is a hero. The ancestors of deities are also deities, and every deity that is not
a primordial god descends from a primordial god. Furthermore, if a god is primordial, then he
must be Chronos. We are also given some extensional information in the form of facts about
some individuals: we know that Perseus is a hero and the father of Telephus, that Telephus is

2

Male ≡ ¬Female

Mortal ⊑ ¬Deity

Mortal ⊑ ∃hasFather.Male

⊓ ∃hasMother.Female

Hero ⊑ ∃hasAncestor.Deity

Princess ⊑ ∃hasAncestor.Hero

Deity ⊑ ∀hasAncestor.Deity

Deity ⊓ ¬Primordial ⊑ ∃hasAncestor.Primordial

Primordial ⊑ Deity

Primordial ⊑ {chronos}
trans(hasAncestor)

Male (perseus)
Hero (perseus)
Hero (telephus)

hasFather (telephus,perseus)
∃hasMother.(Princess) (telephus)

Figure 1.1: A simple example Knowledge Base

q1(x) = ∃v1, v2, v3. Hero(x) ∧ hasMother(x, v1) ∧ hasFather(x, v2)∧
hasAncestor(v1, v3) ∧ hasAncestor(v2, v3)

Figure 1.2: A simple example query

also a hero, and that the mother of Telephus is a princess. This information is represented, using
the DL syntax, in Figure 1.1. Using the standard reasoning services of DLs we can infer, for
example, that Chronos is not mortal, or that the mother of Telephus has a divine ancestor. But
suppose that we are given the following simple query: we want to know if there is some hero x,
whose parents have a common divine ancestor. This query can be expressed via the first-order
formula in Figure 1.2. It is not hard to see that there is a positive answer to this query, as
Telephus is a hero as required by the query. His father is a hero, and hence has a divine ancestor
who is in turn a descendant of Chronos, the only primordial god. His mother has some ancestor
who is a hero, and we can reason analogously to infer that she is also a descendant of Chronos.
This query can not be answered using the standard reasoning services, and illustrates the goal
we want to achieve by enhancing them with query answering capabilities.

There are close parallels between query answering in DLs and the more traditional rela-
tional databases where one poses SQL or Datalog queries over relations, possibly in presence
of database integrity constraints. Indeed, the extensional component of a DL knowledge base
can be viewed as a database, and the intensional component as a set of expressive integrity
constraints. However, there are also important differences (see, e.g., [Hus94]). As opposed to
relational databases, in DL-based knowledge representation one makes the open-world assump-
tion, which means that everything that does not contradict the statements in the knowledge
base is possible. For example, a query asking whether all children of Perseus are heroes would
be answered negatively in our example knowledge base, since the existence of other children of
Perseus can not be ruled out with the information we have. Furthermore, unlike in databases, in
our setting one does not rule out the existence of domain objects that are not explicitly named
in the extensional component of the knowledge base, i.e. we make the open-domain assumption.
Thus query answering must be more refined as we must also take into account unnamed objects
whose existence may be implied the knowledge base. For instance, we do not know the name of
the object to which the variable v1 can be matched, or the name of the ancestor of Telephus’
mother who is a hero and has a divine ancestor. We note that the terminological information

3

can easily induce infinite structures (for example, in the situation where every object must have
an ancestor and nobody can be his own ancestor) which must be taken into account for query
answering.

1.2 State of the Art

The idea of combining database-like queries with variables and Description Logics was first
brought forward in 1998, in two independent papers and in rather different contexts. In the
more database-oriented approach, the authors of [CDGL98] presented an algorithm for deciding
query containment under expressive constrains expressed in DLs. Also in 1998, Levy and Rousset
[LR98a] proposed a rich knowledge representation language called Carin that couples DLs and
rules, and whose reasoning tasks can be seen as a generalization of query answering over DLs.
The work of Tessaris [Tes01] directly advocates the idea of posing queries with variables in
expressive DLs, and developed a query answering algorithm in an extension ofALC, but imposing
some syntactic restrictions on queries. The technique used there, called rolling-up, is a variation
of the one used in [CDGL98, CDGL08]. Towards the middle of the last decade query answering
in DLs became a main-stream branch of research in DLs, cf. [CDGL+05a, OCE06, GHS06].
Several algorithms have been proposed, and some effort has been spent towards understanding
the computational complexity of the problem.

Since then research has evolved in two main directions. In applications where DLs are used to
formalize static data models and to query data sources that can be very large, special attention
must be payed to the data complexity, which measures the efficiency of algorithms in terms of
the size of the extensional component. As data complexity is known to be intractable even for
standard reasoning tasks and in rather weak DLs (e.g., ALE [Sch94a]), fragments of expressive
DLs with tractable data complexity are of particular interest. Specially tailored DLs, like the
ones in the DL-Lite family [CDGL+07] aim at limiting the expressiveness to the constructors
most relevant for data modeling, in such a way that query answering is not only tractable—
in fact, it has very low data complexity (inside logarithmic space)—but is also reducible to
first-order queries, which can be answered using existing database technology. A quite good
understanding of the boundaries of tractability and first-order rewritability in light-weight DLs
has been achieved [CDGL+05b, CGL+07, ACKZ09], and several DLs for which query answering
is still tractable (but outside logarithmic space) have been identified. This includes EL and
some extensions of it, such as EL+ and EL++ [Ros07, KRH07, KL07], as well as other Horn
fragments obtained by disallowing disjunction from expressive DLs. For example, the logic Horn-
SHIQ that disallows disjunction from the prominent SHIQ is also tractable in data complexity
[Mot06, EGOŠ08].

For expressive DLs data complexity is always intractable, and all tight upper bounds obtained
so far—even for very expressive logics such as SHIQ [GHLS08], SHOQ [GHS08], or ALCHOI
[OCE08]—match the coNP lower bound known for ALE since 1994 [Sch94a]. In this setting,
research has aimed mostly at developing algorithms that are optimal in combined complexity,
i.e., the complexity measured in terms of the combined size of the extensional component, the
intensional component, and the query. The original algorithm from [CDGL98, CDGL08] gives a
2ExpTime upper bound for a DL containing ALCQIreg (for containment of conjunctive queries
without regular expressions). The same bound was obtained more recently for other expressive
logics. In particular, it was shown for ALCHIQ in [HMS04], for SHIQ in [GHLS08, CEO07],
and for SHOQ in [GHS08]. It was a long standing open problem whether these upper bounds
were tight. For the DLs that contain the extension of ALC with inverse roles (ALCI), Lutz
closed the gap by showing 2ExpTime-hardness [Lut07]. In the absence of inverses, the same
lower bound applies for SH [ELOŠ09b]. The precise complexity of these logics will be discussed

4

in Chapters 6 and 7.
The identification of other sources of complexity and the development of algorithms of lower

complexity was hindered by the lack of suitable techniques. The results in [LR98a] were obtained
by a clever adaptation of the standard tableaux algorithm for satisfiability that uses the size of
the query as a parameter. The technique can be adapted to several DL constructs [OCE08], but
not to transitive roles, and it has a major draw-back: it does not yield tight complexity upper
bounds because it builds on sub-optimal tableau algorithms. The resolution-based approach
employed in [HMS04] gives a tight upper bound for ALCHIQ, but its extension to other DLs
is not apparent. Transitive roles are also problematic, and the addition of nominals seems to
result in the loss of the optimal complexity bounds [KM08].

The algorithms in [GHLS08] and [GHS08] employ the rolling-up technique from [Tes01,
CDGL98], on unrestricted queries, and it is now known that the upper bounds arising from
them are tight. Roughly, the central idea of rolling-up is to consider all the ways in which a
query can possibly be matched in the tree-shaped models of the knowledge base, and to express
each of them using a concept (i.e., to ‘roll it up’ into a concept). To decide if the query evaluates
to false, one searches for a model of the knowledge base where all the rolled-up concepts are not
satisfied, which in turn amounts to finding a model of an exponentially larger knowledge base.
Characterizing correctly all the ways in which the query needs to be rolled up can get quite
involved, and it is not always easy to adapt to different logics. As it turns out, in the absence
of inverses and transitive roles, it is possible to use rolling up avoiding the exponential blow-up.
This will be discussed in Chapter 6.

For many interesting DLs no query answering algorithms had been obtained until now. For
example, the most recent proposal for the Web Ontology Languages, OWL 2 (cf. [CGHM+08]),
is based on a relatively new family of DLs which provides a very rich language for describing
properties of roles and interactions between them. They seem particularly hard to handle with
the techniques mentioned above. Indeed, only rolling-up allows for transitivity, and its presence
is already hard to handle in SHIQ and SHOQ. A simple way to accommodate even richer role
implications is not apparent.

Another 2ExpTime upper bound, which is now known to be optimal, was obtained for
the DL ALCQIbreg using automata on infinite trees [CEO07]. This technique is quite flexible
and seems more likely to be adaptable to the logics mentioned above. While tree automata are
usually hard to deploy to DLs supporting nominals, this is made easier by the recent appearance
of some classes of rich automata on infinite forests. We build on such automata to obtain the
most general algorithm and upper complexity bounds of this thesis.

1.3 Goal of the Thesis and Main Results

The main goal of this thesis is to explore novel reasoning techniques for query answering in
expressive Description Logics, that allow us to develop worst-case optimal algorithms and to
gain a better understanding of the computational complexity of the problem.

In more concrete terms, the main aspects considered in the thesis are the following:

Reasoning Techniques We develop novel techniques for answering queries in expressive DLs.
In particular, we present two kinds of techniques:

Automata-based techniques We combine some rich models of automata on infinite forests
[BLMV08] with the ideas developed in [CDGLV00] to deal with query containment in
traditional (finite) databases. These techniques allow us to obtain an algorithm for query

5

answering that accommodates most of the popular DL constructs, showing decidability
and complexity results for some of the most expressive DLs studied so far.

Techniques based on knots Knots [ŠE07] are an instance of mosaics as known in modal logic
[Ném86, MM07]. We develop novel techniques for query answering based on knots, which
allow for a more refined control of the sources of complexity and, in some cases, improved
complexity upper bounds.

Computational Complexity We obtain some new upper and lower bounds for the complex-
ity of query answering in expressive DLs. We extend the frontier of membership in 2ExpTime

to some new logics, and obtain some new 3ExpTime upper bounds (which are not known to
be tight); for some extensions of ALC we improve existing upper bounds from 2ExpTime to
a tight ExpTime. Finally, we identify a new combination of constructors that makes query
answering harder than satisfiability testing: transitive roles and role inclusions. With this new
source of complexity (and the 2ExpTime-hardness of ALCI [Lut07]) we can show that all the
given 2ExpTime upper bounds are tight.

1.4 Structure of this Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we give a formal introduction
to query answering in description logics. We define the syntax and semantics of all the DLs
considered in this thesis, and also formally define the query languages and reasoning problems
to be studied. We also fix the general notation to be used throughout the thesis.

The main contributions, which are presented in Chapters 3 to 7, are divided into two main
parts. In the first part, Chapters 3 to 5, we use automata theoretic techniques to develop very
general algorithms, with the aim of pushing the decidability frontier as far as we can:

• In Chapter 3, we focus on the Z family of DLs, which are very expressive extensions of
ALCreg capable of simulating SROIQ and its sublogics. We use fully enriched automata to
develop an algorithm for deciding knowledge base satisfiability and show that the problem
is ExpTime-complete for ZIQ, ZOQ, and ZOI, the three maximal sublogics of ZOIQ
that respectively disallow nominals, inverses, and counting.

• In Chapter 4, we extend the knowledge base satisfiability algorithm for the Z family into
an algorithm for answering a very rich class of queries, called positive two-way regular path
queries (P2RPQs). The algorithm is developed for query entailment and, as we show, can
also be exploited for P2RPQ containment (in the case of ZIQ, restricting the query on
the left to be a simpler conjunctive query). Our algorithm allows to decide both problems
in deterministic double exponential time, thus significantly extending the expressive DLs
for which query answering has been shown to be feasible in 2ExpTime.

• In Chapter 5, we present an (exponential) reduction from SROIQ to ZOIQ, that allows
us to exploit the results of the previous two chapters in the logics of the SR family. In this
way, we prove that knowledge base satisfiability in SRIQ, SROQ and SROI is decidable
in 2ExpTime, and that P2RPQ entailment and containment (restricting the query on the
left to be a simpler conjunctive query in the case of SRIQ) are decidable in 3ExpTime.
These are the first such bounds, and also the first results concerning the feasibility of query
answering in the SR family.

6

In the second part, Chapters 6 and 7, we develop two knot-based techniques for query an-
swering, which illustrate how the knot technique allows for a more refined control of the sources
of complexity.

• In Chapter 6, we describe an algorithm that decides query entailment by trying to build a
counter-model for the query out of knots, which are small labeled trees of depth ≤ 1 [EŠ10].
We use marked knots to store information about the model and about partial query
matches, and the existence of a counter-model is equivalent to the existence of a coherent
set of marked knots. The algorithm is described for ALCH and its extension with inverse
roles, ALCHI. It runs in 2ExpTime in general, and in single exponential time for ALCH.
Both bounds are worst-case optimal. Interestingly, this shows that ALCH can be equipped
with expressive queries without increasing the complexity w.r.t. standard reasoning. We
also show that the algorithm is worst-case optimal in data complexity.

• In Chapter 7, we describe another algorithm that is also based on knots but has different
features. It is developed for SH, which extends the basic ALC with role inclusions and
transitive roles. It works in a more constructive way: instead of building a counter-
model for a given query, the algorithm computes subqueries whose match is implied by
the intensional component, and then uses this information to answer the query for a given
extensional component. In this way, the algorithm is modular and employs knowledge
compilation. It works in double exponential time for SH. By providing a matching lower
bound, we show that this is worst-case optimal. For queries over ALCH knowledge bases,
and for all queries over SH knowledge bases in which the occurrences of transitive roles
satisfy some syntactic restrictions, the algorithm run in single exponential time. It has
worst-case optimal data complexity, and also facilitates an encoding into (disjunctive)
Datalog.

Finally, we summarize our results and give conclusions in Chapter 8. We includes a sum-
mary of the current landscape of computational complexity of query answering in expressive
Description Logics, considering the complexity bounds derived in the thesis and elsewhere.

7

Chapter 2

Query Answering in Description Logic

Knowledge Bases

In this chapter, we lay down the formal framework and formally define the problems studied in
this thesis. We introduce the syntax and semantics of expressive Description Logics in general,
and the specific logics that are considered in the remaining chapters. We also introduce query
languages, and define formally query answering and other related reasoning problems that we
will treat. To make this thesis self contained, basic notions of computational complexity are
provided, and we also introduce the general notation for trees and forests that will be used in
all remaining chapters.

2.1 Expressive Description Logics

Description Logics (DLs) [BCM+03] are languages specifically designed for representing struc-
tured knowledge in terms of concepts, denoting sets of objects of the domain of interest, and
roles, denoting binary relations between the instances of concepts. Concepts and roles are built
from a vocabulary of atomic names by applying concept and role constructors. The domain
of interest is then modeled through a knowledge base (KB), which comprises a set of axioms
at the intensional level, specifying the properties of concepts and roles, and assertions at the
extensional level, that specify the participation of specific individuals in concepts and roles.
Diverse combinations of concept and role constructors, and of axioms in the intensional compo-
nent, result in a wide range of DLs. In this thesis, we focus on some of the so called expressive
Description Logics, which are defined next.

We start by defining the vocabulary, which contains three kinds of basic symbols: concept
names, that denote primitive classes used to model the domain of interest, role names, that
denote the basic binary relations in the domain, and individual names, that are used for referring
to specific objects in the domain and specifying their properties.

Definition 2.1.1 (DL vocabulary) A DL vocabulary is a triple 〈NR,NC,NI〉 of countably in-
finite, pairwise disjoint sets. The elements of NR are called role names, the elements of NC

are called concept names, and the elements of NI are called individuals. We assume that NC

contains the special concept names ⊤ and ⊥, respectively called the top and bottom concepts,

9

and that NR contains the special role names T and B, respectively called the universal and the
empty role.

Throughout the thesis, we assume a fixed DL vocabulary 〈NR,NC,NI〉. The semantics of DLs
is given in terms of interpretations, which fix the meaning of the symbols in the vocabulary. An
interpretation has a domain which can be any non-empty set, and an interpretation function,
that gives meaning to the symbols in the vocabulary by associating them with the domain.
Each individual name is interpreted as one object in the domain. Each concept name, which
intuitively corresponds to a set of objects in a class, is naturally interpreted as a subset of the
domain. Finally, each role name corresponds to a binary relation between objects.

Formally, an interpretation for our DL vocabulary is defined as follows.

Definition 2.1.2 (Interpretation) An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I, called the domain of I, and a valuation function ·I that maps:

1. each individual a∈NI to an element aI ∈ ∆I,

2. each concept name A∈NC to a set AI ⊆ ∆I,

3. each role name p∈NR to a binary relation pI ⊆ ∆I ×∆I , and

4. for the special concepts and roles, ⊤I = ∆I, ⊥I = ∅, TI = ∆I ×∆I, and BI = ∅.

A DL vocabulary is in fact a first-order predicate logic signature, that contains no function
symbols and no variables, but only constants and predicates of arities one and two. The constants
are the individuals in NI, the unary predicates are the concept names in NC, and the binary
predicates are the role names in NR. Interpretations are just standard Tarski-style interpretations
as used in predicate logic.

Example 2.1.3 In our running examples, we will write knowledge bases that describe some
Greek mythological characters and genealogical relations between them. The common vocabulary
that we use contains the following symbols:

• The role names hasParent, hasFather, hasMother, hasAncestor, . . .

• The concept names Parent, Mortal, Deity, Male, Female, Hero, . . .

• The individual names heracles, zeus, alcmene, perseus, eros, gaia, . . .

By convention, concept names start with an upper case and role names with an lower case letter,
while individual names are written in lower case Roman font.

Now we introduce the syntax and semantics of the different DLs we consider in this thesis.
For each DL L, we define the syntax of concepts and roles that are supported in L. Then we
define ABox assertions, TBox axioms and RBox axioms in L. Knowledge bases in L are then
uniformly defined as a triple of an ABox, a TBox and an RBox, which are sets of the respective
axioms and assertions. In some cases, additional constraints are imposed on knowledge bases
that, for example, restrict the interaction between components. To give the semantics, we first
define how an interpretation function is extended to all concepts and roles in L, and then define
the satisfaction relation for assertions and axioms. This defines when an interpretation is a
model of an ABox, TBox, and RBox, and of a knowledge base in L. When the specific DL L is
clear from the context, we simply talk about concepts, roles, ABoxes, knowledge bases, etc.

10

2.1.1 The Basic Expressive Description Logics ALC and ALCH

The DL known as ALC is considered the ‘basic’ expressive description logic because it is the
minimal one that supports unrestricted use of the basic concept constructors: conjunction,
disjunction, negation, and existential and universal restrictions. The term expressive Description
Logics usually refers to ALC and its extensions. The first DL that we introduce in this thesis is
in fact ALCH, a minor extension of ALC. The other DLs treated in this thesis can be defined
in a simple and uniform way as variations of this basic one.

Concepts and roles in ALCH

We start with the syntax of concepts and roles. ALCH does not support any role constructors,
that is, only role names p are roles (except for the special role T, which we discuss later). On the
other hand, it provides the five ‘basic’ concept constructors: negation ¬C, conjunction C1 ⊓C2,
disjunction C2 ⊔C2, and existential and universal restrictions which are expressions of the form
∃p.C and ∀p.C, respectively.

Definition 2.1.4 (ALCH concepts and roles) Each role name p ∈ NR \ {T} is a role. Con-
cepts C obey the following grammar, where A∈NC and p is a role:

C,C1, C2 ::= A | ¬C | C1 ⊓C2 | C2 ⊔ C2 | ∃p.C | ∀p.C

The subconcepts of C are all the concepts that occur syntactically in C.

Since the definition of subconcepts is equally natural in most of the DLs that we introduce
in this thesis, we usually omit it.

Assertions and axioms in ALCH

Using the concepts and roles, we can write statements of two different kinds:

• At the extensional level, we can state that a certain individual participates in some class,
or that some relation holds between a pair of individuals; we call this kind of statements
ABox assertions.

• At the intensional level, we can specify general properties of concepts and roles, constrain-
ing the way they are interpreted and defining new concepts and roles in terms of other
ones. These kinds of statements are called axioms and classified into two kinds: the ones
that constrain the interpretation of concepts are called TBox axioms, and the ones that
refer to roles are called RBox axioms.

DLs can differ in their concept and role constructors, but also in the kinds of assertions and
axioms they allow. We define now the assertions and axioms of the basic DL ALCH, which
are allowed in all the DLs that we consider in this thesis. We will later define other DLs where
additional assertions and axioms are allowed.

Definition 2.1.5 (ALCH ABox assertions, TBox axioms, RBox axioms) For ALCH,
assertions and axioms are defined as follows.

ABox assertions:

• If C is a concept and a ∈ NI is an individual, then C(a) is a concept membership assertion.

• If p is a role and a, b ∈ NI are individuals, then p(a, b) is a role membership assertion.

• If a, b ∈ NI are individuals, then a 6≈ b is an inequality assertion.

11

Male (zeus)
Deity (zeus)

Female (alcmene)
Mortal (alcmene)

Hero (heracles)

hasFather (heracles, zeus)
hasMother (heracles, alcmene)
hasFather (alcmene, electryon)
hasFather (electryon,perseus)
hasFather (perseus, zeus)

Figure 2.1: The Theogony ABox Ag

TBox axioms:

• If C1 and C2 are concepts, then C1 ⊑ C2 is a concept inclusion axiom (CIA).

RBox axioms:

• If p1 and p2 are roles, then p1 ⊑ p2 is a role inclusion axiom (RIA).

Knowledge Bases in ALCH

Now we can define knowledge bases, which are composed by ABox assertions, TBox axioms, and
RBox axioms. They are naturally grouped into three sets: the ABox, the TBox, and the RBox.
The definition of these three components is the same for all DLs.

Definition 2.1.6 (ABoxes, TBoxes, RBoxes) For every DL L, we define:

• An ABox in L is a finite set of ABox assertions in L.

• A TBox in L is a finite set of TBox axioms in L.

• An RBox in L is a finite set of RBox axioms in L.

The definition of ALCH knowledge bases is the basic one. It will remain essentially the same
in all DLs we consider, modulo some additional constraints that will be imposed in some cases.

Definition 2.1.7 (ALCH knowledge bases) In ALCH, a knowledge base is a tuple K =
〈A,T ,R〉, where A, T , and R are, respectively, an ABox, a TBox, and an RBox in ALCH.

We remark that the distinction we make between TBox axioms and RBox axioms is not done
in many Description Logics. It is a common practice to have one single intensional component
in the knowledge base, possibly containing axioms about concepts and roles, and to call it TBox
or terminology. We adopt separated TBox and RBox throughout the full thesis for uniformity,
as some of the DLs we consider have rather complex RBoxes that can be more cleanly described
this way.

We use the following notation throughout the thesis, for ALCH and for all other DLs.

Notation 2.1.8 For a knowledge base, ABox, TBox, RBox, or concept γ, we respectively denote
by NC(γ), NR(γ), and NI(γ) the sets of concept names, role names, and individuals occurring in
K.

Example 2.1.9 Our first knowledge base describing genealogical relations between characters of
the Greek mythology is the Theogony knowledge base Ktheo

1 = 〈Atheo ,T theo
1 ,Rtheo

1 〉, which is a

12

Male ≡ ¬Female (2.1)

Mortal ⊑ ¬Deity (2.2)

Primordial ⊑ Deity (2.3)

¬Primordial ⊑ ∃hasFather.Male ⊓ ∃hasMother.Female (2.4)

Deity ⊑ ∀hasParent.Deity (2.5)

hasMother ⊑ hasParent (2.6)

hasFather ⊑ hasParent (2.7)

Figure 2.2: The ALCH TBox T theo
1 (2.1)–(2.5) and RBox Rtheo

1 (2.6)–(2.7)

knowledge base in ALCH.1 The ABox Atheo is presented in Figure 2.1, the TBox T theo
1 and the

RBox Rtheo
1 can be found in Figure 2.2. In the examples, we use E1 ≡ E2 (for Ei a concept or

role) as a shortcut for the two axioms E1 ⊑ E2 and E2 ⊑ E1.
Intuitively, the assertions in the ABox Atheo indicate that the individual named Zeus is a

male deity, while the individual Alcmene is female and mortal. There is an individual named
Heracles that is a hero, and that has Zeus as a father and Alcmene as a mother. Alcmene has
a father named Electryon, Electryon has Perseus as a father, and Perseus has Zeus as a father.

The CIA (2.1) in the TBox T theo
1 ensures that in the models of Ktheo

1 the domain is partitioned
into males and females, and the CIA (2.2) indicates that mortals can not be deities. The concept
‘primordial’ is intended to contain the primordial deities who appeared at the beginning of the
universe, and who are ancestors of all other deities; the CIA (2.3) asserts that they are deities.
The CIA (2.4) indicates that everyone, except the primordial gods, must have a mother and a
father. The last CIA (2.5) says that the parents of a deity must be deities, and the two RIAs in
the RBox make sure that mothers and fathers are also parents.

Semantics of ALCH

The interpretation function, which fixes the meaning of the symbols in the vocabulary, is ex-
tended to all concepts and roles by means of an inductive definition for each of the concept and
role constructors. The definition is such that each concept is mapped to a set of domain elements,
and each role to a binary relation over the domain. For ALCH, which only supports concept
constructors, the interpretation of atomic concepts is extended to all concepts inductively.

Definition 2.1.10 (semantics of ALCH concepts) Let I = (∆I , ·I) be an interpretation.
The function ·I is inductively extended to all ALCH concepts as follows:

(¬C)I = ∆I \CI

(C1 ⊓ C2)
I = C1

I ∩ C2
I

(C1 ⊔ C2)
I = C1

I ∪ C2
I

(∃p.C)I = {x | ∃y.(x, y) ∈ pI ∧ y ∈ CI}
(∀p.C)I = {x | ∀y.(x, y) ∈ pI → y ∈ CI}

Now that we have fixed the semantics of concepts and roles, we can define the satisfaction
of assertions and axioms. This is done in a natural way. The symbol ⊑ in the TBox and RBox

1The examples are only for illustrative purposes and their contents is not necessarily accurate. Some infor-
mation was taken from http://www.pantheon.org and http://en.wikipedia.org.

13

http://www.pantheon.org
http://en.wikipedia.org

axioms is understood as an ‘is-a’ relation. That is, a concept inclusion C1 ⊑ C2 indicates that
every object that is C1 is also C2, or to be more precise, that every object that participates in the
interpretation of concept C1 also participates in the interpretation of concept C2. Similarly, a
role inclusion p1 ⊑ p2 indicates that every pair of objects that participates in p1 also participates
in p2. Concept and role membership assertions in the ABox simply state that (the interpretation
of) an individual participates in (the interpretation of) a concept, and that a pair of individuals
participates in a role, respectively. Finally, an assertion of the form a 6≈ b states that the
individuals a and b can not be interpreted as the same domain element. This is closely related
to the unique name assumption, sometimes made in Description Logics and related formalisms.
Under the unique name assumption, each interpretation I must be such that aI = bI only if
a = b, that is, one domain element can not be the interpretation of two different individuals.
We do not make this assumption, but it can be simulated using assertions a 6≈ b for each pair of
individuals.

Definition 2.1.11 (satisfaction of ABox assertions, TBox axioms and RBox axioms)
Let I be an interpretation. We define the satisfaction relation I |= γ for γ an assertion or
axiom as follows.

• For ABox assertions, we have I |= C(a) if aI ∈ CI,
I |= p(a, b) if (aI , bI) ∈ pI, and
I |= a 6≈ b if aI 6= bI .

• For TBox axioms, we have I |= C1 ⊑ C2 if CI
1 ⊆ C

I
2 .

• For TBox axioms, we have I |= p1 ⊑ p2 if pI1 ⊆ p
I
2 .

Naturally, the models of an ABox, TBox or RBox are defined as the interpretations that
satisfy all the assertions or axioms it contains, and an interpretation is a model of a knowledge
base if it is a model of each of its components. This definition is the same for all the DLs that
we treat in this thesis.

Definition 2.1.12 (satisfaction of ABoxes, TBoxes, RBoxes, and KBs; models) Let
I be an interpretation. Then

• I satisfies an ABox A, if it satisfies every assertion in A.

• I satisfies a TBox T , if it satisfies every axiom in T .

• I satisfies an RBox R, if it satisfies every axiom in R.

• I satisfies a knowledge base K = 〈A,T ,R〉, if it satisfies A, T , and R.

Given an ABox, TBox, RBox or knowledge base γ, we write I |= γ, if I satisfies γ. If I |= γ,
then I is called a model of γ.

Example 2.1.13 Consider an interpretation I1 = (∆I1 , ·I1) with the domain ∆I1 = {1, . . . , 8}.
We describe the interpretation function only for the symbols that occur in Ktheo

1 . In particular,

14

Primordial
Female

Deity

Primordial
Male
Deity

Male
Mortal

1
zeus

2
Male

heracles

Hero 5
Male
Hero

8 Female
Deity

Female
Mortal

Male
Deity

7

6

4electryon
alcmene perseus

3

Figure 2.3: The interpretation I1

we have:

zeusI1 = 1 alcmeneI1 = 3 perseusI1 = 5

heraclesI1 = 2 electryonI1 = 4

MaleI1 = {1, 2, 4, 5, 7} MortalI1 = {3, 4} HeroI1 = {2, 5}
FemaleI1 = {3, 6, 8} DeityI1 = {1, 6, 7, 8} PrimordialI1 = {6, 7}

hasMotherI1 = {(1, 6), (2, 3), (3, 8), (4, 8), (5, 3), (8, 6)}
hasFatherI1 = {(1, 7), (2, 1), (3, 4), (4, 5), (5, 1), (8, 7)}

hasParentI1 = hasMotherI1 ∪ hasFatherI1

The interpretation is depicted in Figure 2.3, where each node is labeled with the name of the
individuals it interprets, and with the set of concepts in whose interpretation it participates.
The hasFather relation is represented by solid arrows, while hasMother is represented by dashed
arrows, and hasParent comprises both kinds of arrows. The interpretation I1 satisfies Atheo ,
T theo

1 and Rtheo
1 , hence I1 |= K

theo
1 .

ALC, a sublogic of ALCH

The basic DL ALC is defined like ALCH, but it does not allow for role inclusions.

Definition 2.1.14 (ALC knowledge base) ALC is the sublogic of ALCH that does not allow
for any RBox axioms. That is, the only ALC RBox is ∅, and an ALC knowledge base is an
ALCH knowledge base of the form K = 〈A,T , ∅〉.

Example 2.1.15 The RIAs (2.6) and (2.7) in Figure 2.2 are not allowed in ALC, so we can
not relate the roles hasMother and hasFather with hasParent. If we consider the knowledge base
〈Atheo ,T theo

1 , ∅〉, the CIA (2.5) would not restrict the fillers of the hasFather and hasMother

relation for a deity to be deities, Hence, in the absence of RIAs, the intended meaning of (2.5)
would be captured better by a CIA Deity ⊑ ∀hasMother.Deity ⊓ ∀hasFather.Deity instead.

2.1.2 The SH Family and other Extensions of ALCH

The DL ALCH can be extended with additional concept and role constructors, and by allowing
other kinds of axioms. Some of the most prominent logics obtained this way are the ones in the
so called SH family, which includes the DL SHOIQ and some of its sublogics. SHOIQ is a

15

very expressive DL that is closely related to the Web Ontology Language standard known as
OWL-DL [PSHH04]. Most of the popular DL constructors are in SHOIQ, and hence many of
the DLs mentioned in the thesis can be defined as sublogics of it.

Concepts and roles in SHOIQ

Definition 2.1.16 (SHOIQ concepts and roles) Atomic concepts B, concepts C and roles
P , S, obey the following grammar, where a∈NI, A ∈ NC, p ∈ NR \ T, and n ≥ 0:

B ::= A | {a}

C,C1, C2 ::= B | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃P .C | ∀P .C | >nS.C | 6nS.C

P,S ::= p | p−

The inverse of p ∈ NR is p−, and the inverse of p− is p. To avoid expressions such as (p−)
−
,

we denote by Inv(P) the inverse of the role P . Concepts of the form {a} are called nominals,
while concepts >nS.C and 6nS.C are called (qualified) number restrictions (QNRs).

Assertions and axioms in SHOIQ

In addition to the new role constructor p− and the new concept constructors, SHOIQ extends
ALCH with another kind of RBox axioms.

Definition 2.1.17 (SHOIQ ABox assertions, TBox axioms, RBox axioms) ABox as-
sertions and TBox axioms in SHOIQ are defined analogously to ALCH, but allowing for
SHOIQ concepts and roles where applicable. In addition to RIAs, SHOIQ RBoxes allow
for transitivity axioms (TAs), which are expressions trans(P) where P is a role.

Knowledge bases in SHOIQ

Knowledge bases in SHOIQ are defined essentially as for ALCH, but must satisfy an additional
constraint: the roles that occur in the number restrictions must be simple, which means that
they can not be implied by roles whose extension has to be transitively closed. Intuitively, this
allows us to count only the direct neighbors of a node, but not nodes that are further away in the
models; it is well known that dropping this restriction results in an undecidable logic [HST00].

To formalize the notion of simple roles, we use the relation ⊑R , which will also be useful
later. Intuitively ⊑R relates each pair of roles P1, P2 such that P I

1 ⊆ P2I holds in every
interpretation that satisfies R.

Definition 2.1.18 (simple roles, SHOIQ knowledge bases) For an RBox R, we denote
by ⊑R the reflexive transitive closure of {(P1, P2) | P1 ⊑ P2 or Inv(P1) ⊑ Inv(P2) is in R};
we usually write ⊑R in infix notation. A role S is simple w.r.t. R, if there is no P such that
P ⊑R S and trans(P) ∈ R.

A knowledge base in SHOIQ is a triple K = 〈A,T ,R〉 consisting of an ABox A, a TBox T
and an RBox R, such that all roles S occurring in a number restriction 6nS.C or >nS.C are
simple w.r.t. R.

Example 2.1.19 Consider the SHOIQ knowledge base Ktheo
2 = 〈Atheo ,T theo

2 ,Rtheo
2 〉, with the

ABox Atheo of Figure 2.1. The TBox T theo
2 contains T theo

1 from Figure 2.2 and the CIAs (2.8)–
(2.10) in Figure 2.4. The RBox Rtheo

2 contains Rtheo
1 , and additionally the RIAs (2.11) and

(2.12) and the transitivity axiom (2.13). The first CIA (2.8) in the figure illustrates the usefulness
of number restrictions, which allow us to restrict the number of parents of each mortal to two.

16

Mortal ⊑ 6 2 hasParent.⊤ (2.8)

Primordial ≡ {chronos} ⊔ {gaia} (2.9)

Deity ⊑ Primordial ⊔ ∃hasAncestor.Primordial (2.10)

hasParent− ≡ hasChild (2.11)

hasParent ⊑ hasAncestor (2.12)

trans(hasAncestor) (2.13)

Figure 2.4: TBox axioms (2.8)–(2.9) and RBox axioms (2.11)–(2.13) in SHOIQ

Note that this CIA combined with (2.1), (2.4), (2.6) and (2.7) actually ensures that each mortal
has exactly two parents: one mother that is female and one father that is male. The CIA (2.9)
illustrates the power of nominals: it says that the primordial gods are exactly Chronos and Gaia.
The third CIA, (2.10), says that all non-primordial deities descend from a primordial god. The
hasChild relation is exactly the inverse of hasParent, that is d has a parent d′ iff d′ has a child d
(2.11). All parents are ancestors (2.12), and the ancestor relation is transitive (2.13). That is,
the ancestors of the ancestors of d are ancestors of d, for every d.

Semantics of SHOIQ

To give semantics to SHOIQ knowledge bases, we need to define the semantics of the new
concept and role constructors.

Definition 2.1.20 (semantics of concepts and roles in SHOIQ) For every interpreta-
tion I, we define:

(p−)I = {(y, x) | (x, y) ∈ pI}

{a}I = {aI}
(>nS.C)I = {x | |{y | (x, y) ∈ SI ∧ y ∈ CI}| ≥ n}
(6nS.C)I = {x | |{y | (x, y) ∈ SI ∧ y ∈ CI}| ≤ n}

We also need to define the semantics of assertions and axioms, on which the semantics of
knowledge bases depends.

Definition 2.1.21 (satisfaction of ABox assertions, TBox axioms and RBox axioms)
Let I be an interpretation. The satisfaction relation I |= γ if γ is an ABox assertion, a TBox
axiom, or a RIA, is as for ALCH.

For transitivity axiom trans(P), we have that then I |= trans(P) if P I is transitively closed,
that is, if for every d1, d2, d3 in ∆I, (d1, d2) ∈ P

I and (d2, d3) ∈ P
I implies (d1, d3) ∈ P

I .

Example 2.1.22 Recall the interpretation I1 from Example 2.1.13, and additionally let

gaiaI1 = 6

chronosI1 = 7

hasChildI1 = {(d′, d) ∈ ∆I1 ×∆I1 | (d, d′) ∈ hasParentI1},

and let hasAncestorI1 be the transitive closure of hasParentI1. Then I1 |= K
theo
2 .

17

DL TAs RIAs inverses nominals QNRs

ALC
ALCI X

ALCH X

ALCHI X X

SH X X

SHIQ X X X X

SHOQ X X X X

SHOI X X X X

ALCHOIQ X X X X

SHOIQ X X X X X

Table 2.1: Some expressive DLs between ALC and SHOIQ

Sublogics of SHOIQ

There are many well known DLs that contain ALC, and extend it with some of the features of
SHOIQ. The logic S is the extension of ALC with transitivity axioms. Both ALC and S can
be extended with the additional features as follows: the presence of the letter H indicates that
RIAs are allowed as RBox axioms, and the additional letters I, O and Q respectively denote
the presence of inverses as a role constructor, of nominals, and of number restrictions. Some of
these extensions, which will be mentioned throughout the thesis, are listed in Table 2.1.

Example 2.1.23 Recall the knowledge base Ktheo
2 = 〈Atheo ,T theo

2 ,Rtheo
2 〉 from the previous ex-

ample. In DLs that do not have inverses, like ALCH and SHQ, the RIA (2.11) can not be
expressed, hence we can only use the relations hasParent and hasChild as two separate roles, and
the intended relationship between them can not be enforced. In DLs that do not support transi-
tivity axioms, like ALC, we can only ensure that parents of an object d are its ancestors, but we
can not relate d to, for example, the parents of its parents.

2.1.3 The Z Family

Now we introduce the DL ZOIQ and its sublogics ZIQ, ZOQ, and ZOI. These logics are
extensions of a rather well known DL, called ALCreg , obtained by adding regular expressions
over roles to ALC [Sch91, Baa91]. ALCreg is just a syntactic variation of Propositional Dynamic
Logic (PDL) [HKT00], a prominent formalism for reasoning about the behavior of programs.
The expressive power of ALCreg can be further increased by adding some of the additional
constructs mentioned above, like inverse roles I, quantified number restrictions Q, and nominals
O. Some of the extensions have a natural counterpart in the PDL setting. For example, inverse
roles are the DL equivalent to converse programs in PDL, and adding them to ALCreg results in
a DL equivalent to converse PDL. Number restrictions are not usually considered in PDL, but
they are closely related to functional programs. Nominals, on the other hand, have no natural
equivalent in the context of PDL, but have been considered in extensions of ALCreg . Please see
[CDG03] for references and discussion.

We consider extensions of ALCreg with role inclusions, inverses, nominals and number re-
strictions as in SHOIQ, and additionally allow to use conjunction, disjunction and difference of
roles as role constructors. We refer to these combinations as safe Boolean role expressions. Fi-
nally, we include as an additional feature some special concepts of the form ∃S.Self that express
a certain form of local reflexivity [HKS05]. This kind of concepts had not been considered before

18

in the extensions of ALCreg , but as we will see, their addition enables these logics to simulate
some other prominent DLs. Note that transitivity can be expressed in ALCreg , hence it is not
natural to add transitivity axioms.
ZOIQ is an alternative name for the DL ALCHOIQbSelf

reg , which extends ALC with role
inclusion axioms (H), nominals (O), inverse roles (I), qualified number restrictions (Q), regular
expressions over roles (reg), safe Boolean role expressions (b), and concepts of the form ∃S.Self

(Self).2 Its sublogics ZIQ, ZOQ, and ZOI, also known as ALCHOIQbSelf
reg , ALCHIQbSelf

reg ,
ALCHOQbSelf

reg , and ALCHOIbSelf
reg , respectively, are introduced below.

Concepts and roles in ZOIQ

Definition 2.1.24 (ZOIQ concepts and roles) Atomic concepts B, concepts C, atomic
roles P , simple roles S, and roles R, obey the following grammar, where a∈NI, A∈NC, p∈NR,
and p 6= T:

B ::= A | {a}

C,C1, C2 ::= B | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C | >nS.C | 6nS.C | ∃S.Self

P ::= p | p−

S, S1, S2 ::= P | S1 ∩ S2 | S1 ∪ S2 | S1 \ S2

R,R1, R2 ::= T | S | R1 ∪R2 | R1 ◦R2 | R
∗ | id(C)

We may refer to a simple role S as a Boolean role expression, and to an arbitrary role R as a
regular role expression.

In ZOIQ, we may use the term expression to refer to a concept or a role. The subconcepts,
subroles, and subexpressions of an expression E are the concepts, roles and expressions that
occur syntactically in E.

Note that in ZOIQ, a concept may have roles as subexpressions, while a role can have
concepts as subexpressions.

Recall the notation from 2.1.8, and in particular that NR(γ) denotes the set of role names
occurring in a knowledge base, ABox, TBox, or concept γ. For logics with inverse roles and for
logics with nominals, we also use the following notation:

Notation 2.1.25 For a knowledge base, ABox, TBox, or concept γ, we use the following nota-
tions for atomic roles and atomic concepts:

NR(γ) = NR(γ) ∪ {p− | p ∈ NR(γ)}
NCI(γ) = NC(γ) ∪ {{a} | {a} occurs in γ}

Assertions and axioms in ZOIQ

Assertions and axioms in ZOIQ are very similar to those in ALCH, but only simple roles are
allowed in the ABox and in the RBox.

Definition 2.1.26 (ZOIQ ABox assertions, TBox axioms, RBox axioms) In ZOIQ,
ABox assertions are inequality and concept membership assertions as in ALCH (but allowing for
ZOIQ concepts), and role membership assertions S(a, b) where S is a simple role and a, b ∈ NI

are individuals.
TBox axioms are CIAs defined in the usual way, and RBox axioms are defined as follows:

2Following the notation conventions in [BCM+03], and using s to denote ∃S.Self as a concept con-
structor (to our knowledge, there is no standard symbol for it) the logic ALCHOIQbSelf

reg would be named

ALCHOQs−1,∩,∪,\,◦,∗,id . However, this notational convention does not prescribe how to indicate that regular
role expressions are not allowed in Boolean roles, Self concepts and number restrictions.

19

Deity ⊑ ∃(hasMother ∪ hasFather)∗.Primordial (2.14)

{narcissus} ⊑ ∃isInLoveWith.Self (2.15)

∃hasParent.Self ⊑ ⊥ (2.16)

hasDirectRelative ≡ hasParent ∪ hasChild (2.17)

hasParent ∩ hasChild ⊑ B (2.18)

Figure 2.5: TBox axioms (2.14)–(2.15) and RBox axioms (2.17)–(2.18) in ZOIQ

• if S1 and S2 are simple roles, then S1 ⊑ S2 is a (Boolean) role inclusion axiom (BRIA).

Note that all BRIAs are RIAs.

Knowledge bases in ZOIQ

Knowledge bases in ZOIQ are as in ALCH.

Definition 2.1.27 (ZOIQ knowledge bases) In ZOIQ, a knowledge base is a triple K =
〈A,T ,R〉 consisting of an ABox A, a TBox T and an RBox R.

Example 2.1.28 To illustrate the expressiveness of ZOIQ we extend the first ALCH knowledge
base Ktheo

1 from Example 2.1.9 with some additional axioms. We consider the ZOIQ knowledge
base Ktheo = 〈Atheo ,T theo

3 ,Rtheo
3 〉, where Atheo is the ABox in Figure 2.1, the TBox T theo

2 con-
tains T theo

1 from Figure 2.2 and additionally the CIAs (2.14)–(2.15) in Figure 2.5, and the RBox
Rtheo

2 contains Rtheo
1 and the BRIA (2.17).

In ZOIQ, instead of defining a role hasAncestor that is transitive as we did in SHOIQ, we
can use regular expressions such as (hasMother ∪ hasFather) ◦ (hasMother ∪ hasFather)∗. Hence
the CIA (2.14) ensures, similarly to (2.10), that all deities descend from some primordial god.
Using Self concepts we can express, for example, (2.15) that Narcissus is in love with himself, and
(2.16) that no one can be his own parent. The BRIA (2.17) allows us to define ‘direct relatives’
as the union of parents and children, and the BRIA (2.18) says that somebody’s child can not be
also his parent.

Semantics of ZOIQ

To define the semantics, we first need to define how the interpretation function ·I is extended
to the concept and role constructors that are new in ZOIQ.

Definition 2.1.29 (semantics of ZOIQ concepts and roles) For every interpretation I,
we define:

(∃S.Self)I = {x | (x, x) ∈ SI}

(S ∩ S′)I = SI ∩ S′I

(R ∪R′)I = RI ∪R′I

(S \ S′)I = SI \ S′I

(R ◦R′)I = RI ◦R′I

(R∗)I = (RI)∗

(id(C))I = {(x, x) | x ∈ CI}

20

Here, we override the ◦ operator to denote the composition of two binary relations, and ·∗ to
denote the reflexive transitive closure of a binary relation. That is, for binary relations rel1
and rel2 with reli ⊆ ∆I × ∆I, we define rel1 ◦ rel2 = {(d1, d3) | ∃d2 ∈ ∆I : (d1, d2) ∈
rel1 and (d2, d3) ∈ rel2}, and rel1

∗ denotes the smallest relation containing rel1 such that
(d, d) ∈ rel1

∗ for every d ∈ ∆I, and such that (d1, d2) ∈ rel1
∗ and (d2, d3) ∈ rel1

∗ imply
(d1, d3) ∈ rel1

∗.

Given the semantics of concepts and roles, the satisfaction relation for assertions and axioms
is as in ALCH.

Sublogics of ZOIQ

Finally, we introduce the sublogics of ZOIQ that we discuss in the thesis.

Definition 2.1.30 (ZIQ, ZOQ and ZOI) We consider three sublogics of ZOIQ that result
from disallowing different constructors in concepts and roles:

• ZIQ disallows nominals {a};

• ZOQ disallows inverse roles p−;

• ZOI disallows number restrictions >nS.C, 6nS.C.

2.1.4 The SR Family

SROIQ is a rather well known DL, because it was proposed as the basis for the most recent
Web Ontology Language proposal, OWL 2 [CGHM+08]. It is an extension of SHOIQ, the DL
that extends SHIQ with nominals (see Definition 2.1.24). Its sublogics SRIQ, SROQ and
SROI are analogous to ZIQ, ZOQ and ZOI.

The most prominent feature of the logics in the SR family are complex role inclusion axioms
of the form P1 ◦ · · · ◦Pn ⊑ P . It is also possible to explicitly state certain properties of roles like
transitivity, (ir)reflexivity and disjointness. Some of these additions increase the expressivity
of the logic, while others are just ‘syntactic sugar’ and are intended to be useful for ontology
engineering. We recall the definition of SROIQ from [HKS06], borrowing some notation from
[Kaz08].

Concepts and roles in SROIQ

As usual, we start by defining concepts and roles. Concepts are essentially as for ZOIQ, and
roles are simpler, as the only role constructors are inverses and role composition ◦.

Definition 2.1.31 (SROIQ concepts and roles) In SROIQ, Atomic concepts B, concepts
C, atomic roles P , S, and roles R, obey the following grammar, where a∈NI, A∈NC,
p∈NR \ {T}:

B ::= A | {a}

C,C1, C2 ::= B | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∀P .C | ∃P .C | ∀P .C | ∃T.C | ∀T.C |

>nS.C | 6nS.C | ∃S.Self

P, S ::= p | p−

R,R1, R2 ::= S | R1 ◦R2

Roles of the form P1 ◦ · · · ◦ Pn may be called role chains.

Note that T may only occur in universal and existential restrictions, and that it is not a
SROIQ role in general.

21

Assertions and axioms in SROIQ

SROIQ supports some assertions and axioms that were not present in the other logics so far.
In particular, the rich RBox axioms are its main distinguishing feature.

Definition 2.1.32 (SROIQ ABox assertions, TBox axioms, RBox axioms) In
SROIQ, ABox assertions are as follows:

• If C is a concept and a ∈ NI an individual, then C(a) is a concept membership assertion.

• If P is an atomic role and a, b ∈ NI are individuals, then P (a, b) is a (positive) role
membership assertion.

• If S is an atomic role and a, b ∈ NI are individuals, then ¬S(a, b) is a (negative) role
membership assertion.

• If a, b ∈ NI are individuals, then a 6≈ b is an inequality assertion.

TBox axioms are CIAs, defined as usual. RBox axioms are as follows:

• If R is a role chain and P is an atomic role, then R ⊑ P is a complex role inclusion axiom
(CRIA). Note that R ⊑ P is a RIA in case R is atomic.

• If P, S, S′ are atomic roles, then the following are role property axioms:3

Ref(P), Irr(S), Asy(S), and Dis(S, S′),

Knowledge Bases in SROIQ

To define SROIQ knowledge bases, we need some additional conditions that were designed to
ensure decidability. In particular, we need a notion called regularity and, similarly to SHOIQ,
we must define simple roles, and restrict the roles occurring in certain positions to be simple. As
for SHOIQ, we define a relation ⊑R that contains the pairs R,P of roles such that RI ⊆ P I

for each model I of R, but the definition is more involved due to the presence of role chains in
the role inclusion axioms.

Definition 2.1.33 (regular RBoxes, simple roles, knowledge bases) An RBox R is reg-
ular, if there exists a strict partial order ≺ on the set NR of all atomic roles such that Inv(P) ≺ P ′

iff P ≺ P ′ for every P,P ′ ∈ NR, and such that every CRIA in R is of one of the following forms:

• P ◦ P ⊑ P ,

• P− ⊑ P ,

• R ⊑ P ,

• R ◦ P ⊑ P , or

• P ◦R ⊑ P ,

where R = P1 ◦ · · · ◦ Pn and Pi ≺ P for each 1 ≤ i ≤ n.
The relation ⊑R is the smallest relation such that

(i) P ⊑R P for every role P ∈ NR such that P or Inv(P) occurs in R, and
(ii) P1 ◦· · ·◦Pn ⊑

R P for each P1 ◦· · ·◦Pi−1 ◦P
′ ◦Pj+1 ◦· · ·◦Pn ⊑

R P such that Pi ◦· · ·◦Pj ⊑
P ′ ∈ R or Inv(Pj) ◦ · · · ◦ Inv(Pi) ⊑ P

′ ∈ R, for some P ′ ∈ NR and 1 ≤ i ≤ j ≤ n.

3We use the term role property axiom instead of role assertions used in [HKS05], since the latter is often
used to refer to the ABox role membership assertions.

22

hasAncestor ◦ hasAncestor ⊑ hasAncestor (2.19)

hasParent ⊑ hasDirectRelative (2.20)

hasChild ⊑ hasDirectRelative (2.21)

hasParent ◦ hasParent− ⊑ hasSibling (2.22)

hasParent ◦ hasSibling ◦ hasChild ⊑ hasCousin (2.23)

Dis(hasParent, hasChild) (2.24)

Figure 2.6: RBox axioms (2.19)–(2.24) in SROIQ

A role P is simple w.r.t. R, if there are no roles P1, . . . , Pn with n ≥ 2 such that P1 ◦· · ·◦Pn ⊑
R

P .
A SROIQ knowledge base is a triple K = 〈A,T ,R〉 where A in an ABox, T is a TBox, and

R is regular RBox in SROIQ, and, additionally, all roles S, S′ are simple w.r.t. R for every

• number restriction >nS.C, 6nS.C,

• concept of the form ∃S.Self,

• negative role assertion ¬S(a, b) in A, and

• role property axiom Irr(S), Asy(S) or Dis(S, S′) in R.

Semantics of SROIQ

Note that all concept and role constructors in SROIQ are also present in ZOIQ, and thus their
semantics is already defined. We only need to give semantics to the special ABox assertions and
RBox axioms.

Definition 2.1.34 (satisfaction of ABox assertions, TBox axioms and RBox axioms)
Let I be an interpretation. Then I satisfies a negated role membership assertion ¬S(a, b),
i.e., I |= ¬S(a, b), if (aI , bI) 6∈ SI . For other ABox assertions, all TBox axioms, and CRIAs,
satisfaction is defined as usual.

For role property axioms, we have:

• I |= Ref(P) if RI is reflexive, i.e., (d, d) ∈ P I for every d ∈ ∆I;

• I |= Irr(S) if SI is irreflexive, i.e., (d, d) 6∈ SI for every d ∈ ∆I;

• I |= Asy(S) if SI is asymmetric, i.e., (d, d′) ∈ SI implies (d′, d) 6∈ SI; and

• I |= Dis(S, S′) if the relations S and S′ are disjoint, i.e., SI ∩ S′I = ∅.

Example 2.1.35 Our example SROIQ knowledge base Ktheo = 〈Atheo ,T theo
4 ,Rtheo

4 〉 has the
usual ABox Atheo . The TBox T theo

4 contains most of the TBox axioms from the previous exam-
ples: all the ALCH axioms in T theo

1 (Figure 2.2), all the SHOIQ axioms in T theo
2 (Figure 2.4),

and additionally the ZOIQ axioms (2.15) and (2.16) (Figure 2.5). The SR family differs from
the other DLs we have considered so far mostly in the RBox, and this is reflected in our ex-
ample: Rtheo

4 includes the RIAs (2.6), (2.7), (2.11) and (2.12) from the previous examples, and
additionally the axioms (2.19)–(2.24) in Figure 2.6. The CRIA (2.19) is equivalent to (2.13).
The two CRIAs (2.20) and (2.21) simulate the right to left inclusion of (2.17), that is, parents
and children are direct relatives. Unlike ZOIQ, SROIQ can not enforce the other direction,

23

and in the models of Ktheo the possible existence of direct relatives of an object that are neither
its parents nor its children can not be ruled out in general. The CRIAs (2.22) and (2.19) illus-
trate how we can express in SROIQ relatively complex relations, e.g., that certain relatives are
siblings or cousins. Note that in ZOIQ we do not have these inclusions, but we can directly
use expressions such as hasParent ◦ hasParent− in the place of hasSibling in TBox axioms and
ABox assertions to achieve a similar result. Finally, the role property axiom (2.24) says, like
the ZOIQ BRIA (2.18), that somebody’s child can not be also his parent.

Sublogics of SROIQ

We consider three sublogics of SROIQ which are analogous to ZIQ, ZOQ, and ZOI.

Definition 2.1.36 (The DLs SRIQ, SROQ and SROI) A knowledge base K in SROIQ
is

• in SRIQ, if no nominal concepts {a} occur;

• in SROQ, if no inverse roles P− occur; and

• in SROI, if no number restrictions >nS.C, 6nS.C occur.

We remark that the definition of SROIQ presented here is a minor restriction of the original
definition in [HKS06], but it is not less expressive. In particular, Horrocks et al. allow role
property axioms of two additional forms. First, they allow transitivity axioms trans(P), as in
SHOIQ, which can be equivalently expressed using CRIAs of the form P ◦ P ⊑ P . Second,
Sym(P) asserts that P is symmetric, which can be expressed as P− ⊑ P ; please note that this is
not supported in the SROQ fragment. ABox assertions ¬R(a, b) for non-simple R are allowed in
SROIQ [HKS06], but not in SRIQ [HKS05]. Our syntax allows us to express them in all logics
with nominals, since the assertion ¬R(a, b) can be equivalently rewritten as {a} ⊑ ∀R.¬{b}.

To allow for a more uniform definition of SROIQ and its sublogics, we have only allowed for
the universal role in universal and existential restrictions. The definition of SROIQ in [HKS06]
allows T to occur as an ordinary role everywhere except in RBoxes, while the definition of SRIQ
in [HKS05] does not allow it. Our definition is not less expressive, as role membership assertions
T(a, b) or T−(a, b) are trivially satisfied in every interpretation and can be ignored, while ¬T(a, b)
or ¬T−(a, b) are trivially unsatisfiable and can be replaced by ⊥(a). Concepts of the form ∃T.Self

and ∃T−.Self are equivalent to ⊤. Hence, the only interesting consequence of our restrictions
on the occurrences of the universal role are that one can not write number restrictions 6nT.C,
>nT.C in our syntax. This is not a limitation, since they can be simulated using nominals.
To simulate the effect of 6nT.C, we replace it by a fresh concept name A(6nT.C) wherever it
occurs in K, and make sure that whenever an object satisfies A(6nT.C) in a model, then the
cardinality of the interpretation of C is bounded by n. The latter can be achieved using n fresh
individuals a1, . . . , an, and a CIA

∃T.A(6n T.C) ⊓ C ⊑ {a1} ⊔ · · · ⊔ {an},

which ensures that if the interpretation of A(6n T.C) is non-empty, then there are at most n
instances of C. Dually, >nT.C means that in every model the cardinality of the interpretation
of C has to be at least n. We also replace >nT.C by a fresh concept name A(>nT.C). To put
n different fresh individuals into the extension of C whenever the interpretation of A(>nT.C) is
not empty, we use a CIA

A(>nT.C) ⊑
l

1≤i≤n

∃T.(C ⊓ {ai} ⊓
l

1≤j<n

¬{aj}).

24

¬(C1 ⊓ C2)
I = (¬C1 ⊔ ¬C2)

I

¬(C1 ⊔ C2)
I = (¬C1 ⊓ ¬C2)

I

¬(∀R.C)I = (∃R.¬C)I

¬(∃R.C)I = (∀R.¬C)I

¬(6nR.C)I = (>n+ 1R.¬C)I

¬(>nR.C)I = (6n− 1R.¬C)I

(S \ (S1 ∩ S2))
I = ((S \ S1) ∪ (S \ S2))

I

(S \ (S1 ∪ S2))
I = ((S \ S1) ∩ (S \ S2))

I

(S \ (S1 \ S2))
I = ((S ∩ S1) ∪ (S \ S2))

I

Table 2.2: Translation of concepts and roles into Negation Normal Form (NNF)

Note that these number restrictions are not supported by SRIQ according to [HKS05], and they
can not be added to it without modifying its expressive power. Allowing expressions of the form
6nT.C amounts to imposing a cardinality restriction on the (interpretation of) the concept C.
This is enough to simulate nominals [Tob00], making SRIQ as expressive as SROIQ.

2.1.5 Negation Normal Form

It is sometimes convenient to consider expressions in negation normal form (NNF), where nega-
tion has been pushed inside as much as possible. In most DLs we consider concepts in NNF,
which means that negation can only occur before concepts that have no proper subconcepts. In
the case of ZOIQ, as we also have Boolean role operators, it makes sense to consider expressions
in NNF that can be concepts or roles. In addition to the restrictions on negated subconcepts
above, role difference can only occur with an atomic role on the right hand side.

Definition 2.1.37 (Negation Normal Form (NNF)) Let L be any DL that is a sublogic of
SHIQ or SROIQ. Then we say that a concept C in L is in negation normal form (NNF), if
every negated subconcept of C is of the form ¬A, ¬{a}, or ¬∃S.Self, where A ∈ NC, a ∈ NI and
S is a role in L.

Analogously, for a ZOIQ concept or role E, we say that E is in NNF, if (i) every negated
subconcept of E has the form ¬A, ¬{a}, or ¬∃S.Self, where A ∈ NC, a ∈ NI and S is a simple
role, and (ii) for every subrole of E of the form S \ S′, S is either p or p− for some p ∈ NR.

It is well known that, in all the DLs we have introduced, concepts and roles can be efficiently
(in polynomial time) rewritten into NNF using the equivalences in Table 2.2, which hold for
every interpretation I.

Proposition 2.1.38 Let L be any of the DLs we have defined. For every concept or role E in
L, there is a concept or role nnf (E) in NNF such that EI = nnf (E)I for every interpretation
I.

2.1.6 Reasoning in DLs

DLs, as knowledge representation formalisms, are expected to provide reasoning services, that
is, to allow for solving some inference or reasoning problems that may be of interest to the users.
There are quite a few such problems that are considered important and that have been studied
for most DLs, and are usually called standard reasoning problems (as opposed to non-standard
problems such as reasoning with queries, which will be mentioned later).

The most notable one is knowledge base satisfiability :

25

Definition 2.1.39 (knowledge base satisfiability) A knowledge base K is satisfiable if there
exists an interpretation I such that I |= K, and unsatisfiable otherwise. The knowledge base
satisfiability problem is to decide whether a given knowledge base is satisfiable or unsatisfiable.

We recall a few other standard reasoning problems, which are, in essence, equivalent to
(un)satisfiability via linear time reductions:

Concept satisfiability w.r.t. a knowledge base: Given a concept C and a knowledge base
K, decide whether C is satisfiable w.r.t. K, that is, whether there exists an interpretation
I such that I |= K and CI 6= ∅.

This reasoning problem can be reduced to knowledge base satisfiability: C is satisfiable
w.r.t. K = 〈A,T ,R〉 iff 〈A ∪ {C(a)},T ,R〉 is satisfiable, where a is a fresh individual.

Concept subsumption w.r.t. a knowledge base: Given two concepts C and D and a
knowledge base K, decide whether C is subsumed by D w.r.t. K, that is, whether CI ⊆ DI

for every interpretation I such that I |= K.

Concept subsumption reduces easily to concept unsatisfiability, and hence to knowledge
base unsatisfiability: C is subsumed by D iff ¬C ⊔D is not satisfiable.

Instance checking w.r.t. a knowledge base: Given a concept C, an individual a, and a
knowledge base K, decide whether a is an instance of C w.r.t. K, that is, whether aI ∈ CI

for every interpretation I such that I |= K.

This reasoning problem can be reduced to knowledge base unsatisfiability: a is an instance
of C w.r.t. K = 〈A,T ,R〉 iff 〈A ∪ {¬C(a)},T ,R〉 is unsatisfiable.

In this thesis we only consider knowledge base satisfiability, but by the reductions above all
complexity results given for this problem extend for the other standard reasoning tasks.

2.2 Queries over Description Logic knowledge bases

The focus of this thesis is on query answering reasoning services, that is, using query languages
whose expressive power goes beyond that of DL concept and role expressions, and that allow
one to use variables in order to join pieces of information when finding query answers, thus
overcoming one of the most significant drawbacks of DLs as languages for data management.

In this section, we introduce some of these query languages and define some problems that
are relevant when reasoning about queries. We first define a general notion of a query and
its semantics, and introduce some general notation that we use throughout the thesis. We
introduce some of the problems that arise when reasoning with queries in DLs, and define
query entailment as the central query reasoning problem considered in this work. We also show
how other reasoning problems reduce to this one. Finally, we define some query languages as
restricted families of queries explicitely addressed in this thesis.

2.2.1 Syntax and Semantics of Queries

First we introduce a general notion of a query, which is a positive existential formula built
from query atoms. A query atom is built from a DL concept or a DL role and is syntactically
similar to an ABox assertion, but it allows for variables. Since these variables may be shared
by the different query atoms of a query in an arbitrary way, it is possible to combine pieces of
information in a flexible way.

26

Definition 2.2.1 (query atom, (positive) query) Let NV denote a countably infinite set of
variables, and let L be a DL. Then a query atom in L is an expression C(v) (a concept atom)
or R(v, v′) (a role atom), where each of the arguments v and v′ is either a variable from NV or
an individual from NI, C is a concept in L, and R is a role in L.

A (positive) L query (with answer variables ~x) is an expression ∃~v.ϕ(~x,~v), where ϕ is built
using ∧ and ∨ from query atoms in L and where only variables from ~v∪~x occur. If ~x = x1, . . . , xn,
then we may call q a query with n answer variables. If ~x = ∅, that is, if all variables in ϕ are
existentially quantified, then we call q a Boolean query.

Example 2.2.2 We consider the following queries. First, a ZOIQ query:

qtheo1 = ∃v. hasParent∗ ◦ hasParent−
∗
(x1, x2) ∧ hasChild(x1, v) ∧ hasChild(x2, v) ∧

Male(x1) ∧ Female(x2) ∧ (¬Deity(x1) ∨ ¬Deity(x2))

Its answer variables are x1 and x2. Informally, it asks for pairs of individuals who are relatives
(i.e., related by the expression hasParent∗ ◦ hasParent−

∗
), who have a common child v, one is

male and the other female, and at least one of them is not a deity.
Another ZOIQ query is the following:

qtheo2 = ∃v1, v2. Hero(x) ∧ hasMother(x, v1) ∧ hasParent∗(v1, v2) ∧ Deity(v2)

It is not Boolean, as it has one answer variable x. Informally, the answers to qtheo1 are the heroes
(represented by x) that have a divine ancestor on the maternal side.

We also give two examples of Boolean queries:

qtheo3 = ∃v1, v2, v3, v4. Hero(v1) ∧ hasMother(v1, v2) ∧ hasParent(v2, v3) ∧ Deity(v3) ∧
hasChild(v4, v3) ∧ Primordial(v4)

qtheo4 = ∃v1, v2, v3, v4. hasDirectRelative(v1, v2) ∧ hasDirectRelative(v2, v3) ∧
hasDirectRelative(v3, v4) ∧ hasDirectRelative(v4, v1) ∧
Deity(v1) ∧ Hero(v2) ∧Male(v4)

Informally, qtheo3 asks whether there exist some hero that has a divine maternal grandparent that
is a child of a primordial god. The other query qtheo4 asks whether there is a cycle of four direct
relatives v1, v2, v3, v4 such that v1 is male, v2 is a deity, and v3 is female.

We will use the following notation:

Notation 2.2.3 For a query q = ∃~v.ϕ(~x,~v), we let Atoms(q) denote the set of all atoms occur-
ring in q, and let VI(q) denote the set individuals and variables that occur as arguments in the
atoms of q. Similarly as in Notation 2.1.8, the set of concept names, role names, and individual
names that occur in q are respectively denoted NC(q), NR(q) and NI(q).

The semantics of queries is given in terms of interpretations in the natural way.

Definition 2.2.4 (binding, query match) A binding for a query q in an interpretation I is
a total function π : VI(q) → ∆I such that π(a) = aI for each individual a ∈ VI(q). We write
I, π |= C(v), if π(v) ∈ CI, and I, π |= R(v, v′), if (π(v), π(v′)) ∈ RI.

We say that a set At ⊆ Atoms(q) makes q true, if the Boolean formula that results from
replacing each α ∈ At with true and each α ∈ Atoms(q) \ At with false evaluates to true. We
call a binding π a match for q in I, if the set {α ∈ Atoms(q) | I, π |= α} makes q true.

Let ~x = x1, . . . , xn be the answer variables of q, and let ~a = a1, . . . , an be a tuple of individ-
uals. Then we write I, π |= q(~a) if π is a match for q in I and π(xi) = ai for each 1 ≤ i ≤ n,
and we write I |= q(~a) if there is a match π such that I, π |= q(~a).

If q is Boolean, i.e., if n = 0, then we write simply I, π |= q and I |= q.

27

2.2.2 Reasoning with Queries

We next consider some reasoning problems associated to queries over DL knowledge bases. First,
for queries with answer variables, the basic decision problem is usually called query answering,
and it consists in deciding whether a given tuple is an answer to the query in all the models
of the knowledge base, sometimes referred to as a certain answer. Boolean queries (which have
no answer variables) evaluate to true or to false in an interpretation. For them we consider the
query entailment problem, where we want to decide whether the query evaluates to true in all
the models of a knowledge base. Finally, we consider the query containment problem, where we
want to decide whether the answers of one query are contained in the answers of another query.

Query Answering and Query Entailment

For non-Boolean queries, the basic reasoning task is query answering:

Definition 2.2.5 (Query Answering) Given a query q with answer variables ~x = x1, . . . , xn

and a knowledge base K, we say that ~a = a1, . . . , an is an answer for q in K, in symbols K |= q(~a),
if I |= q(~a) for every model I of K.

The query answer enumeration problem for K and q consists in listing all the answers for
q in K. The associated decision problem, which we call simply query answering, consists in
deciding, given a query q, a knowledge base K, and a tuple ~a, whether ~a is an answer for q in K.

For Boolean queries, whose only possible answer is the empty tuple, one usually talks about
query entailment.

Definition 2.2.6 (Query Entailment) Given a Boolean query q and a knowledge base K, we
say that K entails q, in symbols K |= q, if I |= q for every model I of K.

The query entailment problem consists in deciding, given a knowledge base K and a Boolean
query q, whether K |= q.

Example 2.2.7 Recall the interpretation I1 from Example 2.1.22 (see Figure 2.3), and the query
qtheo1 from the previous example. The binding π with π(x1) = zeusI = 1, π(x2) = alcmeneI = 3
and π(v) = heraclesI = 2 is a match for qtheo1 in I1. In fact, we can set π(v1) = zeusI ,
π(v2) = alcmeneI and π(v3) = heraclesI to obtain a match in any model of Ktheo

2 . Hence the
pair (zeus, alcmene) is an answer of qtheo1 , in symbols Ktheo

2 |= qtheo1 (zeus, alcmene).

It is well known that the query answering problem for an arbitrary query reduces linearly to
the entailment problem of a Boolean query.

Proposition 2.2.8 Let ∃~v.ϕ(~x,~v) be a query with answer variables ~x = x1, . . . , xn, and let
~a = a1, . . . , an be a tuple of individuals of the same arity. Then, for each knowledge base K,
K |= q(~a) iff K |= q~a, where q~a is the Boolean query ∃~v.ϕ′(~v) obtained by replacing in ϕ each
occurrence of xi by ai, for each xi ∈ ~x.

By this proposition, it suffices to consider the entailment of Boolean queries in order to
characterize the computational complexity of query answering, as we do in most of this thesis.

Without loss of generality, we may even consider the query entailment problem under some
simplifying assumptions. For example, it is sometimes convenient to assume that queries contain
only variables and no constants as arguments, i.e., VI(q) ⊆ NV. For all DLs L containing
nominals, queries in L can easily simulate constants. If queries are in a DL L not supporting
nominals, then constants can be simulated using distinguished predicate names and adding
assertions to the ABox.

28

Proposition 2.2.9 For every Boolean query q and knowledge base K, it is possible to obtain a
Boolean query q′ and a knowledge base K′ such that K |= q iff K′ |= q′ and VI(q′) ⊆ NV.

Proof. Let q = ∃~v.ϕ(~v) with ~v = v1, . . . , vn, and let K = 〈A,T ,R〉. For each a ∈ VI(q)∩NI,
let va be a fresh variable, and let Aa be a fresh concept name. We define K′ = 〈A′,T 〉 with

A′ = A ∪
⋃

a∈VI(q)∩NI

{Aa(a)}

and define
q′ = ∃~v′.ϕ′(~v′) ∧

∧

a∈VI(q)∩NI

Aa(va)

where ϕ′ is obtained from ϕ by replacing each occurrence of an individual a as an argument by
va, and ~v′ = ~v∪ ~va for some ~va containing all the variables va. Then K |= q iff K′ |= q′ as desired.

We note that if the query is in a DL supporting nominals, then we do not need the auxiliary
concepts Aa. Instead of Ca(va), we can use atoms of the form {a}(va) in the query q′. Then we
do not need to modify the knowledge base, and K |= q iff K |= q′.

For deciding query entailment K |= q, we may also assume that all vocabulary symbols
(concept names, role names and individuals) occurring in the query occur in K as well.

Proposition 2.2.10 Let L be any DL containing ALC. For every Boolean query q and every
L knowledge base K, it is possible to obtain an L knowledge base K′ such that NC(q) ⊆ NC(K),
NR(q) ⊆ NR(K), NI(q) ⊆ NI(K), and K |= q iff K′ |= q.

Proof. Let K = 〈A,T ,R〉. To obtain K′, we simply add to T a CIA A ⊑ ⊤ for each
A ∈ NC(q) \ NC(K), and a CIA ∃p.⊤ ⊑ ⊤ for each p ∈ NR(q) \ NR(K), and we add to A an
assertion ⊤(a) for each a ∈ NI(q) \ NI(K). Then K and K′ have the same models and entail the
same queries.

Reducing knowledge base satisfiability to query entailment is trivial:

Proposition 2.2.11 Let L be a DL, and let K be an L knowledge base. Then K is satisfiable
iff K 6|= ∃v.⊥(v).

Query Containment

Another important problem when reasoning with queries is query containment, which we can
consider for both Boolean and non-Boolean queries. We receive as an input two queries q1 and
q2 with tuples of answer variables of the same arity and we want to decide whether always all
answers for q1 are answers for q2. In particular, if the arity of the answer tuples is 0, that is, the
queries are Boolean, then this amounts to deciding whether q2 evaluates to true in every model
of K where q1 evaluates to true.

The importance of query containment is widely acknowledged in the database field. It plays
a fundamental role in query optimization: two mutually containing queries are equivalent, and
replacing queries by ‘simpler’ but equivalent ones is the main goal of query optimization [AHV95].
As a basic query reasoning problem, it also lies at the core of other database problems such as
consistency checking, and data exchange and integration, and has thus received considerable
attention in the literature, cf. [MLF00, LR98b, CDGL08, CDGV03].

29

Definition 2.2.12 (Query containment) Given a knowledge base K and two queries q1 with
answer variables x1, . . . , xn and q2 with answer variables x′1, . . . , x

′
n, the query containment

problem (w.r.t. a knowledge base) is to decide whether K |= q1(~a) implies K |= q2(~a) for each
tuple of individuals ~a = a1, . . . , an, in symbols K |= q1 ⊆ q2. In particular, if n = 0 (i.e., q1 and
q2 are Boolean queries), K |= q1 ⊆ q2 if K |= q1 implies K |= q2.

Clearly, query containment is not easier than query entailment:

Proposition 2.2.13 Let K be a knowledge base and let q be a Boolean query. Then K |= q iff
K |= ∃v.⊤(v) ⊆ q.

It is well known in the database field that query containment can usually be reduced to
query entailment. In particular, K |= q1 ⊆ q2 can be decided by stating the query q1 as part of
the ABox (i.e., ‘freezing’ it as ABox assertion(s)), and checking whether the resulting knowledge
base entails q2.

Proposition 2.2.14 Let K = 〈A,T ,R〉 be an L knowledge base and let q1 and q2 be two queries.
If A1 is an ABox in L such that, for every I,

I |= A1 iff I |= q1

then K |= q1 ⊆ q2 iff 〈A ∪ A1,T 〉 |= q2.
In particular, the latter is the case if one of the following holds:

1. q1 contains only conjunction, and A1 is a ABox in L that contains

• an assertion C(av) for each concept atom C(v) ∈ Atoms(q1), and
• an assertion R(av, av′) for each role atom R(v, v′) ∈ Atoms(q1); or

2. q1 = ∃~v.ϕ(~x,~v) and A1 = {Cq1
(a)} for a fresh individual a and an L concept Cq1

obtained
from ϕ by replacing:

• ∧ by ⊓ and ∨ by ⊔,
• each concept atom C(v) ∈ Atoms(q1) by ¬{av} ⊔ C, and
• each role atom R(v, v′) ∈ Atoms(q1) by ¬{av} ⊔ ∃R.{av′};

where av is a fresh individual if v is a variable, and av = v if v is an individual.

Example 2.2.15 Recall the query qtheo2 from the Example 2.2.2, and consider

q′
theo
2 = ∃v1, v2. Hero(x) ∧ hasMother(x, v1) ∧ hasAncestor(v1, v2) ∧ Deity(v2)

The two queries are very similar, except that in q′theo2 v2 must be matched to an ancestor of the
mother of the binding of x, rather than to a maternal ancestor of x. In every interpretation, a
match for q′theo2 is also a match for qtheo2 . This shows that K |= qtheo2 ⊆ q′theo2 for each K. The
converse does not hold. For example, in a model where the only divine maternal ancestor of any
hero is the hero’s mother herself, qtheo2 may have some answer that is not an answer to q′theo2 .

2.2.3 Query Languages

In this thesis, we usually consider queries that are in some restricted families. We will of course
talk about conjunctive queries and their unions, which are the most popular queries in the DL
literature. However, we also push the current frontiers by considering more expressive queries,
and in particular, considering the rich language of positive two-way regular path queries.

30

Conjunctive Queries and Unions of Conjunctive Queries

We start by defining two query languages that have received special attention in the literature:
Conjunctive Queries (CQs) and Unions of Conjunctive Queries (UCQs) [AHV95]. CQs are the
formal counterpart of the most widely used fragment of SQL (or relational algebra) queries,
namely plain select-project-join queries, and UCQs are simply the unions of such queries. These
popular query languages are widely studied in databases [CM77, AHV95], and due to a good
trade-off between expressive power and nice computational properties, they have been adopted
as core query languages in several contexts, such as query optimization [GU92, ACPS96], data
integration [Len02, Ull00, Noy04], and ontology-based data access [PLC+08]. Most of the work
concerning query answering in DLs refers in fact to CQs and UCQs.

Definition 2.2.16 (CQ, UCQ) A CQ is a query not containing ∨ and where the role con-
structors ◦, ∗ and id() do not occur. A UCQ is a disjunction of CQs, that is a query
q = ∃~v.

(

ϕ1(~x,~v) ∨ · · · ∨ ϕn(~x,~v)
)

where each ϕi(~x,~v) is a conjunction of atoms without ◦, ∗

and id().

Note that (non-simple) regular role expressions and role chains are not allowed in UCQs,
even in the logics of the Z and SR family. Boolean roles, on the other hand, may be expressed.

When we talk about CQs or UCQs over a DL L, we mean CQs or UCQs with atoms in L
over knowledge bases in L.

We sometimes restrict concepts and roles in CQs to atomic ones. That is, concepts may only
be concept names or nominals, and roles may only be role names and inverses.

Definition 2.2.17 We define NCI = NC ∪ {{a} | a ∈ NI}, and recall that NR = NR ∪ {p
− | p ∈

NR}. A CQ q is extensionally reduced, if each concept atom in Atoms(q) is of the form B(v)
with B ∈ NCI, and each role atom of the form P (v, v′) with P ∈ NR.

The restrictions to extensionally reduced CQs is done only for convenience. In the standard
setting of L queries over L knowledge bases, allowing complex concepts and roles does not make
queries more expressive. Indeed, we can simply rewrite q and K in such a way that we obtain
an extensionally reduced CQ and query entailment is preserved.

Proposition 2.2.18 Let q be a query in L and let K = 〈A,T ,R〉 be an L′ knowledge base such
that every L concept in q is also an L′ concept, and every L role is also an L′ role. Then K |= q
iff 〈A,T ′,R′〉 |= q′, where q′, T ′ and R′ are obtained

• by replacing each concept atom C(v) ∈ Atoms(q) such that C 6∈ NCI with AC(v) for a fresh
concept name AC , and by adding a CIA C ⊑ AC to T , and

• by replacing each role atom S(v, v′) ∈ Atoms(q) such that S 6∈ NR with pS(v, v′) for a fresh
concept name pS, and by adding a BRIA S ⊑ pS to R.

Example 2.2.19 The queries qtheo3 and qtheo4 (see Example 2.2.2) are CQs in every DL L, and
they are extensionally reduced. On the other hand, qtheo2 is not a CQ or UCQ, because it contains
a regular role expression hasParent∗. However, in the DLs of the SH and SR families we can
use the following UCQ to obtain the same answers:

q′′
theo
2 = ∃v1, v2.

(

Hero(x) ∧ hasMother(x, v1) ∧ hasAncestor(v1, v2) ∧ Deity(v2)
)

∨
(

Hero(x) ∧ hasMother(x, v1) ∧ Deity(v1)
)

31

v3

v4

Hero

Deity

hasMother

hasParent

v1

hasChild

Primordial
v2

v4

hasDirectRelativehasDirectRelative

v2

v1

hasDirectRelativehasDirectRelative

v4

Deity

Hero Male

Figure 2.7: The query graphs of qtheo3 and qtheo4

Since a CQ q = ∃~v.ϕ(~x,~v) contains only conjunctions, the query is uniquely determined by
its answer variables and the set of its atoms, and we do not need to store the formula ϕ. Further,
if the query is Boolean, we can simply use the set Atoms(q) to represent it. Similarly, a Boolean
UCQ can be represented as a collection of sets of atoms.

Notation 2.2.20 For a Boolean UCQ Q = ∃~v.ϕ1 ∨ · · · ∨ ϕn, we may write

Q =
⋃

1≤i≤n

{Atoms(∃~v.ϕi)}

and, abusing notation, use qi ∈ Q in the place of Atoms(qi) ∈ Q for each qi = ∃~v.ϕi, 1 ≤ i ≤ n.

Viewing a Boolean UCQ as a set of atoms suggests a very natural notion of a subquery, which
is sometimes used throughout the thesis.

Definition 2.2.21 (subquery, query restriction) A query CQ q′ is a subquery of a CQ q,
if Atoms(q′) ⊆ Atoms(q). For Boolean CQ q and a set V ⊆ VI(q), we denote by q|V the CQ
obtained by restricting to atoms of q to those whose arguments are contained in V , i.e., the query
such that Atoms(q|V) = {α | α ∈ Atoms(q) and VI(α) ⊆ V }, where VI(α) denotes the arguments
of α.

Query Graph of a CQ, Connected Queries The set Atoms(q) has a natural graph repre-
sentation that we call query graph.

Definition 2.2.22 (Query Graph) The query graph of a CQ q is the node-arc labeled graph
G(q) = 〈V,E, λ〉 with nodes V = VI(q) and edges E = {(v, v′) | R(v, v′) ∈ q for some role R},
where each node v is labeled with the set of concepts λ(v) = {A | A(v) ∈ q} and each arc (v, v′)
is labeled with the set of roles λ(v, v′) = {R | R(v, v′) ∈ q}.

Example 2.2.23 The query graphs of qtheo3 and qtheo4 (see Example 2.2.2) are depicted in Figure
2.7.

Note that finding a match for q in an interpretation I reduces to finding a homomorphic
embedding of G(q) into I, as the one depicted in Figure 2.8.

Definition 2.2.24 (connected (U)CQ, maximal connected queries) We say that a CQ q
is connected if the graph G(q). We call a Boolean UCQ Q connected if each q ∈ Q is connected.

Let q be a CQ. A maximal connected subquery of q is a q|V for some V ⊆ VI(q), such that
q|V is connected and q|V ′ is not connected for each V ⊂ V ′ ⊆ VI(q).

32

Primordial
Female

Deity

Male
Mortal

1
zeus

2
Male

heracles

Hero 5
Male
Hero

8 Female
Deity

Female
Mortal

Male
Deity

7

6

4electryon
alcmene perseus

3

Primordial

Deity
Male

Deity

hasParent

hasMother

Hero

v2

v1

Primordial

hasChild

v3

v4

Figure 2.8: An example of a query match for qtheo3 in I1

It is not hard to see that, for disconnected subqueries, we can separately verify the entailment
of each maximal connected subquery. Hence, when deciding the entailment of a CQ q, we may
assume without loss of generality that q is connected.

Proposition 2.2.25 Let q be a CQ and K a knowledge base K in some DL L. Then K |= q iff
K |= q′ for each maximal connected subquery q′ of q.

Positive two-way Regular Path Queries

Although CQs in L over knowledge bases in L are the standard setting, it is sometimes interesting
to allow in the query constructors that are no present in the knowledge base. For example, regular
path queries (RPQs) [Bun97, ABS00, CDGLV99] allow one to ask for pairs of objects that are
connected by a path conforming to a regular expression. Due to their ability to express complex
navigations in graphs, RPQs are the fundamental mechanism for querying semi-structured data.
RPQs are particularly useful when inverse roles are allowed to occur in the regular expression,
since they can express complex conditions that require to navigate the data, without being
constrained by the direction initially chosen by the designer to represent relations between data
items.

We finally introduce Positive two-way Regular Path Queries (P2RPQs), the most expressive
query language studied in this thesis. They allow to use regular expressions formed over role
names and their inverses to query a knowledge base in a given DL L, even if L itself does not allow
for regular expressions and inverses, and they allow for testing the objects encountered during
navigation for membership in L concepts. P2RPQs subsume simultaneously regular path queries
and unions of conjunctive queries, and are also a natural generalization of several extensions of
RPQs that have been studied by different authors, e.g. [CDGLV03, GT03, CDGLV02, DT01,
CDGLV00, AV99, FLS98]. They are, to our knowledge, the most expressive query language
considered so far to query DL knowledge bases [CEO09b, CEO07].

Definition 2.2.26 (P2RPQs) A positive two-way regular path query (P2RPQ) over a DL L
is a query ∃~v.ϕ(~x,~v) such that each atom α ∈ Atoms(q) is either a concept atom C(v) for an
L concept C, or a role atom R(v, v′) for a regular role expression R that obeys the following
grammar, where C is a concept in L and S is a role in L:

R,R1, R2 ::= S | R1 ∪R2 | R1 ◦R2 | R
∗ | id(C)

Example 2.2.27 Since the query qtheo1 contains only concept names and regular role expressions,
we can see it as a P2RPQ in any DL L.

33

Finally, we note that one can assume without loss of generality that only role atoms R(v, v′)
occur in a P2RPQ, as each concept atom C(v) can be equivalently expressed as id(C)(v, v).

2.3 Measuring the Complexity of Reasoning

One of the goals of this thesis is characterize the computational complexity of answering different
kinds of queries over different DLs, that is, to classify query answering problems into complexity
classes according to their computational difficulty.

2.3.1 Complexity Classes

Complexity classes classify problems in terms of resources (like time or space) needed to solve
them using different sorts of computation devices, like Turing machines. We refer the reader
to [Pap94] for the basic notions of Complexity Theory.

Each decision problem can viewed as a language L ⊆ Σ∗ together with the task of deciding
whether a word w ∈ Σ∗ (encoding an instance of the problem) belong to L or not. One of the
most important complexity classes is PTime, which is the set of all problems (i.e. languages)
that can be decided by a deterministic Turing machine (DTM) in time polynomial in the length
of the input word. More precisely, a language L is in PTime iff there exists DTM M and a
polynomial p(n) such that for any word w, the machine M decides w ∈ L within p(|w|) steps.
Another notable class is NP comprising the problems that can be decided in polynomial time
by a nondeterministic Turing machine (NTM). Dually, coNP consists of languages L whose
complement L is in NP. For instance, satisfiability of Boolean formulas is in NP, while unsatis-
fiability of such formulas is in coNP. It is widely believed that NP 6= PTime and NP 6= coNP,
but these statements have not been proved yet. The class ExpTime (resp., NExpTime) consists
of problems that can be solved by a DTM (resp., NTM) in single exponential time in the size
of the input, i.e., the computation length can be bounded by 2p(n), where p(n) is a polynomial;
co-NExpTime consists of the languages L whose complement L is in NExpTime. By allowing
double or triple exponential time computations in DTMs, we obtain classes 2ExpTime and
3ExpTime. This can be continued to arbitrary towers of exponentials, obtaining a hierarchy of
classes nExpTime, n > 0, and this can also be carried over to the case of NTMs.

The classes PSpace and NPSpace (resp., ExpSpace and NExpSpace) are defined similarly
to PTime and NP (resp., ExpTime and NExpTime), but instead of putting a bound on time,
we apply the bound on the space the computations use. In this setting, however, PSpace =
NPSpace and ExpSpace = NExpSpace, which is due to the Savitch’s Theorem [Sav70]. We
recall some of the inclusions between the above mentioned complexity classes:

PTime ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime,

ExpTime ⊆ NExpTime ⊆ ExpSpace ⊆ 2ExpTime.

A problem (i.e. some language L) in a complexity class C is complete for C, if any problem in
C can be reduced to it. Intuitively, this means that L is among the hardest problems in C. More
formally, a reduction from a language L to a language L′ is a mapping f from words to words
such that, for any word w, w ∈ L iff f(w) ∈ L′. For our purposes, we consider polynomial time
reductions, which means that f must be computable in polynomial time in the size of the input
word. We say a language L is C-hard, if any language L′ ∈ C can be reduced to L. If L ∈ C and
L is C-hard, then L is C-complete.

34

2.3.2 Combined and Data Complexity

The computational complexity of a problem is always measured in terms of the size of the
problem instance. However, when reasoning with queries or in the presence of extensional data,
the definition of the input that is relevant for evaluating the complexity may differ from one
scenario to another. In the database setting, when queries in some query language are to be
answered over a family of databases, Vardi identified two main settings where the complexity
may be measured in different ways [Var82]:

• If one is interested in the complexity of evaluating any given query in the query language
over any arbitrary database, then both components are part of the input, and complexity
should be measured in the terms of the combined size of the query and the database. This
is known as the combined complexity of query answering.

• If one is interested in the complexity of evaluating some fixed query over any input
database, then only the size of the data determines the size of the input, and complexity
should be measured in the terms of the size of the database only. This is known as the
data complexity of query answering.

In the setting of querying DL knowledge bases, these are also accepted as significant measures
of complexity. Combined complexity is considered the classical way to measure complexity, and
it takes as an input a full knowledge base and a query. Data complexity considers only the
extensional data in the ABox as an input, and both the intensional axioms and the query are
assumed to be fixed. Data complexity becomes relevant when we see a knowledge base as a data
repository, because then the extensional data can become very large, and it is usually much larger
than the intensional axioms expressing constraints on the data. Therefore, the contribution of
the extensional assertions to the complexity of inference should be singled out, and one must
pay attention to optimizing inference techniques with respect to data size, as opposed to the
overall size of the knowledge base.

We use the following notation throughout the thesis:

Notation 2.3.1 We use |X| to denote the cardinality of a set X, and ||X|| to denote the length
of some string encoding X.

The measures of complexity that we consider are the following:

Definition 2.3.2 (Combined complexity of query entailment) The (combined) com-
plexity of query entailment is the complexity (in terms of complexity classes) of deciding, given
a knowledge base K and a query q, whether K |= q.

For data complexity, we assume that T , R and q are fixed, and measure the complexity of
deciding 〈A,T ,R〉 |= q in terms of ||A||. In order for this characterization to be meaningful, we
must ensure that all the intensional information is indeed given in T and R, and that A only
contains simple assertions over the vocabulary employed in the intensional component.

Definition 2.3.3 (Data complexity of query entailment) The data complexity (in terms
of complexity classes) of query entailment is the complexity of deciding 〈A,T ,R〉 |= q, where T ,
R and q are assumed to be fixed, and the input A is an extensionally reduced ABox where all
assertions are of the form A(a) or p(a, b) for A a concept name and p a role name, and where
NC(A)∪NR(A) ⊆ NC(T)∪NR(T)∪NR(R), i.e., and all concepts and roles that occur in A occur
also in T or R.

35

2.4 Trees and Forests

Many of techniques and results in this thesis are concerned with trees and forests of different
kinds. Hence, before we start with the core material of the thesis, we give some general definitions
and notation that will be used throughout all chapters.

Definition 2.4.1 (Forests, Trees) We use IN∗ to denote the set of all words over the natural
numbers IN. For a word w, |w| denotes the length of w, i.e., the number of its symbols, and w·w′

denotes the concatenation of w and w′. The empty word is denoted ε; note that |ε| = 0. By
convention, w·ε = w, and (w·c)·−1 = w.

An (infinite) tree (with root c ∈ IN∗) is a set T = {c·w | w ∈ N} where N ⊆ IN∗ is prefix-
closed, that is, if w·i ∈ N then w ∈ N . We call a tree proper if its root is the empty word ε. An
(infinite) forest is a set F ⊆ IN+ such that w·i∈F and w ∈ IN+ imply w∈F . That is, a forest
is a union of trees with roots in IN. The roots of a forest are roots(F) = F ∩ IN . Note that each
forest with roots(F) = {c} for some c ∈ IN is also a tree with root c.

The elements of a tree or forest F are called nodes. For each w∈F , the nodes in succ(w) =
{w·c∈F | c∈ IN} are called successors of w, and w is their predecessor. The ancestor relation
is the transitive closure of predecessor. The branching degree d(w) of a node w is the number
of its successors, and F has branching degree bounded by b if d(w) ≤ b for each node w of F .
For k ≥ 0, we call F a k-ary if succ(w) = {w · 1, . . . , w · k} for each node w ∈ F .

For a w ∈ IN, the subtree of F rooted at w is the set Tw of nodes of the form w · w′ ∈ F .
An infinite path π of F is a prefix-closed set π ⊆ T where for every i ≥ 0 there exists a unique
node w ∈ P with |w| = i.

Given a set of symbols Σ (called alphabet) a Σ-labeled forest (or tree) is a pair F = 〈F,L〉,
where F is a forest (or tree) and V : F → Σ is a labeling function that assigns a label L(w) to
each node w ∈ F . If the alphabet Σ is clear from the context, we may omit it and simply talk
about labeled forests and trees.

36

Chapter 3

Reasoning with Automata for the

ZOIQ Family

In this chapter, we aim at pushing the ExpTime decidability frontier for reasoning in expressive
description logics. The DL ZOIQ, introduced in Section 2.1.3, extends ALC with nominals (O),
inverse roles (I), qualified number restrictions (Q), regular expressions over roles (reg), safe
Boolean role expressions (b) and inclusion axioms, and concepts of the form ∃S.Self (Self). In
this chapter we study its sublogics ZIQ, ZOQ and ZOI, which are obtained by respectively
disallowing nominals (O), inverse roles (I), and qualified number restrictions (Q). These are
highly expressive DLs that, to our knowledge, are not subsumed by any other DLs for which
reasoning algorithms and tight complexity upper bounds are known. They are closely related
to other program and description logics, but they support additional features that allow us to
easily simulate popular DLs, like the ones in the SR and SH families underlying the OWL
standards, as we will show later.

Reasoning in ZOIQ is at least NExpTime-hard [Tob00]. By showing that the KB satisfia-
bility problem of ZIQ, ZOQ and ZOI can be solved in ExpTime, we identify three maximal
and mutually incomparable DLs that are decidable in ExpTime. Further, the algorithm for
these logics that we develop in this chapter is the basis for the query answering algorithm in
Chapter 4, and for the results for the SR family that we give in Chapter 5.

We obtain our results by exploiting techniques based on automata on infinite trees [Tho90],
and in particular on alternating automata. They are an elegant tool for reasoning in temporal
and program logics [EJ91], and have been widely exploited for solving the satisfiability problem
of many variants of PDL, the µ-calculus, and similar logics, proving useful for deriving tight
complexity upper bounds [Var85, VW86, Var98, KSV02, BLMV08].

Specifically, we exploit the recently introduced fully enriched automata (FEA) [BLMV08], a
powerful extension of other well known automata models well suited for the rich set of concept
and role constructors supported in the Z family. We present a reduction of the existence of
certain canonical models of a given KB to the emptiness test of a FEA. Relying on the upper
bounds for the latter problem given in [BLMV08], we obtain a decision procedure for KB sat-
isfiability in all sublogics of ZOIQ that enjoy the canonical model property, and in particular
for ZIQ, ZOQ, and ZOI. Our automata procedure is the first one, to our knowledge, that
simultaneously handles Q, I, and O; it additionally considers Boolean role expressions and Self
concepts. Notably, the use of FEAs allow us to obtain optimal complexity bounds even when

37

the numbers are encoded in binary.
The chapter is organized as follows. Section 3.1 shows that reasoning over ZOIQ KBs can

be effectively reduced to reasoning over (restricted) ZOIQ concepts. The crucial canonical
model property of these concepts is shown in Section 3.2, and the automata-based technique
for deciding the existence of canonical models is presented in 3.3. Complexity results are given
in 3.4, and related work is discussed in Section 3.5.

3.1 From Knowledge Bases to Concepts

In this section we reduce reasoning over KBs to reasoning over concepts. Although the aim of
this chapter is to present an algorithm for knowledge base satisfiability, the reduction in this
section and the canonical model property in the next one are also important for the the query
entailment algorithm in the following chapter, thus we formulate the claims for the more general
setting of query entailment. Specifically, in this section we rewrite a given knowledge base K
into a concept CK in a restricted form, in such a way that the entailment of a query q by K
reduces to (a suitable notion of) entailment of q by CK.

Recall from Definition 2.1.37 that a concept is in negation normal form (NNF), if ¬ is applied
only to atomic concepts, and \ only to atomic roles. If additionally it contains no special symbols,
we call it normal.

Definition 3.1.1 (normal concepts) A ZOIQ concept C is normal if it is in NNF and does
not contain ⊤, ⊥, T, or B.

The rewriting of a knowledge base into a normal concept is as follows.

Definition 3.1.2 (RK, KB transformations, CK) Given a knowledge base K = 〈A,T ,R〉,
the role RK is defined as

• RK =
⋃

p∈NR(K) p if no inverse roles p− occur in K, and

• RK =
⋃

p∈NR(K) p ∪ p
− otherwise.

We define the following transformations on KBs. When applied to Ki = 〈Ai,Ti,Ri〉, a trans-
formation results in the KB Ko = 〈Ao,To,Ro〉.

1. ABox reduction. Ai is transformed into an extensionally reduced ABox Ao in which
only concept and role names are used, possibly adding new CIAs.

The resulting Ao, To and Ro are the smallest sets such that Ti ⊆ To, Ri ⊆ Ro and:

• if S(a, b) ∈ Ai then pS(a, b) ∈ Ao and pS ⊑ S ∈ Ro for a fresh pS ∈ NR, and

• if C(a) ∈ Ai then AC(a) ∈ Ao and AC ⊑ C ∈ To for a fresh AC ∈ NC.

2. BRIA elimination. BRIAs S1 ⊑ S2 are replaced by CIAs ∃(S1 \ S2).⊤ ⊑ ⊥ (cf.
[RKH08a]).

In the resulting Ko, the ABox Ao = Ai remains unchanged, while Ro = ∅ and

To = Ti ∪ {∃(S1 \ S2).⊤ ⊑ ⊥ | S1 ⊑ S2 ∈ Ri}

3. Elimination of ⊤, ⊥ and B. The symbols ⊤, ⊥ and B are simulated using other concept
and role names. Let A⊤ and A⊥ be fresh concept names, and let pB be a fresh role name.

38

For an ABox assertion, a TBox axiom or an RBox axiom γ, let γ′ denote the result of
replacing each occurrence of ⊤ with A⊤, of ⊥ with A⊥, and of B with pB. Then

Ao = {γ′ | γ ∈ Ai},
To = {γ′ | γ ∈ Ti} ∪ {⊤ ⊑ ∀pB.⊥, A ⊔ ¬A ⊑ A⊤, A⊤ ⊑ ¬A⊥}, and
Ro = {γ′ | γ ∈ Ri},

where A is an arbitrary concept name.

4. Elimination of T. The symbol T is simulated using a complex role expression, possibly
adding some assertions and axioms to the KB.

Let pT be a fresh role name, let a1, . . . , am be an arbitrary enumeration of the individuals
in NI(K), and let

AT = {pT(a1, a2), pT(a2, a3), . . . , pT(am−1, am), pT(am, a1)}.

Let RT = (pT ∪RK)∗, and for an ABox assertion, a TBox axiom or an RBox axiom γ, let
γ′ denote the result of replacing each occurrence of T with RT. Then

Ao = {γ′ | γ ∈ Ai} ∪ AT,
To = {γ′ | γ ∈ Ti} ∪ {⊤ ⊑ ∃pT.{a1} ∈ To}, if there are no inverse roles p− in RK,
To = {γ′ | γ ∈ Ti}, otherwise, and
Ro = {γ′ | γ ∈ Ri},

5. ABox internalization. Using nominals, the ABox is internalized into the TBox in the
usual way.

That is, Ao = ∅, Ro = Ri, and To = Ti ∪ TAi
, where

TAi
= {{a} ⊑ A | A(a) ∈ Ai} ∪ {{a} ⊑ ∃p.{b} | p(a, b) ∈ Ai} ∪ {{a} ⊑ ¬{b} | a 6≈ b ∈ Ai}.

For a given K = 〈A,T ,R〉, let K̂ = 〈∅, T̂ , ∅〉 be obtained by applying successively the transfor-
mations 1 to 5, in the given order. The next transformation relies rewrites T into a concept
CK.

TBox internalization. Using the role RK̂, the set of CIAs T̂ is internalized into the following
concept (cf. [Baa91, Sch91]):

CK = ∀(RK̂)∗.
l

C1⊑C2∈T̂

nnf (¬C1 ⊔C2)

The rewriting of K into a concept CK creates new nominals for the individuals in the ABox,
hence if we apply it to a ZIQ KB, we obtain a ZOIQ concept. We will later exploit the
following restriction on the nominals in this concept.

Definition 3.1.3 (nominal restricted concepts) A ZOIQ concept is nominal restricted if
it can be written as C ⊓ ∀R∗.(C1 ⊓ . . . ⊓ Cn), where C and R are nominal free, and each Ci is
of the form ¬{a} ⊔A, ¬{a} ⊔ ∃p.{b}, or ¬{a} ⊔ ¬{b}.

We show below that an interpretation is a model of K if and only if all its elements satisfy
CK, and that the latter holds if and only if the interpretation of each individual node is in the
interpretation of CK. Hence the following special notion of model of CK captures the satisfiability
of K in a convenient way:

39

Definition 3.1.4 (ind-model) Given a ZOIQ concept C and an interpretation I = (∆I , ·I),
we say that I is a model of C w.r.t. the individuals, or for short, that I is an ind-model of C,
if aI ∈ CI for every a ∈ NI(C); in symbols, I |=ind C. Given a P2RPQ q, we write C |=ind q if
I |= q for each I with I |=ind C.

Reasoning—in particular, deciding satisfiability and query entailment—over the models of
K is effectively reduced to reasoning over the ind-models of CK.

Proposition 3.1.5 Given a ZOIQ KB K, one can construct in linear time a normal concept
CK such that:

1. for every P2RPQ q, K |= q iff CK |=ind q;

2. if K is in L, then CK is in L, for any L of ZOIQ, ZOI, or ZOQ; and

3. if K is in ZIQ, then CK is a nominal restricted ZOIQ concept.

Proof. It is not hard to see that each of the KB transformations 1 to 5 is linear in ||K||, so K̂
can be obtained in linear time. The rewriting of T̂ into CK is also linear in ||K||. Since each of
the transformations 1 to 5 preserves all the properties enforced by the preceding transformations,
if applied to K = 〈A,T ,R〉 in the described order, it results in a KB K̂ = 〈∅, T̂ , ∅〉 such that in
the TBox T̂ special symbols ⊤, ⊥, B and T do not occur. Hence there are no special symbols
in CK, and since it is in NNF, it is a normal concept.

To show item 1, we first consider the KB transformations 1 to 5. It is well known that the
ABox reduction introduces new symbols, but does not change the semantics of the existing ones.
That is, the resulting KB is a conservative extension of the original one and their models are
identical modulo the new symbols in the signature. The BRIA elimination does not change the
models, i.e., for every interpretation I and every KB 〈Ai,Ti,Ri〉, we have I |= 〈Ai,Ti,Ri〉 iff I |=
〈Ao,To,Ro〉 [RKH08a]. The elimination of ⊤, ⊥ and B also results in a conservative extension
of the original KB. The elimination of T is neither equivalence preserving nor a conservative
extension in general (in fact, T can not be expressed in ZOIQ without using a special symbol),
but under certain conditions it does preserve models in a way that is enough for our purposes.

We say that an interpretation I is RK-connected if for each d ∈ ∆I , there is some a ∈
NI(K) and some sequence d0, . . . , dn such that aI = d0, d = dn and for each 0 ≤ i < n we
have (di, di+1) ∈ RK

I . We now show that RT correctly simulates the universal role over RK-
connected models of K. First, observe that if I is RK-connected then for every d there is some
individual ai such that (ai

I , d) ∈ RT
I , as RK is contained in RT. Further, if there are inverse

roles in RK, then RK is symmetric and this also implies (d, ai
I) ∈ RT

I . The assertions in
AT = {pT(a1, a2), pT(a2, a3), . . . , pT(am−1, am), pT(am, a1)} ensure the existence of a pT path
between (the interpretations of) any two individuals, i.e., {(ai

I , aj
I) | ai, aj ∈ NI(K)} ⊆ (pT

∗)I

for every I that is a model of AT. As pT
∗ is also contained in RT, and RT is transitively closed,

we get that in the presence of inverse roles (dI , d′I) ∈ RT for every d, d′ ∈ ∆I as desired. If
there are no inverse roles we know that for every d there is some ai such that (ai

I , d) ∈ RT
I ,

but (d, ai
I) ∈ RT

I need not hold. However, by adding the CIA ⊤ ⊑ ∃pT.{a1} to the TBox, we
ensure that (d, a1

I) ∈ RT
I holds for every d, and then (dI , d′I) ∈ RT for every pair d, d′ easily

follows. Thus the transformation correctly simulates the T role in RK-connected models and
the resulting KB is a conservative extension of the original one. In the following claim we show
that it preserves query entailment.
Claim: Let K be a ZOIQ KB. Then, for every P2RPQ q, K 6|= q implies that there is a
RK-connected I such that I |= K and I 6|= q.

To show the claim, we consider any model I ofK with I 6|= q and restrict it to the elements d ∈
∆I for which an individual a and a sequence d0, . . . , dn as above exist; the resulting interpretation

40

I ′ is clearly RK-connected. It is easy to verify that I ′ |= K. Roughly, for each d ∈ ∆I , removing
elements not reachable from d does not alter the satisfaction of any concept at d, nor the
participation of d in the extension rI of any role r occurring in K. Hence no CIA or BRIA is
violated in I ′. The ABox also remains satisfied, since in I ′ all domain elements interpreting
some ABox individual remain unchanged, and they participate in the same concept and roles
as in I. Finally, since any query match in I ′ would also be a query match in I, I 6|= q implies
I ′ 6|= q and the claim holds.

Clearly, ABox internalization results in a KB with exactly the same models. Hence after
transformations 1 to 5, and since each symbol in q appears in K, we have that K |= q iff K̂ |= q.

By definition I |= K̂ = 〈∅,T , ∅〉 iff d ∈ ¬C ⊔ D for every d ∈ ∆I and every C ⊑ D ∈ T .
Furthermore, if d ∈ (CK)I for some d, then d′ ∈ (CK)I for all d that are RK-connected to d
[Baa91, Sch91]. In particular, in a RK-connected interpretation I, we clearly have I |= K̂ iff
aI ∈ CI

K for each a ∈ NI(K). By this K |= q implies CK |=ind q, and together with the claim
above, K 6|= q implies CK 6|=ind q. This concludes the proof of the first item.

Item 2 holds because none of the transformations introduces number restrictions, and the
only complex role they introduce is RK, which does not contain inverses if K is a ZOQ KB.
Item 3 holds because there are no nominals in T , and the only nominals in CK are those in TA
that were introduced in the ABox internalization step. That is, CK can be written as follows
(observe that ∀R∗.(C ⊓C ′) is equivalent to ∀R∗.C ⊓ ∀R∗.C ′):

(

∀(RK̂)∗.
l

C1⊑C2∈T̂

nnf (¬C1 ⊔ C2)
)

⊓
(

∀(RK̂)∗.
l

C1⊑C2∈TA

¬C1 ⊔ C2

)

As there are no nominals in T̂ or in RK̂, the left conjunct is nominal free. For each C1 ⊑ C2 ∈ TA,
the corresponding ¬C1⊔C2 is of one of the allowed forms ¬{a}⊔A, ¬{a}⊔∃p.{b}, or ¬{a}⊔¬{b}.
Hence CK is nominal restricted.

3.2 Canonical Models

We have shown that satisfiability of ZOIQ knowledge bases can be reduced to the existence
of ind-models of normal concepts. In the rest of this chapter we show that using automata on
forests we can decide the existence of a special kind of ind-models, which we call canonical, that
can be suitably represented as a labeled forest.

In what follows, we assume a fixed normal ZOIQ concept D. We will show that if D has
an ind-model and either is in ZOQ, is in ZOI, or is nominal restricted, then it has a canonical
model. By this, the algorithm to decide the existence of a canonical model for D that we describe
below will be enough to decide KB satisfiability in the logics ZOQ, ZOI and ZIQ.

3.2.1 Syntactic Closure

Before showing the canonical model property, we introduce the (syntactic) closure of D, which
contains all the concepts and simple roles that are relevant for deciding its satisfiability. More
specifically it contains D, it is closed under subconcepts and simple subroles, as well as under
negations in NNF, and it is also Fischer-Ladner closed in the style of the well known closure for
PDL [FL79].

For defining the closure we modify the syntax of simple roles, and instead of role difference
S \ S′, we use negation ¬S as a simple role constructor. Semantically, ¬SI = (∆I ×∆I) \ SI ,

41

if C ∈ ClC(D) then ∼C ∈ ClC(D)
if C1 � C2 ∈ ClC(D) then C1, C2 ∈ ClC(D)
if ∃S.C ∈ ClC(D) then > 1S.C ∈ ClC(D)
if ∀S.C ∈ ClC(D) then 6 0S.∼C ∈ ClC(D)
if ≷ nS.C ∈ ClC(D) then C ∈ ClC(D)
if ∃(R1 ∪R2).C ∈ ClC(D) then ∃R1.C ⊔ ∃R2.C ∈ ClC(D)
if ∃(R1 ◦R2).C ∈ ClC(D) then ∃R1.∃R2.C ∈ ClC(D)
if ∃R∗.C ∈ ClC(D) then C ⊔ ∃R.∃R∗.C ∈ ClC(D)
if ∃id(C1).C2 ∈ ClC(D) then C1 ⊓ C2 ∈ ClC(D)
if ∀(R1 ∪R2).C ∈ ClC(D) then ∀R1.C ⊓ ∀R2.C ∈ ClC(D)
if ∀(R1 ◦R2).C ∈ ClC(D) then ∀R1.∀R2.C ∈ ClC(D)
if ∀R∗.C ∈ ClC(D) then C ⊓ ∀R.∀R∗.C ∈ ClC(D)
if ∀id(C1).C2 ∈ ClC(D) then ∼C1 ⊔C2 ∈ ClC(D)

if ∃S.Self ∈ ClC(D) then S ∈ ClR(D)
if ≷ nS.C ∈ ClC(D) then S ∈ ClR(D)
if S ∈ ClR(D) then ∼S ∈ ClR(D)
if some inverse p− occurs in D and S ∈ ClR(D) then Inv(S) ∈ ClR(D)
if S1© S2 ∈ ClR(D) then S1, S2 ∈ ClR(D)

Table 3.1: Syntactic closure Cl(D) = ClC(D) ∪ClR(D) (where � ∈ {⊔,⊓}, © ∈ {∩,∪})

hence S \ S′ can be expressed as S ∩ ¬S′. A simple role in this extended syntax is called safe if
it is equivalent to a standard simple role in ZOIQ.1

In what follows, ∼E denotes the NNF of ¬E, for a concept or simple role E. The symbol ≷
is generic for > or 6, � for ⊓ and ⊔, and © for ∩ and ∪. Recall that for a role name p ∈ NR,
the inverse of p is p− and the inverse of p− is p; the inverse of an atomic role P is denoted
Inv(P). For any simple role S, Inv(S) denotes the role obtained by replacing each atomic role
P occurring in S by its inverse Inv(P). As usual, possibly subindexed C, S and R respectively
stand for concepts, simple roles, and arbitrary roles.

Definition 3.2.1 The concept closure ClC(D) of D is the smallest set of ZOIQ concepts that
contains D and is closed under the rules in the upper part of Table 3.1. The role closure
ClR(D) of D is defined in terms of the concept closure, and it is the smallest set of possibly
negated simple roles closed under the rules in the lower part of Table 3.1. We call their union
Cl(D) = ClC(D) ∪ ClR(D) the (syntactic) closure of D.

Clearly, |Cl(D)| is linear in the length of D. Please note that although Cl(D) contains
negated roles (which are not safe in general), S is safe in every concept of the form ≷ nS.C ∈
Cl(D).

3.2.2 Canonical Model Property

We now define canonical models for a ZOIQ concept D. The domain of such a model is a
b-forest, for some b that depends only on D, whose roots are exactly the elements interpreting
the ABox individuals. It is connected and each node may only be directly connected to itself,
its parent, its children, and to the roots.

1A role is safe iff every clause in its conjunctive normal form has a positive atomic role as a disjunct, cf.
[RKH08a].

42

Recall that NC(D), NR(D), and NI(D) respectively denote the sets of concept names, role
names, and individuals occurring in a concept D.

Definition 3.2.2 (canonical interpretation, canonical model) Let D be a ZOIQ con-
cept. An interpretation I is canonical (for D) if:

1. ∆I is a bD-forest, where bD = |ClC(D)| ·max({n | >nS.C ∈ ClC(D)} ∪ {0});

2. roots(∆I) = {aI | a ∈ NI(D)}

3. I is connected, that is, for each pair {w,w′} ⊆ ∆I with w′ ∈ succ(w) there is some
P ∈ NR(K) such that (w,w′) ∈ P I , and

4. for every w,w′ ∈ ∆I such that (w,w′)∈ pI for some role name p, either

a) w′ ∈ succ(w),

b) w∈ succ(w′),

c) {w,w′}∩ roots(∆I) 6= ∅, or

d) w=w′.

We call I a canonical model of D if I |=ind D. Note that, by definition, I |=ind D iff roots(∆I) ⊆
DI.

Note that, since ∆I is a bD-forest with roots(∆I) = {aI | a ∈ NI(D)}, the notion of
connectedness in item 3 implies the one used in the proof of Proposition 3.1.5.

The above definition generalizes those of related logics (e.g., in [BLMV08, CEO07, SV01]),
and accommodates all constructs of ZOIQ. As usual in logics with inverses, (w,w′)∈ pI may
hold if (4a) w′ is a child of w or (4b) w′ is the parent of w. Additionally, (w,w′)∈ pI may
hold if (4c) w or w′ is a root of ∆I , to accommodate nominals, and if (4d) w′ is w itself, to
accommodate ∃S.Self concepts.

Example 3.2.3 The ZOIQ KB Kg is shown in Figure 3.1 (it is a simplified version of the
knoweldge base Ktheo from Example 2.1.28), and Figure 3.2 partially depicts a canonical model
Ig of Kg. Its roots are 1 = gaiaIg , 2 = zeusIg , 3 = heraclesIg , 4 = alcmeneIg , 5 = electryonIg ,
and 6 = perseusIg . They are depicted as large dots, and each of them is labeled with the name of
the individual it interprets as well as with the concept names from NI(CK) to whose interpretation
it belongs. Other domain elements are represented by smaller dots, and are also labeled with the
concept names to whose interpretation they belong. For readability, we use the following label
names: L1 = {Male,Deity}, L2 = {Female,Deity}, L3 = {Female,Mortal}, L4 = {Male}, and
L5 = {Female}. The interpretation represented here is infinite, but only some of its domain
elements are depicted. Every non-root element has two successors, which are the fulfillers of the
hasMother and hasFather relations, respectively. The hasFather relation is represented by solid
arrows, while hasMother is represented by dashed arrows.

We want to show the following canonical model property :

Proposition 3.2.4 Let D be a normal ZOQ or ZOI concept, or a ZOIQ concept that is
nominal restricted. For every P2RPQ q, if D 6|=ind q, then there is a canonical model I of D
with I 6|= q.

43

Male (zeus)
Deity (zeus)

Female (alcmene)
Mortal (alcmene)

Hero (heracles)

hasFather (heracles, zeus)
hasMother (heracles, alcmene)
hasFather (alcmene, electryon)
hasFather (electryon,perseus)
hasFather (perseus, zeus)

Male ≡ ¬Female

Mortal ⊑ ¬Deity

Primordial ⊑ Deity

¬Primordial ⊑ ∃hasFather.Male ⊓ ∃hasMother.Female

Mortal ⊑ 6 2 (hasMother ∪ hasFather).⊤
Deity ⊑ ∀(hasMother ∪ hasFather)∗.Deity

Deity ⊑ ∃(hasMother ∪ hasFather)∗.Primordial

Primordial ≡ {gaia}

∃(hasMother ∪ hasFather).Self ⊑ ⊥
(hasMother ∪ hasFather) ∩ hasChild ⊑ B

Figure 3.1: A knowledge base Kg in ZOIQ

Primordial
Female

Deity

Male

L3

L3

L3

L2

L5

L5

L2

L4

L4L1L1

L1 L4

L5...
...

...
...

...
...

L1 L2

perseus

zeus

heracles

Male electryon
alcmene

Male
Female MaleDeity
Mortal Mortal

...
...

L3

L1...

...

L4...

gaia

Figure 3.2: A canonical Ig model for Kg

We prove Proposition 3.2.4 following the lines of similar proofs for variations of the µ-
calculus in [BLMV08, Var98] (which in turn, are adaptations of the original proof in [SE89]),
and show that we can ‘unravel’ every model I of D into a canonical I ′, and that this unraveling
preserves query non-entailment. The presence of additional constructs makes some arguments
more involved, but does not affect the core of the proof. On the other hand, some aspects are
simpler in our setting because we do not need to deal with the alternating fixed points present
in the µ-calculus.

The proof requires some technical intermediate steps. We show that if D has a model, then
it has a well-founded adorned pre-model. Roughly, the latter is an interpretation enhanced with

44

For B atomic,I, d |=pre B iff d ∈ BI , and
I, d |=pre ¬B iff d 6∈ BI

I, d |=pre C1 ⊓ C2 iff I, d |=pre C1 and I, d |=pre C2

I, d |=pre C1 ⊔ C2 iff I, d |=pre C1 or I, d |=pre C2

I, d |=pre ∃(R1 ∪R2).C1 iff I, d |=pre ∃R1.C1 ⊔ ∃R2.C1

I, d |=pre ∃(R1 ◦R2).C1 iff I, d |=pre ∃R1.∃R2.C1

I, d |=pre ∃R∗
.C1 iff I, d |=pre C1 ⊔ ∃R.∃R∗

.C1

I, d |=pre ∃id(C1).C2 iff I, d |=pre C1 ⊓ C2

I, d |=pre ∃S.C1 with S simple iff I, d |=pre > 1S.C1

I, d |=pre ∀(R1 ∪R2).C1 iff I, d |=pre ∀R1.C1 ⊓ ∀R2.C1

I, d |=pre ∀(R1 ◦R2).C1 iff I, d |=pre ∀R1.∀R2.C1

I, d |=pre ∀R∗
.C1 iff I, d |=pre C1 ⊓ ∀R.∀R∗

.C1

I, d |=pre ∀id(C1).C2 iff I, d |=pre ∼C1 ⊔C2

I, d |=pre ∀S.C1 with S simple iff I, d |=pre 6 0S.∼C1

I, d |=pre >nS.C1 iff there exists a set V ⊆ ∆I such that |V | ≥ n and for each d′ ∈ V ,
(d, d′) ∈ SI and I, d′ |=pre C1

I, d |=pre 6nS.C1 iff there exists a set V ⊆ ∆I such that |V | ≤ n and I, d′ |=pre ∼C1

for each d′ ∈ ∆I \ V such that (d, d′) ∈ SI

I, d |=pre ∃S.Self iff (d, d) ∈ SI

Table 3.2: Pre-satisfaction of a normal concept at an element d ∈ ∆I .

additional information that allows us to ‘trace’ the satisfaction of concepts of the form ∃R∗.C.
Then we show that a well-founded adorned pre-model can be unraveled into a well-founded
adorned pre-model that contains a canonical model of D.

In this and other proofs below, it will sometimes be convenient to talk about a special, weaker
type of concept satisfaction that we call pre-satisfaction. It is defined relative to one specific
domain element d. Intuitively, I, d |=pre C is almost equivalent to d ∈ CI , but for concepts of the
form ∃R∗.C pre-satisfaction is less strict and it does not require that C is eventually satisfied.
Instead, I, d |=pre ∃R

∗.C holds also if from d there is an infinite sequence of (not necessarily
distinct) elements related by R, and does not require any of them to be an instance of C.

Definition 3.2.5 (pre-satisfaction, eventual realization) For an interpretation I, an ele-
ment d ∈ ∆I and a normal concept C, the pre-satisfaction relation I, d |=pre C is inductively
defined in Table 3.2.

For a concept ∃R∗.C1 and a d ∈ ∆I such that I, d |=pre ∃R
∗.C1, we say that ∃R∗.C1

is eventually realized for d if there is a finite sequence d0, . . . , dn, n ≥ 0, such that d0 = d,
(di, di+1) ∈ R

I for every 0 ≤ i < n, and I, dn |=pre C1.

The following lemma is trivial:

Lemma 3.2.6 Let I be an interpretation. Then for every d ∈ ∆I and every concept C, d ∈ CI

implies I, d |=pre C. Moreover, for a each concept ∃R∗.C1, if d ∈ ∃R∗.C1
I then ∃R∗.C1 is

eventually realized for d.

Towards the proof of Proposition 3.2.4, we now introduce concept types and role types, which
are consistent sets of concepts and sets of roles from the syntactic closure of D, satisfying certain
closure conditions. Then we define pre-models as interpretations in which each object is mapped

45

if C ∈ ClC(D) then C ∈ t iff ∼C 6∈ t

if C1 ⊓ C2 ∈ ClC(D), then C1 ⊓C2 ∈ t iff {C1, C2} ⊆ t

if C1 ⊔ C2 ∈ ClC(D), then C1 ⊔C2 ∈ t iff {C1, C2} ∩ t 6= ∅
if ∃(R1 ∪R2).C ∈ ClC(D), then ∃(R1 ∪R2).C ∈ t iff ∃R1.C ⊔ ∃R2.C ∈ t

if ∃(R1 ◦R2).C ∈ ClC(D), then ∃(R1 ◦R2).C ∈ t iff ∃R1.∃R2.C ∈ t

if ∃R∗
.C ∈ ClC(D), then ∃R∗

.C ∈ t iff C ⊔ ∃R.∃R∗
.C ∈ t

if ∃id(C1).C2 ∈ ClC(D), then ∃id(C1).C2 ∈ t iff C1 ⊓ C2 ∈ t

if ∃S.C ∈ ClC(D) with S simple, then ∃S.C ∈ t iff > 1S.C ∈ t

if ∀(R1 ∪R2).C ∈ ClC(D), then ∀(R1 ∪R2).C ∈ t iff ∀R1.C ⊓ ∀R2.C ∈ t

if ∀(R1 ◦R2).C ∈ ClC(D), then ∀(R1 ◦R2).C ∈ t iff ∀R1.∀R2.C ∈ t

if ∀R∗
.C ∈ ClC(D), then ∀R∗

.C ∈ t iff C ⊓ ∀R.∀R∗
.C ∈ t

if ∀id(C1).C2 ∈ ClC(D), then ∀id(C1).C2 ∈ t iff ∼C1 ⊔ C2 ∈ t

if ∀S.C ∈ ClC(D) with S simple, then ∀S.C ∈ t iff 6 0S.∼C ∈ t

Table 3.3: Concept type t ⊆ ClC(D)

if P is an atomic role in ClR(D) then P ∈ r iff ¬P 6∈ r

if S1 ∩ S2 ∈ ClR(D), then S1 ∩ S2 ∈ r iff {S1, S2} ⊆ r

if S1 ∪ S2 ∈ ClR(D), then S1 ∪ S2 ∈ r iff {S1, S2} ∩ r 6= ∅

Table 3.4: Role type r ⊆ ClR(D)

to a concept type and each pair of objects to a role type, in such a way that the pre-satisfaction
of D at each node the interpretation of all the individual nodes is ensured.

Definition 3.2.7 ((concept/role) type, pre-model) A concept type of a ZOIQ concept D
is a set t ⊆ ClC(D) of concepts closed under the rules of Table 3.3, while a role type of D is a
set r ⊆ ClR(D) of simple roles closed under the rules of Table 3.4. The set of all concept types
of D is denoted by typesC(D), and the set of all role types by typesR(D). For a role type r, we
define Inv(r) = {Inv(S) | S ∈ r}, that is, Inv(r) contains the inverse of each role in r.

A pre-model of D is a pair 〈I, θ〉 where I = (∆I , ·I) is an interpretation and θ is a function
that maps each d ∈ ∆I to a concept type θ(d) ∈ typesC(D) and each pair (d, d′) ∈ ∆I ×∆I to
a role type θ(d, d′) ∈ typesR(D) such that:

1. D ∈ θ(aI) for each individual a ∈ NI(D),

2. if some inverse role p− occurs in D, then θ(d, d′) = Inv(θ(d′, d)) for each d, d′ ∈ ∆I;

3. for each d ∈ ∆I and each individual a ∈ NI(D), {a} ∈ θ(d) iff d = aI;

4. for each d ∈ ∆I and each concept name A ∈ NC(D), A ∈ θ(d) iff d ∈ AI ;

5. for each d, d′ ∈ ∆I and each role name p ∈ NR(D), p ∈ θ(d, d′) iff (d, d′) ∈ pI ;

6. for each d ∈ ∆I and each concept of the form ∃p.Self ∈ ClC(D), ∃p.Self ∈ θ(d) iff
p ∈ θ(d, d), and

7. for each d ∈ ∆I

a) if >nS.C ∈ θ(d), then there is some V ⊆ neighI,θ(d, S) such that |V | ≥ n and
C ∈ θ(d′) for every d′ ∈ V , and

46

b) if 6nS.C ∈ θ(d), then there is some V ⊆ neighI,θ(d, S) such that |V | ≤ n and
∼C ∈ θ(d′) for every d′ ∈ neighI,θ(d, S) \ V ,

where neighI,θ(d, S) = {d′ ∈ ∆I | S ∈ θ(d, d′)}.

Conditions 2 to 7 above and the closure conditions of the types imply the following:

Lemma 3.2.8 If 〈I, θ〉 is a pre-model of D, then the following hold for each pair d, d′ ∈ ∆I:

1. for every C ∈ ClR(D), I, d |=pre C iff C ∈ θ(d), and

2. for every S ∈ Cl(D), (d, d′) ∈ SI iff S ∈ θ(d, d′).

To trace the eventual realization of concepts of the form ∃R∗.C, we introduce adorned pre-
models that extend pre-models with a choice function, and define the notion of well-foundedness.

Definition 3.2.9 (choice function, (well-founded) adorned pre-model) A choice func-
tion for a pre-model 〈I, θ〉 is a partial function ch such that:

• for each pair (d,C1 ⊔ C2) with d ∈ ∆I and C1 ⊔ C2 ∈ θ(d), ch(d,C1 ⊔ C2) is a concept in
{C1, C2} ∩ θ(d);

• for each pair (d,>nS.C) with d ∈ ∆I and >nS.C ∈ θ(d), ch(d,>nS.C) is a subset V
of neighI,θ(d, S) such that |V | ≥ n and C ∈ θ(d′) for every d′ ∈ V ; and

• for each pair (d,6nS.C) with d ∈ ∆I and 6nS.C ∈ θ(d), ch(d,6nS.C) is a subset V
of neighI,θ(d, S) such that |V | ≤ n and ∼C ∈ θ(d′) for every d′ ∈ neighI,θ(d, S) \ V .

An adorned pre-model is a tuple 〈I, θ, ch〉, where 〈I, θ〉 is a pre-model and ch is a
choice function for it. For an adorned pre-model 〈I, θ, ch〉 of D, the derivation relation
 ⊆ (∆I × Cl(D))× (∆I × Cl(D)) is the smallest relation such that for every d ∈ ∆I:

for each C1 ⊔ C2 ∈ θ(d), (d,C1 ⊔C2) (d, ch(d,C1 ⊔ C2)),

for each C1 ⊓ C2 ∈ θ(d), (d,C1 ⊓C2) (d,C1) and
(d,C1 ⊓C2) (d,C2),

for each ∃(R1 ∪R2).C ∈ θ(d), (d,∃(R1 ∪R2).C) (d,∃R1.C ⊔ ∃R2.C),

for each ∃(R1 ◦R2).C ∈ θ(d), (d,∃(R1 ◦R2).C) (d,∃R1.∃R2.C),

for each ∃R∗.C ∈ θ(d), (d,∃R∗.C) (d,C ⊔ ∃R.∃R∗.C),

for each ∃id(C1).C2 ∈ θ(d), (d,∃id(C1).C2) (d,C1 ⊓C2),

for each ∃S.C ∈ θ(d) with S simple, (d,∃S.C) (d,> 1S.C),

for each ∀(R1 ∪R2).C ∈ θ(d), (d,∀(R1 ∪R2).C) (d,∀R1.C ⊓ ∀R2.C),

for each ∀(R1 ◦R2).C ∈ θ(d), (d,∀(R1 ◦R2).C) (d,∀R1.∀R2.C),

for each ∀R∗.C ∈ θ(d), (d,∀R∗.C) (d,C ⊓ ∀R.∀R∗.C),

for each ∀id(C1).C2 ∈ θ(d), (d,∀id(C1).C2) (d,∼C1 ⊔ C2),

for each ∀S.C ∈ θ(d) with S simple, (d,∀S.C) (d,6 0S.∼C),

for each >nS.C ∈ θ(d), (d,>nS.C) (d′, C) for every d′ ∈ ch(d,>nS.C), and

for each 6nS.C ∈ θ(d), (d,6nS.C) (d′,∼C)
for every d′ ∈ neighI,θ(d, S) \ ch(d,6nS.C).

A concept ∃R∗.C is regenerated from d to d′ in 〈I, θ, ch〉, if there is a sequence (d1, C1), . . . ,
(dn, Cn) with n > 1 such that d1 = d, dn = d′, C1 = Cn = ∃R∗.C, ∃R∗.C is a subconcept of

47

every Ci and (di, Ci) (di+1, Ci+1) for each 1 ≤ i < n. We say that 〈I, θ, ch〉 is well-founded,
if there is no ∃R∗.C ∈ Cl(D) and infinite sequence d1, d2, . . . such that ∃R∗.C is regenerated
from di to di+1 for every i ≥ 1.

We can not show the following:

Lemma 3.2.10 The following hold for D:

1. For each I such that I |=ind D, there is a well-founded adorned pre-model 〈I, θ, ch〉 of D.

2. If 〈I, θ, ch〉 is a well-founded adorned pre-model of D, then I |=ind D.

Proof. [Sketch] For the first part of the claim, consider an arbitrary I with I |=ind D. By
Lemma 3.2.8, we can set θ(d) = {C ∈ ClC(D) | I, d |=pre C} and θ(d, d′) = {S ∈ ClR(CT) |
(d, d′) ∈ SI} for every d, d′ ∈ ∆I to obtain a pre-model 〈I, θ〉.

As 〈I, θ〉 is a pre-model, it can be trivially adorned with a choice function ch. Relying on the
fact that in 〈I, θ〉 each ∃R∗.C ∈ ClC(D) is eventually realized for every d ∈ ∆I with ∃R∗.C ∈
θ(d), and show that there exists a choice function ch in which no such concept is regenerated
infinitely often. Intuitively, ch can be guided by the sequence d0, . . . , dn with (di, di+1) ∈ R

I

and C ∈ θ(dn) that exists for each concept ∃R∗.C. By selecting always neighbors that are closer
to the next di until dn is reached, the infinite regeneration of ∃R∗.C is avoided.

Formally, we start by assigning a natural number ℓ(d,∃R∗.C) to each d and each ∃R∗.C such
that ∃R∗.C is a subconcept of some C ′ ∈ θ(d) as follows.

• If C ∈ θ(d), then ℓ(d,∃R∗.C) = 0.

• If ℓ(d,∃R∗.C) 6= n′ for every n′ ≤ n, > 1S.C ′ ∈ θ(d), ∃R∗.C is a subconcept of C ′, and
there is some d′ ∈ neighI,θ(d, S) with C ′ ∈ θ(d′) and ℓ(d′,∃R∗.C) = n, then ℓ(d,∃R∗.C) =
n+ 1.

Since a sequence d0, . . . , dn leading to a dn with C ∈ θ(dn) exists for each ∃R∗.C, the function ℓ
is well defined and assigns a finite number to each pair (d,∃R∗.C). Hence we can define a choice
function ch such that, for each pair (d,> 1S.C) where C has a subconcept of the form ∃R∗.C ′,
ch(d,> 1S.C) = {d′} for some d′ with ℓ(d′,∃R∗.C ′) < ℓ(d,∃R∗.C ′). Clearly, each sequence of
the form (di, Ci) · · · (dj , Cj) with di 6= dj and ∃R∗.C a subconcept of both Ci and Cj ,
contains (d,∃S.C ′) (d,> 1S.C ′) (d′, C ′) for ch(d,> 1S.C ′) = {d′} and some C ′ containing
∃R∗.C as a subconcept. Hence, ℓ(di,∃R

∗.C) > ℓ(di+1,∃R
∗.C) whenever ∃R∗.C is regenerated

from di to di+1, and this can only occur finitely often. This shows that 〈I, θ, ch〉 is well-founded.
The second item is easier. It suffices to prove by induction on the structure of C that

C ∈ θ(d) implies d |= C. U sing the well-foundedness of ch, the induction is strightforward. The
claim follows from this and item 1 in Definition 3.2.7.

Now we are ready to prove the canonical model property stated in Proposition 3.2.4, i.e., that
for a given normal concept D and P2RPQ q, provided that D is in ZOQ, in ZOI, or nominal
restricted, D 6|=ind q implies that there is a canonical model of D which admits no match for q.
We will show this separately for the three cases above, using a similar technique that unravels
an arbitrary well-founded adorned pre-model of D into one that is forest-shaped.

In what follows, we denote by t∅ the empty role type that has ¬P ∈ t∅ for every P ∈ NR(D).
We note that, in every pre-model 〈I, θ〉, for each pair d, d′ ∈ ∆I and each ≷ nS.C in θ(d),
d′ ∈ neighI,θ(d, S) implies that S is a safe role and hence θ(d, d′) 6= t∅.

48

Canonical model property of normal ZOQ concepts

Lemma 3.2.11 Let D be a normal ZOQ concept. For every P2RPQ q, if D 6|=ind q, then there
is a canonical model I ′ of D with I ′ 6|= q.

Proof. Assume D 6|=ind q. By item 1 of Lemma 3.2.10, there is some well-founded adorned
pre-model 〈I, θ, ch〉 ofD such that I 6|= q. We show that we can unravel 〈I, θ, ch〉 into an adorned
pre-model 〈I ′, θ′, ch′〉 that is also well founded, such that I ′ is a canonical interpretation, and
such that I ′ 6|= q. By item 2 of Lemma 3.2.10, this implies that I ′ is a canonical model of D
with I ′ 6|= q.

To unravel 〈I, θ, ch〉 into 〈I ′, θ′, ch′〉, we inductively build the domain ∆I′
of I ′ as a forest

and define a mapping ξ : ∆I′
→ ∆I that keeps track of the correspondence between nodes

of the forest and elements of I, while simultaneously defining the functions θ′ and ch′. The
interpretation of concepts and roles in I ′ will be defined after the inductive construction, using
the mapping ξ.

When defining θ′, we give explicitly the value of θ(d, d′) only if (d, d′) is a pair of the form
(w,w), (w,w · i) or (w, c) with c a root. For all other pairs of elements (d, d′) of ∆I′

, θ(d, d′) =
θ(d′, d) = t∅ is the empty role type.

We let R(I) = {aI | a ∈ NI(D)} and define roots(I ′) = {1, . . . , |R(I)|}. Intuitively, to build
the forest ∆I′

, we start with the set roots(I ′) that will be the roots of I ′. Then we continue
building trees from these roots. At each node w, the choice function indicates which successors
w requires to satisfy the concepts of the form >nS.C. If some successor is a root c, then an S
relation between w and c is created. Otherwise, a new node is added as a successor of w.

We are ready to start the inductive construction of 〈I ′, θ′, ch′〉. For the base case, we let
∆I′

:= roots(I ′), and let ξ : roots(I ′) → R(I) be an arbitrary bijection. Then we set, for each
c, c′ ∈ ∆I′

:

• θ′(c) = θ(ξ(c)),

• θ′(c, c′) = θ(ξ(c), ξ(c′)), and

• for each C1 ⊔ C2 ∈ θ
′(c), ch′(c, C1 ⊔ C2) = ch(ξ(c), C1 ⊔ C2).

Choices for >nS.C and 6nS.C concepts are defined in the induction step.
For the induction step, consider an w ∈ ∆I′

of maximal length, and let (>n1 S1.C1, e1) , . . . ,
(>nm Sm.Cm, em) be all pairs of a formula >ni Si.Ci ∈ θ

′(w) and an ei ∈ ch(ξ(w),>ni Si.Ci).
For each 1 ≤ i ≤ m, we define:

φ(ei) =

{

u, if ei = ξ(u) with either u = w or u ∈ roots(I ′),

w·i otherwise.

Then we set ∆I′
:= ∆I′

∪ {φ(e1), . . . , φ(em)} and ξ(w·i) = ei for each w·i ∈ ∆I′
. To extend

θ′, set for each w·i ∈ ∆I′

• θ′(w·i) = θ(ξ(w·i)),

• θ′(w·i, w·i) = θ(ξ(w·i), ξ(w·i)),

• θ′(w,w·i) = θ(ξ(w), ξ(w·i)), and

• θ′(w·i, u) = θ(ξ(w·i), ξ(u)).

Finally, we extend the choice to concepts of the form C ⊔ C ′ in θ′(w·i) for the new domain
elements w·i, and to concepts >nS.C and 6nS.C in θ′(w) for the previously existing w:

49

• for each w·i ∈ ∆I′
and each C ⊔C ′ ∈ θ′(w·i), ch′(w·i, C ⊔ C ′) = ch(ξ(w·i), C ⊔ C ′);

• for each >nS.C ∈ θ′(w), ch′(w,> nS.C) = {φ(e) | e ∈ ch(ξ(w),> nS.C)}; and

• for each 6nS.C ∈ θ′(w), ch′(w,6nS.C) = {φ(e) | e ∈ ch(ξ(w),6 nS.C)∩{e1, . . . , em}}.

This concludes the inductive construction of ∆I′
, ξ, θ′ and ch′. Now we define the interpre-

tation function for I ′ = (∆I′
, ·I

′
) using the mapping ξ:

• for each a ∈ NI(D), aI
′
:= c for the c ∈ roots(I ′) such that ξ(c) = aI ,

• for each A ∈ NC(D), AI′
:= {w ∈ ∆I′

| ξ(w) ∈ AI}, and

• for each p ∈ NR(D), pI
′
:= {(w, y) ∈ ∆I′

×∆I′
| (ξ(w), ξ(y)) ∈ pI}.

Now we show that I ′ is a canonical interpretation and that 〈I ′, θ′, ch′〉 is a well-founded
adorned pre-model ofD. For the former, first we observe that for every sequence φ(e1), . . . , φ(em)
above, m is bounded by bD = |Cl(D)| ·max({n | >nS.C ∈ Cl(D)}∪{0}). Hence each w′ ∈ ∆I′

is of the form c·w with c ∈ roots(I ′) and w ∈ {1, . . . , bD}∗, the domain ∆I′
of I ′ is a bD-forest,

and (1) of Definition 3.2.2 holds. Clearly, (2) roots(∆I) = roots(I ′) = {aI
′
| a ∈ NI(D)} holds.

Furthermore, each c·w ∈ ∆I′
is reachable from a root c and I ′ is connected as required by (3).

This is because each w · i in ∆I′
satisfies θ(w,w · i) 6= t∅ and hence (w,w · i) ∈ P I′

for some
P ∈ NR(D). Next, for each pair w,w′ ∈ ∆I′

with θ(w,w′) 6= t∅ we have that either w = w′,
w = w · i, or w′ ∈ roots(∆I′

), so (4) holds.
A simple inspection shows that 〈I ′, θ′〉 satisfies items 2 to 6 in Definition 3.2.7. For 7a,

consider an arbitrary w ∈ ∆I′
, and a concept >nS.C ∈ θ(w). By the construction of I ′ and

the definition of ch, there are at least n elements ei such that (>nS.C, ei) is in the sequence
above and ei ∈ neighI,θ(ξ(w), S). For each such ei there is a domain element φ(ei) ∈ ∆I′

with
C ∈ θ(φ(ei)) = θ(ei). As S ∈ θ(ξ(w), ξ(φ(ei))) and θ(w,φ(ei)) = θ(ξ(w), ξ(φ(ei))), we have
φ(ei) ∈ neighI′,θ′(w,S) for each ei and 7a holds. For 7b, we consider an arbitrary w ∈ ∆I′

and
a concept 6nS.C ∈ θ(w). We observe that if θ(w,w′) 6= t∅, then w′ = φ(ei) for some ei in a
sequence above (note that θ(w,w′) = t∅ for every other pair, including the pairs with w′ a root).
Hence, if w′ ∈ neighI′,θ′(w,S) for some S, then w′ = φ(ei) for some ei. By the construction of
I ′ and the definition of ch there are at most n such elements with C ∈ θ(w′), and 7b follows.
Hence 〈I ′, θ′〉 is a pre-model of D.

It is easy to verify that 〈I ′, θ′, ch′〉 is an adorned pre-model of D. To see that it is well-
founded, if a concept ∃R∗.C1 is regenerated from w to w′ in 〈I ′, θ′, ch′〉, then ∃R∗.C1 is also
regenerated from ξ(w) to ξ(w′) in 〈I, θ, ch〉. As a consequence, well-foundedness of 〈I, θ, ch〉
implies well-foundedness of 〈I ′, θ′, ch′〉. Finally, it is easy to observe that if I ′, π |= q for some π,
then the composition π∗ of π and ξ would be a match for q in I, contradicting the assumption
that I 6|= q.

Canonical model property of normal ZOI concepts

Lemma 3.2.12 Let D be a normal ZOI concept. For every P2RPQ q, if D 6|=ind q, then there
is a canonical model I ′ of D with I ′ 6|= q.

Proof. We proceed similarly, showing how a well-founded adorned pre-model 〈I, θ, ch〉 of D
such that I 6|= q can be unraveled into a well founded adorned pre-model 〈I ′, θ′, ch′〉 such that I ′

is a canonical interpretation and I ′ 6|= q. We inductively build the domain ∆I′
of I ′ as a forest

and define a mapping ξ : ∆I′
→ ∆I that keeps track of the correspondence between nodes of the

50

forest and elements of I, while simultaneously defining the functions θ′ and ch′. When defining
θ′, we give explicitly the value of θ(d, d′) only if (d, d′) is a pair of the form (w,w), (w,w · i) or
(w, c) with c a root. Now we implicitly assume that θ(d′, d) = Inv(θ(d, d′)) for the corresponding
pairs d, d′, and for all other pairs of elements (d, d′) of ∆I′

, we have θ(d, d′) = θ(d′, d) = t∅.
The construction of ∆I′

starts from the roots roots(I ′) = {1, . . . , |R(I)|}, where R(I) =
{aI | a ∈ NI(D)}. Then we continue adding, to each node w, the successors that it requires to
satisfy the concepts of the form >nS.C as indicated by the choice function. If required, we may
connect w to a root of the forest, or add a new node as a successor of w. Please note that since
D is a ZOI concept, number restrictions in Cl(D) are only of the forms > 1S.C and 6 0S.∼C.

The base case is as in the proof of Lemma 3.2.11. That is, ∆I′
:= roots(I ′), and ξ :

roots(I ′)→ R(I) is an arbitrary bijection. For each c, c′ ∈ ∆I′
, we set:

• θ′(c) = θ(ξ(c)),

• θ′(c, c′) = θ(ξ(c), ξ(c′)), and

• for each C1 ⊔ C2 ∈ θ
′(c), ch′(c, C1 ⊔ C2) = ch(ξ(c), C1 ⊔ C2).

For the induction step, consider an w ∈ ∆I′
of maximal length, and let (>n1 S1.C1, e1) , . . . ,

(>nm Sm.Cm, em) be all pairs of a formula >ni Si.Ci ∈ θ
′(w) and an ei ∈ ch(ξ(w),>ni Si.Ci).

For each 1 ≤ i ≤ m, we define:

φ(ei) =

{

u, if ei = ξ(u) with either u = w, u = w · −1, or u ∈ roots(I ′),

w·i otherwise.

Then we set ∆I′
:= ∆I′

∪ {φ(e1), . . . , φ(em)} and ξ(w·i) = ei for each w·i ∈ ∆I′
. To extend

θ′, set for each w·i ∈ ∆I′

• θ′(w·i) = θ(ξ(w·i)),

• θ′(w·i, w·i) = θ(ξ(w·i), ξ(w·i)),

• θ′(w,w·i) = θ(ξ(w), ξ(w·i)), and

• θ′(w·i, u) = θ(ξ(w·i), ξ(u)) if u ∈ roots(I ′).

Finally, we extend the choice to concepts of the form C ⊔ C ′ in θ′(w·i) for the new domain
elements w·i, and to concepts >nS.C and 6nS.C in θ′(w) for the previously existing w:

• for each w·i ∈ ∆I′
and each C ⊔C ′ ∈ θ′(w·i), ch′(w·i, C ⊔ C ′) = ch(ξ(w·i), C ⊔ C ′);

• for each >nS.C ∈ θ′(w), ch′(w,> nS.C) = {φ(e) | e ∈ ch(ξ(w),> nS.C)}; and

• for each 6nS.C ∈ θ′(w), ch′(w,6nS.C) = {φ(e) | e ∈ ch(ξ(w),6 nS.C)∩{e1, . . . , em}}.

This concludes the inductive construction of ∆I′
, ξ, θ′ and ch′. To define the interpretation

function for I ′ = (∆I′
, ·I

′
) we use the mapping ξ:

• for each a ∈ NI(D), aI
′
:= c for the (unique) c ∈ roots(I ′) such that ξ(c) = aI ,

• for each A ∈ NC(D), AI′
:= {w ∈ ∆I′

| ξ(w) ∈ AI}, and

• for each p ∈ NR(D), pI
′
:= {(w, y) ∈ ∆I′

×∆I′
| (ξ(w), ξ(y)) ∈ pI}.

51

To show that I ′ is a canonical interpretation and that 〈I ′, θ′〉 satisfies items 2 to 6 and 7a of
Definition 3.2.7, one can proceed exactly as in the proof of Lemma 3.2.11. It is also easy to verify
that item 7b holds at all nodes w that are not roots, since θ′(w,w′) 6= t∅ implies that w′ = φ(ei)
for some ei in a sequence selected by the choice function, and by definition there are at most
n elements. If w is a root, then θ′(w,w′) 6= t∅ may also hold for other nodes (in particular, for
nodes w′ such that ξ(w) ∈ ch(ξ(w′),>n′ S′.C ′) for some >n′ S′.C ′) and we need to show that 7b
still holds. To prove this, assume towards a contradiction that there is some u ∈ roots(I ′) such
that 6nS.C ∈ θ′(u) but |{w ∈ neighI′,θ′(u, S) | C ∈ θ′(w)}| > n. Note that 6nS.C ∈ θ′(u)
implies 6nS.C ∈ θ(ξ(u)). Since D is a ZOI concept, we know that n = 0. Consider some w ∈
neighI′,θ′(u, S) with C ∈ θ′(w). By construction of I, ξ(w) ∈ neighI,θ(ξ(u), S) and C ∈ θ(ξ(w)).
But this implies that |{d ∈ neighI,θ(ξ(u), S) | C ∈ θ(d)}| > 0, which contradicts the fact that
〈I, θ〉 is a pre-model that satisfies 7b. Hence 〈I ′, θ′〉 satisfies 1 to 7b and it is a pre-model of D.
The rest of the proof is as for Lemma 3.2.11: 〈I ′, θ′, ch′〉 is a well-founded adorned pre-model of
D, and I 6|= q.

Canonical model property of normal, nominal restricted ZOIQ concepts

Lemma 3.2.13 Let D be a normal nominal restricted ZOIQ concept. For every P2RPQ q, if
D 6|=ind q, then there is a canonical model I ′ of D with I ′ 6|= q.

Proof. We proceed similarly, showing how a well-founded adorned pre-model 〈I, θ, ch〉 of D
with I 6|= q can be unraveled into a well founded adorned pre-model 〈I ′, θ′, ch′〉 such that I ′ is a
canonical interpretation and I ′ 6|= q. We inductively build the domain ∆I′

of I ′ as a forest and
define a mapping ξ : ∆I′

→ ∆I that keeps track of the correspondence between nodes of the
forest and elements of I, while simultaneously defining the functions θ′ and ch′. When defining
θ′, we give explicitly the value of θ(d, d′) only if both d and d′ are roots, or if (d, d′) is a pair of the
form (w,w) or (w,w · i). We implicitly assume that θ(d′, d) = Inv(θ(d, d′)) for the corresponding
pairs d, d′, and for all other pairs of elements (d, d′) of ∆I′

, we have θ(d, d′) = θ(d′, d) = t∅.
As above, we start the construction of ∆I′

with the roots. Let roots(I ′) = {1, . . . , |R(I)|},
where R(I) = {aI | a ∈ NI(D)}, and let ξ : roots(I ′)→ R(I) be an arbitrary bijection. Then we
let ∆I′

:= roots(I ′) and set, for each c, c′ ∈ ∆I′
:

• θ′(c) = θ(ξ(c)),

• θ′(c, c′) = θ(ξ(c), ξ(c′)), and

• for each C1 ⊔ C2 ∈ θ
′(c), ch′(c, C1 ⊔ C2) = ch(ξ(c), C1 ⊔ C2).

In the induction step we add to each node w of maximal length the successors w′ that it requires
to satisfy the concepts of the form >nS.C as indicated by the choice function. The difference
in this case is that, if ξ(w′) is a root c in the forest, we generate a new w′ that is a copy of ξ(w′)
but does not satisfy any nominal concept.

In what follows, for a concept type T ∈ typesC(D), we let nr(T) denote the set of concepts
obtained from T by making false concepts containing nominals as follows:

nr(T) =
(

T \ {{a},∃p.{a},> 1 p.{a} ∈ ClC(D)}
)

∪ {¬{a} | {a} ∈ ClC(D)}

By setting θ(w′) to nr(T) rather than T for each newly added w′, we avoid duplicating in I ′

the relations between ξ(w) and ξ(w′) in case the latter is a node in R(I), which could cause a
violation of a number restriction. We show below that, since D is nominal restricted, nr(T) is
also a concept type in typesC(D), and the unraveled 〈I ′, θ′〉 is a pre-model of D.

52

Now we proceed with the inductive step. Consider an w ∈ ∆I′
of maximal length, and

let (>n1 S1.C1, e1) , . . . , (>nm Sm.Cm, em) be all pairs of a formula >ni Si.Ci ∈ θ
′(w) and an

ei ∈ ch(ξ(w),> ni Si.Ci). For each 1 ≤ i ≤ m, we define:

φ(ei) =

{

u, if ei = ξ(u) with either u = w or u = w · −1,

w·i otherwise.

Then we set ∆I′
:= ∆I′

∪ {φ(e1), . . . , φ(em)} and ξ(w·i) = ei for each w·i ∈ ∆I′
. To extend

θ′, set for each w·i ∈ ∆I′

• θ′(w·i) = nr(θ(ξ(w·i))),

• θ′(w·i, w·i) = θ(ξ(w·i), ξ(w·i)),

• θ′(w,w·i) = θ(ξ(w), ξ(w·i)), and

• θ′(w·i, u) = θ(ξ(w·i), ξ(u)) if u ∈ roots(I ′).

Finally, we extend the choice to concepts of the form C ⊔ C ′ in θ′(w·i) for the new domain
elements w·i, and to concepts >nS.C and 6nS.C in θ′(w) for the previously existing w:

• for each w·i ∈ ∆I′
and each C ⊔C ′ ∈ θ′(w·i), ch′(w·i, C ⊔ C ′) = ch(ξ(w·i), C ⊔ C ′);

• for each >nS.C ∈ θ′(w), ch′(w,> nS.C) = {φ(e) | e ∈ ch(ξ(w),> nS.C)}; and

• for each 6nS.C ∈ θ′(w), ch′(w,6nS.C) = {φ(e) | e ∈ ch(ξ(w),6 nS.C)∩{e1, . . . , em}}.

This concludes the inductive construction of ∆I′
, ξ, θ′ and ch′. As before, we use the mapping

ξ to define the interpretation function for I ′ = (∆I′
, ·I

′
):

• for each a ∈ NI(D), aI
′
:= c for the c ∈ roots(I ′) such that ξ(c) = aI ,

• for each A ∈ NC(D), AI′
:= {w ∈ ∆I′

| ξ(w) ∈ AI}, and

• for each p ∈ NR(D), pI
′
:= {(w, y) ∈ ∆I′

×∆I′
| (ξ(w), ξ(y)) ∈ pI}.

To show that I ′ is a canonical interpretation we can proceed exactly as in the proofs of
Lemmas 3.2.11 and 3.2.12.

To show that 〈I ′, θ′〉 is a pre-model, we first show that since D is nominal restricted, nr(T)
is a concept type in typesC(D). Recall that D is of the form C ′ ⊓ ∀R∗.(C1 ⊓ . . . ⊓ Cn), where
C ′ and R are nominal free, and each Ci is of the form ¬{a} ⊔A, ¬{a} ⊔ ∃p.{b}, or ¬{a} ⊔ ¬{b}
(cf. Definition 3.1.3). Let C⊓ denote a conjunction of concepts Ci of the listed forms, and let R1,
R2 and S denote nominal-free roles. Nominals can only occur in T in concepts of the following
forms, which may be part of conjunctions and disjunctions:

∀R1.C⊓ ∀R1.∀R2.C⊓ 6 0S.∼C⊓ C⊓ ¬{a} ∃p.{b} > 1 p.{b}

It is not hard to see that if we drop all concepts of the last two forms, and add ¬{a} for
every a ∈ NI(a), the resulting nr(T) is still closed under all rules of Table 3.3. In particular,
each concept Ci as above has a disjunct of the form ¬{a} that is in nr(T), hence nr(T) contains
Ci and at least one of its disjuncts. Also, each conjunction C⊓ is in nr(T), and so are all its
conjuncts. Hence, the closure properties of T are preserved in nr(T), and nr(T) is a concept
type in typesC(D). Observe also that, for every T ∈ typesC(D) and for every C ∈ ClC(D) that
is nominal free, C ∈ nr(T) iff C ∈ T .

53

Now it is not hard to prove that 〈I ′, θ′〉 satisfies items 1 to 7b of Definition 3.2.7. Items 1
and 2 are trivial. To see 3, we observe that each node w that is not a root has ¬{a} ∈ θ(w) for
every a ∈ NI(D), hence the root c with aI = c is the only node in ∆I′

with {a} ∈ θ(c). Items 4
and 5 hold by definition of I, and 6 holds in 〈I ′, θ′〉 because it holds in 〈I, θ〉. Items 7a and 7b
hold for every ≷ nS.C where C is nominal free, because the construction of ∆I′

ensures that
every node w has enough neighbors of the required type to satisfy each >nS.C restriction, and
no more neighbors of any type than the corresponding ξ(w) has in I, which satisfies the 6nS.C
restrictions. As C is nominal free, it is not affected by the restriction of any type T to nr(T).
For the number restrictions ≷ nS.C where C contains nominals, we distinguish the case of the
roots and of all other nodes. The former case is similar to the nominal free one, and 7a and 7b
hold by the construction of ∆I′

. Note that the ‘neighborhood’ of a root node c in I ′ comprises
only root nodes and the successors of c, and it is identical to the neighborhood of ξ(c) in I. If w
is not a root node and there is some ≷ nS.C ∈ θ(w) that is not nominal free, then we see that
≷ nS.C must be of the form 6 0S.∼C⊓. Note that the only concepts of the form >nS.C in
ClC(D) that contain some nominal are > 1 p.{b}, which do not occur in any type associated to
a non-root node. For each 6 0S.∼C⊓ ∈ θ(w), we know that the types of all non-root neighbors
of w contain C⊓, hence 7b is satisfied. The only non-root nodes that have root neighbors are
the level one nodes, and for them 7b holds as well. With this we finish proving that 〈I ′, θ′〉 is a
pre-model of D.

The rest of the proof is as for Lemmas 3.2.11 and 3.2.12: 〈I ′, θ′, ch′〉 is a well-founded adorned
pre-model of D, and I 6|= q.

Lemmas 3.2.11, 3.2.12, and 3.2.13 conclude the proof of Proposition 3.2.4.

3.3 Satisfiability via Automata

Since the domain of a canonical model is a forest, we can represent it as a labeled forest in a
straightforward way. This allows us to decide the existence of a canonical model using automata
on infinite forests.

3.3.1 Representing Canonical Models as Forests

Recall that NCI(D) denotes the set of atomic concepts B (i.e., B is a concept name A ∈ NC or
a nominal {a} with a ∈ NI) that occur in D, while NR(D) is the set of atomic roles P (i.e., P is
a role name p ∈ NR or an inverse p−) such that P or Inv(P) occurs in D.

To represent a canonical model I of D as a labeled forest, we label each individual w with
the set of atomic concepts B such that w ∈ BI . We also add an atomic role P to the label
of w whenever (w,w′)∈P I and w′ is not a root. As in [BLMV08], we use special symbols to
witness the existence of relations between a non-root node and individual root nodes. More
specifically, a special symbol ↑Pa is in the label of w whenever (w, aI)∈P I for some atomic role
P . To represent loops (w,w)∈ pI for a role name p, we use special labels pSelf .

Definition 3.3.1 (Forest encoding) For a concept D, the alphabet ΣD is defined as follows:

ΣD = 2Θ(D), where

Θ(D) = NCI(D) ∪ NR(D) ∪ {pSelf | p∈NR(D)} ∪ {↑Pa | P ∈NR(D) and a∈NI(D)}.

The forest encoding of a canonical model I of D is the ΣD-labeled forest FI = 〈∆I , LI〉 such

54

Female, Primordial }
{{g},Deity,

L′
1

L′
2

L′
1

...

...

{{z},Male,Deity }

{{h},Male,↑hF
z ,↑hM

a }

L′
5

L′
5

L′
2L′

1

L′
1

...
...

...

{{a},Female,Mortal,↑hF
e }

L′
4 L′

5...
...

L′
4...

L′
2L′

4

L′
3

{{p},Male,↑hF
z }

L′
3

L′
3L′

1

L′
3

L′
4

...
...

...

{{e},Male,Mortal,↑hF
p }

Figure 3.3: The forest encoding of the canonical model in Figure 3.2

that for each w∈∆I:

LI(w) = {B ∈ Θ(D) | w ∈ BI} ∪
{pSelf ∈ Θ(D) | p ∈ NR(D) and (w,w) ∈ pI} ∪
{P ∈ Θ(D) | (w′, w) ∈ P I and w ∈ succ(w′)} ∪
{↑Pa ∈ Θ(D) | P ∈ NR(D), (w, aI) ∈ P I , and a ∈ NI(D)}.

Example 3.3.2 Figure 3.3 depicts the forest encoding of the model Ig of Kg described in Ex-
ample 3.2.3. For readability, in the labels we use only the initial letter of each individual
name, and we use hFand hMin place of hasFather and hasMother, respectively. The labels of
the level one nodes are given explicitly in the figure, while for the other nodes we use the labels
L′

1 = L1∪{hF, ↑hM
g }, L

′
2 = L2∪{hM, ↑hM

g }, L
′
3 = L3∪{hM}, L′

4 = L4∪{hF}, and L′
5 = L5∪{hM}.

We can see any ΣD-labeled forest as a representation of a canonical model, provided that the
individual names occur in the label of only one root. Informally, the domain of this interpretation
are the roots labeled with some individual, and the nodes that are reachable from any such
root through a sequence of roles in D. The extensions of individuals, concepts and roles are
determined by the node labels.

Definition 3.3.3 Given a ΣD-labeled forest F = 〈F,L〉, we call a root node c ∈ roots(F) an
individual node if a ∈ L(c) for some a ∈ NI(D), and we call c an a-node if we want to make the
precise a explicit. We say that F is individual unique if for each a ∈ NI(D) there is exactly one
a-node.

An individual unique ΣD labeled forest F = 〈F,L〉, called also a D-forest, represents the
interpretation IF defined as follows. For each role name p ∈ NR(D), let:

Rp = {(w,w·i) | p ∈ L(w·i)} ∪ {(w·i, w) | p− ∈ L(w·i)} ∪

{(w,w) | pSelf ∈ L(w)} ∪

{(w, c) |↑pa∈ L(w) and {a} ∈ L(c)} ∪

{(c, w) |↑p
−

a ∈ L(w) and {a} ∈ L(c)}

Let i-roots(F) be the set of individual nodes in F . Then for each c ∈ i-roots(F), we let

Dc = { w | (c, w) ∈
⋃

p∈NR(D)

(

Rp ∪ (Rp)
−
)∗
},

55

where (Rp)
− denotes the inverse of relation Rp. The interpretation IF = (∆IF , ·IF) is defined

as:

∆IF =
⋃

c∈i-roots(F) Dc,

aIF = c ∈ i-roots(F) such that {a} ∈ L(c), for each a ∈ NI,

AIF = ∆IF ∩ { w | A ∈ L(w) }, for each concept name A ∈ NC(D), and

pIF = (∆IF ×∆IF) ∩Rp, for each role name p ∈ NR(D).

Note that the forest encoding FI of each canonical I represents I, and that the interpretation
IF is always canonical.

Now we introduce Fully Enriched Automata, which can be used to decide whether there
exists a labeled forest that represents a canonical model of D.

3.3.2 Fully Enriched Automata on Infinite Forests

Alternating automata are a powerful tool for reasoning in modal and program logics [MS87,
EJ91]. Two-way alternating automata were introduced in [Var98] to better handle logics that
have ‘backward’ operators, like inverse roles. They may move up on the input tree or stay at
the current position, in contrast to one-way automata that navigate trees in a strictly top-down
manner, moving always to the successors of the current node. Graded transitions allow the
automaton to move up to n or to all but n successors of the current node on the input tree,
for any n; this facilitates counting, and makes them convenient for logics that support number
restrictions [KSV02]. Finally, with root transitions, FEAs can jump to some or all roots of a
forest; this facilitates handling connections that may exist between any pair of a node and a
root of the tree due to nominals [BLMV08].

We recall the definition of fully enriched automata (FEAs) from [BLMV08].

Definition 3.3.4 (FEA) For a set W , let B(W) be the set of Boolean formulas constructible
with atoms W ∪ {true, false} and ∧, ∨. We say that V ⊆W makes ϕ ∈ B(W) true, if the
formula obtained by assigning true to all v∈V and false to all w∈W \V evaluates to true.
For b > 0, let Db = {−1, ε} ∪ {〈0〉, . . . , 〈b〉} ∪ {[0], . . . , [b]} ∪ {〈root〉, [root]}.

A fully enriched automaton (FEA) with parity index n is a tuple A = 〈Σ, b,Q, δ, q0, G〉,
where
• Σ is a finite input alphabet,
• b > 0 is a counting bound,
• Q is a finite set of states,
• δ : Q× Σ→ B(Db ×Q) is a transition function,
• q0 ∈ Q is an initial state, and
• G = (G1, . . . , Gn) with G1 ⊆ G2 ⊆ · · · ⊆ Gn = Q is a parity acceptance condition, and n

is the parity index of A.

The transition function δ maps a state q ∈ Q and an input letter σ ∈ Σ to a positive
Boolean formula ϕ over the atoms in Db ×Q. Intuitively, if δ(q, σ)=ϕ, then each atom (d, q′)
in ϕ corresponds to a new copy of the automaton that moves in the direction described by d
and to state q′.

The direction d ∈ Db may be any of the following:
−1 indicates moving up to the predecessor of the current node,
ε indicates staying at the current node,
〈i〉, indicates moving to i+1 successors of the current node, for 0 ≤ i ≤ b,
[i] indicates moving to all but i successors, for 0 ≤ i ≤ b,

56

〈root〉 indicates moving to some root of the forest, and
[root] indicates moving to all roots.

For example, let b = 2 and δ(q1, σ) = (ε, q2) ∧ ([2], q3) ∨ (〈root〉, q1) ∧ (−1, q3). If A is in the
state q1 and reads the node w labeled with σ, it proceeds by sending off either
(i) one copy in the state q2 that stays at the node w (i.e., w·ε), and a copy in the state q3 to

all but 2 of the successors of w; or
(ii) one copy in the state q1 to a root of F , and one copy in the state q3 to the predecessor

w· − 1 of w.

Run of a FEA

The acceptance of a forest F = 〈F,L〉 by a FEA A = 〈Σ, b,Q, δ, q0, G〉 can be formalized through
the notion of run, which is a tree labeled by elements of F×Q. Intuitively, the situation in which
(a copy of) A is in a state q ∈ Q and reading a node w of F is described by a node t in the run
that is labeled (w, q). For a move of A to nodes w1, . . . , wn of F (which can include w, some
of its successors, its predecessor, and some roots of F) and states q1, . . . , qn, there will be one
child ti of t labeled (wi, qi) for each i. In the example above, where A is in state q1 and reading
the node w, let us suppose that A proceeds as described in item (ii). That is, it simultaneously
moves to a root c of F in the state q1, and to the predecessor of w in the the state q3. In a run,
this is described by a node t labeled (w, q1) with two children t′1 and t′2, respectively labeled
(c, q1) and (w· − 1, q3).

Now we formally define runs as F×Q-labeled trees. A run always starts at a root of F and
in the initial state q0, and each node satisfies some local conditions that ensure the satisfaction
of the transition function.

Definition 3.3.5 (run, acceptance, non-emptiness) A run of a FEA A = 〈Σ, b,Q, δ, q0, G〉
over a labeled forest 〈F,L〉 is a F×Q-labeled tree 〈Tr, r〉 such that

1. r(root(Tr)) = (c, q0) for some c ∈ roots(F), and

2. for every t ∈ Tr with r(t) = (w, q) there is some W ⊆Db×Q such that W makes δ(q, L(w))
true and, for all (d, q′)∈W :

• if d ∈ {−1, ε}, then w·d is a node in F and there is some j ∈ IN such that t·j ∈ Tr

and r(t·j) = (w·d, q′);
• if d = 〈n〉, then there is some M ⊆ succ(w) with |M | > n such that, for each z ∈M ,

there is some j ∈ IN such that t·j ∈ Tr and r(t·j) = (z, q′);
• if d = [n], then there is some M ⊆ succ(w) with |M | ≤ n such that, for each
z ∈ succ(w) \M , there is some j ∈ IN such that t·j ∈ Tr and r(t·j) = (z, q′);

• if d = 〈root〉, then there is some c ∈ roots(F) and j ∈ IN such that t·j ∈ Tr and
r(t·j) = (c, q′);

• if d = [root], then for each c ∈ roots(F) there is some j ∈ IN such that t·j ∈ Tr and
r(t·j) = (c, q′).

The run 〈Tr, r〉 is accepting, if for each infinite path P of Tr there is an even i such that
Inf(〈P, r〉) ∩ Gi 6= ∅ and Inf(〈P, r〉) ∩ Gi−1 = ∅, where Inf(〈P, r〉) is the set of all states q ∈ Q
such that {t ∈ P | ∃w.r(t) = (w, q)} is infinite. That is, 〈Tr, r〉 is accepting if for each infinite
path P the least i such that a state in Gi occurs infinitely often in P is even.

A FEA A accepts a labeled forest 〈F,L〉 if there exists an accepting run of A over 〈F,L〉.
The set of all forests accepted by A is called the language of A and is denoted L (A). The
non-emptiness problem is to decide whether L (A) 6= ∅ for a given FEA A.

57

QNI
= {La⇒ sM, La⇒ ¬sM | a∈NI(D), s ∈ Θ(D)} ∪

{La⇒ CM, La⇒ ∼CM | a∈NI(D), C ∈ ClC(D)}

QSelf = {SSelf | S ∈ ClR(D)}

Q↑ = {↑Sa | S ∈ ClR(D), a∈NI(D)}

Qroots = {L〈root〉k, S′, C ′M, L[root]k, S′, C ′M, | 0 ≤ k ≤ |NI(D)|, S ∈ S, C ∈ C}

QNom = {L∨,¬a,¬bM | a, b ∈ NI(D), a 6= b}

Qbin = {L◦, S, CM | ◦ ∈ {∧,∨}, S ∈ S, C ∈ C} ∪
{L◦, α,CM | ◦ ∈ {∧,∨}, α = {a} or α = ¬{a}, a ∈ NI(D), C ∈ C}

Table 3.5: State set QD = {q0D} ∪ ClC(D) ∪ ClR(D) ∪ {s,¬s | s ∈ Θ(D)} ∪QNI
∪QSelf ∪Q↑ ∪

QNom ∪ Qroots ∪ Qbin. Here, S denotes the set of all simple roles S, ∼S and C the set of all
concepts C, ∼C such that ≷ nS.C ∈ ClC(D).

The following bound for deciding non-emptiness for a given FEA is given in [BLMV08]:

Theorem 3.3.6 ([BLMV08]) The non-emptiness problem for a FEA A = 〈Σ, b,Q, δ, q0, G〉
where F has parity index k can be solved in time (b+ 2)O(|Q|3·k2·log k·log b2).

3.3.3 Reducing Concept Satisfiability to FEA emptiness

We are ready to define, given a concept D, a FEA AD whose language is empty iff D has a
canonical model. AD accepts each forest that represents a canonical model of AD. Since FEAs
can not ensure individual uniqueness, it also accepts forests that are not individual unique, and
hence they do not represent a canonical model. Observe that, for example, if a FEA accepts
some forest F, then it also accepts any other forest obtained by adding to F redundant copies of
any of its trees. To guarantee the correctness of our reduction, the construction of AD ensures
that for every individual a and every pair c, c′ of a-nodes, the trees rooted at c and c′ are
indistinguishable by its transition function. This is enough for our purposes, because it allows
us to show that if AD accepts some forest, then it also accepts a individual unique one which
represents a model of D.

Given D, the FEA AD is defined next. Since the construction is rather involved, we give
many informal explanations along the way. In them, we say that a node w satisfies a concept
C if w pre-satisfies C, when seen as a domain element in the represented interpretation (if it is
defined). Similarly, we say that w is an R-successor of w′ or that R holds between w and w′, if
the pair (w,w′) is in the extension of R in the represented interpretation.

Definition 3.3.7 For a given ZOIQ concept D, the automaton AD =
〈ΣD, bD, QD, δD, q

0
D, GD〉 for D is defined as follows:

• ΣD = 2Θ(D) as in Definition 3.3.1.

• The counting bound is bD = max({n | ≷ nS.C ∈ ClC(D)} ∪ {0}).

• The set of states QD is shown in Table 3.5.

Intuitively, the ‘basic’ states of AD correspond to the concepts in the concept closure of D.
The automaton moves to a state to check whether w represents an instance of C. Then C
is recursively decomposed, possibly navigating to the neighbors of w. When a simple role

58

S and a node w are reached during the decomposition, the automation may need to verify
whether S holds between (i) the predecessor of w and w, (ii) w and an individual node,
or (iii) w and itself. This will be achieved by transitions that respectively use the states
in ClR(D), Q↑, and QSelf. After fully decomposing concepts and roles, the basic symbols
are checked locally at the node labels, using corresponding states from {s,¬s | s ∈ Θ(D)}.
The other sets contain auxiliary states whose role will detailed in the description of the
transitions.

• The transition function δD : QD ×ΣD → B(DbD
×QD) is described next. For readability,

we organize the transitions into the following groups: 1. root checks, 2. concept checks,
3. role checks, 4. number restriction checks, and 5. atomic checks.

There are transitions for each σ ∈ ΣD as follows:

1. First, transitions from the initial state:

δD(q0D, σ) = ([root],D) ∧
∧

a∈NI(D)(〈root〉, {a}) ∧
∧

a∈NI(D),s∈Θ(D)

(

([root], La⇒ sM) ∨ ([root], La⇒ ¬sM)
)

∧
∧

a∈NI(D),C∈ClC(D)

(

([root], La⇒ CM) ∨ ([root], La⇒ ∼CM)
)

This initial transition checks that the input forest represents a canonical model of D.
Its four conjuncts respectively check that (i) all roots satisfy D, (ii) each individual
name occurs in the label of some root, (iii) all pairs of roots whose labels share some
individual name have identical labels, and (iv) all pairs of roots whose labels share
some individual name satisfy the same concepts in the closure. Conditions (1iii)
and (1iv) are be important later, when we show that if AD accepts some forest, then
it accepts an individual unique.

For testing (1iii) and (1iv), AD moves to the states in QNI
. For each state La⇒ αM ∈

QNI
there is a transition

δD(La⇒ αM, σ) = (ε,¬{a}) ∨ (ε, α).

which intuitively ensures that if the current node is an a-node, then it satisfies α. In
this way, the automaton can ensure for each a and each α, that either α holds at each
pair of a-nodes, or the negation of α holds at each pair of a-nodes.

2. The automaton moves to a node w and a state corresponding to a concept C in
ClC(D) if it wants to verify whether w satisfies C. This is achieved with transitions
that recursively decompose C and its subconcepts, as well as the non-simple roles
inside the existential and universal restrictions, shown on the left side of Table 3.6.

3. The automaton moves to a node w and a state for a simple role S in ClR(D) in order
to verify S between the predecessor of w and w. Then it recursively decomposes S
with transitions to the corresponding states in ClR(D). If it needs to verify whether S
holds between between w and itself, the automaton moves to the state SSelf in QSelf and
then S is decomposed. Finally, to verify whether S holds between w and an a-node,
it proceeds similarly moving to ↑Sa and decomposing S with transitions to other states
in Q↑. These transitions are given on the right side of Table 3.6.

4. We next give the transitions that ensure satisfaction of the number restrictions. For
each >nS.C in ClC(D), we define:

δD(>nS.C, σ) =
∨

0≤k≤|NI(D)|

((ε, L〈root〉k, S, CM) ∧ NR(n− k, S,C))

where NR(m,S,C) is as follows:

59

δT (C1 ⊓ C2, σ) = (ε,C1) ∧ (ε,C2)
δT (C1 ⊔ C2, σ) = (ε,C1) ∨ (ε,C2)
δT (∃S.Self, σ) = (ε, SSelf)

δT (¬∃S.Self, σ) = (ε, (∼S)Self)
δT (∀(R1 ∪R2).C, σ) = (ε,∀R1.C ⊓ ∀R2.C)
δT (∀(R1 ◦R2).C, σ) = (ε,∀R1.∀R2.C)

δT (∀R∗.C, σ) = (ε,C ⊓ ∀R.∀R∗.C)
δT (∀id(C1).C2, σ) = (ε,∼C1 ⊔ C2)

δT (∃(R1 ∪R2).C, σ) = (ε,∃R1.C ⊔ ∃R2.C)
δT (∃(R1 ◦R2).C, σ) = (ε,∃R1.∃R2.C)

δT (∃R∗.C, σ) = (ε,C ⊔ ∃R.∃R∗.C)
δT (∃id(C1).C2, σ) = (ε,C1 ⊓ C2)

δT (∀S.C, σ) = (ε,6 0S.∼C)
δT (∃S.C, σ) = (ε,> 1S.C)

δT (S1 ∩ S2, σ) = (ε, S1) ∧ (ε, S2)
δT (S1 ∪ S2, σ) = (ε, S1) ∨ (ε, S2)
δT (P1 \ P2, σ) = (ε, P1) ∧ (ε,¬P2)

δT ((S1 ∩ S2)Self , σ) = (ε, S1Self) ∧ (ε, S2Self)
δT ((S1 ∪ S2)Self , σ) = (ε, S1Self) ∨ (ε, S2Self)
δT ((P1 \ P2)Self , σ) = (ε, P1Self) ∧ (ε,¬P2Self)

δT (p−Self , σ) = (ε, pSelf)
δT ((¬p−)Self , σ) = (ε, (¬p)Self)

δD(↑S1∩S2
a , σ) = (ε, ↑S1

a) ∧ (ε, ↑S2
a),

δD(↑S1∪S2
a , σ) = (ε, ↑S1

a) ∨ (ε, ↑S2
a),

δD(↑
P\P2

a , σ) = (ε, ↑Pa) ∧ (ε,¬↑P2
a)

Table 3.6: Transitions in AD from groups 2 (left) and 3 (right), where σ ∈ ΣD, C ∈ ClC(D), a
is an individual name, and S, P and p in ClR(D) are a simple role, an atomic role, and a role
name, respectively.

– for 2 ≤ m ≤ n, NR(m,S,C) = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 and

ϕ1 = (〈m〉, L∧, S, CM),
ϕ2 = (ε, SSelf) ∧ (ε,C) ∧

(
∧

a∈NI(D)(ε,¬{a})
)

∧ (〈m−1〉, L∧, S, CM),
ϕ3 = (ε, Inv(S)) ∧ (−1, C) ∧

(
∧

a∈NI(D)(−1,¬{a})
)

∧ (〈m−1〉, L∧, S, CM),
ϕ4 = (ε, SSelf) ∧ (ε,C) ∧ (ε, Inv(S)) ∧ (−1, C) ∧

(
∧

a∈NI(D)(−1,¬{a})
)

∧ (〈m−2〉, L∧, S, CM).

– NR(1, S, C) = ϕ1 ∨ ϕ2 ∨ ϕ3 with ϕ1, ϕ2 and ϕ3 as above, and

– NR(m,S,C) = true for m ≤ 0.

To understand these transitions, suppose satisfaction of >nS.C is verified at node
w. Then there must exist distinct nodes w′

1, . . . , w
′
n for which the following holds: (∗)

w is related to w′
i via S and w′

i satisfies D. Each of these w′
i may be (cf. Def. 3.2.2):

(4a) a node in succ(w), (4b) the predecessor of w in F , (4c) an individual node, or
(4d) w itself. The big disjunction searches for some k such that k individual nodes
(4c) and m=n−k non-individual nodes of the kinds (4a), (4b) and (4d) satisfy (∗).

The latter check is done via NR(m,S,C). Its disjuncts ϕ1 to ϕ4 correspond to the
four possible ways in which these m nodes can be found among the nodes of types
(4a), (4b) and (4d), viz.:
(ϕ1) m successors of w satisfy (∗),
(ϕ2) w itself and (at least) m−1 successors of w satisfy (∗),
(ϕ3) the predecessor of w and (at least) m−1 successors of w satisfy (∗), or
(ϕ4) w itself, the predecessor of w, and (at least) m−2 successors of w satisfy (∗).

Next, the following transitions for each L〈root〉k, S, CM in Qroots check whether k indi-

60

vidual nodes satisfy (∗):

δD(L〈root〉k, S, CM, σ) =
∨

N⊆NI(D), |N |=k

(

∧

a∈N

((ε, ↑Sa) ∨ (〈root〉, L∧, {a}, CM)) ∧
∧

a,b∈N, a6=b

([root], L∨,¬a,¬bM)
)

Intuitively, such a transition checks whether there is some subset N ⊆ NI(D) with
cardinality k, such that the individuals in N are all interpreted as k different roots
satisfying (∗). It is a big disjunction over the possible sets N . For each of them,
the first conjunct checks that for each a ∈ N , the current node is related via S to an
a-node that satisfies C, and the second conjunct checks that each pair of individuals
a, b ∈ N do not occur in the label of the same root, to ensure that the k individuals
in N correspond to different individual nodes.

These transitions move to auxiliary states in L∨,¬a,¬bM in Qroots and L∧, α,CM in
Qbin. For each L∨,¬a,¬bM in QNom, there is a transition

δD(L∨,¬a,¬bM, σ) = (ε,¬{a}) ∨ (ε,¬{b})

that checks that the current node does not contain both a and b, and for each L∧, α,CM
in Qbin there is a transition

δD(L∧, α,CM, σ) = (ε, α) ∧ (ε,C)

that verifies that the current node satisfies both α and C.

The transitions for concepts 6nS.C are analogous. If 6nS.C is satisfied at a node
w, then there must be some k ≤ n such that at most k individual nodes (4c) and at
most m=n−k non-individual nodes of the kinds (4a), (4b) and (4d) satisfy (†) w′

is related to w by S and satisfies C. This is reflected in the following transition, for
each 6nS.C in ClC(D):

δD(6nS.C, σ) =
∨

0≤k≤min(n,|NI(D)|)

(

(ε, L[root]k, S, CM) ∧ NR′(n− k, S,C)
)

where NR′(m,S,C) is a shortcut for the following formula that verifies whether at
most m non-individual nodes of the kinds (4a), (4b) and (4d) satisfy (†). The check
for (†) is done in its contrapositive form. That is, to check whether at most m nodes
satisfy (†), we actually check whether all but m nodes satisfy the negation of (†),
which is (‡) w′ is not related to w via S or does not satisfy C:

– for 2 ≤ m ≤ n, NR′(m,S,C) = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 and

ϕ1 = (ε,∼SSelf) ∧ (ε,∼C) ∧ (ε, Inv(∼S)) ∧ (−1,∼C) ∧
(
∧

a∈NI(D)(−1,¬{a})
)

∧

([m], L∨,∼S,∼CM),
ϕ2 = (ε, Inv(∼S)) ∧ (−1,∼C) ∧

(
∧

a∈NI(D)(−1,¬{a})
)

∧ ([m−1], L∨,∼S,∼CM),
ϕ3 = (ε,∼SSelf) ∧ (ε,∼C) ∧

(
∧

a∈NI(D)(ε,¬{a})
)

∧ ([m−1], L∨,∼S,∼CM),
ϕ4 = ([m− 2], L∨,∼S,∼CM);

– NR′(1, S, C) = ϕ1 ∨ ϕ2 ∨ ϕ3 with ϕ1, ϕ2 and ϕ3 as above, and
– NR′(0, S, C) = ϕ1 with ϕ1 as above.

61

Again, the disjuncts ϕ1 to ϕ4 correspond to the four possible ways in which the at
most m nodes satisfying (†) may be distributed among the nodes of types (4a), (4b)
and (4d):
(ϕ1) they are all successors of w, hence the predecessor of w, w itself and all but m

successors of w satisfy (‡),
(ϕ2) they include w itself and up to m−1 successors of w, hence the predecessor of

w and all but m− 1 of its successors satisfy (‡),
(ϕ3) they include the predecessor of w and up to m−1 successors of w, hence w

itself and all but m− 1 of its successors satisfy (‡), or
(ϕ4) they include w, its predecessor, and up to m−2 of its successors, hence m− 2

successors of w satisfy (‡).

Next, the following transitions for each L[root]k,∼S,∼CM in Qroots check whether at
most k individual nodes satisfy (†):

δD(L[root]k,∼S,∼CM, σ) =
∨

N⊆NI(D), |N |=k

(

∧

a6∈N

((ε, ↑∼S
a) ∨ (〈root〉, L∧, {a},∼CM))

)

Intuitively, such a transition checks whether there is some subset N ⊆ NI(D) with
cardinality k, such that only the roots corresponding to individuals in N satisfy (†),
or equivalently, every individual node that is not an a-node with a ∈ N satisfies (‡). It
is a big disjunction over the possible sets N . For each of them, there is a conjunction
that checks that for each a 6∈ N , either the current node has no a-node as S successor,
or the a-nodes do not satisfy C. Note that is this case, it does not matter whether the
k individuals nodes are different.

The transitions move to auxiliary states L∧, α,CM and L∨, α,CM in Qbin. For the
former ones the transitions were already described. For each L∨, α,CM in Qbin there
is a transition

δD(L∨, α,CM, σ) = (ε, α) ∨ (ε,C)

that verifies that the current node satisfies α or C.

5. The above transitions decompose all concepts and roles until they reach states
corresponding to possibly negated atomic expressions and special symbols, and then
AD checks whether they are in the label of the current node. For each s∈Θ(D) there
are transitions:

δD(s, σ) =

{

true, if s ∈ σ,

false, if s 6∈ σ,
δD(¬s, σ) =

{

true, if s 6∈ σ,

false, if s ∈ σ.

• GD = (∅, {∀R∗.C | ∀R∗.C ∈ ClC(D)}, QD) is the acceptance condition. As we show below,
this condition ensures that each concept ∃R∗.C is eventually realized.

The automaton AD accepts the representation of the canonical models of D. The converse
holds in a slightly weaker form: every forest accepted by AD represents an ind-model of D
provided that it is individual unique. Hence L (AD) 6= ∅ implies that D has an ind-model
because, as we show below, if L (AD) accepts some forest, then it accepts an individual unique
one. We actually show something slightly stronger, that will be useful when we extend our
algorithm to query answering in the next chapter: AD accepts an individual unique forest
whose branching degree is bounded by bD.

Proposition 3.3.8 Let D be a normal ZOIQ concept. Then the following hold for AD:

62

1. If I is a canonical model of D, then FI ∈ L (AD).

2. For every D-forest F, F ∈ L (AD) implies IF |=ind D.

3. If L (AD) 6= ∅, then F ∈ L (AD) for some D-forest F whose branching degree is bounded
by bD.

Hence L (AD) 6= ∅ if D has a canonical model, and D has an ind-model if L (AD) 6= ∅.

Proof. For the first item, assume I is a canonical model of D and FI = 〈∆I , LI〉 its forest
encoding. To show that there is an accepting run 〈Tr, r〉 of AD on FI , we use a well-founded
adorned pre-model 〈I, θ, ch〉 (which exists by Lemma 3.2.10) to guide the selection of a set of
atoms for constructing a run, starting from the root.

Formally, one shows easily show the following, for each pair (w, q) ∈ ∆I ×QD:

(a) If q = s ∈ Θ(D) and s ∈ L(w), or q = ¬s for some s ∈ Θ(D) and s 6∈ L(w), there is a
finite ∆I×QD-labeled tree 〈T, r〉 whose root t is labeled r(t) = (w, q), and where each node
satisfies condition 2 in Definition 3.3.5. (in fact, the root t is the only node of T).

(b) If S is a role and

(i) q = S ∈ ClR(D) and w ∈ succ(u) for some u with S ∈ θ(u,w), or

(ii) q = SSelf ∈ QSelf and S ∈ θ(w,w), or

(iii) q =↑Sa∈ Q↑ and S ∈ θ(w, aI),

then there is a finite ∆I × QD-labeled tree 〈T, r〉 whose root t has label r(t) = (w, q), and
where each node satisfies condition 2 in Definition 3.3.5. The proof is a straightforward
structural induction on the role S.

(c) If q = C ∈ ClC(D) is a concept and C ∈ θ(w), then there is a ∆I × QD-labeled tree
〈T, r〉 such that its root t has label r(t) = (w,C), each node in T satisfies condition 2 in
Definition 3.3.5, and for every infinite path P of Tr, there is some star concept C ′ ∈ ClC(C)
such that

(i) r(t0) = (w0, C
′) for some t0 ∈ P ,

(ii) for every descendant ti ∈ P of t0 with r(ti) = (wi, Ci) and Ci ∈ ClC(CK), Ci ∈ ClC(C ′),

(iii) if C is ∃R∗.C ′, then ∃R∗.C ′ is regenerated from wi to wi+1 for each ti, ti+1 ∈ P with
r(ti) = (wi,∃R

∗.C ′) and r(ti+1) = (wi+1,∃R
∗.C ′).

Intuitively, the claim follows from the close correspondence between the transitions in Ta-
ble 3.6 and the definition of the relation in Definition 3.2.8. It can be shown inductively
that the tree 〈T, r〉 can be constructed by moving always from the current r(t) = (w,C) to
some r(t′) = (w′, C ′) such that (w,C) (w′, C ′), possibly adding additional auxiliary nodes
in between. Such a run always decomposes a concept into less complex concepts, except in
the case of the star nodes which may be regenerated and thus repeated along the branches.

Using (a) to (c), it is easy to show that a full run of AD over FI exists. The run 〈Tr, r〉 is
built starting from the root ε, and setting r(ε) = (c0, q0). Then, to correctly execute the initial
transition, the root has children as follows:

• a child jc with r(jc) = (c,D) for each root c ∈ roots(∆I).
• a child ja for each a ∈ NI(D), with r(ja) = (aI , {a}),

63

• for each root c ∈ roots(∆I), each a ∈ NI(D) and each s ∈ Θ(D), a child jc,a,s with
r(jc,a,s) = (c, La, sM) if s ∈ L(aI), and r(jc,a,s) = (c, La,¬sM) otherwise, and

• for each root c ∈ roots(∆I), each a ∈ NI(D) and each C ∈ ClC(D), a child jc,a,C with
r(jc,a,C) = (c, La,CM) if C ∈ θ(aI), and r(jc,a,C) = (c, La,∼CM) otherwise.

Such a tree can be easily completed into a run. To see that it is accepting, suppose towards a
contradiction that there is an infinite path P of Tr such that the least i such that Gi∩ Inf(〈P, r〉)
is not empty is odd. This is only possible if i = 3, and there are no states of the form ∀R∗.C in
Inf(〈P, r〉). Then by item (c.iii), there is some concept ∃R∗.C ∈ Inf(〈P, r〉) that is regenerated
from wi to wi+1 for each ti, ti+1 ∈ P with r(ti) = (wi,∃R

∗.C) and r(ti+1) = (wi+1,∃R
∗.C), but

this contradicts the fact that 〈I, θ, ch〉 is well founded. This concludes the proof of item 1 in the
claim.

To show the second item, we first consider a D-forest F and an arbitrary ∆IF ×QD-labeled
tree 〈T, r〉 where each node satisfies condition 2 in Definition 3.3.5. Then we can show, similarly
as above, that for every pair (w, q) ∈ ∆I ×QD such that there is some t ∈ T with r(t) = (w, q),
the following hold:

(a) If q = s ∈ Θ(D), then s ∈ L(w), and if q = ¬s for some s ∈ Θ(D), then s 6∈ L(w).

(b) If q = S ∈ ClR(D), then S ∈ θ(w · −1, w); if q = SSelf ∈ QSelf, then S ∈ θ(w,w); and
q =↑Sa∈ Q↑, then S ∈ θ(w, aIF). This is shown by a straightforward structural induction on
the role S.

(c) If q = C ∈ ClC(D) is a concept, then IF, w |=pre C. Furthermore, if C is of the form
∃R∗.C ′, then it is eventually realized for w, or there is an infinite path P in T such that
C ∈ Inf(〈P, r〉) and Inf(〈P, r〉) ⊆ ClC(C). This can be easily shown by induction on C,
following the definition of δD and Table 3.2, and using the previous items.

By the initial transitions 1 in Definition 3.3.7, for each a ∈ NI(D) there is some c ∈ roots(IF)
such that the run 〈T, r〉 has nodes i, j ∈ IN with r(i) = (c, {a}) and r(j) = (c,D). Then, by c,
we have IF, c |=pre {a} and IF, c |=pre D, which implies IF, aIF |=pre D. The rest of the proof is
standard. Since the run is accepting, by item c, there is no path P ∈ T and no concept ∃R∗.C
such that ∃R∗.C ∈ Inf(〈P, r〉), and every other state occurring infinitely often is a subconcept of
∃R∗.C, that is Inf(〈P, r〉) ⊆ ClC(∃R∗.C). Using the standard techniques, one can show that this
implies the existence of a choice function ch that does not generate a concept ∃R∗.C infinitely
often; the detailed proof relies on the existence of a memoryless strategy [EJ91, BLMV08].

Finally, to show 3, we show that if AD accepts some F, then it accepts some F
′ that is

bD-ary and individual unique. Roughly, if F has two subtrees whose roots c and c′ have the
same labels and satisfy the same concepts in the closure, then a run of AD on F visiting both
can be modified into a run visiting only one of them. Then all nodes that are not needed to
satisfy some 〈n〉 transition can be dropped, and the resulting forest has the desired features.

More precisely, consider two root nodes c1 and c2 of F. In what follows, we call a partial
run tree a ∆F × QD-labeled tree where each node satisfies condition 2 in Definition 3.3.5 and
each infinite path satisfies the acceptance condition. Assume (∗): L(c1) = L(c2) and that for
every C ∈ ClC(D), there is a partial run tree whose root is labeled r(c1, C) iff there is a partial
run tree whose root is labeled r(c2, C). Intuitively, (∗) implies that the two equally labeled
roots are not distinguishable by the automaton if they are visited in some state C ∈ ClC(D).
Inspecting the transition function δD it is not hard to verify that this indistinguishability extends
to all states of AD. That is, for every q ∈ QD, if a run has as subtree a partial run tree Tt

with r(t) = r(c2, q), then it can be modified by replacing Tt with a partial run tree T ′
t with

r(t) = r(c1, q). One can then show using the standard techniques (namely, the existence of a

64

strategy) that if there is an accepting run of AD on F, then there is a run where no node in
the tree Tc2 is ever visited. Further, if there is an accepting run of AD on F, then by the initial
transition 1 in Definition 3.3.7 every pair c1 and c2 of a-nodes for each a ∈ NI(D) satisfies (∗).
Then it follows that there is an accepting run of AD on F where for each a, only one a-node and
its successors are visited. Finally, if there is such an accepting run over F, then there is also an
accepting run over the forest F

′ obtained by dropping each w that its not required to satisfy a
〈root〉 or a 〈n〉 transition. Clearly, F

′ is individual unique, and its branching degree is bounded
by bD because AD never needs more than bD nodes to satisfy a 〈n〉 transition. This concludes
the proof of the claim.

From this and Propositions 3.1.5 and 3.2.4, we obtain:

Corollary 3.3.9 Let K be a knowledge base in ZOIQ that enjoys the canonical model property
(or in particular, that is in ZIQ, ZOI, or ZOQ). Then we can construct from K (in time
linearly bounded by ||K||) a concept CK such that L (ACK

) 6= ∅ iff K is satisfiable.

3.4 Complexity of Deciding Satisfiability

The following bounds on the size of AD are important for obtaining from our reduction to
automata emptiness an upper bound for deciding KB satisfiability.

Lemma 3.4.1 Let D be a normal ZOIQ concept. Then the following hold for AD:

1. the number of states |QD| is polynomial in ||D||,

2. the alphabet size |Σ(AD)| and the counting bound bD are at most single exponential in
||D||, and

3. the parity index of AD is fixed.

Proof. For the third item, simply observe that the parity index of AD is 3. It is also clear
that bD = max({n | >nS.C ∈ ClC(D)}∪{0}) is bounded by 2||D|| (if the numbers are encoded
in binary).

To estimate the bounds for |Σ(AD)| and |Q(AD)|, we first observe that |NCI(D)|, |NR(D)|,
|NR(D)|, |NI(D)| are all linearly bounded in ||D||, and so are |Cl(D)|, |ClC(D)|, and |ClR(D)|.
The result is then a consequence of the following simple estimates:

• |ΣD| = 2|Θ(D)|, and |Θ(D)| = |NCI(D)|+ |NR(D)|+ |NR(D)|+(|NR(D)|× |NI(D)|). It thus
follows that |Σ(AD)| ≤ 2O(||D||2).

• |QD| = 1+ |Cl(D)|+(2×|Θ(D)|)+ |QNI
|+ |QSelf|+ |Q↑|+ |QNom|+ |Qroots|+ |Qbin|, where

|QNI
| = 2 · |NI(D)| · (|ClC(D)|+ |Θ(D)|)

|QSelf| ≤ |ClR(D)|

|Q↑| ≤ |NI(D)| · |ClR(D)|

|QNom| = |NI(D)|2

|Qroots| ≤ 2 · |NI(D)| · |ClC(D)|2

|Qbin| ≤ 2 · |ClC(D)|2 + 2 · |NI(D)| · |ClC(D)|

Hence it is easy to see that |QD| = O(||D||3).

65

In this way we obtain we obtain our first main result: an ExpTime upper bound for the
KB satisfiability of all ZOIQ knowledge bases that enjoy the canonical model property. This
is worst-case optimal.

Theorem 3.4.2 KB satisfiability in ZIQ, ZOQ, and ZOI is ExpTime-complete.

Proof. For the upper bound, by Corollary 3.3.9 it suffices to decide whether L (ACK
) is

non-empty. By Lemma 3.4.1 and Theorem 3.3.6, this can be decided in time single exponential
in ||CK||, and thus single exponential in ||K||. A matching hardness result is known already for
much weaker DLs, e.g. ALC [BCM+03].

3.5 Related Work and Discussion

The construction of the automaton AD for a concept D and some of the proof techniques in this
chapter are inspired by [BLMV08], where tight upper bounds for the satisfiability problem of
two enriched µ-calculi were established. The basic µ-calculus µL extends classical propositional
Modal Logic with fixed-point operators, resulting in an expressive logic that subsumes most
modal, dynamic and temporal logics [Koz83]. Many reasoning problems for the basic DL ALC
and its extension with regular role expressions (in particular, concept and TBox satisfiability,
and other reasoning problems that are not related to the ABox) can be reduced to formula
satisfiability in µL. The so called enriched µ-calculi in turn enrich the basic µ-calculus with
different combinations of backward modalities [Var98], graded modalities [KSV02], and nominals
[SV01, BLMV08], which are the modal logic counterpart of the description logic constructors
inverse roles I, number restrictions Q, and nominals O: (i) the hybrid graded µ-calculus supports
graded modalities and nominals, and is thus close to ZOQ; (ii) the full graded µ-calculus
supports backward and graded modalities, similarly to ZIQ; and (iii) the full hybrid µ-calculus
supports backwards and graded modalities, similarly to ZOI. The fixed point operators of
present in µ-calculi are strictly more expressive than the regular expressions of ZOIQ and
its sublogics [Koz83], while the latter have features, such as Boolean role expressions and self
concepts, which are not naturally expressible in the enriched µ-calculi. ABox assertions can
be simulated in the hybrid µ-calculi using nominals, but neither in the basic µL nor in its
non-hybrid enriched versions. The formula satisfiability problem for the three calculi mentioned
above can be decided in ExpTime [SV01, BLMV08], while the fully enriched µ-calculus that
simultaneously allows all three constructors is undecidable [BP04].

The ExpTime upper bounds (under binary encoding of numbers) for the hybrid graded and
full graded µ-calculi were obtained employing FEAs in [BLMV08]. Our technique is similar,
but while they do two separate reductions, we give a single automata construction that simul-
taneously takes into account nominals, inverses, and counting. This requires us to combine in
a novel way techniques that had been used separately for the different combinations of these
three constructs, together with techniques for Boolean roles and concepts of the form ∃S.Self

[CDGL02, Ort08]. Another significant difference is the following. Each canonical model of a
ZOIQ concept D induces a partition of the individual names into equivalence classes such that
all the individuals in a class are interpreted as the same domain element and satisfy the same
atomic concepts. In [BLMV08], the authors use the notion of a guess to refer to a partition of the
individual names in NI(D) into classes, together with a subset of the atomic concepts in NCI(D)
associated to each class. Then they show how to construct an automaton AD,g for a given guess
g, such that the language of AD,g is non-empty if there is a canonical model of D inducing the

66

guess g. This provides an algorithm for the satisfiability of D, since one can effectively traverse
all possible guesses and do an emptiness test for each of the respective automata.

In contrast, instead of building an automaton for a specific guess, we build an automaton AD

that directly verifies the existence of a canonical model, and checks that it ‘contains a correct
guess’, that is, that all individuals interpreted as the same domain element satisfy exactly the
same atomic concepts. Although this requires additional states and makes some of the transitions
more involved, it seems to be more convenient for our purposes. The query answering algorithm
that we describe in the next chapter relies heavily on the fact that there is one automaton that
can effectively verify on its own whether there exists a forest that represents a model of the KB.

The application of automata in DLs is not novel, and in fact they are widely recognized
as a powerful tool for obtaining optimal complexity bounds, specially for ExpTime-complete
logics. For DLs with regular expressions, in the style of the Z family, automata techniques
inspired in PDL (Propositional Dynamic Logic, see [HKT00]) became popular since the work
of [Sch91, DGL94, DG95]. An illustrative example can be found in [CDG03], where an optimal
ExpTime upper for the DL ALCFIreg (the extension of ALCI with regular role expressions and
role functionality, which is a restricted form of number restrictions) is shown by an automata
reduction related to the one we have described. Since reasoning in: (i) ALCQIreg , which
extends ALCFIreg with full qualified number restrictions, (ii) ALCQOreg , which is similar but
has nominals and no inverses, and (iii)ALCIOreg , that has nominals and inverses but no number
restrictions, can all be reduced to simpler logics for which automata algorithms are available,
ExpTime bounds are also known for these logics [DGL94, DG95]. However, they only hold if the
numbers in the number restrictions are encoded in unary. Most of the existing algorithms did not
support additional constructors such as self concepts and Boolean role constructors, although it
was conjectured that they could be incorporated. Our findings confirm this conjecture.

Automata have also been employed to obtain tight upper bounds for logics that do not
support regular role expressions. For example, an optimal ExpTime upper bound for ALCQIb,
the extension of ALCI with qualified number restrictions and safe Boolean role expressions,
was obtained using tree automata in [Tob01]. In order to obtain an optimal bound even when
numbers are encoded in binary, Tobies represents canonical models with polynomial branching
via binary trees, and does suitable book-keeping in the automaton to decide if a tree represents a
model. As reasoning in SHIQ can be polynomially reduced to reasoning in ALCQIb, the Exp-

Time upper bound extends to SHIQ as well. For the DL SHOQ, which is similar to SHIQ
but does not support inverse roles and supports nominals, an ExpTime upper bound under
unary encoding of numbers was obtained in [Gli07, GHS08]. A matching bound under binary
encoding of numbers was conjectured, but to our knowledge it remain to be proved, and the best
known bound was a NExpTime one inherited from C2, the two variable fragment of first-order
logic with counting quantifiers, [PH05]. For the DL SHOI, that supports both inverses and
nominals but does not allow for number restrictions, an upper bound was shown in [Hla04] by
means of a tableau system, an abstract description of a (tableau-based) algorithm that implies
the existence of an ExpTime automata algorithm [BHLW03].

In the automata we have described, the transitions that ensure satisfaction of the number
restrictions are novel and differ from all previous approaches. Our transitions are more involved
than those in [BLMV08] for two reasons. First, to simultaneously accommodate all constructors
of ZOIQ, our definition of canonical models (Def. 3.2.2) must include (4a) to (4d) above, while
in the logics considered in [BLMV08] it suffices with either just (4a) and (4c) or just (4a) and
(4b). Second, as we are not building an automaton for a specific guess, verifying which roots
of F take part in the satisfaction of a number restriction is more complicated, and special care
is needed to ensure that roots interpreting more than one nominal are not counted more than
once. The transitions differ also from those in [CDGL02, CEO07, Ort08, CEO09a], which use

67

non-graded automata and count the successors of w one-by-one; this requires exponentially many
states if n is encoded in binary.

Another distinguishing feature of our approach is the use of a parity condition in the au-
tomaton. For simpler DLs like the ones in the SH family, it is enough to consider a simpler
looping automaton in which no acceptance condition is given and every infinite run is accepting.
This is done, for example, in [Tob01] and [Gli07]. However, looping automata can not ensure
the satisfaction of the star concepts in the Z family. The presence of alternating fixed points in
the more powerful µ-calculi calls for a parity condition; in our setting an intermediate solution
could be used. In fact, we could employ a Büchi automaton as done in [CDGL02, CDG03],
which is more powerful than looping automaton but less than a parity one. A Büchi condition
is given as a single set G of states, and a run is accepting if for each infinite path some state in
G occurs infinitely often. The motivation for choosing a parity condition will be clearer in the
next section, where we rely on automata operations like complementation under which Büchi
automata are not closed.

A natural question is whether the technique can be generalized to other DLs. One natural
direction would be to extend it to logics with arbitrary fixed-points rather than regular expres-
sions. This may be easy, since we are already employing parity automata. Other extensions
within DLs should also be feasible as long as they do not have a significant effect on the canon-
ical model property. Intuitively, if it is possible to prove a canonical model property where
canonical models still satisfy 1, 2 and 3 in Definition 3.2.2, and 4 can be adapted in a simple
way, then the technique may be easy to adapt. In contrast, accommodating constructors for
which a canonical model in the style of Definition 3.2.2 can not be ensured seems much harder,
and may not be possible in many cases.

Decidability of full ZOIQ remains open. Our automata-based algorithm supports simulta-
neously O, I and Q, but it does not provide an algorithm for reasoning in full ZOIQ because
Proposition 3.2.4 does not hold for arbitrary ZOIQ concepts. In fact, the combination of these
three constructs causes the loss of the canonical model property and makes reasoning NExp-

Time-hard already in ALCIOQ, that is, in the absence of number restrictions, self concepts,
regular and Boolean role expressions, and role inclusion axioms [Tob00]. SHOIQ, that addi-
tionally supports transitive roles and role inclusions is known to be decidable in NExpTime.
This follows from an encoding into C2 [Tob01], together with the NExpTime upper bound for
C2 under unary [PST00] and even binary [PH05] encoding of numbers.

There are also other algorithms for SHOIQ that do not provide optimal complexity bounds
and use, for example, tableau [HS05] and resolution methods [KM08]. It is not clear whether
these algorithms can be easily extended to full ZOIQ (star concepts are the only feature of
the Z family that has not been shown to be expressible in C2) but their extension to a logic
with fixed points is not feasible: as shown in [BP04], ALCIOQ extended with fixed points is
undecidable.

68

Chapter 4

Reasoning about Queries using

Automata

In this chapter we turn to reasoning about queries, and show that automata on infinite trees can
also be successfully exploited in this context. We reduce the problem of deciding the entailment
of a given P2RPQs over a ZOIQ knowledge base enjoying the canonical model property, to
the emptiness test of an automaton. The technique exploits the algorithm presented in the
previous chapter, and builds on the ideas of Calvanese et. al. [CDGLV00] to obtain from it a
procedure for query entailment. Roughly, the idea is to first construct an automaton that verifies
whether there exists a match for the given query in an interpretation. Then we complement
this automaton and intersect it with the automaton that recognizes the models of a KB that we
developed in Chapter 3. The result is an automaton whose language is empty iff there is a model
of the KB where the query has no match. This technique was employed in [CDGLV00] to decide
containment of two queries (w.r.t. an empty KB), and uses automata on infinite words. Here
we do a similar construction but using automata on infinite trees, which poses some additional
difficulties. In particular, to implement the necessary automata operations, we need to consider
a few different kinds of automata and apply transformations between them.

The reduction to automata emptiness allows us to decide the entailment of a P2RPQ over
any given ZOIQ knowledge base enjoying the canonical model property in 2ExpTime. In this
way, we do not only push significantly the decidability of query answering in expressive DLs,
but also obtain tight complexity bounds. Further, since in the DLs with nominals (and regular
role expressions), containment of P2RPQs can be reduced to entailment, we obtain the first
decidability and complexity results for query containment. Specifically, we obtain (with unary
encoding of numbers), an optimal 2ExpTime upper bound for P2RPQ entailment in ZIQ,
ZOQ, and ZOI, and for P2RPQ containment in ZOQ and ZOI. For ZIQ, the same bound
holds for containment of CQs in P2RPQs. This seems particularly interesting if one considers
that P2RPQs allow a form of recursion, and that decidability results for recursive queries are
very limited. In fact, this is to our knowledge the first result of this kind for expressive DLs.

The rest of the chapter is organized as follows. The core technique for query answering is
presented in Section 4.1. Then, in Section 4.2, we obtain some complexity results from our
automata algorithm. Related work and some discussion can be found in Section 4.3.

69

4.1 Query Entailment via Automata

Throughout this section we assume a given P2RPQ q and a KB K in ZOIQ, such that K
enjoys the canonical model property (that is, if K is satisfiable then it has a canonical model).
In particular, K can be any KB in ZIQ, ZOQ or ZOI. We reduce K 6|= q to the emptiness
test of an automaton. For simplicity, we assume that the set Atoms(q) of atoms occurring in q
contains only role atoms of the form R(v, v′) with v, v′ ∈ NV, and that all vocabulary symbols
occurring in q occur also in K, i.e., NC(q) ⊆ NC(K), NR(q) ⊆ NR(K), and NI(q) ⊆ NI(K). These
assumptions are without loss of generality (see Section 2.2).

It follows from Proposition 3.2.4 that to decide whether K 6|= q, we only need to decide
whether CK has a canonical model in which q has no match, where CK is the concept from
Definition 3.1.2. We build an automaton ACK 6|=q that accepts the representations of canonical
models of CK in which q has no match. Thus deciding query entailment reduces to testing ACK 6|=q

for emptiness. Roughly, ACK 6|=q is obtained by intersecting two automata: the automaton ACK

defined in Chapter 3 that accepts canonical models of CK, and an automaton that accepts
interpretations in which q has no match. As a preliminary step, we first construct a FEA Aq

that accepts interpretations in which q has a match. It will then be possible to obtain ACK 6|=q

by applying some operations to Aq and ACK
.

4.1.1 Representing Query Matches

Recall that q is of the form q = ∃~v.ϕ(~v), and that NV(q) denotes the set of variables in ~v. In what
follows, we use the term extended interpretation to refer to a pair of a canonical interpretation
and a binding for q.

Definition 4.1.1 A extended interpretation is a pair (I, π) consisting of a canonical interpre-
tation I and a binding π : VI(q)→ ∆I for q.

As in Definition 2.2.4, for J = (I, π), we write J |= q if π is a match for q in I.

An extended interpretation can be represented as a labeled forest. The representation is like
the one in Definition 3.3.1, but we additionally include the variable v in the label of the node
π(v), and a marker v↓ in the label of the individual node that is an ancestor of π(v) (recall that in
a canonical interpretation, every node is a descendant of some node interpreting an individual).
Forests representing extended interpretations are labeled with the alphabet ΣK,q, which enriches
ΣCK

with the variables in NV(q) and the markers of the form in v↓.

Definition 4.1.2 (ΣK,q, q-binding forests) Recall Θ(CK) and ΣK from Definition 3.3.1. We
let NV

↓(q) = {v↓ | v ∈ NV(q)}, and define

Θ(K, q) = Θ(CK) ∪ NV(q) ∪ NV
↓(q), and ΣK,q = 2Θ(K,q).

For a ΣK,q-labeled forest F = 〈F,L〉, its ΣK-restriction is the forest F
′ = 〈F,L′〉 that results

from restricting the labeling L to the alphabet ΣK. The individual nodes of F are the ones of F
′,

and F is individual unique if F
′ is.

A ΣK,q-labeled forest F = 〈F,L〉 is called q-binding if

1. for each v ∈ VI(q) there is exactly one w ∈ T with v ∈ L(w), called the binding of v,

2. for each marker v↓ ∈ NV
↓(q), there is exactly one w ∈ T with v↓ ∈ L(w), and w is an

individual node and an ancestor of the binding of v.

By πF we denote the function VI(q)→ T that maps each v ∈ VI(q) to its binding.
If F is q-binding and individual unique, we call it a (q, CK)-forest.

70

Primordial
Female

Deity

L3

L3

L3

L2

L5

L5

L2

L4

L4L1L1

L1 L4

L5...
...

...
...

...
...

L1 L2

zeus

heracles

Male alcmene

Male
Female MaleDeity
Mortal Mortal

...
...

L3

L1...

...

L4...

gaia

π(v1)

π(v2)

electryon perseus
Male

π(v3)

Figure 4.1: A match π for gq in the canonical model for Kg

Every (q, CK)-forest represents an extended interpretation, and every extended interpretation
is represented by some (q, CK)-forest.

Definition 4.1.3 A (q, CK)-forest F represents the extended interpretation JF = (IF, πF).
The forest representation of an extended interpretation J = (I, π) is the (q, CK)-forest

FJ = 〈F,L〉 whose ΣK-restriction is FI and such that
• for each v ∈ NV(q) and each w ∈ F , v ∈ L(w) iff w = π(v),
• for each v ∈ NV(q) and each c ∈ roots(F), v↓ ∈ L(c) iff π(v) is a descendant of c.

Example 4.1.4 We consider the following query (is a minor (Boolean) variation of qtheo1 from
Example 2.2.2).

qg = ∃v1, v2, v3. hasParent∗ ◦ hasParent−
∗
(v1, v2) ∧ hasParent−(v1, v3) ∧ hasParent−(v2, v3) ∧

Male(v1) ∧ Female(v2) ∧ (¬Deity(v1) ∨ ¬Deity(v2))

Recall the interpretation Ig given in Example 3.2.3. The match π(v1) = zeusIg = 2, π(v2) =
perseusIg · 1 = 6 · 1 and π(v3) = perseusIg = 6 for qg in Ig is depicted in Figure 4.1.

The forest representation of the extended interpretation (Ig, π) is shown in Figure 4.2. It
extends the forest representation of Figure 3.3 with the variable names v1, v2 and v3, and the
markers v↓1, v

↓
2 and v↓3.

4.1.2 Recognizing Query Matches using Automata

We now construct a FEA Aq that verifies whether a (q, CK)-forest represents an interpretation
where there is a match for q. More specifically, Aq accepts an individual unique ΣK,q-labeled
forest F iff it is q-binding and JF |= q. We define Aq as the intersection of two automata: (i) AV

accepts an individual unique ΣK,q-labeled forest iff it is q-binding, that is, if it is a (q, CK)-forest,
and (ii) assuming that F is q-binding, Aπ accepts F iff JF |= q.

We first define a FEA AV that verifies whether a given individual unique ΣK,q-labeled forest
is q-binding.

71

{{h},Male,↑hF
z ,↑hM

a }
Female, Primordial }
{{g},Deity,

L′
5

L′
5

L′
2L′

1

L′
1

...
...

...

{{a},Female,Mortal,↑hF
e }

L′
3

L′
3L′

1

L′
3

L′
4

...
...

...

{{e},Male,Mortal,↑hF
p }

L′
4 L′

5...
...

L′
4...

L′
2L′

4

L′
3 ∪ {v2}

{v↓2 ,v↓3 ,v3,{p},Male,↑hF
z }

L′
1

L′
2

L′
1

...

...

{v↓1 ,v1,{z},Male,Deity }

Figure 4.2: The forest representation of an extended interpretation

Definition 4.1.5 The FEA AV = 〈ΣV , bV , QV , δV , q
V
0 , GV 〉 is defined as follows:

• ΣV = ΣK,q, that is, AV runs over ΣK,q-labeled forests.

• The counting bound of AV is bV = 1.

• The state set is defined as follows:

QV = {qV
0 } ∪ {v

+, v−, v,¬v, v↓,¬v↓, | v ∈ NV(q)} ∪

{Lv+, v↓M, Lv−,¬v↓M | v ∈ NV(q)} ∪

{La, v↓M | a ∈ NI(D), v ∈ NV(q)}.

The state v+ is used for checking that the tree rooted at the current node contains one node
labeled v, and the state v− for checking that it does not contain any node labeled v. The
states v, ¬v, v↓, and ¬v↓ are used simply for verifying whether the respective symbol is
in the label of the current node, and the other auxiliary states are used for simultaneously
checking some combinations of conditions at the roots. They are explained below.

• The transition function δV : QV × ΣK,q → B(D1 ×QV) is as follows:

1. First, for each σ ∈ ΣK,q, transitions from the initial state:

δD(q0D, σ) =
∧

v↓∈NV
↓(q)

(
∨

a∈NI(D)(〈root〉, La, v↓M)
)

∧

∧

v↓∈NV
↓(q)([root], Lv+, v↓M) ∨ ([root], Lv−,¬v↓M)

The first big conjunction ensures that each marker v↓ occurs in some individual node,
and hence in exactly one individual node if the input forest is nominal unique. The
second conjunct ensures that for each root c ∈ roots(F), either a) c is labeled v↓ and
the tree Tc rooted at it contains one node labeled v, or b) c is not labeled v↓ and Tc

does not contain a node labeled v.

2. The automaton moves to a state La, v↓M to verify that the label of a root node contains
{a} and v↓. Hence there is a transition, for each σ ∈ ΣK,q and each La, v↓M ∈ QV :

δV (La, v↓M, σ) = (ε, {a}) ∧ (ε, v↓)

72

3. The automaton moves to a root node c and a state Lv+, v↓M to verify (1a) that c is
labeled v↓ and the tree Tc rooted at it contains one node labeled v. It moves to c and
a state Lv−,¬v↓M to verify that (1b) that c is not labeled v↓ and Tc does not contain
a node labeled v. Hence there are transitions, for each σ ∈ ΣK,q and each Lv+, v↓M,
Lv−,¬v↓M in QV :

δV (Lv+, v↓M, σ) = (ε, v+) ∧ (ε, v↓)
δV (Lv−,¬v↓M, σ) = (ε, v−) ∧ (ε,¬v↓)

4. Next, AV moves to a node w and a state v+ to check that there is one node labeled v
inside the subtree Tw rooted at w, and to a state v− to check that are no nodes labeled
v in Tw. Hence, for each v ∈ NV(q) and each σ ∈ ΣK,q, there are transitions:

δV (v+, σ) =
(

(ε, v) ∧ ([0], v−)
)

∨
(

(ε,¬v) ∧ (〈1〉, v+) ∧ ([1], v−)
)

,

δV (v−, σ) = (ε,¬v) ∧ ([0], v−).

Intuitively, if there is exactly one node labeled v in Tw, there are are two possibilities,
captured by the two disjuncts in the first transition. Either (i) w is labeled v and there
are no nodes labeled v anywhere in the subtrees rooted at its successors, or (ii) w is not
labeled v, it has a child w′ such that the subtree rooted at w′ contains one node labeled
v, and there are no other nodes labeled v below w. The second transition ensures that
w itself is not labeled v, and moves to v− in all children of w to recursively make sure
that there are no nodes labeled v in the respective subtrees.

5. Finally, for each σ ∈ ΣCK
and each s ∈ NV(q)∪NV

↓(q)∪NI(CK), there are transitions
to check whether the symbol s is in the labels of the current node or not:

δV (s, σ) =

{

true, if s ∈ σ

false, if s 6∈ σ
, δV (¬s, σ) =

{

true, if s 6∈ σ

false, if s ∈ σ
.

• GV = (∅, {v− | v ∈ NV(q)}, QV).

Only the states of the form v+ and v− can occur infinitely often in the runs. In the former
case, if there is some path P where v+ repeats forever, then the automaton is searching for
a node in P that contains the variable v in its label, but never finds it. That is, the variable
v is not found in F. In this case the parity condition is violated and the automata does
not accept F because it is not q-binding. On the other hand, infinite runs where only v−

occurs are accepted because they are q-binding: each marker and each variable are found
once, and then they do not occur in the rest of the finite and infinite paths of the tree.

The following lemma holds by the construction of AV and can be proved in the standard
way:

Lemma 4.1.6 Let F be an individual unique ΣK,q-labeled forest. Then F ∈ L (AV) iff F is
q-binding.

To define the FEA Aπ that verifies whether a binding is actually a match for q, we first
introduce q-concepts. We use the variables in NV(q) as atomic concepts, and use a q-concept
Cα for each query atom α = R(v, v′), such that Cα is satisfied at some root of an extended
interpretation (I, π) iff I, π |= α.

Definition 4.1.7 A q-concept C is defined like a regular ZOIQ concept, but allows also the
elements of VI(Q) in place of atomic concepts.

Similarly to standard concepts in standard interpretations, a q-concept C is interpreted in an
extended interpretation J = (I, π) as a set CJ ⊆ ∆I:

73

• if C = B for some atomic ZOIQ concept B, CJ = BI,

• if C = v for some v ∈ VI(q), then CJ = {π(v) }, and

• J · is inductively extended to complex q-concepts as in Definition 2.1.24, i.e., like for a
regular interpretation.

We define a q-concept Cα for each α occurring in q as follows:

Definition 4.1.8 For each α=R(v, v′) in Atoms(q), let

Cα = ∃R∗
K.(v ⊓ ∃R.v′).

where RK =
⋃

p∈NR(K) p ∪ p
−.

The closures ClC(Cα) and ClR(Cα) of q-concepts are defined as for regular concepts (in par-
ticular, ClC(Cα) includes the variables v, v′ as atomic concepts). We use the following notation:

ClC(q) =
⋃

α∈Atoms(q) ClC(Cα),

ClR(q) =
⋃

α∈Atoms(q) ClR(Cα).

In an extended interpretation, the satisfaction of a query atom α is correctly captured by
the satisfaction of the q-concept Cα at some individual node.

Lemma 4.1.9 For every extended interpretation J = (I, π) and atom α=R(v, v′) ∈ Atoms(q),
we have I, π |= α iff there is some a ∈ NI(CK) such that aI ∈ (Cα)J .

By this Lemma, we only need to verify that Cα1
, . . . , Cαk

hold at some root for a set of
query atoms {α1, . . . , αk} that make the query q true. The satisfaction of the concepts Cαi

is
verified by an automaton Aπ that decomposes them via transitions analogous to those of ACK

.
Modulo the initial transition from the root node, Aπ and ACK

are very similar.

Definition 4.1.10 We define the FEA Aπ = (Σπ, bCK
, Qπ, δπ, q

π
0 , Gπ) as follows.

• Σπ = ΣK,q.

• The counting bound is bπ = max({n | ≷ nS.C ∈ ClC(q)} ∪ {0}).

• Qπ is described in Table 4.1. It is analogous to QD, but it contains one additional state
set Qα and it is defined using ClC(q) and ClR(q) instead of ClC(D) and ClR(D), Θ(K, q)
instead of Θ(D), and NI(CK) instead of NI(D).

• The transition function δπ : Qπ ×ΣK,q → B(Dbπ
×Qπ) contains the following transitions.

We group them similarly as for δD in Definition 3.3.7, all transitions are analogous except
for those in the first group.

1. From the initial state there is a transition for each σ ∈ ΣK,q:

δπ(q0, σ) = Bϕ

where Bϕ results from ϕ(~v) by replacing each atom α with (〈root〉, LCαM). This tran-
sition ensures that a set of atoms At = {α1, . . . , αk} that make the query true are
satisfied at the individual nodes.

74

Qα = {LCαM | α ∈ Atoms(q)}

QSelf = {SSelf | S ∈ ClR(q)}

Q↑ = {↑Sa | S ∈ ClR(q), a∈NI(CK)}

Qroots = {L〈root〉k, S′, C ′M, L[root]k, S′, C ′M, | 0 ≤ k ≤ |NI(CK)|, S ∈ S, C ∈ C}

QNom = {L∨,¬a,¬bM | a, b ∈ NI(CK), a 6= b}

Qbin = {L◦, S, CM | ◦ ∈ {∧,∨}, S ∈ S, C ∈ C} ∪
{L◦, α,CM | ◦ ∈ {∧,∨}, α = {a} or α = ¬{a}, a ∈ NI(CK), C ∈ C}

Table 4.1: State set Qπ = {q0π} ∪ ClC(q) ∪ ClR(q) ∪ {s,¬s | s ∈ Θ(K, q)} ∪ Qα ∪ QSelf ∪ Q↑ ∪
QNom ∪Qroots ∪Qbin. Here, S and C respectively denote the set of of all simple roles S, ∼S and
of all concepts C, ∼C such that ≷ nS.C ∈ ClC(q).

To this aim, when Aπ is at a root node c and in a state LCαM for some α∈Atoms(q), it
verifies whether c is an individual node and it satisfies Cα, via the following transitions
for each σ ∈ ΣK,q:

δπ(LCαM, σ) =
(

∨

a∈NI(CK)

(ε, {a})) ∧ (ε,Cα).

Then, to check that Cα is satisfied, Aπ has transitions similar to those of ACK
. That is,

for each σ ∈ ΣK, there are transitions that:

2. recursively decompose the concepts using states in ClC(q), as in item 2 of δD;

3. recursively decompose roles using states in ClR(q), QSelf and Q↑, as in item 3 of δD;

4. verify the satisfaction of the number restrictions, using the states in QNom, Qroots and
Qbin, as in item 4 of δD; and

5. check symbol occurrences in node labels, for each s ∈ Θ(K, q), as in item 5 of δD.

• Gπ = (∅, {∀R∗.C | ∀R∗.C ∈ ClC(q)}, Qπ), analogously as in AD.

The automaton correctly verifies whether a given (q, CK)-forest represents an extended in-
terpretation where q has a match.

Lemma 4.1.11 The following hold:

1. For every extended interpretation J , if J |= q then FJ ∈ L (Aπ).

2. For every (q, CK)-forest F, F ∈ L (Aπ) implies JF |= q.

Proof. The proof is very similar to the proof of Proposition 3.3.8. For the first item, we
take an extended interpretation J = (I, π) such that J |= q. By definition, there is a set of
atoms At ⊆ Atoms(q) that make the query true and such that I, π |= α for each α ∈ At . By
Lemma 4.1.9, for each α there is some individual aα ∈ NI(CK) such that (aα)I ∈ (Cα)I , and
this implies that I is an ind-model of the concept Cq =

d
α∈At(¬{aα} ⊔Cα). We can use a well

founded adorned premodel 〈I, θ, ch〉 of Cq to guide the construction of a run of Aπ over F, as
in the proof of item 1 in Proposition 3.3.8.

For the second item, we consider a (q, CK)-forest F. We can show, exactly as for item 1 in
Proposition 3.3.8, that in a ∆IF ×Qπ-labeled tree 〈Tr, r〉 where each node satisfies condition 2

75

in Definition 3.3.5, whenever there is some t ∈ Tr with r(t) = (w,C) and C ∈ ClC(q), then
IF, w |=pre C. Moreover, if C is of the form ∃R∗.C ′, then it is eventually realized in every
accepting run of Aπ over F, hence IF, w |=pre C implies w ∈ CIF . So, by the initial transitions
in item 1 of the definition above, for each α ∈ At there is some c ∈ roots(IF) and some
a ∈ NI(CK) such that c ∈ {a}IF and c ∈ (Cα)IF , and it follows from Lemma 4.1.9 that JF |= q.

Finally, the automaton Aq is defined as the intersection of AV and Aπ. Building the inter-
section of two FEAs (with the same alphabet) is trivial: we simply take the maximal counting
bound, the disjoint union (denoted ⊎) of their state sets and of their transition functions. The
parity condition is obtained by taking the disjoint union of the sets with same index, and we
add a fresh initial state and a transition from it to the initial states of both automata, for every
symbol in the alphabet.

Definition 4.1.12 The FEA Aq = 〈Σq, bq, Qq, δq, q
V
0 , Gq〉 is defined as follows:

• Σq = ΣK,q.

• The counting bound of Aq is bq = max(bV , bπ) = max({n | ≷ nS.C ∈ ClC(q)} ∪ {1}).

• The state set is Qq = {qq
0} ⊎QV ⊎Qπ.

• The transition function δq : Qq × ΣK,q → B(Dbq
×Qq) is:

⋃

σ∈ΣK,q

{ (qq
0, σ) = (ε, qV

0) ∧ (ε, qπ
0) } ⊎ δV ⊎ δπ

• Gq = (∅, {v− | v ∈ NV(q)} ⊎ {∀R∗.C | ∀R∗.C ∈ ClC(q)}, Qq).

From the construction of Aq and Lemmas 4.1.6 and 4.1.11, we obtain:

Lemma 4.1.13 The following hold for Aq:

1. If J is an extended interpretation and J |= q, then FJ ∈ L (Aq).

2. If F is individual unique and F ∈ L (Aq), then F is a (q, CK)-forest and JF |= q.

The following bounds will be important to derive our complexity results. By convention,
||K, q|| denotes the combined size ||K||+ ||q|| of the strings encoding K and q. Observe that the
alphabet and the set of states of Aq depend both on ||q|| and ||K||.

Lemma 4.1.14 For Aq, the following hold:

1. the number of states |Qq| is polynomial in ||K, q||,

2. the alphabet size |ΣK,q| is single exponential in ||K, q||,

3. if the numbers are encoded in unary, the counting bound bD is linear in ||q||, and

4. the parity index of Aq is fixed.

Proof. For the fourth item, simply observe that the parity index of Aq is 3. It is also clear
that if we assume unary encoding of numbers, then bq = max({n | ≷ nS.C ∈ ClC(q)} ∪ {1}) is
bounded by ||q||.

The result is then a consequence of the following simple estimates:

76

Accepts interpretation trees

that represent a model of the KB

Accepts extended interpretation

trees where the query has a match

Accepts interpretation trees

where the query has no match

Accepts interpretation trees that
represent models where the query has no match

Project match away

and complement

Intersect

AK

Aq A¬q

AK6|=q

Figure 4.3: Overview of the automata algorithm for Query Entailment

• |ΣK,q| = 2|Θ(K,q)|, and |Θ(K, q)| = |Θ(CK)|+2 · |NV(q)|. Since |Θ(CK)| is quadratic in ||K||
(see Lemmas 3.1.5 and 3.4.1) and NV(q) is linear in ||q||, then |Θ(K, q)| is polynomial (in
fact, quadratic) in ||K, q||, and |ΣK,q| is single exponential in ||K, q||.

• By definition, |Qq| = 1 + |ClC(q)| + |ClR(q)| + (2 × |Θ(K, q)|) + |Qα| + |QSelf| + |Q↑| +
|QNom|+ |Qroots|+ |Qbin|, where

|Qα| = |Atoms(q)|

|QSelf| ≤ |ClR(q)|

|Q↑| ≤ |NI(CK)| · |ClR(q)|

|QNom| = |NI(CK)|2

|Qroots| ≤ 2 · |NI(CK)| · |ClC(q)|2

|Qbin| ≤ 2 · |ClC(q)|2 + 2 · |NI(CK)| · |ClC(q)|

We know that |Θ(K, q)| is quadratic in ||K, q||, and that NI(CK) is linearly bounded by
||K||. Clearly Atoms(q), ClC(q), ClR(q) are linear in ||q||. Therefore |Qq| is polynomial in
||K, q||.

4.1.3 Reducing Query Entailment to Automata Emptiness

The automata Aq we just defined and the automata ACK
from Chapter 3 are the main ingredients

for building ACK 6|=q. Roughly, the automaton Aq accepts the representations of models where
there is a match for q. It actually accepts forests labeled over the extended alphabet ΣK,q

that uses the variables in the node labels to represent matches explicitly. By projecting the
query variables from Aq’s alphabet, we obtain an automaton that accepts the same forests, but
restricted to the alphabet ΣCK

. They represent the interpretations in which q has a match, no
matter where it is. We complement this automaton to obtain an automaton A¬q that accepts
an interpretation exactly when there is no match for q in it. Finally, we intersect ACK

and A¬q

to obtain ACK 6|=q. Figure 4.3 gives a general overview of the query entailment algorithm. Each
of the steps will be discussed in detail below.

The special features of enriched automata have been useful so far, allowing us to avoid more
complicated automata constructions. However, the operations that we use to obtain ACK 6|=q from

77

Aq and ACK
work on simpler automata models. We first get rid of root and graded transitions,

to rely on automata for which more results are available in the literature. We also need to get rid
of two-wayness and alternation, as projection and complementation are only possible in one-way
non-deterministic automata. We now introduce three increasingly simple automata models that
will be used in the construction of ACK 6|=q.

In what follows, we refer to each component Σ, Q, b, etc. of an automaton A by Σ(A),
Q(A), b(A) etc., and we denote its parity index by ind(A).

Two-way Graded Alternating Tree Automata (2GATA)

First, we exploit the fact that root transitions can be easily removed from FEAs. A 2GATA is
defined exactly as FEA, but there are no transitions using 〈root〉 or [root].

Definition 4.1.15 ([BLMV08]) For b > 0, let D
′
b = {−1, ε} ∪ {〈0〉, . . . , 〈b〉} ∪ {[0], . . . , [b]}.

A two-way graded alternating parity tree automaton (2GATA) is a FEA with transition function
δ : Q× Σ→ B(D′

b ×Q),

2GATAs run on proper trees (that is, trees with root ε), rather than on forests. Their runs
are defined essentially as for FEAs, and they always start at the root ε.

Definition 4.1.16 (run, acceptance) A run of a 2GATA A = 〈Σ, b,Q, δ, q0, G〉 over a labeled
tree 〈T,L〉 is a T×Q-labeled tree 〈Tr, r〉 such that

1. r(c) = (ε, q0) for the root c of Tr, and

2. for every t ∈ Tr with r(t) = (w, q) there is some W ⊆D
′
b×Q such that W makes δ(q, L(w))

true and, for all (d, q′)∈W :

• if d ∈ {−1, ε}, then w·d is a node in T and there is some j ∈ IN such that t·j ∈ Tr

and r(t·j) = (w·d, q′);
• if d = 〈n〉, then there is some M ⊆ succ(w) with |M | > n such that, for each z ∈M ,

there is some j ∈ IN such that t·j ∈ Tr and r(t·j) = (z, q′); and
• if d = [n], then there is some M ⊆ succ(w) with |M | ≤ n such that, for each
z ∈ succ(w) \M , there is some j ∈ IN such that t·j ∈ Tr and r(t·j) = (z, q′).

As for FEAs, the run 〈Tr, r〉 is accepting if, for each infinite path P of Tr, there is an even
i such that Inf(〈P, r〉) ∩Gi 6= ∅ and Inf(〈P, r〉) ∩Gi−1 = ∅. A 2GATA A accepts a labeled tree
〈T,L〉 if there exists an accepting run of A over 〈T,L〉. The set L (A) of all trees accepted by
A is the language of A.

From FEAs to 2GATAs

To recognize forests using 2GATAs, we transform them into trees by adding a suitable root.

Definition 4.1.17 For Σ = ΣK or Σ = ΣK,q, the tree encoding of a Σ-labeled forest F = 〈F,L〉,
denoted tree(F), is the (Σ ⊎ {root})-labeled tree 〈T,L′〉 such that T = {ε} ⊎ F , L′(w) = L(w)
for all w 6= ε, and L′(ε) = {root}.

We say that a ΣK-labeled tree T is individual unique iff T = tree(F) for an individual unique
ΣK-labeled forest F, that is, if L(ε) = {root} and removing ε from it results in an individual
unique ΣK-labeled forest.

As shown in [BLMV08], every FEA A can be reduced to a 2GATA A
′ that accepts a tree

iff it is the tree encoding of a forest accepted by A.

78

Lemma 4.1.18 ([BLMV08]) For each FEA A, it is possible to construct a 2GATA A
′ such

that

1. T ∈ L (A′) iff T = tree(F) for some F ∈ L (A), and

2. A
′ and A have the same parity index and counting bound, and |Q(A′)| is linearly bounded

in |Q(A)|.

Two-way Alternating Tree Automata (2ATA)

Now we define the two-way alternating parity tree automata (2ATAs) over infinite trees intro-
duced in [Var98]. A 2ATA is similar to a FEA, but it runs on trees of a fixed arity b, and instead
of having graded transitions with 〈n〉 and [n] that allow it to move to at least n or all but n
successors of the current node w, it has transitions with directions d ∈ {1, . . . , b} that move to
specific successors w·d of w.

Definition 4.1.19 A two-way alternating parity tree automaton (2ATA) running over infinite
Σ-labeled k-trees is a tuple A = 〈Σ, Q, δ, q0, G〉, where the alphabet Σ, the set of states Q,
the initial state q0 ∈ Q, and the (parity) acceptance condition G = (G1, . . . , Gn) with G1 ⊆
G2 ⊆ · · · ⊆ Gn = Q are as in FEAs (cf. Definition 3.3.4), and the transition function is
δ : Q× Σ→ B([−1..k]×Q), with [−1..k] = {−1, ε, 1, . . . , k}.

As usual, acceptance of 2ATAs is defined in terms of runs. They are similar to the runs of
2GATAs, but defined for proper trees of fixed arity rather than for arbitrary proper trees. A run
for a 2ATA starts at the root. The directions −1 and ε in [−1..k] indicate that the automaton
moves up or stays at the current position, as for FEAs. A direction d ∈ {1, . . . , k} indicates
that the automaton moves from the current node w to its child w·d. Formally, 2ATA runs are
defined as follows:

Definition 4.1.20 Let A = 〈Σ, Q, δ, q0, G〉 be a 2ATA running over k-ary trees. A run (Tr, r)
of A over a Σ-labeled k-ary tree (T,L) is a (T×Q)-labeled tree satisfying:

1. r(c) = (ε, q0) for the root c of Tr, and

2. for every t ∈ Tr with r(t) = (w, q) there is some W ⊆ [−1..k] × Q such that W makes
δ(q, L(w)) true and, for all (d, q′)∈W , w·d is a node in T and there is some j ∈ IN such
that t·j ∈ Tr and r(t·j) = (w·d, q′).

The notion of acceptance and the language of a 2ATA are defined as usual.

From 2GATAs to 2ATAs

We now show how to eliminate graded transitions from a 2GATA and transform it into a 2ATA.
Since 2ATAs can only accept k-ary trees for a fixed k, we define the following notion:

Definition 4.1.21 Given a proper tree T = 〈T,L〉 and a bound k on its branching degree, we
denote by aryk(T) the k-ary tree T

′ = 〈T ′, L′〉 obtained from T as follows. First, for each w ∈ T ,
let fw be the bijection from succ(w) to {1, . . . , |succ(w)|} such that fw(w · i) ≤ fw(w ·j) whenever
i ≤ j. To define T

′ = 〈T ′, L′〉, we build T ′ inductively using a partial function g : T ′ → T as
follows:
• For the root ε of T ′, g(ε) = ε.
• Each node w ∈ T ′ has successors w · 1, . . . , w · k. If g(w) is defined and there is some
w′ ∈ succ(g(w)) with fg(w)(w

′) = i, then g(w · i) = w′. Otherwise, g(w · i) is undefined.

79

For every w ∈ T ′, L′(w) = L(g(w)) if g(w) is defined, and L(w) = ∅ otherwise.
For a forest F, we use treeb(F) as a shortcut aryb(tree(F)).

For every k, a 2GATA A can be transformed into a 2ATA A
′ that accepts exactly each k-ary

tree encoding a tree of branching bounded by k that is accepted by L (A′).

Lemma 4.1.22 Let k ≥ 1. For each 2GATA A there is a 2ATA A
k such that

1. for every tree T, T ∈ L (Ak) implies T ∈ L (A),

2. for every tree T ∈ L (A) whose branching degree is bounded by k, aryk(T) ∈ L (Ak), and

3. A and A
k have the same parity index and counting bound, and |Q(Ak)| is linearly bounded

in |Q(A)| · b(A) · k.

Proof (sketch). Let A = 〈Σ, b,Q, δ, q0, G〉. Then we define A
k = 〈Σ, Q⊎Q′, δ′, q0, G

′〉, where

Q′={〈i, q, j〉, [i, q, j] | q ∈ Q, 0 ≤ i ≤ b+1, 1 ≤ j ≤ k+1}.

For each σ ∈ Σ, the transition function δ′ is defined as follows. First, for all q ∈ Q, δ′(q, σ)
is obtained from δ(q, σ) by replacing each (〈n〉, q) with (ε, 〈n+1, q, 1〉) and each ([n], q) with
(ε, [n+1, q, 1]). For 1≤i≤b+1 and 1≤j≤k, we define:

δ′(〈i, q, j〉, σ) = ((j, q) ∧ (ε, 〈i−1, q, j+1〉)) ∨ (ε, 〈i, q, j+1〉)
δ′([i, q, j], σ) = ((j, q) ∧ (ε, [i, q, j+1])) ∨ (ε, [i−1, q, j+1])

and additionally, we have:

δ′(〈0, q, j〉, σ) = true, δ′([0, q, j], σ) = false, for 1≤ j≤ k+1;
δ′(〈i, q, k+1〉, σ) = false, δ′([i, q, k+1], σ) = true, for 1≤ i≤ b+1.

Intuitively, from state 〈i, q, j〉, a copy of A
k is sent off in state q, to at least i successor nodes

starting from the j-th one. Similarly, from state [i, q, j], no copy of A
k is sent off in state q, for

at most i−1 successor nodes starting from the j-th one. Finally, if G = (G1, . . . , Gn−1, Q), we
have

G′ = (G1, . . . , Gn−1, Q ⊎Q
′).

One can easily show that every tree T accepted by A
k is accepted by A, and that if the branching

degree of T is bounded by k and T is accepted by A, then its k-ary version aryk(T) is accepted
by A

k.

Lemma 4.1.22 does not ensure equivalence between the 2GATA and the resulting 2ATA,
since the 2GATA accepts arbitrary proper trees and the 2ATA only k-ary ones, but we will see
that this is sufficient for our purposes.

One-way Non-deterministic Tree Automata (1NTA)

Standard non-deterministic (one-way) automata on infinite trees can be defined as particular
2ATAs, in which the transitions cannot use the directions 0 and −1, but instead the automaton
always moves to the k successors of the current node and to a tuple of k states, one for each
successor. Such a choice can be expressed as a formula in conjunctive form:

Definition 4.1.23 A one-way non-deterministic automaton (1NTA) running over k-ary trees
is a 2ATA A = 〈Σ, Q, δ, q0, G〉 such that for every q ∈ Q and every σ ∈ Σ, δ(q, σ) is of the form
((1, q11) ∧ · · · ∧ (k, q1k)) ∨ · · · ∨ ((1, qj

1) ∧ · · · ∧ (k, qj
k)), with j ≥ 0, and qi

ℓ ∈ Q for each 1 ≤ i ≤ j
and each 1 ≤ ℓ ≤ k.

80

From 2ATAs to 1NTAs

The following result is well-known.

Theorem 4.1.24 ([Var98]) Given a 2ATA A running on k-ary trees, it is possible to construct
a 1NTA A

′ such that

1. L (A′) = L (A),

2. |Q(A′)| is single exponential in |Q(A)|, and

3. ind(A′) is linear in ind(A).

Constructing the Automaton AK6|=q

Now we can transform ACK
and Aq into 1NTAs A

1
K and A

1
q, and rely on known results for

1NTAs to build AK6|=q. To eliminate the graded transitions we need a bound on the branching
degree of forests representing (extended) interpretations, which is k(K) = max(NI(CK), bCK

)
where bCK

= |ClC(CK)| ·max({n | >nS.C ∈ ClC(CK)} ∪ {0}).

Lemma 4.1.25 There is a 1NTA A
1
K such that, assuming unary encoding of numbers,

1. if I is a canonical model of CK, then treek(K)(FI) ∈ L (A1
K),

2. if T ∈ L (A1
K), then T = tree(F) for some CK-forest F such that IF |=ind CK,

3. the number of states |Q(A1
K)| is single exponential in ||K||,

4. the parity index ind(A1
K) is fixed, and

5. A
1
K can be built in time single exponential in ||K||,

Proof. Recall the automaton ACK
from Definition 3.3.7. By Lemma 4.1.18, there is a

2GATA A
⋄
K that accepts the forest encoding of each tree accepted by ACK

. It has the same
parity index and counting bound as ACK

, and its state set Q(A⋄
K) is linearly bounded in |QCK

|.
Since |QCK

| is polynomial in ||K||, so is Q(A⋄
K). To transform A

⋄
K into a 2ATA, we consider k(K)

as above and take A
k(K)
q as constructed in Lemma 4.1.22. The parity index does not change.

Since k(K) is linearly bounded in ||K||, and |Q(A
k(K)
q)| is linearly bounded in |Q(A⋄

K)|·bCK
·k(K),

then |Q(A
k(K)
q)| is polynomial in ||K||.

Since A
⋄
K accepts trees that are not individual unique, A

k(K)
K also accepts trees that are not

individual unique, and that do not properly represent a model of CK. To avoid distinguishing
between individual unique and non individual unique trees as we did in Chapter 3, and having
to prove the existence of the latter in the language of A

k(K)
K and of other automata below, we

exploit the fact that 2ATAs can easily enforce individual uniqueness, and transform A
k(K)
K into

an automaton A
u
K that accepts exactly the nominal unique trees accepted by A

k(K)
K . We only

need to add a new initial state qu
0 , and states a and ¬a for each a ∈ NI(CK). Then we add a

new initial transition from the root that checks that each individual only occurs at one level
one node, and then executes the original transition of A

k(K)
K , and add transitions that check

for the individual names at the labels (note that states a, ¬a and the latter transitions were
already defined in the automaton ACK

already, but they can always be added as (transitions
from) fresh states). Let A

k(K)
K = 〈Σ, Q, δ, q0, G〉. Formally, we let A

u
K = 〈Σ, Qu, δu, q

u
0 , Gu〉,

where Qu = Q ⊎ {qu
0} ⊎ {a,¬a | a ∈ NI(CK)}. The transition function δu coincides with δ for

the states in Q, and extends it with the following transitions:

δu(qu
0 , {root}) = (ε, q0) ∧

∧

a∈NI(CK)

(

∨

1≤i≤k

((i, a) ∧
∧

1≤j≤k,j 6=i

(j,¬a))
)

81

and transitions, for each σ ∈ Σ:

δu(a, σ) =

{

true, if a ∈ σ

false, if a 6∈ σ
, δu(¬a, σ) =

{

true, if a 6∈ σ

false, if a ∈ σ
.

If G = (G1, . . . , Gn = Q), we set Gu = (G1, . . . , G
′
n = Qu). Then A

u
K accepts a tree T iff T is

nominal unique and accepted by A
k(K)
K . The parity index of A

u
K remains the same, and |Q(Au

K)|

is bounded by |Q(A
k(K)
K)|+ 2 · |NI(CK)|+ 1, and is thus polynomial in ||K||.

Finally, let A
1
K be a 1NTA that accepts the same trees as A

u
K, as described in Theorem 4.1.24.

Then |Q(A1
K)| is exponential in ||K||. Since the parity index of A

u
K is fixed, so is the parity

index of A
1
K. Each of the steps can be done in time single exponential in ||K|| (we note that the

transformation from FEAs to 2GATAs described in [BLMV08] can be computed efficiently), so
it is only left to show 2 and 1.

To show 1, consider a canonical model I of CK. By item 1 in Proposition 3.3.8, its forest
encoding FI is accepted by ACK

, and then by Lemma 4.1.18, tree(FI) is accepted by A
⋄
K. Since

the branching of FI is bounded by k(K), Lemma 4.1.22 shows that treek(K)(FI) ∈ L (A
k(K)
K), and

since FI is individual unique, treek(K)(FI) ∈ L (Au
K). Finally, by Theorem 4.1.24, treek(FI) ∈

L (A1
K) as desired.

To show 2, if a tree T is accepted by A
1
K, then by Theorem 4.1.24 it is accepted by A

u
K.

Hence it is individual unique and accepted by A
k(K)
K . So by Lemma 4.1.22 it is also accepted

by A
⋄
K. By Lemma 4.1.18, this implies that it T = tree(F) for some F accepted by ACK

. Since
T is individual unique then so is F, and hence F is a CK-forest and IF |=ind CK by item 2 in
Proposition 3.3.8.

And similarly for the query automaton Aq:

Lemma 4.1.26 There is a 1NTA A
1
q such that, assuming unary encoding of numbers,

1. if J is an extended interpretation and J |= q, then treek(K)(FJ) ∈ L (A1
q),

2. if T is individual unique and T ∈ L (A1
q), then T = tree(F) for some (q, CK)-forest F

such that JF |= q,

3. the number of states |Qq| is single exponential in ||K, q||,

4. the parity index ind(Aq) is fixed, and

5. A
1
q can be built in time single exponential in ||K, q||.

Proof. The proof is analogous. We start from the automaton Aq from Definition 4.1.12. By
Lemma 4.1.18, there is a 2GATA A

⋄
q that accepts the forest encoding of each tree accepted by

Aq. It has the same parity index and counting bound as Aq, and its state set Q(A⋄
q) is linearly

bounded in |Qq|. Since |Qq| is polynomial in ||K, q||, so is Q(A⋄
q). Then we take A

k(K)
q as in

Lemma 4.1.22. The parity index remains the same. Since k(K) is linearly bounded in ||K, q||,
and |Q(A

k(K)
q)| is linearly bounded in |Q(A⋄

q)| · bq · k(K), |Q(A
k(K)
q)| is polynomial in ||K, q||.

Finally, A
1
q is a 1NTA that accepts the same trees as A

k(K)
q as in Theorem 4.1.24; |Q(A1

q)| is
exponential in ||K, q||, and the parity index of A

1
q remains fixed. As above, each of the steps

can be done in time single exponential in ||K, q||.
To show 1, consider an extended interpretation J such that J |= q. By Lemma 4.1.13,

its forest encoding FJ is accepted by Aq and then by Lemma 4.1.18, tree(FJ) is accepted by
A

⋄
q. Since FJ is individual unique, the branching of tree(FJ) is bounded by k(K), and we have

treek(K)(FJ) ∈ L (A
k(K)
q) by Lemma 4.1.22. So, by Theorem 4.1.24, treek(K)(FK) ∈ L (A1

q).

82

To show 2, if an individual unique ΣK,q-labeled tree T is accepted by A
1
q, then it is accepted

by A
k(K)
q by Theorem 4.1.24, and accepted by A

⋄
q by Lemma 4.1.22. So, by Lemma 4.1.18, T =

tree(F) for some F ∈ L (Aq). Since T is individual unique, then so is F, and by Lemma 4.1.13
F is a (q, CK)-forest and JF |= q.

Now we can use A
1
K and A

1
q to construct AK6|=q. As anticipated, we do this in three steps:

(A) we project A
1
q to the alphabet ΣK, (B) we complement it, and (C) we intersect the resulting

automaton with A
1
K.

A. Projection We define the projection of a language to a restricted alphabet, which contains
the restriction of each tree in it.

Definition 4.1.27 (Σ′-restriction, Σ′-projection) For Σ = 2Φ and Σ′ = 2Φ′
where Φ′ ⊆ Φ,

and for any Σ-labeled tree T = (T,L), the Σ′-restriction of T is the Σ′-labeled tree T
′ = (T,L′),

where L′(w) = L(w)∩Σ′ for every w ∈ T . The Σ′-projection of a set L of Σ-labeled trees is the
set of containing the Σ′-restrictions of all trees in L.

A 1NTA can be easily modified to accept only its projection to some restricted alphabet.

Lemma 4.1.28 For Σ and Σ′ as above, for every 1NTA A running over k-ary Σ-labeled trees,
k ≥ 1, it is possible to construct a 1NTA A

Σ′
with |Q(AΣ′

)| ≤ |Q(A)| and ind(AΣ′
) ≤ ind(A)

that accepts the Σ′-projection of L (A).

Proof (sketch). To obtain A
Σ′

from A, simply change Σ to Σ′ and the transition function
to δ′ as follows. For each σ ∈ Σ′ and each q ∈ Q(A), δ′(q, σ) =

∨

σ′∈Ξ(σ) δ
′(q, σ′), where

Ξ(σ) = {σ′ ∈ Σ | σ′ ∩ Φ′ = σ}.

From A
1
q we can obtain a 1NTA that accepts the ΣK-labeled trees representing an interpre-

tation where there is a match for the query.

Lemma 4.1.29 There is a 1NTA A
↾
q such that, assuming unary encoding of numbers,

1. if I is a canonical interpretation such that I |= q, then treek(K)(FI) ∈ L (A↾
q),

2. if T ∈ L (A↾
q) and T = tree(F) for some CK-forest F, then IF |= q,

3. the number of states |Q(A↾
q)| is single exponential in ||K, q||,

4. the parity index ind(Aq) is fixed, and

5. A
↾
q can be built in time single exponential in ||K, q||.

B. Complementation The following bounds for automata complementation are given in
[MS95].

Proposition 4.1.30 For every 1NTA A running over k-ary trees, k ≥ 1, it is possible to
construct a 1NTA A that accepts a k-ary Σ-labeled tree (T,L) iff (T,L) /∈ L (A), and such that
|Q(A)| ≤ 2O(f(A)) and ind(A) = O(f(A)), where f(A) = ind(A)·|Q(A)|· log |Q(A)|.

Hence we can complement A
↾
q to obtain a 1NTA that accepts the ΣK-labeled trees repre-

senting an interpretation if there is no match for the query in it. Note that this may cause an
exponential blow-up in the number of states.

Lemma 4.1.31 There is a 1NTA A¬q such that, assuming unary encoding of numbers,

83

1. if I is a canonical interpretation and I 6|= q, then treek(K)(FI) ∈ L (A¬q),

2. if T ∈ L (A¬q) and T = tree(F) for some CK-forest F, then IF 6|= q,

3. the number of states |Q(A¬q)| is double exponential in ||K, q||,

4. the parity index ind(Aq) is single exponential in ||K, q||, and

5. A¬q can be built in time double exponential in ||K, q||.

C. Intersection The following bounds for the intersection of two 1NTAs are known:1

Lemma 4.1.32 Given 1NTAs A1 and A2, it is possible to construct a 1NTA A such that
L (A) = L (A1) ∩L (A2) with

ind(A) = O(f(A1,A2))

|Q(A)| ≤ 2O(f(A1,A2)2) · f(A1,A2)·|Q(A1)|·|Q(A2)|

where f(A1,A2) = ind(A1) + ind(A2) + 1.

To obtain the automaton AK6|=q, we intersect A
1
K with A¬q.

Lemma 4.1.33 There is a 1NTA AK6|=q such that, assuming unary encoding of numbers,

1. if I is a canonical model of CK and I 6|= q, then treek(K)(FI) ∈ L (AK6|=q),

2. if T ∈ L (AK6|=q), then T = tree(F) for some CK-forest F such that IF |=ind CK and
IF 6|= q,

3. the number of states |Q(AK6|=q)| is double exponential in ||K, q||,

4. the parity index ind(Aq) is single exponential in ||K, q||, and

5. AK6|=q can be built in time double exponential in ||K, q||.

Proof. If I is a canonical model of CK, then treek(K)(FI) ∈ A
1
K by item 1 in Lemma 4.1.25,

and if I 6|= q, then treek(K)(FI) ∈ L (A¬q) by item 1 in Lemma 4.1.31, so treek(K)(FI) ∈
L (AK6|=q) and 1 holds. For 2, assume T ∈ L (AK6|=q). Then T ∈ L (A1

K), and by 2 in
Lemma 4.1.25, T = tree(F) for some CK-forest F such that IF |=ind CK. So by item 2 in
Lemma 4.1.31, IT 6|= q. Items 3 to 5 follow from Theorem 4.1.32 and the analogous items in
Lemmas 4.1.25 and 4.1.31.

Therefore, AK6|=q accepts some input tree if and only if CK has a canonical model in which
q has no match. Combined with Propositions 3.1.5 and 3.2.4, we thus obtain:

Theorem 4.1.34 For every knowledge base K and P2RPQ q in ZOIQ such that K enjoys the
canonical model property (or in particular, K is in ZIQ, ZOQ or ZOI), it holds that K |= q
iff L (AK6|=q) = ∅.

4.2 Complexity of Reasoning with Queries

The reduction of query entailment to automata emptiness as in Theorem 4.1.34 gives a tight
upper complexity bound for the problem, and also allows us to obtain some tight complexity
bounds for query containment, as we show in this section.

1To our knowledge, these bounds have not been published. A tighter bound of ind(A) = ind(A1) + ind(A2)
and |Q(A)| = f ′(A1,A2)!·f

′(A1,A2)·|Q(A1)|·|Q(A2)|, where f ′(A1,A2) = (ind(A1) + ind(A2))/2 + 1, was
confirmed through personal communication with Yoad Lustig and Nir Piterman, to whom we are very grateful.

84

4.2.1 Deciding Query Entailment

Testing a 1NTA for emptiness is feasible within the following bounds.

Proposition 4.2.1 ([KV98]) Given a 1NTA A, the non-emptiness problem is decidable in
time O(|Q(A)|ind(A)).

We thus obtain one of the main results of this chapter.

Theorem 4.2.2 Given a KB K in ZIQ, ZOQ, or ZOI and a ZOIQ P2RPQ q, deciding
K |= q is in 2ExpTime in the total size of q and K, assuming unary number encoding in number
restrictions.

Proof. Follows from Lemma 4.1.33 and Proposition 4.2.1.

This bound is worst case optimal. It was shown in [Lut07] that already answering CQs over
ALCI is 2ExpTime-hard, and we will show in Chapter 7 that the same lower bound holds for
CQs over SH.

The 2ExpTime-upper bound can not pushed much further. As we showed recently, P2RPQ
entailment is undecidable for ZOIQ [ORŠ10].

4.2.2 Deciding Query Containment

By Proposition 2.2.14, our results allow us to immediately derive upper bounds for the complex-
ity of query containment K |= q1 ⊆ q2 in the three sublogics of ZOIQ. If K and q1 are in ZOI
or ZOQ, then we can use nominals to rewrite the full query q1 into a concept Cq1

and reduce
the containment test to the entailment of q2. In ZIQ this is not possible in general, but if q1
is a ZIQ CQ, then we can rewrite each atom as an ABox assertion and reduce containment to
entailment. Hence we obtain:

Theorem 4.2.3 Deciding K |= q1 ⊆ q2 is in 2ExpTime w.r.t. the total size of q1, q2, and K if:

• K is a ZOQ KB, q1 a ZOQ P2RPQ, and q1 a ZOIQ P2RPQs, or

• K is a ZOI KB, q1 a ZOI P2RPQ, and q1 a ZOIQ P2RPQs, or

• K is a ZIQ KB, q1 is a ZIQ CQ, and q2 is a P2RPQ.

These are, to our knowledge, the first bounds for containment of queries with regular ex-
pressions, and hence with some form of recursion, over expressive DL constraints. We belive
they can provide an interesting contribution to the very active research in databases that aims
at identifying families of recursive queries for which containment is decidable [CDGV05]. While
it is known that the results can not be extended to ZOIQ [ORŠ10], a natural question that
arises is whether we can decide the containment of P2RPQs in ZIQ, or in some fragment of it
that supports both inverses and counting. Our most recent research in this direction suggests
that a positive answer may be possible.

4.3 Related Work and Discussion

Tree automata have already been employed in DLs and in the closely related program logics in
order to obtain tight complexity bounds for satisfiability problems (cf. Section 3.5 and references
therein). In this chapter, we have shown that they can also be used for the more involved task
of query answering over a DL knowledge base. The core idea of our query answering technique

85

is inspired by [CDGLV00], which uses automata on infinite words to obtain a tight upper bound
for the containment of two P2RPQs over simple semi-structured databases (graphs), with no
constraints. Similar ideas have been exploited in other papers to obtain other decidability and
complexity results for queries, even with some form of recursion, over semi-structured data, e.g.,
in [CDGV05, CDGLV03]. However, these results do not consider rich constraint languages, as
we do here. As we have seen, taking expressive DL constraints into account may require the use
of richer automata models.

The automata-based approach in this thesis, was first explored for (a fragment of) ZIQ in
[CEO07], and then extended to all the logics considered here in [CEO09b]. To our knowledge,
no other automata-based approaches to query answering in expressive DLs have been proposed
so far. The power of automata allows us to significantly push the boundary of decidability in
2ExpTime. Indeed, some 2ExpTime upper bounds had been obtained already using different
techniques, for example, for ALCHIQ [HMS04], for ALCreg [CDGL98, CDGL08], for SHIQ
[GHLS08], and for SHOQ [GHS08]. The automata algorithm we have described subsumes all
these results, and extends them to a more expressive query language, and to some expressive
DLs not addressed before.

In some of the previous techniques, transitive roles are problematic. For instance, of the
mentioned algorithms, only the ones in [GHLS08] and [GHS08] fully support transitive roles
(the ones in [HMS04] and [OCE08] allow them in the KB but not in the query). Automata,
in contrast, accommodate transitivity quite naturally. In fact, the automata technique allows
us to easily deal with a very rich set of constructs in both the DL and the query. It is unclear
whether other approaches offer such flexibility.

We discuss next other relevant approaches to query answering in expressive DLs.

4.3.1 The Rolling-up Technique

The core idea of the rolling-up technique is to reduce CQ answering to concept satisfiability.
The approach goes back to the work of Calvanese et al. [CDGL98, CDGL08] where the authors
proposed the notion of tuple graph as a way to characterize a potential ‘shape’ that a match for
the given query can take in a canonical interpretation. Very roughly, in order to show K 6|= q,
one considers all tuple graphs, and represents each of them as a DL concept C, possibly in an
extension L′ of the DL L considered. A model of the knowledge base where all the concepts
C have an empty extension represents a model where the query has no match. Hence, query
entailment reduces to checking satisfiability of a possibly exponentially larger knowledge base,
and possibly in a more expressive DL.

This approach has been called ‘rolling-up’ since the work of [HT00], where it was applied
to answer CQs in SH, under certain restrictions, and it is the technique used for SHIQ and
SHOQ in [GHLS08, GHS08]. Arriving at a correct characterization of the relevant concepts
C is not always easy, and it can require complicated query rewriting steps to overcome subtle
difficulties that change from DL to DL. The correct characterization of the queries in the presence
of transitive roles was elusive for some time, until the authors of [GHLS08] obtained, using this
technique, a reduction of CQ entailment in K to satisfiability in the DL SHIQ⊓, which extends
SHIQ with role intersection. This yields a decision procedure for 2ExpTime, which was later
extended to SHOQ in [GHS08].

4.3.2 Modified Tableau in the Style of Carin

Another method for deciding query entailment that also appeared in 1998 is the one underlying
the Carin algorithms [LR98a]. Carin was proposed as a hybrid language combining Description
Logics with rules, and its basic reasoning tasks are solved using an algorithm for what the authors

86

call the existential entailment problem, which for the purposes of this discussion can be thought
of as CQ entailment (it is in fact a simple generalization of containment of CQs in UCQs). The
proposed solution to the query entailment problem is a modified version of an an existing tableau
algorithm. Intuitively, a tableau algorithm tries to construct a finite structure that represents
a model of a KB, and uses blocking conditions to ensure that, if the construction does not fail,
then it terminates in finite time and the resulting structure represents a model of the knowledge
base. The key idea of Levy and Rousset was that, using the query size as a parameter, the
blocking conditions can be modified in such a way the expansion terminates when the structure
represents a set of models that are indistinguishable by the query, and they showed that a finite
representation of a counter-model can be obtained using the modified blocking conditions if the
query is not entailed.

The original Carin algorithm was proposed for a DL called ALCNR, which is closely related
to ALCHQ. The technique was first extended to CQs in SHIQ [OCE06], but disallowing
transitive roles from the query. Then it was extended to the larger class of positive queries
without transitive roles, and to the DLs SHIQ, SHOQ, and SHOI [OCE08].

A major drawback of the method is that, since the size of the query is used as a bound on
the size of the structures that the query can distinguish, there seems to be no simple way to
correctly handle transitive roles in the query. Also, it builds on tableaux algorithms that are
not worst-case optimal, hence no optimal bounds (w.r.t. combined complexity) can be easily
obtained from it.

87

Chapter 5

Reasoning in the SR family

The automata techniques devised in the previous chapters can be also fruitfully exploited for
reasoning in the SR family. The DL SROIQ was defined in Section 2.1.4. It is similar to
ZOIQ, but lacks Boolean and regular role expressions. Instead a SROIQ RBox R comprises
complex role inclusions (CRIAs) P1 ◦ · · · ◦Pn ⊑ P , and role property axioms that state properties
of roles such as (ir)reflexivity, asymmetry, and disjointness. Its sublogics SRIQ, SROQ, SROI
are analogous to ZIQ, ZOQ, ZOI. SROIQ was introduced in [HKS06] as an extension of
some well-known expressive DLs and proposed as the basis for the new OWL 2 standard. The
motivation of SROIQ was to combine as many of the useful features of the existing logics
into OWL 2, and to additionally support some other expressive means that on the one hand
are desirable for applications such as ontology engineering, and that on the other hand have
limited impact on the techniques employed by existing reasoners and hence be relatively easily
incorporated. Analyzing them from the perspective of worst-case computational complexity,
these extensions are not always harmless when compared with the DLs underlying the first
generation of OWL. Adding complex role inclusions to the DLs of the SH family increases
exponentially the worst case complexity of standard reasoning, making SRIQ 2ExpTime-hard
and SROIQ 2NExpTime-complete [Kaz08]. Adapted tableaux algorithms for these logics are
available, and in fact implemented in actual reasoners, but their worst case behavior is actually
non-deterministic triple exponential. From the results in [Kaz08] it follows that reasoning is
feasible in 2NExpTime for SRIQ, SROQ and SROI, but only ExpTime harness is known in
general. Despite its importance for the Semantic Web, query answering in the SR family had
not been attempted so far. Tight complexity bounds and query answering techniques are known
only for the lightweight profiles OWL EL and OWL QL of OWL 2, whose DL counterparts do
not contain the basic ALC.

In this chapter, we improve the existing complexity bounds for standard reasoning in the SR
family and obtain the first decidability and complexity results for query answering and query
containment. We achieve this via the algorithm for the Z family in the previous chapters. To
exploit our automata-based techniques for reasoning in (sublogics of) SROIQ, we transform
each SROIQ KB K into a ZOIQ KB K′. The rewritten K′ is satisfiable iff the original K is
and, with a slight query reformulation, we can evaluate queries posed to K over the models of
K′. The reduction builds on the fact that, since the role inclusion axioms of SROIQ are subject
to some regularity restrictions, it is possible to simulate them through regular expressions. Role
property axioms, on the other hand, can be simulated in ZOIQ using Self concepts and Boolean

89

roles. Since the rewriting causes an (unavoidable) exponential blow-up, we can show that KB
satisfiability in SRIQ, SROI, and SROQ can be solved in 2ExpTime (even when the numbers
in the number restrictions are encoded in binary). This is known to be optimal for SRIQ. We
also show that P2RPQ entailment is decidable in 3ExpTime, and so is containment q1⊆ q2 if
the DL has nominals or q1 has no regular expressions. These are, to our knowledge, the first
such bounds. In fact, they are the first decidability results in any expressive DL of the SR
family, and hence in significant sublogics of OWL 2.

5.1 Reducing SROIQ to ZOIQ

In this section, we describe the rewriting that transforms a SROIQ KB K into a ZOIQ KB
Ψ(K), allowing us to exploit the automata-based algorithms described in the previous chapter
for reasoning in SROIQ.

The regularity condition from Definition 2.1.33 was first introduced in [HKS05], it is known
to play a crucial role in the decidability of SROIQ. It ensures that all implications between
roles can be described by a regular language. By using suitable ZOIQ roles to represent these
implications, we can remove the CRIAs from the KB while preserving satisfiability.

As usual, we use (possibly subindexed) P to represent atomic roles in NR, and R to represent
role chains P1 ◦ · · · ◦Pn. Recall from Definition 2.1.33 that for a given RBox R, the relation ⊑R

contains the following pairs of roles:

If R ⊑R P , then RI ⊆ P I for each model I of R. (5.1)

If R is regular, then the set of all R such that R ⊑R P , when seen as words over the
alphabet NR, defines a regular language, and can thus be represented by a ZOIQ role. The
following lemma simply rephrases some results of [HS04]:

Lemma 5.1.1 Given a regular SROIQ RBox R, we can construct, for each P ∈ NR(R), a
ZOIQ role R = RR(P) such that

1. P I ⊆ (RR(P))I for every interpretation I,

2. I |= R implies (RR(P))I ⊆ P I for every interpretation I,

3. RR(P) is a simple ZOIQ role whenever P is simple w.r.t. R,

4. if R is a SROQ RBox, then RR(P) is a ZOQ role, and

5. ||RR(P)|| is at most single exponential in ||R||.

Proof. For each P in the set NR(R) of roles occurring in R, let

LR(P) = {P1 · . . . · Pn | P1 ◦ · · · ◦ Pn ⊑
R P}

It is well known that LR(P) is a regular language over the alphabet NR(R) [HKS06, Kaz08].
Furthermore, there is an effective procedure to obtain a regular expression whose language is
LR(P); this was first shown for a slightly weaker DL than SRIQ (see Lemma 1 in [HS04]), and
it holds for SROIQ (see Proposition 10 in [HKS06]). The regular expression can be written as
a ZOIQ role (using ◦ in the place of concatenation), which we denote RR(P), it is obtained
iteratively using the regular order ≺ from Definition 2.1.33. Very roughly, one starts from simple
regular expressions, and then goes up the ≺ relation replacing roles with unions of the regular
expressions obtained in previous steps. It there are no inverse roles p− in the CRIAs in R, then
RR(P) is a regular role expression over the alphabet NR(R); this implies 4. If a role P is simple
w.r.t. R, that is, there is no R with |R| ≥ 2 such that R ⊑R P , then each R in LR(P) has

90

length one, and is just an atomic role in NR(R). Then the following simple ZOIQ role satisfies
all the requirements of the claim, and 3 follows:

RR(P) =
⋃

P ′ ⊑R P∈R

P ′

It is also shown in [HS04] that the size of RR(P) and the time required to build it are single
exponential in ||K|| in the worst case; this shows 5. Finally, 1, 2 hold because P ∈ LR(P) for
each P , and R ⊑R P implies RI ⊆ P I in each model of R.

5.1.1 The Rewriting Ψ

The rewriting Ψ of SROIQ KBs into ZOIQ KBs exploits this lemma. In what follows, we
assume a fixed given regular RBox R, and for each P ∈ NR, we let RR(P) denote an arbitrary
but fixed ZOIQ role as in Lemma 5.1.1 above. Note that for roles not occurring in R, we can
simply take RR(P) = P .

Rewriting concepts and TBoxes

By replacing each role P by the regular expression RR(P), we ensure that all the implications
between roles imposed by R are satisfied in the models of the rewritten KB (which, in fact, does
not support CRIAs).

Definition 5.1.2 For any SROIQ concept C, we denote by ΨR(C) the ZOIQ concept that
results from replacing each role P in C with RR(P). For a SROIQ TBox T , we define ΨR(T) =
{ΨR(C) ⊑ ΨR(D) | C ⊑ D ∈ T }.

This rewriting preserves equivalence w.r.t. the models of the RBox R.

Lemma 5.1.3 Let I be an interpretation such that I |= R. Then

1. CI = (ΨR(C))I for each SROIQ concept C, and

2. I |= T iff I |= ΨR(T) for each SROIQ TBox T .

Proof. Trivial, since I |= R implies P I = (RR(P))I for every role P .

We note that the assumption I |= R is necessary only to show that (∃RR(P).C)I ⊆ (∃P .C)I

and (∀R.C)I ⊆ (∀RR(P).C)I for every C.

Rewriting ABoxes

To rewrite ABoxes, we replace each SROIQ concept C by the corresponding ZOIQ concept
ΨR(C) in every assertion of the form C(a). To remove the negated role membership assertions
¬P (a, b), which are not allowed in ZOIQ, we use a fresh role name for each assertion, together
with a BRIA that ensures that the fresh symbol is interpreted as desired.

Definition 5.1.4 Given an SROIQ ABox A, let

• ΨR(A) be the ZOIQ ABox obtained by replacing in A:

– each assertion C(a) with Ψ(C)(a), and

– each assertion ¬S(a, b) with P¬S(a, b) for a fresh role name P¬S.

91

• Ψ′
R(A) be the RBox containing P¬S ∩R

R(S) ⊑ B for each ¬S(a, b) in A.

Lemma 5.1.5 Let I be an interpretation such that I |= R. Then, for every SROIQ ABox A,
I |= A iff I |= ΨR(A) and I |= TR(A).

Rewriting RBoxes

Recall that the SROIQ RBox R contains a set of CRIAs and a set of role property axioms Ra.
When rewriting a KB K, we guarantee the satisfaction of the CRIAs by rewriting all concepts
in K as described in the above definition. To ensure the satisfaction of the assertions, we use a
set of BRIAs and a set of CIAs.

Definition 5.1.6 Ψ(R) and Ψ′(R) are the following ZOIQ TBox and RBox, respectively:

Ψ(R) = {⊤ ⊑ ∃P.Self | Ref(P) ∈ R} ∪
{∃RR(S).Self ⊑ ⊥ | Irr(S) ∈ R},

Ψ′(R) = {RR(S) ∩RR(S′) ⊑ B | Dis(S, S′) ∈ R} ∪
{RR(S) ∩ Inv(RR(S)) ⊑ B | Asy(S) ∈ R}

where, or any simple role S, Inv(S) denotes the role obtained by replacing each atomic role P
occurring in S by its inverse Inv(P).

Lemma 5.1.7 For every interpretation I, I |= R iff I |= Ψ(R) and I |= Ψ′(R).

Rewriting KBs

Now we are ready to put all the pieces together and define the rewritten KB Ψ(K).

Definition 5.1.8 (KB rewriting) Let K = 〈A,T ,R〉 be a SROIQ KB. Then

Ψ(K) = 〈ΨR(A),ΨR(T) ∪Ψ(R),Ψ′
R(A) ∪Ψ′(R)〉

Clearly, the models of K are models of Ψ(K). The converse holds only in a slightly weaker
form, as the CRIAs of K need not be satisfied in every model I of Ψ(K). However, each I
can be transformed into a model of the CRIAs by adding all implied pairs of individuals to the
extension of the role names. Hence this rewriting provides the desired reduction.

Proposition 5.1.9 Let K = 〈A,T ,R〉 be a SROIQ KB, and let Ψ(K) be the ZOIQ KB
obtained from rewriting K as in Definition 5.1.8. Then the following hold:

1. K is in SRIQ, SROI, or SROQ, then Ψ(K) is in ZIQ, ZOI, or ZOQ, respectively.

2. Every model of K is a model of Ψ(K).

3. If Ψ(K) has a model, then K has a model. In particular, I ′ |= K for each I with I |= Ψ(K),
where I ′ is the interpretation that has P I′

= (RR(P))I for each role P , and that is identical
to I otherwise.

4. ||ΨK|| and the time needed to construct it are polynomially bounded in ||A||+||T ||+||RR
max||,

where RR
max denotes the longest RR(P), P ∈ NR(K).

Proof. The first item holds because the transformation does not introduce any nominals or
number restrictions, and uses only role names from NR(R) if there are no inverse roles p− in the
CRIAs in R. The second and third item follow easily from Lemmas 5.1.3, 5.1.5 and 5.1.7. For
the last item, it is easy to see that all steps of the rewriting Ψ are polynomial in the size of A,
T and RR

max (but the latter can be exponential in the size of R [HS03]).

92

5.2 Deciding KB satisfiability

Due to Proposition 5.1.9, the automata algorithm in Chapter 4 can be used to decide the
satisfiability of SRIQ, SROQ and SROI knowledge bases, and of any SROIQ knowledge
base that enjoys suitable canonical models. Yet the fact that RR

max may be exponential in
||R|| can cause ||Ψ(K)|| to be exponential in ||K||, and result in a double-exponential decision
procedure. If the blow-up in RR(P) can be avoided, then we call a KB sparse.

Definition 5.2.1 We call a SROIQ KB canonical if Ψ(K) has the canonical model property.
We call a SROIQ KB sparse if it is possible to construct w for each P ∈ NR(K) a ZOIQ

role R(P) of size polynomial in ||K|| that satisfies the conditions of Lemma 5.1.1.

For example, simple sets of CRIAs as defined in [HS04] are sparse. A set of CRIAs R is
simple if P1 ◦ S ⊑

R S and S ◦ P2 ⊑
R S for some S,P1, P2 ∈ NR, implies that there is no P ′

such that P ′ ⊑R P1, P ′ ⊑R P2, and P ′ ◦ S′ ⊑R P ′ or S′ ◦ P ′ ⊑R P ′ for some S′ ∈ NR.
If K is sparse, then ||Ψ(K)|| is polynomial in ||K||, and we obtain the same complexity bounds

as for the ZOIQ family. Clearly, these bounds are tight. So, from Lemma 5.1.1, Proposition
5.1.9, and Theorem 3.4.2, we obtain:

Theorem 5.2.2 Deciding the satisfiability of a given canonical SROIQ KB K (or, in partic-
ular, of a SRIQ, SROQ or SROI KB K) is in 2ExpTime. If K is sparse, then the problem
is ExpTime-complete.

Notably, the upper bounds hold independently of the encoding of numbers in the number
restrictions. To our knowledge, this is the best upper bound currently known, both in the
general and in the sparse case, and it improves over the 2NExpTime and NExpTime bounds
established in [Kaz08]. The SRIQ and SROIQ tableaux algorithms in [HKS05, HKS06], in
contrast require at least non-deterministic double exponential time even for sparse KBs.

For SRIQ the bound is optimal; a matching lower bound was shown in [Kaz08].

Corollary 5.2.3 Satisfiability of SRIQ KBs is 2ExpTime-complete.

The precise complexity of SROQ and SROI remains open.

5.3 Deciding Query Entailment and Containment

Making again use of the rewriting above, we can reduce also query entailment and query con-
tainment in SROIQ to ZOIQ. To this end, we rewrite a P2RPQ q over K = 〈A,T ,R〉 into a
query ΨR(q) over Ψ(K), in such a way that query entailment is preserved.

Lemma 5.3.1 Let K be a SROIQ KB and q a P2RPQ over K, and let ΨR(q) be obtained from
q by replacing each occurrence of a role P by RR(P). Then K |= q iff Ψ(K) |= ΨR(q).

Note that the rewriting of q into ΨR(q) may introduce regular expressions, even if they were
not originally present in q, i.e., our technique reduces L queries to L P2RPQs.

Proposition 5.3.2 Let q be a P2RPQ over a SROIQ knowledge base K = 〈A,T ,R〉. Then
K |= q iff Ψ(K) |= ΨR(q).

93

Proof. Given an interpretation I, let I ′ be as in item 3 of Proposition 5.1.9. First observe that
every match π for ΨR(q) in some I with I |= R is also a match for q; hence I |= ΨR(q) and
I |= R implies I |= q. Similarly, a match for q in I ′ is also a match for q in ΨR(q), so I ′ |= q
implies I |= ΨR(q).

Now assume K |= q, and consider any model I of Ψ(K). Then I ′ |= K by item 3 of
Proposition 5.1.9. Thus I ′ |= q and I |= ΨR(q), so Ψ(K) |= ΨR(q). Conversely, suppose
Ψ(K) |= ΨR(q). Consider an arbitrary I such that I |= K. By item 2 of Proposition 5.1.9, we
know that I |= Ψ(K). Therefore I |= ΨR(q), and since I |= R, it follows I |= q.

Again, the size of a longest regular expression RR
max may exponentially influence the overall

complexity of the algorithm. Although in the results of Chapter 4 we had to assume that the
numbers in number restrictions were encoding in unary to obtain optimal bounds, the blow-up
that we get w.r.t. the RBox is completely independent from the encoding of numbers and makes
the succinctness of the encoding irrelevant. So, putting together Lemma 5.1.1, Propositions 5.1.9
and 5.3.2, and Theorem 4.2.2, we obtain:

Theorem 5.3.3 For a given canonical SROIQ KB K (or, in particular, a SRIQ, SROQ or
SROI KB K) and a SROIQ P2RPQ q , query entailment K |= q is decidable in 3ExpTime.
If K is sparse and numbers are encoded in unary, then the problem is 2ExpTime-complete.

The results also extend to query containment. Using Propositions 5.3.2 and Theorem 4.2.3,
we obtain:

Theorem 5.3.4 K |= q1 ⊆ q2 is in 3ExpTime w.r.t. the total size of q1, q2, and K if:

• K is a SROQ KB, q1 a SROQ P2RPQ, and q1 a SROIQ P2RPQs, or

• K is a SROI KB, q1 a SROI P2RPQ, and q1 a SROIQ P2RPQs, or

• K is a SRIQ KB, q1 is a SRIQ CQ, and q2 is a P2RPQ.

If K is sparse and the numbers are encoded in unary, then K |= q1 ⊆ q2 is 2ExpTime-complete.

These are, to our knowledge, the first results showing the feasibility of query answering in the
SR family, and more specifically, in any extension of ALC that supports complex role inclusions.

Finally, we point out one restricted case where we get an exponential improvement in com-
plexity even if the knowledge base is not sparse. Suppose we are given a canonical SROIQ KB
K = 〈A,T ,R〉 and a positive query q in SROIQ such that every role P that occurs in q is
simple w.r.t. R. Then ||Ψ(K)|| may be exponential in ||K||, but ||Ψ(q)|| is only polynomial in
||q||. A simple inspection of the bounds in Lemma 4.1.14 for the size of the automaton AΨ(q)

(which verifies the existence of query matches) shows that the number of states in AΨ(q) depends
(polynomially) only on ||Ψ(q)|| and on the number of vocabulary symbols occurring in Ψ(K),
i.e., on |NCI(Ψ(K))|, |NR(Ψ(K))|, and |NI(Ψ(K))|, hence it is polynomial in ||Ψ(q)||+ ||K||. After
the automata operations we obtain an automaton AΨ(K)6|=Ψ(q) such that the number of states of
AΨ(K)6|=Ψ(q) and the time required to construct it are double exponential in ||Ψ(q)||+ ||K||, while
its parity index is single exponential in ||Ψ(q)||+ ||K||. This means that we can test AΨ(K)6|=Ψ(q)

for emptiness in time that is double exponential in ||Ψ(q)||+ ||K||. Since ||Ψ(q)|| is polynomial
in ||q||, this is also double exponential in ||q||+ ||K||, and we obtain:

Corollary 5.3.5 Given a canonical SROIQ KB K = 〈A,T ,R〉 and a positive query q in
SROIQ such that every role P that occurs in q is simple w.r.t. R, the problem of deciding
K |= q is feasible in double exponential time in ||K, q||.

94

Since answering conjunctive queries is already 2ExpTime-hard for ALCI, this is worst case
optimal for SRIQ and SROI. This is interesting, as entailment of queries with only simple
roles is provably harder than standard reasoning for SHIQ, but not for SRIQ.

5.4 Related Work and Discussion

In this chapter,we have improved the existing upper bounds for KB satisfiability in all fragments
of SROIQ that enjoy the canonical model property. This includes, in particular, the three
maximal and incomparable sublogics SRIQ, SROI and SROQ. We have also shown that
query entailment and containment are decidable in these logics for the very expressive class of
P2RPQs (in the case of SRIQ, containment was shown for CQs in P2RPQs only), and provided
tight complexity bounds under some restrictions.

We hope that our results will contribute towards a better understanding of the computational
complexity of the logics in the SR family, which has only been limitedly explored. For standard
reasoning, a non-deterministic triple exponential bound for SROIQ and its sublogics can be
easily obtained from the tableaux algorithm in the original SROIQ paper [HKS06], but for a
long time the best known lower bounds were the ones inherited from the simpler SH family:
SROIQ is NExpTime-hard, and its fragments SRIQ, SROQ and SROI are ExpTime-hard.
This big gap was significantly narrowed and partially closed by Kazakov, who showed that SRIQ
is 2ExpTime-hard and SROIQ is 2NExpTime-complete [Kaz08]. A gap between 2ExpTime

and 2NExpTime remained for SRIQ, and a gap between ExpTime and 2NExpTime for
SROI and SROQ. We have closed the former, and narrowed the latter to 2ExpTime.

For query entailment and containment we have obtained the first decidability results, but
left an open gap between 2ExpTime and 3ExpTime, for all three logics. Another problem
that remains open is the feasibility of reasoning with queries in SROIQ. The only decidability
result known until now for an expressive DL that allows simultaneously for nominals, inverses
and number restrictions, is the result for CQ entailment in ALCHOIQ in [GR09], which however
does not give any elementary bound on the complexity of the problem. We note that it is not
clear whether the undecidability of P2RPQs in ZOIQ extends to SROIQ as well. It was shown
in [PH09] that conjunctive query entailment is decidable in the guarded two-variable fragment of
first-order logic with counting quantifiers –which captures a large fragment of SRIQ but can not
express nominals– but undecidable for the full two-variable fragment with counting quantifiers
C2.

The translation of SROIQ into ZOIQ that we have exploited here is closely related to
some known techniques. In particular, the the 2NExpTime upper bound in [Kaz08] is obtained
by rewriting (also with an exponential blow-up) SROIQ into C2. That rewriting builds on a
technique developed for a family of modal logics known as grammar logics [DdN05], and relies
on essentially the same principles as our one. Indeed, it is not hard to see that if we consider
KB in a suitable normal form that only allows universal concepts in GCIs of the form C ⊑ ∀P .A
with A a concept name (such normal forms are well known; see, e.g. [KM08]), then to rewrite the
TBox, we only need to replace P with RR(P) in universal concepts ∀P .A. This reduction would
closely resemble the one in [Kaz08]. Roughly, instead of using complex roles inside universals of
the form ∀RR(P).A, he uses the finite automata representation of RR(P), additional concept
names As for each state s in the automaton, and concept inclusion axioms of the form As ⊑ A

′
s

to ‘break down’ the transitions of the automaton step by step. These kind of encodings, in
turn, can be seen as generalization of the well known ‘elimination of transitivity’ used, e.g., in
[Tob01, Mot06].

Finally, we remark that the reduction to ZOIQ can also be applied to KBs in the DL
SROIQb that extends SROIQ with safe Boolean roles [RKH08a], hence Theorems 5.2.2, 5.3.3,

95

and 5.3.4 also apply to the corresponding extensions of the SR logics.

96

Chapter 6

Querying DLs with Inverse Roles

The automata-based technique we described in the first part of this thesis is very powerful: it
allowed us to obtain very general algorithms, and a 2ExpTime upper bound for the complexity
of query answering that is tight for a wide range of description logics. However, for some DLs,
there are no matching lower bounds, and the automata technique does not give us much insight
into the effect on the overall complexity of the various constructors. The automata approach is
also not so adequate if we want to consider more fine-grained complexity measures such as data
complexity, i.e., the complexity of query entailment when the query, the TBox, and the RBox
are fixed, and only the ABox (i.e., the data) is given as an input (see Section 2.3.2). While
the data complexity of query answering is known to be coNP-complete for many extensions
of ALC [OCE08] and even for more expressive formalisms such as the two-variable fragment of
First-Order Logic [PH09], our automata construction requires double exponential time and space
even when all components except the ABox are fixed. It is not clear whether a better upper
bound in data complexity—or in some other restricted setting of lower complexity—can be easily
achieved with this kind of automata reduction. Instead we consider a different technique that
seems better suited in this respect, and propose query answering algorithms based on knots.

Knots, as we discuss them here, were introduced in [ŠE07, EŠ10] for reasoning over logic
programs with function symbols. They are an instance of the mosaic technique known from
Modal Logics [Ném86, BdRV01]. Essentially, a knot is a small schematic labeled tree of depth ≤1,
representing a pattern for a small subtree that can occur in a tree-shaped model of a knowledge
base. Knots can be used as ‘blocks’ for building models, and models can be represented as sets
of knots. Since only finitely many knots exist (over the signature of the KB), the representation
of a possibly infinite model is always finite. To ensure that sets of knots correctly represent a
model, it suffices to impose some simple conditions of two kinds: local conditions that apply
to individual knots and deal with the internal consistency of the nodes in a knot, and global
conditions ensure that instances of the knots in a set can be assembled together into models.
Satisfiability testing of a KB can then be reduced to finding a knot set that satisfies the local
and global conditions, and can usually be done using a simple elimination method. The method
can even be extended to CQ answering: we mark each knot with a set of (sub)queries that
cannot be mapped locally into the model part the knot describes, and global conditions on sets
of marked knots ensure that a full countermodel for the query can be constructed from them.

In this chapter, we illustrate the approach on the DLs ALCH and ALCHI, and obtain in
a transparent way a worst-case optimal algorithm for answering unions of conjunctive queries

97

if C(a) ∈ A then C ∈ ClC(K)
if C1 ⊑ C2 ∈ T then ∼C1 ⊔ C2 ∈ ClC(K)
if C ∈ ClC(K) then ∼C ∈ ClC(K)
if C1 ⊔ C2 ∈ ClC(K) then C1, C2 ∈ ClC(K)
if C1 ⊓ C2 ∈ ClC(K) then C1, C2 ∈ ClC(K)
if ∃P .C ∈ ClC(K) then C ∈ ClC(K)
if ∀P .C ∈ ClC(K) then C ∈ ClC(K)

Table 6.1: Concept closure ClC(K) of an ALCHI KB K = 〈A,T ,R〉

in both logics. More specifically, we present an algorithm to decide UCQ entailment over the
basic DL ALCH, and its extension with inverse roles ALCHI. The algorithm yields a tight
ExpTime upper bound in the ALCH case, and a tight 2-ExpTime upper bound for ALCHI.
It hence allows us to identify ALCH as an expressive description logic for which query answering
is feasible in single exponential time, and thus not more expensive than satisfiability testing. It
also gives a tight coNP upper bound for data complexity. We will see that the marking of the
knots is simple and intuitive. It is flexible enough to easily extend to other DLs with different
constructs, and allows for elegant refinements that yield optimal bounds even in the presence of
very subtle sources of complexity, as we discuss later.

The chapter is organized as follows. First, in Section 6.1, we develop the notion of canonical
models that we exploit in the query entailment algorithm. To describe the algorithm, we first
reduce in Section 6.2 the general query answering problem to many instances of a simpler
problem: namely, to decide query entailment over simple knowledge bases whose ABox consists
of one concept membership assertion only. Then we introduce knots in Section 6.3 and show
how they can be used to decide knowledge base satisfiability of simple knowledge bases, and
describe the knot based technique for query answering in Section 6.4. We analyze its complexity
in Section 6.5. Finally, related work is addressed in Section 6.6.

6.1 Canonical Models for ALCHI

The algorithm for query entailment that we describe in this chapter exploits the fact that, to
solve any given instance of the problem, we only need to consider some forest-shaped canonical
models of the knowledge base. This is just a special instance of the canonical model property
that we showed for the logics of the Z family in Chapter 3. Before defining canonical models for
ALCH and ALCHI, we adapt to these logics the notions of concept closure and concept and
role types.

6.1.1 Syntactic Closure and Types

We start by defining the concept closure of a knowledge base K, which contains all the concepts
that are relevant for deciding its satisfiability. The definition of the concept closure is standard:
it contains (the negation normal form of) all concepts occurring in the ABox and in the TBox of
K, and it is closed under subconcepts and their negations. It can be compared to Definition 3.2.1,
but now we define it for a KB rather than for a concept, and the definition is simpler because
we have less constructors.

Definition 6.1.1 (Concept closure) The concept closure ClC(K) of an ALCHI KB K =
〈A,T ,R〉 is the smallest set of ALCHI concepts closed under the rules in Table 6.1.

98

if C1 ⊑ C2 ∈ T , then ∼C1 ⊔ C2 ∈ t,
if C ∈ ClC(K), then C ∈ t iff ∼C 6∈ t,
if C1 ⊓ C2 ∈ ClC(K), then C1 ⊓ C2 ∈ t iff {C1, C2} ⊆ t,
if C1 ⊔ C2 ∈ ClC(K), then C1 ⊔ C2 ∈ t iff {C1, C2} ∩ t 6= ∅.

Table 6.2: Concept type t ⊆ ClC(K)

We also define the notions of concept type and role type for ALCHI KBs. A concept type
is a maximal consistent set of concepts from ClC(K) that is compatible with the axioms in the
TBox. Role types for ALCHI are just sets of roles closed under the role inclusions in the RBox.

Definition 6.1.2 (Concept and role types) A concept type of an ALCHI KB K =
〈A,T ,R〉 is a set t ⊆ ClC(K) of concepts closed under the rules of Table 6.2.

A role-type of K is a set r ⊆ NR(K) (that is, a subset of the set of role names occurring in
K and their inverses) such that, for each P1 ⊑ P2 ∈ T , P1 ∈ r implies P2 ∈ r and Inv(P1) ∈ r

implies Inv(P2) ∈ r. For a role type r, we define Inv(r) = {Inv(P) | P ∈ r}, that is, Inv(r)
contains the inverse of each role in r.

The set of all concept types of K is denoted by typesC(K), and the set of all role types by
typesR(K).

Now we can define canonical models, which are models with a forest-shaped domain. The
roots are the interpretation of the individuals NI(K) occurring in K (which in the case of ALCHI
KBs are precisely the individuals in the ABox assertions) and they may be arbitrarily interre-
lated. Every other node of the forest can only be related via a role name to its successors and
to its predecessor, and in the case of ALCH, to its successors only. The definition of canonical
models can be compared with the one for ZOIQ (Definition 3.2.2), but now we disallow rela-
tions between a non-root node and a root node, and between a non-root node and itself. We
also relax the restriction of fixed arity to bounded branching. We use |ClC(K)| as a bound; this
is sufficient for logics that do not support number restrictions.

Definition 6.1.3 ((one-way) canonical interpretation, canonical model) An interpre-
tation I = (∆I , ·I) is canonical (for K) if:

1. ∆I is a forest with branching degree bounded by |ClC(K)|,

2. roots(∆I) = {aI | a ∈ NI(K)},

3. I is connected, that is, for each pair {w,w′} ⊆ ∆I with w′ ∈ succ(w) there is some
P ∈ NR(K) such that (w,w′) ∈ P I , and

4. for every pair {w,w′} ∈ ∆I such that {w,w′} 6⊆ roots(∆I) and (w,w′)∈ pI for some role
name p, either

a) w′ ∈ succ(w), or
b) w∈ succ(w′).

If for every pair of non-root nodes 4a holds (i.e., (w,w′)∈ pI implies w′ ∈ succ(w)), then we
call I a one-way canonical interpretation.

We call I a canonical model of K if I |= K.

The following well-known proposition can be derived by simply inspecting the proof of Propo-
sition 3.2.12 or Proposition 3.2.13; it also follows, e.g., from the results in [GHLS08, OCE08].

99

A

A B,DA

A,D B

A,DA,B

B,DA

...

...
...

...

1 2

11 12

A B,DA,B ...
...

...

B,D B
1 2

A,B

...

12 A,D

A B,DA

11

Figure 6.1: Two canonical models I1 and I2 for K1

v1 v2 v3

A B D

D
v4

Figure 6.2: The query graph of q1

Proposition 6.1.4 Let K be a KB in ALCHI. For every (positive) query q, if K 6|= q then
there is a canonical model I of K such that I 6|= q. Moreover, if K is in ALCH, then I is
one-way.

Observe that, in particular, this implies that if K has only one individual, then we can always
find a tree-shaped countermodel for any query that it does not entail. This will play an important
role in the query answering algorithm we describe next.

Example 6.1.5 In this chapter we use as a running example the knowledge base K1 =
〈A1,T1, ∅〉, where

A1 = {D(a), B(b), p1(a, b), p2(b, a)}
T1 = {D ⊑ A ⊔B,A ⊑ ∃p1.A,D ⊑ ∃p2

−.D,B ⊓D ⊑ ∃p2
−.(A ⊓B)}

Two (infinite) canonical models I1 and I2 for K1 are depicted in Figure 6.1 (only the roots
and the first level nodes are explicitely named). Each node w is labeled with the concept names
{A ∈ NC(K) | wI1 ∈ AI1}. The dashed blue arrows represent the role p1 and the solid black
arrows the role p2. We have aI1 = aI2 = 1 and bI1 = bI2 = 2.

We consider the Boolean conjunctive query

q1 = {A(v1), p1(v1, v2), B(v2), p2(v2, v4),D(v3), p2(v3, v4),D(v4)}

The query graph of q1 is depicted in Figure 6.2. A match for q1 in I1 that has π(v1) = π(v4) = 1,
π(v2) = 2, and π(v3) = 12 is depicted in Figure 6.3. In the depicted part of I2, however, there
is no match for q1 (note that there are no p1 arcs from a node labeled A to a node labeled B),
and in fact, K1 6|= q1.

6.2 From General to Simple KBs

In what follows, we will use q to denote CQs, an Q to denote UCQs. For the remainder of this
section, we assume a fixed given KB K and a Boolean UCQ Q = ∃~v.ϕ(~x,~v) in ALCHI, and

100

A

A B,DA

A,DA,B

v1 v2 v4

A B D

D
v3

...

...
...

...

1 2

11 12

A,D

B,DA

B

Figure 6.3: A match for q1 in I1

describe an algorithm for deciding K |= Q. As discussed in Section 2.2.2, the algorithm can
also be used for query query answering (and yields the same complexity bounds). Recall that
ϕ is a disjunction of conjunctions of atoms, and that we may assume without loss of generality
that all atoms are of the form A(v) or P (v, v′) with {v, v′} ⊆ {v1, . . . , vn} ⊆ NV, ~v = v1, . . . , vn,
A ∈ NC and P ∈ NR. That is, only concept names, atomic roles, and variables occur in Q. Note
that atoms p−(v, v′) can be equivalently rewritten as p(v′, v), hence every UCQ Q in ALCHI
is equivalent to one in ALCH (in which only role names occur). Recall that we may identify a
Boolean CQ q with the set of its atoms Atoms(q) and, similarly, we may treat a UCQ Q as a
union of CQs, that is, a collection of sets of atoms. We call a UCQ connected if each q ∈ Q is
connected.

Our algorithm to decide K |= Q works in two steps: first we reduce deciding K |= Q to a set
of calls to a procedure for deciding K′ |= Q′, where Q′ is a connected UCQ and K′ is a simple
KB allowing only one individual and one single (concept membership) assertion in the ABox. In
the second step, we employ a technique based on knots to decide K′ |= Q′. As we will see, knots
are specially adequate for handling tree-shaped structures and thus well suited in the second
step, as simple knowledge bases enjoy canonical models that are tree-shaped.

The first notion in the reduction is that of an ABox completion. In an ABox completion we
assign concept types to individuals and role types to pairs of individuals, in such a way that
the ABox and all the constraints imposed by the TBox and RBox are satisfied, excepting the
existential restrictions.

Definition 6.2.1 (ABox completion) An ABox completion for K is a function θ that maps
each a ∈ NI(K) to a concept type θ(a) ∈ typesC(K) and each pair (a, b) ∈ NI(K) × NI(K) to a
role type θ(a, b) ∈ typesR(K) such that

1. θ(a, b) = Inv(θ(b, a)) for each a, b ∈ NI(K);

2. for each C(a) ∈ A, C ∈ θ(a),

3. for each P (a, b) ∈ A, P ∈ θ(a, b), and

4. for each a, b ∈ NI(K), ∀P .C ∈ θ(a) and P ∈ θ(a, b) imply C ∈ θ(b).

Note that by taking a completion and looking only at one specific individual, we can obtain
a simple KB with one individual only. We will refer to these KBs later.

101

Definition 6.2.2 ((Induced) simple knowledge base) We call a knowledge base simple if
its ABox is of the form {A(a)} for some concept name A. For a completion θ and an individual
a, the knowledge base for a induced by θ is the simple KB

Kθ(a) = 〈{A0(a)},T ∪ {A0 ⊑ Cθ(a)},R〉,

where A0 is a distinguished concept name and Cθ(a) =
d

C∈θ(a) C.

Example 6.2.3 In the examples, we implicitly assume that concept types are closed under the
rules of Table 6.2, and only mention the concept names and existential restrictions that occur
positively in them (that is, negated concepts, conjunctions and disjunctions are omitted). Con-
sider the following concept types and role types:

tB = {B}
tA,D = {A,D,∃p1.A,∃p2

−.D}
tB,D = {B,D,∃p2

−.D,∃p2
−.(A ⊓B)}

rp1
= {p1}

rp2
− = {p2

−}

Then the following θ1 and θ2 are completions for K1:

θ1(a) = tA,D

θ1(b) = tB

θ1(a, b) = rp1

θ1(b, a) = rp2
−

θ2(a) = tB,D

θ2(b) = tB

θ2(a, b) = rp1

θ2(b, a) = rp2
−

Note that the completion θ1 coincides with I1 (i.e., it describes the part of I1 that corresponds
to the individuals) and θ2 coincides with I2. The knowledge base for a induced by θ2 is

Kθ2(a) = 〈{A0(a)},T ∪ {A0 ⊑ CtB,D
},R〉,

where CtB,D
=

d
C∈tB,D

C = {B⊓D⊓∃p2
−.D⊓∃p2

−.(A⊓B)⊓· · · }. In the rest of the examples
we focus on the completion θ2, and we denote Kθ2(a) by Ka and Kθ2(b) by Kb.

Intuitively, every canonical model can be seen as an ABox completion, possibly with a
collection of of trees attached to (the interpretation of) some individuals. Hence, to ensure that
there is a canonical model where the query is falsified, i.e., a countermodel, it is sufficient to
find an ABox completion and a set of trees that we can attach to it, such that no query match
is possible. To achieve the latter we use a standard technique [BEL+10, GHLS08].

A match candidate for an ABox completion and a CQ q ∈ Q, is a way to partially match
q into the completion, and partition the rest into a set of subqueries that are assigned to the
individuals. Intuitively, the partial match in the completion can become a full match for q only
when we attach to each a a tree that has a match for the corresponding subqueries. Formally, a
match candidate maps each variable of q to an individual a, or to a symbol a↓ that intuitively
means ‘inside the tree rooted at (the interpretation of) a’.

Definition 6.2.4 (Match candidate) A match candidate for a completion θ and a query
q ∈ Q is a mapping ξ : VI(q)→ {a, a↓ | a ∈ NI(K)} such that

• if ξ(v) = a, and either P (v, v′) ∈ q or P (v′, v) ∈ q, then either ξ(v′) = a↓ or ξ(v′) ∈ NI(K),

• if ξ(v) = a↓, and either P (v, v′) ∈ q or P (v′, v) ∈ q, then either ξ(v′) = a or ξ(v′) = a↓,
and

• for each v, v′ ∈ VI(q) such that {ξ(v), ξ(v′)} ∈ NI(K), {P | P (v, v′) ∈ q} ⊆ θ(ξ(v), ξ(v′)).

102

For a match candidate ξ and a ∈ NI(K), let Vξ(a) = {v ∈ VI(q) | ξ(v) ∈ {a, a↓}}. Further-
more, for each variable v such that ξ(v) = a, let qv be the maximal connected subquery of q|Vξ(a)

such that v ∈ VI(qv). We define

q|ξv = qv ∪ {A0(v
′) | v′ ∈ VI(qv), ξ(v

′) = a}.

In order to decide K 6|= Q, we need to decide whether there exists an ABox completion that
can be extended into a model where there is no match for Q, that is, that we can extend it in
such a way that every candidate match does not become a full match.

A query annotation for an ABox completion provides a selection of subqueries α(a) for each
individual a. Intuitively, any candidate match for Q in this completion would require that some
query in α(a) has a match in the tree Ta rooted at a to become a full match. Hence, if for each a
there is some Ta where no q in α(a) has a match (i.e., all the queries in α(a) can be avoided for
a), then there is a canonical model that extends this completion in which every match candidate
fails, and hence there is no match for Q.

Definition 6.2.5 Let θ be an ABox completion for K and let Q be a UCQ. A query annotation
for θ and Q is a function α that assigns to each individual a ∈ NI(K) a set of CQs such that:

(a) Q ⊆ α(a),

(b) for every q ∈ Q and for every match candidate ξ for θ and q, there is some v ∈ VI(q) such

that ξ(v) = a and q|ξv ∈ α(a), and

(c) every q ∈ α(a) is such that q = q|ξv for some match candidate ξ and some v ∈ VI(q).

Note that, by definition, for every individual a and every query annotation α, each q ∈ α(a)
is connected.

The following theorem follows from the results in [GHLS08, Lut08a].

Theorem 6.2.6 K 6|= Q iff there is a completion θ and a query annotation α for θ and Q such
that, for every a ∈ NI(K), Kθ(a) 6|= α(a).

In this way, we reduce the non-entailment of a CQ over arbitrary KBs to a collection of
instances of the non-entailment problem of connected UCQs over simple KBs. To decide the
latter, we employ knots.

Example 6.2.7 There are many match candidates for the completion θ2. For example, we can
consider ξ(v1) = a, ξ(v2) = b, ξ(v3) = a↓ and ξ(v4) = a. Intuitively, it suggests a query match
that binds v2 to bI2 = 2. The rest of the variables are matched in the tree rooted at aI2 = 1
(more specifically, v1 and v2 to 1, and v3 inside the tree), generating two disconnected subqueries
for which entailment at Ka has to be tested. More specifically, the match candidate induces three
subqueries

q1|
ξ
v1

= {A0(v1), A(v1)}

q1|
ξ
v2

= {A0(v2), B(v2)}

q1|
ξ
v3

= q1|
ξ
v4

= {A0(v4),D(v3), p2(v3, v4),D(v4)}

To show that K 6|= q1, we need to find a query annotation α such that Ka 6|= α(a) and Kb 6|= α(b).
Furthermore, such a query annotation must contain one of the three queries above (since it must

‘spoil’ ξ). We can not have q1|
ξ
v2
∈ α(b) because Kb |= q1|

ξ
v2

, hence one of q1|
ξ
v1

or q1|
ξ
v3

must be
in α(a). It is not hard to see that every other candidate match ξ′ that has ξ′(v) = b or ξ′(v) = b↓

can be spoiled with the subquery q1|
ξ′

v (because q1|
ξ
v2

is in fact the only subquery of q1 entailed by

103

Kb). Hence, if there is a query annotation that witnesses K 6|= q1, then there is one that only

contains one of q1|
ξ
v1

or q1|
ξ
v3

, and a set of queries q′ such that each of them is of the form

q′ = q1 ∪ {A0(v) | v ∈ V }

for some (possibly empty) V ⊆ VI(q1) (note that if Ka 6|= q1, then Ka 6|= q′ for each q′). We
remark that, in this particular case, it suffices to show that Ka 6|= α′

1(a) = {q1, {A0(v1), A(v1)}}
to establish K1 6|= q1.

6.3 Reasoning in simple ALCHI KBs using Knots

In this section we introduce knots, and show how they can be employed to decide the existence
of a canonical model for a simple KB. We adapt the technique to query answering in the next
section.

6.3.1 Knots

Let K = 〈{A0(a)},T ,R〉 be a simple ALCHI KB. The aim of the knot technique is to obtain
a finite representation of potentially infinite canonical models of K, by decomposing them into
a collection of small pieces. Each such piece is described by a knot, a schematic labeled tree
of depth ≤1 with bounded branching, where nodes are labeled sets of concepts, and arcs are
labeled with sets of roles. By restricting ourselves to only the relevant concepts and roles that
occur in K, we achieve that only finitely many distinct knots exist, and hence that models of K
can be finitely represented. Formally, a knot is defined as follows:

Definition 6.3.1 (Knot) A knot for K is a pair (t,S) that consists of a concept type t ∈
typesC(K), called root, and a set S of children, which are pairs (r, t′) of a role type r ∈ typesR(K)
and a concept type t

′ ∈ typesC(K), such that |S| ≤ |ClC(K)|.

A knot describes a possible node w in a canonical model of a simple KB K with all its
successors, fixing the concepts that are satisfied at each node and the roles connecting the
nodes. More specifically, it describes a node w that satisfies t, and that has a successor w′

related to w via the roles in r, that satisfies the concepts in t
′, for each pair (r, t′) ∈ S.

Example 6.3.2 Some knots for Ka are depicted in Figure 6.4. Five different concept types
occur in these knots:

tA = {A,∃p1.A}
tA,B = {A,B,∃p1.A}
tA,D = {A,D,∃p1.A,∃p2

−.D}
tB,D = {B,D,∃p2

−.D,∃p2
−.(A ⊓B)}

tA0,B,D = {A0, B,D,∃p2
−.D,∃p2

−.(A ⊓B)}

The role types that occur are rp1
= {p1} and rp2

− = {p2
−} as in the previous example. Graphi-

cally, we represent a knot k = (t0,S) as a tree of depth at most one. The root is labeled t0 and
it has a child labeled t′ for each (r, t′) ∈ S. Instead of writing the role types as labels, we simply
use downward dashed blue arrows for rp1

and upward solid black arrows for rp2
−.

104

tA,B tA,D

tB,D

tA,B tA,D

tA0,B,D tB,D

tB,DtA,B

tA,D

tA tB,D tA

tA,B

tA

tA

k2k0 k1 k3 k4 k5

Figure 6.4: A set of knots Ka for Ka

6.3.2 Satisfiability of Simple ALCHI KBs using Knots

Every canonical model of K can be decomposed into a finite knot set. Conversely, knots can be
viewed as the ‘building blocks’ for a potential canonical model. Hence, to decide satisfiability
of K, we only need to decide whether there is a set of knots that represents a model of K. To
ensure that knots indeed represent a model, two kinds of conditions are imposed:

1. local consistency conditions, which apply to each knot individually and ensure that it
represents an abstract domain element with its immediate successors in a canonical model,
as required by the constraints given in the KB.

2. global conditions, which apply to the (whole) knot set and ensure that suitable instances
of the knots in the set can be composed into full models.

We first define the local consistency conditions. They ensure that the node described by the
root of the knot satisfies all the axioms in T and R, and that there are no contradictions in it
that could prevent it from occurring in a model.

Definition 6.3.3 (Knot consistency) A knot (t,S) is K-consistent if it obeys the following
conditions:

1. if ∃P .C ∈ t, then P ∈ r and C ∈ t
′ for some (r, t′) ∈ S;

2. if ∀P .C ∈ t, then C ∈ t
′ for all (r, t′) ∈ S with P ∈ r; and

3. if ∀P .C ∈ t
′ for some (r, t′) ∈ S and Inv(P) ∈ r, then C ∈ t.

A consistent knot complies with all the constraints described in T and R, but this does not
yet guarantee that it can be part of a canonical model, as there could be existential restrictions
at child nodes that cannot be expanded into a full model. We therefore also need a global
condition which guarantees that such an expansion is always possible.

Definition 6.3.4 (Coherency of knot sets) Given a knot set K, a knot (t,S) ∈ K is good
in K, if for each (r, t′) ∈ S, there is a knot (t′,S′) ∈ K for some S

′. We call K K-coherent if
(i) each knot (t,S) ∈ K is K-consistent and good in K, and (ii) there is a knot (t0,S) ∈ K with
A0 ∈ t0.

The existence of a K-coherent knot set precisely characterizes the satisfiability of K:

Theorem 6.3.5 K is consistent iff there exists a K-coherent knot set.

Proof. If we have a K-coherent set of knots K, then we can easily build a canonical model
of K: we start with a knot (t0,S) ∈ K with A0 ∈ t0, repeatedly append suitable successor knots
(t′,S′) to each leaf of the tree with type t

′. Such a successor always exists because each knot is

105

A B,DA,B ...
...

...

A,B

...

12 A,D

A B,DA

11

A0, B,D
1

k2

k5

k4
k3

k0

Figure 6.5: A canonical model Ia for Ka

good in K. A simple inspection of Definition 6.1.3 suffices to see that this construction results
in a canonical model of K.

Conversely, a tree-shaped canonical model I of K can be decomposed into a K-coherent knot
set in a straightforward way. We simply take a mapping ξ that assigns to each w ∈ ∆I a knot
ξ(w) = (t0,S) such that (i) t0 = {C ∈ ClC(K) | w ∈ CI}, and (ii) S =

⋃

w·i∈succ(w){(ri, t
′
i)},

where ri = {P | (w,w · i) ∈ P I} and t
′
i = {C ∈ ClC(K) | w · i ∈ CI}. The knot set

K
′ = {ξ(w) | w ∈ ∆I} is K-coherent by construction.

Example 6.3.6 Recall the set of knots Ka shown in Figure 6.4. Every knot in Ka is Ka-
consistent and good in Ka. Since the root of k0 contains A0, the set is Ka-coherent and witnesses
the satisfiability of K. In fact, the canonical model Ia of Ka shown in Figure 6.5 (which is
essentially the subtree of I2 rooted at a) can be constructed from Ka; the knot to which each
model part corresponds is indicated in the figure.

A simple algorithm for testing existence of a nonempty K-coherent knot set, similar to the
well-known type-elimination method due to Pratt [Pra79], is shown in Figure 6.6. Starting from
the set of all knots that are consistent w.r.t. K, the algorithm eliminates the knots that are not
good. If no more knots need to be removed and a knot (t0,S) with A0 ∈ t0 remains then the
set of knots is K-coherent and witnesses the satisfiability of K.

6.4 Query Answering by Knot Elimination

We are left with the task of deciding K |= Q, where K is simple and Q is a connected UCQ. We
again proceed in two steps. In the first step we give a knot-based algorithm for UCQ entailment
in ALCHI that presupposes a restricted form of queries that are tree-shaped, and decides a
special form of entailment that we call directed entailment. In a second second stage we reduce
the standard entailment of arbitrary UCQs to this restricted setting.

6.4.1 Non-Entailment of a Set of Tree-shaped Queries

We start by introducing a restricted kind of CQs that are tree-shaped.

Definition 6.4.1 (tree-shaped queries) A CQ q is tree-shaped if there is a bijection ψ be-
tween the variables in VI(q) and the nodes of a proper tree (that is, a tree with root ε) such
that p(v, v′) ∈ Atoms(q) implies ψ(v′) ∈ succ(ψ(v)). We denote by vw the variable v such that
ψ(v) = w. For a variable vw, we denote by q|vw the tree-shaped query obtained by restricting q
to the variables vw·w′, w′ ∈ IN∗.

106

Algorithm 1: satisfiability

Input: a simple KB K = 〈{A0(a)},T ,R〉
begin

Compute the set K of all knots that are K-consistent;
repeat

K
′ := K;

K := K
′ \ {(t,S) ∈ K

′ | (t,S) is not good in K
′};

until K 6= K
′ ;

if there is some (t0,S) ∈ K with A0 ∈ t0 then
return “satisfiable”

else
return “unsatisfiable”

end

Figure 6.6: The knot elimination algorithm for satisfiability of simple KBs.

vε

A0, A vε

v1

v11

B,D

A

D A v21

B v2

vε
D

D
v1

q1 q2 q3

Figure 6.7: A set Qa of tree-shaped queries

Note that the graph of every tree-shaped query is a tree whose root is the variable vε, and
where each variable vw has as successors variables of the form vw·i, i ∈ IN. Furthermore, by our
naming convention, each variable vw·w′ is renamed to vw′ in the restricted query q|vw .

Example 6.4.2 We consider a set of tree-shaped queries Qa = {q1, q2, q3}; the (graphs of the)
queries are depicted in Figure 6.7.

For tree-shaped queries, we define a special kind of directed entailment in canonical inter-
pretations.

Definition 6.4.3 (Directed Entailment) Let I be a canonical interpretation, let w ∈ ∆I, let
Q a set of tree-shaped queries, and let q ∈ Q. Then we write:

• I |=↓ q[w] if there exists a match π for q in I such that π(vε) = w, and for every r(v, v′) ∈ q
we have π(v′) = π(v) · i for some i ∈ IN;

• I |=↓ q if I |=↓ q[w] for some w ∈ ∆I ;

• I |=↓ Q if I |=↓ q for some q ∈ Q; and

• K |=↓ Q if I |=↓ Q for every canonical model I of the knowledge base K.

107

Observe that the matches used in Definition 6.4.3 are directed in the sense that we ignore
the possible relations between a node and its parent in a canonical interpretation. Clearly, the
existence of a directed match implies the existence of an ordinary match. The converse holds
if the interpretation is one-way, but not in general. Hence in case K is an ALCH KB we have
K |= Q iff K |=↓ Q by Proposition 6.1.4. For ALCHI only the if direction can be ensured, but
we show below how this kind of entailment can be used to decide general entailment.

The algorithm devised in this section decides, given an ALCHI KB K and a set of tree-
shaped queries Q, whether K |=↓ Q. The following characterization of directed entailment is
easy to establish.

Proposition 6.4.4 Let I be a canonical model of an ALCHI KB K, let w ∈ ∆I , and let q be
a tree-shaped query. Then I 6|=↓ q[w] iff one of the following holds:

(i) {A | A(vε) ∈ q} 6⊆ {A | w ∈ A
I} or

(ii) there exists a variable vε·i of q such that for each child w · j ∈ ∆I of w we have:

a) {r | r(vε, vε·i) ∈ q} 6⊆ {r | (w,w · j) ∈ r
I}, or

b) I 6|=↓ q|vε·i [w · j].

For the rest of the section, fix a simple ALCHI KB K and a set of tree-shaped queries Q.
The aim of our algorithm is to decide whether K |=↓ Q by using knots to verify the existence
of a canonical model I of K with I 6|=↓ Q (a countermodel for Q). Proposition 6.4.4 suggests
that we can do this by extending knots with auxiliary information that enables us to track the
satisfaction of conditions (i) and (ii) for each query q in Q at each node w of the tree.

Definition 6.4.5 (Tree subqueries, Marked knots) Let subq(Q) denote the smallest set
such that (i) Q ⊆ subq(Q), and (ii) q|vε·i ∈ subq(Q) for each q ∈ subq(Q) and each variable vε·i

of q. A Q-marked knot is a tuple (t,S, ν) where (t,S) is a knot and ν : {t} ∪ S→ 2subq(Q) is a
marking function that assigns to each node in the knot a set of subqueries.

Intuitively, every node in a Q-marked knot is labeled with the set of those tree subqueries of
Q for which a (directed) match of the root should be avoided at that node. To capture this
formally, we define additional local conditions.

Definition 6.4.6 (Query avoiding knots) A Q-marked knot (t,S, ν) is Q-avoiding, if for
each q ∈ Q, we have q ∈ ν(t), and one of the following holds:

(i) {A | A(vε) ∈ q} 6⊆ t, or

(ii) there exists some variable vε·i such that for every (r, t′) ∈ S, it holds that either

a) {r | r(vε, vε·i) ∈ q} 6⊆ r, or

b) q|vε·i ∈ ν((r, t
′)).

The above just mimics the conditions in Proposition 6.4.4.

Example 6.4.7 A set K
′
a of Qa-avoiding marked knots is shown in Figure 6.8, they are a marked

version of the knots in Ka. For each knot (t,S) ∈ Ka, we label t with its marking ν(t) and, for
each child (r, t′) ∈ S, we label t

′ with ν(t′). For readability, we write q1,2,3 instead of q1, q2, q3.
they are all Qa-avoiding. For example, for k0 = (t0,S0) with t0 = tA0,B,D, we have Qa ⊆ ν(t0).
For q1 and q3, item (i) in Definition 6.4.6 holds. For q2 we have {A | A(vε) ∈ q} = {D} ⊆ t0,
but there is one variable, namely v2, such thatq|v3

∈ ν((r, t′)) for each (r, t′) ∈ S0, hence (ii)
holds.

108

k4

ν(tA,B) = {q1,2,3, q3|v2
}

ν(tA) = {q1,2,3, q2|v1
}

k5

ν(tA) = {q1,2,3, q2|v1
}

ν(tA) = {q1,2,3, q2|v1
}

k3

ν(tA,D) = {q1,2,3, q3|v2
}

ν(tA) = {q1,2,3, q2|v1
} ν(tB,D) = {q1,2,3, q3|v2

}

k1

ν(tB,D) = {q1,2,3, q3|v2
}

ν(tA,B) = {q1,2,3, q3|v2
} ν(tA,D) = {q1,2,3, q3|v2

}

k2

ν(tB,D) = {q1,2,3, q3|v2
}

ν(tA,B) = {q1,2,3, q3|v2
} ν(tB,D) = {q1,2,3, q3|v2

}

k0

ν(tA0,B,D) = {q1,2,3}

ν(tA,D) = {q1,2,3, q3|v2
}ν(tA,B) = {q1,2,3, q3|v2

}

Figure 6.8: A set K
′
a of Qa avoiding knots

To make sure that a full countermodel can be constructed, the marking must be consistent
across knots. This is achieved by extending the coherence condition to marked knots in the
natural way.

Definition 6.4.8 (Coherency of marked knot sets) For a set K of Q-marked knots, we call
(t,S, ν) ∈ K good in K if for each (r, t′) ∈ S, there is some (t′,S′, ν ′)∈K such that ν((r, t′)) =
ν ′(t′). Then K is K-coherent if:

• for each (t,S, ν) ∈ K,

– (t,S) is K-consistent,
– (t,S, ν) is Q-avoiding and good in K, and

• there is some (t0,S, ν) ∈ K such that A0 ∈ t0.

We then obtain the following characterization of directed entailment.

Proposition 6.4.9 K 6|=↓ Q iff there exists a K-coherent set of Q-marked knots.

This can be shown arguing as in the proof of Theorem 6.3.5, additionally using Proposi-
tion 6.4.4.

Example 6.4.10 The knots in K
′
a are marked versions of Ka-consistent knots, they are all

Qa-avoiding, and they are all good in Ka. Hence the set is Ka-coherent and it witnesses that
Ka 6|= Qa.

The existence of K-coherent set of Q-marked knots can be decided with the knot elimination
algorithm presented in Figure 6.9.

The following properties of the algorithm will be important to establish our complexity
results in Section 6.5. In particular the second claim, which may seem trivial, will be useful
when we analyze the data complexity of the algorithm.

109

Algorithm 2: countermodel

Input: a simple KB K = 〈{A0(a)},T ,R〉, a set of tree-shaped queries Q
begin

Compute the set K of all Q-marked knots (t,S, ν) for K such that (t,S) is
K-consistent and (t,S, ν) is Q-avoiding ;
repeat

K
′ := K;

K := K
′ \ {(t,S, ν) ∈ K

′ | (t,S, ν) is not good in K};
until K 6= K

′ ;
if there is (t0,S, ν) ∈ K with A0 ∈ t0 then

return “ a counter model exists”
else

return “a counter model does not exist”

end

Figure 6.9: The knot elimination algorithm for directed entailment of tree-shaped queries.

Theorem 6.4.11 Given a simple KB K = 〈{A0(a)},T ,R〉 and a set of tree-shaped queries Q,

1. K |=↓ Q can be decided in time exponential in ||K|| + ||Q||, and

2. if |ClC(K)|, |NR(K)| and ||Q|| are bounded by some constant, K |=↓ Q can be decided in
constant time.

Proof. Let c = |ClC(K)|, let t = |NR(K)|, and let u = |subq(Q)|. As |typesC(K)|, i.e., the
number of distinct concept types for K, is bounded by 2c, and |typesC(K)|, i.e., the number
of distinct role types for K, is bounded by 2t. Hence the number of distinct knots for K is
bounded by 2c·(2t·2c)c = 2c+tc+c2 . The number of distinct subsets of subq(Q) that can be used
as ‘markers’ by a marking function ν is bounded by 2u, so the number of distinct Q-marked
knots for K is bounded by k = 2c·2u·(2t·2c·2u)c ≤ 22c(c+t+u). It is easy to see that c and t are
linear in ||K||. The number u = |subq(Q)| of tree-shaped subqueries of Q is linearly bounded by
the number of queries in Q times the maximal number or variables in each query, and is thus
polynomial in ||Q||. Hence the number k of distinct Q-marked knots for K is single exponential
in ||K||+ ||Q||. Checking K-consistency and Q-avoidance are clearly polynomial in ||K||+ ||Q||,
hence constructing the set K in the first step of the algorithm is feasible in time exponential in
||K|| + ||Q||. In the subsequent ‘clean-up’ stage, each test is feasible in linear time in ||K|| ≤ k.
Each knot is removed at most once and never introduced again, hence the algorithm stops after
at most k steps. Checking for the existence of a knot containing A0 is linear in ||K||, so the
algorithm terminates in time that is exponential in ||K||+ ||Q||.

The second item is now trivial: if c, t and u are bounded by some constant, then the number
k of distinct Q-marked knots is also bounded by a constant, and the whole algorithm requires
only constant time.

6.4.2 From Standard Entailment to Directed Entailment

We now show how Theorem 6.4.11 can be used to derive tight complexity bounds for standard
entailment of arbitrary UCQs over simple KBs. Consider a simple KB K = 〈{A0(a)},T ,R〉, and
an arbitrary UCQ Q. Recall that by Proposition 6.1.4, checking K 6|= Q is equivalent to ensuring
that none of the tree-shaped canonical models of K admits a match for a query q ∈ Q. The

110

existence of a match for q in such a model can be characterized in terms of a set of tree-shaped
queries that can be obtained from q by unifying variables and inverting role atoms.

Definition 6.4.12 A tree-shaped CQ q′ is a tree rewriting of a CQ q if there is a surjective
map φ : VI(q)→ VI(q′) such that

(i) A(v) ∈ q iff A(φ(v)) ∈ q′, and

(ii) P (v, v′) ∈ q iff P (φ(v), φ(v′)) ∈ q′ or Inv(P)(φ(v′), φ(v)) ∈ q′.

Let TRew(q) denote the set of all tree rewritings of q. For a UCQ Q, we let TRew(Q) =
⋃

q∈Q TRew(q).

The following is easy to prove.

Proposition 6.4.13 If I is a canonical model of a simple KB K and q is a connected CQ in
ALCHI, then I |= q iff I |=↓ TRew(q).

Proof. It is easy to verify that a directed match for a query q′ ∈ TRew(q) is also a match
for q. On the other hand, any match π for q in I gives rise to a rewriting qπ of q as follows:

• VI(qπ) = {vw | ∃v ∈ VI(q) : π(v) = w}, i.e., there is a variable vw for each w ∈ ∆I that is
in the range of π;

• the concept atoms of qπ are {A(vw) | ∃ A(v) ∈ q : π(v) = w};

• the role atoms are {P (vw, vw·i) | ∃ P (v, v′) ∈ q : π(v) = w and π(v′) = w · i} ∪
{Inv(P)(vw, vw·i) | ∃ P (v, v′) ∈ q : π(v′) = w and π(v) = w · i}

Note that in general, as π does not need to be surjective, qπ may have less variables than q. Since
q is connected and I is a canonical model, qπ is obviously tree-shaped.Moreover, the construction
of qπ ensures that I |=↓ qπ, i.e., there is a directed match for qπ in I.

The following is a direct consequence of the proposition above and the canonical model
property (Proposition 6.1.4).

Proposition 6.4.14 For a simple KB K and a connected UCQ Q in ALCHI, K |= Q iff
K |=↓ TRew(Q).

Example 6.4.15 Figure 6.10 shows some tree rewritings of q1. Note that both the left-most
and the right-most queries are in the set Qa and, as we have shown, are not entailed by Ka.
Furthermore, recall the set α′

1(a) = {q1, {A0(v1), A(v1)}} from Example 6.2.7. A simple (but
tedious) inspection shows that all the tree rewritings of q1 can be incorporated into a TRew(q) ∪
{A0(v1), A(v1)}-avoiding marked set of knots. Hence Ka 6|= α′

1(a) and as discussed, this implies
K1 6|= q1.

A central observation is that in the case of ALCH, we can replace the set TRew(q) in Propo-
sition 6.4.13 with a single CQ. If there is a match for q in some one-way canonical interpretation,
then there is single tree-shaped rewriting q′ of q that has a directed match in every one-way
canonical interpretation where q has a match. In fact, we can obtain this rewriting in a very
easy way (and in polynomial time): simply eliminate all forks p(v1, v2), p

′(v′1, v2) in q by unify-
ing the variables v1 and v′1. Observe that, in contrast to the case of ALCHI, the rewriting is
independent of some concrete interpretation and a concrete match for q in it. As noted already
in Section 6.4.1, we then have K |= q′ iff K |=↓ q′, and we can directly employ the algorithm in
the previous section.

111

v1

v2

v4

B,D

A

D

v1

v2

v3

v4

B

A

D

D

v2

v3

v4

B

D

D

A v1

v1

v2

v3

v4

B

A

D

D

A v1

B v2

v4

v3

D

D

v2

v4

B,D

D

A v1

Figure 6.10: Some tree rewritings of q1

v1

v2

v4

B

A

D

v3

D

v1

v2

v4

B,D

A

D

Figure 6.11: The query q1 and its fork-elimination FE(q1)

Definition 6.4.16 (Fork elimination [Lut08a]) For a CQ q, a fork elimination of q is a
query obtained from q by exhaustively applying the following rule: if the query contains atoms
p(v1, v2) and p′(v′1, v2) where v1 6= v′1, then replace every occurrence of v1 with v′1. By FE(q) we
denote an arbitrary fork elimination of q.

Example 6.4.17 The fork elimination of the query q1 is depicted in Figure 6.11.

Note that fork eliminations of q coincide up to a renaming of variables. It is easy to see
that, for each one-way tree-shaped canonical interpretation I, every pair of variables v1 and v′1
that are unified in the rewriting has π(v1) = π(v′1) in every match π for q in I. That is, the
elimination of forks preserves query entailment in one-way tree-shaped canonical interpretations,
and hence it preserves query entailment over simple ALCH KBs. Hence we easily obtain:

Proposition 6.4.18 If I is a canonical model of a simple KB K and q is a CQ in ALCH, then
I |= q iff I |=↓ FE(q). Hence K |= Q iff K |=↓

⋃

q∈Q{FE(q)}.

This concludes the reduction of regular UCQ entailment in ALCH and ALCHI to directed
entailment of tree-shaped queries.

6.5 Complexity of Query Answering

Putting things together, we have an algorithm for deciding UCQ entailment in ALCH and
ALCHI that consists of three steps:

1. Construct all the ABox completions θ for K and all the query annotations α for θ and Q.
2. For each pair (θ, α) of a completion θ and a query annotation α for it, construct for all

individuals a the pair (Kθ(a),TreeQ(a)) of an induced simple knowledge base Kθ(a) and a
set of tree-shaped queries, where TreeQ(a) =

⋃

q∈α(a){FE(q)} if K and Q are in ALCH,
and TreeQ(a) = TRew(α(a)) otherwise.

112

3. For each pair (θ, α), use Algorithm 6.9 to test for all pairs (Kθ(a),TreeQ(a)), whether there
is a countermodel for Kθ(a) and TreeQ(a).

We show in this section that the algorithm results in worst-case optimal complexity bounds,
both for ALCH and ALCHI, for both data and combined complexity.

6.5.1 Combined Complexity

Recall that, for a given K and Q, combined complexity measures the cost of deciding K |= Q in
terms of ||K|| + ||Q||. We start with the combined complexity for ALCH, which needs a more
refined analysis.

Theorem 6.5.1 Given a KB K = 〈A,T ,R〉 and a UCQ Q in ALCH, deciding K |= Q is
ExpTime-complete.

Proof. Let ℓ = |NI(K)|, c = |ClC(K)|, let t = |NR(K)|, and let u = |Q| (when seen as a set
of CQs), and recall that ℓ, c and t are all linear in ||K||, and u is linear in ||Q||. Recall also that
the number of distinct concept types for K is bounded by 2c.

The number of different completions is bounded by (ℓ ·2c) ·(ℓ2 ·2t), hence it is polynomial in ℓ
and single exponential in c and t, and thus single exponential in ||K||. For each completion, the
size of the new CIA A0 ⊑ Cθ(a) is linear in c, and thus linear in ||K||. It was shown in [Lut08a]
that, for each CQ q and each ALCH KB, there is an injective mapping from the subqueries q|ξv to
the tree-shaped subqueries subq(FE(q)) of the fork elimination of q. Since |subq(FE(q))| is linearly
bounded in ||q||, then for each q, the number of different q|ξv in an individual annotation α(a)
is also linearly bounded in ||q||. Hence the overall cardinality of α(a) is polynomially bounded
in ||Q||, and the same holds for its size ||α(a)||. Further, by Proposition 6.4.18, Kθ(a) |= α(a)

iff Kθ(a) |=
↓

⋃

q∈α(a){FE(q)}. For each α(a),
⋃

q∈α(a){FE(q)} can be computed in time linear in
α(a). This means that there are exponentially many pairs (θ, α), and for each of them we have
to do a linear number of tests Kθ(a) |=

↓
⋃

q∈α(a){FE(q)}, where ||Kθ(a)|| and |
⋃

q∈α(a){FE(q)}|
are both polynomially bounded in ||K|| + ||Q||. We then obtain the upper bound by a direct
application of Theorem 6.4.11.

The matching lower bound follows already from the well-known ExpTime-hardness of knowl-
edge base satisfiability in ALCH [Sch91].

This ExpTime upper bound for ALCH was first shown in [OŠE08b] and in [Lut08a] (in the
latter case, for the DL ALCHQ that additionally supports number restrictions). The proof we
have provided here differs from both of them, as we discuss in Section 6.6.

A 2ExpTime upper bound for ALCHI follows from the results in the first part of this
thesis—in particular from Theorem 3.4.2—and was already known in the literature (see Sec-
tion 1.2). Now we show that the algorithm described in this chapter yields the same upper
bound.

Theorem 6.5.2 For a KB K and a UCQ Q in ALCHI, deciding K |= Q is feasible in 2Exp-

Time.

Proof. As above, there are exponentially many completions, and for each of them, the size of
the induced knowledge bases Kθ(a) is polynomial in ||K||. For annotations α, there are (2ℓ)|VI(Q)|

many match candidates, where ℓ = |NI(K)| as above. Thus, using Theorem 6.2.6, we get that
checking K 6|= Q is in 2ExpTime provided that checking Kθ(a) 6|= α(a) is in 2ExpTime. Using
Proposition 6.4.14, Kθ(a) 6|= α(a) iff Kθ(a) 6|=

↓ TRew(α(a)). As for each a ∈ NI(A), ||α(a)|| is at
most single exponential in ||K|| and ||Q||, then TRew(α(a)) is of single exponential size and can

113

be obtained in time single exponential in ||K||+ ||Q||. We obtain the upper bound by applying
Theorem 6.4.11.

The matching lower bound was a relatively long standing open problem, finally closed by
Lutz [Lut07]: the above algorithm is worst case optimal, as query answering is 2ExpTime-hard
in all extensions of ALC that support inverse roles.

6.5.2 Data Complexity

For the data complexity, we assume a fixed UCQ Q, TBox T and RBox R, and we analyze the
complexity of deciding 〈A,T ,R〉 |= Q, for a given ABox A such that only concept names occur
in A, and every concept and role name occurring in A also occurs in T orR (see Definition 2.3.3).

By Theorem 6.2.6, to check 〈A,T ,R〉 6|= Q we can non-deterministically build a completion
θ, non-deterministically compute an annotation α, and then check for each individual a whether
Kθ(a) 6|= α(a). By Proposition 6.4.14, the latter can be done by checking Kθ(a) 6|=

↓ TRew(α(a))
using our algorithm for directed entailment. Clearly, a completion can be computed in polyno-
mial in ||A||. Since Q is fixed, an annotation for the completion can also be non-deterministically
computed in polynomial time in ||A||. Indeed, there are only (2 · |NI(A)|)|NV(Q)| match candi-
dates, and for each of the candidates we pick one subquery which we assign to an individual.
Since Q is fixed, for each individual a ∈ NI(A), the resulting α(a) is of size bounded by a con-
stant, and thus also ||TRew(α(a))|| is bounded by a constant. If T and R are fixed, since every
concept and role name occurring in A also occurs in T or R, |ClC(K)| and |NR(K)| are also
fixed. It then follows from Theorem 6.4.11 that checking Kθ(a) 6|=

↓ TRew(α(a)) requires only
constant time.

This yields a non-deterministic polynomial time algorithm to check 〈A,T ,R〉 6|= Q, and thus
a coNP upper bound for UCQ entailment. This bound was shown for ALCHIQ in [OCE08],
and was then extended to SHIQ in [GHLS08] (please see Section 7.5 for discussion). It is
worst case optimal, as matching hardness holds already for DLs significantly weaker than ALC
[Sch94a, CDGL+06].

Theorem 6.5.3 For a KB K and a UCQ Q in ALCHI, deciding K |= Q is coNP-complete in
data complexity.

6.6 Related Work and Discussion

For a few years, only 2ExpTime upper bounds for query answering in expressive DLs were
known, and the best matching lower bound was ExpTime-hardness stemming from knowledge
base satisfiability. The first conclusive result concerning the precise complexity of the problem
was the 2ExpTime lower bound for ALCI obtained by Lutz [Lut07]. In this chapter we used
knots to show that UCQ answering is feasible in ExpTime for ALCH, and in 2ExpTime for
ALCHI.

The ExpTime upper bound for ALCH is notable, since all previous query answering algo-
rithms for expressive DLs required double exponential time. The technique we have described
here, which differs from the ones originally used in [OŠE08b] and in [Lut08b] to show the same
result, takes advantage of the more mature machinery that is emerging from the different algo-
rithms proposed until now. This technique in particular was developed in [ELOŠ09a], but only
for the restricted setting of CQ answering over simple knowledge bases. The extension to UCQs
and arbitrary knowledge bases builds on ideas in [Lut08b, BEL+10, GHLS08].

The upper bound given in [Lut08b] is for deciding the entailment of a Boolean CQ q over a
KB in the DL ALCHQ, which extends ALCH with qualified number restrictions. Similarly to

114

the algorithm we have presented here, it first uses some ‘splits’, which are closely related to query
annotations, to generate a set of subqueries that have to be avoided in the tree-shaped parts of
canonical interpretations. To test the existence of a countermodel for the latter subqueries—
instead of using knots as in the algorithm above—Lutz employs the ‘rolling-up’ technique (see
Section 4.3.1) to reduce the problem to knowledge base satisfiability in a DL that extends ALCH
with role conjunctions.

The algorithm in [OŠE08b] answers a CQ q, possible with answer variables, over a KB K
in ALCH, and it uses knots, but in a different way. Roughly, it uses a more elaborate iterative
procedure to compute in a bottom up way the combinations of tree-shaped subqueries of q that
are entailed in the tree interpretations that start with a knot in a set. The key to showing
ExpTime membership is that the size of the different combinations of subqueries that need
to be computed is polynomially bounded; we will see that this is closely related to the fact
that FE(q) has only polynomially many tree subqueries. The algorithm was extended to SH in
[OŠE08a, EOŠ09] and will be presented in detail in the next chapter.

The goal of this chapter was not only to show ExpTime-completeness in ALCH, but also
to illustrate that, when annotated with suitable query information, knots are a flexible tool for
solving the query entailment problem in a rather simple and intuitive way. We considered the
DLs ALCH and ALCHI, but the algorithm can be extended quite easily to other constructors,
and allows for elegant refinements to obtain optimal bounds even in the presence of more subtle
sources of complexity. Indeed, this knot marking technique has been adapted to show other tight
complexity results in DLs with transitive roles. In their presence, it is not possible to generate
a set of tree-shaped queries of polynomial size even when we are working with one-way models.
However, if we disallow role inclusions, a somewhat intricate refinement of the approach can be
used to show that in S (i.e., ALC with transitive roles), CQ entailment w.r.t. simple KBs is still
in ExpTime [ELOŠ09b].

6.6.1 Related Techniques

The knot technique, as we have described it, was introduced in the context of non-monotonic
Logic Programming with function symbols [ŠE07, EŠ10], but it can be seen as an instance of
other reasoning methods that have been used for modal logics and other related fragments of
first-order logic.

In particular, knots are a special instance of the mosaic technique [Ném86] that is well known
in the context of modal logics. The basic idea underlying the technique is that models can be
decomposed into a finite collection of small model parts called mosaics, and that if a finite set
of mosaics is suitably linked, its elements can be combined into a model. Mosaics have been
used to solve the formula satisfiability problem and to derive tight complexity upper bounds in
some modal logics; see [MM07, BdRV01] and references therein. They have also been employed,
although not widely, for standard reasoning in DLs [LST05, RKH08b].

Knots and mosaics are closely related to types. Roughly, a type is a small mosaic with
only one element, and in compensation for the simplicity of the mosaics, more involved global
conditions may be required. In fact, the elimination algorithm in Figure 6.9 is a simple variant of
the famous type elimination algorithm proposed by Pratt for propositional dynamic logic [Pra79].
Type elimination and similar type based algorithms have become a very popular techniques
that have been applied to a wide range of logics including, for example, various modal and
description logics [PSV06, HM92, LWZ08], the 2-variable fragment of first-order logic [GKV97],
and the extension of the latter with counting quantifiers [PH05]. We remark that the algorithm
in Section 6.4.1 can also be formulated using marked types instead of marked knots, but knots
seem to be better suited. Their more comprehensive representation of the local model structure
allows for simpler local and global conditions, especially when extending the approach to more

115

expressive DLs such as those involving transitive roles. With the exception of [EGOŠ08, PH09],
we are not aware of papers in which other variations of mosaics and types have been explored
for query answering.

116

Chapter 7

Querying DLs with Transitive Roles

and Role Hierarchies

In this chapter, we consider the problem of CQ entailment over knowledge bases in SH, the DL
that extends the basic ALCH with transitivity axioms. We present two main results:

1. We develop a knot-based algorithm for answering CQs over SH knowledge bases. It works
in double exponential time in general, but in single exponential time for CQs with no
transitive roles (i.e. for CQs in ALCH), as well as for CQs only few (i.e., constantly
many) atoms involving transitive roles. The latter restriction seems not to be severe in
practice.

2. We show that CQ entailment in SH is 2ExpTime-hard. In this way, we not only show that
our algorithm is worst-case optimal, but we also identify the combination of transitivity
and role inclusions as a new source of complexity, and show that not only inverse roles
make query answering harder than standard reasoning,

The algorithm for CQ answering in SH presented in the first part of this chapter is an
extension of a similar algorithm for ALCH presented in [OŠE08b]. It is worst case optimal (for
both SH and ALCH) and improves the upper bound resulting from all previous algorithms for
CQ answering in logics containing ALCH, which either do not have a double exponential upper
bound, or need double exponential time already for fragments like ALCH (see Section 6.6 for
more details). Additionally, it has the following features:

• Different from other algorithms, it handles CQs with answer variables in a direct manner,
rather than reducing such queries to ground (Boolean) CQs. Unlike we did in Chapter 6,
it does not reduce the problem to many tests over trees, but handles the full query over
forests directly.

• The algorithm provides a modular knowledge compilation of the DL knowledge base, which
allows for the reuse of intermediate results. This is because it compiles first a knowledge
base into a set of knots, constructs then query answering tables from this set and the input
query, and finally collects the query answers from the compiled knowledge and tables using
the ABox. The result of the first step may be reused for follow-up queries, i.e., only the
query answering tables need to be constructed and the query answers collected. For queries

117

if C1 ⊑ C2 ∈ T then ∼C1 ⊔ C2 ∈ ClC(K)
if C ∈ ClC(K) then ∼C ∈ ClC(K)
if C1 ⊔ C2 ∈ ClC(K) then C1, C2 ∈ ClC(K)
if C1 ⊓ C2 ∈ ClC(K) then C1, C2 ∈ ClC(K)
if ∃p.C ∈ ClC(K) then C ∈ ClC(K)
if ∀p.C ∈ ClC(K) then C ∈ ClC(K)
if ∀p.C ∈ ClC(K) and trans(p′) ∈ R then ∀p′.C ∈ ClC(K)

Table 7.1: Concept closure ClC(K) of an SH KB K = 〈A,T ,R〉

of small size (bounded by a constant), the table construction is feasible in polynomial time
in the size of the knot set, and collecting the query answers is feasible in coNP (viewed
as a decision problem); for a fixed ABox, the latter is feasible in polynomial time. This is
particularly useful for evaluating many such queries over a rather static knowledge base.

• Similarly, for a fixed query and a DL knowledge base where the TBox and the RBox are
fixed but the ABox may change, i.e., in the data complexity setting, a non-deterministic
version of our algorithm runs in polynomial time, which is also worst-case optimal.

• Finally, the compiled knowledge can be expressed as a disjunctive Datalog program (al-
ternatively, a Datalog program with unstratified negation), which is evaluated over an en-
hanced ABox. The program can be designed to evaluate also non-ground queries, i.e, with
answer variables directly. A Datalog encoding may make the algorithm more amenable
for efficient implementation than some of the previous automata- or tableaux-based ap-
proaches, given that efficient engines for disjunctive/unstratified Datalog are available.

The rest of this chapter is organized as follows. In the next section we describe the canonical
models of a knowledge base, which are forest models that are sufficient for query answering.
In the follow-up Section 7.2, we discuss how forest-shaped models of a knowledge base can be
represented using knots. In Section 7.3, we present our algorithm for answering CQs using knots.
In Section 7.4 we address complexity issues, including both the upper and lower bounds, and
describe an encoding into Datalog. In the final Section 7.5, we discuss our results, related work,
and possible extensions of the approach.

7.1 Canonical Models for SH

Throughout the following sections, K = 〈A,T ,R〉 denotes a fixed, given SH KB. We assume
without loss of generality that A is extensionally reduced (that is, only concept names occur
in the concept membership assertions) and that all concepts and roles that occur in A occur
also in T or R (see Definition 2.3.3). This assumption—which makes the presentation simpler—
is natural in our setting, as we aim at a modular algorithm that handles the extensional and
intensional components in separate stages.

As usual, we start by characterizing a suitable canonical model property for SH KBs, and
adapting to SH the notions of closure, types, and ABox completions.

7.1.1 Syntactic Closure and Types

The definition of the syntactic closure of K is similar to Definition 6.1; it includes all concepts
occurring in T (and hence also all concepts in A), and it is closed under subconcepts (in NNF).

118

if C1 ⊑ C2 ∈ T , then ∼C1 ⊔ C2 ∈ t,
if C ∈ ClC(K), then C ∈ t iff ∼C 6∈ t,
if C1 ⊓ C2 ∈ ClC(K), then C1 ⊓ C2 ∈ t iff {C1, C2} ⊆ t,
if C1 ⊔ C2 ∈ ClC(K), then C1 ⊔ C2 ∈ t iff {C1, C2} ∩ t 6= ∅.

Table 7.2: Concept type t ⊆ ClC(K) for an SH KB K

Definition 7.1.1 (Concept closure) The concept closure ClC(K) of K is the smallest set of
SH concepts closed under the rules in Table 7.1.

Most of the entries in Table 7.1 are self-explanatory, except the last one that is designated to
deal with combinations of transitive roles and role hierarchies.

Concept types for SH are defined as for ALCHI. Role types are also similar, but now they
are even simpler because there are no inverses and only the RIAs need to be taken into account.

Definition 7.1.2 (Concept and role types) A concept type of K is a set t ⊆ ClC(K) of
concepts that satisfies the rules in Table 7.2.

A role-type of K is a set ρ ⊆ NR(K) such that, for each P1 ⊑ P2 ∈ T , P1 ∈ r implies P2 ∈ r.
The set of all concept types of K is denoted by typesC(K), and the set of all role types by

typesR(K).

7.1.2 Canonical Models

So far, we have considered canonical models that are tree- or forest-shaped, but they are too
restrictive for the case of SH, since the transitivity axioms impose relations between domain
elements that are not directly connected but lie on a longer path. A convenient way to charac-
terize models for SH is to consider models of an ALCH KB K′, such that there is a one-to-one
correspondence between the models of K and the models of K′. More specifically, we consider
interpretations I that are models of A, T and the RIAs in R, but not necessarily of the tran-
sitivity axioms. By requiring I to satisfy some additional CIAs, we ensure that it becomes a
model of K when some ‘implied arcs’ are added.

We use some terminology introduced in [GHLS08], and define forest bases as canonical in-
terpretations for ALCH (i.e., one-way canonical interpretations in the sense of Definition 6.1.3):
their domain is a forest with bounded branching and with roots NI(K), and each non-root node
can only be connected to its children. A canonical model is then defined as the closure of a
forest base that satisfies the above restrictions, which we call a model base.

Definition 7.1.3 (forest base, closure, canonical interpretation) An interpretation I is
called a forest base (for K) if:

1. ∆I is a forest with branching degree bounded by |ClC(K)|,

2. roots(∆I) = {aI | a ∈ NI(K)},

3. I is connected, that is, for each pair {w,w′} ⊆ ∆I with w′ ∈ succ(w) there is some
p ∈ NR(K) such that (w,w′) ∈ pI, and

4. w′ ∈ succ(w) for every w,w′ ∈ ∆I such that {w,w′} 6⊆ roots(∆I) and (w,w′)∈ pI for some
role name p.

119

The closure J = (∆J , ·J) of a forest base I = (∆I , ·I) is the interpretation that is identical to
I but has, for each p ∈ NR

pJ = pI ∪
⋃

p′ ⊑R p,trans(p′)∈R

(

(p′)I
)+

We call I a model base for K if

(a) I |= T and I |= A,

(b) I satisfies each RIA in R,

(c) I |= {∀p.C ⊑ ∀p′.(∀p′.C) | ∀p.C ∈ ClC(K) with trans(p′) ∈ R and p′ ⊑R p}.

If J is the closure of some model base I for K, then we call J a canonical interpretation for
K.

Model bases of K satisfy all the concept inclusion axioms, ABox assertions and TBox as-
sertions of K (conditions (a-b)), but they are not necessarily models of K since the transitivity
requirements may be violated. To deal with this, we require (c) which emulates the effect of
transitive roles on a model. The closure, which is obtained by closing a model base under
transitivity and role inclusions, leads us to a model of K.

For simplicity, in what follows we consider only CQs. Recall that we write K |= q(~a) if ~a
is an answer for q in K, i.e., if there is a match π for q in I such that π(xi) = (ai)

I for each
1 ≤ i ≤ n (see Section 2.2.2). We can now state the following important proposition.

Proposition 7.1.4 ([GHLS08]) The following hold:

1. If J is a canonical interpretation for K, then J |= K, i.e., J is a canonical model of K.

2. Let q be a CQ with n answer variables, and let ~a be an n-ary tuple of individuals. If
K 6|= q(~a) then there exists some canonical model J for K such that J 6|= q(~a).

Prematches

The proposition above implies that we can safely concentrate on closures of model bases for
answering CQs. In fact, we can even consider forest bases instead of their closures when looking
for query matches, as we do in this chapter, provided that the notion of match is relaxed
accordingly.

We introduce the notion of a prematch for a query, which is ‘almost a match’ on a forest
base, and becomes a regular match in the closure. The idea is that to satisfy an atom p(v, v′) we
may match v and v′ to nodes that are not directly related by p but they will be in the closure
because there is a path between them where each pair is in the extension of some transitive
subrole of p.

Definition 7.1.5 (p-follower, prematches) Given a forest base I and w,w′ ∈ ∆I , we call
w′ a p-follower of w (in I), if there is a sequence w1, . . . , wn in ∆I and a p′ ⊑R p such that
w1 = w, wn = w′, and

• (wi, wi+1) ∈ (p′)I for each 1 ≤ i < n, and

• if n > 2, then trans(p′) ∈ R.

We say a CQ q has a pre-match in I, if there is a mapping π : VI(q)→ ∆I such that:

120

(PM1) C(x) ∈ q implies π(x) ∈ CI, and

(PM2) p(x, y) ∈ q implies π(y) is a p-follower of π(x) in I.

It is not hard that to see that a prematch in a forest base becomes a regular match in its
closure. Conversely, the existence of a regular match in the closure of some forest base I implies
the existence of a prematch in I. Hence, applying Proposition 7.1.4, we easily obtain:

Proposition 7.1.6 Let q be a CQ q with answer variables ~x = x1, . . . , xn, and let ~a = a1, . . . , an

be an n-ary tuple of individuals. Then the following are equivalent:

1. K |= q(~a);

2. in each model base I for K, there exists a prematch π for q with π(xi) = (ai)
I for each

1 ≤ i ≤ n.

By the above proposition, given K, to decide whether a tuple ~a is in the answer of a CQ it
suffices to see whether in every model base there is a prematch that gives ~a as an answer. In
the rest of this chapter, we present an algorithm for the latter problem.

7.1.3 ABox Completions

Similarly as we did for ALCHI, we define ABox completions that characterize the ‘graph part’
of canonical models.

Definition 7.1.7 (ABox Completion) A completion for K is a function θ that maps each
a ∈ NI(K) to a concept type θ(a) ∈ typesC(K) and each pair (a, b) ∈ NI(K)×NI(K) to a role type
θ(a, b) ∈ typesR(K) such that:

1. for each C(a) ∈ A, C ∈ θ(a),

2. for each p(a, b) ∈ A, p ∈ θ(a, b),

3. for each a, b ∈ NI(K), if ∀p.C ∈ θ(a) and p ∈ θ(a, b), then C ∈ θ(b),

4. for each a, b ∈ NI(K), if ∀p.C ∈ θ(a), and p′ ∈ θ(a, b) for some p′ ⊑R p with trans(p′) ∈ R,
then ∀p′.C ∈ θ(b), and

5. if p ∈ θ(a, b), p ∈ θ(b, c) and trans(p) ∈ R, then p ∈ θ(a, c).

The set of all ABox completions for K is denoted by comp(K).

7.2 Reasoning in SH Using Knots

Before presenting our algorithm for query answering, we show how the models of an SH KB
K can be represented using knots. As discussed in Section 6.3.1, knots are small tree-shaped
structures that represent patters for subtrees that may occur in the canonical models of K.
By imposing suitable coherence conditions one can ensure that the knots in a given set can be
assembled into interpretations. Every (possibly infinite) forest base for K can be decomposed
into a set of knots and, since only finitely many knots exist for K, this set is always finite.

121

7.2.1 Representing forest bases for SH with Knots

Unlike we did in the previous chapter, we do not reduce query answering to tree-shaped inter-
pretations before deploying knots. Instead we adapt the knot technique, so that full forest bases
are represented by sets of knots combined with ABox completions. We then define an algorithm
answering queries over such a representation.

To represent forest bases, we use knots as defined for ALCHI, in Definition 6.3.1. We recall
that a knot for K is a pair (t,S), its root is the concept type t, and it has a set of children S,
|S| ≤ |ClC(K)|. Each child is a pair (r, t′) of a role type r and a concept type t

′. We adapt to
SH the consistency conditions that ensure that a knot locally complies with the constraints of
K, and the global coherence conditions that guarantee that consistent knots can be assembled
into trees, as follows.

Definition 7.2.1 (Knot consistency, coherency of knot sets, possible successor knot)
A knot (t,S) is K-consistent if:

1. if ∃p.C ∈ t, then p ∈ r and C ∈ t
′ for some (r, t′) ∈ S;

2. if ∀p.C ∈ t, then C ∈ t
′ for all (r, t′) ∈ S with p ∈ r; and

3. if ∀p.C ∈ t, then for each p′ ⊑R p with trans(p′) ∈ R and each (r, t′) ∈ S with p′ ∈ r, we
have ∀p′.C ∈ t

′.

Let K be a set of knots. A knot (t,S) is good in K, if for each (r, t′) ∈ S there is a possible
successor (t′,S′) ∈ K. K is K-coherent if each knot it contains is K-consistent and good in K.

The coherence conditions are very similar to Definition 6.3.4, except that we do not require
the presence of an initial knot containing the distinguished concept A0. Instead of this, and to
represent forest-shaped model bases rather than simple trees, we define additional compatibility
conditions.

A set of knots K is compatible with a set of types T, if by appending knots in K we can
construct a tree with root t for each type t in T. Intuitively, this allows us to build a forest base
from a completion and a set of knots that is compatible with the types that occur in it. (We
note that if K is coherent and T-compatibility, and A0 is in some type of T, then it is coherent
in the sense of Definition 6.3.4.)

Definition 7.2.2 (Compatibility) Let T ⊆ typesC(K). A K-coherent knot set K is T-
compatible, if for each t ∈ T there exists some knot (t0,S) ∈ K with t0 = t.

As K-coherence and T-compatibility are preserved under unions of coherent knot sets, there
exists a T-complete knot set which contains all knot sets that are K-coherent and T-compatible.
From this set we can construct all model bases whose roots satisfy types from T.

Definition 7.2.3 (Completeness) For a knot set K and type t, let K|t denote the smallest
subset of K such that

(a) (t0,S) ∈ K|t for each (t0,S) ∈ K with t0 = t, and

(b) if (t0,S) ∈ K|t, (r, t′) ∈ S and (t′,S′) ∈ K, then (t′,S′) ∈ K|t, i.e., K|t is closed under the
possible successors in K.

Let K be a K-coherent set of knots and T a set of types for K. We say K is T-complete if for
each t ∈ T and each K-coherent set K

′ we have K
′|t ⊆ K.

122

p2
p1, t1p1 t2 p1p1, t1t1 t1, p2

tB,C tA tA,B,C tC tA,CtA,B,C

tA tA,B,C
tA,B,C tA,CtAtC tB,CtA,C

k3 k4k1 k2 k5 k6

Figure 7.1: Example set of knots

Intuitively, K|t is the restriction of K to knots that have root t, or are reachable from the
former via the possible successor relation. A T-complete set that contains K|t for all knots in
T is sufficient to build all the trees starting with a type t ∈ T.

Example 7.2.4 A K-coherent set of knots (for some KB K) is depicted in Figure 7.1. Similarly
as in Chapter 6, we represent a knot k = (t,S) as a tree where the root is labeled t, and that
has, for each (r, t′) ∈ S, an arc labeled r to a child labeled t

′. Five different types occur in these
knots. We omit their full description, and simply assume that the set of concept names that
occur in each tX is exactly {X} ⊆ {A,B,C}. In the arc labels, in contrast, we write the full role
types {t1}, {t1, p1}, . . . , omitting braces. Observe that k2 is a possible successor of ({t1}, tA) in
k1, while ({p1, t1}, tA,B,C) has the possible successors k3 and k4.

To build model bases for K, we need some completion and some set of knots that is compatible
with the concept types that occur in the completion. Given this, we can construct forest bases
as follows.

Definition 7.2.5 (Model base induced by a completion and a knot set) Let θ be an
ABox completion for K, and let T ⊆ typesC(K) be a set of types such that {θ(a) | a ∈ NI(K)} ⊆
T. Furthermore, let K be a T-compatible knot set. A forest base I = (∆I , ·I) is induced by θ
and K if:

(a) For each a, b ∈ NI(A) and each role p, (aI , bI) ∈ pI iff p ∈ θ(a, b).

(b) I is induced by a function ξ : ∆I → K such that, for each element w ∈ ∆I, the knot
ξ(w) = (t,S) satisfies:

- for each concept name A, w ∈ AI iff A ∈ t, and

- there exists a bijection f : S→ succ(w) such that for each s = (r, t′) in S and each role p,
we have (w, f(s)) ∈ pI iff p ∈ r.

The set of all such I is denoted by F(θ,K).

An easy consequence of the above definitions is that each forest base in F(θ,K) is a model
base for K.

Lemma 7.2.6 If θ is an ABox completion for K and K is T-compatible for some T ⊇ {θ(a) |
a ∈ NI(K)}, then each I ∈ F(θ,K) is a model base for K.

A T-complete knot set is sufficient to induce a model base I for K if the types that occur in
the corresponding completion are contained in T, i.e., if {C | aI ∈ CI} ∈ T for each a ∈ NI(K).
Hence, if a knot set is complete for all concept types that occur in some ABox completion of K,
we can use it to induce all the model bases for K.

123

Definition 7.2.7 (Model bases induced by a knot set, ABox types) For a set of types
T and a T-complete knot set K, we denote by FK(K) the set of all model bases induced by the
knot set K and some ABox completion θ of K such that θ(a) ∈ T for each a ∈ NI(K).

We denote by ABoxTypes(K) the set of all concept types that occur in some ABox completion
of K, that is

ABoxTypes(K) =
⋃

θ∈comp(K)

{θ(a) | a ∈ NI(K)}.

If a knot set K is ABoxTypes(K)-complete, then every model base can be induced from it.
Hence, to answer each given CQ, it is enough to look for its prematches in the forest bases in
FK(K).

Proposition 7.2.8 Let K be an ABoxTypes(K)-complete knot set, let q be a CQ with answer
variables x1, . . . , xn, and let ~a = a1, . . . , an be an n-ary tuple of individuals. Then the following
are equivalent:

1. K |= q(~a);

2. in each model base I ∈ FK(K) there exists a prematch π for q with π(xi) = ai
I for each

1 ≤ i ≤ n.

Proof. The (1 → 2) direction follows directly from Proposition 7.1.6 and Lemma 7.2.6.
For the (2 → 1) direction, assume ~a 6∈ ans(q,K). By Proposition 7.1.6, there exists a model

base I for K that admits no prematch π for q with π(xi) = ai
I for each 1 ≤ i ≤ n. We just

need to argue that I ∈ FK(A). To this end, we decompose I into a completion of A and a set
of knots. First, the following θ is a completion for K:

• for each a ∈ NI(K), θ(a) = {C ∈ ClC(K) | aI ∈ CI}, and

• for each pair a, b ∈ NI(K), θ(a, b) = {p ∈ NR | (a
I , bI) ∈ pI}.

Then we ‘decompose’ the tree parts of I into knots. Let ξ be a mapping that assigns to each
w ∈ ∆I a knot ξ(w) = (t0,S), where

• t0 = {C ∈ ClC(K) | w ∈ CI}, and

• S =
⋃

w·i∈succ(w){(ri, t
′
i)}, where ri = {p | (w,w · i) ∈ pI} and t

′
i = {C ∈ ClC(K) | w · i ∈

CI}.

By construction, the knot set K
′ = {ξ(w) | w ∈ ∆I} is K-coherent. Furthermore, K

′ is {θ(a) |
a ∈ NI(K)}-compatible, so K

′ ⊆ K because K is ABoxTypes(K)-complete. Finally, since the
mapping ξ is as required in Definition 7.2.5, it is easy to verify that I ∈ FK(A).

A simple algorithm for computing a T-complete knot set for a given KB K and a set T of
types for K is presented in Figure 7.2. We start by computing the set K of all knots for K that
have root t ∈ T. In a second stage we close K by adding all K-compatible possible successors
knots. Finally, as in the satisfiability algorithm in Figure 6.6, we remove from K one by one
the knots that are not good, because they have a child for which K does not contain a possible
successor. The set K returned by the algorithm includes K|t for each type t ∈ T, and it is
K-coherent. single exponential in T and R and polynomial in T, and does not depend on A.
We elaborate on this in Section 7.4.

124

Algorithm 3: computeKnots

Input: a KB K, a set T of types for K
Output: a T-complete knot set K

begin
Compute the set K of all knots (t0,S) for K that are consistent w.r.t.K and such that
t0 ∈ T;
repeat

K
′ := K;

K := K
′ ∪ {(t′,S′) | (t0,S) ∈ K

′ and (r, t′) ∈ S and (t′,S′) is K-compatible};
until K

′ 6= K ;
repeat

K
′ := K;

K := K
′ \ {(t,S) ∈ K

′ | (t,S) is not good in K
′};

until K
′ 6= K ;

return K

end

Figure 7.2: Building a T-complete knot set for K.

7.3 Query Answering for SH by Knot Compilation

We now present our algorithm for answering conjunctive queries over SH knowledge bases.
For the rest of this section, we assume a fixed CQ q = ∃~v.ϕ(~x,~v), whose answer variables are
~x = x1, . . . , xn. We assume that q is connected and extensionally reduced (i.e., only concept
and role names occur in q) and that there are only variables in VI(q) (see Section 2.2.3). Please
keep in mind that in this chapter we handle answer variables explicitely and thus ~x need not be
empty.

We consider the query answering problem as described in Definition 2.2.5, i.e., given a tuple
of individuals ~a = a1, . . . , an, to decide whether K |= q(~a). We denote by ans(q,K) the set of
such answers, that is, we want to decide whether ~a ∈ ans(q,K) where

ans(q,K) = {~a = a1, . . . , an | K |= q(~a)}.

Relying on the results above, the algorithm achieves this by establishing for which such tuples
~a = a1, . . . , an there exists a prematch π for q with π(xi) = ai

I for each 1 ≤ i ≤ n, in each
model base I ∈ FK(K) for some ABoxTypes(K)-complete knot set K.

Our method for query answering relies on knot sets and is presented in three steps:

• We first define a suitable notion of subqueries and their matches. The definition of sub-
queries is motivated by the ‘shape’ that query prematches can take in forest bases, similarly
to the tree-shaped queries we discussed in Chapter 6.

• We then compile an input query q and the ‘intensional part’ (T ,R) of K into a type-query
table, which, informally speaking, tells which subqueries of q can be mapped in any tree
generated from knots starting from a particular root type.

• Finally, given an arbitrary ABox A, we can answer q over a K = 〈A,T ,R〉 by considering
partial mappings of q into completions of A and by looking up the query remainders in
the precomputed type-query table.

125

7.3.1 Subqueries and Rooted Matches

In the first two steps of the algorithm we focus only on the ‘tree-parts’, deferring the ‘A-Box
part’ to the last stage. That is, we first consider the tree-shaped parts of model bases, which we
formally called tree-shaped interpretations, and look for pre-matches for subqueries in them.

A tree-shaped interpretations is defined almost like a forest base, except for the second
condition: it has only one root instead of a set of roots corresponding to the interpretations of
the ABox individuals.

Definition 7.3.1 (tree-shaped interpretation, subinterpretation) We can an interpreta-
tion I = (∆I , ·I) tree-shaped, if it satisfies conditions 1, 3, and 4 in Definition 7.1.3 and
roots(∆I) contains exactly one element, which we denote by root(I).

For a tree interpretation I = (∆I , ·I) and a w ∈ ∆I, we denote by I|w the restriction of I

to the domain (∆I)w that contains all descendants of w in ∆I.

In particular, we obtain a tree-shaped interpretation whenever we take a subtree Tw of ∆I

for some w ∈ ∆I in a forest base I = (∆I , ·I) and restrict the interpretation accordingly.
Next we introduce a special notion of subqueries adorned with some additional information,

and a special notion of matches for these adorned subqueries in tree-shaped interpretations.
These prematches will be the main ingredient for deciding the existence of full prematches for q
in the last stage of the algorithm.

We start by defining forward-closed sets of variables, which intuitively are subsets of VI(q)
such that a prematch for q must necessarily match all the variables in the set inside the same
tree-shaped interpretation. More precisely, suppose I is a tree-shaped interpretation and that
q has a prematch π in I. Consider a node w ∈ ∆I . Let Vw ⊆ VI(q) be the set of variables of
q that are mapped to a node in the tree rooted at w. We can make the following observations
about the set Vw:

(P1) If v ∈ Vw and there is an atom p(v, v′) in q, then v′ ∈ Vw, i.e., v′ must be mapped into the
subtree of I rooted at w.

(P2) If there are two atoms p(v1, v2) and p′(v′1, v2) in q, where p and p′ are simple w.r.t. R, and
{v1, v2} ⊆ Vw, then v′1 ∈ Vw, i.e., v′1 must also be mapped into the same subtree, and in
particular at the same element as v1.

(P3) If v′ ∈ Vw and there is some p(v, v′) in q with simple p and such that v 6∈ Vw, then v′ must
be mapped to w.

(P4) The restriction of the query graph of q to the variables in Vw is acyclic.

(P5) If v′ ∈ Vw and there is p(v, v′) in q where p is not simple, and v 6∈ Vw, then π(v′) = w or
π(v′) is a p-follower of w.

A forward-closed set of variables is a set that induces a maximal connected subquery of q|Vw , for
some such a Vw. We adorn this subquery with a set of transitive subroles of each p as in (P5).
This is reflected in the following definitions:

Definition 7.3.2 (f-subqueries) A set of variables V ⊆ VI(q) is forward-closed, if it satisfies
the following conditions:

(a) If p(v, v′) ∈ Atoms(q) and v ∈ V , then v′ ∈ V .

126

v4

A,CC
v1 v2 v3 v4

v7v6

p1

p2

t2 A,C

C

v2 v3 v4

p2 t2 A,C
v7v6

p2
C

F3 F4F2q = F F1

C

v5

v1 v2 v3 v4

v7v6

p2

B

A,C

Ct2

p1

t2 t1p2t1 p2

Figure 7.3: An example query and some of its f-subqueries

(b) if p(v1, v2) and p′(v′1, v2) are two atoms in Atoms(q) where p, p′ are simple, and v1 ∈ V , then
we also have v′1 ∈ V .

(c) The restriction of the query graph of q to variables in V is connected and acyclic, i.e., V
induces a connected acyclic subquery of q, denoted q|V .

The subquery q|V induced by V is called the forward-closed subquery of q w.r.t. V .
Given V ⊆ VI(q) and v′ ∈ V , let back(V, v′) = {p | p(v, v′) ∈ Atoms(q) ∧ v 6∈ V }. We call

v′ ∈ V open in V if back(V, v′) 6= ∅. If in addition back(V, v′) does not contain a simple role,
then v′ is free in V .

An R-adornment for a forward-closed subquery q|V is a mapping Σ that assigns to every free
variable v′ in V some set

Σ(v′) ⊆ {p′ ∈ NR(K) | p′ ⊑R p, p ∈ back(V, v′), trans(p′) ∈ R}

such that for each p ∈ back(V, v′), there is some p′ ∈ Σ(v′) with p′ ⊑R p.
A pair (V,Σ) of a forward-closed set of variables V ⊆ VI(q) and an R-adornment for q|V is

called a base for the forward-closed subquery of q w.r.t. R and V . In slight abuse of terminology,
we call (V,Σ) an f-subquery of q (w.r.t. R).

The set of f-subqueries of q w.r.t. R is denoted by F
R
q . Any set D ⊆ F

R
q of f-subqueries is

called a disjunctive f-subquery of q.

Example 7.3.3 We assume that in our knowledge base K trans(t1) is the only transitivity axiom,
and it contains a role inclusion axiom t1 ⊑ t2. For our examples, we consider the query

q = ∃v1, . . . , v7. C(v1) ∧ t1(v1, v2) ∧ p2(v2, v3) ∧ t2(v3, v4) ∧A(v4) ∧ C(v4)∧
p1(v1, v6) ∧B(v5) ∧ t2(v5, v6) ∧ p2(v6, v7) ∧ C(v7)

whose query graph, augmented with node labels {A ∈ NC | A(v) ∈ q} and edge labels {p ∈
NR | p(v, v

′) ∈ Atoms(q)}, is depicted in Figure 7.3. F = (VI(q), ∅) (i.e., the full q) is an
f-subquery. In an f-subquery that contains all variables except v5, the variable v6 is open (the
non-simple p1 is the only role in back(VI(q) \ {v5}, v6)), and therefore t1 ∈ Σ(v6) must hold;
F1 = (VI(q)\{v5}, {(v6, {t1})}) is such an f-subquery. Other f-subqueries with some free variable
are F2 = ({v2, v3, v5}, {(v2, {t1})}), F3 = ({v6, v7}, {(v6, {t1})}) and F4 = ({v4}, {(v4, {t1})}).
These f-subqueries are also depicted in Figure 7.3; only the (unadorned) query graph is shown,
using empty dots for the open variables.

Now we define a notion of prematch for an f-subquery (V,Σ) in a tree-shaped interpretation
I. Intuitively, it is a prematch for q|V in I that satisfies some additional ‘rootedness’ conditions:
open variables that are not free must be mapped at the root of I, and the match of each free
variable v must be reachable from the root via the roles in Σ(v).

127

Definition 7.3.4 (Rooted prematches) Given (V,Σ) ∈ F
R
q and a tree-shaped interpretation

I, a rooted prematch for (V,Σ) in I is a mapping π : V → ∆I such that:

(RP1) If v ∈ V and A(v) ∈ Atoms(q), then π(v) ∈ AI ;

(RP2) If {v, v′} ⊆ V and p(v, v′) ∈ Atoms(q), then π(v′) is a p-follower of π(v) in I;

(RP3) If v′ is open in V but not free, then π(v′) = root(I);

(RP4) If v′ is a free variable in V and p ∈ Σ(v′), then π(v′) is a p-follower of root(I).

We write I |= (V,Σ) if there exists a rooted prematch π for (V,Σ) in I. Furthermore, we
write I |=d (V,Σ) if there is such a rooted prematch π with ℓ(π(v′)) ≤ d for each v′ ∈ V , where,
for each w, ℓ(w) = |w′| for the unique w′ ∈ IN∗ such that w = root(I) · w′, i.e., the match is
within depth d in I.

Furthermore, given a disjunctive f-subquery D ⊆ F
R
q , we write I |= D (resp., I |=d D) if for

some (V,Σ) ∈ D we have I |= (V,Σ) (resp., I |=d (V,Σ)).

7.3.2 Subquery Entailment at Knots and Types

In the following, we provide a method to test existence of rooted matches in certain tree-shaped
interpretations that are constructed out of knots in a given ABoxTypes(K)-complete knot set K,
starting from a particular knot or type.

We start by formally defining these interpretations. To ease presentation, in what follows we
assume a fixed, arbitrary ABoxTypes(K)-complete knot set K, and let typesC(K) = {t | (t,S) ∈
K}.

Definition 7.3.5 (k-trees and t-trees) Let k ∈ K be a knot. A tree-shaped interpretation I
is a called a k-tree if if is induced by a function ξ : ∆I → K such that ξ(root(I)) = k and for
each element w ∈ ∆I the knot ξ(w) = (t,S) satisfies:

(a) for each concept name A, w ∈ AI iff A ∈ t, and

(b) there exists a bijection b : S → succ(w) such that for each s = (r, t′) in S and each role p,
we have (w, f(s)) ∈ pI iff p ∈ r.

Similarly, for a type t ∈ typesC(K), a tree-shaped interpretation I is a called a t-tree, if
there exists an inducing function ξ : ∆I → K such that ξ(root(I)) = (t,S) for some S, and for
each w ∈ ∆I the knot ξ(w) satisfies (a) and (b) above.

The set of all k-trees is denoted by T(k), and the set of all t-trees by T(t).

Note that for every knot tree I ∈ T(k), at the root of I we have a unique bijection b in (b),
and thus each node w at depth 1 (i.e., each child of the root) is uniquely identified by some child
s ∈ S of k = (t,S); for convenience, we will refer to w by bIs . We will also use Is to denote I|bIs
(the tree interpretation whose domain is the subtree of I rooted at bIs).

Definition 7.3.6 (Entailment at knots and types) Let D ⊆ F
R
q , k ∈ K and t ∈ typesC(K).

We write k |= D, if I |= D for each I ∈ T(k),
k |=d D, if I |=d D for each I ∈ T(k),
t |= D, if I |= D for each I ∈ T(t), and
t |=d D, if I |=d D for each I ∈ T(t).

128

We will use type-query and knot-query tables to store relevant pairs of types and disjunctive
f-subqueries, and pairs of knots and disjunctive f-subqueries, for which the entailment relation
above holds.

Definition 7.3.7 (kq-table and tq-table) A knot-query table (kq-table) (for K and q) is an

arbitrary relation KQ ⊆ K× 2F
R
q . We call KQ (d-)complete if

(i) (k,D) ∈ KQ implies k |=(d) D, and
(ii) (k,D) ∈ KQ whenever k |=(d) D and there is no D′ ⊂ D with k |=(d) D′.

Similarly, a type-query table (tq-table) (for K and q) is an arbitrary relation TQ ⊆ typesC(K)×

2F
R
q , and we call TQ (d-)complete if
(i) (t,D) ∈ TQ implies t |=(d) D, and
(ii) (t,D) ∈ TQ whenever t |=(d) D and there is no D′ ⊂ D with t |=(d) D′.

In the remainder of this section, we show how to compute d-complete kq-tables and d-
complete tq-tables. These tables will allow us to finally obtain a complete tq-table, which we
use later to answer queries over the full knowledge base K. The basic strategy is as follows:

(I) we show how to compute a d-complete tq-table TQd from a given d-complete kq-table
KQd, and

(II) we show how to compute a d+1-complete kq-table KQd+1 from a given d-complete tq-table
TQd.

Provided that we have a 0-complete tq-table TQ0, we can compute d-complete tq-tables and
kq-tables for any d ∈ IN by iteratively applying the two steps above. It will be easy to see that
in this way we can obtain a compete tq-table.

Furthermore, constructing an initial 0-complete tq-table TQ0 is easy. It contains pairs of a
type t and an f-subquery F with only one variable v, such that t contains all concepts required
to match v. That is, to build TQ0 we simply take each pair (t, F) where t ∈ typesC(K) and
F = ({v},Σ) ∈ F

R
q , such that v ∈ VI(q) has no successors in q (i.e., there are no atoms p(v, v′)

in q), A ∈ t for each A(v) in q, and if v is free in V , then Σ assigns to v the maximal set of roles
that complies with Definition 7.3.2. This procedure is shown in Figure 7.4.

Example 7.3.8 The following table TQ0 is an example of a 0-complete tq-table for the query
q given in Example 7.3.3 and the set of knots given in Example 7.2.4, where as above F4 =
({v4}, {(v4, {T})}) and F5 = ({v7}, ∅). Note that in this case, it is enough to consider singleton
disjunctive f -subqueries.

Type disjunctive f-subquery

tC {F5}
tA,C {F5}
tA,C {F4}
tB,C {F5}
tA,B,C {F5}
tA,B,C {F4}

The central notion for the computation is that of minimal hitting sets.

Definition 7.3.9 (Minimal hitting sets and k/t-hits) Let k ∈ K. Then a set h ⊆ F
R
q is

called a k-hit of a kq-table KQ, if h is a ⊆-minimal set such that h∩D 6= ∅ for each (k′,D) ∈ KQ

with k
′ = k.

Analogously, let t ∈ typesC(K). Then h ⊆ F
R
q is called a t-hit of a tq-table TQ, if h is a

⊆-minimal set such that h ∩D 6= ∅ for each (t′,D) ∈ TQ with t
′ = t.

129

Algorithm 4: TQ_Zero

Output: a 0-complete tq-table TQ0

begin
R := ∅;
forall t ∈ typesC(K) do

forall v ∈ VI(q) do
if {p | p(v, v′) ∈ Atoms(q)} = ∅ and {A | A(v) ∈ Atoms(q)} ⊆ t then

if v is free in {v} then
Σ := {p′ ∈ NR(K) | p′ ⊑R p, p ∈ back({v}, v), trans(p′) ∈ R};

else
Σ := ∅;

R := R ∪ ({v}, {v 7→ Σ}) ;

return R

end

Figure 7.4: Constructing a 0-complete tq-table (for the knot set K and the query q).

The following property of minimal hitting sets is important.

Lemma 7.3.10 The following hold:

1. If h is a k-hit of a d-complete kq-table KQ, then there exists some I ∈ T(k) such that
I |=d (V,Σ) iff (V,Σ) ∈ h.

2. If h is a t-hit of a d-complete tq-table TQ, then there exists some I ∈ T(t) such that
I |=d (V,Σ) iff (V,Σ) ∈ h.

Proof. We only consider the case of k-hits (item 1), the proof for t-hits (item 2) is analogous.
Consider a k-hit h as above and consider D = F

R
q \h. Since D∩h = ∅, we have (k,D) 6∈ KQ.

Hence, k 6|=d D, i.e., there is some I ∈ T(k) such that I 6|=d F for each F ∈ D. To prove the
claim it suffices to show that I |=d F for all F ∈ h.

Consider an arbitrary F ∈ h. As easily seen, by minimality of h there exists some (k,DF) ∈
KQ such that F ∈ DF and |DF ∩ h| = 1 (if not, h \ {F} would be a smaller hitting set). As
DF \ {F} ⊆ D, we have that I 6|=d F ′ for each F ′ ∈ DF \ {F} As I |=d DF , it follows that
I |=d F . This proves the result.

Based on this lemma, we can show the following theorem that allows us to deal with step
(I) above, viz. computing a d-complete tq-table TQd from a given d-complete kq-table KQd.

Theorem 7.3.11 Let t ∈ typesC(K), let D ⊆ F
R
q be a disjunctive f-subquery, and let KQ be a

d-complete kq-table. Then t |=d D iff for each knot k ∈ K with root t and each k-hit h of KQ,
we have h ∩D 6= ∅.

Proof. (→) Suppose t |=d D but there exists a knot k ∈ K with root t and a k-hit h of KQ

such that h ∩D = ∅. By Lemma 7.3.10 above, some I ∈ T(k) exists such that I 6|=d F for each
F ∈ F

R
q \ h, hence I 6|=d F for each F ∈ D. This contradicts t |=d D.

(←) Suppose t 6|=d D but for each knot k ∈ K with root t and each k-hit h of KQ, we have
h ∩ D 6= ∅. As t 6|=d D, there exists some I ∈ T(t) such that I 6|=d F for each F ∈ D. Let

130

Algorithm 5: TQ_from_KQ

Input: a d-complete kq-table KQ

Output: a d-complete tq-table TQ

begin
R := ∅;
forall t ∈ typesC(K) do

Compute the set H =
{

h ⊆ F
R
q | k ∈ K has root t and h is a k-hit of KQ

}

;
forall D ⊆ F

R
q do

if for each h ∈ H we have h ∩D 6= ∅ then
R := R ∪ {(t,D)};

return R

end

Figure 7.5: From knot-query tables to type-query tables (for the knot set K and the query q).

k be the knot at the root of I and consider the collection D′′ = {D′ \ D | (k,D′) ∈ KQ}. A
simple consequence of the d-completeness of KQ is that ∅ 6∈ D′′. Hence, some minimal hitting
set of D′′ exist. Take any such minimal hitting set h. Clearly, h∩D = ∅ and h is a k-hit of KQ.
Contradiction.

Using the above Theorem 7.3.11, we can compute a d-complete tq-table TQd out of a d-
complete kq-table KQd. The procedure which exploits the theorem is shown in Figure 7.5.

We now show how to obtain KQd+1 from TQd. Intuitively, to make the step from d to d+ 1,
we must verify how each knot (t,S) in K can ‘extend’ the mappings that exist at the children in
S, or more precisely, the mappings that exist in the ts-trees of each (rs, ts) ∈ S. This extension
relies on the mappings for each ts-tree captured by the minimal hitting sets of TQd, and is
formalized in the following notion.

Definition 7.3.12 (assignment for k, D-fulfillment) Let k = (t,S) ∈ K and D ⊆ F
R
q . An

(f-subquery) assignment for k is a function g : S → 2F
R
q . We say that g is D-fulfilling, if there

exist some F = (V,Σ) ∈ D and a mapping φ : V → {t} ∪ S satisfying the following conditions:

(M1) For each v ∈ V with φ(v) = t, we have {A | A(v) ∈ Atoms(q)} ⊆ t.

(M2) If p(v, v′) ∈ Atoms(q) is an atom with φ(v) = t, then φ(v′) ∈ S.

(M3) If v′ is open but not free in V , then φ(v′) = t.

(M4) For each s = (rs, ts) in S, there exist F i
s = (V i

s ,Σ
i
s) ∈ g(s), 1 ≤ i ≤ m, such that:

(a) {v ∈ V | φ(v) = s} =
⋃

1≤i≤m(V i
s),

(b) for every variable v′ that is is free in V , v′ ∈ V i
s implies:

(i) Σ(v′) ⊆ rs, and
(ii) Σ(v′) ⊆ Σi

s(v
′) if v′ is free in V i

s .

(c) for each variable v′ that is open in V i
s , and for each p ∈ back(V i

s , v
′), there is some

p′ ⊑R p such that:

(i) p′ ∈ rs, and

131

(ii) p′ ∈ Σi
s(v

′) if v′ is free in V i
s .

Note that if g is D-fulfilling, then every assignment g′ that includes g, i.e., with g′(s) ⊇ g(s)
for all s ∈ S, is D′-fulfilling for every D′ ⊇ D.

Roughly, such an D-fulfilling assignment g witnesses the existence of a rooted match for D
in an arbitrary k-tree, assuming that each f-subquery F i

s assigned to a child s has a match πs

in the respective ts-tree. Note that, by (M4.a), for each v ∈ V either φ(v) = t, or v ∈ V i
s for

some i and some s. Hence, φ shows that in every k-tree I we can potentially find a rooted
match π that has π(v) for each v with φ(v) = t, and for every other variable in V , π coincides
with the respective πs. The conditions (M1), (M2) and (M3) ensure the satisfaction of (RP1),
(RP2), and (RP3), respectively, while items (b) and (c) in the more elaborate (M4) are needed
to ensure (RP4). This will be made more precise in the proof of the next theorem.

Example 7.3.13 For the knot k1 = (tB,C , {s1, s2}) in Figure 7.1, where s1 = ({T}, tA) and
s2 = ({P, T}, tA,B,C)}), each assignment g with g(s2) = {F4} is {F6}-fulfilling, where as above
F4 = ({v4}, {(v4, {T})}) and F6 = ({v3, v4}, ∅). This is witnessed by the mapping φ(v3) = tB,C

and φ(v4) = s2, which satisfies the conditions M1 to M4 (for M4, consider {(v1
s2
,Σ1

s2
)} ⊆ g(s2)

where (v1
s2
,Σ1

s2
) = F4; y = v4 is not free in {v3, v4}, but in V 1

s2
= {v4}). The same assignment

is also {F4}-fulfilling; to see this, simply set φ(v4) = s2.

For a knot k = (t,S) from K, the existence of a D-fulfilling assignment g ensures the existence
of a rooted prematch for D within depth d+ 1 in an arbitrary I ∈ T(k), provided that, for each
s ∈ S, the f-subqueries in g(s) have rooted prematches in the subtree Is of I rooted at s.
Conversely, if I |=d+1 D for some I, the assignment g such that, for each s ∈ S, g(s) is the set
of all f-subqueries that are entailed at Is, is D-fulfilling. More precisely, we have:

Lemma 7.3.14 Let k = (t,S) be a knot in K and let D ⊆ F
R
q . Furthermore, let I ∈ T(k) and

let g be an assignment such that g(s) = {F ∈ F
R
q | Is |=

d F} for all s ∈ S. Then I |=d+1 D iff
g is D-fulfilling.

Proof. First we show (←). If g is D-fulfilling, by assumption there is some F0 = (V0,Σ0) ∈ D
and a mapping φ that satisfy M1 to M4 above. In particular, for each s ∈ S, there exist
F i

s = (V i
s ,Σ

i
s) ∈ g(s), 1 ≤ i ≤ m, as in M4 above. For each of these F i

s , Is |=
d F i

s holds, so there
is a rooted prematch πi

s for F i
s in Is.

We construct a rooted prematch for D in I, by combining φ and the different πi
s. The new

mapping π : V0 → ∆I is defined as follows:

π(v) =

{

root(I) if φ(v) = t0,

bIs · π
i
s(v) if v ∈ V i

s for some s and i

(recall that bIs is the unique node of I at depth 1 corresponding to s). Since {v ∈ V | φ(v) = s} =
⋃

1≤i≤m(V i
s), π is well-defined and total. It only remains to show that π is a rooted prematch

for F0 in I.

1. Consider any A(v) ∈ Atoms(q). If v ∈ V i
s for some s and i, then πi

s(v) ∈ A
I because πi

s

is a rooted pre-match, and hence π(v) ∈ AI . Otherwise, φ(v) = t0 and then M1 implies
A ∈ r and root(I) ∈ AI . Hence RP1 holds.

2. To show RP2, consider a pair {v, v′} ⊆ V0 such that p(v, v′) ∈ Atoms(q). The following
cases are possible:

132

• v ∈ V i
s for some s. Then v′ ∈ V i

s (due to the closure properties of the set V i
s). Since

πi
s is a rooted prematch, πi

s(v
′) is a p-follower of πi

s(v) in Is, and hence π(v′) is a
p-follower of π(v) in I.

• φ(v) = t0. Then by M2 we have φ(v′) = s for some s = (rs, ts) ∈ S. Also, by M4,
v′ ∈ V i

s for some i and, as v 6∈ V i
s , we have p ∈ back(V i

s , v
′), and by the last item of

M4, there is some p′ ∈ rs such that p′ ⊑R p and, additionally, p′ ∈ Σi
s(v

′) whenever
v′ is free in V i

s . Since πi is a rooted prematch for F i
s in Is, it satisfies RP3 and RP4.

This implies that either πi
s(v

′) is the root of Is, or v′ is free in V i
s . In the former case,

π(v′) is a p-follower of π(v) as desired. In the latter case, p′ ∈ Σi
s(v

′) and πi
s(v

′) is a
p′-follower of the root of Is by RP4, which also implies that π(v′) is a p-follower of
π(v).

3. RP3 follows directly from M3.

4. To show RP4, consider any v′ that is free in V0 and an arbitrary p ∈ Σ(v′). There are two
cases:

• φ(v′) = t0. Then π(v′) = root(I) and RP4 holds.

• v′ ∈ V i
s for some s and i. Then by the second item of M4, we have p ∈ rs and either

(i) v′ is open but not free in V i
s , or (ii) p ∈ Σi

s(v
′). Since πi

s is a rooted prematch
for F i

s , it satisfies Definition 7.3.4. In case (i), RP3 implies that πi
s(v

′) is the root of
Is, and hence a p-follower of root(I) in I as desired. In case (ii), RP4 implies that
πi

s(v
′) is either the root of Is as above, or a p-follower of it. As p ∈ rs, again in both

cases πi
s(v

′) is a p-follower of root(I) in I as desired.

This shows that π is a rooted prematch for F0 and hence I |= D. Furthermore, since for
each v ∈ V0 the length of π(v) = 0 if φ(v) = t0 and π(v) = πs(v) + 1 otherwise. As the length
of πs(v) is bounded by d, we have I |=d+1 D.

Now, to show (→), we assume I |=d+1 D, and consider an assignment g with F ∈ g(s) for
each F ∈ F

R
q and each s ∈ S such that Is |=d (V,Σ). To see that g is D-fulfilling, we start by

observing that, by assumption, there is an F = (V,Σ) ∈ D and a rooted prematch π for F in I.
For each s ∈ S, let Vs contain all variables v ∈ V such that π(v) is in the tree Is. We partition
Vs into sets of variables V 1

s , . . . , V
m
s that are connected in q. We define a function Σi

s that maps
each free v′ ∈ V i

s to a set of transitive roles as follows:

Σi
s(v

′) = {p′ ∈ NR(K) | p′ ⊑R p, p ∈ back(V i
s , v

′), trans(p′) ∈ R,
and π(v′) is a p′-follower of root(Is)}

Clearly, each V i
s is closed under the rules (a.i) and (a.ii) of Definition 7.3.2. Hence, to see that

each (V i
s ,Σ

i
s) is an f-subquery, it suffices to observe that, since π is a rooted prematch, π(v′) is

a p-follower of root(I) for each p ∈ back(V i
s , v

′), and hence condition (b) also holds.
It is also easy to see that, for each s and each i, Is |=d (V i

s ,Σ
i
s) (simply restrict π to the

corresponding variables to obtain a rooted prematch in Is). So, by our assumption about g,
(V i

s ,Σ
i
s) ∈ g(s).

Now we can define a mapping φ : V → {t0}∪S that witnesses that g is D-fulfilling by setting
φ(v) = t0 if π(v) = root(I), and φ(v) = s if v ∈ Vs. It is straightforward to verify that φ satisfies
M1 to M3 in Definition 7.3.12. For M4, we can use for each s ∈ S the F i

s = (V i
s ,Σ

i
s), 1 ≤ i ≤ m

defined above, since they are in g(s). Then the first item is trivial; the other two can be verified
as follows:

133

• Consider any v′ ∈ V i
s that is free in V , and any p ∈ Σ(v′). Since π is a rooted prematch

and π(v′) 6= root(I), by RP4 π(v′) is a p-follower of root(I). Hence, if s = (rs, ts), then
p ∈ rs and either π(v′) = bIs or π(v′) is a p-follower of bIs . If v′ is also free in V i

s then in
both cases p ∈ Σi

s(v
′) by construction of Σi

s.

• Consider any v′ ∈ V i
s that is open in V i

s , and any p ∈ back(V i
s , v

′) such that p(v, v′) ∈
Atoms(q). Since π is a rooted prematch and x 6∈ Vs, either (a) π(v) = root(I) or (b)
x 6∈ V . In case (a), by RP2, π(v′) is a p′-follower of root(I). In case (b), v′ is open in
V and, moreover, free in V (as v′ being open but not free would imply π(v′) = root(I),
contradicting v′ ∈ Vs). Hence, there is some p′ ⊑R p with p′ ∈ Σ(v′) and, by RP4, we
also have that π(v′) is a p′-follower of root(I). In both cases (a) and (b), it thus follows
p′ ∈ rs, where s = (rs, ts). It also follows that either π(v′) = bIs , or π(v′) is a p′-follower
of bIs and p′ is transitive. If v′ is free in V i

s , then by construction in both cases p′ ∈ Σi
s.

The step from TQd to KQd+1 computes the f-subqueries D for which the t-hits of TQd are
D-fulfilling.

Theorem 7.3.15 Suppose TQ is a d-complete tq-table, D ⊆ F
R
q is a disjunctive f-subquery, and

k = (t,S) is a knot in K. Then k |=d+1 D iff every assignment g that maps each (rs, ts) ∈ S to
a ts-hit of TQ is D-fulfilling.

Proof. Let G denote the set of all assignments for k such that, for each s = (rs, ts) ∈ S,
g(s) is a ts-hit of TQ,

(→) Suppose k |=d+1 D. and consider an arbitrary g ∈ G. By Lemma 7.3.10, there is a tree
Is ∈ T(ts) that satisfies exactly the f-subqueries in g(s). Let I ∈ T(k) be the tree that coincides
with all these Is. As I |=d+1 D, then by Lemma 7.3.14, g is D-fulfilling.

(←). Now assume that each g ∈ G is D-fulfilling, and consider an arbitrary I ∈ T(k). For
each s = (rs, ts) ∈ S, let fq(s) be the set of all f-subqueries F such that Is |=d F , and let g′ be
the assignment such that g′(s) = fq(s) for all s ∈ S. Then, fq(s) ∩ D 6= ∅ must hold for each
(t,D) ∈ TQ such that t = ts; hence, there exists some ts-hit hs of TQ such that hs ⊆ fq(s). By
assumption, there exists some g ∈ G such that g(s) = hs for all s ∈ S. As g is D-fulfilling and g′

includes g, i.e., g′(s) ⊇ g(s) for all s, also g′ is D-fulfilling. Thus by Lemma 7.3.14, I |=d+1 D.
Hence, k |=d+1 D.

Example 7.3.16 Reconsider the knot k1 = (tB,C , {s1, s2}) in Figure 7.1, where s1 = ({t1}, tA)
and s2 = ({p1, t1}, tA,B,C)}), and the tq-table TQ0 in Example 7.3.8. As for s1, the single
tA-hit of TQ0 is ∅ (by minimality, as there is no entry for tA in TQ0), and for s2, the single
tA,B,C-hit of TQ0 is {F4, F5}. Hence, the set of assignments G consists of g where g(s1) = ∅
and g(s2) = {F4, F5}. Since we know from Example 7.3.13 that g is {F4}-fulfilling and {F6}-
fulfilling, it follows that k1 |=

1 D for every disjunctive f-subquery D that includes either F4 or
F6 (or both); in particular, k1 |=

1 {F4} and k1 |=
1 {F6}, and thus (k1, {F4}) and (k1, {F6}) are

included in KQ1.
So far, we have only encountered singleton disjunctive f-subqueries in tq- and kq-tables, but

not always complete such tables can be derived where only singleton f-subqueries occur. For
example, if we continue the computation above, we would eventually obtain a 2-complete tq-
table TQ2 such that each of its tABC-hits contains either F1 or F2, and one can infer that
k1 |=

3 {F1, F2} although neither k1 |=
3 {F1} nor k1 |=

3 {F2} holds.

134

Algorithm 6: KQ_from_TQ

Input: a d-complete tq-table TQ

Output: a d+1–complete kq-table KQ

begin
R := ∅;
forall k ∈ K do

G := ∅;
Add to G each g : S→ 2F

R
q such that for each (rs, ts) ∈ S, g((rs, ts)) is a ts-hit of

TQ;
forall D ⊆ F

R
q do

if each g ∈ G is D-fulfilling then
R := R ∪ {(k,D)};

return R

end

Figure 7.6: From type-query tables to knot-query tables (for the knot set K and the query q).

The algorithm based on Theorem 7.3.15, compute_TQ, is shown in Figure 7.6. Using the
algorithms presented so far, we can compute a d-complete tq-table TQd for any d > 0. Further-
more, as (i) the entailment relation t |= D materializes within bounded depth d, and (ii) t |=d D
implies t |=d+1 D, the computation reaches a fixed-point after finitely many steps and we can ob-
tain one tq-table TQ that is complete for each d ∈ IN. The complexity analysis of our algorithm
in Section 7.4 will actually reveal that the number of steps is double-exponentially bounded in
the size of the query and the knowledge.

Proposition 7.3.17 For each type t such that t |= D, there exists some d ∈ IN such that
t |=d D.

Proof. To give a bound d, we construct a tree of interpretations which captures parts of trees
in T(t) that are relevant for the mappings of D. For an integer n ≥ 0, let I↑n be the restriction
of a tree-shaped I up to depth n. We define a tree-shaped graph T = (V,E) as follows:

• the vertex set is V = {I↑n | I ∈ T(t) ∧ n ≥ 0}, and

• the child relation is E = {〈I↑n,I↑n+1〉 | I ∈ T(t) ∧ n ≥ 0}.

Intuitively, each pair in E represents an expansion of the levels 0, 1,. . . , n − 1 of I by another
level using the knots in K. Hence each path in T corresponds to an interpretation in T(t).
Observe that T is finitely branching. Consider now the set P of all nodes I↑n ∈ V such that
I↑n |= D and I↑n−1 6|= D (the latter in case where n > 0). As t |= D, by construction of T each
path in it contains some node from P . Let T ′ result from T by removing all successors of nodes
in P . Since T ′ does not have infinite branches and is finitely branching, by König’s Lemma T ′

is finite. Hence for each I ∈ T(t) the match for D occurs within finite depth d, where d is the
length of the longest branch in T ′.

Corollary 7.3.18 For K and q, there exists d ∈ IN such that for every type t ∈ typesC(K) and
every D ⊆ F

R
q , t |= D iff t |=d D. Furthermore, if a tq-table TQ is complete, then it is d-complete

for some finite d ∈ IN.

135

Algorithm 7: compute_TQ

Input: a knot set K and a CQ q
Output: a complete tq-table TQ

begin

TQ0 := TQ_Zero;
d = 0;
repeat

KQd+1 := KQ_from_TQ(TQd);
TQd+1 := TQ_from_KQ(KQd+1);
d := d+ 1;

until TQd−1 6= TQd ;
return TQd

end

Figure 7.7: Computing a complete type-query table (for the knot set K and the query q).

7.3.3 Query Entailment over full KBs

We now show how to use the knot set K and a complete tq-table TQ for K and the query
q to answer q over K = 〈A,T ,R〉. The basic idea is to ‘compile’ A, K and TQ into a set
exp(A,K,TQ) of ABoxes A′ that we call expansions of A, in such a way that

(∗) a tuple ~a is an answer for q in K iff it is an answer for q in 〈A′, ∅, ∅〉 for every expansion
A′ of A.

We can then answer q by evaluating it over the set of expansions A′, which are small and rather
simple structures.

Notation 7.3.19 (Query answers over an ABox) For readability, in what follows, we use
ans(q,A) to denote the set ans(q, 〈A, ∅, ∅〉), that is

ans(q,A) = {~a = a1, . . . , an | I |= q(~a) for each model I of A}.

It is easy to see that deciding ans(q,A) amounts to deciding whether there is a mapping
ψ : VI(q)→ NI(A) such that
• ψ(xi) = ai for each answer variable xi,
• {A | A(v) ∈ Atoms(q)} ⊆ {A | A(ψ(v)) ∈ A} for each A(v) ∈ Atoms(q), and
• {p | p(v, v′) ∈ Atoms(q)} ⊆ {p | p(ψ(v), ψ(v′)) ∈ A} for each p(v, v′) ∈ Atoms(q).

That is, query answering over ABoxes is just like answering q over a regular relational
database, and can be efficiently done using existing technology. We will see in the next section
that one can even go further: evaluating answering q over all the expansions A′ can be reduced
to querying one single Datalog program.

Let us see how to obtain a set of expansions that satisfy (∗). Intuitively, each expansion A′

is obtained by adding to A: (1) an ABox completion θ, (2) a knot ka from K for each individual
a, and (3) an f-subquery assignment gk(a) for each knot ka. The idea is to have a one-to-one
correspondence between the query matches in models of A′, and the query prematches in all the
forest bases of K that ‘coincide’ with A′, that is, in each forest base I ∈ F(θ,K) such that (i)
the subtree of depth at most one rooted at each individual a coincides with ka, and (ii) for each
level one node bIs (where s is a child of ka), the subtree Is (with root bIs) has a rooted match

136

exactly for the subqueries assigned by gk(a). We will show that (∗) is guaranteed if we generate
an expansion for each non-conflicting combination of (i)–(iii) above.

To generate each expansion A′, we proceed in three steps:

(1) First we extend A with the completion θ. In this step, we ensure that the concepts and roles
satisfied by the individuals coincide with θ, by adding a concept membership assertion A(a)
for each concept A in θ(a), and a role membership assertion p(a, b) for each role p in θ(a, b),
for all the individuals a, b. Then each forest base I that is a model of the extended ABox
must coincide with θ in its initial part, that is, it must have {C ∈ ClC(K) | aI ∈ CI} = θ(a)
and {p ∈ NR(K) | (aI , bI) ∈ CI} = θ(a, b) for all individuals a, b.

(2) Then, for each individual a, we ‘freeze’ the knot ka and add it to A as a set of assertions,
using a fresh variable as for each child s of ka. As a result we obtain an ABox Aa such
that a forest base I is a model of Aa iff I ∈ F(θ,K), and for each a, the knot ξ(a) in
Definition 7.2.5 coincides with ka.

(3) Finally, for each child s = (ts, rs) of ka, and each f-subquery F = (V,Σ) ∈ gk(a)(s), we
also ‘freeze’ F and state it as a set of ABox assertions, using a fresh variable as,F,v for each
v ∈ V . If gk(a) is such that ts |= F for each F ∈ gk(a), then we know that F has a rooted
prematch in every subtree I|as

of a forest base I. So we enforce in A′ the existence of a
match πs,F for F rooted at as, exactly for the F in gk(a). This will ensure (∗).

To this end we add, for all atoms A(v) and p(v, v′) in Atoms(q|V), assertions

• A(as) for each atom A(v) where if v is open and not free in V ,
• A(as,F,v) otherwise,
• p(as, as,F,v′) if v is open and not free in V , and v′ closed, and
• p(as,F,v, as,F,v′) otherwise.

Furthermore, we add an assertion p(as, as,F,v′) for each (v, p) ∈ Σ.

Formally, ABox expansions are defined as follows.

Definition 7.3.20 (ABox expansions) Let TQ be a complete tq-table, let θ be a completion
for K, and let k : NI(A) → K be a function that assigns a knot k(a) = (ta,Sa) with ta = θ(a)
to each individual a. We define S(k(a)) = {s ∈ Sa | k(a) = (ta,Sa)}. Furthermore, let Gk be a
function that maps each individual a to an assignment Gk(a) for k(a) such that Gk(a)(s) is a
t-hit of TQ for each s = (r, t) ∈ S(k(a)).

Then the following ABox abox(A, θ, k,Gk) is called a (K,TQ)-expansion of A:

1) For the completion θ,

abox(θ) =
⋃

a∈NI(A){A(a) | A ∈ θ(a) ∩ NC(K)} ∪
⋃

a,b∈NI(A){p(a, b) | p ∈ θ(a, b)}.

2) Let k(a) = (ta,Sa), and for each s ∈ Sa, let as be a fresh individual. Then

abox(k(a)) = {A(a) | A ∈ ta ∩ NC(K)} ∪
⋃

s=(rs,ts)∈Sa
{p(a, as) | p ∈ rs} ∪ {A(as) | A ∈ ts ∩ NC(K)}.

3) For each s ∈ S(k(a)), F = (V, σ) ∈ Gk(a)(s), and v ∈ V , let as,F,v be a fresh individual in
NI. Then

137

abox(s) =
⋃

F∈Gk(a)(s) {A(as) | A(v) ∈ Atoms(q), v ∈ onf (V)} ∪

{A(as,F,v) | A(v) ∈ Atoms(q), v ∈ V \ onf (V)} ∪
{p(as, as,F,v) | p(v, v

′) ∈ Atoms(q), v ∈ onf (V), v′ ∈ V \ onf (V)} ∪
{p(as,F,v, as,F,v) | p(v, v

′) ∈ Atoms(q), {v, v′} ⊆ V \ onf (V)} ∪
{p(as, as,F,v) | (v, p) ∈ Σ},

where onf (V) ⊆ o(V) denotes the variables that are open and not free in V .

4) for each a ∈ NI(A),

abox(a, k(a), Gk(a)) = abox(k(a)) ∪
⋃

s∈S(a) abox(s)

5) Let A′ = A ∪ abox(θ) ∪
⋃

a∈NI(A) abox(a, k(a), Gk(a)) be the union of all the constructed
ABoxes.

Then abox(A, θ, k,G) is obtained by closing A′ under the following rules:

• if trans(p) ∈ R, p(a, b) ∈ A′ and p(b, c) ∈ A′, then p(a, c) ∈ A′, and
• if p′ ⊑R p and p′(a, b) ∈ A′ then p(a, b) ∈ A′.

We denote with exp(A,K,TQ) the set of all (K,TQ)-expansions of A.

Now we can formally state the main result of this section, which shows that we can reduce
CQ answering over K to CQ answering over expanded ABoxes (i.e., relational databases).

Theorem 7.3.21 (Main result) Let TQ be a complete tq-table for K and q. Then

ans(q,K) =
⋂

A′∈exp(A,K,TQ)

ans(q,A′).

Proof. (⊆) To show that ans(q,K) ⊆
⋂

A′∈exp(A,K,TQ) ans(q,A′), suppose ~a = a1, . . . , an ∈

ans(q,K), and consider an arbitrary A′ = abox(A, θ, k,Gk) ∈ exp(A,K,TQ). Let I be a forest
base such that the closure of I is a model of A′.

For each individual a ∈ NI(A) and each as = (rs, ts) ∈ S(k(a)), Gk(a)(as) is a ts-hit of TQ.
Moreover, TQ is complete. Hence, by Lemma 7.3.10 and Corollary 7.3.18, there exists some
Ias ∈ T(ts) such that {F | Ias |= F} = Gk(a)(s). Let ξas : ∆I → K be a function inducing Ias .

We consider a forest base model I ′ ∈ F(θ,K) such that:

(1) The domain of I ′ is

∆I′
= {1, . . . , |NI(A)|} ∪

⋃

a∈NI(A),as∈S(k(a))

{τ(a) · τa(as) · w | root(Ias) · w ∈ ∆Ias}

where τ : NI(A)→ {1, . . . , |NI(A)|} and τa : S(k(a))→ {1, . . . , |S(k(a))|} for each a ∈ NI(A),
are arbitrary bijections.

That is, ∆I′
simply extends the union of all ∆Ias with the roots {1, . . . , |NI(A)|} that are

the interpretation of the individuals, renaming nodes accordingly to ensure that ∆I′
is a

forest.

(2) I ′ is induced by a function ξ such that:

- for each individual a ∈ NI(A), ξ(aI
′
) = k(a), and

138

- for every other node τ(a) · τa(as) · w ∈ ∆I′
, ξ(τ(a) · τa(as) · w) = ξas(root(Ias) · w).

That is, each individual a instantiates the knot k(a), and the tree rooted at child τa(as) of
each τ(a) is an isomorphic copy of the interpretation Ias .

As I ′ ∈ F(θ,K), by Lemma 7.2.6 I ′ |= K, and as ~a = a1, . . . , an ∈ ans(q,K) by assumption,
there is a prematch π′ for q in I ′ such that π′(xi) = ai for each for each 0 ≤ i ≤ n.

We use this prematch π′ to show that a match π for q in I exists. First we define, for each
a ∈ NI(A) and each as ∈ S(k(a)), a set F

R
q (as) of f-queries F = (V,ΣV) obtained as follows.

- V is the set of variables of some maximal connected subquery of q|V (as), where V (as) = {v ∈
VI(q) | π′(v) = τ(a) · τa(as) · w for some w ∈ IN∗}.

- ΣV = {(v, p) ∈ V × NR(K) | v is open in V (as), p ∈ back(V, v), p′ ⊑R p, trans(p′) ∈ R and
π′(v) is a p′-follower of τ(a) · τa(as)}.

For each variable v ∈ VI(q), either π′(v) = aI
′
for some a ∈ NI(A), or v ∈ V for one of these F .

Hence we can define a binding π for q as follows:

π(v) =

aI if π′(v) = τ(a) for some a ∈ NI(A),

as
I if π′(v) = τa(as) for some a ∈ NI(A) and some as ∈ S(k(a)),

as,F,v
I if π′(v) = τa(as) · w for some w ∈ IN∗, w 6= ε and,

v ∈ V for some F = (V,Σ) ∈ F
R
q (as).

For each such F , the restriction of π′ to the variables in V is a rooted match for F . Hence
I ′s |= F , which implies F ∈ Gk(a)(s). Hence it is not hard to verify that π(v′) is a p-follower of
π(v) for each p(v, v′) ∈ Atoms(q). Since A′ is closed under transitivity and role inclusions, we
get (π(v), π(v′)) ∈ pI . As π(v) ∈ AI for each A(v) ∈ Atoms(q), π is a match for q in I. Further,
π does not modify the matches to individuals from π, and thus preserves query answers. That
is, since each answer variable xi has π′(xi) = ai

I′
for some individual ai, then π(xi) = ai

I . This
shows that I |= q(~a) and, as A′ and I were selected arbitrarily, it follows that ~a ∈ ans(q,A′) for
every expansion A′ ∈ exp(A,K,TQ).

(⊇) To show the other direction, assume that ~a ∈ ans(q,A′) for each A′ ∈ exp(A,K,TQ).
Let I ∈ FK(K). By the ABoxTypes(K)-completeness of K, we have I ∈ F(θ,K), i.e., I is induced
by θ and K, for some ABox completion θ for K, and there is some function ξ that induces I. For
each individual a ∈ NI(A), let k(a) = ξ(aI) = (ta,Sa). Let S(k(a)) = {s ∈ Sa | k(a) = (ta,Sa)}
for each a, and let G′

k be a function that maps each individual a to an assignment G′
k(a) for

k(a) such that, for each s = (rs, ts) ∈ S(k(a)), G′
k(a)(s) is the set of all f-subqueries that have

a rooted prematch in Is. As ts ∈ T(ts), by completeness of TQ there exists some ts-hit h of TQ

such that h ⊆ G′
k(a)(s). Thus we can define a function Gk that also maps each individual a to an

assignment G′
k(a) for k(a), such that for each s = (rs, ts) ∈ S(k(a)), Gk(a)(s) ⊆ G′

k(a)(s) and
Gk(a)(s) is a ts-hit of TQ. Now consider an expansion A′ = abox(A, θ, k,Gk) ∈ exp(A,K,TQ),
and a model I ′ of A′. As ~a ∈ ans(q,A′), there exists a prematch π′ for q in I ′ such that
π′(xi) = ai

I′
for each 0 ≤ i ≤ n. For each v ∈ VI(q) such that π′(v) 6= aI

′
for every a ∈ NI(A),

there is some F = (V,Σ) ∈ F
R
q such that v ∈ V and I ′ |= F . By construction of A′, for each such

F we have F ∈ Gk(a)(s) for some a ∈ NI(A) and some s ∈ S(k(a)). As Gk(a)(s) ⊆ G′
k(a)(s),

we have Is |= F , that is, there is a rooted match πs for F in Is. By taking the union of all these
π(s) and setting π(v) = aI whenever π′(v) = aI

′
for some individual a, we obtain a prematch

for q in I. As the prematch π preserves the bindings of answer variables to individuals, we have
π(xi) = ai

I for each 0 ≤ i ≤ n and I |= q(~a) as desired.

139

Algorithm 8: computeAnswers

Input: KB K = 〈A,T ,R〉, CQ q
Output: ans(q,K)
begin

Compute a ABoxTypes(K)-complete knot set K for T ;
Compute a complete tq-table TQ for q from K;
Compute the set exp(A,K,TQ) of (K,TQ)-expansions of the ABox A;
Let Ans :=

⋂

A′∈exp(A,K,TQ) ans(q,A′);
return Ans

end

Figure 7.8: Computing the answers to the query q over the KB K.

7.4 Computational Complexity

In this Section we give some complexity results. First we analyze the complexity of the query
answering algorithm to obtain a 2ExpTime upper bound. Then in Section 7.4.2 we show that
this is tight, as query entailment in SH is 2ExpTime-hard. Finally, in Section 7.4.3 we identify
some syntactic restrictions on queries which ensure that the algorithm runs in single exponential
time, obtaining a tight ExpTime bound for a large class of instances that includes CQ answering
in ALCH.

7.4.1 Upper Bound

We analyze now the complexity of our algorithm for CQ answering over SH knowledge bases.
Recall that the method consists of three main steps: (1) computing a ABoxTypes(K)-complete
knot set for an input KB K = 〈A,T ,R〉, (2) computing a complete tq-table TQ for the computed
knot set K and an input CQ q, and (3) collecting answers to q by traversing TQ-expansions of
A. To show that the method answers queries in double exponential time, we first establish the
following result.

Theorem 7.4.1 Let K = 〈A,T ,R〉 be an SH KB, let q be a conjunctive query, and let F
R
q be

the set of f-subqueries of q. Then, given a tuple ~a of individuals, deciding whether ~a ∈ ans(q,K)
is feasible in time single exponential in ||K|| + ||q||+ |FR

q |.

Proof. We analyze the three steps of the procedure. To this end, we let c = |ClC(K)| and
t = |NR(K)|, and start with the following observation:

(∗) For any set of types T, a T-complete knot set K for K can be obtained from T and K in
time single exponential in c+ t via the algorithm computeKnots in Figure 7.2.

Indeed, the number of distinct types t for K is bounded by 2c, while the number of distinct
knots for K is bounded by m = 2c·(2t·2c)c = 2c+tc+c2 , and thus single exponential in c + t.
Hence constructing the initial knot set in the first step of the algorithm is feasible in time single
exponential in c+t. In the subsequent “fill-up” stage that closes the set under successor knots, the
procedure may add only single exponentially many knots, while in the final “clean-up” stage each
knot is removed at most once and never introduced again, and the whole procedure terminates
in a number of steps that is at most single exponential in c+ t.

Since both c and t are linear in ||K||, this shows that in step 1, an ABoxTypes(K)-complete
knot set K can be obtained in time single exponential in ||K||.

140

For the step 2, the Algorithm compute_TQ in Figure 7.7 computes a complete type-query
table TQ for a set of knots K and q, in time polynomial in |K| + 2|FR

q |, and hence single
exponential in m = ||K|| + ||q||+ |FR

q |. This follows from the next observations:

i) At each iteration, by construction, the algorithm computes a d+1-complete tq-table TQd+1

(via a d+1-complete kq-table KQd+1) from a d-complete tq-table TQd. Furthermore, the
computed tables are ‘complete’ in the sense that all entailed disjunctive f-subqueries queries
are included in the tables.1 More precisely, for each d, we have (t,D) ∈ TQd iff t |=d D.
Since t |=d D implies t |=d+1 D, we get that the computation is monotonic, i.e., each
computed TQd+1 includes TQd.

ii) The largest possible tq-table for K and q is 2c·2|FR
q |, which is clearly of size single exponential

in m. Hence, and given the monotonicity, the algorithm terminates within a number of steps
that is single exponential in m.

iii) Each iteration, which consists of a call to KQ_from_TQ and then a call to TQ_from_KQ,
takes time at most single exponential in m. For the call to KQ_from_TQ, all pairs k,D
of knots k and disjunctive f-subqueries D are traversed. The number of such pairs is single
exponential in m. Furthermore, for each pair (k,D), whether it is included in the resulting
table is decided by checking the conditions prescribed in Theorem 7.3.11, and this takes time
at most single exponential in m. The call to TQ_from_KQ is analogous: there are at most
single exponentially (in m) many pairs (t,D) of types and disjunctive f-subqueries, and to
test the conditions in Theorem 7.3.15 for each of them is also feasible in single exponential
time.

For the final step 3, which is based on Theorem 7.3.21, we note that the number of (K,TQ)-
expansions of A is the number of ways of choosing a completion θ for K, choosing for each
individual a of A a knot k(a), and then choosing a set of f-subqueries for each leaf of the resulting
forest, yielding an assignment gk(a); this is again bounded by a single exponential in m. Finally,
checking whether ~a ∈ ans(q,A′) for a given tuple ~a and an expansion A′ ∈ exp(A,K,TQ) is also
feasible in time single exponential in m.

We can now easily infer the upper bound for the query answering problem in SH. Indeed,
for a given CQ q, the size of the set F

R
q of f-forward subqueries of q is bounded by 2|VI(q)|,

which is single exponential in ||q||. Therefore, by the above theorem, the procedure can be run
in time double exponential in the size of the input KB K and the query q.

Proposition 7.4.2 Given a KB K and a CQ q in SH, and a tuple of individuals ~a, deciding
whether ~a ∈ ans(q,K) is in 2ExpTime.

We finally note that enumerating all the answer tuples ~a in ans(K, q) for an SH KB K and
a query q is also feasible in time double exponential in ||K||+ ||q||. This is because the number
of candidate answer tuples ~a is only single exponential in ||K||.

We dedicate the next section to proving that our algorithm is worst-case optimal.

7.4.2 Lower Bound

In the previous section we have shown that our algorithm for query answering in SH runs in
double exponential time. This bound is not new; it follows from the automata algorithm in

1In fact, only the subset minimal subqueries would need to be stored. However, the worst case complexity
remains unchanged.

141

the first part of this thesis (Theorem 3.4.2), and from results in the literature, e.g., [CEO07,
GHLS07, GHS07, OŠE08a]. What remained an upper question is whether the bound is tight,
as the only 2ExpTime lower bound for query answering in DL was the one for ALCI [Lut07],
which is not contained in SH, and the best matching lower bound for SH was the ExpTime

bound stemming from KB satisfiability.
Now we close the gap, and show that the above mentioned bounds are optimal: query entail-

ment is 2ExpTime-hard in all extensions of ALC that support role inclusions and transitivity
axioms. This identifies the combination of role inclusions and transitivity axioms as the second
source of complexity that, like inverse roles, makes query answering provably harder than KB
satisfiability checking.

We prove the following theorem:

Theorem 7.4.3 CQ entailment in SH is 2ExpTime-complete.

The 2-ExpTime-hardness result relies on a reduction from the word problem for Alternating
Turing machines (ATMs) with exponential work space. We briefly recall here the definition of
ATMs, but refer the reader to [CKS81] for background and details.

An ATM is given by a tuple M = (Q,Σ, q0, δ), where

• Q = Q∃⊎Q∀⊎{qacc}⊎{qrej}, the set of states, consists of existential states in Q∃, universal
states in Q∀, an accepting state qacc, and a rejecting state qrej;

• Σ is the alphabet that additionally contains the blank symbol ;

• q0 ∈ Q∃ ∪Q∀ is the starting state; and

• δ ⊆ Q × Σ × Q × Σ × {+1,−1} is the transition relation; for later use, we define
δ(q, σ) = {(q′, σ′,M) | (q, σ, q′, σ′,M) ∈ δ}.

A configuration of M is a word wqw′ with w,w′ ∈ Σ∗ and q ∈ Q, whose intended meaning
is that the one-side infinite tape contains the string ww′ with only blanks behind it, that the
machine is in state q, and that the head is on the symbol just after w. The successor configura-
tions of a configuration wqw′ are defined in terms of δ as usual; without loss of generality, we
assume that M is well-behaved and never attempts to move left if the head is on the left-most
position. Configurations of the form wqw′ with q ∈ {qacc, qrej} are called halting configurations
and have no successor configurations.

A computation of an ATM M on a word w is a sequence of configurations K0,K1, . . . such
that K0 = q0w (the initial configuration) and Ki+1 is a successor configuration of Ki, for all
i ≥ 0. For our concerns, we may assume that all computations are finite (on any input), and
define acceptance only for this case.

A configuration wqw′ is accepting, if either (a) q = qacc, or (b) q ∈ Q∃ and at least one of
its successor configurations is accepting, or (c) q ∈ Q∀ and all of its successor configurations are
accepting. The ATMM accepts the input w, if the initial configuration is accepting. The word
problem of M is, given M and w, to decide whether M accepts w.

Note that an ATM with only existential states can be viewed as a standard non-deterministic
Turing machine, which accepts a word iff there exists a sequence of successive configurations that
starts in the initial configuration, with initial state q0 and the input word w on the tape, and
ends in an accepting state qacc. For ATMs, these sequences become trees of configurations, where
branching is caused by universal states (there is a successive configuration for each transition in
δ(q, a) with q ∈ Q∀). Such a tree is a computation tree, and it is accepting if qacc is reached on
all paths.

142

r

r

r

r

. . .

depth m

r
r

rr

rr

Fh

Gh

Eh

t

t
Fp

tt

Gp

Ep

Figure 7.9: The structure of models.

It is known that 2ExpTime coincides with the class AExpSpace of all problems solvable
by ATMs with exponentially bounded space. We use the following lemma.

Lemma 7.4.4 ([CKS81]) There is an ATMM for which the word problem is 2ExpTime-hard
and such that M works in exponential space, i.e., all configurations w′qw′′ in computations on
w fulfill |w′w′′| ≤ 2|w|.

By the above lemma, to show 2ExpTime-hardness of CQ entailment in SH, it suffices to
reduce the word problem for an exponentially space bounded ATM M = (Q,Σ, q0, δ) and an
input word w. Lets fix such an M and w.

For each input w to M, we define a KB KM,w and a query qM,w such that M accepts w
iff KM,w 6|= qM,w. In fact, each canonical model I of KM,w with I 6|= qM,w will represent an
accepting computation ofM on w. Roughly, the model contains binary trees of depth m := |w|
(length of w) that represent configurations using their 2m leaves to store the tape contents,
which we call configuration trees. The roots of the configuration trees are in turn connected
into simulate a computation tree as described above. This is illustrated in Figure 7.9; the initial
configuration tree is existential and thus has a single successor configuration tree. Its (magnified)
successor is universal and has two successor configuration trees.

To enforce this structure, we need some technical tricks. In particular, each configuration tree
will represent two configurations: the current configuration Kh and the previous configuration
Kp. We use KM,w to ensure locally at each configuration tree that Kh is indeed a successor
configuration of Kp. The query qM,w is then used to globally guarantee that the Kp value of
each configuration tree is identical to the Kh value of the predecessor in the computation tree.
We will call a computation tree proper, if it satisfies the latter condition.

We now give a precise definition of how configuration trees and computation trees are rep-
resented as a model. A single, non-transitive role r is used for the edges of computation trees
and of configuration trees. Observe that, as shown in Figure 7.9, we use two r-edges between
two consecutive configuration trees. We also use a transitive role t, to be explained later. The
alphabet symbols Σ ofM and the states Q are used as concept names. We also use the concept
names from B := {B1, . . ., Bm} to encode addresses of tape cells in binary. For a node n of a
forest model I and i < 2m, we write adrI(n) = i if the truth values of BI

1 , . . . , B
I
m at n encode

the number i. A tape cell with address i and content a ∈ Σ is represented by a node n with
adrI(n) = i that satisfies the concept name a. If the head is currently on the cell andM’s state
is q, then n also satisfies q; otherwise, n satisfies the concept name nil.

To later on ensure properness using the query, we use additional nodes and concept names.
The latter are Eh, Ep, Fh, Fp, Gh, and Gp, used as markers; and the concept names from
Z := {Za,q | a ∈ Σ, q ∈ Q ∪ {nil}}. The additional nodes are attached to the leaves of
configuration trees, as indicated on the left-hand side of Figure 7.9 and detailed in the subsequent

143

definition. Intuitively, nodes labeled Eh store the current configuration and nodes labeled Ep

the previous.

Definition 7.4.5 (i-cell) Let I be an interpretation and i < 2m. We call n ∈ ∆I an i-cell if
the following hold:

(a) n has r-successors np and nh with adrI(np) = adrI(nh) = i that respectively satisfy Ep and
Eh, and both satisfy exactly one a ∈ Σ and exactly one q ∈ Q ∪ {nil}.

(b) np (resp., nh) has an r-successor n′p (resp., n′h) satisfying Fp (resp., Fh) and such that

adrI(n′p) (resp., adrI(n′h)) is the bit-wise complement of i. Furthermore, for all a∈Σ and
q ∈Q∪{nil}, we have:

(i) nh satisfies Za,q iff nh does not satisfy both a and q;

(ii) n′p satisfies Za,q iff np does not satisfy both a and q;

(iii) n′h and np satisfy Za,q;

(c) n′p (resp., n′h) has a t-successor n′′p satisfying Gp (resp., n′′h satisfying Gh) such that n′′p
(resp., n′′h) is also a t-successor of np (resp., nh).

We simply speak of a cell if i is unimportant. Note that the ability of SH to express (c)
in Definition 7.4.5 via the axioms r ⊑ t and trans(t) is crucial for the reduction. The same
condition can be expressed via a so-called left identity r ◦ t ⊑ t.

We now define (q, a, i)-configuration nodes, which are the roots of configuration trees. In-
tuitively, a configuration tree whose root is a (q, a, i) node represents a transition where the
automaton writes the symbol a and moves to state q and position i. We also define interpreta-
tions that encode computation trees ofM. In what follows, we say a node n′ is an rm-successor
of a node n, if n′ is reachable from n by traveling m r-edges.

Definition 7.4.6 ((q, a, i)-configuration node, Computation tree) Let I be an interpre-
tation. We call n ∈ ∆I a (q, a, i)-configuration node if (1) it has an rm-successor that is a j-cell
(called j-cell of n), for each j < 2m and (2) the Eh-node of the i-cell of n satisfies q and a, and
all other j-cells have nil in their Eh-nodes.
We call I a computation tree for w if I is tree-shaped and

(I) the root ǫ of I has an r-successor n that is a (q0, a, 0)-configuration node whose i-cells describe
the initial configuration for input w;

(II) for each (q, a, i)-configuration node n, if q ∈Q∃ (resp., q∈Q∀), then for some (resp.,
for each) tuple (q′, a′,M) ∈ δ(q, a) there exists an r2-successor node n′ that is an (q′, a′, i′)-
configuration node with i′ = i+M , where M ∈ {−1,+1} is the executed move. Furthermore, the
Eh node of a i-cell of n′ satisfies a′, and, for all remaining j-cells c of n′ with j 6= i, if the Ep

node of c satisfies a ∈ Σ, then the Eh node of c also satisfies a (i.e., a i-cell has the new symbol
written, while for the remaining cells, the Eh nodes in the resulting configuration tree carry over
the symbols from their respective Ep nodes).

We call I accepting, if q = qacc in each (q, a, i)-configuration for which there is no successor
configuration. Furthermore, I is proper, if for each pair of successive configuration nodes n, n′

as in Definition 7.4.6.II and each i < 2m, the i-cell of n has the same (q, a)-label in its Eh-node
as the i-cell of n′ in its Ep-node.

144

It is not hard to see that there is a correspondence between accepting proper computation
trees for w and accepting computations of M on w. The properness condition ensures that
the previous configuration encoded in the Ep nodes of a configuration tree coincides with the
current configuration encoded in the Eh nodes of the previous configuration tree. Then, due to
the condition (II) in the above Definition 7.4.6, we get that each pair of successive configuration
nodes encodes a correct transition of M. On the other hand, given an accepting run of M on
w, we can define an accepting computation tree.

Proposition 7.4.7 M accepts w iff there exists an accepting proper computation tree for w.

In the next section, we define an SH knowledge base capturing (proper and improper) compu-
tation trees, and in the subsequent section, we define a query for testing properness.

Building Computation Trees

Proposition 7.4.8 Given w, we can build in polynomial time a KB KM,w whose forest models
are exactly the accepting computation trees for w.

In the following, by constructing KM,w, we provide a proof of the above proposition. We define

KM,w = 〈{I(a)},Tw,Rw〉

where a is an individual, I is a concept name (that identifies the initial node), and the TBox Tw
and the RBox Rw contain the axioms described below.

Enforcing Configuration Nodes

Recall that configuration nodes are roots of binary trees of depth m whose leaves are i-cells
corresponding to tape cells of M. We next provide axioms enforcing conditions (1) and (2) in
the definition of configurations nodes (see Definition 7.4.6). More precisely, nodes satisfying a
special concept name R are forced to be configuration nodes. For technical reasons, the m+1
levels of a tree rooted at a configuration node are identified with concept names L0, . . . , Lm. For
two concepts C and D, we use C → D as a shorthand for the concept ¬C ⊔D. We introduce
the following axioms, which generate a tree whose leaves cover the address range 0, . . . , 2m − 1:

R ⊑ L0

Li ⊑ ∃r.(Li+1 ⊓Bi+1) ⊓ ∃r.(Li+1 ⊓ ¬Bi+1) for all 0 ≤ i < m
Li ⊓Bj ⊑ ∀r.(Li+1 → Bj) for all 0 < j ≤ i < m

Li ⊓ ¬Bj ⊑ ∀r.(Li+1 → ¬Bj) for all 0 < j ≤ i < m

Recall that the leaves of configuration trees must be i-cells, and hence the properties (a)-(c)
in Definition 7.4.5 must be enforced. To enforce (a), we use the symbols from Σ, the states from
Q and nil as concept names. We label such nodes with exactly one concept from Σ (the content
of a cell c), and with exactly one concept from Q+ := Q ∪ {nil}; intuitively, the label q ∈ Q
means that the head of M is on the tape cell c and that M is in state q, while the label nil

means that the head is not at position j. The above is realized as follows:

Lm ⊑ ∃r.(Ep ⊓ E) ⊓ ∃r.(Eh ⊓E)

E ⊑
⊔

a∈Σ a ⊓
d

a6=a′∈Σ ¬(a ⊓ a′)

E ⊑
⊔

q∈Q+ q ⊓
d

q 6=q′∈Q+ ¬(q ⊓ q′).

145

To enforce the structures as prescribed in the remaining properties (b)-(c), we use the fol-
lowing axioms:

1. The existence of the required nodes is enforced via the following axioms:

Ep ⊑ ∃r.(Fp ⊓ ∃t.Gp)
Eh ⊑ ∃r.(Fh ⊓ ∃t.Gh)

2. The address for Ep and Eh nodes, and its bitwise complement in Fp and Fh nodes is
obtained by adding for each 1 ≤ i ≤ m the following axioms:

Lm ⊓Bi ⊑ ∀r.Bi

Lm ⊓ ¬Bi ⊑ ∀r.¬Bi

E ⊓Bi ⊑ ∀r.¬Bi

E ⊓ ¬Bi ⊑ ∀r.Bi

3. The conditions (b.i)-(b.iii) are enforced by the following axioms: for all a ∈ Σ, q ∈ Q+,

Eh ⊑ (a ⊓ q)↔ ¬Za,q

Ep ⊑ (a ⊓ q)→ ∀r.(¬Za,q ⊓
d

(a,q)6=(a′,q′) Za′,q′)

Eh ⊑ ∀r.Za,q

Ep ⊑ Za,q

4. Finally, to enforce (c), we add r ⊑ t and trans(t).

It remains to ensure that each node n that satisfies R also satisfies that for exactly one
address i < 2m, the i-cell of n satisfies some q ∈ Q and all j-cells, j 6= i, satisfy nil (cf. (2) in
Definition 7.4.6). To achieve this, we use a concept name H (for the head position) and make
sure that it occurs in the label of an Lm node iff its address is i, and that only an Eh successor
of such an Lm node contains labels from Q.

L0 ⊑ H

(Li ⊓H) ⊑ (∀r.((Li+1 ⊓Bi)→ H) ⊓ ∀r.((Li+1 ⊓ ¬Bi)→ ¬H))
⊔ (∀r.((Li+1 ⊓ ¬Bi)→ H) ⊓ ∀r.((Li+1 ⊓Bi)→ ¬H)) for all 0 ≤ i < m

(Li ⊓ ¬H) ⊑ (∀r.(Li+1 → ¬H) for all 1 ≤ i < m

Lm ⊓H ⊑ ∀r.(Eh →
⊔

q∈Q q)

Lm ⊓ ¬H ⊑ ∀r.(Eh → nil)

We remark here that for configurations represented by Ep nodes we omit here adding similar
axioms. Indeed, the query qM,w that we construct will, as a byproduct, also check whether a
state q ∈ Q is stored at exactly one address for Ep nodes.

Enforcing Computation Trees

To generate computation trees, we add axioms ensuring that tree-shaped models of KM,w satisfy
conditions (I) and (II) in Definition 7.4.6. In the following, we use ∀ri.C to denote the i-fold
nesting ∀r. · · · ∀r.C. In particular, ∀r0.C is C.

The initial configuration as described in (I) is ensured as follows. Let w= a0 · · · an be the
initial word. We will additionally keep track of the position of the R/W head of M. To this

146

end, we use concept names Q′
1, . . . , Q

′
m and Q1, . . . , Qm for the previous position and the current

position resulting due to a transition. We add the following:

I ⊑ ∃r.R

I ⊑ ∀rm+1.(pos = i→ ∀r.(Eh → ai)) for all i < n

I ⊑ ∀rm+1.(pos = 0→ ∀r.(Eh → q0))

I ⊑ ∀rm+1.(pos ≥ n→ ∀r.(Eh →))

I ⊑ ∀r.¬Qi for all 1 ≤ i ≤ m

where (pos = i) and (pos ≥ n) are the obvious (Boolean) concepts expressing that the value
of the address B1, . . . , Bm equals i and is at least n, respectively (recall that is the blank
symbol).

We turn to the condition (II) in Definition 7.4.6. In detail, to represent that a configuration
node n′ is a successor of a configuration node n upon taking the transition (q′, a′,M) ∈ δ(q, a),
we label n′ with the concept name Tq′,a′,M and we connect n to n′ via two consecutive r arcs.
Furthermore, if q is existential, we enforce that some n′ exists with suitable label Tq′,a′,M , and if
q is universal, we enforce that for each (q′, a′,M) ∈ δ(q, a) some n′ exists with label Tq′,a′,M ; we
exploit that the state q and the symbol a are stored in an Eh-node of n, for one unique address.
We also ensure that the address of R/W head is copied to the follow-up configuration nodes.

R ⊓ ∃rm+1.(Eh ⊓ q ⊓ a) ⊑
⊔

(q′,a′,M)∈δ(q,a) ∃r
2.(R ⊓ Tq′,a′,M) for all q ∈ Q∃, a ∈ Σ,

R ⊓ ∃rm+1.(Eh ⊓ q ⊓ a) ⊑
d

(q′,a′,M)∈δ(q,a) ∃r
2.(R ⊓ Tq′,a′,M) for all q ∈ Q∀, a ∈ Σ.

Qi ⊑ ∀r2Q′
i for all 0 < i < m

¬Qi ⊑ ∀r2¬Q′
i for all 0 < i < m

Next we provide axioms that define the position of the R/W head resulting by transition. It
is obtained by applying addition or subtraction to the address encoded by Q′

i concepts. We use
INV 1, . . . , INV m to decide on the bits that need to be inverted:

Tq,a,+1 ⊑ PLUS for allq ∈ Q, a ∈ Σ,

Tq,a,−1 ⊑ MINUS for allq ∈ Q, a ∈ Σ,

R ⊓ PLUS ⊑ INV m

R ⊓Q′
i ⊓ INV i ⊓ PLUS ⊑ INV i−1 for all 1 < i ≤ m

R ⊓ PLUS ⊓ (¬Q′
i ⊔ ¬INV i) ⊑ ¬INV i−1 for all 1 < i ≤ m

R ⊓MINUS ⊑ INV m

R ⊓ ¬Q′
i ⊓ INV i ⊓MINUS ⊑ INV i−1 for all 1 < i ≤ m

R ⊓MINUS ⊓ (Q′
i ⊔ ¬INV i) ⊑ ¬INV i−1 for all 1 < i ≤ m

Q′
i ⊓ INV i ⊑ ¬Qi for all 1 ≤ i ≤ m

Q′
i ⊓ ¬INV i ⊑ Qi for all 1 ≤ i ≤ m

¬Q′
i ⊓ INV i ⊑ Qi for all 1 ≤ i ≤ m

¬Q′
i ⊓ ¬INV i ⊑ ¬Qi for all 1 ≤ i ≤ m

147

We also propagate the two addresses to the leaves by adding, for each 0 < j ≤ m, the
following axioms:

Li ⊓Qj ⊑ ∀r.(Li+1 → Qj) for all 0 ≤ i < m
Li ⊓ ¬Qj ⊑ ∀r.(Li+1 → ¬Qj) for all 0 ≤ i < m
Li ⊓Q

′
j ⊑ ∀r.(Li+1 → Q′

j) for all 0 ≤ i < m

Li ⊓ ¬Q
′
j ⊑ ∀r.(Li+1 → ¬Q

′
j) for all 0 ≤ i < m.

To enforce the second part of condition (II), we make sure that for a configuration node n
satisfying Tq′,a′,M , the symbol in the previous position of the R/W head is changed to a′, while
the symbols in other positions are transferred from Ep nodes to Eh nodes. The first part is done
by adding, for all q′ ∈ Q, a′ ∈ Σ, M ∈ {+1,−1} the axioms:

Tq′,a′,M ⊑ ∀rm.(Lm → Tq′,a′,M),

Lm ⊓ Tq′,a′,M ⊓ ~Q′ = ~B ⊑ ∀r.(Eh → a′),

Lm ⊓ Tq′,a′,M ⊓ ~Q = ~B ⊑ ∀r.(Eh → q′),

where ~Q = ~B stands for
d

0<i≤m((Qi ⊓Bi) ⊔ (¬Qi ⊓ ¬Bi)) and ~Q′ = ~B for
d

0<i≤m((Q′
i ⊓Bi) ⊔

(¬Q′
i ⊓ ¬Bi)).
All remaining tape cells do not change:

Lm ⊓ ∃r.(Ep ⊓ a ⊓ nil) ⊑ ∀r.(Eh → a) for all a ∈ Σ.

This concludes the definition of Tw and Rw, and hence of the KB KM,w. By construc-
tion, all forest-shaped models of KM,w satisfy the conditions in Definition 7.4.6, and hence are
computation trees.

Testing Properness of Computation Trees

As already mentioned, we use the query qM,w to test whether the tree is proper. More precisely,
qM,w should have a match in a computation tree iff that tree is not proper. We start with a
characterization of (im)properness in terms of the auxiliary concept names from above. In the
following, we say that two cells n and n′ are A-conspicuous, where A is a concept name, if

(†) A is true at the Eh-node of n and the Ep-node of n′, or

(‡) A is true at the Fh-node of n and the Fp-node of n′.

Proposition 7.4.9 A computation tree I is not proper iff (⋆) there exist cells n and n′ in
successive configurations of I K such that n and n′ are A-conspicuous for all A ∈ B ∪ Z.

Proof. The proposition holds due to the way auxiliary labels are defined. First note that if
n, n′ are cells of two successive configurations in I, then the conditions imposed on adrI(·) in
Definition 7.4.5 imply that adrI(n) = adrI(n′) iff for all A ∈ B, n and n′ are A-conspicuous;
this is because bit-wise complement is used for the addresses of Fp- and Fh-nodes.
(⇒) Suppose that I is not proper. Then there exist two i-cells n and n′ of two successive
configurations of I such that the Eh-node of n and the Ep-node of n′ satisfy different pairs
(q, a) and (q′, a′). As adrI(n) = adrI(n′), n and n′ are A-conspicuous for all A ∈ B. By
(b.iii) of Definition 7.4.5, Zq,a is true at the Fh-node of n; by (b.ii) and since (q, a) 6= (q′, a′),
Zq,a is also true at the Fp-node of n′ (recall that Zq′,a′ is false for at most one pair q′, a′).

148

.

.

.

.

.

.

.

.

.

.

.

.

xZnxZ1 · · ·

y
B1
0

r

xB1 xBm· · ·

r

y
Bm
0

y
Z1
0

y
Zn
0

.

.

.

.

.

.

.

.

.

.

.

.

y
B1
m+1

r

t

B1 Bm

y
Bm
m+1

y
Z1
m+1

y
Zn
m+1

ZnZ1

z
B1
0

z
Z1
0

z
Zn
0

z
Bm
0

z
B1
m+3

B1 Bm

z
Bm
m+3

z
Z1
m+3

z
Zn
m+3

ZnZ1

v

uGh

Gp

· · · · · ·
· · · · · ·

.

.

.

xA

Gh
u

A

.

.

.

Gp
v

A

(I) (II)

yA
0

yA
m+1

yA
m

yA
1

t

r

r

r r

r

r

t

zA
0

zA
1

zA
m+2

zA
m+3

Figure 7.10: The basic query q(A,u, v) and the final query qM,w.

We can argue similarly that za′,q′ is true at the Eh-node of n and the Ep-node of n′. For
(q′′, a′′) /∈ {(q, a), (q′, a′)}, Za′′,q′′ holds at the Eh-, Ep-, Fh-, and Fp-nodes of both n and n′. In
summary, n and n′ are A-conspicuous for all A ∈ Z. Hence, (⋆) is true.
(⇐) To show this, we prove the contrapositive. Suppose that I is proper and let n and n′ be
any cells of two successive configurations in I. If n and n′ are not A-conspicuous for some A∈B

then (⋆) is false; otherwise, adrI(n) = adrI(n′) holds, and as I is proper, the Eh-node of n
and the Ep-node of n′ satisfy the same q ∈ Q and a ∈ Σ. By (b.i) of Definition 7.4.5, Za,q is
false at the Eh-node of n; by (b.ii), Za,q is false at the Fp-node of n′. Hence, n and n′ are not
Za,q-conspicuous, which means that also in this case (⋆) is false.

It thus remains to find a query qM,w that has a match iff (⋆) is satisfied. The structure of
qM,w is displayed in Figure 7.10(II).

We obtain qM,w by taking, for each A ∈ B ∪ Z, a copy of the basic query q(A,u, v) in
Figure 7.10(I) such that the different copies share only the variables u and v, and then taking
the union. Intuitively, q(A,u, v) deals with A-conspicuousness, and the shared variables u, v
ensure that the different component queries speak about the same cells n, n′. In more detail,
let n, n′ be cells of two successive configurations that are A-conspicuous for all A ∈ B ∪ Z. We
can find a match for qM,w as follows: start with matching u on the Gh-node of n and v on the
Gp-node of n′. Now take an A ∈ B ∪ Z. If (†) applies, then match yA

m+1 on the Eh-node of n
and zA

m+1 on the Ep-node of n′; if (‡) applies, then match yA
m+1 on the Fh-node of n and zA

m+1

on the Fp-node of n′. The matches of all other variables are now uniquely determined by the
(non-transitive) role edges in the query. In particular, the lengths of the role chains in the query
ensure that xA will be matched to the root of the configuration node in which n occurs in case
(‡) and to the predecessor of this root node in case (†). Observe that the paths labeled with
z-variables are exactly two steps longer than those labeled with y-variables, and thus the query
only relates n and n′ if they belong to successor configurations.

In summary, we can show that

Proposition 7.4.10 A computation tree I is proper iff I 6|= qM,w.

Together with Propositions 7.4.6 and 7.4.8, this yields the desired reduction, establishing the
lower bound required for Theorem 7.4.3.

149

7.4.3 Improving the Upper Bound

We discuss here some syntactic restrictions to obtain classes of CQs for which query answering
is feasible in single exponential time. To this end, it is sufficient to ensure that a query can be
decomposed into only polynomially many f-subqueries; the complexity drop follows then from
Theorem 7.4.1.

We assume an arbitrary SH KB K = 〈A,T ,R〉, and define next some notions to measure
the structural complexity of a query (w.r.t. K). In this section, we call a role p simple w.r.t. K
if it is simple w.r.t. R.

Definition 7.4.11 (fork degree, non-trivial forks) For any query q, we define

R
q
+(v) = {vn | p1(v, v1) ∈ q, p2(v1, v2) ∈ q, . . . , pn(vn−1, vn) ∈ q ∧ n ≥ 1 },

i.e., R
q
+(v) denotes the set of variables reachable from v in the query graph of q in one or more

steps. Furthermore, let R
q
∗(v) = {v} ∪ R

q
+(v) and, for any set V of variables, let R

q
+(V) =

⋃

v∈V R
q
+(v) and R

q
∗(V) =

⋃

v∈V R
q
∗(v).

A set V ⊆VI(q) is called a fork set (of q) if the following are true:

(a) for each v 6= v′ ∈V , it holds that v′ 6∈R
q
+(v) and v 6∈R

q
+(v′), i.e., no variable in V reaches

another variable in V ; and

(b) the set R
q
∗(V), i.e., the closure of V under reachable variables, induces a subquery of q whose

graph is connected and acyclic.

Note that (b) implies that no variable v ∈ V reaches a cycle in q, i.e., there is no v ∈ R
q
∗(V)

such that v′ ∈ R
q
+(v′).

Then the fork degree of q, denoted fd(q), is defined as the size of the largest fork set of q.
The number of non-trivial forks in a query q is the number of variables v ∈ VI(q) satisfying

the following:

(a) there exist two atoms p(v1, v) ∈ q and p′(v′1, v) ∈ q such that v1 6= v′1 and p′ is not simple
w.r.t. K,

(b) v does not reach a cycle in q, i.e., there exists no v′ ∈ R
q
∗(v) such that v′ ∈ R

q
+(v′).

Example 7.4.12 For the query q in Example 7.3.3, V = {v1, v5} is the only fork set of q which
contains more than one variable; any other such candidate fork set violates either condition (a)
or condition (b). Hence, fd(q) = 2.

Note that for fork sets V of size larger than one, each variable v ∈ V has a common successor
with some other variable v′ ∈ V (in the previous example, v1 has a common successor with v5).
Intuitively, the fork degree of q tells us how many “incomparable” variables we can pick so that
they induce a connected acyclic subquery of q. Given this, we can formulate a syntactic condition
ensuring lower complexity of query answering.

Theorem 7.4.13 If Q is a class of CQs such that for any q ∈ Q:

(a) the number of non-trivial forks in q is bounded by some constant c,

(b) fd(q) is bounded by c, and

(c) for each pair v, v′ ∈ VI(q), |{ p′ | p′ ⊑R p, p(v, v′) ∈ q, and trans(p) ∈ R}| ≤ c,

150

then the set F
R
q of f-subqueries of q is polynomial in ||q||. Hence, answering a query q ∈ Q over

the KB K is feasible in single exponential time in ||q||+ ||K||.

Proof. Consider an arbitrary f-subquery (V,Σ) of q ∈ Q. By definition, V induces a connected
acyclic subquery of q. LetMV be the set of all v ∈ V that have no predecessor in V , i.e., for which
there exists no p(v′, v) ∈ q with v′ ∈ V . Clearly, MV is a fork set of q (see Definition 7.4.11), and
hence by (b) |MV | ≤ c. We get that the number of different MV over all possible V is bounded
by |VI(q)|c, and is polynomial in ||q||. It is not hard to see that given two f-subqueries (V1,Σ1)
and (V2,Σ2) of q with MV1

= MV2
we also have V1 = V2. Hence, the number of distinct V that

can be chosen is bounded by |VI(q)|c, and is polynomial in ||q||.
Now we consider the number of possibilities to choose Σ. Observe that Σ is defined only

for the free variables of V . The number of variables v′ ∈ V that are in free in V is bounded
by 2·c because of the bounded number of non-trivial forks in q (condition (a)). For each such
v′, we have |{p′ ⊑R p, p ∈ back(V, v′), trans(p′) ∈ R}| ≤ c by condition (c). Hence, the total
possible choices for Σ are bounded by 2·c · 2c, which is polynomial in ||q||.

The second part of the claim follows then from Theorem 7.4.1.

When computing the fork degree of a query, we do not ignore trivial forks p(v1, v2), p′(v′1, v2)
where p, p′ are simple, and treat v1 and v′1 as ‘incomparable’ variables that may induce different
fork sets. This is not really necessary, as such forks do not increase the number of distinct
f-subqueries: (a.ii) of Definition 7.3.2 enforces that either both v1 and v′1 or neither v1 nor v′1
belong to a f-subquery. Hence we can safely eliminate these trivial forks, and look at the fork
degree of the resulting query. We can achieve this using the same kind of fork elimination we
used for ALCH queries in Chapter 6. The next definition is very close to Definition 6.4.16, but
now we make a distinction between simple and non-simple roles.

Definition 7.4.14 (Fork elimination) For a CQ q, a fork elimination of q is a query obtained
from q by exhaustively applying the following rule: if the query contains atoms p(v1, v2) and
p′(v′1, v2) where v1 6= v′1 and p, p′ are simple w.r.t. K, then replace every occurrence of v1 with
v′1. By FE(q) we denote an arbitrary fork elimination of q.

Note that fork eliminations of q coincide up to a renaming of variables. We can now state
the slightly relaxed conditions which diminish the impact of trivial forks to the fork degree.

Theorem 7.4.15 Let Q be a class of CQs such that for any q ∈ Q:

(a) the number of non-trivial forks in FE(q) is bounded by some constant c,

(b) fd(FE(q)) is bounded by c, and

(c) for each pair v, v′ ∈ VI(q), |{ p′ | p′ ⊑R p, p(v, v′) ∈ q, and trans(p) ∈ R}| ≤ c,

Then deciding ~a ∈ ans(q,K) for a given q ∈ Q and tuple ~a, is feasible in single exponential time
in ||q||+ ||K||.

Proof. By Theorem 7.4.1, it suffices to show that the number of f-subqueries of q is polynomial
in ||q||. As argued in the proof of Theorem 7.4.13, the conditions (a) and (c) ensure that the
number of ways to choose Σ for an f-subquery (V,Σ) of q is polynomial in ||q||.

The number of choices for V is also polynomial in ||q||. To see this, for any conjunctive query
q′ define Vq′ = {V | 〈V,Σ〉 is an f-subquery of q′}, and observe that (i) |VFE(q)| is polynomial in
||q||, and (ii) |Vq| = |VFE(q)|. The former follows from (b) and Theorem 7.4.13 (as |FE(q)| ≤ ||q||).
For the latter, note that a rewrite step in fork elimination preserves the number of variable sets

151

satisfying (a.ii) of Definition 7.3.2. More precisely, if q′′ is obtained from q′ by the rewrite rule in
Definition 7.4.14, then |Vq′ | = |Vq′′ | (as easily seen by establishing a bijection from Vq′ to Vq′′).

Based on the above theorem we can obtain further query classes of lower computational
complexity. In particular, the conditions (a-c) of Theorem 7.4.15 are satisfied for the class of
queries that allow for simple roles only. Indeed, given such a query q, (a) and (c) are trivially
satisfied. For (b), observe that for any variable v of FE(q) there are two possibilities. The
variable v occurs in a cycle in the query graph of FE(q), and hence v is not included in any
fork set and does not contribute to the fork degree. Alternatively, v and its successors induce
a subquery of FE(q) whose graph is a tree. In this case, {x} is the single fork set where v may
occur.

Importantly, the above can be generalized to the case where only a bounded number of
atoms p(x, y), where p is non-simple, occur in a query. To show this, we use a more refined
query complexity measure.

Definition 7.4.16 (counting transitive arcs) For any query q, let t(q) denote the number
of all pairs of variables v, v′ ∈ VI(q) such that:

(1) q contains some atom p(v, v′) where p is not simple w.r.t. K,

(2) q contains no atom p′(v, v′) where p′ is simple w.r.t. K,

(3) v′ does not reach a cycle in the query graph of q, i.e., no v′′ ∈ R
q
∗(v

′) exists such that
v′′ ∈ R

q
+(v′′), and

(4) some variable u ∈ R
q
∗(v

′) has more than one predecessor in q, i.e., |{u′ | R(u′, u) ∈ q}| > 1.

Note that (3) eliminates pairs of variables that do not matter for the fork degree due to
cyclicity (see (b) in Definition 7.4.11). Condition (4) refines this, by further eliminating cases
where R

q
∗(v

′) induces a query subgraph of q that is tree-shaped and disconnected to the remainder
of the query graph of q. We remark that t(q) can be easily computed.

Proposition 7.4.17 For each CQ q it holds that fd(FE(q)) ≤ t(FE(q)) + 1 ≤ t(q) + 1.

Proof. It is easy to verify that t(FE(q)) ≤ t(q): a fork elimination step preserves cycles in
R

q
∗(v) for every variable v (but might introduce new ones). Furthermore, it can not increase the

number of different predecessors of v; hence, items (3) and (4) of Definition 7.4.16 hold for FE(q)
if they hold for q. The same holds for (1) and (2).

Let q′ result from FE(q) by removing all atoms p(v, v′) where v reaches a cycle in the query
graph of FE(q), i.e., some v′′ ∈ R

FE(q)
∗ (v) exists such that v′′ ∈ R

FE(q)
+ (v′′). Note that fd(q′) =

fd(FE(q)). Without loss of generality, we assume that q′ contains a single unary atom A(v) for
each variable v ∈ VI(q′).

Since q′ is acyclic, we can construct q′ along a topological sort v1 < v2 < · · · < vn of its
variables, i.e., p(vj , vi) ∈ q

′ implies j < i, starting from v1 with A(v1) and adding variable vi

with A(vi) and all atoms p(vj , vi) for i > 1.
We show now by induction on n ≥ 1 that

fd(q′) ≤ t(q′) + 1. (7.1)

Base case. Here q′ = {A(v1)} and fd(q′) = 1; thus (7.1) holds for q′.

152

Induction Step. Suppose we join a variable vn with A(vn) and atoms p1(vn1
, vn), . . . , pn(vnkn

, vn)
to q′ of the assumed form, which yields a query q′′ of similar form, and let A = {vn1

, . . . , vnkn
}.

We consider two cases.
Case 1. Suppose first that |A| ≤ 1, i.e., vn is connected to at most one variable in q′. Then,

clearly t(q′′) = t(q′) (condition 4 is violated for the pair vn1
, vn) and fd(q′′) = fd(q′), which means

that (7.1) holds for q′′.
Case 2. Suppose that |A| = m > 1, i.e., vn is connected to multiple distinct variables

vn1
, . . . , vnm in q′′. In this case,

t(q′) + (m− 1) ≤ t(q′′) (7.2)

holds, as each pair v, v′ in VI(q′) that satisfies the conditions 1-4 for t(q′) satisfies them for
t(q′′), and at least m− 1 pairs vn,i, vn satisfy them for t(q′′), given that fork elimination is not
applicable to any p(vni

, vn), p′(vnj
, vn).

Let V ⊆ VI(q′′) be a fork set for q′′ such that |V | = fd(q′′). Let V = {V1, . . . , Vk} be the set
of all maximal Vi ⊆ V (w.r.t. ⊆) that are fork sets for q′. Then for Vi 6= Vj ∈ V, the sets R

q′

∗ (Vi)

and R
q′

∗ (Vj) are disjoint and
⋃

V = V . Furthermore, k ≤ m must hold: as Vi 6= Vj ∈ V must be
connected in q′′ via vn, we have R

q′′

∗ (Vi) ∩ R
q′′

∗ (Vj) = {vn}. On the other hand, R
q′′

∗ (Vi) ∩A 6= ∅

and R
q′′

∗ (Vj) ∩A 6= ∅. Hence, at most m different Vi exist.
Now consider for the query q′i ⊆ q′ that contains all atoms from qi on the variables R

q′

∗ (Vi).
Then Vi is a fork set for q′i; hence by the induction hypothesis for q′i,

|Vi| ≤ fd(q′i) ≤ t(q
′
i) + 1.

As each pair vi, vj ∈ VI(q′i) satisfies conditions 1-4 for t(q′) if it satisfies them for t(q′i), and since
the Vi are pairwise disjoint and the queries q′i are pairwise disconnected, we conclude

|V | =
k

∑

i=1

|Vi| ≤
k

∑

i=1

(t(q′i) + 1) ≤ t(q′) + k ≤ t(q′) +m.

Thus using (7.2),
fd(q′′) = |V | ≤ t(q′) +m ≤ t(q′′) + 1,

and the induction statement (7.1) holds for q′′; this completes the proof.

We also observe that for every query q, the number of non-trivial forks in FE(q) is ≤ t(q).
Indeed, due to the rewrite rule, for each variable v of FE(q) there exists at most one variable
v1 such that {p | p(v1, v) ∈ q} contains a simple role. In other words, for each other variable
v1 6= v′1, all roles in {p | p(v′1, v) ∈ q} must be non-simple. This means that if v is a variable
counted in as a non-trivial fork (i.e., satisfies the conditions in Definition 7.4.11), then for v there
exists at least one v′ such that the pair v′, v is counted in t(q) (i.e., v′, v satisfy the conditions
in Definition 7.4.16).

Hence, and given Proposition 7.4.17, we can reshape Theorem 7.4.15 as follows.

Theorem 7.4.18 If Q is a class of CQs and c is a constant such that for any q ∈ Q:

(a) t(q) ≤ c, and

(b) for each pair v, v′ ∈ VI(q), |{ p′ | p′ ⊑R p, p(v, v′) ∈ q, and trans(p) ∈ R}| ≤ c,

then deciding ~d ∈ ans(q,K) for a given q ∈ Q and tuple ~d, is feasible in time single exponential
in ||q||+ ||K||.

153

Of course this includes, in particular, the case where all roles are simple.

Corollary 7.4.19 (Full) query answering in ALCH is feasible in single exponential time in the
size of the input.

From the well-known ExpTime-hardness of satisfiability testing in ALC [Sch91], it follows
that these bounds are tight: the presented query answering procedure is worst-case optimal for
ALCH and for all CQs that comply to Theorem 7.4.18.

Data Complexity

A straightforward adaptation of our query answering procedure to a non-deterministic version
yields an algorithm that is worst-case optimal in data complexity. In particular, we show the
coNP upper bound. To see it, we assume a fixed CQ q, a TBox T and an RBox R, and
analyze the complexity of deciding ~a ∈ ans(q, 〈A,T ,R〉) for a given ABox A and a tuple ~a of
individuals, where A is extensionally reduced, and NC(A) ∪ NR(A) ⊆ NC(T) ∪ NR(T) ∪ NR(R),
i.e., the concept assertions in A are all of the form A(a) for some concept name A, and all
concepts and roles that occur in A occur also in T or R. Then we let K = 〈A,T ,R〉.

Recall that for any set T of types for K we can obtain a T-complete knot set K in time
single exponential in |ClC(K)| + |NR(K)| (see (∗) in the proof of Theorem 7.4.1). The slight
difference from the algorithm in Figure 8, is that we want to achieve independence from any
specific ABox. We thus set T to the set typesC(K) of all possible types for K, and compute a
typesC(K)-complete knot set K. Note that K depends only on T and R, and is ABoxTypes(K′)-
complete for any KB K′ = 〈A′,T ,R〉. Then we can compute a complete type-query TQ for K

and q; we have shown that the time required for this is polynomial in |K|+ 2|FR
q |. As T , R and

q are fixed, constructing K and TQ is feasible in constant time.
Given K and TQ, the complexity result follows from the fact that deciding ~a 6∈ ans(q,K) is

feasible in non-deterministic polynomial time in ||A||. Indeed, this can be done in a guess-and-
check manner as follows:

• Build non-deterministically an expansion A′ ∈ exp(A,K,TQ). More precisely, guess an
ABox completion θ and, for each individual a ∈ NI(A), add abox(a, k(a), gk(a)) according
to a non-deterministic choice of some knot k(a) = (t,S) from K with root type t =
θ(a), and some f-query assignment gk(a) for k(a) as required in in Definition 7.3.20 (i.e.,
that assigns TQ-hits to all children). Observe that since T , R and q are fixed, such
an expansion A′ can be non-deterministically computed in polynomial time in ||A|| (the
maximum number of possible concept and role types are fixed and, since the number of
individuals is linear in ||A||, checking the conditions of Definition 7.1.7 is simple; also,
for each a, abox(a, k(a), gk(a)) has size bounded by a constant, and only constantly many
different abox(a, k(a), gk(a)) exist).

• Verify ~a 6∈ ans(q,A′). There are |NI(A
′)||VI(q)| different candidate query mappings π for q

in A′. As |VI(q)| is fixed and |NI(A
′)| is linear in ||A||, the number of such candidates is

polynomial in ||A||. Testing whether π witnesses ~a ∈ ans(q, 〈A′, ∅, ∅〉) is also polynomial
in ||A||. Hence, the verification step is feasible in polynomial time in ||A||.

This yields a tight coNP upper bound for the data complexity of the problem (the upper
bound was shown in [GHLS08], and the lower bound is due to [Sch94a]; please see Section 7.5
for a detailed discussion).

We get an analogous coNP result for answering varying CQs of small size (bounded by a
constant) over a knowledge base K with a fixed TBox and RBox, if its compilation into a suitable

154

T-complete knot K set is available; this may be due to off-line pre-compilation, or to caching K

after the first query. In this setting, the tq-table TQ is constructible in polynomial time (only
constantly many subqueries exist), and deciding whether ~a 6∈ ans(q,K) is still feasible in NP. In
fact, if also the ABox is fixed, the last step is feasible in polynomial time (only constantly many
expansions A′ of A and constantly many candidate mappings of VI(q) into each A′ exist, which
can be easily traversed).

7.4.4 Encoding into Datalog

The guess-and-check procedure above can easily be simulated in disjunctive Datalog [DEGV01].
A disjunctive Datalog program P consists of rules of the form

A1 ∨ · · · ∨Am ← B1, . . . , Bn m+ n > 0 (7.3)

where each Ai and each Bj is a function-free first-order atom. We assume that the rules are
safe, which means that each variable occurring in Ai also occurs in some Bj . The semantics of
such a program P is given by the minimal (w.r.t. ⊆) sets of ground (variable-free) atoms that
are closed under the rules of P (called minimal models or answer sets). A ground atom A is a
cautious consequence of P , if A occurs in all answer sets of P .

Viewing individuals as constants and using disjunctive rules, it is not hard to generate the
expansions A′ of an input ABox A as answer sets of a program P (A). Using Theorem 7.3.21,
answering a query q = ∃~vϕ(~x,~v) amounts to answering the Datalog query q(~x) ← ϕ(~x,~v) over
P (A), and the latter is in turn equivalent to collecting all tuples ~a such that q(~a) is a cautious
consequence of P (A).

The program P (A) can be generated from the precomputed knot set K and the tq-table TQ.
The rules in P (A) must: 1. generate a completion of A, and then 2. generate an expansion,
associating to each individual a an expanded ABox abox(a,k, g) for some non-deterministically
chosen knot k and assignment g. The first task is straightforward:

(i) assertions A(a) and p(a, b) in A are simply stated as facts in P (A),
(ii) the membership of individuals in atomic concepts and roles can be “guessed” using disjunc-

tive facts of the form A(a) ∨A(a)← and p(a, b) ∨ p(a, b)←,
(iii) the closure of the concept types under the conditions in Table 7.1, as well as the closure of

role types under the ⊑R relation and the closure of roles under transitivity can easily be
enforced using rules with (bounded number of) variables; consistency of types is ensured
using simple constraints ← A(X), A(X) and ← p(X,Y), p(X,Y).

For generation of the expansions (step 2), we use a constant k for each knot in K and a constant g
for each t-hit of TQ. Then we can use a ground atom abox(a,k, g) for each individual a ∈ NI(A),
knot k and assignment g, and trigger the expansion of the abox as follows:

(i) a disjunctive rule of the form abox(a,k1, g1) ∨ · · · ∨ abox(a,kn, gn) ← triggers the non-
deterministic choice of a particular k and g for each a, and

(ii) rules H ← abox(a,k, g) for all assertions H ∈ abox(a,k, g) ensure the correct expansion of
A.

The program P (A) is constructible in polynomial time in ||A||, and since cautious inference
from disjunctive Datalog programs with bounded number of variables is coNP-complete, this
reduction is also worst-case optimal in data complexity.

We finally note that instead of disjunction, also (unstratified) negation may be used for
the encoding. Thus, a range of reasoning engines for disjunctive/unstratified Datalog (e.g.,
DLV [ELM+97], smodels [NS97], clasp [GKNS07]) can be used for implementation.

155

7.5 Discussion and Conclusion

In this chapter, we have presented two main contributions:

• We have described a novel algorithm for CQ answering over knowledge bases in SH which
has some attractive features. Most notably, an initial query compilation step allows us to
employ efficient Datalog engines to reason over different ABoxes. The algorithm runs in
2ExpTime in general but only in ExpTime for ALCH. It is worst-case optimal both in
combined and data complexity.

• We have identified transitive roles and role inclusions as a source of complexity that makes
query answering 2ExpTime-hard in all expressive DLs containing SH.

7.5.1 Comparing the Knot-Based Approaches

The algorithm for ALCH and SH described in this chapter is based on knots, and so is the
algorithm for ALCH and ALCHI that we discussed in Chapter 6. They illustrate two different
ways to apply knots for query answering, which are dual in some sense.

For a given query q, the algorithm in Chapter 6 marks knots with sets of subqueries of q for
which a match must be avoided, while the algorithm we described in this chapter computes, for
each knot, an entailed disjunction of subqueries for which a match certainly exists. The approach
in Chapter 6 is more compact and conceptually simpler, and it resembles a non-deterministic
top-down construction of a canonical model. The second algorithm, on the other hand, can be
seen as more constructive way of computing query answers in a bottom-up way, which allows to
reduce the level of non-determinism by using more ‘local’ information at each computation step.
The second approach is well suited to directly handle CQs with answer variables by encoding
into disjunctive Datalog; for the first approach, this is not apparent.

The two approaches also have common features that can be seen as inherent to the knot based
approach. The computation of the knot-based representation of models is independent of the
queries, and provides a worst-case optimal method for standard reasoning. Query answering is
then realized by associating to the knots query information, and optimal complexity bounds can
be achieved for different logics provided that the relevant subqueries of the query are adequately
characterized.

7.5.2 Data Complexity

The knot-based algorithms we have presented in chapters 6 and 7 are both optimal w.r.t. data
complexity. The bounds are not new, however.

The coNP lower bound has been known for many years already, and for a DL that is
significantly weaker than the basic ALC [Sch94b]. Naturally, research on data complexity has
then focused mostly on the so-called light-weight DLs, which do not contain the full ALC, and
significant progress has been done in understanding the boundaries of tractability and extending
as far as possible the languages for which query answering can be done efficiently, in polynomial
time, as for EL [KRH07, Ros07, KL07], or even in logarithmic space, as it is the case in the
DL-Lite families [CGL+07].

The few attempts that have aimed at establishing tight upper bounds for expressive DLs
have so far lead to the same coNP bound. This was established for standard reasoning in
ALCHIQ in [Mot06], for query answering in ALCHIQ, ALCHOQ and ALCHIO in [OCE08],
for query answering in SHIQ and SHOQ in [GLHS08, Gli07], and for query answering in the
guarded two-variable fragment of first-order logic with counting quantifiers in [PH09]. These
results indicate that, unlike the combined complexity, the data complexity of query answering
is not higher than the one of standard reasoning, at least for a wide range of Description Logics.

156

7.5.3 Datalog Encoding and Knowledge Compilation

The algorithm we have described in this chapter handles CQs with distinguished (output) vari-
ables directly. Although allowing answer variables does not make a difference for theoretical
complexity considerations, their impact in practice can be significant. Indeed, when one is inter-
ested in enumerating query answers, one makes a customary grounding step in which an input
query is reduced to possibly exponentially many Boolean queries, one for each possible output
tuple ~c, and for each tuple an independent run of the algorithm is required. This grounding step
can be expensive in practice and generate a lot of redundant calls to the procedure.

Our approach also provides a promising alternative to previous algorithms when we think in
terms of data complexity. Indeed, to our knowledge, previous algorithms for query answering
in expressive DLs which are optimal w.r.t. data complexity, usually do an initial guessing step
related to the ABox, and then execute a complex procedure that is exponential in the size
of the intensional axioms and the query in the general case. The procedure terminates in
polynomial time if both components are fixed, but may result in large polynomials in many
cases. Furthermore, the full computation is repeated from scratch for each input ABox. This
applies, for example, to the algorithms in [OCE08, GHLS08, Gli07, Lut08b], and even to the
algorithm in Chapter 6. The algorithm described in this chapter, on the other hand, seems to be
more amenable to optimizing the reasoning procedures w.r.t. the data, as the guessing related
to the data is deferred to the last step, and it is independent of the complex reasoning steps over
the intensional axioms and query, which can be spared in later calls. Indeed, the TBox and RBox
can be compiled into a knot set and then, together with the query, into a complete tq-table.
Both steps are completely independent of the data. Hence, in the context of relatively fixed
intensional information and a pre-defined query to be evaluated over dynamic data, doing these
two computationally expensive steps off-line could lead to a significant speed-up in practice.
Finally, for each input ABox, queries with answer variables can be evaluated directly over the
Datalog encoding of the compiled knowledge, exploiting existing efficient engines.

7.5.4 Related Work

We have compared our algorithm to other knot-based algorithms earlier in this section, and
discussed other approaches that are related to knots in Section 6.6.1. Of the other existing
algorithms for query answering in expressive DLs, the resolution-based method by Hustadt et
al. [HMS05] is perhaps most closely related to ours. Similar as in our approach, their method
first “compiles” the knowledge base and the query into a special form, and then exploits the
possibility to answer the query by means of a disjunctive Datalog program. However, this
is done on different grounds: the knot technique is model-theoretic in nature, while Hustadt
et al.’s method is proof-theoretic, cleverly exploiting resolution and superposition machinery.
Furthermore, the knot technique handles transitive roles in the query, which are not allowed
in [HMS05], and this algorithm is worst-case optimal for data complexity. In contrast, their
technique yields optimal bounds for data complexity of standard reasoning, but only a non-
optimal 2ExpTime upper bound for query answering.

157

Chapter 8

Summary and Conclusions

In this thesis we have studied the problem of query answering in expressive Description Logics,
with special emphasis on identifying suitable reasoning techniques, and deriving precise com-
plexity results.

Regarding the first aspect, we have explored two kinds of techniques: based on automata on
infinite forests, and based on knots. They both proved to be adequate to achieve our goal. We
used them to develop query answering algorithms for a wide range of description logics, and we
analyzed their complexity to obtain upper complexity bounds. By identifying a new source of
complexity, we were also able to prove that most of the given upper bounds are tight.

We hope that these results will contribute to a better understanding of the feasibility of
accessing data repositories governed by expressive knowledge representation languages, and of
the challenges that must be faced. The complexity results we have obtained—ranging from Exp-

Time-completeness to membership in 3ExpTime—show that queries over expressive Description
Logics are a powerful tool which can be used to solve complex problems in a concise way. A
clear understanding of its power and of the sources of its complexity enables us to use this
tool in a more adequate way. While many researchers and developers agree that having flexible
mechanisms to query knowledge bases is desirable, there is not so much common ground when
it comes to finding the right formalisms and choosing the best tools to realize query answering
services. There are still many challenges to be faced before reaching the maturity of, for example,
standard reasoning in Description Logics, where developers can choose from a broad selection
of formalisms and rely on off-the-shelf engines to provide reasoning services. We believe that
understanding the power and the limitations of query languages over knowledge bases is an
important challenge, and hope that our contribution will be a step in the right direction.

8.1 Discussion

In the rest of this chapter, we discuss in more detail some of the implications of our results,
and the challenges that remain for future work. To conclude this thesis, in Section 8.2 we do
a detailed recount of the complexity bounds we have derived and compile them together with
other results from the literature, to draw a comprehensive picture of the current landscape of
computational complexity of query answering in expressive Description Logics.

159

8.1.1 Automata Theoretic Techniques for Query Answering

The automata-based algorithm for query answering developed in Chapters 3 and 4 and the
derived complexity results show that automata on infinite objects are a powerful and flexible
tool in this setting. The algorithm is very general: many popular DLs and many important
query languages can be handled by our algorithm as special cases. Furthermore, the resulting
upper bound is not higher than the upper bounds for expressive logics that had been obtained
before, even in significantly restricted settings.

The generality of the technique can also be seen as a limitations. Intuitively, in an au-
tomata algorithm, the complexity stemming from all the different sources is compiled together
into the states of the automaton. The different factors that may contribute to the complexity
of the problem, such as the size of the extensional and intensional components, the different
constructors allowed in the logic, the size of the query and the different possible shapes of query
mappings, contribute to the size of the state set. The emptiness algorithms allow us to measure
the complexity in terms of the number of states, but it is often hard to distinguish how the
contribution of the different elements is reflected in the final complexity bounds. If in addition
the construction uses different automata operations, as in Chapter 4, then it is even harder to
account for the independent contributions of different factors to the final bound, and all the
structure of the original problem is lost. As a result, the automata algorithm does not allow us
to single out the contribution of the extensional component in a way that yields a tight upper
bound for the data complexity. Deriving more fine grained bounds for syntactically restricted
cases, for example, was relatively easy with the knot-based approach, while with automata it
does not seem feasible without much more intricate book-keeping and possibly more involved
automata constructions [KV01, BVW94].

An interesting direction for further research may be to apply these techniques to more ex-
pressive query languages, such as recursive Datalog queries under suitable restrictions. Another
interesting direction is query answering over DLs equipped with some form of closed world as-
sumption [MHRS06, Hus94, SFdB09], which may be of interest in the database setting. The
techniques may be applicable to reason in hybrid formalisms that combine DLs and rules (see
[ADG+05] and its references), or to provide some query answering services in systems based on
other logics of interest in knowledge representation, such as guarded fragments of first-order logic
with predicates of arbitrary arities, possibly extended with fixed-point operators [GW99, Grä98].

8.1.2 The knot approach to query answering

Chapters 6 and 7 described two different but related knot-based techniques for query answering
in DLs. From these algorithms it seems possible to abstract a general knot approach to query
answering. Focusing on the ‘tree-part’ and disregarding ABox completions, the approach can
be roughly described as follows. To answer a query q over a KB K using knots, we need:

• A suitable characterization of (the tree parts of) a canonical model for KBs in terms of
knot sets. That is, a notion of a coherent knot set such that the structures that can be
built from it coincide with the canonical models of K.

• An adequate definition of a set of relevant subqueries of q, and a suitable notion of matches
for such subqueries, such that (i) the existence of a match for a subquery can be decided
locally at each knot k, and depends only on k and on the existence of located matches for
some smaller subqueries, and (ii) the existence of a match for q can be characterized in
terms of matches for the subqueries.

With this machinery, query entailment reduces to deciding the existence of some relations be-
tween knots and sets of subqueries. For example, in Chapter 6, we had to decide the existence of

160

S∗

SHIO

ALCHOIQ

SROQ

SHOQ

SROISRIQ

ZOI

in 3ExpTime

2ExpTime-complete

co-NExpTime-complete

ExpTime-complete

recursive

ZIQ ZOQ

undecidableZOIQ

ALCH

ALC

ALCHQ

SHIQ

ALCI SH

Figure 8.1: The complexity of query answering in expressive DLs. For the overlined/underlined
logics, the upper/lower bound was shown in this thesis.

a set of marked knots, and in Chapter 7 of a knot-query table. The complexity of the algorithm
is determined by the number of possible associations of knots and sets of subqueries. Once this
is bounded, an optimal procedure for deciding the existence of the desired set is not hard to
obtain. Hence, the combined complexity of query answering in a DL fundamentally depends on
the size of the set of all subqueries that needs to be considered in the knot associations.

From the results we have discussed, we can conclude that for some expressive DLs that
enjoy forest-shaped canonical models, the complexity of query answering is determined by the
following factor. Once a match for some query variable in an interpretation has been fixed,
in how many ways can the other variables be organized into subqueries? If this number is
polynomially bounded, then query answering is not harder than satisfiability. In particular, this
is the case when the query has only polynomially many tree rewritings.

This contrasts with the behavior of DLs where disjunction is disallowed. For example, in
Horn-SHIQ there are exponentially many subqueries to be considered, but it is not necessary to
store sets of them at the knots. Instead, we can pose them one by one over one single universal
model that is good for answering all queries. Hence query answering is feasible in ExpTime and
is not harder than knowledge base satisfiability [EGOŠ08].

8.1.3 Transitive roles and the complexity of query answering

The impact of transitivity in the complexity of query answering was a longstanding open prob-
lem. From a practical point of view it was acknowledged that it made the design of algorithms
harder. Most of the early query answering algorithms did not allow for unrestricted transitive
roles in the query [LR98a, Tes01, HMS04, OCE08], and algorithms that allowed them were much
more intricate than algorithms that did not [GHLS07, CEO07]. Transitive roles are desirable
from an application perspective: they often play an important role in ontologies, as they are

161

used to represent fundamental relations such as ‘part of’ [Sat00]. However, the development of
ExpTime algorithms for query answering in extensions of ALC seemed to require that transitive
roles were disallowed or severely restricted [Lut08b, OŠE08b], and a proof of hardness for some
class higher than ExpTime was not apparent.

As a first tangible contribution towards settling the problem, we have shown in Chapter 7
that in the presence of transitive roles and role inclusions, query answering in any extension
of ALC becomes 2ExpTime hard. If the number of transitive atoms is suitably bounded (see
Theorem 7.4.18), then the problem is still solvable in ExpTime. The hardness proof, however,
requires the presence of a transitive role and a role inclusion, and does not provide conclusive
evidence of the effect of transitive roles alone.

As it turns out, transitive roles alone are a source of complexity, but a rather subtle one.
It is not easy to adapt the knot marking algorithm described in Chapter 6 without causing
an exponential blow-up, because queries with transitive roles can have exponentially many tree
rewritings even on one-way canonical models. In fact, annotations can be of exponential size,
and a similar reduction to simple ABoxes would not give sets of queries of polynomial size. Over
simple KBs that have only one individual in the ABox one can use a sophisticated adaptation
of the knot marking algorithm, which uses a weaker form of tree-rewritings called pseudo-tree
queries, to show that query answering in S is feasible in exponential time [ELOŠ09b]. This
upper bound extends to ABoxes whose relational structure is a tree. However, using an ABox
that is not tree-shaped (but DAG-shaped), one can show that CQ entailment in S is co-NExp-

Time-hard [ELOŠ09b]. That the shape of the ABox has such an impact on the complexity is
surprising, and there is no evidence so far of a similar behavior in other well-known DLs. A
matching co-NExpTime upper bound was most recently established for the case where there
is only one role available, and it seems plausible that the bound may extend to the general
case [BEL+10].

8.2 The Complexity of Query Answering in Expressive DLs

Significant progress has been made in the last years towards understanding the complexity
landscape for query answering in expressive DLs. In this thesis we have settled some of the open
questions, although others remain. The main complexity-related contributions of this thesis are
the following:

(1) We have shown that knowledge base satisfiability in any fragment of ZOIQ enjoying the
canonical model property, and in particular in ZIQ, ZOQ and ZOI, is decidable in single
exponential time (Theorem 3.4.2).

(2) We have shown a 2ExpTime upper bound for entailment of positive two-way regular path
queries in ZIQ (Theorem 4.2.2), and containment of conjunctive queries in positive two-
way regular path queries w.r.t. ZIQ knowledge bases (Theorem 4.2.3). We also proved a
2ExpTime upper bound for entailment and containment of positive two-way regular path
queries in ZOQ and ZOI (Theorems 4.2.2 and 4.2.3).

(3) We have obtained a 2ExpTime upper bound for deciding knowledge base satisfiability in
any fragment of SROIQ whose rewriting into ZOIQ enjoys the canonical model property,
and in particular for SRIQ, SROQ, and SROI (Theorem 5.2.2). If, in addition, the input
knowledge base is sparse then satisfiability can be decided in single exponential time.

(4) The query entailment and containment results were also extended to the DLs of the SR
family. Namely, entailment of positive two-way regular path queries in SRIQ and contain-
ment of conjunctive queries in positive two-way regular path queries w.r.t. SRIQ knowledge

162

bases are decidable in 3ExpTime, while entailment and containment of positive two-way
regular path queries in SROQ and SROI are decidable in 3ExpTime (Theorems 5.3.3
and 5.3.4). If the knowledge base is sparse or only simple roles occur in the query, then we
obtain a 2ExpTime upper bound.

(5) We have shown a tight ExpTime upper bound for entailment of unions of conjunctive
queries in ALCH (Theorem 6.5.1), and for entailment of conjunctive queries in SH when-
ever the occurrences of non-simple roles in the query satisfy certain syntactic restrictions
(Theorem 7.4.18).

(6) We have shown that conjunctive query entailment in SH is 2ExpTime-hard (Theorem
7.4.3).

The results listed in items (1) to (4) were published in [CEO09b]. A previous version of the
algorithm that only covered ALCQIbreg had been published in [CEO07], and it was extended
to ZIQ and SRIQ in [Ort08]. The results listed in item (2) generalize previous 2ExpTime

upper bounds for entailment of union of conjunctive queries in SHIQ [GHLS08], entailment
of positive two-way regular path queries in ALCQIbreg [CEO07], containment of conjunctive
queries in ALCQIreg [CDGL08], and entailment of unions of conjunctive queries in SHOQ
[GHLS08]. They improve significantly the 3NExpTime upper bounds for entailment of positive
queries (without regular expressions) in the weaker ALCHOQ and ALCHOQ from [OCE08].
The given bound does not hold for ZOIQ in general, where positive two-way regular path
query entailment is in fact undecidable [ORŠ10]. The only decidability result so far for an
expressive DL combining I, O and Q was shown for ALCHOIQ in [GR09], but no elementary
upper bound on the complexity can be obtained from the algorithm described there. The results
listed in item (3) improve over the 2NExpTime upper bound that the 3 sublogics inherit from
SROIQ [Kaz08], while the results mentioned in (4) are, to our knowledge, the first bounds for
query entailment in these DLs.

The first result mentioned in item (5) was shown here using an extension of a technique
published in [ELOŠ09a]. ExpTime upper bounds for conjunctive query entailment were shown
for ALCHQ in [Lut08a] and for ALCH in [OŠE08b]. The latter was extended to restricted
families of queries in SH in [OŠE08a, EOŠ09], where the second result mentioned in item (5)
was published.

Finally, the result mentioned in item (6) was published in [ELOŠ09b], where we also showed
that conjunctive query entailment in the DL S is co-NExpTime-hard in general, but in Exp-

Time if the ABox is tree-shaped. A tight co-NExpTime upper bound was most recently
established for queries with only one role [BEL+10]. We believe it will extend to the general
case, and showing this is part of our ongoing research. Item (6), together with the 2ExpTime-
hardness for ALCI shown in [Lut07], implies that the results in item (2) are tight.

These results are summarized in Figure 8.1. The overlined logics indicate the upper bounds
shown in this thesis, and the underlined SH indicates that the lower bound was also shown in
the thesis. All bounds hold for CQ entailment, but the undecidability of ZOIQ requires that
regular role expressions are allowed in the query. The 2ExpTime and 3ExpTime upper bounds
are also for P2RPQs. In the case of S, the upper bound has only been shown for the restricted
case in which the query contains only one role.

163

Bibliography

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: from Rela-
tions to Semistructured Data and XML. Morgan Kaufmann, 2000.

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Re-
search, 36:1–69, 2009.

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 137–148, 1996.

[ADG+05] Grigoris Antoniou, Carlos Viegas Damasio, Benjamin Grosof, Ian Hor-
rocks, Michael Kifer, Jan Maluszynski, and Peter F. Patel-Schneider.
Combining rules and ontologies. A survey. Technical Report De-
liverable I3-D3, REWERSE Project, February 2005. Available at
http://rewerse.net/deliverables/m12/i3-d3.pdf.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley Publ. Co., 1995.

[AV99] Serge Abiteboul and Victor Vianu. Regular path queries with constraints. J. of
Computer and System Sciences, 58(3):428–452, 1999.

[Baa91] Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI’91), 1991.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Sc. Cambridge University Press,
Cambridge, 2001.

[BEL+10] Meghyn Bienvenu, Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas
Šimkus. Query answering in the description logic S. In Proceedings of the 23rd
International Workshop on Description Logics (DL2010), CEUR-WS, 2010.

165

http://rewerse.net/deliverables/m12/i3-d3.pdf

[BHLW03] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From tableaux to
automata for description logics. Fundamenta Informaticae, 57:1–33, 2003.

[BLM08] Franz Baader, Carsten Lutz, and Boris Motik, editors. Proceedings of the 21st
International Workshop on Description Logics (DL2008), Dresden, Germany, May
13-16, 2008, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[BLMV08] Piero Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The com-
plexity of enriched µ-calculi. Logical Methods in Computer Science, 4(3:11):1–27,
2008.

[BLR03] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description logics
for data bases. In Baader et al. [BCM+03], chapter 16, pages 462–484.

[BP04] Piero A. Bonatti and Adriano Peron. On the undecidability of logics with converse,
nominals, recursion and counting. Artificial Intelligence, 158(1):75–96, 2004.

[Bun97] Peter Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems (PODS’97), pages 117–
121, 1997.

[BVW94] Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic
approach to branching-time model checking. In Proc. of the 6th Int. Conf. on
Computer Aided Verification (CAV’94), volume 818 of Lecture Notes in Computer
Science, pages 142–155. Springer, 1994.

[CDG03] Diego Calvanese and Giuseppe De Giacomo. Expressive description logics. In
Baader et al. [BCM+03], chapter 5, pages 178–218.

[CDGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149–158, 1998.

[CDGL02] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 2ATAs
make DLs easy. In Proc. of the 15th Int. Workshop on Description
Logic (DL 2002), pages 107–118. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-53/, 2002.

[CDGL+05a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Data complexity of query answering in description logics. In
Proc. of the 18th Int. Workshop on Description Logic (DL 2005). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-147/, 2005.

[CDGL+05b] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

[CDGL+06] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Data complexity of query answering in description logics.
In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), 2006.

166

http://ceur-ws.org/Vol-53/
http://ceur-ws.org/Vol-147/

[CDGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

[CDGL08] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive
query containment and answering under description logics constraints. ACM
Trans. on Computational Logic, 9(3):22.1–22.31, 2008.

[CDGLV99] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Rewriting regular expressions in semi-structured data. In Proc. of ICDT’99 Work-
shop on Query Processing for Semi-Structured Data and Non-Standard Data For-
mats, 1999.

[CDGLV00] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Containment of conjunctive regular path queries with inverse. In Proc. of the
7th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2000), pages 176–185, 2000.

[CDGLV02] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Rewriting of regular expressions and regular path queries. J. of Computer and
System Sciences, 64(3):443–465, 2002.

[CDGLV03] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Reasoning on regular path queries. SIGMOD Record, 32(4):83–92, 2003.

[CDGV03] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Decidable con-
tainment of recursive queries. In Proc. of the 9th Int. Conf. on Database Theory
(ICDT 2003), volume 2572 of Lecture Notes in Computer Science, pages 330–345.
Springer, 2003.

[CDGV05] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Decidable contain-
ment of recursive queries. Theoretical Computer Science, 336(1):33–56, 2005.

[CEO07] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular
path queries in expressive description logics: An automata-theoretic approach.
In Proceedings of the Twentysecond AAAI Conference on Artificial Intelligence
(AAAI 2007), pages 391–396, 2007.

[CEO09a] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path
queries in expressive description logics via alternating tree-automata. Techni-
cal Report INFSYS RR-1843-09-04, Institut für Informationssysteme, Technische
Universität Wien, A-1040 Vienna, Austria, December 2009.

[CEO09b] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in
expressive description logics with nominals. In C. Boutilier, editor, Proc. of the
21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pages 714–720, 2009.

[CGHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-
Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. Journal of Web
Semantics, 6(4):309–322, 2008.

167

[CGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The l-lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proc. of the 9th ACM Symp. on Theory of
Computing (STOC’77), pages 77–90, 1977.

[DdN05] Stéphane Demri and Hans de Nivelle. Deciding regular grammar logics with con-
verse through first-order logic. J. of Logic, Language and Information, 14(3):289–
329, 2005.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Computing Surveys, 33(3):374–
425, 2001.

[DFN97] Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors. Logic Programming and
Nonmonotonic Reasoning, 4th International Conference, LPNMR’97, Dagstuhl
Castle, Germany, July 28-31, 1997, Proceedings, volume 1265 of Lecture Notes in
Computer Science. Springer, 1997.

[DG95] Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università
di Roma “La Sapienza”, 1995.

[DGL94] Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence be-
tween description logics and propositional dynamic logics. In Proc. of the 12th
Nat. Conf. on Artificial Intelligence (AAAI’94), pages 205–212, 1994.

[DT01] Alin Deutsch and Val Tannen. Optimization properties for classes of conjunctive
regular path queries. In Giorgio Ghelli and Gösta Grahne, editors, Proc. of the
8th Int. Workshop on Database Programming Languages (DBPL 2001), volume
2397 of Lecture Notes in Computer Science, pages 21–39. Springer, 2001.

[EGOŠ08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Šimkus. Query
answering in the description logic horn-SHIQ. In Proceedings of the Eleventh
European Workshop on Logics in Artificial Intelligence (JELIA 2008), pages 166–
179, Berlin, Heidelberg, 2008. Springer-Verlag.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and de-
terminacy. In Proc. of the 32nd Annual Symp. on the Foundations of Computer
Science (FOCS’91), pages 368–377, 1991.

[ELM+97] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. A deductive system for non-monotonic reasoning. In Dix et al. [DFN97],
pages 364–375.

[ELOŠ09a] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus. Query an-
swering in description logics: The knots approach. In Hiroakira Ono, Makoto
Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information
and Computation, 16th International Workshop, WoLLIC 2009, volume 5514 of
Lecture Notes in Computer Science, pages 26–36. Springer, 2009.

168

[ELOŠ09b] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus. Query an-
swering in description logics with transitive roles. In C. Boutilier, editor, Proc. of
the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pages 759–764,
2009.

[EOŠ09] Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus. Conjunctive query answer-
ing in the description logic sh using knots. Technical Report INFSYS RR-1843-
09-03 (available at http://www.kr.tuwien.ac.at/research/reports/),
2009.

[EŠ10] Thomas Eiter and Mantas Šimkus. Fdnc: Decidable nonmonotonic disjunctive
logic programs with function symbols. ACM Trans. Comput. Log., 11(2), 2010.

[FG08] Dieter Fox and Carla P. Gomes, editors. Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008. AAAI Press, 2008.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. of Computer and System Sciences, 18:194–211, 1979.

[FLS98] Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 139–148,
1998.

[GHLS07] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query
answering for the description logic SHIQ. In Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2007), pages 399–404, 2007.

[GHLS08] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive query an-
swering for the description logic SHIQ. Journal of Artificial Intelligence Research,
31:151–198, 2008.

[GHS06] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for
description logics with transitive roles. In Bijan Parsia, Ulrike Sattler, and David
Toman, editors, Proc. of the 19th Int. Workshop on Description Logic (DL 2006),
volume 189, Windermere, Lake District, United Kingdom, May 2006. CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/.

[GHS07] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query en-
tailment for SHOQ. In Proc. of the 2007 Description Logic Work-
shop (DL 2007), volume 250 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-250/, pages 65–75, 2007.

[GHS08] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries
in shoq. In Proceedings of the 11th International Conference on the Princi-
ples of Knowledge Representation and Reasoning (KR-08), pages 252–262. AAAI
Press/The MIT Press, 2008.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Clasp
: A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and
John S. Schlipf, editors, Proc. LPNMR-07, volume 4483 of Lecture Notes in Com-
puter Science, pages 260–265. Springer, 2007.

169

http://www.kr.tuwien.ac.at/research/reports/
http://ceur-ws.org/
http://ceur-ws.org/Vol-250/

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Answering con-
junctive queries in the SHIQ description logic. Journal of Artificial Intelligence
Research, 31:150–197, 2008.

[Gli07] Birte Glimm. Querying Description Logic Knowledge Bases. PhD thesis, The
University of Manchester, Manchester, United Kingdom, 2007.

[GR09] Birte Glimm and Sebastian Rudolph. Conjunctive query entailment: Decidable
in spite of O, I, and Q. In Proceedings of the 2009 Description Logic Workshop
(DL 2009), 2009.

[Grä98] Erich Grädel. Guarded fragments of first-order logic: A perspective for new de-
scription logics? In Proc. of the 11th Int. Workshop on Description Logic (DL’98).
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-11/,
1998.

[GT03] Gösta Grahne and Alex Thomo. Query containment and rewriting using views
for regular path queries under constraints. In Proc. of the 22nd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2003), pages
111–122, 2003.

[GU92] Ashish Gupta and Jeffrey D. Ullman. Generalizing conjunctive query containment
for view maintenance and integrity constraint verification (abstract). In Workshop
on Deductive Databases (In conjunction with JICSLP), page 195, Washington D.C.
(USA), 1992.

[GW99] Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Proc. of the
14th IEEE Symp. on Logic in Computer Science (LICS’99), pages 45–54. IEEE
Computer Society Press, 1999.

[HKS05] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The irresistible SRIQ. In Proc.
of the 1st Int. Workshop on OWL: Experiences and Directions (OWLED 2005),
2005.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proc. of
the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2006), pages 57–67. AAAI Press, 2006.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
2000.

[Hla04] Jan Hladik. A tableau system for the description logic shio. In Ulrike Sattler,
editor, IJCAR Doctoral Programme, volume 106 of CEUR Workshop Proceedings.
CEUR-WS.org, 2004.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity
for modal logics of knowledge and belief. Artif. Intell., 54(3):319–379, 1992.

170

http://ceur-ws.org/Vol-11/

[HMS04] Ulrich Hustadt, Boris Motik, and Ulrike Sattler. A decomposition rule for decision
procedures by resolution-based calculi. In Proc. of the 11th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR 2004), pages 21–35,
2004.

[HMS05] Ulrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning
in very expressive description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pages 466–471, 2005.

[HS03] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role in-
clusion axioms. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2003). Morgan-Kaufmann Publishers, 2003.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of shiq with complex role inclusion
axioms. Artif. Intell., 160(1):79–104, 2004.

[HS05] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 2005.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very
expressive description logics. J. of the Interest Group in Pure and Applied Logic,
8(3):239–264, 2000.

[HT00] Ian Horrocks and Sergio Tessaris. A conjunctive query language for descrip-
tion logic ABoxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), pages 399–404, 2000.

[Hus94] Ullrich Hustadt. Do we need the closed world assumption in knowledge repre-
sentation? In Franz Baader, Martin Buchheit, Manfred A. Jeusfeld, and Werner
Nutt, editors, KRDB, volume 1 of CEUR Workshop Proceedings. CEUR-WS.org,
1994.

[Kaz08] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In Proceedings
of the Eleventh International Conference on the Principles of Knowledge Repre-
sentation and Reasoning (KR 2008), pages 274–284, 2008.

[KL07] Adila Krisnadhi and Carsten Lutz. Data complexity in the EL family
of description logics. In Proceedings of the 2007 Description Logic Work-
shop (DL 2007), volume 250 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-250/, 2007.

[KM08] Yevgeny Kazakov and Boris Motik. A resolution-based decision procedure for
SHOIQ. J. of Automated Reasoning, 40(2-3):89–116, 2008.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[KRH07] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for
a tractable fragment of OWL 1.1. In al. Karl Aberer et. editor, The Semantic
Web, 6th Int. Semantic Web Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, volume 4825 of Lecture Notes in Computer Science,
pages 310–323. Springer, 2007.

171

http://ceur-ws.org/Vol-250/

[KSV02] Orna Kupferman, Ulrike Sattler, and Moshe Y. Vardi. The complexity of the
graded µ-calculus. In Andrei Voronkov, editor, Proc. of the 18th Int. Conf. on
Automated Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer
Science, pages 423–437. Springer, 2002.

[KV98] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree au-
tomata emptiness. In Proc. of the 30th ACM SIGACT Symp. on Theory of Com-
puting (STOC’98), pages 224–233. ACM Press, 1998.

[KV01] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. on Computational Logic, 2(3):408–429, 2001.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

[LR98a] Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description
logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[LR98b] Alon Y. Levy and Marie-Christine Rousset. Verification of knowledge bases based
on containment checking. Artificial Intelligence, 101(1-2):227–250, 1998.

[LST05] Carsten Lutz, Ulrike Sattler, and Lidia Tendera. The complexity of finite model
reasoning in description logics. Inf. Comput., 199(1-2):132–171, 2005.

[Lut07] Carsten Lutz. Inverse roles make conjunctive queries hard. In Proceedings of
the 2007 Description Logic Workshop (DL 2007), volume 250 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/Vol-250/, pages 100–
111, 2007.

[Lut08a] Carsten Lutz. The complexity of conjunctive query answering in expressive de-
scription logics. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science, pages 179–193. Springer, 2008.

[Lut08b] Carsten Lutz. Two upper bounds for conjunctive query answering in SHIQ. In
Baader et al. [BLM08].

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description
logics: A survey. In Stéphane Demri and Christian S. Jensen, editors, Proc.
15th International Symposium on Temporal Representation and Reasoning (TIME
2008), pages 3–14. IEEE Computer Society, 2008.

[MHRS06] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL and
logic programming live together happily ever after? In Proceedings ISWC-2006,
volume 4273 of LNCS, pages 501–514. Springer, 2006.

[MLF00] Todd D. Millstein, Alon Y. Levy, and Marc Friedman. Query containment for
data integration systems. In Proc. of the 19th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2000), pages 67–75, 2000.

[MM07] Yde Venema Maarten Marx. Local variations on a loose theme: Modal logic
and decidability. In Finite Model Theory and Its Applications, chapter 7, pages
371–429. Springer, June 2007.

172

http://ceur-ws.org/Vol-250/

[Mot06] Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitaet Karlsruhe, Karlsruhe, Germany, January 2006.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata by
nondeterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science, 141(1-2):69–107, 1995.

[Ném86] István Németi. Free algebras and decidability in algebraic logic. DSc. thesis,
Mathematical Institute of The Hungarian Academy of Sciences, Budapest, 1986.

[Noy04] Natalya F. Noy. Semantic integration: A survey of ontology-based approaches.
SIGMOD Record, 33(4):65–70, 2004.

[NS97] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable
model and well-founded semantics for normal lp. In Dix et al. [DFN97], pages
421–430.

[OCE06] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data com-
plexity for conjunctive query answering in expressive description logics. In Proc.
of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006). AAAI Press, July
2006.

[OCE08] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query
answering in expressive description logics via tableaux. J. of Automated Reasoning,
41(1):61–98, 2008.

[ORŠ10] Magdalena Ortiz, Sebastian Rudolph, and Mantas Šimkus. Query answering is un-
decidable in dls with regular expressions, inverses, nominals, and counting. Techni-
cal Report INFSYS RR-1843-10-03, Institut für Informationssysteme, Technische
Universität Wien, A-1040 Vienna, Austria, April 2010.

[Ort08] Magdalena Ortiz. An automata-based algorithm for description logics around
SRIQ. In Proc. of LANMR 2008, volume 408 of CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-408/, 2008.

[OŠE08a] Magdalena Ortiz, Mantas Šimkus, and Thomas Eiter. Conjunctive query answer-
ing in SH using knots. In Baader et al. [BLM08].

[OŠE08b] Magdalena Ortiz, Mantas Šimkus, and Thomas Eiter. Worst-case optimal con-
junctive query answering for an expressive description logic without inverses. In
Fox and Gomes [FG08], pages 504–510.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PH05] Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. J. of Logic, Language and Information, 14(3):369–395, 2005.

[PH09] Ian Pratt-Hartmann. Data-complexity of the two-variable fragment with counting
quantifiers. Information and Computation, 207(8):867–888, 2009.

173

http://ceur-ws.org/Vol-408/

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data
Semantics, X:133–173, 2008.

[Pra79] Vaughan R. Pratt. Models of program logics. In 20th Annual Symposium on
Foundations of Computer Science, 29-31 October 1979, San Juan, Puerto Rico,
pages 115–122. IEEE, 1979.

[PSHH04] Peter Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontol-
ogy Language semantics and abstract syntax – W3C recommendation. Tech-
nical report, World Wide Web Consortium, February 2004. Available at
http://www.w3.org/TR/owl-semantics/.

[PST00] Leszek Pacholski, Wiesław Szwast, and Lidia Tendera. Complexity results for first-
order two-variable logic with counting. SIAM J. on Computing, 29(4):1083–1117,
2000.

[PSV06] Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi. BDD-based decision proce-
dures for the modal logic k. Journal of Applied Non-Classical Logics, 16(1-2):169–
208, 2006.

[RKH08a] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Cheap Boolean role
constructors for description logics. In Proceedings of the Eleventh European Work-
shop on Logics in Artificial Intelligence (JELIA 2008), volume 5293 of Lecture
Notes in Computer Science, pages 362–374, 2008.

[RKH08b] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Terminological reason-
ing in SHIQ with ordered binary decision diagrams. In Fox and Gomes [FG08],
pages 529–534.

[Ros07] Riccardo Rosati. On conjunctive query answering in EL. In Proceedings of the
2007 Description Logic Workshop (DL 2007), volume 250 of CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-250/, 2007.

[Sat00] Ulrike Sattler. Description logics for the representation of aggregated objects. In
Werner Horn, editor, ECAI 2000, Proceedings of the 14th European Conference
on Artificial Intelligence, Berlin, Germany, August 20-25, 2000, pages 239–243.
IOS Press, 2000.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970. ISSN
1439-2275.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pages 466–471, 1991.

[Sch94a] Andrea Schaerf. Query Answering in Concept-Based Knowledge Representation
Systems: Algorithms, Complexity, and Semantic Issues. PhD thesis, Dipartimento
di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1994.

[Sch94b] Andrea Schaerf. Reasoning with individuals in concept languages. Data and
Knowledge Engineering, 13(2):141–176, 1994.

174

http://www.w3.org/TR/owl-semantics/
http://ceur-ws.org/Vol-250/

[SE89] Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure
for the propositional µ-calculus. Information and Computation, 81:249–264, 1989.

[ŠE07] Mantas Šimkus and Thomas Eiter. FDNC: Decidable non-monotonic disjunctive
logic programs with function symbols. In N. Dershowitz and A. Voronkov, ed-
itors, Proceedings 14th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR 2007), number 4790 in LNCS, pages
514–530. Springer, 2007. Full paper Tech. Rep. INFSYS RR-1843-08-01, TU Vi-
enna. http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf.

[SFdB09] Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with
ontologies over DBoxes. In Proc. of the 21st Int. Joint Conf. on Artificial Intelli-
gence (IJCAI 2009), pages 923–925, 2009.

[SV01] Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), pages 76–91, 2001.

[Tes01] Sergio Tessaris. Questions and Answers: Reasoning and Querying in Description
Logic. PhD thesis, University of Manchester, Department of Computer Science,
April 2001.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133–192.
Elsevier Science Publishers, 1990.

[Tob00] Stephan Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. J. of Artificial Intelligence Research,
12:199–217, 2000.

[Tob01] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001.

[Ull00] Jeffrey D. Ullman. Information integration using logical views. Theoretical Com-
puter Science, 239(2):189–210, 2000.

[Var82] Moshe Y. Vardi. The complexity of relational query languages. In Proc. of the
14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages 137–146,
1982.

[Var85] Moshe Y. Vardi. The taming of converse: Reasoning about two-way computations.
In R. Parikh, editor, Proc. of the 4th Workshop on Logics of Programs, volume
193 of Lecture Notes in Computer Science, pages 413–424. Springer, 1985.

[Var97] Moshe Y. Vardi. Why is modal logic so robustly decidable. In DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, volume 31, pages 149–
184. American Mathematical Society, 1997.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proc. of the
25th Int. Coll. on Automata, Languages and Programming (ICALP’98), volume
1443 of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.

[VW86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Sciences, 32:183–221, 1986.

175

http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf

	Contents
	Introduction
	Motivation
	State of the Art
	Goal of the Thesis and Main Results
	Structure of this Thesis

	Query Answering in Description Logic Knowledge Bases
	Expressive Description Logics
	The Basic Expressive Description Logics ALC and ALCH
	The SH Family and other Extensions of ALCH
	The Z Family
	The SR Family
	Negation Normal Form
	Reasoning in DLs

	Queries over Description Logic knowledge bases
	Syntax and Semantics of Queries
	Reasoning with Queries
	Query Languages

	Measuring the Complexity of Reasoning
	Complexity Classes
	Combined and Data Complexity

	Trees and Forests

	Reasoning with Automata for the ZOIQ Family
	From Knowledge Bases to Concepts
	Canonical Models
	Syntactic Closure
	Canonical Model Property

	Satisfiability via Automata
	Representing Canonical Models as Forests
	Fully Enriched Automata on Infinite Forests
	Reducing Concept Satisfiability to FEA emptiness

	Complexity of Deciding Satisfiability
	Related Work and Discussion

	Reasoning about Queries using Automata
	Query Entailment via Automata
	Representing Query Matches
	Recognizing Query Matches using Automata
	Reducing Query Entailment to Automata Emptiness

	Complexity of Reasoning with Queries
	Deciding Query Entailment
	Deciding Query Containment

	Related Work and Discussion
	The Rolling-up Technique
	Modified Tableau in the Style of Carin

	Reasoning in the SR family
	Reducing SROIQ to ZOIQ
	The Rewriting

	Deciding KB satisfiability
	Deciding Query Entailment and Containment
	Related Work and Discussion

	Querying DLs with Inverse Roles
	Canonical Models for ALCHI
	Syntactic Closure and Types

	From General to Simple KBs
	Reasoning in simple ALCHI KBs using Knots
	Knots
	Satisfiability of Simple ALCHI KBs using Knots

	Query Answering by Knot Elimination
	Non-Entailment of a Set of Tree-shaped Queries
	From Standard Entailment to Directed Entailment

	Complexity of Query Answering
	Combined Complexity
	Data Complexity

	Related Work and Discussion
	Related Techniques

	Querying DLs with Transitive Roles and Role Hierarchies
	Canonical Models for SH
	Syntactic Closure and Types
	Canonical Models
	ABox Completions

	Reasoning in SH Using Knots
	Representing forest bases for SH with Knots

	Query Answering for SH by Knot Compilation
	Subqueries and Rooted Matches
	Subquery Entailment at Knots and Types
	Query Entailment over full KBs

	Computational Complexity
	Upper Bound
	Lower Bound
	Improving the Upper Bound
	Encoding into Datalog

	Discussion and Conclusion
	Comparing the Knot-Based Approaches
	Data Complexity
	Datalog Encoding and Knowledge Compilation
	Related Work

	Summary and Conclusions
	Discussion
	Automata Theoretic Techniques for Query Answering
	The knot approach to query answering
	Transitive roles and the complexity of query answering

	The Complexity of Query Answering in Expressive DLs

	Bibliography

