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Fault-Tolerant Hardware Implementation of
a Consensus Algorithm

Abstract

This thesis develops a new communication model for digital electronic systems.
The proposed scheme is comparable to a GALS (globally asynchronous locally syn-
chronous) system with the difference that the clock sourceshave a bounded, a-priory
known precision. This loose synchrony is exploited to establish a communication
that (i) is free of metastability by design and (ii) has a fully predictable tempo-
ral behavior. As a consequence the communication scheme presents a synchronous
behavior, thus allowing to employ techniques that are restricted to synchronous sys-
tems, while avoiding the central clock being a single point of failure. To compensate
for the imperfect synchronization of the local clocks (within the defined precision),
a FIFO buffer memory is used on each communication link.

Using the theory of distributed systems the correctness of the approach is formally
proved. For this purpose the communication activity is modeled as a distributed
algorithm. More specifically it is shown that metastability-free and correct commu-
nication is possible, given that the buffer is larger than a certain, formally proved
minimum. Furthermore an efficient hardware implementationis given and used to
experimentally show that the theoretical derived FIFO buffer size requirement rep-
resents a tight lower bound. A performance comparison with atraditional GALS
system shows that the performance of our solution is superior.

Based on the new communication model, a fault tolerant electronic system, able
to tolerate Byzantine faults even in case of non replica deterministic modules, is
developed. First the usability of a TMR system in such a setting is analyzed and, as
found inadequate, replaced by a hardware implementation ofthe commonly known
Byzantine EIG consensus algorithm.

As the EIG algorithm is lockstep synchronous, the lockstep synchronous model is
simulated on top of our communication model. The EIG algorithm is adapted such
that it can be efficiently implemented in hardware based on the timings established
by the lockstep rounds. The equivalence of the adapted algorithm and the original
EIG algorithm is shown. Additionally the hardware implementation for a system
tolerating a single Byzantine fault is sketched. Performance and complexity of the
implementation are analyzed.
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Fault-Tolerant Hardware Implementation of
a Consensus Algorithm

Kurzfassung

Diese Master-Arbeit entwickelt ein neues Kommunikationsmodell für digitale elek-
tronische Systeme. Das vorgeschlagene Schema ist vergleichbar mit einem GALS
(globally asynchronous locally synchronous) System mit dem Unterschied, dass
bei unserer Lösung die Taktquellen eine a-prior bekannte, beschrankte Präzision
aufweisen. Diese schwache Synchronität wird ausgenutzt umein Kommunikation-
ssystem welches (i) konzeptuell frei von Metastabilität ist und (ii) ein vollkommen
vorhersagbares zeitliches Verhalten hat zu entwickeln. Deshalb stellt das Kommu-
nikationsschema ein synchrones Verhalten zur Verfügung, welches die Anwendung
von Techniken gestattet, die auf synchrone Systeme beschränkt sind. Zusätzlich ver-
meidet dieses Schema den zentralen Clock als Single Point of Failure. Um die nicht
perfekte Synchronisation zwischen den lokalen Clock Signalen (innerhalb der Präzi-
sion) zu kompensieren wird auf jeder Kommunikationsverbindung ein FIFO Buffer
verwendet.

Mittels der Theorie der Verteilten Systeme wird die Korrektheit des Ansatzes
formal bewiesen. Dazu werden die Kommunikationsvorgänge als verteilter Algo-
rithmus modelliert. Genauer gesagt wird gezeigt, dass, unter der Voraussetzung
dass die Buffergröße über einem gewissen, formal bewiesenenMindestwert liegt,
metastabilitäts- und fehlerfreie Kommunikation möglich ist. Weiters wird eine ef-
fiziente Hardware Implementierung vorgestellt und diese zur experimentellen Va-
lidierung der theoretischen FIFO Buffer Größe verwendet. Eszeigt sich, dass die
bewiesene minimal benötigte Speichergröße eine größte untere Schranke darstellt.
Ein Vergleich der Leistungsfähigkeit mit einem traditionellen GALS System zeigt,
dass unsere Lösung einen höheren Datendurchsatz hat.

Basierend auf dem neuen Kommunikationsmodell wird ein fehlertolerantes elektro-
nisches System entwickelt, welches auch dann in der Lage istbyzantinische Fehler
zu tolerieren, wenn die Module nicht replikations-deterministisch sind. Dazu wird
zuerst die Verwendbarkeit von TMR Systemen untersucht. Da diese jedoch als nicht
einsetzbar eingestuft werden, muss stattdessen auf eine Hardware-Implementierung
des bekannten byzantinischen EIG Consensus Algorithmus zurückgegriffen werden.

Da der EIG Algorithmus ein lockstep synchroner Algorithmusist, wird basierend
auf dem Kommunikationsmodel ein lockstep synchroneres Rundenmodell imple-
mentiert. Weiters wird der EIG Algorithmus so angepasst, dass er effizient in Hard-
ware implementierbar ist. Die Äquivalenz des adaptierten Algorithmus mit dem

ix



Original wird gezeigt. Weiters wird die Hardware-Implementierung eines Systems,
welches einen byzantinischen Fehler tolerieren kann, beschrieben. Die Leistung und
Komplexität der Implementierung werden ebenfalls analysiert.
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Chapter 1

Introduction

1.1 Problem Definition

Currently digital electronic systems are mainly implemented based on the syn-
chronous paradigm. Due to ever increasing clock rates, smaller feature sizes and
increasing gate counts the assumptions made by this model are harder and harder to
meet. As only a single maximum clock rate is calculated for the whole system, long
signal connections, even if only a few are present, decreasethe system performance
dramatically.

To circumvent these problems globally asynchronous locally synchronous (GALS)
systems [Cha84] are used nowadays. Here the system is dividedinto several mod-
ules. Each module is driven by a single, independent clock source. The modules are
developed independently and the intermodule signals are therefore not part of any
timing analysis as they cross from one clock domain to another. Therefore the setup-
hold window is not guaranteed to be maintained and the intermodule links may be
subjected to metastability and therefore compromise the stability of the system.

The goal of this thesis is to develop a new system model which is (i) free of any po-
tential for metastability and (ii) providing the possibility to implement independent
modules. An efficient implementation for this problem is described, its correctness
proved and a tight lower bound on the required buffer size is given.

This model is used as basis to implement a fault tolerant system with the ability to
tolerate Byzantine faults, even if the implementation of themodules is not replica
deterministic. The usability of a TMR system in such a setting is analyzed and, as
found inadequate, replaced by a system using a hardware implementation of the
widely known EIG consensus algorithm. The equivalence of the hardware imple-
mentation and the original EIG algorithm is shown.
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1.2 Structure of the Thesis

The thesis is structured into four parts. The first part recapitulates the theory needed
to understand the remainder of the thesis. It comprises Chapters 2-5. Chapter 2 gives
an overview on the distributed systems theory including message passing systems,
clock synchronization and system models. It is followed by abrief introduction into
failure modeling and -handling in distributed systems. Chapter 3 introduces different
clocking models as well as intermodule communication techniques and describes the
problem of metastability. Chapter 4 outlines state of the artcommunication schemes
based on the standards established in Chapter 3. Hardware fault models and fault
tolerance mechanism (TMR systems) are discussed in Chapter 5.

Part II is devoted to the implementation of the basic framework including the
metastability free communication layer and the simulationof the lockstep syn-
chronous model based on the local microtick clock. Chapter 6 motivates the ne-
cessity of a new system model. Our approach for mapping circuits as distributed
systems is shown in Chapter 7. Two different approaches for metastability free com-
munication are presented in Chapter 8. Additionally the model with the higher per-
formance is formally proved correct. Its hardware implementation and experimental
results are presented in Chapter 9. Part 2 is concluded by defining a method to create
lockstep synchronous rounds based on the local clock only (Chapter 10).

The implementation of a Byzantine fault tolerant system forms the focus of Part III.
Chapter 11 motivates why such a system is important. It is shown that a naive TMR
implementation would surely fail and that a more sophisticated implementation will
also fail, if the system is not replica deterministic. The design of a hardware im-
plementable adaptation of the exponential information gathering (EIG) algorithm
[AW04] is described in Chapter 12. The equivalence of both algorithms is also
shown and its hardware implementation is sketched.

Part IV concludes the thesis. Chapter 13 discusses open questions and future ex-
tensions, while Chapter 14 concludes the thesis by summarizing its most important
findings.



Part I

Theoretical Background
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Chapter 2

Distributed Algorithm Basics

To be able to prove the correctness of our solutions, we will model them using the
theory of distributed systems. Therefore this chapter gives a brief overview on the
distributed systems theory. In this chapter, except for Section 2.4, we assume that
the system is reliable.

For more in depth information on the subject the very good book ”Distributed
Computing – Fundamentals, Simulations and Advanced Topics”[AW04] is recom-
mended to the interested reader. Where not referenced otherwise, the information
presented within this chapter is based on this book.

2.1 Message Passing System

As already mentioned before, the basis for the formal part ofour work is the dis-
tributed systems theory, more specifically Message PassingSystems. Such systems
consist of the following elements:

• Multiple computational nodes (shortly called nodes)1

• Communication links between the nodes (message passing network)

Directed graphs (see [Die05] for details on graph theory) are used to visualize mes-
sage passing systems. Each computational node is represented by a node within the
graph. The links within the message passing network are represented by directed
edges. An example for a message passing system consisting offour nodes and using
a fully connected message passing network is displayed in Figure 2.1.

1In difference to [AW04] the computational elements are called nodes and not processors. This
differentiation is made because their functionality is notnecessarily implemented by a processor.

5
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Node 0 Node 1

Node 2 Node 3

Figure 2.1: Example Message Passing System

2.1.1 Message Passing Network

The data transmission between any two nodes is modeled as theexchange of mes-
sages between these nodes. Each node can send a message to an adjacent node using
the message passing network. Theoretically the topology ofsuch a network can be
arbitrary. Nevertheless for simplicity reasons it is assumed that the network is fully
connected, which means there is a communication channel between any two nodes
(see Figure 2.1 as an example).

2.1.2 Computational Node

A computational node is the basic element of a message passing system. A single
node is referred to asni, wherei is an artificial index identifying the nodes in the
system. We introduce the setP =

⋃

i

{ni}, called the set of nodes, containing all

computational nodes of the system.

The computational nodes perform all calculations within the system. Figure 2.2
shows an example of a node with three neighbors. The node is modeled using the
following three components:

• A state transition table modeling the internal logic of the considered node.

• An input buffer component (shortly calledinbufj) for each adjacent nodej.

• An output buffer component (shortly calledoutbufj) for each adjacent node
j.
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Figure 2.2: Example Node with Three Neighbors

The calculations performed by the nodes are modeled as statetransitions. For ev-
ery such state transition the node’s state transition tablecontains an entry. The input
to such a state transition is the current state of the node andall messages currently
present in the input buffers. Based on this information the successor state is selected
from the state transition table. Furthermore a subset (or all) messages can be re-
moved from the input buffer, as well as new messages added to the output buffers of
the node (sending messages to adjacent nodes).

The input buffers contain all delivered but not yet processed messages received from
adjacent nodes. Messages are added to the input buffer when they are delivered to
the node. A message is removed from the input buffer when having contributed to a
state transition.

The output buffers contain all messages sent by the node to anadjacent node. Mes-
sages are added to the output buffer, when they are generatedby a state transition.
All messages present in the output buffer are not yet delivered. Nevertheless the
node itself can not read from the output buffers. Therefore messages within the out-
put buffers can never affect the selection of a state transition from the state transition
table.

The messages are delivered using the message passing system. This is done by se-
lecting a message from an output buffer of the sender node andplacing it into the
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Figure 2.3: Message Delivery

input buffer of the receiver node. Figure 2.3 shows an example for the delivery of
two messages (one in each direction) between two adjacent nodes.

2.1.3 Actions and Events

All activities occurring in the system (like state transitions, message delivery,· · · )
are modeled as actions.Ak

i specifies thekth action of processori. The superscript
and subscript are omitted, if a general action (A) not bound to any processor is
described. Each action (A) has an associated start- and end time (shortlyts(A) and
te(A)) and therefore a duration (d(A) = te(A) − ts(A) ≥ 0). If the duration of an
action is zero (d(A) = 0), we call it an event (E). Since its duration is zero, the start-
and end time are the same and we only speak of its time of occurrence (t(A)).

2.1.4 Messages

We shortly call a message with contents M〈M〉. Each message has a specific length
called l(M) given in bits. Furthermore a message〈M〉 has the following temporal
properties.
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End-to-End Delay

We have already discussed the concepts of sending, delivering and reading (con-
suming) messages. We will now formalize the message delivery process. Using the
terminology of actions and events, we can model the sending,delivery and reading
of messages as events. Therefore we can associate a send-, delivery- and read-time
with each message〈M〉 calling them shortlytsend(M), tdelivery(M) andtread(M), re-
spectively.

The whole process of transmitting a message can be seen as an action (MT) start-
ing with the send event and ending with the read event. Therefore its duration is
d(MT) = te(MT)− ts(MT) = tread(M)− tsend(M) and it is called the message End-
to-End delay∆. If available, the upper and lower bound of the end-to-end delay in
the system are called∆+ and∆−, respectively.

Read-Write-Order Problem

It is important to note, that a message must be delivered before it can be read
(tdelivery < tread). Each implementation of a computational model must ensurethat
this order is met, otherwise the system behavior could become undefined.

FIFO Order

Without further assumptions messages sent on the same communication link may
be delivered in arbitrary order. Nevertheless, it is often convenient to assume FIFO
(first in first out) order on the communication links. FIFO order states that messages
sent on the same communication link are delivered in the order they were sent. For-
mally the FIFO property can be written as:∀ two messagesM1, M2 on the same
communication link:

tsend(M1) < tsend(M2) ⇔ tdelivery(M1) < tdelivery(M2)

2.1.5 Visualization of Executions

Execution are visualized using the so called space-time diagram. Each node is rep-
resented by a horizontal line within the diagram and the timeadvances from left to
right. For each node the events and actions are shown in the diagram using boxes
or short vertical lines. Furthermore all messages are visualized by arrows between
the action or events of the nodes. An (annotated) example execution can be found in
Figure 2.4.
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Figure 2.4: Space-Time Diagram Example

2.2 Global Notion of Time

So far we have discussed message passing systems with all their subcomponents. An
important property of such a system is a global notion of time. A consistent view of
time is a powerful property when modeling algorithms for distributed systems.

Time in distributed systems is measured in clock ticks. Eachclock tick can be seen
as an eventC in the system having an assigned real timet(C). Thekth clock tick on
nodei is referenced asCk

i .

2.2.1 Properties of a Global Time Base

We will now discuss three major properties of a time base, namely the clock drift,
the accuracy and the precision (π).

Clock Drift

As described in [Kop97], it is possible to deduce from the clock drift, whether a clock
is running with its nominal frequency or it runs too fast or slow. As a reference, a
fictional optimum clock with the nominal frequency is used. Figure 2.5 illustrates
both cases.

The rate a clock runs slower or faster than this nominal clockis called the drift rate
and defines how many real clock ticks occur within one clock tick of the fictional
nominal clock. The example clocks have a drift rate of1.14 and0.89.

Each node in the system can have a clock with a different driftrate. Furthermore the
drift rates of the clocks can vary over time.
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Figure 2.5: Example of Drifting Clocks

Accuracy

We use a more restrictive definition of accuracy than the one defined by [Sch87]. We
specify the lower- and upper bound of the period length of allclocks in the system
over time and therefore bound the rate the clocks may change with. Formally it can
be written as:

∀i ∈ P, k > 0 : ∃T− = min
i,k

(Ck+1
i − Ck

i ) > 0 (2.1)

∀i ∈ P, k > 0 : ∃T+ = max
i,k

(Ck+1
i − Ck

i ) ≥ T− (2.2)

As apparent from Equations (2.1) and (2.2), unlike the driftrate, the accuracy is a
property of the whole system.

Precision

Before discussing the last parameter of our global clock system, we need to define
the precedence relation (→). Introduced by Lamport in [Lam03],A → B informally
means that actionA must have been finished before actionB starts.

We now can use the precedence relation to describe the last important parameter,
namely the precision (π). It is defined as the maximum value any two clocks of the
system can differ at any point in time [Kop97]. Formally the precision can be stated
as:

∃π : ∀i, j ∈ P,∀k ≥ 0 : Ck
i → Ck+π

j (2.3)
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Figure 2.6: Example of a System with Three Clocks having a Precision of Three

To visualize this property Figure 2.6 shows an example clocksystem with three
clocks. For each of the clocks the corresponding precision envelop is shown as a
shaded area around the clock. For the system to hold its precision, all clocks must
stay in the overlapping area of all three precision envelopes.

2.2.2 Clock Synchronization

Since all clocks of the system can have different, even non constant, drift rates, the
precisionπ of any two clocks in the system changes over time and may, in particular,
become arbitrary large. To keep the precision within predefined bounds, a clock
synchronization algorithm must be applied, otherwise no global notion of time can
be achieved.

There are many commonly known clock synchronization algorithms already avail-
able (see e.g. [AW04, ST03, LMS85] and specifically for VLSI implementations
[WS05]).

We will assume the presence of a global clock system with a given precision and
accuracy already available in our system. Therefore we willnot discuss the concepts
of clock synchronization algorithms in detail here.
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2.3 Computational Models

There are two commonly known computational models that differ with respect to
the assumption of a global notion of time.

• The asynchronous model

• The lockstep synchronous model

These models can be considered extreme variants, and there are plenty of other mod-
els in between. However, since most algorithms are targetedto one of these two
models, we will concentrate on these two.

2.3.1 Asynchronous Model

As the name already suggests, no global notion of time is available in this model.
Furthermore there are no local clocks available in the system. The algorithms de-
scribable by this model are completely time free and only driven by message delivery
events (the message delivery event will trigger the messageread event). Therefore
there are no write-read order problems within this system.

Since no timing assumptions are made, no timing bounds can beviolated. As con-
venient as this is, the absence of such bounds restricts the implementable algorithms
dramatically (see e.g. [AW04] for some impossibility proofs).

2.3.2 The Lockstep Round Model

This model has a very accurate global notion of time (π = 0) and therefore is a
very powerful tool to implement distributed algorithms. The algorithms themselves
are easy to describe. The execution of the algorithm is splitinto successive rounds.
Each round starts with a message send event. After the delivery of all messages, each
node executes one computational action of specified length (d(A)) before the next
round starts. The length of all rounds0 < T ≤ C < ∞ is known in advance and
is normally constant over time. To meet this round duration,all messages must be
delivered timely, which means that the message end-to-end delay lies within:

∀i ≥ 0,∀k ∈ P : 0 ≤ ∆ ≤ ∆+ < T − max
i,k

(
d
(
Ak

i

))

An example of an execution within this model can be found in Figure 2.7.

Within this model the write-read problem is solved by the a-priory knowledge of the
message end-to-end delay bound and action durations. It will work as long as these
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Figure 2.7: Example Execution within a Lockstep Synchronous System

bounds are met. If only once a bound is violated, the behaviorof the system may
become undefined. With respect to the implementation, the assumption of perfect
precision is extremely strong, and therefore in practice additional considerations
become necessary when implementing such an algorithm.

2.4 Failure Handling in Distributed Systems

So far we have only considered failure free systems. Unfortunately real system will
not always work correctly. Parts of the system may fail over time. To describe such
events the distributed system theory has established different failure models. These
models can either be used to investigate the behavior of a system in case of a failure
or to find mechanisms to make the system fault tolerant. For a fault tolerant system
it is important to ensure that it stays operational even if some of the nodes get faulty.

An important function required in many distributed fault tolerant systems is to decide
on a common value, even in case some nodes of the system are faulty. In such a
setting, each node has its own, private input value. Based on all the input values
in the system, each node calculates a result value. All results of non-faulty nodes
must be the same. The problem is known as the agreement problem and algorithms
solving it as consensus algorithms [AW04].

2.4.1 Failure Models

It is impossible to find and describe each single failure which can occur in a dis-
tributed system. Therefore the different failure types aregrouped into different fail-
ure models. These models describe the manifestation of the failures on the algorith-
mic level.



2.4. FAILURE HANDLING IN DISTRIBUTED SYSTEMS 15

Figure 2.8: Failure Model Example

Depending on the underlying system model, the failures visible at the algorithmic
level will be different. Therefore three basic failure models used in distributed sys-
tems have been established in literature, namely [DLS88]:

• Crash Failure Model

• Omission Failure Model

• Byzantine Failure Model

They differ in their complexity and the severity of the allowed failures. An impor-
tant differentiation is, if a failure model allows benign failures [AW04]. In a benign
failure model, no illegal operations (like sending additional or conflicting messages)
may be executed. For non-benign failure models this constraint does not exist.

Figure 2.8 shows an example execution of a faulty node withinthe different failure
models. It visualizes the differences in the allowed failure patterns. There are more
models [AW04], but they are not needed here.

Crash Failure Model

When using the crash failure model, a faulty processor would behave non-faulty up
to a certain point in time. At this point it will crash, which means that it will fail to
send any further messages from this time onward. If at the time of crash multiple
messages should be sent, only a subset of these messages may be sent. This model
is a benign failure model.
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Omission Failure Model

If a node fails to send or receive a message at a certain point in time, an omission
failure has occurred. In contrast to the crash failure model, the node may send further
messages afterwards. This model is a benign failure model.

Byzantine Failure Model

Byzantine or arbitrary failures do not limit the nature of thefailures in any way. The
nodes within the system may even behave malicious and therefore try to actively
derail the execution of the algorithm. Additionally faultynodes can coordinate with
each other to maximize the effects of their malicious behavior. It is also possible that
conflicting messages are sent to different nodes. Furthermore additional messages,
which are not specified by the executed algorithm, may be generated. This model
therefore is a non-benign failure model.

2.4.2 Agreement Problem

The calculation of a common (output) value on different nodes is a crucial function-
ality of a distributed system. No problem in a fault free environment, it becomes
more challenging with the power of the used failure model.

An algorithm solving the agreement problem is called a consensus algorithm. For-
mally such an algorithm is defined as follows [AW04, DLS88].

The system consists of a setP of m nodes ({n0, n1, · · ·nm}). Each nodeni has
an input valuevi out of a value domainV . Goal of the algorithm is to compute a
common output valuev.

An f -resilient consensus algorithm is considered correct, iffthe following properties
hold, when at mostf nodes are faulty:

• Consistency: All non faulty nodes decide to the same value.

• Termination: In every infinite execution each non faulty node decides eventu-
ally.

• Unanimity:

– Strong Unanimity: If all initial values arev and if any non faulty node
decides, it decidesv.

– Weak Unanimity: If all initial values arev, all nodes are non faulty and
if any node decides, it decidesv.
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Depending on the chosen failure model of the underlying system, different imple-
mentations of a consensus algorithm are known [AW04]. It is important to note that
there is no consensus algorithm available in the asynchronous model (see [FLP85]).

Byzantine Agreement

Most interesting is the agreement problem in the presence ofByzantine failures
[LSP82]. At mostf out of at least3f+1 nodes (for a lower bound proof see [AW04])
may experience Byzantine failures. Independent of the behavior of the faulty nodes,
the non faulty nodes must select a common output value in a bounded amount of
time. An algorithm solving this problem is presented below.

Byzantine EIG Algorithm

The Byzantine EIG (exponential information gathering) algorithm [AW04] is a lock-
step synchronous algorithm which solves the Byzantine agreement problem with
strong unanimity, a minimum of required nodes (3f + 1), in the minimum number
of rounds (f + 1), but with messages of exponential size. Its functionalityis as
described below.

The main component of the algorithm is a tree structure stored by each node. It
contains all information gathered about the other nodes. Anexample of the tree can
be found in Figure 2.9. The valueVxy means the valueV received from nodey,
which had received it from nodex. No node index will be present more than once
in the subscript, therefore no information is processed multiple times by the same
node. The tree is built as follows:

• Round1: In the first round each node sends its input value to all othernodes.
When receiving an input value it is stored in the current tree level, if no value
is received, a default value is stored.

• Roundk, 1 < k ≤ f +1: In each successive round each node sends its current
tree level to all other nodes. When receiving a tree level it isagain stored in
the tree.

After receiving tree levelf + 1, the tree is locally used to calculate the output value
using a resolve function (mainly a combination of multiple majority votes).

For a detailed description and a correctness proof of the algorithm, please see
[AW04].
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Figure 2.9: EIG Tree for af = 1 System



Chapter 3

Digital Electronic Circuit Basics

Digital electronic circuits consist of combinational logic gates (like AND- and OR-
gates) and sequential elements (like flip-flops and latches). The circuit function is
defined by the interconnection of such gates. In this chapterwe will summarize
some of the theoretical concepts used to design high speed circuits.

3.1 Clocking Schemata

An important function within digital circuits is the coordination of the sequential
elements. Several schemata for accomplishing this task areknown.

3.1.1 Synchronous Circuits

The most popular clocking paradigm used today is the synchronous scheme [Wak01,
FH90, Sei79]. Although in use for several decades, it is still state of the art. Virtually
all commercially designed circuits are implemented using this paradigm.

It uses a centralized clock source (see Figure 3.1), mostly aquartz oscillator, and all
operations on the sequential elements are aligned with respect to this global clock
and no local synchronization information is needed. Conceptually all sequential el-
ements receive a clock tick at the exactly same point in time.

As appealing as the presence of an ideal global clock is, as problematic the system
analysis can get. Increasing clock- and signal frequencies[Con03], therefore de-
creasing timing safety margins, and increasing gate count tend to make the system
analysis more and more challenging. Furthermore increasing error rates [Con03],
due to smaller critical charges and lower voltage swings, must be taken into ac-
count nowadays when designing synchronous circuits. Thanks to the high degree

19
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Figure 3.1: Synchronous Model

of automation in the design process and the very sophisticated tool support, these
problems can still be handled.

Another disadvantage of this paradigm is its single point offailure introduced by the
global clock network. A failure within this network can result in the malfunction of
the whole system. Interestingly this problem is widely ignored [MFMR04].

Another highly problematic and challenging task, especially in high performance
systems, is the design of the clock network. To keep the synchronous abstraction
valid, the differences in the delays from the clock source tothe different sequential
elements (the skew within the clock network) must be rigorously controlled [Fri01].
This is especially problematic for large clock networks. The usage of special topolo-
gies, like e.g. forks and trees, nevertheless lead to acceptable results, but render clock
routing an art of its own.

As a big advantage, the synchronous paradigm provides a veryaccurate time base
with a precision of significantly less than one (nearly perfect synchronization,0 in
the idealized case).

3.1.2 Asynchronous Circuits

A completely different approach is the asynchronous paradigm [Hau95]. The most
appealing form of asynchronous logic is the delay insensitive model. It uses local
synchronization information, a so called handshake, to coordinate the operation of
adjacent sequential elements. A sender uses a request (req) signal (either an explicit
signal line or implicitly encoded into the data) to signalize the availability of new
data. It does not change the data until the receiver has acknowledge their recep-
tion using an explicit acknowledge (ack) signal. Figure 3.2 shows an example of an
asynchronous circuit using an explicit request and acknowledge signal.

Due to the absence of any timing bounds and any single point offailure conceptually
very appealing, it suffers on the lack of tool support and is therefore commercially
scarcely used. Furthermore delay insensitive solutions introduce a significant im-
plementation overhead (like null convention logic (NCL) [FB96]) and/or a timing
overhead. Nevertheless there are already working implementation examples avail-
able (e.g. [SFGP09]).
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Figure 3.2: Asynchronous Model

Unfortunately no global timebase can be established when using the delay insensi-
tive model due to the unknown message delays (infinite uncertainty)[AW04].

3.1.3 Globally Asynchronous Locally Synchronous (GALS) Cir-
cuits

An approach to circumvent the restrictions of the synchronous paradigm is the glob-
ally asynchronous locally synchronous (GALS) model [Cha84]. The system is split
into multiple modules and these modules are internally clocked according to the
synchronous model, each using a local clock source. They areunsynchronized. The
inter-module communication is implemented asynchronously (see Figure 3.3).

An advantage of this approach is that each module can be implemented as syn-
chronous circuit utilizing the existing powerful toolsets. Due to the small size of the
modules, their design and analysis is much easier and fasterthan the analysis of a
large fully synchronous system. A big drawback is the limited communication speed
between the modules. Due to the lack of synchronization flow control is needed
to enable a secure data transfer between the modules. This limits the communica-
tion throughput [TGL07] significantly. Furthermore no global timing information is
available.

To circumvent these drawbacks, several approaches have been suggested to loosely
synchronize the clocks of the different modules [TGL07]. Unfortunately the wide

Module Boundary

Module 1 Module 2

Figure 3.3: GALS Model
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Local Clock Generator

Module 1 Module 2

Module Boundary

Figure 3.4: Multisynchronous Model

ranging assumptions made on the clock drift rate to securelyimplement these ap-
proaches may not hold in practice.

3.1.4 Multisynchronous Circuits

A relatively new clocking approach are multisynchronous circuits [SG03]. This
model guarantees a bounded clock skew, but in contrast to thesynchronous approach
the skew can get larger than one clock cycle. To guarantee theskew bound, a certain
amount of coordination is needed between the different clock sources.

Like in the GALS model, the circuit is divided into synchronous modules. Each
of the modules is driven by a different clock of the multisynchronous ensemble
(see Figure 3.4) and can be implemented using the standard synchronous model.
Therefore the existing powerful toolsets can be used for thedesigns.

A big advantage of this paradigm is the presence of a global timebase. Its precision
equals the skew bound of the clocking system.

As shown by the DARTS clocking scheme (algorithm introducedin [WS05]), it is
possible to implement [FFSK06] such a clocking scheme in a fully distributed and
fault tolerant fashion.

3.2 Intermodule Communication in Electronic Cir-
cuits

The last section has given an overview on how to synchronize different modules of
an electronic circuit. Another important question is how tocommunicate between
these modules. In the following we will discuss different approaches for communi-
cating between such modules.
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3.2.1 Synchronous Communication

The most commonly used approach for communicating within digital electronic cir-
cuits is the synchronous communication scheme [Wak01]. Thedata transmission is
related to a global synchronous clock. This clock defines thevalidity of the data.
Therefore it is only implementable within the synchronous paradigm. At each active
clock edge (falling and/or rising edge) a new data item is written by the sender and
the receiver reads the data at the next active edge.

Based on the physical implementation of the sequential circuit elements, the follow-
ing properties arise:

• Output Delay (tout): Specifies the time the data needs to appear at the output
of a sequential element after an active clock edge.

• Transmission Delay (tdata): Specifies the time it takes a data bit to move from
the sender’s output to the receiver’s input.

For a save operation the following requirements must be fulfilled:

• Setup Time (tsu): Specifies the time the data must be stable at the receiver
input before an active clock edge to guarantee a safe operation.

• Hold Time (th): Specifies the time the data must be stable at the receiver input
after an active clock edge to guarantee a safe operation.

Based on these properties and requirements, the following constraints for a safe
operation are important (T is the period length of the clock signal):

T > tout + tdata + tsu (3.1)

th < tout + tdata (3.2)

Note that normally Equation 3.2 is easy to guarantee, while optimizing the period
length of the clock signal according to Equation 3.1 is very challenging. To en-
sure a reliable operation, these constraints must be met at all operational conditions.
To guarantee this, a timing analysis has to be done [Sei79, FH90, Fri01, HO71].
All paths in a system are analyzed under worst case conditions and based on the
resulting information a maximum clock frequency is calculated. The use of worst
case conditions leads to a clock frequency which is much lower than the frequency
achievable in the average case.
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Figure 3.5: Synchronous Communication

3.2.2 Sourcesynchronous Communication

Due to the relatively inefficient nature of the synchronous communication scheme
a new intermodule communication scheme was developed for high speed systems
[AJTR98]. The advantage is that the transmission delay of intermodule traces, which
is normally much greater than the transmission delays within a module, no longer
limits the clock frequency of the system. Additionally thisscheme can also be used
in conjunction with GALS and multisynchronous clocking schemes.

To enable the bit regeneration at the receiver the sender clock signal is transmitted in
addition to the data. This can be done either directly, by transmitting the clock signal
itself on a separate line, or encoded within the data. In either case, a transition of the
sender clock marks the validity of the data. An example can befound in Figure 3.6.

As in the synchronous case, no back pressure mechanism is implemented. Therefore
the receiver clock must at least be as high as the sender clock, otherwise data will be
lost. Therefore this scheme is usable only with restrictions in conjunction with the

Figure 3.6: Source Synchronous Communication
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Figure 3.7: Asynchronous Communication

GALS model. Additional care must be taken to ensure that the timing constraints
between the received data and the receiver clock are maintained. For more detailed
information on the subject of ensuring the constraints see Section 3.3.

3.2.3 Asynchronous Communication

So far we have seen communication schemes usable in the synchronous, multisyn-
chronous and with some restriction also in GALS model. We will now introduce a
completely asynchronous one which can be used in conjunction with each of the
presented clocking schemes. The coordination between sender and receiver is done
by local handshake signals, namely a request signal (req) to signalize the data va-
lidity and an acknowledge signal to confirm the data reception (ack). These signals
can be transmitted directly [IEE00] or can be encoded into the data (e.g. null con-
vention logic as described in [FB96]). An example can be foundin Figure 3.7. This
mechanism also implements a reliable back-pressure mechanism.

The main advantage of this scheme is that its performance is completely adaptive,
which means it can react to changes in the transmission delays by itself. Therefore
no timing analysis is necessary in advance.

3.3 Metastability

Up to now we have silently assumed that the data is valid when captured by a se-
quential element. Unfortunately in real systems this is notalways true. Consider an
external signal read by a sequential element of a synchronous system. Because the
signal is external, the system has no control on it at all. Whathappens, if the signal
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Figure 3.8: D-Flip-Flop Timing Constraints

changes at the exact moment the sequential element tries to capture it? The naive
answer would be that the value is either the value before or after the transition. Un-
fortunately this is not true. In this section we will investigate this behavior in more
detail.

3.3.1 Flip-Flop Timings

As already mentioned in Section 3.2.1, several timing constraints have to be main-
tained when working with synchronous sequential elements like flip-flops. As these
elements are heavily used in synchronous systems, we will now examine these con-
straints in more detail. The analysis is based on the standard D-Flip-Flop described
in [Wak01]. It can be easily adapted to all other kinds of synchronous sequential
elements.

A D-Flip-Flop is controlled by its clock input. The rising orfalling edge of the
clock signal triggers the capture operation of the data (D) input. To ensure a safe
operation, the data input must be stable a certain time before and after each active
clock transition [Wak01] (see Figure 3.8). These times are called setup- and hold-
time, respectively.

If one of these constraints is violated, the behavior of the flip-flop is undefined and
therefore its output (Q) can get undefined, even oscillating, for an unbound range of
time (see Figure 3.9) [KC87, CM73]. This behavior is called metastability. It can be
transmitted throughout the system [KC87], which means that one flip-flop after an-
other can get metastable. Another problematic possibilityis, that two logic elements
(combinational and/or sequential) can interpret a metastable input differently due
to a slight mismatch of their internal logic thresholds [KC87], resulting in different
output values even if they should be the same.

Therefore metastable states are very problematic and must be avoided at all cost.
In global synchronous systems only the boundary flip-flops are affected. When
using source synchronous or asynchronous communication within synchronous-,
multisynchronous- or GALS-systems, metastability can arise at each clock bound-
ary.
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Figure 3.9: Metastable D-Flip-Flop

3.3.2 Avoiding Metastability

The simplest way to avoid metastability is to use a synchronous system with pre-
calculated timings. As already discussed, in today’s high speed systems this is not
applicable any more. Furthermore the metastability occurring at the boundary flip-
flops is not handled by this approach.

When using asynchronous communication the handshake signals may be subjected
to metastability, while in source synchronous communication the data signal itself
may be.

Today metastability is avoided on a statistical basis and not by design, which means
that the mean time between failures (MTBF) is increased to a very high value such
that metastability becomes very unlikely [DP98]. This is achieved by means of syn-
chronizers. Synchronizers are circuits with the purpose toresolve metastable states.
The most commonly used and simplest version is the Two-Flop Synchronizer, a cir-
cuit consisting of two serially connected flip-flops [KC87]. The MTBF achievable is
good enough for most non-safety critical systems. For safety critical systems more
sophisticated circuits have been designed [DP98, KC87].

However, synchronizers alone are not enough. The circuit design must be adapted as
well [Gin03, Kin08]. For example in the asynchronous transmission case, only the
request and acknowledge signals are allowed to be synchronized, otherwise, due to
different transmission and input delays, the data could be interpreted erroneously.





Chapter 4

Communication Standards

When designing a dependable inter-module communication scheme, it is important
to analyze and understand existing communication standards. Therefore this chapter
introduces different bit representation techniques followed by commonly used line
coding algorithms. Afterwards widely used communication standards are described
in the light of these concepts.

4.1 Bit Representation

Depending on the method how bits are represented on the transmission line, two
fundamental methods for data transmission on electrical lines, namely single-ended-
and differential signaling, are known.

4.1.1 Single-Ended Signaling

Single-ended Signaling uses a single rail (transmission line) to transmit the data.
Two voltage levels are defined representing the high and low state, respectively,
while the ground level is used as reference. When using unipolar signaling [GG04],
one of the voltage levels is represented by the ground level itself, while the other is
modeled using a different voltage (e.g. 5V for TTL, 3.3V for LVCMOS33). When
using bipolar signaling [GG04] two voltage levels symmetric to the ground level (+/-
V) are used. Figure 4.1 shows an example of unipolar single-ended signaling.

While unipolar signaling is widely used within digital electronic circuits, bipolar
signaling, due to the possibility of DC free transmission, is primarily used in middle
and wide range signal transmission. Several other mechanisms of single-ended sig-
naling are known [GG04], but since they are primarily used intelecommunication
links, they are not described here.

29
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Figure 4.1: Unipolar Single-Ended Signaling (idealized)

4.1.2 Differential Signaling

While single-ended signaling uses only the absolute voltagelevel on a single rail
to transmit a signal, differential signaling [Nat08] utilizes the voltage difference be-
tween two rails to encode the data. These rails are called positive (P ) and negative
(N ). Figure 4.2 shows an example signal transmission using thedifferential trans-
mission scheme. As apparent from the example, one rail transmits the data directly,
while the other rail transmits the inverted data. Thereforeboth rails must be routed
length matched, in the best case parallel, to minimize the skew between both rails.

Normally the voltage difference between the rails is kept low, so the rails can change
from one state to the other very fast resulting in higher transmission rates as in the
single-ended case.

A problem with high speed signaling, single-ended or differential likewise, is that
the impedance of the transmission lines must be matched to the impedance of the
transmitter as well as the impedance of the line termination[Nat08], otherwise re-
flections will occur and in the worst case destroy the signal completely. Therefore
extra care must be taken when designing systems with high speed signal lines.

A widely used differential signaling standard is LVDS [Nat08]. The direction of a
constant current is used to encode the bits. The line is terminated using a resistor
of 100Ω between the two signal rails. The receiver detects the voltage drop (= the
differential voltage) at the terminating resistor to decode the bits. This voltage drop
is only about±350 mV, enabling high speed signaling up to 3.125 Gbps [Nat08]. A
typical LVDS sender/receiver combination can be found in Figure 4.3.

Figure 4.2: Differential Signaling (idealized)
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Figure 4.3: LVDS Transmitter and Receiver

4.2 Line Coding

Line coding is needed to enable the receiver to distinguish between the individual
bits. This is achieved by adding additional redundancy to the transmitted data stream.
Some of the most important techniques will be discussed in this section. They differ
in the overhead introduced to the data stream as well as in their implementation
costs.

4.2.1 Additional Clock Line

The data itself is transmitted unchanged on the first rail, while the clock is transmit-
ted on a second rail. Therefore the receiver has an exact knowledge of the beginning
of each new bit on the data rail. Figure 4.4 contains an example using single-ended
signaling. The sampling times are marked by red arrows.

When using differential signaling two rails are needed for each of the transmitted

Clock

0 0 1 0 1 0 1 1 1 0 0 0 1

Data

Figure 4.4: Linecoding using an Additional Clock Line
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Figure 4.5: Data-Strobe Encoding

signals, namelyDATA_PandDATA_Nfor the data signal andCLK_PandCLK_N
for the clock signal.

The receiver implementation is straightforward since the clock is known by the
receiver. This method introduces a significant bandwidth overhead (the clock fre-
quency is twice the maximum data frequency), as well as doubling the number of
needed data rails.

4.2.2 Data-Strobe Encoding

The data strobe encoding technique [IEE95] uses two rails totransmit a bit. They
are called Data (D) and Strobe (S). On the Data rail the data stream is transmitted
unchanged while on the Strobe rail a transition is made, if two successive bits on the
data rail have the same value. An example utilizing single-ended signaling can be
found in Figure 4.5.

When using differential signaling, two rails are needed for each of the transmitted
signals, namelyDP andDN for the data signal andSPandSN for the strobe signal.

The receiver can regenerate the clock by simply xor-ing the Data and the Strobe
rails. It is important to note that both edges of the regenerated clock signal are active
and therefore the receiver must react on both. In Figure 4.5 the sampling times are
again marked by red arrows.

The overhead this technique introduces is the second rail. The maximum frequency,
and therefore the needed bandwidth on both rails equals the bandwidth of the unen-
coded data signal.

4.2.3 8B/10B Encoding

The line coding algorithms already discussed transmit the sender clock to the re-
ceiver. This is achieved by adding a second data rail. Both methods are very sensitive
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to skew between the data rails and therefore the usage of length matched routing is
essential.

This restriction can be circumvented, if the timing information is directly encoded
into the data stream. 8B/10B encoding [Nat08], which is a special case of the gen-
eralaB/bB encoding scheme, uses this paradigm. Its encodes an eight bit data word
into 10 bits. The encoding and decoding is table based. The advantage is that the
resulting code can be made DC offset free [Nat08] and the clock can be regenerated
out of the stream using a PLL circuit [Nat08] at the receiver.There is no additional
bandwidth needed, but the resulting transfer rate is slightly decreased due to the ad-
ditionally added data-bits. Since only a single rail is used, no skew effects can occur.
Unfortunately the implementation with a PLL requires clocks with a low drift rate,
otherwise the PLL may lose its lock and the data regenerationwill fail.

4.2.4 Asynchronous Parallel Communication

When using asynchronous parallel communication handshake signals define the va-
lidity of the data bus. As already described in Section 3.2.3, a signalreq is used to
mark the validity of the data and a signalack to acknowledge the data reception. A
timing example can be found in Section 3.2.3.

4.2.5 Asynchronous Serial Communication

When using asynchronous serial communication with a predefined baud-rate, the
data transmission is marked with a start- and one or multiplestop-bits [GG04]. Each
of these bits has a predefined value (e.g. start-bit is low andstop-bit is high). The
start-bit is used to signalize the start of a transmission while the stop-bit marks its
end. The receiver can (re-)synchronize to this bit combination and its internal timing
tolerance must be only as good as to receive one block, often only a single byte, of
data. To enable a appropriate alignment of the sampling point the internal clock rate
of the sender and receiver are normally considerably higherthan the maximum baud
rate. Figure 4.6 shows a transmission example using eight data-, one start- and one
stop-bit.

Figure 4.6: Asynchronous Serial Communication
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Figure 4.7: SPI Link

4.3 Synchronous Communication Protocols

4.3.1 Basic Synchronous Transmission

Used in serial and parallel fashion, the synchronous data transmission is the eas-
iest way to transmit data streams between modules. As already described in Sec-
tion 3.2.1, all modules have the same clock and therefore only the plain data stream
has to be transmitted between the modules. This scheme typically uses single-ended
signaling. The capture times of the data bits are directly derived from the global
clock signal.

4.3.2 SPI

SPI (Serial Peripheral Interface) [Mil04] is a widely used serial communication
method (e.g. SD memory cards, microcontrollers). Unfortunately there is no offi-
cial standard, nevertheless the devices of the different manufacturers are compatible
with each other.

SPI is a single master system which uses a separate clock line(SCK) and sin-
gle ended signaling. The data is transmitted on a single lineform master to slave
(MOSI) and on a second one from slave to master (MISO). A specific slave is se-
lected through a dedicated slave select line (SS). Therefore (3 + #slaves) rails are
necessary (see Figure 4.7). No maximum data rate is specified.
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Figure 4.8: I2C Bus

4.3.3 I2C

I2C [Nxp07] uses one clock and one data rail for the communication. The output
drivers of the devices are open-drain drivers and the bus is pulled up by resistors (see
Figure 4.8). Therefore the high level is resistive while thelow level is dominant.Like
SPI it uses single ended signaling on both rails.

I2C is a multi-master system. Bus arbitration is done by monitoring both lines. If
a line unexpectedly goes low, the device assumes that another transmission is in
progress and aborts its transmission attempt. The maximum specified data transfer
rate is 1000 kbps.

4.3.4 PCI

The PCI bus [Pci98] is a parallel high speed bus used in personal computers to com-
municate with add-in cards. It uses a single clock line and a 32 or 64 bit combined
data- and address-bus for data transmission. Furthermore aset of control and status
signals are present. On all rails single-ended signaling isused. The access to the bus
is controlled by an arbiter which selects a single master foreach bus transaction.

The clock rate for the PCI bus is specified as either 33 MHz or 66 MHz. Therefore
the peak transmission rate is defined as 4224 Mbps.

4.4 Sourcesynchronous Communication Protocols

4.4.1 Space-Wire

The Space-Wire standard [Esa03] was developed with a focus on communication
buses for space devices. It is a full duplex point to point connection and uses Data-
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Figure 4.9: Full Duplex Space Wire Link

Strobe encoding with LVDS signaling. Therefore four rails are needed for each di-
rection. Figure 4.9 shows a full duplex Space Wire link.

The maximum transmission rate is not defined explicitly in the standard. Neverthe-
less, the Space-Wire homepage1 states 200 Mbps as maximum rate.

4.4.2 PCI-Express

PCI-Express [BAS03] replaces the old parallel buses (PCI, AGP) within personal
computer systems. Several speed grades are available (fromx1 to x32). The differ-
ence between the grades is the number of parallel lanes, starting with a single receive
and a single transmit lane at x1 and going up to 32 receive and 32 transmit lanes for
x32.

PCI-E uses 8B/10B line coding and a differential signaling technique which is not
compatible to LVDS. The maximum data transfer rate on a x1 link is 2.5 Gbps.

4.4.3 Infiniband

Infiniband [Sha02] is widely used for CPU interconnect networks in clusters. The
basic (serial) x1 link supports a data transfer rate of 2.5 Gbps. It supports LVDS
signaling (besides optical fiber) and uses 8B/10B line coding.

4.5 Asynchronous Communication Protocols

4.5.1 Serial Port

The standard PC serial port, aka. RS-232 or V.24, is a direct implementation of the
asynchronous serial data transmission (see Section 4.2.5). Additionally to the data
bits, a parity bit could be transmitted giving a limited degree of data protection.

1http://spacewire.esa.int/content/Home/HomeIntro.php
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The serial port is full duplex, which means that there is a separate rail from the PC
to the device and one in the other direction. Therefore the basic implementation uses
only two data rails. Additional signals for flow control and other control functions
could be added to the basic implementation [GG04].

4.5.2 Parallel Port

The standard PC parallel port based on the IEEE standard IEEE1284-2000 [IEE00]
is a half-duplex parallel bus consisting of an eight bit widedata bus, the handshake
signals and additional status and control signals. It is a direct implementation of the
asynchronous parallel transmission scheme as described inSection 4.3. All rails use
single-ended signaling.

4.6 Transmission Protocol Comparison

As conclusion to this chapter, Table 4.1 gives a short summary of all presented com-
munication protocols and their main properties.
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Table 4.1: Transmission Protocol Comparison
Transmission Protocol Number of Rails Signaling Maximum Transmission Speed Synchronization

Synchronous Transmission ≥ 1 Single-Ended Limited only by System Delays Synchronous
SPI 3 + # of Slaves Single-Ended Not Defined Synchronous
I2C 2 Single-Ended 1000 kbps Synchronous

PCI (32 Bit) @33 MHz 33 + control/status Single-Ended 1056 Mbps Synchronous
PCI (32 Bit) @66 MHz 33 + control/status Single-Ended 2112 Mbps Synchronous
PCI (64 Bit) @33 MHz 65 + control/status Single-Ended 2112 Mbps Synchronous
PCI (64 Bit) @66 MHz 65 + control/status Single-Ended 4224 Mbps Synchronous

Space-Wire 4x2 Differential 200 Mbps Source Synchronous
PCI-Express x1 2x2 Differential 2.5 Gbps Source Synchronous
PCI-Express x32 32x2x2 Differential 80 Gbps Source Synchronous

Infiniband x1 2x2 Differential 2.5 Gbps Source Synchronous
Serial Port 2 Single-Ended Not Defined, Commonly 115 kbps Asynchronous

Parallel Port 10 + control/status Single-Ended Not Defined Asynchronous



Chapter 5

Hardware Fault Models and Fault
Tolerance

The system- and communication schemes presented in Chapter 3have assumed that
the underlying circuitry is fault free. Unfortunately, dueto manufacturing impreci-
sions and material variations, not all circuits are manufactured fault free. Even if
a high percentage of these faults are found and most of the defective circuits are
rejected in the factory test, faults may still be present in some of the manufactured
circuits. Additionally adverse operation conditions, like radiation, electromagnetic
fields or extreme temperature, can cause runtime errors, even in fault-free circuits.
The resulting faults can either be permanent or transient.

A permanent fault, like a break in a signal line (originatingin electro migration
[Bla69] or deformation due to extreme temperature differences, e.g.), will not disap-
pear on itself. The fault is present until the system is manually repaired.

A transient fault, like a wrong signal state (caused by a single event upset (SEU)
[KH04], e.g.), on the other hand is only temporarily presentin the system and will
disappear on its own. Nevertheless its consequences, like acompromised system
state, may be visible much longer.

To be able to model such events consistently, several fault models have been de-
scribed on the functional level. Due to the importance of reliable circuitry, a sound
theory on fault modeling was established, as summarized in [EA97].

Today’s, high requirements on the safety and reliability ofelectronic circuits have led
to mechanisms for introducing a certain level of fault tolerance into the circuits. One
of the most important concepts used today are TMR (triple modular redundancy)
circuits [LV62]. They achieve fault tolerance by replicating the application logic
and use a majority vote on their results. Therefore one out ofthree replicas can be
faulty without affecting the result value of the system.
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Figure 5.1: Stuck At Zero Fault

This chapter will give an overview on hardware fault models and afterwards intro-
duce the TMR model.

5.1 Hardware Fault Models

As already mentioned above, several functional fault models were established
([EA97]). We will continue with summarizing the propertiesof some important fault
models.

5.1.1 Stuck-At Faults

The stuck-at fault model describes faults manifesting themselves as constant signal
values independent of the value driven by their corresponding source. A stuck-at-
0 fault therefore describes a signal constantly tied to low,while the stuck-at-1 fault
describes a signal constantly tied to high. In CMOS circuits this faults are equivalent
with a short circuit of the signal with GND or VCC, respectively. Figure 5.1 shows
an example of a stuck at zero fault.

As up to 95% of all circuit faults are detectable using test vectors generated for the
stuck-at model, in practice mostly this model is applied.

5.1.2 Stuck-Open Faults

Stuck-open faults have a similar behavior as stuck-at faults. The difference is that,
in case of stuck-open faults, the signal line is broken instead of tied to a constant
value. Depending to the position of the break and the functionality of the circuit,
this can lead to floating signals or even turn, by disconnecting parts of the circuit,
a combinational logic element into a sequential one. An example of a stuck-open
fault, creating a floating signal line, can be found in Figure5.2.
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Figure 5.2: Stuck-Open Fault

5.1.3 Bridging Faults

The stuck-at and stuck-open fault models can handle faults of a single line only.
As an example for a model describing faults between multiplesources, the bridging
fault model is introduced. It models unwanted connections between multiple sig-
nal lines. Depending on the underlying circuit, the bridging of the lines may cause
different behavior (wired-and, wired-or).

An example for a simple or-bridging of two signal lines can befound in Figure 5.3.

5.2 Fault Tolerance

After discussing the modeling of faults, we will now show howto make a circuit
fault tolerant. For safety-critical circuits or systems without a repair possibility, like
unmanned space crafts, it is important to tolerate a predefined number of faults.
The fault hypothesis, specifying the maximum number of tolerable faults, must be
defined before a fault tolerant system can be designed.

A very common assumption is a system which can tolerate a maximum of one fault.
For this assumption, triple modular redundancy (shortly TMR) systems are widely
used.

5.2.1 Triple Modular Redundancy

As mentioned before, TMR systems [LV62] can handle at most one fault. The ba-
sic layout can be found in Figure 5.4. The system consists of three replicas of the

Figure 5.3: OR Bridging Fault
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Figure 5.4: Basic TMR System

application logic and a single voter. The task of the voter isto perform a majority
vote on its inputs. If the system complies with the fault hypothesis, at most one input
will be faulty and therefore the majority of the input valuesis correct and selected as
result. As the voter is a single point of failure, it is normally implemented as simple
as possible and is therefore a combinational circuit only [Sho02].

As the voter is a single point of failure, it is apparent that such a combination is not
favorable. Therefore the concept has been extended by duplicating the voter [LV62]
leading to a slightly different system as shown in Figure 5.5. In this combination the
system will still be operational, even if a voter fails. The drawback here is that there
is no single, voted result available, but three voter outputs instead.

Figure 5.5: TMR System using Replicated Voters
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Framework Implementation
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Chapter 6

Problem Definition

To be able to design a dependable hardware implementation ofa consensus algo-
rithm, the underlying framework implementation must be reliable. The framework
must support the implementation of independent nodes and a reliable way to com-
municate between these nodes. Even if we could tolerate faults introduced by the
framework, as metastability, e.g., we do not want to generate additional faults in an
otherwise fault free execution. If such faults would occur,the reliability of the whole
system may be compromised. After analyzing existing solutions, we have found that
none of them fulfills all of our requirements.

At a first glance, the synchronous model is very appealing. Itsupports metastability
free communication links, is supported by a powerful toolset and is widely used. On
the other hand the whole system relies on a single clock source. If it fails, the whole
system will crash. Therefore it is impossible to implement independent nodes using
this model.

In the asynchronous model the absence of a clock signal in conjunction with the
adaptive transmission delays prevents the establishment of a global time base. There-
fore only asynchronous algorithms can be executed. Since noasynchronous consen-
sus algorithm is possible [FLP85], this system model is not suited for our needs.

The module structure of a GALS system with its independent clock sources is per-
fectly suited to implement independent nodes of a distributed system. Unfortunately
the absence of a global time base makes the implementation ofa consensus algo-
rithm impossible. Assuming bounded delays on the communication links would en-
able the generation of a global time base. Nevertheless its implementation would be
costly. Additionally the tendency for metastability on theintermodule communica-
tion links, even in the fault free case, prevents a reliable communication.

Fortunately, the DARTS clocking scheme developed at our institute suits all our
needs. It is a Byzantine fault tolerant implementation of a multisynchronous clock-
ing scheme. As in the case of a GALS system, the different nodes can be imple-
mented using independent clock sources. In contrast to the GALS clocking scheme
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the precision of the clock sources is known and therefore a bounded global time
base is available in the multisynchronous case. In the following sections we will
show how toimplement a metastability free communication layerbased on this in-
frastructure. To be able to prove its correctness, we will model the multisynchronous
circuit using mechanisms of the distributed system theory.

We will start with the introduction of our modeling technique. Afterwards, in Chap-
ter 8, the used communication layer model is built and provedcorrect. This is fol-
lowed by an outline of the hardware implementation of the communication layer
and its performance. Experimental results collected usinga test system will also be
presented. These results will be used to show that the provedlower bound is tight.

Finally Chapter 10 uses the communication layer and its properties to develop an
algorithm which establishes a lock step synchronous round model.



Chapter 7

Circuit Modeling

To be able to prove the correctness of a multisynchronous circuit, we first must map
it to a distributed system model. The resulting algorithmicdescription together with
a set of properties will later be used as basis for our proofs.

7.1 Creating the Model

The system is separated into several modules guided by the used clock sources.
All sequential elements driven by the same clock source are grouped into the same
module. Therefore only a single module will fail, if a clock source is faulty. Each
module is represented by a node of the distributed system model.

Since the whole module uses the same clock source, the idealized precision within
the module is zero (π = 0). Additionally the clock frequency of the modules’ clock
signals is calculated such that the maximum signal delay on the intramodule com-
munication links is less than one clock cycle (∆+ < 1). Therefore the modules are
purely synchronous circuits and can be designed using the existing powerful toolsets.

Within the distributed system model, the intramodule logic(sequential and combi-
national) elements are represented by the state transitionspecification of the corre-
sponding node.

For each identified intermodule communication link the boundary memory elements
are identified. All combinational logic elements on the links are merged into this
link.

The resulting model consists of a setP = {n0, · · · , nm} containing the identified
nodes. The nodes are interconnected by simple communication links only. An ex-
ample of modeling a single module can be found in Figure 7.1.
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Figure 7.1: Modeling Example
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7.2 Model Properties

Due to the usage of a multisynchronous clocking scheme, eachnode uses a different
local clock source. These clocks are synchronized with an a-priory known precision
π. The precisionπ equals the precision of the multisynchronous clocking system.
Formalizing the precisionπ we get:

∃π : ∀i, j ∈ P,∀k ≥ 0 : Ck
i → Ck+π

j .

It is important to note that for GALS system no such precisionexists and therefore
no global time base can be derived from the local clocks.

Additionally, by the accuracy of the clocking system, we know that a minimum clock
periodT− exists. Formally this minimum clock period can be specified as:

∀i ∈ P, k > 0 : ∃T− = min
i,k

(Ck+1
i − Ck

i ) > 0.

For the intermodule communication links, the message delay∆ is bounded using
a minimum (∆−) and a maximum (∆+) delay, respectively. The calculation of the
message delay∆ and its bounds will be fixed later (see Section 9.2). The identified
boundary elements are necessary to accomplish this task.

7.3 Modeling Freeness of Metastability

Revisiting the definition of metastability (see Section 3.3)it is apparent that a signal,
captured by a sequential element, must not be changed withinthe setup/hold window
of the reading element.

As already mentioned we have a system ofn nodes exchanging information. We
model the access to a signal as unidirectional link connecting an arbitrary, fault-free
sender- and receiver pair. The access to the signal is modeled using actions executed
by the nodes. We define a write actionW , changing the signal, and a read actionR,
reading it. If we define the end of a write actionW as the earliest possible time the
read actionR can safely start (such that the setup time is not violated), it is sufficient
for a metastability free operation thatW → R. Additionally we define the end of
the read operation such that the hold time is not violated andthe next write action
W may safely start.

Additionally to metastability-freeness, we require that each value written is read
exactly once. This can be achieved by requesting thatR → W holds. Therefore a
correct execution is defined by the sequenceW,R,W,R, · · · .

Using these definitions, a sufficient condition for metastability free communication
can be described as:

∀k > 0 : W k → Rk → W k+1 (7.1)
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where the actionW k is thek-th write- and the actionRk the k-th read operation.
Note that the condition must only hold for links between non-faulty nodes.

As the intramodule logic is purely synchronous and Equation(7.1) is inherent for
the synchronous model, the problem is solved for intramodule links by the toolset.
Therefore only the intermodule links have to be considered.The next sections will
use the previously formulated condition to develop a provable multisynchronous
metastable-free intermodule communication infrastructure.



Chapter 8

Metastability-Free Intermodule
Communication

In Section 7.3 we have already formulated a sufficient condition for a metastability-
free communication. Within this chapter we will use this condition together with the
properties of the circuit model (see Section 7.2) to developa provable metastability
free communication scheme. We will proceed by comparing twoalternative ideas
for implementing metastability-free communication between different modules in a
multi-synchronous system, namely:

• “Quasi-synchronous” communication based on a divided clock (“macroticks”)
and

• “Pipelined” communication using the native clock (“microticks”).

8.1 Quasi-Synchronous Communication Scheme

Let us call the native clock tick available in the multi-synchronous environment a
“microtick”. Dividing this microtick by some fixedd creates a “macrotick” withd-
fold period, with the same (absolute) synchronization precision. Still, the precision
expressed in the unit macroticks improves by a factor ofd: π′ = π/d. With Mk

i

denoting thekth macrotick of nodei, a fixed divisord and assuming a synchronous
start of all nodes, we can formally express this, using the definition of the precision,
as

∀i, j ∈ P,∀k > 0 : Mk
i = Cdk

i → Cdk+π
j







= C
(k+π

d )d

j = Mk+π′

j , d|π

→ C
(k+⌈π

d⌉)d

j = Mk+π′

j , d 6 |π

51
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Figure 8.1: Macrotick Generation

Figure 8.2: Macrotick Based Clock Generation

By choosingd ≥ π, we can reduce the relative precisionπ′ to a value of one, which
means that all macroticks with the same index can be grouped into non overlapping
time intervals (see Figure 8.1).

Unfortunately we cannot infer anything about the precedence of macroticks with the
same index on different nodes. Additionally the delay between macroticks with the
same index can be larger than the transmission delay, and thenew data could be re-
ceived too early. Therefore we will distinguish between oddand even macrotick
indices and perform a write upon an odd macrotick, and a read upon an even
macrotick only. This yields two disjoint subsetsRi andWi for each nodei ∈ P
with Ri ∩ Wi = ∅:

∀i ∈ P : Wi = {∀k > 0 : W k
i = M2k−1

i }

∀i ∈ P : Ri = {∀k > 0 : Rk
i = M2k

i }

With π′ = 1, the definition of the precision can be used to ensure

∀i, j ∈ P,∀k > 0 : W k
i = M2k−1

i → M2k
j = Rk

j and

∀i, j ∈ P,∀k > 0 : Rk
i = M2k

i → M2k+1
j = W k+1

j .

Such a system is easily implemented using the rising edge of the macrotick-clock as
write event and the falling edge as read event. Note thatd = 2π for this implementa-
tion, since both clock edges are used (see Figure 8.2 as example). Basically, this im-
plementation simulates a globally synchronous system, inheriting all its advantages
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and disadvantages. On the positive side, it allows to substitute a (non-fault tolerant)
central clock by a multi-synchronous clocking scheme without further changes. The
major deficiency, however, is the bad communication performance, which only is1

d

times the throughput achievable with the native clock.

As in the synchronous model, it is necessary that the bit dataon the communication
line is delivered timely, since no handshake protocol is implemented. Therefore each
bit must be delivered within the time between the latest possible occurrence of a
write with indexk and the first possible occurrence of a read with the same index.
If the time is not sufficient, the divisord must be increased to a value such that the
time difference is large enough for delivering the bits timely.

8.2 Pipelined Communication Scheme

Let us recall the requirement for metastability-free communication: For the transfer
of any given data item, we need to pair write and read transitions such that the
write action has finished safely before the read action starts. In the above quasi-
synchronous approach, clock transitions of the same direction (rising or falling) are
considered indistinguishable. Hence, this pairing is applied strictly via subsequent
alternating edges. Consequently the phase relation between any two nodesis of
central importance and must be maintained within tight bounds.

However, if we could distinguish edges on anindividual basis (e.g. by their in-
dex), then we could establish relations between arbitrary clock transitions, such as
C13

i → C22
j . Clearly this requires a globally consistent numbering of clock ticks,

which is, however, nothing else than the global time base established by our multi-
synchronous clock, provided that a consistent edge numbering is ensured by the
synchronous start of all node’s local clocks at start-up.

Based on this idea, we can pipeline transmission activities at the microtick level,
thereby avoiding the throughput penalty of macrotick-based communication. We
simply exploit the precedence given in the definition of the precision:

∀i, j ∈ P,∀k > 0 : W k
i = Ck

i → Ck+α
j = Rk

j

with α being a sufficiently large time margin that separates writesand reads.

Note that writes and reads can be performed at every microtick here, which max-
imizes the throughput. The pipelined approach hence considerably surpasses the
quasi-synchronous scheme, and is therefore our preferred solution. Due to the bad
synchronization precision, however, which can be in the order of several microticks,
one needs a FIFO buffer in between communicating nodes to avoid data loss. Clearly,
minimizing the required buffer size is important, both withrespect to costs and com-
munication latency. In the following section, we will provide our solution and its
proof of correctness.
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8.2.1 Algorithmic Model

To be able to prove the correctness of our approach, we first create an algorithmic
model of our system. The links of the basic model from Chapter 7are replaced by a
single-writer single-reader buffer memory of unbounded size (see Figure 8.3). Our
proof will reveal that finite buffer size is sufficient.

From Section 7.2 we already know the two basic properties of the model. As basis
for the proof we rewrite these properties as assumptions:

Assumption 8.2.1(Precision). ∃π : ∀i, j ∈ P,∀k ≥ 0 : Ck
i → Ck+π

j

Assumption 8.2.2(Accuracy). ∀i ∈ P, k > 0 : ∃T− = min
i,k

(Ck+1
i − Ck

i ) > 0

Note that in Assumption 8.2.2 only the lower bound of the accuracy, as it was de-
fined in Section 2.2.1, is used and sufficient to guarantee thecorrect behavior of our
solution. Furthermore we require the clocking system to comply to the following
assumptions:

Assumption 8.2.3(Startup). Before the first clock tick (initial state,k = 0), all
buffer memories are prefilled withα elements (all zero) and the precisionπ is zero
(π0 = 0).

Note that Assumption 8.2.3 is usually easy to guarantee in systems with a common
reset, since all nodes start with zero clock ticks received.

Assumption 8.2.4(Message Order). All message channels (clock as well as data
channels) provide FIFO ordering. Furthermore, the actual delays must be such that
every read and write action is finished before the next one starts.

The behavior of the system is modeled by a sender algorithm (Algorithm 1) and a
receiver algorithm (Algorithm 2).

Informal description of the algorithms The following messages, actions and
events can be handled and/or produced by the sender nodei:

• Ck
i - This is thek-th clock tick of the sender nodei. It is a zero-length action,

i.e., an event.

• 〈tick, k〉 - At every eventCk
i the clock generator of nodei sends a message to

its message generator to initiate the delivery of the data message. Its message
delay∆send(i, k) is in the interval0 < ∆−

send ≤ ∆send(i, k) ≤ ∆+
send.

• Dl
i - This is the receive action for thel-th 〈tick, k〉 message at its message

generator. It is a zero-length action, i.e., an event.
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Figure 8.3: System Model used for the Proof

Algorithm 1 Sender Algorithm for Nodei
1: // Clk Delay
2: on Ck

i do
3: Send〈tick, k〉 to generateDi

4: end on
5: // Message Delay
6: on Dl

i: l-th receive of any〈tick, k〉 from nodei do
7: Send〈data,l〉 to generateWi

8: end on
9: // Write Event
10: on Wm

i : m-th receive of any〈data,l〉 from nodei do
11: mem(m + α) := data
12: end on

Algorithm 2 Receiver Algorithm for Nodej
1: // Clk Delay
2: on Ck

j do
3: Send〈tick, k〉 to generateRj

4: end on
5: // Read Event
6: on Rl

j : l-th receive of any〈tick, k〉 from nodej do
7: data :=mem(k)
8: end on
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• 〈data,l〉 - At every eventDl
i nodei’s message generator sends a message to

its memory controller to initiate the memory write action. Its message delay
∆msg(i, l) is in the interval0 < ∆−

msg ≤ ∆msg(i, l) ≤ ∆+
msg.

• Wm
i - This is the actual write action of the buffer memory. It is triggered

by the reception of them-th 〈data,l〉 message and has a non zero duration
∆mem(i,m) within the interval0 < ∆−

mem ≤ ∆mem(i,m) ≤ ∆+
mem.

The receiver nodej can produce and/or handle the following actions, events and
messages:

• Ck
j - This is thek-th clock tick of the receiver node. It is a zero-length action,

i.e. an event.

• 〈tick, k〉 - At every eventCk
j the clock generator of nodej sends its memory

controller a message to initiate the memory read. Its message delay∆recv(j, k)
is in the interval0 < ∆−

recv ≤ ∆recv(j, k) ≤ ∆+
recv.

• Rl
j - This is the actual read action of the buffer memory. It is triggered by the

reception of thel-th 〈tick, k〉 message and has a specified length of∆rd(j, l)
within the interval0 < ∆−

rd ≤ ∆rd(j, l) ≤ ∆+
rd.

It is important to note that Rk
j reads memory locationk, while W k

i writes mem-
ory location k + α.

As a consequence of the shifted write index, the memory must be prefilled with
α elements (all zero), simulating that the writesW−α+1

i , . . . ,W 0
i to the memory

locations1, · · · , α have already been finished before the first clock tick (k = 0,
initial state).

To fulfill Assumption 8.2.4, it is sufficient that the system delays comply with the
following equations:

T− + ∆send(i, k + 1) + ∆msg(i, k + 1) − ∆send(i, k)−

−∆msg(i, k) > ∆mem(i, k) (8.1)

and

T− + ∆recv(i, k + 1) − ∆recv(i, k) > ∆rd(i, k)

A more in-depth discussion of the delays in real systems can be found in Section 9.2.

An example execution of tickk for both algorithms can be found in Figure 8.4.
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Figure 8.4: Execution of Tickk

8.2.2 Problem Definition

The correct operation of our communication scheme is formalized by a slightly
changed version of the condition introduced in Section 7.3.Therefore the follow-
ing properties must hold:

(WR) The write of memory locationk must be finished before the read of this loca-
tion starts (∀k > 0 : W k−α

i → Rk
j ).

(OV) In case of a bounded-size buffer, the read of an element must be finished before
it is overwritten (∀k > 0 : Rk

j → W k+π+β
i , the size ofβ will be fixed later).

8.2.3 Relation Between Actions

We will now prove essential relations between the actions inour system model.

Lemma 8.2.1.Algorithm 1, line 6:∀k ≥ 1 it holds thatk = l andDk
i → Dk+1

i .

Proof. We prove this Lemma by induction.

• Induction start (k = 1): C1
i triggers the first send of a message〈tick, 1〉. By

the FIFO property of the links it is also the first message to bedelivered and
therefore triggering eventD1

i . Since it is the first event the precedence relation
is obviously true.

• Induction hypothesis: Assume the lemma holds fork.

• Induction step (k → k +1): We know that the firstk 〈tick, l〉 messages trigger
the eventsDl

i, l ≤ k. By FIFO order, message〈tick, k+1〉 (generated by event
Ck+1

i ) will be the next one delivered, thereby triggering the event Dk+1
i . Since

Dl
i is an event (a zero-length action), this implies the precedence relation.
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Lemma 8.2.2.Algorithm 1, line 10:∀l ≥ 1 it holds thatl = m andW l
i → W l+1

i .

Proof. The proof is similar to above.

• Induction start (l = 1): D1
i triggers the first send of a message〈data,1〉. By the

FIFO property of the links it is also the first message to be delivered and there-
fore triggering actionW 1

i . Since it is the first action the precedence relation is
valid.

• Induction hypothesis: Assume the lemma holds forl.

• Induction step (l → l +1): We know that the firstl 〈data,m〉 messages trigger
the actionsWm

i ,m ≤ l. By FIFO order message〈data,l + 1〉 (generated
by eventDl+1

i ) will be the next one delivered, thereby triggering the action
W l+1

i . From Equation (8.1) we know thatts(W
l+1
i ) > ts(W

l
i ) + ∆mem(i, l)

and thereforeW l
i is finished beforeW l+1

i is started. ThereforeW l
i → W l+1

i

holds.

We now define a new relation . It is used to model the triggering of actions.A 
B means that actionB was triggered by actionA. Note thatA  B implies the
precedence relation (A→ B). Using this notation, the trigger dependencies implied
by Lemma 8.2.1 and 8.2.2 read:

Ck
i  Dk

i  W k
i .

Lemma 8.2.3.Algorithm 2, line 6:∀k ≥ 1 it holds thatk = l andRk
j → Rk+1

j .

The proof is equivalent to the one of Lemma 8.2.2. Lemma 8.2.3in conjunction with
the definition of the trigger relation implies:

Ck
j  Rk

j .

8.2.4 Read–Write Order Proof

For the proof of (WR) we fix an arbitrary sender-receiver pair. The sender node has
the indexi, the receiver node the indexj. We will now derive the latest possible end
of a write action to a certain data item. We start with the firstα items.

Lemma 8.2.4.∀ − α + 1 ≤ k ≤ 0 : te(W
k
i ) = 0

Proof. Follows directly from Assumption 8.2.3.
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The following Lemma 8.2.5 gives the latest possible end timefor all other write
actions.

Lemma 8.2.5.∀k > 0 : te(W
k
i ) ≤ t(Ck

i ) + ∆+
send + ∆+

msg + ∆+
mem

Proof. We already know that

Ck
i  Dk

i  W k
i .

SinceDk
i is triggered by thek-th 〈tick, k〉 message, we get:

t(Dk
i ) = t(Ck

i ) + ∆send(i, k).

SinceW k
i is triggered by thek-th 〈data,l〉 message, we get:

ts(W
k
i ) = t(Dk

i ) + ∆msg(i, k)

= t(Ck
i ) + ∆send(i, k) + ∆msg(i, k)

≤ t(Ck
i ) + ∆+

send + ∆+
msg.

Furthermore, we know that the action takes∆mem(i, k) time to finish, so its end time
is:

te(W
k
i ) = ts(W

k
i ) + ∆mem(i, k)

≤ t(Ck
i ) + ∆+

send + ∆+
msg + ∆+

mem.

In the next step, we determine the earliest possible time a read action can start.

Lemma 8.2.6.∀k > 0 : ts(R
k
j ) ≥ t(Ck

j ) + ∆−
recv

Proof. We already know that
Ck

j  Rk
j .

SinceRk
j is triggered by〈tick, k〉, we link:

ts(R
k
j ) = t(Ck

j ) + ∆recv(j, k) ≥ t(Ck
j ) + ∆−

recv.

For proving (WR), we need to relate the latest possible end of a write action with the
earliest possible start of a read action of the same item, namely, ts(Rk

j )−te(W
k−α
i ) ≥

0. In particular, we will show that this condition is true if:

α ≥ π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉



60 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

Lemma 8.2.7.∀k > 0 : ts(R
k
j ) − te(W

k−α
i ) ≥ 0

Proof. We use a case differentiation to prove this Lemma:

• 1 ≤ k ≤ α:
ts(R

k
j ) − te(W

k−α
i )

︸ ︷︷ ︸

=0 by Lemma 8.2.4

= ts(R
k
j ) ≥ 0.

• k > α:

ts(R
k
j ) − te(W

k−α
i ) ≥ t(Ck

j ) + ∆−
recv − t(Ck−α

i ) − ∆+
send − ∆+

msg − ∆+
mem

= t(Ck
j ) − t(Ck−π

i )
︸ ︷︷ ︸

≥0 by Assumption 8.2.1

+ t(Ck−π
i ) − t(Ck−α

i )
︸ ︷︷ ︸

≥(α−π)T− by Assumption 8.2.2

+ ∆−
recv − ∆+

send − ∆+
msg − ∆+

mem

≥









π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉

︸ ︷︷ ︸

≤α

−π









T−

+ ∆−
recv − ∆+

send − ∆+
msg − ∆+

mem

≥ T−
∆+

send + ∆+
msg + ∆+

mem − ∆−
recv

T−
+

+ ∆−
recv − ∆+

send − ∆+
msg − ∆+

mem = 0.

This proof shows that if the buffer is prefilled with at least

α = π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉

elements, no element is read before it is written.

8.2.5 Bounded Buffer Size

Now we replace the unbounded memory with a FIFO buffer of bounded size. We
will continue with determining a lower bound for a sufficientbuffer size such that
(OV) holds.

As in the previous section, we will show the start and end time, respectively, of
the actions. To determine the required buffer size, we need to correlate the earliest
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possible start time of the write action with the latest possible end time of the read
action (excluding the firstα writes, since they are prefilled and therefore can not
overwrite any item in the buffer).

Lemma 8.2.8.∀k > 0 : ts(W
k
i ) ≥ t(Ck

i ) + ∆−
send + ∆−

msg

Proof. We already know that

Ck
i  Dk

i  W k
i .

SinceDk
i is triggered by thek-th 〈tick, k〉 message, we get:

t(Dk
i ) = t(Ck

i ) + ∆send(i, k).

SinceW k
i is triggered by thek-th 〈data,l〉 message, we get:

ts(W
k
i ) = t(Dk

i ) + ∆msg(i, k)

= t(Ck
i ) + ∆send(i, k) + ∆msg(i, k)

≥ t(Ck
i ) + ∆−

send + ∆−
msg.

Lemma 8.2.9.∀k > 0 : te(R
k
j ) ≤ t(Ck

j ) + ∆+
recv + ∆+

rd

Proof. We already know that
Ck

j  Rk
j .

SinceRk
j is triggered by thek-th 〈tick, k〉 message, we get:

ts(R
k
j ) = t(Ck

j ) + ∆recv(j, k) ≤ t(Ck
j ) + ∆+

recv.

Knowing that a read action finishes within∆rd(j, k), we get:

te(R
k
j ) = ts(R

k
j ) + ∆rd(j, k) ≤ ts(R

k
j ) + ∆+

rd

≤ t(Ck
j ) + ∆+

recv + ∆+
rd.

After calculating the start and end time of the actions, we will now show the maxi-
mum possible number of unread messages in the buffer.

Lemma 8.2.10.There are always equal or less thanπ+α+β unread elements in the

buffer (i.e.,∀k ≥ 0 : ts(W
k+π+β
i ) − te(R

k
j ) ≥ 0) with β =

⌈
∆+

recv+∆+
rd
−∆−

send
−∆−

msg

T−

⌉

.

Proof. We have to distinguish two cases:
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• k = 0 (Initial State): At the beginning there are theα prefilled elements in the
buffer. Therefore the buffer size is surely sufficient.

• k > 0:

ts(W
k+π+β
i ) − te(R

k
j ) ≥ t(Ck+π+β

i ) + ∆−
send + ∆−

msg

− t(Ck
j ) − ∆+

recv − ∆+
rd

= t(Ck+π+β
i ) − t(Ck+β

j )
︸ ︷︷ ︸

≥0 by Assumption 8.2.1

+ t(Ck+β
j ) − t(Ck

j )
︸ ︷︷ ︸

≥βT− by Assumption 8.2.2

+ ∆−
send + ∆−

msg − ∆+
recv − ∆+

rd

≥

⌈

∆+
recv + ∆+

rd − ∆−
send − ∆−

msg

T−

⌉

T−

+ ∆−
send + ∆−

msg − ∆+
recv − ∆+

rd

≥ ∆+
recv + ∆+

rd − ∆−
send − ∆−

msg

+ ∆−
send + ∆−

msg − ∆+
recv − ∆+

rd = 0.

This means that if the buffer has a size of at leastπ + α + β elements, no item can
be overwritten, before it was read.

8.2.6 Latency

The message latency is defined as the number of clock cycles between the write-
(W k−α

i ) and the read-action (Rk
j ) of all non prefilled messages (〈data,k〉, k > α).

The calculation is based on the local clocks of the sender andreceiver nodes.

Lemma 8.2.11.The message latency of all messages〈data,k〉, k > α is α.

Proof. Each messages〈data,k〉 is written at the corresponding actionW k−α
i to the

buffer memory (follows directly from line 11 of Algorithm 1). It is read out at action
Rk

j (following directly from line 7 of Algorithm 2). Therefore the message latency
L is:

L = k − (k − α) = α
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8.2.7 Results

Theorem 8.2.1(Buffer Size). For α = π +
⌈

∆+
send

+∆+
msg+∆+

mem−∆−

recv

T−

⌉

a sufficient

FIFO buffer size is given by

2π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉

+

⌈

∆+
recv + ∆+

rd − ∆−
send − ∆−

msg

T−

⌉

.

Theorem 8.2.2(Message Latency). For α = π +
⌈

∆+
send

+∆+
msg+∆+

mem−∆−

recv

T−

⌉

, the

message latency (Rk
j − W k−α

i ) is defined as:

π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉

.

Theorem 8.2.1 gives a lower bound on the sufficient buffer size such that the read-
write order is always maintained. Therefore it is guaranteed that no memory location
of the bounded FIFO buffer is changed while it is read, rulingout all possibilities
for metastability in the fault free case.

Additionally our solution guarantees that each bit is seen exactly once by the receiver
so no bit is duplicated or swallowed as it could happen when using a communication
scheme without handshake in conventional GALS systems.





Chapter 9

Pipelined Scheme Implementation

Chapter 8 has illustrated the principle of the proposed communication scheme and
theoretically proven its correctness. We will now show how it can be efficiently
implemented in practice.

9.1 Circuit Design

The layout of a node is shown in Figure 9.1. Internally the nodes are implemented
using the synchronous paradigm, enabling the usage of standard development tools
and testing facilities.

The needed buffering of the transmitted data is performed atthe receiver input.

9.1.1 Communication

Note that the clock domain boundary is in the buffer that in turn is located at the
receiver. The transmitter clock is used for clocking the data into the buffer memory.
Therefore a source synchronous communication protocol is needed.

After evaluating several different communication schemes(see Chapter 4 for de-
tails) we decided to use an unidirectional SPI connection without slave select signals
as communication infrastructure. Therefore each link exists of two rails, namely a
clock- and a data-rail. The transmission of the clock signalis necessary because it is
impossible to regenerate the clock signal from the data-rail using a PLL since it can
not be locked to the multisynchronous clock signal (unpredictable clock phase dif-
ferences between succeeding clock cycles). It is also superior to the usage of other
clock transmission schemes (like Data-Strobe encoding) incase the transmission
rate is increased using multiple data-rails (only1 + n rails needed for a transmis-
sion usingn data-rails). For a safe transmission, it is necessary to keep the skew
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Figure 9.1: Layout of a Node

between these rails within the margins known from synchronous designs. To relax
these margins as far as possible we introduce a180◦ phase shift between data and
clock.

Furthermore we decided to use point-to-point links in favorof buses. When using
a bus topology, faulty nodes can, by sending messages outside the assigned com-
munication slots, interfere with the communication between non faulty ones which
would contradict a reliable communication between non faulty nodes (babbling idiot
[Kop97]).

9.1.2 Transmitter

The transmitter is intended to operate as a peripheral slavedevice of a controller
implemented in the nodes application logic. It is in the sameclock domain as this
controller. Data to be transmitted is passed by the controller via an 8 bit register
interface.

In case no data is available from the controller, the transmitter is responsible for
inserting idle patterns to keep the buffer memory filled. In any case line coding is
applied according to the standard 8B/10B coding algorithm and the data is serialized.
The encoding is needed to distinguish between data and idle patterns. For future
extensions a functionality to group multiple data bytes into packets is implemented
by means of a start- and an end-packet-symbol.
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9.1.3 Receiver

The receiver operates as a synchronous peripheral slave device for a controller unit
implemented in the receiving node. It simply takes the data out of the buffer using
its own (i.e. its controller’s) local clock. After deserializing and decoding the data it
provides them to its local controller unit via a memory mapped parallel 8-bit inter-
face. Additionally the reception of the three defined control symbols (idle, start- and
end-packet) is signaled at this interface

9.1.4 Communication Buffer

As explained above, both, the transmitter as well as the receiver independently write
data to and read data from, the communication buffer, respectively, each using its
own local clock, while these clocks may have an arbitrary relative but bounded dif-
ference. It is the duty of the buffer to accommodate this difference and allow for
a metastability-free data transfer. As shown in Chapter 8 this can be accomplished
with a sufficiently large buffer. Still the hardware implementation must be suitable
for the purpose. A naive approach like a shift register, e.g., would not work, as such
a structure updatesall registers with every write access, due to the need for shift-
ing. Even with infinite buffer size this solution would not allow a metastability-free
communication.

A correct approach is to use a ring buffer with individual address pointers for input
and output (Figure 9.2). Here only one memory element is updated per write access,
and our only concern is to prevent an overlap between write and read of the same
entry. This, however, is ensured by the proof from Chapter 8 for a sufficient buffer
size (Theorem 8.2.1).

As a result we have a memory structure that can be written to and read from in-
dependently, since the only potential conflict, namely an overlapping access to the
same address from both sides is ruled out by design. This at the same time also rules
out metastability – in sharp contrast to other communication schemes that make
metastability highly improbable but cannot completely eliminate it. Note that this is
only possible due to the known, bounded precision that the multisynchronous clock-
ing scheme provides.

A similar buffer implementation was previously used by [PG07]. Since their ap-
proach does not utilize a clocking scheme with bounded precision, special hand-
shake signals (full andempty) are needed to prevent buffer over- or underflows. As
thefull signal crosses the clock boundary between sender and receiver, it is subjected
to the possibility of metastability. Therefore a synchronizer is necessary, contradict-
ing the advantages of the buffer. Their second approach, formesosynchronous sys-
tems, only works for constant or slowly drifting clock differences and would fail in
our setting.
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Figure 9.2: Ring Buffer of Depth 4

9.2 Implementation Mapping

It is important to analyze, whether the implementation respects all the assumptions
made by the theoretical model.

The Assumptions 8.2.1 and 8.2.2 are guaranteed by the clocking system (see Sec-
tion 7.2).

A global asynchronous reset signal, initializing all communication layers and clock-
ing chips, ensures the validity of Assumption 8.2.3. Since the clocking chips are also
reset and have a certain startup time, it is ensured that no clock edge will be present
in the vicinity of the reset pulse. Therefore the metastability problems [Kin08], nor-
mally associated with asynchronous reset signals, do not apply here.

9.2.1 Implementation without Input Register

We will now show how the delay assumptions are mapped to the implementation.
Figure 9.3 shows a schematic transmitter circuit includingthe corresponding delays.

Assumption 8.2.4 is naturally inherent in the synchronous paradigm. In detail it
specifies that the delays only change by a certain amount between two ticks. Since
differences in delays only stem from part variations (constant over time) and (slowly)
changing operation conditions this assumption holds.

The messages〈tick, k〉 are in fact the DARTS clock ticks. The delays (∆send(i, k)
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Figure 9.3: Schematic Transmitter Circuit (No Input Register)

and∆recv(j, k)) are the times needed for the ticks to reach the sender outputelement
and the read port of the memory element, respectively.

The message〈data,l〉 is implemented as the data and clock edges running on the
line between the sender and receiver. The corresponding delay (∆msg(i, k)) is the
sum of the clock-to-output-delay, line-delay, input-delay and the setup-time (tsu) of
the buffer memory. Obviously the lines that convey all thesemessages respect FIFO
order.

The execution length of the read and write operations can also be directly mapped to
the hardware. The length of the write operation (∆mem(i, k)) is the sum of the time
needed for the new data to reach the memory output element (including all combi-
national logic on its path) and the setup time (tsu) needed for this output element.
The length of the read operation (∆rd(j, k)) is mapped to the hold time (th) of the
memory output element.

9.2.2 Implementation with Input Register

As the implementation of a source synchronous interface on an FPGA is very chal-
lenging, especially if no dedicated I/O register is used, a specialized implementa-
tion scheme for FPGAs was created. To relax the routing constraints required at
the receiver node, and therefore simplifying the task of implementing the interface
drastically, the transmitted data can be buffered using a single register before it is
written to the buffer memory. It can be implemented as I/O register on FPGAs. This
moves the message generator register from the physical transmitter- to the receiver-
chip. Nevertheless it is under control of the transmitter. Figure 9.4 shows the new
situation.
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Figure 9.4: Schematic Transmitter Circuit (With Input Register)

The delay∆send(i, k) add to the time it takes the clock ticks to travel from the clock
source, through the transmitter chip, over the transmission line, into the receiver
chip and to the message generator register. The delays of thedata- and clock-rail
must still be matched.

The message delay (∆msg(i, k)) is decreased to exactly one clock cycle, since the
communication between the input register and the buffer memory is fully syn-
chronous and guaranteed to hold by the design tools.

All other delay mappings are unchanged in comparison to the implementation with-
out an input register.

9.3 Performance and Efficiency

The implementation costs for our solution are currently very low (see Figure 9.2).
Two important performance parameters of a communication subsystem are its
throughput and its latency.

9.3.1 Throughput

Our implementation achieves a (gross) data rate of 1 Mbps/MHz since a new data
bit is transferred with every active clock edge. Multiplying this throughput by using
parallel data-rails is straightforward. Therefore we reach a data rate of up to 24 Mbps
within our test system. A system using an 100 MHz clock and 10 parallel data-rails
would achieve a data rate as high as 1 Gbps.
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Table 9.1: Latency
Input Register No Yes

Precision [cyc.] 3 4 5 3 4 5
Sender Latency [cyc.] 2 2 2 2 2 2

Single Bit Latency [cyc.] 4 5 6 5 6 7
Receiver Latency [cyc.] 3 3 3 3 3 3
Message Length [bit] 10 10 10 10 10 10
Overall Latency [cyc.] 19 20 21 20 21 22

9.3.2 System Latency

The latency of a single byte message (Crecv
j − Csend

i ) is calculated as follows:

• The message must be processed by the transmitter implementation. In the cur-
rent version this takes2 clock cycles.

• The message travels on the communication line between the nodes bit by bit.
The latency of each bit is defined by Theorem 8.2.2 as

π +

⌈

∆+
send + ∆+

msg + ∆+
mem − ∆−

recv

T−

⌉

.

Since each byte is sent encoded as10 bits, an additional latency of10 cycles
must be added (time needed to transmit the whole message).

• The current version of the receiver needs additional3 clock cycles to process
the data.

The latency of an eight bit message is the sum of all these terms. Table 9.1 contains
the message latency for different precision values. The latency values were calcu-
lated for a system that has a single bit latency ofπ + 1 cycles, if no additional input
register is used, and a single bit latency ofπ + 2 cycles, if one is used.

All latency values are calculated for the case that the controller and the transmitter
are synchronized, which means that the message is handed to the transmitter exactly
at the start of a new transmission slot. If the message is sentunsynchronized, an
additional latency up to 9 clock cycles may occur (synchronization latency).

9.3.3 Performance Comparison

To get a better understanding of the performance of our implementation, we will
compare the single bit latency and throughput of our system with the values of syn-
chronous and GALS systems (see Table 9.2).
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Table 9.2: Performance Comparison
Single Bit Latency Throughput

Synchronous System 1 Cyc. 1 Mbps/MHz

GALS Feedforward System 2 +
⌈

∆
T

⌉
Cyc. 1 Mbps/MHz

GALS Feedback System 2 +
⌈

∆
T

⌉
Cyc. 1

1+2 Latency Mbps/MHz

Multisynchronous Communication π +
⌈

∆
T−

⌉
Cyc. 1 Mbps/MHz

As in a synchronous system the data bit is written at an activeclock edge and read at
the next one, the single bit latency of such a system is exactly one cycle. Due to the
fact that on each clock edge one bit is transmitted, the throughput is 1 Mbps/MHz.

The corresponding values for GALS systems are a little bit harder to calculate. In
a simple feedforward system with a two-flop synchronizer [KC87], the message
latency is given by the two cycles the synchronizer needs forprocessing the data and
the communication latency on the transmission line (∆) measured in clock cycles of
the receiver clock (with period T). As such a setting does notguarantee, due to the
different clock drift of the sender and receiver clock, the reception of all data bits,
its applicability is very limited.

If the reception of each data bit is necessary, a feedback GALS system [Gin03] must
be used. Therefore a signal defining the validity of the data is added. Additionally the
reception of the data is acknowledged using a signal generated by the receiver and
read by the sender. The latency of the data transmission is the same as in the previous
case. As the sender must wait with sending the next data bit until the receiver has
acknowledged the previous one, the throughput is reduced bythe forward latency,
the time to generate the acknowledge signal and the latency of the acknowledge
signal. If we assume a symmetric system, the two latency values are the same. The
minimum time needed to generate the acknowledge signal is one cycle.

9.4 Communication Example

To illustrate the proposed hardware implementation let us take a look at an example
communication. A logic analyzer trace of a successful node to node communication
can be found in Figure 9.5. It was generated by the test system(see Section 9.5)
using the random clock emulation with a precision of 4. The figure displays two
channels (one from node 0 to node 1 and the other one back). Theclock traces
illustrate under which unfavorable clocking conditions our approach is still working.
The largely varying phase relation between the clocks woulddefinitely upset any
traditional (phase-)synchronous system. At the same time many assumptions made
for synchronizers in GALS systems would be invalidated as well.
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Figure 9.5: Example Communication within the Test System

9.5 Experiments

To verify our communication scheme in practice we have executed several experi-
ments. In particular we want to use this system to support ourclaim that the buffer
size derived in Chapter 8 (i) is sufficient for fault-free and metastability-free oper-
ation with clocks showing a precision of several clock cycles and (ii) represents a
tight lower bound. Figure 9.6 illustrates the general layout.

9.5.1 Test System

The test system consists of 3 Xilinx Virtex-4 FPGAs and a hostPC. One of the FP-
GAs acts as a global test controller. It coordinates the two local controllers and gen-
erates the required clock signals by virtue of a clock emulation (see Section 9.5.2).
The other two FPGAs represent target nodes that exchange messages. These mes-
sages are randomly generated at the host PC and stored in bothtargets such that the
receiver of a message can check its correctness. If an error is detected, communica-
tion stops until the test controller has re-initialized thetest system.

9.5.2 Clock Emulation

To systematically investigate worst case scenarios and reproduce interesting effects,
we need full control over the speed and the relative positionof the targets’ clocks. To
this end we decided to use a clock emulation instead of the actual DARTS clock that
would be much harder to control. Furthermore the communication scheme should
be independent of DARTS and work with every other multisynchronous clocking
system. This emulation is performed by the controller FPGA.The respective clock
patterns are downloaded from the host PC where they have beena-priori calculated.
In essence they are a sequence of integer multiples of a base clock period that deter-
mines the resolution of the clocking system.

In our experiments we have used the following two types of clock emulation:
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Figure 9.6: Layout of the Test System

Worst Case Precision Clock Emulation

Here the two clock signals are deliberately kept as far apartas the precision allows.
This way we can check whether the system can indeed operate under such unfavor-
able conditions. At the same time chances are that the communication will fail if
the buffer is too small, which gives an indication of whetherthe size calculated in
Chapter 8 is a tight lower bound.

To achieve the worst case scenario we artificially stop one clock while the other one
runs at its full frequency. As soon as the precision limit is reached, the stopped clock
is speeded up to its full frequency again. An example is shownin Figure 9.7.

Random Clock Emulation

This emulation type is used to assess the performance of the system under continu-
ously changing relative clock speed. Therefore clocks are varied over time. This is
achieved by defining a set of “clock primitives” the host PC can use when planning
the emulation. Table 9.3 lists the clock primitives we derived from the base clock.

Figure 9.7: Worst Case Precision Emulation
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Table 9.3: Clock Primitives
Clock Primitive Base Clocks Graphic

Fast Tick 1x High, 1x Low

Normal Tick 2x High, 1x Low

Slow Tick 2x High, 2x Low

No Tick 3x Low

These are then randomly assembled to two different sequences representing the full
clock traces. During this construction process care is taken to keep the emulated
clocks within the precision limits. An example for such a clock was already shown
in Figure 9.5.

9.5.3 Test Conditions

Considering our measurements on the DARTS VLSI chip we decided to use a clock-
ing system with a precision of 4. The emulation base clock (emulation resolution)
was set to 48 MHz. This leads to a maximum clock frequency of 24MHz for the
“Random Clock Emulation” and a constant clock frequency of 24 MHz for the
“Maximum Precision Clock Emulation”, as well.

The test system was implemented in a way that the equation forthe buffer size (see
Theorem 8.2.1) leads to a minimum. This is achieved by designing the system in
a way such that the last term is becoming0, while the middle term evaluates to1.
Therefore it is supposed that a buffer size of2π + 1 = 9 should be sufficient.

9.5.4 Performed Tests

The purpose of the following tests is to give practical evidence that the calculated
buffer size is (i) sufficient and (ii) represents the minimumrequirement. Since it
is not possible to exhaustively emulate all possible relations between the clocks,
we can not prove the absence of failures for buffer size 9. We can, however, check
the failure-free operation under adverse conditions during some period. Thus we
can substantiate our formal proof by this practical application. Furthermore, we will
reduce the buffer size below the calculated limit. If the limit of 9 is tight, we can
expect to observe failures for buffer sizes of 8 and less.

The test runs are executed 5000 times for each buffer size andeach clock emulation
type. For each run we calculate new clock traces in the emulation. If no failure is
encountered after 2 seconds of observation time, the run is considered fault-free.
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Table 9.4: Results of the Experiments
Buffer Errors Min. Clock Cycles ⊘ Clock Cycles
Size [%] to First Error to First Error

Worst C. Random Worst C. Random Worst C. Random
3 100 99 45 26 45 68
4 100 99 44 26 48 412
5 100 92 44 27 48 1600
6 100 35 26 29 46 4727
7 100 12 28 1 46 7718
8 19 0 27 - 61 -
9 0 0 - - - -

After the experiments are finished, the minimum and mean times to the first error
are extracted and an error percentage is calculated.

9.5.5 Results

Table 9.4 presents the collected test results. It is interesting to note, that the “Ran-
dom Clock Emulation” did not produce any error in case of a buffer size of eight, the
worst case emulation, however, did. This indicates that thefailure probability is very
low in this case, and becomes visible within limited observation time only if worst
case conditions are artificially established. For smaller buffer sizes the expected fail-
ures could be observed without problems. The trend towards higher failure rate for
smaller buffer size is visualized in Figure 9.8. In summary the results give a good
confirmation of our theoretical findings.
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Figure 9.8: Results of the Experiments





Chapter 10

Implementing a Lockstep Model

When designing a hardware implementation of a lockstep synchronous algorithm,
referenced as application algorithm in the text, one does not want to have to establish
the round structure within the algorithm. Therefore a service indicating the round
starts would be advantageous.

Our solution is to create a small circuit which signalizes the start of a round by a
roundtick signal available to the application algorithm. This circuit is implemented
using the synchronous paradigm based on the local microtickclock. It utilizes its
knowledge on the timing of the communication layer to createrounds of sufficient
length to guarantee a safe operation. It is ensured that eachmessage sent by any node
at the round start is safely delivered within the current round. All timeout values are
solely based on the local microtick clock.

Figure 10.1 shows how this circuit is placed within the implementation hierarchy.
The new roundtick signal as well as the microtick clock are available to the applica-
tion algorithm.

In this chapter we will describe an algorithm creating a lockstep synchronous round
structure and its mapping to the communication layer implementation, presented in
Chapter 8. Additionally an example execution will be sketched.

10.1 Algorithmic Model

To be able to use the algorithm with different communicationlayer implementations,
the required properties are abstracted into Assumption 10.1.1 - 10.1.4. We will later
show that the communication layer presented in Chapter 8 respects all these assump-
tions.

The communication layer supports the sending of independent, fixed length mes-
sages. A message can only be sent at the beginning of a messageslot. The first slot
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Figure 10.1: Lockstep Round Generation Implementation Hierarchy

starts directly after the startup of the communication layer is finished. Each message
slot has an a-priory known length oftslot microticks. The slots are aligned back to
back.

Assumption 10.1.1(Messages Slot Time). The send operation of a message takes
a constant, a-priory known time oftslot microticks (exactly the length of a message
slot), assuming that the send operation was aligned to the start of a message slot.

Assumption 10.1.2(Transmission Latency). The transmission latencytl (measured
in microticks) of a message is constant and known in advance.

Assumption 10.1.3(Message Count). In each round a maximum numberm of mes-
sages may be sent. The maximum numberm is known in advance.

Assumption 10.1.4(Startup Time). The message layer has a specific startup time
tstart (measured in microticks). It is constant on all nodes and known a-priory.

The implemented functionality is described using Algorithm 3.

Informal Description of the Algorithm

At startup, the node waits until the message layer is ready (waiting for tstart mi-
croticks). This guarantees the alignment of the first round start to the start of a mes-
sage slot and therefore minimizes the length of the message send operation (as as-
sumed in Assumption 10.1.1), because no additional wait cycles are needed before
the message transmission starts.
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Algorithm 3 Constant Message Count Algorithm
1: // Global Information
2: consttstart – Communication Layer Startup Time [microticks]
3: constm – Maximum Number of Messages per Round
4: consttslot – Message Slot Time [microticks]
5: consttl – Transmission Latency of a Message [microticks]
6: consttcalc – Maximum Calculation Time

7: consttsync – Synchronization Time (
⌈

tcalc+tl−tslot+1
tslot

⌉

) [microticks]

8: // Startup
9: wait tslot microticks
10: // Create the Successive Rounds
11: for everdo
12: Signal Round Start
13: // Wait for Message Sending
14: wait m tslot microticks
15: // Wait for the Message Arrival and the Calculation to Finish
16: wait tsync microticks
17: end for

After the startup phase is completed, the algorithm createssuccessive rounds. At
the beginning of each round its start is signalized. For eachround the algorithm
waits until all messages are sent (m tslot microticks) and afterwards compensates
for the message latency (tl − tslot + 1 microticks), waits for the algorithm to finish
its execution (tcalc) and resynchronizes to the start of the next message slot. The
resynchronization is achieved by rounding up the synchronization time to a multiple
k of the message slot time (tslot). The resulting synchronization timetsync is therefore
calculated as:

tsync = tslot

⌈
tl − tslot + tcalc + 1

tslot

⌉

.

At this point, all messages are surely delivered and the calculation is finished. There-
fore the round execution is completed and the next round is started. The round gen-
eration is repeated indefinitely.

The execution of the algorithm for a message slot timetslot of 4 microticks and a
synchronization timetsync of the same value is shown in Figure 10.2.

10.2 Correctness Proof

For Algorithm 3 to be correct, it must ensure that allm messages are delivered
within the same round, compensate for the message latency and the calculation time
of the application algorithm and align the round starts to the beginning of a message
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Figure 10.2: Visualization of the Assumptions

slot. It is obvious that it takesm tslot microticks to sendm messages, if the send
operation of the first message was aligned to a message slot. Therefore the message
send operation of the rounds’s last message starts(m − 1) tslot microticks after
the round start. By Assumption 10.1.2 it takes exactlytl microticks to deliver it.
Therefore it is delivered no later thanm tslot + tl − tslot + 1 microticks after the
round start. The termm tslot is equivalent to the first delay loop of Algorithm 3.
The other terms are part of the synchronization time. By the definition of tsync, the
message bit latency (tl − tslot + 1) and the execution time (tcalc) of the application
algorithm are safely compensated.

We have shown that the round length is sufficient to deliver all messages and for the
execution of the application algorithm. The last thing to prove is that the algorithm
aligns the round start to the beginning of a message slot.

Lemma 10.2.1.All rounds are aligned to the beginning of a message slot.

Proof. This Lemma is proved by induction.

• Induction start (Round1): By Assumption 10.1.4, the first round is aligned to
the beginning of a message slot.

• Induction hypothesis: Assume the Lemma to hold for roundn.

• Induction step (n → n + 1): The start of roundn was aligned to the start
of a message slot. By sending allm messages of roundn, the alignment is
not changed (because each message send operation has the length of a mes-
sage slot). The length of the synchronization loop (tsync) is also a multiple
of the message slot time. Since the next round starts directly after this time
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has elapsed, roundn + 1 must obviously start at the beginning of a message
slot.

10.3 Time Complexity

The execution time of a lockstep synchronous algorithm is always given in rounds
(tround). In our model, however, the basic unit of time is a microtickand not a round.
Therefore it would be advantageous to know the execution time of an implemented
algorithm measured in microticks (tmicro).

Knowing the round execution timetround of an algorithm,tmicro can easily be calcu-
lated as:

tmicro = tround

(
m + t′sync

)
tslot,

wheret′sync =
⌈

tl−tslot+tcalc+1
tslot

⌉

is the synchronization time measured in message

slots. Because the message latencytl, the message slot timetslot and the calculation
time tcalc, and therefore the synchronization time, are normally constant (O(1)), the
time complexity (inO-notation) in such a case can be calculated as:

tmicro = tround m tslot.

For example, having an algorithm with a time complexitytround of O(n) and a round
message complexitym of O(n), the microtick based time complexitytmicro will
evaluate toO(n2).

A more problematic example is an algorithm with a round time complexitytround of
O(n) and an exponential message complexity. Its microtick basedtime complexity
tmicro would be exponential! This fact is often neglected in theoretical distributed
algorithm literature. This is due to the fact that the round length is proportional to
the number of messages sent per round.

10.4 Mapping the Message Layer Implementation

After describing the algorithmic model in detail, it must bemapped to the previ-
ously implemented communication layer (see Chapter 8). The layer supports eight
bit messages with a slot time of 10 microticks. As already discussed in Section 9.3.2,
it has a constant message latency. The startup time is2 microticks. Therefore all as-
sumptions made by the algorithmic model hold for this implementation.
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10.5 Static Round Pattern Algorithm

Some important lock step synchronous algorithms have a static round pattern, which
means that their execution consists of a predefined sequenceR of rounds which
is repeated indefinitely. Each round inR has a defined, a-priory known maximum
message countmi. UsingR, Assumption 10.1.3 can be redefined as:

Assumption 10.5.1(Message Count). The execution is structured into sequences of
n roundsRi, i = 1 · · ·n. The maximum number of messages sent in each roundRi

is defined asmi and known in advance. The valuesmi are stored using ann-tuple
R = [m1,m2, · · ·mn].

Using Assumption 10.5.1, Algorithm 3 can be redefined to Algorithm 4.

Algorithm 4 Static Round Pattern Algorithm
1: consttstart – Communication Layer Startup Time [microticks]
2: constR – n-tuple Containing the Message Pattern
3: consttslot – Message Slot Time [microticks]
4: consttl – Transmission Latency of a Message [microticks]
5: consttcalc – Maximum Calculation Time

6: consttsync – Synchronization Time (
⌈

tcalc+tl−tslot+1
tslot

⌉

tslot) [microticks]

7: // Startup
8: wait tstart microticks
9: // Repeat the Algorithm Round Pattern for Ever
10: for everdo
11: // Execute All Rounds of the Round Pattern
12: for all mi ∈ R do
13: Signal Start of RoundRi

14: // Wait for Message Sending
15: wait mi tslot microticks
16: // Wait for the Message Arrival and the Calculation to Finish
17: wait tsync microticks
18: end for
19: end for

The execution of Algorithm 4 is similar to the execution of Algorithm 3 with the
difference that the number of messages sent in each round is not constant. For algo-
rithms with a static round pattern the number of idle messageslots can therefore be
decreased, optimizing the microtick complexity of the algorithm.
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Algorithm 5 Round Pattern Creation Algorithm including the Signalization of the
Message Arrival Times
1: consttstart – Communication Layer Startup Time [microticks]
2: constR – n-tuple Containing the Message Pattern
3: consttslot – Message Slot Time [microticks]
4: consttl – Transmission Latency of a Message [microticks]
5: consttcalc – Maximum Calculation Time

6: consttsync – Synchronization Time (
⌈

tcalc+tl−tslot+1
tslot

⌉

tslot) [microticks]

7: // Startup
8: wait tstart microticks
9: // Repeat the Algorithm Round Pattern for Ever
10: for everdo
11: // Execute All Rounds of the Round Pattern
12: for all mi ∈ R do
13: Signal Start of RoundRi

14: // Wait for the First Message to Arrive (Compensate for the Message Latency)
15: wait tl microticks
16: Signalize Message Reception
17: // Wait for all other Messages to Arrive (mi − 1 Messages)
18: for i ∈ [0, · · · , (mi − 2)] do
19: wait tslot microticks
20: Signalize Message Reception
21: end for
22: // Realign the Execution to the next Message Slot
23: wait tsync − (tl − tslot + 1) microticks
24: end for
25: end for

10.6 Message Receive Event

Additionally to establishing the round pattern, the exact times for reading the mes-
sages from other nodes must be signalized. In non faulty systems this can be
achieved by using the signalization mechanism of the receiver. If faults may oc-
cur, it could happen that some messages get lost and the timing information of non
faulty nodes may be compromised.

Therefore the message reception pattern must be established relying on local infor-
mation only. Algorithm 5 establishes such a pattern based onthe deterministic round
definition already shown in Figure 10.2.

Informal Description of the Algorithm: The algorithm is a slightly changed ver-
sion of the round creation algorithm presented as Algorithm4. The compensation
for the message latency is divided into a portion at the startof the algorithm (align-
ing the execution to the message reception times) and another at its end (realigning
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to the next message slot), otherwise it is equivalent.

10.7 Hardware Implementation

As Algorithm 3 can be seen as a special case of Algorithm 4 (R = [m]), only
Algorithm 4 has to be implemented in hardware. AdditionallyAlgorithm 5 is an
improved version, therefore only this algorithm was implemented.

It is implemented using a state machine for creating the round pattern. The wait
instructions are realized by counters. The round start- andthe message receive events
are signaled by the state machine using theroundtick and themessagetick signals.
Additionally two signals specifying the number of cycles left before the next round
switch and message reception, respectively, are available.

An example simulation of the VHDL implementation can be found in Figure 10.3.
It is based on a round definitionR = [2, 4, 1] and a startup time of2 microticks.
The startup of the system (roundtick = 0) as well as the signaling of the message
receive-events (transition on signalmessagetick) and the signaling of round starts
(transition on signalroundtick) are shown.
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Chapter 11

Problem Definition

After establishing a reliable, but not fault tolerant framework for implementing lock-
step synchronous algorithms, we will proceed by developinga fault tolerance layer
for our system.

As we have already discussed, TMR systems (Section 5.2.1) are widely used and
state of the art. Therefore it would be tempting to adapt sucha system to our mul-
tisynchronous model. Unfortunately TMR systems have several drawbacks, which
we will discuss in this chapter. Additionally we will see that digital electronic cir-
cuits can easily behave non-benign, a situation a TMR systemmay be incapable to
handle.

11.1 Problems of TMR Systems

The simplest way to implement a TMR system is to use the globally synchronous
paradigm. All application logic components use the same clock, while the toolset
compensates for the delays introduced by the asynchronous voter(s). This also guar-
antees the correct alignment of the voter’s input values (correct temporal relation).

Unfortunately the global clock signal is a single point of failure, contradicting the
fault tolerance of the system. To circumvent this problem one may use a GALS
system with its independent, unsynchronized clock sources. As the voter is asyn-
chronous, obviously no metastability problems will occur at its inputs. Metastability
problems may nevertheless arise, if the voter output is fed into another sequential
circuit. Since these two circuits have different clock sources with an arbitrary phase
shift, the input stage of the following synchronous logic may behave metastable.

Another problem, when using multiple unsynchronized clocksources or a multisyn-
chronous clocking scheme is that the temporal relation between the input values may
get lost.
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Table 11.1: Voter Execution
Event Output Global Local

Value Time Time
Initially all Values are0 0 @0
Value of Node2 = 1 0 @1 @2.1
Value of Node0 = 1 1 @2 @0.1
Value of Node2 = 0 0 @2 @2.2
Value of Node0 = 0 0 @3 @0.2
Value of Node1 = 1 0 @3 @1.1
Value of Node1 = 0 0 @4 @1.2

To show this, we will create a fault-free multisynchronous execution within a basic
TMR system leading to an illegal output value, even if votingis executed on a single
bit signal only and the modules are replica deterministic.

Let us call the single instances of the replicated application logic node0 - node2.
The clock of node0 is one clock cycle behind realtime, the one of node1 two
cycles behind realtime, while the clock of node 2 runs synchronously with realtime.
Therefore this execution is valid for any multisynchronoussystem with a precision
π of at least2.

It is also valid for GALS systems. Based on the inevitable drift of the independent
clock sources, after a sufficient execution time such a constellation may arise.

Since the execution is fault free, all nodes will output the correct value at their cor-
responding local clock edge. Due to the purely asynchronousimplementation (see
[Sho02] as example), the voter is not aware of any shifts in the data signals. The
detailed execution can be found in Table 11.1 and is visualized in Figure 11.1.

As apparent from the execution, the time shift of the nodes isenough to compromise
the output. Since the majority value is always0, the output is never set to one or
worse only a spike is created. The length of the spike dependson the skew between

Figure 11.1: Unsynchronized Voter Execution



11.1. PROBLEMS OF TMR SYSTEMS 93

Figure 11.2: Multisynchronous Voter Implementation

the data signals. Depending on which data link is faster, spikes may be created.

Comparing the result to the correct one, shown in Figure 11.1,it is obvious that the
output signal of the voter is wrong.

This problem even may occur, if the voter is the last element of a fully synchronous
circuit and the skew between the data signals is too large. Due to the asynchronous
nature of the voter circuit and the fact that no sequential element follows, the skew
of the voter input signals is not automatically controlled by the synchronous toolset.

Additionally, for a voter deciding on multi-bit values, a fault free execution, having
no majority values at all, can be sketched. This is achieved by using the local clock
tick as output value of the application logic while using thesame clock shift as in
the previous example. Due to the shifted clock index, at any point in time each value
will be present at most on a single voter input.

Therefore extreme care must be taken when designing a systemwith an asyn-
chronous voter (e.g. control skew, usage of a clock synchronization algorithm).

The only way to implement a sufficiently dependable voter circuit in a multisyn-
chronous environment would be to artificially synchronize the input values. This
can be done by adding a buffer node for each input value. All ofthese nodes must
have the same clock signal (out of the multisynchronous ensemble) and use the pre-
viously presented communication layer (see Chapter 8) to receive the data and syn-
chronously output them (see Figure 11.2). As all these nodesuse the same clock, the
clock signal would be a single point of failure in the system.Nevertheless this draw-
back can be circumvented, if the voter is also replicated (asdescribed in [LV62], see
Figure 11.3).
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Figure 11.3: System with Replicated Multisynchronous Voters
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Figure 11.4: Circuit used in the Proof

11.2 May Hardware Act Non-Benign?

We will now show, why we have to assume non-benign behavior ofelectronic cir-
cuits. This is done by analyzing a simple circuit experiencing a single fault described
by one of the presented fault models (see Section 5.1). Sinceall faults defined by any
of the fault models may occur in practice, it is sufficient to show that the circuit be-
haves non-benign in at least one of the fault models.

Assumption 11.2.1(Non-Trivial Electronic Circuit). As non-trivial electronic cir-
cuit we define a circuit with at least one fork.

Assumption 11.2.2(Link Failures). In our model, faults occurring on the commu-
nication links are handled as if they are happening at the sending node.

Based on Assumption 11.2.2, a communication error is modeledby changing the
executed algorithm of the sending node.

Lemma 11.2.1.Every non-trivial electronic circuit can produce non-benign faults.

Proof. We prove the Lemma for synchronous circuits. The proof for asynchronous
circuits is equivalent.

Figure 11.5: Distributed System Model of the Circuit
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Algorithm 6 Algorithm of Node A in the Fault-Free Case
1: var val - The node’s local value (either0 or 1)
2: on active edge ofclk do
3: Send〈val〉 to B
4: Send〈val〉 to C
5: end on

Algorithm 7 Algorithm of Node A in the Faulty Case
1: var val - The node’s local value (either0 or 1)
2: on active edge ofclk do
3: Send〈val〉 to B
4: Send〈0〉 to C
5: end on

The lemma is proved by contradiction. Assume only benign faults can occur in a
synchronous circuit.

We use the circuit shown in Figure 11.4. Based on the distributed systems theory, it
can be modeled as fully synchronous algorithm. The resulting system can be found
in Figure 11.5,while its functionality is described by Algorithm 6.

Assume that the input of Flip-Flop C is subjected to a stuck-at-zero fault or a tran-
sient fault setting the input of Flip-Flop C long enough to0 to get captured. Therefore
the executed algorithm is changed to Algorithm 7.

As we can easily see, if node A’s value is1, node B would receive a message con-
taining the value1, while node C receives a message containing the value0, which
is obviously a non-benign behavior, since the messages do not match. Therefore our
assumption that the circuit can only produce benign faults is contradicted and the
Lemma is correct.

The proof has revealed that every non-trivial electronic circuit may behave non-
benign. We will formulate this finding fact as a theorem.

Theorem 11.2.1(Non-Benign Hardware). When modeling a non fault-free non-
trivial electronic circuit using the distributed systems theory the hardware may act
non-benign and therefore the Byzantine failure model is assumed.

As Theorem 11.2.1 describes, even the most simplistic circuits, as long as they have
at least one fork, can experience non-benign faults.

11.3 TMR Systems in Byzantine Environments

As stated in [Kop97], one needs at least3f + 1 replications of the application logic
to tolerate Byzantine faults in electronic circuits (which is equivalent to the lower
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bound of nodes needed for a consensus algorithm in a distributed system, as stated
in [AW04]). Since a TMR system consists of three replicas, it is definitely incapable
of handling Byzantine faults.

To clarify this fact, consider the following scenario: Depending on its input value,
the system decides whether to set a railway signal to halt or free. Node 0 decides
that the signal must show halt, while node 1, due to slightly different sampling of
the input value, decides to free. Node 2 on the other hand is faulty and transmits the
value stop to node 0’s voter and the value free to node 1’s voter. On both non faulty
systems, a majority value is found. Node 0 will decide to stop, while node 1 decides
to free resulting in an inconsistent decision. Therefore the system is in an undefined
state.

As the example reveals, the decision circuit must either be able to handle Byzantine
faults correctly or the nodes must be replica deterministic. Replica deterministic
means that non faulty nodes always decide to the same value asthey receive the same
inputs. In this case the output values of the correct nodes surely form a majority and
a faulty node can no longer effect the output value.

Especially when using processors with embedded operating systems, replica deter-
minism is very hard to achieve. Therefore circuits tolerating Byzantine faults would
be advantageous.

11.4 Alternatives to TMR Systems

As Theorem 11.2.1 states, we assume a byzantine fault model for electronic circuits.
Since TMR systems are incapable of handling such faults in the general case, their
fault tolerance is only limited.

Nevertheless a lot of modern solutions are based on the TMR paradigm (like
[OKS08], e.g.).

Other approaches, as consensus algorithms, are mainly implemented at software
level (like [HLD95], e.g.). Circumventing most problems of TMR systems, these
implementations suffer from a low performance, due to the lack of direct hardware
interaction and therefore increased communication latency.

To overcome these problems, a completely different strategy must be pursued. Since
we have already implemented a lockstep synchronous round model in hardware, the
adaptation of a lockstep synchronous consensus algorithm for implementation in
hardware is obvious. As for the direct hardware implementation, the communica-
tion latency will be decreased and the algorithm will be implemented with a much
higher performance. On the other hand we will be able to handle, in contrast to TMR
systems, Byzantine faults in the general case, creating a much higher degree of fault
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tolerance. The system even decides consistently, if the input values of the non-faulty
nodes are different, as may happen in non replica deterministic systems.

In the next chapter, we will design a hardware implementation of the EIG consensus
algorithm and analyze its time complexity. It is followed bythe description of the
hardware implementation.



Chapter 12

Creating a Byzantine Fault Tolerant
System

Inspired by the TMR system with replicated voters (see Section 5.2.1), we designed
a fault tolerant system based on a consensus circuit. The voters of the TMR system
are replaced by the consensus implementation. Since for theconsensus algorithm
at least3f + 1 nodes are necessary [AW04], a fourth application logic replica was
added. Such a system can tolerate a single Byzantine fault. A conceptual drawing
can be found in Figure 12.1.

As apparent from the figure, the system uses multiple clock sources out of a mul-
tisynchronous ensemble. A suitable implementation would be our DARTS clock-
ing scheme [FFSK06]. Due to the multisynchronous nature of the clocking sys-
tem, the communication between the different clock domainscan be implemented
metastability-free by means of the communication layer developed in Chapter 8.

As a suitable consensus algorithm for hardware implementation, using a minimum
number of nodes, we identified the EIG algorithm.

Our basic solution tolerates one Byzantine fault. If a higherdegree of fault tolerance
is needed, the consensus implementation must be created using a stronger fault hy-
pothesis (e.g.f = 2 for tolerating two Byzantine faults). According to the lower
bound proof (see [AW04])3f +1 replicas of the application logic would be needed.
For the example of two Byzantine faults (f = 2) 7 replicas are necessary and suffi-
cient.

12.1 The EIG Algorithm

Before designing the hardware implementation of the consensus algorithm, let us
recapitulate the definition of the Byzantine EIG algorithm (see Section 2.4.2).
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Figure 12.1: System Model Tolerating one Byzantine Fault

The basic element of the algorithm is the resolve tree. It is used to store all data
collected on the nodes of the system. To identify the stored values and their history,
each tree-node is labeled using the indices of all nodes which have already processed
the value.

The algorithm consists of two phases, namely an informationgathering phase and an
output value resolve phase. The first phase consists off +1 rounds. In the first round
each nodej broadcasts its input valuevj. These values are stored by each node in its
resolve tree on the first level. If a node does not send a value,the receiver node uses
a default value instead. The label assigned to a stored itemvj is 〈j〉, the index of its
originating node.

In the remaining rounds (2, · · · , f + 1), the tree level built in the previous round is
broadcasted. These levels are again stored in the resolve tree of the nodes. If a tree
level is not received, a default value is used instead. The label assigned to a stored
item is calculated as follows: If the received item had a label of 〈n0, · · · , nd〉 at the
sending node, the new label is set to〈n0, · · · , nd, j〉, wherej is the index of the
node, the item was sent by. Each label is checked whether it already contains the
indexj. If so, the item is discarded. Therefore only items processed at most once by
each node are kept.

Figure 12.2 contains an example of a resolve tree for a systemtolerating one Byzan-
tine fault (f = 1). Note that the red tree-nodes are filtered out of the resolvetree.

After finishing the creation of the resolve tree, the second phase starts. Here a re-
solve function is executed on the resolve tree. Its leaves are grouped such that all
items with the same index prefix (the label of the leaves without the last index, e.g.
〈n0, · · · , nd−1〉, if the label was〈n0, · · · , nd−1, nd〉) are in the same group. On each
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Figure 12.2: Fully Created Resolve Tree forf = 1

group a majority vote is executed. If no majority exists, a default value is used. The
results are labeled with the prefix used to create the group. They are again grouped,
according to the same rule as above, and subjected to a majority vote. This operation
is repeated until only a single value, the output value, remains.

The correctness, time- and message-complexity of the algorithm was already proved
in [AW04]. The proof is not repeated here.

12.2 Algorithmic Model

We will now modify the Byzantine EIG algorithm to be suitable for a hardware
implementation. The algorithm definition is based on the lockstep generation scheme
presented in Chapter 10 and is timed using theroundtick andmessagetick signals.

Based on the hardware’s property to execute multiple tasks inparallel, we can imple-
ment several parts of the algorithm independently. Therefore the algorithm is split
into four parts, namely:

• A storage definition, containing the interface data betweenthe different parts
of the algorithm

• A component broadcasting the current tree level

• A component building the next tree level

• A component calculating the resolve value

Figure 12.3 contains a schematic visualization of the different parts of the algorithm.

For a safe operation, a stable interface must be defined. It isimportant that the input
values of the algorithm parts only change at appropriate points in time.
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Figure 12.3: Structure of the Hardware Implementation

As will be discussed in Section 12.3, only the current level of the resolve tree is
stored by the implementation (current_level). Since it is the input for the sender
algorithm, this information must stay unchanged for the duration of the broadcast
operation.

Parallel to the broadcast operation the next tree level is built. Writing the new
level directly to the tuple, would compromise it. Thereforea separate instance
(receive_level) is used to store these values. Based on the the deterministicdefi-
nition of the round structure and its static message delivery pattern (see Chapter 10),
a safe point for overwriting the current level can be stated.It is ensured that after
the last value of a tree level was received, the broadcast operation of the current
level has safely finished and the tuple containing it can be overwritten (Line 18 of
Algorithm 10).

By implementing the resolve function as independent circuit, running parallel to the
next instance of the resolve tree build operation, it is required that its input value
(resolve_level) stays unchanged for the duration of this operation. Therefore it may
only be overwritten in an atomic action at the end of the tree build operation (Line 21
of Algorithm 10).

Algorithm 8 contains the definition of the globally accessible storage values, mod-
eling the interface between the different algorithm parts.The size requirements of
the tuples will be proved in the Section 12.3. Algorithm 9 describes the broadcast
operation of the current tree level, while Algorithm 10 describes how the next level
is created. The resolve function will be described later.



12.3. BUILDING THE RESOLVE TREE 103

12.3 Building the Resolve Tree

In contrast to the definition of the EIG algorithm in Section 2.4.2, the hard-
ware implementation builds the full resolve tree and therefore supports the filter-
ing of the labels containing duplicate indices without storing them explicitly (see
Lemma 12.3.3). The drawback of this design is that the runtime of the algorithm is
slightly increased. Nevertheless the time complexity stays unchanged. An example
for a resolve tree with a fault hypothesis of one Byzantine fault (f = 1) was already
shown in Figure 12.2. The full tree consists of all tree-nodes, including the red ones.

As already mentioned, the tree level is stored using a tuple.The size of this tuple will
be calculated in the following. We start with determining the size of the tree levels.

Lemma 12.3.1.The tree level of depthd is calculated in roundd of the algorithm
and has a size of(3f + 1)d.

Proof. The Lemma is proved by induction.

• Induction Start (d = 1): The tree level of depth1 is created in the first round. It
is composed of exactly one value for each node in the system (the broadcasted
input values). Since there are3f + 1 nodes in the system, the size of the first
tree level is3f + 1.

• Induction Hypothesis: Assume the correctness of the Lemma for d.

• Induction Step (d → d + 1): In round d + 1, the previous level is broad-
casted (Line 11 of Algorithm 9) by each nodej, j = 0, · · · , 3f . Therefore the
node receives one copy of the last tree level from each node (including itself,
Line 14 of Algorithm 10). Since there are3f + 1 nodes in the system,3f + 1
copies are received. The size of the tree levels of depthd is, by the induction
hypothesis,(3f +1)d. This leads to a size of(3f +1)(3f +1)d = (3f +1)d+1

for the tree level of depthd + 1.

Lemma 12.3.2.The maximum size of a tree level is(3f + 1)f+1.

Algorithm 8 Consensus – Storage Definition
1: // Current Level of the Resolve Tree
2: var current_level as(3f + 1)f+1-Tuple
3: // Buffer for Storing the Received Values while Building a new Tree level
4: var receive_level as(3f + 1)f+1-Tuple
5: // Input Value of the Resolve Function
6: var resolve_level as(3f + 1)f+1-Tuple
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Algorithm 9 Message Sender Implementation
1: for everdo
2: // Wait for Round Start
3: wait for roundtick = 1
4: // Broadcast the Input Value
5: Broadcast〈input〉
6: for all round ∈ [2, · · · , f + 1] do
7: // Wait for Round Start
8: wait for roundtick = round

9: // Broadcast the Current Tree Level
10: for all k ∈ [0, · · · , (3f + 1)round−1 − 1] do
11: Broadcast〈current_level[k]〉
12: end for
13: end for
14: end for

Algorithm 10 Message Receiver Implementation
1: for everdo
2: // Executef + 1 Rounds
3: for all round ∈ [1, · · · , f + 1] do
4: // Wait for Round Start
5: wait for roundtick = round

6: // Receive all Messages of the Current Level
7: for all k ∈ [0, · · · , (3f + 1)round−1 − 1] do
8: // Wait for Message Reception
9: wait for messagetick

10: // Retrieve the Current Messages of all Nodes
11: for all j ∈ 0, · · · , f do
12: Read〈val〉 from nj

13: // Store the Value in the Current Level
14: receive_level[k(3f + 1) + j] := val

15: end for
16: end for
17: // Update the Current Tree level
18: current_level := receive_level

19: end for
20: // Update the Input Value of the Resolve Function
21: resolve_level := receive_level

22: end for
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Figure 12.4: Building of a Resolve Tree Level

Proof. As the execution needsf +1 rounds to finish [AW04], by Lemma 12.3 a tree
of depthf +1 is built and has a size of(3f +1)f+1. Since the size of the tree level is
monotonically increasing with the depth of the tree, this isthe largest possible tree
level built in any execution.

After showing that the size of the tuples defined in Algorithm8 is sufficient, we will
prove that the resolve tree labeling of the original algorithm is consistent with the
index calculation, the implicit labeling, of our hardware implementation (except for
the non filtered tree-nodes). An example of the tree build operation and the labeling
of the tree-nodes can be found in Figure 12.4.

Lemma 12.3.3. A tree-node of depthd labeled as〈n0, · · · , nd−1, nd〉, where
〈n0, · · · , nd−1〉 is the label of its parent tree-node, is stored by the hardwareim-
plementation at the tuple positionn0(3f + 1)d + n1(3f + 1)d−1 + · · · + nd.

Proof. The Lemma is proved by induction.

• Induction Start (d = 1): In this round a single value is received from each
nodej, j = 0, · · · , 3f (including itself) and is labeled as〈j〉. It is stored to the
positionj.

• Induction Hypothesis: Assume the correctness of the Lemma for d.

• Induction Step (d → d + 1): From each nodej, j = 0, · · · , 3f , all values of
the tree level of depthd are received, due to the FIFO order of the links, in
the order they are stored on nodej (Line 12 of Algorithm 10). The algorithm
selects thek-th element,k = 0, · · · , (3f + 1)d − 1, of the tuple received from
each nodej and stores it to positionk(3f + 1) + j (Line 14 of Algorithm 10).
Since thek-th element of the tuple has, by the induction hypothesis, the label
〈n0, · · · , nd〉, the label of the newly stored item is set to〈n0, · · · , nd, j〉. As
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Figure 12.5: Resolve Function forf = 1

the positionk was calculated asn0(3f + 1)d + n1(3f + 1)d−1 + · · · + nd at
the sending node, the storage position of the new element is:

k(3f + 1) + j =
(
n0(3f + 1)d + n1(3f + 1)d−1 + · · · + nd

)
(3f + 1) + j

= n0(3f + 1)d+1 + n1(3f + 1)d + · · · + nd(3f + 1) + j

as required by the Lemma.

Since the resolve function is defined only on the labels of thetree-nodes, the resolve
tree is equivalent to the one of the original algorithm. The filtering done by the
original algorithm is implemented as part of the resolve function in our version.

12.4 Resolve Function

The resolve function was developed for specific fault hypotheses only. Currently an
implementation for a systems tolerating one Byzantine faultis available.

12.4.1 Resolve Function for a Single Byzantine Fault

Figure 12.5 shows an example for a resolve operation of a system tolerating one
Byzantine fault (f = 1). The resolve function is formalized in Algorithm 11. The
Functionmajority takes a tuple and returns the value most often present in the tuple.
If multiple values have the maximum frequency a default value (0) is returned.
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Algorithm 11 Resolve Function (f = 1)
1: var temp as3f Tuple
2: var maj as3f + 1 Tuple
3: var k as Integer
4: for everdo
5: // Create a Majority Value for Each Labeli

6: for i ∈ [0, · · · , 3f ] do
7: k := 0
8: // Copy the3f Values totemp

9: for j ∈ [0, · · · , 3f ] do
10: if i 6= j then
11: temp[k] := resolve_level[i(3f + 1) + j]
12: k := k + 1
13: end if
14: end for
15: // Calculate the Majority for Labeli
16: maj[i] := majority(temp)
17: end for
18: // Calculate the Output Value
19: output := majority(maj)
20: end for

Informal Description: The algorithm creates a majority value for each label〈i〉, i =
0, · · · , 4. Therefore all items with a label of〈i, j〉, j = 0, · · · , 4 ∧ i 6= j are copied
from theresolve_level to a temporary tuple (temp). The index calculation is based
on the definition in Lemma 12.3.3. The values processed multiple times by the same
node (〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉) are skipped and the tupletemp therefore contains3
elements. The resulting majority valuemaj[i] is determined by calling the function
majority.

The output value is calculated by again callingmajority but this time on the4
previously calculated majority values stored in the tuplemaj.

12.5 Complexity of the Adapted Algorithm

As already discussed, each tree level has(3f+1)r entries. As in each roundr ≥ 2 the
tree level of depthr − 1 is broadcasted,(3f + 1)r−1 broadcast messages are sent by
each node. In round1 the input value is broadcasted, therefore a single (= (3f +1)0)
broadcast message is sent by each node.

Based on the definition of the lockstep round creation, described in Chapter 10,t′sync

additional synchronization messages are generated to compensate for the precision
of the underlying multisynchronous clocking scheme as wellas the message delays,
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leading to a synchronization time oft′sync message slots. With a time complexity of
f + 1 rounds [AW04], the number of broadcasted messages per node are:

f+1
∑

r=1

(
(3f + 1)r−1 + t′sync

)
= t′sync (f + 1) +

(3f + 1)f+1 − 1

3f

For the current implementation of the message layer and a precision of4 a synchro-
nization timet′sync of one message slot is sufficient (see Chapter 10 for the calcula-
tion description), leading to

f + 1
︸ ︷︷ ︸

Synchronization Messages

+
(3f + 1)f+1 − 1

3f
︸ ︷︷ ︸

Application Messages

broadcast messages per node.

The fact that these messages are tightly packed (see Chapter 10) leads to an execu-
tion time of:

tmicro = tslot

(

f + 1 +
(3f + 1)f+1 − 1

3f

)

microticks. The message slot timetslot of the current communication layer imple-
mentation is10 microticks. Therefore the time complexity is:

tmicro = 10

(

f + 1 +
(3f + 1)f+1 − 1

3f

)

leading to an exponential time complexity. Additional timeis needed for calculating
the output value. Since this calculation is done in parallelto the next information
gathering phase it is not included into the runtime analysis.

Table 12.1 gives an overview on the runtime of the algorithm for different fault
hypotheses and different clock rates. The values are based on the current implemen-
tation of the communication layer. The growth rate of the runtime is visualized in
Figure 12.6.

Table 12.1: Runtime of the Consensus Implementation
Microticks 50 MHz 100 MHz 200MHz

f = 1 70 1.4µs 700 ns 350 ns
f = 2 600 12µs 6µs 3µs
f = 3 11150 223µs 111.5µs 55.75µs
f = 4 309460 6.18 ms 3.09 ms 1.55 ms
f = 5 11184870 223.7 ms 111.8 5ms 55.93 ms
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Figure 12.6: Runtime of the Consensus Algorithm [Microticks]

As apparent from the algorithms,3(3f +1)f+1 memory locations are needed to store
the tuples (current_level, receive_level, resolve_level). The temporarily defined
values (as the counters and the tuplestemp andmaj) are implemented as aliases,
selecting but not storing the corresponding values.

12.6 Circuit Design

The consensus algorithm implementation is based on the basic node model intro-
duced in Chapter 10. Figure 12.7 shows how the consensus algorithm is integrated
into the node.

As already mentioned, the circuit is timed by theroundtick signal of the lockstep
synchronous round creation circuit. Due to the precalculated round timing it is as-
sured that the messages of all non faulty nodes are deliveredtimely.

An instance of the communication layer presented in Chapter 8is used to com-
municate with the other nodes. As a faulty node may not send all messages, the
signalization mechanism for message receptions of the communication layer is not
used. Instead the message reception is locally timed by themessagetick signal of
the round counter module. As the creation of this signal is solely based on the local
microtick clock, the timing of the message reception can notbe affected by a faulty
node.

The reception of the next tree level is implemented using a single state machine.
The currently built tree level (receive_level) is stored within a register bank directly
located in the receiver state machine component. After having received the complete
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Figure 12.7: Node Implementation

tree level, its contents is copied to a second register bank (current_level), so it can
be used as input for the broadcast operation of the next round.

The message broadcast operation is implemented using two tightly coupled state
machines. The sender state machine is responsible for establishing the round pat-
tern (based on theroundtick signal) and the transmission of the input value at the
appropriate time (the beginning of the first round). The treelevel serializer, also a
state machine, coordinates the serialization of the current tree level (current_level)
based on the round pattern established by the sender state machine.

The resolve function is implemented using purely combinational logic. As this im-
plementation has a high logic depth, its runtime may take multiple microticks. To
ensure a clean output signal (eliminating all spikes), the result of the resolve func-
tion is buffered using an output register. This register is updated solely when a new
information gathering phase has finished. The input value ofthe resolve function is
stored within a register bank (resolve_level). The timing of the copy operation is de-
termined by the receiver state machine. Therefore the execution time of the resolve
function takes as long as a full information gathering phase. As the implementation
of the system is fully synchronous, the toolset ensures thatthe execution time of the
resolve functions meets its bound.

This form of implementing the resolve function leads to a pipelined architecture,
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which means that while the output value of the current iteration is calculated, the
information gathering phase of the next iteration is already executed.

12.7 Execution Example

Figure 12.8 contains a VHDL timing simulation for a system tolerating one Byzan-
tine fault. The shown execution is fault free. As you can see,the output values are
always the majority of the input values, except if no majority exists. If no majority
exits, a default value (0) is used as output value. As thedata_stream signals are no
longer readable in the figure, Figure 12.9 additionally shows a detail of the execution
such that the communication between the nodes becomes visible.
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Figure 12.9: Execution Example of a Consensus System (Detail)
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Conclusion and Future Work
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Chapter 13

Future Work

As in every project, the available time is limited. Therefore not all questions could
be solved and some potential for future enhancements has been identified.

13.1 Flow Control and Error Detection

Currently it is assumed that the application logic can handlea data transmission
with the full communication speed or otherwise will implement flow control on the
architectural level. In future extensions we want to support flow control as service
of the communication layer.

Additionally we will investigate different options for data protection. A way to
achieve this is by grouping multiple data bytes into packets, and each packet is pro-
tected by a CRC byte.

Another important point is the detection of timing violations to identify nodes not
synchronized correctly to the multisynchronous ensemble.The current solution can
handle this, but if identified, such a node could be reinitialized and reintegrated into
the system. This would increase the reliability of the system.

As for the flow control, we currently assume that all error detection and correction
mechanisms are implemented within the application logic.

13.2 Resynchronization at Runtime

An important question when handling data transmissions is how to resynchronize
a receiver to a data stream, once it has lost its lock. Using a dedicated start-packet
symbol, a resynchronization at the message level is simple by waiting for this symbol
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to occur. Unfortunately the correct initialization of the ring buffer’s read- and write-
pointer is not solvable that easily. As our proof heavily depends on the fact that
the precision at startup is zero, a resynchronization will fail with a high probability,
because of the unknown precision at such an event.

Two possibilities to circumvent the problem are:

• Usage of a larger buffer

• Support from the clocking system

The approach of using a larger buffer is simple and will work without changing the
clocking system. Instead of assuming a perfectly synchronous startup, the precision
maximum is assumed. Therefore the buffer will be sufficiently large to compensate
for any arbitrary precision, as long as it is within the givenbounds, at the resynchro-
nization point. Unfortunately a larger buffer size also increases the message latency.

Support form the clocking system would enable us to correctly set the write and read
pointer in case of a resynchronization and the buffer will defiantly not over- or under
run.

13.3 Ring Buffer Integration into the Clocking Chip

A problem of the current implementation is that the FPGA needs to maintain multi-
ple clock sources (one per data line) to control the respective buffer write accesses.
Each of these clocks needs to be routed to the FPGA along with the associated data.

For the next release we plan to integrate buffers and transmitter synchronization,
for a system tolerating one Byzantine fault (f = 1), directly into the clocking chip.
Therefore three ring-buffer instances are needed. The fourth communication link,
transmitting data to the node itself, is routed internally in the FPGA and is fully syn-
chronous. Therefore the ring buffer can easily be implemented fully synchronous.

A scheme of such a chip is shown in Figure 13.1. In this solution the buffer han-
dling is naturally performed inside the clocking chip, where all required clocks are
available anyway. Hence there is no need for extra clock routing, the data lines can
simply be aligned to the associated clock traces in the (existing) clock-net. At the
same time the FPGA can be implemented fully synchronous, using one single clock
source only.
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Figure 13.1: Clocking Chip – Ring-Buffer Integration

13.4 Resolve Functions for Stronger Fault Hypothe-
ses

Currently only a resolve function for a fault hypothesis of one Byzantine fault (f =
1) has been implemented. In future at least an implementationfor two faults will be
implemented. This is not a fundamental problem but need efficient implementation.





Chapter 14

Conclusion

Multisynchronous clocking is an attractive alternative toglobally synchronous
clocking in modern high-speed VLSI circuits, such as complex SoCs, which also
allows to avoid the single point of failure usually represented by a central clock
source.

We have shown how to employ the loose synchrony provided by multisynchronous
systems for implementing a high-speed pipelined communication scheme that is
metastability-free by construction. It employs a bounded-size FIFO buffer for com-
pensating the skew between the sender and receiver clock. Wederived a reasonably
tight lower bound for the required buffer size, and provideda formal proof of cor-
rectness and freedom of metastability. Furthermore, we have described an efficient
implementation of our communication scheme, and experimentally demonstrated its
feasibility using a custom test system.

Based on the communication layer we have shown how to implement a lockstep
synchronous round model relying only on the local microtickclock. Therefore faulty
nodes can never affect the timing of non faulty ones. The round structure is defined
for a maximum number of messages transmitted in each round. It is guaranteed
that all of these messages, sent by non faulty nodes, are delivered timely within the
current round. Additionally the receive event for those messages is also derived from
the local clock and is based solely on the a-priory known constant message latency.

We have shown that a naive TMR implementation in a multisynchronous environ-
ment will definitely fail and have given an implementation example for a multisyn-
chronous voter. Nevertheless such a system will never be able tolerate Byzantine
faults in the general case.

Our goal was to increase the level of fault tolerance implementable in hardware.
Therefore we have taken a well known consensus algorithm tolerating Byzantine
failures, namely the EIG algorithm, and have modified it suchthat it is imple-
mentable in hardware. We have shown that the two algorithms are equivalent and
sketched a hardware implementation for our solution.
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