Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

le FAKULTAT FUR !NFORMATIK

Fault-Tolerant Hardware Implementation
of a Consensus Algorithm

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Thomas Polzer, BSc.
Matrikelnummer 0325077

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Univ.Ass. Dipl.-Ing. Thomas Handl

Wien, 24.09.2009

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit
Thomas Polzer, Albrechtsgasse 88-94/10/6, 2500 Baden bei Wie

Hiermit erklare ich, dass ich diese Arbeit selbstandig agst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollstandig angegebabe und dass ich die
Stellen der Arbeit — einschlief3lich Tabellen, Karten und#dungen —, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach emtmen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kennglemhacht habe.

Baden, 24.09.2009

Acknowledgements

| would like to thank my advisors Prof. Andreas Steininged d&momas Handl for
their continuous help and advice. Additionally | want tortkd@rof. Steininger for
his excellent lectures in the field of Digital Design.

My thanks also go to Prof. Ulrich Schmid for his great lectur®istributed Algo-
rithms as well as for some very inspiring comments on my work.

Special thanks go to Mathias Fugger for his guidance wittptbefs.

| want to thank all my fellow students, especially PhilipfndaRobert Thullner and
Alexandra Schuster, for the great time and companionship.

And of course none of it would have been possible if it was potlie continuous
support from my parents and my two brothers.

This master’s thesis was funded by the bm:vit FIT-IT projp&RTS (proj. no.
809456-SCK/SAI).

Fault-Tolerant Hardware Implementation of
a Consensus Algorithm

Abstract

This thesis develops a hew communication model for digitatteonic systems.
The proposed scheme is comparable to a GALS (globally asgnolis locally syn-
chronous) system with the difference that the clock sounegs a bounded, a-priory
known precision. This loose synchrony is exploited to di&hla communication
that (i) is free of metastability by design and (ii) has ayuytiredictable tempo-
ral behavior. As a consequence the communication schemsernisea synchronous
behavior, thus allowing to employ techniques that areistt to synchronous sys-
tems, while avoiding the central clock being a single pofriaidure. To compensate
for the imperfect synchronization of the local clocks (witkhe defined precision),
a FIFO buffer memory is used on each communication link.

Using the theory of distributed systems the correctneskefpproach is formally
proved. For this purpose the communication activity is nedies a distributed
algorithm. More specifically it is shown that metastabifitge and correct commu-
nication is possible, given that the buffer is larger tharedgain, formally proved
minimum. Furthermore an efficient hardware implementaisogiven and used to
experimentally show that the theoretical derived FIFO dusiize requirement rep-
resents a tight lower bound. A performance comparison witta@dtional GALS
system shows that the performance of our solution is superio

Based on the new communication model, a fault tolerant @eirsystem, able

to tolerate Byzantine faults even in case of non replica detestic modules, is

developed. First the usability of a TMR system in such arsgi8 analyzed and, as
found inadequate, replaced by a hardware implementatitibeatommonly known

Byzantine EIG consensus algorithm.

As the EIG algorithm is lockstep synchronous, the lockstgisronous model is
simulated on top of our communication model. The EIG altoniis adapted such
that it can be efficiently implemented in hardware based ertithings established
by the lockstep rounds. The equivalence of the adapteditdgoand the original
EIG algorithm is shown. Additionally the hardware implertetion for a system
tolerating a single Byzantine fault is sketched. Perforreagied complexity of the
implementation are analyzed.

Vil

Fault-Tolerant Hardware Implementation of

a Consensus Algorithm
Kurzfassung

Diese Master-Arbeit entwickelt ein neues Kommunikatioodsil fir digitale elek-
tronische Systeme. Das vorgeschlagene Schema ist véigdeimit einem GALS
(globally asynchronous locally synchronous) System mihdénterschied, dass
bei unserer Lésung die Taktquellen eine a-prior bekanrgschrankte Prazision
aufweisen. Diese schwache Synchronitat wird ausgenutziorKommunikation-
ssystem welches (i) konzeptuell frei von Metastabilitiuisd (ii) ein vollkommen
vorhersagbares zeitliches Verhalten hat zu entwickelshBi® stellt das Kommu-
nikationsschema ein synchrones Verhalten zur Verfuguedsives die Anwendung
von Techniken gestattet, die auf synchrone Systeme beddtsiad. Zusatzlich ver-
meidet dieses Schema den zentralen Clock als Single Poisilofé& Um die nicht
perfekte Synchronisation zwischen den lokalen Clock Segméhnerhalb der Prazi-
sion) zu kompensieren wird auf jeder Kommunikationsvetbirg ein FIFO Buffer
verwendet.

Mittels der Theorie der Verteilten Systeme wird die Korredit des Ansatzes
formal bewiesen. Dazu werden die Kommunikationsvorgange/exteilter Algo-
rithmus modelliert. Genauer gesagt wird gezeigt, dasserutér Voraussetzung
dass die BuffergréRe Uber einem gewissen, formal bewiedginahestwert liegt,
metastabilitats- und fehlerfreie Kommunikation mdglish Weiters wird eine ef-
fiziente Hardware Implementierung vorgestellt und dieseexperimentellen Va-
lidierung der theoretischen FIFO Buffer Gro3e verwendetzé&igt sich, dass die
bewiesene minimal bendtigte Speichergrof3e eine groRerauSichranke darstellt.
Ein Vergleich der Leistungsfahigkeit mit einem traditiltee GALS System zeigt,
dass unsere LOsung einen hoheren Datendurchsatz hat.

Basierend auf dem neuen Kommunikationsmodell wird ein fébikrantes elektro-
nisches System entwickelt, welches auch dann in der Ladpyzsintinische Fehler
zu tolerieren, wenn die Module nicht replikations-detenistisch sind. Dazu wird
zuerst die Verwendbarkeit von TMR Systemen untersucht.i@®sededoch als nicht
einsetzbar eingestuft werden, muss stattdessen auf endevei@-Implementierung
des bekannten byzantinischen EIG Consensus Algorithmuskgegriffen werden.

Da der EIG Algorithmus ein lockstep synchroner Algorithnists wird basierend
auf dem Kommunikationsmodel ein lockstep synchroneres 8umadell imple-
mentiert. Weiters wird der EIG Algorithmus so angepasstsda effizient in Hard-
ware implementierbar ist. Die Aquivalenz des adaptiertégoAthmus mit dem

iX

Original wird gezeigt. Weiters wird die Hardware-Implertierung eines Systems,
welches einen byzantinischen Fehler tolerieren kann foetien. Die Leistung und
Komplexitat der Implementierung werden ebenfalls analysi

Contents

1 Introduction 1
1.1 Problem Definition 1
1.2 StructureoftheThesis 2
| Theoretical Background 3
2 Distributed Algorithm Basics 5
2.1 Message Passing System L.
2.1.1 Message PassingNetwork 6
2.1.2 ComputationalNode 6
2.1.3 ActionsandEvents 8
214 MeSSageS e e e e 8
2.1.5 \Visualization of Executions 9
2.2 GlobalNotionof Time 10
2.2.1 Properties of a Global TimeBase 10
2.2.2 Clock Synchronization 12
2.3 ComputationalModels 13
2.3.1 AsynchronousModel 13
2.3.2 TheLockstep RoundModel 13
2.4 Failure Handling in Distributed Systems 14
241 FailureModels, 14
2.4.2 AgreementProblem 16

Xii CONTENTS
3 Digital Electronic Circuit Basics 19
3.1 Clocking Schemata 19
3.1.1 SynchronousCircuits 19
3.1.2 Asynchronous Circuits 20
3.1.3 Globally Asynchronous Locally Synchronous (GALS)-Cir
CUILS . . . o 21
3.1.4 Multisynchronous Circuits 22
3.2 Intermodule Communication in Electronic Circuits 22
3.2.1 Synchronous Communication 23
3.2.2 Sourcesynchronous Communication 24
3.2.3 Asynchronous Communication. 25
3.3 Metastability 25
3.3.1 Flip-FlopTimings 26
3.3.2 Avoiding Metastability 27
4 Communication Standards 29
4.1 BitRepresentation 29
4.1.1 Single-Ended Signaling 29
4.1.2 Differential Signaling. 30
42 LineCoding 31
4.2.1 Additional ClockLine 31
4.2.2 Data-StrobeEncoding oL 32
423 8B/IOBEncoding. 32
4.2.4 Asynchronous Parallel Communication 33
4.2.5 Asynchronous Serial Communication 33
4.3 Synchronous Communication Protocols 4 3
4.3.1 Basic Synchronous Transmission 34
4.3.2 SPl .. 34
433 PC ... 35
434 PCl ... e 35
4.4 Sourcesynchronous Communication Protocols 35

441 Space-Wire 35

CONTENTS

Xiii

442 PCI-Express,
443 Infinbbando
4.5 Asynchronous Communication Protocols
451 SerialPort
452 ParallelPort.
4.6 Transmission Protocol Comparison.

Hardware Fault Models and Fault Tolerance

5.1 Hardware FaultModels
5.1.1 Stuck-AtFaults
5.1.2 Stuck-OpenFaults
5.1.3 BridgingFaults

52 FaultTolerance
5.2.1 Triple Modular Redundancy

Framework Implementation
Problem Definition

Circuit Modeling

7.1 CreatingtheModel
7.2 Model Properties
7.3 Modeling Freeness of Metastability

Metastability-Free Intermodule Communication
8.1 Quasi-Synchronous Communication Scheme

8.2 Pipelined Communication Scheme
8.2.1 AlgorithmicModel
8.2.2 Problem Definition
8.2.3 Relation Between Actions
8.2.4 Read-Write Order Proof
8.2.5 BoundedBufferSize
826 Latency
827 Results

Xiv

CONTENTS

9 Pipelined Scheme Implementation

10

9.1 Circuit Design

9.2

9.3

9.4
9.5

Implementing a Lockstep Model

10.1
10.2

10.3

10.4
10.5
10.6
10.7

Communication

Transmitter

Communication Buffer

Implementation Mapping
Implementation without Input Register
Implementation with Input Register
Performance and Efficiency
9.3.1 Throughput
9.3.2 System Latency
9.3.3 Performance Comparison
Communication Example
Experiments

Test System

Clock Emulation

Test Conditions

Performed Tests

AlgorithmicModel
Correctness Proof
Time Complexity
Mapping the Message Layer Implementation
Static Round Pattern Algorithm
Message Receive Event

Hardware Implementation

CONTENTS

XV

I Consensus

11 Problem Definition

11.3 TMR Systems in Byzantine Environments

11.4 Alternativesto TMR Systems

12 Creating a Byzantine Fault Tolerant System
12.1 The EIG Algorithm

12.2 Algorithmic Model

12.3 Buildingthe Resolve Tree
12.4 Resolve Function,
12.4.1 Resolve Function for a Single Byzantine Fault
12.5 Complexity of the Adapted Algorithm
12.6 CircuitDesign
12.7 ExecutionExample oL

IV Conclusion and Future Work

13 Future Work
13.1 Flow Control and Error Detection

13.2 ResynchronizationatRuntime

13.3 Ring Buffer Integration into the Clocking Chip
13.4 Resolve Functions for Stronger Fault Hypotheses

14 Conclusion

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

Example Message Passing System
Example Node with Three Neighbors 7
Message Delivery 8
Space-Time Diagram Example 10
Example of DriftingClocks, 11
Precision 12
Lockstep Synchronous System 14
Failure Model Example oL 15
EIG Treeforgf =1System 18
SynchronousModel L o 20
AsynchronousModel 21
GALSModel 21
Multisynchronous Model 22
Synchronous Communication. 24
Source Synchronous Communication. 24
Asynchronous Communication 25
D-Flip-Flop Timing Constraints 26
Metastable D-Flip-Flop 27
Unipolar Single-Ended Signaling (idealized) 30
Differential Signaling (idealized) 30
LVDS Transmitter and Receiver 31
Linecoding using an Additional Clock Line 31
Data-Strobe Encoding oo 32

XVili LIST OF FIGURES
4.6 Asynchronous Serial Communication 33
4.7 SPILInK 34
4.8 PCBUS e 35
4.9 Full Duplex Space WireLink 36
5.1 Stuck AtZeroFault 40
5.2 Stuck-OpenFault 41
53 ORBridgingFault 41
54 BasicTMRSystem, 42
5.5 TMR System using Replicated Voters 42
7.1 ModelingExample 48
8.1 Macrotick Generationo 52
8.2 Macrotick Based Clock Generation. 52
8.3 System Modelused fortheProof 55
8.4 Executionof Ticke 57
9.1 LayoutofaNode, 66
9.2 RingBufferofDepth4 68
9.3 Schematic Transmitter Circuit (No Input Register) 69
9.4 Schematic Transmitter Circuit (With Input Register) 70
9.5 Example Communication within the Test System 73
9.6 Layoutofthe TestSystem 74
9.7 Worst Case Precision Emulation 74
9.8 Results ofthe Experiments 77
10.1 Lockstep Round Generation Implementation Hierarchy. 80
10.2 Visualization of the Assumptions 82
10.3 Simulation of the Lockstep Algorithm Implementation. 87
11.1 Unsynchronized Voter Execution 92
11.2 Multisynchronous Voter Implementation 93
11.3 System with Replicated Multisynchronous Voters 94
11.4 Circuitusedinthe Proof 95

LIST OF FIGURES XiX
11.5 Distributed System Model of the Circuit 95
12.1 System Model Tolerating one Byzantine Fault 100
12.2 Fully Created Resolve Treefér=1 101
12.3 Structure of the Hardware Implementation 102
12.4 Building of a Resolve TreeLevel 105
12.5 Resolve Functionfof =1 106
12.6 Runtime of the Consensus Algorithm [Microticks] 109
12.7 Node Implementation 110
12.8 Execution Example of a Consensus System 12. 1
12.9 Execution Example of a Consensus System (Detail) 113
13.1 Clocking Chip — Ring-Buffer Integration 191

List of Tables

4.1 Transmission Protocol Comparison 8 3
9.1 Latency e 71
9.2 Performance Comparison e 72
9.3 Clock Primitives 75
9.4 Resultsofthe Experiments 76
11.1 Voter Execution 92

12.1 Runtime of the Consensus Implementation 108

XXi

Chapter 1

Introduction

1.1 Problem Definition

Currently digital electronic systems are mainly implemdnbased on the syn-
chronous paradigm. Due to ever increasing clock rates,lenfakture sizes and
increasing gate counts the assumptions made by this mazlebader and harder to
meet. As only a single maximum clock rate is calculated ferttmole system, long
signal connections, even if only a few are present, decithasgystem performance
dramatically.

To circumvent these problems globally asynchronous lgaalhchronous (GALS)

systems [Cha84] are used nowadays. Here the system is divitteseveral mod-

ules. Each module is driven by a single, independent cloakceo The modules are
developed independently and the intermodule signals arefibre not part of any
timing analysis as they cross from one clock domain to amotteerefore the setup-
hold window is not guaranteed to be maintained and the irgdte links may be

subjected to metastability and therefore compromise tig@lgy of the system.

The goal of this thesis is to develop a new system model wki¢h free of any po-
tential for metastability and (ii) providing the possibjlito implement independent
modules. An efficient implementation for this problem isaésed, its correctness
proved and a tight lower bound on the required buffer sizevisrg

This model is used as basis to implement a fault toleranesystith the ability to
tolerate Byzantine faults, even if the implementation of t@dules is not replica
deterministic. The usability of a TMR system in such a sgtigianalyzed and, as
found inadequate, replaced by a system using a hardwarenmepitation of the
widely known EIG consensus algorithm. The equivalence eftthrdware imple-
mentation and the original EIG algorithm is shown.

1

2 CHAPTER 1. INTRODUCTION

1.2 Structure of the Thesis

The thesis is structured into four parts. The first part réakgtes the theory needed
to understand the remainder of the thesis. It comprises Etseapt5. Chapter 2 gives
an overview on the distributed systems theory includingsags passing systems,
clock synchronization and system models. It is followed lyyiaf introduction into
failure modeling and -handling in distributed systems. Géap introduces different
clocking models as well as intermodule communication tephes and describes the
problem of metastability. Chapter 4 outlines state of the@ammunication schemes
based on the standards established in Chapter 3. Hardwdtrenfadels and fault
tolerance mechanism (TMR systems) are discussed in Chapter 5

Part Il is devoted to the implementation of the basic frantéwiacluding the
metastability free communication layer and the simulatdrthe lockstep syn-
chronous model based on the local microtick clock. Chapterofivates the ne-
cessity of a new system model. Our approach for mappingitsras distributed
systems is shown in Chapter 7. Two different approaches ftaistability free com-
munication are presented in Chapter 8. Additionally the rhadld the higher per-
formance is formally proved correct. Its hardware impletagan and experimental
results are presented in Chapter 9. Part 2 is concluded byrdgéinmethod to create
lockstep synchronous rounds based on the local clock onlgften 10).

The implementation of a Byzantine fault tolerant system ®the focus of Part Ill.
Chapter 11 motivates why such a system is important. It is sltbat a naive TMR
implementation would surely fail and that a more sophistéidamplementation will
also fail, if the system is not replica deterministic. Thesiga of a hardware im-
plementable adaptation of the exponential informatiorngiang (EIG) algorithm
[AWO04] is described in Chapter 12. The equivalence of both rittgms is also
shown and its hardware implementation is sketched.

Part IV concludes the thesis. Chapter 13 discusses openangesind future ex-
tensions, while Chapter 14 concludes the thesis by summarita most important
findings.

Part |

Theoretical Background

Chapter 2

Distributed Algorithm Basics

To be able to prove the correctness of our solutions, we wolileh them using the
theory of distributed systems. Therefore this chapterggavérief overview on the
distributed systems theory. In this chapter, except foti&e@.4, we assume that
the system is reliable.

For more in depth information on the subject the very goodkbdaistributed
Computing — Fundamentals, Simulations and Advanced TopR&/04] is recom-
mended to the interested reader. Where not referenced atleertive information
presented within this chapter is based on this book.

2.1 Message Passing System

As already mentioned before, the basis for the formal padusfwork is the dis-
tributed systems theory, more specifically Message Passistems. Such systems
consist of the following elements:

¢ Multiple computational nodes (shortly called nodés)

e Communication links between the nodes (message passingnkgtw

Directed graphs (see [Die05] for details on graph theorg)used to visualize mes-
sage passing systems. Each computational node is reprddmna node within the
graph. The links within the message passing network areesepted by directed
edges. An example for a message passing system consistmg efodes and using
a fully connected message passing network is displayecjuwr&i2.1.

n difference to [AW04] the computational elements are chtledes and not processors. This
differentiation is made because their functionality is netessarily implemented by a processor.

5

6 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

—

Figure 2.1: Example Message Passing System

2.1.1 Message Passing Network

The data transmission between any two nodes is modeled ax¢hange of mes-
sages between these nodes. Each node can send a messagidoert aode using
the message passing network. Theoretically the topologycd a network can be
arbitrary. Nevertheless for simplicity reasons it is assdrthat the network is fully
connected, which means there is a communication channgebatany two nodes
(see Figure 2.1 as an example).

2.1.2 Computational Node

A computational node is the basic element of a message pasgitem. A single
node is referred to as;, wherei is an artificial index identifying the nodes in the
system. We introduce the sét = J{n;}, called the set of nodes, containing all

computational nodes of the system.

The computational nodes perform all calculations withia 8ystem. Figure 2.2
shows an example of a node with three neighbors. The nodedele using the
following three components:

e A state transition table modeling the internal logic of tlsidered node.
e An input buffer component (shortly calledbuf;) for each adjacent node

e An output buffer component (shortly calleatbuf;) for each adjacent node
7.

2.1. MESSAGE PASSING SYSTEM 7

Internal State Machine

Communication Links
$.

2

2%,

(o)

%y e
4,

s

&>
S
N
Q

From/To
Neighbor Node

Figure 2.2: Example Node with Three Neighbors

The calculations performed by the nodes are modeled astsaatgtions. For ev-
ery such state transition the node’s state transition tatoiéains an entry. The input
to such a state transition is the current state of the nodakhmagessages currently
present in the input buffers. Based on this information tleesssor state is selected
from the state transition table. Furthermore a subset (pmassages can be re-
moved from the input buffer, as well as new messages addée tautput buffers of
the node (sending messages to adjacent nodes).

The input buffers contain all delivered but not yet procdssessages received from
adjacent nodes. Messages are added to the input buffer \whagrate delivered to
the node. A message is removed from the input buffer whempasontributed to a
state transition.

The output buffers contain all messages sent by the nodeddjanent node. Mes-
sages are added to the output buffer, when they are gendnaiedtate transition.
All messages present in the output buffer are not yet delidzeNevertheless the
node itself can not read from the output buffers. Therefoeesages within the out-
put buffers can never affect the selection of a state tianditom the state transition
table.

The messages are delivered using the message passing.sybisms done by se-
lecting a message from an output buffer of the sender nodlaicthg it into the

8 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

inbuf I <«) (inbuf
outbuf :- > outbuf

Situation Before Delivery

inbuf

outbuf]

Situation After Delivery

Figure 2.3: Message Delivery

input buffer of the receiver node. Figure 2.3 shows an exarfgl the delivery of
two messages (one in each direction) between two adjacdesno

2.1.3 Actions and Events

All activities occurring in the system (like state transits, message delivery, -)
are modeled as actiond} specifies the:'" action of processor. The superscript
and subscript are omitted, if a general actiof) fiot bound to any processor is
described. Each actiom] has an associated start- and end time (shartly) and
t.(A)) and therefore a duratior/(4) = t.(A) — ts(A) > 0). If the duration of an
action is zerod(A) = 0), we call it an eventK). Since its duration is zero, the start-
and end time are the same and we only speak of its time of caoer((A)).

2.1.4 Messages
We shortly call a message with contents(M). Each message has a specific length

called/(M) given in bits. Furthermore a messagé) has the following temporal
properties.

2.1. MESSAGE PASSING SYSTEM 9

End-to-End Delay

We have already discussed the concepts of sending, dativand reading (con-
suming) messages. We will now formalize the message dglw@rcess. Using the
terminology of actions and events, we can model the sendmlyery and reading
of messages as events. Therefore we can associate a séndrydand read-time
with each messag@V) calling them shortlytse,q(M), taetivery (M) @ndt,eaq (M), re-
spectively.

The whole process of transmitting a message can be seen at@n@/) start-
ing with the send event and ending with the read event. Taerafs duration is
d(Mr) = to(Mr) —ts(Mr) = treaa(M) — tsena(M) @and it is called the message End-
to-End delayA. If available, the upper and lower bound of the end-to-eridydim
the system are callei™ andA~, respectively.

Read-Write-Order Problem

It is important to note, that a message must be deliveredréetacan be read
(taetivery < treaa). Each implementation of a computational model must enthae
this order is met, otherwise the system behavior could beaamdefined.

FIFO Order

Without further assumptions messages sent on the same aupatian link may
be delivered in arbitrary order. Nevertheless, it is oftenvenient to assume FIFO
(firstin first out) order on the communication links. FIFO erdtates that messages
sent on the same communication link are delivered in therdhgy were sent. For-
mally the FIFO property can be written agtwo messagedl;, M, on the same
communication link:

tsend (Ml) < tsend (M2) = Zfdelivery (Ml) < tdelivery (MZ)

2.1.5 Visualization of Executions

Execution are visualized using the so called space-timgraila. Each node is rep-
resented by a horizontal line within the diagram and the tatheances from left to
right. For each node the events and actions are shown in #ggaih using boxes
or short vertical lines. Furthermore all messages are hmehby arrows between
the action or events of the nodes. An (annotated) exampltigge can be found in
Figure 2.4.

10 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

HO /\ (
L . > (
n, A

> t
3 . > t

—>» Message |Event W Action

Figure 2.4: Space-Time Diagram Example

2.2 Global Notion of Time

So far we have discussed message passing systems withraditbeomponents. An
important property of such a system is a global notion of tifneonsistent view of
time is a powerful property when modeling algorithms fortidisited systems.

Time in distributed systems is measured in clock ticks. Edobk tick can be seen
as an event’ in the system having an assigned real titf€). Thek*™ clock tick on
nodei is referenced a§'*.

2.2.1 Properties of a Global Time Base

We will now discuss three major properties of a time base,ahatie clock drift,
the accuracy and the precisian) (

Clock Drift

As described in [Kop97], itis possible to deduce from thekldrift, whether a clock
is running with its nominal frequency or it runs too fast aovgl As a reference, a
fictional optimum clock with the nominal frequency is usedyufe 2.5 illustrates
both cases.

The rate a clock runs slower or faster than this nominal ciledalled the drift rate
and defines how many real clock ticks occur within one clock &f the fictional
nominal clock. The example clocks have a drift ratd aft and0.809.

Each node in the system can have a clock with a differentdiét. Furthermore the
drift rates of the clocks can vary over time.

2.2. GLOBAL NOTION OF TIME 11

Ck
—Fast Clock

—Slow Clock

»

r:I:;]()minal

Figure 2.5: Example of Drifting Clocks

Accuracy

We use a more restrictive definition of accuracy than the efieed by [Sch87]. We
specify the lower- and upper bound of the period length otlaltks in the system
over time and therefore bound the rate the clocks may chaitgerormally it can
be written as:

Vie Pk>0:3T = %n(of“ ~CFH) >0 (2.1)

Vi€ Pk>0:3T" = max(C} - CF) > T (2.2)

As apparent from Equations (2.1) and (2.2), unlike the dafé, the accuracy is a
property of the whole system.

Precision

Before discussing the last parameter of our global clockesystve need to define
the precedence relationy). Introduced by Lamportin [LamO3} — B informally
means that actiod must have been finished before actiBrstarts.

We now can use the precedence relation to describe the lpsttiamt parameter,
namely the precisionr). It is defined as the maximum value any two clocks of the
system can differ at any point in time [Kop97]. Formally thregision can be stated
as:

Ir:Vi,j € PVE>0:Cl— CHT (2.3)

12 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

>t

T

Figure 2.6: Example of a System with Three Clocks having aificecof Three

To visualize this property Figure 2.6 shows an example ckgitem with three
clocks. For each of the clocks the corresponding precisimelep is shown as a
shaded area around the clock. For the system to hold itssmaciall clocks must
stay in the overlapping area of all three precision envedope

2.2.2 Clock Synchronization

Since all clocks of the system can have different, even nostent, drift rates, the
precisionr of any two clocks in the system changes over time and may rircpkar,
become arbitrary large. To keep the precision within pree@efibounds, a clock
synchronization algorithm must be applied, otherwise gl notion of time can
be achieved.

There are many commonly known clock synchronization atbors already avail-
able (see e.g. [AWO04, ST03, LMS85] and specifically for VLSIplementations

[WS05]).

We will assume the presence of a global clock system with engprecision and
accuracy already available in our system. Therefore wenetldiscuss the concepts
of clock synchronization algorithms in detail here.

2.3. COMPUTATIONAL MODELS 13

2.3 Computational Models

There are two commonly known computational models thaediffith respect to
the assumption of a global notion of time.

e The asynchronous model

e The lockstep synchronous model

These models can be considered extreme variants, and teeyeaty of other mod-
els in between. However, since most algorithms are targeteshe of these two
models, we will concentrate on these two.

2.3.1 Asynchronous Model

As the name already suggests, no global notion of time idadtaiin this model.
Furthermore there are no local clocks available in the gysféhe algorithms de-
scribable by this model are completely time free and onlyadrby message delivery
events (the message delivery event will trigger the mesezayk event). Therefore
there are no write-read order problems within this system.

Since no timing assumptions are made, no timing bounds caiolzed. As con-
venient as this is, the absence of such bounds restrictsifiiementable algorithms
dramatically (see e.g. [AWO04] for some impossibility prgofs

2.3.2 The Lockstep Round Model

This model has a very accurate global notion of time=f 0) and therefore is a
very powerful tool to implement distributed algorithms.eTalgorithms themselves
are easy to describe. The execution of the algorithm is isptitsuccessive rounds.
Each round starts with a message send event. After the detifall messages, each
node executes one computational action of specified lerlgth)) before the next

round starts. The length of all rounds< 7" < C' < ~o is known in advance and
is normally constant over time. To meet this round duratadhmessages must be
delivered timely, which means that the message end-to-elay tles within:

Vi>0,Vk € P:0<A<AY <T—max(d(A}))
i,k

An example of an execution within this model can be found guFe 2.7.

Within this model the write-read problem is solved by theray knowledge of the
message end-to-end delay bound and action durations | Wik as long as these

14 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

SR '\\;/-t:
S VT

Round, Round, Round, ' Round,

Figure 2.7: Example Execution within a Lockstep Synchran8ystem

bounds are met. If only once a bound is violated, the behafithe system may
become undefined. With respect to the implementation, teenagtion of perfect
precision is extremely strong, and therefore in practicéitamhal considerations
become necessary when implementing such an algorithm.

2.4 Failure Handling in Distributed Systems

So far we have only considered failure free systems. Unfiateely real system will
not always work correctly. Parts of the system may fail ouaet To describe such
events the distributed system theory has establishedetifféailure models. These
models can either be used to investigate the behavior oftarayis case of a failure
or to find mechanisms to make the system fault tolerant. Fauk folerant system
it is important to ensure that it stays operational evennfiso@f the nodes get faulty.

An important function required in many distributed faulet@nt systems is to decide
on a common value, even in case some nodes of the system &ye fiasuch a
setting, each node has its own, private input value. Basedl dheainput values
in the system, each node calculates a result value. Allteesfilnon-faulty nodes
must be the same. The problem is known as the agreement praiple algorithms
solving it as consensus algorithms [AW04].

2.4.1 Failure Models

It is impossible to find and describe each single failure Whian occur in a dis-
tributed system. Therefore the different failure typesgrmiped into different fail-
ure models. These models describe the manifestation o&ilueds on the algorith-
mic level.

2.4. FAILURE HANDLING IN DISTRIBUTED SYSTEMS 15

Expected Pattern

Omission Model

pd
A
Crash Model A/A\V‘
pd
A

Byzantine Model

?Message with Contents X - » Missing Message —» Additional Message

Figure 2.8: Failure Model Example

Depending on the underlying system model, the failuredblasat the algorithmic
level will be different. Therefore three basic failure mtsdesed in distributed sys-
tems have been established in literature, namely [DLS88]:

e Crash Failure Model
e Omission Failure Model

e Byzantine Failure Model

They differ in their complexity and the severity of the alledvfailures. An impor-
tant differentiation is, if a failure model allows benignléaes [AWO04]. In a benign
failure model, no illegal operations (like sending additibor conflicting messages)
may be executed. For non-benign failure models this canstlaes not exist.

Figure 2.8 shows an example execution of a faulty node witiendifferent failure
models. It visualizes the differences in the allowed falpatterns. There are more
models [AWO04], but they are not needed here.

Crash Failure Model

When using the crash failure model, a faulty processor woeldhize non-faulty up
to a certain point in time. At this point it will crash, whichaans that it will fail to

send any further messages from this time onward. If at the tfcrash multiple
messages should be sent, only a subset of these messages s&t.brhis model
is a benign failure model.

16 CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

Omission Failure Model

If a node fails to send or receive a message at a certain potithe, an omission
failure has occurred. In contrast to the crash failure mdtelnode may send further
messages afterwards. This model is a benign failure model.

Byzantine Failure Model

Byzantine or arbitrary failures do not limit the nature of tagures in any way. The
nodes within the system may even behave malicious and trerély to actively
derail the execution of the algorithm. Additionally fautipdes can coordinate with
each other to maximize the effects of their malicious bebraltiis also possible that
conflicting messages are sent to different nodes. Furtheramtditional messages,
which are not specified by the executed algorithm, may bergée This model
therefore is a non-benign failure model.

2.4.2 Agreement Problem

The calculation of a common (output) value on different reodea crucial function-
ality of a distributed system. No problem in a fault free eomiment, it becomes
more challenging with the power of the used failure model.

An algorithm solving the agreement problem is called a cosse algorithm. For-
mally such an algorithm is defined as follows [AW04, DLS88].

The system consists of a setof m nodes {ng,ni,---n,}). Each noden; has
an input valuey; out of a value domairv’. Goal of the algorithm is to compute a
common output value.

An f-resilient consensus algorithm is considered corredhdéffollowing properties
hold, when at mosf nodes are faulty:

e Consistency: All non faulty nodes decide to the same value.

e Termination: In every infinite execution each non faulty eatcides eventu-
ally.

e Unanimity:

— Strong Unanimity: If all initial values are and if any non faulty node
decides, it decides.

— Weak Unanimity: If all initial values are, all nodes are non faulty and
if any node decides, it decides

2.4. FAILURE HANDLING IN DISTRIBUTED SYSTEMS 17

Depending on the chosen failure model of the underlyingesgstifferent imple-
mentations of a consensus algorithm are known [AWO04]. It isartant to note that
there is no consensus algorithm available in the asyncliommdel (see [FLP85]).

Byzantine Agreement

Most interesting is the agreement problem in the presendgypéntine failures
[LSP82]. At mostf out of at leasB f+1 nodes (for a lower bound proof see [AWO04])
may experience Byzantine failures. Independent of the behafithe faulty nodes,
the non faulty nodes must select a common output value in ademliamount of
time. An algorithm solving this problem is presented below.

Byzantine EIG Algorithm

The Byzantine EIG (exponential information gathering) aidpon [AWO04] is a lock-

step synchronous algorithm which solves the Byzantine aggae problem with
strong unanimity, a minimum of required nod&g (+ 1), in the minimum number
of rounds (+ 1), but with messages of exponential size. Its functionabtys

described below.

The main component of the algorithm is a tree structure dtbseeach node. It
contains all information gathered about the other nodesxample of the tree can
be found in Figure 2.9. The valug,, means the valu&” received from nodey,
which had received it from node. No node index will be present more than once
in the subscript, therefore no information is processedipialtimes by the same
node. The tree is built as follows:

e Round1: In the first round each node sends its input value to all atbeles.
When receiving an input value it is stored in the current tesell if no value
is received, a default value is stored.

e Roundk, 1 < k£ < f+ 1: In each successive round each node sends its current
tree level to all other nodes. When receiving a tree level #gain stored in
the tree.

After receiving tree levef + 1, the tree is locally used to calculate the output value
using a resolve function (mainly a combination of multiplajority votes).

For a detailed description and a correctness proof of theridhgn, please see
[AWO4].

18

CHAPTER 2. DISTRIBUTED ALGORITHM BASICS

VO \2! V2 V3
V01 V02 V03 VI0 V12 VI3 V20 V21 V23 V31 V32 V30

Figure 2.9: EIG Tree for & = 1 System

Chapter 3

Digital Electronic Circuit Basics

Digital electronic circuits consist of combinational logjates (like AND- and OR-
gates) and sequential elements (like flip-flops and latcHés circuit function is
defined by the interconnection of such gates. In this chaptewill summarize
some of the theoretical concepts used to design high sperdtsi

3.1 Clocking Schemata

An important function within digital circuits is the coordgition of the sequential
elements. Several schemata for accomplishing this tagknanen.

3.1.1 Synchronous Circuits

The most popular clocking paradigm used today is the symdu®scheme [WakO01,
FH90, Sei79]. Although in use for several decades, it issttite of the art. Virtually
all commercially designed circuits are implemented usimg paradigm.

It uses a centralized clock source (see Figure 3.1), mosflyagz oscillator, and all
operations on the sequential elements are aligned witlecesp this global clock
and no local synchronization information is needed. Conadjytall sequential el-
ements receive a clock tick at the exactly same point in time.

As appealing as the presence of an ideal global clock is,@dgmatic the system
analysis can get. Increasing clock- and signal frequeri@es03], therefore de-
creasing timing safety margins, and increasing gate cana to make the system
analysis more and more challenging. Furthermore incrgasiror rates [Con03],
due to smaller critical charges and lower voltage swingsstnine taken into ac-
count nowadays when designing synchronous circuits. Thémkhe high degree

19

20 CHAPTER 3. DIGITAL ELECTRONIC CIRCUIT BASICS

Figure 3.1: Synchronous Model

of automation in the design process and the very sophistdaiol support, these
problems can still be handled.

Another disadvantage of this paradigm is its single poiriaibdire introduced by the
global clock network. A failure within this network can réisim the malfunction of
the whole system. Interestingly this problem is widely iggtb[MFMRO04].

Another highly problematic and challenging task, espécial high performance
systems, is the design of the clock network. To keep the sgnclus abstraction
valid, the differences in the delays from the clock sourcth&odifferent sequential
elements (the skew within the clock network) must be rigetpaontrolled [FriO1].
This is especially problematic for large clock networkseTisage of special topolo-
gies, like e.g. forks and trees, nevertheless lead to aaiskeptesults, but render clock
routing an art of its own.

As a big advantage, the synchronous paradigm provides aagewyrate time base
with a precision of significantly less than one (nearly petrfg/nchronization(in
the idealized case).

3.1.2 Asynchronous Circuits

A completely different approach is the asynchronous pgradHau95]. The most
appealing form of asynchronous logic is the delay insamsithodel. It uses local
synchronization information, a so called handshake, todinate the operation of
adjacent sequential elements. A sender uses a reqguegpssignal (either an explicit
signal line or implicitly encoded into the data) to signelithe availability of new
data. It does not change the data until the receiver has adidge their recep-
tion using an explicit acknowledgedk) signal. Figure 3.2 shows an example of an
asynchronous circuit using an explicit request and ackedgé signal.

Due to the absence of any timing bounds and any single pofatlofe conceptually
very appealing, it suffers on the lack of tool support ancdheseéfore commercially
scarcely used. Furthermore delay insensitive solutiotredace a significant im-
plementation overhead (like null convention logic (NCL) [F@Pand/or a timing
overhead. Nevertheless there are already working impleatien examples avail-
able (e.g. [SFGPO09)).

3.1. CLOCKING SCHEMATA 21

req
¢ | ack *
req req req
- — -
]] -«
ack ack ack

Figure 3.2: Asynchronous Model

Unfortunately no global timebase can be established whieg tise delay insensi-
tive model due to the unknown message delays (infinite uaicgy)[AW04].

3.1.3 Globally Asynchronous Locally Synchronous (GALS) Cir-
cuits

An approach to circumvent the restrictions of the synchusrmaradigm is the glob-
ally asynchronous locally synchronous (GALS) model [Cha8#k system is split
into multiple modules and these modules are internally kddcaccording to the
synchronous model, each using a local clock source. Theyremgnchronized. The
inter-module communication is implemented asynchronof{sgte Figure 3.3).

An advantage of this approach is that each module can be nnegpieed as syn-
chronous circuit utilizing the existing powerful toolseBue to the small size of the
modules, their design and analysis is much easier and fiéisterthe analysis of a
large fully synchronous system. A big drawback is the lishitemmunication speed
between the modules. Due to the lack of synchronization flontrol is needed
to enable a secure data transfer between the modules. fiiis the communica-
tion throughput [TGLO7] significantly. Furthermore no gédtiming information is
available.

To circumvent these drawbacks, several approaches haxeshggested to loosely
synchronize the clocks of the different modules [TGLO7]faitunately the wide

|
Module 1 : Module 2

I
- Module Boundary -

Figure 3.3: GALS Model

22 CHAPTER 3. DIGITAL ELECTRONIC CIRCUIT BASICS

|
Module 1 : Module 2

|
|

A A : A A

| | | | |
|
|

* I *
|
Module Boundary
- Local Clock Generator

Figure 3.4: Multisynchronous Model

ranging assumptions made on the clock drift rate to secungiyement these ap-
proaches may not hold in practice.

3.1.4 Multisynchronous Circuits

A relatively new clocking approach are multisynchronouswgts [SGO03]. This
model guarantees a bounded clock skew, but in contrast Bytteronous approach
the skew can get larger than one clock cycle. To guaranteskdve bound, a certain
amount of coordination is needed between the differenkcdotirces.

Like in the GALS model, the circuit is divided into synchrarsomodules. Each
of the modules is driven by a different clock of the multisgranous ensemble
(see Figure 3.4) and can be implemented using the standacthrenous model.
Therefore the existing powerful toolsets can be used fod#dsggns.

A big advantage of this paradigm is the presence of a glolelase. Its precision
equals the skew bound of the clocking system.

As shown by the DARTS clocking scheme (algorithm introdurepVS05]), it is
possible to implement [FFSKO06] such a clocking scheme inlg éistributed and
fault tolerant fashion.

3.2 Intermodule Communication in Electronic Cir-
cuits

The last section has given an overview on how to synchronfreht modules of

an electronic circuit. Another important question is howctommunicate between
these modules. In the following we will discuss differenpegaches for communi-
cating between such modules.

3.2. INTERMODULE COMMUNICATION IN ELECTRONIC CIRCUITS 23

3.2.1 Synchronous Communication

The most commonly used approach for communicating withgitalielectronic cir-
cuits is the synchronous communication scheme [Wak01].dEt& transmission is
related to a global synchronous clock. This clock definesviiiglity of the data.
Therefore it is only implementable within the synchronoasgaligm. At each active
clock edge (falling and/or rising edge) a new data item igtemiby the sender and
the receiver reads the data at the next active edge.

Based on the physical implementation of the sequential itietements, the follow-
ing properties arise:

e Output Delay {,.;): Specifies the time the data needs to appear at the output
of a sequential element after an active clock edge.

e Transmission Delayt{.:.): Specifies the time it takes a data bit to move from
the sender’s output to the receiver’s input.

For a save operation the following requirements must bdladfi

e Setup Time {,,): Specifies the time the data must be stable at the receiver
input before an active clock edge to guarantee a safe operati

e Hold Time ¢,,): Specifies the time the data must be stable at the recepet in
after an active clock edge to guarantee a safe operation.

Based on these properties and requirements, the followingtiants for a safe
operation are importanf{is the period length of the clock signal):

T > Zfout + tdata + Zfsu (31)
th < tout + tdata (32)

Note that normally Equation 3.2 is easy to guarantee, wipteérozing the period
length of the clock signal according to Equation 3.1 is vemgallenging. To en-
sure a reliable operation, these constraints must be miiogtesational conditions.
To guarantee this, a timing analysis has to be done [Sei790FHAri01, HO71].
All paths in a system are analyzed under worst case condiaod based on the
resulting information a maximum clock frequency is calteth The use of worst
case conditions leads to a clock frequency which is muchidan the frequency
achievable in the average case.

24 CHAPTER 3. DIGITAL ELECTRONIC CIRCUIT BASICS

Clk _ | [
Data @
Sernder Output
Data @
Reveiver Input
< >l — N _—
Output Delay Transmission Delay Setup Time
<€ >

T

Figure 3.5: Synchronous Communication

3.2.2 Sourcesynchronous Communication

Due to the relatively inefficient nature of the synchronoasmimunication scheme
a new intermodule communication scheme was developed @br $peed systems
[AJTR98]. The advantage is that the transmission delay efinbdule traces, which
is normally much greater than the transmission delays wi#hmodule, no longer
limits the clock frequency of the system. Additionally tkisheme can also be used
in conjunction with GALS and multisynchronous clocking saotes.

To enable the bit regeneration at the receiver the sendek signal is transmitted in
addition to the data. This can be done either directly, hysnatting the clock signal
itself on a separate line, or encoded within the data. Ireetthse, a transition of the
sender clock marks the validity of the data. An example caiobed in Figure 3.6.

As in the synchronous case, no back pressure mechanismlemapted. Therefore
the receiver clock must at least be as high as the sender, citekwise data will be
lost. Therefore this scheme is usable only with restrigionconjunction with the

Sender Clk |

Data @
Sernder Output ><
Sender Clk @ —|

Receiver

Data @ X

Reveiver Input

\
/
Reveived Data
|>E B

Receiver Clk |

> (@—>
Clock Delay | Setup Time

>=0!

A\

Figure 3.6: Source Synchronous Communication

3.3. METASTABILITY 25

Data @ Sender :><

Req @ Sender J
Data @ Receiver X
Req @ Receiver J
Ack @ Receiver J
Ack @ Sender
<P

Transmission Delay Transmission Delay

Figure 3.7: Asynchronous Communication

GALS model. Additional care must be taken to ensure thatithag) constraints
between the received data and the receiver clock are magotai-or more detailed
information on the subject of ensuring the constraints sstich 3.3.

3.2.3 Asynchronous Communication

So far we have seen communication schemes usable in therseyiocis, multisyn-

chronous and with some restriction also in GALS model. We molv introduce a

completely asynchronous one which can be used in conjunetith each of the

presented clocking schemes. The coordination betweeresand receiver is done
by local handshake signals, namely a request signa) (o signalize the data va-
lidity and an acknowledge signal to confirm the data recep(iok). These signals
can be transmitted directly [IEEOO] or can be encoded inéod#ta (e.g. null con-
vention logic as described in [FB96]). An example can be foargigure 3.7. This

mechanism also implements a reliable back-pressure msohan

The main advantage of this scheme is that its performancenpletely adaptive,
which means it can react to changes in the transmission slelaitself. Therefore
no timing analysis is necessary in advance.

3.3 Metastability

Up to now we have silently assumed that the data is valid wiagtuced by a se-
guential element. Unfortunately in real systems this isatiways true. Consider an
external signal read by a sequential element of a syncheosygtem. Because the
signal is external, the system has no control on it at all. Wiagpens, if the signal

26 CHAPTER 3. DIGITAL ELECTRONIC CIRCUIT BASICS

Figure 3.8: D-Flip-Flop Timing Constraints

changes at the exact moment the sequential element triegptare it? The naive
answer would be that the value is either the value beforeter Hfe transition. Un-
fortunately this is not true. In this section we will invegte this behavior in more
detail.

3.3.1 Flip-Flop Timings

As already mentioned in Section 3.2.1, several timing cairtgs have to be main-
tained when working with synchronous sequential elemékedlip-flops. As these
elements are heavily used in synchronous systems, we willexamine these con-
straints in more detail. The analysis is based on the stdriditlip-Flop described
in [WakO01]. It can be easily adapted to all other kinds of $ypaous sequential
elements.

A D-Flip-Flop is controlled by its clock input. The rising dalling edge of the
clock signal triggers the capture operation of the d&@ iGput. To ensure a safe
operation, the data input must be stable a certain time éefod after each active
clock transition [WakO01] (see Figure 3.8). These times ailked setup- and hold-
time, respectively.

If one of these constraints is violated, the behavior of tipeffbp is undefined and
therefore its output) can get undefined, even oscillating, for an unbound range of
time (see Figure 3.9) [KC87, CM73]. This behavior is calledas#dbility. It can be
transmitted throughout the system [KC87], which means thatftip-flop after an-
other can get metastable. Another problematic possilijtthat two logic elements
(combinational and/or sequential) can interpret a meatéstaput differently due

to a slight mismatch of their internal logic thresholds [K{;8@sulting in different
output values even if they should be the same.

Therefore metastable states are very problematic and neuatdided at all cost.
In global synchronous systems only the boundary flip-flopes affected. When
using source synchronous or asynchronous communicatitnimnasynchronous-,
multisynchronous- or GALS-systems, metastability caseadt each clock bound-
ary.

3.3. METASTABILITY 27

CLK |
|/

QM

>t

Figure 3.9: Metastable D-Flip-Flop

3.3.2 Avoiding Metastability

The simplest way to avoid metastability is to use a synchusrgystem with pre-
calculated timings. As already discussed, in today’s hjgged systems this is not
applicable any more. Furthermore the metastability ocegrat the boundary flip-
flops is not handled by this approach.

When using asynchronous communication the handshake sigragl be subjected
to metastability, while in source synchronous communacathe data signal itself
may be.

Today metastability is avoided on a statistical basis artdpalesign, which means
that the mean time between failures (MTBF) is increased tawavgh value such
that metastability becomes very unlikely [DP98]. This ikiaged by means of syn-
chronizers. Synchronizers are circuits with the purposegolve metastable states.
The most commonly used and simplest version is the Two-Hwgl®onizer, a cir-
cuit consisting of two serially connected flip-flops [KC87hadMTBF achievable is
good enough for most non-safety critical systems. For gafiétical systems more
sophisticated circuits have been designed [DP98, KC87].

However, synchronizers alone are not enough. The circaigdenust be adapted as
well [GIin03, Kin08]. For example in the asynchronous trarssmn case, only the

request and acknowledge signals are allowed to be syndeatherwise, due to

different transmission and input delays, the data coulahtezpreted erroneously.

Chapter 4

Communication Standards

When designing a dependable inter-module communicatioensehit is important
to analyze and understand existing communication staed@herefore this chapter
introduces different bit representation techniques fodld by commonly used line
coding algorithms. Afterwards widely used communicatitandards are described
in the light of these concepts.

4.1 Bit Representation

Depending on the method how bits are represented on thattisgien line, two
fundamental methods for data transmission on electricaslinamely single-ended-
and differential signaling, are known.

4.1.1 Single-Ended Signaling

Single-ended Signaling uses a single rail (transmissioa) lto transmit the data.
Two voltage levels are defined representing the high and tete srespectively,
while the ground level is used as reference. When using wrigainaling [GG04],

one of the voltage levels is represented by the ground leself,i while the other is
modeled using a different voltage (e.g. 5V for TTL, 3.3V f&fCMOS33). When

using bipolar signaling [GG04] two voltage levels symnetoi the ground level (+/-
V) are used. Figure 4.1 shows an example of unipolar singdee signaling.

While unipolar signaling is widely used within digital elemic circuits, bipolar

signaling, due to the possibility of DC free transmissiampiimarily used in middle
and wide range signal transmission. Several other meaharo$ single-ended sig-
naling are known [GGO04], but since they are primarily useteiecommunication
links, they are not described here.

29

30 CHAPTER 4. COMMUNICATION STANDARDS

;
ol 1 [| | .,

Figure 4.1: Unipolar Single-Ended Signaling (idealized)

4.1.2 Differential Signaling

While single-ended signaling uses only the absolute voltagel on a single rail
to transmit a signal, differential signaling [Nat08] utiis the voltage difference be-
tween two rails to encode the data. These rails are calleitiygog’) and negative
(V). Figure 4.2 shows an example signal transmission usingliffexential trans-
mission scheme. As apparent from the example, one railrtriésmshe data directly,
while the other rail transmits the inverted data. Therefw#h rails must be routed
length matched, in the best case parallel, to minimize tee/detween both rails.

Normally the voltage difference between the rails is kept ko the rails can change
from one state to the other very fast resulting in higherdnaission rates as in the
single-ended case.

A problem with high speed signaling, single-ended or déferal likewise, is that
the impedance of the transmission lines must be matchecetortpedance of the
transmitter as well as the impedance of the line termindtNat08], otherwise re-
flections will occur and in the worst case destroy the sigoatgletely. Therefore
extra care must be taken when designing systems with higdspgnal lines.

A widely used differential signaling standard is LVDS [N&}0The direction of a

constant current is used to encode the bits. The line is teied using a resistor
of 1002 between the two signal rails. The receiver detects the geltaop (= the

differential voltage) at the terminating resistor to deedige bits. This voltage drop
is only about:350 mV, enabling high speed signaling up to 3.125 Gbps [Naf8

typical LVDS sender/receiver combination can be found gure 4.3.

V()

VfO O 1 o0 1 0 1 1 1 0 0 0 1
axn? 1 1 | | C .,
AT L 1 [| L ..

Figure 4.2: Differential Signaling (idealized)

4.2. LINE CODING 31

VCC
~3.5 mA
4 - ‘
Receiver
100R Differential Trace
- b- 100R
Differential Termination
Output Driver

Figure 4.3: LVDS Transmitter and Receiver

4.2 Line Coding

Line coding is needed to enable the receiver to distinguetivéen the individual
bits. This is achieved by adding additional redundancyedithnsmitted data stream.
Some of the most important techniques will be discussedsrstction. They differ
in the overhead introduced to the data stream as well as inithplementation
costs.

4.2.1 Additional Clock Line

The data itself is transmitted unchanged on the first railleathe clock is transmit-
ted on a second rail. Therefore the receiver has an exacti&dges of the beginning
of each new bit on the data rail. Figure 4.4 contains an examghg single-ended
signaling. The sampling times are marked by red arrows.

When using differential signaling two rails are needed farheaf the transmitted

DERN | —
Pt IR

Figure 4.4: Linecoding using an Additional Clock Line

Data

32 CHAPTER 4. COMMUNICATION STANDARDS

o o 1 o 1 0 1 I 0 0 1

1 0
Strobe J |_| |_|
Data L L] | |

reso [LT L L L L]
(I S S S

Figure 4.5: Data-Strobe Encoding

signals, namelDATA_PandDATA_Nfor the data signal an@LK_PandCLK_N
for the clock signal.

The receiver implementation is straightforward since tleelcis known by the
receiver. This method introduces a significant bandwidtbrioead (the clock fre-
guency is twice the maximum data frequency), as well as dogibhe number of
needed data rails.

4.2.2 Data-Strobe Encoding

The data strobe encoding technique [IEE95] uses two raileattsmit a bit. They

are called Data (D) and Strobe (S). On the Data rail the datarstis transmitted

unchanged while on the Strobe rail a transition is made,afsuccessive bits on the
data rail have the same value. An example utilizing singleeel signaling can be
found in Figure 4.5.

When using differential signaling, two rails are needed facheof the transmitted
signals, namelypP andDN for the data signal anBPandSNfor the strobe signal.

The receiver can regenerate the clock by simply xor-ing tagaland the Strobe
rails. It is important to note that both edges of the regetedrelock signal are active
and therefore the receiver must react on both. In FigureheSampling times are
again marked by red arrows.

The overhead this technique introduces is the second taelnifaximum frequency,
and therefore the needed bandwidth on both rails equalsathéwadth of the unen-
coded data signal.

4.2.3 8B/10B Encoding

The line coding algorithms already discussed transmit émaler clock to the re-
ceiver. This is achieved by adding a second data rail. Bothodkstare very sensitive

4.2. LINE CODING 33

to skew between the data rails and therefore the usage dahlemgched routing is
essential.

This restriction can be circumvented, if the timing infotioa is directly encoded
into the data stream. 8B/10B encoding [Nat08], which is aigpease of the gen-
eralaB/bB encoding scheme, uses this paradigm. Its encodes an diglat#é® word
into 10 bits. The encoding and decoding is table based. Thendage is that the
resulting code can be made DC offset free [Nat08] and thekalan be regenerated
out of the stream using a PLL circuit [Nat08] at the receidrere is no additional
bandwidth needed, but the resulting transfer rate is $jiglecreased due to the ad-
ditionally added data-bits. Since only a single rail is ysexdskew effects can occur.
Unfortunately the implementation with a PLL requires cleekith a low drift rate,
otherwise the PLL may lose its lock and the data regeneratilbfail.

4.2.4 Asynchronous Parallel Communication

When using asynchronous parallel communication handshghkals define the va-
lidity of the data bus. As already described in Section 3.2.8ignalreq is used to
mark the validity of the data and a signail to acknowledge the data reception. A
timing example can be found in Section 3.2.3.

4.2.5 Asynchronous Serial Communication

When using asynchronous serial communication with a presdfbaud-rate, the
data transmission is marked with a start- and one or mulbiglp-bits [GG04]. Each

of these bits has a predefined value (e.g. start-bit is lowsamgkbit is high). The

start-bit is used to signalize the start of a transmissioieithe stop-bit marks its

end. The receiver can (re-)synchronize to this bit commnadnd its internal timing

tolerance must be only as good as to receive one block, oftgracsingle byte, of

data. To enable a appropriate alignment of the sampling goéninternal clock rate

of the sender and receiver are normally considerably hijtzgr the maximum baud
rate. Figure 4.6 shows a transmission example using eigat,dme start- and one
stop-bit.

Next Startbit

Startbit or Line Idle
Y [OTTT2[3AI5T6[7AN
Stopbit

Figure 4.6: Asynchronous Serial Communication

34 CHAPTER 4. COMMUNICATION STANDARDS

Slave A

Master Slave B

Slave C

— SCK MOSI — MISO SS

Figure 4.7: SPI Link

4.3 Synchronous Communication Protocols

4.3.1 Basic Synchronous Transmission

Used in serial and parallel fashion, the synchronous datsstnission is the eas-
iest way to transmit data streams between modules. As glr@estcribed in Sec-
tion 3.2.1, all modules have the same clock and therefonetbelplain data stream
has to be transmitted between the modules. This schemealiypises single-ended
signaling. The capture times of the data bits are directlyvdd from the global
clock signal.

4.3.2 SPI

SPI (Serial Peripheral Interface) [Mil04] is a widely usestial communication
method (e.g. SD memory cards, microcontrollers). Unfaataly there is no offi-
cial standard, nevertheless the devices of the differenufaaturers are compatible
with each other.

SPI is a single master system which uses a separate clockSi0K) and sin-
gle ended signaling. The data is transmitted on a singleftna master to slave
(MOSI) and on a second one from slave to masktSO). A specific slave is se-
lected through a dedicated slave select li88.(Therefore § + #slaves) rails are
necessary (see Figure 4.7). No maximum data rate is specified

4.4. SOURCESYNCHRONOUS COMMUNICATION PROTOCOLS 35

Clk . . .

TR TR

Device A || Device B || Device C || Device D

Figure 4.8: #C Bus

433 PC

I2C [NxpQ7] uses one clock and one data rail for the commuminafThe output
drivers of the devices are open-drain drivers and the budlisgup by resistors (see
Figure 4.8). Therefore the high level is resistive whilelthve level is dominant.Like
SPI it uses single ended signaling on both rails.

12C is a multi-master system. Bus arbitration is done by moaimi¢goboth lines. If

a line unexpectedly goes low, the device assumes that antpémsmission is in
progress and aborts its transmission attempt. The maxinpecifeed data transfer
rate is 1000 kbps.

4.3.4 PCl

The PCI bus [Pci98] is a parallel high speed bus used in personguters to com-
municate with add-in cards. It uses a single clock line an@ ar%4 bit combined
data- and address-bus for data transmission. Furthernms®edd control and status
signals are present. On all rails single-ended signalingesl. The access to the bus
is controlled by an arbiter which selects a single masteeémh bus transaction.

The clock rate for the PCI bus is specified as either 33 MHz or 6& M herefore
the peak transmission rate is defined as 4224 Mbps.

4.4 Sourcesynchronous Communication Protocols

4.4.1 Space-Wire

The Space-Wire standard [Esa03] was developed with a foeusommunication
buses for space devices. It is a full duplex point to pointnamtion and uses Data-

36 CHAPTER 4. COMMUNICATION STANDARDS

Link1
: Data < :
Lts_trﬁ)b_e;! [
Device A| Link 2 Device B
:i___ﬁat_a____]
| '——Strobe '

Figure 4.9: Full Duplex Space Wire Link

Strobe encoding with LVDS signaling. Therefore four raile aeeded for each di-
rection. Figure 4.9 shows a full duplex Space Wire link.

The maximum transmission rate is not defined explicitly i standard. Neverthe-
less, the Space-Wire homepageates 200 Mbps as maximum rate.

4.4.2 PCI-Express

PCI-Express [BASO03] replaces the old parallel buses (PCI,)A@thin personal
computer systems. Several speed grades are availableXfreonx32). The differ-
ence between the grades is the number of parallel lanesngtaith a single receive
and a single transmit lane at x1 and going up to 32 receive atichBsmit lanes for
x32.

PCI-E uses 8B/10B line coding and a differential signalinditegue which is not
compatible to LVDS. The maximum data transfer rate on a Xd.ir2.5 Gbps.
4.4.3 Infiniband

Infiniband [Sha02] is widely used for CPU interconnect neksadn clusters. The
basic (serial) x1 link supports a data transfer rate of 2.9t supports LVDS
signaling (besides optical fiber) and uses 8B/10B line cading

4.5 Asynchronous Communication Protocols

45.1 Serial Port

The standard PC serial port, aka. RS-232 or V.24, is a dirgaieimentation of the
asynchronous serial data transmission (see Section 4&8)tionally to the data
bits, a parity bit could be transmitted giving a limited degof data protection.

Ihttp://spacewire.esa.int/content/Home/Homelntro.php

4.6. TRANSMISSION PROTOCOL COMPARISON 37

The serial port is full duplex, which means that there is aassfe rail from the PC

to the device and one in the other direction. Therefore tech@aplementation uses
only two data rails. Additional signals for flow control anther control functions

could be added to the basic implementation [GGO04].

4.5.2 Parallel Port

The standard PC parallel port based on the IEEE standardlIZ#E2000 [IEEO0OQ]
is a half-duplex parallel bus consisting of an eight bit wild¢a bus, the handshake
signals and additional status and control signals. It isectimplementation of the
asynchronous parallel transmission scheme as descril&=ttion 4.3. All rails use
single-ended signaling.

4.6 Transmission Protocol Comparison

As conclusion to this chapter, Table 4.1 gives a short sumwfaall presented com-
munication protocols and their main properties.

CHAPTER 4. COMMUNICATION STANDARDS

38

Table 4.1: Transmission Protocol Comparison
Transmission Protocol | Number of Rails | Signaling Maximum Transmission Speed Synchronization
Synchronous Transmissign > 1 Single-Ended Limited only by System Delays Synchronous
SPI 3 + # of Slaves | Single-Ended Not Defined Synchronous
12C 2 Single-Ended 1000 kbps Synchronous
PCI (32 Bit) @33 MHz | 33 + control/status Single-Ended 1056 Mbps Synchronous
PCI (32 Bit) @66 MHz | 33 + control/status Single-Ended 2112 Mbps Synchronous
PCI (64 Bit) @33 MHz | 65 + control/status Single-Ended 2112 Mbps Synchronous
PCI (64 Bit) @66 MHz | 65 + control/status Single-Ended 4224 Mbps Synchronous
Space-Wire 4x2 Differential 200 Mbps Source Synchronous
PCI-Express x1 2X2 Differential 2.5 Gbps Source Synchronous
PCI-Express x32 32x2x2 Differential 80 Ghps Source Synchronous
Infiniband x1 2x2 Differential 2.5 Gbps Source Synchronous
Serial Port 2 Single-Ended Not Defined, Commonly 115 kbps Asynchronous
Parallel Port 10 + control/status Single-Ended Not Defined Asynchronous

Chapter 5

Hardware Fault Models and Fault
Tolerance

The system- and communication schemes presented in Chapdge &issumed that
the underlying circuitry is fault free. Unfortunately, dteemanufacturing impreci-
sions and material variations, not all circuits are manwiad fault free. Even if
a high percentage of these faults are found and most of thextilef circuits are
rejected in the factory test, faults may still be presentame of the manufactured
circuits. Additionally adverse operation conditions glikadiation, electromagnetic
fields or extreme temperature, can cause runtime errors,ievault-free circuits.
The resulting faults can either be permanent or transient.

A permanent fault, like a break in a signal line (originatimgelectro migration
[Bla69] or deformation due to extreme temperature diffeesne.g.), will not disap-
pear on itself. The fault is present until the system is miyuepaired.

A transient fault, like a wrong signal state (caused by alsiegent upset (SEU)
[KHO4], e.g.), on the other hand is only temporarily preserthe system and will
disappear on its own. Nevertheless its consequences, ldam@romised system
state, may be visible much longer.

To be able to model such events consistently, several fandtets have been de-
scribed on the functional level. Due to the importance ahleé circuitry, a sound
theory on fault modeling was established, as summarizedA97].

Today'’s, high requirements on the safety and reliabilitglettronic circuits have led
to mechanisms for introducing a certain level of fault talege into the circuits. One
of the most important concepts used today are TMR (triple utasdredundancy)

circuits [LV62]. They achieve fault tolerance by replicagithe application logic

and use a majority vote on their results. Therefore one otlirek replicas can be
faulty without affecting the result value of the system.

39

40 CHAPTER 5. HARDWARE FAULT MODELS AND FAULT TOLERANCE

Driver/Source Sink
/ s N {>
(L
N > /7

Figure 5.1: Stuck At Zero Fault

This chapter will give an overview on hardware fault modeld afterwards intro-
duce the TMR model.

5.1 Hardware Fault Models

As already mentioned above, several functional fault modeére established
([EA97]). We will continue with summarizing the propertiessome important fault
models.

5.1.1 Stuck-At Faults

The stuck-at fault model describes faults manifesting $edues as constant signal
values independent of the value driven by their correspandource. A stuck-at-
0 fault therefore describes a signal constantly tied to lelile the stuck-at-1 fault
describes a signal constantly tied to high. In CMOS circtits faults are equivalent
with a short circuit of the signal with GND or VCC, respectiveiygure 5.1 shows
an example of a stuck at zero fault.

As up to 95% of all circuit faults are detectable using testees generated for the
stuck-at model, in practice mostly this model is applied.

5.1.2 Stuck-Open Faults

Stuck-open faults have a similar behavior as stuck-atdatilhe difference is that,
in case of stuck-open faults, the signal line is broken awbtef tied to a constant
value. Depending to the position of the break and the funatity of the circuit,
this can lead to floating signals or even turn, by disconngagpiarts of the circuit,
a combinational logic element into a sequential one. An gtarof a stuck-open
fault, creating a floating signal line, can be found in Figbu2.

5.2. FAULT TOLERANCE 41

Driver/Source Sink

Figure 5.2: Stuck-Open Fault

5.1.3 Bridging Faults

The stuck-at and stuck-open fault models can handle fatiléssingle line only.
As an example for a model describing faults between mulple&ces, the bridging
fault model is introduced. It models unwanted connectiogtsvben multiple sig-
nal lines. Depending on the underlying circuit, the bridgof the lines may cause
different behavior (wired-and, wired-or).

An example for a simple or-bridging of two signal lines carfdwend in Figure 5.3.

5.2 Fault Tolerance

After discussing the modeling of faults, we will now show htamake a circuit
fault tolerant. For safety-critical circuits or systemshvaiut a repair possibility, like
unmanned space crafts, it is important to tolerate a prestbfirumber of faults.
The fault hypothesis, specifying the maximum number ofredde faults, must be
defined before a fault tolerant system can be designed.

A very common assumption is a system which can tolerate armariof one fault.
For this assumption, triple modular redundancy (shortlyR)Mystems are widely
used.

5.2.1 Triple Modular Redundancy

As mentioned before, TMR systems [LV62] can handle at mostfanlt. The ba-
sic layout can be found in Figure 5.4. The system consisthrektreplicas of the

Signal A -

Correct Signal B | | | | |_>t
Faulty Signal B | | | | |_>t

Figure 5.3: OR Bridging Fault

42 CHAPTER 5. HARDWARE FAULT MODELS AND FAULT TOLERANCE

| Application
Input| LoOgIC [Output

Non Faulttolerant System

-

]

_—{ Application C
Input| ~ Logie . Output

" Voter

TMR System

Figure 5.4: Basic TMR System

application logic and a single voter. The task of the votdpbiperform a majority
vote on its inputs. If the system complies with the fault hyyasis, at most one input
will be faulty and therefore the majority of the input valugsorrect and selected as
result. As the voter is a single point of failure, it is nortgamplemented as simple
as possible and is therefore a combinational circuit onho[®].

As the voter is a single point of failure, it is apparent thatlsa combination is not
favorable. Therefore the concept has been extended bycdtiply the voter [LV62]
leading to a slightly different system as shown in Figure B1%his combination the
system will still be operational, even if a voter fails. Thawback here is that there
is no single, voted result available, but three voter ogtjnstead.

Voter Voter
Input | Application () Application /\ Output
Logic Logic
Input | Application Application Output
Logic Logic
Voter
Input | Application Application Output
Logic N Logic __/
Voter Voter

Figure 5.5: TMR System using Replicated Voters

Part |l

Framework Implementation

43

Chapter 6

Problem Definition

To be able to design a dependable hardware implementatiancohsensus algo-
rithm, the underlying framework implementation must beatgde. The framework

must support the implementation of independent nodes artiadble way to com-

municate between these nodes. Even if we could toleratésfantfoduced by the
framework, as metastability, e.g., we do not want to geeeaadtlitional faults in an
otherwise fault free execution. If such faults would octlue, reliability of the whole

system may be compromised. After analyzing existing sohgtj we have found that
none of them fulfills all of our requirements.

At a first glance, the synchronous model is very appealingupports metastability
free communication links, is supported by a powerful toodsel is widely used. On
the other hand the whole system relies on a single clock seolfrit fails, the whole
system will crash. Therefore it is impossible to implemewtependent nodes using
this model.

In the asynchronous model the absence of a clock signal ijucctiion with the
adaptive transmission delays prevents the establishrhamgiobal time base. There-
fore only asynchronous algorithms can be executed. Sinesymchronous consen-
sus algorithm is possible [FLP85], this system model is nded for our needs.

The module structure of a GALS system with its independesttkckources is per-
fectly suited to implement independent nodes of a disteithstystem. Unfortunately
the absence of a global time base makes the implementatiarcofsensus algo-
rithm impossible. Assuming bounded delays on the commtinitéinks would en-
able the generation of a global time base. Neverthelessiiementation would be
costly. Additionally the tendency for metastability on ihéermodule communica-
tion links, even in the fault free case, prevents a reliablamunication.

Fortunately, the DARTS clocking scheme developed at ouitis suits all our
needs. It is a Byzantine fault tolerant implementation of dtisynchronous clock-
ing scheme. As in the case of a GALS system, the different \ada be imple-
mented using independent clock sources. In contrast to AleS@&locking scheme

45

46 CHAPTER 6. PROBLEM DEFINITION

the precision of the clock sources is known and thereforeumded global time
base is available in the multisynchronous case. In theviatig sections we will

show how toimplement a metastability free communication lagased on this in-
frastructure. To be able to prove its correctness, we willehthe multisynchronous
circuit using mechanisms of the distributed system theory.

We will start with the introduction of our modeling techngjlAfterwards, in Chap-
ter 8, the used communication layer model is built and prax@dect. This is fol-
lowed by an outline of the hardware implementation of the iwamication layer
and its performance. Experimental results collected uaitegst system will also be
presented. These results will be used to show that the ptowesd bound is tight.

Finally Chapter 10 uses the communication layer and its ptiggeto develop an
algorithm which establishes a lock step synchronous roundietn

Chapter 7

Circuit Modeling

To be able to prove the correctness of a multisynchronouasitimve first must map
it to a distributed system model. The resulting algorithdescription together with
a set of properties will later be used as basis for our proofs.

7.1 Creating the Model

The system is separated into several modules guided by #t aleck sources.
All sequential elements driven by the same clock source lemgpgd into the same
module. Therefore only a single module will fail, if a cloctiusce is faulty. Each
module is represented by a node of the distributed systeneimod

Since the whole module uses the same clock source, theaddairecision within
the module is zeror{ = 0). Additionally the clock frequency of the modules’ clock
signals is calculated such that the maximum signal delayhenntramodule com-
munication links is less than one clock cycle™(< 1). Therefore the modules are
purely synchronous circuits and can be designed using tkérexpowerful toolsets.

Within the distributed system model, the intramodule lagequential and combi-
national) elements are represented by the state transjiecification of the corre-
sponding node.

For each identified intermodule communication link the tany memory elements
are identified. All combinational logic elements on the 8rkre merged into this
link.

The resulting model consists of a det= {n,,--- ,n,,} containing the identified
nodes. The nodes are interconnected by simple commumdatics only. An ex-
ample of modeling a single module can be found in Figure 7.1.

47

48

CHAPTER 7. CIRCUIT MODELING

Data to
FF4 other Clock
Region
FF3
Combinational DQ
. D Q a
Data from Comblnegtlonal N Data to
other Clock Logic | ° other Clock
Region :
DQ DQ DQ Region
A A A Combinational
FF1 FF2 FF5 Logic
‘—
Clocksource
Identified Module
Data to
FF4 other
Boundary Module
Memory —>» |D Q
Data from Element A
other Boundary
Module Memory
DQ = Element
A Data to
FF1 FF5 other
Boundary Module
Memory — D Q
Element A

Figure 7.1: Modeling Example

7.2. MODEL PROPERTIES 49

7.2 Model Properties

Due to the usage of a multisynchronous clocking scheme, @ uses a different
local clock source. These clocks are synchronized with pricay known precision

7. The precisionr equals the precision of the multisynchronous clockingesyst

Formalizing the precision we get:

Ir:Vi,j € PYE>0:Cf — CF™.

It is important to note that for GALS system no such preciggists and therefore
no global time base can be derived from the local clocks.

Additionally, by the accuracy of the clocking system, wekrtbat a minimum clock
periodT~ exists. Formally this minimum clock period can be specified a

Vie Pk>0:3T = m}cn(CfH —CF) > 0.

For the intermodule communication links, the message dalay bounded using
a minimum A~) and a maximumA4 ™) delay, respectively. The calculation of the
message delasx and its bounds will be fixed later (see Section 9.2). The idedt
boundary elements are necessary to accomplish this task.

7.3 Modeling Freeness of Metastability

Revisiting the definition of metastability (see Section 3 & apparent that a signal,
captured by a sequential element, must not be changed whihsetup/hold window
of the reading element.

As already mentioned we have a systemmafiodes exchanging information. We
model the access to a signal as unidirectional link conngetn arbitrary, fault-free
sender- and receiver pair. The access to the signal is ntbdsileg actions executed
by the nodes. We define a write actidn, changing the signal, and a read acti®n
reading it. If we define the end of a write actidli as the earliest possible time the
read actionR can safely start (such that the setup time is not violated) sufficient
for a metastability free operation thHt — R. Additionally we define the end of
the read operation such that the hold time is not violatedthadext write action
W may safely start.

Additionally to metastability-freeness, we require thatle value written is read
exactly once. This can be achieved by requesting that 1/ holds. Therefore a
correct execution is defined by the sequer¢e?, W, R, - - - .

Using these definitions, a sufficient condition for metasitsiiree communication
can be described as:
Vk>0:W"— RF — WwhHl (7.1)

50 CHAPTER 7. CIRCUIT MODELING

where the actiodlV* is the k-th write- and the actiori?* the k-th read operation.
Note that the condition must only hold for links between rianlty nodes.

As the intramodule logic is purely synchronous and Equatibh) is inherent for
the synchronous model, the problem is solved for intrammtinks by the toolset.
Therefore only the intermodule links have to be consideféd. next sections will
use the previously formulated condition to develop a prtvabultisynchronous
metastable-free intermodule communication infrastnectu

Chapter 8

Metastability-Free Intermodule
Communication

In Section 7.3 we have already formulated a sufficient camdiior a metastability-
free communication. Within this chapter we will use this dition together with the
properties of the circuit model (see Section 7.2) to develppovable metastability
free communication scheme. We will proceed by comparing alternative ideas
for implementing metastability-free communication betwelifferent modules in a
multi-synchronous system, namely:

e “Quasi-synchronous” communication based on a dividedkouacroticks”)
and

e “Pipelined” communication using the native clock (“midois”).

8.1 Quasi-Synchronous Communication Scheme

Let us call the native clock tick available in the multi-siin@nous environment a
“microtick”. Dividing this microtick by some fixed creates a “macrotick” witkl-
fold period, with the same (absolute) synchronization igren. Still, the precision
expressed in the unit macroticks improves by a factod:of’ = 7/d. With M}
denoting thek!" macrotick of node, a fixed divisord and assuming a synchronous
start of all nodes, we can formally express this, using tHimitien of the precision,
as

AR ke
vz]GPVk>OMk:Cdk_>Cdk+ﬂ' _Cj ‘ _]\4']’+ 7d’ﬂ-
) 9 . i i § . l
—>Cj(k+(d—|>d:M]l'€+w7d Xﬂ

51

52 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

k=1 k=3 k=4 k=5

T S TSN
n SV 'Y S S S S
I S S SV 3 S SN

A Microtick ¢ Macrotick Clockintervall

Figure 8.1: Macrotick Generation

cko| | [L1 [| R
cli, [T LI T]

115 I N N s I e

— Microtick —— Macrotick Clockgroup

Figure 8.2: Macrotick Based Clock Generation

By choosingd > 7, we can reduce the relative precisiorto a value of one, which
means that all macroticks with the same index can be groupechon overlapping
time intervals (see Figure 8.1).

Unfortunately we cannot infer anything about the precederienacroticks with the
same index on different nodes. Additionally the delay betwmacroticks with the
same index can be larger than the transmission delay, antethelata could be re-
ceived too early. Therefore we will distinguish between @adi even macrotick
indices and perform a write upon an odd macrotick, and a rgamh @an even
macrotick only. This yields two disjoint subsels and IV; for each node € P
with B; N W; = 0:

Vie P:W;={Vk>0:WF=M*"}
Vie P:R;={Vk>0:RF= M}
With 7’ = 1, the definition of the precision can be used to ensure
Vi,j € P,Yk>0:WF=M*"1 M?* = R¥ and
Vi,j € P,Yk>0: RF = M2 — M = WF,

Such a system is easily implemented using the rising eddeeahticrotick-clock as
write event and the falling edge as read event. Notedhat2r for this implementa-
tion, since both clock edges are used (see Figure 8.2 as &jamasically, this im-
plementation simulates a globally synchronous systeneritihg all its advantages

8.2. PIPELINED COMMUNICATION SCHEME 53

and disadvantages. On the positive side, it allows to sulbst@ (non-fault tolerant)
central clock by a multi-synchronous clocking scheme wittfarther changes. The
major deficiency, however, is the bad communication peréorce, which only is(li
times the throughput achievable with the native clock.

As in the synchronous model, it is necessary that the bitalathe communication
line is delivered timely, since no handshake protocol isi@mgnted. Therefore each
bit must be delivered within the time between the latest ipts®ccurrence of a
write with indexk and the first possible occurrence of a read with the same index
If the time is not sufficient, the divisat must be increased to a value such that the
time difference is large enough for delivering the bits tiyne

8.2 Pipelined Communication Scheme

Let us recall the requirement for metastability-free comioation: For the transfer
of any given data item, we need to pair write and read tramstisuch that the
write action has finished safely before the read actionsstémtthe above quasi-
synchronous approach, clock transitions of the same dre(tising or falling) are

considered indistinguishable. Hence, this pairing is iggdpstrictly via subsequent
alternating edges. Consequently the phase relation between any two mdés
central importance and must be maintained within tight loisun

However, if we could distinguish edges on endividual basis (e.g. by their in-
dex), then we could establish relations between arbitrergkdransitions, such as
C}? — C?. Clearly this requires a globally consistent numbering otklticks,
which is, however, nothing else than the global time bassbéished by our multi-
synchronous clock, provided that a consistent edge numdpési ensured by the
synchronous start of all node’s local clocks at start-up.

Based on this idea, we can pipeline transmission activitigeeamicrotick level,
thereby avoiding the throughput penalty of macrotick-dasemmunication. We
simply exploit the precedence given in the definition of thecgsion:

Vi,j € PVk>0:W}=CF - Ci*t* =R}

with « being a sufficiently large time margin that separates wetesreads.

Note that writes and reads can be performed at every mikrbgce, which max-
imizes the throughput. The pipelined approach hence ceraditly surpasses the
guasi-synchronous scheme, and is therefore our prefeotatics. Due to the bad
synchronization precision, however, which can be in theood several microticks,
one needs a FIFO buffer in between communicating nodes td data loss. Clearly,
minimizing the required buffer size is important, both wigispect to costs and com-
munication latency. In the following section, we will proe our solution and its
proof of correctness.

54 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

8.2.1 Algorithmic Model

To be able to prove the correctness of our approach, we fester@n algorithmic
model of our system. The links of the basic model from Chaptme#eplaced by a
single-writer single-reader buffer memory of unboundex §see Figure 8.3). Our
proof will reveal that finite buffer size is sufficient.

From Section 7.2 we already know the two basic propertiee®@htodel. As basis
for the proof we rewrite these properties as assumptions:

Assumption 8.2.1(Precision) 3 : Vi, j € P,Vk > 0: CF — CI*™

Assumption 8.2.2(Accuracy) Vi € P,k > 0: 3T~ = m'}ﬂﬂ(cfﬂ —-CH >0

Note that in Assumption 8.2.2 only the lower bound of the aacy as it was de-
fined in Section 2.2.1, is used and sufficient to guaranteedhrect behavior of our
solution. Furthermore we require the clocking system to ggno the following
assumptions:

Assumption 8.2.3(Startup) Before the first clock tick (initial statg; = 0), all
buffer memories are prefilled witth elements (all zero) and the precisians zero

(’/To = 0)

Note that Assumption 8.2.3 is usually easy to guaranteestesys with a common
reset, since all nodes start with zero clock ticks received.

Assumption 8.2.4(Message Order)All message channels (clock as well as data
channels) provide FIFO ordering. Furthermore, the actualays must be such that
every read and write action is finished before the next onasstar

The behavior of the system is modeled by a sender algoritHgo(dhm 1) and a
receiver algorithm (Algorithm 2).

Informal description of the algorithms The following messages, actions and
events can be handled and/or produced by the senderinode

e CF - This is thek-th clock tick of the sender nodelt is a zero-length action,
i.e., an event.

e (tick, k) - At every evenC?F the clock generator of nodesends a message to
its message generator to initiate the delivery of the datssage. Its message
delayAyq(i, k) isinthe intervad < A, < Agna(i, k) < AF

send — send "

e D! - This is the receive action for theth (tick, k) message at its message
generator. It is a zero-length action, i.e., an event.

8.2.

PIPELINED COMMUNICATION SCHEME 55

8

Clock Message Memory Memory Clock
Generator Generator Controller Controller Generator

<tick> <data> <tick> D

Sender Node 1 Receiver Node

Prefilled Memory Area Unbounded
Memory

Figure 8.3: System Model used for the Proof

Algorithm 1 Sender Algorithm for Node

© ® ¥ o g k0 N R

=
»Q

[
N

. I/ Clk Delay

on CF do
Send(tick, k) to generateD;

end on

/l Message Delay

on D!: [-th receive of anytick, k) from nodei do
Send(data,l) to generatéV;

end on

/I Write Event

on W/™: m-th receive of anydata,/) from node: do
mem(m + «) := data

. endon

Algorithm 2 Receiver Algorithm for Node

@ N o g & w N B

. Il Clk Delay

on C¥ do
Send(tick, k) to generateR;

end on

/I Read Event

on Ré.: [-th receive of anytick, k) from nodej do
data :=mem(k)

end on

56 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

e (data,l) - At every eventD! nodei's message generator sends a message to
its memory controller to initiate the memory write actiots message delay
Ansg(7,1) isintheinterval < A < Apgg(i,1) < Af,.

e W™ - This is the actual write action of the buffer memory. It igygrered
by the reception of then-th (data,/) message and has a non zero duration
Apem (7, m) within the intervald < A < Apem(i,m) < AL .

The receiver nodg can produce and/or handle the following actions, events and
messages:

° CJ’? - This is thek-th clock tick of the receiver node. It is a zero-length aatio
i.e. an event.

o (tick, k) - At every even'Cj’.c the clock generator of nodesends its memory
controller a message to initiate the memory read. Its messalgyA ... (j, k)
isinthe interval < A, < Ao (7, k) < AL,

° Rg. - This is the actual read action of the buffer memory. It igdgred by the
reception of thé-th (tick, k) message and has a specified lengtih\of(;, 1)
within the intervald < A < A(j,1) < Af.

It is important to note that R;? reads memory locationk, while W} writes mem-
ory location k + a.

As a consequence of the shifted write index, the memory megtrbfilled with

o elements (all zero), simulating that the writdg **',... W? to the memory
locationsl1, - - - , « have already been finished before the first clock tick= 0,
initial state).

To fulfill Assumption 8.2.4, it is sufficient that the systeralalys comply with the
following equations:

T7 + Awend (i, 5 + 1) + Apeg (4, k + 1) — Agenali, k) —
A (i, %) > Ao (i, &) (8.1)
and
T + Arecv(ia k + 1) - Arecv(i7 k) > Ard(Z‘> k)

A more in-depth discussion of the delays in real systems edaund in Section 9.2.

An example execution of tick for both algorithms can be found in Figure 8.4.

8.2. PIPELINED COMMUNICATION SCHEME 57

Sender Node 1:
<tick> <data>
/\‘/—\ o
€ >l >l >|

Cll(Asend Dll(Amsg Wlf Amem

Receiver Node j:
<tick>

. W

l——>la—>
Clj(Arecv RIJ(Ard

Figure 8.4: Execution of Tick

8.2.2 Problem Definition

The correct operation of our communication scheme is famedlby a slightly
changed version of the condition introduced in Section Tiferefore the follow-
ing properties must hold:

(WR) The write of memory locatiok must be finished before the read of this loca-
tion starts ¢k > 0 : W/~ — R¥).

(OV) In case of a bounded-size buffer, the read of an elemast be finished before
itis overwritten % > 0 : R¥ — W/*™*", the size of3 will be fixed later).

8.2.3 Relation Between Actions

We will now prove essential relations between the actiormimnsystem model.
Lemma 8.2.1. Algorithm 1, line 6:¥k > 1 it holds thatk = [and DF — D!,

Proof. We prove this Lemma by induction.

e Induction start§{ = 1): C! triggers the first send of a messagiek, 1). By
the FIFO property of the links it is also the first message todle/ered and
therefore triggering everid}. Since it is the first event the precedence relation
is obviously true.

¢ Induction hypothesis: Assume the lemma holdskfor

¢ Induction stepX — &+ 1): We know that the firsk (tick, /) messages trigger
the eventd!, | < k. By FIFO order, messadgick, k+1) (generated by event
CF1) will be the next one delivered, thereby triggering the évefit'. Since
Dlis an event (a zero-length action), this implies the precedeelation. []

58 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

Lemma 8.2.2. Algorithm 1, line 103! > 1 it holds thatl = m and W} — W/,
Proof. The proof is similar to above.

e Induction start{ = 1): D} triggers the first send of a messagata,l1). By the
FIFO property of the links it is also the first message to bevdedd and there-
fore triggering actioriV!. Since it is the first action the precedence relation is
valid.

¢ Induction hypothesis: Assume the lemma holds/for

e Induction step(— [+ 1): We know that the first (data,m) messages trigger
the actionsiW”,m < [. By FIFO order messag@&lata,/ + 1) (generated
by eventD!*!) will be the next one delivered, thereby triggering the @ti
W, From Equation (8.1) we know that(W/ ™) > (W) + Apem(i, 1)
and therefordV} is finished beforéV/*! is started. Therefor&l! — W/*!
holds.

]

We now define a new relatiow. It is used to model the triggering of actiont .~
B means that actio®? was triggered by actionl. Note thatA ~~ B implies the
precedence relation (A> B). Using this notation, the trigger dependencies implied
by Lemma 8.2.1 and 8.2.2 read:

CF ~s DF ~s WF,

)

Lemma 8.2.3. Algorithm 2, line 6:vk > 1 it holds thatk = [and R¥ — RM*'.

The proof is equivalent to the one of Lemma 8.2.2. Lemma 8i28njunction with
the definition of the trigger relation implies:

k k
Cj WRJ..

8.2.4 Read—Write Order Proof

For the proof of (WR) we fix an arbitrary sender-receiver paie Eender node has
the indexi, the receiver node the indgxWe will now derive the latest possible end
of a write action to a certain data item. We start with the firgems.

Lemma8.24.V —a+1<k<0:t,(WF)=0

Proof. Follows directly from Assumption 8.2.3. O]

8.2. PIPELINED COMMUNICATION SCHEME 59

The following Lemma 8.2.5 gives the latest possible end tiareall other write
actions.

Lemma 8.2.5.Vk > 0 : t,(WF) < t(CF) + AL+ Al + A

send msg mem
Proof. We already know that

CF ~s DF ~s WF,

SinceD¥ is triggered by thé-th (tick, k) message, we get:
t(Df) = t(CF) + Asena (i, k).

SinceW} is triggered by thé-th (data,/) message, we get:

t(DF) + Apsg (4, k)

t(CF) + Asena (i k) + Amsg (i, k)

t(CF) + AL 4+ AF

7 msg*

t(W)

IN

sen

Furthermore, we know that the action tak®es.., (¢, k) time to finish, so its end time
is:

te(w/z'k) = tS(Wz'k) + Amem (%, k)
<HCH + AL+ AL, + AL

send msg mem*

In the next step, we determine the earliest possible timadaetion can start.

Lemma 8.2.6.Vk > 0 : t,(R}) > t(C) + A,

recv

Proof. We already know that
Cf ~ Rﬁ? .

SinceRY is triggered by(tick, k), we link:
t(R}) = L(C}) + Aveer(J, k) > H(CF) + AL

recv”*

]

For proving (WR), we need to relate the latest possible end ofta action with the
earliest possible start of a read action of the same itemet}aty(R;?)—te(Wf“") >
0. In particular, we will show that this condition is true if:

AL AL AL — A

sen msg mem recv

a> T+
> T

60 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

Lemma 8.2.7.Vk > 0 : t(RY) — to(Wf™*) > 0

Proof. We use a case differentiation to prove this Lemma:

o 1 <k <o
ts(RY) — (W) =1t(R}) > 0.
——
=0byLemma8.2.4
o k>«

tS(Rf) - te(VVik_a) > t(Cjk) + A1r_ecv - t<Oz"k_a) - A:—end - Ar—;sg - A1r—’r_1em
t(CF) = t(CF ™)+ HCFT) — ()

J/

>0 by Assumption 8.2.1 >(a—m)T~ by Assumption 8.2.2

+ A1:3cv - A:;nd - Al—’;sg - A:r_lem
A;;nd + AI—;sg + A1r—~r_1em - Ar_ecv _
> | T+ -7 | T
T_
<o
+ A1:3cv - A:;nd - Al—’;sg - A:r_lem
AL AL AL — AL
T en msg mem recv+
T_

+ Ariecv - A;:end o A;risg - Arfiem =0.

This proof shows that if the buffer is prefilled with at least

Af AL AL — AL

Sen msg mem recv

T_

oa=Tm+

elements, no element is read before it is written.

8.2.5 Bounded Buffer Size

Now we replace the unbounded memory with a FIFO buffer of bednsize. We
will continue with determining a lower bound for a sufficidndffer size such that
(OV) holds.

As in the previous section, we will show the start and end tinagpectively, of
the actions. To determine the required buffer size, we needrrelate the earliest

8.2. PIPELINED COMMUNICATION SCHEME 61

possible start time of the write action with the latest plolesend time of the read
action (excluding the firstv writes, since they are prefilled and therefore can not
overwrite any item in the buffer).

Lemma 8.2.8.Vk > 0 : t,(WF) > t(C¥) + A+ A,

msg
Proof. We already know that

Ck s DF o WWF.
SinceD¥ is triggered by thé-th (tick, k) message, we get:
t(DF) = t(CF) + Agenald, k).

SinceWWk is triggered by thé-th (data,/) message, we get:

tS(VVik> = t(Dk) + Amsg(i> k)
= t(CF) + Asena (i, k) + Apsg (i, k)
Z t(Czk) + As_end + Ar:lsg'
]
Lemma 8.2.9.Vk > 0 : t(RY) < t(CF) + A, + A
Proof. We already know that
k k
Cj ~ Rj.
SinceR? is triggered by thé-th (tick, k) message, we get:
tS(Réﬂ) = t(ojk) + Arecv(j; k) S t(cjk) _I— AI}CV'
Knowing that a read action finishes withix.4(7, k), we get:
te(RY) = ts(RY) + Awa(j, k) < t(RY) + Af
< H(Ch) + Al + AL
]

After calculating the start and end time of the actions, wiknaw show the maxi-
mum possible number of unread messages in the buffer.

Lemma 8.2.10.There are always equal or less thar-a+ 3 unread elements in the

buffer (i.e.\k > 0 : t.(W* ™) — t,(RY) > 0) with 3 = P&V*Aﬁ%nd‘“ﬂ.

Proof. We have to distinguish two cases:

62 CHAPTER 8. METASTABILITY-FREE INTERMODULE COMMUNICATION

e k= 0 (Initial State): At the beginning there are theprefilled elements in the
buffer. Therefore the buffer size is surely sufficient.

o k> 0:

L) 1 (RY) >

k+m — _
7 g (C - +ﬂ) + Asend + Amsg

(2

t
— t((]]'?) — AL, —Af
t

recv
k+m+5 k+8 k+p8 k
(CE™0) —4(CyP) + HCH) = 1(Ch)
>0 by Asst\J'mption 8.2.1 >BT— by A;;umption 8.2.2
- - + +
+ Asend + Amsg - A - A1rd

recv

+ — —
> A;“Fecv + Ard - Asend - Amsg T
= T-
+ As_end + AI:ng - A;rtecv - A;ti
> Altzcv + A;El o A;end o Arinsg
+ As_end + A;sg - AJ-riécv - A;ti =0.

]

This means that if the buffer has a size of at least o + elements, no item can
be overwritten, before it was read.

8.2.6 Latency

The message latency is defined as the number of clock cyctesée the write-
(WF=) and the read-actionﬁ(f) of all non prefilled messagesdata,k), k > «).
The calculation is based on the local clocks of the senderes®iver nodes.

Lemma 8.2.11.The message latency of all messa@geta, k), k > « is a.

Proof. Each messageslata,k) is written at the corresponding actiéii*~ to the
buffer memory (follows directly from line 11 of Algorithm 1)t is read out at action
R;? (following directly from line 7 of Algorithm 2). Thereforene message latency
Lis:

L=k—(k—a)=«a

8.2. PIPELINED COMMUNICATION SCHEME 63

8.2.7 Results

+ + + A= .
Theorem 8.2.1(Buffer Size) For o = 7 + [Aseﬂd%msg%mm Areﬂ a sufficient

=
FIFO buffer size is given by

A;_end + AI—;sg + A$em - Ar_ecv AI—J;CV + Al—"i(_i - As_end - Ar:lsg
21 + + .
T- T-=
+ + + A=
Theorem 8.2.2(Message Latency)For o = 7 + [Ase“dJrA‘“ngJ“_A mem A“CVW, the
message Iatencyfig? — WF=) is defined as:
A;rend + Ar—’r—lsg + A—ni_1enr1 - Ar_ecv-‘
T+ T .

Theorem 8.2.1 gives a lower bound on the sufficient buffex sizch that the read-
write order is always maintained. Therefore it is guarashtbat no memory location
of the bounded FIFO buffer is changed while it is read, rulingall possibilities
for metastability in the fault free case.

Additionally our solution guarantees that each bit is se@t#y once by the receiver
so no bit is duplicated or swallowed as it could happen wherguscommunication
scheme without handshake in conventional GALS systems.

Chapter 9

Pipelined Scheme Implementation

Chapter 8 has illustrated the principle of the proposed conication scheme and
theoretically proven its correctness. We will now show howan be efficiently
implemented in practice.

9.1 Circuit Design

The layout of a node is shown in Figure 9.1. Internally theesodre implemented
using the synchronous paradigm, enabling the usage ofathiévelopment tools
and testing facilities.

The needed buffering of the transmitted data is performeldeateceiver input.

9.1.1 Communication

Note that the clock domain boundary is in the buffer that imtis located at the
receiver. The transmitter clock is used for clocking theadato the buffer memory.
Therefore a source synchronous communication protoc@esled.

After evaluating several different communication scherfse® Chapter 4 for de-
tails) we decided to use an unidirectional SPI connectighaut slave select signals
as communication infrastructure. Therefore each linktsa$ two rails, namely a
clock- and a data-rail. The transmission of the clock sigmakcessary because it is
impossible to regenerate the clock signal from the datatsang a PLL since it can
not be locked to the multisynchronous clock signal (unptadile clock phase dif-
ferences between succeeding clock cycles). It is also gwgerthe usage of other
clock transmission schemes (like Data-Strobe encodingpgge the transmission
rate is increased using multiple data-rails (ohly- n rails needed for a transmis-
sion usingn data-rails). For a safe transmission, it is necessary tp kee skew

65

66 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION

Logic

Clocking
Chip

Microtick

Receiver | Transmitter

Layer

Communication | Application

< <

<| 24 |4

Al O A0
Yy

To/From other Node

Figure 9.1: Layout of a Node

between these rails within the margins known from synchusraesigns. To relax
these margins as far as possible we introdu¢8Cé phase shift between data and
clock.

Furthermore we decided to use point-to-point links in favbbuses. When using
a bus topology, faulty nodes can, by sending messages eutsdassigned com-
munication slots, interfere with the communication betwaen faulty ones which
would contradict a reliable communication between nontyaubdes (babbling idiot
[Kop97]).

9.1.2 Transmitter

The transmitter is intended to operate as a peripheral slaviee of a controller
implemented in the nodes application logic. It is in the satoek domain as this
controller. Data to be transmitted is passed by the coetreila an 8 bit register
interface.

In case no data is available from the controller, the tratiemis responsible for
inserting idle patterns to keep the buffer memory filled. y aase line coding is
applied according to the standard 8B/10B coding algorithdthe data is serialized.
The encoding is needed to distinguish between data and atterps. For future
extensions a functionality to group multiple data bytes ipéckets is implemented
by means of a start- and an end-packet-symbol.

9.1. CIRCUIT DESIGN 67

9.1.3 Receiver

The receiver operates as a synchronous peripheral slaw@dev a controller unit
implemented in the receiving node. It simply takes the dataodthe buffer using
its own (i.e. its controller’s) local clock. After deseii@hg and decoding the data it
provides them to its local controller unit via a memory mapparallel 8-bit inter-
face. Additionally the reception of the three defined cdrgymnbols (idle, start- and
end-packet) is signaled at this interface

9.1.4 Communication Buffer

As explained above, both, the transmitter as well as thevecedependently write
data to and read data from, the communication buffer, résped¢ each using its
own local clock, while these clocks may have an arbitrargtied but bounded dif-
ference. It is the duty of the buffer to accommodate thisedéhce and allow for

a metastability-free data transfer. As shown in Chapter 8¢hn be accomplished
with a sufficiently large buffer. Still the hardware implemation must be suitable
for the purpose. A naive approach like a shift register, eguld not work, as such

a structure updateall registers with every write access, due to the need for shift-
ing. Even with infinite buffer size this solution would notaV a metastability-free
communication.

A correct approach is to use a ring buffer with individual eet pointers for input
and output (Figure 9.2). Here only one memory element is t@oldaer write access,
and our only concern is to prevent an overlap between writeraad of the same
entry. This, however, is ensured by the proof from Chapten &fsufficient buffer
size (Theorem 8.2.1).

As a result we have a memory structure that can be written doread from in-
dependently, since the only potential conflict, namely agrleyping access to the
same address from both sides is ruled out by design. Thig s&time time also rules
out metastability — in sharp contrast to other communicaiohemes that make
metastability highly improbable but cannot completelyrafiate it. Note that this is
only possible due to the known, bounded precision that thésyachronous clock-
ing scheme provides.

A similar buffer implementation was previously used by [F05ince their ap-
proach does not utilize a clocking scheme with bounded gigti special hand-
shake signalsfigll andempty are needed to prevent buffer over- or underflows. As
thefull signal crosses the clock boundary between sender andeegetis subjected

to the possibility of metastability. Therefore a syncheamiis necessary, contradict-
ing the advantages of the buffer. Their second approacimésosynchronous sys-
tems, only works for constant or slowly drifting clock diféaces and would fail in
our setting.

68 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION
ey

Transmitter Clk >
}—p Qf{Da>
S Jt

.
Address J D Address m

Data

Generator D Q— Generator

A A
| >

Figure 9.2: Ring Buffer of Depth 4

9.2 Implementation Mapping

It is important to analyze, whether the implementation eespall the assumptions
made by the theoretical model.

The Assumptions 8.2.1 and 8.2.2 are guaranteed by the nlpskistem (see Sec-
tion 7.2).

A global asynchronous reset signal, initializing all commwation layers and clock-
ing chips, ensures the validity of Assumption 8.2.3. Silgedlocking chips are also
reset and have a certain startup time, it is ensured thatoo& eldge will be present
in the vicinity of the reset pulse. Therefore the metasitglproblems [Kin08], nor-
mally associated with asynchronous reset signals, do iy &pre.

9.2.1 Implementation without Input Register

We will now show how the delay assumptions are mapped to tipdemmentation.
Figure 9.3 shows a schematic transmitter circuit includiregcorresponding delays.

Assumption 8.2.4 is naturally inherent in the synchronoasag@igm. In detail it
specifies that the delays only change by a certain amoungeeatiwo ticks. Since
differences in delays only stem from part variations (cansbver time) and (slowly)
changing operation conditions this assumption holds.

The messagedick, k) are in fact the DARTS clock ticks. The delay&.(,q(i, k)

9.2. IMPLEMENTATION MAPPING 69

Clock Source | 1ock-to-Output Transmission Input Setup
Delay Delay Delay Time
Clock —)*IA P e)
Delay |D Q['
|
|
|
> |
| !
Message : |
Generator | : Buffer
|
- | ,_ Memory
Transmitter Receiver
Chip Chip

Figure 9.3: Schematic Transmitter Circuit (No Input Register

andA,.., (7, k)) are the times needed for the ticks to reach the sender celgraent
and the read port of the memory element, respectively.

The messagédata,l) is implemented as the data and clock edges running on the
line between the sender and receiver. The correspondimy @&l (7, k)) is the

sum of the clock-to-output-delay, line-delay, input-ge¢and the setup-time.(,) of

the buffer memory. Obviously the lines that convey all thesssages respect FIFO
order.

The execution length of the read and write operations canteglirectly mapped to
the hardware. The length of the write operatidy, (., (¢, k)) is the sum of the time
needed for the new data to reach the memory output elemetading all combi-
national logic on its path) and the setup tinig X needed for this output element.
The length of the read operation((j, k)) is mapped to the hold time,(of the
memory output element.

9.2.2 Implementation with Input Register

As the implementation of a source synchronous interfacendARGA is very chal-

lenging, especially if no dedicated I/O register is usedpecmlized implementa-
tion scheme for FPGAs was created. To relax the routing caings required at
the receiver node, and therefore simplifying the task oflem@nting the interface
drastically, the transmitted data can be buffered usingn@leiregister before it is
written to the buffer memory. It can be implemented as 1/Gsteg on FPGAS. This
moves the message generator register from the physicahtrtar- to the receiver-
chip. Nevertheless it is under control of the transmittéguFe 9.4 shows the new
situation.

70 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION

Message
Clock Source Delay
(1 cyc.)
| | I
D Q| <D Q
|
> ! D>
T . :[
: I Message
T Ib Generator R ffer
: Clock ! Memory
————————— Delay o m— - =
Transmitter Receiver
Chip Chip

Figure 9.4: Schematic Transmitter Circuit (With Input Regjikt

The delayAs..q(7, k) add to the time it takes the clock ticks to travel from the kloc
source, through the transmitter chip, over the transmisbie, into the receiver
chip and to the message generator register. The delays ofathe and clock-ralil
must still be matched.

The message delay\(,(7, k)) is decreased to exactly one clock cycle, since the
communication between the input register and the buffer amgns fully syn-
chronous and guaranteed to hold by the design tools.

All other delay mappings are unchanged in comparison tontipdementation with-
out an input register.

9.3 Performance and Efficiency

The implementation costs for our solution are currentlyJuew (see Figure 9.2).
Two important performance parameters of a communicatidrsysiem are its
throughput and its latency.

9.3.1 Throughput

Our implementation achieves a (gross) data rate of 1 Mbpg/BikRce a new data
bit is transferred with every active clock edge. Multiplgithis throughput by using
parallel data-rails is straightforward. Therefore we headata rate of up to 24 Mbps
within our test system. A system using an 100 MHz clock anddr@lfel data-rails
would achieve a data rate as high as 1 Gbps.

9.3. PERFORMANCE AND EFFICIENCY 71

Table 9.1: Latency

Input Register No Yes
Precision [cyc.] 3 4 5|3 4 5
Sender Latency[cyc.]| 2 2 2|2 2 2
Single Bit Latency[cyc] 4 5 6|5 6 7
Receiver Latency[cyc] 3 3 3|3 3 3
Message Length [bit] [10 10 10/ 10 10 10
Overall Latency [cyc.] | 19 20 21|20 21 22

9.3.2 System Latency
The latency of a single byte messagg* — Csend) js calculated as follows:

e The message must be processed by the transmitter impleinanta the cur-
rent version this takez clock cycles.

e The message travels on the communication line between thesrimt by bit.
The latency of each bit is defined by Theorem 8.2.2 as
+ Afem — A

mem recv

Tf

A+ + A+

send msg

™+

Since each byte is sent encoded adits, an additional latency af0 cycles
must be added (time needed to transmit the whole message).

e The current version of the receiver needs additiGnelbck cycles to process
the data.

The latency of an eight bit message is the sum of all thesesteFable 9.1 contains
the message latency for different precision values. Thentat values were calcu-
lated for a system that has a single bit latency ef 1 cycles, if no additional input
register is used, and a single bit latencyrof 2 cycles, if one is used.

All latency values are calculated for the case that the otlatrand the transmitter
are synchronized, which means that the message is handeglttansmitter exactly
at the start of a new transmission slot. If the message isws&ynchronized, an
additional latency up to 9 clock cycles may occur (synclration latency).

9.3.3 Performance Comparison

To get a better understanding of the performance of our imefgation, we will
compare the single bit latency and throughput of our systé@mtve values of syn-
chronous and GALS systems (see Table 9.2).

72 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION

Table 9.2: Performance Comparison

Single Bit Latency Throughput

Synchronous System 1 Cyc. 1 Mbps/MHz

GALS Feedforward System 2+ [£] Cyc. 1 Mbps/MHz
GALS Feedback System 2+ [2] Cye. | tisieng, MbPSIMHzZ

Multisynchronous Communication = + [TA_} Cyc. 1 Mbps/MHz

As in a synchronous system the data bit is written at an aclbek edge and read at
the next one, the single bit latency of such a system is gxang cycle. Due to the
fact that on each clock edge one bit is transmitted, the tifyput is 1 Mbps/MHz.

The corresponding values for GALS systems are a little hitiéato calculate. In
a simple feedforward system with a two-flop synchronizer [K{;8e message
latency is given by the two cycles the synchronizer needgrimcessing the data and
the communication latency on the transmission lia¢ fheasured in clock cycles of
the receiver clock (with period T). As such a setting doesguatrantee, due to the
different clock drift of the sender and receiver clock, teeaption of all data bits,
its applicability is very limited.

If the reception of each data bit is necessary, a feedbackS=istem [Gin03] must
be used. Therefore a signal defining the validity of the dasmlded. Additionally the
reception of the data is acknowledged using a signal gesteat the receiver and
read by the sender. The latency of the data transmissioa satne as in the previous
case. As the sender must wait with sending the next data bitthe receiver has
acknowledged the previous one, the throughput is reducdtebforward latency,
the time to generate the acknowledge signal and the latehttyecacknowledge
signal. If we assume a symmetric system, the two latencyegadue the same. The
minimum time needed to generate the acknowledge signakisycrie.

9.4 Communication Example

To illustrate the proposed hardware implementation letks & look at an example
communication. A logic analyzer trace of a successful nodetle communication
can be found in Figure 9.5. It was generated by the test sy§emSection 9.5)
using the random clock emulation with a precision of 4. Therkgdisplays two
channels (one from node 0 to node 1 and the other one back)cldbk traces
illustrate under which unfavorable clocking conditions approach is still working.
The largely varying phase relation between the clocks wadelthitely upset any
traditional (phase-)synchronous system. At the same timw@yrassumptions made
for synchronizers in GALS systems would be invalidated alé we

9.5. EXPERIMENTS 73

E| data_stream_clk_01

E| data_stream_01

ﬂ data_stream_clk10

Figure 9.5: Example Communication within the Test System

9.5 Experiments

To verify our communication scheme in practice we have ebegtaeveral experi-
ments. In particular we want to use this system to supportlaum that the buffer

size derived in Chapter 8 (i) is sufficient for fault-free andtastability-free oper-

ation with clocks showing a precision of several clock cga@d (ii) represents a
tight lower bound. Figure 9.6 illustrates the general layou

9.5.1 Test System

The test system consists of 3 Xilinx Virtex-4 FPGAs and a RSt One of the FP-

GAs acts as a global test controller. It coordinates the twallcontrollers and gen-
erates the required clock signals by virtue of a clock eniafsee Section 9.5.2).
The other two FPGAs represent target nodes that exchangsagess These mes-
sages are randomly generated at the host PC and stored italgebs such that the
receiver of a message can check its correctness. If an srdetécted, communica-
tion stops until the test controller has re-initialized test system.

9.5.2 Clock Emulation

To systematically investigate worst case scenarios anddepe interesting effects,
we need full control over the speed and the relative posifdhe targets’ clocks. To
this end we decided to use a clock emulation instead of theBDARTS clock that
would be much harder to control. Furthermore the commuicicagcheme should
be independent of DARTS and work with every other multisynalous clocking
system. This emulation is performed by the controller FPG#e respective clock
patterns are downloaded from the host PC where they haveabpsgari calculated.
In essence they are a sequence of integer multiples of a lmseperiod that deter-
mines the resolution of the clocking system.

In our experiments we have used the following two types ofkclemulation:

74 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION

Controlling PC

¢
i i i

FPGA A FPGA B FPGA C
Clock | controll Test Pattern & Test Pattern &
Pattern l\?lgni(z)r}e]r Result Memory Result Memory
Memory Local Test Local Test
Clock Global Controller Controller
Emulation| Test . 5 :
Controller Transceiver [" Transceiver
A [A

Figure 9.6: Layout of the Test System

Worst Case Precision Clock Emulation

Here the two clock signals are deliberately kept as far egsathe precision allows.
This way we can check whether the system can indeed operdés such unfavor-
able conditions. At the same time chances are that the comation will fail if
the buffer is too small, which gives an indication of whethw®s size calculated in
Chapter 8 is a tight lower bound.

To achieve the worst case scenario we artificially stop onekalvhile the other one
runs at its full frequency. As soon as the precision limieigahed, the stopped clock
is speeded up to its full frequency again. An example is shioviAiigure 9.7.

Random Clock Emulation

This emulation type is used to assess the performance ofstens under continu-
ously changing relative clock speed. Therefore clocks ares over time. This is
achieved by defining a set of “clock primitives” the host P@ aae when planning
the emulation. Table 9.3 lists the clock primitives we dedifrom the base clock.

clk,
clk,

0 »t

Figure 9.7: Worst Case Precision Emulation

9.5. EXPERIMENTS 75

Table 9.3: Clock Primitives
Clock Primitive| Base Clocks | Graphic

FastTick | 1x High, 1x Low || L1 |

Normal Tick | 2x High, 1x Low [T L
Slow Tick 2x High, 2x Low [T L]
No Tick 3x Low C1][]

These are then randomly assembled to two different seqeeapeesenting the full
clock traces. During this construction process care isrnakekeep the emulated
clocks within the precision limits. An example for such aadavas already shown
in Figure 9.5.

9.5.3 Test Conditions

Considering our measurements on the DARTS VLSI chip we dddimese a clock-
ing system with a precision of 4. The emulation base clocku{ation resolution)
was set to 48 MHz. This leads to a maximum clock frequency oM24 for the

“Random Clock Emulation” and a constant clock frequency of 2dzMor the

“Maximum Precision Clock Emulation”, as well.

The test system was implemented in a way that the equatichddsuffer size (see
Theorem 8.2.1) leads to a minimum. This is achieved by desigiine system in
a way such that the last term is becomihgvhile the middle term evaluates to
Therefore it is supposed that a buffer sizef+ 1 = 9 should be sufficient.

9.5.4 Performed Tests

The purpose of the following tests is to give practical exckethat the calculated
buffer size is (i) sufficient and (ii) represents the minimuaguirement. Since it
is not possible to exhaustively emulate all possible retetibetween the clocks,
we can not prove the absence of failures for buffer size 9. &ve khowever, check
the failure-free operation under adverse conditions gusome period. Thus we
can substantiate our formal proof by this practical apgibea Furthermore, we will
reduce the buffer size below the calculated limit. If theitiof 9 is tight, we can
expect to observe failures for buffer sizes of 8 and less.

The test runs are executed 5000 times for each buffer sizeactdclock emulation
type. For each run we calculate new clock traces in the emalaf no failure is
encountered after 2 seconds of observation time, the rupnsidered fault-free.

76 CHAPTER 9. PIPELINED SCHEME IMPLEMENTATION

Table 9.4: Results of the Experiments

Buffer Errors Min. Clock Cycles| @ Clock Cycles
Size [%] to First Error to First Error
Worst C. Random Worst C. Random Worst C. Random
3 100 99 45 26 45 68
4 100 99 44 26 48 412
5 100 92 44 27 48 1600
6 100 35 26 29 46 4727
7 100 12 28 1 46 7718
8 19 0 27 - 61 -
9 0 0 - - - -

After the experiments are finished, the minimum and meanstitnghe first error
are extracted and an error percentage is calculated.

9.5.5 Results

Table 9.4 presents the collected test results. It is intiegeso note, that the “Ran-
dom Clock Emulation” did not produce any error in case of adnsfze of eight, the
worst case emulation, however, did. This indicates thatdihere probability is very
low in this case, and becomes visible within limited obsgovatime only if worst
case conditions are artificially established. For smalldfiel sizes the expected fail-
ures could be observed without problems. The trend towaglksehfailure rate for
smaller buffer size is visualized in Figure 9.8. In summdg tesults give a good
confirmation of our theoretical findings.

9.5. EXPERIMENTS

77

Worst Case Random
Clock Emulation Clock Emulation
100
i || [
X
=70
9 60
S
2 30
B
I I I I I I | O [I I I ,Tl I |
3456789 3456789
Buffersize Buffersize

Figure 9.8: Results of the Experiments

Chapter 10

Implementing a Lockstep Model

When designing a hardware implementation of a lockstep spnclus algorithm,

referenced as application algorithm in the text, one doéwant to have to establish
the round structure within the algorithm. Therefore a smrvndicating the round
starts would be advantageous.

Our solution is to create a small circuit which signalizes #¢hart of a round by a
roundtick signal available to the application algorithnhis circuit is implemented
using the synchronous paradigm based on the local microtadk. It utilizes its
knowledge on the timing of the communication layer to creatends of sufficient
length to guarantee a safe operation. It is ensured thatmeassage sent by any node
at the round start is safely delivered within the currentwtAll timeout values are
solely based on the local microtick clock.

Figure 10.1 shows how this circuit is placed within the inmpéatation hierarchy.
The new roundtick signal as well as the microtick clock ar&ilable to the applica-
tion algorithm.

In this chapter we will describe an algorithm creating a kiek synchronous round
structure and its mapping to the communication layer impgletation, presented in
Chapter 8. Additionally an example execution will be sketthe

10.1 Algorithmic Model

To be able to use the algorithm with different communicatayer implementations,
the required properties are abstracted into Assumpticdh16.10.1.4. We will later
show that the communication layer presented in Chapter @cespll these assump-
tions.

The communication layer supports the sending of independizad length mes-
sages. A message can only be sent at the beginning of a mestsagée first slot

79

80 CHAPTER 10. IMPLEMENTING A LOCKSTEP MODEL

Application Logic
Messagetick
2 - &g &
2 .o Roundtick 2 82
gE TM. - 53§
= 1crotic e =
@ » S%C
Receiver | Transmitter §
=
285
S >
=
£
=
15}
@)
< <
= k=
Al O all®
vy
To/From other Node

Figure 10.1: Lockstep Round Generation Implementationdtiatry

starts directly after the startup of the communication tay@&nished. Each message
slot has an a-priory known length &f,; microticks. The slots are aligned back to
back.

Assumption 10.1.1(Messages Slot Time)The send operation of a message takes
a constant, a-priory known time &f,,; microticks (exactly the length of a message
slot), assuming that the send operation was aligned to thit sta message slot.

Assumption 10.1.2(Transmission Latency)lhe transmission latenay (measured
in microticks) of a message is constant and known in advance.

Assumption 10.1.3(Message Count)in each round a maximum numberof mes-
sages may be sent. The maximum numbé& known in advance.

Assumption 10.1.4(Startup Time) The message layer has a specific startup time
tstare (Measured in microticks). It is constant on all nodes andkma-priory.

The implemented functionality is described using AlgantB.

Informal Description of the Algorithm

At startup, the node waits until the message layer is rea@yti(wy for t.... mi-
croticks). This guarantees the alignment of the first rouad o the start of a mes-
sage slot and therefore minimizes the length of the messagkaperation (as as-
sumed in Assumption 10.1.1), because no additional walesyare needed before
the message transmission starts.

10.2. CORRECTNESS PROOF 81

Algorithm 3 Constant Message Count Algorithm

. Il Global Information

consttg .t — Communication Layer Startup Time [microticks]
constm — Maximum Number of Messages per Round
constig., — Message Slot Time [microticks]

constt) — Transmission Latency of a Message [microticks]
consttca . — Maximum Calculation Time

7. CONSttgyne — Synchronization Tlme[(wb [microticks]
s: [/ Startup

o: Walit g, microticks

10: /I Create the Successive Rounds

u: for everdo

122 Signal Round Start

132 // Wait for Message Sending

14 Wwalt m tg0r microticks

1. // Wait for the Message Arrival and the Calculation to Finish
16 wait tgyne Microticks

17: end for

@ 9 A w N R

After the startup phase is completed, the algorithm crestiesessive rounds. At
the beginning of each round its start is signalized. For eacdind the algorithm
waits until all messages are sent (,,; microticks) and afterwards compensates
for the message latency t,.¢ + 1 microticks), waits for the algorithm to finish
its execution 1.,..) and resynchronizes to the start of the next message slet. Th
resynchronization is achieved by rounding up the synchedian time to a multiple

k of the message slot time(;). The resulting synchronization tinig,,. is therefore

calculated as:
tl - tslot + tcalc + 1
Zfsync = tslot .

Zfslot

At this point, all messages are surely delivered and thautatlon is finished. There-
fore the round execution is completed and the next roundisest. The round gen-
eration is repeated indefinitely.

The execution of the algorithm for a message slot tigpge of 4 microticks and a
synchronization time,,. of the same value is shown in Figure 10.2.

10.2 Correctness Proof

For Algorithm 3 to be correct, it must ensure that @llmessages are delivered
within the same round, compensate for the message lateddpaicalculation time
of the application algorithm and align the round starts ®libginning of a message

82 CHAPTER 10. IMPLEMENTING A LOCKSTEP MODEL

| |
I I Round, I Round,
: Msg. Slot, Msg. Slot!
no: ¢ tstart’ : ¢ Lslot) : ! Ek Lslot 3 : ’Clko
| |
| | : :
	e	
m LN . L »clk,		
O' Itl'tslot—i_1 : t1 tslot—i_1 I		
g >		

Figure 10.2: Visualization of the Assumptions

slot. It is obvious that it takes: t,,; microticks to sendn messages, if the send
operation of the first message was aligned to a message birefore the message
send operation of the rounds’s last message staits- 1) ¢y, Microticks after
the round start. By Assumption 10.1.2 it takes exactlynicroticks to deliver it.
Therefore it is delivered no later than ¢y, + ¢ — tq0s + 1 microticks after the
round start. The termn ¢y IS equivalent to the first delay loop of Algorithm 3.
The other terms are part of the synchronization time. By thimiden of ¢, the
message bit latency, (— ¢4, + 1) and the execution time {,.) of the application
algorithm are safely compensated.

We have shown that the round length is sufficient to delivemaksages and for the
execution of the application algorithm. The last thing toyar is that the algorithm
aligns the round start to the beginning of a message slot.

Lemma 10.2.1.All rounds are aligned to the beginning of a message slot.
Proof. This Lemma is proved by induction.

e Induction start (Round): By Assumption 10.1.4, the first round is aligned to
the beginning of a message slot.

¢ Induction hypothesis: Assume the Lemma to hold for round

e Induction step® — n + 1): The start of round: was aligned to the start
of a message slot. By sending all messages of round, the alignment is
not changed (because each message send operation hagytheolea mes-
sage slot). The length of the synchronization loag,() is also a multiple
of the message slot time. Since the next round starts dirafigr this time

10.3. TIME COMPLEXITY 83

has elapsed, round+ 1 must obviously start at the beginning of a message
slot. =

10.3 Time Complexity

The execution time of a lockstep synchronous algorithmwsags$ given in rounds
(trouna)- In our model, however, the basic unit of time is a microtckl not a round.
Therefore it would be advantageous to know the executioa tifran implemented
algorithm measured in microticks,(..).

Knowing the round execution timeg,,..,q of an algorithm{ ..., can easily be calcu-
lated as:

tmicro - tround (m + téync) tslo‘m

wheret/ . = [WW is the synchronization time measured in message
slots. Because the message lateficthe message slot tintg,; and the calculation
timet...., and therefore the synchronization time, are normally aamg0(1)), the

time complexity (inO-notation) in such a case can be calculated as:

tmicro = tround M tslot-

For example, having an algorithm with a time complexity,.q of O(n) and a round
message complexityn of O(n), the microtick based time complexity,;c., will
evaluate ta)(n?).

A more problematic example is an algorithm with a round tiromplexity,,.,q Of
O(n) and an exponential message complexity. Its microtick béissel complexity
tmicro WoOUld be exponential! This fact is often neglected in théoad distributed
algorithm literature. This is due to the fact that the rouedgith is proportional to
the number of messages sent per round.

10.4 Mapping the Message Layer Implementation

After describing the algorithmic model in detail, it must ivapped to the previ-
ously implemented communication layer (see Chapter 8). @yerIsupports eight
bit messages with a slot time of 10 microticks. As alreadgused in Section 9.3.2,
it has a constant message latency. The startup tienisroticks. Therefore all as-
sumptions made by the algorithmic model hold for this impdetation.

84 CHAPTER 10. IMPLEMENTING A LOCKSTEP MODEL

10.5 Static Round Pattern Algorithm

Some important lock step synchronous algorithms have ia staind pattern, which
means that their execution consists of a predefined sequeraferounds which
is repeated indefinitely. Each round ihhas a defined, a-priory known maximum
message count;. Using R, Assumption 10.1.3 can be redefined as:

Assumption 10.5.1(Message Count)The execution is structured into sequences of
n roundsR;,7 = 1---n. The maximum number of messages sent in each r&ynd
is defined asn; and known in advance. The values are stored using am-tuple

R = [ml,mg, - -mn].

Using Assumption 10.5.1, Algorithm 3 can be redefined to Athm 4.

Algorithm 4 Static Round Pattern Algorithm

. consttg.t — Communication Layer Startup Time [microticks]
const R — n-tuple Containing the Message Pattern

consttg., — Message Slot Time [microticks]

constt; — Transmission Latency of a Message [microticks]
constt.,. — Maximum Calculation Time

6: CONSttsync — Synchronization Time{(ww te0t) [microticks]
7. [/ Startup

8 wait tgar¢ Microticks

o: I/ Repeat the Algorithm Round Pattern for Ever

10: for everdo

11: [/ Execute All Rounds of the Round Pattern

12: forall m; € Rdo

a H @0 N R

13: Signal Start of Round;

14: /I Wait for Message Sending

15: wait m; tgot Microticks

16: /I Wait for the Message Arrival and the Calculation to Finish
17: wait tyne Microticks

1. end for

19: end for

The execution of Algorithm 4 is similar to the execution ofgatithm 3 with the
difference that the number of messages sent in each roumd ¢®nstant. For algo-
rithms with a static round pattern the number of idle mess&gis can therefore be
decreased, optimizing the microtick complexity of the aipon.

10.6. MESSAGE RECEIVE EVENT 85

Algorithm 5 Round Pattern Creation Algorithm including the Signalizatod the
Message Arrival Times

consttgat — Communication Layer Startup Time [microticks]
const R — n-tuple Containing the Message Pattern

consttg., — Message Slot Time [microticks]

constt; — Transmission Latency of a Message [microticks]
consttc, . — Maximum Calculation Time

6 CONSttgyy. — Synchronization Time{(%w taot) [Microticks]
7. [/ Startup

8 walt tsiqrt Microticks

o: // Repeat the Algorithm Round Pattern for Ever

10 for everdo

11: [/ Execute All Rounds of the Round Pattern

12: forall m; € Rdo

13: Signal Start of Round;

14: /I Wait for the First Message to Arrive (Compensate for the Messagetygte
15: wait ¢; microticks

16: Signalize Message Reception

17: /l Wait for all other Messages to Arriver(; — 1 Messages)
18: forie0,---,(m; —2)] do

19: walit £go¢ microticks

20: Signalize Message Reception

21: end for

22: /I Realign the Execution to the next Message Slot

23: wait tgyne — (1 — tsiot + 1) microticks

24: end for

25 end for

10.6 Message Receive Event

Additionally to establishing the round pattern, the exaoes for reading the mes-
sages from other nodes must be signalized. In non faultyesystthis can be
achieved by using the signalization mechanism of the recel¥ faults may oc-
cur, it could happen that some messages get lost and thegtinformation of non
faulty nodes may be compromised.

Therefore the message reception pattern must be establislyang on local infor-
mation only. Algorithm 5 establishes such a pattern basdbdedeterministic round
definition already shown in Figure 10.2.

Informal Description of the Algorithm: The algorithm is a slightly changed ver-
sion of the round creation algorithm presented as Algorithrithe compensation
for the message latency is divided into a portion at the sfatte algorithm (align-
ing the execution to the message reception times) and arattite end (realigning

86 CHAPTER 10. IMPLEMENTING A LOCKSTEP MODEL

to the next message slot), otherwise it is equivalent.

10.7 Hardware Implementation

As Algorithm 3 can be seen as a special case of Algorithniz4=([m]), only
Algorithm 4 has to be implemented in hardware. AdditionaAlgorithm 5 is an
improved version, therefore only this algorithm was impésrted.

It is implemented using a state machine for creating the dquattern. The wait
instructions are realized by counters. The round starttl@mcthessage receive events
are signaled by the state machine usingrithendtick and themessagetick signals.
Additionally two signals specifying the number of cycle#t lsefore the next round
switch and message reception, respectively, are available

An example simulation of the VHDL implementation can be fdum Figure 10.3.

It is based on a round definitioR = [2,4, 1] and a startup time o microticks.
The startup of the systemdundtick = 0) as well as the signaling of the message
receive-events (transition on signakssagetick) and the signaling of round starts
(transition on signatoundtick) are shown.

Figure 10.3: Simulation of the Lockstep Algorithm Implentetion

NOILVLININITdINI IEHVMALEVYH “L0T

.8

Part |l

consensus

89

Chapter 11

Problem Definition

After establishing a reliable, but not fault tolerant frameek for implementing lock-
step synchronous algorithms, we will proceed by developif@ult tolerance layer
for our system.

As we have already discussed, TMR systems (Section 5.21yiely used and
state of the art. Therefore it would be tempting to adapt susfistem to our mul-
tisynchronous model. Unfortunately TMR systems have sgwrawbacks, which
we will discuss in this chapter. Additionally we will see ttdigital electronic cir-

cuits can easily behave non-benign, a situation a TMR systesnbe incapable to
handle.

11.1 Problems of TMR Systems

The simplest way to implement a TMR system is to use the glplsghchronous
paradigm. All application logic components use the samekglavhile the toolset
compensates for the delays introduced by the asynchromtess). This also guar-
antees the correct alignment of the voter’s input values¢cotemporal relation).

Unfortunately the global clock signal is a single point aofifee, contradicting the

fault tolerance of the system. To circumvent this problere amy use a GALS

system with its independent, unsynchronized clock sourssdhe voter is asyn-

chronous, obviously no metastability problems will occutsainputs. Metastability

problems may nevertheless arise, if the voter output is rieal another sequential
circuit. Since these two circuits have different clock smsrwith an arbitrary phase
shift, the input stage of the following synchronous logicybehave metastable.

Another problem, when using multiple unsynchronized clealrces or a multisyn-
chronous clocking scheme is that the temporal relation éetwhe input values may
get lost.

91

92 CHAPTER 11. PROBLEM DEFINITION

Table 11.1: Voter Execution

Event Output | Global | Local
Value | Time | Time
Initially all Values ared 0 @0
Value of Node2 = 1 0 @1 | @2.1
Value of Node) = 1 1 @2 | @0.1
Value of Node2 =0 0 @2 | @2.2
Value of Node) =0 0 @3 | @0.2
Value of Nodel =1 0 @3 | @1.1
Value of Nodel =0 0 @4 | @1.2

To show this, we will create a fault-free multisynchronodea@ition within a basic
TMR system leading to an illegal output value, even if voisigxecuted on a single
bit signal only and the modules are replica deterministic.

Let us call the single instances of the replicated appbcalibgic node) - node2.
The clock of node) is one clock cycle behind realtime, the one of nddevo
cycles behind realtime, while the clock of node 2 runs syocbusly with realtime.
Therefore this execution is valid for any multisynchronsystem with a precision
7 of at least.

It is also valid for GALS systems. Based on the inevitabletdrifthe independent
clock sources, after a sufficient execution time such a etlabn may arise.

Since the execution is fault free, all nodes will output tbherect value at their cor-
responding local clock edge. Due to the purely asynchroimaptementation (see
[Sho02] as example), the voter is not aware of any shifts endata signals. The
detailed execution can be found in Table 11.1 and is visedliz Figure 11.1.

As apparent from the execution, the time shift of the nodes@igh to compromise
the output. Since the majority value is alwaysthe output is never set to one or
worse only a spike is created. The length of the spike depemdse skew between

Correct Execution Asynchronous (Voter)
3 4 1 2 3 4

>t " »t
>t nl‘ »t
»t - »t

- Output |

1
N))

ny

L

Output

»t

Figure 11.1: Unsynchronized Voter Execution

11.1. PROBLEMS OF TMR SYSTEMS 93

Clk
Buffer Nodes

Inputy

o>
Inputy Output

| e
Input,

—>

Figure 11.2: Multisynchronous Voter Implementation

the data signals. Depending on which data link is fastekespinay be created.

Comparing the result to the correct one, shown in Figure 1tlid pbvious that the
output signal of the voter is wrong.

This problem even may occur, if the voter is the last eleméatfally synchronous

circuit and the skew between the data signals is too large.tBthe asynchronous
nature of the voter circuit and the fact that no sequent&heint follows, the skew
of the voter input signals is not automatically controllgdive synchronous toolset.

Additionally, for a voter deciding on multi-bit values, aufafree execution, having
no majority values at all, can be sketched. This is achieyeasing the local clock
tick as output value of the application logic while using #ame clock shift as in
the previous example. Due to the shifted clock index, at aytpn time each value
will be present at most on a single voter input.

Therefore extreme care must be taken when designing a systdman asyn-
chronous voter (e.g. control skew, usage of a clock syneration algorithm).

The only way to implement a sufficiently dependable votecuwitrin a multisyn-
chronous environment would be to artificially synchronike tnput values. This
can be done by adding a buffer node for each input value. Athese nodes must
have the same clock signal (out of the multisynchronousrehky) and use the pre-
viously presented communication layer (see Chapter 8) mivethe data and syn-
chronously output them (see Figure 11.2). As all these nosieshe same clock, the
clock signal would be a single point of failure in the systé&iavertheless this draw-
back can be circumvented, if the voter is also replicatedi¢asribed in [LV62], see
Figure 11.3).

CHAPTER 11. PROBLEM DEFINITION

Clky
Buffer Nodes
Inputy i
[S
IHPUtl Outputo
o>
Input, -
—>
Clky
Buffer Nodes
‘__
o>
® Output;
o>
'Y /
—>
Clk,
Buffer Nodes
o>
Output,
*> Ja
>

Figure 11.3: System with Replicated Multisynchronous \eter

11.2. MAY HARDWARE ACT NON-BENIGN? 95

B
D Q
STO —
A
D Q % D Q

> —
Clk { C

Figure 11.4: Circuit used in the Proof

11.2 May Hardware Act Non-Benign?

We will now show, why we have to assume non-benign behavi@exftronic cir-
cuits. This is done by analyzing a simple circuit experiaga single fault described
by one of the presented fault models (see Section 5.1). Sihfzilts defined by any
of the fault models may occur in practice, it is sufficient how that the circuit be-
haves non-benign in at least one of the fault models.

Assumption 11.2.1(Non-Trivial Electronic Circuit) As non-trivial electronic cir-
cuit we define a circuit with at least one fork.

Assumption 11.2.2(Link Failures) In our model, faults occurring on the commu-
nication links are handled as if they are happening at thedgennode.

Based on Assumption 11.2.2, a communication error is mod&echanging the
executed algorithm of the sending node.

Lemma 11.2.1.Every non-trivial electronic circuit can produce non-bgnifaults.

Proof. We prove the Lemma for synchronous circuits. The proof fgnakronous
circuits is equivalent.

Figure 11.5: Distributed System Model of the Circuit

96 CHAPTER 11. PROBLEM DEFINITION

Algorithm 6 Algorithm of Node A in the Fault-Free Case
1. var val - The node’s local value (eith@ror 1)

22 onactive edge oflk do

s Send(val) to B
4
5

Send(val) to C
. endon

Algorithm 7 Algorithm of Node A in the Faulty Case
1: var val - The node’s local value (eith@ror 1)

22 onactive edge oflk do

s Send(val) to B
4
5

Send(0) to C
. endon

The lemma is proved by contradiction. Assume only benigt$azan occur in a
synchronous circuit.

We use the circuit shown in Figure 11.4. Based on the distibaystems theory, it
can be modeled as fully synchronous algorithm. The reguftystem can be found
in Figure 11.5,while its functionality is described by Algbm 6.

Assume that the input of Flip-Flop C is subjected to a stuekeao fault or a tran-
sient fault setting the input of Flip-Flop C long enoughto get captured. Therefore
the executed algorithm is changed to Algorithm 7.

As we can easily see, if node As valuelisnode B would receive a message con-
taining the valud, while node C receives a message containing the gludich

is obviously a non-benign behavior, since the messagestdoatch. Therefore our
assumption that the circuit can only produce benign fagltsontradicted and the
Lemma is correct. [

The proof has revealed that every non-trivial electronrcuwit may behave non-
benign. We will formulate this finding fact as a theorem.

Theorem 11.2.1(Non-Benign Hardware)When modeling a non fault-free non-
trivial electronic circuit using the distributed systenmeory the hardware may act
non-benign and therefore the Byzantine failure model isiarEs.

As Theorem 11.2.1 describes, even the most simplisticit#cas long as they have
at least one fork, can experience non-benign faults.

11.3 TMR Systems in Byzantine Environments

As stated in [Kop97], one needs at leagt+ 1 replications of the application logic
to tolerate Byzantine faults in electronic circuits (whisheiquivalent to the lower

11.4. ALTERNATIVES TO TMR SYSTEMS 97

bound of nodes needed for a consensus algorithm in a digdlaystem, as stated
in [AW04]). Since a TMR system consists of three replicas @efinitely incapable
of handling Byzantine faults.

To clarify this fact, consider the following scenario: Degdéeng on its input value,
the system decides whether to set a railway signal to halteg: Node 0 decides
that the signal must show halt, while node 1, due to slightffeent sampling of
the input value, decides to free. Node 2 on the other handiig/fand transmits the
value stop to node 0’s voter and the value free to node 1's.\MOteboth non faulty
systems, a majority value is found. Node O will decide to staple node 1 decides
to free resulting in an inconsistent decision. Therefoeestystem is in an undefined
state.

As the example reveals, the decision circuit must eithefbeta handle Byzantine
faults correctly or the nodes must be replica determiniftieplica deterministic
means that non faulty nodes always decide to the same valbeya®ceive the same
inputs. In this case the output values of the correct nodesdysiorm a majority and
a faulty node can no longer effect the output value.

Especially when using processors with embedded operagstgras, replica deter-
minism is very hard to achieve. Therefore circuits tolergByzantine faults would
be advantageous.

11.4 Alternatives to TMR Systems

As Theorem 11.2.1 states, we assume a byzantine fault mardekfctronic circuits.
Since TMR systems are incapable of handling such faultsargémeral case, their
fault tolerance is only limited.

Nevertheless a lot of modern solutions are based on the TMBRdma (like
[OKSO08], e.g.).

Other approaches, as consensus algorithms, are mainlgnmepked at software
level (like [HLD95], e.g.). Circumventing most problems oMR systems, these
implementations suffer from a low performance, due to tlok taf direct hardware
interaction and therefore increased communication lgtenc

To overcome these problems, a completely different styategst be pursued. Since
we have already implemented a lockstep synchronous roud@lnmohardware, the
adaptation of a lockstep synchronous consensus algorithrmiplementation in
hardware is obvious. As for the direct hardware implemémtathe communica-
tion latency will be decreased and the algorithm will be iempénted with a much
higher performance. On the other hand we will be able to fmukcontrast to TMR
systems, Byzantine faults in the general case, creating & hmgber degree of fault

98 CHAPTER 11. PROBLEM DEFINITION

tolerance. The system even decides consistently, if the wglues of the non-faulty
nodes are different, as may happen in non replica deterigisisstems.

In the next chapter, we will design a hardware implementadicthe EIG consensus
algorithm and analyze its time complexity. It is followed the description of the
hardware implementation.

Chapter 12

Creating a Byzantine Fault Tolerant
System

Inspired by the TMR system with replicated voters (see 8adi2.1), we designed
a fault tolerant system based on a consensus circuit. Tleesvof the TMR system
are replaced by the consensus implementation. Since farahgensus algorithm
at least3f + 1 nodes are necessary [AW04], a fourth application logic caplvas
added. Such a system can tolerate a single Byzantine faulbnéeptual drawing
can be found in Figure 12.1.

As apparent from the figure, the system uses multiple clockcss out of a mul-
tisynchronous ensemble. A suitable implementation woddbr DARTS clock-
ing scheme [FFSKO06]. Due to the multisynchronous naturenefdiocking sys-
tem, the communication between the different clock domearsbe implemented
metastability-free by means of the communication layeet®ed in Chapter 8.

As a suitable consensus algorithm for hardware implemientatising a minimum
number of nodes, we identified the EIG algorithm.

Our basic solution tolerates one Byzantine fault. If a higlegree of fault tolerance
is needed, the consensus implementation must be createglaistronger fault hy-
pothesis (e.gf = 2 for tolerating two Byzantine faults). According to the lower
bound proof (see [AWO04p f + 1 replicas of the application logic would be needed.
For the example of two Byzantine faultg & 2) 7 replicas are necessary and suffi-
cient.

12.1 The EIG Algorithm

Before designing the hardware implementation of the conseakyorithm, let us
recapitulate the definition of the Byzantine EIG algorithmg$Section 2.4.2).

99

100 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

1 Clock Source

1 Application Logic

1 Consensus
Bidirectional
Multisynchronous Link

— Unidirectional
® ® Synchronous Link

1--[3--CF- 1]

Figure 12.1: System Model Tolerating one Byzantine Fault

The basic element of the algorithm is the resolve tree. Itsiesduto store all data
collected on the nodes of the system. To identify the stoedales and their history,
each tree-node is labeled using the indices of all nodeshwidee already processed
the value.

The algorithm consists of two phases, namely an informagaihering phase and an
output value resolve phase. The first phase consists-dfrounds. In the first round
each nodg broadcasts its input valug. These values are stored by each node in its
resolve tree on the first level. If a node does not send a viilageceiver node uses
a default value instead. The label assigned to a storediifés(j), the index of its
originating node.

In the remaining round2(- - - , f + 1), the tree level built in the previous round is
broadcasted. These levels are again stored in the reselv@ftthe nodes. If a tree
level is not received, a default value is used instead. Thel lassigned to a stored
item is calculated as follows: If the received item had all@béen,, - - - ,n,) at the
sending node, the new label is set(tq), - -- ,ng,j), wherej is the index of the
node, the item was sent by. Each label is checked whetheresdy contains the
indexj. If so, the item is discarded. Therefore only items proagsgenost once by
each node are kept.

Figure 12.2 contains an example of a resolve tree for a sytstiemating one Byzan-
tine fault (f = 1). Note that the red tree-nodes are filtered out of the redobee

After finishing the creation of the resolve tree, the seconasp starts. Here a re-
solve function is executed on the resolve tree. Its leavegsuped such that all
items with the same index prefix (the label of the leaves wathbe last index, e.g.
(no, -+ ,nq_1), if the label wagng, - - - ,n4_1,n4)) are in the same group. On each

12.2. ALGORITHMIC MODEL 101

@ Value of Node x

@ Value of Node x, Received trough Node y
‘ Not Part of the Original Resolve Tree as Described in [AW04]

Figure 12.2: Fully Created Resolve Tree for= 1

group a majority vote is executed. If no majority exists, éad# value is used. The
results are labeled with the prefix used to create the grolgy @re again grouped,
according to the same rule as above, and subjected to a tyajote. This operation

is repeated until only a single value, the output value, rema

The correctness, time- and message-complexity of theidigowas already proved
in [AWO04]. The proof is not repeated here.

12.2 Algorithmic Model

We will now modify the Byzantine EIG algorithm to be suitabler fa hardware
implementation. The algorithm definition is based on th&$bep generation scheme
presented in Chapter 10 and is timed usingriheudtick andmessagetick signals.

Based on the hardware’s property to execute multiple tagkariallel, we can imple-
ment several parts of the algorithm independently. Theeetloe algorithm is split
into four parts, namely:

e A storage definition, containing the interface data betwerdifferent parts
of the algorithm

e A component broadcasting the current tree level
e A component building the next tree level

e A component calculating the resolve value

Figure 12.3 contains a schematic visualization of the difiéparts of the algorithm.

For a safe operation, a stable interface must be definedntipigrtant that the input
values of the algorithm parts only change at appropriatetpan time.

102 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

Current Level [« Next Level—— Resove Level

Broadcast ,l:

To other From

Current
Tree Level Nodes other
Nodes

—>»
Input Output
Value Value

Build
Next
Tree Level

Resolve
Function

Roundtick
Microtick
Messagetick
Roundtick
Microtick
Microtick

I:I Memory Location I:I Logic

Figure 12.3: Structure of the Hardware Implementation

As will be discussed in Section 12.3, only the current levielhe resolve tree is

stored by the implementatioru(rrent_level). Since it is the input for the sender
algorithm, this information must stay unchanged for theatlan of the broadcast
operation.

Parallel to the broadcast operation the next tree level k. Mriting the new
level directly to the tuple, would compromise it. Therefaeseparate instance
(receive_level) is used to store these values. Based on the the determidegtic
nition of the round structure and its static message dglipattern (see Chapter 10),
a safe point for overwriting the current level can be statets ensured that after
the last value of a tree level was received, the broadcasttpe of the current
level has safely finished and the tuple containing it can tewesitten (Line 18 of
Algorithm 10).

By implementing the resolve function as independent circuiining parallel to the
next instance of the resolve tree build operation, it is meguthat its input value
(resolve_level) stays unchanged for the duration of this operation. Tloeedt may

only be overwritten in an atomic action at the end of the trglllmperation (Line 21
of Algorithm 10).

Algorithm 8 contains the definition of the globally acce$sistorage values, mod-
eling the interface between the different algorithm paftse size requirements of
the tuples will be proved in the Section 12.3. Algorithm 9aéses the broadcast
operation of the current tree level, while Algorithm 10 d#ses how the next level
is created. The resolve function will be described later.

12.3. BUILDING THE RESOLVE TREE 103

12.3 Building the Resolve Tree

In contrast to the definition of the EIG algorithm in Sectior.2, the hard-
ware implementation builds the full resolve tree and themeeksupports the filter-
ing of the labels containing duplicate indices without stgrthem explicitly (see
Lemma 12.3.3). The drawback of this design is that the rumtifithe algorithm is
slightly increased. Nevertheless the time complexity staychanged. An example
for a resolve tree with a fault hypothesis of one Byzantindt{gu= 1) was already
shown in Figure 12.2. The full tree consists of all tree-mydecluding the red ones.

As already mentioned, the tree level is stored using a tdjble size of this tuple will
be calculated in the following. We start with determining 8ize of the tree levels.

Lemma 12.3.1.The tree level of depttd is calculated in round/ of the algorithm
and has asize d3f + 1)%.

Proof. The Lemma is proved by induction.

¢ Induction Start{ = 1): The tree level of depth s created in the first round. It
is composed of exactly one value for each node in the systembfbadcasted
input values). Since there a3¢ + 1 nodes in the system, the size of the first
tree level iS3f + 1.

¢ Induction Hypothesis: Assume the correctness of the Lenoma f

e Induction Stepd — d + 1): In roundd + 1, the previous level is broad-
casted (Line 11 of Algorithm 9) by each nogleg = 0, - - - , 3f. Therefore the
node receives one copy of the last tree level from each nadidling itself,
Line 14 of Algorithm 10). Since there aBg + 1 nodes in the systen3,f + 1
copies are received. The size of the tree levels of dépshby the induction
hypothesis(3f +1)%. This leads to a size g8 f +1)(3f +1)¢ = (3f + 1)t
for the tree level of depth + 1.

Lemma 12.3.2.The maximum size of a tree leve(3y + 1)/*1.

Algorithm 8 Consensus — Storage Definition

Il Current Level of the Resolve Tree

var current_level as(3f + 1)/+1-Tuple

// Buffer for Storing the Received Values while Building a new Tree level
var receive_level as(3f + 1)/+1-Tuple

I/l Input Value of the Resolve Function

var resolve_level as(3f + 1)7+1-Tuple

o a9 » W N PR

104 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

Algorithm 9 Message Sender Implementation
1. for everdo

2 // Wait for Round Start

3 wait for roundtick = 1

4. [l Broadcast the Input Value
s Broadcastinput)
6

7

8

9

forall round € [2,---, f + 1] do
/l Wait for Round Start
wait for roundtick = round
/l Broadcast the Current Tree Level

10: forall k € [0,---,(3f + 1)round=1 — 1] do
11 Broadcast current_level[k])

12: end for

13: end for

14: end for

Algorithm 10 Message Receiver Implementation
for everdo
/I Executef + 1 Rounds
forall round € [1,---, f + 1] do
// Wait for Round Start
wait for roundtick = round
/I Receive all Messages of the Current Level
forall k € [0,---,(3f + 1)round=1 — 1] do
/I Wait for Message Reception
wait for messagetick
/I Retrieve the Current Messages of all Nodes
forall j€0,---,fdo
Read(val) from n;
/Il Store the Value in the Current Level
receive_level[k(3f 4+ 1) + j] := val
15: end for
16: end for
17: /I Update the Current Tree level
18: current_level := recetve_level
19: end for
20 // Update the Input Value of the Resolve Function
21: resolve_level := receive_level
22 end for

© ® ¥ o a ~ 0w N R

=

-
b

12.3. BUILDING THE RESOLVE TREE 105

Node, Node;
@@ ® 12 (13
Node, Nodej

Figure 12.4: Building of a Resolve Tree Level

Proof. As the execution needs+ 1 rounds to finish [AWO04], by Lemma 12.3 a tree
of depthf + 1 is built and has a size ¢8 f + 1)/ *1. Since the size of the tree level is
monotonically increasing with the depth of the tree, thithis largest possible tree
level built in any execution. O

After showing that the size of the tuples defined in Algorit@ns sufficient, we will
prove that the resolve tree labeling of the original aldwntis consistent with the
index calculation, the implicit labeling, of our hardwaneglementation (except for
the non filtered tree-nodes). An example of the tree buildatpmn and the labeling
of the tree-nodes can be found in Figure 12.4.

Lemma 12.3.3. A tree-node of depthl labeled as(ng,---,n4s1,nq), Where
(no,--- ,nq_1) is the label of its parent tree-node, is stored by the hardware
plementation at the tuple position(3f + 1) +ny(3f +)T + -+ - + ng.

Proof. The Lemma is proved by induction.

e Induction Start{ = 1): In this round a single value is received from each
nodej,j = 0,---,3f (including itself) and is labeled d3). It is stored to the
positionj.

¢ Induction Hypothesis: Assume the correctness of the Lenama f

e Induction Stepd — d + 1): From each nodg,j = 0,--- ,3f, all values of
the tree level of depthl are received, due to the FIFO order of the links, in
the order they are stored on nogléine 12 of Algorithm 10). The algorithm
selects thé-th elementk = 0,-- -, (3f + 1)¢ — 1, of the tuple received from
each nodg and stores it to positioh(3f + 1) + j (Line 14 of Algorithm 10).
Since thek-th element of the tuple has, by the induction hypotheses|dbel
(no,- -+ ,ng), the label of the newly stored item is set{a,, - - - , ng, j). As

106 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

2020998

| maj. | | maj. |

Majority Operation

@ @ Value of Node x Received Through Node y

Figure 12.5: Resolve Function fgr= 1

the positionk was calculated aso(3f + 1)% + ny(3f + 1)“ ' + .-+ + n, at
the sending node, the storage position of the new element is:

EBf+1)+j=(nBf+ D) +m@Bf+ D)+ 4+ng) Bf+1) 4+
=noBf + D) 4+ Bf+ D)+ Fng(3f+ 1)+

as required by the Lemma.
O

Since the resolve function is defined only on the labels ofrée-nodes, the resolve
tree is equivalent to the one of the original algorithm. Thiering done by the
original algorithm is implemented as part of the resolvecfion in our version.

12.4 Resolve Function

The resolve function was developed for specific fault hypsés only. Currently an
implementation for a systems tolerating one Byzantine faldtailable.

12.4.1 Resolve Function for a Single Byzantine Fault

Figure 12.5 shows an example for a resolve operation of @&msysblerating one
Byzantine fault { = 1). The resolve function is formalized in Algorithm 11. The
Functionmajority takes a tuple and returns the value most often present inphe t
If multiple values have the maximum frequency a default gl is returned.

12.5. COMPLEXITY OF THE ADAPTED ALGORITHM 107

Algorithm 11 Resolve Functionf{= 1)

1 var temp as3f Tuple

22 var maj as3f + 1 Tuple

3. var k as Integer

4. for everdo

s: I/l Create a Majority Value for Each Label
e foriel0,---,3f]do

7 k:=0

8 /l Copy the3 f Values totemp

9 for j € [0,---,3f] do

10: if i £ j then

11: templk] := resolve_level[i(3f + 1) + j]
12: k:=k+1

13: end if

14: end for

15: [/l Calculate the Maijority for Label

16: maj[i] == majority(temp)

17z end for

18: [/ Calculate the Output Value

19: output := majority(may)

20. end for

Informal Description: The algorithm creates a majority value for each Igbel =
0,---,4. Therefore all items with a label @t, j),j = 0,--- ,4 A i # j are copied
from theresolve_level to a temporary tupletémp). The index calculation is based
on the definition in Lemma 12.3.3. The values processed pheliimes by the same
node (0, 0), (1,1), (2,2), (3, 3)) are skipped and the tuplemp therefore contain3
elements. The resulting majority valueuj[i] is determined by calling the function
majority.

The output value is calculated by again callingjority but this time on thet
previously calculated majority values stored in the tuple;.

12.5 Complexity of the Adapted Algorithm

As already discussed, each tree level(3gs+1)" entries. As in each round> 2 the
tree level of depthr — 1 is broadcasted3f + 1)"~' broadcast messages are sent by
each node. In rountithe input value is broadcasted, therefore a singléJf +1)°)
broadcast message is sent by each node.

Based on the definition of the lockstep round creation, desdnin Chapter 1Ct,sync
additional synchronization messages are generated toesmafe for the precision
of the underlying multisynchronous clocking scheme as ag&the message delays,

108 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

leading to a synchronization time df . message slots. With a time complexity of
f + 1 rounds [AW04], the number of broadcasted messages per nede ar

f+1 r— / , 3f4+1 f+1_1
E:«W”4)1+QWJ=%wdf+n+(f 3}

r=1

For the current implementation of the message layer andaspe of4 a synchro-
nization timet, . of one message slot is sufficient (see Chapter 10 for the @alcul

tion description), leading to

Bf+1)" =1
2 37

Synchronization Messages

J/

~
Application Messages

broadcast messages per node.
The fact that these messages are tightly packed (see Chapteadls to an execu-

tion time of:
@f—%1ﬂ+1—1>

3f

microticks. The message slot timg,; of the current communication layer imple-
mentation isl0 microticks. Therefore the time complexity is:

Bf+1) -1
3f

tmicro = tslot (f +1+

trmicro = 10 (f +1+

leading to an exponential time complexity. Additional timeneeded for calculating
the output value. Since this calculation is done in paratiehe next information
gathering phase it is not included into the runtime analysis

Table 12.1 gives an overview on the runtime of the algoritlomdifferent fault

hypotheses and different clock rates. The values are baste@urrent implemen-
tation of the communication layer. The growth rate of thetirae is visualized in
Figure 12.6.

Table 12.1: Runtime of the Consensus Implementation
Microticks 50 MHz 100 MHz 200MHz
70 1.4us 700 ns 350 ns
600 12us 6us 3us
11150 223us 111.5us 55.75us
309460 6.18 ms 3.09 ms 1.55ms
11184870 223.7ms 111.85ms 55.93ms

e e
I
U W N =

12.6. CIRCUIT DESIGN 109

400000 1000000 -
100000
300000+
10000 —
200000 - 1000
100000 100
10
0 I 1 . . —
1 2 3 4 1 2 3 4
f f

Figure 12.6: Runtime of the Consensus Algorithm [Microticks]

As apparent from the algorithm3(3 f +1)/** memory locations are needed to store
the tuples ¢urrent_level, receive_level, resolve_level). The temporarily defined
values (as the counters and the tuplesp andmaj) are implemented as aliases,
selecting but not storing the corresponding values.

12.6 Circuit Design

The consensus algorithm implementation is based on the basie model intro-
duced in Chapter 10. Figure 12.7 shows how the consensusthfgaos integrated
into the node.

As already mentioned, the circuit is timed by themndtick signal of the lockstep
synchronous round creation circuit. Due to the precaledlabund timing it is as-
sured that the messages of all non faulty nodes are delivienedy.

An instance of the communication layer presented in Chaptisr&ed to com-
municate with the other nodes. As a faulty node may not selnchegsages, the
signalization mechanism for message receptions of the eonwation layer is not
used. Instead the message reception is locally timed bynt#heagetick signal of
the round counter module. As the creation of this signal lislgdased on the local
microtick clock, the timing of the message reception canbeoaffected by a faulty
node.

The reception of the next tree level is implemented usinghglsistate machine.
The currently built tree level-eceive_level) is stored within a register bank directly
located in the receiver state machine component. Aftemigangceived the complete

110 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

Application Logic

Round-
k

tic

Chip

Y y 4

Consensus

Microtick

Clocking

Lockstep
Messagetick €— Round
. Creation
Roundtick€—

Receiver | Transmitter

<

Communication
Layer

Data
Clk
Data
Clk

Y
To/From other Node

Figure 12.7: Node Implementation

tree level, its contents is copied to a second register bank{nt_level), so it can
be used as input for the broadcast operation of the next round

The message broadcast operation is implemented using ghtlyticoupled state
machines. The sender state machine is responsible foriektal the round pat-
tern (based on theoundtick signal) and the transmission of the input value at the
appropriate time (the beginning of the first round). The texel serializer, also a
state machine, coordinates the serialization of the cutree level ¢urrent_level)
based on the round pattern established by the sender staltenma

The resolve function is implemented using purely combaorel logic. As this im-
plementation has a high logic depth, its runtime may taketipielmicroticks. To
ensure a clean output signal (eliminating all spikes), #wilt of the resolve func-
tion is buffered using an output register. This registermdated solely when a new
information gathering phase has finished. The input valubefesolve function is
stored within a register bankdsolve_level). The timing of the copy operation is de-
termined by the receiver state machine. Therefore the #&racime of the resolve
function takes as long as a full information gathering phasethe implementation
of the system is fully synchronous, the toolset ensurediigag¢xecution time of the
resolve functions meets its bound.

This form of implementing the resolve function leads to aepiped architecture,

12.7. EXECUTION EXAMPLE 111

which means that while the output value of the current itenats calculated, the
information gathering phase of the next iteration is alyeaxkecuted.

12.7 Execution Example

Figure 12.8 contains a VHDL timing simulation for a systenetating one Byzan-
tine fault. The shown execution is fault free. As you can $ee output values are
always the majority of the input values, except if no majoekists. If no majority

exits, a default value) is used as output value. As theta_stream signals are no
longer readable in the figure, Figure 12.9 additionally shawletail of the execution
such that the communication between the nodes becometevisib

112 CHAPTER 12. CREATING A BYZANTINE FAULT TOLERANT SYSTEM

¥F ¥F F F F F y F y Yy y Yy P Yy Y YyPYyY¥F¥YFYFY

d44d44d44d4d44d4d44a4242A2A4.

w w I I

Wa1SAS snsuasuo) e Jo ajdwex3 uonnoaax3 :8'ZT ainbi4

>
[4
| 3
[4
>
| 4
>
[
>
[4
[3
[3
>
[4
>
[4
| 3
[4
>
| 4
>
[
>
[4

Figure 12.9: Execution Example of a Consensus System ([petail

FTdNVX3E NOILND3IX3 "L°CT

€Tt

Part IV

Conclusion and Future Work

115

Chapter 13

Future Work

As in every project, the available time is limited. Thereforot all questions could
be solved and some potential for future enhancements hasdesified.

13.1 Flow Control and Error Detection

Currently it is assumed that the application logic can hamdtata transmission
with the full communication speed or otherwise will implem@8ow control on the

architectural level. In future extensions we want to supflow control as service
of the communication layer.

Additionally we will investigate different options for datprotection. A way to
achieve this is by grouping multiple data bytes into packatsl each packet is pro-
tected by a CRC byte.

Another important point is the detection of timing violat®to identify nodes not
synchronized correctly to the multisynchronous ensenmiiiie.current solution can
handle this, but if identified, such a node could be rein#ed and reintegrated into
the system. This would increase the reliability of the gyste

As for the flow control, we currently assume that all erroredéibn and correction
mechanisms are implemented within the application logic.

13.2 Resynchronization at Runtime

An important question when handling data transmission®w to resynchronize
a receiver to a data stream, once it has lost its lock. Usingdicdted start-packet
symbol, a resynchronization at the message level is sinyphaliing for this symbol

117

118 CHAPTER 13. FUTURE WORK

to occur. Unfortunately the correct initialization of theg buffer’s read- and write-
pointer is not solvable that easily. As our proof heavily elegls on the fact that
the precision at startup is zero, a resynchronization waillvfith a high probability,
because of the unknown precision at such an event.

Two possibilities to circumvent the problem are:

e Usage of a larger buffer

e Support from the clocking system

The approach of using a larger buffer is simple and will worthaut changing the
clocking system. Instead of assuming a perfectly synchusistartup, the precision
maximum is assumed. Therefore the buffer will be sufficiel@ttge to compensate
for any arbitrary precision, as long as it is within the gil@unds, at the resynchro-
nization point. Unfortunately a larger buffer size alsargases the message latency.

Support form the clocking system would enable us to coryesett the write and read
pointer in case of a resynchronization and the buffer willadely not over- or under
run.

13.3 Ring Buffer Integration into the Clocking Chip

A problem of the current implementation is that the FPGA dednaintain multi-
ple clock sources (one per data line) to control the resgebiiffer write accesses.
Each of these clocks needs to be routed to the FPGA along lvathdsociated data.

For the next release we plan to integrate buffers and trdtesnsiynchronization,
for a system tolerating one Byzantine fauft€ 1), directly into the clocking chip.
Therefore three ring-buffer instances are needed. Thelf@ammunication link,
transmitting data to the node itself, is routed internallyhe FPGA and is fully syn-
chronous. Therefore the ring buffer can easily be implesahilly synchronous.

A scheme of such a chip is shown in Figure 13.1. In this satutiee buffer han-

dling is naturally performed inside the clocking chip, wheitl required clocks are
available anyway. Hence there is no need for extra clockirguthe data lines can
simply be aligned to the associated clock traces in the t{egisclock-net. At the

same time the FPGA can be implemented fully synchronousgusie single clock
source only.

13.4. RESOLVE FUNCTIONS FOR STRONGER FAULT HYPOTHESES 119

FPGA Data In FPGA Clock FPGA Data Out
A A A

Configuration Port

; Clocking
—»| Algorithm

l l l YVvYy
<7 <7 <7 Data Alignment
From other Nodes To other Nodes
—» Clock Network
Local Clock Scalable Ringbuffer

—» Data Line

Figure 13.1: Clocking Chip — Ring-Buffer Integration

13.4 Resolve Functions for Stronger Fault Hypothe-
SeS
Currently only a resolve function for a fault hypothesis oéd@yzantine fault [=

1) has been implemented. In future at least an implementé&tiomvo faults will be
implemented. This is not a fundamental problem but need&fictmplementation.

Chapter 14

Conclusion

Multisynchronous clocking is an attractive alternative gimbally synchronous
clocking in modern high-speed VLSI circuits, such as com@eCs, which also
allows to avoid the single point of failure usually represenby a central clock
source.

We have shown how to employ the loose synchrony provided dyisyachronous
systems for implementing a high-speed pipelined commtinitascheme that is
metastability-free by construction. It employs a bounded FIFO buffer for com-
pensating the skew between the sender and receiver clocieived a reasonably
tight lower bound for the required buffer size, and providermal proof of cor-
rectness and freedom of metastability. Furthermore, we dagcribed an efficient
implementation of our communication scheme, and expetiaigrdemonstrated its
feasibility using a custom test system.

Based on the communication layer we have shown how to implemédockstep
synchronous round model relying only on the local microtildck. Therefore faulty
nodes can never affect the timing of non faulty ones. Thedairucture is defined
for a maximum number of messages transmitted in each rotinsl.guaranteed
that all of these messages, sent by non faulty nodes, aredalitimely within the
current round. Additionally the receive event for those sages is also derived from
the local clock and is based solely on the a-priory known @orisnessage latency.

We have shown that a naive TMR implementation in a multisymcbus environ-
ment will definitely fail and have given an implementatiorample for a multisyn-
chronous voter. Nevertheless such a system will never betaldrate Byzantine
faults in the general case.

Our goal was to increase the level of fault tolerance implaidge in hardware.
Therefore we have taken a well known consensus algoritherahg Byzantine
failures, namely the EIG algorithm, and have modified it stiwdt it is imple-
mentable in hardware. We have shown that the two algorithmm®quivalent and
sketched a hardware implementation for our solution.

121

Bibliography

[AJTR98] T. Arabim, J. Jones, G. Taylor, and D. Riendeau. ModelSimula-
tion, and Design Methodology of the Interconnect and Packpof an
Ultra-High Speed Source Synchronous BusiHEE 7th Topical Meet-
ing on Electrical Performance of Electronic Packaging, 899ages
8-11, 1998.

[AWO04] Hagit Attiya and Jennifer WelchDistributed Computing — Fundamen-
tals, Simulations, and Advanced Topic3ohn Wiley and Sons, Inc.,
second edition, 2004.

[BASO03] Ravi Budruk, Don Anderson, and Tom Shanl&Cl Express System
Architecture Addison-Wesley Professional, 2003.

[Bla69] J.R. Black. Electromigration - A Brief Survey and some &dadRe-
sults. IEEE Transactions on Electron Devicek6(4):338-347, Apr
1969.

[Cha84] D. M. ChapiroGlobally-Asynchronous Locally-Synchronous Systems
PhD thesis, Stanford Univ., 1984.

[CM73] T. J. Chaney and C. E. Molnar. Anomalous Behavior of Syocizer
and Arbiter CircuitslEEE Transactions on Compute®2(4):421-422,
1973.

[Con03] Cristian Constantinescu. Trends and Challenges in \duS8Lit Reli-
ability. In IEEE Micro, volume 23, 2003.

[Die05] Reinhard DiestelGraph Theory Springer-Verlag, Heidelberg, 2005.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. &ensus in
the Presence of Partial Synchrody ACM 35(2):288-323, 1988.

[DP98] William J. Dally and John W. PoultorDigital Systems Engineering
Cambridge University Press, 1998.

123

124

BIBLIOGRAPHY

[EA97]

[Esal3]
[FB96]

[FFSKO6]

[FH90]

[FLP85]

[Frio1]

[GGO4]

[Gin03]

[Hau95]

[HLDO95]

[HO71]

F. Najm E. Amerasekeralrailure Mechanisms in Semiconductor De-
vices Wiley, second edition, 1997.

SpaceWire — Links, Nodes, Routers and Networks,.2003

K.M. Fant and S.A. Brandt. NULL Convention Logic: A Comigend
Consistent Logic for Asynchronous Digital Circuit Synthe$rsASAP
96. Proceedings of International Conference on Applicat8pecific
Systems, Architectures and Processors, 19péges 261-273, Aug
1996.

Markus Ferringer, Gottfried Fuchs, Andreas Stejar, and Gerald
Kempf. VLSI Implementation of a Fault-Tolerant Distribdt€lock
Generation. IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT200pages 563-571, 2006.

Paul Forshaw and Reinhard Hahn. Synchronous Desige:Right
Technique for Digital ASIC’s. InPASIC Seminar and Exhibipages
P6/1.1 — P6/1.5, 1990.

Michael J. Fischer, Nancy A. Lynch, and M. S. Patardmpossibility
of Distributed Consensus with one Faulty Procdssirnal of the ACM
32(2):374-382, April 1985.

Eby G. Friedman. Clock Distribution Networks in Symonous Digital
Integrated Circuits. liProceedings of the IEERolume 89, pages 665—
692, 2001.

lan A. Glover and Perer M. GranbDigital Communications Pearson
Prentice Hall, second edition, 2004.

Ran Ginosar. Fourteen Ways to Fool Your SynchronidzarASYNC
'03: Proceedings of the 9th International Symposium on Alygmous
Circuits and Systempages 89-96. IEEE Computer Society, 2003.

S. Hauck. Asynchronous Design Methodologies: Ar@iew. Pro-
ceedings of the IEEB3(1):69-93, Jan 1995.

R.E. Harper, J.H. Lala, and J.J. Deyst. Fault ToleRarallel Processor
Architecture Overview. InTwenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995, ' Highlights from Twenty&iYears/’
pages 62—67, Jun 1995.

Richard A. Harrison and Daniel J. Olson. Race Analysi®igital
Systems without Logic Simulation. IDAC '71: Proceedings of the
8th Design Automation Workshgpages 82-94. ACM, 1971.

BIBLIOGRAPHY 125

[IEE95]

[IEEQO]

[KC87]

[KHO4]

[Kin08]

[Kop97]

[LamO3]

[LMS85]

[LSP82]

[LV62]

[MFMRO4]

[Mil04]

[Nat0s]

[NxpOQ7]

IEEE Standard for Heterogeneous InterConnect (H1895.

IEEE Standard Signaling Method for a Bidirectional#&lel Peripheral
Interface for Personal Computers, 2000.

Lindsay Kleeman and Antonio Cantoni. Metastable Bebiavi Digital
SystemsIEEE Design and Test of Computed46):4—19, 1987.

T. Karnik and P. Hazucha. Characterization of SoftdesrCaused by
Single Event Upsets in CMOS Process#SEE Transactions on De-
pendable and Secure Computjrig2):128-143, April-June 2004.

David J. Kinniment. Synchronization and Arbitration in Digital Sys-
tems Wiley, 2008.

Hermann Kopetz. Real-Time Systems — Design Principles for Dis-
tributed Embedded Application&luwer Academic Publishers, 1997.

Leslie Lamport. Arbitration-Free SynchronizatioDistributed Com-
puting, 16(2-3):219-237, 2003.

Leslie Lamport and P. M. Melliar-Smith. Synchroimg Clocks in the
Presence of Faults. ACM 32(1):52-78, 1985.

Leslie Lamport, Robert Shostak, and Marshall Ped$e Byzantine
Generals ProblenACM Transactions on Programming Languages and
Systems4(3):382-401, 1982.

R.E. Lyons and W. Vanderkulk. The Use of Triple-ModuRedun-
dancy to Improve Computer ReliabilityBM Journal of Research and
Development6(2):200-209, April 1962.

C. Metra, S. Di Francescantonio, T.M. Mak, and B. Ridooplications
of Clock Distribution Faults and Issues with Screening theuniiy
Manufacturing TestinglEEE Transactions on Computeis3(5):531—
546, 2004.

Gene H. Miller. Microcomputer Engeneering’rentice Hall, third edi-
tion, 2004.

LVDS Owner's Manual National Semiconductors, fourth edition,
2008.

I?C-Bus Specification and User Manual, 2007.

126 BIBLIOGRAPHY

[OKS08] R. Obermaisser, H. Kraut, and C. Salloum. A Transkesilient
System-on-a-Chip Architecture with Support for On-Chip anif O
Chip TMR. INEDCC 2008. Seventh European Dependable Computing
Conference, 2008pages 123-134, May 2008.

[Pci98] PCI Local Bus Specification, 1998.

[PGO7] Ivan Miro Panades and Alain Greiner. Bi-Synchronol&Hor Syn-
chronous Circuit Communication Well Suited for Network-oniCim
GALS Architectures. IrFirst International Symposium on Networks-
on-Chip, 2007. NOCS 20Q'pages 83-94, May 2007.

[Sch87] Fred B. Schneider. Understanding Protocols for ByzarClock Syn-
chronization. Technical Report, Cornell University, Depsht of
Computer Science, aug 1987.

[Sei79] Charles L. Seitz. System Timing. In Carver Mead andnL@on-
way, editors)ntroduction to VLSI Systemshapter 7. Addison-Wesley,
1979.

[SFGP09] Yebin Shi, S. B. Furber, J. Garside, and L. A. PlanaultFTolerant
Delay Insensitive Inter-chip Communication. 16th IEEE Symposium
on Asynchronous Circuits and Systemages 77—84, May 2009.

[SGO3] Yaron Semiat and Ran Ginosar. Timing Measurementgroft8oniza-
tion Circuits. INASYNC '03: Proceedings of the 9th International Sym-
posium on Asynchronous Circuits and Systepagie 68. IEEE Com-
puter Society, 2003.

[Sha02] Tom ShanleyinfiniBand Network ArchitectureAddison-Wesley Pro-
fessional, 2002.

[Sho02] Martin L. ShoomanReliability of Computer Systems and Networks:
Fault Tolerance, Analysis, and DesigWwiley, 2002.

[STO3] T. K. Srikanth and Sam Toueg. Optimal Clock Synchratian. Jour-
nal of the ACM 34:626-645, 2003.

[TGLO7] P. Teehan, M. Greenstreet, and G. Lemieux. A Survel Baxonomy
of GALS Design StylesDesign and Test of Computers, IEEO07.

[Wak01] John F. Wakerly.Digital Design Principles and PracticesPrentice-
Hall, third updated edition, 2001.

[WSO05] Josef Widder and Ulrich Schmid. Achieving Synchronithaut
Clocks. Research Report 49/2005, Technische Universitat Vifien
stitut fur Technische Informatik, 2005. (submitted).

