
M A G I S T E R A R B E I T

Counter Lattice Generation for
Non-provable Formulas

conducted at the Institute of Information Systems

Knowledge-Based Systems Group
at the Vienna University of Technology

under the supervision of
A.o.Univ.Prof. Dipl.-Ing. Dr.rer.nat. Uwe Egly

by

Bakk.techn. Andreas Zugaj

Leibnizg. 13/25
A-1100 Wien

Ort, Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Orthologic is the logic defined over lattices in which an unary operation called

orthocomplementation is defined. It is similar to classical propositional logic,

which is defined as orthologic but with the extension that the distributive

laws must hold. What makes orthologic so interesting is that, unlike for clas-

sical logic, the validity problem in orthologic is known to be polynomially

solvable.

Given some formula, it is interesting to determine whether it is valid or not in

orthologic. This question can be answered using proof systems like Gentzen

systems for orthologic. For these systems, it is known from the literature that

they are sound and complete. In the positive case that a formula is valid,

these proof systems result in a proof. But in the negative case that a formula

is not valid, these systems give us no proof. They fail to find a proof and

because of the soundness and correctness, we can conclude that the formula

is not valid. What is missing is a certificate that the given formula does not

hold. One possibility to present such a certificate is to construct a counter

example. Such a counter example is sufficient, because validity of a formula

in orthologic means that it holds in all ortholattices. This means that, if

we find at least one lattice where the formula does not hold, this lattice is a

witness for the invalidity of the formula.

In this master thesis, we describe an implementation, CGOL, of a program

written in the programming language C that is capable of testing an ortho-

logic formula for validity. If the formula is not valid, the program is able

to generate a counter example, which convinces the user that this formula

is indeed not valid. The thesis handles the theoretic aspects necessary for

generating such counter examples and it also gives details about the concrete

implementation.

Contents

1 Introduction 1

2 Theoretical Background 4

2.1 Lattices and Ortholattices . 4

2.1.1 Lattices and Posets . 5

2.1.2 Ortholattices and Orthoposets 7

2.1.3 Logical Aspects . 7

2.2 Gentzen Systems . 9

2.2.1 GL . 12

2.2.2 GOL . 13

2.2.3 GOL-1-1 . 16

2.3 Generation of Counter (Ortho)Lattices 17

2.3.1 Counter Lattices . 17

2.3.2 Counter Ortholattices 22

3 Implementation 30

3.1 Goals and Basic Ideas . 30

I

3.2 Overview on the Implementation Details 35

3.2.1 Module Input . 35

3.2.2 Module Inference . 36

3.2.3 Module Counterlattice 42

3.3 Runtime Considerations . 49

3.4 Experimental Results . 52

4 Reducing the Size of the Counter Lattice 60

4.1 Theoretical Background for Size Reduction 61

4.1.1 Non-Logical Axioms in GOL 61

4.1.2 Basic Idea of Reducing the Size of the Counter Lattice 62

4.1.3 Isomorphism . 65

4.2 Size Reduction in CGOL . 67

4.2.1 Implementing Proof-search with Non-Logical Axioms . 68

4.2.2 Automated Size Reduction 69

4.3 Results for Automated Size Reduction 72

5 Conclusion 75

II

Chapter 1

Introduction

When studying some logic, we are always interested in a method to determine

whether some given formula is valid or not with respect to some semantics.

For proof systems formal soundness and completeness proofs usually exist,

but how credible is one specific instance of a proof for a certain formula. Of

course the proof can be done by hand, which is very credible, because every

inference step and its applicability is known to the user, but doing proofs by

hand is limited to very small formulas. In real world applications we rather

use computer-generated proofs instead, but how should the user know the

computer is really doing its job right when just outputting ”valid” or ”in-

valid” at the end of a possibly long lasting proof-search? The answer is that it

is obviously quite hard to check the result if one has only the answer ”valid”

or ”invalid”. What is needed is a kind of certificate for the answer. For

valid formulas, the certificate is the proof, found by the proof system. Such a

proof can be easily verified using (random) proof checking for example. But

in case of an invalid formula, we only see that our inference procedure is not

able to derive a proof, but that is all the information we get. So there is not

much difference in just saying: ”invalid”. But a formula is only valid, if it

holds in all structures, where the specific structure depends on the logic. For

instance, in classical propositional logic, a formula is valid if it is true in all

1

interpretations. That means if we find one structure for which the formula

does not hold, this example is the certificate for the invalidity of the formula.

Such a counter example is constructed from a failed proof attempt.

In this work, we will focus on a logic called orthologic which is, due to histor-

ical reasons, also known as minimum quantum logic. Orthologic is the logic

defined over lattices in which an unary operation called orthocomplementa-

tion is defined. But we will also turn our attention to the logic defined over

pure lattices, because this logic is a subset of orthologic and many concepts

we need for orthologic are easier to understand in the simpler environment

of pure lattices.

Why do we concentrate on orthologic? One reason is its similarity to classical

propositional logic, having the same syntax, but of course different semantics.

The difference is that, in orthologic, the distributive laws do not hold. Just

the distributive laws do not seem to make a crucial difference, but taking

a closer look on the complexity for automatic proof-search as is done in [2]

shows the real difference: The validity problem for orthologic is polynomially

solvable unlike in classical logic where it is NP-complete.

Obtaining polynomially bounded Gentzen proof procedures is a delicate mat-

ter. Using Gentzen-like calculi with backward search for orthologic results

only in an exponential algorithm. However, using a Gentzen system in for-

ward search (also known as Maslov’s inverse method) gives us a polynomially

bounded proof procedure if the subformula property is taken into account,

when axiom schemata are generated. This is interesting, because in classical

logic backward search is usually considered faster than forward search.

Another reason why orthologic is interesting is that there is not much work

about the generation of counter examples for non-provable formulas in or-

thologic. For first order logic there is various work on model generation, e.g.,

by Leitsch et al. in [6]. There is a work in progress by Egly [1] that deals

with the theory of generating counter examples for orthologic, but there is

no implementation as computer program yet. With this work we are trying

to fill this gap.

2

The aim of this master thesis is implementing a program in C based on the

Gentzen-like calculus GOL for orthologic that determines for some given for-

mula, whether it is valid or not, and if it is valid prints out the proof. If it is

not valid it generates a counter example that gives evidence of the invalidity

of this formula.

In Chapter 2, we will first discuss the theoretical background needed to un-

derstand orthologic and the theory we need for the construction of counter

examples. In orthologic the counter examples have the form of ortholattices,

that is why we will call them counter lattices in the following. In Chapter 3,

we will discuss the basic ideas on which the implementation in C is based.

The program is called CGOL for counter example GOL. We will also discuss

the performance of the implementation on test cases. Chapter 4 will be ded-

icated to the reduction of the size of the counter lattices. We will see that

the size of a counter lattice can be quite large, especially when the formula

is large. Because our algorithm is polynomial, we can handle big formulas

in reasonable time. Since the purpose of the counter lattice is to convince

the user that the given input formula does not hold for all lattices, we will

spend some effort on a way to decrease the size of the counter lattice, because

small counter ortholattices are easier to depict and they are therefore easier

to comprehend. The approach we will present is implemented in CGOL and

proves quite useful. In the last chapter, we will conclude with a summary of

the results and give some outlook on open problems and problems currently

under work.

3

Chapter 2

Theoretical Background

This chapter is dedicated to the theoretical background we need throughout

this thesis. We will first review what lattices and ortholattices are and dis-

cuss their important properties needed in the following. Afterward we will

discuss the logics defined over lattices respectively ortholattices.

Then we introduce Gentzen systems for lattices (GL) and ortholattices (GOL).

It is well-known that Gentzen proof systems deliver proofs in case the for-

mula is valid. However, the generation of counter lattices for non-provable

formulas is not obvious. We apply an approach presented in [1], which shows

that forward search in Gentzen systems for lattices can simulate the effect

of Skolem’s procedure. Since for the result of the Skolem’s procedure, it is

possible to generate a counter lattice, it is also possible to generate such a

lattice from failed proof attempts in Gentzen systems. Moreover, as shown

in [1], the construction can be extended to ortholattices.

2.1 Lattices and Ortholattices

In this section, we recall the properties of lattices and ortholattices. This

exposition is based on the discussion of lattices and ortholattices in [4].

4

2.1.1 Lattices and Posets

There are two ways of defining lattices. The first one is an equational char-

acterization of lattices, the other one uses partially ordered sets (posets). We

will start with the equational definition:

A lattice is an algebra (L,∧,∨) with L being a set closed under the binary

operations ∧ called ”meet” and ∨ called ”join”. The algebra must satisfy

the following laws.

1a. a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)

1b. a ∧ (b ∧ c) = (a ∧ b) ∧ c

2a. a ∨ b = b ∨ a (commutativity)

2b. a ∧ b = b ∧ a

3a. a ∨ (a ∧ b) = a (absorption law)

3b. a ∧ (a ∨ b) = a

We show that the idempotence laws

4a. a = a ∧ a (idempotence)

4b. a = a ∨ a

can be derived from the absorption laws.

We start with a∧ (a∨ (a∧ b′)) = a which is an instance of 3b. with b = a∧ b′.
Then a = a ∧ (a ∨ (a ∧ b′)) =3a. a ∧ a. Therefore a = a ∧ a. The proof of

a = a ∨ a is similar.

These laws mentioned above hold in every lattice. There are two im-

portant laws that do not hold in every lattice, namely distributivity and

modularity. We define these two laws in the following.

5

5a. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity)

5b. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

6. a ∨ (b ∧ (a ∨ c)) = (a ∨ b) ∧ (a ∨ c) (modularity)

An alternative approach for the definition of lattices is based on posets.

A poset is a pair (P,≤) where P is a set and ≤ is a binary relation on P .

The relation ≤ must satisfy the following conditions:

1. a ≤ a for all a ∈ P (reflexivity)

2. a ≤ b and b ≤ a imply a = b for all a, b ∈ P (anti-symmetry)

3. a ≤ b and b ≤ c imply a ≤ c for all a, b, c ∈ P (transitivity)

Note that the equivalence between a and b is defined as follows:

a = b holds iff a ≤ b and b ≤ a holds.

Let P be a poset and let X be a subset of P . An upper bound c of X is an

element c in P such that x ≤ c holds for all x ∈ X. A lower bound d of X

is an element d in P such that d ≤ x holds for all x ∈ X. The supremum

of X, denoted by
∨
X, is an upper bound of X which is smaller or equal

than every other upper bound of X. A supremum might not exist for every

subset. The infimum of X, denoted by
∧
X is a lower bound of X which is

larger or equal than every other lower bound of X. An infimum might not

exist for every subset.

Lattices are exactly those posets, for which every two-element subset has a

supremum and an infimum.

For elements a, b of a lattice L we define:

a ≤ b holds if a = a ∧ b or b = a ∨ b holds.

We will need the term bounded poset later on.

A bounded poset is a poset P with a smallest element ⊥ with ⊥ ≤ x for all

x ∈ P and a largest element > with x ≤ > for all x ∈ P .

6

2.1.2 Ortholattices and Orthoposets

We enhance posets by an unary operation (orthocomplementation) in order

to get orthoposets, which are used as a basis for ortholattices.

Let P be a bounded poset. We define an unary operation ¬ on P called

orthocomplementation which satisfies the following conditions:

1. if a ≤ b then ¬b ≤ ¬a,

2. ¬¬a = a,

3. the supremum of a∨¬a and the infimum of a∧¬a exist and a∨¬a = >
and a ∧ ¬a = ⊥.

A poset with orthocomplementation is called orthoposet. An ortholattice is

an orthoposet which is also a lattice, i.e., for which every two-element subset

has a supremum and an infimum.

For ortholattices, the de Morgan’s laws hold:

¬(a ∨ b) = ¬a ∧ ¬b

¬(a ∧ b) = ¬a ∨ ¬b

A map ϕ from a poset P into a poset Q is called a homomorphism if it is

order preserving, i.e., if x ≤ y implies ϕ(x) ≤ ϕ(y).

2.1.3 Logical Aspects

Throughout this thesis, the attention will be restricted to finitely presented

lattices and ortholattices to be defined below.

Definition 2.1 Let X be a countably infinite set disjoint from the set

{∧,∨,¬,>,⊥}. We define the set of lattice terms over X inductively as

follows:

7

1. Every element x of the set X ∪ {>,⊥} is a lattice term.

2. If a, b are lattice terms, then a ∧ b and a ∨ b are lattice terms.

A lattice presentation is a pair < X,R >, where X is a set of variables and

R is a set of relations. A relation is an equation s(x1, . . . , xn) ≤ t(x1, . . . , xn)

where s and t are lattice terms over X. A finite presentation is a lattice

presentation where X and R are finite. A finitely presented lattice is a lattice

which is presented by a finite presentation.

We will now extend the above for orthologic.

Definition 2.2 The set of ortholattice terms over X is defined inductively

as follows:

1. Every lattice term over X is an ortholattice term.

2. If a is an ortholattice term, then ¬a is an ortholattice term.

A finitely presented ortholattice is defined as above in the case of a lattice,

but using the notion of ortholattice term instead of lattice term. The syntax

of an ortholattice term is equivalent to the syntax of a propositional logic

formula. That is why we will use formula synonymously for lattice term and

ortholattice term.

We use the notation A |=LL B to denote that a formula B can be inferred

from a formula A in the logic of pure lattices. Analogously we use the no-

tation A |=O B to denote that a formula B can be inferred from a formula

A in orthologic. A valuation v of a formula F is a map from F into an

(ortho)lattice, where ¬, ∧ and ∨ are interpreted as the operations orthocom-

plementation, lattice meet and lattice join.

For the logic of pure lattices we define that A |=LL B holds iff v(A) ≤ v(B)

holds for all valuations v into all lattices. Analogously we define for ortho-

logic that A |=O B holds iff v(A) ≤ v(B) holds for all valuations v into all

ortholattices.

8

A formula F is said to be valid in orthologic if |=O F holds. A formula that

is not valid is said to be invalid. The empty left side of |=O is interpreted as

a∨¬a. For pure lattices a similar statement cannot be made. It only allows

us validity considerations on A |=LL B for non-empty A and B.

2.2 Gentzen Systems

In this section, we will introduce the sequent (or Gentzen) calculi GL for the

logic of pure lattices and GOL for orthologic. For sequent systems we need

some definitions first.

Gentzen calculi operate on sequents instead of formulas. A sequent M ` N is

an ordered pair of sets M,N of formulas, where the sets can have restrictions

depending on the calculus. M is called the antecedent and N the succedent.

In our case we need n-restricted sequents.

Definition 2.3 A n-restricted sequent is an ordered pair M ` N , where

M,N are sets and |M |+ |N | ≤ n holds. M is called the antecedent and N is

called the succedent of the sequent. |X| denotes the cardinality of the set X.

For GL and GOL-1-1 we will need an even more restricted version of a se-

quent.

Definition 2.4 A 1-1-sequent is an ordered pair of the form φ ` ψ, where

φ and ψ are formulas. The formula φ is the only formula of the antecedent

and ψ is the only formula of the succedent of the 1-1-sequent.

A Gentzen system consists of a set of axioms and a set of inference rules. For

GL and GOL the axioms are split into logical and non-logical axioms. The

logical axioms are a set of sequents that are known to be valid. The non-

logical axioms are assumptions that some sequents hold. For GL and GOL

without non-logical axioms a cut-elimination theorem exists. Non-logical

9

axioms are discussed in more detail in Chapter 4. The inference rules are of

the form:
P

C
α and

P Q

C
β

where P,Q and C are sequents. P and Q are called premises and C is called

conclusion. Inference rules of the form of α are called unary-rules or α-rules,

whereas the other type is called binary-rules or β-rules.

We want to focus our attention on two common proof-search strategies, the

widely-used backward search and the, in classical logic, seldomly applied

forward search (also known as Maslov’s inverse method). Forward search

in classical logic is often considered to be inefficient, because it is not goal

oriented. In our system, backward search generates tree proofs, whilst forward

search generates sequence proofs.

Definition 2.5 A tree proof of a sequent S is a rooted tree with S as its

root. The inner nodes are sequents derived by applications of the inference

rules on the direct predecessor nodes and all leaves are axioms.

Definition 2.6 A sequence proof of a sequent S from a set of non-logical

axioms A in GL or GOL is a sequence S1, . . . , Sn of sequents such that S = Sn

and for 1 ≤ m ≤ n and 1 ≤ o ≤ n and k, l < m,

1. Sm is a logical or non-logical axiom, or

2. Sm is the conclusion of a unary inference with premise Sk, or

3. Sm is the conclusion of a binary inference with premises Sk and Sl.

Definition 2.7 A saturation σ(X) from a set of non-logical axioms A and

restricted by a set X of formulas in GL or GOL is a sequence S1, . . . , Sn of

sequents such that for 1 ≤ m ≤ n and k, l < m,

1. Sm is a logical or non-logical axiom, or

10

2. Sm is the conclusion of a unary inference with premise Sk, or

3. Sm is the conclusion of a binary inference with premises Sk and Sl, and

4. for all formulas x, y occurring in Sm, x, y are members of the set X,

and

5. there exists no sequent Sn+1 where Sn+1 is the conclusion of a unary

inference with premise Sm without violating the restriction in 4, and

6. there exists no sequent Sn+1 where Sn+1 is the conclusion of a binary

inference with premises Sm and So without violating the restriction in

4.

Informally a saturation is the sequence of all sequents that are derivable by

GL or GOL from a set of non-logical axioms A restricted by a set X of

formulas that are allowed to appear in the sequents.

A sequent S is provable if there exists a sequence of applications of inference

rules starting from a set of axioms, such that it derives the sequent S. If a

sequent M ` N is provable in a sequent calculus for a logic L, then M |=L N

holds.

The usual backward search starts with the sequent S as the root, and builds

up a tree with axioms and non-logical axioms as leaves. Backward search

is a goal-oriented approach, whereas forward search is a saturation-based

approach which requires a subformula property to be efficient. GOL (GL

respectively) has such a subformula property, i.e., forward search can be

implemented efficiently. In GOL forward search is a polynomial decision

procedure whilst backward search is exponential in the worst case! A detailed

analysis on the properties for the different proof-search strategies for GOL is

given in [2]. We will further on refer to the sequent S as the input sequent

or synonymously the end sequent.

11

2.2.1 GL

GL is a sequent calculus for lattices. GL is a real subset of GOL, which we

will introduce in the next subsection. Let A |=LL B be the inference relation

of the logic for pure lattices. The relation A |=LL B means that B is derivable

from A in the logic of pure lattices.

Theorem 2.1 The sequent A ` B is provable in GL iff A |=LL B holds.

This means that GL is sound and correct for the logic of pure lattices.

The proof of the theorem can be found in [4]. Note that [4] gives only a

proof of soundness and correctness of GOL. But GL is a real subset of GOL,

thus a soundness and correctness proof of GOL can be easily adapted for GL.

Also note that the version of GOL we will introduce later on, is an adapted

version of the one in [4]. The cut-elimination theorem is also shown in [4].

For more properties of GOL see [2] and [1].

GL operates on 1-1-sequents as defined above. Note that for GL the subfor-

mula property holds in a strict sense. This means given a sequent φ ` ψ we

are trying to prove, all sequents we are deriving during the proof-search have

only subformulas of φ on the antecedent side and only subformulas of ψ on

the succedent side. Logical axioms in GL are sequents of the form a ` a. In

the case of a proof-search for a specific sequent φ ` ψ, the axiom’s formulas

a can be restricted to subformulas of φ, ψ. In the following φ, θ and ψ denote

single formulas. The inference rules consist of α-rules which are unary rules

requiring only a single premise:

θ ` φ
θ ` φ ∨ ψ

∨ r1
θ ` ψ

θ ` φ ∨ ψ
∨ r2

φ ` θ
φ ∧ ψ ` θ

∧ l1
ψ ` θ

φ ∧ ψ ` θ
∧ l2

and β-rules which are binary rules requiring two premises:

12

φ ` θ ψ ` θ
φ ∨ ψ ` θ

∨ l

θ ` φ θ ` ψ
θ ` φ ∧ ψ

∧ r

We will need a restricted version of the cut rule. The system GL+acut is

the system GL extended by the analytic cut rule. Analytic means that all

formulas appearing in the rule are subformulas of the formulas of the end

sequent. The acut rule is:

θ ` φ φ ` ψ
θ ` ψ

acut

GL in forward search is a polynomial decision method for determining whether

s ≤ t holds in all lattices. This is a direct consequence of Theorem 19 in [2].

2.2.2 GOL

GOL can be considered as an extension of GL for orthologic. Let A |=O B

be the inference relation of orthologic. The relation A |=O B means that B

is derivable from A in orthologic.

Theorem 2.2 The sequent A ` B is provable in GOL iff A |=O B holds.

This means that GOL is sound and correct for orthologic.

The proof of the theorem can be found in [4].

Instead of 1-1-sequents, GOL requires 2-restricted sequents, i.e., sequents

M ` N for which |M | + |N | ≤ 2 holds. It consists of α-rules and β-rules

similar to GL:

M ` φ,N
M ` φ ∨ ψ,N

∨ r1
M ` ψ,N

M ` φ ∨ ψ,N
∨ r2

M,φ ` N
M,φ ∧ ψ ` N

∧ l1
M,ψ ` N

M,φ ∧ ψ ` N
∧ l2

13

M,φ ` N M,ψ ` N
M,φ ∨ ψ ` N

∨ l

M ` φ,N M ` ψ,N
M ` φ ∧ ψ,N

∧ r

Additionally GOL has rules for the orthocomplementation (also called nega-

tion):

M,φ ` N
M ` ¬φ,N

¬r M ` φ,N
M,¬φ ` N

¬l

GOL also needs structural rules for weakening:

M ` N
M,φ ` N

wl
M ` N
M ` φ,N

wr

Note that the structural rules of exchange and contraction are not required,

because M , N are sets.

The system GOL+acut is the system GOL extended by the analytic cut rule.

14

Since sequents are not restricted to 1-1-sequents in GOL, there are additional

rules for analytic cut of the following form:

x ` y y, z `
x, z `

` y, z y ` x
` x, z

` y, z x, y `
x ` z

` x, y y, z `
z ` x

GOL has the subformula property, which means that all occurrences of for-

mulas in all derived sequents in a proof for some sequent M ` N are subfor-

mulas of M and N . Furthermore GOL has the strict subformula property,

which means that all occurrences of formulas are subformulas of M and N

in the corresponding polarity. We will refer to this property further on as

the polarity restriction. Given a sequent M ` N we define polarity pol(x)

inductively:

1. pol(M) = −;

2. pol(N) = +;

3. pol(¬x) =

 + if pol(x) = −;

− if pol(x) = +;

For example in the sequent ¬x ` ¬¬y pol(x) = + and pol(y) = +, because

x appears in the antecedent side thus pol(x) = − but x is negated thus its

polarity is changed to +.

The strict subformula property means that formula with positive polarity

occurrences of the end sequent occur in the succedent and formula with neg-

ative polarity occurrences of the end sequent occur in the antecedent.

This subformula property together with 2-restricted sequents is very useful

for forward search, making GOL a polynomial decision method for the valid-

ity of an orthologic formula. It is also necessary for the termination of for-

ward search. Forward search terminates if no new sequent can be generated.

15

Thus, the set of possible sequents must be finite, otherwise the algorithm

would not terminate. The idea is, that the number of subformulas is finite

and the possibilities to build 2-restricted sequents out of them is also finite.

This leads to a finite number of possible sequents, to be more precise the

number is not only finite but polynomially bounded (see [2] for the details

and an approximation of the number of possible sequents).

2.2.3 GOL-1-1

GOL-1-1 is a special version of GOL that operates on 1-1-c sequents instead

of 2-restricted sequents. It also needs a certain form of sequent formulas, so

called c-formulas which are formulas with an indicator c which is interpreted

as ”the formula occurs on the complementary side of the sequent”.

Let φ be a formula. Then φ as well as an expression of the form φc is a

c-formula. In the former case, we say that the indicator is ε, in the latter

case, it is c.

Definition 2.8 A 1-1-c-sequent is a 1-1-sequent, where all formulas of the

sequent are c-formulas and at most one sequent formula is indicated with the

indicator c. Therefore, 1-1-c-sequents have the form

xc1 ` yc2 where c1, c2 ∈ {ε, c} and c1 6= c or c2 6= c.

The system of GOL-1-1 is given by the following inference rules:

φc1 ` ψ1

φc1 ` ψ1 ∨ ψ2

∨ r1
φc1 ` ψ2

φc1 ` ψ1 ∨ ψ2

∨ r2
φ1 ` ψc1 φ2 ` ψc1

φ1 ∨ φ2 ` ψc1
∨ l

φ1 ` ψc1

φ1 ∧ φ2 ` ψc1
∧ l1

φ2 ` ψc1

φ1 ∧ φ2 ` ψc1
∧ l2

φc1 ` ψ1 φc1 ` ψ2

φc1 ` ψ1 ∧ ψ2

∧ r

φ ` ψc1

φ ` (¬ψ)c1
¬r1−1 φc1 ` ψ

(¬φ)c1 ` ψ
¬l1−1 φc1 ` ψc2

ψc2 ` φc1
toggle c1 6= c2

φc ` φ
ψc1 ` φ

wl1−1 φ ` φc

φ ` ψc1
wr1−1

16

Egly gives in [1] a proof of the equivalence between GOL-1-1 and GOL.

Interesting for our purpose is the translation between arbitrary 2-restricted

sequents and 1-1-c-sequents, because, as we will see later on, we can construct

our counter orthoposet only out of 1-1-c-sequents and not out of 2-restricted

ones. Thus we need a translation that enables us to transform all sequents

we derived in GOL into 1-1-c-sequents.

δ1−1(S) =

x ` y if S : x ` y;
x ` xc if S : x `;

yc ` y if S : ` y;
x ` yc and y ` xc if S : x, y `;

xc ` y and yc ` x if S : ` x, y;

Note that the translation of x, y ` yields two 1-1-c-sequents. This means

the translation is not injective and thus the translation given here is only

used in one direction, i.e., from GOL to GOL-1-1. The reason why we use

this translation is that for generating the counter lattice we only need the

translation from GOL to GOL-1-1.

2.3 Generation of Counter (Ortho)Lattices

We first show how to generate a counter lattice and later on, we extend to

counter ortholattices.

2.3.1 Counter Lattices

Let us suppose that we have a failed proof-search for some s ≤ t where we

used forward search. Then by the correctness of GL we can conclude that

s ≤ t does not hold for all lattices. As a witness for the fact that s ≤ t

does not hold for all lattices, we want to generate a lattice which illustrates

that fact. The procedure is the following. With the calculus GL in forward

17

search, we derive all ≤-relations that hold for the set of subformulas S =

sf(s) ∪ sf(t). Egly gives in [1] a proof that GL in forward search, without

the polarity restriction derives for a sequent s ` t a set of sequents, which

are sufficient for finding all the relations that hold on S. It is sufficient to

translate all derived sequent x ` y with x ≤ y. The resulting poset can be

extended to a lattice, in which s ≤ t does not hold, which gives us a counter

example. We illustrate the generation of the counter example with an exam-

ple.

Example 2.1 Let s = a ∧ (b ∨ c) and t = (a ∧ b) ∨ c. The sequent s ` t is

not derivable in GL, i.e., s ≤ t does not hold for all lattices. Using GL with

subformula property but without polarity restriction yields the following set

of sequents:

First we derive the logical axioms 0.-6. Note that only axioms A ` A are

interesting where A is a subformula of the end sequent.

0. a ` a

1. b ` b

2. c ` c

3. a ∧ b ` a ∧ b

4. b ∨ c ` b ∨ c

5. (a ∧ b) ∨ c ` (a ∧ b) ∨ c

6. a ∧ (b ∨ c) ` a ∧ (b ∨ c)

From 0.-6. we derive the following sequents by applying the inference rules

of GL.

7. a ∧ b ` a from 0 using rule ∧l1

18

8. a ∧ (b ∨ c) ` a from 0 using rule ∧l1

9. a ∧ b ` b from 1 using rule ∧l2

10. b ` b ∨ c from 1 using rule ∨r1

11. c ` (a ∧ b) ∨ c from 2 using rule ∨r2

12. c ` b ∨ c from 2 using rule ∨r2

13. a ∧ b ` (a ∧ b) ∨ c from 3 using rule ∨r1

14. a ∧ (b ∨ c) ` b ∨ c from 4 using rule ∧l2

From 7., 9., 12. and 15. we derive the following sequents by applying the

inference rules of GL.

15. a ∧ b ` b ∨ c from 9 using rule ∨r1

16. (a ∧ b) ∨ c ` b ∨ c from 12 together with 15 using binary rule ∨l

17. a ∧ b ` a ∧ (b ∨ c) from 15 together with 7 using binary rule ∧r

After the generation of 0. – 17., no more new sequents are derivable and the

proof-search terminates. As it can easily be seen, a ∧ (b ∨ c) ` (a ∧ b) ∨ c
is not derived, which means that a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c does not hold for

every lattice. The sequents derived above with ` interpreted as ≤ give us a

poset. Figure 2.1 represent the poset as Hasse-Diagram with reflexivity and

transitivity omitted.

Figure 2.1 illustrates the drawback of our approach. Our approach de-

rives a poset with the desired property that s ≤ t does not hold, but as can

be seen, it is only a poset not a lattice! Recall that a lattice is a poset where

every two-element subset has a supremum and an infimum. In this example,

a∧ b and c have no infimum and a and b∨ c have no supremum. This means

that we have only a ”partial lattice”, which we have to extend somehow to a

19

a ∧ b

a ∧ (b ∨ c)

a b c

(a ∧ b) ∨ c

b ∨ c

6

@
@

@
@I

�
�

�
��

�
�

�
��

@
@

@
@I

6

Figure 2.1: The Poset generated in Example 2.1.

lattice, without violating the order relation i.e., we have to find a homomor-

phism.

We will solve this problem by artificially introducing two elements > and

⊥, which results in a bounded poset. A bounded poset is always a lat-

tice. Assume that we have greatest elements o1, . . . , ok and smallest elements

u1, . . . , ul with k, l > 1 in a poset generated by the procedure above. We add

an artificial greatest element > and an artificial smallest element ⊥ to the

poset together with oi ≤ >(1 < i ≤ k) and ⊥ ≤ uj(1 < j ≤ l). The resulting

poset is a bounded lattice where the old order relation between two terms

u, v with u, v /∈ {>,⊥} is preserved. The preservation of the order relation

is obvious, because we only add some ≤-relations which have no influence on

the already existing relations. This bounded lattice is the counter lattice we

20

⊥

a ∧ b

a ∧ (b ∨ c)

a b c

(a ∧ b) ∨ c

b ∨ c

>

XXXXXXXXXXXy

�
�
�
�
�
�
�
�
�
�
�
�
�
���

6

@
@

@
@I

�
�

�
��

�
�

�
��

@
@

@
@I

6

�
�
�
�
�
�
�
�
�
�
�
�
�
���

PPPPPPPPPPPPi

Figure 2.2: The poset generated in Example 2.1 with >,⊥-introduction.

have been looking for. Figure 2.2 shows the extended poset of Example 2.1.

We will further on call this extension method >,⊥-introduction.

The >,⊥-introduction has one drawback: it increases the size of the

counter lattice, which makes it less convincing for a human user. This prob-

lem and its solutions will be discussed more detailed in Chapter 4.

21

2.3.2 Counter Ortholattices

In [1] Egly proves that GOL is sufficient for building an orthoposet as above,

which can be extended with >,⊥-introduction as above to a counter or-

tholattice. Recall that for proof-search, the strict subformula property is

admissible. But for the counter ortholattice generation it is not. The polar-

ity restriction must be omitted as in GL. For counter ortholattices we have

to introduce weaker forms of the subformula property. In the following we

will define the weak subformula property and the highly weakened subformula

property. The reason for this can be depicted by the following problem:

Given some orthologic formula f . Not necessarily all subformulas x of f

also appear as complemented subformula ¬x. This means there might ex-

ist some subformula x for which ¬x is not a subformula of f . Assume this

x appears in some sequents, then we know its relations to other elements

of the counter ortholattice we are trying to generate. But because of the

subformula property ¬x never appears in a sequent we will derive. If we

never derive a sequent with ¬x, we know nothing about its relation to other

elements. Recall that for an ortholattice it must always hold that whenever

x ≤ y holds then ¬y ≤ ¬x must hold. This means if we just translate the

derived sequents as for GL, we will have some relations x ≤ y in our counter

lattice, but not ¬y ≤ ¬x. Thus, we would not have an ortholattice.

That is why we have to extend the set of allowed subformulas to appear in

sequents. Let sf(x) denote the set of all subformula of a formula x. Note

that we skip all polarity considerations for the counter ortholattice genera-

tion. Let s ` t be the non-provable input sequent for which we want to build

a counter ortholattice. We define the set Σ to be sf(s) ∪ sf(t). The set Σ is

the set of possible subformulas, that might appear in a sequent during the

proof-search using the subformula property without polarity restriction. We

now have to extend this set in order to generate a counter ortholattice. It

is important to note that we want to extend this set as minimal as possible,

because the efficiency of the forward proof-search depends on the restric-

22

tion of this set. We extend Σ to the set Θ(Σ) which is defined as follows:

Θ(Σ) = Σ ∪ {¬x,¬¬x|x ∈ Σ}. The set Θ(Σ) defines us the set of allowed

subformulas to appear in sequents for the highly weakened subformula prop-

erty. Recall that for ortholattices ¬¬x = x holds. Thus, extending Σ by

more than ¬¬x would be senseless, it would only decrease the efficiency of

the proof-search. An important question is, do we even need the double

negation? To answer this question we need some definitions first.

We define the set Ψ(Σ) as Ψ(Σ) = Σ∪{¬x|x ∈ Σ}. This means we extend S

only by adding the negated form of each subformula. The set Ψ(Σ) defines us

the set of allowed subformulas to appear in sequents for the weak subformula

property. Recall the definition of a saturation σ(X) on page 10, where the

set X determines the formulas that are allowed to occur in the sequents. Let

ε(Y) be a function defined on a set Y of sequents, which replaces all occur-

rences of a formula ¬¬x by x. For example applying ε({¬¬x ` y}) results

in {x ` y}.
With the above definitions the following lemma expresses that we only need

the weak subformula property. This is because all sequents ¬¬x ` y derived

using the highly weakened subformula property, are already derived as x ` y
by the weak subformula property.

Lemma 2.1 {σ(Ψ(Σ))} = ε({σ(Θ(Σ))}).

Proof. The only way to derive ¬¬x is to derive it from x using the negation

rules. Thus, when generating the saturation ¬¬x is first derived from the

axiom x ` x in the sequents ¬¬x ` x and x ` ¬¬x. But no rules can be

applied on ¬¬x, because neither ¬¬x ∨ a nor ¬¬x ∧ a are in Θ(Σ). If they

are, then they are also in Σ, because Θ(Σ) is constructed from Σ by only

adding negations, not ∨ or ∧. This means all sequents that are derivable

from ¬¬x ` x and x ` ¬¬x are only derived by rule application on x. But

these rule applications can also be applied on x ` x. Thus, for every sequent

¬¬x,M ` N also x,M ` N is derived. This also holds for the acut rule. 2

23

There is also another argument why the highly weakened subformula prop-

erty is not required. If we allow ¬¬x to appear in sequents, then ¬¬x ` x and

x ` ¬¬x are always derived. But if we interpret this sequents as ≤-relations,

we get the equivalence of x and ¬¬x. Thus, when we check for relational

equivalences, x and ¬¬x are members of the same equivalence class and thus,

only one prototype is used for both of them.

Again as in GL the idea for generating the counter ortholattice is gen-

erating a saturation with GOL and then translate it into ≤-expressions.

Recall GOL is only restricted to 2-restricted sequents, which are not nec-

essarily 1-1-sequents. This means we can encounter sequents of the form

(` a, b), (a, b `), (a `) and (` a). Thus just translating the sequents with `
interpreted as ≤ does not work. Here the previously introduced translation

δ1−1 helps us. It allows us to translate arbitrary 2-restricted sequents into

1-1-c-sequents. This means before we want to interpret the sequents of the

saturation as ≤-expressions, we first have to apply δ1−1 on all sequents, such

that all sequents of the saturation are 1-1-c-sequents. Such 1-1-c-sequent can

be translated into ≤-expressions. We define the following translation τ(s)

which translates a sequent into a ≤-relation.

τ(s) =

x ≤ y if s = x ` y;
x ≤ ¬x if s = x ` xc;

¬y ≤ y if s = yc ` y;
x ≤ ¬y if s = x ` yc;

¬x ≤ y if s = xc ` y;

With the above we would already be able to generate our counter ortho-

lattice, but recall that we stated that the subformula property is important

for the efficiency of GOL. Thus the weak subformula property might lead to

a decrease in speed, because more subformulas and therefore more possible

sequents must be considered for building the saturation. This problem could

be avoided, if we find a way to efficiently translate a GOL-saturation with

subformula restriction into a GOL-saturation with weak subformula restric-

tion, such that the ≤-expressions defined by both saturations are equal. This

24

is done by adding the sequent ¬y ` ¬x for every sequent x ` y. We define

the following extension γ(S) which extends a saturation S as follows:

γ(S) = S ∪ {¬x ` ¬y|y ` x ∈ S}.

Theorem 2.3 Let f be an invalid orthologic formula. Let A = {σ(Ψ(Σ))} be

the set of sequents of the saturation generated by GOL with weak subformula

restriction for f and let B = {σ(Σ)} be the set of sequents of the saturation

generated by GOL with subformula restriction for f as above. Let S be the

set of 1-1-c sequents that results from applying δ1−1 on all sequents of A

and let T be the set of 1-1-c sequents that results from applying δ1−1 on all

sequents of B. Let U be the set of sequents that results from applying γ on

all sequents of T . Let R be the set of ≤-relations that results from applying

τ on all sequents of S and let V be the set of ≤-relations that results from

applying τ on all sequents of U , then R = V holds.

Proof. Obviously R contains at least the ≤-expressions of V because B ⊆ A

holds. We proof the other direction by showing for all cases of sequents s

with s ∈ A and s /∈ B that the ≤-relations that result from s in R, are also

in V .

1: s = ¬x ` ¬y with ¬x,¬y /∈ Σ but x, y ∈ Σ and ¬x,¬y ∈ Ψ(Σ). The

sequent s results in {(¬x ≤ ¬y)} for R. Because x, y are in Σ, all

relations that hold for x and y must be derived. Recall that for all

ortholattices must hold that if ¬x ≤ ¬y holds than also y ≤ x must

hold, thus y ≤ x must also be in R. This means that the sequent y ` x
must occur in A. But recall that x, y are in Σ, thus the sequent y ` x
must also occur in B. Therefor it is in T and when applying γ on T

we add ¬x ` ¬y to U . Applying τ on this sequent results in ¬x ≤ ¬y
for V .

2: s = ¬x ` y with ¬x /∈ Σ but x, y ∈ Σ. The sequent s results in

{(¬x ≤ y)} for R. If ¬x ` y is in A then also ` x, y must be in A,

25

otherwise ¬x ` y would not have been derivable. But then ` x, y is

also in B. Applying δ1−1(` x, y) results in the 1-1-c-sequents xc ` y

and yc ` x. The application of γ has no effect, but τ(xc ` y) results in

{(¬x ≤ y)}.

3: x ` ¬y with ¬y /∈ Σ but x, y ∈ Σ. This is analogous to case 2.

4: ¬x, y ` with ¬x /∈ Σ but x, y ∈ Σ. Applying δ1−1(¬x ` y) results in

the 1-1-c-sequents {(y ` ¬xc), (¬x ` yc)}. Applying τ on them results

in {(y ≤ ¬¬x), (¬x ≤ ¬y)}. But if ¬x is not in Σ then ¬¬x is even not

in Ψ. This means that s results only in {(¬x ≤ ¬y)} for R. If ¬x, y `
is in A then also y ` x is in A otherwise ¬x, y ` would not have been

derivable. But this means that y ` x is also in B and thus in T . It is

easy to see that when applying γ on T , {(¬x ` ¬y)} is added to U and

thus {(¬x ≤ ¬y)} is in V .

5: ` ¬x, y with ¬x /∈ Σ but x, y ∈ Σ. This is analogous to case 4. 2

To illustrate the generation of a counter ortholattice we give an example.

Example 2.2 Given a sequent ` s with s = (a ∧ b) ∧ ¬(a ∨ b), ` s is not

provable. We derive the following sequents using GOL in forward search with

subformula restriction (logical axioms of the form x ` x are omitted):

1. a ∧ b ` a

2. a ` a ∨ b

3. a ∧ b ` b

4. b ` a ∨ b

5. ` ¬(a ∨ b), a ∨ b

6. ¬(a ∨ b), a ∨ b `

26

7. (a ∧ b) ∧ (¬(a ∨ b)) ` a ∧ b

8. (a ∧ b) ∧ (¬(a ∨ b)) ` ¬(a ∨ b)

9. (a ∧ b) ∧ (¬(a ∨ b)) ` a

10. a ∧ b ` a ∨ b

11. ¬(a ∨ b), a `

12. (a ∧ b) ∧ (¬(a ∨ b)) ` b

13. ¬(a ∨ b), b `

14. (a ∧ b) ∧ (¬(a ∨ b)), a ∨ b `

15. (a ∧ b) ∧ (¬(a ∨ b)) ` a ∨ b

16. ¬(a ∨ b), a ∧ b `

17. (a ∧ b) ∧ (¬(a ∨ b)), a `

18. (a ∧ b) ∧ (¬(a ∨ b)), b `

19. ¬(a ∨ b), (a ∧ b) ∧ (¬(a ∨ b)) `

20. (a ∧ b) ∧ (¬(a ∨ b)), a ∧ b `

21. (a ∧ b) ∧ (¬(a ∨ b)), (a ∧ b) ∧ (¬(a ∨ b)) `

22. (a ∧ b) ∧ (¬(a ∨ b)) `

We now apply δ1−1 and τ on the sequents (for the rest of the example we

will call this translation). Sequents 5. and 6. yield ¬(a ∨ b) ` ¬(a ∨ b)

which is already an axiom. Note that the other translation ¬¬(a∨b) ` (a∨b)
respectively (a∨b) ` ¬¬(a∨b) gives us the equivalence of ¬¬(a∨b) and (a∨b),
thus after searching for equivalence classes, we will use (a ∨ b) as prototype

for this equivalence class. Thus in the following translations ¬¬(a∨b) will be

replaced by (a∨ b) when building the counter ortholattice. The other sequents

not of the form x ` y are translated to:

27

t11. ¬(a ∨ b) ≤ ¬a ; a ≤ ¬¬(a ∨ b) from 11

t13. ¬(a ∨ b) ≤ ¬b ; b ≤ ¬¬(a ∨ b) from 13

t14. (a ∧ b) ∧ (¬(a ∨ b)) ≤ ¬(a ∨ b) ; a ∨ b ≤ ¬(a ∧ b) ∧ (¬(a ∨ b))) from 14

t16. ¬(a ∨ b) ≤ ¬(a ∧ b) ; a ∧ b ≤ ¬¬(a ∨ b) from 16

t17. (a ∧ b) ∧ (¬(a ∨ b)) ≤ ¬a ; a ≤ ¬((a ∧ b) ∧ (¬(a ∨ b))) from 17

t18. (a ∧ b) ∧ (¬(a ∨ b)) ≤ ¬b ; b ≤ ¬((a ∧ b) ∧ (¬(a ∨ b))) from 18

t19. (a∧ b)∧ (¬(a∨ b)) ≤ ¬¬(a∨ b) ; ¬(a∨ b) ≤ ¬((a∧ b)∧ (¬(a∨ b))) from

19

t20. (a∧ b)∧ (¬(a∨ b)) ≤ ¬(a∧ b) ; a∧ b ≤ ¬((a∧ b)∧ (¬(a∨ b))) from 20

t21. (a ∧ b) ∧ (¬(a ∨ b)) ≤ ¬((a ∧ b) ∧ (¬(a ∨ b))) from 21

Sequent 22. has the same translation as sequent 21. The translation of the

x ` y sequents into ¬y ` ¬x sequents is trivial and we do not write them

down explicitly. Taking all ≤-expressions together, omitting reflexivity and

transitivity yields the orthoposet illustrated as a Hasse-diagram in Figure 2.3.

It is interesting to note that in the above example, a smallest and largest

element already exist and therefore this orthoposet is already an admissible

ortholattice. Also note the symmetry between the elements and their com-

plements, which is typical for ortholattices. As for lattices, in Chapter 4 we

discuss how to reduce the size of the counter ortholattice in Chapter 4.

28

(a ∧ b) ∧ ¬(a ∨ b)

a ∧ b

a b

a ∨ b

¬(a ∨ b)

¬a ¬b

¬(a ∧ b)

¬((a ∧ b) ∧ ¬(a ∨ b))

J
J

J]

�

�

J
J

J]

J
J

J]

�

�

J
JJ]

@
@@I

�
���

�
���

@
@@I

Figure 2.3: The Orthoposet generated in Example 2.2.

29

Chapter 3

Implementation

After discussing the theoretical background of counter lattices in the previous

chapter, this chapter is dedicated to the implementation part. That is the

implementation of a modified GOL version for the generation of counter

(ortho)lattices. This implementation is called CGOL for counter example

GOL. We will first focus on the goals and basic ideas of CGOL. Afterward

we will discuss the details and the important modules CGOL consists of.

The chapter will be concluded with a section about experimental results of

CGOL.

3.1 Goals and Basic Ideas

The main goal is to implement a computer program, which reads arbitrary or-

thologic formulas and≤-expressions of lattice theory and then proves whether

they are valid or invalid. If the result is valid, it shall print the generated

proof. If the formula is invalid, it shall generate a counter lattice (the term

counter lattice respectively lattice will be synonymously used for both pure

lattices and ortholattices). The counter example should convince a human

user that the formula does not hold at least in this lattice.

30

Due to the requirement of handling pure lattice ≤-expressions, CGOL reads

the input formula in sequent notation x ` y with x, y being formulas where

x can be empty, thus enabling it to handle ≤-expressions for orthologic too,

except for ` x, y and x, y `. Because the syntax and rules of GL are a real

subset of GOL and the possibility of inputing ≤-expressions, CGOL is simul-

taneously a proof system for pure lattice and orthologic.

Efficiency issues are of high priority for an automatic proof system. This is

very important for the choice of the programming language, but portability

issues are also of great importance. CGOL should be portable enough to

run on the three major OS-platforms: Linux/Unix, Windows and Mac OS.

The demand for speed and portability led to the decision to use the pro-

gramming language C, or more precisely, to use the strict ANSI-C standard.

All functionality is implemented using only the standard library functions as

defined in [5] and the open source library popt.lib, which is freely available

for all three major platforms. This library is used to simplify the handling

of command line arguments.

CGOL is a command line program only. A user interface with sophisticated

drawing of lattices is currently under work in the course of a master thesis

of Georg Ziegler [8] at the Knowledge-Based Systems Group at the Vienna

University of Technology. This is also the reason why CGOL is not intended

to draw the counter lattices. It only generates a file with the information

needed for drawing the counter lattice. This file is used as an interface to

Ziegler’s user interface. It has the suffix .lat and the grammar looks as

follows in an EBNF like language:

31

File → “(” (Vertex)* “)” (Formulalist)

Vertex → “(” Index “(” Cover “)” “)”

Index → ((c)? ([0-9])+) || top || bot

Cover → Index (<blank > Index)* || <blank >

Formulalist → Subformula: Index is: Formula Formulalist || ε
Formula → Atom || ”(”Formula Con Formula”)” || ”∼(”Formula”)”

Con → ”&” || ”|”
Atom → ([a-z])+

Because user-interaction is not a requirement, CGOL is always triggered once

with the according command line arguments, makes one run, generates the

output and then terminates execution. This is also the reason why CGOL

does not read an input formula during the runtime through ”stdin”, but only

by reading a file containing the formula. Output is also printed to a file, with

the exception of the proof structure itself, which can also be printed to ”std-

out”.

Due to speed considerations, CGOL can be run in two different modes: First

in ”classical” GOL mode with polarity restriction in forward search, which

is the fastest mode, but which has the drawback that such a run does not

derive enough information for a counter lattice. That is, the ”classical” mode

can only output the proof structure together with the result if the searched

sequent was found or not, that is if the formula was valid or not. If the user

wants a counter lattice, he has to run CGOL in the ”no polarity” mode. Here,

the inferences are made using GOL without polarity restriction in forward

search. For valid formulas, this mode also generates a proof. For invalid for-

mulas, it derives enough information for a counter lattice and automatically

constructs one, printing the information needed to draw the lattice out to a

file designated by the user. In Chapter 4, we will also introduce an extension

mode for CGOL, which allows to reduce the size of the counter lattice gen-

erated in the ”no polarity” run. The suggested procedure for users is: first

32

run CGOL in ”classical” mode on the input formula to quickly test whether

the formula is valid or not. If it is invalid rerun CGOL in ”no polarity”

mode. Although it is slower than ”classical” mode, the ”no polarity” mode

is also polynomial bounded in the worst case. If the counter lattice is to large

to convince the user, it is recommended to use the size reduction extension

which will be introduced in Chapter 4.

The program logic of CGOL is split into three major parts (modules): in-

put, inference and counter lattice. As the name suggests, input is designated

for parsing the input sequent. The parser also checks for the syntactical

correctness of the formula and if it is not syntactically correct, it rejects it

terminating the program. We will introduce the allowed syntax later on.

Input splits the input sequent up in its subformulas such that inference can

then build a lookup data structure. The data structure contains the infor-

mation which subformulas can be generated by a specific subformula using

the operations ¬,∧,∨.

Based on the lookup data structure that is derived from the subformulas

of the input sequent, inference implements the application of GOL. It first

generates the lookup data structure. Then it builds the list of axioms, by

looking up which subformulas occur in both polarities, or in ”no polarity”

mode by just taking all subformulas. The axioms are inserted into a proof

data structure. Working on this proof data structure it goes through the

already generated sequents and applies the rules of GOL with the help of

the lookup data structure from input. If the last sequent has been tried for

generating new sequents and no more new sequent was derivable, the run is

finished and the proof structure is complete. That is, the searched sequent

was not derived, thus the input sequent is invalid. If the searched sequent

is derived during the run, the run finishes and the result is that the input

sequent is valid. In ”classical” mode, we always finish the program now and

output the proof structure, but in ”no polarity” mode, if the input sequent

was invalid, the counter lattice part of CGOL is invoked.

Counter lattice takes the proof structure from inference and builds a data

33

input inference counterlattice

CGOL data structures

avltree charavl

@
@

@
@@

Figure 3.1: The splitting in the different modules of CGOL

structure which stores the ≤-relation. This data structure is realized as an

array of AVL-trees. Each entry in the array is for one element of the lattice

and the elements relations to other elements are stored in the corresponding

AVL-tree. This data structure allows us to quickly search for equivalences.

The relation is given by the derived sequents, but as CGOL is an implemen-

tation of GOL, sequents of the form ` x, ` x, y, x `, x, y ` can be generated.

Those sequents must be translated to GOL-1-1 sequents first and then be

filled into the data structure.

In the data structure, it is easy to find relational equivalences, i.e., if x ≤ y

and y ≤ x holds. Those equivalent subformulas are merged to one equivalence

class. It is also easy to find out in the data structure if a smallest respec-

tively largest element for the lattice already exists. If a smallest respectively

largest element is needed, one is artificially inserted and the counter lattice

is printed to a file in form of a list of its ≤-relations, which is sufficient to

reconstruct the lattice and draw it. In Chapter 4, counter lattice will be

extended to reduce the size of the generated lattice.

In Figure 3.1, the splitting of the program into its modules can easily be

34

seen. Note that additionally to input, inference and counterlattice, there

exist the modules CGOL, avltree, charavl and data structures. The mod-

ule data structures defines the data structures used in the program and the

declarations of the functions which are used as interfaces between the mod-

ules. CGOL contains the main function which is the programs entry point

in C. It also implements the functionality for reading the command line ar-

guments and controls the flow of the program, according to the command

line arguments. Avltree and charavl are the implementations of the well-

known AVL-tree (balanced search tree) data structure, which is used quite

often within the program for fast lookups. AVL-trees have the property that

inserting and searching an element is done in O(dld(n)e), with n the number

of elements in the AVL-tree, which is very fast. What the figure does not

show is that, for compiling CGOL, the open source library popt.lib and the

ANSI-C standard libraries are needed.

3.2 Overview on the Implementation Details

In this section, we will take a close look on the implementation and describe

the used algorithms in a detailed way. Algorithms are presented in an intu-

itive pseudo-code with a touch of C-style. In the implementation, the logical

symbols of ∧,∨,¬ are substituted by &,|,~, because unlike ∧,∨,¬ they can

be found on a standard keyboard, which makes programming far more easier.

3.2.1 Module Input

The module input is just a simple parser, that constructs a formula tree out

of the input sequent. From this formula tree it generates a list of subformulas,

which the module inference requires. We will only discuss the data structure

for the list of subformulas, because it is important for the next section. We

35

will also show the allowed syntax for the input sequent.

The subformula list is a single-chained list. Each element has a pointer to

its successor element. It also has a numeric value as a unique key, which will

be used as unique identifier for this subformula throughout the whole run

of CGOL. To understand how a subformula is represented by the element,

we have to recall how a subformula looks like. A subformula is either an

atom, or a topmost binary connective such as ∧, ∨ and ¬. If the topmost

connective is binary it has two subformulas which are the two operands of the

connective. We also have the special case of ¬ which is unary, thus it has one

subformula as its operand. Thus, the element of the subformula list stores

the topmost connective of the subformula and two pointers which point at

the subformulas which are the operands of the connective. If the connective

is ¬ one of the pointers is NULL. In case of an atom, both pointers are NULL,

but the string representation of the atom is stored.

The syntax for the input sequent is firmly restricted:

Input Sequent → Formula “<” Formula

Formula → “(”Atom“)” ‖ “∼(”Formula“)” ‖
“&(”Formula“,”Formula“)” ‖
“|(”Formula“,”Formula“)”

Atom → ([a-z])+

The formula in front of the ”<” is the antecedent and the other formula

the succedent of the input sequent. Note that the parenthesises are manda-

tory.

3.2.2 Module Inference

The module inference requires a list of subformulas as constructed by the

module input and builds a lookup data structure that contains all information

that is needed for generating a GOL saturation as defined in Chapter 2. For

the module inference we need two data structures, one for representing the

36

saturation and one for fast lookups. We first describe the data structure

for the saturation. The saturation is internally represented as a proof data

structure, which consists of a single chained list of levels of inference. We

define the level of an inference as follows:

1. Let the sequent S be an axiom. Then level(S) = 0.

2. If S is a sequent directly derived from a sequent T then level(S) =

level(T) + 1.

3. If S is a sequent derived from the sequents T and U with a binary rule,

then level(S) = max(level(T), level(U)) + 1.

Every level of inference contains a single chained list of sequents which were

generated from sequents of the previous level and a pointer on the next level

of inference. Note that we keep track of generated sequents in a lookup

AVL-tree where we can quickly check if a sequent already exists. If a sequent

already exists, it is not generated again. This means that every sequent

appears uniquely in the proof structure. A sequent itself consists of two

subformula and their polarity i.e., on which side of the ` they appear and

a pointer on the next sequent in the list. We will call this next sequent the

successor-sequent. Recall that one subformula might be empty. The sequent

also contains a unique identifier and information about the rule that was

applied to generate it and from which other sequent it was derived. This

information is necessary for printing a detailed proof for the user, such that

he can check if the proof really was correct. Building the saturation is done

using the following simple forward search algorithm:

37

saturate(lookups)

{

build axioms(lookups);

loop

{

weakening(actual-sequent, lookups);

alpha(actual-sequent, lookups);

negation(actual-sequent, lookups);

beta(actual-sequent, lookups);

actual-sequent = successor-sequent;

} while(actual-sequent has a successor-sequent)

}

Although the sequents are not in one list, but a number of lists, i.e., for each

level of inference there is one, it is possible to iterate through the sequents,

as if they are in a single list. This is possible because the levels are ordered

and every newly generated sequent is inserted in the next higher level as

the current one and in the level always on the last free position. So when

the proof is traversed level-wise in the proper order, it holds that a sequent

generated later always appears after an earlier generated one. The termi-

nation of the algorithm is obvious. Every sequent is generated only once,

because we keep track of the generated sequents. Because of this, we are

able to prevent further generations. Every sequent is only used once to infer

all directly derivable new sequents from it, because we run through the list

of sequents only once. Note that the sequent can be reused for β-rules, but

this does not mean that we directly derive new sequents from it. It means

that we might need the existence of the sequent as justification to directly

derive new sequents from another sequent by using a β-rule. For 2-restricted

sequents the number of sequents that are possible to be generated is O(n2),

see [2]. This means that once all possible sequents are generated, no new

sequents are generated that is inserted in the list and thus the end of the list

will be reached sometime, thus terminating the loop. Later on we will see

38

that the required time is polynomially bounded in the worst case.

The second important data structure are the lookup AVL-trees. To imple-

ment the lookups efficiently, we require a data structure where the lookup and

insert operations are very fast, because they are needed very often. The data

structure is built only once and there is no need for the deletion of single el-

ements or merging two data structures together. The well-known AVL-trees,

also known as balanced search trees, have these properties. Lookup and in-

sertion of a new element are done in logarithmic time. The great drawback

of AVL-trees is the deletion of an element, but this operation is not required

for our purposes. A node in the AVL-tree has a pointer to its parent node

and one pointer for each of its two child nodes. It also has a numerical value

as its unique key. The node also contains a ”void ” pointer to point on some

data that is to be stored under its key, we will call this pointer the ”data

pointer”. The data structure this pointer points at depends on the purpose

we use AVL-tree for. For the lookups the inference rules of the module in-

ference requires, the data structure is a list of numeric values.

The implementation of the inference rules is done as follows. We build one

AVL-tree for every connective i.e., one for ∧, one for ∨ and one for ¬. In a

node of an AVL-tree, we store the key of a subformula as the key of the node.

Then we let the data pointer point at a list of the keys of all subformulas

that are derivable from this one subformula by using the connective for which

the AVL-tree stands for, i.e., if a node in the ∧-AVL says the key is x and

the list is {y, z}, then read it as: ”Subformulas y and z can be derived from

subformula x using connective ∧”. But for β-rules, we need one more infor-

mation, namely if the second sequent exists. This information is contained

in the AVL-tree in which we keep track of the generated sequents.

The application of inference rules is the core of CGOL and happens very

often. Because of this, it is of greatest importance to implement them very

efficiently by using an important property of GOL, the subformula property.

Recall that we showed in Chapter 2 that we can keep the subformula property

for the counter lattice, but we have to add certain sequents. Which sequents

39

have to be added was already explained in detail in Chapter 2. Recall that

CGOL has a polarity restricted mode and a no polarity restricted mode. In

polarity restricted mode as well as in no polarity restricted mode, every for-

mula appearing in any sequent at any time, is restricted to be a subformula

of one of the possible two formulas of the input sequent. Furthermore every

subformula is either an atom, or the result of an application of ∧ respectively

∨ on two other subformulas or the application of ¬ on one subformula. Now

the inference rules, except for the structural rule of weakening, are just the

application of one of the above connectives on one subformula, for binary

connectives introducing another subformula, to generate a new subformula.

This leads us to the following idea illustrated on a little example:

Given a sequent a ` N and an input sequent s ` t we want to prove. We

want to apply the inference rule ∧l on a. This is done by looking into the set

of all allowed subformulas and find the set S with S = {(a ∧ x)|(a ∧ x), x ∈
sf(s) ∪ sf(t)}. For every element of S, we build a new sequent with x replaced

by the element from S.

The other α-rule ∨r is implemented in exactly the same way but on a sequent

N ` a and of course using the ∨ operator. It is also easy to extend this idea

to the negation- and the β-rules, but β-rules are binary rules and require

a second sequent to be applied. This means for example that, if we try to

apply ∨l on a sequent a ` N and we found in our subformulas that it would

be possible to build the sequent a ∨ b ` N out of it, we first have to check

that the sequent b ` N already exists, otherwise the β-rule is not applicable.

Recall that in Chapter 2 we stated that for GOL the subformula property

holds in a strict sense. We called this the polarity restriction. For a ”classical”

run we want to use this restriction for speeding up our inferences. We do

this by using more AVL-trees. Like the information of the connective, which

was stored as meta-information in the AVL-tree, we also store information

about the polarity as meta-information in the AVL-trees. This is done by

splitting the AVL-tree for every connective into two AVL-trees, one for the

40

connective in negative polarity and one for the same connective in positive

polarity. Now if we want to apply ∧l, we only look in the AVL-tree labeled

as connective ∧ with negative polarity.

There is one question left open, how do we fill this AVL-trees with data?

The parsing of the input formula returns a list of all subformulas, where each

subformula A has pointers on all subformulas B, where A appears as one

operand of the upper most connective of B, i.e., B = A ∧ C or B = A ∨ C
or B = ¬A. Filling the AVL-trees is quite easy with this data structure:

fillLookups(subformulas)

{

go through list of subformulas

{

go through list of pointers

switch(operator of the pointed at subformula)

{

case: not

insertInAvlTree(Key of actual subformula,

key of pointed at subformula,

not-AVL-tree);

case: and

analogous but and-AVL-tree

case: or

analogous but or-AVL-tree

}

}

}

In the list of subformulas, the polarity is also known. Thus, it is easy to take

care of the polarity by just inserting a conditional statement for the polarity

in the above algorithm.

After the logical rules, we discuss the implementation of the structural rules

41

of GOL, i.e., weakening. It is quite easy to implement it. Weakening in

forward search only appears if one of the formulas in a sequent gets empty.

This means we consider sequents of the form x ` and ` x. The set S of

sequents that is derivable from a sequent x ` and input sequent s ` t us-

ing weakening is S = {x ` y | y ∈ sf(s) ∪ sf(t)}. For ` x, S = {y ` x |
y ∈ sf(s) ∪ sf(t)}. Of course, in ”classical” mode, we restrict the set to the

corresponding polarity. For the implementation, this means that whenever

we encounter a sequent where one formula is empty (i.e., the corresponding

pointer points to NULL), we go through the list of subformulas and build a

new sequent for every element of the list of subformulas.

Although the contraction is a rule that is not required in GOL, we need to

implement it. We need it, because GOL operates on sets of formulas. We

use contraction to simulate this set property. It is handled whenever a new

sequent was generated by one of the above rules. Contraction checks if both

formulas of the new sequent are identical. If they are, one of the formulas

can be omitted i.e., its pointer is set to NULL.

3.2.3 Module Counterlattice

For the module counterlattice we only require AVL-trees and for each a nu-

merical counter of the number of its elements. The AVL-trees are used be-

cause insertion and lookup are needed very often, whilst we do not need to

delete single elements. The AVL-trees in the module counterlattice are iden-

tical to the lookup AVL-trees of module inference but they do not need the

data pointer. The key of each node is the data they store. How we use this

AVL-trees and what we store in them will be explained in the following.

The module counterlattice is the extension of CGOL for the generation of

the counter lattice for a non-provable input formula f . This part is only

used if the input sequent is non-provable and CGOL was used in no polarity

restricted mode. The latter is necessary for acquiring enough information

42

about the relations that hold for the set S of all subformulas of the input

sequent s ` t, i.e., S = sf(s) ∪ sf(t). Recall from Chapter 2 that GOL in

forward search without polarity restriction and the application of Theorem

2.3 finds those ≤-relations that are needed for generating a counter lattice.

The information about the ≤-relations is contained in the sequents, which

are derived during the proof-search. Recall the application of δ1−1, γ and τ

as defined in Chapter 2 on the set of sequents yielded these ≤-relations. We

will further on call this translation. The details about the translation were

discussed in Chapter 2.

The module counterlattice requires a saturation as generated by the module

inference and translates it into a relational structure of ≤-expressions with

the above mentioned translation. This is done by going through all generated

sequents and applying δ1−1, γ and τ on them. Afterward relational equiva-

lences in the relational structure are searched and handled. Two elements

are equivalent if x ≤ y and y ≤ x holds. This equivalence relation automat-

ically defines equivalence classes on the elements of the lattice. For such an

equivalence class we do not need to store all elements, but simply represent

it with one element as its prototype. The elements of an equivalence class

always have the same ≤-relations regarding all other elements of the lattice.

We keep a list of all equivalences we found in form of an AVL-tree. For big

formulas the number of equivalences can be quite considerable, that is why

the AVL-tree is used.

When all equivalences are handled, we have a poset where s ≤ t does not

hold, i.e., it holds that t ≤ s or s and t are unrelated. In Chapter 2, we al-

ready discussed that this poset is not necessarily a lattice. If the poset is not

a lattice, we extend it to a lattice by using the >,⊥-introduction as described

in Chapter 2. This requires that we find all largest and smallest elements in

the poset and introduce for every largest element that it is smaller > and for

every smallest element that it is larger ⊥. After this step, we have the lattice

we were looking for. At the end the lattice is printed in some user friendly

way. Lattices are often represented in human readable form by drawing a

43

Hasse diagram of them. Such a Hasse-Diagram can be constructed out of the

≤-relations. CGOL prints them to a file which some lattice drawing program

could use to print the lattice in a pretty way.

The module counterlattice is built around a data structure that stores the

information about the relational structure. This data structure is an array

with N = (2 ∗ |S|) entries. The indizes we will use for the array range from

1 to N . Every subformula gets a unique number between 1 and |S| such

that the subformula is identifiable by the number. Every orthocomplement

of a subformula I, which is not in sf(f) gets the identifier |S| + i where i is

the identifier of I. We will call such orthocomplements which are not a sub-

formula of f virtual complement whereas we will refer to orthocomplements

which are a subformula of f as real complements. The index of the array is

equivalent to the identifier of the subformulas (and their orthocomplements),

this means, for example, that the relations for subformula 5 can be found in

the array under index 5. We illustrate this by giving the identifiers for the

subformulas of Example 2.2. Recall that the input sequent in Example 2.2

is ` s with s = (a ∧ b) ∧ ¬(a ∨ b).
ID 1 is: a

ID 2 is: b

ID 3 is: a ∨ b
ID 4 is: a ∧ b
ID 5 is: ¬(a ∨ b)
ID 6 is: (a ∧ b) ∧ (¬(a ∨ b))
Every entry of the array contains two pointers where each of them points to

the root of an AVL-tree and a counter of elements for each AVL-tree. Those

AVL-trees store the relations of the subformula which corresponds to the

index of the entry in the array. One AVL-tree stores the ≤-relation and the

other the ≥-relation. Note the ≥-relations are given by the ≤-relations, and

thus would be redundant, but storing them explicitly helps increasing the

speed of some operations. The drawback of this redundancy is the double

need for memory.

44

A problem we have is the question how to find out which subformulas might

need a virtual complement and which already have a real complement. This

information is already inherent in the AVL-trees which were utilized for the

lookup-operations during the generation of the saturation in the inference

module, to be more precise in the AVL-tree for the ¬-connective. It stores

which subformula is the negation of another subformula. So it only requires

a simple lookup to find out if a given subformula has a real complement. The

above discussion leads us to a function getNeg:

getNeg(formula)

{

if(formula in negation AVL-tree)

{

return corresponding identifier;

}

else

{

return identifier(formula)+|S|;

}

}

45

The algorithm for building the counter lattice looks as follows:

buildCounterLattice(saturation)

{

go through sequents in saturation

{

switch(sequent scheme)

{

case a |- b:

insert b in ’<=’-avl of a;

insert a in ’>=’-avl of b;

case |- a,b:

insert b in ’<=’-avl of getNeg(a);

insert getNeg(a) in ’>=’-avl of b;

insert a in ’<=’-avl of getNeg(b);

insert getNeg(b) in ’>=’-avl of a;

case a,b|-:

insert getNeg(a) in ’<=’-avl of b;

insert b in ’>=’-avl of getNeg(a);

insert getNeg(b) in ’<=’-avl of a;

insert a in ’>=’-avl of getNeg(b);

case |-a:

insert a in ’<=’-avl of getNeg(a);

insert getNeg(a) in ’>=’-avl a;

case a|-:

insert getNeg(a) in ’>=’-avl a;

insert a in ’<=’-avl of getNeg(a);

}

}

go through all relations a <= b;

{

insert getNeg(a) in ’<=’-avl of getNeg(b);

46

insert getNeg(b) in ’>=’-avl of getNeg(a);

}

/* handle equivalence */

/* a is the id of the current subformula

t the id of the subformula in the avl */

s = go through relations array

{

t = go through ’<=’-avl of s

{

if(s in ’<=’-avl of t)

{

/* t equivalent to s */

mark t deleted;

insert ’’s = t’’ in avl tree

which stores the equivalences;

}

}

}

}

Note that, whenever we insert a new relation, we perform an implicit check

whether the relation already exists. Also reflexivity is checked and ignored,

i.e., that a ≤ a holds is trivial and does not need to be saved or output for

the user.

With this data structure filled, the only topic left to deal with is to check if the

>,⊥-introduction is needed. If this is the case, perform >,⊥-introduction

and then print out the list of ≤-relations for the user.

For the >,⊥-introduction, it is necessary to find the set of smallest, respec-

tively largest elements. A subformula y is element of the smallest elements

set Y , if the counter for the ≥-AVL-tree is 0 and the counter for the ≤-AVL-

tree is greater 0. This means that there is no subformula that is smaller

(with respect to the ≤-relation) than y but there are subformulas that are

47

smaller than y and y is not set equivalent to another subformula. If it would

be set equivalent to another subformula both counters would have been set

to 0. An element x of the set of largest elements X is defined similar but the

counters exchanged. If |X| = 1, then no artificial >-element is needed and if

|Y | = 1 no artificial ⊥-element is needed. In Figure 2.3 for Example 2.2, we

see that the subformula (a ∧ b) ∧ (¬(a ∨ b)) which has the identifier 6 in the

list on page 44, is such a smallest element. The element ¬(a∧ b)∧ (¬(a∨ b))
which has the identifier c6 in the list on page 44, is such a largest element.

Note that the ”c” in front of an identifier like ”c6” stands for the c-indicator

as in a 1-1-c-sequent. This c-indicator results from the translation to 1-1-

c-sequents, which was necessary due to the reasons explained in Chapter 2.

On a semantical level we can interpret this ”c” as a negation sign in front of

the formula. We have now built a lattice out of the poset we had before and

this lattice is our searched counter lattice.

To output the lattice in a user-friendly way, we build the list of ≤-relations of

the lattice and print it to a file. This is done quite easily with the following

algorithm:

printToFile(M[][])

{

for(i = 1; i < N; ++i)

{

print(subformulaID(i), "(");

j = go through <-avl

{

print(subformulaID(j), ",");

}

print(")"\newline);

}

}

For our Example 2.2, this yields the following output:

48

(

(1 (3 c6))

(2 (3 c6))

(3 (c6))

(4 (1 2 3 c6))

(5 (c1 c2 c4 c6))

(6 (1 2 3 4 5 c1 c2 c4 c6))

(c1 (c4 c6))

(c2 (c4 c6))

(c4 (c6))

(c6 ())

)

It is quite easy to understand this syntax. The list of relations is a list,

enclosed with parenthesis, where each entry is an element together with a

list, also in parenthesis, of those elements which are greater than it. The

numbers are the identifiers of the subformulas which are given in the list on

page 44. The Figure 2.3 shows the relations between the subformulas. For

example, in the above, 1 is smaller as 3 and c6, or 4 is smaller as 1, 2, 3 and c6.

Recall that the ”c” stands for the c-indicator of 1-1-c-sequents. The largest

element is the one with an empty list, in our case c6. With this list, it is

possible to construct a Hasse-diagram that shows the lattice we constructed,

but the drawing of such a Hasse-diagram is not subject of this work. For

details on drawing lattices with this representation as Hasse-diagrams see

[8].

3.3 Runtime Considerations

In this section, we will focus on an approximation of the worst case runtime

the important parts of CGOL have. Important for the approximations are

the number of sequents that can be generated PSN and the number of sub-

49

formulas SFN. An approximation for PSN is given in [2] with O(SFN)7, the

important fact about it is that it is polynomial. PSN is approximated with

a great value, because it also reflects, that a sequent is considered more than

once to be derived, because a sequent can be derived from more than one

sequent. Note that most possible sequents are not derivable and thus most

sequents are not even considered to be derived. Because the above estima-

tions are based on SFN, we want to show that SFN is polynomial in the

number of connectives of the input formula. For SFN the worst case is that

every connective is a binary one (∧ or ∨).

Lemma 3.1 Let CON(f) be the number of connectives in a formula f . The

number of subformulas SFN(f) is less than (2∗CON(f)) + 1.

Proof. We show inductively that SFN(f) ≤ (2∗CON(f)) + 1 in the worst

case:

Throughout the whole proof ∧ stands also for ∨. It is regardless for the proof

which operator is used as long it is a binary one, because a binary connective

is the worst case.

Base case:

Consider an atomic formula where CON(f) = 0. Obviously an atomic for-

mula has exactly 1 subformula. This is the same as 2 ∗ (0) + 1 = 1.

Induction hypothesis: Suppose SFN(f) ≤ (2 ∗ m) + 1 holds for all m ≤ n

where m is the number of connectives of the formula f .

Induction step:

We now can assume that for every formula with n or less connectives the

induction hypothesis SFN(f) = (2∗n)+1 holds. We now show that this also

holds for the case of formula F with n + 1 connectives ,i.e., that SFN(F) =

2 ∗ (n+ 1) + 1 = 2 ∗ n+ 3. Consider some formula X with c connectives and

another formula Y with d connectives, such that c+d = n holds. We connect

X and Y using the connective ∧ such that a new formula F is generated with

c+d+1 = n+1 connectives. We now have to show that SFN(F) ≤ 2∗n+3.

Applying the induction hypothesis on X yields that SFN(X) ≤ 2 ∗ c+ 1 and

50

applying the induction hypothesis on Y yields that SFN(Y) ≤ 2∗d+1. F has

as subformulas all subformulas of X and Y and additionally {X ∧Y }. Thus,

SFN(F) = SFN(X)+ SFN(Y)+1 ≤ (2∗c+1)+(2∗d+1)+1 = c+d+c+d+3.

Recall that c+ d = n, thus c+ d+ c+ d+ 3 = n+ n+ 3 = 2 ∗ n+ 3. Hence,

SFN(F) ≤ 2 ∗ n+ 3. 2

The above shows that SFN is polynomial with respect to CON. Thus, if we

show that some measure is polynomial with respect to SFN, it is polynomial

with respect to CON too. We consider the runtime of the two most impor-

tant parts of CGOL, the generation of the saturation and the construction

of the counter lattice.

Theorem 3.1 A saturation has a worst case runtime of O(PSN∗(6∗ld(SFN)).

Proof. Every sequent appears exactly once in the saturation we are generat-

ing. It might be derived from many sequents, but we make sure it is derived

only once. Every sequent is used only once to check which new sequents can

be derived from it. Binary rules require ”the help” of a second sequent to

be applicable. This means when we consider the sequent, the binary rule

might not be applicable yet. Let us consider the second required sequent

is derived later on. In this case we do not reconsider the first sequent, but

when we consider what is derivable from the second sequent, the binary rule

must be applicable from the second sequent because it requires the first one

as ”helping” sequent, which already exists. Thus a sequent never needs to

be reconsidered to check whether some new sequents are derivable from it.

For each sequent we look at most once into every AVL-tree for applying the

inference rules. Thus the inference rules are tried to be applied PSN-times.

There are six such AVL-trees and a lookup in one is done in the ld of its size.

The size of one AVL-tree is maximally all subformulas, that means a lookup

needs at most dld(SFN)e. The resulting runtime is O(PSN∗(6 ∗ ld(SFN)). 2

51

Theorem 3.2 The worst case runtime of the counter lattice generation is

O((ld(SFN) ∗ (SFN)2) + ((PSN) ∗ ld(SFN))).

Proof. Filling the data structure for the relations takes two insert operations

per generated sequent (x ≤ y and ¬y ≤ ¬x), means totally 2∗PSN insert

operations. Every insert operation consists of inserting the relation into two

AVL-trees. An insert into an AVL-tree is bounded by O(dld(SFN)e). Thus,

we have a total bound for filling the data structure of O(2 ∗ (2 ∗ (PSN) ∗
ld(SFN))). For handling the equivalences, the relations have to be com-

pletely searched. Together with their complements, there are 2∗SFN entries

in the array with possibly 2∗SFN entries in the AVL-tree, thus (2∗SFN)2

times a check for equivalence has to be done. Every check requires a lookup

in an AVL-tree with is done in O(dld(2∗SFN)e). The search for the >,⊥-list

needs only one check of the counter for every entry of the array, thus 2∗SFN.

Printing the relations requires one full run through the entire relations, thus

adding another (2∗SFN)2. 2

The important property about all these approximations is that every

expression is polynomial, thus CGOL is polynomially bounded in the worst

case!

3.4 Experimental Results

The results for this section were gathered from a test on formulas from the

literature by McCune in [7] and on 15 randomly generated formulas. The

formulas of McCune are three equations E1, E2 and E3 that arose from work

on quantum logic by Norman Megill. Megill asked McCune if these equations

are provable in orthologic, because he knew that they hold in orthomodular

lattices, but he did not know if they hold in ortholattices. In [7] McCune

shows his results he achieved on this equations using MACE and EQP. The

52

formula E1 is invalid whilst E2 and E3 are valid. For formula E2 he found a

proof within 4 seconds and for E3 within 22 hours. This shows the need for a

fast automatic deduction system for orthologic. The comparison with CGOL

shows the efficiency of CGOL and how it is able to fill this gap. CGOL re-

quired less than a millisecond for both formulas! Although I have to remark

that the hardware I ran CGOL on is much more faster than the hardware

McCune used. He only used a 180MHz i686 processor with 128 MB RAM.

But even if one considers my hardware 1000 times faster than McCune’s, the

runtime of CGOL would have stayed below one second on his hardware!

Interesting is the comparison of E1. McCune required about 15 minutes us-

ing 84MB to find a counter example. CGOL found a counter example in

less than a millisecond requiring only 25KB of RAM. The only difference is

that McCune’s counter example as Hasse diagram consists only of 10 nodes,

whereas the counter example of CGOL consists of 20 nodes as Hasse dia-

gram. But applying the size reduction of CGOL, which will be introduced in

the next chapter, CGOL finds in 300 milliseconds a similar counter example

with only two nodes more than McCune. Even if you consider the hardware

difference this is still considerably faster and the memory usage is more than

1000 times lower.

The test results on the 15 randomly generated formulas is also very inter-

esting. The random generator we used is a simple program that builds up

a formula tree using a recursive top-down method. At every node in the

tree it randomly decides, whether a connective should be inserted, or the

branch of the tree should end here with an atom. The probability of choos-

ing an atom is increasing with increasing depth of the tree, such that the

growth of the tree will come to an end. The atoms are chosen randomly

from a set of possible atoms. The set was restricted to only 15 distinctive

atoms. This should ensure that the atoms appear frequently in the formula

tree in many different subformulas and prevent the atoms from appearing in

one polarity only. The choice of the connective at every node is also made

randomly. With a probability of 0.4 a conjunction is chosen, with same prob-

53

name atoms ∧ ∨ ¬ subformulas

rf1 214 107 106 60 247

rf2 115 54 60 41 149

rf3 213 98 114 57 257

rf4 494 256 237 92 515

rf5 202 109 92 47 233

rf6 348 168 179 84 388

rf7 1401 713 687 364 1387

rf8 411 186 224 97 446

rf9 970 504 465 239 979

rf10 2315 1177 1137 612 2204

rf11 3928 1932 1995 933 3564

rf12 2132 1044 1087 536 2043

rf13 3636 1851 1784 883 3306

rf14 5173 2492 2680 1289 4683

rf15 6813 3344 3468 1630 6051

Table 3.1: The characteristics of the test formulas.

ability 0.4 a disjunction is chosen. The negation has only a probability of

0.2. The reduced probability for negation should ensure that the formula

tree does not only consist of multiple negations. Table 3.1 shows the charac-

teristics of the test formulas such as the number of atoms, connectives and

subformulas. All tests where performed on a PC with an AMD ATHLON

XP 2200+ cpu, 512MB RAM using MS Windows XP professional version

2002 as operating system. In this section, we will discuss the observations

for the runs of CGOL in ”classical” mode and its performance in searching

counter lattices. ”Classical” mode means the optimized mode where CGOL

is only a decision method for the validity of a formula and does not try to

generate a counter lattice. In this mode CGOL uses the strict subformula

property. The runtime results in classical mode are given in Table 3.2. All

54

name proof sequents sflist-t lookup-t inf-t overall-t

rf1 NO 3090 0.016 0.000 0.000 0.016

rf2 NO 1908 0.000 0.016 0.000 0.016

rf3 NO 1457 0.015 0.000 0.000 0.015

rf4 NO 15840 0.016 0.015 0.078 0.109

rf5 NO 4853 0.000 0.000 0.016 0.016

rf6 NO 6363 0.016 0.000 0.031 0.047

rf7 NO 140558 0.156 0.032 1.062 1.250

rf8 NO 7731 0.016 0.000 0.031 0.470

rf9 NO 61668 0.078 0.016 0.406 0.500

rf10 NO 213905 0.438 0.093 1.672 2.203

rf11 NO 595820 1.797 0.250 5.828 7.891

rf12 NO 228847 0.375 0.078 1.828 2.281

rf13 NO 607667 1.437 0.219 6.047 7.703

rf14 YES 1228121 3.985 0.531 14.312 18.843

rf15 YES 2075696 8.516 1.438 30.156 40.110

Table 3.2: Results for the randomly generated formulas. The prover uses the

classical mode. All times are measured in seconds.

runtimes are measured in seconds. The column ”proof” tells whether a proof

was found or not. ”Sequents” is the number of derived sequents during the

proof attempt, ”sflist-t” is the time used to build the subformula list. The

column ”lookup-t” shows the time used for filling the lookup AVL-trees and

the column ”inf-t” shows the time required for the inference itself. ”Overall-

t” is the overall runtime of the program. The runtime performance is quite

good, even for the largest formula with 6051 subformulas, the run takes only

40 seconds. For formulas with less than 500 subformulas, the run takes less

than 0,1 seconds. The non-linear growth of runtime is obvious and depends

on the non-linear growth of the number of derived sequents. From formula

”rf15” (6051 subformulas) over 2 million sequents are derived, whereas from

55

name ftree-m sflist-m lookup-m existing-m sat-m overall-m

rf1 25811 27900 37917 86520 124000 302148

rf2 14310 16340 22990 53424 76656 183720

rf3 25546 28548 40378 40796 58608 193876

rf4 57187 59580 87886 443520 634176 1282349

rf5 23850 26276 38343 135884 194488 418841

rf6 41287 44176 64131 178164 254944 582702

rf7 167745 163948 256334 3935624 5623288 10146939

rf8 48654 51144 77873 216468 309816 703955

rf9 115434 114636 178854 1726704 2467560 4603188

rf10 277773 263904 438060 5989340 8557440 15526517

rf11 465764 432608 718861 16682960 23834288 42134481

rf12 254347 243772 400511 6407716 9155016 16461362

rf13 432162 401160 696339 17014676 24300048 42852385

rf14 616602 569452 1040947 34387388 49126336 85740725

rf15 808515 739772 1365522 58119488 83029560 144062857

Table 3.3: Results for the randomly generated formulas. The prover uses the

classical mode. The memory consumption is measured in bytes.

”rf4” (515 subformulas) only 15840 are derived. Although ”rf15” has only

12 times more subformulas, 131 times more sequents are derived. This lets

us conclude that the number of derived sequents grows quadratically with the

number of subformulas of the input formula.

The memory usage for ”classical” mode is shown in Table 3.3. Memory usage

is measured in bytes. The column ”ftree-m” shows the memory consumption

for the formula tree, ”sflist-m” for the subformula list and ”lookup-m” for the

lookup AVL-trees. The column ”existing-m” shows the memory consump-

tion for the lookup AVL-tree which contains the already derived sequents,

”sat-m” is the memory consumption for storing the saturation and overall-m

is the overall memory consumption of the program. It is easy to see that the

56

proof structure and the AVL-tree for fast lookup which sequents already ex-

ist use most memory. The growth of memory usage is similar to the growth

of runtime. On the test system, memory was the main restriction for not

using larger test formulas, because with approximately 150MB RAM usage,

”rf15” is just small enough to fit in the RAM, but having a quadratic growth

of memory usage a formula with twice the number of formulas would need

approximately four times more memory. Therefore 600MB RAM would be

needed which is more than the systems memory. This would mean that the

hard disk is used as virtual memory which leads to exorbitant runtime.

We will discuss now the results for the counter lattice generation run. The

results for runtimes are given in Table 3.4 with the measures and columns as

in Table 3.2. The column ”counter-t” shows the time needed to construct the

counter lattice. ”Nodes” is the number of nodes a resulting Hasse Diagram

would have to depict the lattice and ”relations” is the number of ≤-relations

that hold between the elements of the lattice. As expected, the counter

lattice generation mode highly increases the number of derivable sequents

and thus increases memory usage and runtime. Depending on the formula,

between three and five times more sequents were derived. We tested only

non-provable formulas, i.e., test formulas ”rf1” to ”rf13”. We did this be-

cause only for non-provable formulas, counter lattices can be generated. The

time used for inference and the memory for the existing sequents AVL-tree

and proof structure is also three to five times larger, which is no surprise due

to the larger number of derived sequents. The generation of the counter lat-

tice needs most time, but only approximately twice as long as the inference

itself. The motivation for the next chapter, the chapter about size reduction

of counter lattices, can be seen easily from the complexity of the resulting

counter ortholattices. Even for the smallest formula ”rf2”, the counter or-

tholattice has 184 nodes with 1997 relations between them. Although the

number of edges is far smaller because transitivity could be omitted when

drawing a graph that shows the ortholattice, it is easy to figure out that even

this smallest of our test counter ortholattices is too large to be comprehended

57

name sequents nodes relations inf-t counter-t overall-t

rf1 14479 328 5865 0.078 0.110 0.203

rf2 6890 184 1997 0.031 0.047 0.078

rf3 8196 352 6047 0.047 0.046 0.093

rf4 63674 676 23769 0.453 0.703 1.203

rf5 14250 326 6095 0.062 0.125 0.203

rf6 23465 572 17512 0.156 0.188 0.359

rf7 448190 1714 140549 4.516 7.890 12.782

rf8 42333 602 22401 0.281 0.422 0.734

rf9 201343 1294 86939 1.750 2.859 4.797

rf10 933622 2830 371503 10.812 21.016 32.843

rf11 2241683 4538 971315 35.782 79.265 118.781

rf12 931140 2043 308973 10.782 21.312 32.953

rf13 2275452 4192 876621 36.500 83.734 123.484

Table 3.4: Results for the randomly generated formulas. The prover uses the

counter lattice generation mode. All times are measured in seconds.

58

name relations-m lookup-m existing-m sat-m overall-m

rf1 1269952 42381 405412 581336 2352792

rf2 595152 26206 192920 277000 1121928

rf3 701424 44746 229488 330096 1359848

rf4 5589744 97854 1782872 2551272 10138509

rf5 1290288 42487 399000 572096 2353997

rf6 2068768 69619 657020 941928 3822798

rf7 39028744 286398 12549320 17938744 70134683

rf8 3722880 86113 1185324 1697096 6791211

rf9 17388496 196822 5637604 8061672 31514664

rf10 82257264 482332 26141416 37362512 146785201

rf11 200703296 793629 62767124 89695616 354858037

rf12 82856336 445903 26071920 37261872 147134150

rf13 202181888 765795 63712656 91044264 358537925

Table 3.5: Results for the randomly generated formulas. The prover uses

the counter lattice generation mode. The memory consumption measured in

bytes.

by a human user.

The memory usage for the counter lattice generation is given in Table 3.5.

Memory usage is again measured in bytes. The columns are the same as in

Table 3.3, but ”relations-m” shows the memory consumption for storing the

≤ and ≥ relations. As in ”classical” mode, the growth of memory usage is in

counter lattice generation mode similar to the growth of runtime. The size of

the data structure for the relations is quiet considerable, using more memory

as the saturation and the AVL-tree for the already existing sequents lookup.

59

Chapter 4

Reducing the Size of the

Counter Lattice

In the previous chapters, we discussed how a counter lattice can be gen-

erated. We always stated that this counter lattice should be generated to

convince some human user that the inputed formula does not hold in all

(ortho)lattices. The solution we proposed is able to build such a lattice, but

the problem is that it is only usable on small formulas. For a large formula,

the generated counter lattice is too large for a human user to be readable.

Thus, it is necessary to somehow reduce the size of the generated counter

lattice. This chapter is devoted to this topic. We will first discuss some the-

oretic background for the reduction. Afterward a section follows about the

approach to handle this problem, which is implemented in CGOL. Another

section about the results CGOL achieved with this approach will conclude

the chapter.

60

4.1 Theoretical Background for Size Reduc-

tion

In Chapter 2 we discussed the theoretical background that was needed for

generating counter lattices based on GOL, but we have not discussed how we

can extend this to reduce the size of the counter lattice. But first we need

to introduce the use of non-logical axioms for GOL in the following section.

4.1.1 Non-Logical Axioms in GOL

The idea of non-logical axioms in GOL is to assume some sequents as valid

although they are not provable. This means we search a proof under the

assumption that the relations given in the non-logical axioms hold. It is

sufficient for our purposes that we restrict the formulas in the sequents of

the non-logical axioms to be subformulas of the input formula. A simple

example should illustrate this. We could ask: Does the formula a ∨ ¬b hold

for all ortholattices? Without non-logical axioms, this obviously does not

hold. Now we add the non-logical axiom b ` a. The resulting question is

now: Does a∨¬b hold if we assume that b ≤ a holds? This is obviously valid

and we would find a proof in GOL with these non-logical axioms for ` a∨¬b.
For building a saturation in forward search in GOL as we do in CGOL, it is

important to note that using non-logical axioms always leads to saturations

with a greater number of sequents than the saturation without non-logical

axioms. This property is trivial. The use of non-logical axioms does not

effect the generation of the logical axioms, which are generated in the same as

before. Thus, from the same set of logical axioms the proof-search with non-

logical axioms derives the sequents of the proof-search without non-logical

axioms and additionally those sequents derivable from the non-logical axioms.

Non-logical axioms have one drawback: they require the cut rule. Only for

61

GOL with logical axioms there exists a cut-elimination theorem which states

that the cut rule is not needed. But when we use non-logical axioms this cut-

elimination theorem does not hold any longer. The problem can be illustrated

by a very simple example. Let us assume the non-logical axioms a ` b and

b ` c with a, b, c being atomic formulas. Because of the transitivity of the ≤-

relation, a ≤ c must hold, i.e., a ` c must be derivable. The problem is that

GOL without the cut has no rule with which we could derive a ` c from these

non-logical axioms and any given set of logical axioms. With the cut rule the

derivation of a ` c is trivial. Thus if we want to use non-logical axioms we

have to use GOL+cut further on. But recall that we are only interested in

relations that hold on the subformulas of the input formula. Also recall that

we restricted the non-logical axioms to consist only of subformulas of the

input formula. Thus, the non-logical axioms never introduce new formulas,

this means the cut rule is only applied on subformulas of the input formula.

That is why we can restrict the cut to the analytic cut rule. Adding the

acut rule is not a critical drawback for the efficiency. As we will see in the

section on implementation issues, the acut rule can be handled quite easily

and efficiently.

4.1.2 Basic Idea of Reducing the Size of the Counter

Lattice

The intention of finding a counter example is to construct a lattice which

shows that a given relation s ≤ t does not hold in this specific lattice. For

an orthologic sequent ` t, after translating it into a GOL-1-1 sequent, we

can interpret it as the question, if the relation ¬t ≤ t does not hold. We

start with a given lattice where s ≤ t does not hold and which we want

to reduce in size. The fact s ≤ t does not hold in this lattice means that

either t ≤ s holds or s and t are unrelated. But for the counter lattice it is

of no importance whether t ≤ s holds or s and t are unrelated. The only

important property is that s ≤ t does not hold. Every lattice for which this

62

holds is equally good as counter example than every other lattice where this

condition is met. Thus, it is sufficient to find a new lattice with a map, which

is not order-preserving except for the circumstance that s ≤ t must not hold

in the new lattice.

We will construct this new lattice by utilizing GOL with non-logical axioms.

Because of the non-logical axioms, more relations hold on the set S = sf(s) ∪
sf(t). This means that more sequents are derivable in GOL due to the non-

logical axioms. If more sequents are derivable, more relational equivalences

of the form a ≤ b and b ≤ a will potentially arise and thus more subformulas

may be set equivalent. This reduces the size of the lattice, because fewer

subformulas have to be considered when drawing the lattice. But the draw-

back is that the non-logical axioms could cause that the order-preservation

of s ≤ t gets violated. In this case however a proof-search in GOL with these

non-logical axioms would have as result that the input formula is provable.

This is a useful property for us, because the reduction method consists of the

following steps:

1. Search a non-logical axiom.

2. Search a proof using this non-logical axiom.

3. If the formula becomes provable, discard the non-logical axiom. Other-

wise keep it and repeat the procedure until the lattice is small enough

or no new non-logical axiom can be found.

The problems for searching non-logical axioms are discussed in detail later

on. We will illustrate the idea of the size reduction via non-logical axioms in

Example 4.1.

Example 4.1 Given the counter lattice of Example 2.1 on page 18. We add

the arbitrary non-logical axioms a ` b ∨ c and a ∧ b ` c. The saturation that

results from these non-logical axioms has only four sequents more:

63

a ∧ b

a b c

b ∨ c

@
@

@
@I 6

�
�

�
��

�
�

�
�� 6

@
@

@
@I

Figure 4.1: The poset generated in Example 4.1.

19: a ` b ∨ c non-logical axiom

20: a ∧ b ` c non-logical axiom

21: a ` a ∧ (b ∨ c) from 0 with 19 using ∧r

22: (a ∧ b) ∨ c ` c from 2 with 20 using ∨l

Sequent 8 is translated to a∧ (b∨ c) ≤ a and the new sequent 21 is translated

to a ≤ a ∧ (b ∨ c). We see that they are of the form x ≤ y and y ≤ x and

are thus relational equivalent. This means that a and a ∧ (b ∨ c) are in the

same equivalence class. The same holds for sequent 11 and the new sequent

22. They are translated to (a ∧ b) ∨ c ≤ c and c ≤ (a ∧ b) ∨ c and thus c

and (a ∧ b) ∨ c are in the same equivalence class. We use a respectively c as

the representative for their equivalence class. Figure 4.1 shows the resulting

poset with reflexivity and transitivity omitted.

In the above example, note that, because of the equivalence, now a ≤ c

is not allowed to hold. It is easy to see that it indeed does not hold, because

a and c are unrelated. Also note that, because of the non-logical axioms,

the relational structure changed in a way that now a smallest and largest

element already exist and thus the >,⊥-introduction is no longer necessary.

64

4.1.3 Isomorphism

The goal of the counter lattice is to convince a user that s ≤ t does not hold

for all lattices. How the concrete counter lattice really looks like is not so

important as long as it is obvious for the user that s ≤ t does not hold. This

means that simplifying parts of the lattice that have nothing to do with s or

t will not harm the lattice in convincing the user of the property that s ≤ t

does not hold.

In Figure 4.1 it is easy to see that in the graph elements may appear which

are unrelated, but share the same relations with all other elements. In this

example this are the elements a, b and c. They are all unrelated but are

related with the same elements in the same way. Thus, they are isomorph in

the graph. The problem is that a and b are the elements s and t for which

we want to show that they are unrelated, so any consideration setting them

equal is senseless. But for the following assume that they have nothing to

do with s and t. Setting a and b equal on a logical level might cause that

s ≤ t becomes provable, but on the representation level for the user, it is

unnecessary to have one node in the graph for each element to convince the

user that s 6≤ t holds. We could instead represent such isomorph elements

with a single node stating that this single node stands for the isomorphism

class of all elements with this certain ≤-relations.

This idea could be extended to the isomorphism of whole subgraphs, but as

stated in [3] subgraph isomorphism belongs to NP although it is not NP-

complete. Isomorphism of subgraphs is only polynomial if the graphs are

trees. The Hasse-diagram that represents our lattice is a directed acyclic

graph though, but [3] show that this does not reduce the complexity of the

problem such that it is polynomial.

To stay efficient, CGOL only implements a search for single elements which

have the same ≤-relations and unites them to an isomorphism class without

touching the elements of s and t. Checking which elements have the same

relations is done quite easily in the data structure of the ≤-relations. First

65

the counters for the number of elements in the AVL-trees are compared.

Only if they are equal, the entries in the AVL-trees are checked if they are

equivalent. If they are, then the elements are set equivalent. The unification

of isomorphic elements is the last step done in the simplification of the lattice,

which means it is done only after the size has been reduced using non-logical

axioms. We will illustrate the above idea with a simple example.

Example 4.2 Let F be the formula a ∨ b ≤ a ∧ b. It is obvious that this

formulas is invalid. A possible counterlattice would be the lattice shown in

Figure 4.2. The important property of this lattice is that a ∧ b ≤ a ∨ b holds.

The elements between a and b are important to get a correct lattice, but

they are not important to increase the convincability of the fact that a ∨ b ≤
a ∧ b does not hold for the user. Rather the opposite is the case, because the

elements distract the attention of the user and make the graph unnecessarily

complex. Now look at the graph in Figure 4.3. This is the graph that results

from the graph in Figure 4.2 by applying the isomorphism simplification as

described above. We see that the fact a ∧ b ≤ a ∨ b still holds. It also shows

the fact that there are the elements a and b between them, but instead of

distracting the users attention with two separate nodes, they are represented

by only a single node. The new graph is simpler and easier to comprehend

for a human user and the important fact that a ∧ b ≤ a ∨ b holds is easier

recognisable. What this example illustrates is also the important difference

to the simplification with non-logical axioms. Using non-logical axioms yields

equivalence classes on the logical level. The isomorphism simplification is

only a simplification of the representation of the lattice. The elements a

and b which now share one node are not logical equivalent! If they were,

a ∧ b ≤ a ∨ b would no longer hold. So it is important to remember that this

is a simplification on the representation of the lattice, not of the relation in

the lattice.

66

a ∧ b

a b

a ∨ b

@
@

@
@I

�
�

�
��

�
�

�
��

@
@

@
@I

Figure 4.2: The original counter lattice of Example 4.2.

a ∧ b

a, b

a ∨ b

6

6

Figure 4.3: The isomorphism simplified counter lattice of Example 4.2.

4.2 Size Reduction in CGOL

In this section, we will focus on how the above idea for size reduction is

realized in CGOL. The basic idea is always the use of non-logical axioms,

but the important question is how non-logical axioms are selected.

67

4.2.1 Implementing Proof-search with Non-Logical Ax-

ioms

For being able to handle non-logical axioms, CGOL needs to be extended.

First it needs a way to select non-logical axioms. The easiest way is to let

the user input the non-logical axioms that shall be used. The user designates

a file with the non-logical axioms as ≤-expressions. This file is parsed and

translated into sequents. Another possibility would be to implement an au-

tomated search for non-logical axioms. In the next section we will discuss

how such an automated search is realized in CGOL.

After inputting the non-logical axioms, the saturation generation is started

as usual with the generation of logical axioms. But before the proof-search

is started, the non-logical axioms are inserted into the saturation in addition

to the logical axioms. The proof-search itself stays the same, with the ex-

ception, that the acut rule is added to the set of inference rules. Remember

that all inferences where realized by lookups in AVL-trees to check if a sub-

formula exists that can be generated by the given inference rule. Because

of this, we have for every operation in every polarity an AVL-tree, which

was filled based on the subformulas of the input sequent. For acut, we also

require such an AVL-tree. The problem is that acut operates only on the

sequents that where generated and no information about its applicability is

in the input formula. Thus the AVL-tree for acut has to be filled during the

saturation. We will use four different AVL-trees. One stores the key as being

the subformula on the left side and the elements stored under the key being

the subformulas on the right side. This AVL-tree will be called ”keyleft”.

The second AVL-tree stores also as key the subformula on the left side, but

the elements stored under the key are are subformulas of the left side of the

sequent. We will call this AVL-tree ”samesideleft”. AVL-tree number three

is equal to ”keyleft” but with changed sides. Which means that the key is

on the right side and the elements are on the left. Thus, we will call this

tree ”keyright”. The last AVL-tree is equal to ”samesideleft” but of course

68

on the right and therefore called ”samesideright”. These AVL-trees are filled

as follows: Whenever a sequent of the form a ` b is derived (also if it is

a logical or non-logical axiom), b is stored under key a in ”keyleft and a

is stored under key b in ”keyright”. If a sequent a, b ` is derived both are

stored in ”samesideleft” once as key with the other as element and once as

element with the other as key. Case ` a, b is handled analogously but with

”samesideright”. The application of acut with these AVL-trees is divided

into the following cases:

1. x ` y. Looking up in ”keyleft” yields all derivable sequents of the form

x ` z, i.e., using y as the cut formula, whereas looking up in ”keyright”

yields all sequents z ` y, i.e., using x as the cut formula. Thus, acut

is realized by these two lookups and inserting the generated sequents

into the saturation.

2. x, y `. In this case, we can only cut over sequents of the form z ` y

and ` z, y respectively z ` x and ` z, x. Thus we look up in ”keyright”

and ”samesideright”, once for x and once for y.

3. ` x, y. Analogous to case 2, but using ”keyleft” and ”samesideleft”

instead.

4.2.2 Automated Size Reduction

The manual input of non-logical axioms requires good guessing and a ”feel-

ing” which ≤-expressions could be useful and which would make the formula

provable and thus the saturation useless for a counter example. This requires

that the user spends some effort in investigating the original counter lattice

and gets quite familiar with its structure. This might be no problem with a

small counter lattice, but if it has hundreds of elements, it is too complicated

to be handled in this way. Thus, an automated way to reduce the size of the

counter lattice would be very helpful. But how should the non-logical axioms

69

be selected? A very simple way that surely yields a good result is exhaustive

search, i.e., trying every combination of two elements as non-logical axiom.

This approach would of course find all useful non-logical axioms, but is use-

less in praxis. We normally require not only a single non-logical axiom but

a number of non-logical axioms. Thus, an exhaustive search would also need

to search the whole space of possible combinations of all possible non-logical

axioms. For every combination we would require one complete proof-search

to test whether it makes the formula provable or not. Thus, it is obvious that

this approach works only on small formulas in sensible runtime, because for

large formulas the search space of non-logical axioms increases dramatically.

Instead, an efficient heuristic might be more useful, i.e., guessing some non-

logical axioms, such that a few such ”guessing” runs (which should be rather

fast) yield a useful set of non-logical axioms that reduces the size of the

counter lattice considerably. This means we want to guess non-logical ax-

ioms that result in highly increasing the number of equivalences between

elements in the lattice. The algorithm is quite simple:

autoReduceSize(relationmatrix, endsequent)

{

while(endflag not set)

{

new-axiom = selectAxiom(relationmatrix);

non-log = addNon-log-axioms(new-axiom);

result = saturateWithNon-log-axioms(non-log, endsequent);

if(result == provable)

non-log = remove(new-axiom);

new-axiom_invert = invert(new-axiom); //a|-b -> b|-a

non-log = addToNon-log-axioms(new-axiom_invert);

result = saturateWithNon-log-axioms(non-log, endsequent);

if(result == provable)

non-log = remove(new_axiom_invert);

if(result == not_better)

70

{

non-log = remove(new-axiom);

non-log = remove(new-axiom_invert);

}

endflag = checkIfAbortConditionMet();

}

}

Important is the heuristic for selecting the non-logical axiom and the abort

condition to guarantee termination. If we cannot guarantee termination our

program might get stuck in an endless loop. The heuristic is very simple but

useful for our purpose. Its basic idea is the assumption that a non-logical

axiom might have most impact on the relational structure, if it affects the

element which is in relation with most other elements. Thus, it searches for

this element and depending if it is an element which mostly is smaller than

other elements it is used as the larger element in the non-logical axiom. The

same also works for searching an element which is mostly greater than other

elements, but in this case it is used as the smaller element in the non-logical

axiom. For the second element, two approaches are implemented. The first

one is just searching the element with second most relations, the other is

searching the element which has the most similar relations to the first ele-

ment. We define the similarity sim(A, B) between an element A and B as

a numeric value as follows. We initially define sim(A, B) = 0. Let C be

an element different from A and B. If A ≤ C and B ≤ C holds or C ≤ A

and C ≤ B holds, then sim(A, B) = sim(A, B)+1. Using the most similar

element is based on the assumption that relating two rather similar elements

more easily leads to an equivalence of them. There might be more then one

most similar element, i.e., two elements with the same similarity value. In

this case it is not important which one we choose, but it is important to

choose it in a deterministic way, such that the results of a non-logical axiom

search are deterministic. If a non-logical axiom found with this heuristic

proves useless, i.e., it improves nothing or, even worse, makes the formula

71

provable, we first try changing the second element until a certain threshold

is reached. After that, we change the first element and then again the second

element. This is done until a certain threshold of trials is reached or a useful

non-logical axiom is found. If such a useful one is found, the counter for

the trials are reset and the heuristic restarts. The search is aborted when

the threshold of trials is exceeded. This signals that it is too hard to find

a useful axiom. Another termination condition that is also checked is the

time already used for the search for non-logical axioms. During the whole

automated size-reduction, a timer runs in parallel and, if a certain time limit

is exceeded, it stops the search and generates the relational structure for the

counter lattice using the last useful set of non-logical axioms. This timer is

quite useful for the user. Often, a user just wants to reduce the complexity

only roughly but wait only few minutes instead of reducing the size nearly

perfect but waiting hours for the result.

Although this approach is simple and naive, it proves useful. The most im-

portant aim of the automated size reduction is reducing the size not perfectly

but reduce it enough to be easily comprehensible for the user. For this aim,

this heuristic is quite useful.

4.3 Results for Automated Size Reduction

The test system and formulas for this section are the same as for the results

in Section 3.4, but the results of Chapter 3 let us expect a high runtime for

the automated search. Thus, we restricted our attention to the ”smaller” test

formulas, i.e., ”rf1” to ”rf5”, where a timeout of 300 or 600 seconds should

already yield useful results. As expected, the runtime increases considerably.

One reason is the extra time, the search for the new non-logical axiom requires

in each run. The other reason is that, after each run, the memory for the

saturation and the data structure for the ≤-relations has to be deallocated.

Both heuristics for the search for non-logical axioms were tested. Which of

72

the two approaches is the better is hard to say in general. Both reduced

the node and relation complexity enormously. For some formulas, similarity

search was better, for others the search for the next most related node was

better. Thus, it is recommended to try both approaches for a better result.

One property that is shown by the test results is that similarity search is

slower. It always made less non-logical axiom search runs in the same time.

In general, the size is greatly reduced. Within 300 seconds, most formulas

were reduced to approximately one tenth of their original node complexity

and a similarly good reduction of their relational complexity. For example,

”rf1” is reduced using similarity search in 300 seconds to 20 nodes, which is

a number that is useful for a human user. It originally had 328 nodes, which

is useless for a human user. It is interesting to note that some formulas can

be reduced to a lattice with only two nodes with one relation. Formula ”rf2”

is such an example. This means that all subformulas can be set equivalent

to two equivalence classes using non-logical axioms and that the original s

and t of the input sequent s ` t are each in one of those with t ≤ s. The

automated search is surely not perfect but proves quite useful in reducing

the size to a complexity where it is useful for the user. Table 4.1 shows

the results of the similarity heuristic and Table 4.2 shows the results of the

next most relations heuristic. All times are measured in seconds as in the

results section of Chapter 3. The column ”runs” tells the number of axiom

search runs. ”Startequis” is the number of logical equivalences before the

size reduction and ”endequis” is the number of logical equivalences after the

size reduction. The column ”nodes” hows the number of nodes a Hasse-

Diagram would need to depict the lattice and ”relations” shows the number

of relations between the elements of the lattice.

73

name runs startequis endequis nodes relations runtime timeout

rf1 45 139 447 20 85 316.953 300

rf1 55 139 449 18 73 608.281 600

rf2 19 100 282 2 1 68.594 300

rf3 18 136 436 52 367 302.813 300

rf3 32 136 440 48 313 611.093 600

rf4 3 311 933 54 417 592.500 300

rf5 22 129 453 2 1 363.735 300

Table 4.1: Results of automated size reduction similarity heuristic. All times

are measured in seconds.

name runs startequis endequis nodes relations runtime timeout

rf1 92 139 231 236 2745 314.234 300

rf1 122 139 239 228 2597 609.454 600

rf2 25 100 282 2 1 64.656 300

rf3 29 136 462 26 119 318.703 300

rf3 33 136 486 2 1 449.281 600

rf4 9 311 885 102 1179 495.515 300

rf5 17 129 453 2 1 206.703 300

Table 4.2: Results of automated size reduction next most relations heuristic.

All times are measured in seconds.

74

Chapter 5

Conclusion

In this master thesis, we discussed the implementation of a C-program for

the generation of counter ortholattices for formulas which are not provable in

orthologic. Chapter 2 was dedicated to the theoretical background. First we

introduced what a lattice, respectively ortholattice is and gave an equational

characterisation for them. But we also introduced a characterisation using

partial ordered sets and partial ordered sets with orthocomplementation. Af-

ter defining what a lattice is, we considered the logical aspects, i.e., how a

logic is defined over lattices and ortholattices. This leads us to the term of

orthologic, which is the logic defined over ortholattices.

The next section discussed proof systems for orthologic, i.e., Gentzen sys-

tems. We introduced the calculus GL for pure lattices and GOL for ortho-

logic. Using a saturation-based forward search approach, we showed how

GOL is sufficient to generate our searched counter lattice and how this is

performed.

Chapter 3 discussed the practical part, i.e., the concrete implementation.

The implementation results in a C-program named ”CGOL”, which I pro-

grammed as part of this master thesis. It is written in ANSI-C, thus it is fast

and compatible with the three major OS-platforms. It is on the one side an

efficient implementation of the calculus GOL as decision procedure whether

75

some given orthologic formula is valid or not. On the other side it realizes a

method for the construction of counter ortholattices if the orthologic formula

is non-provable. The chapter describes the algorithms used in the program

and how the theoretical results are used in the praxis. One section discussed

the worst case runtime of CGOL which is polynomially bounded.

The problem of the resulting counter ortholattices is that they grow quite

large and even formulas which are rather moderate or even small in size,

might have a counter ortholattice which is no more readable for a human

user. That is the reason why we tried to reduce the size of the counter or-

tholattice in Chapter 4. The approach was the use of GOL with non-logical

axioms. The idea was that non-logical axioms lead to more ≤-expressions

that are derivable and thus increasing the chance that two elements get re-

lational equivalent, i.e., that x ≤ y and y ≤ x holds. Such two elements

are members of the same equivalence class and only one member is needed

as representative for each equivalence class. This reduces the complexity of

the counter ortholattice. Two main problems arise from this approach. The

first is that the use of non-logical axioms requires the extension of GOL by

the acut rule. That is why the implementation had to be extended. The

second problem is the selection of the non-logical axioms. For this problem,

two alternatives have been implemented: The user can manually input the

non-logical axioms, or they can be searched automatically. The automated

approach proves quite useful for large lattices which a human user cannot

handle.

For the theoretical aspects, Egly has a work in progress [1] which gives de-

tails about the theory how a counter lattice can be generated and also about

reducing its size. One drawback of CGOL is that it is only a command line

program which only prints the relations of the counter lattice to a file, but

does not draw them. This gap is currently getting closed by the master thesis

[8], which is dedicated to implement a program for drawing ortholattices.

Using Gentzen systems is not the only possibility for generating counter lat-

tices. The usage of non-Gentzen-like calculi for the generation of counter

76

lattices could be an interesting field of research. Another field where much

can be done is the question of reducing the size of the counter lattice. Maybe

there exist better ways than using non-logical axioms and also better heuris-

tics could be developed for the automated search for non-logical axioms.

Although, as can be seen from the results section, CGOL performs very well,

there is some room left for improvements. The memory consumption, espe-

cially for the representation of the ≤-relations could be optimized. At the

moment, CGOL is optimized for speed, which sometimes leads to increased

memory usage. For example the explicit storage of the ≥-relations could

be avoided. This would reduce the memory consumption for storing the re-

lations by 50 percent. Another possibility could be the usage of a totally

different data structure for representing the ≤-relations. One data structure

already tried for the relations was to use a simple quadratic matrix of all

subformulas and their complements to store the relations. The problem with

this data structure was the explicit storage of the unrelated elements, which

required a lot of memory. Maybe a good solution for a sparse matrix could

improve this problem. These questions could be tasks of future works.

77

List of Figures

2.1 The Poset generated in Example 2.1. 20

2.2 The poset generated in Example 2.1 with >,⊥-introduction. . 21

2.3 The Orthoposet generated in Example 2.2. 29

3.1 The splitting in the different modules of CGOL 34

4.1 The poset generated in Example 4.1. 64

4.2 The original counter lattice of Example 4.2. 67

4.3 The isomorphism simplified counter lattice of Example 4.2. . . 67

78

List of Tables

3.1 The characteristics of the test formulas. 54

3.2 Results for the randomly generated formulas. 55

3.3 Results for the randomly generated formulas. 56

3.4 Results for the randomly generated formulas. 58

3.5 Results for the randomly generated formulas. 59

4.1 Results of automated size reduction similarity heuristic. 74

4.2 Results of automated size reduction next most relations heuris-

tic. 74

79

Bibliography

[1] U. Egly. Counter (Ortho-)Lattice Construction. unpublished, 2006.

[2] U. Egly and H. Tompits. On Different Proof-Search Strategies for Ortho-

logic. Studia Logica, 73:131–152, 2003.

[3] M.R. Garey and D.S. Johnson. Computers and Intractability. Bell Lab-

oratories, Murray Hill New Jersey, twenty-second edition, 2000.

[4] G. Kalmbach. Orthomodular Lattices. Academic Press, London, 1983.

[5] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Bell

Telephone Laboratories Inc., second edition, 1988.

[6] A. Leitsch and C.G. Fermüller. Hyperresolution and Automated Model

Building. Journal of Logic and Computation, 6(2):173–203, 1996.

[7] W. McCune. Automatic Proofs and Counterexamples for some Ortholat-

tice Examples. Information Processing Letters, 65:285–291, 1998.

[8] G. Ziegler. Lattice Drawing in 3D. Master’s thesis, Vienna University of

Technology, 2006.

80

