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Abstract

In recent years, say 10 to 15, there has been an tremendous effort in studying over-complete

signal representations in the signal processing community. Overcompleteness has the advantage of

allowing tailoring the description to the corresponding situation. This is in obvious analogy to the

system of human language. One of the ground-breaking papers in this direction was authored by

Mallat and Zhang, introducing the “Matching Pursuit” [37].

More recently, it has been recognized that over completeness can also be used to perform a

compression, i.e., we use less linear measurements (the measurement process is represented by

multiplying the signal vector with a “fat” measurement matrix) than the original signal dimension

with the additional constraint that the original signal is sparse. The corresponding area of research

is often labeled by Compressed Sensing (CS).

Relying on the existing theoretical results for over complete representations it has been shown

in a number of papers (e.g. [6, 13]) that not only one can achieve extremely good compression

performance without loosing significant information but also the recovery (or decoding) can be

performed in an efficient and practically feasible manner.

In this thesis we try to find synergies of the results of CS with recent results on the problem

of estimating the spectrum of an underspread process. The resulting CS-based estimators are

intended to work with a reduced data rate at the input.



Zusammenfassung

In den letzten 10 bis 15 Jahren hat sich ein enormes Interesse an redundanten linearen Signal-

darstellungen gezeigt. Eine redundante Darstellung hat den Vorteil sich besser auf die jeweilige

Problemstellung anpassen zu können. Hier gibt es eine Analogie zum System der menschlichen

Sprache. Eine grundlegende Arbeit auf diesem Gebiet geht zurück auf Mallat and Zhang, die

dabei den sogenannten “Matching Pursuit” entwickelten [37]. Vor kurzem hat man erkannt, dass

man die Theorie der redundanten linearen Darstellungen verwenden kann um Kompressionsver-

fahren zu studieren. Der daraus entstandene Forschungsbereich wird oftmals mit dem Namen

“Compressed Sensing” identifiziert. Aufbauend auf den Ergebnissen zu den redundanten Signal-

darstellungen konnte gezeigt werden (z.B. [6, 13]), dass man unter gewissen Bedingungen extrem

gute Kompressionsleistungen erzielen kann. Darüber hinausgehend hat man effiziente Verfahren

gefunden um aus den komprimierten Daten die originalen zurückzugewinnen. In dieser Diplomar-

beit wird versucht die Ergebnisse aus Compressed Sensing zu verwenden um Spektrumschätzer für

Zufallsprozesse zu entwickeln, die mit einer reduzierten Datenrate am Eingang arbeiten.
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Chapter 1

Introduction

1.1 Motivation

In this thesis we try to combine the results of two subfields of signal processing. On one hand

we have the traditional and well developed field of statistical time-frequency signal processing.

On the other hand, we have the relative new area of Compressed Sensing (CS). The main scope

of this thesis is to investigate the impacts of the new results on CS for statistical (using time-

frequency methods/concepts) signal processing. A central point of this thesis is to compare different

combinations of CS-results with time-frequency methods. The presented combination of results

focuses mainly on new designs of spectrum estimators for underspread processes. We think that

this application will illustrate nicely the power of CS for statistical signal processing problems.

Although this thesis is clearly located more on the theoretical side and not on the practical,

we would like to illustrate the potential of the results from the CS theory with the help of some

applications:

• Cognitive Radio. The term “cognitive radio” stands for wireless communication systems,

where each participant continuously monitors the environment for radiation. If he finds a

frequency band that is not already occupied he uses it for transmission. Two main require-

ments in the technical realization of this concept are: a wide frequency band of interest and

second, fast response times of the transceivers. When using conventional sampling tech-

niques operating at nyquist rate, the technical realization is rather hard. Recently there

has been proposed the usage of compressed sensing for cognitive radios [54]. There it is

shown, that sampling the radio signal at half the nominal nyquist rate, still yields acceptable

performance.

• Analog to Information Converter. The concept of an Analog to Information Converter

is the direct usage of the compressed sensing theory to build new types of analog to digital

1



CHAPTER 1. INTRODUCTION 2

converter. In a recent paper [21] a concept was proposed, where the CS theory was applied

by modulating the analog signal with a pseudo random chipping sequence and then using a

conventional anti-aliasing analog to digital converter stage. It has been demonstrated there,

that under specific sparsity restrictions on the input signal, sampling with only a sixth of

the nominal Nyquist rate still yields usable results. A closely related approach is proposed

in [19], where the input signals are assumed to be locally Fourier - sparse (see [19] for the

exact meaning of this notion). The input signal is then sampled at non uniform randomly

distributed time instants. A further flavor of implementing an AIC is to use a FIR filter

structure at the (high) Nyquist rate and use random variables as tap weights. The output of

this random filter [56] is then downsampled onto rates which are confirmed by the CS theory.

• Compressive Imaging. A very exciting approach in optics is to implement the multipli-

cation of a sparse vector with a random matrix by “passive” hardware. This is done with

the help of a DMD1 (Digital Micromirror device), an array of electrostatic controllable small

mirrors. Here the term “projection matrix” gets a very practical meaning, because it re-

ally projects the incoming light onto a photodiode. The theory behind it and the technical

realization is presented in [22].

• High Resolution Radar via Compressed Sensing. The authors of [24] propose the

usage of CS methods to mitigate the limitations of the radar uncertainty principle which is

a fundamental performance limit for conventional radar systems.

These examples show that the motivation behind the exploration of the CS theory is really driven

by applications. An almost complete list of references to papers about the theory and applica-

tions of CS and other material related to Compressed Sensing can be found on the web page

http://www.dsp.ece.rice.edu/cs/ .

1.2 Notations and Definitions

The conjugate complex of a complex number x will be denoted by x∗. We will denote a linear

operator by bold capital letters (e.g. H). The kernel of a linear operator X will be denoted by

hX(t, t′) where for the subscript the same symbol as for the linear operator is used. The adjoint of

a linear operator H will be denoted by H∗, it is given via the following relationship of its kernel:

hH
∗(t1, t2) = h∗

H
(t2, t1). Given a hermitian linear operator H (H = H∗), we denote by ‖H‖22

the squared Hilbert-Schmidt (HS) norm: ‖H‖22 ,
∫
t,t′ |hH(t, t′)|2dtdt′ =

∑
k λ

2
k where λk denotes

the real-valued eigenvalues of H. Signals (functions) will be denoted by lower case letters (e.g.

1To the best knowledge of the author, the term “DMD - Digital Micromirror Device” is originated by its inventors

at Texas Instruments. See www.ti.com for reference



CHAPTER 1. INTRODUCTION 3

u(t) ∈ L2(R)). A matrix will also be set in bold face: A ∈ C
m×n. The hermitian transpose of

a matrix A will be denoted by AH . For finite dimensional vectors (e.g. ∈ C
n) we use the same

notation as for matrices because a finite dimensional vector will be identified throughout this thesis

with a single column matrix. We denote the k-th coefficient or element of a vector x ∈ C
n by xk.

Given a matrix A, we denote by Ak,l the element of A which is located in the k-th row and the

l-th column. Given two functions u(t) and v(t), both assumed to be in L2(R)), we define the inner

product 〈u, v〉 as 〈u, v〉 ,
∫
t u(t)v

∗(t)dt. The partial Fourier transform û(f, τ) of a 2D- function

u(t, τ) is denoted by:

û(f, τ) = Fx→fu(t, τ) ,

∫

t
u(t, τ)e−j2πtfdt. (1.1)

1.3 Assumptions

The fundamental object of interest within this thesis is a complex-valued, circular-symmetric and

non stationary random process, denoted by X(t). We assume that X(t) fulfills two requirements:

• First, it is underspread, i.e. it has a limited time-frequency correlation horizon. The exact

meaning of “underspread” will be discussed in Chapter 3.

• Second, it is sparsely representable by a Gabor expansion. More specifically, most of the

Gabor analysis coefficients of X(t) are effectively zero.

It seems to be the first time that these two fundamental (but independent) assumptions are

investigated in a joint fashion. To keep the derivations simple we place a further constraint on the

process X(t). We assume that every realization x(t) (which is a deterministic function of time t)

of X(t) lies in L2(R). This assumption removes technical (in a mathematical sense) difficulties.

In order to investigate the stochastic properties of the random process X(t), we use a (linear)

correlation operator, denoted by RX . The kernel rX(t1, t2) of this linear operator is defined as

rX(t1, t2) , E{X(t1)X
∗(t2)} where the asterisk ∗ denotes complex conjugation. We also assume

that X(t) has zero mean: E{X(t)} ≡ 0, therefore RX is a complete description of the second order

statistics of X(t).2 From the definition of RX it follows that it is a self-adjoint operator. Since

one can show the equation: E{〈X,u〉〈X, v〉∗} = 〈RXv, u〉, it is evident that RX is a positive semi-

definite operator. A further property of RX is a consequence of our assumption that x(t) ∈ L2(R).

This implies that the trace of RX , denoted by tr{RX} ,
∫
t rX(t, t)dt, is finite. A finite trace of

RX , in turn, implies that RX has finite Hilbert-Schmidt norm: ‖RX‖22 ,
∫
t′

∫
t′′ |rX(t′, t′′)|2 <∞.

Finally because RX is HS (the phrase “the operator is HS” means that the operator has a finite

HS-norm), it is necessarily a compact operator. For a compact and self-adjoint operator RX the

2If X(t) is moreover known to be a Gaussian process, then RX provides a full statistical description.
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spectral decomposition theorem with real-valued weights holds [43], i.e., RX can be decomposed

as follows3:

RX =
∑

k

λkuk ⊗ uk (1.2)

where λk ∈ R and the set of functions {uk(t)}k forms an ONB of L2(R). Equivalently, RX allows

an eigenvalue decomposition (EVD) with an orthonormal system of eigenvectors uk (which are

complete in L2(R)) and a corresponding sequence of real-valued non-negative eigenvalues λk. The

EVD of RX is essential for performing the so called Karhunen−Love transform (we will discuss

this in detail below).

1.4 Overview

The outline of the thesis is organized as follows:

• In Chapter 2 we present some key concepts of time-frequency signal processing, as far as

they concern our thesis. We will introduce the notion of a Wigner-Ville spectrum (WVS)

and the expected ambiguity function (EAF). Furthermore we will give a short introduction

to the important concept of Gabor frames and the related topic of local cosine bases (LCB).

• In Chapter 3 we review the main properties of those specific class of nonstationary random

processes which consists of all processes that are underspread. We derive the smoothness of

the WVS of underspread processes and the corresponding sampling theorems. Furthermore,

we discuss the correlations structure of the Gabor coefficients of the underspread process

w.r.t. to a given Gabor frame in more detail. Finally a simple heuristic design of a WVS

estimator for underspread processes is presented.

• In Chapter 4 we introduce the main concepts and results for Compressed Sensing (CS). In

that chapter we will consider the main approaches for the key problem in CS, i.e., recovery of

the original signal or data from incomplete (therefore compressed) and inaccurate (because

of noise) measurements.

• The key element of this thesis is Chapter 5. There, we will show that the combination of

Compressed Sensing and existing concepts for WVS estimation for underspread processes

lead to implementations that allow to use significant lower sampling rates in the front end

of the estimator, while still allowing for a reasonable estimation performance. There we will

discuss the notion of (TF-) sparsity of a process in more detail. We will discuss methods to

3The product x⊗ y where x(t) and y(t) are functions in L2(R) is defined to be the specific linear operator whose

kernel h(t1, t2) is given by h(t1, t2) = x(t1)y
∗(t2).
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quantify the sparsity of the underlying process using the concepts of Gabor expansion and

the Wigner-Ville spectrum.

• In Chapter 6 we present the main results of the numerical investigations related to the

theoretical concepts of the previous chapter. We furthermore give a detailed discussion of

the problem of generating sparse underspread processes in an efficient manner.

• The final Chapter 7 lists the most important conclusions that have been found in the course

of this thesis and points out questions that have not been answered in this thesis but seem

to be a reasonable continuation of the work started with this thesis.



Chapter 2

Time-Frequency Concepts in Signal

Processing

2.1 Introduction

The purpose of this chapter is to give a brief introduction/review of the main methods and concepts

of time-frequency (TF) signal processing as far as it is necessary for our context. Within this thesis

we can divide the TF-concepts for analyzing random processes or deterministic functions generally

into two big categories. Furthermore, to each method belonging to one of the two categories

there belongs always a stochastic and a deterministic instance. The stochastic instances of the

TF-methods are used to analyze a random process X(t). On the other hand, the deterministic

instances are used to analyze a deterministic function x(t), which may be a single realization of

the process X(t). In almost all cases and for all methods used in this thesis the stochastic instance

can be written as the mean of a deterministic TF method. This is sometimes reflected already

in the naming: The stochastic instance of a TF-method is in some cases labeled exactly with the

same name as its deterministic counterpart with the only difference of preceding “expected” (e.g.

the expected ambiguity function/ambiguity function).

From this connection via the expectation operation, it follows that every property of a TF-

method in the stochastic setting which is valid for every random process, induces the same property

of the corresponding TF-method in the deterministic setting, because a deterministic function can

be viewed as a special case of a random process.1

The first category of TF-methods compares the properties of a random processX(t)/deterministic

1Note that this is only true for the properties of the methods and not for properties of the signals/processes, i.e, a

property that a random process has with respect to a TF-representation needs not to carry over to a corresponding

property of any realization of that process.

6
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function x(t) with absolute time t and absolute frequency f . The basic method for this comparison

is a “TF-spectrum”. Loosely speaking, the spectrum of a process X(t) tells us how much energy

the process/signal X(t)/x(t) has at neighborhood around time t and frequency f2 A practical

interpretation could be, that the value of a spectrum at a point (t0, f0) in the TF-plane is equal to

the magnitude of a filter output and this filter is such that it passes only signals around t0 and with

frequencies around f0, e.g. a narrow bandpass with center frequency f0 that is “switched on” only

in a certain period of time around t0. Additionally to this very primitive but intuitive explanation

of the notion of a “spectrum”, we will give a precise mathematical definition of a (very) special

example of a spectrum, the so called Wigner-Ville spectrum (WVS) for the stochastic setting and

the Wigner distribution (WD) for the deterministic setting, below.

The other category of TF-methods does not use absolute times and frequencies, but rather

describes the inner or relative structure of the random process X(t)/deterministic function x(t).

More specifically it investigates the relationship of X(t)/x(t) with a time-shifted (by delay τ) and

frequency-shifted (by doppler frequency shift ν) version X(t− τ)ej2πνt/x(t− τ)ej2πνt of itself. We

will call this second category the “correlative-methods”. However we use only one specific member

of this category, namely the so called expected ambiguity function (EAF) for the stochastic setting

and the so called ambiguity function (AF) for the deterministic setting.

Both categories have their pros and cons in their usage for analyzing a random process X(t)

/deterministic function x(t) but of course these two categories have intimate relationships that

should by exploited.

In the end of this chapter we additionally present another important tools for TF-signal pro-

cessing, namely the concept of “Weyl-Heisenberg” sets or Gabor Frames and the concept of local

cosine bases (LCB). These two concepts are not directly related to the two categories of analy-

sis tools mentioned above but however, play a central role in the theory of time-frequency signal

analysis and synthesis and are heavily used in the course of this thesis.

2.2 Wigner Ville Spectrum and Wigner Distribution

The Wigner-Ville spectrum (WVS) of a process X(t), which we will denote by WX(t, f), is a

function of time and frequency i.e., its domain is the TF-plane, and takes on real values. It is

a function of the random process X(t) and defined via the kernel rX(t1, t2) of the corresponding

correlation operator RX :

WX(t, f) ,

∫

τ
rX

(
t+

τ

2
, t− τ

2

)
e−j2πfτdτ. (2.1)

2The energy of a signal cannot be exactly concentrated at a single point at the TF-plane as this is forbidden by

the uncertainty principle [40].
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In fact, the WVS defined by this equation fulfills the properties that a spectrum intuitively should

have. We list the major properties of the WVS:

• Real-valuedness. WX(t, f) can be shown to take on only real values. However, in contrast

to the stationary case (where a spectrum is represented by the power spectral density (PSD)

of the process) the WVS can also take on negative values. This behavior is clearly in contrast

to the interpretation of the WVS as an energy distribution over the TF-plane.3

• TF-covariance. The WVS of the process X(t− τ0)e2πtf0 is equal to WX(t− τ0, f − f0).

• Quadratic Form. The quadratic form 〈RXu, v〉 is equal to 〈WX ,Wu,v〉. Here Wu,v de-

notes the cross-Wigner distribution of u and v (for the exact definition of the cross-Wigner

distribution and its properties we refer to [40]).

• Fourier Duality. The WVS WX(t, f) and the EAF ĀX(τ, ν), defined in Section 2.3, form

a 2D-Fourier pair.

• “Perfect” Time-Localization. If the process X(t) is zero (at least with probability 1)

outside a time interval around t0: [t0 − T
2 , t0 + T

2 ] then the WVS WX(t, f) is zero for all

t 6∈ [t0 − T
2 , t0 + T

2 ].

• “Perfect” Frequency-Localization. If the process X(t) has no frequency components (at

least with probability 1) outside a frequency interval around f0: [f0 − B
2 , f0 + B

2 ] then the

WVS WX(t, f) is zero for all f 6∈ [f0 − B
2 , f0 + B

2 ].

• Marginal Properties. The WVS satisfies some important marginal properties. If we

integrate WX(t, f) over frequency f , then we get the instantaneous mean power of X(t):
∫ +∞

f=−∞
WX(t, f)df = E{|X(t)|2}. (2.2)

Finally if we integrate over the time t we get the power of the respective frequency compo-

nent4: ∫ +∞

t=−∞
WX(t, f)dt = E{|X̂(f)|2}. (2.3)

Finally, combining these two properties we have that the integral of WX(t, f) over the whole

TF-plane yields the mean energy ĒX of the process:
∫ +∞

t=−∞

∫ +∞

f=−∞
WX(t, f)dfdt = E{‖X‖22} , ĒX . (2.4)

3Unfortunately it can be shown that it is not possible to construct a quadratic time-frequency covariant represen-

tation of a process, that is real valued and non-negative. This result is sometimes called “Wigner - Theorem” [35].
4X̂(f) denotes the random process, that is obtained deterministically from X(t) by applying a Fourier transfor-

mation to each realization x(t) of X(t).
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• Unitarity. The WVS WX(t, f) of a process X(t) obeys:

‖WX(t, f)‖22 = ‖RX‖22. (2.5)

This is a consequence of the definition of the WVS and Plancherel’s Theorem for Fourier

transforms [23].

To summarize, the WVS of a random process X(t), denoted by WX(t, f) is a function of two

variables, time t and frequency f . It is assigned to X(t) in such a way that it fulfills the properties

that we demand from a spectrum, e.g. to commute with time/frequency shifts of the process X(t)

(TF-covariance). The WVS has an outstanding role among all possible definitions of a “spectrum”.

One indication of that special role are the “perfect” localization properties as stated above.

The WVS is a stochastic implementation of a spectrum. Its deterministic “brother” is the

Wigner distribution (WD) of a function x(t) (which is assumed to be in L2(R), i.e., it is square

integrable with respect to the Lesbesgue measure). The WD of a function x(t) will be denoted by

Wx(t, f). Conceptually the WD is in a tight relationship to the WVS. One manifestation of this

fact is, that under mild conditions the WVS WX(t, f) of a random process X(t) can be written

as the expectation of the WD Wx(t, f) taken over all realizations x(t) of the random process

X(t). Note that Wx(t, f) is a random quantity because the signal x(t) is a (randomly fluctuating)

realization of a random process. Conversely the WVS WX(t, f) is a deterministic quantity, namely

a parameter of the random process X(t) (just as the variance of an arbitrary scalar random variable

is a deterministic parameter).

We now state the exact definition of the WD Wx(t, f) of a (deterministic) function x(t):

Wx(t, f) ,

∫

τ
x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2πfτdτ. (2.6)

Already from this expression the similarity of the WD to the WVS is obvious.

As for the WVS we state some important properties and facts for the WD. We will only detail

the properties which differ fundamentally from the respective property of the WVS:

• Real-valuedness. Wx(t, f) ∈ R for all signals x(t) ∈ L2(R).

• TF-covariance. x(t− τ)ej2πνt ⇒Wx(t− τ, f − ν).

• Fourier Duality. The WD Wx(t, f) and the AF Ax(τ, ν), defined in Section 2.3, form a

2D-Fourier pair.

• “Perfect” Time-Localization.

• “Perfect” Frequency-Localization.
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• Marginal Properties. The WD satisfies some important marginal properties. If we inte-

grate Wx(t, f) over frequency f , then we get the instantaneous power of x(t):
∫ +∞

f=−∞
Wx(t, f)df = |x(t)|2. (2.7)

Finally if we integrate over the time t we get the instantaneous power of the respective

frequency component:5 ∫ +∞

t=−∞
Wx(t, f)dt = |x̂(f)|2. (2.8)

Finally, combining these two properties we have that the integral of Wx(t, f) over the whole

TF-plane yields the mean energy Ex ,
∫
t |x(t)|2dt = ‖x‖22 of the function x(t):

∫ +∞

t=−∞

∫ +∞

f=−∞
Wx(t, f)dfdt = Ex. (2.9)

• “Flandrins Conjecture”. A conjecture of P. Flandrin [28] states that:
∫ ∫

C
Wx(t, f)dtdf ≤ ‖x‖22 (2.10)

for all signals x(t) ∈ L2(R) and convex sets C. This inequality essentially mens that over

a convex set C ∈ R
2 the positive and negative values of Wx(t, f) cancel each other to an

extent that the integral over C does not exceed the integral over the whole plane.

2.3 Expected Ambiguity Function and Ambiguity Function

A fully dual concept to the WVS/WD is the expected ambiguity function(EAF)/ambiguity func-

tion(AF) of a process X(t)/a function x(t), which we will denote by ĀX(τ, ν)/Ax(τ, ν). We already

mentioned that in contrast to the WVS/WD, the EAF/AF analyzes the “inner” or “correlative”

structure of the process X(t)/function x(t).

Again, we start with the stochastic setting and discuss the EAF. The EAF is based on corre-

lations of the process X(t) with time- and frequency shifted versions of itself:

ĀX(τ, ν) = E{〈X
(
t+

τ

2

)
,X
(
t− τ

2

)
ej2πνt〉}. (2.11)

According to this expression, the EAF compares in a stochastic way (via the expectation of the

inner product) the process X(t) itself, with a time- and frequency shifted version of itself. The

formal definition of the EAF ĀX(τ, ν) of a random process X(t) is again based on the kernel

rX(t1, t2) of the correlation operator:

ĀX(τ, ν) ,

∫

t
rX

(
t+

τ

2
, t− τ

2

)
e−j2πνtdt. (2.12)

5x̂(f) denotes the Fourier transform of the function x(t).
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We list some fundamental properties of the EAF:

• Maximum at Origin. The EAF satisfies the following inequality:

|ĀX(τ, ν)| ≤ ĀX(0, 0) = ĒX (2.13)

where ĒX denotes the mean energy of X(t).

• Perfect Concentration Property of White Stationary Noise. If X(t) is a white

stationary noise (with correlation function rX(t1, t2) = ηδ(t1 − t2) then its EAF ĀX(τ, ν) is

given by:

ĀX(τ, ν) = ηδ(τ)δ(ν). (2.14)

Here, η is a scalar constant that has the interpretation of a power spectral density6. Because

the mean energy is given by the EAF-value at the origin ĒX = ĀX(0.0), we conclude that for

a stationary white process X(t), the mean energy is necessarily infinite. We note that within

this work we formally only consider random processes with finite mean energy ĒX <∞ and

of course this excludes a white stationary process X(t). However, this process can be viewed

as the limit of sequence of finite energy processes with EAF supported within a rectangle

of decreasing support. A physical realization of such a process would be to filter a white

stationary noise with a linear system H that introduces only small delays and doppler shifts

but has a finite operator norm7. It can be shown that the output of the filter is a finite

energy process that has a small EAF-support.

• Hermitian Symmetry. The EAF satisfies:

ĀX(τ, ν) = Ā∗
X(−τ,−ν) (2.15)

• Quadratic Form. Similar as for the WVS also the EAF allows to express the quadratic

form associated with RX :

〈RXv, u〉 = E{〈X,u〉〈X, v〉∗} = 〈ĀX , Au,v〉 =

∫

τ

∫

ν
ĀX(τ, ν)A∗

u,v(τ, ν)dτdν. (2.16)

Here, u and v are deterministic functions in L2(R) and Au,v(τ, ν) denotes the cross ambiguity

function defined as:

Au,v(τ, ν) ,

∫

t
u
(
t+

τ

2

)
v∗
(
t− τ

2

)
e−j2πνtdt. (2.17)

6In fact, because rX(t1, t2) only depends on the difference t1 − t2 we can compute the PSD as the Fourier

transform of rX(τ ) = ηδ(τ ) which gives a constant spectrum with height η.
7Typically, a mobile radio channel fulfills these assumptions.
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• Innovation System. The EAF of a process X(t) that is obtained at the output of a linear

system H which is excited with white stationary noise is given as:

ĀX(τ, ν) = SHH
∗(τ, ν). (2.18)

Here, SHH
∗ denotes the spreading function of the concatenation of H with its adjoint operator

H∗ (see [40] for a detailed discussion of the spreading function). This relationship implies

that if the system H introduces only small delays and doppler shifts, then X(t) has an EAF

that is well concentrated around the origin in the (τ, ν)-plane. This fact can be used to

generate underspread random processes (“innovation system representation”).

As already mentioned the EAF has a tight relationship to the WVS. In fact, for a process X(t),

the 2D-functions ĀX(τ, ν) and WX(t, f) form a Fourier pair:

ĀX(τ, ν) =

∫

t

∫

f
WX(t, f)e−j2π(νt−τf)dtdf. (2.19)

The EAF will be the key tool for defining and analyzing a special class of non-stationary

processes X(t), namely the class of underspread processes. In the following chapter we will first

give an informative definition of underspread processes using the EAF. Additionally we will use

parameters that are calculated out of the EAF (weighted moments of the magnitude) to state

precise quantitative results for underspread processes.

We now discuss the deterministic counterpart of the EAF, namely the AF. The AF Ax(τ, ν) of

a function x(t) is defined via:

Ax(τ, ν) ,

∫

t
x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2πνtdt. (2.20)

We list the main properties/facts of/about the AF. Again, we omit discussions of properties if

they are almost identical to the properties of the EAF with the same name:

• Maximum at Origin.

|Āx(τ, ν)| ≤ Āx(0, 0) = Ex , ‖x‖22 (2.21)

• Radar Uncertainty Principle. The shape of the AF Ax of any function x(t) is constrained

by: ∫

τ

∫

ν
|Ax(τ, ν)|2dτdν = [Ax(0, 0)]2 = E2

x. (2.22)

This inequality essentially states that the AF cannot be concentrated too much.

• Hermitian Symmetry. The AF satisfies:

Ax(τ, ν) = A∗
x(−τ,−ν) (2.23)
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• Fourier Duality. The AF Ax(τ, ν) and the WD Wx(t, f) of the same function x(t) form a

2D-Fourier pair:

Ax(τ, ν) = Ft→νFf→−τWx(t, f) =

∫

t

∫

f
Wx(t, f)e−j2π(νt−τf)dtdf. (2.24)

Note, that instead of the property “perfect concentration of white stationary noise” of the EAF,

here we have the “uncertainty principle” for the AF which prohibits a perfect concentration of

the AF. This is due to the fact that white stationary noise is a purely random construction that

has no analogue in the deterministic setting. As a consequence of this discrepancy we also have

a fundamental difference in the dual domain, represented by the WVS and the WD. The WVS

can be arbitrarily smooth whereas the WD of a function is prohibited by the radar uncertainty

principle to be approximately constant over an arbitrary large domain in the TF-plane because

the spreads of the AF Ax(τ, ν) and the WD Wx(t, f) are related reciprocally.

2.4 Weyl Symbol and Spreading Function

The deterministic concepts of the Wigner distribution and the ambiguity function and theis

stochastic counterparts Wigner-Ville spectrum and expected ambiguity function can be formally

merged within a more general framework.

This framework is given by the concept of linear operators. We can represent a deterministic

function x(t) by the rank 1 operator Cx , x ⊗ x, whose kernel hCx is given as hCx(t, t′) =

x(t)x∗(t′). On the other hand we can represent the second order statistic of a random process

X(t) by the correlation operator RX whose kernel hRX
is the autocorrelation function rX(t, t′) ,

E{X(t)X∗(t′)} of the process.

Now we formally define the Weyl symbol LC(t, f) and the spreading function SC(τ, ν) of a

linear operator C and show how it is related to the WD,WVS as well as the AF and EAF.

The Weyl symbol LC(t, f) of a linear operator C with kernel hC(t, t′) is a 2D function of time

t and frequency f which is given as:

LC(t, f) ,

∫

τ
hC

(
t+

τ

2
, t− τ

2

)
e−j2πfτdτ. (2.25)

As can be seen directly from this definition the WVS WX(t, f) of a random process X(t) is equal

to the Weyl symbol LRX
(t, f) of the correlation operator RX :

LRX
(t, f) = WX(t, f). (2.26)

Furthermore, given a deterministic signal x(t) the Weyl - symbol Lx⊗x(t, f) of the operator x⊗ x
is equal to the WD Wx(t, f) of x(t):

Lx⊗x(t, f) = Wx(t, f) (2.27)
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Because of these relationships, most of the properties of the WD and the WVS induce corresponding

properties of the Weyl symbol.

The spreading function SC(τ, ν) of a linear operator C with kernel hC(t, t′) is a 2D function

of delay τ and doppler frequency ν which is given as:

SC(τ, ν) ,

∫

t
hC

(
t+

τ

2
, t− τ

2

)
e−j2πνtdt. (2.28)

As can be seen directly from this definition, the EAF ĀX(τ, ν) of a random process X(t) is equal

to the spreading function SRX
(τ, ν) of the correlation operator RX :

SRX
(τ, ν) = ĀX(τ, ν). (2.29)

Furthermore, given a deterministic signal x(t), the spreading function Sx⊗x(τ, ν) of the operator

x⊗ x is equal to the AF Ax(τ, ν) of x(t):

Sx⊗x(τ, ν) = Ax(τ, ν). (2.30)

Because of these relationships, most of the properties of the AF and the EAF induce corresponding

properties of the spreading function.

2.5 Weyl-Heisenberg sets and Gabor Frames

A Weyl-Heisenberg (WH) set is a set of functions {gk,l(t)}k, indexed by two integers k and l, that

is generated by applying time- and frequency shifts to a single prototype function8 denoted by

g(t) ∈ L2(R) (in this thesis almost always a Gaussian function is used for the prototype of a WH

set):

gk,l(t) = g(t− kT )ej2πlF t

T ... time step

F ... frequency step

g(t) ... window function

Formally we can identify a WH set by a triple G, G = (g(t), T, F ) consisting of the prototype func-

tion and the time- and frequency steps T, F . We will denote a WH set by the calligraphic symbol

corresponding to the letter used for its prototype. Therefore we denote the WH set (g(t), T, F ) by

G.
Closely related to the concept of WH sets is the concept of Gabor frames. A Gabor frame

is a special kind of frame. A frame, in turn, is the generalization of a basis for a Hilbert space.

Loosely speaking a frame is a set of vectors, such that if we are given all the inner products of a

8Throughout this work we will always assume the window function g(t) and the dual window function g̃(t) of

any WH set to be normalized, such that ‖g‖2 = ‖g̃‖2 = 1.



CHAPTER 2. TIME-FREQUENCY CONCEPTS IN SIGNAL PROCESSING 15

specific vector x0 of H with the elements of this set, then we are able to recover x0 from the inner

products and moreover this recovery can be implemented in a stable way.

To make this ideas more precise we give the formal definition of a frame for a Hilbert space H
(which in our work is almost always identical to L2(R)):

Definition 2.5.1. A frame for a Hilbert space H is a, general infinite, countable sequence of

elements out of H, denoted by B:
B = {gk}k, gk ∈ H (2.31)

such that the following inequality holds for all x ∈ H:

A‖x‖22 ≤
∑

k

|〈x, gk〉|2 ≤ B‖x‖22. (2.32)

Here, A and B are positive and real-valued constants and are called the “frame-bounds”. If A = B

then the frame is called tight.

A Gabor frame is a special kind of frame. It is a frame that is also a WH set, i.e., the elements

gk of a Gabor Frame are related to each other via (discrete) time- and frequency shifts.

If we are given a WH set G = (g, T, F ), what are conditions that the elements of G, i.e, the

time- and frequency shifted versions gk,l(t) of the prototype functions form a frame for L2(R)?

Surprisingly, these conditions are very intuitive and not too restrictive. If e.g. g(t) ∈ L2(R) is well

localized in the TF-plane, i.e., the WD Wg(t, f) of g(t) has a small effective support and if the

lattice constants T, F of the WH set G are not too large then G is a frame for L2(R). Of course,

this definition is far from mathematical exactness. Without going into detail (that is beyond

the scope of this work) we give the precise conditions only for the specific prototype function

gGaussian(t) = e−
t2

2 because this choice is almost always used within this thesis.

Theorem 2.5.1. The WH set G = (g(t), T, F ) with the Gaussian prototype:

g(t) = e−πt2/2 (2.33)

is a frame for L2(R) iff the lattice constants T, F of G satisfy

TF < 1. (2.34)

For a proof and a more detailed discussion of this theorem we refer to9 [10, 35].

We would like to note that it is easy to verify that if a certain prototype function g(t) and

lattice constants T ,F are shown to yield a WH set G = (g(t), T, F ) that is a frame for L2(R) with

bounds A and B then a prototype g′(t) that is obtained from g(t) via scaling, i.e.,

g′(t) =
1

|a|g(at) a ∈ R (2.35)

9A very short and elegant proof for the necessity of the condition (2.34) can be found in [29].
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together with the new lattice constants T ′ = T
a and F ′ = Fa yield a WH set G′ = (g′(t), T ′, F ′)

that also is a frame for L2(R) with the same frame bounds A and B.

The concept of WH sets and Gabor frames can be adapted to the discrete time setting very

easily by sampling the individual continuous-time functions.

2.6 The Physical Spectrum – Gabor Analysis meets TF-Spectrum

We already introduced the WVS as representative for TF spectra of nonstationary random pro-

cesses. Of course there are a lot more definitions for TF spectra. For our purposes one additional

definition of a TF spectrum is interesting. The so called “Physical Spectrum” of a nonstationary

random process X(t), denoted by PS
(g)
X (t, f), is in some sense the bridge between the concepts of

TF spectra and Gabor frames/analysis. As the notation already indicated the physical spectrum

is parameterized by a function g(t). The exact definition of the physical spectrum PS
(g)
X (t, f) is as

follows:

PS
(g)
X (t, f) , E

{∣∣∣∣
∫

t′
X(t′)g∗(t′ − t)e−j2πft′dt′

∣∣∣∣
2
}

= E

{∣∣∣∣〈X(t′), g(t− t′)ej2πft′〉
∣∣∣∣
2
}
. (2.36)

From the last expression we conclude that the physical spectrum PS
(g)
X (t, f) is nothing else than

the mean power of the Gabor coefficient of x(t) at point (t,f) in the TF plane using g(t) as the

prototype for the analyzing WH set. It can be shown straightforwardly [40] that the physical

spectrum PS
(g)
X (t, f) can be written as a convolution of the WVS WX(t, f) of the same process

with the mirrored WD Wg(−t,−f) of the function g(t):

PS
(g)
X (t, f) =

∫

t′

∫

f ′

WX(t′, f ′)Wg(t
′ − t, f ′ − f)dt′df ′. (2.37)

2.7 Local Cosine Bases

The expansion in terms of a Gabor frame has two drawbacks. Firstly, the atoms of the expansion

(the time-frequency shifted prototype) are in general not orthogonal which makes the inverse

transformation difficult. Secondly it can be shown that the expansion of a process in terms of

a Gabor frame with a Gaussian prototype (which presupposes TF < 1) is not well suited for

compressed sensing because loosely speaking the expansion atoms are too “similar” (the similarity

is measured via the inner products between the atoms). The only, but very important reason why

we use the concept of Gabor expansions and Gabor frames at all within this thesis is the fact that

underspread process can be effectively decorrelated by means of Gabor expansions while at the

same time allowing efficient hardware implementations of the Gabor analysis through a sampled

filterbank.
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A way to mitigate the two problems of Gabor frames is to use an expansion of the signal/process

of interest into an orthonormal basis (ONB) for L2(R), whose elements have still some degree

of TF-concentration. One specific example for such an ONB is the so called local cosine basis

(LCB) [35].

Local cosine bases are constructed according to the following steps:

• First, the real line R (which represents the time axis in our context) is separated into con-

secutive, non overlapping intervals:

R =
⋃

[ap, ap+1]. (2.38)

The length ap+1 − ap of the interval [ap, ap+1] will be denoted by lp.

• To each interval [ap, ap+1], we associate a window function gp(t) with support [ap−ηp, ap+1+

ηp+1]. The extension lengths ηp should be such that lp ≥ ηp + ηp+1 holds, i.e., the support

of gp(t) overlaps only with the support of the neighboring windows gp−1(t) and gp+1(t). The

windows gp(t) have to be designed such that the following symmetry holds:

gp(t) = gp−1(2ap − t) (2.39)

and finally the windows have to cover the time axis uniformly, i.e.:

∀t,
+∞∑

p=−∞
|gp(t)|2 = 1 (2.40)

.

Then it can be shown [35,36] that the set of functions:

{
φp,k(t) = gp(t)

√
2

lp
cos

[
π(k + 1

2 )

lp
(t− ap)

]}
(2.41)

is an orthonormal basis of L2(R).

Another advantage of local cosine bases is their representability by binary trees. In fact, for

suitable chosen interval lengths, a local cosine basis can be represented by a binary tree, where

each node of the tree corresponds to a certain time interval and the two descendants of each node

correspond to a splitting of this specific time interval into two intervals of half the length of the

original interval. The tree-like representation is used for fast implementations of adaptive CS

schemes, discussed in Chapter 4.



Chapter 3

Underspread Processes

3.1 Introduction

From a theoretical point of view, stationary random processes are clearly the “nice” random pro-

cesses. Stationary random processes allow a very elegant and intuitive description of the second

order statistic in a “frequency”-domain by the so called power spectral density (PSD). With the

help of the PSD a lot of problems in estimation theory are radically simplified. A very prominent

example is the Wiener Filter, where the usage of the PSD leads to simple point wise addition and

divisions instead of operator inversions.

Unfortunately, for general non-stationary random processes we don’t have any tool of compa-

rable simplicity and usefulness as the PSD for the stationary case. However, if we place certain

constraints on the process, more precisely on the EAF of the process, then we are able to define a

time-varying spectrum that is very similar in usage and properties to the PSD.

In this chapter we will first give a precise definition of these constraints, that define the class

of underspread processes. Then we will present some properties of underspread processes that are

necessary for our thesis.

The two most important properties of underspread process that are relevant for us are:

• First, the second order statistic or the WVS of an underspread process can be conveniently

estimated by using a filter bank as a front-end, i.e., the estimator only uses coefficients

computed with a suitable analyzing WH-set (not necessarily a Gabor frame).

• Second, for the class of underspread operators there inherently exist good estimators for the

WVS that additionally allow a simple theoretical analysis. This is due to the fact that the

WVS WX(t, f) of an underspread process X(t) is a smooth function over the TF-plane.

After the introductional sections for underspread processes, we present a simple heuristic design

18
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for a WVS estimator using a sampled filter bank as a frontend. The concept underlying the design

of this estimator is strongly inspired by [41].

3.2 Definition of Underspread Processes

Underspread processes are non-stationary random processes whose components, separated by τ

in time and ν in frequency direction can be considered effectively uncorrelated unless τ and ν

are very mall. The meaning of this statement is illustrated in Figure 3.1, where for an under-

spread process X(t), the components S1(t) and S2(t) are effectively uncorrelated. In order to get

t

f

ν

τ

S1(t)

S2(t)

X(t) = S1(t) + S2(t)

t

Figure 3.1: An underspread process has a limited time-frequency correlation horizon

quantitative results for underspread processes we also have to introduce a quantitative measure of

“underspreadness” of a process X(t). A convenient way to introduce such a measure is to consider

the expected ambiguity function ĀX(τ, ν) of the process X(t). The value ĀX(τ, ν) corresponds to

the correlation of the components of X(t) which are separated by τ in time and ν in frequency

direction. Obviously the underspreadness of X(t) can be measured by the spread of |ĀX |. The

spread of |ĀX(τ, ν)|, in turn, can be measured by weighted integrals of |ĀX(τ, ν)|:

m
(φ)
X

,

∫
τ

∫
ν φ(τ, ν)|ĀX (τ, ν)|dτdν∫
τ

∫
ν |ĀX(τ, ν)|dτdν (3.1)

M
(φ)
X

,

[∫
τ

∫
ν φ(τ, ν)2|ĀX(τ, ν)|2dτdν∫

τ

∫
ν |ĀX(τ, ν)|2dτdν

]1/2

(3.2)
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The quantities mX are parameterized by the real-valued and non-negative function φ(τ, ν) which

has the task to penalize components of |ĀX(τ, ν)| that are located far away from the origin in the

(τ, ν)-plane. Therefore, it is common to require that φ(τ, ν) ≥ φ(0, 0) = 0. The two definitions

are closely related, in fact they only differ in the underlying measure (norm). Whereas m
(φ)
X

corresponds to the ‖ · ‖1-norm, the quantity M
(φ)
X corresponds to the ‖ · ‖2-norm. An important

choice for φ(τ, ν) are the members of the family of functions that is given by the following generic

expression:

φ(τ, ν) = |τ |k|ν|l,k, l ∈ N. (3.3)

For this specific weighting functions, the resulting integrals m
(φ)
X

and M
(φ)
X

are called “moments”

and are denoted by m
(k,l)
X

and M
(k,l)
X

.

We are now in the position to define the class of underspread random processes:

Underspread processes are those non-stationary random processes for which m
(φ)
X and M

(φ)
X

are sufficiently small (e.g. ≪ 1).

For mathematical results that rely on underspreadness, the quantities m
(φ)
X

and M
(φ)
X

are the

only relevant properties of the process X(t). A special class of underspread processes is given by

those processes with an EAF that is exactly supported within a small rectangle in the (τ, ν)-plane.

For this processes the following approximate properties are fulfilled exactly (e.g. the sampling of

the spectrum is lossless). However this special case is of limited relevance for practical applications,

as pointed out in [40].

3.3 Sampling the Spectrum

The definition of underspread processes implies that the EAF ĀX(τ, ν) of an underspread process

X(t) is well concentrated on a small area around the origin in the (τ, ν)-plane. Now, because the

WVS WX(t, f) of X(t) is the 2D-Fourier transform of the EAF ĀX(τ, ν), this implies that for

underspread processes it should be possible to sample the WVS WX(t, f) on a rectangular lattice

{(kT, lF )|k, l ∈ Z} in the TF-plane without loosing much information about WX(t, f). More

precisely, if we perform a reconstruction with a reconstruction kernel ψ(t, f):

ŴX(t, f) =
∑

k,l

WX(kT, lF )ψ(t − kT, f − lF ) (3.4)

to obtain a reconstructed version ŴX(t, f) of the original WVS WX(t, f) then the deviation of

ŴX(t, f) from WX(t, f) should be small. If the EAF ĀX(τ, ν) of X(t) is exactly supported

within a rectangle, then the sample values are an exact representation of the WVS WX(t, f).

However for a general underspread process X(t), an exact reconstruction of WX(t, f) from its

sample values WX(kT, lF ) will be impossible. In that case we can only compute an approximate
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reconstruction ŴX(t, f) that should be close to WX(t, f). It is convenient to use a reconstruction

scheme, that preserves the sample values, i.e., ŴX(kT, lF ) = WX(kT, lF ). A specific method to

achieve this goal is to use the reconstruction kernel ψ(t, f) = 1
TF sinc

(
πt
T

)
sinc

(πf
F

)
. For this specific

reconstruction scheme, the following error bound holds [40]:

Theorem 3.3.1. For any random process X(t) and any sampling period T and F , the difference

∆Sampling(t, f) , ŴX(t, f)−WX(t, f) (3.5)

is bounded as

|∆Sampling(t, f)|
‖ĀX‖1

≤ 4
(
m

(1,0)
X

F +m
(0,1)
X

T
)
,

‖∆Sampling(t, f)‖2
‖RX‖2

≤ 4
(
M

(1,0)
X

F +M
(0,1)
X

T
)
.

(3.6)

If one gives up the preservation of the sample values, it is possible to perform an optimization

in the sense of minimum deviation between ŴX(t, f) and WX(t, f) (considered as 2D-real valued

functions of t and f). The fundamental observation for this approach is that the reconstruction

error is caused by aliasing of the EAF ĀX(t, f) because sampling the WVS corresponds to a

periodization of the EAF (completely analogous to the conventional 1D - case). In order to avoid

this aliasing we could first filter the WVS WX(t, f) to obtain W̃X(t, f) such that the 2D-Fourier

transform (which is a “pseudo” EAF, because W̃X(t, f) is not necessarily the WVS of any random

process) is exactly contained within the rectangle G = [− 1
2F ,

1
2F ] × [− 1

2T ,
1

2T ] in the (τ, ν)-plane.

Moreover, within this rectangle the values of the Fourier transform of W̃X(t, f) should be equal to

the EAF ĀX(τ, ν) of the process X(t). It can be shown that this is accomplished by smoothing the

WVS WX(t, f) with the kernel ψ(t, f) = 1
TF sinc(πt

T )sinc(πf
F ). Afterwards we sample the function

W̃X(t, f). Again we note that W̃X(t, f) is also only a “pseudo”-WVS, because it is not necessarily

the WVS of any random process. But we are not interested in that, we only want to get a discrete

sequence of number (called sample values) that allow us to reconstruct the WVS WX(t, f) of X(t)

with small error. In this scheme, we take this discrete sequence of sample values not directly out of

WX(t, f) but rather out of the smoothed 2D-function W̃X(t, f). For this scheme, the reconstruction

error (when using the same reconstruction kernel as above for the sampling sequence W̃X(kT, lF ))

can be bounded as follows [40]:

Theorem 3.3.2. For any random process X(t) and any sampling period T and F , the difference

∆′
Sampling(t, f) , W̃X(t, f)−WX(t, f) (3.7)

is bounded as

|∆′
Sampling(t, f)|
‖ĀX‖1

≤ 2
(
m

(1,0)
X

F +m
(0,1)
X

T
)
,

‖∆′
Sampling(t, f)‖2
‖RX‖2

≤ 2
(
M

(1,0)
X

F +M
(0,1)
X

T
)
.

(3.8)
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We see that the bounds are lower (tighter) than in (3.6), therefore the latter sampling method

tends to be superior in terms of the error magnitude to the previous one. However, the drawback

of the second method is that before sampling a smoothing has to be applied on the WVS WX(t, f)

(not on the signal itself) and this task is computational expensive in general.

3.4 Approximate Diagonalization

A process X(t) is called decorrelated, if we have found a representation of X(t) by a set of

uncorrelated random variables (RVs), denoted by Ak, that are linearly obtained from X(t). The

Ak are a complete representation of X(t), i.e., we can perfectly reobtain X(t) from the Ak.

On the other hand, if we have an orthonormal basis {uk}k for our signal space L2(R) then a

complete representation of X(t) would be the following sequence of inner products:

Bk = 〈X,uk〉. (3.9)

The process X(t) is reobtained as follows:

Xk(t) =
∑

k

Bkuk(t). (3.10)

This rather simple relationships are due to the (deterministic) orthonormality of the set {uk}k.
However, the computation of the Bk is not necessarily a decorrelation of X(t) because the RVs Bk

may be correlated.

Fortunately, it can be shown that for every random process X(t) (with the mild restriction

that every realization x(t) is in L2(R)) we can find a specific orthonormal basis {uk}k for which

the Bk obtained by (3.9) are perfectly uncorrelated:

E{BkB
∗
l } = 〈RXul, uk〉 = PBk

δk−l. (3.11)

Here, the first equality is a direct consequence of the definition of the correlation operator RX (in

fact the equality: E{〈X,uk〉〈X,ul〉∗} = 〈RXul, uk〉 may be used as a definition for a correlation

operator RX). More specifically the {uk}k are the eigenfunctions of the correlation operator RX

and the mean powers PBk
equal the real-valued and non negative eigenvalues1λk of RX

PBk
= λk. (3.12)

Beside the decorrelation, the set of eigenvectors {uk} fulfills the following orthogonality relation:

〈RXuk, ul〉 = λkδk−l (3.13)

1Because RX is a positive semi-definite self-adjoint linear operator and we assume that it has finite HS-norm,

it follows that RX has a set of eigenvectors that form an orthonormal basis of L2(R) and a corresponding sequence

of real-valued (and moreover non-negative) eigenvalues.
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where the λk are the real-valued eigenvalues of RX that corresponds to the eigenfunction uk. For

a given operator RX any set of vectors {uk}k which fulfill these equations is called a diagonalizing

set of vectors. The {uk}k diagonalize the operator RX . On the other hand we have shown that

the {uk}k also yield a decorrelation of the process X(t). Therefore the term “decorrelation” of a

process X(t) can be used as a pseudonym for a “diagonalization” of the correlation operator RX .

The decorrelation of a random process X(t) using the eigenvalues and eigenfunctions (eigen-

vectors) of the correlation operator RX is not necessarily the only possible decorrelation, i.e.,

there may exist other uncorrelated sequences Bk that are a complete representation of X(t) but

are not obtained via the eigenfunctions of RX . However, this specific choice for the decorrelation

has an outstanding position because of the “double” orthogonality (deterministic orthogonality of

the expansion vectors/functions and stochastic orthogonality of the expansion coefficients) and is

sometimes termed the “Karhunen−Loeve” - transformation (KLT). Another name of this scheme

is “Hotelling” transformation. All these names correspond effectively to an eigenvalue/eigenvec-

tor decomposition of RX . In the case of stationary processes, these eigenvectors are known in

advance, namely they are given by the complex sinusoids uf (t) = ej2πft where this set is now

continuously parameterized by f ∈ R. Unfortunately for non-stationary processes the eigenvectors

of the correlation operator are in general not structured with respect to time and frequency. One of

the big desirable properties of an underspread process X(t) now is that it allows an approximate

decorrelation, or an approximate diagonalization of the correlation operator RX , with a set of

vectors that are strongly structured with respect to the TF-plane. More specifically, underspread

processes are effectively decorrelated by so called Weyl-Heisenberg (WH) sets.

A WH set is a set of functions2 {gk,l}k,lthat is obtained by time- and frequency shifting a

prototype function g(t)

gk,l(t) = g(t− kT )ej2πlF t. (3.14)

Because of this structure signal processing schemes relying on Weyl Heisenberg sets allow

in general the usage of computational efficient “FFT-like” implementations in real digital signal

processing hardware [39].

A WH-set can be identified by the triple G = (g(t), T, F ), consisting of the prototype function

g(t) (e.g. a Gaussian function), the time step T and the frequency step F . We will show below

that the sequence Ck,l obtained by:

Ck,l = 〈X, gk,l〉 (3.15)

is approximately uncorrelated if the process X(t) is underspread. Assuming only that the real-

izations of X(t) are in L2(R), for a decorrelation of X(t) the Ck,l have also to be a complete

2Note that we are now using two indices k, l instead of one single index k as above, but this difference is only for

notational purposes. In the end we are interested in a sequence of decorrelating/diagonalizing vectors (e.g. denoted

by {uk} or {gk,l}) and not in how we index or label them.
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representation of X(t), i.e., X(t) must be reobtainable from the sequence Ck,l. This is the case in

particular if the WH-set G is a frame for L2(R) (cf. Chapter 2). As already mentioned in Chapter

2, if g(t) is a Gaussian (this will be the main choice for g(t) within this thesis) than G is a frame

for L2(R) if TF < 1 [35] (although for TF = 1 the WH-set still yields a complete representation

of X(t), it can be shown that this representation is not invertible in a stable way).

To summarize, an underspread process X(t) is completely represented by the sequence of RVs

Bk given by (3.15). Moreover, these RVs are effectively uncorrelated [40]:

E{Ck,lC
∗
k′,l′} = 〈RXgk,l, gk′,l′〉 ≈ PCk,l

δk′−kδl′−l. (3.16)

Here, PCk,l
denotes the stochastic/mean power of Ck,l:

PCk,l
, E{|Ck,l|2}. (3.17)

The exact values of the correlations between the coefficients Bk,l can be expressed according to

Section 2.3 as

E{Ck,lC
∗
k′,l′} = 〈RXgk′,l′ , gk,l〉 = 〈ĀX , Agk,l,gk′,l′

〉 (3.18)

where the cross AF Agk,l,gk′,l′
of gk,l(t) and gk′,l′(t) can be shown to be given as

Agk,l,gk′,l′
= ej2πτ l+l′

2
F e−j2π k+k′

2
Tνe−j2π k+k′

2
F (l′−l)Ag(τ − (k − k′)T, ν − (l − l′)F ). (3.19)

Here, Ag(τ, ν) denotes auto-ambiguity function of the prototype g(t) used for the analyzing WH-

set.

Using (3.18) and (3.19) one can derive a quantitative result that shows how the “uncorrelatness”

of the Ck,l is related to the EAF ĀX(τ, ν) and how the powers PCk,l
are related to the values of

the WVS WX(t, f) of X(t).

Theorem 3.4.1. (Matz [40]) For any random process X(t) and any Weyl-Heisenberg set {gk,l(t)},
the difference

∆g[k, l; k
′, l′] , 〈RXgk,l, gk′,l′〉 −WX(kT, lF )δkk′δll′ (3.20)

is bounded as
|∆g[k, l; k

′, l′]|
‖ĀX‖1

≤ mφ(k−k′,l−l′)

X (3.21)

with φ(k,l)(τ, ν) = |δk0δl0 −Ag(τ + kT, ν + lF )|.

Here, Ag(τ, ν) denotes the auto-ambiguity function of the prototype function g(t) as defined in

Chapter 2 and WX(t, f) denotes the WVS of X(t). One important detail of this theorem is, that

the ℓ1-norm ‖ĀX‖1 ,
∫
τ

∫
ν |ĀX(τ, ν)|dτdν of ĀX is used and this quantity is not directly related
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to the mean energy ĒX of the process, which is given by the value of the EAF at the origin in the

(τ ,ν)-plane: ĒX = ĀX(0, 0).

We want to begin the discussion of the Theorem 3.4.1 by graphically illustrating the two cases:

(k, l) 6= (k′, l′) and (k, l) = (k′, l′).

In the case (k, l) = (k′, l′), Theorem 3.4.1 states that if the process X(t) is sufficiently under-

spread, the powers of the coefficients Bk,l are close to the sampling values of the WVS WX(t, f) at

the points (kT, lF ) in the TF-plane that correspond to the WH-set member gk,l(t) that is associated

with Bk,l. For the discussion we assume that the prototype g(t) is a Gaussian: g(t) = c · e
−π· t2

2T2
0

with the characteristic time T0 (sometimes the parameter T 2
0 is called “variance”) and a normal-

ization constant c. It can be shown that in that case also the ambiguity function Ag(τ, ν) is also

a (2D-) Gaussian:

Ag(τ, ν) = c2
∫

t
g
(
t+

τ

2

)
g∗
(
t− τ

2

)
e−j2πνtdt (3.22)

= c2
∫

t
e
−π

(t+ τ
2 )2

2T2
0 e

−π
(t− τ

2 )2

2T2
0 e−j2πνtdt (3.23)

= c2
∫

t
e
−π

t2+ τ2

4
T2
0 e−j2πνtdt (3.24)

= c2e
−π τ2

4T2
0 Ft→ν

{
e
−π t2

T2
0

}
(3.25)

= c2T0e
−π τ2

4T2
0 e

−π ν2

1/T2
0 . (3.26)

We see from the last expression that the more the prototype g(t) is concentrated (i.e., T0 is very

small), the more the ambiguity function Ag(τ, ν) is concentrated in τ -direction but conversely the

less concentrated it is along the ν-direction. However the joint spread in the (τ, ν)-plane, which

may be quantified by weighted integrals as they are used for the classification of underspread

processes, is invariant of the parameter T0.

For this specific choice for g(t), we plotted the bound in Theorem 3.4.1 for the case (k, l) =

(k′, l′): (|1 −Ag(τ, ν)|) along the τ -axis for ν = 0 in Figure 3.2.

We conclude from Figure 3.2 that the value of the upper bound mφ(k−k′,l−l′)

X in Theorem 3.4.1 is

small if the area of the effective overlapping region (i.e., the region where the respective functions

have large values in magnitude) of ĀX(τ, ν) and |1 − Ag(τ, ν)| is small. This is the case if e.g.

ĀX(τ, ν) is strongly concentrated around the origin in the (τ, ν)-plane and Ag(τ, ν) is sufficiently

flat around the origin in the (τ, ν)-plane (the constant c in (3.22) is chosen such that Ag(0, 0) = 1).

However the effective area of “flatness” around the origin of the ambiguity function Ag(τ, ν) is

limited for any deterministic function g(t) by the uncertainty principle of the Wigner distribution

Wg(t, f) in the dual domain (TF-plane).
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τ

|1−Ag(τ, 0)| |ĀX(τ, 0)|

Figure 3.2: Illustration for the bound in Theorem 3.4.1.

For the second case k 6= k′ or l 6= l′, the weighting function φ in the bound in Theorem 3.4.1

is equal to |Ag(τ + (k − k′)T, ν + (l − l′)F )|. We illustrated corresponding functions in the (τ, ν)-

plane in Figure 3.3. From this Figure it is clear that a small correlation between Bk,l and Bk,l

is only possible if the shifted AF Ag(τ − (k′ − k)T, ν − (l′ − l)F ) of g(t) is very small within the

effective support of ĀX(τ, ν). In particular it requires that Ag(τ, ν) decays fast within the effective

support of ĀX(τ, ν) and that the lattice constants T and F are not too small. The stronger it

is concentrated the closer are the Bk,l to being uncorrelated. In this scenario the precise shape

of Ag(τ, ν), i.e., the properties of the prototype pulse g(t) are rather irrespective. Conversely, if

the effective support of AX(τ, ν) is not extremely small, then of course also the concentration of

Ag(τ, ν) has to be considered in more detail. We note that for the concentration of Ag(τ, ν) there

is a fundamental limit given by the uncertainty principle of the deterministic ambiguity function

Ag(τ, ν) as presented in Chapter 2.

If X(t) is normalized such that ‖ĀX‖1 is equal to e.g. 1 (‖ĀX‖1=1) and we use for the

analyzing WH-set G = (g, T, F ) a Gabor frame with a Gaussian prototype g(t) = e−πt2/T 2
0 (the

time constant T0 is a free design parameter that allows to adapt g(t) to the EAF ĀX(τ, ν)), which

implies TF < 1, then in the case (k, l) 6= (k′, l′) the bound on ∆g[k, l; k
′, l′] cannot be arbitrarily

small because the AF Ag(τ, ν) of the Gaussian prototype g(t) cannot decay arbitrarily fast within a

rectangle of area ≈ 1 (corresponding to the elementary cell of the WH-set lattice (kT, lF )). Indeed,

the Gaussian prototype is (in some sense) the optimum choice for g(t) and even this prototype

always yields a finite, non-zero, value of the AF Ag(τ, ν) within a rectangle of area ≈ 1 centered

around the origin of the (τ, ν)-plane3.

3Because for a Dirac type EAF the upper bounds on the cross correlations between different Gabor coefficients
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ν

T

F

τ

|ĀX(τ, ν)|

Ag(τ − kT, ν − lF )

Figure 3.3: Illustration of the bound in Theorem 3.4.1 in the (τ, ν)-plane.
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However, because we have normalized X(t) such that ‖ĀX‖1 = 1 we have that for a small

support of ĀX , the value of ĀX(τ, ν) at the origin ĀX(0, 0) is very large (inversely proportional to

the effective support of ĀX(τ, ν)) and this implies that the mean energy ĒX of the process X(t)

is large. In contrast to the mean energy, the powers PBk,l
do generally not scale inversely with the

effective support of the EAF ĀX(τ, ν) because the effective support of the WVS WX(t, f) scales

inversely proportional with the effective support of the EAF due to the Fourier correspondence

between WX(t, f) and ĀX(t, f) such that for decreasing support of the EAF the energy is spread

over a larger region in the TF-plane.

We may conclude, that for a process with fixed ℓ1 norm ‖ĀX‖1 of the EAF ĀX(τ, ν) even

an arbitrary small effective support of the EAF ĀX(τ, ν) does not imply that the correlation

coefficient:

ρk,l;k′,l′ ,
|E{Ck,lC

∗
k′,l′}|√

PCk,l
PCk′,l′

(3.27)

are arbitrarily small (close to 0) if one uses a Gabor frame with TF < 1 and a Gaussian prototype.

This can also be explained by the equation (3.18). If we assume that the EAF is a small sharp

peak - approximating a Dirac pulse - centered at the origin of the (τ, ν)-plane, then we see from

the expression (3.18) that the correlations between Ck,l and Ck′,l′ are effectively determined by the

values of Ag(τ, ν) evaluated at the points ((k − k′)T, (l − l′)F ) in the (τ, ν)-plane. In particular

the decorrelation between Ck,l and Ck+1,l relative to the mean power of Bk,l is effectively given by

the decay of Ag(τ, ν) from the origin to the point (T, 0) in the (τ, ν)-plane. If we assume that we

use an oversampled Gabor frame with TF < 1 and a Gaussian prototype, which implies that the

TF shifted versions of g(t) are not orthogonal the values Ag(τ, ν) evaluated at the points kT, lF

for (k, l) 6= (0, 0) do not vanish. Because on the other hand the decay of Ag(τ, ν) is constrained

by the radar uncertainty principle (cf. Section 2.3), there is in general an inherent limitation of

the uncorrelatness of adjacent Gabor coefficients if we use an oversampled Gabor frame (TF < 1).

However, we could use the critical sampling rate TF = 1 to get an orthonormal frame which would

imply that the values Ag(kT, lF ) are exactly zero and yielding therefore an optimal decorrelation

of the Bk’s but this choice is rarely used because the Balian-Low-Theorem states that every frame

at the critical sampling rate has a very poor TF-localization property. E.g., the frame generated

by modulating time-shifted rectangular windows is a frame with TF = 1 and the Balian-Low-

depends effectively only on the values Ag(kT, lF ), i.e., the AF evaluated at a rectangular grid it would suggest

to chose a prototype g(t) and lattice constant T, F such that these values vanish. These could be satisfied (in

order to still get a complete WH-set) only for the critical sampling rate TF = 1 which in turn implies very poor

TF-localization properties of the resulting Gabor frame. In this thesis we are dealing only with well TF-localized

WH-sets, i.e., the prototype of the analysis WH-set will mainly be chosen to be a Gaussian function. However the

problem of finding a prototype function g(t) and lattice constants T, F such that the cross correlations between the

Gabor coefficients are minimized is studied in [31,32]
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Theorem states that no other frame at TF = 1 has a fundamental better TF-localization than this

specific frame.

To further illustrate this we calculate the magnitude of the correlation between a fixed Gabor

coefficient Ck0,l0 and the neighbors Ck0+k,l0+l for k = −3..3 and l = −3..3. In Figure 3.4 the EAF

of the process is shown. Obviously the effective support of the EAF is very small, i.e., it is a

strongly underspread process. The analyzing Gabor frame used a Gaussian prototype g(t) = e−πt2

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ν

τ

|ĀX(τ, ν)|

Figure 3.4: Contour plot of the magnitude of the expected ambiguity function |ĀX(τ, ν)| of an

strongly underspread process X(t). The maximum (at the origin) is 1 and the lowest contour level

is at 0.01.

and the lattice constants T = 19
20 and F = 1. Table 3.4 lists the correlation of Ck,l with C0,0 for

k = −3...3 and l = −3...3 normalized to the mean power PC0,0 of C0,0 = 〈X, g0,0〉. It can be seen

that the relative correlations of the adjacent Gabor coefficients (k = 1, l = 0 or l = 1, k = 0)

is in the order of 0.2 and therefore not negligible although the process X(t) is rather strongly

underspread.

The existence of this inherent restriction for the Gaussian prototype, limiting the degree of

uncorrelatness of different Gabor coefficients Ck,l of the underspread process X(t) is only observed

for the case (k, l) 6= (k′, l′) in Theorem (3.4.1). In the complementary case, (k, l) = (k′, l′), such
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k \ l -3 -2 -1 0 1 2 3

-3 0 0 0 0 0 0 0

-2 0 0 0 0.003 0 0 0

-1 0 0 0.04 0.23 0.04 0 0

0 0 0.001 0.19 1 0.19 0.001 0

1 0 0 0.04 0.23 0.04 0 0

2 0 0 0 0.003 0 0 0

3 0 0 0 0 0 0 0

Table 3.1: Correlations between Ck,l and C0,0 normalized to PC0,0 for a strongly underspread

process.

an inherent restriction seems not to exist, i.e., the powers PCk,l
of the Gabor coefficients Ck,l are

arbitrary close to the corresponding sample values of the WVS WX(t, f) if the process X(t) is

sufficiently underspread.

However, for the case (k, l) 6= (k′, l′) we have that the correlations between Bk,l and Ck′,l′ will

generally decay fast4 with increasing |k−k′| and |l− l′|. The degree of the decay will be essentially

determined by the shape of the AF Ag(τ, ν) of the prototype g(t). For the Gaussian prototype,

this means that the correlations between Ck,l and Ck′,l′ decay exponentially fast with increasing

|k − k′| and |l − l′|.
If we stack a certain number of coefficients Ck,l into a random vector c, than the magnitude of

the off-diagonal elements of the correlation matrix Rc of c will decay exponentially with increasing

distance from the main diagonal of the matrix Rc.

3.5 A Simple WVS Estimator

In this section we want discuss a very simple heuristic design for an estimator of the WVS WX(t, f)

of an underspread process X(t). The estimator will be denoted by W̃X(t, f) and is a random

quantity, more specifically a 2D-function of time and frequency that is assigned to each realization

of the underspread process X(t).

In the following we assume that the estimator uses a sampled filter bank as a front end. From

a theoretical point of view this means that we have access to X(t) only via the inner products

Ck,l = 〈X(t), uk,l(t)〉 of the process with a analyzing Weyl-Heisenberg set {uk,l(t)} which can be

represented by the triple (g(t), T, F ) consisting of the prototype or window g(t) (which will be a

4In fact, this fast decay of the expansion coefficients has been used in [36] to define the class of local stationary

processes which can be considered as a special subclass of underspread processes.
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Gaussian in our context) and the lattice constants T and F . The overall structure of our estimator

is shown in Figure 3.5. We note that for this estimator we will use undersampled WH-sets, i.e.,

TF > 1. Although this means that the Gabor coefficients are no complete representation of the

realizations, this choice is advantageous for two reasons:

• It results in a compression because we have less Gabor coeffiecients that are located within

the effective support of WX(t, f) in the TF-plane and moreover, it is not nececessary to use

a complete WH-set (i.e., TF < 1) because we are interested in the WVS of X(t) and not

in a complete representation of X(t) itself. Due to the assumption that X(t) is underspread

we can sample the WVS at a grid with TF > 1 without loosing much information.

• For TF > 1 the Gabor coefficients can be regarded as effectively uncorrelated. This approxi-

mation is the better fulfilled the larger the product TF is. The (approximate) uncorelatness

of the Gabor coefficients Ck,l will greatly simplify the following derivations.

For our estimator design we will exploit two results deduced from the previous sections of this

chapter:

• Firstly, we exploit the fact that the variances of Ck,l are approximately equal to the values

of the WVS WX(t, f) at the points (kT, lF ) in the (t, f)-plane.

• Secondly, the coefficients Ck,l are approximately uncorrelated if the lattice constants T and

F are not too small. Moreover, in order to simplify the calculation we assume that the Ck,l

are exactly uncorrelated unless otherwise stated throughout this section.

..

.

..

.

X(t)

e−j2πl1Ft

e−j2πl2Ft

e−j2πlNFt

g(t)

g(t)

g(t)
Ck,l1

Ck,l2

Ck,lN

kT

kT

kT

| · |2

| · |2

| · |2

∑
k,l

|Ck,l|2φ(t− kT, f − lF ) W̃X(t, f)

Figure 3.5: Block diagram of the proposed WVS estimator.
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More precisely, the estimator W̃X(t, f) is constrained to have the following form, i.e.,

W̃X(t, f) =
∑

k,l

|Ck,l|2φ(t− kT, f − lF ) (3.28)

where the real-valued function φ(t − kT, f − lF ) denotes a reconstruction kernel. For the choice

of the reconstruction kernel φ(t, f), we use the the mean square error (MSE)

εsimple , E{‖WX(t, f)− W̃X(t, f)‖22} (3.29)

as the objective to be minimized.

Because we want to estimate the WVS WX(t, f), which is a deterministic parameter (in con-

trast to the WVS, the estimated WVS W̃X(t, f) is a random quantity), we can split the MSE into

a bias and a variance term:

εsimple = B2 + V 2 (3.30)

with the (global) bias5 term

B2 , ‖E{W̃X(t, f)} −WX(t, f)‖22 (3.31)

and the (global) variance term

V 2 , E{‖W̃X(t, f)− E{W̃X(t, f)}‖22}. (3.32)

We can develop the bias term as follows:

B2 = ‖E{
∑

k,l

|Ck,l|2φ(t− kT, f − lF )−WX(t, f)}‖22 (3.33)

= ‖
∑

k,l

E{|Ck,l|2}φ(t− kT, f − lF )−WX(t, f)‖22 (3.34)

≈ ‖
∑

k,l

WX(kT, lF )φ(t − kT, f − lF )−WX(t, f)‖22 (3.35)

= ‖Ft→ν,f→τ




∑

k,l

WX(kT, lF )φ(t − kT, f − lF )−WX(t, f)



 ‖

2
2 (3.36)

= ‖


∑

k,l

1

TF
ĀX(τ − k

F
, ν − l

T
)


Φ(τ, ν)− ĀX(τ, ν)‖22 (3.37)

≈ ‖ 1

TF
ĀX(τ, ν)Φ(τ, ν) − ĀX(τ, ν)‖22 (3.38)

=

∫

τ

∫

ν
|ĀX(τ, ν)|2|1− 1

TF
Φ(τ, ν)|2dτdν, (3.39)

where Φ(τ, ν) denotes the 2D-Fourier transform of the reconstruction kernel φ(t, f) and we used

the following facts:

5strictly speaking we would have to use the name “squared bias term”
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• the form of the estimator is fixed by
∑

k,l |Ck,l|2φ(t− kT, f − lF ),

• the expectation operator E{·} commutes with linear operations,

• the variances (which equal the mean powers because we consider non-zero processes exclu-

sively) are approximately equal to corresponding sample values of the WVS WX(t, f) for an

underspread process X(t),

• the Fourier transform conserves norms because it is a unitary operator,

• the estimator W̃X(t, f) can be written as W̃X(t, f) =
(∑

k,lCk,lδ(t − kT )δ(f − lF )
)
∗∗φ(t, f).

• the following identities:

Ft→−ν,f→τ




∑

k,l

WX(kT, lF )φ(t − kT, f − lF )



 =

= Ft→−ν,f→τ






∑

k,l

WX(kT, lF ) · δ(t− kT )δ(f − lF )


 ∗t ∗f φ(t, f)





= Ft→−ν,f→τ






∑

k,l

WX(t, f) · δ(t− kT )δ(f − lF )


 ∗t ∗f φ(t, f)





=
[
ĀX(τ, ν) ∗τ ∗ν ΦT,F

comb
(τ, ν)

]
· Φ(τ, ν)

=
1

TF

∑

k,l

ĀX(τ − k

F
, ν − l

T
) · Φ(τ, ν)

(3.40)

where ΦT,F

comb
, 1

TF

∑
k,l

δ(τ − k
F )δ(ν − l

T ) = Ft→−ν,f→τ

{
∑
k,l

δ(t− kT )δ(f − lF )

}
.

• for suitable chosen lattice constants T and F , the EAF ĀX(τ, ν) is effectively supported

within the rectangle [− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ] in the (τ, ν) plane.

• the definition of the (induced) quadratic norm of 2D-functions.

The final (underspread) approximation of the bias term is therefore:

B2 ≈
∫

τ

∫

ν
|ĀX(τ, ν)|2|1− 1

TF
Φ(τ, ν)|2dτdν. (3.41)
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It remains to develop the variance term V 2:

V 2 = E{‖
∑

k,l

|Ck,l|2φ(t− kT, f − lF )‖22} − ‖
∑

k,l

E{|Ck,l|2}φ(t− kT, f − lF )‖22

=

∫

t

∫

f

∑

k,l

∑

k′,l′

E{Ck,lC
∗
k,lCk′,l′C

∗
k′,l′}φ(t− kT, f − lF )φ(t− k′T, f − l′F )

−


∑

k,l

E{|Ck,l|2}φ(t− kT, f − lF )




2

dtdf

=

∫

t

∫

f

∑

k,l

∑

k′,l′

(E{|Ck,l|2}E{|Ck′,l′ |2}

+ δk−k′δl−l′E{|Ck,l|2}2)φ(t− kT, f − lF )φ(t− k′T, f − l′F )

−


∑

k,l

E{|Ck,l|2}φ(t− kT, f − lF )




2

dtdf

=

∫

t

∫

f

∑

k,l

E{|Ck,l|2}2φ(t− kT, f − lF )φ(t− kT, f − lF )dtdf

=
∑

k,l

E{|Ck,l|2}2 · ‖φ(t, f)‖22

≈
∑

k,l

W
2
X(t− kT, f − lF ) · ‖φ(t, f)‖22

≈ 1

TF
‖RX‖22 · ‖φ(t, f)‖22

=
1

TF
‖RX‖22 · ‖Φ(τ, ν)‖22

(3.42)

where, we used the following facts:

• The relationship var{A} = E{A2} − E{A}2, valid for any scalar random variable A.

• The interchangeability of expectation and summation.

• Isserli’s formula for fourth-order moments of zero mean multivariate gaussian random vari-

ables [33]. If x1, x2, x3, x4 are zero mean and circular complex gaussian random variables

(i.e., in particular E{xkxl} = 0 for k, l ∈ {1, 2, 3, 4}) then:

E{x1x
∗
2x3x

∗
4} = E{x1x

∗
2} · E{x3x

∗
4}+ E{x1x

∗
4} · E{x3x

∗
2}. (3.43)

• The definition of the (induced) norm of a function φ(t, f).

• the approximate equivalence of the variances of Ck,l with sample values of the WVS.
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• One can show the following identity, valid for every 2D-function ϑ(t, f) whose fourier trans-

form θ(τ, ν) is supported within the rectangle [− 1
2F0

, 1
2F0

]× [− 1
2T0

, 1
2T0

] in the (τ, ν)-plane:

ϑ(t, f) =
∑

k,l

ϑ(kT0, lF0)ψ(t− kT0, f − lF0) (3.44)

where the set of 2D-functions {ψ(t − kT0, f − lF0)} is an orthogonal set and each element

has a squared norm of: ‖ψ(t− kT0, f − lF0)‖22 = T0F0. Therefore we conclude the following

equivalence:

‖φ(t, f)‖22 =
∑

k,l

∑

k′,l′

φ(kT0, lF0)φ
∗(k′T0, l

′F0)〈ψ(t− kT0, f − lF0), ψ(t− k′T0, f − l′F0)〉

= T0F0

∑

k,l

|φ(kT0, lF0)|2

(3.45)

which leads to the following relation, that is relevant for our derivation:

∑

k,l

|φ(kT0, lF0)|2 =
1

T0F0
‖φ(t, f)‖22. (3.46)

• The relation ‖RX‖22 = ‖WX‖22 [40] which is due to the unitarity of the mapping RX 7→WX .

To summarize, the final approximation of the variance term V 2 is:

V 2 ≈ 1

TF
‖RX‖22 · ‖Φ(τ, ν)‖22. (3.47)

From the approximate expressions for the variance- and the bias term of the estimator W̃X(t, f)

is obvious that there exists a “bias-variance” tradeoff:

• In order to have a bias term B2 close to zero, we have to use a reconstruction kernel φ(t, f)

whose (2D) Fourier transform Φ(τ, ν) is equal to TF on the effective support of ĀX(τ, ν).

• On the other hand, if we want to have a small variance V 2, then the effective support of

Φ(τ, ν) should be very small, even smaller than the effective support of ĀX(τ, ν).

The argument now is, as pointed out in [41], that for an underspread process the variance term

for an unbiased (B2 = 0) estimator will be small, because the unbiased estimator has a reconstruc-

tion kernel whose Fourier transform Φ(τ, ν) has to be supported only on the effective support of

ĀX(τ, ν) and exactly this effective support is small for an underspread process X(t). Therefore we

chose the reconstruction kernel φ(t, f) such that the support of Φ(τ, ν) is approximately identical

with the effective support of ĀX(τ, ν), more specifically:

Φ(τ, ν) =




TF, for (τ, ν) ∈ effective support of ĀX(τ, ν)

0, elsewhere
(3.48)
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which, using (3.30),(3.47) and B = 0 yields the following approximate expression for the εsimple:

εsimple ≈ ‖RX‖22TFA(effective support of ĀX). (3.49)

where A(G) ,
∫
(τ,ν)∈G dτdν. We see that the error will be smaller for decreasing lattice constants

T, F of the analyzing WH-set (implemented by the sampled filterbank).

So far we have determined only the effective support of Φ(τ, ν). It remains to choose T and

F . For fixed HS-norm of the correlation operator we see from the approximate expressions for

the bias and variance term, that for a unbiased estimator, i.e., Φ(τ, ν) = TF on the effective

support of ĀX(τ, ν) and zero elsewhere, the variance term V 2 is directly proportional to the

product TF . Therefore it is desirable to use small values for the lattice constants T ,F of the

analyzing Weyl Heisenberg set G = (g(t), T, F ) in order to get a small variance for the unbiased

estimator. However, one of the assumptions at the beginning of our derivation was that the analysis

coefficients Ck,l are effectively uncorrelated. As we observed in a previous section, this requires

that the lattice constants T ,F are not too small, i.e., a choice TF < 1 will clearly violate the

assumptions underlying our derivation and therefore is not allowed. As indicated by Theorem

3.4.1 the exact lower bound on the lattice constants depends on the effective support of the EAF

ĀX(τ, ν) and the shape of the prototype g(t).

We note that a fundamental difference of the WVS estimator proposed here to the one proposed

in [41] is that our estimator is not TF-shift covariant, i.e., if we move from the process X(t) to

the process X(t− τ) then it is in general not the case that W̃X(t−τ)(t, f) = W̃X(t− τ, f) and the

same holds for frequency shifts (modulations).

Beside the relative simple actual implementation of the proposed estimator W̃X(t, f) via an

filter bank we see that our design only used the effective support of ĀX(τ, ν) as an a priori

knowledge and not the complete second order statistic as it is required for the estimator design

scheme proposed in [52].

Finally, we note that because of the Fourier correspondence between the kernel rX(t, t′) =

E{X(t)X(t′)∗} of the correlation operator RX and the WVS WX(t, f) we can estimate the au-

tocorrelation function rX(t, t′) of X(t) (which is identical to the kernel of RX) by replacing the

postprocessing step ∑

k,l

|Ck,l|2φ(t− kT, f − LF ) (3.50)

of the WVS estimator by the following operation
∑

k,l

|Ck,l|2φr(t− kT/2, t− kT/2)ej2πlF (t−t′) (3.51)

where the function φr(t, t
′) is given by

φr(t, t
′) =

∫

f
φ

(
t+ t′

2
, f

)
ej2πf(t−t′)df. (3.52)
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The resulting estimator r̃X(t, t′) for the autocorrelation function is given as

∑

k,l

|〈X(t), gk,l(t)〉|2φr(t− kT/2, t− kT/2)ej2πlF (t−t′). (3.53)

Defining the mean squared estimation error er as

er = E{‖r̃X (t, t′)− rX(t, t′)‖22} (3.54)

we can directly take over all results of the above error analysis for the estimator W̃X(t, f) by

recognizing that the corresponding norms are conserved by the mappings W̃X(t, f) 7→ r̃X(t, t′) and

WX(t, f) 7→ rX(t, t′). Especially if we have found an optimum estimator W̃X,opt(t, f) of the WVS

WX(t, f) then the specific autocorrelation estimator r̃X,opt(t, f) that corresponds to W̃X,opt(t, f)

via the relation (3.52) will also be optimal in the sense of the mean squared error.



Chapter 4

Compressed Sensing

4.1 Introduction

As the name already indicates, “Compressed Sensing” (CS) deals with sensing strategies that

inherently use a compression of the raw data. Let us illustrate a setting that is typical for CS:

We have a signal/object of interest, denoted by x. In the literature this signal is almost always

modeled as a deterministic finite-dimensional vector x ∈ C
n (n denotes the signal dimension, for

typical CS-applications n is in the order of thousands) but a generalization to a random object

(vector) is possible. However, unfortunately, we have no direct access to x. All we know about x

is a certain number of very few linear measurements. The basic problem considered in CS is the

recovery of the signal x from these incomplete and in some cases corrupted (by additive noise)

measurements.

In this section we will first give a formal description of the CS-setting. Then we discuss the

main quantitative concepts for CS that allow to investigate precisely under what conditions an

accurate recovery of the signal vector x from the linear measurements is possible.

4.2 Basic Data Model

Let us formalize the content of the discussion of a basic CS-setting/scenario given in the introduc-

tion. We will do this by means of the following data model:

z = Mx + w. (4.1)

Here,

• z ∈ Cm is the observed (random) measurement vector,

• x ∈ C
n is the unknown signal vector to be estimated/recovered,

38
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• w ∈ C
m is the random noise vector, further specified below,

• and finally, M ∈ C
m×n is a known measurement matrix.

Each row of M represents a single linear measurement that is taken on the signal of interest x.

Typically the number of measurements is much lower than the dimension of the vector space C
n to

which x belongs. This implies that M has much more columns than rows (m ≪ n). From linear

algebra it follows that without any further assumptions on the signal x it is impossible to recover

x from the measurements z, even in the noiseless (w = 0) case. Therefore the measurements

z are called an “incomplete” information about x. However, in CS we explicitly introduce a

constraint/assumption on x. Namely, we assume that x has only few coefficients that are effectively

non-vanishing (or in other words: most of the elements of x are effectively zero). If a vector x has

this property then it is called “sparse”. More precisely we call a vector x “exactly S-sparse” with a

number S ∈ N if it has at most S entries that are non-zero. This can be denoted fomally with the

help of the ℓ0-norm (‖ · ‖0) by

‖x‖0 = wH(x) = S. (4.2)

Here, S denotes the sparsity of x and wH(·) denotes the hamming weight [25]. The name “ℓ0-

norm” with the corresponding notation ‖ · ‖0, for the number of nonzeros of a vector is sometimes

misleading because the number of nonzeros does not fulfill the axioms of a norm for a linear vector

space (e.g. for the space C
n). However, this sloppy naming is virtually used everywhere in the

literature and therefore we use it also within this thesis. However, in practical applications the

signal vectors will in general not be ideally sparse but approximately. The degree of sparseness,

given a specific order S, may be measured by the norm of its “tail”, i.e., the norm of the vector

x− xS , where xS denotes the vector that is obtained from x by setting every coordinates to zero

except the S largest coefficients (coordinates), e.g. if x =
[
4 3 2 1 1

]T
and S = 3 then

xS =
[
4 3 2 0 0

]T
.

4.3 Recovery

A central question considered in CS deals with the exact conditions such that one can recover x

from the incomplete measurements z with small error and how large these errors are exactly. We

will answer this question for two recovery algorithms (BP and (R)OMP) which will be presented

below. Obviously those conditions will mainly depend on the measurement matrix M. It is in

some sense the “window” through which we observe the signal vector x and if it is “dirty” then we

can expect that an accurate identification of x will not be possible.

From a theoretical point of view the optimal recovery scheme, at least in the noiseless case

(w = 0) is the “brute-force”-method. This method consists of seeking the sparsest vector x̂ that
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agrees with the measurements z:

(P0) x̂0 = arg min
x′
‖x′‖0 subject to Mx′ = z. (4.3)

where ‖x‖0 denotes the the number of non-zeros of x. Under certain conditions, as explained

below in more detail, it can be shown that x̂ coincides with x. However, this optimization is not

tractable because for its solution one has to consider all possible patterns of non-zeros in a vector

x ∈ C
n and this search space is obviously too large for practical implementations. Therefore, in

practice, other methods for recovery are employed. Of course from a performance point of view

they are suboptimum but they need much less computational resources.

One of the key results in CS is that for most practical scenarios the performance loss of the

suboptimum (but tractable) methods is very small. However, the recovery via the optimization

problem (P0) can be used as a benchmark, i.e., we may compare the results of other recovery

schemes to the result of (P0) x̂0 and use the difference between these two solutions as a measure

of performance.

In the literature, the vast majority of proposed recovery schemes, i.e., methods to recover x

from z belong to one of the two following categories:

• convex optimization methods;

• greedy methods.

It seems that all other methods are essentially variants or combinations of the key ideas behind

these two categories.

4.4 Basic Ingredients for CS

4.4.1 Spark

Definition 4.4.1. (Donoho, Elad [14]) Given a matrix A ∈ C
m×n where n > m, we define σ =

Spark(A) as the smallest natural number such that there exits a subset of σ columns from A that

are linearly dependent.

As mentioned in [14], although there is an obvious relationship between the spark of a matrix

and its rank1 (e.g. σ ≤ Rank(A)), a fundamental difference is that the determination of the rank

of a given matrix A is a process which takes maximally a number of steps equal to the size of

the larger matrix dimension. Conversely, the determination of the spark of the matrix A requires

a combinatorial process whose complexity scales exponentially with the size of the matrix A.

1The rank of a matrix A ∈ C
m×n is defined as the maximum number of linearly independent columns of A.
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However, the notion of the spark of a matrix gives us the formal tool to formulate a uniqueness

theorem elegantly. As can be easily proven the following holds:

Theorem 4.4.1. A representation y = Ax of the vector y by the coefficient vector x is necessarily

the sparsest possible for y if ‖x‖0 < Spark(A)/2.

Proof. Assume that there are two different coefficient vectors x0, x1 with ‖x0,1‖0 < Spark(A)/2

and y = Ax0 = Ax1. Then the difference coefficient vector x0 − x1, which is not equal the zero

vector because we assumed x1 and x0 to be different, obeys obviously ‖x0−x1‖0 < Spark(A) and

A(x0 − x1) = 0. In other words, we have found a subset of less then Spark(A) columns out of A,

which are linearly dependent. But this is in contradiction to the definition of Spark(A).

In other words, Theorem 4.4.1 states that if we fix a matrix A and observe a vector y, which

is generated by x through y = Ax, then there exists at most one x which has fewer non-zeros

than Spark(A)/2. This theorem gives us the absolute minimum theoretical requirements for the

measurement matrix M in (4.1) that is necessary for a unique recovery. In other words, the spark

of the measurement matrix M is an absolute fundamental limit of how sparse a signal x must be

in order to uniquely recover it from a small set of linear measurements z. However, in practical

applications of CS the spark is rarely used. For practical applications other concepts, that quantify

the “CS-performance” of the measurement matrix M more gradually, like the restricted isometry

property (RIP) or the coherence, as discussed below, are better suited.

Finally we want to translate the result stated in Theorem 4.4.1 to our CS-setting, i.e., we adapt

it to our basic data model (4.1):

Theorem 4.4.2. Referring to the data model (4.1) and assuming a noiseless situation (w = 0),

if the signal vector x satisfies

‖x‖0 < Spark(M)/2 (4.4)

then the solution x̂0 of (P0) coincides with the signal vector x and this solution is moreover unique.

4.4.2 Coherence/Cumulative Coherence

A useful quantity assigned to a measurement matrix M describing the performance of M in the

context of CS-recovery is the coherence. The definition of the coherence is given in [55]:

Definition 4.4.2. The coherence µ of a matrix M is defined as the maximum absolute inner

product between two distinct columns of M

µ , max
j 6=k
|〈M(:, j),M(:, k)〉|. (4.5)
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Here we have adopted the MATLAB-programming notation. Thereby we denote the k-th

column of matrix A by “A(:, k)”. A fully equivalent definition of the coherence can be given via

the Grammian G = MHM of M:

µ = max
i6=j
|Gij |. (4.6)

As proved in [14], the coherence µ and the spark of a measurement matrix M satisfy the inequality:

Spark(M) >
1

µ
. (4.7)

Closely related to the coherence is the concept of the cumulative coherence µ1(k) of a matrix

M [55]. It is defined as

µ1(k) , max
|Λ|=k,j /∈Λ

∑

i∈Λ

|〈M(:, i),M(:, j)〉|. (4.8)

Here, k is an integer in the range from 1 to the number of columns of M (which is denoted by n

throughout this thesis if M denotes a matrix that is used for constructing CS measurements).

4.4.3 Restricted Isometry Property/Restricted Isometry Condition

This concept has been introduced by Candes et.al. in order to quantify the CS-performance of a

measurement matrix. In particular they define:

Definition 4.4.3. The local isometry constant δΛ = δΛ(M) of a matrix M ∈ C
m×n for the index

set Λ ⊂ {1, 2, ..., n} is defined as the smallest real number satisfying

(1− δΛ)‖x‖22 ≤ ‖MΛx‖22 ≤ (1 + δΛ)‖x‖22 for all vectors x with supp(x) = Λ (4.9)

where MΛ is the sub matrix of M containing all columns of M whose indexes are in the index set

Λ. Subsequently, for a given number S ∈ {1, 2, ..., n} which will be called the sparsity degree, the

global restricted isometry constant of M is defined as

δS = δS(M) , sup
|Λ|=S

δΛ(M). (4.10)

Trivially the restricted isometry property (RIP) - constant δS for S > m cannot be smaller than

1 because any subset of more then m columns out of M must be linearly dependent. Furthermore

δ1 is equal to 0 if every column of M has unit norm. Another important property of the RIP

constants is that they are nondecreasing with respect to the sparsity degree S, i.e., δS ≤ δS+1.

The defining condition (4.9) for the local isometry constant δΛ is equivalent to the requirement

that the eigenvalues λk of the matrix MH
Λ MΛ obey

(1− δΛ) ≤ λk ≤ (1 + δΛ). (4.11)
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Here MΛ again denotes the matrix which is obtained by selecting those columns of M which

are indexed by Λ. Unfortunately the RIP constant is only a sufficient condition for good CS

performance [11]. If we know that a specific measurement-matrix has good/low RIP constants then

we know that it yields good CS performance. Otherwise if we get bad/large RIP-constants, this

means not necessarily that the corresponding measurement matrix yields poor CS-performance.

A crude estimate for the RIP constants is given by the following upper bound using the coherence

and babel function µ1 [49]:

δS ≤ µ1(S − 1) ≤ (S − 1)µ. (4.12)

The drawback of this upper bound is, that a large value of µ (typically µ can be verified easily)

does not imply a large value of the RIP-constant δS . Otherwise, if we knew that µ is small, than

we know that δS is also small.

Restricted Isometry Condition

The main tool in our thesis for measuring the CS-recovery performance of a measurement matrix

M will be a slightly modified version of the restricted isometry property, the so called “Restricted

Isometry Condition” (RIC) introduced in [45]:

Definition 4.4.4. Restricted Isometry Condition. A matrix M ∈ C
m×n satisfies the Restricted

Isometry Condition (RIC) with parameters (k, ε) ∈ [1, n]× [0, 1] if

(1− ε)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + ε)‖x‖2 for all k-sparse vectors x. (4.13)

We note that the RIC is essentially the same as the RIP, except that the inequalities are stated

in terms of the norms of the vectors and not in terms of the squared norms as in (4.9).

4.4.4 The Johnson-Lindenstrauss Lemma or the Concentration of Measure

The determination of the RIP constants directly according to its definition (by searching over every

possible subset of columns out of M), yields an unpractical algorithm with exponential complexity.

A way out of this difficulty may be given by an interesting link of CS to a well known result on

Banach spaces.

The so called “Johnson-Lindenstrauss”-Lemma [1] essentially states that for every set of points

in a high-dimensional vector space there always exists a mapping, which maps the original points

into a lower-dimensional vector space such that the relative distances between the points are

approximately conserved. This property is closely related to the RIP and the techniques developed

for the derivation of the Johnson-Lindenstrauss Lemma can be used for the determination of the

RIP for specific types of measurement matrices [3, 49]. More specifically, these methods work for
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random measurement matrices, i.e., the measurement matrix M in our basic data model (4.1) is

regarded as a specific realization of a random matrix M with an associated probability density

function (pdf) fM(M).

4.4.5 Random Measurement Matrices

The performance of the recovery schemes (BP or OMP) depends crucially on the measurement

matrix M. As discussed further above, the relevant quantity for the recovery performance of the

BP is the RIP-constant of the measurement matrix M corresponding to the sparsity degree S of

the signal vector x. The question now is, how to construct a measurement matrix M ∈ C
m×n

that yields good/small RIP constants and additionally possess a small compression factor “m/n”.

Unfortunately, until now only random matrices yield satisfactory performance. This is analogous

to coding theory, where one can show that an optimal coding scheme uses a random mapping

and good deterministic coding schemes (like Turbo Codes) essentially rely on imitating the “non-

structure” of random codes [25].

Three Popular Choices For the Measurement Matrix M

In the literature three choices for the random measurement matrix M are popular:

• Gaussian ensemble. The entries of M are i.i.d. normally distributed.

• Bernoulli ensemble. The entries of M are i.i.d. Bernoulli distributed.

• Sampled unitary matrix. The measurement matrix M is obtained by selecting uniformly

at random the rows of a unitary matrix U . A very popular choice for the unitary matrix is

the DFT matrix. Mathematically speaking, M is obtained by selecting the rows of a unitary

matrix U that are indexed by a random set Ω ⊂ {1, .., n} of size m.

The reason for choosing mainly a DFT matrix for U twofold. Firstly, it can be shown that

the DFT matrix is optimum with respect to the compression performance, i.e., in order to

achieve the same performance fewer rows of the DFT matrix are required than for any other

unitary matrix. Secondly, the special (deterministic) structure of a DFT matrix allows very

fast algorithms to be used for real-world implementations.

As mentioned above, although random measurement matrices yield the best performance regarding

compression factor and accuracy, for a fast implementation of the CS recovery schemes in hardware

a rich (deterministic) structure of the measurement matrix M is very desirable. Therefore there

has been a great effort [12,20] to find other constructions beside the randomly sampled DFT matrix
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that yield random measurement matrices that also have a rich (deterministic) structure in order

to get fast algorithms (like the FFT for the randomly sampled DFT matrix).

For the actual recovery performance, a main criterion is the RIP or RIC introduced above.

Fortunately a lot of results have been obtained regarding the RIP/RIC of the random measurement

matrices listed above. The Gaussian ensemble and the Bernoulli ensemble can be considered as

specific instances of a subgaussian random matrix. According to [45] a measurement matrix is

called subgaussian if its entries are i.i.d. subgaussian2 random variables. For subgaussian and

sampled unitary matrices the following result regarding the RIC is presented in [45]:

Theorem 4.4.3. (Measurement matrices satisfying the RIC). Consider an m × n measurement

matrix M and let n ≥ 1, ε ∈ (0, 1/2), and δ ∈ (0, 1).

1. If M is a subgaussian matrix, then with probability 1− δ the matrix 1√
m

M satisfies the RIC

with parameters (k, ε) provided that

m ≥ Ck

ε2
ln

n

ε2k
. (4.14)

2. If M is a sampled unitary matrix, then with probability 1− δ the matrix
√

n
mM satisfies the

RIC with parameters (k, ε) provided that

m ≥ Ck lnn

ε2
ln

(
k lnn

ε2

)
ln2 n. (4.15)

In both cases, the constant C depends only on the confidence level δ and on the type of the mea-

surement matrix M.

Another result for the RIC of a measurement matrix that either is a Gaussian or Bernoulli

ensemble is presented in [3]:

Theorem 4.4.4. Let M ∈ C
m×n be a random measurement matrix that either is a Gaussian (with

entries that are distributed i.i.d. N (0, 1
m)) or a Bernoulli ensemble (with entries that are distributed

i.i.d. in {− 1√
m
, 1√

m
} with equal probabilities). Then M satisfies the RIC with parameter (k, ε) with

a probability exceeding

1− 2

(
12

ε

)k

e−c0(ε/2)·m (4.16)

with the function c0(x) = x2

4 − x3

6 .

For the RIC of the sampled unitary matrix the following result has been presented in [53]:

2A random variable X is subgaussian if its tail distribution is dominated by that of the standard Gaussian

random variable.
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Theorem 4.4.5. Suppose the random measurement matrix M ∈ C
m×n is given by selecting m

rows uniformly at random out of a unitary matrix U and normalizing the columns so that they

have unit Euclidian norm, then M will satisfy the RIC with parameter (k, ε) with small ε (close

to zero) with overwhelming3 probability if

m ≥ C(lnn)4µ2k (4.17)

where the constant C depends on the desired probability that the RIC holds and on ε. The constant

µ in (4.17) is defined by µ =
√
nmaxi,j |Uij | and is equal to 1 if U is a DFT matrix.

We note that the results of the RIP/RIC performance of random measurement matrices seem

to show a big gap between theoretical and empirical methods. Indeed, the most theoretical results

are upper bounds that in general seem to be very far from being “tight”. However, the tightest

results seem to exist only for the Gaussian ensemble [50].

Uniform vs. Nonuniform Results

Another important aspect regarding results on CS (more specifically, the results regarding the

recovery performance of a specific scheme like Basis Pursuit) is whether they are of “uniform”

or “non-uniform” type [48]. In the following, we will make the meaning of this terms clear. A

“uniform” result is a property of a deterministic measurement matrix (maybe a single realization

of a random measurement matrix) together with a recovery algorithm (e.g. BP or OMP) which

holds for arbitrary signal vectors x , i.e., once we have found a “good” (deterministic) measurement

matrix M for a recovery scheme, then this measurement matrix has a good performance for all

possible signal vectors x.

For further purposes it is important to note that when we use a random measurement matrix it

may happen that for each realization of the measurement matrix we also get a different realization

of the coefficient vector x (in particular when using CS for statistical signal processing).

Exactly this situation can also be used for judging a result (regarding CS performance) “uni-

form” or “non-uniform”. A result is called uniform if its statement is valid for an arbitrary depen-

dence of the coefficient vector x on the realization of the measurement matrix M. On the other

hand if a result is only “non-uniform” it means that the stated CS-recovery performance can only

be achieved for a fixed signal vector x and a random measurement matrix M.

However, the two most important performance results for CS recovery (one for the BP and one

for the ROMP) within this thesis are uniform results.

3“overwhelming” means that the probability that M does not satisfy the RIC decreases exponentially with the

number m of selected rows.
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4.4.6 Deterministic Measurement Matrices

The best deterministic construction of measurement matrices known to the author is presented

in [11]. Their approach is based on finite fields. Unfortunately the guaranteed theoretical perfor-

mance of the measurement matrices constructed with the method presented there is rather poor.

More specifically, the number of required non-vanishing coefficients of the signal vector is much

higher for deterministic constructions of the measurement matrix than for random constructions.

Alternatively, deterministic constructions need a lot more measurements to yield the same recovery

accuracy as when using random measurement matrices.

4.5 Main CS-Recovery Strategies

4.5.1 Basis Pursuit

The key tool for CS in our thesis will be the Basis Pursuit (BP). Although the name is somewhat

similar to Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP), there are fundamental

differences. However BP and OMP can be used for the recovery of the signal x from the incomplete

and corrupted measurements z of our fundamental data model (4.1).

Within this work Basis Pursuit (BP) refers to any scheme or algorithm that solves the following

convex optimization problem:

x̂ = arg min
x′∈Cn

‖x′‖1 subject to ‖Mx′ − z‖2 ≤ ǫ. (4.18)

The theoretical justification for the using of this minimization as an approach to recover x from z

is the following theorem, which is a slightly modified version of Theorem 2 presented4 in [18]

Theorem 4.5.1. (Stability of the Basis Pursuit.) Consider the basic data model for CS (4.1)

with bounded noise ‖w‖ ≤ ǫ, suppose that x is an arbitrary vector in C
n, and let xS be the

masked vector corresponding to the S (S ∈ {1, 2..., n}) largest (with respect to absolute values)

coefficients/coordinates of x (in absolute value). Under the assumption that measurement matrix

M satisfies the RIC with parameters (5 · S, ε) whereby ε < 1
3 , the solution x̂ of the optimization

problem (4.18) obeys:

‖x̂− x‖2 ≤ C1,Sǫ+ C2,S
‖x− xS‖1√

S
. (4.19)

For reasonable values of ε the constants in (4.19) are well behaved; e.g. C1,S ≈ 30 and C2,S ≈ 7

for ε ≤ 1
5 .

4It had been already observed in [47] that the original statement of this theorem which was stated only for the

real valued setting can be immediately restated for the complex valued setting because the proof presented there

did not rely on real-valuedness.
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This result is extremely useful for the following reasons:

• It is valid for arbitrary vectors in C
n, not only for ideally sparse vectors.

• The size of the error ‖x̂−x‖ splits nicely into two additive terms. The first term corresponds

to the error induced by the noise w and the second term is due to the non sparsity of

the original signal vector x. The non-sparsity of the signal x influences the recovery error

exclusively via the ℓ1-norm of the tail ‖x− xS‖1 where xS is obtained from x by setting all

coefficient to zero except the S largest.

• It shows that the recovery error ‖x̂−x‖ scales only linearly with the magnitude of the error

term ǫ.

• It is a deterministic statement which implies that this is a uniform result if M is a random

matrix, i.e., if we have found a single realization of M that fulfills the RIC condition of the

theorem, then the recovery is accurate for every (sparse) signal vector x.

The proof presented here, is a slightly modified and more detailed version of that presented in [18].

Proof. Throughout the proof we will use the following notations: Let a denote a vector in C
n and

let I ⊆ {1, 2..., n} denote an index set. Then we denote by aI the vector that is obtained from a

by zeroing all coefficients except those that are indexed by I. Given an index set I ⊆ {1, 2..., n}
we denote by Ic the complementary set within {1, 2...., n}. Given two sets Tk and Tl we denote

by Tk,l their union.

Let T0 ⊆ {1, 2...., n} denote the index set of the S largest coefficients of x. We partition the

complementary set TC
0 into sets T1, T2...., TJ of equal size |Tj| = M, j ≥ 1 (except the last one TJ),

by decreasing order of magnitude, i.e,

k ∈ Tj , l ∈ Ti i ≤ j ⇒ |x(k)| ≤ |x(l)|. (4.20)

Then we decompose the solution x̂ of (4.18) as: x̂ = x + h. Since x is feasible for (4.18) it must

hold that ‖x̂‖1 ≤ ‖x‖1 and therefore

‖x‖1 ≥ ‖x̂‖1 = ‖xT0 + hT0‖1 + ‖xT C
0

+ hT C
0
‖1 ≥ ‖xT0‖1 − ‖hT0‖1 − ‖xT C

0
‖1 + ‖hT C

0
‖1 (4.21)

where we used (4.57). It follows that

‖hT C
0
‖1 ≤ ‖hT0‖1 + 2‖xT C

0
‖1. (4.22)

For the remainder we make use of the following observation: The k-th largest value |hT C
0
|(k) of

hT C
0

satisfies

|hT C
0
|(k) ≤

‖hT C
0
‖1

k
(4.23)
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and therefore5

‖hT C
0,1
‖22 ≤ ‖hT C

0
‖21

N∑

k=M+1

1

k2
≤
‖hT C

0
‖21

M
. (4.24)

The last inequality follows from

N∑

k=M+1

1

k2
≤
∫ ∞

M

1

x2
dx =

1

M
. (4.25)

We can conclude, by setting ρ = S
M and using (4.22) as well as the relation ‖hT0‖1 ≤

√
S‖hT0‖2

‖hT C
01
‖2 ≤

‖hT C
0
‖1√

M
≤
‖hT0‖1 + 2‖xT C

0
‖1√

M
≤ √ρ

(
‖hT0‖2 +

2‖xT C
0
‖1√

S

)
(4.26)

which implies, using the triangle inequality for norms and the obvious fact that ‖hT01‖2 ≥ ‖hT0‖2

‖h‖2 ≤ (1 +
√
ρ)‖hT0,1‖2 + 2

√
ρ · η, η , ‖xT C

0
‖1/
√
S. (4.27)

Now we observe that by construction, the magnitude of each coefficient in Tj+1 is less or equal

than the average of the magnitudes in Tj, i.e.,

|(hTj+1)k| ≤
‖hTj‖1
M

. (4.28)

Then we have:

‖hTj+1‖2 =

√ ∑

k∈Tj+1

|
(
hTj+1

)
k
|2 ≤

√

M · ‖hTj‖21
M2

=
‖hTj‖1√

M
(4.29)

which implies:
∑

j≥2

‖hTj‖2 ≤
∑

j≥1

‖hTj‖1√
M

=
‖hT c

0
‖1√

M
. (4.30)

Combining (4.30) and (4.26) yields:

∑

j≥2

‖hTj‖2 ≤
‖hT c

0
‖1√

M
≤ √ρ · (‖hT0‖2 + 2η) (4.31)

which implies using the RIC with parameters ((S+M), ε) for M, (4.57) and the fact that ‖hT0‖2 ≤
5
hT0,1 = hT0∪T1
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‖hT01‖2:

‖Mh‖2 = ‖MhT0,1 +
∑

j≥2

MhTj‖2 ≥ ‖MhT0,1‖2 −

∥∥∥∥∥∥

∑

j≥2

MhTj

∥∥∥∥∥∥
2

≥ ‖MhT0,1‖2 −
∑

j≥2

‖MhTj‖2

≥ (1− ε) ‖hT0,1‖2 − (1 + ε)
∑

j≥2

‖hTj‖2

≥ (1− ε) ‖hT0,1‖2 − (1 + ε)
√
ρ
(
‖hT0,1‖2 + 2η

)

≥ ‖hT0,1‖2 ((1− ε)− (1 + ε)
√
ρ)− 2

√
ρ(1 + ε)η.

(4.32)

Since ‖Mh‖ ≤ 2ǫ because of:

‖Mh‖ = ‖M(x − x̂)‖ = ‖Mx− z + z−Mx̂‖ ≤ ‖Mx− z‖+ ‖Mx̂− z‖ ≤ 2ǫ (4.33)

we conclude:

‖hT0,1‖2 ≤
2

(1− ε)− (1 + ε)
√
ρ
[ǫ+
√
ρ(1 + ε)η] (4.34)

For the specific choice M = 4S the theorem now follows from (4.27)

‖x̂− x‖2 = ‖h‖2 ≤ ǫ(1 +
√
ρ)

2

(1− ε)− (1 + ε)
√
ρ

+ η2
√
ρ

[
1 +

(1 + ε)

(1− ε)− (1 + ε)
√
ρ

]
(4.35)

because the condition on ε required by the theorem and M = 4S guarantees that the denominator

(1− ε)− (1+ ε)
√
ρ is positive. The explicit expressions for the constants of the theorem are found

to be:

C1,S = (1 +
√
ρ)

2

(1− ε)− (1 + ε)
√
ρ

(4.36)

and

C2,S = 2
√
ρ

[
1 +

(1 + ε)

(1− ε)− (1 + ε)
√
ρ

]
. (4.37)

The main differences between Theorem 4.5.1 and the result presented in [18] are:

• The result presented here is valid for arbitrary vectors in C
n whereas [18] considers only the

real valued setting.

• We use the RIC and not the RIP.

• The numerical values of the constants C1,S and C2,S are different (because we use the RIC

instead of the RIP).
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4.5.2 Orthogonal Matching Pursuit and Variants

Orthogonal Matching Pursuit (OMP) [55] is an iterative algorithm that given an input vector

z ∈ C
m and a matrix M ∈ C

m×n where usually m ≪ n tries to find those m columns of M that

matches best the input vector z, i.e, the least square approximation of z using the matrix consisting

of the already selected columns of M yields a small approximation error. A characteristic of OMP

is that it selects only one new column of M during each iteration. Trivially, if M has full rank

(which will be assumed to hold for all measurement matrices in this thesis) OMP is guaranteed

to yield an exact representation of z after m steps.6 It is a improved derivative of the so called

“Matching-Pursuit” algorithm introduced in [37]. Throughout this section, unless stated otherwise,

we will consider the noiseless case w = 0 of our basic data model (4.1) for CS.

We will use OMP as a main representative of the class of greedy methods. A greedy method

is a recursive scheme that tries to improve the approximation of a given input signal under certain

constraints at each stage. Under certain conditions (to be explained below in detail) these greedy

methods can be shown to be very fast and relatively accurate. However, the theoretical results for

greedy methods do not attain the same quality as the results for Basis Pursuit at the moment. On

the other hand, the computational cost of greedy methods is in general considerably lower than

that of convex optimization methods like Basis Pursuit7.

In the CS context, OMP identifies the specific columns of M and the associated coefficients

that describe the given measurements z in an optimum (with respect to the number of selected

columns) way. The algorithm is called “greedy” because of its behavior. It is a recursive scheme

that selects a single column out of M during each recursion. Moreover it can be shown that OMP

never selects the same column twice. Therefore, OMP is guaranteed to stop after a number of

steps that is equal to the number of columns n of the measurement matrix M.

There have been investigated extensions of the OMP scheme, which are mainly based on fur-

ther assumptions regarding the signal model. Using a scheme called “Tree Orthogonal Matching

Pursuit” (TOMP) [34] the authors assume not only sparsity of the coefficients vector in the recon-

struction problem. Their additional assumption is that the significant nonzero coefficients w.r.t.

to a proper wavelet dictionary can be represented as a sparse tree. This tree-like structure enables

the authors to design a derivative of OMP, called TOMP, that outperforms conventional OMP in

specific scenarios.

6However, when using OMP for Compressed Sensing we are not interested in an arbitrary exact representation

of the input (the input vector for OMP is the context of CS equal to the measurement vector z). Within CS we

want to get the locations (indices) and values of the coefficients belonging to the sparsest possible representation.

In general the number of iterations that are used is smaller than m, i.e., the dimension of the input vector.
7However, improvements in the development of fast algorithms for the solution of convex optimization problems

and increasing available computing resources make this argument a little bit less important.
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Another interesting derivative of OMP is the so called “Stagewise-Orthogonal Matching Pursit”

presented in [16].

In this section we summarize some results regarding the performance of OMP for the recovery

problem (4.1), but first we give the exact definition of OMP:

1. OMP begins by setting the residual r (which is the difference of the current approximation

and the input signal vector) equal to the input measurements z and making the initial

approximation a0 = 0 of the input signal z. Furthermore it initializes the set of selected

indices at step k, denoted by λk, to λ0 = {}.

2. At step k, OMP chooses the column with index λ out of the measurement matrix M, denoted

by m = M(:, λ), that yields the maximum correlation with the residual rk−1 at step k:

λ = arg max
n∈(1...N)

|〈rk−1,M(:, n)〉|. (4.38)

The chosen column index λ is added to the set of selected column indices:

λk = λk−1 ∪ {λ}. (4.39)

3. Then, OMP computes the coefficient vector ck of the kth approximation ak , Mck by a

least square scheme:

ck = arg min
c
‖z−Mc‖2 subject to supp(c) ⊆ λk. (4.40)

4. The last step of the kth iteration is to update the residual:

rk = z− ak. (4.41)

5. The algorithm stops after the kth step if the residual is below a predefined small threshold

and outputs the estimated coefficient vector x̂ = ck.

After n steps, where n is number of columns of the measurement matrix M, the algorithm neces-

sarily yields a residual r equal to zero8, i.e., the approximation ak is equal to the input z.

The computational cost for OMP depends mainly on the step involving the least square min-

imization (4.40). A fast execution of this step is possible if the measurement matrix M entails a

8This presupposes that M is full rank. This condition is assumed to be fulfilled by a measurement matrix M

throughout this thesis.
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special structure, e.g., if it is obtained by taking rows out of a discrete Fourier transform matrix

Fn.9

Conditions for accurate recovery of x from z within a certain (small) number of iterations

of OMP are available via the coherence µ and the cumulative coherence µ1 of the measurement

matrix M. As a first result we present the following theorem, adopted from [15]:

Theorem 4.5.2. Considering the basic data model:

z = Mx + w (4.43)

with a bounded noise ‖w‖2 ≤ ε, suppose that

‖x‖0 ≤
1 + µ

2µ
− 1

M
· ε

| (x)L |
(4.44)

where (x)L denotes the Lth largest element of x, then

• x̂OMP has the correct sparsity pattern, i.e.,

supp(x̂OMP ) = supp(x); (4.45)

• the error is small:

‖x̂OMP − x‖22 ≤
ε2

1− µ(L− 1)
. (4.46)

Here, x̂OMP denotes the coefficients vector ck of the k-th approximant ak calculated by the

first OMP recursion for which the residual rk satisfies ‖rk‖ ≤ ε and µ = µ(M) denotes the

coherence of the measurement matrix M.

We note that there are a lot of other theoretical results for the performance of OMP and

related recovery schemes. But it seems that Theorem 4.5.2 presented here, is best suited for our

setting. One key property of this result is, that it allows to consider also approximately sparse

signal vectors x in an indirect fashion, namely via incorporating the smaller coefficients (i.e., the

tail) of x in the noise term w of our basic data model (4.1).

However this result has a big drawback: The condition (4.44) used in the Theorem is a “hard”

one, i.e., if the norm of the noise term w in the basic data model is not below a specific threshold

9The Fourier matrix Fn ∈ C
n×n is defined as

Fn ,
1√
n
·

2

6

6

6

6

6
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1 1 · · · 1

1 e−j2π 1
n · · · e−j2π

(n−1)
n

...
...

. . .
...

1 e−j2π
(n−1)

n · · · e−j2π
(n−1)(n−1)

n

3

7

7

7

7

7

5
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then this theorem does not apply at all. This is a big difference to the central statement (Theorem

4.5.1) that we use for the Basis Pursuit - performance. There we observe a gradually degradation

of the performance if the norm of the noise becomes larger. Moreover, Theorem 4.5.1 handles

approximate sparse signals directly, whereas Theorem 4.5.2 presupposed ideally sparse signals,

because it uses a condition on the ℓ0-norm.

Some other results concerning the recovery performance of OMP are given in [55]:

Theorem 4.5.3. Assume that the measurement matrix M ∈ C
m×n satisfies

k <
1

8
√

2
µ−1 − 1 (4.47)

where µ denotes the coherence of M. For an arbitrary measurement vector z, OMP generates an

k-term approximant ak that satisfies:

‖z− ak‖2 ≤ 8
√
k‖z− aopt‖2 (4.48)

where aopt is an optimal k-term approximation of z.

Considering our data model (4.1) this theorem means that if we consider the noiseless case and

the signal x is sufficiently sparse, then am coincides with the unique solution of (P0) in Section

4.3. The application of this theorem is limited because the theorem assumes ideally sparse signals,

whereas in practice one always is confronted with “effective” sparse signals, i.e., most components

of the vector are “effectively” zero and not exactly. For this general setting the following theorem

is useful [55]:

Theorem 4.5.4. Assume that µ1(d) <
1
2 where d is a natural number and µ1(d) is the cumulative

coherence of the measurement matrix M ∈ C
m×n. The column indices of M that are contained

in the best d-term approximation of z are collected to the set Λopt with |Λopt| = d. Suppose that

ak is an arbitrary linear combination of columns of M whose indices are in Λopt. At step k + 1,

OMP will recover another column of M whose index is in Λopt provided that

‖z− ak‖2 >
√

1 +
d[1− µ1(d)]

[1− 2µ1(d)]2
‖z− aopt‖2. (4.49)

Here, aopt denotes the best d-term approximation of z:

aopt =
∑

ℓ∈Λopt

cℓM(:, ℓ). (4.50)

The (technical) proof of this theorem can be found in [55]. This theorem helps us not directly

because it gives results concerning the best d-term approximation aopt of z. But we would be inter-

ested in statements concerning the signal vector x. Therefore we have to analyze the relationship

between aopt (the best d-term representation of z) and x.
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For simplicity, we will do this analysis for the noiseless case w = 0. As a first step, we use

the fact that the best d-term approximation of z cannot be larger away from z than the specific

d-term approximation ad that results in setting all coefficients of x to zero, except the d largest

(this coefficient vector will be denoted by xd):

‖aopt − z‖2 ≤ ‖Mxd − z‖2. (4.51)

This simple inequality allows us to reformulate Theorem 4.5.3 and Theorem 4.5.4.

Corollary 4.5.5. Assume that the measurement matrix M ∈ C
m×n has a coherence µ and consider

d with d < 1
8
√

2
1
µ − 1. For an arbitrary input z, OMP generates an d-term approximant ad that

satisfies

‖x− ad‖2 ≤ 8
√
d‖Mxd − z‖2, (4.52)

where xm denotes the vector that is obtained from x by setting all coefficients except the m largest

to zero.

Corollary 4.5.6. Assume that µ1(d) <
1
2 where d is a natural number and µ1(d) is the cumulative

coherence of the measurement matrix M ∈ C
m×n. The column indices of M that are contained in

the best d-term approximation of z are collected to the set Λopt with |Λopt| = d. Suppose that ak is

an arbitrary linear combination of columns of M whose indices are in Λopt. At step k + 1, OMP

will recover another column of M whose index is in Λopt provided that

‖z − ak‖2 >
√

1 +
d[1 − µ1(d)]

[1− 2µ1(d)]2
‖z−Mxd‖2. (4.53)

Here, xd denotes the vector that is obtained from x by setting all coefficients except the d largest

to zero.

Following the arguments in [55], Theorem 4.5.4 implies the following statement:

Corollary 4.5.7. Assume that d ≤ 1
3

1
µ , or more generally, that µ1(d) ≤ 1

3 . Then OMP generates

d-term approximants that satisfy

‖z− ad‖2 ≤
√

1 + 6d‖z−Mxd‖2. (4.54)

The shortcoming of Corollary 4.5.5 – 4.5.7 is the fact that they only make statements about

the distance between ad and the measurement vector z, but we are interested in the deviations of

the coefficient vector cd corresponding to ad and the original signal vector x.

Fortunately, as we will demonstrate in the following, we can make use of the concept of restricted

isometry, i.e., the RIP and RIC (both introduced above) of the measurement matrix M, to show

that the OMP yields a small difference between the coefficient vector cd and x as well.
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Theorem 4.5.8. Consider the basic data model for CS in the noiseless case (w = 0). We assume

that the measurement matrix M ∈ C
m×n satisfies the RIP for the degree S = 2d with a RIP

constant δ2d. Given an d-term approximation ad, i.e, ad = Mcd with some d-sparse coefficient

vector cd corresponding to the observed measurement z (z = Mcd), we can bound the distance

between cd and the signal vector x as follows:

‖x− cd‖2 ≤ (‖z− ad‖2 + ‖MxIc‖2)
1√

1− δ2d
+ ‖xIc‖2 (4.55)

where xIc denotes the vector which is obtained by setting the coefficients corresponding to the index

set I in x to zero. The index set I consists of those indices which are either in the support of the

d largest coefficients of x or in the support of cd: I = supp(xd) ∪ supp(cd).

The reasons why we introduce the specific index set I in the theorem are:

• We anticipate that the support of the d largest coefficients of x approximately coincide with

the support of cd.

• We expect that the coefficients of x that are not contained within the d largest coefficients

are very small, because x is assumed to be sparse.

Proof. The proof of the theorem begins with the application of the following two inequalities valid

for the 2-norm ‖ · ‖2:
‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 (4.56)

and

‖u− v‖2 ≥ ‖u‖2 − ‖v‖2. (4.57)

Now we can deduce the following:

‖z− ad‖2 = ‖MxI + MxIC −Mcd‖2
= ‖M(xI − cd) + MxIC‖2 ≥ ‖M(xI − cd)‖2 − ‖MxIC‖2
≥ ‖xI − cd‖2

√
1− δ2d − ‖MxIC‖2.

(4.58)

The proof is finalized by another application of the triangle inequality:

‖x− cd‖2 = ‖xI + xIC − cd‖2
≤ ‖xI − cd‖+ ‖xIC‖2

≤ 1√
1− δ2d

(‖z− ad‖2 + ‖MxIC‖2) + ‖xIC‖2.
(4.59)
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This theorem can obviously made a little bit more precise if one considers the exact size of I
instead of 2m, but we will not do this. By combining the Theorem 4.5.8 with Theorem 4.5.7 we

arrive at our key result for the theoretical performance of OMP in the CS recovery setting:

Theorem 4.5.9. Assume that d ≤ 1
3

1
µ , or more generally, that µ1(d) ≤ 1

3 where µ and µ1 denote

the coherence and cumulative coherence of the measurement matrix M ∈ C
m×n respectively. Fur-

thermore we assume that M satisfies the RIP for S = 2d with a RIP constant δ2d. Then OMP

generates an d-term approximant ad with an associated coefficient vector cd that satisfies

‖x− cd‖ ≤
(√

1 + 6d‖z−Mxd‖2 + ‖MxIc‖2
) 1√

1− δ2d
+ ‖xIc‖2 (4.60)

where xIc denotes the vector which is obtained by setting the coefficients corresponding to the index

set I in x to zero. The index set I consists of those positions which are either in the support of

the m largest coefficients of x or in the support of cm.

ROMP - Regularized Orthogonal Matching Pursuit

Although the recovery via OMP has some advantages, including the execution speed and trans-

parency of the algorithm, it lacks of theoretical performance guarantees that are as strong and

useful as the main Theorem 4.5.1 for BP. Note that the best known results regarding the recovery

performance of OMP are non-uniform. In fact, it has been shown in [48] that in general it is

impossible to derive uniform results for OMP. A more practical drawback of the results for OMP

presented above is that they mainly rely on the (commulative) coherence of the measurement ma-

trix M and it seems that the coherence as a performance parameter is not as detailed analyzed in

the literature as the RIP/RIC.

Therefore it would be beneficial to have an OMP variant that on one hand can be characterized

by the RIP/RIC of the measurement matrix and secondly yields uniform results similarily to

Theorem 4.5.1.

Fortunately, such an modified version has already been proposed under the name Regularized

Orthogonal Matching Pursuit (ROMP) [44, 45]. As shown in [44] the ROMP algorithm perfectly

fulfills the two desired properties:

Theorem 4.5.10. (Stability of ROMP under signal perturbations). Suppose that the measurement

vector z is given by z = Mx + w where w is some error vector. Assume a measurement matrix

M ∈ C
m×n satisfies the RIC with parameters (8k, ε) for ε = 0.01√

ln n
. Consider an arbitrary vector x

in R
n.Then ROMP produces a good approximation x̂ to x, i.e.,

‖x̂− x‖2 ≤ 160
√

ln 2k

(
‖w‖2 +

‖x− xk‖1√
k

)
, (4.61)

where xk is obtained from x by zeroing all coefficients except the k largest.
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In contrast to the performance result for BP presented above the result for ROMP is only valid

for the real valued setting. However, one can easily transform any complex valued data model for

CS into a real valued one for which the same sparsity properties are valid [53].

We now state the exact definition of ROMP:

1. Initialize. Given the measurement vector z ∈ R
n and a sparsity level k we initialize the

index set I = {} and the residual r = z. We repeat the following steps until the residual r

is sufficiently small.

2. Identify. Choose a set J of the k biggest coordinates in magnitude of the vector u = MHr,

or all of its nonzero coordinates, whichever set is smaller.

3. Regularize. Among all subsets J0 ⊂ J with comparable coordinates, i.e,

|ui| ≤ 2|uj | for all i, j ∈ J0, (4.62)

choose J0 with the maximal energy ‖u|J0‖2.

4. Update. Add the set J0 to the index set: I ← I ∪ J0, and update the residual:

r = z−My with y = arg min
supp(v)=I

‖z−Mv‖2. (4.63)

5. Go back to the Identify step unless r = 0.

We note that the “Regularize” step of ROMP does not imply combinatorial complexity, but ac-

tually can be done in linear time. More specifically, as shown in [45], the “Regularize” step has

a computational complexity of O(k). A difference to the BP is that ROMP needs to know the

sparsity degree S in advance because this is the sparsity level k used as an input for the ROMP

algorithm. The BP itself does not need this information for its implementation. However, its

performance also depends strongly on the sparsity of the signal vector x and the sparsity degree

S for which the measurement matrix M satisfies the RIC.

StOMP - Stage Wise Orthogonal Matching Pursuit

Another derivative of OMP has been proposed in [16]. Their approach called stagewise orthogonal

matching pursuit (StOMP) is based on a iterative scheme that uses a matched filter with thresh-

olding of the output, a projection and a subtraction stage during each iteration. A big difference

to OMP is that StOMP may select more than 1 column of M per stage. It is shown that in some

cases StOMP is considerably faster than BP while yielding a recovery accuracy comparable to BP.

Moreover, it is found that in some cases StOMP is even faster than ordinary OMP.
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TOMP - Tree Based Orthogonal Matching Pursuit

As already mentioned above, the authors of [34] propose a modification of OMP that incorporates

a second assumption on the signal vector x beside the sparsity assumption. They assume that x

can be represented efficiently by a sparse tree with respect to a multi scale dictionary (e.g. based

on wavelets). It is shown with the help of numerical studies that TOMP outperforms OMP if the

signal x is a samples version of piecewise smooth signal.

4.5.3 Adaptive Recovery Schemes

So far we considered a fixed, though possibly random, measurement matrix M. In particular the

recovery algorithms use a fixed matrix M to compute an estimation of x from the measurements

z. However, in some cases the signal vector x itself can be represented by x = Ψc, where the

regular matrix Ψ represents a specific basis of C
n and c is the coefficient vector for x w.r.t this

specific basis. Now, if the vector c is much more sparse than the signal vector x then it would

be wiser to write the measurements as z = M′c where the new measurement matrix M′ is given

by M′ = MΨ. With this new measurement matrix and corresponding generation model for z

we can use conventional recovery schemes to recover the coefficient vector c. This recovery can

be expected to be more accurate than the original recovery of x from z, if the sparsity of c is

significantly lower then x and the new measurement matrix M′ has approximately the recovery

capabilities as the original measurement matrix M (which intuitively can be expected to be true,

if Ψ represents an orthonormal basis, i.e., Ψ is a unimodular matrix).

The problem of finding an appropriate “sparsifying” basis matrix Ψ is investigated in [2, 46].

While in [46] one searches for the best dictionary over a predefined collection of dictionaries, in [2]

one computes the dictionary which best fits the observations. In the following we will discuss the

approach used in [46] in more detail.

Best Basis CS

So far we have considered only the canonical basis of C
n which is defined as the set {ek} of n

vectors, whereby ek ∈ C
n denotes the vector which has zero coefficients except at the kth position,

i.e.,

ek =




0
...

1
...

0




. (4.64)
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The assumption of a sparse signal x in the basic data model (4.1) always refers to the expansion

coefficients of x using the canonical basis {ek}. However, in some cases the signal vector x is not

sparse in the canonical basis but rather in some other orthonormal basis. Let Ψ denote the matrix

whose colums form an orthonormal basis (ONB) B for C
n (e.g. the DFT matrix Fn whose columns

are complex sinusoids with equispaced frequencies). The fact that a signal vector x is sparse with

respect to the ONB represented by the matrix Ψ is expressed by

‖ΨHx‖0 ≪ n. (4.65)

An intuitive approach to incorporate the fact that the signal x is sparse with respect to a certain

ONB represented by Ψ is to search the sparsest approximation of the observed measurement vector

z by trying every ONB Bλ with the associated matrix Ψλ out of a proper dictionary DΛ = {Bλ}λ∈Λ.

This is the key idea behind the following recovery scheme [46]

x̂ = arg min
g∈Cn

min
λ∈Λ

(
1

2
‖Mg − z‖22 + t‖ΨH

λ g‖1 + C0t
2pen(λ)

)
, (4.66)

where the Lagrange multiplier t accounts for stabilization against the noise term w and that the

sparsity of x is only given approximately. The term C0t
2pen(λ) incorporates a measure for the

“complexity” of the basis Bλ. The quantity pen(λ) can be interpreted as an equivalent number of

bits needed to specify a basis Bλ out of the dictionary (a detailed discussion of this quantity can

be found in [46]).

The recovery scheme (4.66) is not feasible for large dictionaries DΛ without any further as-

sumptions. However, for the practical useful dictionary of local cosine bases, where each basis Bλ

can be represented by a tree, there is a fast implementation for the search over the elements of DΛ

available. This implementation exploits the property of the objective function of (4.66), which we

will denote by L(g, λ, t) = 1
2‖Mg − z‖22 + t‖ΨH

λ g‖1 + C0t
2pen(λ), that it splits into a sum if the

ONB Bλ can be written as a union of two bases:

Bλ = Bλ1 ∪ Bλ2 ⇒ L(g, λ, t) = L(g, λ1, t) + L(g, λ2, t). (4.67)

This splitting property of the objective L together with the tree representation for the elements

Bλ of the dictionary of local cosine bases allows an algorithm for the search over the dictionary

with a complexity O(n) where n denotes the dimension of the signal vector x.

Note that this special tree representation for the dictionary consisting of local cosine bases is

also exploited to obtain fast algorithms in a different context in [9] and [36].
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4.6 Connection to Conventional Bayesian Estimation Theory

4.6.1 Bayesian Setup of CS Recovery

The basic data model of CS (4.1) together with the core problem of recovering the signal vector x

from the incomplete (due to m < n) and inaccurate (due to the noise w) measurements z can also

be casted in a traditional estimation framework. We want to give an overview over the possibilities

in Bayesian estimation theory (in contrast to classical estimation). As a starting point we cast the

central data model of CS (4.1) for the noiseless case in the Bayesian estimation framework:

z = Mx (4.68)

The quantities involved are:

• x ∈ C
n is the random data vector, which we would like to estimate.

• z ∈ C
m is the random measurement vector that we observe.

• M ∈ Cm×n is the known deterministic measurement matrix with typically m≪ n.

Within this section we assume that the measurement matrix M has full row rank, i.e, its rows

are linearly independent. This makes sense because we want to perform compression on x. If we

would use a measurement matrix M with linearly dependent rows, we would use a measurement

vector z of size m to encode a linear subspace whose dimension is exactly the row - rank of M

and therefore has a smaller dimension than the “codeword” z ∈ C
m would be able to encode. This

would be clearly a waste of resources and therefore make no sense.

Now, as necessary for the Bayesian framework we assign a prior probability density function

(pdf) to the signal vector x, which in our specific case moreover has to model the sparsity of the

signal vector. An intuitive approach is to use a prior pdf fx(x) for x which is of the following form

fx(x) = Cpe
−‖x‖p

p , (4.69)

where p is a positive real number10 and Cp is a normalization constant which ensures that the

pdf integrates to 1. This specific form for the prior pdf implies that the single coefficients xk of

the signal vector x are i.i.d.. An important special case poses the choice p = 1. For this specific

choice, the pdf is called a Laplacian distribution. The Laplacian prior is discussed in [30] where

the authors also use Bayesian estimation theory for CS.

Given the prior and the measurement matrix M, the recovery problem of CS can be reformu-

lated as the problem of estimating the signal vector x from the observed measurement vector z.

10The expression ‖x‖p
p is short for

P

k |xk|p, where xk denotes the k-th coefficient of the vector x. For p < 1 this

expression does not define a norm.
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In order to be able to calculate the corresponding Bayesian estimators, we have to determine the

pdf fz(z) of z as well as the conditional pdf f(z|x) of z conditioned on x.

To that end, we first perform a singular value decomposition of the measurement matrix M:

M = UΣVH (4.70)

where U ∈ C
m×m and V ∈ C

n×n are orthonormal matrices, i.e, they satisfy

UHU = Im×m (4.71)

and

VHV = In×n. (4.72)

Σ ∈ R
m×n is a rectangular diagonal matrix whose diagonal elements are the singular values of M

arranged in decreasing order.

After some elementary calculations11 one finds the following expression for the pdf fz(z)

fz(z) = C1

∫

ym+1...yn

fx(V · [(Λ−1UHz)H ym+1 ... yn]H)dym+1...dyn. (4.73)

where Λ ∈ R
m×m is a quadratic diagonal matrix whose diagonal is obtained from the main

diagonal of Σ. Here m denotes the number of rows of the measurement matrix M and C1 is

again a normalization constant that ensures that fz(z) integrates to one and depends only on the

measurement matrix M.

For the conditional pdf fz|x(z|x) one obtains:

f(z|x) = C2δ(z −Mx) (4.74)

where δ(·) denotes the multidimensional Dirac distribution and C2 is again a normalization con-

stant.

4.6.2 Recovery Based On Bayesian Estimators

As already mentioned above, the problem of recovering x from z can also be interpreted as the

problem of estimating x from z. Within the Bayesian framework we interpret the signal vector

x and the measurement vector z as a realization of the random vectors x and z.12 To model the

11fVHx(a) = fx(Va). fΣVHx(b) = 1
detΛ

R

ym+1...yn
fx(V[(Λ−1

b)H ym+1 ... yn]H)dym+1...dyn where Λ ∈
R

m×m is a quadratic diagonal matrix whose diagonal is obtained from the main diagonal of Σ. Because we assume

that M has full rank, the diagonal elements of Σ can be chosen to be positive which implies that the inverse Λ

exists.
12By an abuse of notation we use the same symbol for the random variable and a specific realization of this

random variable. The exact meaning should be clear from the context.
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sparsity of x, we use a prior pdf for the random signal vector x that assigns a relatively large

probability to sparse realizations x.

Two prominent Bayesian estimation schemes are the Minimum Mean Square Error (MMSE) -

estimator and the Maximum A Posteriori (MAP) - estimator. They only differ in the performance

measure used for their design. Whereas the MMSE estimator minimizes the expected squared

error norm between the signal vector x and the estimated (using only the measurement vector z)

signal vector x̂, the MAP estimator minimizes the probability of the event {x 6= x̂}.

MAP estimator

The MAP estimator x̂MAP of the signal vector x using only the measurement vector z is given by:

x̂MAP = arg max
x

f(x|z). (4.75)

The expression for the MAP estimator can be shown to be equivalent to

x̂MAP = arg max
x

{
f(z|x)

fx(x)

fz(z)

}

= arg max
x
{f(z|x)fx(x)}

(4.76)

where we used Bayes’ rule for manipulating conditional probabilities and the fact that the term
1

fz(z)
is irrelevant for the maximization over x.

MMSE estimator

The MMSE estimator x̂MMSE of the signal vector x using only the measurement vector z is given

by:

x̂MMSE = E{x|z}. (4.77)

This expression can be developed as follows

x̂MMSE = E{x|z}

=

∫

x1...xn

xf(z|x)
fx(x)

fz(z)
dx1...dxn

=
1

fz(z)

∫

x1...xn

xf(z|x)fx(x)dx1...dxn,

(4.78)
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and furthermore, by inserting the expression (4.74) for the conditional pdf f(z|x),

x̂MMSE =
C2

fz(z)

∫

x1...xn

xδ(z −Mx)fx(x) dx1...dxn

=
C2

fz(z)

∫

x1...xn

xδ(z −UΣVHx)fx(x) dx1...dxn

=
C2

fz(z)

∫

ym+1...yn

∫

y1...ym

δ(z −UΛy1..m)Vyfx(Vy) dy1...dyn

=
C2

fz(z) det Λ

∫

ym+1...yn

∫

y′

δ(z− y′)V[
(
Λ−1UHy′)H ym+1 ... yn]H

× fx(V[
(
Λ−1UHy′)H ym+1 ... yn]H) dy′dym+1..dyn

=
C2

fz(z) det Λ

∫

ym+1...yn

V[
(
Λ−1UHz

)H
ym+1 ... yn]H

× fx(V[
(
Λ−1UHz

)H
ym+1 ... yn]H) dym+1..dyn

(4.79)

where Λ ∈ R
m×m denotes the diagonal matrix that is made up of the elements of the main diagonal

of Σ and y1...m denotes a vector of size m that consists of the first m elements of y. Again, C2 is

just a normalization constant.

Although we have found closed form expressions for the MAP and MMSE estimators for the

recovery of the signal vector x from the observed measurement vector z the implementation of

this scheme is rather expensive regarding computational complexity. However the approach to

use MAP and MMSE estimators within a Bayesian framework is also pursued in [51]. There, a

modeling of the prior probability of x is used that differs from our proposal in (4.69). Furthermore,

the authors of [51] used a more specific type of measurement matrix M, more precisely they used

“sparse” matrices, i.e., only few entries of M are nonzero. With this assumption they are able

to construct algorithms that approximate the solutions of the MAP and MMSE estimators, given

in (4.77) and (4.75). Their construction is based on a graph representation of the measurement

matrix and a method called “message passing” that is also extensively used for decoders of low

density parity check (LDPC) codes.
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Spectrum-Estimation Using CS

5.1 Introduction

We already encountered the problem of estimating the WVS of an underspread process in Section

3.5. There, we exploited only the properties of underspread processes.

In this chapter we combine the results for underspread processes and for CS in order to design

a CS based WVS estimator for an underspread process X(t). Because the WVS is fully equivalent

to the autocorrelation function rX(t1, t2) and therefore also to the correlation operator RX we

could call the estimator also a “CS based correlation estimator” for underspread processes.

We would like to discuss two approaches which are fundamentally different in their structure.

Roughly speaking, the two schemes differ in the order in which CS and estimation is applied. The

first scheme will be called “Random Sampling of the Filterbank” and is a quite obvious synthesis of

CS results with the theory of underspread processes. The second one, coined “Random Sampling

of the EAF” is not such a straightforward combination of CS and underspread processes as the

first but we believe that it is an interesting alternative with its pros and cons vs. the other scheme.

5.2 Motivating Example – Cognitive Radio

In this section we would like to present a case study for a potential application of the estimator

schemes that will be developed. We consider a cognitive radio system, i.e., we a have L transmitters

with associated data sequences Xk[n] with k = 1...L, which are modeled as (wide sense) stationary

white discrete time random processes. This implies:

E{Xk[n]X∗
k [n′]} = Pkδ[n − n′]. (5.1)

We furthermore assume that the data sequences of different users are statistically independent, i.e.,

the sequences Xk[n] and Xk′ [n] are independent (and therefore also uncorrelated) if k 6= k′. Let us

65
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consider a further host “R”, that wishes to start a transmission. A characteristic of cognitive radio

systems is that there is no fix allocation of frequency intervals (“bandwidths”) to specific users.

Therefore the host R has to scan the complete bandwidth that is reserved for the cognitive radio

system and whose size is usually magnitudes larger than the bandwidth required by one single

host. If he finds an unoccupied frequency region then he will start his transmission there.

.

..

.

..

g(t)

g(t)

g(t)

Xk[n]

XL[n]

X1[n]

Sk(t)

SL(t)

S1(t)

w1[n]

wk[n]

wL[n]

ej2πf1t

ej2πfkt

ej2πfLt

R(t)

Figure 5.1: Simple model of a cognitive radio system.

A very simple picture of this cognitive radio scenario is shown in Figure 5.1. Each transmitter

employs a pulse amplitude modulation (PAM) scheme with a linear time invariant (LTI) pulse

filter g(t). The multiplication with the window functions wk[n] models the fact that data is

transmitted in a bursty fashion, which is typical for radio systems that use a CSMA (Carrier Sense

Multiple Access) scheme at the data link layer (e.g. IEEE802.11). Each transmitter signal Sk(t)

can therefore be written as

Sk(t) =

wk2∑

n=wk1

Xk[n]g(t− nTs)e
j2πfkt (5.2)

where wk1 and wk2 denotes the (discrete) start and stop time of the window w[n] at node k. For

the sake of simplicity, we assume that the physical radio transmission between the antennas only
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causes a multiplicative change of the signals and moreover the multiplicative factor is the same

for all signals. This multiplicative factor is chosen to be 1. Therefore the scanning signal R(t) at

node “R” can be written as a superposition of all transmitted signals, i.e.,

R(t) =

K∑

m=1

Sm(t) (5.3)

In the following, we will show that under reasonable conditions R(t) satisfies the two funda-

mental properties of our thesis, i.e., it is an underspread random process that moreover yields

sparse analyzing coefficients using a proper WH-set. Therefore we can use CS in the front end of

“R” in order to reduce the effective sampling rates while incurring only small errors. To that end,

we calculate the correlation function rSk
(t1, t2) of the transmitted signals Sk(t), i.e.,

rSk
(t1, t2) = E{Sk(t1)S

∗
k(t2)}

= E





wk2∑

l=wk1

wk2∑

l′=wk1

Xk[l]X
∗
k [l′]g(t1 − lTs)g

∗(t2 − l′Ts)





= Pk

wk2∑

l=wk1

g(t1 − lTs)g
∗(t2 − lTs). (5.4)

Here, Pk denotes the mean signal power ofXk[n]. Note that it is assumed here that each transmitter

sends only one single burst of data, because we use a box shaped window. However, because each

data sequence is white, contributions to the correlation function rSk
(t1, t2) of potential additional

transmission bursts in each transmitter can be simply added. For multiple bursts the window

function of the k-th transmitter has to be replaced by a superposition of non-overlapping box-

shaped functions.

From the correlation function we calculate the EAF ĀSk
(τ, ν) of the transmitted signals as

ĀSk
(τ, ν) =

∫

t
rSk

(
t+

τ

2
, t− τ

2

)
e−j2πνtdt

=

∫

t
Pk

wk2∑

l=wk1

g
(
t+

τ

2
− lTs

)
g∗
(
t− τ

2
− lTs

)
e−j2πνtdt

= Pk

wk2∑

l=wk1

∫

t
g
(
t+

τ

2
− lTs

)
g∗
(
t− τ

2
− lTs

)
e−j2πνtdt

= Pk

wk2∑

l=wk1

Ag(τ, ν)e
−j2πνlTs (5.5)

= PkAg(τ, ν)

wk2∑

l=wk1

e−j2πνlTs . (5.6)
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For burst lengths not too small (e.g. wk2 − wk1 ≥ 100) the factor
wk2∑

l=wk1

e−j2πνlTs approximates a

dirac comb1 along the ν axis with a period of 1
Ts

which means that it “masks” the factor Ag(τ, ν)

in ν direction. This masking effect causes the signal Sk(t) to be underspread, provided that the

ambiguity function Ag(τ, ν) of the transmit pulse is well concentrated around the origin in τ

direction. If we now assume that there are only a few transmitters relative to the whole system

bandwidth (which is typical for cognitive radio systems because otherwise it would be wiser to

allocate fix frequency bands to the transmitters) then R(t) is the superposition of only a few

underspread processes and is therefore underspread and sparse (relative to the whole bandwidth

of the cognitive radio system).

To further illustrate the masking effect described above, which has the effect that the effective

support of ĀSk
(τ, ν) is small, i.e., Sk is underspread, we simulated a PAM transmitter using a

raised cosine pulse shape2, i.e.,

gα(t) = sinc

(
t

Ts

)
·

cos
(
πα t

Ts

)

1− 4α2
(

t
Ts

)2 (5.7)

where the parameter α denotes the roll off factor and takes on values from [0, 1] and where we

used the “sinc” function:

sinc(x) ,
sin(x)

x
. (5.8)

For α = 0 the raised cosine pulse gα=0(t) degenerates to the conventional “sinc” pulse whose Fourier

transform is box shaped. At the other extreme: α = 1, the raised cosine pulse gα=1(t) needs twice

the bandwidth as the sinc-pulse using the same symbol period Ts. However, gα=1(t) has a much

better time concentration, making digital implementations a lot easier.

We simulated two simple PAM transmitters which used the same parameters: A roll-off factor

α = 0.3 and a burst length of 10 PAM symbols. The symbols are i.i.d. from the alphabet {−1, 1}.
In Figure 5.2 we show a gray scale plot of the EAF ĀR(τ, ν) of the received signal

R(t) = S1(t) + S2(t) (5.9)

as well as a contour plot ot the WVS WR(t, f) of R(t). The added reference rectangle in the

(τ, ν) plane illustrates the underspreadness of R(t). However, the burst length of 10 symbols is

rather low, for more realistic values (say 1000), the masking effect described above should be even

stronger leading to a higher degree of underspreadness of R(t).

1Carefully note that this approximation is not true in a quantitative sense at all because a dirac comb has an

infinite power whereas the power of
Pwk2

l=wk1
e−j2πνlTs is always finite. What is meant here is that the effective

support of the periodic (w.r.t. ν) signal
Pwk2

l=wk1
e−j2πνlTs goes to zero if wk2 − wk1 goes to infinity.

2In practice the raised cosine filter is split up into two root raised cosine filters, one located at the transmitter

and the other one serving as a matched filter at the receiver.
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Figure 5.2: (a) EAF of the received signal (darker shades correspond to larger magnitudes). The

rectangle has an area of 0.4, (b) WVS of the received signal (the lowest contour is about 1 percent

of the maximum).

5.3 Measuring the Sparsity of an Underspread Random Process

X(t)

Before we can discuss any CS based estimator scheme we have to clarify the notion of “sparseness”

and “sparsity” in the context of underspread random processes. According to Chapter 4, CS

operates on the finite dimensional vector space C
n. There, the notion of “sparseness” was identified

with the number of (effectively) nonzero entries.

The question arises, how to adopt this definition to a random process X(t). As already men-

tioned further above, a straightforward way is to consider the coefficients of an analyzing WH-set

G = (g(t), T, F ) (not necessarily a Gabor frame):

Ck,l = 〈X, gk,l〉 =
∫

t
X(t)g∗(t− kT )e−j2πlF tdt (5.10)

and to define the sparsity of X(t) via the sparsity of a (suitable) truncated version3 of the coeffi-

cients Ck,l. However, the Ck,l are random quantities and therefore the sparsity of the Ck,l would

be a random quantity. As discussed below we will be interested in the mean squared errors of our

estimator schemes. Therefore we are primarily interested in a mean sparsity of the Ck,l.

3Throughout this thesis we assume that the WVS W X(t, f) of any random process X(t) always is supported

within a sufficiently large rectangle. The lengths of the rectangle can be interpreted as maximum signal duration

and effective bandwidth, respectively.
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Furthermore as indicated by the central performance results for the BP (Theorem 4.5.1) and

ROMP (Theorem 4.5.10) the sparsity of a vector can be defined via the norm of the tail4 relative

to the entire energy (= squared ℓ2-norm) of the vector. Although in (4.19) and (4.61) the ℓ1-

norm is used we will use the quadratic norm for two reasons: firstly, the ℓ1-norm can always be

upper bounded by the quadratic norm and secondly, the quadratic norm will lead to approximate

expressions that are directly related to (sample values of) the WVS WX(t, f) of the process X(t)5.

A drawback of such a definition of a mean sparsity is, that it depends on the lattice (kT, lF ) in

the TF-plane that is used by the WH-set G and on the center of gravity of the WD of the prototype

function used by the WH-set G. Because we will exclusively use prototype functions that are well

localized and centered around the origin in the TF-plane (e.g. a Gaussian) and the fact that the

WVS WX(t, f) of an underspread process X(t) does not vary too much within an rectangle of size

TF if T and F are chosen not too large relative to the inverse of the effective support of ĀX(τ, ν)6,

the exact choice of T and F will have not a dramatic impact on the sparsity measure.

However, it will turn out that it is wiser to define a sparsity without using a Gabor analysis

but use directly the exact shape of the WVS of the process, i.e., to stack the sample values of the

WVS along the lattice (kT, lF ) into a vector c and use this vector to measure the (TF-) sparsity

of the random process. Summarizing this discussion, given an underspread random process X(t)

and lattice constants T, F that are such that the effective support of ĀX(τ, ν) is supported within

[− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ], we measure the sparsity of an underspread X(t) process as follows:

• Firstly, after suitable truncation of the WVS, we stack the values {WX(kT, lF )}k,l into a

vector c:

c , vec{{WX(kT, lF )}k,l} (5.11)

where vec{·} denotes the operation that stacks the columns of a matrix into a vector (see

the appendix for details).

• Secondly, we measure the sparsity to degree S of the underspread process X(t) via the ratio

of the energy that is contained within the tail of c relative to the energy (squared norm) of

c:

σS ,
‖c− cS‖22
‖c‖22

(5.12)

4The tail of a vector refers to the coefficients that are below a certain threshold or to coefficients that are not

contained in the set of the S largest coefficients, where S ∈ N denotes the sparsity order.
5More specifically, the variances E{|Ck,l|2} of the Gabor coefficients Ck,l are equal to the values of the physical

spectrum (cf. Section 2.6) of X(t) evaluated at the grid of the analyzing WH-set: E{|Ck,l|2} = PS
(g)
X (t, f). However,

for an underspread process X(t) the physical spectrum PS
(g)
X (t, f) becomes approximately equal the WVS W X(t, f)

[38,40]
6More precisely, the EAF ĀX(τ, ν) should have most of its energy with the rectangle [− 1

2F
, 1

2F
] × [− 1

2T
, 1

2T
] in

the (τ, ν)-plane.
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were cS denotes the vector that is obtained from c by zeroing all coefficients except the

specific S ones whose magnitudes are the largest. We will denote the set of (k, l) for which

the sample values WX(kT, lF ) are not among the S largest of all sample values WX(kT, lF )

within the effective support of WX(t, f) by Ω.

For an underspread process the quantity σS can be well approximated by:

σS ≈ TF
∑

(k,l)∈ΩW
2
X(kT, lF )

‖RX‖22
(5.13)

where we used the fact that the squared norm ofWX(t, f) is approximately equal to TF
∑

k,lW
2
X(kT, lF )

if T, F are suitable chosen, i.e., aliasing effects due to sampling can be neglected (cf. Theorem

3.6).

In the next two sections we will develop approximate performance bounds, more specifically

approximate upper bounds on the mean squared error (MSE) of spectrum estimators using CS.

These approximate bounds will use the quantity σS for a given sparsity degree S in order to

measure the (TF-)sparsity of a given process. However, this method leads to pessimistic bounds

because the performance of the CS recovery strategies fundamentally depend on the sparsity of the

signal vector x which is in our case a single realization of the process X(t). It may happen that

for a single realization of x the spectrum, more specifically the Wigner Distribution Wx(t, f), has

its maximum values at locations in the TF-plane that are different from the locations where the

WVS WX(t, f) attains its maximum values. Therefore if we use σS , we fix a priori the locations

which are regarded as the positions of the smaller spectral values in the TF plane even if one single

realization has its energy concentrated on a different region in the TF plane. The simulations in

the next chapter will support this reasoning.

5.4 Random Sampling of the Filterbank

The WVS estimator scheme “Random Sampling of the Filterbank” has a structure similar to

the scheme proposed in Section 3.5. A big difference is that the CS based estimator uses a CS

measurement stage after the sampled filterbank. The estimator scheme is illustrated in Figure

5.3. The first two blocks, the sampled filterbank (with the parameters g(t),T and F specifying the
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.

..

.

..
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ŴX(t, f)

M
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ej2πl1t
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|Ck,l1|2

|Ck,lN |2

| · |2

| · |2

| · |2

g(t)

g(t)

g(t)

CS-Recovery

kT

kT

kT

z

x̂FB
∑
k,l

Ĉk,lφ(t− kT, f − lF )

Figure 5.3: Block diagram of the estimator scheme “Random Sampling of the Filterbank” using

the analyzing WH-set G = (g(t), T, F ). The summation index l of the last (reconstruction) block

ranges over the set {l0, ..., lN}.
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corresponding WH-set) which computes the inner products7 :

Ck,l =
〈
X(t), g(t − kT )ej2πlF t

〉
(5.14)

and the measurement stage (represented by the measurement matrix M) might be grouped together

in a so called “CS sensor”. This naming would indicate that this group represents a device that

takes few measurements on the process X(t) in order to finally estimate the WVS WX(t, f). The

output of this sensor are the measurements, represented by the vector z ∈ C
m, which is given as:

z = MxFB (5.15)

where the random vector xFB is constructed from the (suitable truncated) set of Gabor coefficients

Ck,l via the vec operation

xFB = vec{|Ck,l|2}. (5.16)

The measurements z are then fed into the spectrum estimator, which performs the following tasks:

1. It employs BP or ROMP in order to recover the original coefficients xFB from the measure-

ments z resulting in a vector of estimated coefficients x̂FB:

x̂FB = vec
{
Ĉk,l

}
. (5.17)

The elements Ĉk,l of this vector are approximately equal to the magnitude squared Gabor

coefficients, i.e., to |Ck,l|2.

2. The result of the recovery x̂FB is then used for the estimation of WVS WX(t, f) of X(t) by

an estimator of the form

ŴX(t, f) =
∑

k,l

Ĉk,lφ(t− kT, f − lF ) (5.18)

where the summation range corresponds to the truncated set of Gabor coefficients. Note

that for a given underspread process X(t) the output of the estimator ŴX(t, f) is in general

different to the following estimator:

W̃X(t, f) =
∑

k,l

|Ck,l|2φ(t− kT, f − lF ) (5.19)

7We assume that the energy, or more precisely the WVS W X(t, f), of the process X(t) is effectively supported

within a certain region in the TF plane. Therefore for the computation of the Gabor coefficients Ck,l we consider

only those indices (k, l) for which the point (kT, lF ), where T and F are the lattice constants of the analyzing

WH-set, is within the effective support of W X(t, f). For formal convenience we additionally assume that this set

of indices forms a “rectangle”, i.e., the set is of the form {(k, l)|k0 ≤ k ≤ k1 and l0 ≤ l ≤ l1}. In this case the values

Ck,l can be directly represented as a matrix which then will be denoted by {Ck,l}.



CHAPTER 5. SPECTRUM-ESTIMATION USING CS 74

where the summation range corresponds to the truncated set of Gabor coefficients. We note

that (5.19) defines the same estimator as in Section 3.5. Indeed, the estimator introduced

in Section 3.5 can be regarded as the limiting case of the estimator ŴX(t, f) when no com-

pression is used. The reason for the difference between ŴX(t, f) and W̃X(t, f) is due to the

fact that the estimator here uses the recovered coefficients x̂FB which will in general deviate

from the coefficients xFB which are essentially the output of the filter bank.

It remains to choose the measurement matrix M (i.e., in particular the number of measurements

m which is related to the mean sparsity of xFB) as well as the analyzing WH-set, i.e., the prototype

function g(t) and the lattice constants T and F . The lattice constants T and F are also used for the

design of the estimator which furthermore requires a choice for the reconstruction kernel φ(t, f).

The choice for g(t),T ,F and φ(t, f) is motivated by the discussion of Section 3.5. As mentioned

there, we choose the lattice constants T ,F such that the effective support of the EAF ĀX(τ, ν)

of X(t) is approximately supported within the rectangle [− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ] in the (τ, ν)-plane.

Then we choose a reconstruction kernel φ(t, f), whose Fourier transform Φ(τ, ν) is given as in

(5.26) below (see also the justification for this choice discussed there). It remains to determine

M. To that end we use the specific sparsity order S ∈ N for which the parameter σS , introduced

above, is below a certain threshold η, where η is a small positive real number.

If we have fixed the value of S we can choose a specific measurement matrix M. We will use

two alternative choices: the Gaussian ensemble and the sampled Fourier matrix (see Section 4.4.5).

As a rule of thumb [50,53] we use the following formulas for m:

• For the Gaussian ensemble m = 11.7 · S
[
1.5 + ln n

S

]

• and for the sampled Fourier matrix m = C3 (lnn)4 · S with a constant C3 whose exact value

seems to be unknown yet. However as pointed out in [53] for this choice of m and a dimension

n that is not too small, the Fourier matrix will yield a successful CS-recovery for reasonable

values of C3 with extremely high probability.

In the following we present upper bounds on the expected squared estimation error:

eFB , E{‖ŴX (t, f)−WX(t, f)‖22} (5.20)

under the assumption that M satisfies the RIC of BP and ROMP. To that end we rewrite the

difference ŴX(t, f)−WX(t, f) and use the triangle inequality for norms:

√
eFB ≤

√
E{‖ŴX(t, f)− W̃X(t, f)‖22}+

√
E{‖W̃X(t, f)−WX(t, f)‖22}. (5.21)

The second term

√
E{‖W̃X(t, f)−WX(t, f)‖22} is equal to

√
εsimple where εsimple denotes the mean

squared error of the estimator itself (without considering the CS stage which means to set formally
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xFB = x̂FB). For the quantity εsimple we found already the approximate expression (3.47) in Section

3.5.

The term E{‖ŴX (t, f) − W̃X(t, f)‖22}, which will be abbreviated by e1 in the following, can

be bounded as follows:

e1 ≤ E{‖xFB − x̂FB‖22}max
τ,ν
|Φ(τ, ν)|2TF

≤ Crecovery
|Ω|
S

∑

k,l∈Ω

E{|Ck,l|4}max
τ,ν
|Φ(τ, ν)|2TF

≈ Crecovery
|Ω|
S

∑

k,l∈Ω

2W
2
X(kT, lF )max

τ,ν
|Φ(τ, ν)|2TF

≈ Crecovery
|Ω|
S

2σS
‖RX‖22
TF

max
τ,ν
|Φ(τ, ν)|2TF

= Crecovery
|Ω|
S

2σS‖RX‖22 max
τ,ν
|Φ(τ, ν)|2

(5.22)

were we used ‖u‖1 ≤ ‖u‖2 ·
√

supp(u) (valid for any u ∈ C
n) and (5.26) and the fact that if T, F are

chosen such that aliasing effects are small then TF
∑

k,lW
2
X(kT, lF ) ≈ ‖WX(t, f)‖22 = ‖RX‖22.

Furthermore we used Isserli’s fourth order equation for Gaussian RV’s and the fact that for a

sufficient underspread process the variances E{|Ck,l|2} (remember that the Ck,l are zero mean

because X(t) is assumed zero mean) are approximately equal to the values WX(kT, lF ) of the

WVS of X(t).

By combining (5.21),(3.47) and (5.22) we get the following approximate bound:

eFB ≤



√
Crecovery

|Ω|
S

2σS‖RX‖22 max
τ,ν
|Φ(τ, ν)|2 +

√
εsimple




2

(5.23)

which is the more accurate, the more underspread the process X(t) is. The constant Crecovery

depends only on the type of the recovery algorithm (BP or ROMP) and the sparsity degree S (the

sparsity degree should be chosen such that σS is small, e.g. ≤ 0.1).

5.5 Random Sampling of the EAF

The estimator scheme “Random Sampling of the EAF” is based on the heuristic estimator design

proposed in [41]. Under the assumption that only one realization x(t) of the random process X(t)

can be observed, they propose to estimate the WVS of an underspread random process X(t) by

smoothing the WD of a single realization x(t) of X(t), i.e.,

W̃X(t, f) = Wx(t, f) ∗ ∗φ(t, f) (5.24)
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where the smoothing kernel φ(t, f) is chosen such that its 2D Fourier transform

Φ(τ, ν) ,

∫

f

∫

t
φ(t, f)e−j2π(νt−τf)dtdf (5.25)

is given as

Φ(τ, ν) =





1, for (τ, ν) ∈ effective support of ĀX(τ, ν)

0, elsewhere
(5.26)

whereby the effective support of the EAF ĀX(τ, ν) can be defined in different ways. A possible

method could be to define the effective support A of ĀX(τ, ν) to be those specific rectangle of

minimum area for which the quantity σA ,
‖ĀX(τ,ν)·IA‖2

‖ĀX(τ,ν)‖2
satisfies8

σA ≥ 1− η. (5.27)

with a small positive real number η (η ≪ 1).

The original WVS estimator proposed in [41] uses an estimator W̃X(t, f) that incorporates

only a single realization x(t) of the form

W̃X(t, f) = 〈Ĉt,fx, x〉 (5.28)

with TF-shifted versions9

Ĉt,f , St,fĈS∗
t,f (5.29)

of the prototype operator Ĉ that parameterizes the estimator W̃X(t, f). The defining expressions

(5.28) and (5.24) of the estimator W̃X(t, f) are equivalent if the smoothing function φ(t, f) is equal

to the Weyl symbol of the prototype operator Ĉ mirrored at the origin in the TF-plane, i.e.,

φ(t, f) = L
Ĉ

(−t,−f). (5.30)

The design of the estimator, i.e., the choice for φ(t, f) (or equivalently the choice for the prototype

operator Ĉ), is based on the estimator’s mean squared error

ε2 , E
{∥∥W̃X(t, f)−WX(t, f)

∥∥2

2

}
. (5.31)

Because the WVS WX(t, f), which we want to estimate, is a deterministic object we can split ε2

into a bias and variance term

ε2 = V 2
EAF +B2

EAF (5.32)

8IΩ(·) denotes the indicator function of some domain Ω, i.e., for each point x ∈ Ω we have IΩ(x) = 1 for all

other x we have IΩ(x) = 0.
9The action of the TF-shift operator St,f on a signal x(t) is defined via (St,fx) (t′) = x(t′−t)ej2πft′ . Furthermore,

for every linear operator C the Weyl symbol of St0,f0CS
∗
t0,f0

is given by LC(t − t0, f − f0) where LC denotes the

Weyl symbol of C.
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with the global bias B2
EAF , ‖E{W̃X(t, f) − WX(t, f)}‖22 and the global variance V 2

EAF ,

E{‖W̃X(t, f) − E{W̃X(t, f)}‖22}. In some sense the bias term accounts for a systematic (i.e.,

deterministic) estimation error, whereas the variance term accounts for a random error component

due to the random fluctuations of the different realizations. It can be easily shown [41] that the

bias term is given as

B2
EAF =

∫

τ,ν
|1− Φ(−τ,−ν)|2|ĀX(τ, ν)|2dτdν (5.33)

and the variance term can be approximated [41] by

V 2
EAF ≈ ‖RX‖22

∫

τ,ν
|Φ(τ, ν)|2dτdν. (5.34)

In order to introduce our CS based estimator scheme “Random Sampling of the EAF” let us

consider sampled versions of both10, the smoothed WD of the realization x(t) (which is equal to

the estimator W̃X(t, f) defined in (5.24)), i.e.,

xEAF = vec

{{
W̃X(kT, lF )

}
(k,l)∈W

}
(5.35)

and the AF Ax(τ, ν) of x(t), constrained to the effective support of ĀX(τ, ν)

yEAF = vec

{{
Ax

(
k

Tmax
,
l

B

)}

(k,l)∈L

}
(5.36)

where we assume that the smoothed WD of the realization x(t), which is the WVS estimator

W̃X(t, f), is effectively supported within [−Tmax
2 , Tmax

2 ]× [−B
2 ,

B
2 ] in the TF-plane, L ⊆ Z

2 denotes

the set of pairs (k, l) ∈ Z
2 for which ( k

Tmax
, l

B ) is located within the rectangle [− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ]

and W denotes the set of pais (k, l) ∈ Z
2 for which the points (kT, lF ) are located within the

effective support of W̃X(t, f). The lattice constants of T and F are chosen such that the effective

support of ĀX(τ, ν) is contained within the rectangle [− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ] in the (τ, ν)-plane.

It can then be shown that xEAF and yEAF, by neglecting unavoidable aliasing effects11, are

related via

yEAF =
1

TF

(
Fk1 ⊗ F

∗
k2

)
xEAF (5.37)

where “⊗” denotes the Kronecker product of matrices (see the Appendix for details) and Fk denotes

the DFT matrix (∈ C
k×k) as defined in Section 4.5.2.

10Independently of this work, the authors of [4] proposed a method that is algorithmically very similar to the

approach we use here. However, in that paper there is a completely deterministic framework used. Furthermore

the authors use CS methods mainly for regularization and not for data compression as we do.
11A function cannot be simultaneously supported within an interval (rectangle) in the original and the Fourier

domain. However, approximately, certain functions do have this property provided that the geometries of the two

intervals/rectangles are suitable chosen.
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Because we assume that the WVS WX(t, f) of X(t) is sparse in the sense defined above, the

vector xEAF is sparse with high probability. Therefore, we can randomly select a few elements of

yEAF without, according to the CS recovery results for sampled Fourier matrices, loosing significant

information. The overall estimator structure is shown in Figure 5.4. In the first stage, the values

x(t)

ŴX(t, f)

yEAF = vec

{{
Ax

(
k

Tmax
, l

B

)}

(k,l)∈L

}

x̂EAF

yEAF zEAF

CS

Recovery

Random
Selection

∑
(k,l)∈W

(x̂EAF)k φ(t− kT, f − lF )

Figure 5.4: Block diagram of the estimator scheme “Random Sampling of The EAF”.

of the AF Ax(τ, ν) are calculated at the points (τ ,ν) which corresponds to the rectangular grid

of points ( k
Tmax

, l
B ) as introduced above. The resulting values are then stacked into the finite

dimensional vector yEAF ∈ C
n and are then randomly selected by the CS measurement stage. The

randomly selected coefficients of yEAF ∈ C
n are stacked into the measurement vector zEAF ∈ C

m.

Using (5.37) we have the following relationship:

zEAF = MxEAF (5.38)

where the measurement matrix M is made up of those rows of 1
TF

(
Fk1 ⊗ F

∗
k2

)
that correspond to

the randomly selected (sampled) coefficients of y.

The final stage of our estimator now tries to reconstruct xEAF from zEAF by using one of the CS

recovery schemes (BP or ROMP). The result/output of the recovery x̂EAF is an approximation to

xEAF which will be in general different from xEAF. However, as shown in the previous chapter for

a suitable measurement matrix MEAF and sparsity of xEAF the error ‖x̂EAF−xEAF‖2 will be small.

The recovered vector x̂EAF consists of approximate sample values of W̃X(t, f). Using the

elements of the vector x̂EAF as sampled estimator outputs of the estimated WVS we calculate the
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estimated WVS ŴX(t, f) by a 2D reconstruction using φ(t, f) as the reconstruction kernel

ŴX(t, f) =
∑

(k,l)∈W
(x̂EAF)k φ(t− kT, f − lF ). (5.39)

Here, the function φ(t, f) is the same as in (5.24) and is in essence a reconstruction kernel for band

limited (2D-) functions. The output ŴX(t, f) of our estimator is in general different from W̃X(t, f)

(the estimator without using CS) defined in (5.24), because the CS stages (random sampling of

yEAF and recovery) will in general introduce errors.

Now we bound the mean squared error eEAF , E
{∥∥WX(t, f)− ŴX(t, f)

∥∥2

2

}
, under the as-

sumption that the measurement matrix M satisfies the RIC of Basis Pursuit and ROMP, in an

approximate manner. Again, using the triangle inequality for norms we get:

√
eEAF =

√
E
{∥∥WX(t, f)− ŴX(t, f)

∥∥2

2

}
=

√
E
{∥∥
(
W̃X(t, f)− Ŵ (t, f)

)
+
(
WX(t, f)− W̃X(t, f)

) ∥∥2

2

}

≤
√

E
{∥∥ŴX(t, f)− W̃X(t, f)

∥∥2

2

}
+

√
E
{∥∥WX(t, f)− W̃X(t, f)

∥∥2

2

}

=

√
E
{∥∥ŴX(t, f)− W̃X(t, f)

∥∥2

2

}
+
√
B2

EAF
+ V 2

EAF

=

√
E{TF

∑

k,l

|ŴX(kT, lF )− W̃X(kT, lF )|2}+
√
B2

EAF + V 2
EAF

≤
√√√√Crecovery|Ω|

S

∑

(k,l)∈Ω

E{|W̃X(kT, lF )|2}+
√
B2

EAF
+ V 2

EAF

(5.40)

where the constant Crecovery only depends on the actual recovery algorithm, i.e., BP or ROMP and

on the sparsity degree S. We used for this derivation the triangle inequality for norms, (5.32), the

identity of the 2-norm of bandlimited functions with the 2-norm of a suitable sequence of sample

values and Theorem 4.5.10 as well as Theorem 4.5.1 of the previous chapter. As we will show

presently the mean power of W̃X(kT, lF ) is approximately proportional to W
2
X(kT, lF ). We note

that the sparsity measure σS for a fixed sparsity degree S enters in exactly the same manner into

the error bound of this scheme as for the scheme “random sampling the Filterbank”.

It remains to determine the quantities E{|W̃X(kT, lF )|2}. To that end we use concepts and

results from [41]:

• First, we note that W̃X(t, f) can be written as a quadratic form (5.28) using the prototype

operator Ĉ of the estimator. Because we assume that Φ(τ, ν) is box-shaped, real valued and

symmetric w.r.t. the τ and ν axis we have that the Weyl symbol L
Ĉt0,f0

(cf. Section 2.4) of
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the TF-shifted prototype operator Ĉ is given as

L
Ĉt0,f0

(t, f) = φ(t− t0, f − f0) =
1

TF
sinc

(
t− t0
T

)
· sinc

(
f − f0

F

)
(5.41)

where we assume that the sampling constants T, F are chosen such that the effective support

of ĀX(τ, ν) is contained within [− 1
2F ,

1
2F ]× [− 1

2T ,
1

2T ].

• Second, it can be shown [41] that the variance V 2
t,f of W̃x(t, f) is given by

V 2
t,f = tr{Ĉt,fRXĈ

∗
t,fRX} (5.42)

and the mean of W̃X(t, f) is equal toWX(t, f) (because we assume that the EAF is supported

within the support of Φ(τ, ν), which is also necessary for an unbiased estimator of the WVS).

If the operators C and RX are jointly underspread (for the definition of joint underspreadness

of operators we refer to [40]) then the following approximation holds:

tr{Ĉt,fRXĈ
∗
t,fRX} =

∫

t,f
L

Ĉt,fRX
(t, f)L∗

RXĈt,f
(t, f)dtdf

≈
∫

t,f
L2

RX
(t, f)L2

Ĉt,f
(t, f)dtdf

=

∫

t,f
W

2
X(t, f)L2

Ĉt,f
(t, f)dtdf.

(5.43)

Here, we used the identity LRX
(t, f) = WX(t, f). A result concerning the quality of this

approximation is given by Theorem 2.14 in [40]. Therefore we can approximate the variance

term as

V 2
t0,f0
≈ ‖L

Ĉt,f
· LRX

‖22

= ‖ 1

TF
sinc

(
t− t0
T

)
· sinc

(
f − f0

F

)
·

∑

k,l

WX (t0 + kT, f0 + lF ) sinc

(
t− t0 − kT

T

)
· sinc

(
f − f0 − lF

F

)
‖22

= W
2
X(t0, f0).

(5.44)

Here, we assumed that the WVS WX(t, f) of X(t) is an exactly bandlimited 2D function.

By noting the relationship:

E{‖xEAF‖22} = E{‖xEAF − E{xEAF}‖22}+ ‖E{xEAF}‖22 (5.45)

valid for any complex valued random vector x we get the final approximation:

E{|W̃X(t, f)|2} ≈ 2W
2
X(t, f). (5.46)
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The final approximate bound for the error e is given as:

eEAF ≤




√√√√Crecovery|Ω|
S

∑

(k,l)∈Ω

E{|W̃X(kT, lF )|2}+
√
B2

EAF
+ V 2

EAF




2

≈




√√√√Crecovery|Ω|
S

∑

(k,l)∈Ω

2W
2
X(t, f) +

√
B2

EAF + V 2
EAF




2

≈
(√

Crecovery|Ω|
S

2σS
‖RX‖22
TF

+ VEAF

)2

≈
(√

Crecovery|Ω|
S

2‖RX‖22
σS

TF
+ ‖RX‖2‖Φ(τ, ν)‖2

)2

=

(√
Crecovery|Ω|

S
2
σS

TF
+ ‖Φ(τ, ν)‖2

)2

‖RX‖22

(5.47)

Where we used (5.46), the fact that we will use approximately unbiased (B2
EAF ≈ 0) estimators

and the approximate expression for the variance (5.34).



Chapter 6

Simulations

In this chapter we discuss various experiments in MATLAB to demonstrate how the CS based

estimator schemes perform compared to traditional (non CS based) estimator schemes. But first

we discuss the problem of going from the analog domain into the discrete and finite length setting

of a computer simulation. Furthermore, we discuss a scheme that allows to synthesize random

processes with a freely designable geometry of the WVS or equivalently the EAF. In particular we

can use this tool for generating (TF-) sparse and underspread processes.

6.1 From Analog to Digital

Within our simulations we represent any signal s(t) (e.g. the realization of a random process) by

a finite length vector s′ ∈ C
N that is obtained by truncating the signal s(t) to a finite interval of

length Tsig and subsequently sampling this truncated signal with a sampling period Ts. Using this

vector we can compute digitalized (= sampled and truncated) versions of the Wigner distribution

Ws(t, f) and the ambiguity function As(τ, ν) of the signal s(t). However this will work only with

little errors, if

• the energy of the Fourier transform ŝ(f) of s(t) is well concentrated within the interval

[− 1
4Ts

, 1
4Ts

] at the frequency axis [8, 42]

• and the energy of the signal s(t) is well concentrated within the truncation interval of size

Tsig. Without loss of generality we assume that the energy of s(t) is concentrated within the

interval [0, Tsig].

It these two conditions are satisfied then it can be shown that

Ws

(
nTs,

m

2NTs

)
≈ 2Ts

∞∑

k=−∞
s′n+ks

′∗
n−ke

−j2π m
N

k (6.1)

82
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where the vector s′ ∈ C
N is given by the sample valued of the truncated function s(t), i.e.,

s′k = s(kTs) k = 0...N − 1. (6.2)

Similarly, it can be shown that

As

(
2kTs,

m

NTs

)
≈ Ts

∞∑

n=−∞
s′n+ks

′∗
n−ke

−j2π m
N

n, (6.3)

where in both expressions s′l is 0 if the index l is not within {0, ..., N − 1}.

6.2 Minimum Error Synthesis

For the generation of an underspread random process X(t) that has also a sparse WVS WX(t, f)

we use the synthesis scheme for random processes presented in [27]. This scheme starts with

an arbitrary 2D-function in the TF-plane, the so called model function W ′(t, f). We would like

to calculate a process, more specifically the correlation operator RX of a process X(t) whose

WVS WX(t, f) has the minimum distance (measured in the standard norm) to the model function

W ′(t, f). This amounts to solving the following optimization problem:

X(t) = arg min
X′(t)
‖W ′ −WX′‖22. (6.4)

Because the WVS is the Fourier transform of the EAF ĀX(t, f) the process X(t) which solves (6.4)

will also minimize the distance between ĀX(τ, ν) and the model EAF A′(τ, ν), where the model

EAF A′(τ, ν) is defined via

A′(τ, ν) ,

∫

t

∫

f
W ′(t, f)e−j2π(νt−τf)dtdf. (6.5)

This observation is important because we want to generate a process with an EAF that is well

concentrated around the origin in the (τ, ν) plane and this observation shows that the process X(t)

which solves the optimization (6.4) has an EAF that is near to the model EAF and is therefore

likely to be concentrated if the model A′(τ, ν) is concentrated around the origin in the (τ, ν) plane.

The synthesizing scheme allows to specify a subspace S ⊆ L2(R) in which the realizations x(t) of

X(t) should be located.

The complete synthesis works as follows:

• We assume that S is a finite dimensional space with dimension N . Is has to be chosen such

that it contains all signals that are located within the effective support of the model function

in the TF plane. E.g. if the model function W ′(t, f) is contained within a rectangle in the

TF-plane with a certain bandwidth and time duration. Then a suitable subspace S would
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be given by the span of all sinc pulses with the same bandwidth that are centered on a

regular grid on the time axis (the grid constant is equal to the inverse of the bandwidth)

and located within the effective duration of W ′(t, f). A simple calculation [26] yields the

following relationship between the maximum duration Tdur, maximum bandwidth Bmax and

dimension N :

N ≈ Tdur · Bmax. (6.6)

• Start with a given WVS model W ′(t, f), or equivalently a given EAF model A′(τ, ν) and

an ONB {uk}k for the subspace S. It can then be shown that the set of linear operators

{Uk,l}k,l that are given by the kernels hUk,l
(t1, t2) = uk(t1)u

∗
l (t2) constitute an orthonormal

basis for the set of correlation operators corresponding to random processes with realizations

in S.

• We transform the model W ′(t, f) into a model correlation operator R′ whose kernel is given

as:

hR
′(t1, t2) =

∫

f
W ′
(
t1 + t2

2
, f

)
ej2π(t1−t2)df. (6.7)

Now we compute the expansion coefficients γk,l of R′ with respect to the ONB {Uk}:

γk,l = 〈R′,Uk,l〉 =

∫

t1

∫

t2

hR
′(t1, t2)u

∗
k(t1)ul(t2)dt1dt2. (6.8)

• We collect the coefficients γk,l into the matrix Γ ∈ C
N×N , Γk,l = γk,l. Now we determine the

N+ positive eigenvalues λk and the corresponding normalized eigenvectors vk (k = 1, ..., N+)

of the positive semi-definite matrix Γ.

• The resulting process X(t) can be represented with the ONB {uk(t)}k via a linear expansion:

X(t) =
N∑

k=1

akuk(t) (6.9)

where N denotes the dimension of S and the scalar coefficients ak are random variables.

Because we exclusively work with zero mean Gaussian processes, we require these random

variables to be jointly Gaussian with zero mean. Therefore this random variables are fully

determined by its correlation matrix Ra = E{aaH} where a is constructed by stacking the

ak into a column vector:

a ,




a1

a2

...

aN



. (6.10)
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The process X(t) which minimizes the quantity ‖W ′(t, f)−WX(t, f)‖22 and which is repre-

sented as in (6.9) is determined by the zero mean Gaussian coefficients a whose correlation

matrix is given by

Ra =

N+∑

k=1

λkvkv
H
k . (6.11)

where the λk are the positive eigenvalues of Γ and the vk are the corresponding eigenvectors

of Γ. A zero mean Gaussian random vector a (of length N) with given correlation matrix

Ra can be conveniently generated by first generating a vector (of length N) of uncorrelated

Gaussian variables whose variances are equal to the eigenvalues of the correlation matrix

and then multiplying this vector with the specific matrix V that has the eigenvectors of the

correlation matrix Ra as its columns. This method is also known under the name “innovation

system representation”.

Of course for the simulations on a real computer all signals and operators have to be digitalized

(sampled and truncated). The detailed reformulation of the synthesis procedure above for the

discrete-time case can be obtained from [27].

Finally, we present an example for the minimum error synthesis. Because we use discrete time

signals for this example, we implicitly constrain the subspace S to be contained within the set of

all bandlimited functions where the maximum bandwidth is given by1 1
2Ts

where Ts is the sampling

period. The model function is a box shaped spectrum with a rectangular support. The sizes of

the model function are 40 and 0.1 respectively (we use a sampling period of Tsym = 1. In Figure

6.1 the TF model function W ′(t, f) as well as the the WVS WX(t, f) and the EAF ĀX(t, f) of the

synthesized process X(t) are shown.

6.3 Cognitive-Radio Model

For this simulation we used the received signal R(t) of the cognitive radio system model of Section

5.2 for the process X(t):

X(t) = S1(t) + S2(t) (6.12)

where S1(t) and S2(t) are two PAM signals with the same PAM parameters (raised cosine pulse,

transmit length of 3 symbols and symbol period Ts = 6s) but using different carrier frequencies

and transmission times (i.e., the WVS of S1(t) and S2(t) are centered around different points in

the TF plane).

1The maximum bandwidth is 1
2Ts

an not 1
Ts

because we want to use a direct sampling (both in time and frequency

direction) of the Wigner Ville spectrum which is only possible for this maximum bandwidth.
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Figure 6.1: (a) Model function W ′(t, f) used to synthesize the process X(t). (b) WVS WX(t, f)

of the synthesized process X(t). (c) Magnitude of the EAF ĀX(τ, ν) of the synthesized process

X(t) .
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Figure 6.2: Cognitive Radio signal detection. (a) Magnitude of the EAF ĀX(τ, ν) of the received

signal. The lowest contour level is about 0.01 and the maximum at the origin is equal to 1. (b)

(c) WVS WX(t, f) of the received signal.
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Figure 6.3: Cognitive Radio signal detection. Here we used the smoothed WD of the realization

x(t) as an estimate for WX(t, f).

In Figure 6.2 we plotted the WVS WX(t, f) as well as the magnitude of the EAF ĀX . The

WVS WX(t, f) consists of two TF - components, one for each of the two transmitters (S1(t) and

S2(t)). We used a carrier frequency of 0.1 for the first and −0.1 for the second transmitter. The

symbol period Tsym has been fixed to 6. The dimension of the digitalized input was n = 256.

As a reference for the CS based estimator we show in Figure 6.3 the result of the conventional

non CS based estimator which performs a smoothing of the WD of the realization x(t). The

smoothing kernel φ(t, f) we use here (cf. (5.24)) has the same shape as the corresponding kernels

(which are all denoted by φ(t, f)) for the CS based estimator schemes (cf. Figure 5.3 and Figure

5.4) which will be simulated next.

We compared both CS based estimator schemes proposed in the previous Chapter. In the

scheme “Random Sampling of the Filterbank” the measurement vector z had a length of m = 26

and a Gaussian ensemble was used for the measurement matrix M. The reconstruction kernel

φ(t, f) was chosen such that its Fourier transform Φ(τ, ν) is box shaped and has as its support

the rectangle [−4, 4] × [−0.025, 0.025] in the (τ ,ν) plane. For the scheme “Random Sampling of

the EAF” we used also a length of m = 26 for the measurement vector z and the same shape for

reconstruction kernel φ(t, f) as for the previous estimator scheme (the height of Φ(τ, ν) is however

different from that used in the previous scheme), but here we used implicitly a randomly sampled

Fourier matrix for the measurement matrix M. Because the “nominal” signal dimension was 256,

this is equivalent to compression factors of nearly 10 that is reached in the CS sensor stages.
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Figure 6.4: Cognitive Radio signal detection using m = 26 measurements for the CS based estima-

tors. (a) (b) Estimated WVS ŴX(t, f) using the CS based estimator scheme “Random Sampling

of the EAF”. (c) (d) Estimated WVS ŴX(t, f) using the CS based estimator scheme “Random

Sampling of the Filterbank”.
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For the recovery we used the BP (more specifically a real valued reformulation of the BP,

see the Appendix for details). As can be seen from Figure 6.4, the estimated WVS Ŵ (t, f)

that were computed using a single realization of X(t) clearly shows the two spectral components

corresponding to the transmitters for both estimator schemes.

We conclude that both estimator schemes allow an accurate detection of the occupied regions

in the TF plane for the specific example of transmit signals we used here while using a significant

reduction of the input data rate. The difference between both schemes is their structure which

may led to different requirements for their implementation.

Finally we present the estimator results for different compression factors m/n, where m and

n denotes the number of rows and columns of the measurement matrix M respectively, in Figure

6.5 to Figure 6.9. The reconstruction kernel φ(t, f) of both schemes where chosen box shaped ant

with the support [−4, 4] × [−0.025, 0.025]. The sparsity measure σ4 was equal to 0.0014 for the

scheme “Random Sampling of the EAF” and equal to 0.45 for the scheme “Random Sampling of

the Filterbank”. The higher value for the latter scheme is due to the fact that the lattice constants

T and F have to be chosen smaller than the theoretical anti-aliasing condition suggests (cf. Section

5.4, 3.5) because of two effects. First the process is not exactly underspread (the EAF is not exactly

contained within a rectangle) and second because we simulated only finite length discrete signals

the anti-aliasing conditions from the continuous time setting does not hold in general exactly. The

smaller lattice constants result in a bigger measurement vector because the support of the WVS

of the process in the TF plane is fixed. This implies that for the same compression factor m/n we

have to use more measurements in the scheme “Random Sampling of the Filterbank” compared to

the scheme “Random Sampling of the EAF”. However, for the scheme “Random Sampling of the

EAF” we used straightforward discretizations of the WD of the AF of a signal and this requires

that the discrete time signals only occupy half of the entire bandwidth (which is equal to 1 for

discrete time signals). Therefore, for a fair comparison of compression abilities this has to be

taken into account. As can be obtained from Figure 6.5 both estimator schemes allow an accurate

localization of the PAM transmissions in the TF plane even for compression factors as low as

m/n = 0.2.

6.4 Random Sampling of the Filterbank

Here, we investigate the performance of our CS based estimator scheme “Random Sampling the

Filterbank” with the help of a synthetic process X(t) that was generated using minimum error

synthesis as presented above using a Gaussian shaped TF - model function that is centered at the

origin in the TF-plane. The WVS WX(t, f) and the EAF ĀX(τ, ν) are shown in Figure 6.10. For

the Gabor analysis we used a Gaussian prototype whose variance has been empirically adjusted in
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Figure 6.5: Cognitive Radio signal detection using a compression factor m/n = 0.2 where m and n

denotes the number of rows and columns of the measurement matrix M respectively. The contour

level plot shows the positive part of the estimated spectra. (a) (c) “Random Sampling of the EAF”

(b) (d) “Random Sampling of the Filterbank”.
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Figure 6.6: Cognitive Radio signal detection using a compression factor m/n = 0.25 where m

and n denotes the number of rows and columns of the measurement matrix M respectively. The

contour level plot shows the positive part of the estimated spectra. (a) (c) “Random Sampling of

the EAF” (b) (d) “Random Sampling of the Filterbank”.
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Figure 6.7: Cognitive Radio signal detection using a compression factor m/n = 0.5 where m and n

denotes the number of rows and columns of the measurement matrix M respectively. The contour

level plot shows the positive part of the estimated spectra. (a) (c) “Random Sampling of the EAF”

(b) (d) “Random Sampling of the Filterbank”.
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Figure 6.8: Cognitive Radio signal detection using a compression factor m/n = 0.75 where m

and n denotes the number of rows and columns of the measurement matrix M respectively. The

contour level plot shows the positive part of the estimated spectra. (a) (c) “Random Sampling of

the EAF” (b) (d) “Random Sampling of the Filterbank”.
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Figure 6.9: Cognitive Radio signal detection using a compression factor m/n = 1 (i.e., no com-

pression) where m and n denotes the number of rows and columns of the measurement matrix

M respectively. The contour level plot shows the positive part of the estimated spectra. (a) (c)

“Random Sampling of the EAF” (b) (d) “Random Sampling of the Filterbank”.
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Figure 6.10: (a) WVS WX(t, f) of the process X(t), (b) Magnitude of the EAF ĀX(τ, ν) of the

process X(t) (the lowest contour level is below 0.01 and the maximum is 1 because the process is

energy normalized).

order to match the EAF. A profound theoretical discussion of the matching problem can be found

in [32].

First we investigate the estimator without the CS stage which can be considered as performing

CS with compression factor 1, i.e., no compression is performed at all2. The results that are

obtained here should validate the approximate expressions for the variance, the bias and the mean

squared error for the estimator scheme presented in Section 3.5. In Figure 6.13 the variance

term V 2 =
∫
t

∫
f E
{∥∥ŴX(t, f)− E{ŴX(t, f)}

∥∥2

2

}
dtdf , the bias term B2 =

∫
t

∫
f

∣∣E{ŴX(t, f) −
WX(t, f)}

∣∣2 dtdf and the normalized MSE are shown for different choices for the lattice constants

T and F . All quantities are normalized to the squared mean energy E
2
X of the process. The

reconstruction kernel φ(t, f) has been chosen such that its Fourier transform Φ(τ, ν) is box shaped

and centered at the origin in the (τ, ν) plane with height TF in order to get an approximately

unbiased estimator. The lengths of the box was 2 · 7 and 2 · 0.015 in the τ - and ν - direction

respectively. However, as indicated in Figure 6.13 the estimator was not exactly unbiased because

the EAF ĀX(τ, ν) was not ideally concentrated within the support of Φ(τ, ν) (cf. 6.10). The values

for T and F have been chosen such that the product TF is in the order of 1.

2Indeed, a compression factor of 1 implies a quadratic measurement matrix M which in turn implies that the

measurement matrix is regular because we assume throughout this thesis that a measurement matrix for CS is

always full rank. Therefore the BP for the noiseless case yields the original signal vector x of the CS signal model

if we choose the constant ε in the inequality constraint of BP very small (ideally 0).
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Figure 6.11: (a) Global normalized variance term V 2 (cf. (3.32)). (b) Global normalized bias term

B2 (cf. (3.31)) of the estimator.(c) Normalized MSE (= B2 + V 2) without compression.
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We compared the obtained values for the variance term to the approximate expression (3.47)

for the variance term. Figure 6.12 shows the ratio of the true variance V 2 to the approximate
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Figure 6.12: Ratio of the simulated variance term V 2 to the approximation (3.47).

expression given in (3.47). We see that except for small values of sampling interval T in time

direction and large values of the product TF the approximation is relatively accurate. The devi-

ation of the approximation from the true variance for small values of T is due to non negligible

correlations between the Gabor coefficients Ck,l which was one of the necessary assumptions for the

derivation of the approximation (3.47). On the other hand, for large values of TF aliasing effects

are introduced because the lattice constants are too large compared to the support of Φ(τ, ν) which

has an area of 4 · 7 · 0.015 = 0.42 which gives a maximum value of 1
0.42 = 2.38 for the product TF

in order to avoid undesired aliasing effects.

Next, we included the CS stage with a compression factor of 2, i.e., the length of the measure-

ment vector z is half of that of the vector xFB consisting of the squared magnitudes of the Gabor

coefficients (cf. (5.16)). The measurement matrix M was the Gaussian ensemble, i.e., the elements

of M are i.i.d. normally distributed. For the recovery we used BP. In contrast to the numerical

results above, which have been computed semi-analytically (the variances of the Gabor coefficients

have been computed by a quadratic form using discrete versions of the correlation operator RX

and the Gabor atoms gk,l), we here performed a random simulation using 100 realizations of the

process X(t) and computed the squared error between ŴX(t, f) and WX(t, f) for each realization

separately and then took the average. The resulting average MSE is shown in Figure 6.13(c).

Another simulation investigated the dependency of the CS recovery accuracy with the sparsity

measure σS of the process X(t). For the simulation we fixed the sparsity degree to S = 4. We used

different TF-model functions W ′(t, f), which are all superpositions of 2D Gaussian functions with
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Figure 6.13: (a) Global normalized variance term V 2. (b) Global normalized bias term B2 of the

estimator.(c) Normalized MSE (= B2+V 2) using CS with a compression factor of m/n = 0.5 where

m and n denotes the number of rows and columns of the measurement matrix M respectively.
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process σS=4 M
(1,1)
X

G1 0.09 0.055

G2 0.21 0.047

G3 0.32 0.041

G4 0.41 0.038

Table 6.1: Sparsity and underspread parameter for the different processes.

identical spreads in the t and f direction. In order to generate processes with varying sparsity

we added different numbers of Gaussian functions, i.e., for a fixed sparsity degree S we generated

processes possessing different sparsity measures σS . We plotted the different TF models together

with the WVS of the resulting processes in Figure 6.14. The Fourier transform Φ(τ, ν) of the

reconstruction kernel φ(t, f) (cf. Section 3.5) of the estimator was chosen to be a box shaped

function with support [−5, 5] × [−0.05, 0.05] in the (τ ,ν) plane. The lattice constants T and F

of the estimator were chosen such that aliasing is avoided (cf. Section 3.5). The exact value have

been optimized empirically.

In the following we will caption the four processes that correspond to the four model functions

by G1,G2,G3 and G4 where the digit indicates the number of summed Gaussian functions that

are used for the corresponding model. For the interpretation of the results shown below we list in

Table 6.1 the sparsity measure σS=4 and the quantity M
(1,1)
X

(cf. (3.2)) of the different processes

(whenever we use the notation X(t) for a process this means that it is clear from the context which

of the four processes G1 to G2 is meant). The lower the value M
(1,1)
X

is the more underspread is

the process and the lower the value of σS=4 for a process is the more sparse is the process.

We simulated the error that is introduced by the CS stage for the different process models,

i.e., for different values of σS=4 and for different values of the CS compression factor m/n where

m and n denotes the number of rows and columns of the measurement matrix M respectively. In

Figure 6.15 we plotted the error energy of the CS stage, measured by ε̂FB,CS:

ε̂FB,CS ,
1

100

100∑

k=1

‖x̂k
FB − xk

FB‖22 (6.13)

normalized to the squared HS norm of the correlation operator ‖RX‖22. Here x̂k
FB and xk

FB denote

the output of the CS recovery stage and the sampled input vector respectively when the k-th

realization of X(t) is used as the input (cf. Figure 5.3). For this plot the value of m/n is used as

the parameter. We note that the measured error curves are all significantly below the theoretical

bounds for the CS recovery errors derived in Chapter 4 and Section 5.4. This agrees with the

observations in the well known CS literature.
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Figure 6.14: WVS of different processes that are generated using as a model function W ′(t, f)

a superposition of (a) 1 (G1), (b) 2 (G2), (c) 3 (G3), and (d) 4 (G4) Gaussian functions with

identical shape and height. The corresponding four processes are used to simulate the estimator

performance for different degrees of sparsity.
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Figure 6.15: Error of the CS stage against the sparsity measure σ4 (i.e., the sparsity degree S is

set to 4) for different compression factors m/n (a) recovery by BP, (b) zoom in of (a), (c) recovery

by ROMP.
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In Figure 6.16 we plotted the empirical mean squared error of the estimator ε̂FB

ε̂FB ,
1

100

100∑

k=1

∥∥∥∥Ŵ
k
X(t, f)−WX(t, f)

∥∥∥∥
2

2

(6.14)

and the empirical bias term B̂2
FB

B̂2
FB ,

∥∥∥∥

(
1

100

100∑

k=1

Ŵ k
X(t, f)

)
−WX(t, f)

∥∥∥∥
2

2

(6.15)

as a function of the CS compression factor m/n. Here, Ŵ k
X(t, f) denotes the estimator output

ŴX(t, f) (cf. Figure 5.3 and (5.16),(5.17)) when the k-th realization of X(t) is used as the input.

We normalized both quantities to the squared mean energy Ē2
X of the process. Each curve in

Figure 6.16 corresponds to one of the processes with the model functions shown in Figure 6.14.

The dashed curves in Figure 6.16 correspond to the standard estimator of the form (5.24), where

the same φ(t, f) is used as for the estimator simulated here.

As indicated by Figure 6.16 the performance of the estimator “Random Sampling of the Filter-

bank” mainly depends on the underspreadness (as measured by M
(1,1)
X

) of the process X(t). The

dependency of the MSE and the bias term on the compression factor m/n is very low for values

above 0.4. For compression factors below 0.4 the error introduced by the CS stages is very high,

which seems to indicate that the RIP/RIC condition for the measurement matrix M is violated

with a non-negligible probability.

6.5 Random Sampling of the EAF

For the simulation of the estimator scheme “Random Sampling of the EAF” we also used the

minimum error synthesis described above. Furthermore, we again used the ensemble of the TF

models shown in Figure 6.14 to generate different processes. The reconstruction kernel φ(t, f) of

the estimator was designed such that its Fourier transform Φ(τ, ν) is box shaped with the support

[−5, 5] × [−0.05, 0.05] in the (τ ,ν) plane.

The sparsity degree was fixed to S = 4. In order to ensure that the measurement matrix M,

which in the estimator scheme “Random Sampling of the EAF” is obtained by randomly selecting

rows out of a unitary matrix and subsequent renormalization of the columns such that they have

unit norm, fulfills the RIP and RIC conditions, for compression factors m/n above 0.5, of the

recovery schemes (ROMP and BP) we performed empirical tests in a separate simulation.

As before, we simulated the error that in introduced by the CS stage for the different process

models, i.e., for different values of σS=4 and for different values of the CS compression factor m/n
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Figure 6.16: MSE and bias against the compression factors m/n for processes G1 to G4, generated

from different TF models (a) (b) recovery by BP, (c) (d) recovery by ROMP.



CHAPTER 6. SIMULATIONS 105

where m and n denote the number of rows and columns of the measurement matrix M respectively.

In Figure 6.17 we plotted the error energy of the CS stage, measured by ε̂EAF,CS:

ε̂EAF,CS ,
1

100

100∑

k=1

‖x̂k
EAF − xk

EAF‖22 (6.16)

normalized to the squared HS norm of the correlation operator: ‖RX‖22. Here x̂k
EAF and xk

EAF

denote the output of the CS recovery stage and the sampled input vector when the k-th realization

of X(t) is used as the input (cf. Figure 5.4). For this plot the value of m/n is used as the parameter.

As in the previous section we note that the measured error curves are all significantly below the

theoretical bounds for the CS recovery errors derived in Chapter 4 and Section 5.5. This agrees

with the observations in the well known CS literature.

In Figure 6.18 we plotted the empirical mean squared error of the estimator ε̂EAF

ε̂EAF ,
1

100

100∑

k=1

∥∥∥∥Ŵ
k
X(t, f)−WX(t, f)

∥∥∥∥
2

2

(6.17)

and the empirical bias term B̂2
EAF

B̂2
EAF

,

∥∥∥∥

(
1

100

100∑

k=1

Ŵ k
X(t, f)

)
−WX(t, f)

∥∥∥∥
2

2

(6.18)

as a function of the CS compression factor m/n. Here, Ŵ k
X(t, f) denotes the estimator output

ŴX(t, f) (cf. Figure 5.4 and (5.35)) when the k-th realization of X(t) is used as the input. We

normalized both quantities to the squared mean energy Ē2
X of the process X(t). Each curve in

Figure 6.18 corresponds to one of the processes with the model functions shown in Figure 6.14.

The dashed curves in Figure 6.18 correspond to the standard estimator of the form (5.24), where

the same φ(t, f) is used as for the estimator simulated here. Note that this reference estimator

can be viewed as a special case of the CS-based estimator “Random Sampling of the EAF” using

a BP and a compression factor of m/n = 1.3

Similarly to the simulation of the estimator “Random Sampling of the Filterbank”, as indicated

by Figure 6.18 the performance of the estimator “Random Sampling of the EAF” mainly depends

on the underspreadness (as measured by M
(1,1)
X

) of the process X(t). The dependency of the

MSE and the bias term on the compression factor m/n is very low for values above 0.4. For

compression factors below 0.4 the error introduced by the CS stages is very high, which seems

to indicate that the RIP/RIC condition for the measurement matrix M is violated with a non-

negligible probability. Another conclusion suggested by Figure 6.18 is that the performance of the

two different CS recovery schemes (BP and ROMP) is very similar, although the computational

costs of ROMP are much lower than that of BP.
3This is true exactly only when for the BP the constant ǫ in (4.18) is set to zero.
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Figure 6.17: Error of the CS stage against the sparsity measure σ4 (i.e., the sparsity degree S is

set equal to 4) for different compression factors m/n (a) recovery by BP, (b) zoom in of (c), (c)

recovery by ROMP.
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Figure 6.18: MSE and bias against the compression factors m/n for processes G1 to G4 generated

from different TF models (a) (b) recovery by BP, (c) (d) recovery by ROMP.



Chapter 7

Conclusion and Outlook

7.1 Conclusions

In this thesis we considered the problem of estimating the Wigner Ville spectrum of an underspread

random process that is moreover (TF-) sparse. By sparsity we mean that the energy of the process

is distributed among a few relatively small (compared to the overall bandwidth and signal duration)

regions in the TF plane. We proposed two different estimator schemes that used a CS stage in

order to reduce the signal dimension, i.e., to perform compression. We gave detailed performance

bounds of these schemes in terms of the mean squared error of the estimators. Furthermore, we

conducted numerical experiments which suggested that a spectrum estimation is possible even with

a significantly reduced signal dimension, i.e., a relatively high compression factor. However, we

want to note that the effective compression is due two to influences. The first source of compression

is the usage of Compressed Sensing which allows explicitly for a reduction of the data rate.

But in our CS based estimator schemes there is also a second source of compression, namely

the estimation process itself. One on hand this is because the spectrum estimators for underspread

processes essentially uses a smoothing of the Wigner distribution of each process realization (cf.

estimator scheme “Random Sampling of the EAF”). This smoothing is equivalent to a restriction of

the realization AF to a small domain in the (τ, ν) domain and this restriction leads also to a data

reduction. On the other hand the inherent smoothness of the spectrum of an underspread process

is exploited in order sample the values of the realization WD (cf. estimator scheme “Random

Sampling of the Filterbank”) on a very coarse lattice in the TF plane specified by the lattice

constants T and F whose values are relatively large. Therefore relatively few samples of the WD,

which are within the effective support of the WVS of the process, are used.

It should be noted that for practical reasons, we could only simulate scenarios with relatively

small dimensions of the signals. For more realistic scenarios even higher compression factors can
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be expected to yield satisfactory performance.

7.2 Outlook

Finally we give a list of open questions and directions that turned out to be interesting during this

thesis:

• Efficient Implementations of the CS Measurement Stage: From our view the most

critical component for the practical usefulness of our results is the CS measurement stage

which consists in a sampled filterbank followed by a squaring of the magnitude and a multi-

plication with a measurement matrix for the scheme “Random Sampling of the Filterbank”.

For the scheme “Random Sampling of the EAF” the CS measurement stage consists of com-

puting the values of the EAF at randomly selected points in the (τ, ν) plane. The problem

is that these operations have to be performed on the nominal signal rate which is in general

very high compared to the rate after the CS stage.

• Theoretical Performance Analysis of Adaptive Recovery Schemes: It would be

interesting to theoretically analyze the performance bound of adaptive schemes. However we

expect this to be difficult because of the adaptivity.

• Links to Distributed Sensing Setting: Compressed Sensing can be generalized to the

theory of Distributed sensing which models the fact that the measurements of a signal x are

taken at different sensor locations [17].

• Sparsity Measures for an Underspread Process: The definition of sparsity of an un-

derspread process was formulated in terms of sample values of the WVS at a rectangular

lattice with lattice constants T, F that are also used for the analyzing WH-set of the process.

This definition is rather general and does not allow for sophisticated sampling methods. E.g.

a simple random sampling in the time domain is not possible for a process that is sparse in

our sense, because it is not known if the sparse energy is distributed “spike”-like or if it is

distributed over a small number of frequency components that have a narrow bandwidth. A

more specialized notion of sparsity would allow to investigate such random sampling schemes

(in the time- or frequency domain).

• RIP/RIC Analysis of Measurement Matrices: At the time of finishing this thesis

there seemed to be no efficient method for verifying the RIP/RIC properties of a given de-

terministic measurement matrix. Moreover, even for the well known random constructions

of measurement matrices the results regarding the RIP performance still lack of accuracy.

The corresponding performance bounds (e.g. bounds on the probability that a random matrix
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satisfies certain RIP/RIC conditions) are relatively pessimistic compared with empirical stud-

ies. It would be very interesting to have more and better theoretical tools for the RIP/RIC

analysis of measurement matrices.



Appendix A

Kronecker Product and Vec Operation

The vec{·} operation assigns a column vector x ∈ C
K to each matrix A ∈ C

m×n where K = m ·n.

This assignment is given by stacking all the columns of A into a signal column vector x:

x = vec{A} ,




A1,1

A2,1

...

Am,1

...

Am,n




(A.1)

where the first m elements of x are given by the first column of A, the second m elements are

given by the second column and so on.

Another operation that we use within this thesis is the Kronecker product A ⊗ B of two

matrices A ∈ C
m×n and B ∈ C

k×l. The resulting matrix C = A⊗B lies in C
mk×nl and is given

by multiplying each entry of A by the complete matrix B.

The most important property of the Kronecker product for our purposes is that if the two

matrices A and B are unitary, i.e., AAH = I and BBH = I (which implies of course that A and

B are square matrices) then also the product is unitary:

(A⊗B) (A⊗B)H = I (A.2)

where the dimension of the identity matrix I is clear from the context.
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Complex Valued Basis Pursuit

Most of the CS literature about BP uses exclusively the real valued setting. As often mentioned

there, it is an easy step to generalize results from the real valued to the complex valued setting.

Remember that in CS we observe a measurement vector z that is given by z = Mx where

M denotes a (full rank) measurement matrix that has fewer rows than columns. All vectors

and matrices so far are modeled as complex valued. We also showed that the solution to the

minimization problem (whose implementation is called BP):

x̂ = arg min ‖x‖1 subject to ‖z−Mx‖2 ≤ ε (B.1)

can be used to recover the signal x from z accurately.

As mentioned above, most implementations of this minimization presuppose that all objects are

real valued. Therefore we want to show how one can reformulate the complex valued minimization

problem to a real valued one without loosing significant recovery accuracy.

We present two different methods to to this. The first method assumes a special structure

of the measurement matrix M and is not an exact reformulation of the original problem but we

will show that the errors introduced by this inexactness are small. The second method, which is

exact, reformulates the optimization problem as a convex optimization problem for which efficient

implementations also already exist.

The first method we want to present assumes that the measurement matrix M is a randomly

sampled unitary matrix, more specifically the DFT matrix. We now consider the matrix M′ which

is defined as

M′ =

(
ℜ{M} −ℑ{M}
ℑ{M} ℜ{M}

)
(B.2)

and the vector x′ that is defined as

x′ =

(
ℜ{x}
ℑ{x}

)
(B.3)
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i.e., by stacking the real part and the imaginary part of the signal vector x into a “super”-vector

of twice the size of x. Now we note that we can express the observed measurements z fully

equivalently via

z′ = M′x′ + w′ (B.4)

where

z′ =

(
ℜ{z}
ℑ{z}

)
w′ =

(
ℜ{w}
ℑ{w}

)
(B.5)

and furthermore it can be shown that M′ satisfies the same RIP/RIC properties as M because

of the relationship (B.2).1 Finally, because if the vector x is sparse then also the vector x′ we

have that the all results regarding recovery performance of the Basis Pursuit that are valid for

the measurement matrix M and the signal vector x are also valid for the real-valued measurement

matrix M′ and the real valued signal vector x′. Moreover, the noise energy ‖w′‖22 of the real

valued noise w′ where is identical to the energy ‖w‖22 of the complex valued noise w. Putting it

all together we have obtained a new CS signal model (B.4) where all quantities are real valued and

in particular, as can be shown the signal x′ and measurement matrix M′ have the same sparsity

and RIP/RIC properties as the original complex valued signal x and measurement matrix M.

Therefore we can use the real valued optimization problem:

x̂′ = arg min
x′
‖x′‖1 such that ‖M′x′ − z′‖2 ≤ ε (B.7)

and the relation:

x̂′ =

(
ℜ{x̂}
ℑ{x̂}

)
(B.8)

to get the (approximate) solution of the original complex-valued minimization through a real-

valued minimization. Note that this translation of complex valued quantities (z,w,M) to real

valued quantities can also be used for the usage of ROMP, which is stated in this thesis only for

the real valued setting.

The second approach reformulates in an exact way the optimization problem (B.1) as the

following new optimization problem:

x̂′ = arg min
x′,t

∑

k

tk such that |x′
k| ≤ tk and ‖M′x′ − z‖2 ≤ ε (B.9)

with M′ defined as before in (B.2). Note that this optimization can be performed only using

real valued quantities by optimizing over all real valued vectors x′ of twice the length of x. The

1The proof of this statement essentially relies on these equalities:

‖Mx‖2
2 = ‖z‖2

2 = ‖z′‖2
2 = ‖M′

x
′‖2

2. (B.6)
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solution x̂ of the original problem (B.1) is then given through the solution x̂′ of the real valued

optimization (B.9) and the relation (B.8), i.e., the first half of x̂′ is equal to the real part of x̂

and the second half to the imaginary part. The real valued optimization problem (B.9) can easily

shown [7] to be an convex optimization problem, more specifically a second order cone programm

(SOCP) for which efficient implementations [5] exist.
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List of Abbreviations

ONB Orthonormal Basis

WVS Wigner Ville Spectrum

WD Wigner Distribution

EAF Expected Ambiguity Function

AF Ambiguity Function

TF-plane Time-Frequency plane, i.e., the set of all pairs (t, f) of (absolute) time and frequency values

DMD Digital Micro-Mirror Device

KLT Karhunen− Loéve Transformation

LTI Linear Time Invariant

CSMA Carrier Sense Multiple Access

PAM Pulse Amplitude Modulation

TOMP Tree Based Orthogonal Matching Pursuit

ROMP Regularized Orthogonal Matching Pursuit

StOMP Stage Wise Orthogonal Matching Pursuit

MSE Mean Squared Error

MAP Maximum A - Posteriori

MMSE Minimum Mean Squared Error

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

RV Random Variable

AIC Analog to Information Converter

BP Basis Pursit

HS Hilbert Schmidt

CS Compressed Sensing

iff if and only if

DSP Digital Signal Processing

MP Matching Pursuit

PSD Power Spectral Density

HS Hilbert Schmidt

WH Weyl Heisenberg

SF Spreading Function

w.r.t. with respect to

pdf probability density function
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