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Zusammenfassung

Bei komplexen automatisierten Produktionssystemen kann meist nicht vom Verhalten der
Teilsysteme auf das Verhalten des Gesamtsystems geschlossen werden. Die zur Ermittlung
des Gesamtverhaltens eines Systems notwendigen Erkenntnisse können aus Simulationen
gewonnen werden. Neben der Güte der Simulationsergebnisse ist die Effizienz eines Sys-
tems ein ausschlaggebendes Qualitätskriterium. Dies gilt insbesondere bei einer großen zu
testenden Parametervielfalt. Mögliche Parameter einer Produktionsstraße sind beispiels-
weise Produktionsstrategie, Fehlertoleranzstrategie und die Anzahl der zu fertigenden
Produkte.
Allgemein dient Software-Testen als Instrument zur Steigerung der Qualität des zu tes-
tenden Produktes oder Services. Für einen vollständigen Test aller Anforderungen an ein
Softwaresystem, müssten alle möglichen Szenarien in einem separaten Testfall abgebildet
und getestet werden. Durch einen automatischen Testfall-Generator können zahlreiche
Anforderungsszenarien in kürzester Zeit erzeugt werden. In der vorliegenden Arbeit wer-
den die erzeugten Testfälle als Input-Daten für die Simulation von komplexen verteilten
Produktionsstraßen mittels eines Simulation-Tools herangezogen.
Das Ziel der Arbeit ist, eine effiziente Methode zum Testen der erwähnten Testfall-
Generatoren im Bereich der Simulation von Produktionsautomatisierungen aufzuzeigen.
Als Testmetrik wird das Verhältnis der Testabdeckung zum hierfür notwendigen Aufwand
festgelegt. Unter Testabdeckung bei einer gegebenen Parametermenge wird in der Arbeit
das Verhältnis zwischen den erzeugten Testfällen und den möglichen Testfällen verstan-
den. Alle verfügbaren Parameter eines Testfalls sind in einer GUI durch den Anwender
auswählbar.
Zur Erzeugung der Testfälle werden zwei unterschiedliche Ansätze betrachtet. Ein An-
satz ist der statisch spezifische Ansatz, welcher den Nachteil aufweist, dass zusätzliche
Parameter nur mit erhöhtem Aufwand und mittels Programmierkenntnissen hinzugefügt
werden können. Der zweite Ansatz verwendet ein dynamisch generisches Skript, welches
auf einer Ontologie als Datenmodell basiert und die Testfälle abhängig vom gewählten
Parameter-Setting generiert. Durch die Verwendung einer Ontologie kann diese mittels
Werkzeugunterstützung ohne jegliche Programmierkenntnisse erweitert werden. Die lose
Kopplung zwischen der Ontologie und dem Generator-Skript ermöglicht, dass Änderungen
an der Ontologie keine Änderungen am dynamisch generischen Skript nach sich ziehen.
Das dynamisch generische Skript erzeugt Testfälle entsprechend der gewählten Parame-
ter. Anschließend werden die erzeugten Testfälle in eine XML-Datei exportiert. Zusätzlich
kann das Simulationsergebnis als Feedback in der Ontologie gespeichert werden, wodurch
Erfahrungswerte nachfolgenden Generierungsprozessens zu Verfügung stehen.
Neben der zur Laufzeit dynamisch generierten grafischen Oberfläche, der Ontologie und
dem dynamisch generischen Skript, wurden auch Produktions- und Fehlertoleranzstra-
tegien implementiert bzw. umgesetzt. Diese Strategien sind essentiell, um eine gegebene
Produktionsstraße optimieren zu können. Der Evaluierungsteil der Arbeit zeigt auf, dass
der dynamisch generische Ansatz mit einer High-Level Testbeschreibung auskommt, eine
erhöhte Flexibilität aufweist und eine festlegbare Testabdeckung ermöglicht.
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Abstract

Production automation systems are often complex systems as the behavior of the overall
system cannot easily be predicted from the behavior of the subsystems. Thus simulation
is used to study the behavior of complex production automation systems. In addition to
the accuracy of the simulation the system performance is an important issue, particularly
if many parameter variants for system behavior are to be tested. Parameters for assembly
lines are, for instance, scheduling strategy, failure handling strategy and the number of
products.
Software testing investigates the quality of the product or service under test. In order
to fully test all requirements of an application, there must be at least one test case for
each requirement. The goal is to generate test cases in a fully automated and systematic
way to find suitable scenarios for most of the requirements in a short period of time. In
this thesis, the test cases define input data to simulate complex distributed assembly line
systems by means of a simulation tool. The thesis presents an effective method for testing
the performance of test case generator approaches for a production automation simulator.
For this purpose, the test coverage combined with the costs to achieve this test coverage
is used as performance metric. In our context the test coverage is the ratio between the
number of generated test case scenarios and the number of all possible test case scenarios
by a given set of parameters. To make the interaction between the user and the system
more user-friendly a graphical user interface (GUI) is offered which allows the user to
choose the provided test case parameters.
The thesis investigates two different approaches for providing test cases. One approach is
the use of a static specific generator script where it is difficult to add new parameters. In
addition, the users need programming skills for both setting and modifying parameters.
The second approach uses a dynamic generic generator script together with an ontology
as data model. Test cases are generated with respect to the chosen parameters by the
user. Important advantages of using an ontology are efficient tool support for modifying
ontologies and the fact that the generator script is not affected by the modification. Thus
users do not need programming skills to add new parameters. The focus of the practical
part of the thesis lies on enhancing the existing ontology of the simulation tool to include
the test case generator domain. A dynamic generic generator script is worked out to
generate test cases from the ontology and export them as XML file. The implemented
generator script and the ontology are coupled loosely. Therefore changes to the ontology
do not necessarily lead to changes of the dynamic generic script. This fact enables a flexible
and high-level test description. Furthermore, the results of executed simulations can be
integrated into the ontology as feedback. As a result, an optimal set of parameters can be
achieved. In addition to the GUI, the ontology and the dynamic generic generator script,
scheduling strategies and failure handling strategies will be implemented. These strategies
are essential to optimize a given assembly line reasonably and are therefore one of the
most important test case parameters. The evaluation part explores how the ontology-
based approach reduces costs for test description, enables a definable test coverage, and
increases expandability due to lower efforts to implement new test case parameters.
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Chapter 1

Introduction

The thesis is set within the production automation domain. In this work the term produc-

tion and manufacturing is used synonymously. A production system performs productive

activities to manufacture products with respect to the available resources and the neces-

sary knowledge of the production process. In general, a production process transforms

the raw materials into tangible goods by using an assembly line ([23]). In 1983, CIRP

(International Conference on Production Research) defined the term manufacturing as

”a series of interrelated activities and operations involving the design, materials selection,

planning, manufacturing production, quality assurance, management and marketing of the

products of the manufacturing industries” (found in [23]). Thus, manufacturing is a mul-

tidimensional process to manufacture products. Production automation allows to execute

most of these activities using machines and therefore results in cost-savings. The major

technological driving force in the evolution of advanced manufacturing systems is the ap-

plication of information technologies ([27]). Complex distributed production automation

systems can be seen as the results of this technical evolution process. The advantages of

these systems are their flexibility and the transparency of data-processing activities. The

challenges faced by complex production automation systems are the growing variety of

products as result of customization and the short time to market to achieve an advantage

in competition. These challenges can be met with the help of production automation

simulation tools. The basic idea of simulation is to get appropriate information about

the real system in a short period of time. An example for such a Manufacturing Agent

Simulation Tool (MAST) in the production automation domain is the SAW project at

the Vienna University of Technology ([44], [31]). As a consequence, manufacturers do not

have to optimize their assembly lines by experimenting on the real system which would

lead to a long setting-up time for new assembly lines.

1



CHAPTER 1. INTRODUCTION 2

Two fundamental facts have to be met to obtain significant results from the simulation.

Firstly, the model represented by the simulation tool has to be an adequate abstraction

of the real world domain. Secondly, the test cases as input data for the simulation have

to be validated and many in number to assure a high test coverage. This thesis deals with

the second purpose.

The test coverage is the ratio between generated test cases and all possible test cases for

a given set of parameters. It is nearly impossible to produce suitable test cases manually.

One reason is that the problem for finding all possible test case scenarios is a combina-

torial one. Another reason is the effort required to create machine-readable XML files

without tool support, especially in case of many test case parameters, a high number

of orders and long shift durations. Apart from the high risk to make mistakes without

tool support it is a time-consuming process if all the work is performed manually. For

this reasons, it is essential to use a generator script which fulfills both tasks in a fully

automated and systematic way.

This section identifies criteria which have to be fulfilled by a generator script to make

it a good solution. In general, generator scripts generate test cases and write them into

an XML file. This XML file is used as input data for the simulation. Beside the al-

ready mentioned test coverage a high-level test description is most important for a good

solution. A high-level test description reduces the risk of making mistakes during the

configuration phase of the parameter setting. The test case generation process is based

on this parameter setting. Therefore, it is reasonable to validate the user input data.

Furthermore, the test description should be flexible to meet the requirement of expand-

ability, e.g. by introducing new test case parameters. A consistency check ensures that

the test cases are consistent and therefore executable. A test case without a production

strategy, for instance, is not consistent but valid. The consistency criteria are different

to the validation criteria. A test case is valid if everything is typed well. In other words,

the validation ensures for each parameter that the user input data is within the allowed

value range. Additionally, the consistency check ensures that structural dependencies are

met. Thus a consistent test case contains all parameters which are mandatory to simulate

the test case. Most important of all is the usability which makes the test case generation

process manageable for the different actors of the target audience.

An overview of the solution approach of the dynamic generic script is given in the follow-

ing section. An ontology is used as underlying data model for the test case generation

process. The ontology defines the vocabulary of the domain, the entities within the do-

main, and the relations between them. Formal language such as OWL and RDF can

be used to describe an ontology. This structured data model enables the realization of
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a GUI which contains all offered test case parameters of the data model. This circum-

stance offers many advantages. Firstly, the user can only choose parameters which are

supported by the generator script. Secondly, it can be assured that the configuration

of the test case generation process is both valid and consistent. The chosen parameter

setting is the input data for generating corresponding test cases by the generator script.

The process to generate a dynamic GUI corresponding to an ontology is used as a way

of model transformation (see appendix C.1). A further topic from the model engineering

field is the Model-Driven Architecture (MDA). Parts of the architecture of the dynamic

generic script force the model-driven approach to deal with the expandability of new test

case parameters. As a consequence, new parameters only need to be added to the data

model to make them available in the GUI. The tool support for enhancing an ontology

together with the dynamic generic approach make it possible to add new test case pa-

rameters without programming skills. In short, the dynamic generic approach performs

all mentioned criteria to be a good solution.

As mentioned above, the domain of the thesis is the production automation domain, which

is why figure 1.1 resembles - with some imagination - a product tree (compare figure B.2

in the appendix).

Figure 1.1: Focus of the master thesis
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In the following, the limitations of the existing static specific approach will be stated.

Firstly, the user needs programming skills to define a parameter setting in the static

specific approach. Secondly, the user also needs programming skills to add new test case

parameters. Additionally, neither a high-level test description nor a low failure potential

can be achieved by means of the static specific approach. These weaknesses of the static

specific approach should be met by a dynamic generic approach. Two of the three research

issues deal with these circumstances (see chapter 3 on page 45). The goal of the thesis

is to offer an easily operable test case generation process for the target audience. The

target audience of this work are Testers, persons who are entrusted with the automation

process as well as system designers are.

Figure 1.2 gives an overview of the whole process to fulfill the task to generate and simulate

a test suite for a given set of parameters. The cyclic process consists of the shown nine

steps which are explained in detail in section 4.2 on page 56. The process is an iterative

one as the results of one process cycle are only valid for a specific parameter setting.

A test suite consists of test cases and should be able to achieve the user-defined test

coverage. In our context the test coverage is the ratio between the number of generated

test case scenarios and the number of all possible test case scenarios for a given set of

parameters. The goal is to present an effective method for testing the performance of

test case generator approaches for a production automation simulator. For this purpose,

the test coverage combined with the costs to achieve it is used as performance metric.

Furthermore, it can be excluded that there is a trade-off between increasing the test

coverage and reducing the generating time. Nevertheless, a definable test coverage can be

achieved for the ontology-based approach (see table 5.1 on page 92).

Figure 1.2: Process cycle of the test case generation
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Figure 1.3: Overview of the simulation process (for details about the simulator refer to
figure 4.8 on page 62)

Coming back to figure 1.2 mentioned above, all steps shown are necessary to complete a

test case generation cycle in a specific simulation environment. Step 9 ensures that the

criterion of knowledge increase is met, which means that experience can be taken into

account for following test case generation cycles. Step 6 makes sure that the structure of

the file which includes the test cases from step 5 are suitable for the assumed structure

of the simulation environment. However, the evaluation of the performance of test case

generator scripts is not affected by step 6 and step 9 as only one process cycle is taken into

consideration at a time. In addition, the whole evaluation took place in the same simula-

tion environment without any structure inconsistencies. Therefore, the two yellow marked

steps 6 and 9 are not part of the implemented prototype, but both steps are explained

conceptually in the in elaboration chapter. Nevertheless these two set screws should be

taken into account to increase the effectiveness and acceptability of the ontology-based

approach.

Figure 1.3 shows the simplified simulation process linked with the nine steps of the cyclic
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test case generation process already described (see figure 1.2). The color of the differently

numbered steps drawn as cycles indicates whether the steps were implemented during the

work or not. The color blue indicates that it is part of the elaboration. Step 6 and step

9 are not implemented and are therefore marked yellow. Nevertheless, a feasibility study

shows that step 6 and step 9 are realizable (see section 4.3.4 on page 77).

The following simulation scenario sums up the whole simulation process. The user wants

to choose from all provided test case parameters to automatically generate input data

for the simulation. For this purpose, a GUI is offered. Furthermore, the user can decide

which generator script should generate the test cases for the chosen parameter setting.

Depending on the selected generator script either the static specific script or the dynamic

generic script delivers the XML-structured test cases file as result. The test cases are used

as simulation input data together with the layout of the assembly line and the directory

where the simulation results should be stored. This information is necessary to start the

simulation. After this the simulator executes each test case one by one. Afterwards the

results of the simulation can be found in the directory which has been selected. All events

of interest are captured in the result file. Which events are of interest can be chosen

as parameter at the beginning of the simulation scenario. Finally the most important

facts are integrated into the ontology corresponding to the generated test case and the

assembly line layout. This experience is used to expect the result drawn as cloud in figure

1.3 as well as the preconditions and postconditions of each test case before the simulation

starts. This input data, the instruction for testing, the layout of the assembly line, and

the mentioned test data specify a test case for the simulation ([41]). That is to say, the

defined test case where the generated test cases are the test input data to simulate the

assembly line is not the same as the test case of the test case generation process shown

in figure 4.9 on page 64. For that reason, the assembly line is called simulation object

whereas the test object is the static specific script and the dynamic generic script. In the

final analysis the thesis aims to identify cost-saving potential of these generator scripts.

All currently implemented test case parameters are explained in chapter 4.4 on page 82.

Most important is that the simulation process (see figure 1.3) and the test case generation

process (see figure 4.9 on page 64) as part of the simulation process are coupled loosely.

For this reason the test case parameters in the generated test case file do not necessarily

have to be implemented in the simulation. As a consequence, the user can generate up-

to-date test cases on the basis of the latest version of the ontology even if the version of

the simulation is out of date.

Besides the description of all parameters an evaluation of the scheduling strategy and the

failure handling strategy is available in section 4.4.1 on page 82 and the following.
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The thesis includes, but is not limited to, the discussion of the following research questions:

• Does an ontology address the needs of a Multi Agent System (MAS) in the produc-

tion automation domain?

• Can the ontology help to increase the test coverage and reduce the costs for testing

compared to the hard-coded manner?

• Is it possible to develop a high-level design to add new parameters by using an

ontology as data model?

• How much saving potential does the ontology-based approach have compared to the

hard-coded manner?

The research questions above are to be understood as a brief outline of the main topics

addressed in this thesis. The detailed research issues can be found in chapter 3 on page

45 and the following pages.

The performance evaluation of the static specific approach and the dynamic generic ap-

proach pointed out that the dynamic generic approach is more efficient than the static

specific approach on most of the objectives. The objectives of the performance evalua-

tion are the test description, the implementation effort, and the test coverage. The test

description is used in the context of how to manage the test case generation process.

The criteria for a good test description is achieved if the generator approach supports

a high-level test description. The metric to compare the effort for modifying existing

parameters and especially for adding new test case parameters is a combination of the

implementation time and the needed skills to do implementation. For the third objective

it is most important to mind the definition of the term test coverage. In the context of

the thesis the test coverage is the ratio between generated test cases and all possible test

cases for a given set of parameters. The performance evaluation of the test coverage is

based on the criteria of a definable test coverage during the configuration phase of the

generation process.

The benefits of the dynamic generic approach are represented through the major results of

the thesis. The high-level test description of the dynamic generic approach increases the

usability and reduces the possibility of making mistakes during the configuration phase

of the test case generation process. In case of the dynamic generic approach it is possible

to add new test case parameters without any changes to both the test description and

the generator script. This result allows to make changes without programming skills by

modifying the data model with tool support. A further important benefit of the dynamic

generic approach is that the test cases as output of the generation process are both valid
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and consistent. As a result, it can be ensured that no inconsistent states which are caused

by the test cases occur during the simulation.

Furthermore, it could be shown that the risk of making mistakes during the configuration

phase of the test case generation process is significantly higher for the static specific ap-

proach.

This work is structured in six chapters. The introduction part gives an overview of the

work, the research issues and the method to achieve these aims. Furthermore, the domain

and the most important terms are defined. The layered structure makes it possible to

decide the depth of getting into the topic individually. A short summary of this work

and its results are given in the introduction and conclusion. The research issues specify

the challenges and the research methods used to face those challenges. The discussion

part includes a detailed explanation of the results of the elaboration part. There, you

can also find information about the effectiveness with respect to the performance of the

ontology-based approach compared to the hard-coded one. The research issues together

with the discussion part which refers to the related work part of the work form the next

in-depth level. The core of the thesis is the elaboration part. There, the process to obtain

the technical expertise is worked out scientifically. The related work part can be seen as

a frame for the whole work because all parts of the thesis refer to the related work part.

The conclusion will summarize the results and insights gained and outline some topics

which might be interesting in future work.



Chapter 2

Related work

The explanations of the following sections are limited to the issues which the reader should

know when reading the elaboration part of the thesis. At first, some elementary terms

which are often used during the thesis are defined. Script and approach are probably two

of the terms most used in the thesis. In general, a script is an abstract form of a sequence

of instructions ([22]). In the thesis the term script or, more precisely, generator script is

always related to the instructions which are necessary to perform the test case generation

process described in section 4.2.2 on page 63. The static specific and dynamic generic

scripts are concrete implementations of two different approaches to generate and provide

test cases written in the programming language Java1. The terms hard-coded manner and

static specific approach are used synonymously during the thesis. In addition, the term

ontology-based approach is a synonym for the dynamic generic approach in the thesis.

Firstly, the thesis aims to define the generation process. Secondly, the limitations of the

existing static specific script should be met by a dynamic generic script. Finally, the

evaluation of these two approaches should inform about the performance with respect to

the test description, the implementation and the test coverage.

1http://www.sun.com/java/

9
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Figure 2.1: Involved fields of the master thesis

Figure 2.1 shows the core field of the thesis written in boldface. On the basis of the

surrounding fields the work tries to find an effective method for testing the performance

of test case generator approaches. The field ”production automation” is the domain of

the work and therefore responsible for the work flow of the process. As mentioned in the

introduction part, the process is realized using an ontology. An ontology is a ”knowledge

based system” therefore the work also addresses this field. The field ”model engineering”

helps to deal with meta models and model transformation. These topics are essential to

perform the test process with the dynamic generic approach (see figure 4.9 on page 64).

2.1 Software engineering concepts

This section gives a brief overview of concepts which help by making architectural de-

cisions of a software project in the pre-development phase. The focus lies on software

testing which ensures the quality of the software system throughout all phases of the

software life cycle.

The term software architecture is often misunderstood with respect to the terms architec-

tural patterns, reference models, and reference architectures. Figure 2.2 shows how these

terms are related. The following term definitions refer to [3]:

Architectural Pattern: ”An architectural pattern is a description of element and rela-

tion types together with a set of constraints on how they may be used.” [3]

In general, a pattern consists of a set of constraints on an architecture and the el-

ement types. The Client-server is a common architectural pattern. The client and

the server are two element types which communicate by using a suitable protocol.
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Reference Model: ”A reference model is a division of functionality together with data

flow between the pieces.” [3]

The reference model uses a standard decomposition to divide a known problem into

parts. Afterwards, the problem is solved by solving each parts individually.

Reference Architecture: ”A reference architecture is a reference model mapped onto

software elements (that cooperatively implement the functionality defined in the ref-

erence model) and the data flows between them.” [3]

The reference architecture is the mapping of the provided functionality to software

elements by means of the reference model.

A software system describes the structure of the system components and the communica-

tion between those components on a relatively high level of granularity ([22]). Examples

of system components are data bases, security subsystems or the communication infras-

tructure.

Figure 2.2: The relationships of reference models, architectural patterns, reference archi-
tecture, and software architectures (according to [3])

2.1.1 Software testing

The testing of Software is part of every phase of the software life cycle (see figure 2.3).

Software testing is getting more and more important and therefore the testing field in-

creases continuously. The National Institute of Standards and Technology stated in a

2002 study that software bugs cost the U.S. economy about 59.5 billion dollar annually

([39]). The same study shows that high costs could be reduced by more than a third

by improving testing. The marked process groups and their processes in figure 2.3 show

which parts we look at in detail. In the IEEE Standard for Software Life Cycle Process

a process is defined as a set of activities and the process groups represent a higher level

of abstraction ([8]).
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Figure 2.3: Software life cycle referring to the IEEE 1074 standard (according to [8])

A test process can be seen as a systematic execution of a software program. Test man-

agement and running the test object with specific data are the important parts of the test

process. The goal of the test management is to plan, execute and analyze the test run. A

test run consists of one or more test cases. [41]

As mentioned in the introduction part, the test object in our case is the generator script.

That is to say, neither the assembly line represented by the XML layout nor the imple-

mentation of the simulation is the test object in this work. The main elaboration aims of

this work (see chapter 4 on page 49) are finding a way to generate appropriate test cases

for the test run and showing the cost-saving potential of the static specific and dynamic

generic generator script. The generated test cases are the input data for testing the per-

formance of the two generator scripts by a data-driven approach. Testers, persons who

are entrusted with the automation process as well as the system designers are the target

audience for proceeding a simulation (see simulation process 1.3 on page 5). The goals of

the simulation depend on the parameters chosen by the actors. Mostly, the interests lies

on performing a high overall throughput. The test results are written in an output file

and can be analyzed for exymple to answer the following questions:

• Which scheduling strategy provides the highest number of finished products in a

given period of time?

• How great is the impact of a broken machine during the simulation?

• Which are the bottlenecks of the system?

The questions above are specific ones for the simulation process but the focus of the thesis

lies on the subprocess of the simulation process called test case generation process (see

figure 4.9 on page 64). This work aims to find answers to the questions laid down in

the introduction chapter on page 7. The optimization of this subprocess will lead to an

optimization of the overall simulation process. In addition, the usability of the MAST
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simulation tool will be increased as a result by means of the dynamic generic script. The

reason for this is that for the dynamic generic generator script which is more efficient than

the static specific one programming skills are neither required to generate test cases nor

adding new test case parameters. The needed skills by the user instead of programming

skills and where the complexity of the generation process is moved to will be explained

in section 4.2.2 on page 63.

2.1.1.1 Basic principles

Figure 2.4 shows the life cycle of a test case which is subdivided into the creative process

and the automatic process. For the creative process, tool support does exit. As a con-

sequence of the tool support, the tester can increase the quality of testing. In the thesis

the tasks for planning the test cases are located in the test case generation process (see

section 4.2.2 on page 63). The costs for searching a suitable tool, acquisition costs, and

maintenance costs build up the cost triangle. The focus of the thesis is to investigate the

maintenance costs or rather the expandability costs of the generator scripts.

The execution of the test case can be automated. The SAW project2 provides a simulator

that can execute the test cases for the production automation domain. In addition, the

logged events during the simulation allow to analyze the simulation object under test.

Thus, the results of the simulation enable us to check the postcondition of the test case.

The explained life cycle of a test case is adopted for the simulation process of the SAW

project during the elaboration of the thesis (see section 4.2.1 on page 59).

Figure 2.4: Life cycle of a test case (according to [41])

2http://www.ifs.tuwien.ac.at/csde/saw
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2.1.1.2 Term definitions

This section summarizes a set of term definitions which are essential for testing a system.

Most important of all is to distinguish between the terms failure, fault and error. A

failure is a deviation of a component or system which may lead to an incorrect result

or unsatisfying service with respect to performance requirements. A fault is an incorrect

step, process, or data definition in a component or system that could lead to fail to fulfill

the system requirements. A fault can cause a failure of the component or system during

runtime. An error is an incorrect result caused by a human action. [43]

Failure: 1. Is the condition when the user notices an internal fault. 2. Difference between

expected behavior and current behavior.

Failure tolerance: 1. The system is able to keep on working after wrong input data

has been entered (robustness). 2. The ability to resume working after an abnormal

system behavior (reliability).

Testing: 1. the whole systematic process to provide evidence that the agreed require-

ments of the system are met by the test object. Testing is also used to detect the

effect of failures. 2. each test run on the test object verifies if the test result with

respect to the specific constraints is the expected result. 3. stands for all activities

and steps in the test process.

Performance: Is a metric to identify how well the offered services of a system works

according to constraints like reaction time and throughput.

Performance Testing: Is a process to prove the performance of a system for specific

use cases. Mostly the throughput depending on an increased workload is measured.

Costs for Testing: Testing cannot provide evidence that the tested software is entirely

free of failures. To test a system with a test coverage of 100 percent would mean

that all possible value sets for the input parameters combined with the different

constraints are met by the test runs. This is why a completely tested system is not

possible in praxis ([41]).

Failure costs: There is a trade-off between costs for testing and costs which result from

a failure case. In general, it is much cheaper to find and fix a failure in an early

project phase.

Test Automation 1. A software tool generates test cases which can be automatically

executed by a computer system. The major advantage is the re-usability of the test

cases. 2. Software tools provide support throughout the whole test process

Test Case: The following data is necessary to specify a test case: the test data as set of

the input parameters for the test object, the preconditions, instruction for testing,
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the expected results as well as the postconditions. Test cases usually also contain a

priority.

Test Coverage: Criteria depending on the test method to finish the test.

Test Run: Is the execution of one or more test cases on the test object with a specific

version.

Test Method: 1. Process which operates on a set of rules to get test cases. 2. The

instruction to execute tests.

Test Metric: Is a measurable property of a test case, test run or test cycle together with

the corresponding instruction for measuring.

Test object: Component, part of the system or system which has to be tested.

Test Process: Contains all activities to plan and control, analyze and design, realize

and execute, evaluate and report as well as to finish the test activity for a given

project (see figure 2.5 on page 18).

Test Strategy: The test strategy defines the methods to achieve the test goals. Fur-

thermore the test strategy defines the costs for testing the test object.

Test Step: A test step is a group of test activities which shall be executed together.

Test Goal: 1. to detect failures is a general goal of testing. 2. to detect the effect of a

specific failure by suitable test cases. 3. to provide evidence that the requirements

are met by the test object.

Test cycle: 1. process of the whole fundamental test process based on a specific version

of the test object. The typical outputs are requests for failure adjustment or change

requests.

Failure Classification gives information about how serious the occurred failure is. In other

words, to which extent does the failure interfere with the applicability of the system for

user purposes. Of course there is a difference between an error in the data base which

can affect the stability of the system or a flaw in the GUI layout.

Class 1: crash of the system which may lead to data loss; the test object is not usable.

Class 2: abnormal system behavior as a result of faulty rudimentary features. Require-

ments are not taken into account or they are implemented wrongly. The test object

can be used with many constraints.

Class 3: functional deviation or constraints (”usual” failure). The reason can be insuf-

ficient requirements or partly realized requirements. The test object is usable with

some constraints.
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Class 4: insignificant deviation. The system has no constraints relating to the require-

ments (rectification of the failure can wait until the next release).

Class 5: flaw which can be a spelling mistake or a mistake in the layout of the GUI for

instance. The system can be used without any constraints (the failure should be

fixed in the next release).

2.1.1.3 Methods of testing

A test strategy is usually a combination of different test methods. The following test

methods can be found amongst others in [9] and [41].

Unit Test: The unit tests have the goal to detect defects with respect to the functionality

and structure of the units. Sometimes stubs and mocks are necessary to enable

individual unit tests since units are often related to other units. ”Mocks test the

behavior and interactions between components, whereas stubs replace heavyweight

processes that are not relevant to a particular test with simple implementations”

([6]).

Integration Test: An integration test has two major goals: 1. to identify defects on the

interfaces of units 2. to combine units into working subsystems.

System Test: After the integration test took place all subsystems are put together to

the system under test.

Acceptance Test: Developers and clients define in cooperation the acceptance criteria

by formulating acceptance scenarios. These acceptance scenarios are the basis for

the acceptance test.

Testing after changes: Most parts of the already tested system have to be executed

again after a system change took place since the subsystems are related. There-

fore it is recommended to run the tests automatically by using a software project

management tool like Maven.3

Types of Testing: functional test, non-functional test, structural test.

data-driven Test The basic idea of the data-driven tests is to separate the test data

and the test script. Usually a spreadsheet captures the different test data records.

In the thesis a XML file is used in which all test data sets are strung together to a

test suite. Each test data set is represented by a structured test case.

Blackbox Test: The blackbox test is a transparent process (method) which helps to find

suitable test cases without knowledge of the internal structure of the system. Two

3http://maven.apache.org/
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important subcategories are the syntax test and the random test. The syntax test

uses information about the formal specification of the test script to specify the test

cases. This process checks the syntax of the input data for correctness. The random

test randomly generates valid values for input parameters within a given range.

Whitebox: All processes where information about the internal structure of the test ob-

ject is used to find appropriate test cases.

Figure 2.5 shows the fundamental test process developed by the International Software

Testing Qualifications Board (ISTQB). The fundamental test process consists of the fol-

lowing five activities ([25]):

Planning and Control: ”Test planning is the activity of verifying the mission of testing,

defining the objectives of testing and the specification of test activities in order to

meet the objectives and mission” ([25]).

The control activity affects all other activities of the test process by comparing the

actual progress against the plan. In addition, the test control activity reports the

status including the deviations from the plan.

Analysis and Design: The analysis and design activity transforms the general testing

objectives to test cases that meet tangible test conditions. After evaluating the

testability of the test basis and test objects the test conditions are identified. The

major designing activities are designing the test cases and designing the test envi-

ronment.

Implementation and Execution: ”Test implementation and execution is the activity

where test procedures or scripts are specified by combining the test cases in a par-

ticular order and including any other information needed for test execution, the

environment is set up and the tests are run” ([25]).

The generator scripts developed during the elaboration of this thesis generate test

suites for the test process of the simulation. The test process for the simulation is

discussed in section 4.2.1. Detailed information about the generator scripts can be

found in section 4.3.

Evaluation and Report: The evaluation activity faces the following major tasks. On

the one hand test logs are analyzed to decide if the specified test exit criteria are met.

This exit criteria were defined during the test planning activity. On the other hand

the exit criteria are changed in case they are not suitable. Finally, the reporting

activity provides a test summary report for the stakeholders.

Completion: The completion activities close the test process and collect data from com-

pleted test activities. This data is used to analyze lessons learned for future test

processes.
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Figure 2.5: Fundamental test process (according to [41])

2.1.2 Model engineering

Modeling is essential for all software projects independent of their size. The structure,

also called architecture, is a way of dealing with complexity, which is why modeling is

so important for large applications. In the online introduction to UML ([37]) the term

modeling is defined as follows:

”Modeling is the designing of software applications before coding. ... A model
plays the analogous role in software development that blueprints and other plans
(site maps, elevations, physical models) play in the building of a skyscraper. Us-
ing a model, those responsible for a software development project’s success can
assure themselves that business functionality is complete and correct, end-user
needs are met, and program design supports requirements for scalability, robust-
ness, security, extendibility, and other characteristics, before implementation in
code renders changes difficult and expensive to make. ... modeling is the only
way to visualize your design and check it against requirements before your crew
starts to code.” [37]
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2.1.2.1 Unified Modeling Language (UML)

The history of UML starts in the nineties when the method wars took place. At this

time more than 50 development methods arose. Each of them came up with their own

modeling language. As a result it was almost impossible for people who were used to

different modeling languages to work together. [21]

The problem with the high number of incompatible modeling languages was the motiva-

tion for the Object Management Group (OMG) to establish UML based on the winner

concepts of the battle zone. According to the simplified list in [21] these winners were:

• Object-Oriented Software Engineering (OOSE) created by Ivar Jacobson

• Object Modeling Technique (OMT) created by James Rumbaugh

• Object-Oriented Design (OOD) created by Grady Booch

The OMG is a non-profit computer industry specifications consortium and UML is OMG’s

most-used specification4. The following statement gives a short overview what the UML

specification is defined for:

”The OMG’s Unified Modeling Language (UML) helps you specify, vi-
sualize, and document models of software systems, including their structure and
design, in a way that meets all of these requirements. ... The process of gath-
ering and analyzing an application’s requirements, and incorporating them into
a program design, is a complex one and the industry currently supports many
methodologies that define formal procedures specifying how to go about it. One
characteristic of UML - in fact, the one that enables the widespread industry sup-
port that the language enjoys - is that it is methodology-independent. Regardless
of the methodology that you use to perform your analysis and design, you can
use UML to express the results. And, using XMI (XML Metadata Interchange,
another OMG standard), you can transfer your UML model from one tool into
a repository, or into another tool for refinement or the next step in your chosen
development process. These are the benefits of standardization!” [37]

In the year 1996 the first version of UML was released as co-production of Booch, Rum-

baugh and Jacobson. UML1.1 was released with the Object Constraint Language as

feature one year later (OCL, see section 2.1.2.2). UML1.3 includes the XML Metadata

Interchange (XMI) specification. XMI makes it possible to exchange object models such

as for instance UML models. The latest version is UML2.2 where, among other things,

essential restructuring took place (released February 2009). Figure 2.6 shows how the

different features and components of UML are related.

4http://www.omg.org/
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Figure 2.6: Structure of the UML 2.x stack (according to [21])

2.1.2.2 Object Constraint Language (OCL)

The object constraint language is an extension mechanism to UML. OCL was founded

by IBM. The formal language allows to describe rules and constraints which has to be

fulfilled by the corresponding UML model. However, OCL rules cannot change the un-

derlying UML model. [22]

The OCL constraints can be added to the element in the UML model and enable therefore

the idea of design by contract. The OCL is part of the UML since the version 1.3 which

was released in 1999. [21]

The enhancement of OCL aims to develop a metamodel for OCL which is adjusted to

the metamodel of UML. In addition the capability of expression will be increased so that

OCL can be used not only for specifying constraints, but also as a general query language

for UML models. [24]

2.1.3 Design patterns

The term pattern has its origin during the late 1970s. The architect Christopher Alexan-

der used the term pattern to define best practice concepts in the area of the building

industry. The pattern term was adapted in the software field in 1987 ([33]). In the year
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1995 Gamma et al. published the book ”Design Patterns: Elements of Reusable Object-

Oriented Software”which presented the first well-described and documented catalog of

design patterns ([46]). Later many books and papers, some specific to programming lan-

guages were published.

”Each pattern describes a problem which occurs over and over again in our en-
vironment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it
the same way twice.” [1]

”Design patterns are descriptions of communicating objects and classes that are
customised to solve a general design problem in a particular context. One per-
son´s pattern can be another person´s building block.” [18]

Design patterns are proven solution approaches that are described in a standardized tex-

tual form. A design pattern consists of at least the context for which it is applicable, the

problem description, and the solution to the given problem ([22]).

The following design patterns can be categorized into three different types ([18]):

Creational: Encapsulates creational knowledge for an object in a method, a class or

another object (e.g. Factory, Singleton).

Structural: Concerned with how classes and objects are composed to form larger struc-

tures. Furthermore structural class patterns use inheritance to compose interfaces

or implementations. Examples are Composite, Proxy and Facade.

Behavioral: Describes not just patterns of objects or classes but also the patterns of the

communication between them (e.g. Observer, State, Strategy).

The following design patterns are a selection of common design patterns of the gang of

four (GOF) ([18]). The singleton pattern is used for the implementation of the dynamic

generic approach (see section 4.3.1 on page 66).

2.1.3.1 Singleton

This design pattern makes the class itself responsible for keeping track of its sole instance.

After the class is instantiated it can ensure that no other instance can be created. The

code fragment shows how the class can provide access to this instance.
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1 public class Singleton {
2 protected Singleton()

3 public static Singleton getInstance()

4 {
5 if (instance == null) {
6 instance = new Singleton();

7 }
8 return instance;

9 }
10 private static Singleton instance = null;

11 }

Code Fragment 2.1.3.1: Singleton Pattern Code

The singleton pattern applies to the situation in which a single instance of a class is

required (e.g. handling log objects, factory). The pattern should not be misused doing

”OO global variables”.

2.1.3.2 Abstract factory

The abstract factory pattern is applicable when a family of related classes can have

different implementation details. Under these circumstances the client should not know

anything about the used variant.

For instance, a widget factory should offer at least a method for creating a window and a

method for creating a scroll bar. However, the implementation should not be affected in

case that the look and feel of the GUI might change.

Figure 2.7: Structure of the abstract factory pattern (according to [18])
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2.1.3.3 Factory method

The factory method pattern deals with the question how to create an object without

knowing its concrete class. The solution to this problem is to provide a method for

creation at interface level. As shown in figure 2.8 this can be achieved by deferring the

actual creation responsibility to subclasses.

Figure 2.8: Structure of the factory method pattern (according to [18])

2.1.3.4 Composite

The composite pattern faces the challenge to present part-whole hierarchies of objects

or manipulating target objects either individually or grouped together. Mostly, there

are differences between composition objects and individual objects. The solution is that

the composite object implements the same interface as a primitive object. In case the

composite object refers to other composite objects the operation will be forwarded (see

figure 2.9).
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Figure 2.9: Structure of the composite pattern (according to [18])

2.1.3.5 Observer

A change in one object often influences one or more other objects. The number and type

of objects to be notified is not always known. The Observer subscribes the observable

Subject it is interested in. The observed Subject notifies all its Observers about changes

so that they can run their update method (see figure 2.10).

Figure 2.10: Structure of the observer pattern (according to [18])
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2.1.3.6 Template method

The Template Method can help to reduce the effort of implementing and maintaining sev-

eral almost identical pieces of code. Therefore an abstract class offers the core algorithm

structured as template. The concrete class can define the variant of the algorithm. Figure

2.11 shows the idea behind this pattern.

Figure 2.11: Structure of the template method pattern (according to [18])

2.1.4 Model-View-Controller (MVC)

The architectural pattern Model-View-Controller (MVC) divides an application with user

interaction into three components. The first component is the model which captures the

main functionality and data. First, the view component shows the users the information.

Second, the view component allows the users to interact with the application. Usually,

the interaction with the application takes place via a form. The controller component

processes the users’ input data and is therefore responsible for controlling the data flow.

The view component together with the controller component define the user interface. A

special communication mechanism ensures the consistence between the user interface and

the model. [17]
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Figure 2.12: Model-View-Controller pattern (according to [17])

Figure 2.12 shows the conceptual design of the model-view-controller pattern. MVC

is recommended for interactive applications where the focus lies on a flexible and easy

expandability. The basic idea of MVC pattern is that the model and the user interface is

coupled loosely, which means that the model encapsulates the data and the functionality of

the application. Both the data and the functionality can be accessed via offered methods.

The view uses the data management methods to display the data. Thus the MVC pattern

enables different views to display the same data in different ways such as text or diagram.

The mentioned communication mechanism is based on events. Each time an event occurs

the registered controllers are informed about the event. Afterwards, the controllers handle

the occurred event. In case data is modified the appropriate notify method is called to

inform all affected views. As a result each involved views’ update method is called by the

controllers.

2.2 Knowledge-based systems

The field of the artificial intelligence originated during a workshop in Dartmouth in the

year 1956. Until the late 1960’s it was common to develop systems based on a general

problem-solving approach by chaining up deduction processes with only little domain
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knowledge. This approach was enhanced to achieve better results by using more informa-

tion about the problem domain. As a result, the field knowledge-based systems appeared.

One first systems was DENDRAL which used a high number of rules to define knowledge

about a specific domain. DENDRAL is located in the chemistry domain and was devel-

oped to interpret mass spectrograms to determine the structure of molecules. Another

well-known example for a knowledge-based system is the medical expert system MYCIN.

MYCIN diagnoses bacteriological infectious diseases and it makes suggestions if the use

of antibiotics is advisable. [4]

2.2.1 Architecture

Most important of all is the separation of the knowledge representation of a given domain

which is also known as knowledge base and the knowledge processing in knowledge-based

systems. The knowledge base can represent different kinds of knowledge depending on

the knowledge characteristics ([4]):

• case-specific knowledge: It is the most specific knowledge as it only refers to a

specific case of a problem. This could be facts which are obtained from making

observations or doing research.

• rule-based knowledge: It can be seen as core of the knowledge base. The rule-based

knowledge can be sub-classified into two classes:

– domain-specific knowledge: This kind of knowledge is already generic knowl-

edge about the whole domain. It can be both theoretical expert knowledge

and know-how.

– general knowledge: Examples of general knowledge are general problem solving

heuristics or rules for optimization as well as general knowledge of objects and

their relations in the real world.

The granularity of the different kinds of knowledge depends on the domain of the knowledge-

based system and what it is build for.

Figure 2.13 shows the general structure of an expert system.
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Figure 2.13: Typical components of an expert system. The arrows represent the flow of
information (according to [12])

Human Component: Usually, an expert system is created with the help of different

participants. First, the human experts provide the knowledge base as different ex-

periences. Second, the knowledge engineers translate this knowledge into a language

which can be processed by the expert system. This time-consuming process is most

important to meet the users’ requirements.

Knowledge Base: The subject-matter specialists ensure that the knowledge base is

structured and consists of well-defined and well-explained relationships only.

”Knowledge can be either abstract or concrete. Abstract knowledge refers to state-

ments of general validity such as rules, probability distributions, etc. Concrete

knowledge refers to information related to a particular application. For example, in

medical diagnosis, the symptoms and diseases and relationships among them form

the abstract knowledge, whereas particular symptoms of a given patient form the

concrete knowledge. [..] The abstract knowledge is stored in the knowledge base, and

the concrete knowledge is stored in the working memory.” [12]

Knowledge Acquisition Subsystem: Each time the human experts want to add new
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knowledge to the knowledge base the knowledge acquisition subsystem controls if

the knowledge is necessary or new at all.

Coherence Control: This component is not realized in all expert systems even though

it is essential to ensure the consistency of the knowledge base. Inconsistent state-

ments can affect the performance of the whole system. Furthermore, inconsistent

statements can result in offered probability values larger than one or smaller than

zero by the system.

Inference Engine: ”The inference engine is the heart of every expert system. The main

purpose of this component is to draw conclusions by applying the abstract knowledge

to the concrete knowledge. For example, in medical diagnosis the symptoms of a

given patient (concrete knowledge) are analyzed in the light of the symptoms of all

diseases (abstract knowledge).

The conclusions drawn by the inference engine can be based on either deterministic

knowledge or probabilistic knowledge.” [12]

Information Acquisition Subsystem: In case that the initial knowledge is too little

for the inference engine to finish the inference process further knowledge has to be

obtained. One possibility is to use the information acquisition component to provide

the required information. Another possibility is that the user provides the required

information via a user interface. Therefore the user information has to be checked

before the inference engine operates the provided information.

User Interface: The user interface component monitors the information of the con-

clusions drawn by the inference engine, the reasons for such conclusions, and an

explanation for the actions taken by the expert system.

Action Execution Subsystem: With this component the expert system can take ac-

tions based on the conclusions drawn by the inference engine.

Explanation Subsystem: The explanation subsystem is an essential component of the

expert system that makes the process flow transparent to the user. This is important

for users to understand how conclusions were inferred and why the actions based on

these conclusions took place.

Learning Subsystem: ”One of the main features of an expert system is the ability to

learn. We shall differentiate between structural and parametric learning. By struc-

tural learning we refer to some aspects related to the structure of knowledge (rules,

probability distributions, etc.). [..] By parametric learning we refer to estimating

the parameters needed to construct the knowledge base.” [12]
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2.2.2 Design

Developing a knowledge-based system can be seen as a complex software engineering

challenge due to some particularities ([4]). The developing process of an expert system

can be described in eight steps ([12]). The following eight steps are adapted to describe

the developing process of knowledge base systems ([4]).

1. Statement of the problem: The first step in any project is usually the definition

of the problem to be solved. This step is most important for finding adequate

requirements which have to be met by the system. If the requirements are wrongly

defined it is impossible to meet the features expected by the user.

2. Finding knowledge sources: Usually, knowledge bases of systems are related to at

least one specific domain. Data bases, books as well as human experts might provide

the necessary knowledge.

3. Design of the knowledge system: In this step, the designing of the structure for

knowledge storage, the inference engine, the explanation subsystem, and the user

interface take place.

4. Choosing a development tool: If a satisfying tool still exists it is recommended to use

it to save money and to assure quality. However, in some cases specially designed

systems such as a shell, a tool, or a programming language may be necessary.

5. Building a prototype: In the early phase of the development process an executable

prototype is essential to check wheter the system fulfills the requirements.

6. Testing the prototype: This step defines and executes the test process to find out

if the prototype meets the requirements. In case that the prototype is not suitable

the previous steps have to be repeated.

7. Refinement and generalization: Faults detected during the test process can be fixed

in this step. Furthermore, established enhancements to the initial design are also

located in this step.

8. Maintenance and updating: Appearing bugs, users’ complaints, and common mod-

ifications during the software evolution process are part of this step.

The explained eight steps are not isolated ones. There are some loops similar to the ones

in software engineering models such as, for instance, the spiral model.
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2.3 Ontology

The term ”ontology”came up in the eighteenth century in the field of general science of

being. ”Onto”is an ancient Greek word which signifies being. The discipline ontology

arose from the philosophy which was previously a subfield of metaphysics. Ruiz and

Hilera write in the book [10] on page 50 that ”Etymologists may define ontology as the

knowledge of beings, that is, all that relates to being. Just as we call those who study

”students”, we use the term ”entity”to describe all things which ”are”.”

This sound illustration can also be adapted to abstract or mental beings which are also

entities. In the last decade of the twentieth century ontology became of interest for the

computational sciences and technologies. Some reasons for the growth in research and

application are identified in the following subsections.

2.3.1 Principles

2.3.1.1 Term definition

”An ontology defines the basic terms and relations comprising the vocabulary of
a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary.” [35]

”An ontology is formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the world
by having identified the relevant concepts of that phenomenon. Explicit means
that the type of concepts used, and the constraints on their use, are explicitly
defined. Formal refers to the fact that the ontology should be machine-readable.
Shared reflects the notion that an ontology captures consensual knowledge, that
is, it is not private of some individual, but accepted by a group.” [10]

2.3.1.2 Link to related fields

In [35] Neches et al. present a vision about building knowledge-based systems by assem-

bling reusable components. The basic idea behind this vision is to build bigger systems

by knowledge sharing cheaply assuming that the next mechanism of information exchange

are knowledge bases. Existing systems use slightly different names and formalisms.

An ontology for lumped element models that defines these concepts with consistent, share-

able terminology is under construction. A library of such shared ontologies would facilitate

building systems by reducing the effort invested in reconciliation and reinvention. [35]

The internal interaction is the interaction between knowledge bases. However, the ex-

ternal interaction of applications built on various knowledge-based systems is defined as
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the interaction between knowledge-based data bases and other knowledge-based systems.

The external modules need a language for encoding the communication such as SQL for

conventional data base interactions. The pendant to SQL for knowledge-based applica-

tions is called KQML in the paper. KQML stands for Knowledge Query and Manipulation

Language. With this language it will be possible to specify wrappers that define messages

communicated between modules. Thus, it is required that all systems provide appropriate

interfaces.

The shared libraries in figure 2.14 contain several ontologies covering both structural

knowledge and problem-solving knowledge. The system engineers develop application-

specific systems by assembling components from a library into a customized shell. The

components include a framework for local system software in which one or more local

knowledge bases are tied to a shared ontology. [..] With libraries of reusable knowledge-

based software components, building an application could become much more of a config-

uration task and, correspondingly, less of a programming activity ([35]). Therefore, the

library must provide enough information about the offered entities and their constraints

enabling the application developers to work with it.

2.3.1.3 Demarcation from related fields

In this subsection the boundaries between the ontology field and related fields are defined.

Mostly this is done by describing what an ontology is not compared to the neighboring

fields. The following in [10] three concepts are identified as the most confusing ones.

Ontology vs. Conceptual Model: Both concepts provide meta information that de-

scribes the semantics of the terms or data. This is the only property shared by these

two concepts. The languages for defining and representing ontologies (see section

2.3.3 on page 35) are more powerful than commonly used languages for data bases

such as SQL.

The captured knowledge of the ontology is less structured compared to the data in

the data base (tables, classes of objects, etc.).

On the one hand an ontology has to be well designed to meet the claim of shared

and consensual conceptualization (see next section 2.3.1.4). This effort is necessary

because ontologies are usually used for information sharing and the exchange of

information. On the other hand the data base schema mostly has to be suitable for

a concrete system only.

A further difference is that an ontology provides a domain theory and not the struc-

ture of a data container.

Ontology vs. Metamodel: Ruiz mentions in [10] that the confusion between ontologies

and metamodels is motivated by the fact that both are frequently represented by the
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Figure 2.14: Envisioned phases in defining a knowledge-based system (simplified view,
according to [35])
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same languages. However, the characteristics and scope of application are different.

Bertrand and Bezivin pointed out the relationship between low-level ontologies and

metamodels. Their conclusion that metamodels improve the rigor of similar but

different models. An ontology does the same but for knowledge models.

Ontology vs. UML: Both an Ontology and UML are data modeling languages. UML

defines several types of diagrams that can be used to model the static and the

dynamic behavior of a system (see section 2.1.2.1). Cranefield and Purvis have used

an UML class diagram to model an ontology as a static model ([16]). Operations

could be modeled as conjunction together with OCL postcondition constraints that

specify the result of the operation. Which means that you can define an ontology

with UML. UML, however, is no ontology.

2.3.1.4 Design criteria

To represent something in an ontology, design decisions have to be made. For guiding

and evaluating designs objective criteria are necessary. Gruber proposes a set of design

criteria for ontologies ([20]):

1. Clarity: ”An ontology should effectively communicate the intended meaning of de-

fined terms. Definitions should be objective.” [20] Mostly, a concept needs to be

designed to address social situations or computational requirements. Nevertheless,

the definition should be independent of social or computational context. ”It should

base on logical axioms. Where possible, a complete definition (a predicate defined by

only necessary or sufficient conditions). All definitions should be documented with

natural language.” [20]

2. Coherence: ”An ontology should be coherent: that is, it should sanction inferences

that are consistent with the definitions. Coherence should also apply to the concepts

that are defined informally, such as those described in natural language documenta-

tion and examples. If a sentence that can be interred from the axioms contradicts a

definition or example given informally, then the ontology is incoherent.” [20]

3. Extendibility: ”An ontology should be designed to anticipate the uses of the shared

vocabulary. [..], one should be able to define new terms for special uses based on

the existing vocabulary, in a way that does not require the revision of the existing

definitions.” [20]

4. Minimal encoding bias: ”The conceptualization should be specified at the knowledge

level without depending on a particular symbol-level encoding.” [20]

5. Minimal ontological commitment: ”An ontology should make as few claims as
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possible about the world being modeled, allowing the parties committed to the ontology

freedom to specialize and instantiate the ontology as needed.” [20]

2.3.2 Types of ontology

The diverse classifications of ontologies depend on the different focuses. Guarino classifies

the ontologies according to the generality level into the following types (found in [10]):

High-level ontologies: Ontologies of this classification are domain independent and

describe general concepts such as space, time, material, and object. The aim is to

find agreements about criteria on a high generality level.

Domain ontologies: Domain ontologies describe the vocabulary of a domain as special-

ization of the high-level ontologies concepts.

Task ontologies: Task ontologies describe the vocabulary of a task or an activity as

specialization of the high-level ontologies concepts.

Application ontologies: Application ontologies describe concepts related to both a do-

main and a task. The application ontologies are on a low generality level as special-

ization of the concepts of the domain ontologies and task ontologies.

2.3.3 Formal languages

A formal language is a well defined artificial language by an formal grammar. This formal

grammar specifies the syntax of the language and is therefore responsible for the structure

of the artifacts which are written in the formal language. [22]

There are a number of standard languages to describe ontologies. A common formal

language for describing ontologies is the web ontology language (OWL) designed by the

World Wide Web Consortium (W3C). OWL is based on RDF and is used for applications

that need to process the content of the information instead of just presenting information.

OWL provides a greater interpretability of web content than XML and RDF. [30]

2.3.3.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is recommended by W3C to model meta-

data about the resources of the web.
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”RDF is an application of XML that imposes needed structural constraints to pro-
vide unambiguous methods of expressing semantics. RDF additionally provides
a means for publishing both human-readable and machine-processable vocabular-
ies designed to encourage the reuse and extension of metadata semantics among
disparate information communities. The structural constraints RDF imposes to
support the consistent encoding and exchange of standardized metadata provides
for the interchangeability of separate packages of metadata defined by different
resource description communities.” [34]

2.3.3.2 Web Ontology Language (OWL)

OWL consists of three sublanguages ([30]):

OWL Lite: The OWL Lite language is defined for building up a classification hierarchy

easily since it has a lower formal complexity than OWL DL. The features are limited

compared to the OWL DL and OWL Full. For instance, only cardinality values of

0 and 1 are supported in OWL Lite.

OWL DL: The OWL DL language provides the users the maximum expressiveness re-

taining computational completeness and decidability. On the one hand the compu-

tational completeness means that all conclusions are guaranteed to be computable.

On the other hand the decidability means that all computations will finish in finite

time. The DL indicates the correspondence with description logics. The OWL DL

contains all language constructs of OWL but with several restrictions.

OWL Full: The OWL Full language provides syntactic freedom of RDF beside the max-

imum expressiveness. However, no computational guarantees can be ensured.

The OWL Full language is more expressive than the OWL DL language, and the OWL

DL language again is more expressive than the OWL Lite language.

2.4 Technology and framework description

2.4.1 Protégé

Protégé is an open source ontology editor and knowledge-base framework. Protégé was

developed by the Stanford Center for Biomedical Informatics Research at the Stanford

University School of Medicine. With the framework it is possible to export the Protégé

ontologies into a variety of formats namely RDF(S), OWL, and XML schema.5 The

5http://protege.stanford.edu/
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Protégé platform provides two ways of modeling ontologies:

2.4.2 Jena

Jena is an open source java framework for building semantic web applications. Jena

evolved during the work with the HP Labs Semantic Web Research. Jena provides APIs

for RDF, RDFS, OWL and SPARQL. In addition, a rule-based inference engine is offered

by the framework.6 Jena has the advantage that it is documented well and that there are

many helpful examples.

Figure 2.15 gives an overview of the ontology import mechanism of Jena. A separate

graph structure holds each imported ontology document. This fact is most important,

otherwise it would be impossible to trace where a statement came from. Each arc in an

RDF model is called a statement. Each statement asserts a fact about a resource. A

statement is a triple consisting of a subject, predicate, and object. The subject is the

resource from which the arc leaves. The predicate is the property that labels the arc and

the object is the resource or literal the arc points at.

”The general Model allows access to the statements in a collection of RDF data.
OntModel extends this by adding support for the kinds of objects expected to be in
an ontology: classes (in a class hierarchy), properties (in a property hierarchy)
and individuals. The properties defined in the ontology language map to accessor
methods.” [11]

6http://jena.sourceforge.net/
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Figure 2.15: Ontology internal structure including imports (according to [11])

2.4.3 Jade

The Java Agent Development Framework (JADE) is a message-based middleware which

simplifies the communication in multi-agent systems. The framework is fully implemented

in Java language and it complies with the FIPA specifications. It is developed by Tele-

com Italia Lab (TILAB) under the terms of the Lesser General Public License Version

(LGPL). The agent platform provides a Graphical User Interface (GUI) for the remote

management, monitoring and controlling of the status of agents. In addition a number of

graphical tools are available which support the debugging phase.

The agent platform can be distributed on several hosts with one Java Virtual Machine

(JVM) on each host. In general each JVM is a container of agents. The communica-

tion architecture of JADE makes it possible to create, manage and queue ACL messages.

Since version 2.3 JADE supports user-defined content languages and ontologies that can

be implemented, registered with agents, and automatically used by the framework. Fur-

thermore JADE supports format conversion between content exchange formats like XML

and RDF ([5]). The current version of Jade is 3.7.7

7http://jade.tilab.com/
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2.4.4 Spring rich client

The Spring Rich Client Project (RCP) is a subproject of the Spring framework. The

framework leverage the Spring framework and offers a rich library of UI factories and

support classes for building highly-configurable rich-client applications which meet the

common GUI standards.8 In this thesis the Spring-RCP was used to build a dynamic

GUI for choosing parameters depending on the underlying data model at runtime. Details

about the dynamic GUI are given in the elaboration chapter 4.2.2 on page 63.

The project website states that the project team started a new project some years ago.

They maintain the Spring RCP. However, they have no time for documentation. Instead

of a documentation they have set up an online forum where everyone can post their

needs. The circumstance that almost no documentation exists makes it difficult to use the

framework. Nevertheless, the comments in the code of the sample applications together

with some helpful blogs make it possible to work with the framework. All the beans of

the application has to be listed in the richclient-application-context.xml file. The

command text in the XML file list typical changes which are necessary to develop an

application:

• The startingPageId on the lifecycleAdvisor.

• The eventExceptionHandler on the lifecycleAdvisor (is recommended to use)

• Specify the location of your resource bundle in the messageSource.

• Specify the mapping properties files for images in imageResourcesFactory.

• Specify your rulesSource class, if you are using one.

• Configure your view beans.

The application bean is mandatory since it defines the singleton application instance to be

used. The lifecycleAdvisor bean arranges the flow of the application. Two key prop-

erties, the location of the file containing the command definitions for application windows

and the bean id of the page that should be displayed must be configured. The command

definitions can be found in the commands-context.XML file. The messageSource bean

specifies the component that is responsible for providing messages to the platform.

Figure 2.16 shows how the application windows, pages and views are related. The appli-

cation runs in a VM and it contains one or more application windows. Each application

window contains exactly one application page which is defined by one or more dockable

views. The page manages the view by notifying on view life cycle events like creation,

focus gained, focus lost, and destruction. It is possible to open the same view on different

8http://spring-rich-c.sourceforge.net/1.0.0/index.html
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pages in different windows, but only one view instance per view descriptor is allowed per

page.9

The implemented test case generation process application consists of one application win-

dow, one page and two views (see also section 4.3 on page 66).

Figure 2.16: Spring Rich Client Platform overview (according to [38])

2.4.5 XML

The Extensible Markup Language (XML) is a data format which can be found in many

applications. The reasons for the popularity of XML are characteristics like flexibility,

interchangeability and universality. XML is a structured and text-based format for ex-

changing data and is therefore supported in most programming languages. This section

gives a short overview of the structure and possibilities of the standardized Markup Lan-

guage according to St. Laurent and Fitzgerald ([42]).

XML is a simplified version of the Generalized Markup Language (SGML) (ISO 8879:1986(E)).

The Wide Web Consortium (W3C) makes the key specifications and the name-space and

9http://opensource.atlassian.com/confluence/spring/display/RCP/Introduction
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XML schema definition for XML 1.0 and XML 1.110. It is most important that the XML

document is well-structured to make the XML document processable. Furthermore, XML

documents can have but not necessarily must have a related schema. Such Document

Type Declarations (DTD) have the major advantage of validating the structure of the

XML document.

2.4.5.1 XML structure

The following example gives an overview of the basic structure of XML.

1 <?xml version="1.0"encoding="UTF-8"standalone="no"?>

2 <?xml-stylesheet href="mine.css"type="text/css"?>

3 <!--This is a simple document.-->

4 <!DOCTYPE message SYSTEM "myMessage.dtd">

5 <message xmlns="http://simonstl.com/ns/beispiele/nachricht">

6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

7 xsi:schemaLocation="message.xsd"

8 xml:lang="en"datum="2005-10-06">

9 This is a message!

10 </message>

Code Fragment 2.4.5.1: Simple XML document

The first line of the code fragment 2.4.5.1 above is optional and gives information about

the used XML version and the used character encoding. The standalone attribute in-

forms if an external reference exists. The second line is a processing statement for a

locally stored style-sheet which was written in CSS. The third line is a comment line.

The next line contains a reference to a Document Type Declaration (DTD) where val-

idation rules are defined. In our example the root element is called message (see line

5). In the lines 5 to 8 different attributes are defined. In the fifth and sixth line the

attributes xmlns and xsi:schmeaLocation declare the name-spaces of the XML docu-

ment. The attribute xsi:schemaLocation in line 7 associate the XML document with an

XML-schema-document for the purpose of validation. The xml:lang attribute specifies

the language and the date format is specified to be ISO 8601 by the date-attribute. Line

9 shows the content of the message element. The last line shows the end tag of the XML

10http://www.w3.org/
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document.

Usually, the XML document consists of text written in the Unicode standard. The text

is separated by special characters, mostly <and >, but also &, ”, and ’.

The most important components of a XML structure are listed in the following.

Element: Elements are the building blocks of the XML document. The elements are

surrounded by start tags and end tags. The content is located between the start

tags and end tags. A special case is the tag for an empty element.

Attribute: Attributes are tuples with a name and a value. They can be located in start

tags or in an empty element.

Text: In general, text consists of a sequence of characters. The XML document consists

of markup data and characters which are a type of text.

Comment: Comments represent human readable XML information which does not affect

the XML structure.

XML declaration The XML declaration informs about the used version and the used

encoding standard. In addition, a reference to external declarations can be made.

2.4.5.2 XML schema

The XML schema is also called XML Schema Definition (XSD) or sometimes W3C XML

Schema (WXS). It is an XML vocabulary to describe other XML vocabulary. This makes

it possible to validate the structure of the XML document for software programs using

the defined rules of the XML schema. With the simple schema definition in the code

fragment 2.4.5.2 it will be easier to understand the schema definition of the test cases in

chapter 4.3.3 on page 75.
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1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema >

2 <xs:element name="autoren">

3 <xs:complexType>

4 <xs:sequence>

5 <xs:element name="person"maxOccurs="unbounded">

6 <xs:complexType>

7 <xs:sequence minOccurs="0">

8 <xs:element name="name"type="xs:string" />

9 <xs:element name="citizenship"type="xs:string" />

10 </xs:sequence>

11 <xs:attribute name="id"type="xs:string"use="required"/>

12 </xs:complexType>

13 </xs:element>

14 </xs:sequence>

15 </xs:complexType>

16 </xs:element>

12 </xs:schema>

Code Fragment 2.4.5.2: ”Russian doll” XML schema

The following list shows useful structure elements in XML schema with a short description.

The list is not complete but should clearly and fully indicate the essential elements for

the focus of the thesis. For further reading please refer to the links in the foot note11 12

13.

xs:schema: The xs:schema is the container element in which all other schema com-

ponents has to be located. The different attributes of the xs:schema define the

name-spaces which can be referenced within the schema.

xs:element: The xs:element is used to define elements. In case that the xs:element is

a child of the root element xs:schema then the xs:element is a global declaration.

This means that it can be used in another declaration. One of the attributes is the

minOccurs that allows to define an element as optional by setting the value to 0.

xs:annotation: With the xs:annotation element it is easy to enhance XML schema

declarations. The xs:annotation element can be located as first child element to

every XML schema element.

11http://www.w3.org/TR/xmlschema-0/
12http://www.w3.org/TR/xmlschema-1/
13http://www.w3.org/TR/xmlschema-2/
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xs:documentation: This element is used within the xs:annotation element to offer

human readable information. Furthermore, the used language in the document can

be defined by the xs:lang attribute.

xs:simpleType: The xs:simpleType can be used within xs:schema element or the

xs:redefine element by using the name-attributes. In addition, the xs:simpleType

can be used in xs:attribute, xs:element, xs:list, xs:union or union.

xs:complexType: The xs:complexType is a key component for most of the schema. It

allows to define types which can be restricted or expanded. It is also possible to

define simple elements with attributes.

xs:sequence: The xs:sequence sets the order of the contained definitions. Outside of

the xs:group element the xs:sequence allows to define with the maxOccurs and

minOccurs how often it can occur.

xs:attribute: This element can only be used in the xs:complexType element or in the

xs:attributeGroup element. The xs:attribute can either define an attribute by

using the name attribute or refer to an attribute by using the xs:ref attribute.

xs:restriction: This element allows to create a new restricted type based on a given

type.

xs:minExclusive: With the xs:minExclusive element a lower bound can be defined for

a given type.

xs:maxExclusive: With the xs:maxExclusive element an upper bound can be defined

for a given type.

xs:enumeration: The xs:enumeration element allows to define a list of valid values for

a type.

xs:simpleContent: This element is used within the xs:complexType element to define

a complex type with a simple content. A simple content consist of a text content

and a attribute.

xs:extension: The xs:extension can enhance the type of the base. The xs:extension

can be used in the xs:simpleContent and the xs:complexContent.



Chapter 3

Research issues and research method

This chapter introduces both the general structuring method of this thesis and the specific

research issues covered in this thesis. Furthermore the research methods for each research

issue are defined. These methods are essential to get transparent and arguable results.

The discussion of the results can be found in chapter 5 on page 88. Detailed information

about the different processes to achieve the results are given in the next chapter in which

the elaboration of the thesis takes place.

3.1 Feasibility of the dynamic generic approach

The dynamic generic approach aims to face the limitations of the existing static specific

approach. Firstly, the new approach should provide a high-level test description to allow

the target audience to generate test cases with less effort. Secondly, a validation check

and consistency check of the parameter setting is essential to reduce the risk of making

mistakes during the configuration phase of the test case generation process. The SAW

project is continually being improved by students. Therefore it is most important to meet

the requirement of expandability for adding new test case parameters like the production

strategy and the failure handling strategy which were implemented during the elaboration

of this work. The task for adding test case parameters to the generator script should be

possible with tool support.

The feasibility of the dynamic generic approach is proven by implementing a prototype

(see section 4.3.1). The implemented prototype meets all mentioned criteria for a good

solution. How efficient the criteria are met compared with the static specific approach is

part of the research issue 3.2.

45
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3.2 Identification of cost-saving potential for the ontology-

based approach

The elaboration part discusses that an ontology is a suitable data model as it is possible

to provide the necessary data to generate a suite of test cases with the dynamic generic

approach for a given set of parameters. This claim is also met by the static specific

approach. In other words, the fact that the dynamic generic approach is newer and works

as well as the old static specific one does is not enough motivation for change. However,

measurable benefits are essential to accept the new dynamic generic approach and the

change costs. The following two subsections define a metric how the cost-saving potential

can be measured with respect to their interests. In section 3.2.1 the focus lies on the

restriction that both the number of choseable parameters and the number of supported

data types are constant during the measurements. In contrary the main focus of section

3.2.2 lies on the costs for adding new parameters with different data types. However, the

questions of interest are the same in both sections:

• How much are the costs for the test description?

• How high is the effort to implement the parameters?

• Which test coverage can be achieved?

Two different comparison methods can be found in the literature ([40]). First, you can

compare by objects. Second, you can structure the comparison on the basis of the different

criteria. In this thesis the objects are the old static specific approach and the new dynamic

generic approach to generate test cases as input data for performance testing of assembly

lines. The criteria are costs for the test description, the effort to implement parameters,

and the test coverage. In our case the criteria can also be called cost units as umbrella

term. In summary the comparison takes place between the objects based on the measuring

results of the criteria. Let’s come back to the open question which comparison method

should be used. For the following two research issues the comparison by criteria seem

to be more suitable. The main reason for this decision was that the reader might be

interested in one specific cost-saving potential criterion. In that case the reader just has

to read the section on that specific criterion to get an overview of both objects. Otherwise

he would have to go through most of both elaboration parts concerning their object to

get the information. In the discussion chapter on page 88 a comparison between the new

ontology-based approach and the old static specific approach takes place. Figure 5.1 on

page 91 shows th results in a clear and concise manner. Figure 5.1 shows the results as a

cube with the technology (object), the environment (research issue 3.2.1/3.2.2), and the

cost unit (criteria) as dimensions.
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3.2.1 With respect to a constant number of parameters

The three different cost units and the metric for measuring each cost unit are listed below.

A constant amount of parameters can be assumed.

Test Description: The test description is a step-by-step instruction for the user to exe-

cute the test case generation process. The metric to categorize the test description

of the generator scripts is the level of abstraction. Thus, a high-level test description

is better than a low-level test description where it is necessary to configure the test

case generation process in the source code of the script. A high-level test descrip-

tion increases the acceptability not only for the generation process, but also for the

whole simulation process since the simulation is based on the generated test cases

as input data.

Implementation: The measurement of the effort for setting up the generator approaches

by implementing the corresponding generator scripts are partly based on an estima-

tion. For this purpose the man-months for implementing the static specific script

are estimated based on domain experts’ experience. In addition, the effort to realize

the dynamic generic approach was part of the thesis and is therefore traceable.

Test Coverage: In our context the test coverage is the ratio between generated test

cases and all possible test cases for a given set of parameters. For that purpose

the test coverage combined with the costs to achieve this test coverage is used as

performance metric. A way to determine the necessary information to calculate the

test coverage is presented in section 4.3.4 on page 77. As a result, a measurement

concept to measure and calculate the performance metric is given.

For the evaluation it is tested whether the generator approach meets the require-

ment of the definable test coverage by the user during the parameter setting. The

parameter setting configures the test case generator script shown in figure 4.4.

3.2.2 With respect to expandability

This section focuses on the expandability of the generator scripts under test. It partly

overlaps with the section above describing the constant number of parameters. This is

why the term definitions and some redundant information are not repeated in this section.

The three different cost units and the metric for measuring each cost unit are listed below.

Test Description: The changes which are necessary for the step-by-step instruction to

execute the generation process after a new test case parameter has been added are

estimated to categorize the generator scripts.
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Implementation: The effort for adding a new test case parameter to the existing im-

plementation of the generator approaches are identified. For this purpose the skills

required for the modification as well as the risk of making a mistake during the

modification are taken into account to make the two approaches comparable.

Test Coverage: Please refer to section 3.2.1 to get the information about the definition

and the metric to calculate the test coverage.

3.3 Composition of a test process for SAW

For the last few decades, testing became an increasingly important task in the software

engineering field (see also the chapter on related work on page 11). In general the goal of

testing is to detect failures and prove the requirements which should be met by the test

object. But how does a sound testing process look like? It seems to be straightforward to

use a guideline to ensure that the structure of the testing process contains all important

components. With the basic ideas of the fundamental testing process guideline by ISTQB

in mind a suitable test process for the domain of performance testing is developed in the

elaboration part of this thesis on page 56. In addition, the test process is linked with the

discussed life-cycle of a test case in [41] (see also section 2.1.1.1 on page 13).



Chapter 4

Elaboration

This chapter is divided into several sections. The first section gives an overview of the

existing Manufacturing Agent Simulation Tool (MAST) developed at Rockwell Automa-

tion Research Center in Prague ([44]). The architecture and the way how to process a

simulation in MAST is also part of this section. The Simulation of Assembly Workload

(SAW) project1 is based on MAST. In addition, the different existing ontology layers of

the SAW project are described in the first section. Also, the test case layer ontology on

which the dynamic generic script is based is defined in this section. In the second section

an overview of the simulation process as well as the test case generation process is given.

In addition, a test process to improve the quality of the overall simulation process is de-

fined with respect to the standardized test process defined by ISTQB2. The third section

explains in detail how the generator scripts were implemented during the elaboration of

the thesis. Beside the structure of the generated test case file the feasibility study is also

part of the third section. The feasibility study describes how to face the marked steps

of the cyclic test case generation process which are beyond the focus of the thesis. The

description of the actually supported test case parameters by SAW can be found in the

fourth section of this chapter. The last section introduces the metric to measure the

performance of the generator scripts under test. Furthermore, the section proves if the

proposed metric is applicable for performance testing of generator scripts. The evaluation

of the generator scripts as well as the results of the evaluation are part of chapter 5. The

next chapter also discusses the evaluation results to allow the comparison of the scripts.

1http://www.ifs.tuwien.ac.at/csde/saw
2http://www.istqb.org/
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4.1 Simulation system overview

4.1.1 Manufacturing agent simulation tool

The Manufacturing Agent Simulation Tool (MAST) is an agent-based solution for some

typical manufacturing tasks by using multi-agent technologies in the holonic manufac-

turing control ([44]). Flexible distributed manufacturing systems can be modeled as

intelligent, autonomous and cooperative elements called holons ([29]). Holons are essen-

tial components of a holonic system and each holon manages the local behavior to meet

goals locally without centralized control ([44]). In addition, the holons interact to achieve

the system goal cooperatively. Holonic Manufacturing Systems (HMS) are the result of

research about applying the agent technology to manufacturing areas ([29]).

HMS can be represented as a Multi Agent System (MAS) which is defined in [7] as follows:

”Multi Agent Systems are concerned with coordinating intelligent behavior among
a collection of autonomous intelligent agents, how they coordinate their knowl-
edge, goals, skills, and plans joinly to take action or solve problems.”

The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer Society stan-

dards organization that promotes agent-based technology3. MAST meets the FIPA stan-

dards for the inter-agent communication by using an agent development tool also called

agent platform. In general a agent platform allows to create agents with application-

specific attributes and behaviors. Furthermore, the messaging between the agents is

provided by the agent platform. At the beginning of the MAST project the FIPA-OS

platform was used until performance and memory consumptions were reached. Since

then the JADE platform is in use. [44]

MAST addresses three different manufacturing tasks:

• the transportation using conveyor belts

• transportation based on Automated Guided Vehicles (AGV)

• assembly line systems

3http://www.fipa.org/



CHAPTER 4. ELABORATION 51

4.1.2 Simulation of assembly workshop

The Simulation of Assembly Workshop (SAW) investigates processes, methods, and tool

support for planning, coordination, simulation, and lab tests for work shifts in an assem-

bly workshop. Generally, a workshop aims to effectively and efficiently carry out the work

orders in a work shift. SAW helps to understand the impact of tactical decisions in the

production automation environment. For instance, the user can optimize his assembly line

by analyzing the effect of the different strategies (see section 4.4). Further information

about SAW can be found on the project’s homepage.4

Figure 4.1 shows a screenshot of the simulation. The different components as parts of the

simulation are described below.

Workpiece: In SAW a workpiece is a transported item on a pallet. The pallet is an

extension to the implementation of the AGV in MAST.

Docking Station: Docking stations, also called production machines, offer functions

for manufacturing an output product on the basis of at least two or more input

products. Input products can be row materials or intermediate products. Output

products can be intermediate products or finished products. The IN-sensor and the

OUT-sensor read the ID of the workpiece which is shipped through the assembly

line. Afterwards the appropriate agent is informed.

Conveyor Belt: Conveyor belts transport the pallets through the system.

Crossing: Crossings are responsible for the routing of the pallets.

4http://www.ifs.tuwien.ac.at/csde/saw
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Figure 4.1: Screenshot of the SAW simulator

4.1.3 Advancement by using an Ontology

The five layers of the simulation system and their relations among each other are shown

in figure 4.2. At the beginning of this section the five layers get described since they

are responsible for the production control (see also the EER diagram of the ontology in

appendix C.3). Afterwards the new test case layer gets introduced and explained in detail.

business layer: The business layer prioritizes all incoming orders with respect to the

due date.

shift layer: In the shift layer a capacity check of the resources needed for producing the

ordered product takes place. In addition, the business orders get transformed to

work orders.

job shop layer: In the job shop layer the work orders get broken down to single tasks by

the production strategies. Afterwards, the responsible production strategy orders

the tasks with respect to their specific criteria (see also section 4.4.1).

operation layer: The load balancer as part of the operation layer is responsible for a

well balanced utilization of the docking stations. Furthermore, the shortest path

consisting of one or more conveyor belts is calculated to fulfill the different tasks.

master data layer: The master data layer contains all information which are rather

constant during the simulation such as the arrangements of the conveyor belts, the
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arrangements of the docking stations, and the structure of the product trees. All

other layers can reference these information.

The test case layer together with a suitable test case generator script provide high quality

test cases in an automated and systematic way. As a consequence a high test cover-

age can be achieved which is essential for testing the performance of simulation systems.

Thus, the user can decide if he wants to create test cases manually or with the help of

a generator script. In case of using a generator script the user just has to configure the

parameter setting which contains the test case parameters and the corresponding set of

valid values. Afterwards, the generator script generates the test cases with respect to the

chosen parameter setting.

Figure 4.2: Correlation between the different layers of the production system

The EER diagram in figure 4.3 contains all offered test case parameters by the ontology.

Each of these test case parameters is described in section 4.4.

The Protégé editor is used to create and modify the test case layer ontology. A short

instruction about how test case parameter can be added to an existing ontology is given

in appendix C.2.

All existing names for OWL-Classes, Object-Properties, and Datatype-Properties have to

be unique within an ontology layer. Thus, some names look a bit cryptic in the EER dia-

gram, especially the contain-relations are affected since most of the test case parameters
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directly belong to the root entity.

Figure 4.3: Model of the test case sub-ontology as layer of the SAW project ontology
(EER diagram)

However, the implementation of the dynamic generic script assumes some naming con-

ventions:

1. Each OWL-Class and each Datatype-Property should have a rdfs:comment to dis-

play a human readable parameter label in the GUI. Otherwise, the name of the

OWL-Class or rather the name of the Datatype-Property is used as label name.

2. Each OWL-Class should have a parameterized XML Datatype-Property (OWLClassName

+ "XML"). Otherwise, the name of the OWL-Class is used as tag name in the XML

file.

3. Each OWL-Class which participates in a ”1 to n”-relation with the cardinality of

1 has to have a special Datatype-Property. The name convention is a concatena-

tion of "number " + ChildTagName + "s". This Datatype-Property is essential

to identify the number of nested child tags during the creation of the XML file. The

child tag is the OWL-Class on the other end of the ”1 to n”-relation such as order

and failure in the EER diagram (see figure 4.3).
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Table 4.1 opposes the EER elements and the ontology elements. In addition, the third

column gives information about how the GUI is affected by the different elements of the

underlying data model. This interrelationship is explained in section 4.3.1. Furthermore

a visualization is shown in appendix C.1. A valid and consistent parameter setting can

be ensured as a consequence of the explained model transformation.

EER Element Ontology Element GUI Representation/Annotation

Entity Class Parameter group element
Attribute DatatypeProperty Test case parameter (text field)
Relation ObjectProperty not displayed in the GUI
Cardinality if cardinality > 0 Parameter is mandatory
Data type of attribute DataRange (datatype) declares the validation rule
- DataRange (set of literals) declares valid values
- comment (datatype) defines the label name

Table 4.1: Mapping table between EER elements and ontology elements

Table 4.2 informs about how the structure of the ontology can be mapped to a corre-

sponding structure of the XML file. A fragment of an example XML file is shown in

section 4.3.3.

EER Component Ontology Component XML Representation/Annotation

Entity Class Start-tag
Attribute DatatypeProperty Attribute of start-tag
Relation ObjectProperty Identification of child tag (via Range)
Cardinality cardinality is not used
Data type of attribute DataRange (datatype) is not used
- DataRange (set of literals) is not used
- comment (datatype) is used for mapping (origin name)
- statement contains ”XML” is used for mapping (tag name)

Table 4.2: Mapping table between ontology elements and XML file elements
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4.2 Test suite generation

The process to generate test cases for SAW is specified in this section. Figure 4.4 shows

the cyclic process on which the static specific approach and the dynamic generic approach

approach are based on. Nevertheless, for the static specific approach exists some limita-

tions (see section 4.3).

Figure 4.4: Process cycle of the test case generation

The cyclic process consists of the following nine steps:

1. generate the GUI: The basic idea in this step is that you can always choose from

all parameters the ontology contains. This sounds easy, the realization, however, is

complex. The main challenge is to generate a dynamic GUI at runtime. Building

an ontology-corresponding GUI at runtime is essential to increase the acceptance

by the target audience. Two further non-functional requirements are met with the

help of the dynamic GUI, i.e. the usability and the extendability of new test case

parameters. The design of the GUI and an instruction how to use it can be found

in section 4.2.2.

2. choose test case parameters in the GUI: All selectable parameters are shown in

the GUI. In addition it is possible to choose a specific value as well as a value

range. An example for the scheduling strategy could be First Come First Served

or a selection like First Come First Served, Shortest Processing Time, Earliest Due

Date. It is also possible to select all available strategies by clicking on the check

box behind the text field (see figure 4.5). In case of a value range or a selection of
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more than one element the test case generator will choose a specific value out of the

enabled values randomly.

3. validate the test case parameters: This feature is only available for the ontology-

based approach. The chosen parameter set can be validated before the test cases

are generated in step 4. The rules for the validation are listed in section 4.3.1

on page 66. A possible reason for an incomplete parameter setting is that a set

of fallible components is chosen without an appropriate failure handling strategy.

An incomplete parameter setting message together with a list of the incomplete

parameters will be shown on the GUI in such a case. Afterwards, the user can adjust

the parameter values before the generation of the test cases starts. This saves both

computer power and time because usually the user notices that something went

wrong after the simulation is finished.

4. generate test cases out of an ontology: This step exhausts further advantages of

the ontology-based approach. The reasoner takes already simulated test cases and

simulation results into account. The knowledge-based approach is a sophisticated

feature because the generator does not always have to start from scratch. Further-

more, the ontology makes it possible to work in a semantic manner. Which means

that the reasoner takes the results from assembly line A into account for assembly

line B even when the machines are named differently but the machine functions

are the same. The ontology provides a knowledge repository where an inference

engine is acting on this repository. Those features go beyond the scope of this thesis

and will be part of future works as outlined again in chapter 6. At the moment

only the generation to get appropriate test cases related to the parameter setting is

implemented.

5. export the generated test cases in an XML file: The snippet of an XML file to

state the structure of the XML file is shown in the code fragment 4.3.3. It is

important to mention that both the structure and the parameters of the test suite

are related to the structure and parameters of the ontology and not necessarily to

the simulation. In other words, the test suite might contain parameters which are

not implemented in the actual simulation. This circumstance would lead to an error

at runtime. The next step faces this aspect. However the generation process of the

XML file as part of phase 3 shown in figure 4.10 includes a consistency check to

make sure that the structure of the XML file corresponds to the structure of the

ontology.

6. synchronization between XML file and XML schema definition: The synchro-

nization between the XML structure of the generated test suite and the XML schema

definition of the test cases for the simulation is beyond the scope of this thesis.

Therefore, this step is marked in figure 4.4 to signalize that this issue will be met
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in future works. Comparing the structure of the XML gile and the XML schema

definition would make it possible to inform the user that not all of the chosen pa-

rameters are implemented in the actual simulation. Without step 6 the user will

be informed about the circumstance immediately after the simulation tries to start.

The feasibility study in section 4.3.4 shows how to face this problem.

7. simulate the test cases: The necessary input data for the simulation is shown in

figure 4.6. The test cases (output of step 5), the layout of the assembly line (sim-

ulation object) and the path where the test result should be stored are mandatory

data to start the simulation. The simulation software is developed by Rockwell and

enhanced by students in the course of the SAW project. The detailed information

about the SAW project can be found in section 4.1.2 on page 51. Firstly, the simu-

lation tool builds a GUI based on the assembly line layout to visualize the assembly

line and monitor the events during the simulation. Secondly, the test suite file will

be parsed to instantiate the different test cases. Last the simulation will start to

execute the test cases one by one.

8. store the simulation result in an XML file: The output file is created with re-

spect to the interested events. The granularity level of the events can be defined

by the user in step 1. Naturally, the higher the number of events to be logged the

longer the size of the result file will be. The result files as output from each simula-

tion are not the basic data for the evaluation which is described in section 5.2.2 on

page 92. At first this fact might be confusing because the simulation result is the

obvious reason to accept the effort of simulation. This is certainly true for testing

the assembly line. The thesis, however, compares the static specific script and the

dynamic generic script which are both scripts to generate test suites with respect

to a parameter set. For that reason the focus of the thesis lies on the input and

output components of the XOR element in figure 4.6 (see also figure 4.9 on page 64).

In other words, one of the main goals of the thesis is to identify the strengths and

weaknesses of the two generator scripts. For that challenge data about the costs to

generate the test cases is essential. The metric to evaluate the scripts is defined in

section 3.2. Further explanations will be given in the following sections, particularly

in section 3 on page 45.

9. integrate the result into the ontology: This last step in the cyclic process is im-

portant for following simulations. The achieved simulation results will be integrated

as experiences into the ontology. As a result of the feedback the knowledge captured

in the knowledge base (ontology) increases. Firstly the goal of the thesis is to define

a test process for the test case generation in section 4.2 on page 56. Secondly, a

metric has to be found to make the costs of test description, implementation of pa-

rameters, and test coverage measurable. In conclusion, the evaluation between the
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two approaches together with the following discussion part shows which approach

makes the overall process shown in figure 4.4 easier for the target audience. This

thesis will concentrate on the above-mentioned research issues while leaving step 9

out of scope. Step 9 would be an interesting topic to be discussed in detail in future

works. Nevertheless, a feasibility study shows that step 9 is realizable (see section

4.3.4)

Figure 4.5: Screenshot of the parameter setting GUI

4.2.1 Simulation process overview

The detailed description of the nine steps of the cyclic test case generation process in the

previous section will help to understand the simulation process shown in figure 4.6. The
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simplified simulation process is linked with the steps indicated by the numbered cycles.

The cycles’ colors indicate whether steps were implemented during the work. The color

blue means that it is part of the elaboration. Step 6 and step 9 are marked yellow and are

not implemented during the elaboration. Nevertheless, a feasibility study shows that step

6 and step 9 are realizable (see section 4.3.4). The details about the simulator blackbox

together with the related steps 6, 7 and 8 are shown in figure 4.8. The test case gener-

ation process as subprocess of the simulation process is explained in detail in section 4.2.2.

Figure 4.6: Overview of the simulation process (for details about the simulator refer to
figure 4.8)

The following simulation scenario sums up the whole simulation process. The user wants

to choose from all provided test case parameters to automatically generate input data for

the simulation. Therefore, a GUI is offered. Furthermore, the user can decide which gen-

erator script should generate the test cases for the chosen parameter setting. Depending

on the selected generator script either the static specific script or the dynamic generic

script delivers the XML structured test case file as result. These test cases are used as

simulation input data together with the layout of the assembly line and the directory
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where the simulation results should be stored. This information is necessary to start the

simulation. These necessary input data can be filled in a GUI which is offered by the

simulator (see figure 4.7).

After this the simulator executes each test case one by one (step 7). Afterwards the results

of the simulation can be found in the directory which has been selected. All events of

interest are captured in the result file. Which events are considered to be of interest can

be chosen as parameter at the beginning of the simulation scenario (step 8). The tasks to

fulfill the steps 7 and 8 are performed by the simulator tool. Finally, the most important

facts are integrated into the ontology corresponding to the generated test case and the

assembly line layout. Step 9 generates the feedback to the ontology based on the test

results file and not on the results file of the simulation. These two files are both log files

but they capture different events performed during the simulation process. Whereas the

results file of the simulation is used to analyze if the simulator works correctly, the test

results are used to optimize the assembly line with respect to the overall throughput of

the system. The feedback to the ontology allows to meet the criterion of the knowledge-

based manner. As a result, experience can be extracted from the ontology which is used

to expect the result drawn as cloud in figure 4.6 as well as the preconditions and postcon-

ditions of each test case before the simulation starts. This input data, the instruction for

testing, the layout of the assembly line, and the mentioned test data specify a test case

for the simulation ([41]).

Most important is that the defined test case with the generated test cases being the test

input data to simulate the assembly line does not correspond to the test case of the test

case generation process shown in figure 4.9. For this reason the assembly line is called

simulation object whereas the test object is the static specific script and the dynamic

generic script. In the next chapter the evaluation of the two scripts takes place and is

discussed with respect to cost-saving potential and effectiveness.

Figure 4.7: Screenshot of the SAW tester GUI
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According to [41] the six input components of the AND element, i.e. the test cases to be

simulated, the layout of the assembly line, the preconditions, instruction for testing, the

expected results as well as the postconditions are essential to specify a test case (see figure

4.8). The instruction for testing is a human-readable manual which describes each step

of the test. For running the simulation it is enough to know how to use the GUI shown

in figure 4.7. In the following sections of the elaboration part the term test description is

used in the context of how to manage the test case generation process. The output of the

test case generation process is the test input data for the simulator. The test input data

contains the test cases generated by the generator script. The layout of the assembly line

is represented by an XML file which can be created with tool support. Therefore, the

user can create and modify the model which represents his physical assembly line. The

previously not mentioned input components which are expected results, pre-condition gen-

erator, and postcondition generator are extracted from the ontology. After the specified

test case has passed the pre-condition check the test case can be automatically executed

from the simulator.

Figure 4.8: Detailed simulation process

Afterwards the postcondition check compares the results of the simulation with the ex-

pected results offered by the postcondition generator. Finally, the test result component

filters and generates one output file per interest. The feedback file for the ontology usually
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contains less data than the results of the simulation file in order to keep the ontology as

compact as possible to be able to work on the ontology efficiently. However, the outlined

process of the simulator is generated to identify potential to increase the quality of the

simulation process. The realization of the process goes beyond the scope of this thesis

and will be part of future works.

4.2.2 Generation process overview

The following figure 4.9 shows the generation process enhanced with the module ”Cost-

Performance Analysis Process”. This module is used to evaluate the test objects, namely

static specific script and dynamic generic script. The evaluation results can be found in

chapter 4.9 on page 64. In general, the test case generation process is a subprocess of the

simulation process described in the previous section. The flow of the test case generation

starts with the GUI shown in the upper part of figure 4.9. The GUI offers the user the

supported test case parameters from which he can choose the parameter setting by al-

locating values to those parameters. This parameter setting defines the parameters and

their possible values for the test cases. Thus the parameter setting as input data config-

ures the generator script. Two directed paths lead to the goal called test cases which are

captured in an XML file. Let’s start with the left path where the static specific script

is the first component after the GUI. The edge which leads to the static specific script

is unidirectional. This means that only a static GUI is supported by the static specific

approach. This fact leads to the disadvantage that the GUI has to be modified after each

modification such as the addition of a new test case parameter to the static specific script.

The system changes frequently since the simulation software is continually improved by

students. Thus, one of the most important features of the test case generator script is the

expandability to support these changes. This is essential because the generated test cases

are the input data for the simulation. In other words, most of the simulation changes

effect the test case generation script since the test cases are the only input data beside

the assembly line where the user can configure the simulation process.

The XOR element symbolizes that either the static specific script or the dynamic generic

script can be used to generate test cases during one generation process. The generation

process stops after the static specific script has generated the test case XML file.

Then there is the second path to walk through. Initially, the dynamic generic approach

requires a dynamic GUI. This feature is indicated by the bidirectional edge between the

GUI component and the dynamic generic script component. The dynamic generic ap-

proach extracts the offered test case parameters, the allowed values for the parameters,

and structural information from the underlying data model. Afterwards the identified
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information of the ontology is passed to the GUI. This data flow makes it possible to

build a dynamic GUI which corresponds to the ontology at runtime. As a consequence,

modifications to the ontology do not necessarily lead to manual changes neither to the

GUI nor to the dynamic generic script. This feature allows to add new parameters in the

ontology with tool support. Afterwards the modification is represented by the GUI with-

out any line of code. Therefore the user needs no programming skills neither for adding

new parameters nor for configuration of the generation process. Most of the complexity is

moved from the user to the implementation of the dynamic generic approach. This is why

the whole test case generation process could be simplified from the perspective of the user.

Figure 4.9: Overview of the test process as part of the simulation process

On the one hand the dynamic generic approach uses the underlying ontology’s struc-

ture and restrictions to ensure the consistency of the test cases. On the other hand the

data ranges of the offered parameters are used to ensure the validation of the test cases.

Nevertheless, the user has to manage the underlying ontology. Therefore the user needs

skills for modifying the ontology with common graphical editor tools like Protégé. Of

course, for modifying an ontology users need some experience but it involves less effort

than modifying a hard-coded script. Furthermore, if something goes wrong during the

modification of the ontology the user will recognize it immediately in the parameter set-
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ting configuration process. On the contrary, the user might realize that something went

wrong during the modification of the static specific script after the simulation run took

place by analyzing the simulation results. This is a frustrating experience as users usually

do not know which one went wrong. In that case the user is captured in a trial and

error loop. Surely, these circumstances negatively affect the acceptability of the static

specific approach. Coming back to the starting point it needs to be said that the user can

always choose from all test case parameters supported by the generator script to define

the parameter setting. In addition, the dynamic generic approach ensures that only valid

and consistent parameter settings can be defined by the user. This circumstance can be

achieved with the information of the ontology. Afterwards, the dynamic generic script

generates test cases based on the parameter setting. At the end of the path the dynamic

generic script generates the XML file.

A useful characteristic of the ”3 Phases Process Model” shown in figure 4.10 is the fact that

the first phase and the second phase are totally independent of the domain. This is ensured

as the domain specification is hidden in the ontology. The first phase communicates

with the ontology and passes the element names, valid values for element instances, and

information about the structure of the ontology to phase two. After this the second phase

uses the received information about the ontology to build a dynamic GUI at runtime. The

user can configure the third phase based on the data model easily. The implementation

of the application’s aim is located in the third phase only. In the thesis the third phase

uses the chosen parameter setting to generate test cases. Afterwards the generated test

cases are written into an XML file. This structured file can be used as input data for the

simulation tool.

Figure 4.10: 3 phases process model
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4.3 Realization of the generator approaches

The next section aims to look into the blackboxes shown in figure 4.9 to find out how they

can be realized. Figure 4.10 shows the ”3 Phases Process Model” and gives an overview

about the different technologies used during the implementation of the dynamic generic

approach. In the following section some low-level information together with code snippets

are given to show how to deal with the implementation of the test case generation process.

The numbered steps as subset of the cyclic nine steps process shown in figure 4.4 should

make it easier to reference to the figures 4.14 and 4.11.

4.3.1 Implementation of the dynamic generic generator script

The paragraph at the end of the previous section described the flow of data throughout

the whole test case generation process. This section gives information about the used

technology in the different phases. The first phase reads the ontology with the help of

the offered APIs from the Jena framework. For generating the text file which configures

the dynamic GUI in the second phase some preliminary steps such as parsing, casting,

caching, mapping, and filtering of data are necessary. The test case parameters are repre-

sented as data type properties within the different classes in the ontology. The comment

property of the data type properties is used to display a human-readable label for the

test case parameter in the GUI. In the ontology each data type property contains a data

range element which holds one set of literals per allowed test case parameter value. The

information about the allowed values together with the defined data types of the literals

compose the validation information. The cardinalities of the relationships between the

classes represented as object properties in the ontology inform about whether a parameter

is mandatory. An important fact is that for each line in the configuration file a getter

and setter method is assumed in the second phase. This is why the allowed values for

each ontology class is set to ”isClass” to save a line for extra layout information in the

output text file. If the set of allowed values of a test case parameter contains an ”isClass”

then only the label of the parameter will be shown during building the dynamic GUI

in the second phase. This is due to the fact that ontology classes represent groups of

parameters. As mentioned above the test case parameters are represented by data type

properties within the ontology classes (see also the mapping table 4.1 in section 4.1.3).

The screenshot in figure 4.5 shows the result of the first step. An interesting fact about

the GUI is that it is generated dynamically at runtime. This is necessary in order to

keep the selectable test case parameters up to date with test case parameters offered by

the data model. Each line of the GUI represents one test case parameter by showing
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its name, a text field, and a set of valid values for the parameter. The user can choose

specific values out of the set of valid values for each parameter by writing them into the

text field. In order to take all valid values of the parameter into account for the given

parameter setting the user can enable the check box which is located between the text

field and the valid values. The red symbol with the white x at the beginning of the text

field denotes that the parameter is mandatory.

Figure 4.11: Structure of the realization of the dynamic generic approach

For getting an overview of the implemented dynamic generic approach it is helpful to

link the structure of the realization shown in figure 4.11 with the already explained data

flow shown in figure 4.10. The numbered cycles of the realization structure correspond

to the direction of the data flow of the ”3 Phases Process Model”. In short, the process

to be implemented is defined as follows. The ontology defines the test case parameters,

permissible values for each of those parameters, as well as the relations between them.

These test case parameters have to be shown at a dynamic GUI at runtime. After the user

has chosen a valid and consistent parameter setting the generation process takes place.

Finally, the generated test cases will be exported into an XML file.

The following section explains the steps of the generation process enhanced with details

about the used technologies. The starting point for the explanation is the ontology. The



CHAPTER 4. ELABORATION 68

section 4.1 gives detailed information about the ontology. Most important for the im-

plementation is the EER diagram shown in figure 4.3. The ontology was created with

Protégé which is an open source ontology editor. Of course, Protégé can also be used to

modify the ontology defined as an OWL file. The ontology editors are illustrated by the

"Ontology Modification Tool" component in figure 4.11.

In the first step all test case parameters are read from the ontology with the help of the

Jena framework. The parameter groups are represented as classes in the ontology and

as entities in the EER diagram. The parameters within the parameter groups are repre-

sented as datatype properties in the ontology and as attributes of the entities in the EER

diagram. RDFS comments are used for the label names of the parameter since the names

of the datatype properties are difficult to read. For building an appropriate dynamic GUI

two further pieces of information are necessary. First the permissible values which are

represented as data ranges in OWL, second, the cardinalities of the datatype properties

(parameters) which are used to decide which of them are mandatory. Two classes namely

a set of failures and the failure handling strategy are optional in the used ontology. Now

all information for building the GUI is available.

However, the information has to be written in a text file to configure the dynamic GUI

which is realized as a spring rich client application. The offered dynamic GUI at runtime

leads to many advantages. Firstly, the user can only choose from supported parameters.

Secondly, the validation component in the third step informs the user if a value is invalid.

The user is also informed about a data type mismatch. This is the case if a character

is typed and an integer or float value is assumed (see code fragment 4.3.1). Moreover,

the information whether a parameter is mandatory enables a consistency check. The

consistency check is also part of the third step. The parameter setting of the GUI is im-

plemented as singleton since only one parameter setting can be chosen for each iteration of

the generation process. The GUI passes the valid and consistent parameter setting to the

fourth step. Afterwards the chosen parameter setting as well as the information about all

combinatorial possible scenarios for the chosen parameter setting is displayed. The user

can edit the parameter setting or start the test case generation process by clicking the

”Run”button. The user has to define the two stop conditions namely the test coverage

and the generation time in a form before the generation process can continue. Therefore

the stop criterion which appears first applies.

For generating test cases a combinatorial collection of possible test cases related to the

chosen parameter setting is created. Furthermore it can be ensured that the generated test

cases are valid and consistent since they are related to the valid and consistent parameter

setting. During the fifth step the export component creates the structure of the XML

file corresponding to the structure of the ontology. Afterwards the dynamic generic script

extracts test cases from the collection of possible ones and writes them iteratively into an
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XML file until the number of test cases to fulfill the required test coverage is reached.

1 //the following class is adopted from the simple example application

2 //of the spring richclient framework

3 public class SimpleValidationRulesSource extends DefaultRulesSource {
4

5 //AlphaNum validator for mandatory paramters of datatype string

6 private final Constraint MANDATORY ALPHANUM CONSTRAINT =

7 all(new Constraint[] {required(), minLength(2),

8 regexp("[- ,a-zA-Z 0-9]*", "mandatoryAlphanumConstraint")});
9

10 //integer validator for mandatory paramters of data type int

11 private final Constraint MANDATORY INT CONSTRAINT =

12 all(new Constraint[] {required(), minLength(2),

13 regexp("[[, 0-9]*", "mandatoryIntConstraint")});
14

15
...

16 /*

17 * 1.construct rules with respect to the restrictions of the ontology

18 * 2.bind the appropriate rule to each test case parameter

19 */

20 }

Code Fragment 4.3.1: Snippet of the validation rule source

Figure 4.12 gives an overview of the system architecture of the implemented prototype.

The arrows show the data flow between the different layers of the test case generation

application. In addition, the package names within the Java project are stated at the

end of each layer. More information about the different classes within each package can

be found in the package diagram shown in figure 4.13. The shown layered architecture

is a typical MVC architecture (see section 2.1.4 on page 25). Whereas the "Graphical

User Interface Layer" represents the view component and the "Business Logic for

GUI Layer" represents the controller component of the MVC architecture. The model

component and the controller component together define the user interface. Thus, they

are both located in the ui package. The "Business Model Layer" represents the model

component and therefore the domain package contains most of the functionality of the ap-

plication with respect to the parameter setting phase (see also the second phase in figure

4.10). However, the "Ontology Access Layer" is responsible for the ontology import,

for the test cases generation as well as for the test case export in an XML file (see also
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the first and the second phase in figure 4.10).

Figure 4.12: Architecture of the dynamic generic approach

UML provides thirteen diagrams to describe the structure and behavior of a system. The

package diagram is used to describe the structure of a system by grouping parts of the

system as packages. Therefore different abstraction levels can be used to reduce the com-

plexity of the modeled system. [24]

In the package diagram of the test case generation application the grouped parts of the

system are classes (see figure 4.13). The package names correspond to the package names

of the Java project. The "import" relations in the package diagram indicate on which

framework the package is based on.

Application (app package): Firstly, the application instantiates the OntologyImport

class which provides methods to extract both structural information and domain

information of the ontology. Secondly, the MessagesPropertiesExport object cre-

ates a configuration text file for building the dynamic GUI at runtime (see appendix

B.2). The figures in appendix C.1 visualizes the idea behind the transformation. Af-

terwards the TestCaseGenerationApp gets instantiated to build the dynamic GUI

with respect to the provided configuration file as output of the first phase (see figure

4.10).
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Ontology Access (ontology package): The ontology package consists of four classes.

Two of these classes use the Jena framework to access the underlying ontology. On

the one hand, the OntologyImport class uses Jena to get the information which are

necessary for creating the configuration file by the MessagePropertiesExport class

during the first phase. On the other hand, the TestCasesExport class uses Jena

for creating the XML file corresponding to the structure of the ontology during the

third phase.

Model (domain package): The domain package offers the getter and setter methods

for each data field. In the first place, the ParameterSettingRulesBinding class

set the data type and if the data field is mandatory or not with respect to the con-

figuration file for each data field. Afterwards the SimpleValidationRulesSource

class links an appropriate validation rule to each data field based on the set data

type and mandatory property by the ParameterSettingRulesBinding class (see

code fragment 4.3.1). The data object for the parameter setting as well as the data

object for the condition setting are represented by singleton instances. The parame-

ter setting contains all chosen test case parameters with their corresponding values.

The condition setting contains the stop criteria namely the test coverage and the

maximal generation time.

User Interface (ui package): The two classes ParameterSettingPropertiesDialog

and ConditionSettingPropertiesDialog are responsible for showing the appro-

priate form. However, the properties dialog classes are instantiated in the view

classes since each form belongs to a view in the spring rich client platform. For

more information about the spring rich client framework please refer to the section

2.4.4 on page 39.
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Figure 4.13: Package diagram of the dynamic generic approach
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1 public class OntologyImport {
2 public OntologyImport() {
3 base.read(SOURCE, "RDF/XML");} //read the ontology

4

5 private String SOURCE = ”testcaselayer.owl”; // path to the ontology
6 private String URL=”http://qse.tuwien.ac.at/datamodel/testcaselayer”;
7 private OntModel base=ModelFactory
8 .createOntologyModel(OntModelSpec.OWL MEM);
9

10 public void importOntology() {
11 //list the statements in the Model

12 StmtIterator iter = base.listStatements();

13 Map<String, String> mapLabelComment =

14 new HashMap<String, String>();

15 Map<String, String> mapLabelCardinality =

16 new HashMap<String, String>();

17 String dataLabelComment = "", String dataLabelCardinality = "";

18

19 //print out the predicate, subject and object of each statement

20 //build comment map to display comment instead of param names

21 //build cardinality map for identifying mandatory parameters

22 while (iter.hasNext()) {
23 Statement stmt = iter.nextStatement(); // get next statement

24 Resource subject = stmt.getSubject(); // get the subject

25 Property predicate = stmt.getPredicate(); // get the predicate

26 RDFNode object = stmt.getObject(); // get the object

27

28 if (object instanceof Resource);

29 else { // object is a literal

30 if (subject.getLocalName() == null) { //it is a restriction

31 if (predicate.getLocalName().equals("cardinality"){
34 dataLabelCardinality = object.toString().substring(0,

35 object.toString().indexOf("b));

36 mapLabelCardinality.put(subject.toString(),
37 dataLabelCardinality);
38 if (predicate.getLocalName().equals("comment")) {
39 dataLabelComment = object.toString().substring(0,

40 object.toString().indexOf("b));

41 mapLabelComment.put(subject.getLocalName(),
42 dataLabelComment);
43 }}} ...} //end of the ontology import

Code Fragment 4.3.1: Snippet of the dynamic generic script
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4.3.2 Implementation of the static specific generator script

The static specific generator script was provided at the beginning of the work. The aim of

the thesis is firstly to locate weaknesses of the given static specific approach and secondly

to find a solution to face those weaknesses. After the implementation of the new approach

has taken place a evaluation shall make the effectiveness of both approaches comparable.

The input parameters for configuring the test case generation process has to be set by

modifying constants in the source code of the static specific script. Therefore, the missing

step 1 of the static specific approach is not implemented during the elaboration part of the

thesis. However, there is much tool support available for building a GUI at design-time.

Additionally, the GUI would lack in maintainability and therefore it would relativize the

achieved usability of the GUI. In other words, each change of the script would lead to

changes in the GUI. Both tasks require programming skills of the user. Thus it is easier

to do step 2 directly in the code of the static specific script (see code fragment 4.3.2).

Figure 4.14: Structure of the realization of the static specific approach

A validation of the user input data is not supported by the static specific approach.

Therefore, step 3 is colored white. The implementation of the generation step generates

a set of all possible values based on the parameter values defined by the user for each test

case parameter. Afterwards the static specific generator script takes one value from the

set of possible values randomly for each test case parameter. After this the script writes

the whole test case into an XML file. The last two tasks are iterative ones. Hence, neither

a validation check nor a consistency check are supported by the static specific approach.
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1 public class TestCaseGenerator {
2

3 // path to XML output file

4 private final static String outputFile = "testcases autogen00.xml";

5

6 //production strategies (full class name)

7 private final static String[] strategies = {
8 "mast.saw.strategy.ShortestProcessingTime",

9 "mast.saw.strategy.EarliestDueDate",

10 "mast.saw.strategy.FirstComeFirstServe"};
11 //failure handling strategies (full class name)

12 private final static String[] failureStrategies = {
13 "mast.saw.strategy.failurehandling.NoRerouting",

14 "mast.saw.strategy.failurehandling.ArrivalRerouting",

15 "mast.saw.strategy.failurehandling.QueueRerouting",

16 "mast.saw.strategy.failurehandling.AllRerouting"};
17

18 //products (type and number)

19 private final static String[] products = { "billy low",

20 "billy medium", billy complex};
21

22 //Workload

23 private final static int[] numberOfProducts = { 750, 1500 };
24

...

25 /*

26 * test case generation and export in an XML file

27 */

28 }

Code Fragment 4.3.2: Snippet of the static specific script

4.3.3 XML structure of the generated test case

The XML file contains the generated test cases as output of the generator scripts. These

test cases are the input data for the simulation.

The example of a test case shown in the code fragment 4.3.3 gives an overview of the basic

structure. Most important of all is that the structure of the XML file corresponds with

the structure of the ontology. The tags of the XML file are related to the classes of the
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ontology and the attributes are related to the Datatype-Properties of the ontology

(see also table 4.2). The skeleton of the XML file is specified by the relations between the

classes of the ontology. The different test case parameters are described in section 4.4.

1 <?xml version="1.0"encoding="UTF-8"?>

2 <eventTypesToLog>

3 <type value="ProductFinished"/>

4 </eventTypesToLog>

5 <inputparameters id="1">

6 <workload number orders="500">

7 <order duedate="2500.0"orderID="1"product="billy complex"/>

8 <order duedate="1500.0"orderID="2"product="billy medium"/>

9 <order duedate="3000.0"orderID="3"product="billy complex"/>

10
...

11 <order dueDate="2000.0"orderID="7200"product="billy low"/>

12 </workload>

13 <scheduling strategy type="ShortestProcessingTime">

14 <failureHandler type fs="ArrivalRerouting"/>

15 </scheduling strategy>

16 <inventory use="false"/>

17 <transport number="20"speed="0"/>

18 <shift time="3600"/>

19 <failures>

20 <failure id="1"name="DS5"triggertype="time"downtime="1200.0"/>

21 <!-- after 20 minutes simulation time -->

22 <!-- DS5 will be down for 20 minutes -->

23 </failures>

24 <simulation/>

25 </inputparameters>

26 <inputparameters id="2">

27
...

28 </inputparameters>

29
...

30 </testcases>

Code Fragment 4.3.3: Snippet of the test case XML file
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4.3.4 Feasibility study

This section shows ways to deal with topics which are beyond the focus of this thesis.

Firstly, the conceptual feasibility of the steps 6 and 9 of the cyclic test case generation

process are shown (see figure 4.4). Secondly, a measurement concept to measure the

test coverage and calculate the performance metric is identified. The last section gives

information to face the structural limitations of the dynamic GUI which is part of the

dynamic generic approach.

4.3.4.1 Structural comparison between XML file and XML schema

The XML file as output of the test case generation process contains the generated test

cases in a structured form. The question is whether the structure of the file is the struc-

ture expected by the simulator. The test case structure supported by the simulator is

defined in the XML schema (see appendix B.3). Thus, the structural comparison is a

consistency check.

Section 4.3.1 highlights that the dynamic generic approach ensures valid and consistent

test cases. This is certainly true, but with respect to the corresponding ontology as data

model and not necessarily to the XML schema of the simulator. As a result, the sixth

step of the cyclic test case generation is necessary for both generator scripts.

Firstly, the XML schema has to be referenced. Secondly, the XML file has to be validated

corresponding to the XML schema until the end of the file is reached or a failure occurs.

Lastly, the user is informed about the result of the consistency check. Code fragment

4.3.4.1 shows a solution to prove the consistency.
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1 public class XmlFileStructureValidation {
2

...

3 public static final String XML SCHEMA TESTCASE =

4 "schema/testcases-1.4.xsd";

5 File xmlFile = new File("testcases output step5");

6

7 public static void validateXmlFile(File xmlFile)

8 throws XmlException, IOException {
9

10 // instancate the XML Schema

11 SchemaFactory sfac = SchemaFactory

12 .newInstance(XMLConstants.W3C XML SCHEMA NS URI);

13 Schema xmlSchema = null;

14 try {
15 xmlSchema = sfac.newSchema(new File(XML SCHEMA TESTCASE));

16 } catch (SAXException e1)

17 throw new XmlException("Error while parsing the schema", e1);}
18 }
19

20 Validator validator = xmlSchema.newValidator();

21

22 // validate the XML file corresponding to the XML schema

23 try {
24 validator.validate(new StreamSource(xmlFile.toURI().toString()));

25 } catch (SAXException e) {
26 throw new XmlException(

27 "the provided XML file is not a valid testcasefile", e);

28 }
29 }
30

...

31 }

Code Fragment 4.3.4.1: XML file and XML schema comparison (source: SAW project)

4.3.4.2 Feedback of the simulation result into the ontology

The basic idea of the feedback into the ontology is that the cyclic test case generation

process has not to start from scratch each time. An important fact is that the feedback

is not limited to the simulation results since the results depend on the test cases and the

assembly line.
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A feedback consists of the following artifacts (see figure 4.6):

• Test cases

• Layout of the assembly line

• Simulation results

Each artifact should be stored as feedback into a separate ontology for maintainability

reasons. Thus, a unique key has to be created to make the artifacts referable for subse-

quent iterations of the cyclic test case generation process.

It is also possible to store the feedback without a merged key of the artifact keys since on-

tologies support reasoning techniques. In this case, a reasoner could infer the information

for each iteration. On the one hand, the extraction of experience by reasoning techniques

is more flexible. On the other hand, the extraction of feedback stored by using a merged

key is probably faster.

However, the aim of the ninth step of the cyclic test case generation process shown in fig-

ure 4.6 is to integrate a feedback into the ontology. Therefore, the principle tasks are the

creation of ontology individuals and a way to store them to the ontology. Code fragment

4.3.4.2 shows a solution to face these tasks.

1 public class OntologyFeedback {
2

...

3 // define URL, NS and read the OWL model (see section 4.3.1)

4

5 public static void createIndividual(String individualName,

6 String individualClass, OntModel base) {
7 // get resource of the target class

8 Resource res = base.getResource(NS + individualClass);

9 // add the individual to the class

10 base.createIndividual(NS + individualName, res);}
11

12 public static void addPropertyToIndividual(String propertyLiteral,

13 String propertyName, String individualName, OntModel base) {
14 // get target individual

15 Individual ind = base.getIndividual(NS + individualName);

16 // get the property

17 Property prop = base.getProperty(NS + propertyName);

18 // add the literal to the property

19 ind.addProperty(prop, propLiteral);}
20 }

Code Fragment 4.3.4.2: Integration of feedback into the ontology
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4.3.4.3 Measurement concept of the performance metric

The test coverage combined with the costs to achieve this test coverage is used as perfor-

mance metric. In our context the test coverage is the ratio between generated test cases

and all possible test cases for a given set of parameters. The necessary information to

calculate the test coverage could be logged as comment at the end of each generated test

case suite. The test case suite is the output file of the test case generation process. The

meta information of the generation process are represented as comments at the end of

each test suite and can be therefore extracted from the XML file to determine the test

coverage. For the component "Cost-Performance Analysis Process" shown in figure

4.9, for instance, a spreadsheet program could be used to process these meta information.

The following meta information are necessary to calculate the performance metric:

• number of generated test cases

• number of all possible scenarios for a given parameter setting

• generation time for the provided test cases

4.3.4.4 Optimization of the dynamic GUI

The term reflection was first introduced by Smith in 1982 as a principle that allows a

programmer to access, reason about and alter its own interpretation (found in [19]). Java

supports the concept of reflection by allowing access to the Java bytecode as intermediate

form ([2]).

The Java reflection API is supported by the classes in the java.lang.reflect package.

The Java reflection examines the class of an object and determines its structure. It is

possible to find out which constructors, methods, and fields a class has, as well as their

attributes. Furthermore the programmer can change the values of fields, dynamically

invoke methods, and construct new objects. [36]

Therefore Java reflection seems to be a powerful technique to analyze the class at runtime.

The reflection technique is used to inspect the getter and setter methods of classes and

to invoke them at runtime. This is necessary since the number of methods might vary

over the application’s life cycle. However, one limitation of the Java reflection is that the

standard reflection API does not support to alter program behavior. Chiba discusses how

this limitation can be addressed with an extension to the reflection API called Javassist
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([15]).

The application developed during this work has to face the challenge that the number

of the needed getter and setter methods depend on the number of test case parameters

offered by the ontology. For fulfilling the task of adding getter and setter methods auto-

matically a structural reflection is required. Without the structural reflection technique

the number of supported test case parameters is limited to the implemented number of

getter and setter methods at design-time. At the moment the solution to face this limita-

tion of expandability is to implement a high number of getter and setter methods. This

approach lacks in resource efficiency because in most cases the number of required param-

eters is lower than the number of parameters supported by the static system structure.

OpenJava is a macro system for Java which provides a data structure called class metaob-

jects ([13]). The OpenJava framework also allows modification of class definitions. Open-

Java and Javassist restrict structural reflection within the time before a class is loaded

into the JVM. However, the OpenJava is source-code based and Javassist is byte-code

based. The listed characteristics are taken from the work [15]. This work includes several

further facts about OpenJava and Javassist as well as a performance evaluation between

those two.

The following table 4.3 gives an overview of different reflection technologies.

Area of Technology Description Abilities Constraints
Operation

Source Code Reflective Java Preprocessor Interception of Source code is
method calls necessary

Compile Time OpenJava uses the meta- Interception of
object protocol method calls Source code is
to modify the Enhancement of necessary
source code the syntax

Byte Code Javassist modifies no source code requires offline
Kava the byte-code is necessary preprocessing

Dalang at load-time
Runtime Metaxa Reflective JVMs Interception of proprietary JVM

method calls only introspection
Java Reflection Introspection

API at runtime

Table 4.3: Reflection technologies (according to [45])
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4.4 Test case parameters

The following sections describe test case parameters currently provided in SAW. In the

first two sections the production strategy and the failure handling strategy are explained

in detail. These strategies are essential to optimize given assembly lines reasonably and

are therefore two of the most important test case parameters. Further test case parame-

ters are described in the last section.

4.4.1 Production strategies

A production strategy also called scheduling strategy serializes the tasks to process all

orders received by using dispatching rules. Every strategy creates the ordered task list

with respect to their specific criteria such as, for instance, earliest due date of the order,

shortest processing time of the imminent operation and total processing time of the order.

At the beginning of the thesis only the simple strategy called First Come First Served

was implemented. In this strategy the jobs are processed depending on the order of their

arrival. Advanced strategies aim at increasing the throughput of the whole system. The

two scientists Chiang and Fu benchmark twelve strategies which can be used for job

scheduling with the due date in focus ([14]).

Production strategies can be classified into static and dynamic strategies. The static

strategies order the tasks before the simulation of the shift starts. Therefore, no shift

time is taken into account. Static strategies are suitable if no system disturbances can

be assumed. Mostly, the system states are not predictable in a dynamic and uncertain

environment. Dynamic scheduling strategies have the ability to react to system state

changes. For this purpose the order of the tasks can be changed during shift runtime.

Such scheduling decisions as reaction to changes have to be done quickly. The following

section describes both static and dynamic dispatching rules according to [14] and [26].

The implementation which is done during the work on the thesis is limited to the static

production strategies. On the one hand no inventory is available in SAW at the moment,

which would be necessary for most dynamic strategies to store intermediate products that

currently cannot processed during the shift. On the other hand aim of the thesis is to test

the performance of the generator scripts and not to find an optimized production strategy

for a given assembly line with the help of SAW.

First Come First Served (FCFS): The FCFS strategy is one of the simplest produc-

tion strategies. Each product of the order list is produced sequentially, which means

that only one order is processed at a time.
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Earliest Due Date (EDD): The production strategy prioritizes products with the ear-

liest due date. The strategy requires enough production capacity in the workshop to

achieve a good performance. Furthermore the slack time is not taken into account.

Shortest Processing Time (SPT): The SPT is much more complex than production

strategies as the orders are produced one at a time. The SPT results in a process-

able task list without grouped order tasks. This means that usually intermediate

products of different orders are produced before the order can be finished. As con-

sequence a high number of pallets or an inventory is necessary. An example is given

in appendix B.2 on page 115. The estimation of the processing time is based on

the processing time at the machine without taking the transportation time into ac-

count. In some cases the machine load time and the transportation time can affect

the processing time significantly ([32]).

Shortest Remaining Processing Time (SRPT): The order with the shortest remain-

ing processing time is sequenced first. Besides the processing time the transportation

time is also included in the calculation.

Processing Time Divided by Job Processing Time (PDJT): The PDJT gives the

highest priority to the operation with the smallest ratio of the operation processing

time to the job processing time.

Shortest Job Processing Time (SJPT): Selects an order with the shortest job pro-

cessing time. The shortest job processing time is defined as the sum of all processing

times which are necessary to finish the order.

Operation Due Date (ODD): The ODD gives the highest priority to the operation

with least slack time s´.

Slack: This first explained dynamic strategy gives the highest priority to the order with

the lowest slack time.

Modified Due Date (MDD): In a first step the strategy determines the tuples of due

date and remaining processing time for each order. Afterwards the maximum value

of each tuple is determined. Finally, the minimum of the maximum values gets the

highest priority (maxd, t+r). In short, an order with the minimum modified due

date is selected.

Modified Operation Due Date (MOD): The process to determine the highest prior-

ity is similar to the MDD strategy. Instead of the due date of the order the slack

of the operation s´ is used. Thus, the MOD gives priority to the operation level

whereas the MDD gives priority to the order level. In short, an operation with the

minimum modified operation due date is selected.
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Cost OVER Time (COVERT): The COVERT strategy takes the costs for finishing

products after the required due date into account. Therefore the operation with the

largest ratio of expected delay penalty to the processing time is given the highest

priority.

Apparent Tardiness Cost (ATC): The operation with the largest apparent tardiness

costs is prioritized.

Critical Ratio (CR): The critical ratio is defined as r/(d-t). Thus, the orders with a

high remaining processing time and a due date in the near future related to the

actual shift time are given the highest priority.

p processing time of the imminent operation
r remaining processing time of the job (including p)
P total processing time of the job
q queuing time of the imminent operation
t system time, the time at which the dispatching decision is to be made
d due date of the job
s slack of the job, s = d-t-r
s´ slack of the operation, s´= d-c(r-p), where c is a parameter
l average processing time of the operations at the machine
l´ total processing time of the operations at the next machine

Table 4.4: Notations of job and operation properties (according to [14])

Figure 4.15 gives an overview of the effectiveness of both static scheduling strategies and

dynamic scheduling strategies. The CR and CRT are dynamic scheduling strategies. The

ordinate of the diagram represents the throughput and the axis of abscissa represents the

number of available pallets during the shift. The SPT and CRT are represented by dashed

lines in the diagram. This is due to the fact that they are taking the transportation time

into consideration which positively affect the throughput.
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Figure 4.15: Production effectiveness without failures for 6 work scheduling strategies
(according to [32])

4.4.2 Failure-handling strategies

In SAW the conveyor belt components and the machine components can be simulated

as fallible. The time when a failure of an enabled component occurs is based on a nor-

mal distribution. The ”number of failures” test case parameter is the upper limit of the

number of failures which can occur during the shift. The simulation system reroutes the

pallets automatically in case of a conveyor belt failure event.

In case of a machine failure different failure handling strategies can apply. These strate-

gies should help to balance both the jobs in the system and the arriving jobs while the

machine is out of service. There are three rerouting policies, as well as the possibility

to do nothing and just queue the jobs of the failed machine. The aim of the different

failure handling strategies is to reroute the queue of the failed machine, to reroute the

new arrivals to working machines or to do both.

The following four alternative reactive scheduling policies were implemented ([28]):
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No Rerouting (NR): In the no rerouting policy the jobs are kept in the queue of the

failed machine during the repair time. Additionally, the new arriving jobs are also

routed to the broken machine by the load balancer. This means that the simulation

does nothing to increase the throughput in case of a machine failure by using the no

rerouting policy. After the machine’s repair is completed, the queue of the machine

is processed sequentially. This failure handling strategy is used as default policy in

SAW.

Queue Rerouting (QR): The queue rerouting policy reroutes the jobs which are in

the machine queue of the broken machine at the time the failure occurs. Thus, the

repair time is used for finding a suitable machine with the functions required to

process the job instead of just waiting until the broken machine is working again.

New arriving jobs are not affected by this policy and therefore are queued in the

broken machine.

Arrival Rerouting (AR): The arrival rerouting policy reroutes the affected new arriv-

ing jobs by the machine failure to alternative machines while the original machine

is down. The jobs in the queue of the failed machine are kept in the queue. The

rerouting of the arrivals takes place immediately after the failure occurs. Therefore

a short path to the nearest alternative machine can be ensured without making a

detour to the broken machine first.

All Rerouting (AAR): This policy is a combination of the queue rerouting and the

arrival rerouting policy. It reroutes all affected jobs by the machine failure. Thus,

the queued jobs of the broken machine as well as the new arriving jobs are rerouted

to alternative machines. The rerouting is done only during repair time as for all

introduced failure handling strategies.

4.4.3 Further test case parameters

number of orders (workload): The workload consists of a list of orders. Each order

is represented by a type of product and the related due date.

strategy name (scheduling strategy): The different scheduling strategies order the

tasks items which are necessary to manufacture the product with respect to their

specific scheduling characteristics (see also section 4.4.1).

product complexity: The complexity of the production tree defines the type of a prod-

uct. At the moment it is possible to choose from three different types, which are

namely billy low, billy medium and billy complex. The product trees of these

products can be found in appendix on figure B.2 on page 115. However, product
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trees are represented by XML files and can therefore be defined easily.

due date: The lower and upper limits of the due date define the value range. Each

due date has to be within this range. The prototype of the dynamic generic script

explained in section 4.3.1 supports only a fixed set of due date values.

number of pallets: The ”number of pallets”parameter defines the number of available

pallets during the shift simulation.

shift time: This parameter defines the duration of the shift in ms.

transport speed: The transport speed allows to define the simulation speed. This is a

major advantage in SAW since it enables to simulate more shifts in the same period

of time. The value 0 for the transport speed means that the system simulates the

test cases as fast as possible.

failure distribution: The time when failures occur are based on a normal distribution.

At the moment the trigger type when a failure event occurs is set to time.

name of fallible components: Fallible components are those components in the as-

sembly line which can have a failure during the shift.

number of failures: Is the upper limit of the number of failures which can occur during

the shift.

time to resolve: This is the downtime of the component after the failure has occured.

events of interest: The listed events of interest narrow down the output file. Thus, this

parameter affects the size of the result file since only events of interest are logged.

A common example for an event of interest is the finished product event.
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Discussion

This chapter gives answers to the research issues and has the same structure as the re-

search issue chapter consequently. In this section the benefits of the dynamic generic

approach are summarized. Afterwards the feasibility and the cost-saving potential of the

dynamic generic approach are discussed. Lastly, the developed test process for SAW is

discussed in detail.

The following lessons could be learned in the dynamic generic approach throughout this

work:

1. High-level test description improves usability.

No programming skills are necessary to configure and run the test case generation

process since the implemented prototype offers GUI assistance throughout the whole

generation process.

2. Low implementation effort supports expandability of parameters.

No programming skills are necessary to add new test case parameters. Nevertheless,

the target audience needs some experience to modify the ontology but it involves

less effort than modifying a hard-coded script (see appendix C.2).

3. Users can define the test coverage.

After the parameter setting took place the dynamic generic approach calculates the

number of all possible test case scenarios. Afterwards the user can set the test

coverage to be achieved by the test case generator.

4. The dynamic generic approach reduces costs.

In the dynamic generic approach the generation process is configured faster than

in the static specific approach. Moreover, the Return on Investment (ROI) of the

88
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higher effort for the first establishment is achieved after 38 implemented parameters

(see section 5.2).

5. Consistent and valid test cases are generated.

The dynamic generic approach ensures consistent and valid test cases as output

of the generation process. Firstly, the structure of the ontology is used to de-

termine whether a parameter is mandatory to ensure the consistency. Secondly,

valid values for a test case parameter are defined by the DataRange element of the

DatatypeProperty element in the ontology (see appendix C.1). Thus, the validation

can be proven for each parameter chosen by the user.

6. The configuration phase of the dynamic generic approach is domain independently.

The first and second phase of the dynamic generic approach are totally independent

of the domain as the domain is hidden in the underlying ontology (see figure 4.10).

7. The architecture meets the requirement of expandability.

The dynamic generic approach allows to add new test case parameters without any

line of code (see appendix C.2).

8. The architecture meets the requirement of maintainability.

The test case parameters and the structure of the data model can be maintained

by the target audience with tool support. Most important is that no changes to the

dynamic generic script are necessary.

9. The dynamic generic approach decreases the risk of making mistakes.

The parameter setting form displays all test case parameters together with their

valid values supported by the ontology. In addition, the parameters which are

mandatory are marked explicitly by symbols (see figure 4.5).

10. Mistakes during the modification of the ontology are detected in an early stage.

The underlying ontology as data model has to be modified to add a new test case

parameter or to amend an existing one. Tool support exists to modify an ontology.

The user will notice in the configuration phase if something went wrong during the

modification since the parameter setting form in the GUI represents the data model.

5.1 Feasibility of the dynamic generic approach

The implemented prototype of the dynamic generic approach shows the feasibility of the

high-level test description, the generation of consistent and valid test cases, and the ex-

pandability with tool support. All these requirements are essential for a good solution.
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The developed ”3 Phases Process Model” shown in figure 4.10 gives an overview of the dif-

ferent phases to fulfill the test case generation process. An important fact is that the first

and second phase of the dynamic generic approach are totally independent of the domain

as the domain is hidden in the underlying ontology. Firstly, the structural information

of the ontology is used to ensure that the parameter setting is consistent. Secondly, the

literals in the ontology are used to define valid values for each test case parameter. This

information is necessary to configure the GUI in the second phase (see appendix B.2).

Based on the configuration file as output of the first phase a dynamic GUI for the parame-

ter setting is created at runtime (see figure 4.5). As a result, the consistency and validation

of the parameter setting chosen by the user can be ensured. A high-level test description

can be achieved since the implemented prototype offers GUI assistance throughout the

whole generation process. In other words, no programming skills are necessary to con-

figure and run the test case generation process. Furthermore, the user can set the test

coverage to be achieved by the test case generator. The dynamic generic approach allows

to add new test case parameters with help of tool support (see appendix C.2).

The third phase generates test cases based on the parameter setting and writes them into

an XML file. The structure of the generated test cases corresponds with the structure of

the ontology to ensure consistency.

5.2 Identification of cost-saving potential for the ontology-

based approach

This section is structured into two subsections. The first subsection gives an overview

of the evaluation results including a brief discussion. In the second subsection, detailed

information about how these results were achieved can be found.

5.2.1 Overview of the results

The results of the evaluation are listed in table 5.1. The result cube shown in figure 5.1

illustrates these results. The criteria of the evaluation are explained in detail in section

5.2.2.

The green-colored fields of the result cube visualize that the performance of the corre-

sponding approach is significantly higher than the performance of the other approach. The

result cube has three dimensions, namely the used technology, the application domain,

and the cost unit. The technology is the script used to fulfill the task of generating test

cases. In other words, the technology is the object under test. The application domain

informs if the focus of the evaluation was laid on a constant number of parameters or on
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the expandability of parameters. The objectives, namely the costs for the test description,

the effort for the implementation of parameters, and the question whether the test cov-

erage is definable can be seen on the cost unit dimension. This multidimensional result

cube consists of twelve cuboid parts, six for each technology. If one cuboid is colored

green then the equivalent cuboid of the other technology has to be red-colored because

only one technology can perform better with respect to the same objective and the same

application domain.

As can be seen, the dynamic generic approach performs better on most objectives. The

dynamic generic approach demands a higher effort for the first time implementation. The

evaluation in section 5.2.2 shows that the Return on Investment (ROI) is achieved after

38 implemented parameters with experience of using the generator scripts assumed. In

addition, the user needs to obtain the necessary skills for the used generator script. For

using the static specific script the user needs programming skills for both generating test

cases and adding new parameters. The dynamic generic script assumes skills in using

an ontology editor for adding new test case parameters to the ontology (see tutorial in

appendix C.2). The dynamic generic approach requires no specific skills for generating

test cases.

Figure 5.1: Results of the evaluation
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The following table 5.1 shows the information of the result cube in a more structured

way with the specific numerical values as result of the evaluation. However, important

requirements such as usability and the risk of making mistakes during the configuration

phase of the test case generation process are not included in the performance metric since

it is difficult to measure these requirements. Nevertheless, the dynamic generic approach

ensures that the parameter setting is valid and consistent by using a dynamic GUI at

runtime. In addition, a mistake during the modification of the ontology would be noticed

immediately after the parameter setting form is displayed in the GUI. Therefore a failure

caused by wrong modification of the data model will be detected in an early stage before

the generation of the test cases takes place. In contrary, for the static specific approach

mistakes during the addition of new parameters as well as the configuration of the test

case generation process will usually be detected after the simulation is finished. Further-

more, the user has to work on code level without a validation check and a consistency

check of the parameter setting. In order to add a new test case parameter the user also

has to modify the XML structure of the XML file to be generated on code level. This

circumstance increases the testing efforts significantly. As a result, the risk of making

mistakes in the static specific script is higher than the risk of making mistakes in the

dynamic generic script.

Dynamic Generic Script Static Specific Script
Constant Expandability Constant Expandability

Parameters of Parameters Parameters of Parameters
Test Description high-level high-level low-level low-level
Implementation 260% 100% 100% 250%
Test Coverage is definable is definable is not definable is not definable

Table 5.1: Results of the evaluation

5.2.2 Evaluation of the static specific and the dynamic generic

approach

This section focuses on making the evaluation concept transparent. Therefore, the criteria

for the different objectives are explained in detail. The objectives are the costs for the

test description, the effort for implementing test case parameters, and if the test cover-

age is definable by the user. The evaluation compares the static specific approach and

the dynamic generic approach. Both approaches are test case generator scripts which aim

at providing test cases as input data for a simulation in an automated and structured way.
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Firstly, the evaluation concept determines the costs for the test description as config-

uration time of the parameter setting. Secondly, the effort for implementing test case

parameters is determined with respect to the experience level. Lastly, the Return on In-

vestment (ROI) is calculated assuming experience in the use of the different technologies.

All results are based on the opinions of domain experts.

Figure 5.2 shows the costs for the test description for both generator scripts with respect

to the implemented number of parameters. Therefore, the time to configure the test case

generation process is measured.

Figure 5.2: Costs for the test description

The evaluation concept for the implementation effort measures the time for implementing

new test case parameters. In addition, the evaluation concept takes the learning curve of

using new technologies into account (see figure 5.6). Therefore, two clusters were identi-

fied during the evaluation. On the one hand, figure 5.3 compares the effort in man-months

to implement the static specific script and the dynamic generic script without assuming

any experience. On the other hand, figure 5.4 shows the implementation effort of the

generator scripts after the user has gained experience in the corresponding technology.

The graphs shown in the figures 5.3 and 5.4 display the effort for setting up the generator

approach for the first test case parameter as well as the effort for adding further test case

parameters. The Return on Investment (ROI) is reached after three implemented test

case parameters with respect to the requirement of expandability. In this case the effort
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for setting up the generator script is not taken into account. However, the ROI with

respect to the overall effort is shown in figure 5.5.

Figure 5.3: Costs for adding a new parameter (without domain experience)

Figure 5.4: Costs for adding a new parameter (with domain experience)

Figure 5.5 outlines the effort for implementing up to 195 test case parameters. The cal-

culated ROI has a value of 37.59 and is visualized in the figure. As a result, the higher
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effort for the first time implementation of the dynamic generic script pays off after the

implementation of the 38th test case parameter. The calculation is done by determining

the number of implemented parameters for the static specific script to reach the effort for

implementing the dynamic generic script for the first time. Therefore, the linear equation

y = k*x of the static specific script has to be solved for k = 1.6 and y = 1MM.

Nevertheless, the mentioned criteria in section 5.2.1 such as a lower risk for mistakes during

the configuration phase of the generation process and ensuring valid and consistent test

cases as output of the generation process make the use of the dynamic generic script

preferable even for a small number of test case parameters.

Figure 5.5: Costs for adding a high number of parameters (with domain experience)

Figure 5.6 shows the efficiency’s typical schematic course of the new technology over

time. New technologies do not only bring the suggested benefits. Missing experience can

make the use of new technologies very time consuming especially if little documentation

is available. Two new technologies were used for the implementation of the ”3 Phase

Process Model” shown in figure 4.10: the Jena framework for parsing the ontology and

the Spring Rich Client Platform for building the dynamic GUI at runtime. However, not

only the lower efficiency caused by the fact that the technologies were used for the first

time, but also the dependencies of the frameworks presented a challenge which has to be

dealt with.
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Figure 5.6: Learning curve for using a new technology (according to [21])

5.3 Composition of a test process for SAW

The developed test process for SAW shows a way to improve the quality of the simula-

tion process (see figure 4.8). The test process is based on the ”fundamental test process”

developed by ISTQB and the ”life cycle of a test case” explained in [41] (see section 2.1.1).

All five activities of the fundamental test process shown in figure 2.5 are supported by the

developed test process for SAW. Firstly, the planning and control activity specifies the

events of interest defined by the user as objectives of testing. The control activity analyzes

the events logged by the simulator and informs the other activities in case of identified

deviations. The control activity affects all other activities and is present throughout the

whole testing process. Secondly, the analysis and design activity defines the simula-

tion tool as testing tool for the assembly line under test. In addition, the input data

for testing such as the test cases generated by the test case generator are specified and

verified on the basis of identified conditions. Typical conditions are, for instance, that

the test cases are related to the assembly line and that the test cases’ parameters are

implemented in the simulation tool. Afterwards, the implementation and execution

activity verifies the information needed by the simulator to run the test cases (see figure

4.7). The evaluation and report activity proves if the postconditions as exit criteria

are met. The completion activity closes the test process and writes the simulation results

into an XML file.
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Conclusion

A high test coverage is essential for testing the performance of simulation systems not

only in the production automation domain. Test case generators provide such test cases

as input data for the simulation in an automatic and structured way. Many solutions for

test case generators use a static specific approach which is difficult to expand. Mostly,

these solutions offer an unsatisfying usability since only a low-level test description is sup-

ported. The thesis discussed the test case generation process and developed a dynamic

generic approach based on an available static specific one to meet the criteria of a high-

level test description, lower effort for implementing additional test case parameters, and

a definable test coverage.

Firstly, the feasibility of the dynamic generic approach is proven by the implementation

of a prototype during the elaboration of the thesis. Secondly, the cost-saving potential

for the ontology-based approach is determined by the performance evaluation. The third

research issue deals with the composition of a test process for the SAW project. For

this purpose, a standardized test process is used to design a specific test process for the

simulation tool.

The thesis identified weaknesses of the given static specific approach and found a solu-

tion to face these weaknesses. After the implementation of the new approach had taken

place the effectiveness of both approaches was compared. The two generator scripts were

evaluated with respect to three objectives – the test description, implementation, and

the test coverage. In addition, two different application domains, i.e. a ”constant num-

ber of parameters” and the ”expandability of parameters” were taken into account. The

dynamic generic approach, however, performs very well on most objectives as the result

of the evaluation in chapter 5.2.2 shows. It could be shown that the new approach only

lacks the implementation objective in the ”constant number of parameters” domain. The
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reason for this limitation is based on the higher effort for the first establishment of the

”3 Phases Process Model” as shown in figure 4.10. Once the dynamic generic script is

running it does not have to be maintained anymore even if the number of test case param-

eters varies over time. The next paragraph explains where the complexity for adding test

case parameters is moved to and which other skills are required instead of programming

skills to fulfill this task. A further advantage of the realization of the ”3 Phases Process

Model” is that the first phase and the second phase are totally independent of the domain

as the domain specification is hidden in the ontology.

The simulation software is continually being improved by students. Thus, one of the most

important features of the test case generator script is the expandability to support these

changes. This is essential because the generated test cases are the input data for the sim-

ulation. In other words, beside the assembly line the test cases are the only input data by

means of which the user can configure the simulation process. One of the strengths of the

dynamic generic script is its flexibility as modifications to the ontology do not necessarily

lead to manual changes to the GUI or to the dynamic generic script. This feature allows

adding new parameters in the ontology with tool support. Afterwards the modification

is represented by the GUI without any line of code. Therefore, the user needs no pro-

gramming skills neither for adding new parameters nor for using them to configure the

generation process. Most of the complexity is moved from the user to the implementation

of the dynamic generic approach. This is why the whole test case generation process could

be simplified from the user’s perspective. Firstly, the dynamic generic approach uses the

underlying ontology’s structure and restrictions to ensure the consistency of the test cases.

Secondly, the data ranges of the offered parameters are used to ensure the validation of

the test cases. Nevertheless, the user has to manage the underlying ontology. Therefore,

the user needs skills for modifying the ontology with common graphical editor tools such

as Protégé. Of course, users need some experience before they can modify an ontology

but it is less effort than modifying a hard-coded script. Furthermore, if something goes

wrong during the modification of the ontology the user will recognize it immediately in the

parameter setting configuration process. On the contrary, the user might notice failures

during the modification of the static specific script after the simulation run took place by

analyzing the simulation results. This is a frustrating experience as you usually do not

know what went wrong. In this case the user is captured in a trial and error loop. Surely,

these circumstances negatively affect the acceptability of the static specific approach.

The current dynamic generic approach can be extended in several ways. Two steps of the

developed cyclic process for generating test cases shown in figure 4.4 are not implemented

yet. The feasibility study in section 4.3.4 presents ways of implementing those steps. The



CHAPTER 6. CONCLUSION 99

first of these two steps ensures that only parameters which are actually implemented are

in the test cases file by synchronizing the generated XML file and the XML schema defi-

nition of the simulator. At the moment the user will be informed about the existence of

a test case parameter which has not been implemented immediately after the simulation

tries to start. The second step stores the achieved results of the simulation as feedback

into the ontology. This feedback can be used as experience for following simulations. This

information can be used as experience even if, for instance, the names of the docking sta-

tions in an assembly line are different. Therefore, a reasoner can build inferences of the

captured knowledge in the ontology. This method enables the identification of concurrent

docking stations of different assembly lines by comparing their machine functions instead

of machine names. Another way to increase the quality of the simulation process is to

implement the process of the simulator outlined in figure 4.8.

The developed dynamic GUI is an essential part of the test case generation process. At the

moment the dynamic GUI is a prototype which helps to show the benefits of the ontology-

based dynamic generic approach. The main disadvantage of the GUI is that the number

of dynamically presentable test case parameters is limited to the static structure of the

implementation. More information and a way to face this disadvantage can be found in

section 4.3.4.4. The parameter settings could be stored in the ontology and therefore be

offered as parameter setting pool to the user in the GUI. Thus, the user could choose from

predefined parameter settings and modify if necessary. The programming methodology

to calculate the test coverage assumes a fixed number of parameters and does not support

data ranges for the test case parameters’ values.

In conclusion the following future works can be identified:

• Realization of step 6 and 9 of the cyclic test case generation process:

The sixth step synchronizes the generated XML file and the XML schema definition

of the simulator to ensure that the XML file is structured well. The ninth step

writes the results of the simulation to the ontology and makes them available for

further iterations of the cyclic test case generation process.

• Realization of the conceptual test process shown in figure 4.8:

The test process increases the quality of the simulation process since preconditions

and postconditions can be generated with respect to the simulation input data.

Thus, the conditions can be checked to ensure the quality of the simulation.

• Deduction of test cases by using reasoning techniques:

At the moment the ontology is used for building a dynamic GUI at runtime to

ensure that the parameter setting is valid and consistent. In addition, the structure

of the XML file corresponds to the structure of the ontology. However, the deduction

of test cases is probably more efficient than generating test cases as combinatorial
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possibilities of the parameter setting especially since the ontology is a knowledge-

based system and therefore enables to infer from the stored fact base.

• Improvement of the implemented prototype of the dynamic GUI:

The code reflection technique is used to inspect and invoke the getter and setter

methods of the prototype at runtime. The standard reflection API of Java does

not support the alteration of program behavior. Thus, a possibility of improvement

would be to use the structural reflection which is necessary to create the number of

getter and setter methods with respect to the offered number of parameters by the

ontology at runtime.

The feasibility section 4.3.4 shows ways to face the listed future work challenges.
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Appendix A

Screenshots of the test case
generation application

The screenshots of this section present a typical life-cycle of the test case generation ap-
plication.
Figure A.1 shows the ”3 Phase Process Model” of the implemented prototype. The con-
figuration file as output of the first phase is the basis artifact for building the dynamic
GUI at runtime (see section B.2). After the application is started the initial page presents
a brief instruction of how to use the application for generating test cases.

Figure A.1: Start-up screen of the application
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Figure A.2: Screenshot of the initial view
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Figure A.3: Screenshot of the parameter setting form (incomplete)
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Figure A.4: Screenshot of the parameter setting form (completed with failure)
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Figure A.5: Screenshot of the parameter setting form (validation info of the failure)
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Figure A.6: Screenshot of the parameter setting form (valid and consistent)
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Figure A.7: Screenshot of the parameter setting confirmation view
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Figure A.8: Screenshot of the condition setting form



Appendix B

Software artifacts

This chapter provides a collection of software artifacts such as the XML structure and
the XML schema definition of the XML file. In addition, the configuration file for the
dynamic GUI is listed in section B.2.
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B.1 Test case XML file structure

Figure B.1: Snippet of the test case XML file
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Figure B.2: Product tree of different products
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B.2 Configuration file of the dynamic GUI

1 # General Messages for the Test Case Generation Application

2 # -> can be found in the messages.properties file of the application

3

4 # Specific Messages for the Test Case Generation Process

5

6 # Parameter Setting form and view

7 numberOfParams.label=25

8 param0.label=Shift

9 validParam0.label=isClass

10 param1.label=period time

11 validParam1.label=3600

12 param2.label=BusinessOrder

13 validParam2.label=isClass

14 param3.label=product

15 validParam3.label=billy low, billy medium, billy complex

16 param4.label=duedate

17 validParam4.label=1500.0, 2000.0, 2500.0, 3000.0

18 param5.label=Schedulingstrategy

19 validParam5.label=isClass

20 param6.label=identification

21 validParam6.label=FCFS, EDD, SPT

22 param7.label=priority

23 validParam7.label=null

24 param8.label=Workload

25 validParam8.label=isClass

26 param9.label=consist of bo

27 validParam9.label=null

28 param10.label=numberoforders

29 validParam10.label=25, 50, 100, 500

30 param11.label=Inventory

31 validParam11.label=isClass

32 param12.label=use

33 validParam12.label=true, false

34 param13.label=Failureset

35 validParam13.label=isClass

36 param14.label=componentname

37 validParam14.label=B3, B4, DS3, DS5

38 param15.label=timetoresolve

39 validParam15.label=600.0, 1200.0, 1800.0

40 param16.label=triggertime

41 validParam16.label=600.0, 900.0, 1200.0

42 param17.label=Transport

43 validParam17.label=isClass

44 param18.label=transportspeed

45 validParam18.label=0, 10, 30, 50

46 param19.label=numberofpallets

47 validParam19.label=15, 20, 25

48 param20.label=Strategy

49 validParam20.label=isClass

50 param21.label=identification

51 validParam21.label=FCFS, EDD, SPT

52 param22.label=priority

53 validParam22.label=null

54 param23.label=Failurehandlingstrategy

55 validParam23.label=isClass

56 param24.label=identification

57 validParam24.label=FCFS, EDD, SPT

58 paramSettingTitle.label=Parameter Setting

Code Fragment B.2: Configuration file of the dynamic GUI (output of the first phase)
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B.3 Test case XML schema

<?xml version="1.0"encoding="UTF-8"?>

<!--W3C Schema generated by XMLSpy v2008 sp1 (http://www.altova.com)-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="testcases">

<xs:complexType>

<xs:sequence>

<xs:element name="inputparameters"maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="workload">

<xs:complexType>

<xs:sequence>

<xs:element name="order"

maxOccurs="unbounded">

<xs:complexType>

<xs:attribute

name="product"use="required"type="xs:string"/>

<xs:attribute

name="orderID"use="required"type="xs:integer"/>

<xs:attribute

name="dueDate"use="required"type="xs:integer"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="strategy">

<xs:complexType>

<xs:sequence>

<xs:element

name="failureHandler"type="xs:string"maxOccurs="1"

minOccurs="0"/>

</xs:sequence>

<xs:attribute name="type"

use="required"type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="inventory">

<xs:complexType>

<xs:attribute name="use"

use="required">

<xs:simpleType>

<xs:restriction

base="xs:string">

<xs:enumeration

value="yes"/>

<xs:enumeration

value="no"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="transport">

<xs:complexType>

<xs:sequence>

<xs:element

name="setofpallets">

<xs:complexType>

<xs:attribute

name="number"use="required"type="xs:integer"/>

</xs:complexType>

</xs:element>

<xs:element
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name="transportspeed">

<xs:complexType>

<xs:attribute

name="speed"use="required"type="xs:integer"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="shift">

<xs:complexType>

<xs:attribute name="time"

use="required"type="xs:integer"/>

</xs:complexType>

</xs:element>

<xs:element name="failures"minOccurs="0"

maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="failure"

minOccurs="0"maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element

name="machinename"type="xs:string"/>

<xs:element

name="trigger">

<xs:complexType>

<xs:simpleContent>

<xs:extension

base="xs:decimal">

<xs:attribute

name="type"use="required">

<xs:simpleType>

<xs:restriction

base="xs:string">

<xs:enumeration

value="time"/>

<xs:enumeration

value="workpieces"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element

name="timetoresolve"type="xs:decimal"minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="id"

type="xs:int"use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="simulation"maxOccurs="1"

minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element

name="simulationStep"minOccurs="0"maxOccurs="1">

<xs:simpleType>

<xs:restriction

base="xs:int">

<xs:minExclusive
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value="1">

</xs:minExclusive>

<xs:maxExclusive

value="300">

</xs:maxExclusive>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="realtimeStep"

minOccurs="0"maxOccurs="1">

<xs:simpleType>

<xs:annotation>

<xs:documentation>

real time in ms,

passed between

simulation steps

(0 = fastest

possible)

</xs:documentation>

</xs:annotation>

<xs:restriction

base="xs:int">

<xs:minExclusive

value="0">

</xs:minExclusive>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="framerate"

minOccurs="0"maxOccurs="1">

<xs:simpleType>

<xs:annotation>

<xs:documentation>

number of frames

rendered every

second (system

time)

</xs:documentation>

</xs:annotation>

<xs:restriction

base="xs:int">

<xs:maxExclusive

value="1000">

</xs:maxExclusive>

<xs:minExclusive

value="1">

</xs:minExclusive>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="test"type="TestType"minOccurs="0"maxOccurs="1">

</xs:element>

</xs:sequence>

<xs:attribute name="id"use="required"type="xs:integer"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="TestType">

<xs:sequence>

<xs:element name="trigger"minOccurs="1"maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="time"type="xs:double">
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</xs:element>

</xs:sequence>

<xs:attribute name="type"type="xs:string">

</xs:attribute>

<xs:attribute name="machineName"type="xs:string"/>

<xs:attribute name="enable"type="xs:boolean"/>

</xs:complexType>

</xs:element>

<xs:element name="testdata">

<xs:complexType>

<xs:sequence>

<xs:element name="param"maxOccurs="unbounded"minOccurs="1">

<xs:complexType>

<xs:attribute name="name"type="xs:string"/>

<xs:attribute name="value"type="xs:string"/>

<xs:attribute name="type"type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="description"type="xs:string"minOccurs="0"maxOccurs="1">

</xs:sequence>

<xs:attribute name="testcaseId"type="xs:string"/>

<xs:attribute name="type"type="xs:string"/>

</xs:complexType>

<xs:complexType name="TestDataSet">

<xs:sequence>

<xs:element name="param">

<xs:complexType>

<xs:attribute name="name"type="xs:string">

</xs:attribute>

<xs:attribute name="value"type="xs:string"/>

<xs:attribute name="type"type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

Code Fragment B.3: XML schema of a test case (testcases-1.4.xsd)



Appendix C

Design of the ontology

This chapter is structured into three sections. The first section illustrates the relation
between the dynamic GUI and the underlying ontology of the dynamic generic approach.
In the second section, a short tutorial explains the addition of new test case parameters.
The third section shows a solution how the test case layer of the elaboration part can be
integrated into the ontology of the SAW project.

C.1 Process visualization of the dynamic generic ap-

proach

The following section shows the screenshots of how the different artifacts are related.

Figure C.1: Mapping EER diagram to GUI elements
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Figure C.2: Mapping Protégé view to GUI elements

C.2 Instruction for adding test case parameters

The failure strategy entity of the already known EER diagram from the elaboration chap-
ter are marked in figure C.3. The reason for this is that we start to enhance an existing
ontology which is represented by the unmarked part of the EER diagram. Therefore no
test case parameter for failure handling strategies exists at the beginning of the tutorial.

The challenge of the enhancement of the ontology is to add the following elements to the
ontology:

• failure strategy (entity)

• applies to tc opt (relation)

The table 4.1 in the elaboration chapter informs that entities of the EER diagram are
represented by OWL-Classes in the ontology. Furthermore, relations are represented by
Object-Properties and attributes are represented by Datatype-Properties.
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Figure C.3: Modified test case layer for enhancement tutorial (EER diagram)

1. Download and install the latest version of Protégé1

2. Start Protégé and open the existing ontology

3. Follow the step-by-step instruction (see screenshots)

Figure C.4: Screenshot of the Protégé editor (OWL-Classes)

1http://protege.stanford.edu/download/download.html



APPENDIX C. DESIGN OF THE ONTOLOGY 124

Figure C.5: Screenshot of the Protégé editor (Datatype-Properties)

Figure C.6: Screenshot of the Protégé editor (Object-Properties)
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Figure C.7: Screenshot of the Protégé editor (new OWL-Class)

Figure C.8: Screenshot of the Protégé editor (new Datatype)

Figure C.9: Screenshot of the Protégé editor (new Object)
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Figure C.10: Screenshot of the Protégé editor (new Expression)
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C.3 EER Data model of the SAW project

Figure C.11: Data model of the SAW project (EER diagram)


