
Implementing a Peer Data
Management System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Sebastian Skritek, BSc.
Matrikelnummer 0226286

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Reinhard Pichler
Mitwirkung: Univ.Ass. Dr. Dr. Ingo Feinerer

Wien, 9. August 2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Sebastian Skritek, Ruzickagasse 88/27 1230 Wien

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe
und dass ich die Stellen der Arbeit — einschließlich Tabellen, Karten und
Abbildungen —, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.”

Wien, 9. August 2009

(Unterschrift)

A B S T R A C T

Peer Data Management Systems (PDMSs) are an approach to combine the
flexibility of Peer-to-Peer (P2P) systems with the expressiveness and rich
semantics of database systems. In PDMSs, data is assumed to be distributed
over several autonomous peers, each of them offering (parts of) their data
through its own peer schema. Similar to Data Exchange and Data Integration,
every peer may define mappings between the schemas of other peers and its
own schema. In contrast to Data Exchange, Data Integration or Federated
Databases, however, PDMSs require no global schema and therefore no global
coordination to share data. Instead, all relationships are defined only between
pairs of peers.

Unfortunately, when applying the usual semantics based on first-order logic
to these mappings, several important reasoning tasks, for example query
answering, become undecidable over PDMSs for general settings.

Therefore, several proposals have been presented in the literature how
PDMSs could be restricted to maintain decidability for typical reasoning tasks
in database theory. One possibility is to restrict the topology of the network
implied by the mappings and to avoid certain kinds of cycles in the mappings.
But this contradicts the idea that no global coordination is required in PDMSs.

Another possibility is to restrict the expressive power of the mappings, as
suggested by Calvanese et alii. Based on this idea, in 2007, De Giacomo et al.
proposed a theoretical framework that allows both an arbitrary topology of
the P2P network and efficient evaluation of the main reasoning tasks in Peer
Data Management (PDM). Moreover it incorporates “classical” Data Exchange
and Data Integration as special cases. To the best of our knowledge, this idea
has not been implemented yet.

Since it seems to be a promising basis for further research, the main goal
of this thesis was to study the theoretical background of PDM and to create
a prototype implementation of this framework. This thesis also gives an
overview over the approaches for PDMSs proposed in the literature, presents
the approach of De Giacomo et al. in detail and reports on the implementation
and first evaluation results of the prototype.

iii

Z U S A M M E N FA S S U N G

Der Begriff “Peer Data Management System” (PDMS) bezeichnet einen Ansatz
um die Flexibilität von Peer-to-Peer (P2P) Systemen mit der Ausdruckskraft
und klar definierten Semantik von Datenbanksystemen zu verbinden. Dabei
nimmt man an, dass die Daten auf verschiedenen, unabhängigen Knoten
(Peers) verteilt sind. Jeder Peer ermöglicht über ein Peer-Schema Zugriff
auf seine Daten und kann — ähnlich wie bei Datenintegration (“Data Inte-
gration”) und Datenaustausch (“Data Exchange”) — Abbildungen fremder
Peer-Schemata auf sein eigenes Schema definieren. Im Gegensatz zu Datenin-
tegration, Datenaustausch oder Multidatenbanksystemen benötigen PDMSs
jedoch kein globales Schema und somit keine zentrale Kontrollinstanz. Alle
Beziehungen werden lokal zwischen jeweils zwei Peers definiert.

Da dies im allgemeinen Fall dazu führen kann, dass etwa die Beantwortung
einer Abfrage an ein PDMS unentscheidbar wird, wurden in den letzten
Jahren verschiedene Ansätze entwickelt um die Entscheidbarkeit typischer
Probleme im Bereich der Datenbanken zu erhalten. Deshalb die Topologie des
P2P-Netzwerkes einzuschränken widerspricht jedoch der Idee von vollständig
autonomen Peers.

Eine andere Möglichkeit besteht darin, die Ausdruckskraft der Abbildungen
stärker zu beschränken. Basierend auf dieser Idee schlugen De Giacomo et
al. 2007 ein theoretisches Modell für ein PDMS vor, welches eine beliebige
Topologie des P2P Netzwerkes erlaubt und sowohl den klassischen Daten-
austausch als auch die klassische Datenintegration als Spezialfälle umfasst.
Nach unserem Wissenstand existiert bislang keine Implementierung dieses
Ansatzes.

Ziel der vorliegenden Arbeit war es die theoretischen Grundlagen von
PDMSs zu untersuchen und einen Prototypen nach dem vorgeschlagenen
Modell zu entwickeln. Die Arbeit gibt weiters einen Überblick über alternative
Ansätze für PDMSs in der Literatur, enthält eine detaillierte Beschreibung des
Modells von De Giacomo et al. und beschreibt Ergebnisse des implementierten
Prototypen.

iv

A C K N O W L E D G M E N T S

First of all I want to thank my advisor, Prof. Reinhard Pichler, for opening
this topic to me and for his guidance, support and patience during the work
on this thesis. I further want to thank Ingo Feinerer for his helpful feedback
and all the LATEX tips. Special thanks also to Vadim Savenkov for providing
me with the CoDE system and his support therewith, and to Stefan Rümmele
for his LATEX styles and templates. All of them I want to thank for the good
working atmosphere in the last months.

My gratitude goes to my parents for feeding me the last 26 years (and all
the other stuff) ;-).

Last but not least, thanks to all the people that didn’t mind being neglected
during my working for this thesis.

This work was supported by the Vienna Science and Technology Fund
(WWTF), project ICT08-032.

v

C O N T E N T S

1 Introduction 1

1.1 Goal and Results of this Thesis 2

1.2 Organization 3

2 Preliminaries 4

3 Data Exchange and Data Integration 6

3.1 Data Exchange 6

3.1.1 Data Exchange Setting 6

3.1.2 Computing Universal Solutions — The Chase 11

3.1.3 Query Answering 17

3.1.4 The Core of a Universal Solution 19

3.2 Data Integration 21

3.2.1 Data Integration System 21

3.2.2 Schema Mappings in Data Integration 22

3.2.3 Comparing GAV and LAV 25

3.2.4 Query Answering 27

3.3 “Comparison” of Data Exchange with Data Integration 34

4 Peer Data Management 37

4.1 Peer Data Management Systems 37

4.1.1 Related Techniques 38

4.1.2 Classes of PDMSs 41

4.2 Formalisation Approaches and Techniques 42

4.2.1 Local Relational Model (LRM) 43

4.2.2 Mapping Tables 44

4.2.3 ECA Rules 46

4.2.4 A Weaker Semantics for Schema Mappings 47

4.3 PDMS Prototypes 54

4.3.1 Piazza 54

4.3.2 PeerDB 54

4.3.3 Edutella 55

4.3.4 Hyperion 56

4.3.5 HepToX 57

4.3.6 coDB 58

4.3.7 ORCHESTRA 58

4.3.8 Discussion 60

4.4 Peer-Programming Language (PPL)/Piazza 61

4.4.1 System Definition 62

4.4.2 Complexity of Query Answering 64

4.4.3 Query Reformulation 66

4.4.4 Further Considerations 67

5 The Approach of De Giacomo et al. 69

5.1 Basic Definitions 69

5.2 PDE-System 71

5.2.1 Relationship with Data Exchange 75

vi

Contents vii

5.2.2 Certain Answers 76

5.3 PDEI-System 76

5.3.1 Relationship with Data Integration 80

5.4 The E-CHASE 81

5.4.1 Weakly Acyclic PDE-Systems 83

5.5 The EI-CHASE 85

5.5.1 Stratified PDEI-Systems 88

5.6 Query Answering in Stratified PDEI-Systems 90

5.6.1 Rewriting Conjunctive Queries under Inclusion Depen-
dencies 91

5.6.2 Computing the Certain Answers 95

6 Implementation 97

6.1 General System Architecture 98

6.2 Problems Arising from Ambiguous Definitions 100

6.2.1 Query Answering in PDEI-Systems 100

6.2.2 Semantics of certainNull(q, SI,B) 102

6.3 Design Decisions 106

6.3.1 Peer Configuration and Neighbourhood Setup 106

6.3.2 Database and Database Schema 107

6.3.3 Labelled Nulls and Temporarily Materialised Data 108

6.3.4 The Chase 109

6.3.5 Query Answering 117

6.3.6 Requesting a Chase 117

6.3.7 Communication Between the Peers 118

6.3.8 Further Design Decisions 119

6.4 Implementation Details 121

6.4.1 Configuration of a Peer 121

6.4.2 Main System Classes 123

6.4.3 Communication Formats 125

6.4.4 User Interface 126

6.5 Discussion 127

6.5.1 System Evaluation 127

6.5.2 Open Issues and Further Improvements 129

7 Conclusion 131

7.1 Future Work 131

bibliography 133

1I N T R O D U C T I O N

The idea of Peer-to-Peer (P2P) file sharing systems like Napster or Gnutella has
been extremely successful in supporting the exchange of large-granular data
referenced by a single identifier. This success is due to their low setup costs
(i.e., their ease of use), their high flexibility and robustness with respect to
failures because of their decentralised structure. On the other hand, traditional
P2P systems also possess several shortcomings: They completely ignore the
structure of the data as well as possible relationships within the data. Thus,
they offer only a very weak semantics (if any at all), do not support any kind
of data transformation and cannot be used for sharing fine-granular data. As
noticed in [35], all these properties, however actually belong to the strengths
of database systems.

Collaboration between autonomous local databases is traditionally achieved
by techniques like federated databases [73] and multi-databases [8]. Such
systems provide unified access to the participating databases and support
the information sharing between them by mapping their local schemas to a
global (or federated) schema. This global schema is the main drawback of
such systems: Besides requiring consensus about the schema between the
participants as well as some centralised infrastructure for coordination, it also
introduces a single point of failure to the system. Moreover maintaining such
a global schema leads to higher setup costs and makes the whole system less
flexible.

The idea of Peer Data Management (PDM) is to combine the flexibility of P2P
systems with the rich semantics of database systems. In Peer Data Management
Systems (PDMSs), there exists no global schema, and all coordination required
for data sharing is performed directly between pairs of peers. Moreover also
queries are posed against a single peer which is then responsible to return the
correct answer with respect to its local data and the relationships with other
peers. (Sometime the term Peer Database Systems is used instead of PDMSs to
stress that the P2P-system consists of a set of local databases. However, since
there exists no uniform use of these terms we will only use PDMSs.) Many
prototype systems and formalisation approaches of such systems have been
presented in the literature, e.g. [2, 5, 15, 25, 26, 30, 38, 44, 46, 50, 61, 62, 72].
An often used approach for the formal description of PDMSs are schema
mapping techniques that are known from data exchange and data integration.

Data exchange describes the problem of migrating data stored under some
source schema to an instance under another schema. Although being an
old database problem that is tackled by a variety of tools available, a formal
description and consideration of its semantics has only been given recently
in [20, 21]. The problems studied include questions like which instance
should be materialised if there is more than one candidate, or the semantics of
query answering over a materialised target instance. Moreover, the maximal

1

1.1 goal and results of this thesis 2

expressive power of constraints defined on the target schema are analysed
such that computing solutions and performing query answering remains
decidable.

Data Integration on the other hand considers the problem of providing
unified access to a set of autonomous source instances, each having its own
schema [41, 54]. As in data exchange, this access is provided by means of
a global schema and mappings between the source and the target schema.
However, unlike in data exchange, no data is actually materialised under
the target schema, but all data remains only in the source instances. The
global schema is only used for accessing the data: Queries are formulated
against the global schema and the data integration system then returns the
correct answers with respect to the data stored in the source instances and the
mappings between source schemas and the global schema.

Both data exchange and data integration exhibit a distinct source and a
distinct target schema. A straightforward approach for the formalisation of
PDMSs would be to extend these settings by adding further schemas and let
each schema be both source and target schema at the same time. Since the
semantics of the mappings in these systems is described by a first-order logic
(FOL) interpretation, to maintain decidability of many important reasoning
tasks (like for example query answering) in such systems, the topology of the
graph induced by the P2P mappings needs to be restricted. This approach has
been chosen for example in the Piazza system [38].

Since such global restrictions limit the autonomy of each peer, [15] proposed
a weaker semantics for the P2P mappings, that allows for an arbitrary topology
of the mappings by keeping at the same time several important reasoning
tasks decidable. Based on this semantics, De Giacomo et al. [30] suggested
a new theoretical framework for PDMSs, that contains both data exchange
and data integration as special cases. Moreover, all important problems (like
query answering and data exchange) are solvable in polynomial time (data
complexity) in this framework. To the best of our knowledge, however, there
exists no implementation of this system yet.

1.1 goal and results of this thesis

The goals of this thesis were twofold: One goal was to study and summarise
the theoretical background of PDM in general and especially of the approach
of De Giacomo et al., and to get an overview over the different techniques
considered in the area of PDM. The other goal was to implement a prototype
PDMS based on the semantics suggested in [30].

As a result, we created such a prototype implementation of the framework
proposed by De Giacomo et al. [30], that works on top of traditional RDBMSs
and uses the system presented in [71]. Our prototype is currently capable of
computing the solution to the data exchange problem in this framework and of
answering queries. Both tasks are implemented by distributed algorithms such
that no centralised control or coordination is needed. Besides a description of
the implementation, this thesis also presents the framework of De Giacomo et
al. in detail.

1.2 organization 3

This thesis also contains a summary of the main concepts and results in data
exchange and data integration, since they build the theoretical background of
this framework. Further, an overview of other approaches for PDMSs is given.

1.2 organization

This thesis is organized as follows: In Chapter 2 some basic concepts from
database theory are recapitulated. In Chapter 3 we summarise the most impor-
tant notions of data exchange and data integration together with complexity
results for the most important tasks (computing solutions and query answer-
ing) and we give a short comparison of the concepts of data exchange and
data integration. Chapter 4 introduces the idea of PDMSs and summarises
some formalisation approaches for these systems from the literature. This
is continued in Chapter 5 where the framework of De Giacomo et al. [30] is
presented in detail. Our prototype implementation of this system is described
in Chapter 6, together with some problems we encountered with the given
definitions, and how they have been solved for implementation. Chapter 7

concludes this thesis.

2P R E L I M I N A R I E S

In this chapter we summarise some basic concepts from database theory and
define basic notions used throughout this thesis.

Within this thesis, we assume a fixed domain Γ = C ∪N, where C is an
infinite (but countable) set of constants and N is an infinite (but countable) set
of labelled nulls, with C ∩N = ∅. For constants we assume the unique name
assumption (i.e. different constants denote different objects), and two labelled
nulls are considered as equal if they have the same name.

A relational schema (or just schema, if “relational” is obvious from the context)
R is a finite set of relational symbols {R1, . . . ,Rk}, each having a name (Ri),
an assigned arity ni > 0 and a sequence of attributes 〈Ai,1, . . . ,Ai,ni〉. A
relational symbol and its attributes may be written as Ri(Ai,1, . . . ,Ai,ni). If
the attribute names need not be referenced explicitly, they may be omitted.
Given a set of attributes A, dom(A) denotes the domain of the attributes in A,
i.e. the constants allowed as values for these attributes. Moreover, if Ri is a
relational symbol and A is a subset of the attributes of Ri, then Ri[A] is used
to refer to Ri but only considering the attributes in A.

A fact Ri(t1, . . . , tni) consists of a relational symbol Ri and a tuple t =

(t1, . . . , tni) (with tj ∈ Γ for 1 6 j 6 ni). As for relational symbols, if A is
a (sub)set of attributes of Ri, t[A] is used to only refer to those values of t
corresponding to the attributes of A. Thereby the attribute set A may either
be specified using the names of the attributes or their indices.

A relation corresponding to a relational symbol Ri is a set of facts
Ri(t1, . . . , tni). When the relational symbol is clear from the context, it can
be omitted, and the relation is then written as the set of tuples (t1, . . . , tni).
In the following, when it is safe to do we abuse notation a little bit and use
relational symbols to denote both, the symbol and the relation itself.

A (database) instance I of a schema R is a function assigning a relation to
each relational symbol Ri ∈ R. Given an instance I, we denote with const(I)
the constants in I and with nulls(I) the labelled nulls in I. I is called a definite
instance if nulls(I) = ∅, otherwise I is called an indefinite instance.

If S (= {S1, . . . ,Sks }) and T (= {T1, . . . , Tkt }) are two schemas with no rela-
tional symbol in common, then 〈S, T〉 denotes the schema 〈S1, . . . ,Sks , T1, . . . , Tkt〉.
Also, if I is an instance of S and J is an instance of T, then 〈I, J〉 denotes the
corresponding instance of 〈S, T〉.

We use ~x to denote a sequence 〈x1, . . . xn, 〉 of variables and/or values
x1, . . . , xn.

A conjunctive query q is an open first-order formula ∃~yϕ(~x,~y), where ϕ(~x,~y)
is a conjunction of atoms. The free variables in ~x are also called the distinguished
variables of q. An alternative representation of a conjunctive query is {~x |

∃~y ϕ(~x,~y)}, that is by concentrating on the result of the query (since clear from

4

preliminaries 5

the context, we often omit the existential quantifier). A Boolean conjunctive
query is a conjunctive query with ~x = 〈〉.

Given a query q and a (definite or indefinite) instance I, then

• qI denotes the (result of the) “standard” evaluation of q in I under the
closed world assumption.

• EvalNull↓(q, I) contains those tuples from qI that do not contain any
labelled null (that is, EvalNull↓(q, I) = qI ∩Ck, assuming that the arity
of q is k).

Moreover, if R is a relational symbol and I is an instance, then RI denotes the
relation assigned to R by I.

The notion of a homomorphism is used to relate database instances to each
other:

Definition 2.1 (Homomorphism between instances). Let A and B be two
database instances. A homomorphism from A to B is a mapping h : A→ B, that
maps const(A)∪ nulls(A) onto const(B)∪ nulls(B) such that

• h(c) = c for all c ∈ const(A) and

• every fact of A is mapped to a fact of B, that is, given a fact R(t) ∈ A,
h(R(t)) ∈ B (where h(R(t)) = R(h(t1), . . . ,h(tn)))

a

We finally recall two important types of dependencies considered in database
theory, namely inclusion dependencies and key constraints:

Definition 2.2 (Key Constraint). Let Ri be a relational symbol of arity ni. A
key constraint is an assertion of the form

key(Ri) = {j1, . . . , jk} (1 6 jh 6 ni for j1 6 jh 6 jk)

meaning that the attributes of Ri with indices j1, . . . , jk are a key1 of Ri. a

A set of key constraints is referred to as legal key constraints with respect
to a relational schema R if it contains at most one key constraint for every
relational symbol of R. Note that given a set of legal key constraints one can
even assume that there exists exactly one key for every relational symbol: If no
key is defined explicitly for some relational symbol, one can trivially assume
its whole attribute set as key. If not stated otherwise, within this thesis we
always assume legal key constraints.

Definition 2.3 (Inclusion Dependency). Let Ri and Rj be two relational sym-
bols of some schema R. Let further A be a sequence of attributes of Ri and B
be a sequence of attributes of Rj with the same number of attributes as A. An
inclusion dependency is an assertion of the form Ri[A] ⊆ Rj[B]. a

Remember that the attributes in A may either be defined by their names or
their indices. An inclusion dependency states that in every valid instance for
R, all combinations of values occurring in Ri[A] must also occur in Rj[B].

1 Given a relational symbol R(A1, . . . ,An), we consider any subset {B1, . . . ,Bk} ⊆
{A1, . . . ,An} as key s.t. for all facts R(t1) and R(t2), if t1 6= t2, then also t1[B1, . . . ,Bk] 6=
t2[B1, . . . ,Bk] (i.e. a key is not required to be minimal).

3D ATA E X C H A N G E A N D D ATA I N T E G R AT I O N

In this chapter, the formal definitions of data exchange and data integration
will be presented together with a short comparison of these two concepts.

3.1 data exchange

In this section, the formal definitions of the data exchange problem are
introduced, together with a summary of relevant basic results in data exchange
from the literature.

Data exchange considers the following problem: Given two schemas, how
to migrate data stored under one schema (the source schema) to the other
schema (the target schema). Thereby migration means to actually materialise
the exchanged data under the target schema.

As suggested by the above description, data exchange describes a very
natural and old database problem, that is addressed by a variety of tools.
Surprisingly, only in 2003 Fagin et al. [20, 21] (full versions in [22, 23] and an
overview in [52]) proposed a formal framework to describe the semantics of
data exchange based on mappings between the source and the target schema.
Although this framework is sometimes referred to as schema based data
exchange to underline that the data to exchange is defined by correspondences
between schemas (instead of, for example rules triggered by certain actions
like inserting or deleting data), it seems to be generally agreed to use this
framework as formal definition for the semantics of data exchange. Also
within this thesis the term “data exchange” is used to denote this framework.

In this section, following [52], the main concepts of this framework are
summarised.

3.1.1 Data Exchange Setting

A formal semantics of the data exchange problem has to specify, given an
instance of the source schema, which data has to be materialised in an instance
of the target schema. In data exchange, this is done by defining a mapping
between source and target schema, that expresses how the target schema
corresponds to the source schema.

Definition 3.1 (Schema mapping [52]). A schema mapping is a triple
M = 〈S, T,Σ〉 where S and T are two schemas with no relation symbols
in common, and Σ is a set of logical formulas over 〈S, T〉.
S and T are referred to as source schema and target schema respectively. The
formulas of Σ are called constraints or dependencies1. a

1 In data exchange, often no formal distinction is made between constraints and dependencies,
but they are interchangeably used. This is because sometimes the term “dependencies” seems

6

3.1 data exchange 7

Σ will be defined a little bit later more precisely. Intuitively, using a schema
mapping to describe a certain data exchange problem, given an instance I of
S, the goal is to materialise an instance J of T such that together I and J satisfy
the formulas in Σ. Formally:

Definition 3.2 ([52]). Let M = 〈S, T,Σ〉 be a schema mapping.

• An instance 〈I, J〉 over 〈S, T〉 is an instance of M if it satisfies every χ ∈ Σ
(I is called the source instance, J is called the target instance).

• Inst(M) denotes the set of all instances of M.

• Given an instance I over S, J is called a solution for I under M if 〈I, J〉 ∈
Inst(M).

• Sol(M, I) denotes the set of all solutions for I under M.
a

Therefore, intuitively the goal is to materialise an instance J ∈ Sol(M, I). Note
that depending on I and Σ, there may exist several solutions (i.e. |Sol(M, I)|
6= 1).

Given a schema mapping M = 〈S, T,Σ〉, the only restriction imposed on
the logic used for expressing the formulas χ ∈ Σ is that whether Σ is satisfied
by an instance or not is preserved under isomorphisms [52]. (Obviously,
renaming of constants should not influence the correctness of a solution.) In
the general case, within such a logic, there are no restrictions on the formulas
in Σ.

With these definitions at hand, one could now immediately define a corre-
spondent decision problem (given I, is Sol(M, I) 6= ∅ ?) and function problem
(given I and Sol(M, I) 6= ∅, to compute some J ∈ Sol(M, I)) for schema map-
pings. In data exchange however, the formulas in Σ are restricted to two
types of formulas: tuple generating dependencies (that generalise inclusion de-
pendencies) and equality generating dependencies (that generalise functional
dependencies).

Definition 3.3 (tuple generating dependency [20]). A tuple generating depen-
dency (short TGD) is a closed logical formula

(∀~x) (ϕ(~x)→ (∃~y) ψ(~x,~y))

where ϕ(~x) and ψ(~x,~y) are conjunctions of atoms such that ϕ(~x) contains
only variables from ~x, and ψ(~x,~y) contains only variables from ~x and ~y. It is
further assumed, that all x ∈ ~x occur at least once in ϕ(~x), that is no x ∈ ~x

occurs only in ψ(~x,~y).
A full TGD is a TGD where ~y = ∅. a

to be more appropriate because they describe how one instance depends on another. On the
other hand, sometimes “constraints” seems to fit better because they imply restrictions on valid
instances. However, especially to avoid confusion in certain P2P settings described later, we
use “dependency” to denote expressions over two different schemas and “constraints” to denote
expressions over a single schema.

3.1 data exchange 8

Definition 3.4 (equality generating dependency [20]). An equality generating
dependency (short EGD) is a closed logical formula

(∀~x) (ϕ(~x)→ (xi = xj)) (i, j 6 |~x|)

where ϕ(~x) is a conjunction of atoms that contains only variables from ~x, and
every x ∈ ~x occurs at least once in ϕ(~x). a

Intuitively, as indicated by their name, TGDs define which data has to be
present in an instance based on its current content, while EGDs enforce
equalities between attributes.

Instead of defining TGDs as logical formulas, ϕ(~x) and ψ(~x,~y) can be
interpreted as conjunctive queries q1 and q2 of the same arity with the
distinguished variables { x | x ∈ ~x ∧ x ∈ ψ(~x,~y)} (see e.g. [30]). A TGD
is then written as q1 → q2

2. Unlike the definition as logical sentence, this
definition does not immediately give rise to a notion of satisfiability of a TGD.
To achieve the same semantics, a TGD q1 → q2 is considered to be satisfied if
qI1 ⊆ q

I
2.

In a similar way, EGDs can be defined as constraints q→ x1 = x2 where x1
and x2 are the distinguished variables of q, and an EGD is considered to be
satisfied by an instance I if for each (X1,X2) ∈ qI, X1 = X2.

Note that in the further parts of this thesis, when using the representation
of TGDs and EGDs as logical sentences, both, the universal and the existential
quantifiers are omitted for better readability, since the quantification of the
variables is clear from the context (all variables appearing only in ψ(~x,~y) are
existentially, all others are universally quantified). Moreover, in the following,
given a TGD ϕ(~x)→ ψ(~x,~y), ϕ(~x) may be referred to as the left hand side of
the TGD and ψ(~x,~y) may be referred to as the right hand side of the TGD.

As stated above, in the general case of a schema mapping M = 〈S, T,Σst ∪
Σt〉 there are no restrictions on the formulas in Σ. For data exchange settings,
further restrictions on the form of the TGDs and EGDs in Σ are assumed:

Definition 3.5 (Data Exchange Setting). A data exchange setting is a schema
mapping M = 〈S, T,Σst ∪ Σt〉 where

• Σst is a set of TGDs q1 → q2, where q1 is a conjunctive query over S,
and q2 is a conjunctive query over T (called source-to-target TGDs).

• Σt is a set of TGDs q1 → q2 and EGDs q→ x1 = x2, where q1, q2 and
q are conjunctive queries over T (called target TGDs and target EGDs).

a

There are several reasons for these restrictions. First, restricting to TGDs and
EGDs is justified by the fact that these two dependency types cover together the
most important types of constraints considered in relational database theory,
by having the same expressive power as the class of embedded implicational

2 To be exact, if there exists some x ∈ ~x that does not appear in ψ(~x, ~y), ϕ(~x) and ψ(~x, ~y)
do not have the same arity. But as can be easily verified, replacing ϕ(~x) by (∃~z) ϕ(~x,~z) in
Definition 3.3 and restricting ~x to those values appearing in both, ϕ(~x) and ψ(~x, ~y) does not
change the semantics of the definition.

3.1 data exchange 9

dependencies discussed in [3, 19]. Further, constraints over the source schema
are omitted since it is assumed that they are already satisfied by the data in
the source instance. Additionally, allowing other kinds of EGDs and TGDs
would increase the expressiveness of the data exchange setting, but, in most of
such less restricted settings, would also increase the complexity of computing
solutions and query answering (which, as is stated later, is tractable for the
setting defined above).

An example for a more general setting is Peer Data Exchange [29], where
Σ = Σst ∪ Σt ∪ Σts. Thereby Σts is a set of target-to-source TGDs that are used
to restrict the data materialised in the target instance. Computing solutions in
this setting, however is NP-complete, and query answering is coNP-complete.

Example 3.6. The following example illustrates the idea of a data exchange
setting: Assume two schemas representing the library of a university (LibUB)
and the library of a department of the university (LibDep):

• LibUB = {Authorised(StudentId, FirstName,LastName, IdFOS),
Registered(StudentId,CardId)}

• LibDep = {Allowed(StudentId,CardId, IdFOS),
Surcharge(CardId,Price),
Contacts(StudentId, IdFos,Email,Phone)}

Suppose that one is interested in filling the LibDep according to the data from
LibUB. This could be described by a data exchange setting consisting of the
source schema LibUB, the target schema LibDep, a source-to-target TGD (i.e.
Σst)

1. Authorised(SID, FN,LN, FOS) ∧ Registered(SID,CardId)→
Allowed(SID,CardId, FOS) ∧ Surcharge(CardId,‘0’)

and one target TGD and one target EGD (Σt)

2. Allowed(SID,CardId, FOS)→ Contacts(SID, FOS,Email,Phone)

3. Contacts(SID, FOS,Email1,Phone) ∧

Contacts(SID, FOS,Email2,Phone)→ Email1 = Email2

We will use this data exchange setting as running example throughout this
section. �

Definition 3.7 (Data Exchange Problem [52]). Let M = 〈S, T,Σst ∪ Σt〉 be a
data exchange setting, where Σst is a set of source-to-target TGDs and Σt is
a set of target TGDs and EGDs. Given an instance I of S, the data exchange
problem associated with M is to compute an instance J of T, such that both, Σst
and Σt are satisfied in 〈I, J〉.
The corresponding decision problem is whether Sol(M, I) 6= ∅. a

Note that the schema mapping is regarded to be fixed, hence the complexity
of the function and decision problem is the data complexity. The general
structure of a data exchange setting and the corresponding problem is depicted
in Figure 1.

3.1 data exchange 10

S

I

T

?

Σst Σt

Figure 1: Structure of a data exchange setting. Given a source instance I for S, the
problem is to find an appropriate target instance for T.

Example 3.8. Assume the data exchange setting from Example 3.6 and a target
instance I = {Authorised(‘0912345’, ‘alice’, ‘a.’, ‘001’),
Authorised(‘0912345’, ‘alice’, ‘a.’, ‘002’), Registered(‘0921345’, ‘a1’),
Authorised(‘621005’, ‘bob’, ‘bond’, ‘007’)} for LibUB.

Then each of the following instances for LibDep is a valid solution for the
data exchange problem:
J = {Allowed(‘0912345’, ‘a1’, ‘001’), Allowed(‘0912435’, ‘a1’, ‘002’),

Surcharge(‘a1’, ‘0’), Contacts(‘0912345’, ‘001’, Email1, Phone1),
Contacts(‘0912345’, ‘002’, Email1, Phone2)}

J1 = {Allowed(‘0912345’, ‘a1’, ‘001’), Allowed(‘0912435’, ‘a1’, ‘002’),
Surcharge(‘a1’, ‘0’), Contacts(‘0912345’, ‘001’, Email1, Phone1),
Contacts(‘0912345’, ‘002’, Email1, Phone1)}

J2 = {Allowed(‘0912345’, ‘a1’, ‘001’), Allowed(‘0912435’, ‘a1’, ‘002’),
Surcharge(‘a1’, ‘0’),
Contacts(‘0912345’, ‘001’, ‘alice@pgp.sec’, Phone1),
Contacts(‘0912345’, ‘002’, ‘alice@pgp.sec’, Phone2)}

J3 = {Allowed(‘0912345’, ‘a1’, ‘001’), Allowed(‘0912435’, ‘a1’, ‘002’),
Surcharge(‘a1’, ‘0’), Contacts(‘0912345’, ‘001’, Email1, Phone1),
Contacts(‘0912345’, ‘002’, Email1, Phone2),
Allowed(‘621005’, ‘mi6’, ‘007’)} �

As already mentioned, for a given data exchange problem there may be more
than one solution: There may be more than one instance J such that all
constraints in Σ are satisfied by 〈I, J〉. In fact, it is even likely that there is
an infinite number of such instances. In such situations the question arises
which of the possible solutions should be materialised for data exchange.
As Example 3.8 shows, some of the solutions are more general than others:
For some of the solutions, assumptions are made that are not justified by
the schema mapping (e.g. in J1 that the phone numbers, although unknown,
are the same in both Contacts facts, or in J2 that the e-mail address is
‘alice@pgp.sec’). Other solutions may contain tuples that are not necessary to
satisfy the schema mapping (having no relation to the schema mapping or to
the data in the source instance), like e.g. in J3.

A natural requirement on the materialised solution therefore is that it
neither contains unjustified assumptions nor data (that is, no information that
cannot be derived from the source instance by the schema mapping). These
requirements are formalised by the notion of universal solutions:

3.1 data exchange 11

Definition 3.9 (Universal Solution [52]). Let M = 〈S, T,Σst ∪Σt〉 be a schema
mapping. Given an instance I of S, a universal solution to the data exchange
problem associated with M is an instance J ∈ Sol(M, I), such that for all
J ′ ∈ Sol(M, I) there exists a homomorphism h such that h(J) = J ′. a

Such universal solutions are the most general solutions for I under M. That
means that every solution J ′ for I under M can be obtained from a universal
solution J by a variable mapping and adding additional facts.

Unfortunately, also universal solutions need not be unique (up to isomor-
phism). For example, the solution J in Example 3.8 is a universal solution, but
so is J∪ {Surcharge(CardId1,Price1)}. But as the next proposition shows, all
universal solutions are at least homomorphically equivalent.

Proposition 3.10 ([22]). Let M = 〈S, T,Σst ∪ Σt〉 be a data exchange setting, and
I be a source instance. If J and J ′ are universal solutions for I under M, then J and J ′

are homomorphically equivalent.

In fact, the above proposition follows directly from the definition of universal
solutions.

Another question is, whether there exists always a universal solution when-
ever there exists some solution (i.e. if Sol(M, I) 6= ∅). As it will be stated below,
Fagin et al. [22] showed that this is at least the case for those data exchange
settings where computing a universal solution is tractable.

3.1.2 Computing Universal Solutions — The Chase

With these results at hand, indicating that universal solutions are a good
choice for materialisation, the next problem is whether a universal solution
can be (efficiently) computed. Since checking a certain solution for whether
there exist homomorphisms to all other solution is not feasible, this is not
immediately obvious. However, for a broad class of data exchange systems
universal solutions can indeed be efficiently computed by adopting the chase
procedure [3, 58] to create universal solutions [20]. The idea is to start with
an instance 〈I, ∅〉 and to create incrementally a target instance, using TGDs to
instantiate tuples and EGDs to enforce equalities between terms. The formal
definition given below is more in the style of [30] than of [20], since it is reused
in Chapter 5 within the context of [30].

Definition 3.11 (Chase Rule). Let R be a schema and I an instance of R.

TGD rule: A TGD φ: ϕ(~x) → ψ(~x,~y) is applicable to I if there exists a tuple
t ∈ ϕ(~x)I such that t /∈ ψ(~x,~y)I.
If φ is applicable to I, φ is applied to I by adding the facts corresponding
to ψ(t, ~Y) to I, where ~Y contains a fresh (that is not yet present in I)
labelled null for every y ∈ ~y.

EGD rule: An EGD φ: ϕ(x1, x2) → x1 = x2 is applicable to I if there exists a
pair (t1, t2) ∈ ϕ(x1, x2)I where t1 6= t2.
If φ is applicable to I, there are two possibilities how φ is applied to I:

3.1 data exchange 12

• If at least one of t1 and t2 is a labelled null (w.l.o.g. assume t1),
replace all occurrences of t1 in I by t2. (If both are labeled nulls, it
does not matter which one is kept and which one is replaced.)

• If both, t1 and t2 are constants, then stop and output FAIL.
a

Within the above definition, “the facts corresponding to ψ(t, ~Y)” refers to those
facts consisting of the same relation symbols as the atoms in the conjunction
ψ(~x,~y), where all occurrences of some x ∈ ~x in the bodies of these facts are
replaced by the corresponding value in t. Moreover, all occurrences of some
y ∈ ~y are replaced by the corresponding fresh labelled null in ~Y.

Informally the meaning of those rules is: If there is a TGD violated by an
instance I, then add tuples to I in such a way that the TGD is satisfied (i.e.
do exactly what the name “tuple generating” suggests). For the existentially
quantified variables, new labelled nulls are created since except the fact that
there must exist some value, nothing else is known about them. Hence no
assumptions are made about these values. On the other hand, the values
from the distinguished variables are known from the result of ϕ(~x)I. If an
EGD is violated, try to resolve this violation by unification of labelled nulls.
If this is not possible, then I violates the corresponding constraint, hence I is
inconsistent.

The idea of the chase is to repeat these steps until all violations are resolved,
or an inconsistency is detected. This is formalised by the notion of a chase
sequence:

Definition 3.12 (Chase Sequence). Let Σ be set of TGDs and EGDs.
A chase sequence is a (possible infinite) sequence of instances I0, . . . , Ii, Ii+1, . . .
where each Ik+1 is obtained from Ik by applying a TGD or EGD from Σ to Ik.
The transition from Ik to Ik+1 via the application of a chase rule is called a
chase step.
A chase sequence is called finite if, after a finite number of steps, a fixpoint is
reached, that is some instance If where no more element from Σ is applicable,
otherwise it is called infinite.
If a chase sequence starting with instance I0 is finite, then If is called the result
of the chase of I0. a

Example 3.13. Assume the data exchange setting from Example 3.6 and the
source instance I from Example 3.8. Starting with 〈I, ∅〉, a possible chase
sequence is given below. The numbers at the beginning of each line denote
the dependency applied in this step. (We only state the content of the target
schema and omit the values of I.)

J0 = ∅

1 J1 = {Allowed(‘0912345’, ‘a1’, ‘001’), Surcharge(‘a1’, ‘0’)}

1 J2 = J1 ∪ {Allowed(‘0912345’, ‘a1’,‘002’), Surcharge(‘a1’,‘0’)}

2 J3 = J2 ∪ {Contacts(‘0912345’, ‘001’, Email1, Phone1)}

3.1 data exchange 13

2 J4 = J3 ∪ {Contacts(‘0912345’, ‘002’, Email2, Phone2)}

3 J5 = J4[Email2 → Email1] = {Allowed(‘0912345’, ‘a1’, ‘001’),
Allowed(‘0912435’, ‘a1’, ‘002’), Surcharge(‘a1’, ‘0’),
Contacts(‘0912345’, ‘001’, Email1, Phone1),
Contacts(‘0912345’, ‘002’, Email1, Phone2)}

Since in 〈I, J5〉 no more dependency is applicable, the chase sequence is finite
and the chase terminates with the result J5. Note that J5 is exactly the solution
J of Example 3.8. �

Hence, let M = 〈S, T,Σst ∪Σt〉 be a schema mapping, given a definite instance
I the idea for computing a universal solution is to start with the instance 〈I, ∅〉
and to apply dependencies from Σst ∪ Σt until no more rule is applicable,
hence until no more dependency is violated (or an inconsistency is discovered).

Note that defining the chase for indefinite source instances may be a little
bit problematic due to the effect of target EGDs because the source instance
must not be changed. A more procedural representation of the chase (for
definite instances) is given in Algorithm 1.

Alg. 1 The Chase Procedure for a data exchange setting
Input: a source instance I, a set Σst of TGDs and a set Σt of TGDs and
EGDs.
Output: a universal solution or FAIL
J← ∅
while there exists φ : ϕ(~x)→ ψ(~x,~y) ∈ Σst that is applicable to 〈I, J〉 do

let ~X ∈ ϕ(~x)〈I,J〉, ~X /∈ ψ(~x,~y)〈I,J〉 and ~Y be a vector of fresh labelled nulls
J← J∪ψ(~X, ~Y) // apply φ to 〈I, J〉

while there exists φ ∈ Σt that is applicable to 〈I, J〉 do
if φ is a TGD ϕ(~x)→ ψ(~x,~y) then

let ~X ∈ ϕ(~x)〈I,J〉, ~X /∈ ψ(~x,~y)〈I,J〉 and ~Y fresh labelled nulls
J← J∪ψ(~X, ~Y) //apply φ to 〈I, J〉

else if φ is an EGD ϕ(x1, x2)→ x1 = x2 then
let (X1,X2) ∈ ϕ(x1, x2)〈I,J〉, X1 6= X2
if at least one of X1,X2 is a labelled null then
J← J[X1 → X2] // or J← J[X2 → X1] resp.

else
return FAIL

return J

The correctness of the chase is given by the following theorem:

Theorem 3.14 ([20]). Let M = 〈S, T,Σst ∪ Σt〉 be a data exchange setting, where
Σst is a set of TGDs and Σt is a set of TGDs and EGDs. Given some source instance
I,

1. let 〈I, J〉 be the result of some successful finite chase of 〈I, ∅〉 with Σst ∪ Σt.
Then J is a universal solution.

3.1 data exchange 14

2. if there exists some failing finite chase of 〈I, ∅〉 with Σst ∪ Σt, then there exists
no solution.

Hence, if the chase returns a solution, it is correct: either it is a universal
solution, or there exists no solution at all. Therefore, the solution J from
Example 3.8 is indeed a universal solution, since as shown in Example 3.13, it
is the solution of chasing the source instance.

Some remarks concerning the chase: The reason why nothing is stated about
the order in which the dependencies should be applied is that the order does
not matter. Any order will yield a correct result, although different orders
may lead to different universal solution. The different solution may differ by
more than just isomorphisms, but as stated above, universal solutions need
not be unique up to isomorphism.

As done in Algorithm 1, it is possible first to chase Σst until no more φ ∈ Σst
is applicable, and only after that chase Σt. This works because chasing Σt
cannot remove or change any data that would make any dependency in Σst
applicable again: For a φ ∈ Σst that was satisfied in some instance 〈I, Jk〉 to
become applicable again in some instance 〈I, Jl〉 later in the chase sequence,
it is required that there exists some ~X ∈ ϕ(~x)〈I,Jl〉 such that ~X /∈ ψ(~x,~y)〈I,Jl〉.
But such an ~X cannot exist:

• Because I is not changed, ϕ(~x)〈I,Ji〉 always returns the same results.

• Conjunctive queries without negation or even inequalities are monotone.
Hence adding tuples as results of the application of TGDs cannot remove
~X from ψ(~x,~y)〈I,Ji〉 (i > k).

• Moreover, because conjunctive queries without inequalities are closed
under homomorphisms, applying EGDs cannot result in some ~X being
removed from ψ(~x,~y)〈I,Ji〉 (i > k).

Note that this only holds for definite source instances.
Although Theorem 3.14 assures that if the chase stops, it returns a correct

result (either a universal solution, or there exists no solution at all), nothing is
stated about the termination of the chase. In fact, the chase may not terminate,
as shown in the following example:

Example 3.15. Assume a variation of the setting in Example 3.13.
Let LibUB = {Registered(StudentId,CardId)} and let LibDep =

{Allowed(CardId,UserId), InvitedBy(InvitedUserId,UserId)}. Moreover,
assume the following dependencies:

1. Registered(SID, CardId)→ Allowed(CardId, UID) (∈ Σst)

2. Allowed(CardId, UID)→ InvitedBy(UID, MemberUID) (∈ Σt)

3. InvitedBy(UID, MemberUID)→
Allowed(MemberCardID, MemberUID) (∈ Σt)

and a source instance I = {Registered(‘0912345’, ‘001’)}.
Chasing 〈I, ∅〉 gives the following sequence of target instances:

3.1 data exchange 15

J0 = ∅

1 J1 = {Allowed(‘0912345’, UID1)}

2 J2 = J1 ∪ {InvitedBy(UID1, UID2)}

3 J3 = J2 ∪ {Allowed(CardId1, UID2)}

2 J4 = J3 ∪ {InvitedBy(UID2, UID3)}

3 J5 = J4 ∪ {Allowed(CardId2, UID3)}

. . .

(the numbers at the beginning of each line again denote the number of the
applied dependency)

It is obvious, that this gives an indefinite chase sequence. �

As it can be seen from the example, the nontermination arises from certain
cycles in the TGDs, where the introduction of some fresh labelled null at a
certain position in one chase step results in a later chase step to introduce
again another fresh labelled null at the same position with the same effect.

This notion of cycles in a set of TGDs is studied in terms of the dependency
graph of a set of TGDs:

Definition 3.16 (Dependency Graph [22]). Let Σ be a set of TGDs ϕ(~x) →
ψ(~x,~y) over some fixed schema S.
A position is a pair (Ri,Aij), where Ri(A1, . . . ,Ani) is a relation in S and
(A1, . . . ,Ani) are the attributes of Ri.
The dependency graph is a directed graph D = (V ,E∪ E∗) whose set of directed
edges contains edges (E) and special edges (E∗)3:

• The set V of nodes contains one node for each position (Ri,Aij) in S.

• The set E contains the following edges: For each variable x that appears
on the left hand side and the right hand side of some TGD in Σ, there is
an edge between each position on which x appears on the left hand side
and each position where x appears on the right hand side.

• The set E∗ contains the following special edges: For each variable x
that appears on both sides of some TGD in Σ, there is one special edge
between each position of x in ϕ(~x) and any position of some y ∈ ~y in
the right hand side of the same TGD.

a

Intuitively, the dependency graph encounters how data is propagated by the
TGDs. Thereby edges indicate that an existing value is propagated, and special
edges represent the introduction of a fresh labelled null.

3 Note that in graph theory the set of directed edges (arcs) is typically denoted by A, while E is
used for undirected edges. However, to not confuse attributes and arcs, we use E also for directed
edges.

3.1 data exchange 16

Example 3.17. Figure 2 shows the dependency graph of the data exchange
setting of Example 3.15 when omitting the source schema.

(Allowed,CardId)

(InvitedBy,UserId)

(Allowed,UserId)

(InvitedBy,MemberUserId)

* *

Figure 2: The dependency graph of the data exchange setting described in Example 3.15

�

Example 3.17 shows that the problem described above as reason for the
nontermination in Example 3.15 shows up in the dependency graph as the cy-
cle (Allowed,UserId) ∗−→ (InvitedBy,MemberUserId)→ (Allowed,UserId)
containing a special edge.

Those sets of TGDs that do not give rise to such cycles are called weakly
acyclic, and are indeed the less restrictive class of TGDs for which the chase
terminates.

Definition 3.18 (Weakly acyclic set of TGDs). A set of TGDs is weakly acyclic,
if in the corresponding dependency graph there is no cycle that contains a
special edge. a

Example 3.19. Assume the data exchange setting introduced in Example 3.6
extended by an additional target TGD Contacts(SID, FOS,Email,Phone)→
Allowed(SID,CardId, FOS). The corresponding dependency graph (when
omitting the source schema and the relational symbol Surcharge) is shown
in Figure 3

(Allowed,StudentId)

(Allowed,CardId)

(Allowed, IdFOS)

(Contacts,StudentId)

(Contacts, IdFOS)

(Contacts,Email)

(Contacts,Phone)

*
* *

**
*

Figure 3: The dependency graph of an extension of the data exchange setting described
in Example 3.15

�

Note that the dependency graph in example 3.19 contains a cycle. Weak
acyclicity does not forbid the existence of cycles in the dependency graph in
general, but only those cycles containing a special edge. Intuitively this means
that within such a cycle without special edge only values that have already
been there at the beginning of the chase are propagated. Therefore only a
finite amount of tuples can be created by the corresponding TGDs.

3.1 data exchange 17

Given a data exchange setting M = 〈S, T,Σst ∪ Σt〉, obviously Σst always
is a weakly acyclic set of TGDs, since the relations in the left hand side and
right hand side of each TGD form two disjoint sets. Therefore a data exchange
setting is called weakly acyclic if the TGDs in Σt form a weakly acyclic set.

It was shown by the following result that weak acyclicity is sufficient to
guarantee the termination of the chase.

Theorem 3.20 ([20]). Let Σ be the union of a set of EGDs and a set of weakly acyclic
TGDs. Given a definite instance I, the length of the chase sequence over Σ starting
with I is polynomially bounded in the size of I.

Moreover, in [53] it was shown that weak acyclicity is the less restrictive
case where the chase terminates, in the sense that allowing for a single non-
weakly acyclic TGD makes checking an instance for consistency undecidable.
(Nontermination directly follows from the correctness of the chase.)

Theorem 3.21 ([53]). There exists a schema mapping M = 〈S, T,Σst ∪ Σt〉 where
Σst contains a single full source-to-target TGD and Σt contains one target EGD,
one target full TGD and one non-weakly acyclic target TGD, such that for a given
instance I deciding whether Sol(M, I) 6= ∅ is undecidable.

From Theorem 3.20 and the correctness of the chase it immediately follows
that a weakly acyclic schema mapping enjoys some nice properties:

Corollary 3.22 ([52]). Let M = 〈S, T,Σst ∪ Σt〉 be a schema mapping such that
Σst is a set of source-to-target TGDs and Σt is the union of a set of targets EGDs
with a weakly acyclic set of target TGDs. Then

• given a source instance I, a universal solution for I exists if and only if a
solution for I exists.

• there exists a polynomial-time algorithm that, given a source instance I, tests
whether a solution for I exists and if so, it produces a universal solution J for I.

Both results rely on the chase: For a weakly acyclic set of TGDs it is
guaranteed to halt in polynomial time. Therefore it outputs a universal
solution whenever a solution exists and returns FAIL if no solution exists.

Summarising the properties of universal solutions, it is reasonable to con-
sider universal solutions as the correct answer to a data exchange problem,
hence as those instances to materialise: Universal solutions are the most gen-
eral solutions (i.e. there exist homomorphism from a universal solution to all
solutions). Moreover, in those cases where checking a data exchange problem
instance for consistency is decidable, universal solutions are guaranteed to
exist whenever some solution exists. In the next section, another reason why
universal solutions are a good choice for materialisation is given.

3.1.3 Query Answering

Beside just materialising a (universal) solution for a data exchange problem
instance, another interesting task is how queries posed to the target schema
can be processed.

3.1 data exchange 18

Given a data exchange setting M, a source instance I and a query q over
T, the answer to q should be computable over the materialised (universal)
solution, since after migrating the data the source instance may no longer be
available. But at the same time the answer should ideally not depend on the
specific (universal) solution actually materialised (as, assuming |Sol(M, I)| > 1,
simply evaluating q over a materialised solution for I under M may yield
different answers depending on the chosen solution).

To reflect that the result of the query depends on M and I, and not on a
particular solution, in data exchange the result of a query q over T is defined
as the set of certain answers.

Definition 3.23 (Certain Answers). Let M = 〈S, T,Σst ∪ Σt〉 be a data ex-
change setting and q a query over T.
Then the set of certain answers with respect to M is defined as

certainM(q, I) =
⋂

J∈Sol(M,I)

qJ

a

That is, the certain answers to a query q are those tuples that are part of
the answer to the query over all solutions J for I under M. Since — just as
checking for a universal solution by looking for homomorphisms to all other
solutions — computing the intersection over a possible infinite set of solutions
is not feasible, some other way for computing the certain answers is needed.

When restricting q to the class of unions of conjunctive queries (UCQ),
computing the certain answers on a data exchange setting can be done by
evaluating q over any universal solution:

Theorem 3.24 ([22]). Let M = 〈S, T,Σst ∪ Σt〉 be a data exchange setting and q
be a UCQ over the target schema T. Given a source instance I, certainM(q, I) =

EvalNull↓(q, J) for every universal solution J ∈ Sol(M, I).

The plausibility of this result can be easily checked by taking into account
the intuition of universal solutions as those solutions that only contain infor-
mation implied by the source instance and the mapping, without unjustified
assumptions. Obviously, this and only this information must be part of any
solution.

From the above theorem, it immediately follows that query answering for
UCQs can be done in polynomial time (data complexity), given that the TGDs
in Σt are weakly acyclic. The border between tractable and intractable queries
is well studied, as shown by the following results.

Theorem 3.25 ([22]). Assume that M = 〈S, T,Σst ∪ Σt〉 is a schema mapping such
that Σst is a set of source-to-target TGDs and Σt is the union of a set of target EGDs
and target TGDs.
If q is a union of conjunctive queries with at most one inequality per conjunctive
query, then the certain answers of q are polynomial-time computable.

Although computing certain answers to UCQs with one inequality per
disjunct is tractable, it cannot be done by the method described above, that

3.1 data exchange 19

is by simply evaluating some query q over a universal solution, but requires
specialised algorithms:

Theorem 3.26 ([22]). There exists a data exchange setting M = 〈S, T,Σst ∪ Σt〉
with Σt = ∅ and all TGDs in Σst are of the form A(~x)→ ψ(~x,~y) where A(~x) is a
single atom and all x ∈ ~x occur in ψ(~x,~y) and a Boolean conjunctive query q with
one inequality, such that there exists no first-order query q ′ over a canonical universal
solution J with certainM(q, I) = q ′J.

Finally, the following result justifies that more than one inequality per
disjunct is intractable.

Theorem 3.27 ([57]). Let M = 〈S, T,Σst ∪Σt〉 be a restricted data exchange setting
where Σt = ∅ and all TGDs in Σst are of the form A(~x)→ ψ(~x,~y) where A(~x) is a
single atom and all x ∈ ~x occur in ψ(~x,~y).
Then computing the certain answers to a given Boolean conjunctive query with two
or more inequalities is coNP-complete.

3.1.4 The Core of a Universal Solution

Since there may be more than one universal solution, the question arises
whether some (or one) universal solutions are to some extend “better” than
others and should therefore be regarded as the preferred instances to be
materialised. In fact, it turned out that there exists a universal solution that
can be regarded as a minimal universal solution. It is called the core of a
universal solution.

Example 3.28. Remember the data exchange setting from Example 3.6. It
was already mentioned before, that while the solution J is a universal so-
lution, so is J ∪ {Surcharge(CardId1,Price1)}. However, J is obviously the
smaller universal solution (in fact, J even is a core), and the additional fact
Surcharge(CardId1,Price1) does not give any new information, since the
existence of some tuple in the Surcharge relation is already known from the
fact Surcharge(‘a1’, ‘0’). �

The concept of cores is known from other areas, [42] for example studies
cores of graphs by considering the concept of a structure and defining the
concept of cores of structures. According to [23], this definition can be
translated to define cores of instances. Therefore it is necessary to first define
the notion of a subinstance of a database instance.

Definition 3.29 (Subinstance [23]). A database instance C is a subinstance of
a database instance A if the set of facts of C is a subset of the set of facts in
A. a

Definition 3.30 (Core of a database instance [23]). A subinstance C of a
database instance A is called a core of A if there is a homomorphism from A

to C, but there is no homomorphism from A to a proper subinstance of C.
A database instance C is a core if it is a core of itself (that is, there is no
homomorphism from C to a proper substructure of C). a

3.1 data exchange 20

According to [23], the following results proven in [42] for cores of structures
carry over to cores of instances:

Proposition 3.31 ([23]). The following statements hold:

• Every finite structure has a core, and all cores of the same finite structure are
isomorphic.

• If C is the core of a finite structure A, then there is a homomorphism h : A→ C

such that h(v) = v for every member of the universe of C.

Translated to database instances and data exchange settings, this means

• if there exists a universal solution, then there exists a core,

• ihe core of all universal solutions is unique up to isomorphism, and

• the functions mapping universal solutions to their cores map constants
to themselves, hence they are homomorphisms between instances.

The next result from [23] justifies that the core is a valid choice as solution of
a data exchange problem.

Proposition 3.32 ([23]). Let M = 〈S, T,Σst ∪Σt〉 be a data exchange setting, Σst
a set of TGDs and Σt a set of TGDs and EGDs.
If I is a source instance and J is a solution for I under M, then core(J) is a solution
for I under M.
Consequently, if J is a universal solution for I, then also core(J) is a universal solution
for I.

From the results stated above, it follows that for any data exchange setting
M, if Sol(M, I) 6= ∅ there exists a unique (up to isomorphism) core. Because
of this uniqueness it is also referred to as the core of the data exchange problem.

From that, the question arises whether the core of a universal solution
can be efficiently computed. Although computing the core of an arbitrary
structure is intractable (more precisely, given two structures A and B, deciding
whether core(A) = B is DP-complete [23]), [23] states a polynomial time
algorithm to compute the core of a universal solution of a data exchange
setting where Σt contains only EGDs. This result is extended in [31, 32] by a
polynomial time algorithm that computes the core of a data exchange setting
(that is, its minimal universal solution) where Σt is allowed to contain both
EGDs and a weakly acyclic set of TGDs. However, this algorithm does not
handle EGDs directly, but simulates each EGD by a set of full TGDs. Also,
it is not allowed to perform the chase steps in an arbitrary order, but a so-
called “nice” order is required. According to [71], the simulation of EGDs
has certain disadvantages. Finally, [71] states a polynomial time algorithm to
compute a minimal universal solution of a data exchange problem instance
that handles EGDs directly. The idea behind all these algorithms is to use
information collected during the chase to efficiently compute the core of the
created solution.

Although running in polynomial time, [71] reports that core computation is
a quite extensive task.

3.2 data integration 21

3.2 data integration

The general idea of data integration as regarded in this thesis is the following:
Data is assumed to be stored at a set of different (maybe autonomous) sources.
The task of a data integration system is to provide a unified view of this
data. Throughout this thesis it is assumed that this unified view is given by a
so-called global schema. Users can only access this global schema (and not the
sources directly). The global schema is only virtual, no data is materialised
under this schema. Instead, all data remains in the sources, and the data
integration system has to compute the answers to queries posed against the
global schema by posing appropriate queries over the sources. Thereby, the
two main challenges are

• how to define the mappings between the sources and the global schema,
and

• how to translate queries over the global schema to queries over the
sources.

This section introduces some theoretical concepts and results regarding
these issues, thereby following Lenzerinis overview paper [54], but not cover-
ing all issues mentioned there. A short “comparison” of data exchange and
data integration is given in the next section.

3.2.1 Data Integration System

The first step when considering data integration [41, 54] is to formally define
the notion of a data integration system. [54] gives a logical framework for
modelling data integration systems based on a global schema:

Definition 3.33 (Data Integration System [54]). A data integration system I is a
triple I = 〈G, S, M〉 where

• G is the global schema (or mediated schema),

• S is the source schema, and

• M is the mapping between G and S.

Thereby M contains assertions of the form qS qG and qG qS, where qS is
a query over the source schema and qG is a query over the global schema. a

As stated above, user-queries are only posed against G. The intuitive meaning
of the assertions in M is that the concept of one schema expressed through the
query on the left hand side corresponds to the concept on the other schema
expressed through the query in the right hand side.

Although, according to [54], this definition of a data integration system
captures all approaches introduced in the literature, within this thesis G and S

are assumed to be relational schemas only, but allowing for constraints over
them. (With a little abuse of notation, G and S are used to denote the schema
directly as well as to refer to the schema and the constraints.)

3.2 data integration 22

Definition 3.34 ([54]). Let M = 〈G, S, M〉 be a data integration setting.
An instance D is a source instance for I if it is an instance of S and satisfies all
constraints defined over S. A global instance B is an instance B of G. A global
instance B is legal with respect to D if satisfies all constraints over G and the
mapping M with respect to D. a

It depends on the interpretation of the assertions in M, under which conditions
M is considered to be satisfied, but in general, given a source instance D,
there may be more than one legal global instances B with respect to D. Let
Mod(I,D) denote the set of all valid global instances for I with respect to D.

Before introducing the most important interpretations for the mappings,
it is necessary to first define the semantics of query answering over a data
integration system. Since, given a source instance D, there may be more than
one legal global instance B, answers to queries over a data integration systems,
just as in data exchange are defined using the concept of certain answers:

Definition 3.35 (Certain Answers [54]). Let I = 〈G, S, M〉 be a data integration
system, and q a query over G. Given a source instance D, the certain answers
to q over I with respect to D are defined as

certain(q, I,D) =
⋂

B∈Mod(I,D)

qB .

a

That is, the answer to a query over a data integration system consists of all
tuples that are part of the answer to q over every legal global instance.

3.2.2 Schema Mappings in Data Integration

According to [54], there exist two main approaches for modelling the mapping
M of a data integration system I = 〈G, S, M〉: GAV (where each element of G

is expressed as a view over S) and LAV (where each element of S is expressed
as as view over G). In addition, GLAV, a generalisation of GAV and LAV will
be shortly introduced because of its close relationship to data exchange.

While GAV, LAV and GLAV are approaches to define the form of the asser-
tions qS qG and qG qS of a mapping M, also different interpretations
of these assertions have been considered in the literature. The three types
of semantics proposed for when such an assertion should be considered as
satisfied are listed below:

Given a source instance D, a global instance B satisfies M

• in a sound mapping if qDS ⊆ q
B
G ;

• in an exact mapping if qDS = qBG ;

• in a complete mapping if qDS ⊇ q
B
G

for every assertion qS qG and qG qS in M.
Intuitively, a sound mapping is satisfied if B contains at least the data

implied by the assertions, an exact mapping if B contains exactly the implied

3.2 data integration 23

data and a complete mapping is satisfied if B contains at most the implied
data.

Global as View — GAV

Given a data integration system I = 〈G, S, M〉, the idea of GAV mappings is
to express the content of the global schema by assigning to each relational
symbol of G a query over the source schema S, that is each relation of the
global schema is defined as a view over the source schema. More formally, M

contains only assertions of the form g qS, one for each g ∈ G. Applying the
different interpretations of M, this means that a global instance B satisfies an
assertion g qS under a sound GAV mapping if qDS ⊆ g

B, under an exact
GAV mapping if qDS = gB and under a complete GAV mapping if qDS ⊇ g

B.
This can also be expressed by the first-order sentences ∀~x qS(~x) → g(~x)

(for sound GAV mappings), ∀~x qS(~x)↔ g(~x) (for exact GAV mappings) and
∀~x g(~x)→ qS(~x) (for complete GAV mappings).

Example 3.36. Sticking to the examples of a university library and depart-
ments libraries of this university, assume a scenario with two departments
and the following schemas:

• LibUB = {Books(ISBN, Title,Author, Id,Status)}

• LibDep1 = {BooksDep1(ISBN, Title,Author, Id), Status(Id,Lend)}

• LibDep2 = {BooksDep2(Id, Title,Author,Status), Ids(ISBN,UBNR)}

From this schemas, assume a data integration system with
G = LibUB,
S = LibDep1 ∪ LibDep2 and
M = {

{(ISBN, T ,A, Id,S) | BooksDep1(ISBN, T ,A, Id) ∧ Status(Id,S)} ∪
{(ISBN, T ,A, Id,S) | BooksDep2(ISBN, T ,A,S) ∧ Ids(ISBN, Id)}
 {(ISBN, T ,A, Id,S) | Books(ISBN, T ,A, Id,S)}}

Consider a simple source instance D for S:
{BooksDep1(‘001’,‘THEbook’,‘THEauthor’,‘b1’), Status(‘b1’,‘false’),
BooksDep2(‘d2b1’,‘alsobook’,‘alsoauthor’,‘false’), Ids(‘011’,‘d2b1’)}

And the following instances for G:
B1 = {Books(‘001’,‘THEbook’,‘THEauthor’,‘b1’,‘false’),

Books(‘011’,‘alsobook’,‘alsoauthor’,‘d2b1’,‘false’),
Books(‘010’,‘abook’,‘anauthor’,‘b2’,‘true’)}

B2 = {Books(‘001’,‘THEbook’,‘THEauthor’,‘b1’,‘false’),
Books(‘011’,‘alsobook’,‘alsoauthor’,‘d2b1’,‘false’)}

B3 = ∅
Thereby B1 and B2 would be valid global instances if the mapping is

regarded to be sound, B2 would be a valid global instance under an exact
mapping, and B2 and B3 are valid global instances under a complete mapping.

�

3.2 data integration 24

This means, for a global instance B of G to satisfy a sound GAV mapping,
every relation of G has to contain at least the results of the corresponding
query over S. To satisfy an exact mapping, B must contain exactly those tuples
occurring in these results, and for a complete mapping B must not contain
any tuple not present in the results of the corresponding queries.

As a result, exact GAV mappings possess the single database property: Given a
source instance D, there exists exactly one legal global instance B with respect
to D, which consists exactly of the results from evaluating the queries over S

(i.e., it coincides with the view extension of G).
As discussed later, allowing for constraints on the global schema enhances

the expressiveness of a GAV system compared to GAV systems where no
constraints are allowed over G.

In GAV systems, adding or removing a source may require to reformulate
many of the view definitions in M. On the other hand, defining the global
schema as a view over the source schema helps query answering, since the
view definitions suggest how to retrieve the interesting data from the sources.
Hence a GAV system may be a good choice when the set of sources is stable
or if the global schema is unstable for some reasons.

Local as View — LAV

LAV mappings have been introduced in [55]. Unlike the straightforward
approach of GAV mappings to express the relations of the global schema as
views over the sources, the idea of LAV mappings is (given a data integration
system I = 〈G, S, M〉) to express the relations of S (where the data actually
resides) as views over the global schema G.

Formally, M contains only assertions of the form s qG, one for each
s ∈ S. Applying the three different interpretations for M, this means that a
global instance B satisfies an assertion s qG under a sound LAV mapping
if sD ⊆ qBG , under an exact LAV mapping if sD = qBG and under a complete
LAV mapping if sD ⊇ qBG .

Just as for GAV mappings, this can be expressed by the first-order sentences
∀~x s(~x)→ qG(~x) (for sound LAV mappings), ∀~x s(~x)↔ qG(~x) (for exact LAV
mappings) and ∀~x qG(~x)→ s(~x) (for complete LAV mappings).

Example 3.37. Assume the same scenario as in Example 3.36, but now defined
as LAV mapping, i.e. let M = {

{(ISBN, T ,A, Id) | BooksDep1(ISBN, T ,A, Id)}
{(ISBN, T ,A, Id) | Books(ISBN, T ,A, Id,S)},

{(Id,S) | Status(Id,S)} {(Id,S) | Books(ISBN, T ,A, Id,S)},
{(ISBN, T ,A,S) | BooksDep2(ISBN, T ,A,S)}

{(ISBN, T ,A,S) | Books(ISBN, T ,A, Id,S)},
{(ISBN, Id) | Ids(ISBN, Id)} {(ISBN, Id) | Books(ISBN, T ,A, Id,S)}}

When assuming the same source instance D as in Example 3.36, and also
the same target instances B1, B2 and B3, again B1 and B2 are valid global
instances for a sound mapping, B2 is a valid global instance under an exact
mapping and B2 and B3 are valid global instances when assuming a complete
mapping. �

3.2 data integration 25

That is, to satisfy a sound LAV mapping with respect to some source instance
D, the content of a target instance B of the global schema must be such that
for each relation S ∈ S, all tuples contained in S must be also contained in
the result of the corresponding query over G. On the other hand, a global
instance B satisfies a complete LAV mapping if for every source relation S ∈ S

the result of the corresponding query is contained in S, and B satisfies an
exact LAV mapping if the result of the query and the content of S coincide.
Obviously, even for exact LAV mappings the single database property does
not hold.

Just as for GAV mappings, the expressive power of a LAV system can
be enhanced by allowing for constraints on G. LAV settings with relational
integrity constraints have been considered for example in [17, 36].

As can be clearly seen from the previous examples, in contrast to GAV
systems, adding or removing sources in LAV settings can be done very easily
by just adding or removing the corresponding view definitions, without the
need to consider the description of the other sources. Hence LAV mappings
may be a good choice when the global schema is assumed to be stable, but
the set of sources is not. As a result, although query answering requires
some more effort than in GAV systems, LAV mappings have been used very
successfully in many data integration scenarios (see e.g. [41] for an overview
of the impact of LAV).

Global and Local as View — GLAV

GLAV [28] is sometimes referred to as a combination of GAV and LAV, but
in fact it is an extension of both. GLAV no longer associates relations of G or
S with a single query over the other schema, but relates the result of queries
over S to queries over G.

Formally, all assertions in M are of the form qS qG, that is both sides of
the assertions consist of conjunctive queries. A global instance B satisfies such
an assertion with respect to some source instance D if qDS ⊆ q

B
G . Hence GLAV

mappings can be regarded as sound mappings.

Example 3.38. Assume the same scenario as in the previous two examples.
Using GLAV mappings, the mappings between S and G could be expressed as
M = {

{(ISBN, T ,A, Id,S) | BooksDep1(ISBN, T ,A, Id) ∧ Status(Id,S)}
 {(ISBN, T ,A, Id,S) | Books(ISBN, T ,A, Id,S)},
{(ISBN, T ,A, Id,S) | BooksDep2(ISBN, T ,A,S) ∧ Ids(ISBN, Id)}
 {(ISBN, T ,A, Id,S) | Books(ISBN, T ,A, Id,S)}}

Assuming again D from Example 3.36 as source instance, and the global
instances B1, B2 and B3, then only B1 and B2 satisfy the above mapping. �

3.2.3 Comparing GAV and LAV

GAV style mappings are often referred to as possessing a procedural style
for mapping definition, because they define how to retrieve the data for the
global instance using queries over the sources. Contrary, LAV style mappings

3.2 data integration 26

are referred to as a declarative way of defining mappings, since they describe
the data in the sources with respect to the global schema, but on the first sight
state nothing about how to retrieve the data.

Accordingly, query answering in LAV systems conceptually is no easy task,
while in most of the GAV settings query answering consists of an unfolding of
the query according to the view definitions (for example in exact GAV settings,
because of the single database property of such settings, query answering is
the same as answering a query over a view in an RDBMS).

Therefore, the question whether a LAV system can be transformed into a
GAV system (or vice versa) is not only interesting for comparing the expressive
power of the two approaches, since such transformations would also allow
to translate a declarative description of a data integration system into a more
procedural one (or vice-versa).

Such transformations between GAV and LAV systems in a restricted setting
have been studied in [9, 11]. Thereby, two systems are considered equivalent
when they yield the same results for query answering, that is when both
return the same results for all queries (given the same source instance). This
is formalised by the following definition:

Definition 3.39 (Query preserving [11]). Let I = 〈G, S, M〉 and I ′ = 〈G ′, S, M ′〉
be two data integration systems over the same source schema, and let G ⊆ G ′.
Then I ′ is query-preserving with respect to I, if for every query q to I and every
source instance D it holds that certain(q, I,D) = certain(q, I ′,D). a

Hence the idea is to compare two data integration systems with respect to
their behaviour towards a user querying the system.

Definition 3.40 (Query reducible [11]). Let C1, C2 be two classes of data
integration systems. C1 is query-reducible to C2 if there exists a function
f : C1 → C2 such that for each I ∈ C1, f(C1) is query preserving with respect
to I. a

Hence a class of data integration systems C1 is query-reducible to a class
of data integration systems C2 if all data integration systems of C1 can be
expressed query preserving as a system of C2, that is if C2 has at least the
expressive power of C1.

In [9, 11], only sound mappings and relational schemas have been consid-
ered, and all queries (those used for defining the views and those posed over
G) are restricted to be conjunctive queries. If in such settings, there are no
constraints allowed over G, then the class of GAV and the class of LAV systems
are incomparable.

Theorem 3.41 ([11]). The class of GAV data integration systems is not query-
reducible to the class of LAV systems.

Theorem 3.42 ([11]). The class of LAV data integration systems is not query-
reducible to the class of GAV systems.

As already stated before, allowing for constraints on G enhances the expres-
sive power of GAV and LAV systems. This can be shown by consideration of
the following two types of constraints on G.

3.2 data integration 27

Definition 3.43 ([11]).

• A single-head full TGD is a TGD of the form ϕ(~x)→ R(~x),

• a simple EGD is an EGD of the form P(~x)→ xi = xj,

where R and P are single relational symbols. a

Then the following results were shown by [11]:

Theorem 3.44 ([11]). The class of GAV data integration systems is query reducible
to the class of LAV systems where only single-head full TGDs are allowed on G.

Theorem 3.45 ([11]). The class of LAV data integration systems is query reducible
to the class of GAV systems where only inclusion dependencies and simple EGDs are
allowed on G.

Moreover it was shown that the size of the resulting systems is linear in the
size of the original system.

It was further stated above that GLAV mappings can be regarded as a kind
of generalisation of GAV mappings. This intuition is supported by a result
in [11] stating that each GLAV system is query-reducible to a GAV system
with inclusion dependencies and simple EGDs. Therefore, by enhancing the
expressive power of GAV systems they are able to express GLAV systems.

3.2.4 Query Answering

Recall that given a data integration system I and a source instance D (since
there may be more than one legal global instance B for I) the certain answer
semantics is applied for query answering (Definition 3.35). Therefore, consid-
ering query answering under complete semantics is trivial, since ∅ is always a
valid global instance, and therefore certain(q, I,D) is always ∅. Consequently
in the following section only the exact and sound semantics are considered.

Query Answering under GAV Mappings

In exact GAV systems without constraints on G, because of the single database
property, query answering can be done by simply unfolding the query accord-
ing to the view definitions. This means, given a query q over G, replace in
q every relational symbol g ∈ G by the query from the corresponding view
definition g qS. The resulting query over S returns the certain answers to q
over G. For monotone queries (in particular for queries not using negation),
the same strategy can be applied to sound GAV mappings [10], as long as
there are no constraints on G.

Allowing for constraints on G has only little effect on query answering under
exact mappings: Either the single legal global instance B that satisfies the
mappings also satisfies the constraints on G, then query answering gives the
same results as without those constraints. Otherwise no legal global instance
exists, and query answering becomes trivial.

Assuming sound mappings, the situation is different: Since sound mappings
allow legal global instances to contain facts not immediately derivable from

3.2 data integration 28

the mappings, the constraints may imply additional answers that cannot
be derived when given only the source relations and the view definitions.
Therefore simple unfolding of the queries may no longer suffice to compute
the answers to a query. Such a case, assuming keys and foreign keys on G, is
given in the following example.

Example 3.46. Assume a variation of the scenario in Example 3.36: Consider
a data integration system with a global schema G = {Books(ISBN, Title,
Author, Id, Status), OldBooks(ISBN, Title, Author, Id, Status)} with a key
constraint key(Books) = {Id} and a foreign key dependency OldBooks[Id] ⊆
Books[Id] defined over G.

Further assume that from some source instance D ′ of the source schema
S, by the mapping M the fact OldBooks(‘old011’, ‘oldBook’, ‘diedalready’,
‘00’, ‘true’) can be derived.

Given a query q = {Id | Books(ISBN, Title, Author, Id, Status)}, because
every instance for G satisfying both, M (since assuming a sound mapping) and
the foreign key dependency has to contain some fact Book with Id =‘old011’,
it can be derived that (‘old001’) must be part of the certain answers to q over
G. �

Therefore other techniques for query answering are needed. Moreover, it
remains to be justified for which constraints over G query answering is indeed
decidable and in which of these cases it is even tractable.

As it will be mentioned in Section 3.3, sound GAV mappings can be in-
terpreted as a restricted form of source to target TGDs. Hence by assuming
target TGDs and target EGDs as constraints on G, one possibility for query
answering is to chase the source instance according to the mappings and
constraints. So the idea is - just for query answering - to materialise the data
in G, process the query over the materialised instance and then to drop the
instance again. In this case the same results for decidability and tractability of
the problem apply as in data exchange.

However, for data integration settings most of the time a different kind
of constraints has been considered over the global schema, namely key con-
straints and inclusion dependencies. When allowing only those types of
dependencies over G, the border between decidability and undecidability is
well known. Moreover, computing certain answers in the decidable cases can
be done in polynomial time (data complexity). In the following, a summary
of some of these results is given.

Many of these results have not been derived for a data integration setting but
for single schemas with constraints only. But by considering G as single schema
and interpreting the view extensions (that is the results when evaluating the
queries from the view definitions over S) as an instance for G, the results carry
immediately over to data integration systems with sound GAV mappings.

In the general case, query answering under key constraints and inclusion
dependencies is undecidable. However, for restricted classes of inclusion
dependencies the problem becomes decidable. The next two definitions show
the border between decidability and undecidability.

3.2 data integration 29

Definition 3.47 (Non key conflicting inclusion dependency [13]). Let R be
a relational schema and K a set of key dependencies over R. An inclusion
dependency Ri[A1] ⊆ Rj[A2] (Ri,Rj ∈ R) is a non key conflicting inclusion
dependency (NKCID) with respect to K if either

• no key dependency is defined for Rj in K or

• a key dependency key(R2) = K is defined in K, and A2 is not a strict
superset of K (K 6⊂ A2).

Moreover, let D be a set of inclusion dependencies over R, R is non key
conflicting (NKC) (with respect to D and K) if all d ∈ D are NKCIDs with
respect to K. a

Note that, under set semantics of instances, whenever there is no key defined
for a relation, the set of all attributes of this relation can be regarded as key.

Intuitively, NKCIDs do not propagate supersets of keys of the relation on
their right hand side. As will be discussed later in more detail, this has the
effect that adding NKCIDs to a schema cannot lead to key violations. Non
key conflicting inclusion dependencies can be regarded as a generalisation of
foreign keys, which can be expressed as the class of inclusion dependencies
Ri[A1] ⊆ Rj[A2] such that key(Rj) = A2. Another class of NKCIDs are the
foreign key dependencies, that are inclusion dependencies Ri[A1] ⊆ Rj[A2] such
that A2 ⊆ key(Rj).

A slightly less restrictive class than NKCIDs are the 1 key conflicting inclusion
dependencies.

Definition 3.48 (1 key conflicting inclusion dependencies (1KCIDs)). Let R be
a relational schema and K a set of key dependencies over R. An inclusion de-
pendency Ri[A1] ⊆ Rj[A2] (Ri,Rj ∈ R) is a 1 key conflicting inclusion dependency
(1KCID) with respect to K if either

• it is a NKCID or

• there exists a key constraint key(R2) = K in K such that K ⊂ A2 and A2
contains a single additional attribute of Rj not in K.

Moreover, let D be a set of inclusion dependencies over R, then R is one
key conflicting (1KC) (with respect to D and K) if all d ∈ D are 1KCIDs with
respect to K. a

In [13] it was shown that while computing the certain answers to a conjunc-
tive query over a relational schema with key dependencies and NKCIDs is
decidable and can be even done in polynomial time (data complexity), query
answering under 1KCIDs is undecidable.

Theorem 3.49 ([13]). Let R be a 1KC relational schema with respect to the set of
key dependencies K and the set of 1-key-conflicting inclusion dependencies D. Let
further q be a conjunctive query over R. Given an instance R for R, computing
certain(q, R,R) is undecidable.

3.2 data integration 30

The proof of this theorem is done by reducing the problem to the implication
problem for key dependencies and 1KCIDs, which was shown to be undecid-
able (by reduction from the implication problem of functional dependencies
and inclusion dependencies) within the same paper.

Theorem 3.50 ([13]). Let R be a NKC relational schema with respect to the set
of key dependencies K and the set of non-key-conflicting inclusion dependencies D.
Let further be q a conjunctive query over R. Given an instance R for R, computing
certain(q, R,R) is solvable in polynomial time (data complexity).

This theorem is proven by providing an algorithm that computes the correct
answer. Both, the algorithm and the proof that the algorithm is correct rely
heavily on the results of [45]. The idea is to extend the chase (see Section 3.1.2)
by a chase rule for inclusion dependencies. Although for cyclic inclusion
dependencies the corresponding chase sequence does not terminate, it was
shown in [45] that for certain problems it is sufficient to consider only a finite
part of the beginning of the chase sequence.

Note that as stated before, these two results immediately apply to sound
GAV systems with the corresponding constraints over G as well.

Another important result that is not only used in the proof of Theorem 3.50,
but which is the basis for many results concerning key dependencies and
NKCIDs is the separation property:

Theorem 3.51 (Separation [45]). Let R and S be two identical relational schemas,
K be a set of key dependencies over R and D a set of NKCIDs over R, respectively a
set of inclusion dependencies over S. Let further q be a conjunctive query over R (and
therefore also S).

Given an instanceD for R and S, it holds that certain(q, R,D) = certain(q, S,D)

iff D is consistent with K.

This theorem justifies the already mentioned idea of the nice property of
NKCIDs that they cannot introduce a key violation: If an instance is consistent
with respect to key dependencies, then adding NKCIDs cannot make the
instance inconsistent. For query answering under key dependencies and
NKCIDs, this means that the key dependencies and the NKCIDs can be
considered separately: It suffices to first check the given instance for being
consistent with the key dependencies, and if this is the case then the NKCIDs
can be handled without needing to take care for constraint violations.

The results presented in [13] are rather of theoretical interest, since the
stated algorithm for query answering is quite involved and probably not very
efficient (although running in polynomial time data complexity).

A more practical result for query answering is given in [12]. There the
problem of query answering in a sound GAV setting with key constraints
and inclusion dependencies over G is considered. For the case when the
inclusion dependencies are restricted to NKCIDs (that is for the maximal class
of inclusion dependencies for which query answering is still decidable), an
algorithm is given, that, given a UCQ q over G computes a perfect rewriting
q ′ of q (w.r.t. the certain answers) over the key constraints and inclusion
dependencies. Thereby perfect rewriting means that if q ′ is evaluated over

3.2 data integration 31

some instance D of G, it returns exactly the certain answers to q over D
regardless of whether D satisfies the constraints over G or not. The result is
again a UCQ over G that can then be translated using unfolding to queries
over the source schema S. Because of this, the rewriting algorithm is not only
applicable to GAV settings. Based on the separation property (Theorem 3.51),
the algorithm consists of two parts, one handling the inclusion dependencies
and one handling the key constraints. In Section 5.6.1 query rewriting with
respect to inclusion dependencies will be introduced in detail, as this is an
important part of the implementation described in Chapter 6. Because the
handling of key constraints is not needed, there will be no more detailed
description of it. The idea behind the rewriting with respect to the key
constraints is to check whether some key constraint is violated, and if this is
the case to ensure that the answer to the query contains every possible tuple
over the active domain of the instance the query is evaluated on. If there
is no key violation, the key constraints have no effect, as suggested by the
separation property.

In [70], the border between decidability and undecidability of query an-
swering under key constraints and inclusion dependencies has been studied
even further. Given a schema R, a set K of key constraints and inclusion de-
pendencies over R and an instance D for R, the paper distinguishes between
computing the set of certain answers to a query q over R and computing the
set of answers that belong to the result of the query over all finite instances D ′

of R that satisfy D and K (note that the certain answers are the set of answers
that belong to the result of the query over all — finite and infinite — instances
of R that satisfy D and K).

It is shown, while for sets of key constraints and foreign key dependencies
these two kinds of answers coincide, this no longer holds for sets of key
dependencies and NKCIDs. Moreover, it was shown that computing the set of
answers only over finite instances is undecidable for NKCIDs. More formally
this is described by the following theorem:

Theorem 3.52 ([70]). Let R be a schema, and K be a set of key dependencies and
foreign key dependencies. Given an instance D of R, denote with D the set of all
instances D ′ of R that satisfy K s.t. there exists a homomorphism h from D to D ′.
Moreover let Df contain all finite instances in D. Given a conjunctive query q, then⋂

B∈D

qB =
⋂
B∈Df

qB .

From this result together with the result from Theorem 3.50 it follows
immediately that computing the set of answers over all finite instances is
tractable.

Theorem 3.53 ([70]). Let R be a schema, and K be a set of key dependencies and
NKCIDs. Given an instance D of R, denote with Df the set of all finite instances D ′

of R that satisfy K s.t. there exists a homomorphism h fromD toD ′. Then computing⋂
B∈Df

qB

is undecidable.

3.2 data integration 32

Note that for the unrestricted case (i.e. computing the certain answers),
query answering under NKCIDs is still decidable, while becoming undecidable
only under 1KCIDs.

For all the results in this section concerning query answering under GAV
mappings and constraints on the global schema, the language of the query
q has been considered to be fixed as the language of conjunctive queries,
and only different types of constraints over the global schema have been
considered. As the following result from [70] shows, the expressive power of
the query language cannot be extended.

Theorem 3.54 ([70]). Let q be a UCQ with inequalities, D an instance of a relational
schema R and K a set of inclusion dependencies over R. Then computing the certain
answers to q over R under D with respect to D is undecidable for both cases: when
considering only finite instances and when considering all instances.

Note that in the above theorem, no key constraints occur. As mentioned
earlier, since in this case the set of all attributes of each relation can be regarded
as key, this corresponds to a setting with foreign key dependencies.

Query Answering under LAV Mappings

Query answering in LAV systems is regarded to be more complicated than
in GAV systems. This is due to the fact that only the content of the views is
known, and from this the content of the base tables (i.e. the global schema) has
to be inferred. This kind of query processing is referred to as view based query
processing. There exist two main approaches to view based query processing:
view based query answering and view based query rewriting.

Not surprisingly, the complexity of query processing in LAV systems de-
pends on three parameters: The query language used for defining the views,
the query language used for expressing the query q and the semantics con-
sidered for the mappings (sound, complete or exact). Thereby often sound
mappings in combination with relatively simply query languages are consid-
ered. A possible reason for this are the complexity results presented below for
view based query answering.

While sound mappings correspond to applying the open world assumption
on the data in S, using exact mappings means to apply the closed world
assumption to the data in the view extensions, which in many cases makes
query answering harder. In the following, assume again a data integration
system I = 〈G, S, M〉.

view based query rewriting In view based query rewriting, the task
is, given a query q over G together with the assertions in M, to transform q

into some query q∗ over S. Thereby the language of q∗ is fixed (but it need
not be the same as the language of q), and processing q∗ over S should ideally
return the certain answers for q over G. A rewriting of q that satisfies these
requirements is called a perfect rewriting. In the following we will use the term
rewriting to denote both, the actual rewriting process and its result, i.e. the
rewritten query q∗. Note that the perfect rewriting of a query is independent
of the source data.

3.2 data integration 33

sound CQ CQ 6= UCQ Datalog FOL

CQ in P coNP in P in P undec.

CQ 6= in P coNP in P in P undec.

UCQ coNP coNP coNP coNP undec.

Datalog coNP undec. coNP undec. undec.

FOL undec. undec. undec. undec. undec.

exact CQ CQ 6= UCQ Datalog FOL

CQ coNP coNP coNP coNP undec.

CQ 6= coNP coNP coNP coNP undec.

UCQ coNP coNP coNP coNP undec.

Datalog undec. undec. undec. undec. undec.

FOL undec. undec. undec. undec. undec.

Table 1: Data complexity of view based query answering in LAV data integration
systems under sound and exact mappings for different query languages as
stated in [1]. The languages used for querying are listed horizontally, those
used within the view definitions vertically.

However, it may be possible that such a query q∗ does not exist, for example
if the required query cannot be expressed in the language of q∗. Then the
goal is to achieve a maximally contained rewriting, which is regarded to be the
best possible rewriting. More formally: A maximally contained rewriting q∗

is a rewriting such that for every source instance D over S, q∗D ⊆ qD and for
all queries q ′ (in the same language as q∗) it holds that if q∗D ⊆ q ′D ⊆ qD,
then q∗ and q ′ are equivalent. Note that every perfect rewriting trivially is a
maximally contained one.

Obviously those classes of queries are of special interest whose maximally
contained rewriting (being perfect or not) can be expressed by a query lan-
guage that can be evaluated efficiently over S. This is for example the case
for conjunctive queries if the views are also defined only using conjunctive
queries. Then their perfect rewriting is a UCQ [54]. [54] also states that
“already for very simple query languages containing union”([54], page 7) the perfect
rewriting cannot be evaluated efficiently in general. Moreover, it gives many
references to results concerning query rewriting in several different settings.

view based query answering Although looking similar to view based
query rewriting, view based query answering is something different. In
view based query answering, in addition to the query q over G, and the
view definitions, also the extensions of the views are given and the task is
to compute the certain answers of q over G. Unlike in view based query
rewriting, where computing the solutions is clearly divided into two steps,
of which the first step is independent of the data in the views, in view based
query answering there are no restrictions on how the answers are derived, and

3.3 “comparison” of data exchange with data integration 34

the view extensions can be always used for computing the answers. Moreover,
another way to define a perfect rewriting q∗ is to demand that the result of q∗

over S retrieves the same tuples as retrieved by view based answering.
In [1], the complexity of view based query answering in LAV settings

under sound and exact semantics is studied. The results reported there are
summarised in Table 1.

It follows immediately that query processing using view based query rewrit-
ing, which creates perfect rewritings and then evaluates this rewriting over
the source schema, cannot perform better than these results, since otherwise
the same strategy could be used when processing the query using view based
query answering.

Beside relational global schemas, view based query answering has been also
studied for semistructured global schemas (and related problems), but here
only the relational cases are considered.

3.3 “comparison” of data exchange with data integration

In this section, we summarise some of the important differences between data
exchange and data integration and on the other side draw some connections
between them. First of all, data exchange and data integration describe two
different settings and cover different tasks: In data exchange, one wants to

S

I

T

?

Σst Σt

G

S3

S2

S1

. . . Sn

M1

M2

M3 Mn

query

Figure 4: The overall structure of a data exchange setting (left) and a data integration
system (right)

migrate data between two different schemas. Therefore the goal is, given a
source instance, to materialise an instance which represents the source data as
best as possible (according to the mapping defined between source and target
schema). The materialised instance can then be used completely independently
and autonomously from the source data. For example, query answering can
be performed only on the materialised target instance. The main problem in
data exchange is to compute such an instance. Therefore one is interested
under which circumstances and for which kinds of data exchange settings
such a solution exists at all and can be (efficiently) computed. Moreover, if
there are several possible solutions, one wants to know which one should be
selected for materialisation.

In data integration on the other hand, the goal is to provide a unified view
to a set of autonomous sources. Although being also modeled as a source
schema (conceptually, there is no problem with defining different, autonomous
sources by a single source schema) and a target schema (called global schema)
with a mapping defined between them, the task is not to materialise any data

3.3 “comparison” of data exchange with data integration 35

under the global schema. Instead, all data resides in the sources. The user on
the other hand does not interact with the sources directly, but all queries are
posed over the global schema. The task of the data integration system is then
to extract the correct results from the sources and to return those results again
expressed in terms of the global schema to the user.

Although both approaches are quite different from each other, the for-
malisms used in both areas can be related to each other up to some extent.

First of all it should be noted that for query answering, in both data exchange
and data integration, the notion of certain answers, which originates in the
study of incomplete databases, has been adopted.

The more interesting relations however exist between the kinds of mappings
used in both areas (see e.g. [52]): In Section 3.2.2, it was stated that a sound
GAV mapping g qS (interpreted as qDS ⊆ gB for a source instance D
and a legal global instance B) can be expressed by the first-order sentence
∀~x (qS(~x)→ g(~x)). Both, the description of the interpretation and this logical
description resemble a restricted form of source-to-target TGDs. A sound
GAV mapping can therefore be expressed by source-to-target TGDs of the
form ϕ(~x)→ T(~x), where T is a single relational symbol of the global schema.
Moreover, all x ∈ ~x appearing in T(~x) must also occur in ϕ(~x) (i.e. T(~x) must
not contain existentially quantified variables). According to this equivalence,
data exchange settings without target dependencies where all source-to-target
dependencies are of the above form are sometimes referred to as a GAV
setting.

For sound LAV mappings s qG, the situation is similar. They are
interpreted as sD ⊆ qBG , and can be expressed by the first-order sentence
∀~x (s(~x)→ qBG). Therefore they can be expressed by source-to-target TGDs of
the form S(~x)→ ψ(~x,~y), where S is a single relational symbol of the source
schema, and all x ∈ ~x actually have to occur in ψ(~x,~y). Accordingly, data
exchange settings without target dependencies where all source-to-target
dependencies are of the above form are sometimes referred to as LAV settings.

It is immediate to see, that a data exchange setting without target depen-
dencies, but arbitrary source-to-target TGDs generalises both sound GAV
and sound LAV settings from data integration. Moreover, such a setting
corresponds exactly to a sound GLAV setting in data integration.

Data exchange and data integration also differ with respect to the constraints
allowed over the target/global schema. While in data integration most of the
time only key constraints and inclusion dependencies over the global schema
are considered, for data exchange settings the more general forms of TGDs
and EGDs are studied. This leads to different concepts for the set of maximal
expressive constraints such that query answering remains decidable. While in
data exchange weakly-acyclic sets of TGDs are the least restrictive types of
constraints that allow query answering to be tractable, in data integration key
dependencies and NKCIDs are considered as the maximal expressive but yet
tractable types of constraints over the global schema.

Note that these two types of constraints are incomparable: A set of key
constraints and inclusion dependencies can be obviously modeled by a set of
EGDs and TGDs. But since in data integration no restrictions are imposed

3.3 “comparison” of data exchange with data integration 36

on the cyclicity of the NKCIDs, the corresponding set of TGDs needs not to
be weakly acyclic. On the other hand, even with acyclic TGDs it is obviously
possible to express constraints that are not expressible by inclusion dependen-
cies. Moreover the constraints that can be defined by a set of EGDs include all
constraints definable by a set of key constraints.

4P E E R D ATA M A N A G E M E N T

Data exchange and data integration settings always consist of two partici-
pants1, each having a certain role: There exists one dedicated source and
one dedicated target. Both are described by a schema, and the relationship
between the source and the target is expressed by a mapping between these
two schemas (as depicted in Figure 4 in the last chapter). A natural extension
of both settings is to allow for more than only two participants in a setting,
and not to restrict each of them to a certain role (source or target), but to
allow them to offer and retrieve data at the same time (i.e. to be source and
target). In such an extended setting, each member in the system (called peer)
may offer some data through its own public schema and relate its own data
to the data offered by other peers by defining mappings between the public
schemas of some other peers and its own schema. Such a setting is depicted
in Figure 5. As an extension of data exchange and data integration, beside

P1

P2

P3

P4

P5
q1 q2

Figure 5: Idea of a Peer Data Management setting: Every peer may define local con-
straints on its schema, dependencies between peer schemas are expressed by
mappings, and queries are posed against the schema of a single peer.

mappings between peers, also local constraints over the schema of each peer
may be possible. In such a setting, queries are posed over the public schema of
a single peer, and are answered by taking into account both: the data actually
stored at that peer, as well as all data derivable by the mappings from the
other peers.

4.1 peer data management systems

The idea sketched above is captured by the notion of Peer Data Management
Systems (PDMSs). The goal of PDMSs is to provide support for data sharing
between autonomous sources. Thereby the setup costs for initialising and
joining such a system should be as low as possible.

The goal of this section is to introduce the idea of PDMSs by first referring
to systems covering the same tasks but having certain drawbacks, and then by

1 Although in data integration the data is assumed to reside in many different sources, all these
sources are modeled by a single schema.

37

4.1 peer data management systems 38

showing how PDMSs try to overcome these drawbacks. In the second part
of this section, three general classes of PDMSs proposed in the literature are
presented.

4.1.1 Related Techniques

Peer-to-Peer Systems

Peer-to-peer (P2P) filesharing systems like Napster or Gnutella match most
of the requirements identified at the beginning of this section and have been
already used extremely successfully. The strength of such P2P systems stems
from their flexible architecture: They do not distinguish between dedicated
servers (sources that provide data) and clients (targets that consume data).
Instead, they, conceptually2, consist of a network of equal nodes (called peers),
with each peer providing the same functionality and acting as both, server
(source) and client (target) at the same time. Therefore P2P systems are
very flexible with respect to changes in the membership of peers (every peer
may join and leave at any time) and robust with respect to failures of peers.
Additionally, because of their decentralised architecture, they do not need any
centralised coordination, administration or infrastructure.

The major drawback of P2P filesharing systems is their applicability to only
large granular data which is most of the time only referenced by an identifier
(like e.g. files that are identified by their filenames). They also possess only
very limited data management capabilities.

Example 4.1. Assume a P2P filesharing network whose members share scien-
tific articles.

Retrieving an article whose author and title are known is a typical task
supported by such systems. On the other hand, queries like: ‘return a list of
abstracts of all articles concerning “Peer Data Management” ordered by the
publishing dates of the articles’ are not supported.

Moreover assume that several biology research groups want to share the
contents of their genome databases. This would be far out of the scope of
traditional P2P filesharing systems. �

As it was noticed in [35], these shortcomings of traditional P2P systems
are due to their lack of considering the semantics of the data: They neither
take into account the structure of the data nor do they allow to express
relationships between data items. Because of this, they offer only very weak
semantics (if any at all), and do not support the management and sharing
of fine-granular data. Therefore they are also unable to support even simple
data transformation (like returning the ordered list of abstracts mentioned in
Example 4.1). It was further observed that supporting all theses properties
belongs exactly to the strengths of database systems.

2 The concrete implementations of such systems may (e.g. for performance reasons) depend on
some centralised infrastructure or distinguish certain super-peers.

4.1 peer data management systems 39

Multi-Databases/Federated Databases

Given a set of autonomous database instances, according to [7] collaboration
between them is achieved in terms of federated databases (FDBSs) [73] and
multi-databases (MDBSs) [8]. Within these systems, coordination and collabo-
ration between the already existing database systems is based on a federated
(or global) schema: The global schema is used to relate the local schemas of
the participating databases to each other. This is done by mapping the local
schemas using GAV and LAV mappings to the global schema. Like in data
integration, this global schema is then used to control and coordinate the
access to the data stored in the local database instances. The main difference
between FDBSs and MDBSs is that the latter allows for several different global
schemas, while FDBSs only contain a single global schema. The different
global schemas in MDBSs allow for more autonomy of the member databases.

However, with respect to flexibility and low setup costs, the need for a
global schema is the major drawback of these systems. First of all, it has
to be possible to express an appropriate schema at all. If this can be done,
the participants then have to agree on a certain global schema. Here the
possibility offered by MDBSs to use several schemas for different tasks or
for data sharing with different member databases may help to overcome
some of these problems and at the same time allow for more autonomy of
the different members. However, someone has to be responsible for setting
up and maintaining the global schema, and since queries to the combined
system are posed over this global schema, it also requires some infrastructure
that controls query answering (as well as for the other coordination tasks).
A possible setting where it may be problematic to find someone taking the
responsibility for maintaining the global schema could be for example when
different companies want to share some of their data, but none of them wants
to be responsible [41].

Relationship to PDMSs

The idea of PDMSs3 is to combine the flexibility and level of distribution of
the peers from P2P systems with the strong semantics and high expressive
power of database systems. Therefore in PDMSs the global schema is omitted,
and all coordination is done between pairs of peers only. Instead of mapping
the local (peer) schemas to a global schema, the mappings are now defined
directly between pairs of peer schemas (see Figure 6). Another difference
between PDMSs and MDBSs is how query answering works: In MDBSs, the
query is posed over the global schema. The MDBS then issues corresponding
subqueries (according to the mappings) to each local database, collects the

3 As already mentioned in the introduction, the term PDMS(s) is not used unambiguously. For
example, in [7], PDMS is used to denote every kind of P2P system used for data sharing, including
P2P filesharing systems. In such cases, a collection of database systems connected by the described
P2P approach is often referred to as Peer Database System (PDBS), to stress that the nodes of the
network are actually databases. Other authors (e.g. [43]) use the term PDMSs to only denote the
set of PDBSs. Sometimes PDMS is even used to only refer to a very special kind of a PDBS. To
avoid unnecessary confusion, in this thesis only the term PDMS(s) is used as introduced in this
chapter (i.e. with the same meaning as the term PDBS in [43]).

4.1 peer data management systems 40

DB1 DB2 DB3

G

DB1 DB2 DB3

Figure 6: Structure of federated/multi database systems (left) and PDMSs (right).

answers and returns them as results to the initial query. In PDMSs, every
query is posed against the schema of a single peer. This peer then evaluates
the query over its local schema, and decides whether (parts of) the query
needs to be forwarded (maybe in a rewritten form) to some of its neighbours.
If the query is indeed forwarded, then the receiving peer performs exactly the
same steps and returns the results to the first peer.

In [7], a classification of distributed database systems presented in [66]
is extended to also cover PDMSs (see Figure 7). In this classification, each
system is characterised along the three dimensions distribution, autonomy and
heterogeneity. The classifications of some distributed database systems are

A1 A2 Ap2p

H1

D1

D2

Dsp

Dhyp

FDBSs
MDBSs

PDBSs

Autonomy

Distribution

Heterogenity

Figure 7: Classification of distributed data management systems along the dimensions
distribution, autonomy and heterogeneity [7].

marked in Figure 7. For a more detailed description of these classifications
please refer to [7, 66], as in the following we will only comment shortly on the
classification of PDMSs.

While [66] considers only three levels of autonomy, [7] adds another level
(Ap2p) to point out that for the reasons mentioned above (especially with
respect to query answering), the autonomy of the members in a PDMS is
higher than those of members in a MDBS. Ap2p is defined to reflect full
autonomy. Moreover, with respect to heterogeneity, PDMSs are considered
to be fully heterogeneous, since it is by no means required that all peers
are equal, not even that they all implement the same data model. Finally,
PDMSs are considered to span several levels of distribution to underline that
there have been several proposals in the literature that are based for example
on super-peers, make use of distributed hashtables or maintain some global

4.1 peer data management systems 41

indices. The PDMS described in Chapter 5 and implemented as part of this
thesis can be classified (w.r.t. to the level of distribution) as pure P2P system
(D2), requiring no centralised coordination.

4.1.2 Classes of PDMSs

Above, PDMSs were introduced as combinations of MDBSs and P2P systems.
In the literature, several proposals for PDMSs have been made. On the one
hand, concrete prototypes have been presented (a selection is introduced in
Section 4.3), and on the other hand formalisation techniques and frameworks
for modeling and describing PDMSs were suggested (see Section 4.2). As a
rule of thumb, within all these suggestions, three different classes of PDMS
can be distinguished according to the information exchanged by the peers:
queries, data or updates.

The most common approach to PDMSs is to exchange queries between
the peers (e.g. [15, 38]). Such systems can be seen as a generalisation of
data integration systems: The mappings between the peers are only “virtual”,
meaning that they do not require data to be materialised in order to satisfy
them. Instead, all data resides at its source. If a query is posed to a peer,
on the one hand it evaluates this query over its local schema, and on the
other hand it issues subqueries to its neighbours in order to retrieve those
answers to the query implied by the mappings. These steps are then repeated
by each peer that receives such a subquery. Once the primary peer collected
all implied answers, it returns them as results of the query. In such settings
where all data resides at the sources, and only queries and their answers are
exchanged on demand between the peers, each peer is often modelled as a
data integration system itself: A peer may contain local relations where the
data is actually stored, while the public peer relations are only virtual. A
mapping between the local relations and the peer relation defines which data
the peer is willing to share. As depicted in Figure 8, it may not be required
that a peer contributes local relations, but it may as well act as mediator only.

P1
S(P1)

P2

S(P2)

P3

S(P3)

P4

S(P4)

P5
S(P5)

S(P6) S(P7)

S(P8) q1

q2

Figure 8: An example structure of a PDMS where peers exchange queries: Some peers
contribute data to the system and are modelled as data integration systems
themselves, while others act as mediators only.

4.2 formalisation approaches and techniques 42

While the former approach can be seen as a generalisation of data integra-
tion, other approaches try to generalise the data exchange setting (e.g. [30], or
to some lesser extent [26]). Thereby, just as in data exchange, the mappings are
interpreted as constraints that require certain facts to be materialised in order
to satisfy the mappings. Since this requires data to be materialised under
the peer schemas, in general no distinction between local relations and peer
schema is made. Query answering in such settings only requires to evaluate
the query locally at the peer to which it is posed, since all data implied by the
mappings is already materialised.

The third class of PDMS differs slightly more from the other two classes.
Instead of exchanging information about the data actually stored in the sources,
only information on the updates performed on the local databases are shared
by the peers (e.g. [76], or the ECA rules — see Section 4.2.3). How this is
done specifically and the effect of updates on the instance of one peer to the
instances of the other peers depends on the different approaches. For example,
when using ECA rules, they are used to express the mappings between the
peers, and each update triggers under certain conditions immediately a set
of clearly defined actions on the instances of other peers. On the other hand
in the ORCHESTRA system (for a short summary see Section 4.3.7), schema
mappings between the peers are used to transform updates made at one peer
to updates over the schemas of the neighbouring peers. Moreover, updates
are not published and imported immediately when they occur, but they are
stored until the user decides to publish them (or to apply updates published
by other peers). So the general idea is that the user works on an isolated
database instance and may import changes made by other peers, but there
are no notions like satisfying a mapping. Updates made at other peers can be
accepted or rejected.

In the remainder of this chapter, first an overview of some of the techniques
and formalisation approaches proposed in the literature for modelling and
describing PDMSs is given, followed by a short overview of some PDMS
prototypes presented in the literature is given (by making no claim to be
complete, but trying to capture the variety of proposed systems). More
detailed summaries of suggested prototype systems and their properties, as
well as classifications and further research challenges can be found in [43] and
[7]. Finally in Section 4.4 one PDMS, Piazza, is presented in a little bit more
detail.

4.2 formalisation approaches and techniques

In Chapter 3 schema mappings have been introduced as a mapping formalism
between database schemas. Therefore these kinds of schema mappings are one
possibility to express the dependencies between peers in a PDMS. However,
in the literature several additional approaches have been considered. In
this section, some of the most important of these formalisation approaches
are summarised. This includes techniques for modelling PDMSs as well as
different methods to define mappings between peer schemas.

4.2 formalisation approaches and techniques 43

In Section 4.2.4, some of the problems occurring when extending data
exchange and data integration to a P2P setting as described at the beginning
of this chapter and solutions for these problems are discussed. This is of
special interest because the semantics for PDMSs proposed in Section 4.2.4
is the semantics that was adopted in the PDMS implemented as part of this
thesis.

4.2.1 Local Relational Model (LRM)

The Local Relational Model (LRM) [4, 72] was one of the first suggestions for
how to formally model a PDMS and to describe its semantics. It has therefore
been also used (e.g. in [4]) to describe the idea of PDMSs.

The LRM is a proposal for a data model for PDMSs, and is a generalisation
of the model-theoretic semantics proposed in [68]. The idea is to describe
the P2P system as a relational space, where each peer is modelled as a local
relational database, and to express dependencies between these local databases
by so called coordination formulas. When two or more databases model the
same part of the world, this is referred to as overlapping databases, and domain
relations are used to express such overlappings.

More formally, a local database is a relational database, identified within
a relational space by an index i ∈ I, where I is the the set of indices for a
relational space. Because LRM uses a model-based semantics, the schema
of database i is defined over some logical language Li and the set of valid
instances dbi for the database i is defined by first-order interpretations of Li
on domi (the domain of database i).

Given a set of local databases, the LRM does not define a notion of global
(in)consistency, but only for local consistency of single databases i, based on
the number of valid instances for i. A database i is complete if |dbi| = 1,
incomplete if |dbi| > 1 and inconsistent if dbi = ∅.

Because whether two databases overlap or not does not depend on the con-
stants they contain, but only on the concepts represented by those constants,
domain relations are used to represent overlappings. A domain relation ri,j
is any subset of domi × domj. As domain relations need neither be func-
tions nor symmetric, each overlapping between two databases dbi and dbj is
expressed by the two domain relations ri,j and rj,i.

A relational space is defined as a pair 〈db, r〉 where db is a set of local
databases with indices from i ∈ I, and r is a function assigning to each pair
(i, j) ∈ I× I a domain relation ri,j. (Despite of the definition, it is neither
necessary that all pairs of local databases must overlap, nor must there exist a
mapping between all pairs of local databases. For such cases ri,j = rj,i = ∅.)

Coordination formulas used to define semantic dependencies between two
local databases are defined as follows:

Definition 4.2 (Coordination Formula [4]). The set of coordination formulas
CF on the family of languages Li (i ∈ I, Li is used to express the schema of
database i) is defined as
CF ::= i : φ | CF→ CF | CF∧CF | CF∨CF | ∃i : x.CF | ∀i : x.CF
(where i ∈ I and φ is a formula of Li). a

4.2 formalisation approaches and techniques 44

Thereby i : φ means that φ is satisfied in database i, the connectives have their
usual meaning. The quantifier expressions ∀i : x.CF and ∃i : x.CF mean that
for all elements in domi, CF evaluates to true (or that there exists an element
in domi such that CF evaluates to true resp.). If within the scope of some
quantifier the context of the variable is changed by some expression j : φ(x),
then the values of the domain relations ri,j and rj,i are used to map the value
of x under domi to a value of domj.

Moreover, φ is considered to be satisfied in database i, if φ holds for all
instances d ∈ dbi. Based on this notion, satisfiability of the other operators is
defined as expected.

Coordination formulas can be either used to express constraints on a rela-
tional space (for example to state that a certain piece of information must be
present in some database, but without determining in which one), or to define
how to derive new information from the data present in certain databases (that
is, for defining queries). Queries can either be used to express relationships
between databases, or to pose user queries over the schema of one database i.

Definition 4.3 (i-query [4]). An i-query is a coordination formula of the form
A(~x) → i : q(~x), where A(~x) is a coordination formula, q is a new n-ary
relational symbol and ~x contains n variables. a

Definition 4.4 (Global Answer to an i-query [4]). Let 〈db, r〉 be a relational
space. The global answer of an i-query of the form A(~x)→ i : q(~x) in 〈db, r〉 is
the set: {t ∈ domni | 〈db, r〉 � ∃i : ~x.(A(~x) ∧ i : ~x = t)} a

More details about the LRM can be found in [4, 72]. While [72] gives a more
detailed introduction to the LRM than [4] and contains further examples, the
latter describes an architecture for an implementation of the LRM.

4.2.2 Mapping Tables

Mapping tables [49, 50, 59, 67] coincide with the domain relations in the LRM
and are used to express correspondences of values between different domains.
This can be either used to describe which values from different domains
refer to the same concepts, or to relate concepts (for example in biology by
relating genes to proteins). Thereby such a mapping needs not to express
some general relationship, but does only mean that for the two database
instances the mapping table is defined on, there exists some correspondence.

In the simplest case, a mapping table is a binary relation where each
row defines an association between two values. Note that mapping tables
neither need to encode functions nor are they restricted to map one value
onto exactly one other value. Although it would be possible to describe the
mapping between the domains of two complete databases within a single
relation, most of the time one column in a mapping table corresponds to one
attribute in a relational schema, and therefore mapping tables provide also
some rudimentary relation between the schemas (by relating attributes from
one schema to attributes of the other schema). In the following, only such
kinds of mapping tables are considered.

4.2 formalisation approaches and techniques 45

The intuition of two possible applications of mapping tables is depicted in
Example 4.5:

Example 4.5. By sticking to the general library scenario from the last chapter,
assume the following two schemas:
LibUB = {Author1(FirstName,LastName), Bookstatus1(Book,Status)}
and LibDep1 = {Author2(Name), Bookstatus2(Book,Status)}. Then the
following two mapping tables could be used to relate those two schemas:

fn ln name

‘THE’ ‘author’ ‘author, THE’

‘also’ ‘author’ ‘author, also’

Status1 Status2
‘0’ ‘unknown’

‘1’ ‘in archive’

‘2’ ‘checked out’ �

More formally, one row in such a table can be defined as mapping:

Definition 4.6 (Mapping [50]). Let U be a set of attributes and let A denote a
single attribute. A tuple t over these attributes is a mapping over U, if t[A] is
either a value from dom(A), a variable or of the form v− S (v being a variable
and S ⊆ dom(A)) for all A ∈ U. a

Hence in Example 4.5 every row in one of the tables corresponds to one
mapping, while all t[A] contain only values from dom(A).

Variables are used to easily express mappings between ranges of values. For
example the identity of the values between two attributes can be expressed
by a simple mapping (x1, x1), where x1 is a variable. The expression v− S

denotes that v may not be instantiated with a value in S (i.e. this expression
can be used to restrict the domain of a variable).

A mapping table consists of several mappings, with the restriction that
variables are local with respect to the mapping, that means no two mappings
(hence rows) share some variable.

Definition 4.7 (Mapping Table [50]). Let X and Y be nonempty disjoint sets
of attributes. A mapping table m from X to Y is a finite set of mappings over
X∪ Y such that each variable appears in at most one mapping. a

Different possibilities for the semantical interpretation of mapping tables exist,
depending on whether an open or a closed world semantics is applied. In
an open world semantics, every value x for an attribute in X can be mapped
to any value for an attribute in Y, independent of whether x is present in
the mapping table or not. Under closed world semantics, if x appears in
the mapping table, it can only be mapped to those values indicated by the
mappings. If x does not appear in the table, then it must not be mapped to
any value at all. Since it may be advantageous to apply a different semantics
to data present in the mapping table than to data not present, this gives rise to
four possible semantics. But only two of them, CO-world (closed-open-world:
all values present in the mapping table must only be mapped according to the
mappings in the table, values not in the table may be mapped to any value of
Y) and CC-world (closed-closed-world: only those mappings specified in the
mapping table are allowed) are of practical use.

4.2 formalisation approaches and techniques 46

Having a set of mapping tables, it might be of interest whether they are
consistent, or whether they imply further mappings, not explicitly stated. To
be able to perform such reasoning over mapping tables, they are regarded
as mapping constraints. This is done based on the observation that given a
tuple t and a mapping table M, the table M restricts the set of tuples onto
which t may be mapped. This gives rise to the notion of mapping constraints.
By combining mapping constraints using ∧, ∨, and ¬, one obtains mapping
constraint formulas (MCF). With these notions it is possible to define consistency
and implication of mapping tables. If φ is a mapping constraint formula over
a set of attributes U, φ is consistent if there exists some nonempty instance
I for U that satisfies φ. Moreover, let Σ∪ {φ} be a set of mapping constraint
formulas. Then Σ implies φ, if for every instance I for U, if I satisfies Σ, then
I satisfies also φ. In [50] it is stated that deciding whether a given MCF is
consistent is NP-complete. Since this is equivalent to deciding whether a
set of MCFs implies a given MCF, the result holds for the latter problem as
well. Nevertheless [50] identifies a restricted case where these problems are
efficiently solvable and gives an algorithm for it. In [67] this algorithm is
extended to a less restrictive but still tractable case.

Another important issue is how mapping tables can be actually used for
query rewriting. This problem is considered for example in [49], where
mapping translations for both, sound and complete semantics of the query are
considered, and an algorithm for computing such translations is presented.
In [59] a different setting also containing mapping tables is considered, and a
query rewriting algorithm for this setting is proposed.

4.2.3 ECA Rules

Event-Condition-Action (ECA) rules [46, 47, 77] are similar to the concept of
SQL triggers. As such, they allow to specify actions to be performed when
a certain event (for example the insertion or deletion of a tuple into/from a
database) occurs and a set of conditions is satisfied. But unlike SQL triggers,
instead of being defined over a single database only, they are intended to alter
the data of one peer according to an action occurring in a neighbouring peer.
Therefore ECA rules are used as a mechanism for keeping database instances
at different peers consistent with each other, that is to coordinate the data
exchange between different peers. Obviously for ECA rules it does not matter
whether two peers use the same or different schemas. Unlike in “traditional”
data exchange, instead of defining dependencies between schemas that restrict
valid instances over those schemas, they encode rules determining which
actions have to be taken to coordinate the data at different peers.

The generic form of ECA rules is

when < event >, if < condition >, then < action > , where

event describes an event like insertion, update or deletion of a tuple that
triggers the rules and condition is a Boolean expression encoding the con-
straints that need to be satisfied for an ECA rule to be active. The if-part of
the rule may be omitted, which is equivalent to the condition true. Once a

4.2 formalisation approaches and techniques 47

rule is triggered by the event specified by event, condition is checked, and if
it is satisfied, action is performed. Executing the defined action will result
in updating the data of some peer according to the event and condition that
triggered the rule.

In [46] an algorithm for deriving and exchanging ECA rules between peers
in a setting also including mapping tables is discussed. In [47], besides a
detailed description of possible languages for defining event, condition and
action (a discussion of them is beyond the scope of this thesis) in an ECA
rule, also an algorithm for processing these rules in a distributed4 setting is
proposed: An ECA rule is typically defined at a single peer that is responsible
for executing it. But since a rule may include events and conditions of several
peers, in a first step the rule is decomposed into subrules that are sent to the
corresponding peers. The action defined in these new subrules consists of
sending the result of the evaluation of the rule to the peer responsible for
executing the original rule. Based on the results this peer receives, it then
decides about further actions.

[77] considers the rewriting of ECA rules according to schema mappings.
The idea is to simplify the creation of ECA rules by providing sets of rules
between standard schemas for certain domains (like for example one global
schema for hospitals, one for pharmacies, . . .). Between these schemas typical
ECA rules are defined and stored in a “library” of such rules. Like in data
integration, the concrete schema of a peer is mapped to the appropriate global
schema (using exact GAV mappings). When two peers, each having mapped
its local schema to some of the global schemas, decide that they want to
coordinate their data, they pick an ECA rule of this library. This rule between
the two global schemas is then rewritten using the mappings between the peer
schemas and the global schemas to a rule directly between the schemas of the
two peers.

4.2.4 A Weaker Semantics for Schema Mappings

As mentioned at the beginning of this chapter, one way to model PDMSs is to
consider them as generalisations of data exchange and data integration settings.
This means to apply schema mappings as used in these systems as P2P
mappings (i.e. as mappings between two peers) in PDMSs. Such mappings
have the advantage to possess a strong and well understood semantics and
a high expressive power. Unfortunately, their expressive power is even too
high, such that in a general P2P setting several important reasoning tasks
(like query answering or data exchange) are undecidable. This can be easily
seen for the case when P2P mappings are modelled as TGDs. While in a
data exchange setting the set of source-to-target TGDs is assured to be weakly
acyclic, this is no longer the case when allowing an arbitrary topology for
P2P mappings. Therefore the data exchange problem becomes undecidable
in such settings. The same is obviously true when using GLAV mappings.
Considering only combinations of GAV and LAV mappings, query answering

4 Although the setting considered in this paper is a multidatabase setting, the authors state the
algorithm is intended to be used in a P2P setting.

4.2 formalisation approaches and techniques 48

may also become undecidable for an arbitrary topology of these mappings.
The reason for this is that in data exchange and data integration, a first-order
logic (FOL) semantics is applied to the mappings, which allows for reasoning
over the whole set of mappings.

Therefore three possibilities exist to overcome this problem of undecidability:
One can restrict the topology of the P2P mappings, such that reasoning over
them remains decidable (for example if the mappings are TGDs, one has
to forbid that the P2P mappings of a PDMS form a not weakly acyclic set).
Such an approach (for a combination of GAV and LAV mappings) has been
chosen for the Peer Programming Language used in the Piazza system which
is described in more detail in the Section 4.4. Drawback of this approach is
that the peers are no longer completely autonomous. Coordination cannot
be done only between pairs of peers, since when defining mappings between
two peers, global knowledge is needed to avoid a forbidden cycle.

Another possibility is to restrict the kinds of allowed mappings such that
no dangerous cycles can be created. For example, if only allowing full TGDs,
the important reasoning tasks remain decidable. But this would restrict the
expressive power of the queries unnecessarily.

The third approach is to apply a weaker interpretation than FOL to the
P2P mappings, such that reasoning remains decidable even in the presence of
arbitrary cycles. This is also the approach taken in the theoretical framework
described in the next chapter that was implemented as part of this thesis.

Therefore this approach is now described in more detail. In the following,
first the intuition of this interpretation is explained, and then four formali-
sations of this idea are presented. Three of them are given in this section,
while the fourth approach is stated in the next chapter when describing the
framework for PDMSs proposed in [30]. In the remainder of this section,
mappings between peers are assumed to be expressed as TGDs.

The weaker semantics for PDMSs has been first suggested in [14]. Its basic
idea is not to use mappings for reasoning over the complete system, but to
use them only to fetch data directly from other peers. This difference is best
shown by the following example.

Example 4.8. This is a reformulation of a standard example (see e.g. [25]) in
terms of the university library scenario used throughout this thesis.

Assume three peers with the corresponding schemas
LibUB = {Books(ISBN, Title,Author, Id,Status)}
LibUB2 = {Archive(Title,Status),Elsewhere(Title,Status)}
Website = {Booksws(Title,Status)}
and the following mappings:

1. Books(ISBN, Tit,Aut, Id,Stat)→
Archive(Tit,Stat) ∨ Elsewhere(Tit,Stat)

2. Archive(Tit,Stat)→ Booksws(Tit,Stat)

3. Elsewhere(Tit,Stat)→ Booksws(Tit,Stat)

Then, by applying the “standard” FOL interpretation, these mappings imply
that every book stored in the Books table also belongs to the Booksws table:

4.2 formalisation approaches and techniques 49

For every book in the Books table it is known (mapping 1) that it is either in
the Archive or in the Elsewhere table. In both cases however a corresponding
entry in the Booksws table is implied either by mapping 2 or 3.

Under the weaker semantics, entries in the Books table do not imply any
entry in the Booksws table. This is because under this semantics, the mappings
only propagate data that is known by a peer. But just because some fact
(e.g. Books(‘001’, ‘THEbook’, ‘THEauthor’, ‘b1’, ‘0’)) is contained in the
Books relation, from the dependency 1 neither Archive(‘THEauthor’, ‘0’) nor
Elsewhere(‘THEauthor’, ‘0’) is known by peer LibUB2 (i.e. neither of those
facts is implied by dependency 1). Therefore neither dependency 2 nor 3 does
imply some fact Booksws(‘THEauthor’, ‘0’). Hence the existence of some row
in the Books table does not imply any data in the Booksws table. �

Hence, under this semantics only facts are exchanged that are known
by a peer (and in the above example, neither Archive(‘THEauthor’, ‘0’)
nor Elsewhere(‘THEauthor’, ‘0’) is known by LibUB2). Thereby a fact is
considered to be known if it is part of every interpretation of the peer, that is if
it holds in every possible world. Therefore, the semantics can also be described
as peers only exchanging certain answers. The following example shows
another difference in the behaviour of the FOL and the weaker semantics.

Example 4.9. Consider a similar setting as in Example 4.8:
LibDep = {BooksDep(ISBN, Title,Author, Id)}
LibUB = {Books(ISBN, Title,Author, Id,Status)}
Website = {Booksws(Title,Status)}
and the two mappings

1. BooksDep(ISBN, Tit,Aut, Id)→
Books(ISBN, Tit,Aut, Id,Stat)

2. Books(ISBN, Tit,Aut, Id,Stat)→
Booksws(Tit,Stat)

(Note that dependency 1 contains an existentially quantified variable on its
right hand side.)

Moreover consider a CQ q = {(Tit) | Booksws(Tit,Stat)} over the peer
Website and an instance D for BooksDep containing a single fact
BooksDep(‘001’, ‘THEbook’, ‘THEauthor’, ‘b1’).

Then, under the FOL interpretation of the mappings, q returns the answer
{(‘THEbook’)}. Under the weaker semantics however, the answer to q is
∅, although the Title attribute is never involved in any uncertainty. But
because of the existentially quantified variable in dependency 1, no tuple
(Title,Status) is implied by the mappings, and hence the Booksws relation
contains no data and the query returns the empty set as answer. �

Hence, mappings interpreted under this semantics only exchange tuples that
contain no existentially quantified variables (i.e. labelled nulls), and a mapping
is satisfied by an instance under this semantics if all tuples without labelled
nulls are exchanged. This reflects exactly the intuition of this semantics for
the same reason why certain answers cannot contain labelled nulls. Since they

4.2 formalisation approaches and techniques 50

may be interpreted as different values in different possible worlds, the value
of positions containing a labelled null are not known (and as mentioned above,
one intuition of this semantics is that peers only exchange certain answers).

Several suggestions how to formalise this intuition of exchanging only
“known” facts have been made. They are summarised below together with
some proposed extensions to handle inconsistency. Recall that a GLAV map-
ping consists of assertions qS qG, where qS and qG are conjunctive queries
of the same arity.

The suggestions presented below deal with yet another drawback of the
semantical description of a PDMS using classical FOL. As it will be shown
some paragraphs later, when using classical FOL the whole PDMS is modelled
as one flat FOL theory. This one theory describing the whole PDMS does not
express the structure and modularity of the modelled system. This means that
the single peers and the structure of the network are lost in such a theory. It is
therefore also a goal of these alternative suggestions to provide a formalisation
that models both the peers and their connections nicely (i.e. that reflects their
structure).

Epistemic Semantics

The notion of a weaker semantics for P2P mappings has been first introduced
in [14]. In this paper, the semantics of PDMSs that can be seen as an extension
of data integration systems is considered: In this setting, every peer (Pi)
consists of a local schema (SPi) and a peer schema (GPi)

5. While the local
schema describes the data stored at a peer, the peer schema describes the
data a peer is willing to share. The peer schema of each peer is related to
its local schema by sound GLAV mappings, called local mappings. Moreover,
dependencies between peer schemas of different peers can be expressed by
GLAV mappings as well.

The semantics of each peer is described by an own FOL theory TPi , that con-
tains all FOL formulas needed to express GPi (i.e. formulas to describe the rela-
tions and, if defined, constraints over GPi) and one formula ∀~x (∃~y (qS(~x,~y))→
∃~z (qG(~x,~z))) for each local mapping qS qG. Then, assuming a finite in-
stance D of GPi , an instance 〈D,B〉 for 〈SPi , GPi〉 (i.e. an interpretation of TPi)
is called a model of Pi based on D if it is a model of TPi .

Using the classical FOL semantics, the semantics of a complete PDMS
would be defined as follows: Denote TP as the union of all peer theories
TPi . An interpretation I of TP is a FOL model of the PDMS with respect
to a set of instances {Di} for the local schemas SPi if it is a model of Pi
based on Di for each peer Pi and it is further a model of a set of formulas
∀~x (∃~y (q1(~x,~y))→ ∃~z (q2(~x,~z))), one for each P2P mapping q1 q2.

The language of epistemic logic extends the language of FOL by allowing for
one additional form of atoms, namely Kφ, where φ is an epistemic formula.
Intuitively, Kφ describes those objects that are known to satisfy φ. Because of
space restrictions it is not possible to give an introduction into epistemic logic.

5 For simplicity, it is assumed that all local and peer schemas are pairwise disjoint.

4.2 formalisation approaches and techniques 51

Short introductions and references to more detailed descriptions can be found
in [14, 15].

Using epistemic logic, the semantics of a PDMS P is defined in terms of an
epistemic theory for the PDMS. This theory Te consists of TP (as defined above)
and one axiom ∀~x (K(∃~y (q1(~x,~y)) → ∃~z (q2(~x,~z)))) for each P2P mapping
q1 q2 (denote this set of axioms with MP). Note that just by the intuition
of the meaning of an atom Kφ described above, this exactly expresses the idea
that peers only exchange data that is known by them. Just as in the FO-case,
assume a set of instances {Di} for the local schemas SPi . Then an epistemic
interpretation (I, W) is an epistemic model of P based on {Di}, if each W ∈W is a
model of Pi based on Di for each peer Pi, and (I, W) is an epistemic model of
MP.

This definition guarantees that, given an epistemic model (I, W) of P based
on {Di}, for every P2P mapping q1 q2, whenever a tuple t ∈

⋂
W∈W qW1 ,

then also t ∈
⋂
W∈W qW2 , which covers exactly the intuition mentioned above

that peers exchange certain answers. (Note that unlike in the FOL semantics,
the semantics of P2P mappings is not defined for a single FOL model, but for
a set of FOL models, namely W.)

In [15], this semantics is compared to the FOL semantics with respect to
properties like modularity, generality and decidability, which are argued to
be desirable properties for a PDMS. It is then shown that with respect to
these properties, the FOL based semantics shows some undesirable behaviour,
and it is argued that the semantics based on epistemic logic shows a more
preferable one.

Moreover an algorithm for query answering in a PDMS based on this
semantics is given, which runs in polynomial time (data complexity).

Local Semantics

In [25], three different (but equivalent) formalisations are presented that are all
equivalent to the semantics based on epistemic logic. Here, only one of them
will be mentioned, namely the Local Semantics. Unlike in the setting described
above, in [25] every peer consists of only a single schema Pi that is used for
both, describing the data locally stored at the peer and defining mappings
between peers. Each peer is identified with its schema Pi. A PDMS is therefore
modelled as a sequence of peers 〈P1, . . . , Pn〉, and a set of P2P mappings.
Mappings are expressed in [25] as GAV mappings qP qPi , where qP is a
conjunctive query over all peer schemas Pi and qPi is a conjunctive query
over the peer schema of a single peer Pi containing only a single atom and
no variable not occurring in qP. Note however, that the definition of a local
model given below can be immediately extended to arbitrary TGDs.

A local model M of a PDMS is a sequence 〈M1, . . . ,Mn〉 such that each
Mi is a non empty set of instances mi for Pi (i.e. ∀mi ∈ Mi : mi � Pi).
Moreover, for every mapping b1(~x1,~y1) ∧ · · ·∧ bk(~xk,~yk)→ h(~x) (where bi

4.2 formalisation approaches and techniques 52

is a relational symbol from Pji , and h from some peer schema Ph) and every
assignment of ~x it holds that

(∀mi1 ∈Mi1 : (mi1 � ∃~y : b1(~x1,~y))) ∧

· · ·∧
(∀mik ∈Mik : (mik � ∃~y : bk(~xk,~y)))→

(∀mh ∈Mh : (mh � h(~x)))

Again, this definition captures the intuition that only facts that are known
by the peers are exchanged. Just as in the epistemic case, the semantics is
defined using a set of models instead of a single model, and only facts that
hold in each of these models are exchanged.

In [25], also the problem of local inconsistency is investigated, and the local
semantics is extended to be robust with respect to local inconsistency. A
database of a peer Pi is considered to be locally inconsistent if the correspond-
ing set Mi contains no instance in any local model of the PDMS (i.e. if Mi = ∅
in any local model). Under the local semantics, this would immediately imply
that no model of the overall system exists. Therefore, by applying the fact that
from an inconsistent source everything can be derived it is defined that every
relation R (of arity n) that depends on an inconsistent peer Pi (i.e. there exists
a mapping that contains R on its right hand side and a relational symbol of
Pi on its left hand side), contains every tuple from ∆n. Thereby ∆ denotes the
domain that is used for the interpretations of the PDMS, so depending on the
concrete setting most probably the active domain.

Moreover, the paper presents two algorithms for query answering, a cen-
tralised one that requires global knowledge about all mappings in the system,
and a decentralised, distributed algorithm that does not have this shortcoming.
Both algorithms run in polynomial time with respect to data complexity.

Multimodal Epistemic Semantics

In [16], yet another formalisation of the general idea of the weaker semantics is
presented. It is not completely equivalent with the other approaches, because
the aim of the proposed semantics is to handle inconsistency. Therefore, two
different types of inconsistencies are considered: local inconsistency and P2P
inconsistency. Local inconsistency describes the fact that the content of a local
peer database is inconsistent. This means that local inconsistency is a problem
of single peers. P2P inconsistency on the other hand occurs if, for a peer whose
local data is consistent, contradicting data is implied by some P2P mapping
(either because information implied by two different mappings contradict
or because the implied data is inconsistent with respect to the data stored
locally).

The idea suggested in [16] is on the one hand to isolate locally inconsistent
peers (i.e. to “disable” all mappings originating in such a peer), such that
the inconsistency of this peer is not propagated to the whole system. On the
other hand, peers reject data derivable by P2P mappings that would lead to
inconsistency at this peer.

4.2 formalisation approaches and techniques 53

The considered setting is the same as the one in [14], described above when
introducing the formalisation using epistemic semantics. To better reflect
the structure of a PDMS, i.e. that it consists of a set of autonomous peers,
the authors choose a multimodal epistemic logic to model such a system.
More precisely, the logic K45n is used to describe the semantics of a PDMS.
Because of space restriction, no introduction to this logic is given here. A nice
introduction and further references can be found in [16]. Thereby K45n is
similar to the epistemic logic described above. But instead of a single modal
operator K, it contains a set of modal operators K1 . . .Kn (intuitively, one for
each peer). These modal operators are used in the same way as the K operator
may be used, that is whenever φ is a formula, Kiφ is a valid formula. But the
modal operators have a different semantics. While the intended meaning of
an atom Kφ above was that φ is known to be true, Kiφ expresses that peer
Pi believes that φ is true. (The change from knowledge to beliefs is made in
order to be able to handle inconsistencies.) More formally, while Kφ → φ

always holds in the above semantics, Kiφ→ φ need not to be true.
A PDMS P is then described by a K45n theory T . For each peer Pi, T

contains for each FOL formula φ needed to describe GPi (i.e. the formulas
describing the schema and the constraints over the schema) a formula Kiφ, and
for each local mapping qS qG a formula Ki(∀~x ∃~y qS(~x,~y)→ ∃~z qG(~x,~z)).
Intuitively, these formulas state that every peer actually believes the content
of its local database. Moreover, for every P2P mapping qi → qj, a formula
∀~x (Ki(∃~y qi(~x,~y)→ Kj(∃~z qj(~x,~z)) is added to T , with the intuitive meaning
that if some tuple t is believed by peer Pi to belong to the answer to qi, then
Pj must believe that t belongs to the answer of qj (which again resembles the
intuition of the weaker semantics for P2P settings).

Models of such theories are then defined analogous as for the epistemic
semantics from above with respect to a set of given instances for the local
schemas.

Note that this formalisation is not yet capable of handling inconsistencies.
To manage this, the logic K45n is extended to a nonmonotonic logic K45An .
Syntactically, K45An differs from K45n by a second set of modal operators
A1 . . .An. These operators correspond to the complement of negation as
failure (known as justified assumption). As this operator will only be used
negated, this expresses negation as failure.

With these operators, to handle local inconsistency in the way described
above, every P2P mapping is described by a formula ∀~x(¬Ai⊥i∧Ki(∃~yqi(~x,~y)
→ Kj(∃~zqj(~x,~z)))), instead of the formulas for P2P mappings under K45n.
Intuitively, ¬Ai⊥i is true iff peer Pi is not locally inconsistent. Therefore, as
soon as Pi becomes locally inconsistent, this mapping becomes inactive. If Pi
is not locally inconsistent, then the mapping has the same semantics as under
the logic K45n.

To handle also P2P inconsistency, the formulas describing P2P mappings
are extended by another condition, such that P2P mappings are described
by formulas of the form ∀~x(¬Ai⊥i ∧ Ki(∃~yqi(~x,~y) ∧ ¬Aj(¬∃~z qj(~x,~z)) →
Kj(∃~zqj(~x,~z)))). Intuitively, the new condition ¬Aj(¬∃~z qj(~x,~z)) states that
the values implied by this mapping are consistent with the current knowledge

4.3 pdms prototypes 54

of Pj, expressed by stating that the negation of this data cannot be derived.
This ensures that Pj remains consistent. If neither Pi is locally inconsistent
nor does the implied data contradict the data in Pj, then the semantics of the
mapping is the same as under the logic K45n. Otherwise this mapping is
inactive. Moreover, the semantics of K45An is defined in such a way, that the
amount of data rejected by a peer is minimised.

The formal description of the semantics of these theories is omitted here
due to space restrictions.

For a setting where the P2P mappings are only GAV mappings and only
key constraints are allowed over the peer schemas, the authors show that
query answering under the semantics based on the K45An logic is decidable.
Moreover, they show that query answering in such a setting is coNP-complete,
and give a coNP-algorithm for this problem.

4.3 pdms prototypes

In this section some prototype PDMSs presented in the literature are intro-
duced. This list of prototype systems does not aspire to be complete, but the
selection ought to give an overview of the variety of approaches considered
for PDMSs. PDMSs have been proposed based on different data models (e.g.
the relational model, XML or RDF) and use different kinds of mappings.
Based on the way how relationships are defined between peers, peers are cou-
pled tighter in some systems than in others (for example in PeerDB coupling
is loose while it is stronger in e.g. coDB), and also systems have different
strengths of semantics.

4.3.1 Piazza

The Piazza system [35, 37]) is an early and one of the most cited PDMSs. It is a
generalisation of traditional data integration settings and defines dependencies
between peers using schema mappings. The semantics of these mappings is
defined by classical FOL interpretations.

Because of its importance and as an example for a PDMS applying classical
FOL semantics to schema mappings, a more detailed description of the Piazza
system and the formal methods used for describing its semantics is given in
Section 4.4. (A detailed description of a PDMS applying the weaker semantics
to schema mappings — the approach of De Giacomo et al. — is given in
Chapter 5.)

4.3.2 PeerDB

PeerDB [62, 65] uses an approach for expressing and deriving mappings
between schemas completely different from the approaches described above
and of those used by the other systems presented in this section. While in the
other systems the neighbours of a peer and the dependencies between peer
schemas are (at least to some extent) predefined “by hand” in a configuration

4.3 pdms prototypes 55

step by a user, PeerDB tries to establish these mappings at runtime: In PeerDB,
every node of the P2P network shares data stored under a relational schema.
However, the set of neighbours is not fixed, and no explicit mappings exist
between the schemas of different peers. Each relational symbol and each
attribute of a peer schema can have attached keywords. These keywords
should describe the relation or attribute, and are used to derive mappings
between the relations of different peers: If a user poses a query over its local
schema (every user can only query its local database), software agents are
sent to a dynamic set of neighbours of the peer that try to match the tables
and attributes appearing in the query with the relations and attributes in the
schemas of other the peers. Thereby a possible match is assumed for example
if the description of two attributes share a common keyword. When a software
agent has checked a certain peer for all possible mappings, it is sent further to
the neighbours of this peer. This propagation stops when the time to life of
the agent has expired.

All possible mappings found by the agents are returned to the user for
selecting the correct ones or those the user is interested in. Then the original
query is rewritten according to the selected mappings, and sent to the corre-
sponding peers, where it is executed. Finally, the answers to the queries are
returned to the initiating peer and are then presented to the user.

PeerDB further provides access control and caching mechanisms, and tries
to update the topology of the P2P network according to the derived schema
mappings (for example, if for most of the queries there are some connections
between the schemas of two peers that are no direct neighbours, those peers
are connected as neighbours).

4.3.3 Edutella

Edutella [56, 61, 64] was developed to share (educational) resources that are
described by RDF metadata. Therefore in Edutella, an instance contains
several RDF statements, that are queried by a user to retrieve those resources
that meet the requirements. Because of the big number of existing RDF query
languages, Edutella provides an abstraction layer for the query languages.
Before a query (posed in some language over a peer) is relayed to other
peers, it is first translated into Edutellas own exchange query language. There
exist different levels of this exchange query language, each having a different
expressive power, and each peer can define up to which level it is able to
accept queries. Internally, the peers use a Datalog based model to represent
those queries.

To avoid flooding the whole P2P network with a query (i.e. to simply
forward a query to all neighbours which repeat this step until it is guaranteed
that the query has reached all peers, whereby peers that can contribute to
the result of query return their contribution to the initiating peer), Edutella
implements a super-peer based approach. Thereby each peer is connected to
a certain super-peer, which allows to implement more intelligent methods for
query routing between the super-peers than just flooding. Moreover super
peers maintain indices about the data stored in the peers connected to them.

4.3 pdms prototypes 56

Edutella also contains an own “mapping-service” that allows the translation
of queries between different schemas. In fact, several techniques have been
suggested to deal with heterogeneous schemas. One idea presented in [56]
is that of local correspondences: Every super-peer defines a global schema and
a set of constraints. A peer that wants to connect to a super-peer has to
satisfy these constraints. The schemas of those peers connected to a certain
super-peer are mapped to this super-peer schema by first defining views over
the peer schema, and then defining correspondences between these views and
the elements of the super-peer schema.

In [64], also mappings between the domains of different peers, similar to
attribute correspondences and mapping tables are described.

4.3.4 Hyperion

The Hyperion project [2, 48, 51, 63, 69] investigated several aspects of PDMSs,
for example the work on mapping tables and ECA rules introduced above
has been done within this project. Within this project, also the Hyperion
PDMS was developed. The Hyperion PDMS assumes relational databases at
each peer and allows for both, exchanging data between peers by altering the
instance of one peer according to the database instance of another peer, as
well as defining only virtual mappings. Those virtual mappings do not define
any constraints on what data must be present in a valid database instances,
but are only used to allow the posing of global queries. These queries are not
only evaluated over the schema of a single peer but are also forwarded to the
other peers according to the virtual peer mappings.

Thereby different mechanisms for defining the mappings for these two tasks
are used: For defining relationships between data that are only considered for
query processing, mapping tables and mapping expressions are used. Mapping
expressions are a generalised form of GLAV expressions that express relation-
ships at the schema level, while mapping tables mainly define correspondences
on the data level (although they also provide very little information about
correspondences at the schema level). In the Hyperion PDMS, the main focus
lies on the mapping tables. Query processing is done by rewriting the query
according to the mapping tables and mapping expressions and by forwarding
the query along such mappings.

Coordination rules are used to express which data has to be materialised in a
peer database according to the content of a neighbouring peer instance. These
rules are ECA rules, hence instead of only defining relationships between
instances that have to be satisfied, coordination rules define actions that have
to be performed under certain conditions. Of course, mapping tables are
combined with coordination rules to translate the data exchanged between
two domains from one domain into the other.

One idea considered in Hyperion are interest groups: An interest group
provides a common schema for the field of interest it covers. Between different
interest groups there exist predefined mappings and coordination rules. When
a peer connects a certain interest group, its schema is mapped to the global
schema of the group. Based on this information, between selected peers,

4.3 pdms prototypes 57

the tables of one peer are tried to be expressed as views over the tables of
other peers. From these views, mapping tables are inferred. Finally mapping
expressions are created and the mapping tables are populated. For peers from
other interest groups, the predefined mappings between the global schemas
of the groups are used to infer the relationships.

According to the authors, the main focus of the Hyperion PDMS lies on the
mappings on the data level, not on mappings on the schema level. Therefore
mapping expressions play only a minor role in their considerations.

4.3.5 HepToX

HepToX [5, 6] is a PDMS working on XML-structured data. The relationship
of the data stored in two peers is expressed by mapping expressions, datalog
like rules between the DTDs describing the XML data of each peer. Although
these mappings intuitively describe how to transform instances between two
peers, no data exchange is performed in HepToX, but the mappings are only
used for query answering. Therefore HepToX could also be described as a P2P
Data Integration System. To create the mapping expressions, the user is not
required to really encode them as rules. A graph representation of the DTDs
of the two peers is shown, and tags representing the same concepts in both
DTDs can be related by connecting them with an arrow. Moreover several
tags can be grouped if the same concept is represented by more than one tag
in one of the schemas. Thereby it is not necessary that all tags in the DTDs are
matched, since the mappings need not define how to transform an instance
from one schema into the other schema. From these arrows and boxes drawn
by the user, the mapping expressions are automatically generated. Within the
three main steps of this algorithm, first the groups of nodes are identified
for which a mapping expression needs to be defined. Then the subgraph
induced by the nodes of a group in the DTD is transformed into a tree and an
according tree expression, and finally mappings are defined between these
rules.

With these mapping expressions at hand, a query posed over one peer
database can be translated according to the mappings to queries over the
databases of peer neighbours. Thereby, given a mapping from peer P1 to P2,
the mapping can be used for both, translating a query over P2 to a query
over P1 and vice versa. For both cases the semantics is defined as well as
an algorithm stated that performs the transformation. This algorithm again
consists of three steps: first the query is expanded such that it matches a
mapping expression, then the expanded query is translated according to the
mapping expression, and in the final step redundant parts of the translated
query are removed.

As query language a fragment of XQuery is considered. More details
about these two algorithms, as well as about the mapping expressions and an
evaluation of a prototype implementation are given in [5].

4.3 pdms prototypes 58

4.3.6 coDB

The coDB system [27] is based on the “local semantics” presented in [25] (see
Section 4.2.4, roughly spoken this means that peers do only exchange certain
answers, which allows for cycles in the P2P mappings between the peers)
and uses the distributed update algorithm presented in [26]. Dependencies
between peers are expressed as GLAV-mappings between the peer schemas.

Query answering is based on the idea to use the mappings between the
peers (called coordination rules and relating queries over schemas of different
peers) to fetch data from the neighbours, to store this data locally and to
answer queries posed to a peer also locally according to the data that has been
fetched before. Thereby data can be either fetched “on the fly” if a query is
posed to a peer, or a global update can be performed. In the first case, a peer
tries only to fetch that data it requires for answering a given query, in the
latter case all peers exchange all data as defined by the coordination rules. In
both cases the same update algorithm presented in [26] is used. Thereby one
peer initiates an update by sending the queries from the left hand sides of
its coordination rules to the corresponding neighbours. There these queries
are evaluated over the local data and the result is immediately returned to
the initiator. Moreover, the peers forward the update request by asking their
neighbours to send the data according to their coordination rules (either for
only those tables involved in queries received from the initiator of the request
or simply all data). Hence they act as initiators of their own. Whenever
some peer retrieves new data as result to an request issued, it immediately
checks whether all the required information implied by this data has already
been sent to the peer that issued the request. If not, this data is immediately
propagated.

This update algorithm does not require any global knowledge or control
over the system, but runs locally at each peer. Moreover it is capable of
handling changes in the network (i.e. adding or removing of coordination
rules) while the algorithm is running. Under the assumption that there are
only finitely many changes between those nodes of the network that are
involved in the current update, the algorithm is guaranteed to terminate and
to return the correct results.

Evaluation results of the coDB system are presented in [27]. There also
a more detailed description of the system architecture is given. As stated,
detailed information about the semantics implemented in coDB can be found
in [25], and the update algorithm is described in detail in [26].

4.3.7 ORCHESTRA

ORCHESTRA [33, 34, 44, 76] is a prototype implementation of what the
authors call collaborative data sharing system (CDSS). The idea of CDSS differs
slightly from the idea of (peer) data exchange and data integration systems.
Just as in these settings, a CDSS consists of several peers, each having a local
database, and of pairwise mappings between the schemas. But unlike those
settings, the goal is not to exchange data until some globally consistent state

4.3 pdms prototypes 59

is reached or to use these mappings for query answering. The mappings are
only used to exchange updates made at one peer with the other members
of the network: The idea is that every user only works on its local database
instance. Queries to the local database are only processed locally, and updates
also have an effect to the local database only. Instead, a local log of all the
updates is maintained. From time to time, whenever the user decides to share
its data with the other members of the network, this update log is published.
Again, this has no direct effect to the local databases of the other peers. Only if
a member decides to import all the data published since he/she has imported
data for the last time, those updates are applied to its local database.

The idea of ORCHESTRA is to implement a system that supports such a
setting. In ORCHESTRA, the mappings between the schemas of the peers are
expressed as GLAV-mappings, that is by TGDs. Valid mappings are restricted
to sets of weakly acyclic TGDs, hence arbitrary cycles in the mappings are
forbidden. As stated above, unlike in data exchange or data integration, the
mappings are not used to directly exchange data, but to translate updates
(like insertion, deletion or the changing of a certain tuple) performed on an
instance of one schema to an update expression over another schema. A
detailed description of how ORCHESTRA performs this update translation is
given in [34].

Moreover ORCHESTRA allows the definition of so called trust policies. The
idea of trust policies is to enable users to express whether they trust some
sources more than others, since it is often the case that users regard certain
sources more reliable (w.r.t. the correctness of their data) than others. These
trust policies are defined by assigning trust levels to the different sources for
which mapping to the local schema exist. A peer may also completely distrust
some members of the network. (Note that just defining no mapping from such
a member to the local database is not the same, since data from such a source
may be retrieved via some intermediate peers. Therefore allowing a peer to
define that data originating at a certain peer is not trusted gives additional
expressive power.)

When a peer decides to import (the authors call this step reconciliation) all
updates published by the other peers since its last reconciliation, first the
update sequence is flattened. This means that for sequences of depending
updates by the same peer, the intermediate steps are omitted and only the
final result is visible. For example, if some peer changed the value of a certain
tuple several times, and each time published these updates, then all these
changes are replaced by a single update that leads to the final result. Then
ORCHESTRA has to decide which of these updates shall be applied to the
local instance and which updates have to be rejected. Once an updingate has
been rejected, this update and all updates that depend on it will be rejected in
future reconciliation steps too. There are several reasons why updates may
be rejected: Because the update is inconsistent, because the peer distrusts the
source of this update, or because it depends on an already rejected update.

An update can be inconsistent for two reasons: The result of the update
could conflict with constraints on the local schema, or two updates contradict
each other (like two updates that change the same attribute in a tuple to two

4.3 pdms prototypes 60

different values). With respect to the first case, note that the instances at
the different peers need to be only locally consistent, but not with respect to
the instances at the other peers. Updates that are inconsistent with the local
instance are rejected. If some updates are conflicting, ORCHESTRA tries to
decide which update to accept and which to reject using the trust policies,
by accepting the update from the source that is more trusted. If this is not
possible, ORCHESTRA marks the updates, and all dependent updates as
deferred, and the user has to decide what shall be done with the updates.

On the other hand, to decide whether an update is trusted or not, not the
peer from which the update has been received is taken into account, but the
peer where the corresponding data originated. This is necessary since it may
happen that some peer Pi trusts Pj but distrusts Pk, while Pj trusts Pk. If Pj
accepts an update of Pk, and publishes the application of this update to its
local database, the update would arrive at Pi. In such a situation, there are
two possibilities: If there are updates originating from a trusted source that
are dependent on the untrusted update, it has to be accepted (since otherwise
the trusted updates would need to be rejected too), except it has already been
rejected in some earlier reconciliation step. If there are no dependent trusted
updates, the untrusted update is rejected.

For both cases, it is not only necessary to determine where the data origi-
nated from, but also how (by which mappings) it arrived at the peer. Moreover,
this is an important information for translating updates according to schema
mappings. To be able to determine this information, ORCHESTRA stores for
each tuple provenance information, that does not only refer to where the tuple
comes from, but also how it has been derived.

The reconciliation algorithm is described in detail [76], together with dif-
ferent possibilities for its implementation (discussing a centralised and a
distributed algorithm, each combined with either a centralised or distributed
global update store) and an evaluation of a prototype implementation.

[44] gives a general overview over the ORCHESTRA system, while [34]
describes it in detail and presents an evaluation of a prototype implementation
of the system.

4.3.8 Discussion

At the end of this section, we shortly summarise some of the properties of the
presented PDMS prototypes.

Systems have been proposed for several different data models: For relational
databases (like e.g. coDB, PeerDB, Hyperion and ORCHESTRA), for XML
based data (e.g. HepToX) or RDF (like Edutella).

Based on the different techniques and formalisations used to express re-
lationships between schemas (e.g. schema mappings, mapping tables, ECA
rules, update translations), sometimes all peers in the system are assumed to
share the same domain, while sometimes also different domains at the peers
are considered.

According to the different semantics applied to schema mappings (if schema
mappings are used at all), some systems require restrictions on the topology

4.4 peer-programming language (ppl)/piazza 61

of the P2P network to obtain decidability of important reasoning tasks (e.g.
Piazza and ORCHESTRA), while other systems apply a weaker semantics,
therefore allowing for arbitrary topologies (e.g. coDB).

Independent of whether global information is needed to satisfy restrictions
on the topology of the P2P network, reasoning (e.g. query answering) over
some systems require global information (like in the Piazza system). Other
systems use super-peers to structure the P2P network (like Edutella), and
several systems are completely decentralised.

In most of the systems, the neighbourhood of a peer and the relationship to
its neighbours are predefined by the user, offering a well defined semantics
of the resulting PDMS. Some systems (like e.g. HepToX) support the user in
setting up the mappings between schemas by creating them semi-automatically
according to some easy to do user input. In contrast, PeerDB does not require
to define the neighbourhood and the mappings beforehand, but tries to
determine them at query time. As a result user feedback is needed during
query processing to decide which mappings found are correct. Moreover the
system does not offer a strict semantics.

Also the tasks supported by the systems differ. While most of them focus
on query answering (e.g. coDB, PeerDB, Piazza, HepToX, Hyperion), the
goal of Edutella is to help locating resources in the network, and systems
like ORCHESTRA try to support the synchronisation of independent, hence
possibly inconsistent database instances.

4.4 peer-programming language (ppl)/piazza

The Piazza peer data management system [35, 37, 38, 39, 40, 75] is one of
the most cited PDMS prototypes. Although it is intended to work on XML
data, and the prototype implementation actually uses XML, its basic semantics
has been described and introduced using the relational model. Within this
summary of the basic ideas of Piazza, only relational aspects are considered,
and not their extensions to data structured using XML.

As common in PDMSs, Piazza assumes data to be stored at peers which
offer data through a schema, and define dependencies between schemas of
other peers and their own schema. Thereby, the Piazza system implements
a strict generalisation of data integration systems: Like in data integration
systems, data is assumed to reside in certain source relations (and to remain
there) that are related by mappings to virtual schemas. Queries are posed
over these virtual schemas and are then rewritten to queries over the source
relations. But unlike the traditional data integration systems described in
Section 3.2, there exists not a single virtual global schema, but every peer
defines its own schema.

The Piazza system assumes a unique domain shared by all peers, hence no
mapping of constants is performed between peers (like by using mapping
tables). As query language, conjunctive queries are considered.

4.4 peer-programming language (ppl)/piazza 62

4.4.1 System Definition

A peer consists of its peer schema, the corresponding peer relations and a set
of stored relations. The peer schemas are used to access the system. That is
all queries posed to the system are formulated over the peer schema of a
single peer. Using the mappings defined within the system, the query is then
reformulated such that it refers only to stored relations, where the actual data
resides. Hence, each peer may contribute data to the system via the content of
its stored relations. Thereby it is not required that the set of stored relations of
each peer is nonempty, i.e. a peer is not required to contribute data, but may
consist of a peer schema only too.

Figure 8 at the beginning of this chapter (see page 41) sketches this structure.

Syntax of PPL

For defining mappings between those schemas, the authors introduce the
Peer-Programming Language (PPL, that shall be pronounced as “people”, being
the formalism used to define the semantics of Piazza), that offers two kinds of
mappings: storage descriptions and peer mappings.

Storage descriptions are used to describe the content of the stored relations
of a peer with respect to its peer relations. More precisely, the content of the
stored relations is defined using the answer of a query q over the peer schema.
There exist two kind of storage descriptions to either express that a stored
relations contains exactly the result of q (equality description, corresponding
to the CWA) or only a subset of it (inclusion description, corresponding to the
OWA).

Definition 4.10 (Storage Description [38]).

• An equality description is a storage description of the form A : R = q,

• an inclusion description is a storage description of the form A : R ⊆ q,

where A is peer, R is a stored relation of A and q is a conjunctive query over
the peer schema of A. a

As can be immediately seen, equality descriptions correspond to exact LAV
mappings in data integration, while inclusion descriptions correspond to
sound LAV mappings.

Peer mappings are used to define semantic mappings between the peer
schemas of different peers. Thereby each mapping may define a connection
between an arbitrary number of peers. Similar to the storage descriptions,
there exist inclusion and equality mappings.

Definition 4.11 (Peer Mapping [38]). Let A1 and A2 be sets of peers, and
denote with q1 (q2) a conjunctive query over the peer schemas of the peers in
A1 (A2), such that q1 and q2 have the same arity.

• An equality peer mapping is a peer mapping of the form q1 = q2.

• An inclusion peer mapping is a peer mapping of the form q1 ⊆ q2.

4.4 peer-programming language (ppl)/piazza 63

a

It is again immediate that these mappings are able to express (exact and
sound) GAV and LAV mappings between peer schemas.

There exists another type of peer mappings, called definitional mappings.

Definition 4.12 (Definitional Mapping [38]). A definitional mapping is a datalog
rule that contains only peer relations in the head and the body. a

As long as a peer relation is only contained in the head of one definitional
mapping, this definitional mapping could be also written as equality peer
mapping (e.g. R(~x):−R1(~x) is equivalent to R(~x) = R1(~x), when considering
R(~x) and R1(~x) as conjunctive queries over the relations R and R1 with the
distinguished variables ~x). But using definitional mappings allows to express
disjunction by defining more than one such mapping with the same relation
in the head (e.g. the extension of the above example by R(~x) : −R2(~x) cannot
be expressed by equality peer mappings any more). Moreover, restricting
equality mappings to definitional mappings has advantages with respect to
the complexity of query evaluation.

Having fixed the definition of the mappings, for the Piazza system a PDMS
is given by a tuple 〈P, S,m, R, LN, DN〉, where P = {P1, . . . ,Pn} is a set of
peers, S = {S1, . . . ,Sj} is a set of peer schemas, m is a function mapping peers
to peer schemas, R = {R1, . . . ,Rn} is a set of stored relations Ri for peer Pi
(where Ri is allowed to be equal ∅), LN is a set of peer mappings and DN is
a set of storage descriptions.

In the remainder of this section, such a system will be referred to as setting.

Semantics of PPL

As for data integration, the interesting task in Piazza is query answering.
Since, given a concrete problem instance, the mappings of PPL may give rise
to more than one possible solution, the result of a query is defined by the
notion of certain answers.

Let N = 〈P, S,m, R, LN, DN〉 be a setting and D be an instance of the stored
relations in DN. A data instance I for N assigns a set of tuples to each relation
in N, that is to all peer schemas and to all stored relations.

Definition 4.13 (Consistent data instance [38]). Let I be a data instance for
a setting N and D be an instance of the stored relations. Then I is consistent
with N and D if

• for every equality description A : R = q in DN, RD = qI,

• for every inclusion description A : R ⊆ q in DN, RD ⊆ qI,

• for every equality peer mapping q1 = q2 in LN, qI1 = qI2,

• for every inclusion peer mapping q1 ⊆ q2 in LN, qI1 ⊆ q
I
2, and

• for every definitional mapping φ the following holds: Let p be the
peer relation in the head of φ. Denote with φ1, . . . ,φk all definitional
mappings that contain p in their head. Then pI =

⋃
16i6kφ

I
i .

4.4 peer-programming language (ppl)/piazza 64

a

It is again obvious that there may be more than one consistent data instance
for a given problem instance. Hence the certain answers to a query q with
respect to N and D (certain(q,N,D)) are defined straightforward to contain
all those tuples present in the result of q over every data instance consistent
with respect to N and D.

On the other hand, the question is whether there exists always at least one
consistent data instance. For arbitrary PDMSs, this need not be the case:

Theorem 4.14 ([40]). Let N be a PDMS specified in PPL. If all storage descriptions
in N are only inclusion storage descriptions, then for every instance D of the storage
descriptions in N there exists a consistent data instance with respect to N and D.

If equality storage descriptions are allowed, then there are PDMSs N and instances
D for the storage descriptions such that there exists no consistent data instance with
respect to N and D.

4.4.2 Complexity of Query Answering

The problem of query answering is to compute certain(q,N,D).
As throughout this thesis, only data complexity is considered. Not surpris-

ingly, the complexity of query answering depends heavily on which restric-
tions are assumed on the mappings. One possible restriction is acyclicity of
the mappings.

Definition 4.15 (Acyclic Inclusion Peer Mappings [38]). Let L be a set of
inclusion peer mappings in PPL. Construct a directed graph D = (V ,A)

as follows: V contains a node for every relation occurring in any mapping
in L. A contains an arc from a node corresponding to relation R to a node
corresponding to relation S if there exists an inclusion peer mapping q1 ⊆ q2
where R appears in q1 and S appears in q2.

L is acyclic if D contains no cycles. a

The following was shown in [40]:

Theorem 4.16 ([40]). Let N be a PDMS specified in PPL.

1. The problem of finding all certain answers to a conjunctive query q, for given
N, is undecidable.

2. If N includes only inclusion peer mappings and inclusion storage descriptions,
and the inclusion peer mappings are acyclic, then a conjunctive query q can be
answered in polynomial time with respect to data complexity.

Hence cycles within the inclusion peer mappings are responsible for query
answering becoming undecidable. It should be noted that equality peer
mappings immediately introduce cycles, since each equality peer mapping
q1 = q2 is equivalent to the inclusion peer mappings q1 ⊆ q2 and q2 ⊆ q1.

Acyclic inclusion dependencies are a very strong restriction on the topology
of the network, and it turns out that it can be weakened without losing

4.4 peer-programming language (ppl)/piazza 65

tractability. An equality mapping q1 = q2 is called projection free if neither q1
nor q2 project out any attribute. Cycles induced by projection free equality
peer mappings are tractable:

Theorem 4.17 ([38]). Let N be a setting for which all inclusion peer mappings are
acyclic, but that may contain equality peer mappings.

1. If (a) all equality storage descriptions and all equality peer mappings in N are
projection free and (b) every peer relation that is in the head of any definitional
mapping does not appear on the right hand side of any other mapping, then
query answering can be done in polynomial time with respect to data complexity.

2. If the above conditions hold, except that equality storage descriptions are allowed
to contain projections, then query answering becomes coNP-complete.

3. If the conditions of 1. hold, except that on the right hand side of the peer
mappings UCQs are allowed, then query answering becomes coNP-complete.

The first part of the theorem states the maximal class of mappings in PPL

for which query answering is tractable. The hardness results of (2) and (3)
follow immediately from the complexity results for query answering in LAV
data integration settings given in Chapter 3 (in Table 3.2.4 on page 33):
(2) corresponds to the case of answering conjunctive queries over views
defined using only conjunctive queries under CWA (that is, assuming exact
LAV mappings). Given such a data integration setting I = 〈G, S, M〉, it can be
modeled using PPL by a single peer P with the peer schema G, the stored
relations S and by adding one equality storage description P : si = qi for every
LAV style mapping si qi ∈M.
(3) on the other hand corresponds to answering conjunctive queries over views
defined using UCQs under OWA (that is, assuming sound LAV mappings).
Given such a data integration setting I, it can be modeled in PPL by two
peers P1 and P2: P1 contains one stored relation ss and one peer relation ps
for every s ∈ S, and the peer schema of P2 equals G. Further there exists one
(projection free) equality storage description P1 : ss = ps for every s ∈ S, and
one inclusion peer mapping ps ⊆ qs for every LAV style mapping s qs ∈M

(where qs is a UCQ).
The above results have been considered for queries without comparison

predicates. In addition to these results, also the effect of comparison predicates
on the complexity of query answering has been reported.

Theorem 4.18 ([38]). Let N be a maximal expressive PPL setting as defined in
Theorem 4.17 for which query answering is tractable, and q be a conjunctive query.

• If comparison predicates appear only in storage descriptions or in the bodies of
definitional mappings, but not in q, then query answering can still be done in
polynomial time.

• Otherwise (that is either q contains comparison predicates or they are used
in equality or inclusion peer mappings), query answering becomes a coNP
problem.

4.4 peer-programming language (ppl)/piazza 66

4.4.3 Query Reformulation

Query answering in the Piazza system is done by reformulating a query q
over some peer schema into a query q ′ that only refers to stored relations.
This rewriting is a maximally contained rewriting, and moreover when query
answering is tractable q ′ is a perfect rewriting of q (see Section 3.2.4 for the
definitions of maximally contained and perfect rewriting). Describing this
reformulation and the corresponding algorithm in detail is beyond the scope
of this thesis, such that in the following only the main properties of such a
rewriting are summarised.

The algorithm computing the rewriting is a centralised algorithm, that
means that it runs locally on the peer to which the query is posed. Since the
algorithm requires global knowledge about about all mappings in the system,
each peer has access to this information. Hence, the algorithm takes as input
the query q together with all peer mappings and storage descriptions, and
it outputs a query q ′ referring only to stored relations that is guaranteed to
only return certain answers. Moreover, if computing all certain answers is
feasible, q ′ returns all certain answers. In the case if query answering is not
feasible, approximation techniques can be used to retrieve at least some (and
only correct) certain answers.

The reformulation consists of two steps. First, q is reformulated according
to the peer mappings. Once there is no more rewriting possible using peer
mappings, the retrieved result is rewritten in the second step using the storage
descriptions. One of the main ideas for the first step is to regard all peer
mappings either as pure LAV or as pure GAV mappings, and therefore to
use techniques either from LAV or GAV query rewriting (i.e. techniques for
answering queries using views or unfolding strategies). To achieve this, in
a preprocessing step all equality mappings are rewritten as two inclusion
mappings. Then, each inclusion mapping of the form q1 ⊆ q2 is transformed
into the mappings V ⊆ q2 and V :−q1, where V is a fresh relational symbol.
After this, each peer mapping is either a sound LAV style mapping s ⊆ qs,
where s is either a peer relation or one of the fresh relational symbols, or a
GAV style mapping s:−qs. The first step of the reformulation then is building
a rule-goal tree (although the authors point out that in fact it is more likely
to become a DAG), whose root consists of the goals of the queries. As long
there are subgoals in the tree that can be expanded with respect to some
peer mapping, this is done by either applying rules for GAV or LAV query
rewriting, depending on the applicable rule.

Once no more rule can be applied to any subgoal, the resulting subgoals
(over the peer schemas) can be rewritten using the storage descriptions to
queries over the stored relations that then need to be combined according to
the structure of the rule-goal tree.

As indicated by Theorem 4.18, this algorithm can be extended to handle
comparison predicates as well. This is done by annotating the branches of the
rule-goal tree according to the constraints defined by the predicates.

Because the rule-goal tree may become both, deep and highly branching,
optimisation techniques are considered and implemented. Besides memoisa-

4.4 peer-programming language (ppl)/piazza 67

tion techniques and methods for pruning the tree (detection of dead ends and
redundant paths), also strategies for selecting an order of rule application such
that the effect of pruning techniques can be maximised are considered. [39, 40]
contain more information about the optimisation techniques considered.

Experiments with the prototype implementation [38] showed that one bot-
tleneck of the rewriting is the second rewriting step, that is the transformation
of the rule-goal tree to queries over the stored relations, while building the
rule-goal tree scales quite well.

Another important aspect is that the query reformulation algorithm should
find some first reformulations (and hence answers) quickly, that is it should
return the first results while the rule-goal tree is still expanded, such that the
user does not need to wait until the complete rewriting has finished before
the first results arrive.

4.4.4 Further Considerations

Equivalence

For performing global optimisations of an instance of a PDMS, like removing
redundant mappings or composing mappings to speedup query answering,
it is necessary to have a notion of equivalence of different settings to be able
to decide whether some optimisation does not change the semantics of the
optimised system.

Definition 4.19 (Equivalence [40]). Let N1 and N2 be two PDMS. W.l.o.g.
assume that they have the same set of peers, peer relations and stored relations.
N1 is equivalent to N2 if for every instance D of the stored relations (in N1 and
N2) and every query q over the peer schema of one peer, certain(q,N1,D) =

certain(q,N2,D). a

Using this definition, equivalence of systems depends on the query language
of q. For example, while systems may not be equivalent for queries expressed
in FOL (FOL-equivalence), they may be equivalent for CQs (CQ-equivalence).

Another notion of equivalence is that of relative equivalence.

Definition 4.20 (Relative Equivalence [40]). Let N1,N2 be two PDMS, and
P̄ = {P1, . . . ,Pm} be a set of peer relations. N1 and N2 are equivalent relative
to P̄, if for every instance D of the stored relations and any query q over the
peer relations in P̄, certain(q,N1,D) = certain(q,N2,D) a

Relative equivalence is very interesting in practice, since a PDMS is consid-
ered to be dynamic, that is peers can leave and join at will. If such a change
of the system occurs, relative equivalence expresses whether this influences
the result of a query over a certain peer.

[40] states a class of systems for which relative equivalence is decidable.

Theorem 4.21 ([40]). Let N1,N2 be two PDMS with only acyclic inclusion peer
mappings, and where the storage descriptions do not contain both, inclusion and
equality storage descriptions. Then

4.4 peer-programming language (ppl)/piazza 68

• it is decidable whether N1 and N2 are FOL-equivalent.

• If all the peer mappings in N1 and N2 contain only a single relational symbol
on their left hand side, then for every set of P̄ of peer relations, it is decidable
whether N1 and N2 are CQ-equivalent relative to P̄.

More details about equivalence of PPL systems can be found in [40].

Miscellaneous

Within the Piazza project further issues have been considered:

• To support efficient search in a PDMS, index structures for the stored
data are considered [75].

• Piazza shall also allow users to define access policies to their data, that
is to restrict the data access according to user defined rules [60, 75].

• In [75], also some ideas are summarised how the creation of schema
mappings could be supported by the system.

• How Piazza (and PPL) is extended to XML is especially described in
[37] and [39].

As already pointed out, besides developing the logical model of Piazza and
query answering algorithms, there exists also a prototype implementation
with experimental results reported in [37, 38, 40].

Since this will be an important property when discussing the approach
of De Giacomo et al. in the next chapter, for query answering in a PDMS
described using PPL to be tractable, some global restrictions on the system
are required. Hence, the peers cannot choose their mappings independently,
but require global knowledge to create a tractable instance.

5T H E A P P R O A C H O F D E G I A C O M O E T A L .

In this chapter, a detailed description of the framework proposed in [30] is
given. A prototype implementation of this approach has been created as part
of this thesis and is described in the next chapter.

In [30], two main results are presented: First, the data exchange setting
described in Section 3.1 is generalised to a P2P based setting by using the
semantics described in Section 4.2.4 to model the mappings between different
peers: Instead of one source and one target schema with a mapping defined
between them, the proposed P2P data exchange system (PDE-system) consists
of a set of peer schemas with pairwise mappings between them. Like in data
exchange, the goal is — given initial instances for each peer — to materialise
instances of the peer schemas such that all mappings are satisfied. To the best
of our knowledge, such a straight forward generalisation of data exchange
has not been proposed before.

PDE-systems are then enhanced by “virtual” mappings, corresponding
to the mappings used in data integration systems (Section 3.2). Although
expressed by the same constructs (namely TGDs and EGDs) as data exchange
mappings, their meaning is different. While data exchange mappings are used
to express constraints that have to be satisfied by the data stored physically in
a database, virtual mappings express relationships that are only considered
for query answering, but that do not directly affect the data actually stored in
a database. Hence the resulting P2P data exchange and data integration system
(PDEI-system) combines the ideas of data exchange, data integration and peer
data management systems. Moreover, it contains both, data exchange and
data integration as special cases.

To allow for an arbitrary topology of the P2P mappings (since global re-
strictions on a network of autonomous peers seem unrealistic or at least not
desirable), instead of using the first-order logic interpretation for these map-
pings (like e.g. in PPL), the semantics of the P2P mappings is defined by
adopting the epistemic logic approach mentioned in Section 4.2.4.

In the following, first PDE- and PDEI-systems are introduced formally. Then
an extension of the chase is presented for solving the data exchange problem
in these settings, together with the corresponding complexity results. Finally
query answering in PDEI-systems is described.

5.1 basic definitions

Before defining PDE- and PDEI-systems formally, it is necessary to introduce
two more definitions:

Definition 5.1 (Instantiation [30]). Let R be a schema, and assume an indefi-
nite instance B for R.
A definite instance D is an instantiation of B if there exists an injective

69

5.1 basic definitions 70

function f : const(B) ∪ nulls(B) → C such that ∀c ∈ const(B): f(c) = c, and
D = {r(f(t1), . . . , f(tn)) | r(t1, . . . , tn) ∈ B}. Moreover, no x ∈ nulls(B) is
mapped to some c ∈ const(B). a

Note that f is injective, hence every labelled null in B is mapped to a different
constant not already present in B. Moreover it follows immediately that if
D is an instantiation of B, then there exists a homomorphism h : B → D.
On the other hand, just because there exists a homomorphism h : B → D

does not mean that D is an instantiation of B, as among other restrictions an
instantiation is not allowed to contain additional facts.

Let D be a definite instance over some schema R. Recall from Section 3.1
that a TGD qi → qj over R is satisfied in D if qDi ⊆ qDj , and an EGD
q(x1, x2) → x1 = x2 over R is satisfied in D if for each answer 〈t1, t2〉 ∈ qD,
t1 = t2.

As already mentioned above, the suggested framework does not pose
any limitations to the topology of the mappings between the peers (like
for example acyclicity). The intention of this is that such limitations mean
that a single peer, when joining the system and defining its mappings to
the other peers, requires global knowledge about the existing mappings to
avoid the creation of forbidden cycles. This is seen as both an unrealistic
and undesirable assumption. Instead, defining the mappings of a peer shall
be possible using only local information. Because the mappings between
the peers are expressed by TGDs, without global constraints, non weakly
acyclic settings cannot be avoided. Hence, to obtain decidability, a different
notion of satisfiability for TGDs than the above mentioned (corresponding
to a FOL interpretation) is needed. Therefore, the alternative semantics first
proposed in [15] and already introduced in Section 4.2.4 is used for PDE- and
PDEI-systems. Its intuition is that peers only exchange certain answers, that is
information that is definitely known by the peers. Informally, a TGD qi → qj
is satisfied under this semantics if certain(qi, D) ⊆ certain(qj, D), where D

is a set of instances, and certain(q, D) denotes the certain answers to q with
respect to D.

Without stressing the use of epistemic logic, in [30] this semantics is for-
malised using the notion of CERT-satisfiability:

Definition 5.2 (CERT-satisfied [30]). Let D be a set of definite instances, and
φ : qi → qj be a TGD. Then φ is CERT-satisfied in D if⋂

D∈D

qDi ⊆
⋂
D∈D

qDj .

a

Note that by this definition, a TGD is not satisfied by a single instance, but by a
set of definite instances, just as for the formalisations presented in Section 4.2.4.

For both, PDE- and PDEI-systems (as for all PDMS) a query q is posed over
the schema of a single peer. Moreover, as long as not stated otherwise, q is
assumed to be a UCQ.

5.2 pde-system 71

5.2 pde-system

As already stated, PDE-systems are a generalisation of data exchange settings:
Instead of a single source containing data, and a single (empty) target where
data shall be materialised, a PDE-setting consists of several peers, connected
to each other by TGDs and being both, source and target at the same time.

Formally:

Definition 5.3 (PDE-system [30]). A P2P data exchange system (PDE-system) is
a triple S = 〈P, CE, ME〉 where

• P = {P1, . . . ,Pn} is a set of peers, each containing a relational schema
(the schemas of the peers are assumed to be pairwise disjoint),

• CE is a set of (local) constraints, that is a set of TGDs and EGDs, where
each constraint is expressed over the schema of a single peer, and

• ME is a set of P2P mappings, that is a set of TGDs qi → qj, where qi, qj
are expressed over the schemas of Pi, Pj resp.

a

Example 5.4. The following simple PDE-system will be used as running
example in this chapter: Assume a slight variation of the setting in Example 3.6,
consisting of the three peers Uni, LibUB, LibDep with the following schemas:
S(Uni) = {Staff(FirstName,LastName,Departement)}
S(LibUB) = {Authorised(StudentId, FirstName,LastName)}
S(LibDep) = {Allowed(StudentId, FirstName,LastName),

Contact(StudentId,Email)}
Moreover assume the following constraints and mappings:

1 Authorised(SID, FN,LN)→ Allowed(ID, FN,LN) (∈ME)

2 Allowed(SID, FN,LN)→ Authorised(SID, FN1,LN1) (∈ME)

3 Staff(FN,LN,Dep)→ Authorised(SID, FN,LN) (∈ME)

4 Allowed(SID, FN,LN)→ Contact(SID,Email) (∈ CE)

5 Contact(SID,Email)→ Allowed(SID, FN,LN) (∈ CE)

Hence the PDE-system S = 〈P, CE, ME, CI, MI〉 is defined by

• P = { Uni, LibUB, LibDep }

• ME = { 1, 2, 3 }

• CE = { 4, 5 }

(where the numbers refer to the list of TGDs above). �

The instances over the schemas of the peers of a PDE-system are called
states:

5.2 pde-system 72

Definition 5.5. Let S = 〈P, CE, ME〉 be a PDE-system, and denote with S(P) =

〈S(P1),S(P2), . . . ,S(Pn)〉 the union of the schemas of the peers in P. A state B
for S is an instance of S(P).
According to the terminology for instances, if nulls(B) = ∅, then B is a definite
state, otherwise B is an indefinite state. a

Like in data exchange, since given some PDE-system and state, the goal is to
materialise some valid instance, it needs to be clarified under which condition
a PDE-system is satisfied (with respect to a given state).

As already mentioned in Section 4.2.4, PDE-systems adopt the alternative
semantics for P2P mappings. The idea of peers exchanging only certain
answers is formally defined in [30] as follows:

Definition 5.6 ([30]). Let S = 〈P, CE, ME〉 be a PDE-system, B a state for S and
D a set of definite states for S. D satisfies S and B if

1. for each D ∈ D there exists a homomorphism from B to D,

2. for each D ∈ D and for each TGD or EGD φ ∈ CE, φ is satisfied in D,
and

3. for each φ ∈ME, φ is CERT-satisfied in D.
a

Note that this definition describes exactly the semantics of the epistemic
model of a PDMS described in Section 4.2.4: An isolated peer, only with
respect to its local constraints is described by a FOL theory. With respect to
the P2P mappings on the other hand, a PDE-system is no longer satisfied by
a single instance, but by a set of instances (not every single D ∈ D, but D

satisfies S and B).
Let D and D ′ be two sets of definite states that satisfy S and B. Then it is

easy to check that also D∪D ′ satisfies S and B. Hence it follows immediately
that there exists a unique maximal set of definite states that satisfies S and B,
namely the union over all such sets. Denote this maximal set with Sem(S,B).
Intuitively, Sem(S,B) contains all possible solutions for S with respect to B.

With these notions settled, several properties of states can be considered:

Definition 5.7 (S-Consistent State [30]). Let S be a PDE-system, and B a state
for S. Then B is S-consistent if Sem(S,B) 6= ∅. a

This means that a state B is S-consistent if all mappings and constraints
of S are satisfiable with respect to B, i.e. if there exists a solution to the data
exchange problem.

Definition 5.8 (S-Admissible State [30]). Let S be a PDE-system, and B a state
for S. Then B is S-admissible if

1. B is S-consistent and

2. every instantiation of B belongs to Sem(S,B).
a

5.2 pde-system 73

Intuitively, an S-admissible state is a state where all data exchange defined
by S has taken place. Note that formally the P2P mappings in S are not
satisfied by a single state, but by a set of definite states. However, by the
intuition of this semantics, a mapping is satisfied if all data known by a peer
is exchanged. Thereby a value is regarded to be “known” if it is the same
in every possible world, and the set of possible worlds is exactly described
by Sem(S,B). Since there exists a homomorphism from B to every D ∈ D,
exactly those information expressed by constants in B are regarded to be
known. Hence intuitively an S-admissible state is a state such that for each
P2P mapping qi → qj, every definite tuple t from the answer of qi over peer
Pi is also contained in the answer of qj over peer Pj.

Definition 5.9 (Universal S-Solution [30]). Let S be a PDE-system, and B a
S-consistent state. A state B ′ for S is a universal S-solution of B if

1. B ′ is S-admissible and

2. Sem(S,B ′) = Sem(S,B).
a

That is, given a state B, a universal S-solution is a state where all data
exchange defined by S based on B has taken place, such that the set of definite
states that satisfy S and B is not changed. Therefore, on the one hand no
information present in B is removed, and on the other hand no data is added
to B ′ that is not justified by B and the mappings and constraints in S.

Example 5.10. Consider the PDE-system S from Example 5.4. The following
state is S-consistent:
B = {Staff(‘eve’,‘e.’,‘unkn.’), Authorised(‘0912345’,‘alice’,‘a.’),

Allowed(‘621005’,‘bob’,‘bond’), Contact(‘9000’,‘dave@hal.net’)}.
Note that since CE does not contain any EGD, in fact all states are S-consistent.
But it is easy to think of a system with EGDs and a corresponding state that is
not S-consistent.

Although being S-consistent, B is not S-admissible, as there are several facts
implied by the mappings and constraints that are not materialised in B. An
example for an S-admissible state is B ′:
B ′ = {Staff(‘eve’,‘e.’,‘unkn.’), Authorised(‘0912345’,‘alice’,‘a.’),

Authorised(‘621005’, FN2, LN2), Authorised(‘9000’, FN3, LN3),
Authorised(SID2, ‘eve’,‘e.’),
Allowed(‘621005’,‘bob’,‘bond’), Allowed(SID1, ‘alice’, ‘a.’),
Allowed(‘9000’, FN1,LN1), Allowed(SID3, ‘eve’, ‘e.’),
Contact(‘9000’,‘dave@hal.net’),Contact(SID1, Email1),
Contact(Contact(SID3, Email2)}

Note that the TGDs from ME are not satisfied under FOL semantics, as for
example SID1 and SID3 do not appear in the Authorised table. However, all
P2P mappings are satisfied with respect to the weaker semantics. Note further
that the two TGDs 1 and 2 (see Example 5.4) do not form a weakly acyclic set.
Hence under FOL semantics, there would not exist a finite universal solution
for B.

5.2 pde-system 74

B ′ however is not just some S-admissible state, but even a universal S-
solution of B. �

Just as in data exchange, also for PDE-systems the notion of a minimal
universal solution exists:

Definition 5.11 (S-Core [30]). Let S be a PDE-system and B an S-consistent
state. A state B ′ is an S-core of B if

1. B ′ is a universal S-solution of B and

2. there exists no B ′′ ⊂ B ′ such that B ′′ is a universal S-solution of B.
a

Note that also for PDE-systems the cores of all universal solutions are
unique up to isomorphisms.

For better understanding of the intuition of these definitions, it might be
helpful to relate them to the concepts used in data exchange. In data exchange,
a solution to an instance of the data exchange problem is some target instance
J, such that 〈I, J〉 (let I be the given source instance) satisfies M (Section 3.1).
As stated above, the mappings of a PDE-system are not satisfied by a single
instance, but only by a set of definite instances. Hence, intuitively, the solution
for the correspondence of the data exchange problem over a PDE setting is
a set of definite instances. Therefore, an S-consistent state corresponds to a
source instance I in data exchange such that Sol(M, I) 6= ∅, so the question
whether a given state is S-consistent corresponds to the question whether
Sol(M, I) 6= ∅ in data exchange.

An S-admissible state simply corresponds to an instance 〈I, J〉 in data ex-
change where no mapping and no constraint is violated, that is all data that
can be derived by the mappings and constraints from the current state is
actually materialised.

In data exchange, it was shown that some solutions are more general
than others, and on the other hand that given a source instance, some target
instances contain facts not justified by the mapping M. The universal solutions
have been those solutions that are general enough to capture all solutions of a
given problem instance. This is exactly the intuition of universal S-solutions:
They contain all positive information that is shared by all definite instances in
Sem(S,B), but not more.

The definition of the S-core is only stated for completeness, as core compu-
tation will be omitted in this thesis.

As universal S-solutions express exactly the (positive) information shared by
all instances in Sem(S,B), like in data exchange, the question arises, given that
Sem(S,B) 6= ∅, whether such a state always exists (corresponding to Corol-
lary 3.22). This is actually the case, and just as in data exchange, all universal
S-solutions are homomorphically equivalent, as shown by the following result:

Proposition 5.12 ([30]). Let S be a PDE-system and B an S-consistent state. Then

1. there exists at least one universal S-solution of B and

2. all universal S-solutions of B are homomorphically equivalent.

5.2 pde-system 75

Moreover, for PDE-systems, the core, that is the minimal universal S-
solution, is unique up to isomorphism.

Proposition 5.13 ([30]). Let S be a PDE-system and B an S-consistent state. Then,
there exists a unique (up to isomorphism) S-core of B.

5.2.1 Relationship with Data Exchange

In the last section, the concepts of PDE-systems have only been related intu-
itively to those in data exchange. However, a PDE-system is a real generali-
sation of a data exchange setting. This means that the data exchange setting
appears as a special case of a PDE-system (hence, every data exchange setting
can be transformed into an equivalent PDE-system):

Given a data exchange setting M = 〈S, T,Σst ∪ Σt〉, denote with SM the
corresponding PDE-system SM = 〈P, CE, ME〉, where

• P = {Ps,Pt} with S(Ps) = S and S(Pt) = T,

• CE = Σt, and

• ME = Σst.

That is, just as described at the beginning of Chapter 4, source and target
are modeled as peers. Given a source instance I for S, this corresponds to a
definite instance for the schema of Ps, while the instance of Pt is empty.

As stated by the next result, all important concepts of data exchange occur
in the corresponding PDE-system:

Theorem 5.14 ([30]). Let M = 〈S, T,Σst ∪Σt〉 be a data exchange setting, I a finite
definite instance for S, and SM the PDE-system corresponding to M. Then

1. Sem(S, 〈I, ∅〉) 6= ∅ iff Sol(M, I) 6= ∅.

2. If I ′ is a finite universal S-solution for I, then (I ′ \ I) is a universal solution for
I in M ((I ′ \ I) restricts the instance I ′ to an instance of T). Vice versa, if J is a
universal solution for I in M, then 〈I, J〉 is a (finite) universal S-solution for I.

3. If I ′ is the S-core of I, then (I ′ \ I) is the core of the universal solutions for I in
M. Vice versa, if J is the core of the universal solutions for I in M, then 〈I, J〉 is
the S-core of I.

Note that these correspondences only hold for definite source instances I,
since for a definite instance the set of answers and certain answers (to the
same query q) coincide, and therefore the difference between the semantics
applied to the source-to-target TGDs in data exchange and the one applied to
the P2P mappings in PDE-systems does not show up.

The above theorem shows that the concepts of universal S-solutions and S-
cores are real generalisations of the corresponding concepts in data exchange.

5.3 pdei-system 76

5.2.2 Certain Answers

For PDE-systems it typically holds that if Sem(S,B) 6= ∅, then even
|Sem(S,B)| > 1. And just as in data exchange, the results of query answering
should not depend on which of these states has been chosen for materiali-
sation. That is the answer to a query should not depend on the state it was
evaluated on, but on all answers in Sem(S,B). This immediately gives rise to
the notion of certain answers for a PDE-system:

Definition 5.15 (Certain Answers [30]). Let S be a PDE-system, B an S-
admissible state and q a query over S. Then the set of certain answers to
q in S and B is defined as

certain(q, S,B) =
⋂

D∈Sem(S,B)

qD .

a

In data exchange, computing the certain answers to a query q over T can be
done by evaluating q over a universal solution and then removing all tuples
from the result that contain labelled nulls (see Theorem 3.24). By the close
relationship between data exchange and PDE-systems it is not surprising that
a similar result holds for PDE-systems as well.

Theorem 5.16 ([30]). Let S be a PDE-system, B an S-admissible state for S and q a
query over S. Then certain(q, S,B) = EvalNull↓(q,B).

Note that B is assumed to be an S-admissible state (and not as in data
exchange a universal solution). But as can be easily seen, every S-admissible
state is a universal S-solution of itself. Moreover, by definition, every universal
S-solution is an S-admissible state. Hence, given a state that is not S-admissible,
query answering still consists of first finding a universal S-solution, and then
evaluating the query over the resulting state. (How a universal S-solution for
a given state B can be computed is described in Section 5.4.)

5.3 pdei-system

Although, as stated in Section 3.3, the mappings used in data integration
(in the following referred to as “virtual mappings”) can be also expressed
by TGDs, their meaning is completely different. Dependencies expressed by
virtual mappings are not regarded as conditions that have to be enforced
on the data materialised in some database, but the data implied by virtual
mappings shall be considered for query answering. The same is true for
virtual constraints over a schema. An instance of the schema need not satisfy
all those constraints, but for computing answers to a query, their effects must
be taken into account.

Hence when extending the PDE-system by virtual mappings, one has to
distinguish between data exchange (i.e. mappings to be enforced on the
data) and virtual mappings (and constraints). Therefore, we refer to virtual

5.3 pdei-system 77

mappings as i-mappings, while we call data exchange mappings e-mappings.
Constraints over the schema of a single peer are called i-constraints and e-
constraints, respectively.

This necessary distinction is also reflected in the definition of PDEI-systems:

Definition 5.17 (PDEI-system [30]). A P2P data exchange and integration system
(PDEI-system) is a 5-tuple S = 〈P, CE, ME, CI, MI〉 where

• P = {P1, . . . ,Pn} is a set of peers, each containing a relational schema
(the schemas of the peers are assumed to be pairwise disjoint),

• CE (e-constraints) and CI (i-constraints) are two sets of TGDs and EGDs
where each constraint is expressed over the schema of a single peer, and

• ME (e-mappings) and MI (i-mappings) are two sets of P2P mappings, that
is sets of TGDs qi → qj where qi,qj are expressed over the schema of
Pi, Pj, respectively.

a

For defining the semantics of PDEI-systems, it is necessary to settle on when
a PDEI-system is regarded to be satisfied (with respect to a given state).

Definition 5.18 ([30]). Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system and B a
state for S. A set D of definite instances satisfies S and B if

1. for each D ∈ D, there exists a homomorphism from B to D,

2. for each D ∈ D and for each TGD or EGD φ ∈ CE ∪ CI, φ is satisfied in
D, and

3. for each φ ∈ME ∪MI, φ is CERT-satisfied in D.
a

This means that both, data exchange and virtual mappings have the same
semantics, and only differ in their behaviour with respect to materialisation of
data. Hence, for the same reason as for PDE-systems, for every PDEI-system
S and state B for S, there exists a unique maximal set of definite instances that
satisfy S and B. Just as for PDE-systems, this is denoted as Sem(S,B).

Example 5.19. The following PDEI-system is derived from the PDE-system of
Example 5.4 by two minor changes:

Assume the same set of peers {Uni, LibUB, LibDep } with the same schemas
as in Example 5.4: S(Uni) = {Staff(FirstName,LastName,Departement)}
S(LibUB) = {Authorised(StudentId, FirstName,LastName)}
S(LibDep) = {Allowed(StudentId, FirstName,LastName),

Contact(StudentId,Email)}
Moreover assume the following constraints and mappings:

1 Authorised(SID, FN,LN)→ Allowed(ID, FN,LN) (∈ME)

2 Allowed(SID, FN,LN)→ Authorised(SID, FN1,LN1) (∈ME)

3 Staff(FN,LN,Dep)→ Authorised(SID, FN,LN) (∈ME)

5.3 pdei-system 78

4 Allowed(SID, FN,LN)→ Contact(SID,Email) (∈ CE)

5 Contact(SID,Email)→ Allowed(SID, FN,LN) (∈ CI)

6 Staff(FN,Ln,Dep)→ Allowed(ID, FN,LN) (∈MI)

Notice that the dependencies 1 – 4 are equal to the dependencies 1 – 4 in
Example 5.4. Dependency 5 is also the same as in the previous example, but
instead of being a data exchange constraint, it is now virtual. The virtual
mapping 6 is new.

Hence the PDEI-system S = 〈P, ∅, ∅, CI, MI〉 is defined by

• P = { Uni, LibUB, LibDep }

• ME = { 1, 2, 3 }

• CE = { 4 }

• MI = { 6 }

• CI = { 5 }

(where the numbers refer to the list of TGDs above). �

With this settled, the definition of an S-consistent state (Definition 5.7)
for PDE-systems carries over to PDEI-systems, when using the notion of
Sem(S,B) for PDEI-systems.

In a PDEI-system, given some state, both, virtual and data exchange map-
pings and constraints imply certain facts. While data exchange dependencies
require that these facts are materialised in the database, this is not necessary
for data implied by virtual dependencies. The question is what to do with
data that can be derived using both, virtual and data exchange dependencies.
De Giacomo et al. argument that such facts shall not be materialised. Hence
in a PDEI-system, it is not required that all data derivable by data exchange
dependencies is materialised, but only those facts that are not logically implied
by the virtual dependencies.

Like the S-admissible state for a PDE-system, a state should be S-admissible
for a PDEI-system if all required data exchange has taken place. By the
above discussion, this means that all facts implied by the e-mappings and
e-constraints have been materialised, except those that are already implicitly
given by the i-mappings or i-constraints. To state it another way, a state B
is S-admissible, if in the state B ′ that is obtained from B by adding all facts
derivable from B by the i-mappings and i-constraints, all e-mappings and
e-constraints are satisfied.

For a formal definition of such a state, some notations need to be fixed
first: Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system. Then denote with SE the
PDEI-system derived from S by removing all i-constraints and i-mappings,
denote with SI the PDEI-system derived from S by removing all e-constraints
and e-mappings, and denote with SI→E the PDEI-system derived from S by
replacing the e-mappings with the i-mappings, the e-constraints with the
i-constraints, and removing all i-constraints and i-mappings. That is,

5.3 pdei-system 79

• SE = 〈P, CE, ME, ∅, ∅〉

• SI = 〈P, ∅, ∅, CI, MI〉

• SI→E = 〈P, CI, MI, ∅, ∅〉.

Then the informal description of an S-admissible state from above can be
formally defined as:

Definition 5.20 (S-Admissible State for PDEI-systems [30]). Let S =

〈P, CE, ME, CI, MI〉 be a PDEI-system and B a state for S. B is S-admissible if

1. B is S-consistent and

2. there exists a universal SI→E-solution of B that is SE-admissible.
a

Based on this concept, the definitions of universal S-solution, S-core and
certain answers for PDEI-systems are the same as for PDE-systems, except that
they use the notions of Sem(S,B) and S-admissible state for PDEI-systems
instead of those for PDE-systems. As it was shown in [30], the S-core of a
PDEI-system need not be unique up to isomorphism, and is therefore not
further considered in this thesis.

Example 5.21. Consider the PDEI-system S of Example 5.19 and the state B
from Example 5.10 for the PDE-system considered there. Further recall that it
differs only in two mappings from S. Then B is obviously also a S-consistent
state for S, but also no S-admissible state.
B ′′ is an example for an S-admissible state, and at the same time is a

universal S-solution for B:
B ′ = {Staff(‘eve’,‘e.’,‘unkn.’), Authorised(‘0912345’,‘alice’,‘a.’),

Authorised(‘621005’, FN2, LN2), Authorised(‘9000’, FN3, LN3),
Authorised(SID2, ‘eve’,‘e.’),
Allowed(‘621005’,‘bob’,‘bond’), Allowed(SID1, ‘alice’, ‘a.’),
Contact(‘9000’,‘dave@hal.net’),Contact(SID1, Email1),
Contact(SID3, Email2)}

When comparing B ′′ with B ′ from Example 5.10, one notices that the facts
Allowed(‘9000’, FN1,LN1) and Allowed(SID3, ‘eve’, ‘e.’) of B ′ do not belong
to B ′′. This is because they are already implied by the virtual dependencies:
The first one is implied by dependency 6, and the second one is implied by
dependency 5. �

Concerning query answering, it is clear that the result from Theorem 5.16 for
computing the certain answers for PDE-systems is not valid for PDEI-systems,
since in the latter an S-admissible state does not contain any information
about the data implied by i-mappings and i-constraints. Therefore the detailed
discussion of query answering in PDEI-systems is deferred to a later section
(see Section 5.6). Although query answering is only considered for a restricted
class of PDEI-systems (as it is undecidable for general PDEI-systems), accord-
ing to [30], even for this restricted class of PDEI-systems, given a PDEI-system
S and some state B for S, there exists no finite state B ′ such that computing

5.3 pdei-system 80

the certain answers to some query q over S can be done by evaluating q on B ′.
On the other hand, the next theorem states that when computing the certain
answers to q over an S-admissible state, the e-mappings and e-constraints have
no effect on the query any more, but only the i-mappings and i-constraints
need to be considered.

Theorem 5.22 ([30]). Let S be a PDEI-system, q a query over S and B an S-
admissible state. Then certain(q, S,B) = certain(q, SI,B).

PDEI-systems are a generalisation of PDE systems: Given a PDE-system
SE = 〈P, CE, ME〉, this system is equivalent to S = 〈P, CE, ME, ∅, ∅〉. It can be
easily checked that for such PDEI-systems, all definitions for PDEI-systems
coincide with the corresponding definitions on PDE-systems. To see that
in this case also the definitions of S-admissible states coincide, one should
consider that if CI = MI = ∅, B is the only universal SI→E-solution of B.

5.3.1 Relationship with Data Integration

As stated in Section 5.2.1, the data exchange setting (Section 3.1) occurs as
special case of a PDE system. Because PDE-systems are special cases of PDEI-
systems, data exchange settings occur as special case of PDEI-systems as well.
Moreover, PDEI-systems also extend data integration systems (Section 3.2),
that is, every data integration setting can be transformed into an equivalent
PDEI-system.

Let I = 〈G, S, M〉 be a data integration system where constraints over G are
allowed. Denote the set of constraints with Σ. The corresponding PDEI-system
SI = 〈P, CE, ME, CI, MI〉 is defined as follows:

• P = {PS,PG},

• S(PS) = S, S(PG) = G,

• CE = ME = ∅,

• CI = Σ, and

• MI = M.

Recall thatMod(I,D) denotes the set of legal global databases to I with respect
to a source instance D. Because the source instances for a data integration
system are considered to be definite, the difference between the FOL semantics
applied to data integration systems and the semantics of PDEI-systems does
not show up. This is why the following theorem holds.

Theorem 5.23 ([30]). Let I = 〈G, S, M〉 be a data integration system, and let
SI be the corresponding PDEI-system. Then for each source instance D for S,
Mod(I,D) = Sem(SI,D).

Hence, the certain answers to a query q posed over PG are the same as the
certain answers to q over G. Note that one could also model each source of
the data integration system as an own peer.

5.4 the e-chase 81

5.4 the e-chase

The different kinds of states considered above (S-consistent, S-admissible,
universal S-solution) give rise to several natural problems: Given a PDE-
system S and a state B for S:

• Is B S-consistent?

• Is B S-admissible?

• If B is S-consistent, compute a universal S-solution for B.

These questions can be solved by using a variant of the chase procedure,
called E-CHASE.

Definition 5.24 (E-CHASE [30]). Let S = 〈P, CE, ME〉 be a PDE-system and B
a state for S.
Consider the following chase rules:

TGD rule: A TGD φ: ϕ(~x,~z)→ ψ(~x,~y) ∈ CE is applicable to B if there exists a
tuple t ∈ ϕ(~x,~z)B such that t /∈ ψ(~x,~y)B.
If φ is applicable to B, φ is applied to B by adding facts corresponding
to ψ(t, ~Y) to B, where ~Y contains a fresh (that is not yet present in B)
labelled null for every y ∈ ~y.

EGD rule: An EGD φ: ϕ(x1, x2) → x1 = x2 ∈ CE is applicable to B if there
exists a pair (t1, t2) ∈ ϕ(x1, x2)B where t1 6= t2.
If φ is applicable to B, there are two possibilities how φ is applied to B:

• If at least one of t1, t2 is a labelled null (w.l.o.g. assume t1), replace
all occurrences of t1 in B by t2. (If both, t1 and t2 are labelled nulls,
it does not matter which one is kept and which one is replaced.)

• If both, t1 and t2 are constants, set B = FAIL.

P2P-mapping rule: A TGD φ: ϕ(~x,~z)→ ψ(~x,~y) ∈ME is applicable to B if there
exists a tuple t ∈ EvalNull↓(ϕ(~x,~z),B) such that t /∈ EvalNull↓(ψ(~x,~y),B).
If φ is applicable to B, φ is applied to B by adding facts corresponding
to ψ(t, ~Y) to B, where ~Y contains a fresh (that is not yet present in B)
labelled null for every y ∈ ~y.

The corresponding chase sequence is a (possibly infinite) sequence B0, . . . , Bi,
Bi+1, . . . where each Bk+1 is obtained from Bk by applying either a TGD or
EGD from CE or a TGD from ME to Bk, and B0 = B. The transition from Bk to
Bk+1 via the application of a chase rule is called a chase step. A chase sequence
is called finite if, after a finite number of steps, a fixpoint is reached, that is
some instance Bf where no more TGD or EGD from CE ∪ME is applicable,
otherwise it is called infinite.

If, for some i, Bi = FAIL, then E-CHASE(S,B) = FAIL.
If the chase sequence is finite, and Bf 6= FAIL, then E-CHASE(S,B) = Bf.
If the chase sequence is infinite, then E-CHASE(S,B) =

⋃
i∈N Bi. a

5.4 the e-chase 82

Note that the TGD and EGD rule are the same as for the chase in data
exchange (Definition 3.11), due to the fact that to the local constraints the FOL
semantics is applied. Further, the P2P-mapping rule only exchanges ground
tuples between peers, which meets exactly the intuition of the used semantics
as described in Section 5.2. Moreover, as shown by Theorem 5.16 and the
result stated next, this corresponds exactly to the peers exchanging certain
answers. Note further, that in cases of infinite chase sequences, the definition
of E-CHASE(S,B) describes an infinite state.

A more procedural description of the E-CHASE is given in Algorithm 2.
Note that in the case of infinite chase sequences, the result of the algorithm
differs from Definition 5.24, since it simply does not terminate.

Alg. 2 E-CHASE
Input: a PDE-system S and a state B for S

Output: E-CHASE (S,B)
ChS,B ← ∅; ChnewS,B ← B

while ChS,B 6= ChnewS,B do
{
ChS,B ← ChnewS,B;
for all φ ∈ CE ∪ME do

{
if φ = (ϕ(~x,~z)→ ψ(~x,~y)) ∈ CE

and ~t ∈ ϕ(~x,~z)ChnewS,B

and ~t /∈ ψ(~x,~y)ChnewS,B

then
ChnewS,B ← ChnewS,B ∪ {ψ(~t, ~Y)}

if φ = (ϕ(x1, x2)→ x1 = x2) ∈ CE
and 〈t1, t2〉 ∈ ϕ(x1, x2)ChnewS,B

and t1 6= t2
then

if t1 ∈ N then
ChnewS,B ← ChnewS,B[t1 ← t2];

else if t2 ∈ const then return FAIL
else
ChnewS,B ← ChnewS,B[t2 ← t1];

if φ = (ϕ(~x,~z)→ ψ(~x,~y)) ∈ME

and ~t ∈ EvalNull↓(ϕ(~x,~z),ChnewS,B)

and ~t /∈ EvalNull↓(ψ(~x,~y),ChnewS,B)

then
ChnewS,B ← ChnewS,B ∪ {ψ(~t, ~Y)}

}
}

return ChnewS,B

(~Y contains a fresh labelled null for each y ∈ ~y)

5.4 the e-chase 83

The following result justifies that the E-CHASE is an appropriate tool for
tackling the problems sketched above:

Theorem 5.25 ([30]). Let S be a PDE-system and B a finite state for S. Then

• B is S-consistent iff E-CHASE(S,B) 6= FAIL,

• if E-CHASE(S,B) 6= FAIL, then E-CHASE(S,B) is a universal S-solution of
B, and

• B is S-admissible iff E-CHASE(S,B) = B.

Because of the definition of E-CHASE(S,B), if the chase sequence is infinite,
then E-CHASE(S,B) 6= FAIL. That is in this case B is regarded as a consistent
state (Sem(S,B) just contains no finite definite state). Moreover, in such a case,
E-CHASE(S,B) denotes an infinite universal S-solution for B.

The following example sketches how the universal S-solution of Exam-
ple 5.10 can be retrieved using the chase.

Example 5.26. Consider the PDE-system and the states B and B ′ of Exam-
ple 5.10. There exists a chase sequence s.t. E-CHASE(S,B) = B ′. For conve-
nience, only the facts added in each iteration are listed below. The numbers
identify the applied dependency:

1 Allowed(SID1, ‘alice’, ‘a.’)

4 Contact(SID1, Email1)

5 Allowed(‘9000’, FN1,LN1)

2 Authorised(‘621005’, FN2, LN2)

2 Authorised(‘9000’, FN3, LN3)

3 Authorised(SID2, ‘eve’,‘e.’)

1 Allowed(SID3, ‘eve’, ‘e.’)

4 Contact(Contact(SID3, Email2)

As can be easily verified, no more dependency is applicable. �

5.4.1 Weakly Acyclic PDE-Systems

Although Theorem 5.25 suggests that the E-CHASE might be a useful tool
for reasoning over PDE-systems, it states nothing about the complexity of
computing E-CHASE (S,B). It is not even guaranteed that the result of E-
CHASE (S,B) is a finite state, that is whether the chase terminates.

In fact, because the results in Section 5.2.1, showing that PDE-systems
generalise data exchange settings, are not restricted to data exchange settings
where the set of TGDs in M is weakly acyclic, it follows immediately (from the
discussion in Section 3.1.2) that there exist PDE-systems such that the chase
sequence of the E-CHASE is infinite. Hence in the general setting, deciding

5.4 the e-chase 84

whether a state is S-consistent, S-admissible, or computing a universal S-
solution is undecidable.

Therefore, if one is interested only in PDE-systems where these problems
are indeed decidable, the class of PDE-systems under consideration has to be
restricted. As the problem arises from the cyclicity of the TGDs in CE, like in
data exchange only weakly acyclic TGDs are allowed in CE.

Definition 5.27 (Weakly Acyclic PDE-System [30]). A PDE-system S =

〈P, CE, ME〉 is a weakly acyclic PDE-system iff the TGDs in CE form a weakly
acyclic set of TGDs. a

Note that the property of weak acyclicity can be guaranteed by each peer
with only local information: if CE of each peer is weakly acyclic, so is the
complete PDE-system. Therefore every peer remains completely autonomous
when setting up the mappings.

This definition of weakly acyclic PDE-systems still allows for not weakly
acyclic sets of TGDs, for example ME or ME ∪ CE. This indeed is a problem
when applying the classical FOL interpretation (like for example used in PPL)
on ME, which would require to impose global restrictions on the structure
of a PDE-system. Because of applying the alternative semantics to the P2P
mappings, hence requiring them only to be CERT-satisfied, these kinds of
not weakly acyclic sets of TGDs do not cause undecidability: For weakly
acyclic PDE-systems, all the considered problems are decidable and can even
be solved efficiently.

Theorem 5.28. [30] Let S = 〈P, CE, ME〉 be a weakly acyclic PDE-system and B be
a finite state for S. Then

1. Deciding whether B is S-consistent can be done in polynomial time (data
complexity).

2. Deciding whether B is S-admissible can be done in polynomial time (data
complexity).

3. If B is S-consistent, then a universal S-solution of B can be computed in
polynomial time (data complexity).

4. If B is S-admissible, then query answering can be solved in logarithmic space
(data complexity).

Proof sketch. (following [30]) (4) follows directly from Theorem 5.16 and the
well known fact that answering conjunctive queries can be done in logarithmic
space, together with the observation that dropping all tuples containing
labelled nulls from the result (that is, deciding whether a tuple contains a
labelled null) is obviously feasible in logarithmic space as well.

By Theorem 5.25, the proofs for (1) – (3) reduce to showing that for a weakly
acyclic PDE-setting, computing E-CHASE(S,B) is feasible in polynomial time
(data complexity). To prove this, it is necessary to recall that by Theorem 3.22,
chasing a set of EGDs and weakly acyclic TGDs is feasible in polynomial time.
Hence chasing CE requires only polynomial time. Further, checking whether
a TGD in ME is applicable, and if, applying it can be also done obviously in

5.5 the ei-chase 85

polynomial time. But chasing a TGD in ME propagates only tuples containing
values from const(B). Therefore, denoting the arity of the tuples propagated
by some TGD φ ∈ME with n, every φ is at most |const(B)|n times applicable.
Since the number of TGDs in ME is considered as fixed, this only gives a
polynomial number of applications of TGDs in ME. In the worst case, CE
is chased after each such application of an e-mapping, which still gives an
overall polynomial running time with respect to data complexity.

5.5 the ei-chase

Given a PDEI-system S and a state B for S, the same problems are of interest
as for a PDE-system. But the E-CHASE is no longer suitable for computing the
solutions for these problems, since it does not take into account the i-mappings
and i-constraints. Although data implied directly by those mappings is not
materialised, this data has to be considered for deciding whether an e-mapping
or e-constraint is applicable or not.

Example 5.29. Consider a slight variation of the PDEI-system of Example 5.19,
and assume a PDEI-system S = 〈P, ∅, ∅, CI, MI〉 where

• P = {Uni,LibUB,LibDep} with
S(Uni) = {Registered(StudentId,Name)},
S(LibUB) = {Authorised(StudentId,Name)},
S(LibDep) = {Allowed(StudentId,Name)},

• MI = {Registered(SID,N)→ Authorised(SID,N)},

• ME = {Authorised(SID,N)→ Allowed(SID,N)}, and

• CE = CI = ∅.

Given a state B = Registered(‘0912345’,‘alice a.’), a universal S-solution of B
should contain Allowed(‘0912345’,‘alice a.’), but not Authorised(‘0912345’,
‘alice a.’).

Also, assuming a different PDEI-system S ′ = 〈P ′, C ′E, M ′E, C ′I, M
′
I〉 where

• P ′ = {LibUB,LibDep} with
S(LibUB) = {Authorised(StudentId,Name)},
S(LibDep) = {Allowed(StudentId,Name)},

• M ′I = {Authorised(SID,N)→ Allowed(SID,N)},

• M ′E = {Authorised(SID,N)→ Allowed(SID,N)}, and

• C ′E = C ′I = ∅.

and given a state B ′ = Authorised(‘0912345’,‘alice a.’), a universal S-solution
of B ′ should not contain Allowed(‘0912345’,‘alica a.’), since this fact can be
derived by the i-mapping.

Obviously, the same holds with respect to the constraints in CE and CI. �

5.5 the ei-chase 86

The EI-CHASE is an extension of the E-CHASE that also considers the
effect of virtual dependencies. This is achieved by taking into account be-
side the materialised data also the data implied by virtual dependencies
when computing the answers to the queries ϕ(~x,~z) and ψ(~x,~y) of a TGD,
resp. the query ϕ(x1, x2) of an EGD. This is expressed by the notion of
certainNull(q, S ′,B), where S ′ is a PDEI-system of the form 〈P, ∅, ∅, CI, MI〉.
Intuitively, certainNull(q, S ′,B) computes the certain answers to q in S ′ and
B when considering all labelled nulls in B as constants after the equalities
implied by the EGDs in CI have been materialised.

More formally, let S ′ be a PDEI-system of the form 〈P, ∅, ∅, CI, MI〉, q a
conjunctive query with arity k and B a finite state for S ′. Further use σ to
denote a function nulls(B) → const(B) ∪ nulls(B), and let σ(B) be the state
obtained by applying σ to B. That is, σ substitutes the null values in B.
Finally, let σS ′ be the most general of such substitutions such that σS ′(B) is
S ′-consistent when the remaining labelled nulls in σS ′(B) are considered as
constants1. Obviously, such a substitution σS ′ only exists if B is S ′-consistent.
In this case, certainNull(q, S ′,B) is defined as the set of certain answers of
q to S ′ and σS ′(B) when considering all labelled nulls in σS ′(B) as constants.
When B is not S ′-consistent, then certainNull(q, S ′,B) is defined to equal Γk.
(Recall from Section 2 that Γ denotes the domain of the PDEI-system.)

Definition 5.30 (EI-CHASE [30]). Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-
system and B a state for S.
Consider the following chase rules:

TGD rule: A TGD φ: ϕ(~x,~z)→ ψ(~x,~y) ∈ CE is applicable to B if there exists a
tuple t ∈ certainNull(ϕ(~x,~z), SI,B) such that
t /∈ certainNull(ψ(~x,~y), SI,B).
If φ is applicable to B, φ is applied to B by adding facts corresponding
to ψ(t, ~Y) to B, where ~Y contains a fresh (that is not yet present in B)
labelled null for every y ∈ ~y.

EGD rule : An EGD φ: ϕ(x1, x2) → x1 = x2 ∈ CE is applicable to B if there
exists a pair (t1, t2) ∈ certainNull(ϕ(x1, x2), SI,B) where t1 6= t2.
If φ is applicable to B, there are two possibilities how φ is applied to B:

• If at least one of t1, t2 is a labelled null (w.l.o.g. assume t1), replace
all occurrences of t1 in B by t2. (If both t1 and t2 are labelled nulls,
it does not matter which one is kept and which one is replaced.)

• If both, t1 and t2 are constants, set B = FAIL.

P2P-mapping rule: A TGD φ: ϕ(~x,~z)→ ψ(~x,~y) ∈ME is applicable to B if there
exists a tuple t ∈ certain(ϕ(~x,~z), SI,B) such that t /∈
certain(ψ(~x,~y), SI,B).
If φ is applicable to B, φ is applied to B by adding facts corresponding
to ψ(t, ~Y) to B, where ~Y contains a fresh (that is not yet present in B)
labelled null for every y ∈ ~y.

1 We discuss some problems encountered with this definition in Section 6.2.2.

5.5 the ei-chase 87

The corresponding chase sequence is a (possibly infinite) sequence B0, . . . , Bi,
Bi+1, . . . where each Bk+1 is obtained from Bk by applying either a TGD or
EGD from CE or a TGD from ME to Bk, and B0 = B. The transition from Bk to
Bk+1 via the application of a chase rule is called a chase step. A chase sequence
is called finite if, after a finite number of steps, a fixpoint is reached, that is
some instance Bf where no more TGD or EGD from CE ∪ME is applicable.
Otherwise it is called infinite.

If for some i Bi = FAIL, then EI-CHASE(S,B) = FAIL.
If the chase sequence is finite, Bf 6= FAIL and Bf is not SI-consistent, then
EI-CHASE(S,B) = FAIL.
If the chase sequence is finite, Bf 6= FAIL and Bf is SI-consistent, then
EI-CHASE(S,B) = Bf.
If the chase sequence is infinite and

⋃
i∈N Bi is not SI consistent, then

EI-CHASE(S,B) = FAIL.
If the chase sequence is infinite and

⋃
i∈N Bi is SI consistent, then

EI-CHASE(S,B) =
⋃
i∈N Bi. a

Some remarks concerning the above definition: Note that the FOL based
semantics is applied again to the peers, just as in E-CHASE. Moreover, com-
pared to the E-CHASE, the use of EvalNull takes the virtual mappings into
account. Just as described in the intuition of the alternative semantics for
P2P mappings, what is exchanged by the rule for the P2P mapping are cer-
tain answers. Also just like for the E-CHASE, in case of an infinite chase
sequence, EI-CHASE(S,B) describes an infinite state (as long as this state is
SI-consistent). While the definition of the E-CHASE, using the notions of qB

and EvalNull↓(q,B), gives immediately rise to a possible implementation,
the case is not as obvious for certainNull(q, SI,B) and certain(q, SI,B). The
discussion of one possible way to implement these notions is deferred to the
next chapter (see Section 6.3.4), where also a possible way to check a state for
SI-consistency is described.

A more procedural description of the EI-CHASE is given in Algorithm 3.
Note that because a concrete algorithm cannot handle infinite instances, in the
case of an infinite chase sequence the result returned by the algorithm differs
from Definition 5.30. In fact, the corresponding program will not terminate.
The chase sequence stated in Example 5.26 is almost a chase sequence of an
EI-CHASE computing the universal S-solution of B (from the same example)
w.r.t. the PDEI-system defined in Example 5.21. Only the two facts implied by
the virtual mappings have to be removed.

Just as for the E-CHASE, it can be also shown for the EI-CHASE that it is a
good choice for reasoning over PDEI-systems:

Theorem 5.31 ([30]). Let S be a PDEI-system and B a finite state for S. Then

• B is S-consistent iff EI-CHASE(S,B) 6= FAIL.

• If EI-CHASE(S,B) 6= FAIL, then EI-CHASE(S,B) is a universal S-solution
of B.

• B is S-admissible iff EI-CHASE(S,B) = B.

5.5 the ei-chase 88

Alg. 3 EI-CHASE
Input: a PDEI-system S and a state B for S

Output: EI-CHASE (S,B)
ChS,B ← ∅; ChnewS,B ← B

while ChS,B 6= ChnewS,B do
{
ChS,B ← ChnewS,B;
for all φ ∈ CE ∪ME do

{
if φ = (ϕ(~x,~z)→ ψ(~x,~y)) ∈ CE

and ~t ∈ certainNull(ϕ(~x,~z), SI,ChnewS,B)

and ~t /∈ certainNull(ψ(~x,~y), SI,ChnewS,B)

then
ChnewS,B ← ChnewS,B ∪ {ψ(~t, ~Y)}

if φ = (ϕ(x1, x2)→ x1 = x2) ∈ CE
and 〈t1, t2〉 ∈ certainNull(ϕ(x1, x2), SI,ChnewS,B)

and t1 6= t2
then

if t1 ∈ N then
ChnewS,B ← ChnewS,B[t1 ← t2];

else if t2 ∈ const then return FAIL
else
ChnewS,B ← ChnewS,B[t2 ← t1];

if φ = (ϕ(~x,~z)→ ψ(~x,~y)) ∈ME

and ~t ∈ certain(ϕ(~x,~z), SI,ChnewS,B)

and ~t /∈ certain(ψ(~x,~y), SI,ChnewS,B)

then
ChnewS,B ← ChnewS,B ∪ {ψ(~t, ~Y)}

}
}

if ChnewS,B is SI-consistent then return ChnewS,B
return FAIL

(~Y contains a fresh labelled null for each y ∈ ~y)

The same remarks as for the corresponding results for the E-CHASE apply
here: If the chase sequence is infinite and the resulting infinite state is SI-
consistent, then the resulting state is considered to be S-consistent (i.e. EI-
CHASE (S,B) 6= FAIL). Moreover in such a case EI-CHASE (S,B) denotes an
infinite universal S-solution.

5.5.1 Stratified PDEI-Systems

As it was the case for PDE-systems, also for general PDEI-systems the decision
problem whether a given state B is S-consistent is undecidable. Therefore, if

5.5 the ei-chase 89

one is interested only in settings where this problem can be decided (and also
in such settings where the S-consistency of B implies the existence of a finite
universal S-solution), suitable limitations must be applied to the allowed sets
of TGDs. Clearly, for the TGDs in CE the same restriction as in PDE-systems
is applied, that is they are restricted to a weakly acyclic set of TGDs. The
same restriction could be applied to the TGDs in CI. But as mentioned in
Section 3.2, in data integration most of the time not weakly acyclic TGDs have
been considered as constraints over the global schema, but instead sets of key
constraints and inclusion dependencies (which in turn can be expressed as
EGDs and TGDs).

Therefore, the constraints allowed in CI are also restricted in terms of key
constraints and inclusion dependencies: The EGDs in CI are restricted to legal
key constraints, and the TGDs in CI are restricted to foreign key dependencies
with respect to the key constraints in CI.

Thereby [30] gives no explanation why PDEI-systems are restricted to
foreign key dependencies only. In Section 3.2.4 (Theorem 3.50), results were
summarised that state that the most expressive class of key constraints and
inclusion dependencies that allow for efficient query answering is the class
of NKCIDs. However, this result holds only when considering unrestricted
database instances. When allowing for finite database instances only, query
answering over NKCIDs becomes undecidable. Nevertheless we think that
query answering over PDEI-systems that allow for NKCIDs still falls into the
decidable case. Hence the use of NKCIDs would still allow for efficient query
answering in PDEI-systems.

However, it can be immediately (see Section 3.3) verified that those two
approaches — weakly acyclic TGDs and EGDs on the one hand, legal key con-
straints and foreign key dependencies on the other hand — are incomparable
with respect to their expressive power.

But just restricting CE and CI separately is not enough to guarantee decid-
ability. Example 5.32 shows such a case. It can be easily verified that there
exists no finite universal solution for this setting, hence from Theorem 5.31

the undecidability of checking a state for S-consistency follows. Intuitively,
the problem arises because there is still data materialised according to TGDs
that belong to a not weakly acyclic set of TGDs.

Example 5.32 ([30]). Consider a PDEI-system S = 〈P, CE, ME, CI, MI〉 where

• P = {P1} with S(P1) = {E(X),R(X, Y), F(X),Q(X, Y)},

• CE = {E(x)→ R(x,y)},

• CI = {R[2] ⊆ F[1]; F[1] ⊆ Q[2];Q[1] ⊆ E[1]},

• ME = MI = ∅,

and a state B = {E(‘a’)}. Then it can be easily verified that there exists no finite
universal S-solution for B.

Note that in the dependency graph of S, there exists a cycle containing
special edges, namely E1

∗−→ R2 → F1
∗−→ Q1 → E1. From the fact that the

5.6 query answering in stratified pdei-systems 90

mappings in CE and CI are interpreted under the classical FOL semantics,
undecidability follows immediately. �

Although the TGDs in CE are weakly acyclic, this does not hold any more
when combining them with the TGDs in CI. To avoid such situations, also the
combinations of TGDs from CE with TGDs from CI need to be restricted:

Definition 5.33 (Stratified PDEI-System [30]). A PDEI-system S =

〈P, CE, ME, CI, MI〉 is a stratified PDEI-system, if the TGDs in CE form a weakly
acyclic set, CI corresponds to a set of legal key constraints and foreign key
dependencies, and further no head of a foreign key dependency in CI appears
on the left hand side of any TGD in CE. a

Note that CI may still contain a set of acyclic TGDs. But now no position
for which data is materialised belongs to a cycle in the dependency graph
(Definition 3.16) containing a special edge. The following result from [30]
shows that this is indeed sufficient to guarantee the existence of a finite
universal S-solution.

Theorem 5.34 ([30]). Let S be a stratified PDEI-system and B a finite S-consistent
state. Then there exists a finite universal S-solution of B.

Moreover, such a universal S-solution can be computed efficiently, just
as checking whether a state is S-consistent or S-admissible. This is based
on the fact that for stratified S-systems EI-CHASE(S,B) can be computed in
polynomial time (data complexity).

Theorem 5.35 ([30]). Let S be a stratified PDEI-system and B a finite state for S.
Then

1. whether B is S-consistent can be decided in polynomial time (data complexity),

2. whether B is S-admissible can be decided in polynomial time (data complexity),
and

3. if B is S-consistent, then a universal S-solution can be computed in polynomial
time (data complexity).

Under the assumption that certainNull and certain for a PDEI-system can
be computed efficiently, the same arguments as for the corresponding results
for the E-CHASE prove the correctness of this theorem. An efficient algorithm
for computing the certain answers over a stratified PDEI-system is presented
in the next section. For an extended notion of stratified PDEI-systems, a
method for efficiently computing certainNull is presented in the next chapter
(Section 6.3.4).

5.6 query answering in stratified pdei-systems

Although for S-consistent stratified PDEI-systems there always exists a finite
universal S-solution, [30] states that it can be shown that there exists no finite
state B ′ such that computing the certain answers to a query q with respect

5.6 query answering in stratified pdei-systems 91

to S and B can be done by simply evaluating q over B ′. Therefore other
methods for query answering are needed. By the result of Theorem 5.22, these
methods need only take into account the dependencies and constraints from
MI and CI, but need not consider ME and CE. Hence the problem corresponds
to the problem of query answering in GLAV data integration systems with
constraints on the global schema.

In Section 3.2.4, the notion of a perfect rewriting of a query has been
presented and the rewriting algorithm presented in [12] is mentioned. In
a GAV data integration system that allows non-key conflicting inclusion
dependencies and key constraints over the global schema G, given a UCQ q

over the target schema, this algorithm computes a perfect rewriting of q. This
means it returns a UCQ q ′, such that evaluating q ′ over the view extensions
of G returns the certain answers to q.

Since a GAV data integration system with inclusion dependencies over
the global schema is expressive enough to model a GLAV data integration
system (see Section 3.2.3), this rewriting algorithm can be also used for query
answering in PDEI-systems.

Before the application of this algorithm to PDEI-systems is described in
detail, the idea is roughly sketched: The schema of each peer can be con-
sidered as global schema in a GLAV data integration system with foreign
key dependencies and key constraints allowed over this schema. Thereby CI
corresponds to the constraints on the global schema, and the relations at the
peer can be regarded as the view extensions. A UCQ q can then be rewritten
into a query q ′ that, evaluated over the peer relations, returns the certain
answers to q with respect to the peer instance. The data implied by the TGDs
qi → qj in MI (assume qi over peer Pi and qj over peer Pj) is taken into
account by simply materialising this data in the relations of Pj. To include
consideration of the data implied by CI when evaluating the TGDs in MI, the
queries on the left hand side of the P2P mappings are also rewritten.

5.6.1 Rewriting Conjunctive Queries under Inclusion Dependencies

As mentioned above, in [12] a rewriting algorithm is proposed for a GAV
data integration system with key constraints (KDs) and non key conflicting
inclusion dependencies (NKCIDs) allowed over the global schema. Given a
UCQ q over the global schema, q is transformed into a query q ′ according
to this algorithm such that evaluating q ′ on the view extension of the global
schema returns the certain answers to q.

This algorithm utilises the separation property (Theorem 3.51), that roughly
states that given an instance D of a schema R with a set Σk of KDs and a
set ΣI of NKCIDs over R, then if D is consistent with Σk, no data implied
from D by ΣI violates any key constraint in Σk. This observation allows to
split the rewriting algorithm into two parts, one that rewrites the query q
according only to the NKCIDs, working completely independently from the
KDs (even working without any KDs), and another one that “checks” whether
the instance D on which query answering shall be performed is consistent
with the KDs (in [12], the instance D corresponds to the view extensions,

5.6 query answering in stratified pdei-systems 92

while in a PDEI-system S, the instance D is a state for S). This second part
adds additional subqueries to the result of the first part of the algorithm that
ensure that the result of the query contains every possible n-tuple (where n is
the arity of q) over the values present in D if D is not consistent with the KDs.

For query answering in PDEI-systems, only the rewriting under NKCIDs
only (that is without taking care of the KDs) is of interest. This is because in
[12], a GAV setting is assumed, hence the view extensions correspond to a
definite instance D of G. As a result, there is no need to check for unifications
of labelled nulls to satisfy the KDs (since D contains none): either D satisfies
Σk or not. But for PDEI-systems also unification of labelled nulls with other
values needs to be considered to determine whether a state is consistent.
Therefore checking the consistency of the current state is done separately.
Consequently, here only query rewriting under inclusion dependencies (IDs)
is considered.

The basic idea of the rewriting algorithm is, given some UCQ q, to regard
inclusion dependencies Ri[A1] ⊆ Ri[A2] as rewriting rules for adding new
subqueries to q: If there exists some subquery qi of q with a goal gi corre-
sponding to the right hand side of some ID, then add a new subquery qj
to q, created from qi by replacing gi with the left hand side of the ID. The
following example shall give a better intuition of this idea:

Example 5.36. To concentrate on the rewriting algorithm, this and the next
example are expressed over a single schema instead of a complete PDEI-
system.

Assume the same setting as in Example 3.46 and consider the schema G

= {Books(ISBN, Title, Author, Id, Status), OldBooks(ISBN, Title, Author,
Id, Status)} with a key constraint key(Books) = {Id} and a foreign key
dependency φ : OldBooks[Id] ⊆ Books[Id] defined over G. Hence in every
instance D ′ satisfying φ, all ids2 stored in the OldBooks relations need to
occur in the Books relation as well.

Denote with D some instance of G that not necessarily satisfies φ, and let
q = {Id | Books(ISBN, Title, Author, Id, Status)} whose certain answers
contain those ids shared by all instances of the Books schema that satisfy φ
with respect to D.

Therefore, the answer to q does not only contain those ids contained in the
Books relation in D, but also those from the OldBooks relation.

To consider this in the query evaluated over D, the idea is to use φ as a
rewriting rule and to add the subquery {Id | OldBooks(ISBN, Title, Author,
Id, Status)} to q. q therefore becomes a UCQ with those two subqueries. �

To give a formal description of this algorithm, it is first necessary to define
when a goal of a query and the right hand side of an ID correspond, and how
to derive a new goal from such a correspondence. In [12] this correspondence
between a subgoal g (which in case of conjunctive queries is an atom) and an
ID I is referred to as I being applicable to g.

2 Note that while we use “IDs” as abbreviation for “inclusion dependencies”, “ids” denotes the
values of the Id attribute of relations.

5.6 query answering in stratified pdei-systems 93

But first some properties of variables in conjunctive queries need to be fixed:
Let q be a conjunctive query. A variable x occurring in q is bound if it occurs
at least twice in q, otherwise, that is if it occurs only once, it is unbound. All
variables in the head of q must be bound, since they must occur at least once
in the body of q. A bound term is either a bound variable or a constant. To
be able to denote unbound variables more easily, all unbound variables of a
query are referred to as ξ in the following. For the description of the rewriting,
inclusion dependencies are represented as r[i1, . . . , ih] ⊂ s[ji, . . . , jh] where ik
and jk are no attributes, but they denote the positions of attributes in r resp.
s.

Definition 5.37 ([12]). Let g = s(x1, . . . , xl) be an atom and I = r[i1, . . . , ih] ⊂
s[ji, . . . , jh] an inclusion dependency. Then I is applicable to g if ∀l (1 6 l 6 n) :

if xl 6= ξ, then ∃h s.t. jh = l. a

The intuition of this rule is that if the value at some position in g is of
interest for the query (i.e. it is 6= ξ), then also those values that are propagated
by an inclusion dependency to this position must be considered. This is, an ID
I is applicable to an atom g if the position of every bound term in g appears
in the rhs of I. Moreover, this implies that for every bound term there exists a
correspondence on the lhs of I. More precisely, this correspondence means
that I maps data from r to each bound term. And obviously the relational
symbols on the rhs of I and of g must be equal.

The result of applying I to g is denoted with gr(g, I) and is defined as
follows3:

Definition 5.38 ([12]). Let g and I be as above, and assume that I is applicable
to g. Then gr(g, I) is defined as gr(g, I) = r(y1, . . . ,ym) (where m is the arity

of r), where for each ∀l(1 6 l 6 m) : yl =

xjh if ∃h s.t. ih = l

ξ otherwise
a

But only adding new subqueries by replacing goals according to the above
rewriting rule would not find all solutions, as the following example shows:

Example 5.39. Consider the following schema S = {a/3,b/2, c/2} with the
two inclusion dependencies c[1, 2] ⊆ a[1, 3] and a[2, 3] ⊆ b[1, 2]. (Assuming
according key constraints.)

Given the query q = {(A,B) | a(A,B, _) ∧ b(B,C)}, rewriting b(B,C) adds
the subgoal {(A,C) | a(A,B, _)∧a(_,B,C)}. Now no ID is applicable any more.
But the resulting query is no perfect rewriting, since it completely misses the
content of c. But what can be done is adding a subquery {(A,C) | a(A,B,C)},
since the result of this query is already included in the result of the above two
subgoals. However, in this query B is no longer a bound term, hence it can

3 In fact, in [12] the definition of gr(g, I) is “the atom s(Y1, . . . ,Ym) (m is the arity of s [..]” ([12],
page 3). We assume that this is a typing error, since this definition does not only contradict the
intuition of “a rewriting rule whose direction is right-to-left”, but simply returns wrong results:
Assume e.g. the relation symbols a/1,b/1, I = a[1] ⊆ b[1], and q = {A | b(A)}. Applying
the original definition from [12] to b(A) would return b(A). In the following, this would return
{A | b(A)} as the perfect rewriting of q which is obviously incorrect.

5.6 query answering in stratified pdei-systems 94

be rewritten using the second ID, giving the new subquery {(A,C) | c(A,C)}.
Altogether, these three subgoals give a correct perfect rewriting q ′ = {(A,B) |

a(A,B, _) ∧ b(B,C)} ∪ {(A,C) | a(A,B, _) ∧ a(_,B,C)} ∪ {(A,C) | c(A,C)}. �

The idea used in the example above is to identify certain restricted cases of
the subqueries, to make them explicit and then to check whether this gives
rise to some further rewriting. Formally, this is done by trying to unify two
subgoals within the body of the same subquery.

Definition 5.40 ([12]). Given two atoms with the same relational symbol,
g1 = s(x1, . . . , xn) and g2 = s(y1, . . . ,yn), g1 and g2 unify if for each i

(1 6 i 6 n) either xi = yi, or xi = ξ or yi = ξ.
If g1 and g2 unify, then U(g1,g2) = s(z1, . . . , zn) where (for 1 6 i 6 n)

zi =

xi if xi 6= ξ (i.e. either xi = yi or yi = ξ)

yi if xi = ξ

a

With these notions defined, the algorithm rewrite (see Algorithm 4) per-
forms as follows: Given a UCQ q, the following two rules are applied as long
as they create new subqueries. Once they have no more effect, the union of all
subqueries (those created and those given as input) is a perfect rewriting of q.
According to the above definitions, the two rules either unify two atoms or
replace an atom according to an ID:

unification If there exists a subquery q ′ of q that contains two atoms g1
and g2 in its body that unify, create a new subquery (denoted with
reduce(q,g1,g2) in Algorithm 4) from q ′ by removing both, g1 and g2
from the body and adding U(g1,g2) instead. Finally4 all variables in
reduce(q,g1,g2) that appear only once after replacing g1 and g2 but
have been bound terms before are marked as unbound terms (that is,
they are replaced by ξ. This is expressed by the function τ in Algo-
rithm 4), and the new subquery is added to q.

id application If there exists a subquery q ′ of q that contains a goal g in
its body, such that some inclusion dependency φ is applicable to g, then
a new subquery (denoted by q ′[g/gr(g, I)] in Algorithm 4) is added to q
that is obtained from q ′ by replacing g with gr(g, I). The new subquery
is then added to q.

Termination of the algorithm follows from the following facts:

• The maximal number of goals in the body of each subquery is fixed and
equal to the maximal number of goals in the body of any subquery of
the input query q.

• The number of relational symbols is fixed, since only relational symbols
from q and ΣI can be used.

4 [12] states that first ”the substitution obtained in the computation of U(g1,g2)“ shall be applied
to the complete new subquery. However, this substitution either replaces a bound term by itself
(xi = yi), or an unbound term by something else. But by definition, each unbound term appears
only once in the whole query, hence no other element is affected by those substitutions. Therefore
this step is omitted here.

5.6 query answering in stratified pdei-systems 95

Alg. 4 rewrite(q, I) — compute a perfect reformulation [12]
Input: a relational schema R, a set of inclusion dependencies ΣI, an UCQ q

Output: a perfect rewriting of q w.r.t. ΣI q̄← q

repeat
ql ← q̄

for all q ′ ∈ ql do
//unification
for all g1,g2 ∈ body(q ′) do

if g1 and g2 unify then
q̄← q̄∪ {τ(reduce(q ′,g1,g2))}

//ID application
for all g ∈ body(q ′) do

for all φ ∈ ΣI do
if φ is applicable to g then
q̄← q̄∪ {q ′[g/gr(g,φ)]}

until ql = q̄ return q̄

• The number of bound terms is finite and restricted to those bound
terms from q, and all unbound terms are marked with the same symbol,
namely ξ.

Therefore the number of atoms that can be created by the algorithm is finite,
which implies that the number of subqueries created is finite. Therefore the
algorithm terminates. Moreover, the resulting query is a perfect rewriting of
the query q given as input.

Theorem 5.41. Let R be a relational schema and ΣI be a set of inclusion dependencies
over R. Given a UCQ q over R, rewrite(q,ΣI) is a perfect rewriting of q with respect
to ΣI.

Proof. The result follows immediately from Theorem 3.3 in [12].

5.6.2 Computing the Certain Answers

So far, the following is known for computing the certain answers to a query
q over a PDEI-system S = 〈P, CE, ME, CI, MI〉 and a state D for S: If D is S-
admissible, then CE and ME have no effect on the result and can be neglected.
That is, query answering reduces to computing the certain answers to q over
SI. Moreover a method for query answering under inclusion dependencies
over a consistent instance was shown in the last section.

Putting all this together, it remains to clarify how to take the mappings in
MI into account, and how to ensure that the current state is consistent with
respect to the key constraints in CI.

The idea is the following: Given an S-admissible state D, a state D ′ is
materialised which is obtained from D by materialising all the data implied
by the mappings in MI. Moreover, the key constraints in CI are enforced over
this state. Therefore the result is either a state that is consistent with respect

5.6 query answering in stratified pdei-systems 96

to the key constraints and contains all data derivable by the mappings in MI,
or one gets the information that the state is inconsistent (and query answering
is therefore trivial). If D ′ is consistent, then it satisfies all prerequisites such
that computing the certain answers to a given query q reduces to evaluating
rewrite(q, I) (where I denotes the set of foreign key dependencies in CI) over
D ′.

More formally: Denote with I a set of inclusion dependencies and use J to
denote a set of key constraints. If φ is a TGD of the form qi → qj, then the
rewriting of φ is defined as Expand(φ, I) = {q ′ → qj | q ′ ∈ rewrite(qi, I)}.

For a set T of TGDs, the result of rewriting is defined as

Expand(T, I) =
⋃
φ∈T

Expand(φ, I) .

Since the goal is to materialise all data implied by the i-mappings, the queries
on the lhs of the TGDs must also take into account the data implied by the
inclusion dependencies, and not only the data materialised in the current state.
This is the purpose of Expand.

Definition 5.42 ([30]). Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system, and let I

denote the set of inclusion dependencies in CI. Then let τ(S) be the following
PDE-system5:

τ(S) = 〈P, ∅,Expand(MI, I)〉 .

a

With all these notions introduced, computing the certain answers over a
PDEI-system is characterised by the following result:

Theorem 5.43 ([30]). Let S = 〈P, CE, ME, CI, MI〉 be a stratified PDEI-system, B
a finite S-admissible state and q a query over S. Denote with I the set of inclusion
dependencies in CI. Then
certain(q, S,B) = EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)) .

Concerning the complexity of query answering, it is first observed that
rewrite(q, I) runs obviously in polynomial time (data complexity), since it is
in fact independent of the data in the input instance. Then, by the complexity
results for E-CHASE (see Theorem 5.28) and the well known complexity of
evaluating UCQs over an instance, the complexity of query answering follows
immediately.

Theorem 5.44 ([30]). Let S-be a stratified PDEI-system and B a finite S-admissible
state. Then query answering can be solved in polynomial time (data complexity).

5 We discuss this definition later in Section 6.2.1 since we think it is not completely correct (w.r.t. to
Theorem 5.43).

6I M P L E M E N TAT I O N

We created a prototype implementation of a Peer Data Management System
based on the semantical framework proposed in [30] and summarised in
Chapter 5. There have been several reasons for the implementation of this
particular framework:

• Since the framework generalises both, data exchange and virtual data
integration, it provides greater flexibility than PDMSs that support either
only data exchange or data integration. It allows the user to decide at
configuration time whether to model a dependency as a data exchange
or data integration mapping.

• Data exchange and data integration dependencies are modelled by
schema mappings using TGDs and EGDs. These very powerful for-
malisms are easy to use and offer a well defined, extensively studied
and well understood semantics.

• For reasonably restricted settings, many of the important reasoning tasks
are solvable in polynomial time (data complexity): Checking a state for
consistency, computing universal solutions (what could be referred to as
computing the solution to the data exchange problem) and computing
the certain answers of a query with respect to the virtual mappings (what
could be referred to as computing the solution to the data integration
problem).

• The restrictions imposed to obtain tractability seem feasible for practical
use. Most important, these restrictions apply only to the local dependen-
cies of a peer, and are independent of the overall P2P network induced
by the P2P mappings (e.g., there is no restriction like acyclicity required
on the topology of the network). Therefore, to guarantee the restric-
tions to hold for the overall system, it suffices that each peer satisfies
these constraints locally. Hence the compliance with the restrictions can
be checked locally by each peer without the need of global informa-
tion. Moreover, the use of global information would not give additional
expressive power.

• To the best of our knowledge, this approach has not been implemented
yet. We are interested to which extend the good theoretical properties
(polynomial time algorithms for many reasoning tasks) also hold in
“practice”.

• The framework of De Giacomo et al. seems to be a promising basis for
further research planned at the department. Having a prototype that
can be used for proof of concept implementations and evaluation of new
ideas and extensions seems eligible.

97

6.1 general system architecture 98

Our implementation is based on CoDE (“Core computation in Data Ex-
change”), a prototype system for data exchange and core computation pre-
sented in [71]. Each peer is built on top of a traditional DBMS that is used
to store and access the data residing at that peer efficiently and with only
very little additional programming effort. Moreover, CoDE provides an im-
plementation of the chase steps as used in data exchange (see Definitions
3.11 and 3.12) that can be used either directly or with some modifications for
the implementation of the E-CHASE and EI-CHASE. This allows us to focus
more on the coordination of the peers and the problems introduced by the
addition of (virtual) data integration mappings. We tested our implementation
using HSQLDB1 as database back-end because it very easily allows to set up
and run several database instances, which enables us without much effort to
provide each peer with its own database. However, the system can be adopted
easily to run with other DBMSs as well (CoDE already provides connectors
to Oracle and PostgreSQL, but they have not yet been tested for our PDMS
implementation).

In the next section (Section 6.1), a short overview of the implementation
is given. Section 6.2 discusses some problems detected with the definitions
presented in the last chapter. Afterwards we describe our main design deci-
sions in Section 6.3 and stae some implementation details in Section 6.4. We
conclude this chapter with a discussion of our implementation in Section 6.5.

6.1 general system architecture

In our PDMS, all peers are conceptually equal. This means there are no super-
peers or other specialised nodes present in the P2P network, and also no kind
of centralised control is needed. Instead, the network only consists of a set of
equal (with respect to their functionality) peers. Therefore the implementation
of the PDMS reduces to the implementation of such a peer, that we realised as
a Java program. Of course, the peers may differ with respect to their schemas,
stored data and constraints/mappings.

The general structure of our peer implementation is shown in Figure 9.
Every peer defines a schema, constraints over this schema and mappings
from the schemas of other peers to the own peer schema that define in which
data stored at the other peers a peer is interested in, and how the content
of the local instance depends on the other peer instances. This information
is, among others, specified within an XML configuration file handed to the
peer at startup. The schema describes the structure of the RDBMS that is
used for storing the local data of the peer. To support database platforms
using different SQL dialects, CoDE implements its own database connectors
that are used for rewriting the SQL queries into the correct dialect before
issuing them to the database system, which is done by using the functionality
provided by the spring framework [74]. These connectors are the reason why
our implementation does not work on all databases with JDBC drivers (but
first needs an own connector for each database).

1 http://hsqldb.org/

http://hsqldb.org/

6.1 general system architecture 99

Figure 9: Overview of the peer structure in our PDMS implementation

To use a platform and programming language independent mechanism,
communication between the peers is implemented using webservices. Every
peer publishes a set of webservices that are then called by the other peers
in order to exchange information. Although in our setting, each peer is an
instance of the same implementation, by using webservices for communica-
tion also different peer implementations could join the network, as long as
they implement the webservice interface (and the correct protocols). All the
information required to communicate with a certain peer is also specified in
the configuration file, such that no lookup service or other mechanisms to
locate a certain peer are needed.

Since, as shown in Chapter 5, all important reasoning tasks over PDE- and
PDEI-systems are based on the chase procedure, besides computing query
rewritings and posing queries to the database backend, the most important
task of the PDEI implementation is to control the chase. Thereby for pro-
cessing the local chase (i.e. chasing e-constraints and i-constraints) parts of
the CoDE system are used. CoDE transforms the XML specifications of the
dependencies using XSLT templates into SQL commands that chase the local
database instance. By using a mechanism sketched in [15], also most of the
work of chasing the P2P mappings can be done by using the local chase
implementation of CoDE. Moreover, CoDE is used for managing most of the
database access.

While CoDE checks dependencies for being applicable, and if so applies
them, the PDEI-system coordinates the local chase with the propagation
of the chase to the neighbouring peers. This includes sending the correct

6.2 problems arising from ambiguous definitions 100

data according to the P2P mappings to the neighbours and keeping track
about which neighbours have already finished their chase. Concerning query
answering, the PDEI-system rewrites the query, initialises the necessary chase
and returns the certain answers to the user.

Finally a command-line interface provides some basic control of the peer,
like posing queries or initiating chases, and displays results or other feedback
to the user.

6.2 problems arising from ambiguous definitions

In this section we mention and discuss some problems encountered during the
implementation because of some slight inaccuracies in the definitions of certain
notions given in [30]. Moreover we introduce and justify the assumptions
made to overcome these problems.

6.2.1 Query Answering in PDEI-Systems

In section 5.6.2 we introduced some results concerning query answering in a
PDEI-system. The main result was Theorem 5.43, stating that in a PDEI-system
S, for an S-admissible state B and a conjunctive query q, certain(q, S,B)

= EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)) (where I denotes the set of
inclusion dependencies in CI).

At least according to our understanding of how to apply the rewriting
algorithm in this situation, this theorem is not correct, as shown by the
following counter-example:

Example 6.1. Let S denote the PDEI-system 〈{P1}, ∅, ∅, {key(a) = {1}}, ∅〉 with
S(P1) = {a/3}. Assume further the indefinite state B = { a(‘1’,‘a’,C), a(‘1’,A,‘c’)}
where 1,a, c ∈ C and A,C ∈ N (i.e. A and C are labelled nulls).

Given the query q = {(K,A,C) | a(K,A,C)}, then certain(q, S,B) 6=
EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)):

• EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)) = ∅:
It first needs to be checked that B is an S-admissible state. By Theorem
5.31 this holds iff EI-CHASE(S,B) = B. Since CE = ME = ∅, no chase
rule can be applied to B, hence EI-CHASE(S,B) 6= B only if B is not
SI-consistent and hence EI-CHASE(S,B) = FAIL. But since for example
the state D = {a(‘1’,‘a’,‘c’)} satisfies SI and B, Sem(SI,B) 6= ∅, and B is
SI-consistent. Therefore EI-CHASE(S,B) = B, hence B is S-admissible2.
To compute EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)), consider the
two arguments of EvalNull↓:

– E-CHASE(τ(S),B) = B:
This holds because from MI = ∅ it follows that Expand(MI, I) = ∅,
hence τ(S) = 〈P, ∅, ∅〉, and there are no rules that could be applied
during the chase. Therefore E-CHASE(τ(S),B) = B.

2 This could be also verified by checking the conditions of Definition 5.20. Being more lengthy, this
yields the same result.

6.2 problems arising from ambiguous definitions 101

– rewrite(q, I) = q:
I are the foreign key dependencies in CI. Because CI contains
only a single key constraint, I = ∅. Therefore there is trivially no
inclusion dependency to apply to q. Moreover, since the body of q
contains only a single atom, no unification can be performed either.
Therefore rewrite(q, I) = q.

Therefore,
EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)) = EvalNull↓(q,B). Because
of qB = {(‘1’,‘a’,C), (‘1’,A,‘c’)}, which contains no tuple without a labelled
null, EvalNull↓(q,B) = ∅.

• certain(q, S,B) = {(‘1’,‘a’,‘c’)}:
This follows from the fact that every definite instance in Sem(S,B) has to
contain a fact a(‘1’,‘a’,‘c’): For every instance D ∈ Sem(S,B), there must
exist a homomorphism from B to D. Because every homomorphism
maps constants onto themselves, every instance D ∈ Sem(S,B) has to
contain some fact a1 = a(K,A,C) with a[1] = ‘1’ and a[2] = ‘a’ and
some arbitrary value for a[3] and some fact a2 = a(K1,A1,C1) with
a[1] = ‘1’ and a[3] = ‘c’ and some arbitrary value for a[2]. Moreover
also the key constraint key(a) = 1 has to be satisfied. Since the only
possibility to achieve this is that a1 = a2 = a(‘1’,‘a’,‘c’), it follows that
a(‘1’,‘a’,‘c’) ∈ D, ∀D ∈ Sem(S,B), which proves the claim.

Hence Theorem 5.43 gives ∅ = {(‘1’,‘a’,‘c’)} and therefore does not apply in
this setting. �

The problem as we see it is that the key constraints from CI are never taken
into account for query answering, neither for query rewriting nor in τ(S). To
overcome this problem, we based our implementation on a slightly different
definition of τ(S):

Definition 6.2 (τ(S)). Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system. Let I

denote the set of inclusion dependencies in CI and J denote the set of key
constraints in CI. Then τ(S) is defined as the following PDE-system:

τ(S) = 〈P, J,Expand(MI, I)〉 .

a

Using this definition for τ(S), E-CHASE(τ(S),B) also enforces the equalities
implied by the key constraints in CI on B. If such a chase fails, then B is not
consistent for S, and query answering is trivial. On the other hand, if the
data materialised during this chase does not violate any key, then, by the
separation property, also the data implied by the foreign key constraints can
not violate any key constraint.

Together with the correctness of the rewrite algorithm, this ensures that
all tuples implied by CI and MI are exchanged between the peers, and
that EvalNull↓(rewrite(q, I), E-CHASE(τ(S),B)) indeed returns the certain
answers.

6.2 problems arising from ambiguous definitions 102

6.2.2 Semantics of certainNull(q, SI,B)

In Section 5.5, certainNull(q, SI,B) was introduced as presented in [30].
Given a PDEI-system S ′ = 〈P, ∅, ∅, CI, MI〉3 and a state B for S, assuming that
B is S ′-consistent, certainNull(q, SI,B) was defined as the “set of certain
answers to q in S ′ and σS(B) computed under the assumption that the null
values in σS ′(B) are ordinary constants” [30].

This definition leaves some room for interpretation, which is the reason
why we justify our interpretation here. The problems arise from the phrase
“under the assumption that the null values [...] are ordinary constants”. The
differences between labelled nulls and constants are that labelled nulls do not
appear in definite instances and that they may be mapped (by homomorphisms
or instantiations) to other values. Therefore assuming labelled nulls to be
constants means that they can no longer be unified or mapped to other values,
and that they are allowed in definite instances, hence to appear in universal
solutions.

The inaccuracies we encountered are with respect to the situations in which
labelled nulls should be considered as constants, and in these situations, which
labelled nulls should be actually interpreted as constants.

When to Consider Labelled Nulls as Constants

The first ambiguity we encountered is for which situations labelled nulls
should be considered as constants. It can be best described when considering
a concrete method for computing the certain answers over a PDEI-system,
for example the one described in Theorem 5.43. There, the question arises
whether the labelled nulls should be already considered as constants during
the computation of E-CHASE(τ(S ′),σS(B)), or only for the evaluation of
rewrite(q) over the result of the E-CHASE.

More generally, the question is whether labelled nulls should be only
considered as constants for the final evaluation of the given query over some
state (i.e. for deciding which tuples from qB

′
actually belong to the certain

answers, that is contain no labelled nulls), or whether the labelled nulls should
be also considered as constants while computing which information is implied
by the mappings in MI.

We argue that although the definition describes the second case, the first
case is the correct one. This is due to the fact that it captures the intuitive
semantics of PDEI-systems (peers only exchange certain answers), and that the
following example shows that the second interpretation gives wrong results.

Example 6.3. Consider the following PDEI-system S = 〈P, CE, ME, CI, MI〉
with

• P = {P1,P2},

• S(P1) = {a/2}, S(P2) = {b/2, c/2},

• CE = {b(A,B)→ c(A,B)},

3 We use S ′ to emphasise that CE = ME = ∅ for these considerations.

6.2 problems arising from ambiguous definitions 103

• MI = {a(A,B)→ b(A,B)}, and

• CI = ME = ∅.

Note that because of CI = ∅, rewrite(q) = q for all UCQs q.
Given a state B = {a(A,‘a’)}, where A is a labelled null, and a query q = {(B) |

c(_,B)}, then certain(q, S,B) = ∅ (as Sem(S,B) contains definite instances
without any tuples for the relations b and c).
But when using the second interpretation of certainNull(q, SI,B),
EI-CHASE(S,B) = {a(A,‘a’), c(A,‘a’)} (because (A,‘a’) would be an answer to
certainNull({(A,B) | b(A,B)}, SI,B)). Therefore the answer to q would be
{(′a ′)}, which does not match the correct result from above. �

Note that for the semantics of the local constraints there is no difference
between these two interpretations, since conflicts with key constraints are
already considered by σS ′ , and because of the FOL interpretation of the
foreign key dependencies it makes no difference for their semantics at all.

Therefore, when computing certainNull(q, SI,B), for determining the ef-
fect of the mappings in MI, we consider the labelled nulls as labelled nulls,
and only when evaluating q over some state where all the information implied
by the P2P mappings is already materialised we consider the labelled nulls as
constants.

Labelled Nulls to Consider as Constants

The more subtle ambiguity is which labelled nulls should be actually inter-
preted as constants.

The problem is that considering only those labelled nulls as constants that
are already materialised in B, as suggested by defining σS ′ only over nulls(B),
does not give the expected results, as demonstrated by the next two examples.

Example 6.4. Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system where

• P = {P1},

• S(P1) = {a/3,b/2},

• CE = {a(A, _,C1),b(A,C2)→ C1 = C2},

• CI = {a[1] ⊆ b[1],key(b) = {1}}, and

• ME = MI = ∅.

Consider the state B = {a(‘a’,‘b’,‘c’)} and the query q = {(A,C) | b(A,C)}.
The certain answers to q with respect to B are obviously {(‘a’,‘c’)}, since
every definite instance D ∈ Sem(S,B) has to contain b(‘a’,‘c’) in order to
satisfy a[1] ⊆ b[1] and a(A, _,C1),b(A,C2) → C1 = C2. Moreover b(‘a’,‘c’)
has already to be contained in every S-admissible state (due to the fact that
the constraint a(A, _,C1),b(A,C2) → C1 = C2 cannot be enforced on data
not already materialised in an S-admissible state4.), and therefore in every
universal S-solution of B.

4 A formal proof is omitted due to space restrictions

6.2 problems arising from ambiguous definitions 104

But b(‘a’,‘c’) /∈ EI-CHASE(S,B): The only possible chase rule that could be
applied to B is the EGD-rule: Obviously, B is SI-consistent. Therefore denote
with q1 the conjunctive query {(C1,C2) | a(A, _,C1),b(A,C2)}. B contains
no labelled nulls, hence σS ′(B) = B, and also no labelled null should be
considered as constant. Therefore certainNull(q1, SI,B) = certain(q1, SI,B).
Since SI contains only the constraints from CI, certain(q1, SI,B) = ∅. As a
result, the EGD-rule is not applicable, and EI-CHASE(S,B) = B, since B is
obviously S-consistent. But since B does not contain b(‘a’,‘c’), EI-CHASE(S,B),
although returning a value different from FAIL, does not return a universal
S-solution, which contradicts Theorem 5.31. �

Example 6.5. Let S = 〈P, CE, ME, CI, MI〉 be a PDEI-system where

• P = {P1,P2},

• S(P1) = {a1/2},S(P2) = {a2/3,b2/4},

• CE = {a2(A,B,C)→ b2(A,B,C,D)},

• MI = {a1(B,C)→ a2(A,B,C)}, and

• ME = CI = ∅.

Consider a state B = {a1(‘b’,‘c’)}. Then every D ∈ Sem(S,B) has to con-
tain some fact a2(_,‘b’,‘c’) with an arbitrary value at the first position (s.t.
Sem(S,B) satisfies MI) and therefore every D ∈ Sem(S,B) further has to con-
tain some fact b2(_,‘b’,‘c’,_) with arbitrary values at the first and last position
(to satisfy CE). Therefore every universal S-solution must contain such a fact
b2(_,‘b’,‘c’,_).

But EI-CHASE(S,B) = B, hence the result does not contain such a fact:
The only chase rule that could be applied during EI-CHASE is a2(A,B,C)→
b2(A,B,C,D) (call this rule φ). Denote with q1 the query {(A,B,C) | a2(A,B,
C)}. The application of φ then depends on the results of certainNull(q1, SI,B).
Since B contains no labelled nulls, σSI(B) = B and no labelled null is con-
sidered as constant. Therefore certainNull(q1, SI,B) = certain(q1, SI,B).
Obviously the certain answers to q1 in B are equal to the empty set. Therefore
φ is not applicable and because obviously Sem(S,B) 6= ∅, EI-CHASE(S,B) = B.
However, since B contains no fact b2(_,‘b’,‘c’,_), B is no universal S-solution
(it can be also easily verified that B is not even an S-admissible state). This
contradicts Theorem 5.31, as EI-CHASE(S,B), while not returning FAIL does
not return a universal S-solution. �

In both examples the problems arise from considering only those labelled
nulls as constants that are already materialised in the state B. For example
in Example 6.5 one would consider the labelled null implied by the TGD
a1(B,C) → a2(A,B,C) from the fact a1(‘b’,‘c’) as constant when comput-
ing certainNull(q1, SI,B), φ would be applicable and the application of φ
would materialise a fact b2(A,‘b’,‘c’,D) (with, A, D being labelled nulls), hence
EI-CHASE(S,B) would yield the correct result. A similar result holds for
Example 6.4.

6.2 problems arising from ambiguous definitions 105

On the other hand, considering all labelled nulls implied by the constraints
and dependencies (i.e. those labelled nulls that would be introduced if chasing
all dependencies and constraints on B) as constants is not correct as well, since
in the case of certain cyclic inclusion dependencies there are infinitely many
of them, hence computing EI-CHASE becomes undecidable.

As can be seen from the above examples, problems only occur whenever
some constraint from CE is based on the result of some virtual constraint or
mapping, i.e. when a relational symbol occurring on the right hand side of a
constraint in CI ∪MI also occurs on the left hand side of a constraint in CE (it
is easy to construct similar examples for not stratified systems).

To overcome these problems, we applied the following rules for imple-
mentation: In accordance with the result of the previous subsection, for the
evaluation of the i-mappings only “real” constants are considered as con-
stants. On the other hand, for the evaluation of the e-constraints, not only
those labelled nulls already materialised in the current state are considered
as constants, but also those labelled nulls implied by the i-constraints and
i-mappings, that is those labelled nulls that would be introduced by chasing
the current state with the i-mappings and i-constraints. To avoid the prob-
lems introduced by cyclic foreign key dependencies that may give rise to
infinitely many labelled nulls, we use an extended definition for stratified
PDEI-systems that also forbids configurations where the head of some foreign
key dependency appears on the left hand side of any EGD ∈ CE. That is, our
implementation is based on the following definition of stratified PDEI-systems:

Definition 6.6. A PDEI-system S = 〈P, CE, ME, CI, MI〉 is a stratified PDEI-
system, if the TGDs in CE form a weakly acyclic set, CI corresponds to a set of
legal key constraints and foreign key dependencies, and further no head of a
foreign key dependency in CI appears on the left hand side of any TGD or
EGD in CE. a

Unfortunately, there are still some problems left, as shown next.

Problems with Computing certainNull(q, SI,B)

The problem with labelled nulls that are not materialised in an instance to
which a chase rule is applied is that they may be materialised within a tuple
that is not the same tuple where they originated from (because the tuple in
which the labelled null was introduced as skolem term is implied only by a
virtual constraint, hence is not materialised). This problem can be illustrated
by the following example:

Example 6.7. Let S be the PDEI-system from Example 6.5, B be the state
{a1(‘b’,‘c’)} for S, denote with q1 the query {(A,B,C) | a2(A,B,C)} and con-
sider the computation of EI-CHASE(S,B). When applying the TGD-rule to
B, certainNull(q1, SI,B) returns (according to the interpretation described
above) the tuple (A1, ‘b’, ‘c’), where A1 is a fresh labelled null. Therefore the
result of applying the TGD-rule to B is the state B ′ = {a1(‘b’,‘c’), b2(A1, ‘b’, ‘c’,
D1)}. Now the problem is that the fact a2(A1, ‘b’, ‘c’), where the labelled null
A1 originated, is not part of this instance. Therefore, with respect to B ′, the

6.3 design decisions 106

P2P mapping a1(B,C)→ a2(A,B,C) again implies a fresh labelled null not
yet present in B ′. Hence applying the same chase rule once again to state B ′

would add another fact, say b2(A2, ‘b’, ‘c’, D2), as in the current framework
there is no way to mark A1 as that labelled null that is implied by this P2P
mapping from the fact a1(‘b’,‘c’). �

Since these superfluous facts are all subsumed by the fact first inserted, they
do not alter the semantics of the instance. However, they prevent termination
of the EI-CHASE (since no fixpoint is reached). Moreover, adding facts to an
instance that are completely redundant is no nice solution.

In fact the problem of nontermination of the EI-CHASE can be avoided
very easily by remembering the tuples created by the application of some
virtual dependency between two chase steps of the same EI-CHASE. This
can simply be done by not recalculating E-CHASE (τ(SI),Bi) from scratch
for each chase step of the EI-CHASE, but by keeping the result from the last
chase step, adding those tuples materialised in the current step, and running
the EI-CHASE from this state again. This is exactly how we implemented the
EI-CHASE (see Section 6.3.4).

However, the problem remains that for every run of the EI-CHASE (i.e. each
time the EI-CHASE is started) redundant facts may be added to the database,
hence increasing its size unnecessarily. By now, we have no solution to this
problem, that certainly deserves further considerations in the future.

6.3 design decisions

While the last section describes and justifies our assumptions concerning
some ambiguities in the formal definitions of the PDEI-system, this section
describes our decisions concerning the concrete implementation of the PDMS,
concentrating on critical and important aspects. It therefore offers a description
of all the basic components of the system, describes how certain theoretical
concepts have been implemented and explains the most important design
decisions.

To make it easier to denote the neighbourhood of a peer, we will use the
following terms to refer to certain neighbours of a peer: Assume some peer Pi
of the PDMS. Then a target neighbour of Pi is a peer Pj such that there exists
some P2P-mapping φ : qi → qj where qi is defined over the schema of Pi
and qj is defined over the schema of Pj. On the other hand, a source neighbour
of of Pi is a peer Pj such that there exists some P2P-mapping φ : qj → qi,
again where qi is defined over the schema of Pi and qj is defined over the
schema of Pj. (Thereby φ may be ∈ME, MI or ME ∪MI.)

Moreover, when talking about a P2P mapping qi → qj from peer Pi to peer
Pj, we call Pi the source peer and Pj the target peer.

6.3.1 Peer Configuration and Neighbourhood Setup

Every peer is configured using an XML file. The information specified in this
file includes the IP-address and port number on which the peer shall set up

6.3 design decisions 107

its webservice, the connection information to its database, the structure of
its peer schema and the set of e-constraints and i-constraints over its schema.
Moreover within the configuration file it is defined how the schemas of its
source neighbours are mapped to the local peer schema. That is all P2P
mappings qi → qj are specified in the configuration file of the peer over
whose schema qj is defined. Beside the mappings, also contact information
(IP-address and port number of the webservice) of the source neighbours are
given.

Therefore after startup each peer knows from which peers it should receive
data, but not to which peers it should send data during a chase. To exchange
this information, after startup each peer informs its source neighbours about
the existing P2P mappings. This is done by sending the queries on the left
hand sides of the TGDs together with the information whether the query
belongs to a virtual mapping or not and its own contact information to the
source neighbours. There this information is stored, and queries belonging
to virtual mappings are rewritten according to the local virtual inclusion
dependencies. Thereby, every peer assigns a unique id to each of its source
neighbours, simply by enumerating them. Moreover, within one neighbour,
every P2P mapping gets a unique id (again a number) assigned.

This process of announcing the P2P mappings does not start automatically
but has to be initiated by the user. Moreover, if sending the information to
some source neighbour fails (e.g. because it has not started yet), no automatic
retry is performed, but the user has to manually restart the announcement
process.

From the above description it follows that it is assumed that both the
addresses of all its source peers and their peer-schemas are known at configu-
ration time by any peer. For a prototype implementation this restriction seems
plausible. Moreover, the distributed system community provides several solu-
tions to overcome these restriction. However, due to their high implementation
costs, they were omitted.

6.3.2 Database and Database Schema

As already mentioned, we tested our implementation with HSQLDB as
RDBMS, since it provides a very easy and lightweight setup of new instances,
such that we were able to easily provide every peer with its own database
instance.

Most of the interaction with the database is done through functionality
provided by the CoDE system. For manipulations of the database schema
(like adding attributes or creating tables), CoDE uses the open source library
Apache DDLUtils5, while for accessing the data stored in relations, the corre-
sponding classes from the spring framework [74] are used. When accessing
the database directly, we use the same libraries. Moreover, CoDE abstracts
from the used RDBMS by providing a mechanism to support databases us-
ing different SQL dialects. However, this requires to provide connectors for
database systems to use with CoDE (hence our implementation). CoDE al-

5 http://db.apache.org/ddlutils/

http://db.apache.org/ddlutils/

6.3 design decisions 108

ready provides connectors to Oracle and PostgreSQL, that have not yet been
tested in combination with our implementation. Moreover it should be easy
to create new connectors for other JDBC-compatible databases.

CoDE uses several relations to store all information needed for efficient core
computation. For a description of these tables and views, that can be easily
identified by their names starting either with DX_ (for tables) or VW_DX_ (for
views), we refer to [71], and only describe those tables and views added by
our extension in Section 6.3.3.

By application of EGDs, it might happen that duplicate rows are introduced
in the database. But, especially for core computation, the CoDE system needs
to uniquely identify every row in the database. Therefore an additional
column dx_id is added to every table of the peer schema that stores a unique
id for each row. Since in theory set semantics for relations is assumed, we do
not further care about duplicates, but always use SELECT DISTINCT in the SQL
statements and leave duplicate entries in the database.

The tables, views and columns required by CoDE and those introduced in
the next section are created at startup automatically. Therefore it is necessary
to provide a specification of the peer schema within the configuration file,
using the Turbine XML format. [71] gives a description of how to define the
peer schemas.

6.3.3 Labelled Nulls and Temporarily Materialised Data

Handling Labelled Nulls

Because none of the common DBMSs currently supports labelled nulls, the
handling of labelled nulls has to be implemented as part of the application. In
CoDE, this is done by introducing auxiliary columns to the peer relations, one
for every original attribute. These columns are used to store the labels of the
null values for the corresponding attribute.

For example, the table Authorised(SID, FN,LN) would be augmented by
the three additional columns (SID_var, FN_var, LN_var), storing the labels
of the nulls in (SID, FN, LN).

It was mentioned in [71] that this “simulation” of labelled nulls is probably
not efficient enough to be used in real world applications, but that it was
very convenient for the development of the prototype because of its flexibility.
Therefore we stick to this approach.

Handling Temporarily Materialised Data

For query answering in a PDEI-system it is necessary to temporarily materi-
alise the data implied by the virtual P2P mappings on the one hand and the
equalities enforced by the key constraints in CI on the other hand (that is the
result of E-CHASE(τ(S,B)), see Section 5.6.2). To mark tuples in the database
that are only materialisations of such virtual data, we extend the tables of
the peer schema by an extra attribute pdei_chasetype. The standard value
“0” indicates that the corresponding tuple actually exists materialised in the

6.3 design decisions 109

instance, while a value of “1” indicates that this tuple exists only virtually in
the instance and was only materialised temporarily.

The mappings derived from the application of the EGDs in CI are not materi-
alised directly on the data, but are stored in an extra table
PDEI_VCHASE_MAPPING(var_name, target, target_var). Every row in this
table encodes a mapping for the labelled null stored in var_name: if target
NOT IS NULL, then it is mapped to the constant value stored in target, other-
wise it is mapped to the labelled null whose label is stored in target_var.

To provide easy access to the data under these mappings, for each table
<tablename>we create a view PDEI_V_<tablename> that contains the content
of <tablename> after applying the mappings from PDEI_VCHASE_MAPPING.
As an example for the definition of such a view, the following is the view
definition corresponding to a table Books(ISBN, ISBN_var):

CREATE VIEW PDEI_V_BOOKS AS
SELECT

Books.dx_id,
COALESCE (Books1.ISBN, M1.target) AS ISBN,
CASE WHEN (COALESCE (Books1.ISBN, M1.target) IS NULL) THEN

COALESCE(M1.target_var,Books1.ISBN_var) ELSE NULL END AS
ISBN_var

FROM Books Books1 LEFT JOIN PDEI_VCHASE_MAPPING M1
ON Books1.ISBN_var = M1.var_name �

Thus for the handling of the key constraints we reuse the same mechanism
that is already used in CoDE to model homomorphisms.

Figure 10 shows an example of the concepts considered above. Assuming
that the peer schema contains a relation Books(ISBN,author), it sketches the
part of the database representing the information discussed above.

6.3.4 The Chase

To be able to distinguish between the chase as procedure and one run of this
procedure, we will use chase instance to denote one run of the chase. Therefore
each chase instance gives rise to a chase sequence.

Like all reasoning and coordination tasks in our PDMS, also the chase is
implemented as distributed algorithm.

Thereby the basic idea of this algorithm is as follows: A chase instance is
initialised at some peer Pi. This peer first chases its local constraints (i.e. those
TGDs and EGDs from CE defined over S(Pi)), which means that it applies
them until no more dependency is applicable. We refer to this step as local
chase. Once the local chase has finished, it propagates a request to continue
the chase instance to all its target neighbours, and waits until it receives from
them the information that they have finished processing the request.

Whenever a peer Pj receives such a request from a peer Pi, it performs
the following steps: First it applies the P2P mappings between Pi and Pj (i.e.
those TGDs qi → qj from ME where qi is defined over the schema of Pi and
qj is defined over the schema of Pj) until none of them is applicable any more.

6.3 design decisions 110

ISBN ISBN_var author author_var dx_id pdei_chasetype

001 NULL THE author NULL 1 0

NULL N1 THE author NULL 2 1

NULL N2 NULL N3 3 0

var_name target target_var

N1 001 NULL

N2 NULL N4

ISBN ISBN_var author author_var dx_id

001 NULL THE author NULL 1

001 NULL THE author NULL 2

NULL N4 NULL N3 3

Figure 10: The tables Books(ISBN,author), PDEI_VCHASE_MAPPING and PDEI_V_Books

as example for the modelling of labelled nulls and materialised virtual data.

Afterwards it runs the local chase. Once it has finished, Pj decides whether it
needs to further propagate the chase to its target neighbours, or whether it
can inform Pi immediately about having finished processing the request. If
Pj further propagates the chase, then the described procedure repeats in all
of its target neighbours, and Pj has to wait until all of its target neighbours
have processed the request. Then it can inform Pi about having finished the
request.

Once the initiating peer received from all of its target neighbours that they
have finished, the chase terminates.

If an error occurs at some peer or some peer discovers an inconsistency,
it immediately returns a corresponding error to the peer from which it has
received the chase. Once a peer receives such an error, it does not wait for its
other target neighbours to finish, but immediately returns this error. Hence,
as stated above and according to the definition that the result of the chase
is FAIL if the state is inconsistent, the chase is simply aborted in case of any
error.

Note that in the above description, only the dependencies from CE and ME

are applied. This is because both, E-CHASE and EI-CHASE only materialise
values implied by dependencies from CE and ME, hence CI and MI can be
neglected for the moment.

The implementation of this algorithm is heavily based on the CoDE-system.
For computing a universal solution of a given source instance with respect to a
data exchange setting, CoDE provides an implementation of the chase for data
exchange as described in Section 3.1.2. Especially the target chase (i.e. chasing
TGDs and EGDs over a single schema under the FOL semantics) is of interest
for us, since this is exactly the same as the local chase described above. Hence
for the moment we regard the chase implementation of the CoDE system

6.3 design decisions 111

as blackbox (denoted by localchase()) that takes a database instance and
a set of dependencies as arguments and materialises all values implied by
these dependencies on the given instance. For running the local chase, the
peer just calls localchase() accordingly. Moreover, we apply the technique
used in [15] to prove several properties of the alternative semantics for P2P
mappings proposed there to also reduce the chase of the P2P mappings (under
the alternative semantics) to the local chase, such that it can be done by also
using localchase(). The idea is to chase a P2P mapping φ : qi → qj by first
computing the certain answers to qi, and sending them to the target peer,
where they are stored in a new relation containing exactly one attribute for
every free variable of qi. Then the values implied by φ on the instance of
the target peer are materialised by chasing a new local TGD qn → qj using
localchase(), where qn simply select all entries from the new relation.

We demonstrate the idea on the TGD φ : Authorised(SID, FN,LN) →
Allowed(ID, FN,LN) from our example. Denote with q1 the CQ q1 =

{(FN,LN) | Authorised(FN,LN)}. Then in the first step, certain(q1, SI,B)

is computed, where B denotes the current state of the PDE- or PDEI-system S.
For a PDE-system, certain(q1, SI,B) = EvalNull↓(q1,B). For a PDEI-system
it means to compute the certain answers to q1 over B by only taking the virtual
dependencies into account. In both cases, it corresponds to query answering
every peer is capable of. Hence this step can be performed by the source peer.
The result of evaluating the query is then sent to the target peer. There, an
additional relation PDEI_1_1(FN,LN) is added to the schema, and a new local
TGD PDEI_1_1(FN,LN)→ Allowed(ID, FN,LN) is created. (The name of the
relation added is of the form PDEI_< neighbourId >_< dependencyId >.)
Finally localchase() is called with this new TGD as argument, which materi-
alises all values implied by the original P2P-mapping.

Note that the newly created TGD could be simply added to the local
dependencies, to be processed during the local chase, without the need of
taking any extra care. But for performance reasons it is called separately,
as once it is no longer applicable, similar to the source to target TGDs in
data exchange, it will not become applicable again within the same run of
localchase(), hence need not be checked in every iteration of the local chase.

On the other hand, although not being very efficient, each time a P2P
mapping qi → qj is checked for being applicable, all certain answers to qi are
exchanged between the peers, regardless of whether they have been already
sent in an earlier iteration or not.

Every chase instance is identified by a unique id, which is created by the
peer initialising the instance. This id is used to determine whether a chase
instance arrives for the first time at a peer or not. Moreover, whenever a peer
propagates a chase instance to its target neighbours, it attaches a new, local
id to the request sent to its neighbours. When a peer has finished processing
such a request, it returns the corresponding id. This local id is necessary since
it might happen that, because of cycles in the P2P mappings, a peer forwards
a chase instance a second time while it is still waiting for an answer to a
previous request. To be able to correctly assign responses of target peers to
the sent requests, this local id is used. To guarantee the uniqueness of those

6.3 design decisions 112

ids (both, global and local ones) each id encodes the id of the peer, the time
when the id was generated and a random number.

The basic idea behind our implementation of the chase is summarised in
Algorithm 5.

Alg. 5 Basic structure of the chase implementation
global callers, oldId, seen, waiting;
procedure chase(data, id, localId, callingPeer)

callers[localId]← callingPeer;
fillLocalStubs(data);
dataAdded← localchase(P2PMappings);
dataAdded← localchase(localConstraints) || dataAdded;
if propagate_chase_to_target_neighbours(dataAdded, seen) then

seen← seen ∪ id;
waiting← ∅;
newLocalId← createNewLocalId();
oldId[newLocalId]← localId;
for all target neighbour tn do

data← getCertainAnswersForMappingsTo(tn);
waiting← waiting ∪ tn;
tn.chase(data, id, newLocalId, this);

else
seen← seen ∪ id;
if dataAdded < 0 then

callingPeer.chaseFinished(id, localId, this, “inconsistent”);
else

callingPeer.chaseFinished(id, localId, this, false);

procedure chaseFinished(id, localId, callingPeer, error)
if error then

callers[oldId[localId]].chaseFinished(id, oldId[localId], this, error);
waiting← waiting \ callingPeer;
if waiting = ∅ then

callers[oldId[localId]].chaseFinished(id, oldId[localId], this, error);

We now shortly comment on the implementation of the chase in the CoDE
system. It iterates over the set of given dependencies until either none of them
is violated any more, or an inconsistency is detected. For each dependency, in
a first step it is checked whether there exist facts violating the dependency.
This is done by evaluating the query on the left hand side of the dependency
over the database instance, and restricting the result according to the type of
the dependency: For a TGD, all tuples that are also contained in the result
of evaluating the query on the right hand side of the dependency over the
instance are removed. For an EGD, all pairs of equal values are removed. If the
remaining result still contains some tuples, then the dependency is violated.

6.3 design decisions 113

Note that this first step can be expressed as a single SQL query. Therefore,
every dependency is transformed into an SQL query that selects all violations
of this dependency. In a second step, these violations are tried to be repaired,
by either unifying the terms violating an EGD or by materialising facts such
that a TGD is no longer violated. (A detailed description of this idea and the
implementation can be found in [71].) Thereby, the second step is performed
as a kind of batch processing for all violations of a dependency found in the
first step. While in the definitions of the chase and the chase sequence, in
every chase step only the violation of a single tuple is repaired, and then the
violating tuples are recalculated, in CoDE all violations of a dependency are
(tried to be) repaired at once. Due to the semantics of data exchange, this
returns the same results but is far more efficient.

In our implementation we distinguish between three different chase types,
referred to as echase, eichase and virtual chase (or tchase): The echase and eichase
are the implementations of the E-CHASE and EI-CHASE as described in
Section 5.4 and and Section 5.5 respectively. Hence they are used for reasoning
in PDE- and PDEI-systems (deciding S-consistency, checking states for being
S-admissible, computing universal S-solutions). The tchase on the other hand
is used to denote the computation of E-CHASE(τ(S),B), needed for query
answering over a stratified PDEI-system S and a state B for S (see Section 5.6).

echase

The echase is the simplest of the three types. Query evaluation for checking
dependencies for violations reduces to simply evaluating the queries from
the dependency definition over the current state. Also the batch processing
as described above is valid, because repairing one violation of a dependency
cannot solve another violation of the same dependency: A violation is either
a tuple that is contained in the answer of one query, but not in another, or a
pair of values that are not equal. Hence unifying two values cannot make any
other pair of unequal values equal. Also adding facts to the instance such that
a certain tuple is contained in the answer to a conjunctive query is done in
such a way that only this tuple is added to the answer of the query. Hence
all the other results still remain violations. Therefore localchase() from the
CoDE system can be used without changes for implementing the local chase.

Also deciding whether to issue a request to the target neighbours to continue
the chase or not is easy: Whenever a chase instance arrives for the first time, it
is propagated, just to ensure that all peers (transitively) reachable from the
initialising peer by P2P mappings check their states and outgoing mappings.
If a peer receives a chase instance it has already propagated before, it only
forwards the chase again if chasing the incoming TGDs or the local chase
changed the database instance of the local peer (in fact, if chasing the P2P
mappings did not cause any changes, then the local chase is omitted, as
none of its rules can be applicable, since otherwise this rule would have been
applied during the previous local chase).

Moreover, since all data implied by the dependencies has to be materialised
and because of the monotonicity of conjunctive queries, the same chase
instance can be processed by several peers in parallel.

6.3 design decisions 114

virtual echase (tchase)

As stated above, the tchase is used to compute E-CHASE(τ(S),B), which is
needed for query answering over PDEI-systems. With respect to the overall
structure (i.e. how the chase is propagated, how termination is reached and
how the rules are applied), the tchase is equivalent to the echase. There
are only two important differences in the semantics of the rules: First, the
facts created and the equalities enforced by rule applications during a run
of the tchase shall not be materialised permanently on the instance, but only
temporarily. It must be possible to undo the effects of the tchase after query
answering. Second, instead of using the TGDs ∈MI as defined by the user,
Expand(MI, J) (where J denotes the inclusion dependencies from CI) has to
be used. (Note that for enforcing the key constraints from CI it is not necessary
to rewrite the lhs of the dependency because of the separation property.)

It was already shown in Section 6.3.3 how we deal with this materialised
virtual data. We extended localchase() by a parameter controlling whether
the result of localchase() is written directly into the database instance of a
peer or whether it is stored as virtual data. During a tchase, localchase() sets
pdei_chasetype for the created tuples to “1”, and equalities are not inserted
in the base tables, but are stored in the PDEI_VCHASE_MAPPING table.

By rewriting the P2P mappings, instead of a single conjunctive query, the
left hand side of the TGD consists of a UCQ. Each of the subqueries of the
UCQ can be rewritten by the same XSLT rule used by CoDE for rewriting the
conjunctive queries of TGDs. We therefore extended the XML format used for
defining the TGDs such that it is possible to define several subgoals for the
lhs, and changed the XSLT template such that each of the goals is rewritten
into an SQL query that are then combined using UNION.

Whenever a new tchase instance (i.e. an instance with a yet unseen id)
arrives at a peer, before its performing, all virtual data currently stored at the
peer is dropped. This means all facts with pdei_chasetype = “1” are deleted
together with all the content of the PDEI_VCHASE_MAPPING table. Because of
this, there must not be two tchase instances with different ids active at the
same time within the whole PDMS.

The virtual data materialised by a tchase can also be deleted explicitly by
the user, either only in a single peer or in the complete system (which is
implemented by flooding the system with the request to drop all virtual data).

eichase

For computing the eichase (i.e. computing the result of EI-CHASE), three
aspects need to be considered: First the computation of certainNull(q, S,B)

and certain(q, S,B) for a PDEI-system S with CE = ME = ∅. Second, when
to stop propagation of the eichase. And third, that in each application of
a chase rule, only a single violation may be repaired, meaning that the
batch processing of violations as implemented by CoDE is not allowed any
more. This is because facts materialised to solve one violation may, by virtual
dependencies, imply data that resolves further violations. Hence the list of
tuples that belong to the answer of the lhs of a TGD but not to the rhs of a

6.3 design decisions 115

TGD has to be updated every time a violation has been resolved, to ensure
not to materialise data no longer required.

Example 6.8. To clarify the problem, assume the following example:
Consider the PDEI-system S = 〈P, CE, ME, CI, MI〉 with

• P = {P1, P2, P3} with S(P1) = {a/1}, S(P2) = {b/1}, S(P3) = {c/2,d/1},

• CE = CI = ∅,

• ME = {a(X)→ b(X)}, and

• MI = {b(X)→ d(X);b(X), c(X, Y)→ b(Y)}.

and a state B = {a(1),a(2), c(1, 2)}. Evaluating {X | a(X)} gives {1, 2}, which
are both not in the result of {X | b(X)}. Hence b(1) and b(2) could be added to
satisfy ME. But after adding b(1), b(2) is already implied by the mappings in
MI, and hence should not be added any more (according to the definition of
EI-CHASE). �

We implemented this behaviour by extending the implementation of
localchase() by another parameter. If called accordingly, instead of selecting
all violating tuples during dependency checking, only one tuple is selected
(simply by adding LIMIT 1 to the created SQL query). Moreover, because
recomputing certainNull(q, SI,B) and certain(q, SI,B) is a little bit more
complicated, localchase() stops and returns not only if no more violations
are detected, but also as soon as one rule has been applied.

Also to avoid materialisation of facts already implied by data added else-
where, in our implementation we do not allow the eichase to run in parallel
on different peers, but for every chase instance there must exists a single point
in the P2P network where the chase is currently active. This is, there exists a
kind of token, and only the peer currently possessing the token is allowed to
apply a chase rule. Therefore, a chase instance is not propagated in parallel to
all target neighbours of a peer, but only to one peer at a time. Once one target
neighbour has finished and returns the control, the chase is propagated to the
next target peer.

Under our assumptions made for the semantics of certainNull(q, SI,B)

justified in Section 6.2, the computation of certainNull(q, SI,B) equals the
computation of certain(q, SI,B), except that in the latter case in an additional
last step all tuples containing labelled nulls are removed from the result.
The implementation is based on Theorem 5.43 and the fact that for SI, every
consistent state is also admissible. By these results, certainNull(q, SI,B) =

E-CHASE(τ(SI),B)rewrite(q,J), if E-CHASE(τ(S),B) 6= FAIL. I.e. certainNull
is computed by evaluating the perfect rewriting of q over an instance of a
peer Pi when the data implied by the i-mappings and the equalities enforced
by the key constraints in CI are temporarily materialised. Therefore, also
for the eichase the localchase() implementation of CoDE can be used and
needs only a small extension for handling UCQs (i.e. concatenating several
conjunctive queries by UNION).

To speedup the eichase, the result of the tchase is not removed after each
computation of certainNull(q, SI,B) (certain(q, SI,B)) and recomputed for

6.3 design decisions 116

the next rule application. Because of the monotonicity of conjunctive queries,
the results are kept, and only an update of the tchase is performed.

Once no more chase rule of EI-CHASE is applicable, in a final step the
resulting state has to be checked for S-consistency. This is again done by
computing E-CHASE(τ(SI),B). If the result is FAIL, then the state is not
consistent and the result of EI-CHASE is FAIL. Otherwise the resulting state
is consistent.

Therefore a typical run of an eichase instance initialised by peer Pi consists
of the following steps: First Pi asks its source neighbours to initialise a tchase.
Once it receives the information that all requested tchases have finished, it
starts chasing its local constraints. After each rule application, the local chase
is interrupted, and Pi initialises a tchase with the same id as the tchases it
requested at the beginning. This has the effect, that no new tchase is started
from scratch, but it is only tested whether some additional data is implied
because of the rule application. Once the tchase has finished, Pi runs the local
chase again. This is repeated until no local constraint is applicable any more.
Then Pi propagates the eichase to its first target neighbour (Pj), together
with the results of certain(q, SI,B) for the P2P mappings between them. Pj
chases the P2P mappings, but also after each rule application updates the
results of the tchase (by initialising a tchase with the same id as before). Once
the tchase has finished, Pj requests Pi to resend the results of the queries
of the P2P mappings (as they might have changed because of cycles in P2P
topology). After having finished the chase of the P2P mappings, Pj chases its
local constraints just as Pi and then forwards the chase. Once Pi is informed
by Pj that it has finished the eichase, Pi propagates the eichase to its second
target neighbour. If it receives from its last target neighbour that the eichase
has finished, the eichase terminates.

It now only remains to clarify when the eichase is forwarded and when
to stop the propagation. Thereby, it is necessary to propagate the eichase
more often than the echase, because stopping at a peer (that is no reached
for the first time) just because neither the application of the P2P mappings
nor the local chase changed the local instance is no longer correct. As long
as there are outgoing i-mappings, it might be the case that new data has
been propagated by them, that make some rule applicable in another peer.
Therefore propagation of the eichase stops if no rule is applicable when
chasing the P2P mappings and local dependencies and there are no outgoing
i-mappings, or if in a loop the same peer is reached again without that there
has been any applicable rule in this circle. To recognise such a situation, when
propagating the eichase, also a list of peers is forwarded that contains the ids
of all peers where no rule was applicable since the last rule application. When
at a peer some rules are applicable, the content of this list is deleted. Once a
peer finds itself on this list, it knows that it does not need to propagate the
chase any further. (Obviously, if in a peer no rule was applicable, the eichase
is only propagated along i-mappings.)

6.3 design decisions 117

6.3.5 Query Answering

At the moment, only answering of conjunctive queries is supported by our
implementation.

For answering a query posed over a peer Pi in a PDE-system, given some
state B, it is necessary to compute a universal S-solution for B. This is done
by running the echase. However, it is yet within the responsibility of the user
to initialise the echase at the correct peers such that all data implied by some
mappings is materialised in the instance of Pi. Given a universal S-solution
for B, computing the answers to a query q is simply done by rewriting the
given conjunctive query into a corresponding SQL query that selects only
tuples not containing labelled nulls. This query is then issued to the database
using the SQLQuery class provided by the spring framework.

For query answering over PDEI-systems, also in a first step a universal
S-solution needs to be computed. This is done by the eichase. Again the user
has to take care of initialising an eichase in all peers required to guarantee
the correctness of the result. In a second step, the data implied by the virtual
mappings is temporarily materialised by the tchase. Unlike for echase and
eichase, our implementation allows a peer to request its source neighbours
to initialise a tchase instance. The reason for this is that we assume that the
peers aim to keep the state of the PDEI-system S-admissible, i.e. that if there
is some change in the database instance of a peer, it immediately calls the
correct chase to propagate these changes. The virtual data however is only
used for query answering, and is therefore only computed when requested. If
the requested tchases have finished, first a perfect reformulation of the given
query w.r.t. the local inclusion dependencies is computed, and then the query
is transformed into SQL and issued to the views providing access to the data
including the virtually implied data.

For the implementation of eichase, it is important to note that computing
answers over PDEI-systems with CE = ME = ∅ can be done just with the use
of the echase and query rewriting. Hence computing certainNull and the
certain answers during the eichase can be reduced to query answering over
a PDE-system, and does not require query answering over a PDEI-system
(which is in turn based on the eichase).

Queries are posed in the style of a1(A11 , . . . ,A1n), . . . ,an(An1 , . . . , Ann)

→ result(B1, . . . ,Bn) ({B1, . . . ,Bn} ⊆ {A11 , . . . ,Ann }) to the system. Both,
computing their perfect rewriting (if necessary) and their transformation into
an SQL query are implemented purely in Java.

6.3.6 Requesting a Chase

As mentioned in the previous section, the implementation supports a peer to
request its source neighbours to initialise a tchase. Whenever a peer receives
such a request, it propagates it to its own source neighbours, until either a
peer without source neighbours is reached, or a cycle is detected, i.e. a peer
receives a request it has already forwarded. To detect such cycles, the request
propagated by the peers contains a list of all peers that have already forwarded

6.3 design decisions 118

the request. Moreover, to avoid problems of concurrent tchase instances, the
id of the tchase instance is defined by the peer originally requesting the tchase
and is also propagated together with the request. Hence all tchase instances
started due to such a request have the same id and are therefore considered
to be one instance.

6.3.7 Communication Between the Peers

Listing 6.1: Java Class implementing the Webservice Interface

@WebService
public class WebServiceListener {

...

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void registerNeighbour(String xmlData){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void chase(String xmlData){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void resendChaseData(String globalChaseId, String localChaseId, String

recPeerId, String tChaseId){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void finishedChase(String peerId, String globalChaseId, String

localChaseId, String success){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void chaseRequest(String xmlData){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void finishedChaseRequest(String peerId, String requestId, String

success){...}

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)
public void propagateResetVirtualData(String requestId){...}

} �
The communication between the peers is implemented using webservices:

Every peer publishes the interface depicted in Listing 6.1 (we omit the WSDL
description due to space restrictions) as webservice methods, and invoke the
appropriate webservice of other peers to exchange information. We opted
for using webservices because for the implementation of a prototype their

6.3 design decisions 119

great flexibility (especially their platform independence and the existing
support for a variety of programming languages and technologies) and low
implementation costs outweight the fact that they are certainly not the most
efficient solution for this task.

The server side of the webservice is created using wsgen6 from an annotated
Java object implementing the interface shown in Listing 6.1, and is deployed
directly by the Java runtime environment, that also creates and publishes the
WSDL description at runtime.

On the client side we use Apache Axis [24] for invoking the webservices. The
code for the client stubs is created using the axis tool wsdl2java. Conceptually,
except registerNeighbour, all invocations of a webservice at peer Pi from a
peer Pj are one-way calls. If Pj needs to be informed about some result or
just the fact that computation in Pi has finished, this is done by Pi invoking a
corresponding webservice method of Pj. The reason for this is that it may take
quite some time until such an answer is sent, and it would therefore make
no sense for Pj to actively wait for a response. However, technically we use
blocking two-way calls for webservice invocation and mimic the behaviour
of a one-way call in the webservice method by just starting a new worker
thread and returning immediately after. The worker thread then performs all
requested operations and, if required, invokes the corresponding service of
Pj when finished. We had to implement it this way because we encountered
some problems using real one-way calls as offered by WSDL: There seems to
be no way to send one-way calls synchronously w.r.t. to the control flow of the
invoking peer. But when sending them asynchronously, it happens that the
invoking peer terminates before sending all data has finished. In this case the
connection is closed although not all data has been sent to the invoked peer.

6.3.8 Further Design Decisions

In the following we describe briefly more details of the implementation.

Error and Inconsistency Handling

As already indicated by the description of the chase, and because for inconsis-
tent states the result of the chase is only defined as FAIL, if an inconsistency
is discovered during a chase, the resulting content of the peer instances is not
defined: As soon as an inconsistency is discovered, the chase stops, and no
more changes on the database instances are made. Hence everything mate-
rialised up to this point remains materialised, but which data was actually
added is undefined. Only the information that the current state of the system
is inconsistent is propagated backwards to the peer that has initialised the
chase where the user is informed.

The same holds if an error occurs during a chase that makes it impossible
to finish the chase. Also in this case the chase is aborted, but the effects of
the chase so far are not discarded (i.e. the tuples inserted are removed and
unifications are made undone), but only the user is informed about the error.

6 https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsgen.html

https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsgen.html

6.3 design decisions 120

No Core Computation

Although, as stated, the implementation is based on the CoDE system of [71],
core computation is not considered in the implementation because the results
of [71] indicate that although solvable in polynomial time, core computation
is a very expensive task. Also the fact that for PDEI-systems the core need
not be unique [30] makes core computation for PDEI-system less attractive.
Moreover, the core computation as implemented in CoDE assumes the target
instance (which corresponds to the peer instance in our implementation) to be
empty before the chase. Since this is not the case for the PDMS, appropriate
adoptions of core computation would have been necessary.

Therefore, given a PDE- or PDEI-system S and a state for S, not the (or a)
S-core but only a universal S-solution can be computed.

User Interface

Every peer provides a very basic command-line interface, that allows to control
the peer, but does not give much feedback or information to the user. For
example if the user initiates a chase instance, then it is informed once it has
finished, either with success or failure. This just enables the user to access the
basic functionality provided by the peer as described in this chapter.

Summary of Restrictions of the Current Implementation

We shortly summarise some simplifying assumptions that have been made for
the implementation, because without them the system would have exceeded
the scope of this thesis. Most of them concern convenient functionality that
affects the handling of a peer, but that does not have any effect on the semantics
of the PDMS.

no incremental chase of p2p mappings : Every time a P2P mapping
qi → qj is chased, then all evaluation results qi are sent to the target peer,
neglecting that tuples that have already been exchanged in a previous
iteration step need not be sent again, as they are already assured to not
cause a violation.

no global error handling : There exists no global error handling strat-
egy. If the chase fails at some peer, then this information is propagated
backwards to the peer initialising the chase instance, but nowhere else
in the system. Also the state of the system is undefined after an error, as
every peer stops execution as soon as it is informed about the error, and
the state is not changed any more.

no timeout for chase instances : There exists no timeout for a peer
waiting for a target neighbour to finish the chase, hence peers may
wait infinitely (e.g. if some peer crashes). However, the peer remains
responding to requests of other peers. It may only be that some crash of
a peer will not be detected.

6.4 implementation details 121

unchecked prerequisites : The constraints on the mappings (weakly
acyclic, stratified, . . .) are not checked for being satisfied. This has
to be ensured by the user who configures the system.

peers must not go offline : The implementation cannot yet handle the
situation if a peer leaves the system. Adding peers to the network on
the other hand is no problem.

only varchar is supported: At the moment, only the datatype VARCHAR is
supported, just to avoid problems when defining dependencies between
different datatypes (e.g. equalities in a conjunctive query). Due to the
VARCHAR implementation of many database systems, moreover the length
of all fields is restricted to some fixed size.

number of parallel chases : While it is possible to run several echase
instances at the same time in the system, this does not hold for tchase
and eichase: Within the whole PDMS, only tchases with the same id
are allowed to run at the same time, otherwise they will not return the
correct results. For eichase, at every time there must be at most one
instance in the system. Thereby this has to be guaranteed by the user,
since the system will allow for several instances at the same time.

dx_id-column: If a relation of a peer schema does not possess a column
DX_ID that is a primary key of the relation, this column will be created
at startup. However, thereby all data in the relation will be deleted.

peer identification: Every peer is assumed to have an unique id (within
the whole PDMS), and it is assumed that all information about the
neighbours of a peer are known at configuration time.

problem with computing certainnull : The problems with the
EI-CHASE as described in Section 6.2.2 with computing certainNull are
unresolved, and superfluous facts may be added to the peer instances.

6.4 implementation details

6.4.1 Configuration of a Peer

For TGDs and EGDs definitions, we use the XML format already applied in
the CoDE system and described in detail in [71]. There also the internal XML
representation of dependencies is described.

Although key constraints and foreign keys are special cases of TGDs and
EGDs, we provide an own XML format for the specification of the i-constraints.
One the one hand, this makes it easier for the user to define them (instead
of having to translate them first to TGDs and EGDs), and on the other hand
makes their processing easier as well.

We demonstrate this format on the following two dependencies:

• BooksDep(ISBN, Title,Author,Status) ⊆
BooksUB(ISBNId, FirstName,LastName,Booktitle)

6.4 implementation details 122

• key(BooksUB) = {ISBN, Title}.

They are specified in the configuration files by

<pdei:iDep>
<pdei:lhs relation="BooksDep">
<pdei:field>ISBN</pdei:field>
<pdei:field>Title</pdei:field>

</pdei:lhs>
<pdei:rhs relation="BooksUB">
<pdei:field>ISBNId</pdei:field>
<pdei:field>Booktitle</pdei:field>

</pdei:rhs>
</pdei:iDep>

<pdei:kDep relation="BooksUB">
<pdei:keyAttribute>ISBNId</pdei:keyAttribute>
<pdei:keyAttribute>Booktitle</pdei:keyAttribute>

</pdei:kDep> �
The key constraints are translated into the format of EGDs (and later further
into the intermediate formats) that are then used during the tchase. For
example the key constraint from above is rewritten to the egds

<dx:dependency>
<dx:premise>
<BooksUB ISBId=’V1’ Booktitle=’V2’ FirstName=’V3’/>
<BooksUB ISBId=’V1’ Booktitle=’V2’ FirstName=’V4’/>

</dx:premise>
<dx:conclusion>
<dx:eq dx:a=’V3’ dx:b=’V4’/>

</dx:conclusion>
</dx:dependency>

<dx:dependency>
<dx:premise>
<BooksUB ISBId=’V1’ Booktitle=’V2’ LastName=’V3’/>
<BooksUB ISBId=’V1’ Booktitle=’V2’ LastName=’V4’/>

</dx:premise>
<dx:conclusion>
<dx:eq dx:a=’V3’ dx:b=’V4’/>

</dx:conclusion>
</dx:dependency> �
which are then handed over to the CoDE system.

The foreign key dependencies on the other hand are parsed and the relation
and attribute names are stored in a Java object (of class InclusionDependency)
such that they are easily accessible for query rewriting.

Concerning the XML namespaces of the elements, all elements and at-
tributes added for the implementation of our prototype system are marked

6.4 implementation details 123

by the namespace http://www.dbai.tuwien.ac.at/PDEI/0.1, while all ele-
ments and attributes taken from the CoDE implementation keep the http:

//www.dbai.tuwien.ac.at/DataExchange/0.1 namespace. This convention is
used throughout the implementation, not only for configuration.

6.4.2 Main System Classes

In the following we introduce the most important classes of the PDEI-system.
We omitted most of the important classes from CoDE, since their description
can be found in [71]. The class diagram in Figure 11 shows these classes and
their relationship.

KeyDependency LocalChaseControl EIChaseHandler LocalEIChaseControl

TargetPeerNeighbour

PDEIConfiguration

InclusionDependency

SourcePeerNeighbour

P2PDependency

TupleGeneratingDependency

TupleGeneratingDependencyUCQ

LocalChaseRequestControl

IncomingP2PMapping

TargetSchemaInstance

PeerSchemaInstance

EqualityGeneratingDependency

Dependency

WebServiceListener

PeerConfiguration

Peer

DataExchangeScenario

UCQueries

CQuery

QueryConverter

Figure 11: Class diagram of some of the most important classes of our prototype
implementation.

• Peer: The main class of the program. Starts up the program instance,
initialises the webservice and an instance of PDEIConfiguration for

http://www.dbai.tuwien.ac.at/PDEI/0.1
http://www.dbai.tuwien.ac.at/DataExchange/0.1
http://www.dbai.tuwien.ac.at/DataExchange/0.1

6.4 implementation details 124

coordinating the peer with its neighbours. It also implements the main
method.

• PeerConfiguration: Stores all configuration information except map-
pings and constraints. An instance of this class is the connector between
the Peer object representing the program implementing a peer and the
PDEIConfiguration keeping track of and coordinating the distributed
algorithms.

• PDEIConfiguration: Central class for all P2P related tasks. It coordinates
a peer with its neighbours. Stores all information about mappings
and neighbours. Coordinates the distributed algorithms: All requests
received from other peers are dispatched by an object of this class. Hence
it is also responsible for coordinating the chase instances.

• PeerSchemaInstance: Provides access to the database. Offers an ex-
tended functionality of the encapsulated TargetSchemaInstance object
from CoDE.

• SourcePeerNeighbour: Represents a source neighbour of the current
peer. The objects are responsible for the communication with the corre-
sponding peer. Managed by the PDEIConfiguration.

• TargetPeerNeighbour: Represents a target neighbour of the current peer.
The objects are responsible for the communication with this peer: They
select the data needed for chasing P2P mappings from the database,
create the messages to send and also sends them. Managed by the
PDEIConfiguration, but used also from the different objects responsible
for the chase coordination.

• KeyDependency, InclusionDependency, P2PDependency: Represent the
corresponding dependency and offer functions that provide easy access
to the required information about the dependency.

• IncomingP2PMapping, OutgoingP2PMapping: Implement all functional-
ity needed to allow using the local chase for chasing P2P mappings.
Create the new TGDs and manage the table where the result of the query
over the source peer are stored for the local chase.

• LocalChaseControl, EIChaseControl, LocalEIChaseControl,
LocalChaseRequestControl: Helper classes for keeping track about the
state of the chase instances, for coordinating the propagation of chase
instances and especially to control the eichase instances (helping to
coordinate the request of an initial tchase, the update of the tchase after
each rule application, . . .). Managed by the PDEIConfiguration.

• UCQueries, CQuery, QueryConverter: Together with some more helper
classes they are responsible for query rewriting and transforming con-
junctive queries into SQL queries.

6.4 implementation details 125

• WebServiceListener: Implements the interface provided by each peer
for communication with the other peers. Forwards the request via
the PeerConfiguration to the PDEIConfiguration, where the request is
processed.

6.4.3 Communication Formats

While most of the parameters for the webservice functions introduced in
Section 6.3.7 are self explaining, the three arguments consisting of XML
strings need further explanations.

For the registerNeighbour function, the XML string should be formatted
like:

<pdei:connect xmlns:dx="http://www.dbai.tuwien.ac.at/DataExchange/0.1"
xmlns:pdei="http://www.dbai.tuwien.ac.at/PDEI/0.1">

<pdei:peer>
<id><!-- ID --></id>
<ip><!-- IP --></ip>
<port><!-- PORT --></port>

</pdei:peer>

<dx:dependencies>
<!-- list of e-mappings in the XML format as defined in

configuration file -->
</dx:dependencies>

<pdei:dependencies>
<!-- list of i-mappings in the XML format as defined in

configuration file -->
</pdei:dependencies>

</pdei:connect> �
When sending a chase request to a source peer, the XML string should look
like:

<pdei:chaseRequest xmlns:pdei="http://www.dbai.tuwien.ac.at/PDEI/0.1"
pdei:requestId="!?requestId"
pdei:peerId="!?localPeerId" <!-- id of the peer the request was

sent/forwarded from -->
pdei:chaseType="!?chaseType"
pdei:virtualChase="!?isVirtual">

<peer id="!?localPeerId"/>
... <!-- list of peers that have already processed the request -->

</pdei:chaseRequest> �
And when forwarding a chase instance, the correct XML format is :

<pdei:chase xmlns:pdei="http://www.dbai.tuwien.ac.at/PDEI/0.1"
pdei:chaseId="!?chaseId" " +

6.4 implementation details 126

pdei:peerId="!?localId"
pdei:localChaseId="!?localChaseId"
pdei:chaseType="!?chaseType"
pdei:virtualChase="!?isVirtualChase"
!?freeAdditionalAttributes ">

<!-- only for eichase -->
<history>
<!-- list of peers visited since the last dependency was

applicable -->
<peer id="!?peerId1"/>
<peer id="!?peerId2"/>
...

</history>

<!-- for all chasetypes -->
<data>
<!-- for each outgoing P2P mapping to the target peer -->
<pdei:mappingResult pdei:id="!?idOfDependency">
<!-- for each result of the query -->
<row>
<!-- for each selected attribute -->
<!?attributeName>
<!-- value -->

</!?attributeName>
...

</row>
...

</pdei:mappingResult>
...

</data>
</pdei:chase> �
(In the previous examples, “!?” prefixed to an attribute value or element name
are used to denote placeholders for the corresponding value.)

6.4.4 User Interface

The following list states the commands that can be issued to a peer through
the command-line interface. (<conjunctive query> is an expression of the
form q1(A11 , . . . ,A1k), . . . ,qn(An1 , . . . ,Ank) -> result(Ai1 , . . . ,Aij) where
q1, . . . , qn are relational symbols from the local peer-schema, Alh are either
variable names or constants, where constants are circumscribed by single
quotes, and all Ail either appear also on the left hand side or are constants.
The name of the atom on the right hand side — result in the example above
— can be freely chosen.)

6.5 discussion 127

connect Tries to send the P2P-mappings to the source peers (see Sec-
tion 6.3.1).

echase Initiates an echase (see Section 6.3.4).

eichase Initiates an eichase (see Section 6.3.4).

tauchase Initiates a tchase (see Section 6.3.4).

inittauchase Requests the source neighbours to initiate a tchase (see Sec-
tion 6.3.6).

lrw <conjunctive query> Rewrites the given conjunctive query according to
the local virtual inclusion dependencies and outputs the result.

ca <conjunctive query> Rewrites the given conjunctive query according to
the local virtual inclusion dependencies and executes the result on the
local database instance and outputs the result. Tuples containing nulls
are removed from the output. Can be used to compute the certain
answers if called on an S-admissible state and if inittauchase has been
called before.

nca <conjunctive query> The same as ca, but without removing tuples con-
taining null values from the output.

resetvirtualdata Removes all temporarily materialised data and map-
pings from the local database (see Section 6.3.3).

globalresetvirtualdata Removes all temporarily materialised data and
mappings from the local database and asks all neighbouring peers to do
the same (see Section 6.3.3).

sql <sql command or query> Allows to directly execute an SQL command on
the local database or to query the local database directly.

6.5 discussion

6.5.1 System Evaluation

We did not perform any systematic evaluation of the performance of our
implementation yet and therefore can only report on some preliminary tests.
These first results suggest that while the echase (hence also the tchase) may
perform reasonable well, the performance of the eichase seems not to be good
enough, but it seems to be too slow.

The echase for even small instances of the PDMS with up to 6 peers and
only about 100 facts in the initial state takes up to 40 seconds7. However, as
our focus for the prototype was not on performance and when considering
the evaluation results of the CoDE system presented in [71], this still lies
within the expected, reasonable scope. In these settings, also the eichase takes

7 Intel Core 2 Duo 6600 with 2.4GHz, 2GB RAM, Ubuntu Linux and HSQLDB, neglectable network
latency because all peers are running on the same PC.

6.5 discussion 128

only about 50% longer than the echase, which still could be regarded to be
acceptable when taking into account all the additional requirements for the
eichase. But when increasing the number of facts in the initial state, even for
very small settings consisting only of a single peer, two relations and a single
TGD, the eichase does not scale reasonable with the number of facts.

But our observations suggest so far that these negative results for the eichase
occur only if data exchange and virtual dependencies are combined. For PDEI-
systems with CE = ME = ∅, i.e. for pure P2P data integration systems, as
there is no rule to apply during eichase, query answering behaves just as in
PDE-systems. Hence maybe the combination of data exchange and virtual
mappings is problematic for the performance in practise, although being still
tractable in theory.

Not surprisingly, all types of chases scale very badly w.r.t. the number of
peers and the number of mappings in the system (just as one would expect as
the chase is only polynomial in the data complexity).

However, more systematic tests are necessary to confirm these first ob-
servations and to try to identify relevant flaws that are responsible for the
performance issues, either in the implementation or in the semantics. Also the
effect of the database system used should be studied.

Comparing our implementation with other prototype systems is difficult,
not only because this would require extensive tests of our system, but also
because of the differences in the implemented approaches. However, as
already stated, from the first results it seems as if (for comparable scenarios)
the performance of our implementation is not much below the performance
of CoDE. This indicates that building the PDMS on top of CoDE causes
only a justifiable overhead and that the performance of our prototype can be
regarded to be satisfactory. The only other prototype PDMS implementing a
similar semantics as our PDMS is coDB [26]. Also here our first tests suggest
that although being not competable, at least for smaller systems (we do not
have data for bigger ones) the difference is still within reasonable bounds.
Comparisons with other systems (like e.g. Piazza) are questionable, as they
are not only based on a different semantics, but for example in Piazza query
answering is implemented by a centralised algorithm which dramatically
outperforms our implementation.

Concerning semantic properties of the PDMS, the framework of De Giacomo
et al. provides a very powerful and well defined tool, whose advantages
have been already discussed in the previous chapters. However, using this
framework for implementing a real, dynamic PDMS, several issues arise that
are beyond the scope of [30].

A major problem w.r.t. the data exchange dependencies are updates of the
database instance at a peer. If the original data has been propagated to another
peer, the update is often inconsistent with this previously forwarded data.
Although being completely correct and also reasonable from a semantical
point of view, it seems to be inconvenient in many situations. (From a
semantical point of view, once the data has been exchanged, it is no longer
within the scope of the peer where it originated, but is just part of the other
peer instance. If by some update the original and the exchanged data become

6.5 discussion 129

inconsistent, then the two peer schemas simply are no longer consistent. In
practise however, this would limit the use of data exchange dependencies to
data known to be stable.)

This problem correlates with the question when to perform data exchange
actually, i.e. when to apply the chase. Possibilities are: every time a change
in one of the peer databases happens or only when a peer explicitly requests
to perform a data exchange. This is a critical point w.r.t. the semantics of a
dynamic PDMS.

Another aspect worth mentioning is the effect of preferring virtual depen-
dencies over data exchange dependencies. When the same fact is implied
by a virtual dependency and a data exchange dependency, then the data is
not materialised. Again, when considering one fixed setting and one given
state, this semantics is probably the best choice. However, in dynamic settings,
where both the system configuration and the state may change, this can lead
to some unintended (at least in most of the cases) effects. For example if a fact
is implied on an instance of some peer Pi by both, virtual and data exchange
dependencies. When running an eichase, this fact is not materialised. If,
because of some change in the PDMS, this fact is no longer implied neither
by virtual nor by data exchange dependencies, and a query is posed over Pi,
then this fact is not taken into consideration for query answering, as it is not
contained in the instance of Pi. Although being exactly correct according to
the defined semantics, this might not be the expected effect when defining a
data exchange dependency.

Concerning the restrictions required to maintain tractability of the chase,
it might be of interest to apply the same constraints to the i-constraints as to
the e-constraints, as this may be the more flexible approach. However, further
evaluations are necessary to really get a clue about this.

Finally the XML configuration of a peer allows an easy and flexible setup of
different scenarios for the evaluation of certain concepts. Moreover, for small
size test scenarios although of the restrictions presented in Section 6.3.8 the
handling of a single peer and the complete network is convenient.

6.5.2 Open Issues and Further Improvements

The only known problem with the current implementation concerns data
manually added by a user to a peer instance while the peer is active. For
efficient core computation, CoDE stores a lot of additional information to every
fact in the database. Although not using the core computation capabilities, also
the functionality we use of CoDE in our prototypes assumes these information
to exist. Therefore, for data not created by a chase but inserted manually,
the PDMS tries to add appropriate information for these facts (although
being irrelevant for the result, they still have to satisfy certain conditions for
localchase() to work correctly). Sometimes there seems to be a problem with
setting the correct information, what leads to errors when running a chase.

Since determining and inserting all these additional values during
localchase() by CoDE slows down the chase, one could consider rewrit-
ing localchase() without these computations. However, this would at most

6.5 discussion 130

give a speedup by some constant factor, but would certainly not solve the
problems with the scalability, especially those of the eichase.

The list of simplifying assumptions made for our implementation (see
Section 6.3.8) immediately gives rise to a list of open issues for improving our
prototype. Especially a practical error and inconsistency handling seems to
be of interest, as just leaving some undefined state is of no help. However,
this requires first some satisfying definition of what the result should be in
these cases. For improving the handling of a peer, also some of the (from
the theoretical viewpoint) trivial improvements should be implemented, like
allowing a peer to leave the P2P network, or to provide the user some help with
the configuration of the peers by checking the local constraints for validity.

During considering solutions that allow more than one eichase or tchase
running in parallel in the PDMS, at least some distributed locking algorithm
could be implemented to ensure that there is at most one such chase active at
the same time.

Other improvements of the theory concern the problems mentioned in
Section 6.2 and the discussion about more dynamic settings in the first half
of this section. Another open problem is yet why in Expand(φ, I) only the
query on the left hand side of the P2P mapping is rewritten.

Additional improvements will depend on more detailed evaluation results,
and will mainly consider the speedup of the chase.

7C O N C L U S I O N

In this thesis we presented our implementation of a PDMS prototype system.
To the best of our knowledge, this prototype is the first implementation of
the semantical framework for PDMSs suggested by De Giacomo et al. [30].
This framework combines the ideas of data exchange, data integration and
peer data management, and by using a semantics suggested in [15] it does not
require for restrictions on the topology of the P2P network. We described our
prototype system and some problems encountered during the implementation.

Further, additionally to a detailed description of the implemented approach,
we also summarised the basic idea of PDMSs and we presented a selection of
other PDMS prototypes, an overview of different semantics for PDMSs and
approaches for modelling relationships between peer schemas that have been
suggested in the literature.

Because being the technique used in the framework of De Giacomo et al. to
express relationships between peers, we especially concentrated on schema
mappings for expressing relationships between different schemas (or within
a single schema). As schema mappings are well known from data exchange
and data integration, and our implementation generalises both of them, we
also summarised the main results of these areas that are also of interest for
Peer Data Management. Thereby, apart from the formal description of the
semantics of such settings, we mainly concentrated on differentiating between
undecidable, decidable and even tractable scenarios.

7.1 future work

There is still work to do on both, the practical side (improving and extending
the implementation of the created prototype PDMS) and on the theoretical
side (solving problems or yet not considered aspects of the semantics of the
implemented framework).

First, an extensive and systematic evaluation of the created prototype system
is of interest to justify or refute the results of the first test runs. Especially the
performance of the EI-CHASE seems to be of importance. Thereby it is of spe-
cial interest whether the bad performance observed is due to implementation
issues or whether the combination of data exchange and virtual mappings is
generally problematic in practice.

Beside applying the insights gained from the evaluation of the system, also
some trivial convenience functionality may be added to the prototype to make
handling of the peers easier.

Concerning theoretical aspects, one future goal is to overcome the open
problems described in Section 6.2. Moreover it would be interesting to study
satisfactory semantics for more dynamic settings of the PDMS not covered by
the current framework, for example the questions discussed in Section 6.5.

131

7.1 future work 132

Towards a practical use it would be interesting to find a convenient way
to handle inconsistencies, as the current approach cannot be applied in prac-
tice. However, for most of the well defined semantics for handling PDMSs
inconsistencies elegantly (e.g. [16]) query answering becomes intractable.

Finally general extensions of PDMSs, for example as proposed in [18] seem
to open research topics of great interest.

B I B L I O G R A P H Y

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering
queries using materialized views. In Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 1–3, 1998, Seattle, Washington, pages 254–263. ACM Press, 1998.
(Cited on pages 33 and 34.)

[2] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju
Kiringa, Renée J. Miller, and John Mylopoulos. The hyperion project:
from data integration to data coordination. SIGMOD Record, 32(3):53–58,
2003. (Cited on pages 1 and 56.)

[3] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependen-
cies. J.ACM, 31(4):718–741, 1984. (Cited on pages 9 and 11.)

[4] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John
Mylopoulos, Luciano Serafini, and Ilya Zaihrayeu. Data management for
peer-to-peer computing : A vision. In ACM SIGMOD WebDB Workshop,
pages 89–94, 2002. (Cited on pages 43 and 44.)

[5] Angela Bonifati, Elaine Qing Chang, Terence Ho, and Laks V. S. Laksh-
manan. HepToX: Heterogeneous peer to peer XML databases. CoRR,
abs/cs/0506002, 2005. (Cited on pages 1 and 57.)

[6] Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V. S. Lakshmanan,
and Rachel Pottinger. HePToX: Marrying XML and heterogeneity in your
P2P databases. In Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 – September 2, 2005, pages
1267–1270. ACM, 2005. (Cited on page 57.)

[7] Angela Bonifati, Panos K. Chrysanthis, Aris M. Ouksel, and Kai-Uwe
Sattler. Distributed databases and peer-to-peer databases: past and
present. SIGMOD Record, 37(1):5–11, 2008. (Cited on pages 39, 40,
and 42.)

[8] Athman Bouguettava, Boualem Benatallah, and Ahmed Elmagarmid.
An overview of multidatabase systems: Past and present. In Ahmed K.
Elmagarmid, Marek Rusinkiewicz, and Amit Sheth, editors, Management
of heterogeneous and autonomous database systems, pages 1–32. 1999. (Cited
on pages 1 and 39.)

[9] Andrea Cali, Giuseppe De Giacomo, and Maurizio Lenzerini. Models for
information integration: Turning local-as-view into global-as-view. In In
Proc. of Int. Workshop on Foundations of Models for Information Integration
(10th Workshop in the series Foundations of Models and Languages for Data
and Objects), 2001. Online Available: citeseer.ist.psu.edu/495550.html.
Accessed 1. August 2009. (Cited on page 26.)

133

bibliography 134

[10] Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. On the role of integrity constraints in data integration. IEEE
Data Eng. Bull., 25(3):39–45, 2002. (Cited on page 27.)

[11] Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. On the expressive power of data integration systems. In
Conceptual Modeling - ER 2002, 21st International Conference on Conceptual
Modeling, Tampere, Finland, October 7–11, 2002, Proceedings, volume 2503

of Lecture Notes in Computer Science, pages 338–350. Springer, 2002. (Cited
on pages 26 and 27.)

[12] Andrea Calì, Domenico Lembo, and Riccardo Rosati. Query rewriting
and answering under constraints in data integration systems. In IJCAI-
03, Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 9–15, 2003, pages 16–21. Morgan
Kaufmann, 2003. (Cited on pages 30, 91, 92, 93, 94, and 95.)

[13] Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability
and complexity of query answering over inconsistent and incomplete
databases. In Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 9–12, 2003, San
Diego, CA, USA, pages 260–271. ACM, 2003. (Cited on pages 29 and 30.)

[14] Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Semantic data integration in p2p systems.
In Databases, Information Systems, and Peer-to-Peer Computing, First Inter-
national Workshop, DBISP2P, Berlin Germany, September 7–8, 2003, Revised
Papers, volume 2944 of Lecture Notes in Computer Science, pages 77–90.
Springer, 2003. (Cited on pages 48, 50, 51, and 53.)

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Ric-
cardo Rosati. Logical foundations of peer-to-peer data integration. In
Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 14–16, 2004, Paris, France, pages
241–251. ACM, 2004. (Cited on pages 1, 2, 41, 51, 70, 99, 111, and 131.)

[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Inconsistency tolerance in p2p data
integration: An epistemic logic approach. Inf. Syst., 33(4–5):360–384, 2008.
(Cited on pages 52, 53, and 132.)

[17] O. Duschka. Query Planning and Optimization in Information Integration.
PhD thesis, Stanford University, 1997. (Cited on page 25.)

[18] Schahram Dustdar, Reinhard Pichler, Vadim Savenkov, and Hong-Linh
Truong. Service-oriented data integration: an envisaged architecture and
research challenges. submitted, 2009. (Cited on page 132.)

[19] Ronald Fagin. Horn clauses and database dependencies. J. ACM, 29(4):
952–985, 1982. (Cited on page 9.)

bibliography 135

[20] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: Semantics and query answering. In Database Theory -
ICDT 2003, 9th International Conference, Siena, Italy, January 8–10, 2003,
Proceedings, volume 2572 of Lecture Notes in Computer Science, pages 207–
224. Springer, 2003. (Cited on pages 1, 6, 7, 8, 11, 13, and 17.)

[21] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange:
getting to the core. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 90–101.
ACM, 2003. (Cited on pages 1 and 6.)

[22] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. Theor. Comput. Sci., 336

(1):89–124, 2005. (Cited on pages 6, 11, 15, 18, and 19.)

[23] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange:
getting to the core. ACM Trans. Database Syst., 30(1):174–210, 2005. (Cited
on pages 6, 19, and 20.)

[24] Apache Foundation. Apache axis (ws.apache.org/axis). http://ws.

apache.org/axis, 2009. Accessed 01-August-2009. (Cited on page 119.)

[25] Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Luciano Ser-
afini. A robust logical and computational characterisation of peer-to-peer
database systems. In Databases, Information Systems, and Peer-to-Peer Com-
puting, First International Workshop, DBISP2P, Berlin Germany, September
7–8, 2003, Revised Papers, volume 2944 of Lecture Notes in Computer Science,
pages 64–76. Springer, 2003. (Cited on pages 1, 48, 51, 52, and 58.)

[26] Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Ilya Zaihrayeu.
The coDB robust Peer-to-Peer database system. In Proceedings of the Twelfth
Italian Symposium on Advanced Database Systems, SEBD 2004, S. Margherita
di Pula, Cagliari, Italy, June 21–23, 2004, pages 382–393, 2004. (Cited on
pages 1, 42, 58, and 128.)

[27] Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Ilya Zaihrayeu.
A distributed algorithm for robust data sharing and updates in p2p
database networks. In Current Trends in Database Technology - EDBT 2004
Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb,
Heraklion, Crete, Greece, March 14–18, 2004, Revised Selected Papers, volume
3268 of Lecture Notes in Computer Science, pages 446–455. Springer, 2004.
(Cited on page 58.)

[28] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans
for data integration. In AAAI/IAAI, pages 67–73, 1999. (Cited on page 25.)

[29] Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang Chiew Tan.
Peer data exchange. ACM Trans. Database Syst., 31(4):1454–1498, 2006.
(Cited on page 9.)

http://ws.apache.org/axis
http://ws.apache.org/axis

bibliography 136

[30] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. On reconciling data exchange, data integration, and peer
data management. In Proceedings of the Twenty-Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 11–13,
2007, Beijing, China, pages 133–142. ACM, 2007. (Cited on pages 1, 2, 3, 8,
11, 42, 48, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90,
96, 97, 100, 102, 120, 128, and 131.)

[31] Georg Gottlob. Computing cores for data exchange: new algorithms
and practical solutions. In Proceedings of the Twenty-fourth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 13–15,
2005, Baltimore, Maryland, USA, pages 148–159. ACM, 2005. (Cited on
page 20.)

[32] Georg Gottlob and Alan Nash. Data exchange: computing cores in
polynomial time. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 26–28, 2006,
Chicago, Illinois, USA, pages 40–49. ACM, 2006. (Cited on page 20.)

[33] Todd J. Green, Gregory Karvounarakis, Nicholas E. Taylor, Olivier Biton,
Zachary G. Ives, and Val Tannen. ORCHESTRA: facilitating collaborative
data sharing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12–14, 2007, pages 1131–1133.
ACM, 2007. (Cited on page 58.)

[34] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.
Update exchange with mappings and provenance. In Proceedings of the
33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23–27, 2007, pages 675–686. ACM, 2007. (Cited on
pages 58, 59, and 60.)

[35] Steven D. Gribble, Alon Y. Halevy, Zachary G. Ives, Maya Rodrig, and
Dan Suciu. What can databases do for peer-to-peer? In WebDB Workshop
on Databases and the Web, pages 31–36, 2001. (Cited on pages 1, 38, 54,
and 61.)

[36] Jarek Gryz. Query folding with inclusion dependencies. In Proceedings of
the Fourteenth International Conference on Data Engineering, February 23–27,
1998, Orlando, Florida, USA, pages 126–133. IEEE Computer Society, 1998.
(Cited on page 25.)

[37] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Pi-
azza: data management infrastructure for semantic web applications. In
Proceedings of the 12th international conference on World Wide Web, pages
556–567. ACM, 2003. (Cited on pages 54, 61, and 68.)

[38] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema
mediation in peer data management systems. In Proceedings of the 19th
International Conference on Data Engineering, March 5–8, 2003, Bangalore,
India, pages 505–516. IEEE Computer Society, 2003. (Cited on pages 1, 2,
41, 61, 62, 63, 64, 65, 67, and 68.)

bibliography 137

[39] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan
Suciu, and Igor Tatarinov. The piazza peer data management system.
IEEE Trans. Knowl. Data Eng., 16(7):787–798, 2004. (Cited on pages 61, 67,
and 68.)

[40] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema
mediation for large-scale semantic data sharing. VLDB J., 14(1):68–83,
2005. (Cited on pages 61, 64, 67, and 68.)

[41] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration:
The teenage years. In Proceedings of the 32nd International Conference on
Very Large Data Bases, Seoul, Korea, September 12–15, 2006, pages 9–16.
ACM, 2006. (Cited on pages 2, 21, 25, and 39.)

[42] Pavol Hell and Jaroslav Nesetril. The core of a graph. Discrete Mathematics,
109(1–3):117–126, 1992. (Cited on pages 19 and 20.)

[43] Katja Hose, Armin Roth, Andre Zeitz, Kai-Uwe Sattler, and Felix Nau-
mann. A research agenda for query processing in large-scale peer data
management systems. Inf. Syst., 33(7–8):597–610, 2008. (Cited on pages 39

and 42.)

[44] Zachary G. Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir.
ORCHESTRA: Rapid, collaborative sharing of dynamic data. In CIDR,
pages 107–118, 2005. (Cited on pages 1, 58, and 60.)

[45] David S. Johnson and Anthony C. Klug. Testing containment of con-
junctive queries under functional and inclusion dependencies. Journal of
Computer and System Sciences, 28(1):167–189, 1984. (Cited on page 30.)

[46] Vasiliki Kantere, Iluju Kiringa, John Mylopoulos, Anastasios Kementsiet-
sidis, and Marcelo Arenas. Coordinating peer databases using ECA rules.
In Databases, Information Systems, and Peer-to-Peer Computing, First Inter-
national Workshop, DBISP2P, Berlin Germany, September 7–8, 2003, Revised
Papers, volume 2944 of Lecture Notes in Computer Science, pages 108–122.
Springer, 2003. (Cited on pages 1, 46, and 47.)

[47] Vasiliki Kantere, John Mylopoulos, and Iluju Kiringa. A distributed rule
mechanism for multidatabase systems. In On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily,
Italy, November 3–7, 2003, volume 2888 of Lecture Notes in Computer Science,
pages 56–73. Springer, 2003. (Cited on pages 46 and 47.)

[48] Anastasios Kementsietsidis. Data sharing and querying for Peer-to-Peer
data management systems. In Current Trends in Database Technology -
EDBT 2004 Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB,
and ClustWeb, Heraklion, Crete, Greece, March 14–18, 2004, Revised Selected
Papers, volume 3268 of Lecture Notes in Computer Science, pages 177–186.
Springer, 2004. (Cited on page 56.)

bibliography 138

[49] Anastasios Kementsietsidis and Marcelo Arenas. Data sharing through
query translation in autonomous sources. In (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, Toronto, Canada, August
31 – September 3 2004, pages 468–479. Morgan Kaufmann, 2004. (Cited on
pages 44 and 46.)

[50] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Map-
ping data in peer-to-peer systems: Semantics and algorithmic issues. In
Proceedings of the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, California, USA, June 9–12, 2003, pages 325–336.
ACM, 2003. (Cited on pages 1, 44, 45, and 46.)

[51] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Man-
aging data mappings in the hyperion project. In Proceedings of the 19th
International Conference on Data Engineering, March 5–8, 2003, Bangalore,
India, pages 732–734. IEEE Computer Society, 2003. (Cited on page 56.)

[52] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata
management. In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 13–15, 2005,
Baltimore, Maryland, USA, pages 61–75. ACM, 2005. (Cited on pages 6, 7,
9, 11, 17, and 35.)

[53] Phokion G. Kolaitis, Jonathan Panttaja, and Wang Chiew Tan. The
complexity of data exchange. In Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 26–28, 2006, Chicago, Illinois, USA, pages 30–39. ACM, 2006. (Cited
on page 17.)

[54] Maurizio Lenzerini. Data integration: A theoretical perspective. In
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 3–5, Madison, Wisconsin, USA, pages
233–246. ACM, 2002. (Cited on pages 2, 21, 22, and 33.)

[55] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying het-
erogeneous information sources using source descriptions. In VLDB’96,
Proceedings of 22th International Conference on Very Large Data Bases, Septem-
ber 3–6, 1996, Mumbai (Bombay), India, pages 251–262. Morgan Kaufmann,
1996. (Cited on page 24.)

[56] Alexander Löser, Wolf Siberski, Martin Wolpers, and Wolfgang Nejdl.
Information integration in Schema-Based Peer-To-Peer networks. In
Advanced Information Systems Engineering, 15th International Conference,
CAiSE 2003, Klagenfurt, Austria, June 16–18, 2003, Proceedings, volume 2681

of Lecture Notes in Computer Science, pages 258–272. Springer, 2003. (Cited
on pages 55 and 56.)

[57] Aleksander Madry. Data exchange: On the complexity of answering
queries with inequalities. Inf. Process. Lett., 94(6):253–257, 2005. (Cited on
page 19.)

bibliography 139

[58] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing impli-
cations of data dependencies. ACM Trans. Database Syst., 4(4):455–469,
1979. (Cited on page 11.)

[59] Mehedi Masud, Iluju Kiringa, and Anastasios Kementsietsidis. Don’t
mind your vocabulary: Data sharing across heterogeneous peers. In On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
OTM Confederated International Conferences CoopIS, DOA, and ODBASE
2005, Agia Napa, Cyprus, October 31 – November 4, 2005, Proceedings, Part I,
volume 3760 of Lecture Notes in Computer Science, pages 292–309. Springer,
2005. (Cited on pages 44 and 46.)

[60] Gerome Miklau and Dan Suciu. Controlling access to published data
using cryptography. In VLDB, pages 898–909, 2003. (Cited on page 68.)

[61] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.
EDUTELLA: a P2P networking infrastructure based on RDF. In Proceed-
ings of the 11th international conference on World Wide Web, pages 604–615.
ACM, 2002. (Cited on pages 1 and 55.)

[62] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. PeerDB:
A P2P-based system for distributed data sharing. In Proceedings of the 19th
International Conference on Data Engineering, March 5–8, 2003, Bangalore,
India, pages 633–644. IEEE Computer Society, 2003. (Cited on pages 1

and 54.)

[63] University of Toronto Database Group. Hyperion project web-
site (www.cs.toronto.edu/db/hyperion/index.html. http://www.cs.

toronto.edu/db/hyperion/index.html, 2009. Accessed 1. August 2009.
(Cited on page 56.)

[64] Daniel Olmedilla. Working with edutella. Technical report, L3S Research
Center and Hanover University. URL http://www.l3s.de/~olmedilla/

projects/edutella/edutella.pdf. Accessed 1. August 2009. (Cited on
pages 55 and 56.)

[65] Beng Chin Ooi, Kian-Lee Tan, Aoying Zhou, Chin Hong Goh, Yingguang
Li, Chu Yee Liau, Bo Ling, Wee Siong Ng, Yanfeng Shu, Xiaoyu Wang,
and Ming Zhang. PeerDB: Peering into personal databases. In Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data,
San Diego, California, USA, June 9–12, 2003, page 659. ACM, 2003. (Cited
on page 54.)

[66] M. Tamer Ozsu and P. Valduriez. Principles of distributed database systems.
Prentice-Hall, Inc. (Cited on page 40.)

[67] Md. Anisur Rahman, Illuju Kiringa, and Abdulmotaleb El Saddik. Gen-
eralization of an algorithm for checking consistency of mapping tables in
a p2p system. In Proceedings of the 7th International Conference on Computer
and Information Technology (ICCIT 2004), Dhaka, Bangladesh, Dec. 2004, 2004.
(Cited on pages 44 and 46.)

http://www.cs.toronto.edu/db/hyperion/index.html
http://www.cs.toronto.edu/db/hyperion/index.html
http://www.l3s.de/~olmedilla/projects/edutella/edutella.pdf
http://www.l3s.de/~olmedilla/projects/edutella/edutella.pdf

bibliography 140

[68] Raymond Reiter. Towards a logical reconstruction of relational database
theory. In On Conceptual Modelling (Intervale), pages 191–233. Springer,
1984. (Cited on page 43.)

[69] Patricia Rodríguez-Gianolli, Maddalena Garzetti, Lei Jiang, Anastasios
Kementsietsidis, Iluju Kiringa, Mehedi Masud, Renée J. Miller, and John
Mylopoulos. Data sharing in the hyperion peer database system. In
Proceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 – September 2, 2005, pages 1291–1294. ACM,
2005. (Cited on page 56.)

[70] Riccardo Rosati. On the decidability and finite controllability of query
processing in databases with incomplete information. In Proceedings of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 26–28, 2006, Chicago, Illinois, USA, pages 356–365.
ACM, 2006. (Cited on pages 31 and 32.)

[71] Vadim Savenkov. Implementing core computation for data exchange.
Master thesis, Technische Universität Wien, October 2007. (Cited on
pages 2, 20, 98, 108, 113, 120, 121, 123, and 127.)

[72] Luciano Serafini, Fausto Giunchiglia, John Mylopoulos, and Philip A.
Bernstein. Local relational model: A logical formalization of database
coordination. In Modeling and Using Context, 4th International and Inter-
disciplinary Conference, CONTEXT 2003, Stanford, CA, USA, June 23–25,
2003, Proceedings, volume 2680 of Lecture Notes in Computer Science, pages
286–299. Springer, 2003. (Cited on pages 1, 43, and 44.)

[73] Amit P. Sheth and James A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases. ACM
Comput. Surv., 22(3):183–236, 1990. (Cited on pages 1 and 39.)

[74] Springsource. Spring framework (www.springsource.org). http://www.
springsource.org, 2009. Accessed 01-August-2009. (Cited on pages 98

and 107.)

[75] Igor Tatarinov, Zachary G. Ives, Jayant Madhavan, Alon Y. Halevy, Dan
Suciu, Nilesh N. Dalvi, Xin Dong, Yana Kadiyska, Gerome Miklau, and
Peter Mork. The piazza peer data management project. SIGMOD Record,
32(3):47–52, 2003. (Cited on pages 61 and 68.)

[76] Nicholas E. Taylor and Zachary G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27–29, 2006, pages 13–24. ACM, 2006. (Cited on pages 42, 58,
and 60.)

[77] Dan Zhao, John Mylopoulos, Iluju Kiringa, and Verena Kantere. An
ECA rule rewriting mechanism for peer data management systems. In
Advances in Database Technology - EDBT 2006, 10th International Conference
on Extending Database Technology, Munich, Germany, March 26–31, 2006,

http://www.springsource.org
http://www.springsource.org

bibliography 141

Proceedings, volume 3896 of Lecture Notes in Computer Science, pages 1069–
1078. Springer, 2006. (Cited on pages 46 and 47.)

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Goal and Results of this Thesis
	1.2 Organization

	2 Preliminaries
	3 Data Exchange and Data Integration
	3.1 Data Exchange
	3.1.1 Data Exchange Setting
	3.1.2 Computing Universal Solutions --- The Chase
	3.1.3 Query Answering
	3.1.4 The Core of a Universal Solution

	3.2 Data Integration
	3.2.1 Data Integration System
	3.2.2 Schema Mappings in Data Integration
	3.2.3 Comparing GAV and LAV
	3.2.4 Query Answering

	3.3 ``Comparison'' of Data Exchange with Data Integration

	4 Peer Data Management
	4.1 Peer Data Management Systems
	4.1.1 Related Techniques
	4.1.2 Classes of PDMSs

	4.2 Formalisation Approaches and Techniques
	4.2.1 Local Relational Model (LRM)
	4.2.2 Mapping Tables
	4.2.3 ECA Rules
	4.2.4 A Weaker Semantics for Schema Mappings

	4.3 PDMS Prototypes
	4.3.1 Piazza
	4.3.2 PeerDB
	4.3.3 Edutella
	4.3.4 Hyperion
	4.3.5 HepToX
	4.3.6 coDB
	4.3.7 ORCHESTRA
	4.3.8 Discussion

	4.4 Peer-Programming Language (PPL)/Piazza
	4.4.1 System Definition
	4.4.2 Complexity of Query Answering
	4.4.3 Query Reformulation
	4.4.4 Further Considerations

	5 The Approach of De Giacomo et al.
	5.1 Basic Definitions
	5.2 PDE-System
	5.2.1 Relationship with Data Exchange
	5.2.2 Certain Answers

	5.3 PDEI-System
	5.3.1 Relationship with Data Integration

	5.4 The E-CHASE
	5.4.1 Weakly Acyclic PDE-Systems

	5.5 The EI-CHASE
	5.5.1 Stratified PDEI-Systems

	5.6 Query Answering in Stratified PDEI-Systems
	5.6.1 Rewriting Conjunctive Queries under Inclusion Dependencies
	5.6.2 Computing the Certain Answers

	6 Implementation
	6.1 General System Architecture
	6.2 Problems Arising from Ambiguous Definitions
	6.2.1 Query Answering in PDEI-Systems
	6.2.2 Semantics of certainNull(q, SI, B)

	6.3 Design Decisions
	6.3.1 Peer Configuration and Neighbourhood Setup
	6.3.2 Database and Database Schema
	6.3.3 Labelled Nulls and Temporarily Materialised Data
	6.3.4 The Chase
	6.3.5 Query Answering
	6.3.6 Requesting a Chase
	6.3.7 Communication Between the Peers
	6.3.8 Further Design Decisions

	6.4 Implementation Details
	6.4.1 Configuration of a Peer
	6.4.2 Main System Classes
	6.4.3 Communication Formats
	6.4.4 User Interface

	6.5 Discussion
	6.5.1 System Evaluation
	6.5.2 Open Issues and Further Improvements

	7 Conclusion
	7.1 Future Work

	Bibliography

