
Efficient Profiling in the LLVM
Compiler Infrastructure

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Andreas Neustifter, BSc
Matrikelnummer 0325716

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: ao. Univ.-Prof. Dipl.-Ing. Dr. Andreas Krall

Wien, April 14, 2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Andreas Neustifter, BSc
Unterer Mühlweg 1/6, 2100 Korneuburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit—einschließlich Tabellen, Karten und Abbildungen— die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, April 14, 2010
(Unterschrift Verfasser)

Contents

Contents I

List of Figures III

List of Tables V

List of Algorithms VII

Abstract 1

Kurzbeschreibung 3

1 Overview 5
1.1 What is profiling? . 5
1.2 Profiling in the Literature . 6
1.3 Goals . 8

2 Profiling 9
2.1 Basics . 9

2.1.1 Dynamic versus Static Profiles 10
2.1.2 Types of Profiling Information 11
2.1.3 Granularity of Profiling Information 11

2.2 Methods for Dynamic Profiling 12
2.2.1 Instrumentation . 12
2.2.2 Sampling . 14
2.2.3 Hardware Counters . 15

2.3 Static Profiling Algorithms . 16
2.3.1 A Näıve Execution Count Estimator 16
2.3.2 A Sophisticated Execution Count Estimator 17
2.3.3 Estimators for Call Graphs 19

2.4 Dynamic Profiling: Optimal Counter Placement 20
2.4.1 Overview . 20
2.4.2 Example . 22
2.4.3 Virtual Edges . 22
2.4.4 Number of Instrumented Edges 22
2.4.5 Breaking up the Cycles 25

I

2.4.6 Proof: Profiling Edges not in Spanning Tree is Sufficient 25

3 LLVM 29
3.1 Overview and Structure . 29

3.1.1 Intermediate Language 30
3.1.2 Optimisations and the Pass System 31
3.1.3 Frontends . 33
3.1.4 Backends . 34

3.2 Why LLVM? . 35

4 Implementation 37
4.1 Used Implementation . 37

4.1.1 History . 37
4.1.2 Current implementation 38

4.2 Virtual Edges are necessary . 39
4.3 General CFGs are hard to estimate 40

4.3.1 Weighting Exit Edges . 40
4.3.2 Loop Exit Edges . 41
4.3.3 Missing Loop Exit Edges 41
4.3.4 Precision Problems . 44
4.3.5 Not all CFGs can be properly estimated 44

4.4 How to store a tree . 45
4.5 Verifying Profiles . 47

4.5.1 Verifying a program containing jumps. 47
4.5.2 A program exits sometimes. 48

5 Results 51
5.1 Overview . 51
5.2 Used Methods . 51

5.2.1 Used LLVM Version . 52
5.2.2 Used Hardware . 53

5.3 Correctness . 53
5.3.1 Profile Estimator . 53
5.3.2 Instrumentation Algorithm and Profiling Framework . . 54

5.4 Results Compile Time . 55
5.4.1 Profiling Small Functions 57
5.4.2 Differences in Optima 58
5.4.3 Build Times . 58

5.5 Results Run Time . 60
5.5.1 Runtime Results amd64 Hardware 60
5.5.2 Runtime Results x86 64 Hardware 62
5.5.3 Runtime Results ppc32 Hardware 62
5.5.4 Effectiveness of Profile Estimator 65
5.5.5 Using Profiling Data . 66

6 Conclusions 69

II

6.1 Future Work . 70

Acknowledgements 71

Literature 73

III

IV

List of Figures

2.1 Optimal Profiling Example: Estimation 23
2.2 Optimal Profiling Example: Instrumentation 24

3.1 φ nodes select values depending on control flow. 31
3.2 Part of the Alpha backend instruction description 36

4.1 Virtual Edges are necessary . 40
4.2 Weighting Exit Edges . 42
4.3 Loop Exit Edges . 43
4.4 Non-estimatible CFG with wrong estimate 45
4.5 ProfileVerifier: ReadOrAssert 48
4.6 ProfileVerifier: recurseBasicBlock 49

5.1 Core part of the SPEC CPU2000 configuration 53
5.2 Percentage of instrumented edges. 55
5.3 Number of Functions with a given Number of Blocks 57
5.4 Instrumented edges per function size. 58

V

VI

List of Tables

5.1 Percentage of instrumented edges. 56
5.2 Percentage of instrumented edges (sorted by Optimal). 59
5.3 Build times from the SPEC CPU2000 benchmark. 61
5.4 Best runtimes for each SPEC CPU2000 program (amd64). . . . 63
5.5 Best runtimes for each SPEC CPU2000 program (x86 64). . . . 64
5.6 Best runtimes for selected SPEC CPU2000 program (ppc32). . . 65
5.7 Runtimes with and without Profile Estimator 66
5.8 Runtimes with Estimator and Profiling Data 67

VII

VIII

List of Algorithms

1 NaiveEstimator(P)→ W . 18
2 InsertOptimalEdgeProfiling(P)→ Pi 21
3 ReadOptimalEdgeProfile(P, Profile)→ W 21

IX

X

Abstract

In computer science profiling is the process of determining the execution fre-
quencies of parts of a program. This can be done by instrumenting the program
code with counters that are incremented when a part of the program is exe-
cuted or by sampling the program counter at certain time intervals. From this
data it is possible to calculate exact (in the case of counters) or relative (in
the case of sampling) execution frequencies of all parts of the program.

Currently the LLVM Compiler Infrastructure supports the profiling of pro-
grams by placing counters in the code and reading the resulting profiling data
during consecutive compilations. But these counters are placed with a näıve
and inefficient algorithm that uses more counters than necessary. Also the
recorded profiling information is not used in the compiler during optimisation
or in the code generating backend when recompiling the program.

This work tries to improve the existing profiling support in LLVM in several
ways. First, the number of counters placed in the code is decreased as presented
by Ball and Larus [19]. Counters are placed only at the leaves of each functions
control flow graph (CFG), which gives an incomplete profile after the program
execution. This incomplete profile can be completed by propagating the values
of the leaves back into the tree.

Secondly, the profiling information is made available to the code generating
backend. The CFG modifications and instruction selection passes are modified
where necessary to preserve the profiling information so that backend passes
and code generation can benefit from it. For example the register allocator is
one such backend pass that could benefit since the spilling decisions are based
on the execution frequency information.

Thirdly, a compile time estimator to predict execution frequencies when no
profiling information is available is implemented and evaluated as proposed by
Wu et.al. in [71]. This estimator is based on statistical data which is combined
in order to give more accurate branch predictions as compared to methods
where only a single heuristic is used for prediction.

The efficiency of the implemented counter placing algorithm is evaluated by
measuring profiling overhead for the näıve and for the improved counter place-
ment. The improvements from having the profiling information in the code
generating backend is measured by the program performance for code which
was compiled without and with profiling information as well as for code that
was compiled using the compile time estimator.

2

Kurzbeschreibung

Unter Profilen versteht man in der Informatik die Analyse des
Laufzeitverhaltens von Software, meist enthalten diese Analysedaten
Ausführungshäufigkeiten von Teilen eines Programms. Diese Häufigkeiten
können entweder durch das Einfügen von Zählern im Programm bestimmt
werden oder dadurch, dass der Programmzähler periodisch aufgezeichnet
wird. Über diese gemessenen Häufigkeiten für einige Programmteile kann die
Ausführungshäufigkeit aller Programmteile berechnet werden.

Derzeit unterstützt die LLVM Compiler Infrastruktur die Analyse von Pro-
grammen, indem Zähler in den Programmcode eingefügt werden, die Ergeb-
nisse der Zähler können dann bei späteren Übersetzungen verwendet werden.
Diese Zähler werden aber ineffizient und näıv eingefügt, dadurch werden mehr
Zähler verwendet als notwendig sind. Außerdem wird zur Verfügung stehende
Profilinformation während der erneuten Übersetzung des Programms nicht
verwendet.

In dieser Arbeit wird die bestehende LLVM Profiling Unterstützung folgen-
derweise verbessert: Erstens wird die Anzahl der Zähler, die in dem Pro-
grammcode eingefügt werden, auf das Mindestmaß reduziert (Ball und Larus
[19]). Dies wird dadurch erzielt, dass, ausgehend von den wenigen eingefügten
Zählern, die Ausführungshäufigkeiten von allen Programmteilen bestimmt wer-
den.

Zweitens wird die Analyseinformation so aufbereitet dass der Compiler bei
einer Neuübersetzung des Programms diese Informationen verwenden kann.
Alle CFG-modifizierenden Teile des Compilers und der Codegenerierungsteil
werden angepasst um diese Informationen zu erhalten und zu verwenden. Zum
Beispiel kann der Registerallokator die Profilinformation verwenden um die
Entscheidung, welche Register in den Speicher ausgelagert werden sollen, zu
unterstützen.

Drittens soll ein Schätzalgorithmus implementiert und getestet werden, der
während der Übersetzung eines Programms Ausführungshäufigkeiten ab-
schätzt, falls keine Profilinformation zur Verfügung steht (Wu et.al. [71]).
Dieser Schätzalgorithmus basiert auf den Laufzeitdaten mehrere Programme,
wobei diese Daten mit statistischen Methoden kombiniert werden. Es soll
überprüft werden, ob diese Kombination im Vergleich zu der Verwendung
einzelner Datenpunkte sinnvoll ist, und ob sie das tatsächliche Laufzeitver-
halten des Programms besser abbildet.

Die Effizienz des implementierten Algorithmus zum Einfügen von der Min-
destanzahl an Zählern wird evaluiert, indem der Overhead der näıven Im-
plementierung mit dem der Neuimplementierung verglichen wird. Die
Verbesserung der Codegenerierung durch Einbeziehung der Profilinformation

wird durch Performancevergleiche zwischen Code, der ohne und mit Profilin-
formation übersetzt wird, getestet.

4

For the fashion of Minas Tirith was such
that it was built on seven levels,
each delved into a hill,
and about each was set a wall,
and in each wall
was a gate.

J.R.R. Tolkien, ”The Return of the
King”

(In [51] when referring to system
overview.)

Chapter 1

Overview

This chapter gives an overview on this thesis and on the topics covered. A
survey of the available literature and the known algorithms is done and the
goals of this work are established.

Chapter 2 provides a detailed look on profiling and on some of the algorithms
used later on, it also establishes some nomenclature. Chapter 3 introduces the
Low Level Virtual Machine (LLVM) in more detail, the LLVM is a compiler
infrastructure that was used to implement several of the profiling algorithms.
Chapter 4 covers the implementation of the profiling algorithm in LLVM and
discusses some of the more challenging problems and their solutions. Chapter
5 finally presents the results of this thesis: analysis on the algorithms efficiency
and measurements on the SPEC2000 Benchmark.

1.1 What is profiling?

Profiling is the act of generating a profile for a piece of software, the term
profile describes some sort of characteristic information. As an example the
overall execution time for each function in a program (for one execution of
the program) is such a characteristic information. As early as 1965 there were
attempts to generate runtime profiles for programs, at this time the behaviour
of a CPU was recorded by another CPU and written to tape [12].

Donald Knuth first used the term profile when he analysed how often cer-
tain FORTRAN statements where executed during the run of the program
[52]. In Knuth’s case the profile described execution counts per statement.
Knuth already anticipated that this kind of information is extremely valuable
to programmers, since they can easily pin-point performance bottlenecks. For
example the “execution counts per statement”-profile can help the program-
mer to find the statements that are executed most frequently, usually this
statements offer the most potential for runtime optimisations.

5

Today the term profile is more widely used to describe a certain characteristic
that is attached to some part of a program. This could be for example “ex-
ecution counts per statement”, “cache misses per function”, “execution time
per statement” or some other type of information.

1.2 Profiling in the Literature

The first attempts to collect information on the runtime characteristics of
programs were made in the late 1960’s by C.T.Apple at IBM with the ambitious
goal to record the instruction trace of an IBM 7090 [12]. Although it was not
possible to record all instructions they managed to sample enough data to gain
an overview on the runtime characteristics of the programs in question. Then
the parts of the program where it spent most of its runtime were optimised,
this improved the programs runtime significantly with minimal effort from the
programmer.

With the advent of compiler optimisations [5, 33, 59] the need to do automated
analysis of the programs to assist the optimiser [7, 34] became more apparent.
But it was also important to determine areas in which the compiler produced
suboptimal code so that new and better optimisations could be found.

This prompted Knuth in 1970 [52] to do a big analysis of FORTRAN code
to determine which statements and constructs where used most frequently by
(FORTRAN-)Programmers at that time. He developed a program called FOR-
DAP that instrumented a FORTRAN program to record execution counts.
When he then optimised the code at the found hot-spots in the program (state-
ments that where executed very often) the execution time of the program was
cut down to a fourth of the runtime of the original program.

FORDAP instrumented the whole code, each basic block had a counter at-
tached, this added some redundant counters which resulted in an unnecessary
high profiling overhead. This problem was tackled and solved also by Knuth
two years later in his seminal paper ”Optimal measurement points for program
frequency counts” [53] in which he proved how a minimal number of counters
can be placed which still provide execution counts for all parts of the program.

Up to this time every part of a program was instrumented, but Knuth instru-
mented only parts of the code, the profiling information for the other parts
was calculated off-line after the program had been run and the profiling infor-
mation was recorded. Since fewer counters were placed in the program, this
also reduced the profiling overhead. In 1981 Forman [42] reduced the overhead
even more by placing this counters in parts of the program that were less likely
to be executed by describing one of the first static profile estimators.

Also at that time Graham [44] introduced gprof, a successor to the widely
used Unix tool prof (that provided sample based execution time profiling).

6

The novelty of gprof was that it provided not only the raw times which where
spent in a method, but it took into consideration the call graph and attributed
the time of called methods to the callee. This gave timing profiles a new
purpose since it was not only possible to see where the most time was spent
but also why this happened, e.g. which callers were using the callee most of
the time.

In 1988 Aral and Gertner [13] introduced Parasight which used parallel proces-
sors by offloading the profiling process to a separate processor thus adding the
possibility to profile parallel applications and reducing the profiling overhead
while profiling several other processors. They further reduced the overhead by
only selectively profiling parts of the program, using an interactive process to
“zoom in” on the areas of interest.

In 1990 Larus [55] tackled the problem of tracing programs where the goal is
not only to know how often a statement was executed but also what the previ-
ous execution history was at that time. So for each execution of a program the
succession of executed basic blocks is recorded, providing hot path information
for the functions of the program. Larus did this efficiently by analysing the
C-code and placing probes only where the code was non deterministic. This
resulted in incomplete traces that were completed by executing the determin-
istic parts of the program again to provide the full trace, this technique was
called abstract execution.

In 1992 Fisher and Freudenberger [41] profiled several big projects and showed
that for a given branch the branching probabilities where almost the same for
a wide range of input data, suggesting that a well sampled set of input data
can be used as branch predictors.

Ball and Larus [18] compared several static branch prediction heuristics in
1993 and used an ordering of these heuristics to improve the overall accuracy,
but only Wu and Larus [71] in 1994 managed to combine these heuristics with
statistical methods to do accurate static branch prediction.

In 1994 Ball and Larus [19] first implemented Knuth’s “minimal number of
counters”-algorithm and provided an off-line tool that completed the recorded
basic block or CFG edge profiling information. They presented a simple profile
estimator that aimed at reducing the runtime overhead of the profiling code
by placing the counters in less likely executed regions of the program. They
also showed the complexity relations between basic block and edge profiling
and that edge profiling is as efficient as block profiling while providing more
granular data.

Ball and Larus then also tackled the tracing (path profiling) problem and
showed in 1996 [20] how to place trace probes into the program while minimis-
ing the overhead. They achieved this by enumerating all unique paths from the
functions entry block to its exit and placing code along the paths that added
up a number. The resulting number at the end of the function was equal to

7

the unique number of the taken path, these numbers where stored and could
later be used to analyse which paths were taken during the execution.

Anderson [10] showed in 1997 how to profile a whole system by adding sam-
pling code to the kernel and an user mode daemon that processed the kernel-
generated data. With this system it was possible to profile all running pro-
grams in a running system and to determine which programs and libraries used
the most system resources.

Also in 1997 a completely different approach to profiling was chosen by
Calder et. al. [27]. They profiled the values of variables trying to determine
possible optimisations based on this value information.

1.3 Goals

The goals for this thesis were threefold:

• Implement the optimal instrumentation algorithm for measuring execu-
tion counts in LLVM. This includes writing a crude flow-based static
estimator that guides the counter positioning, as well as the instrumen-
tation itself and a small helper program to display the annotated code.

• Provide the profile information to the code generating backend, so that
e.g. the register allocator can use this information.

• Implement an estimator that combines several heuristics to calculate a
static profile that can be used as guidance for the backend in case no
dynamic (runtime) profile is available.

Although LLVM already had a small instrumentation framework implemented
that provided the base for the new implementation, the old framework was
quite buggy and unmaintained, so essentially the whole framework was rewrit-
ten from scratch.

Providing the profile information for the backend poses some great difficul-
ties since the control flow graph is modified heavily during optimisation and
code generation so maintaining consistent profiling information was and is a
challenge.

During the work on the first two points the heuristics based estimator was
already implemented by Andrei Alvares [8], so this thesis only contains a dis-
cussion of the algorithm.

8

Therefore whosoever heareth these
sayings of mine, and doeth them, I will
liken him unto a wise man, which built
his house upon a rock.

Matthew 7,24
(From the King James Version of the

Bible.)

Chapter 2

Profiling

This chapter establishes the basics of profiling and introduces some important
algorithms. In Section 2.1 the basics of profiling are discussed, Section 2.2
presents the methods for recording profiles during the runtime of a program.
Section 2.3 covers some of the static profiling algorithms and finally Section
2.4 presents the algorithms used for dynamic profiling.

2.1 Basics

Profiling describes acquiring certain information from a program, this infor-
mation is called a profile. Depending on the type of profile this information
can, for example, be used to

• improve the program specifically in the areas shown to be problematic
by the profiling information,

• determine the test coverage of the input data and/or

• provide different input to the program so that different paths in the
control flow graph are executed and tested.

The profile information can be associated with certain parts of a program, with
functions, call graph edges, basic blocks or control flow graph edges.

The following sections describe certain aspects of profiles, Section 2.1.1 explains
the difference between dynamic and static profiles. Section 2.1.2 takes a look at
different types of profiling information and Section 2.1.3 covers the granularity
of profiles.

9

2.1.1 Dynamic versus Static Profiles

With dynamic profiling the information is recorded during the runtime of the
program. A profile can contain information from several different executions
of a program. With static profiling the information is obtained purely by
analysing the program, (e.g. during compile time).

Dynamic Profiling

Dynamic profiling is more accurate than static profiling, since it does not rely
on estimates but accurately captures the information when the program is
executed. On the down side this approach imposes a runtime overhead, the
program runs at lower than usual speed because capturing the profile also
needs some of the runtime resources. This can be especially problematic for
real-time applications.

Another disadvantage is that the recorded profile is dependant on the input
used to run the program. When the used input is not a representative sample
of the possible real-world inputs it is likely that the profile does not accurately
capture the average runtime behaviour of the program. This can be partly
overcome by combining the profiles of several executions with different input
data into a single profile.

Static Profiling

In contrast to dynamic profiles, which are obtained by running the program
and measuring certain characteristics, static profiles are determined by algo-
rithmically analysing the program (without executing it). For some types of
profiling information (e.g. cache misses) this is hard or impossible to do.

Since those static profiles usually are only estimates, they have different prop-
erties than dynamic profiles:

• Most interesting programs show a non-deterministic behaviour, that is
their execution depends on some external factors like input or time. For
non-deterministic programs a static profiling algorithm can only provide
relative values (for a discussion of relative and absolute profiles see Sec-
tion 2.2.2). Although it is theoretically possible to calculate absolute
profiles for deterministic programs, the required data flow analysis is
sometimes hard to do, thus making absolute static profiles impractical.

• Static profiles are not dependant on input, if the profiling algorithm is
deterministic, then the static profiling information is deterministic too.

Often static profiles are used during the compilation of programs to help the
compiler with certain decisions. E.g. the complier can use an execution count

10

estimate to help the register allocator make its spilling decisions.

For each algorithm a measure of efficiency and correctness can be established.
This measures can then be used to compare algorithms and may help choosing
the right algorithm for a given task. This also holds true for static profiling
algorithms (often called estimators in the remainder of this work). For esti-
mators the most important measure is, how well the produced estimates are.
This can be determined by generating a dynamic profile with the same charac-
teristics as the static one (relative/absolute, type, granularity) and comparing
those two profiles.

2.1.2 Types of Profiling Information

There are many types of profiling information that can be derived from a
program. Some of the common profiling types (amongst others) are:

Execution Counts For a given part of the program it is recorded how often
this part was executed. This is one of the easiest profiles to obtain, al-
though when done inefficiently it poses a considerable runtime overhead.

Execution Times This records how long the CPU spent executing a given
program part. It is difficult to capture this information accurately since
the measurement itself needs some of the CPU time and thus influences
the measurement.

Cache Misses, Number of Branch Mispredictions,

Pipeline Stalls This records how often, in a given part of the program, a
cache miss/branch misprediction/pipeline stall occurred, this is usually
measured with the help of hardware counters.

2.1.3 Granularity of Profiling Information

Profile information associates a certain piece of information (usually a number)
with a certain part of the program. Usually those parts of a program are (in
order of increasing granularity):

Functions For each function one counter/timer is stored.

Call Graph Edges When a function calls another function an edge in the
call graph is added to represent this and profiling information is attached
to this edges. So for example not only the number of invocations of a
function is recorded but how often each callee invoked the function.

Basic Blocks A basic block is a sequence of instructions without branches.
So, given the first instruction is executed all other instructions in the
block are also executed.

11

Control Flow Graph Edges When a basic block ends it either returns the
function or branches to one or more basic blocks, those branches are the
edges of the control flow graph.

Statement Each statement has profiling information attached to it.

Instruction Usually each statement consists of several instructions. It is
possible to measure some types of profiling information on the instruction
level.

Depending on the type of profiling information, it may be possible to infer
information for a lower granularity item by looking at information of higher
granularity. For example the execution count of a function can be derived from
the execution count of the first basic block (the entry block) of this function.
The execution count of the entry block in turn can be determined by the sum
of all CFG edge counts that leave the entry block.

2.2 Methods for Dynamic Profiling

Static profiling is done without running the program, so it does not matter (as
long as the profiler terminates) how long this process takes. Dynamic profiling
on the other hand is done during the runtime of the program so it is desirable
for the overhead this profiling imposes to be as low as possible. (Since usually
it is necessary that the software runs at a certain minimum speed the overhead
must not exceed a certain level).

The problem of keeping the overhead low while still acquiring accurate profiling
information was tackled with different means. When instrumenting the code
with counters (sometimes called probes) the number and placement of those
counters was optimised. Also the profiling accuracy was traded against lower
runtime overhead by using sampling instead of instrumenting the source code.

2.2.1 Instrumentation

Instrumentation describes the process of adding code, that performs the record-
ing and storing of profiling information, to a program.

A Small Example

When the execution frequencies of each CFG edge have to be measured, the
program is modified so that upon traversal of such an edge at runtime a counter
is incremented. Additionally, at the start of the program, an auxiliary function
is called that initializes all the counters. At the end of the program the counters
are written to a file, if the file exists already it is common practice to either

12

add the new values to the already stored ones or to append the new counts,
this automatically aggregates counts from several executions of the program
into a single profile information file.

Instrumentation in General

The instrumentation itself can be done at several stages during the program
lifetime:

Source Code To instrument the source code, all the code has to be parsed
and instrumentation code has to be placed at the necessary points.

Compile Time During compile time, before invoking the code generating
backend the intermediate representation is instrumented.

Binary Modification The executable binary is directly modified to add the
necessary instrumentation code.

Run Time Some frameworks allow the dynamic addition of profiling code
during the runtime of a program.

Source code and compile time instrumentation both have the advantage of
being machine independent, but this also means that it is harder for them to
use processor specific hardware counters. Binary modification on the other
hand is inherently machine dependent so it has the advantage of being able
to use hardware counters much easier, but porting it to different hardware is
much harder.

Also, for source code and compile time instrumentation the source code has to
be available to be able to instrument programs. This can be a problem when
closed source binary programs have to be analysed, binary modifications do
not have these limitations.

Compile time instrumentation has the advantage that all the information nec-
essary to instrument the code is readily available and only a small amount of
additional information has to be gathered before the instrumentation. Source
code and binary instrumentation on the other hand usually have to analyse the
program from scratch to find out where to place instrumentation code before
doing the actual instrumentation.

Advantages of Instrumentation

Instrumenting a program and executing the resulting binary gives exact profiles
that are reproducible with each renewed execution of the program (provided
the input is the same and the program otherwise has deterministic behaviour).

13

Since the profiling information is exact, it can be also used for test coverage or
control flow analysis, since it is possible to tell whether or not a certain CFG
path was executed.

Disadvantages of Instrumentation

Instrumentation usually has a larger runtime overhead than sampling (see
Section 2.2.2).

2.2.2 Sampling

With sampling the executable binary is not modified to gather profiling in-
formation, instead the program is halted and resumed during its execution
(usually via timed interrupts) to record various properties of the current state.
This halting/recording/resuming has to be done with a precise periodicity
otherwise the measured values could be biased towards certain parts of the
program.

Sampling is usually done with a profiling program that executes and halts the
profiled program as needed and records the measured results but it is also
possible to modify the program to directly contain this profiling code. With
a multi-core system it is also possible to monitor the program on-the-fly via a
monitoring routine that runs on a separate core.

Since the profiling information is only sampled at certain points in time, the
profiling information is not composed of absolute numbers but contains relative
values instead. E.g. if the real execution count for Function 1 is 10 and for
Function 2 it is 120 then maybe the measured counts are 3 and 40. It is not
possible to say how often Function 1 or Function 2 have been executed, but it
is possible to say that Function 2 was executed approx. 12 times as often as
Function 1.

Advantages of Sampling

Sampling does not require the program to be changed, but for interpreting
the measurements it is useful to have debugging information available for the
binary, or to be able to translate the program with debugging information en-
abled. Also, with a sensible profiling frequency or when using a second core or
processor, the runtime overhead is lower than the overhead of instrumentation
(see Section 2.2.1).

14

Disadvantages of Sampling

Sampling only provides relative information, it is not possible to tell how often
a certain event occurred exactly. Depending on the task at hand this may or
may not be sufficient: e.g. when it is necessary to find out where a program
spends most of its time the relative execution frequencies are suitable. But for
determining the test coverage of a function relative counts are not enough to
ensure that every edge in the CFG was executed at least once.

Since sampling can miss certain events it is not possible to say that e.g. a
basic block was never traversed during the execution of a program. It is just
as well possible that the sampling never occurred at the time the block was
executed.

2.2.3 Hardware Counters

Hardware counters where first introduced in the early 1990’s and by the mid
1990’s all major CPU manufacturers (most notably Cray but also Silicon
Graphics, Intel, IBM, DEC, SUN and HP [74]) implemented hardware perfor-
mance counters in their microprocessors. This wide availability of performance
counters triggered a wide variety of new dynamic profiling implementations
that did not rely on instrumentation but instead used these new hardware
counters to measure the performance of programs.

Usually these processors had support for certain types of events such as “cycle
executed“, ”instruction issued“, ”store issued“, ”branch mispredicted”, “cache
miss”,. . .

In most implementations not all of these events could be counted at once due to
hardware restrictions. There where one or two (seldom more) counter registers
that could be configured to count only one of those events. For example the
SGI MIPS R10000 had two counters that could be configured to capture two
out of 16 event types [74].

Since most programs run on several different hardware platforms it was hard for
application- and tool-developers to use this performance counters in a hardware
independent way. Several projects aimed on unifying this hardware interfaces
into a common API:

Performance Counter Library (1998-2003) The PCL was the first at-
tempt to create an unified API for accessing the hardware performance
counters on several different hardware platforms.

perfctr (2002-current) Linux kernel drivers that present a large number of
different hardware counters from different platforms as common inter-
face.

15

perfmon (2002-current) Initially developed by HP perfmon is a kernel
module for Itanium, x86 64 and ppc64 architectures that exposes a com-
mon API for those hardware counters.

PAPI (1999-current) The Performance API further virtualises the hard-
ware performance counters by providing a completely system indepen-
dent API while relying on e.g. perfctr and perfmon to actually access
the hardware counters. It not only spans a multitude of processors but
also supports a large number of operating systems such as Linux, AIX,
Unicos and Solaris.

PerfSuite (2003-current) A project that focuses on making hardware pro-
filing not only work but also easy and reliable to use, it relies on PAPI,
perfmon and perfctr for data acquisition and Graphviz for data repre-
sentation.

2.3 Static Profiling Algorithms

This section covers the algorithms for creating static profile estimations, Sec-
tion 2.3 covers a simple estimator and Section 2.3.2 a more sophisticated one.
Finally Section 2.3.3 discusses intra-procedural profile estimation.

2.3.1 A Näıve Execution Count Estimator

This heuristic was introduced by Ball and Larus in 1994 [19] and is still widely
used in compilers today. It estimates edge execution frequencies for a single
function, but the results can also be used to perform program wide estimates
when the results are propagated along the call graph as described in Section
2.3.3.

The basic principle is this: the deeper an edge is nested in conditional branches,
the less likely this edge is executed. Also, an edge that is inside a loop is likely
to be executed more often, Algorithm 1 gives a short overview.

The algorithm starts by determining the back edges and loop headers of a
function by performing a loop detection algorithm that generates information
on the natural loops in a function.

The natural loop (as defined by Aho [2]) of a back edge (v2, v1) is defined as

nat loop((v2, v1)) = {v1} ∪ {v|there is a directed path from v to v2

that does not include v1} (2.1)

The natural loop of a loop head nat loop(v) is the union of all natural loops of
back edges ending in v. The definition of natural loops leads to the property

16

that, if va and vb are loop heads, then the natural loops of va and vb are either
disjoint or one is completely contained in the other. This also makes it possible
to define loop exits of a loop header:

loop exits(v) = {(v1, v2)|v1 ∈ nat loop(v) ∧ v2 /∈ nat loop(v)} (2.2)

In a second traversal of the control flow graph the edge and block weights are
calculated with the following rules, assuming that loops are executed loop mult
times:

1. The incoming weight wi of a basic block is the sum of the weight of
all incoming edges that are not back edges. For the entry block of the
function (which has no incoming edges) the weight is assumed to be 1.

2. If the basic block v is a loop head with incoming weight wi and the num-
ber of loop exit edges n = |loop exits(v)| then each edge in loop exits(v)
gets weight wi/n.

3. If the basic block v is a loop head then the weight of the block is wv =
wi∗ loop mult, otherwise it is wv = wi. If wl is the weight of the loop exit
edges directly leaving the block and n is the number of other edges leaving
the block, then the weight for each of this other edges is (wv − wl/n).

So the algorithm assumes that, if the control flow graph splits up into n paths
in a non-loop-header block, each outgoing edge is 1/n as likely to be executed as
the basic block itself. Additionally the algorithm assumes an average number
of loop executions and multiplies the likelihood of the loop header and its
outgoing edges by a factor loop mult.

2.3.2 A Sophisticated Execution Count Estimator

In 1994 Wu and Larus [71] presented an estimator that combines several pre-
dictions regarding the outcome of a branch to make more accurate estimations.
The algorithm relies on real world programs that are profiled first, this pro-
grams and their profiling data is then analysed and the collected results are
used during the estimation of arbitrary programs.

For the analysis several categories were established and the branches in the
analysed programs then would fall into one or more of these categories:

• Branches that either take a back edge to the loop head or to a block
outside the loop.

• Branches based on comparisons (e.g. between pointers, on pointer is
null,. . .)

• Branches based on the contents of the next basic block (e.g. is one
branch target a loop header, does one branch target contain a call, does
the branch target return,. . .)

17

Algorithm 1 NaiveEstimator(P)→ W

for all functions f in program P do
for all blocks b in function f do

determine back edges(b) and is loop head(b)
determine nat loop(b)
determine loop exits(b) edges

end for
for all blocks b in function f do

if b is the function entry block then
wi := 1

else
ei := {(a, b)|(a, b) /∈ back edges(b)} // incoming edges
wi :=

∑
e∈ei we

end if
if is loop head(b) then

for all e ∈ loop exits(b) do
we := wi

|loop exits(b)|
end for
wb := wi ∗ loop mult

else
wb := wi

end if
el := {(b, c)|(b, c) ∈ loop exits(b)}
wl :=

∑
e∈el we // exit edges already have weight

eo := {(b, c)|(b, c) /∈ loop exits(b)} // outgoing edges
for all e ∈ eo do

we := (wb−wl)
|eo|

end for
end for

end for

18

Additionally dynamic profiles of the real world programs were measured. This
measured values were used to determine the probability that, given a branch
falls into one of the categories, the branch is actually taken. This results in
several heuristics, for example if a branch is based on a comparison of a pointer
to null, the probability that the branch is taken is 60%. Or if the block that
is branched to returns the function the probability for it to be taken is 72%.

When analysing a program the algorithm determines for each branch into
which of the categories it falls. When the branch falls into more than one
category, the possibilities of the heuristics for this category are combined with
statistical methods to estimate the overall probability that this branch is taken.

When using those estimated branch probabilities to estimate execution fre-
quencies for all of the control flow edges and basic blocks care has to be taken
when the function contains loops. Wu and Larus thus also presented a method
to calculate this execution frequencies from local branch probabilities which
works for reducible control flow graphs. (Reducible CFGs are graphs where
the loop head dominates all blocks in the loop see [71] for details.)

2.3.3 Estimators for Call Graphs

The previous two estimators (Sections 2.3.1 and 2.3.2) are concerned with
the estimation of (relative) execution counts inside one function. Having that
information it is also possible to estimate the execution counts for functions
and for the edges in the call graph of a program, this method is also presented
in [71].

When a function f calls a function g multiple times, then the local call fre-
quency lfreq(f, g) is the sum of the execution frequencies of each block b that
calls g. The global call frequency (for f calling g) is the local call frequency
times the number of invocations of f .

Assuming that cfreq(f) is the number of invocations of f and gfreq(f, g) is
the global call frequency of f calling g then:

• if f is the main function: cfreq(f) = 1

• if f is not the main function:

cfreq(f) =
∑

p∈pred(f)

lfreq(p, f)

•

lfreq(f, g) =
∑

{b∈f |b calls g}

freq(b)

• gfreq(f, g) = lfreq(f, g)cfreq(f)

19

2.4 Dynamic Profiling: Optimal Counter

Placement

In this section an algorithm is presented that instruments a program with the
minimal possible amount of edge counters.

2.4.1 Overview

When instrumenting a program to measure execution counts, it is possible to
simply attach a counter to every edge in the program. Unfortunately this is
inefficient and imposes an unnecessary high runtime overhead onto the pro-
gram.

To get rid of the redundant counters Knuth in 1973 [53] devised a method for
only placing counters on certain edges in the CFG. The generated dynamic
profile was incomplete (only for edges with an attached counter the execution
counts were known) but an off-line algorithm which was running later on was
used to calculate the execution counts for the edges which had no counter
attached. Knuth was also able to show that his method only inserted the
minimal necessary amount of counters. Starting on page 25 the proofs are
given that Knuth’s method is indeed optimal by showing that the number of
inserted edges is sufficient and necessary. Sufficient means that really only
those edges are needed to profile the function and necessary means that all of
these counters are necessary, when removing one the profiling is not complete
any more.

The algorithm (see Algorithm 2) operates on each function by first calculating
a spanning tree of the control flow graph. All edges that are not in the spanning
tree (edges attached to a leaf node) get a counter attached. After the program
has been executed the profile is completed by calculating the execution counts
for the edges of the spanning tree itself (Algorithm 3). Since each leaf node has
edges attached to it that are associated with a counter and thus have profiling
values, the execution count for the leaf node itself and the edge connecting it
to the tree can be determined.

The runtime behaviour for the instrumented program can be further improved
by placing the counters on edges that are less likely to be executed. This
can be done by estimating a profile in some way (see Section 2.3) and then
creating a maximum spanning tree using the estimated edge weights instead
of an arbitrary spanning tree.

20

Algorithm 2 InsertOptimalEdgeProfiling(P)→ Pi

create array C in P
index := 0
for all functions f in program P do

// calculate the spanning tree for f
ST := ∅
for all edges e in function f do

if adding e to ST does not create a cycle in ST then
ST := {e} ∪ ST

end if
end for
// add counters to P
for all edges e in function f do

if e /∈ ST then
add code to P such that {C[index] + +} is executed when e is traversed
add code to P that initialises C[index] with 0

else
add code to P that initialises C[index] with −1

end if
index + +

end for
add code to P that writes counter array to file at end of execution of P

end for

Algorithm 3 ReadOptimalEdgeProfile(P, Profile)→ W

read array C from Profile
index := 0
for all functions f in module P do

// read profiling information
for all edges e in function f do

we = C[index]
index + +
// when the edge had no counter attached, add it to open set
if we == −1 then

O = {e} ∪O
we = −1

end if
end for
// recalculate counter for edges in open set
while |O| > 0 do

for all e ∈ O do
if either end of e has no adjacent edges in O then

calculate we from weights of adjacent edges
end if

end for
end while

end for

21

2.4.2 Example

In Figure 2.1 a CFG with an optimal edge profiling instrumentation is shown.
First Algorithm 1 determines the given estimation of the edge weights then
the maximum spanning tree is calculated resulting in the tree with the dashed
edges. (The edge (0, entry) and (return, 0) are virtual edges that are required
by the algorithm to optimally instrument the CFG (for details on these edges
see Section 2.4.3)). The solid edges, the ones that are not in the MST, are
fitted with counters.

In Figure 2.2 a measured profile of the program is given. Of course only the
solid edges had counters attached, so only these edges are really measured.
The other edges are calculated according to Algorithm 3:

• Edge (bb3, bb5) has weight 75, edge (bb4, bb5) has weight 6, so edge
(bb5, bb6) has necessarily weight 81. From these two edges also the edges
(bb2, bb3) (weight 75) and (bb2, bb4) (weight 6) can be calculated.

• Edge (bb6, bb2) can be calculated from (bb2, bb3) and (bb2, bb4).

• Edge (bb7, bb9) gives the flow for (bb6, bb7), this edge, together with
(bb6, bb2) and (bb5, bb6) can be used to calculate (bb1, bb6).

• . . .

2.4.3 Virtual Edges

The algorithm assumes that a function has a single entry and exit point, those
two points are conceptually connected via a virtual edge. This edge creates a
cycle that is also broken by the algorithm (see Section 2.4.5) so either the flow
entering or leaving the function is counted, not both.

Since most functions have more than one exiting blocks the implementation
adds a virtual node (named “0” in this thesis) and several virtual edges: one
from the virtual block to the entry block of the function (0, v) and one for each
exiting block (v, 0). For details on the implementation of this virtual edges see
Section 4.2.

2.4.4 Number of Instrumented Edges

If |v| is the number of basic blocks in a function, then it is known from graph
theory that a spanning tree of this function has |v| − 1 edges. Taking the
virtual block 0 into account (see Section 2.4.3) the actual number of blocks
is |vv| = |v| + 1 and the actual number of edges in the MST is |vv| − 1 =
|v|+ 1− 1 = |v|.

22

0

entry

1

bb10

T F

1

bb

T F

10

bb11

1

bb1

5

bb8

5

bb6

T F

5

bb9

5

bb2

T F

50

bb7

5

bb3

25

bb4

25

bb5

25 25

50 5

10

return

1

0

1

Figure 2.1: Optimal Profiling Example: Estimation

23

0

entry

7

bb10

T F

7

bb

T F

21

bb11

7

bb1

18

bb8

3

bb6

T F

18

bb9

3

bb2

T F

81

bb7

18

bb3

75

bb4

6

bb5

75 6

81 18

21

return

7

0

7

Figure 2.2: Optimal Profiling Example: Instrumentation

24

|e| is the number of edges in the function and |ev| is the number of edges
including the virtual edges from and to block 0. Since there are |v| edges in
the spanning tree and all edges that are not in this tree are instrumented the
number of instrumented edges is |ev| − |v|.

2.4.5 Breaking up the Cycles

The optimal profiling algorithm calculates a spanning tree of a CFG to op-
timally place the edge counters. Each of this instrumented edges connects
two leaf nodes of this spanning tree, inside this tree there is an unique path
between these two nodes. This unique path, together with the instrumented
edge, forms a cycle in the CFG. This leads to two conclusions:

• Each instrumented edge “breaks up” a cycle (if the edge is removed there
is at least one cycle less in the CFG).

• The number of instrumented edges is a lower bound for the number of
cycles in the CFG. (There are cycles that are formed by two or more
adjacent instrumented edges together with a path in the spanning tree.)

Keeping this in mind is useful when later analysing the results of the optimal
edge profiling.

2.4.6 Proof: Profiling Edges not in Spanning Tree is
Sufficient

This algorithm requires that the function has exactly one entry and one exit
block, this is necessary since then the flow leaving the exit block can be assumed
to to be the same flow that is entering the entry block creating a virtual edge
(return, entry) between these two blocks. (The actual implementation uses a
slightly more complicated setup, see Section 2.4.3 for details.)

Since most of the functions in an arbitrary program have multiple blocks re-
turning the function the variation presented here assumes virtual edges from
every returning block v to a virtual exit block 0. Also a virtual edge (0, entry)
is assumed that connects this virtual exit block with the entry block, flow is
allowed to pass over this edge since for each time the function is entered it
must be left again. See Chapter 4 how these edges are handled in the imple-
mentation.

Because of these edges each block has at least one incoming and one outgo-
ing edge, this makes the algorithm far more easier to understand, verify and
implement.

Assumption: It is sufficient to instrument the edges not in the spanning
tree of a control flow graph (that has no dangling edges) to record profiling

25

information for the whole CFG.

Proof: Assume the CFG = (V,E) with V the set of all nodes (basic blocks)
and E = {(v1, v2)|v1, v2 ∈ V } the set of control flow edges in this CFG.

A spanning tree ST of CFG is then a maximal, cycle free set of edges from
CFG. The edges not in the ST are in another set NST = {e|e ∈ E∧e /∈ ST}.
Given weights for the edges in NST it is possible to calculate the weights of
all edges in ST while satisfying the flow condition.

To calculate all the edges in ST proceed as follows:

1. Select an edge e = (v1, v2) that is currently a leaf edge in ST , that is,
the node v1 is not adjacent to any other edge in ST . The node v1 is
then connected to the tree only via edge e but (due to the virtual edges
required) it has at least two adjacent edges, so all adjacent edges other
than e must be in NST .

2. Now, since the weights for edges in NST are known, the weight of the
node v1 and of edge e can be calculated, and e can be moved from the
set ST to the set NST .

3. Now select another leaf edge in ST and continue with Step 2. It is always
possible to select a leaf edge because even if edge e was the last leaf edge
in ST , by removing it from ST either ST = ∅, then the algorithm is
finished, or the one edge in ST that was adjacent to e is now a leaf edge.

Proof: Profiling Leaf-Edges is Necessary

This proof is based on the same preconditions as the previous proof (page 25),
namely that all nodes have at least one incoming and one outgoing edge.

Assumption: It is necessary to instrument the edges not in the spanning
tree of a control flow graph (that has no dangling edges) to record profiling
information for the whole CFG.

Proof: Assume that there is an edge e = (v1, v2) in NST that is not instru-
mented. This edge has some special properties:

• Since each node v1, v2 is adjacent to at least two edges, e is adjacent to
at least two edges e1 and e2, each on one side.

• Both edges e1 and e2 are in the spanning tree ST , otherwise ST would
not be a spanning tree since either one of the edges could be added to
ST without creating a cycle.

This implies that both nodes v1 and v2 have two adjacent edges that have
not counters attached, thus the flow in both nodes can not be calculated this
preventing at least two edges in the spanning tree from being calculated.

26

So a counter on each edge that is not in the spanning tree is necessary for
calculating the edges in the spanning tree.

27

28

Chapter 3

LLVM

LLVM, the Low Level Virtual Machine is a compiler infrastructure that was
initially developed by Vikram Adve and Chris Lattner at the University of
Illinois in 2000. Chris Lattner was hired by Apple in 2005 to work on LLVM
and prepare it to be used in several Apple projects. With the release of Mac
OS 10.6 (Snow Leopard) LLVM is one of the supported compilers for Apple’s
operating system Mac OS X. Together with clang, the C- and C++-Frontend
for LLVM (which features superb diagnostic messages and a clean API) LLVM
is also tightly integrated into XCode, Apple’s development IDE.

LLVM is a young compiler when compared to the most popular open source
compiler GCC, which was started in 1985 and released in 1987. LLVM is
completely written in C++ and highly modular. The frontend parses the
source code and converts it into an intermediate representation (IR). All the
optimisations are expressed as transformations on this IR, the backend starts
with this IR and generates binary code for the supported architectures.

The (comparatively) young code base and the clean architecture make LLVM
a good candidate for experimental implementations and for trying out new
analysis- and optimisation-techniques. It is easy to hook an additional module
into the system with almost no changes to the existing code. The parts of the
system are cleanly separated which ensures a shallow learning curve during
the first steps in LLVM.

Section 3.1 describes the LLVM and its features in more detail and Section 3.2
explains the rationale behind the decision to base this work on LLVM.

3.1 Overview and Structure

LLVM is a C, C++, Fortran and Ada compiler that has a complex, powerful
and easily extendible optimisation system that works on a LLVM specific in-
termediate representation (IR). The fronted that parses code and generates the

29

IR is completely separated from the optimisation and the optimisation in turn
is completely separated from the backend that generates the machine code.
The IR is fully serialisable, so it can be written to and read from a file during
every stage in the compilation process. This allows complex scripting of the
compiler during all its stages without modifying the compiler itself. It is also
easy to write new frontends for LLVM since the source language can be con-
verted to the IR in a crude non-optimised fashion since all the optimisations
are done later on.

3.1.1 Intermediate Language

The LLVM intermediate representation (IR) is a hardware dependent program
representation in SSA form which can be stored as a set of interlinked data
structures in memory, or serialised in a human-readable version or in a space ef-
ficient bytecode representation. Most of the LLVM tools accept both serialised
IR representations as input files.

Modules, Functions, Basic Blocks

The top entity in the LLVM IR is a module. A module itself consists of
global values, external declarations and functions, the functions consist of ba-
sic blocks. Each function has a dedicated entry block and each block has a
terminator instruction at its end that either branches to other blocks or returns
from the function.

SSA Form

The ”single static assignment” form requires that a variable is assigned only
once, after that assignment the value remains unchanged.

Traditional (changeable) variables are represented in SSA by a succession of
unchangeable variables, each time there is an assignment to the traditional
variable a new variable is created in the IR.

When the control flow splits up and there are assignments on both control flow
paths, the correct value of the variable has to be selected when the two paths
join again. Of course the value of this new variable depends on the path taken,
this selection is done in SSA with a φ node.

A φ node is a special command that selects a value depending on the previous
control flow. In the LLVM IR the value is selected depending on the prede-
cessor basic block from which the current basic block was entered. In Figure
3.1 a small example can be seen, two variables are used, x and y. In SSA
form, because of the single assignment restriction, there are multiple versions

30

x1 := 5
. . .

b1

. . .
y1 := x1 + 4
. . .

b2

. . .
y2 := x1 + 5
. . .

b3

y3 := Φ[p1, y1], [p2, y2]
. . .

b4

Figure 3.1: φ nodes select values depending on control flow.

(index1. . .) of each variable. When determining the value of y3 (the third
version of y) the φ node selects y1 if the block b2 was executed before b4 or y2
when the control flow came from b3.

Of course there is no hardware instruction for directly implementing the φ
nodes but efficient algorithms exist to convert these nodes into a series of copy
instructions.

3.1.2 Optimisations and the Pass System

A unique LLVM feature is the pass system. Anything that is done with the
IR, loading, analysis, transformation, optimisation, exporting or machine code
generation, is a pass. Each pass has a set or properties that help the compiler
ordering the execution of this passes:

• Since most passes build on the work of other passes, they can be marked
as dependant on other passes.

• Passes can destroy analysis information or revert transformations from
previously run passes.

• Passes can also preserve the work from previous passes, but if not noted
otherwise a pass is assumed to destroy all information and to not preserve
any transformations.

To resolve all this interdependencies between passes (they form a complex
dependency graph) and to decide on a scheduling of the passes a so called pass
manager is used. When a LLVM tool runs, it tells the pass manager which
passes have to be executed, and the pass manager figures out in which order
to run these passes for maximum efficiency. Since passes may also destroy
previous transformations or analysis results it is common that a pass is run
more than once in the resulting schedule.

31

Another important property of passes is that they operate only on a certain
level of the IR. Each pass works either:

• on a whole module,

• on a single function,

• on one loop in a function or

• on a basic block.

One major restriction is posed on the passes: they must not modify any element
on the same or on a higher level. For example a function pass is not allowed
to modify any function besides the one it is currently running on, a loop pass
may only modify the basic blocks inside the current loop.

These restrictions enable the pass manager to schedule passes in parallel. Since
a function pass is not allowed to modify anything but the function it was called
on, the pass can be run in parallel on several functions.

Analysis Handling

A class can be registered as analysis in LLVM, an analysis is simply some
structured additional information that usually is attached to the LLVM inter-
mediate representation. A pass can “implement” this analysis, meaning that
if the pass has run this analysis information is available to other passes.

As with passes, analysis information can be preserved or destroyed by other
passes, this is also taken into account when the decision is made if already
created information is to be used or if the default pass must be scheduled for
execution to make the analysis information available again. Some informa-
tion, like e.g. the dominance frontier analysis is preserved by may passes by
informing the analysis class of changes, the class then updates its information
accordingly.

In contrast to passes an analysis can be implemented by several different passes,
when a pass requests a certain type of analysis the pass manager checks if
this analysis is already available because one of the passes implementing the
analysis has already been executed. If no pass created this analysis information
already, LLVM schedules the default implementation for this analysis.

Most analyses that are used in LLVM provide frequently used but computa-
tional expensive information. The analysis system, by caching the results of
such analyses, prevents the information from being recalculated over and over
again thus reducing the compile time considerably. Examples for this type of
information are the analysis that stores information on loops (headers, blocks
that belong to the loop, loop exit edges, backedges, . . .) or the dominance
frontier information. The default implementation for this kind of information
is a pass that extracts this information from the IR.

32

Some analysis information (like the profiling information) is gathered from
external sources, this information can not be inferred from the LLVM IR. In
this case it is important to preserve and transform the information as the
passes are run because the information can not be simply recalculated from
the IR. For this type of information the default implementation usually is just
a dummy pass that creates some “information not available” information.

3.1.3 Frontends

LLVM currently provides two main frontends: a GCC based one and a newly
implemented one called clang.

GCC Frontend

GCC has support for a wide variety of languages (C, C++, Objective-C, For-
tran, Ada, Java, . . .), when LLVM was released in version 1.0 a port of GCC
3.4 was included. This port uses the GCC language frontends and compilation
drivers to convert the source to LLVM IR but everything else was done by the
LLVM tools. The port was first named C Frontend (because of the lack of
C++ support) and later renamed to LLVM GCC Frontend.

With LLVM 1.7 the frontend was ported from GCC 3.4 to GCC 4, but only
in LLVM 2.0 the GCC 3.4 port was dropped. In 2007, with LLVM 2.1, a port
of GCC 4.2 was introduced and this LLVM GCC Frontend 4.2 is in use ever
since.

The (unreleased) GCC 4.5 provides plug-in support that was targeted by the
LLVM developers with project DragonEgg, a GCC compiler plug-in that en-
ables the use of GCC as a frontend and compiler driver without changing GCC
itself, this makes the GCC language frontend easier to maintain.

clang Frontend

clang is a C, Objective-C and C++ frontend for LLVM. The plan to create a
dedicated frontend for LLVM that should replace the LLVM GCC Frontend
for the C family of languages was presented in 2007. clang was designed with
a distinctive feature set in mind:

• Support for C, Objective-C and C++. No support for other languages
such as Fortran or Java.

• A clean API, so clang can also be used as library.

• Support for tracking tokens and macro expansions.

• No frontend optimisations.

33

• Clear, reliable and useful diagnostic messages.

• Serialisable abstract syntax tree (AST).

• Fast and memory efficient.

The possibility to use clang as library, together with the provided token track-
ing and better diagnostic messages (compared to GCC), makes clang especially
useful in the context of IDEs. Traditionally, when IDEs used standalone com-
pilers, a piece of code (or the whole program) was handed to the compiler and
the resulting messages were read and parsed by the IDE to annotate the code
with the compiler error messages.

This communication with the compiler was inefficient, with clang the IDE can
use the compilation results directly via the API, without having to parse the
compiler output. Together with the clearer clang diagnostic messages the IDE
can annotate the source code faster and more efficiently.

The API, the token tracking and the lack of frontend optimisations also enable
more reliable source-to-source translations, it is possible to generate code that
is more similar to the input code, with only the minimal necessary amount of
changes.

The first release of clang together with LLVM 2.6 in 2009 had full support
for C and Objective-C. Support for C++ was incomplete but the parser was
already able to parse the libstd-C++ library and generated code for simple
programs.

clang Static Analyser

Since the clang frontend can be used in may different ways to parse code (e.g.
for code generation or refactoring) a static analyser was implemented that uses
clang to analyse source code and to find bugs and problems in the parsed code.
The types of analysis that are performed are still in flux but the most used
one is memory leak detection. The analyser not only shows potential memory
leaks but it is able to explain how this conclusion was drawn by annotating
the source code and showing the execution path that leads to problems.

Besides memory leaks, the static analyser is able to find missing initialisations,
references to NULL, buffer overruns and dead code.

3.1.4 Backends

When code is generated from the LLVM intermediate representation this is
done via a backend, these backends are responsible for generating assembly or
object code for different architectures.

34

Most parts of a backend are not coded in C or C++ but are instead created out
of several description files that define the properties of a certain architecture.
These description files are processed by an LLVM tool called tablegen that
creates C++ code from this descriptions.

This code works by first converting the LLVM IR to a selection DAG, this is
a directed acyclic graph that contains all the information of the LLVM IR but
also has data flow and control flow analysis attached in a form that is more
suitable for code generation.

The instruction selection phase then tries to match the instructions of the re-
quested architecture as efficiently as possible onto the selection DAG and to
schedule these instructions to generate the assembly code. After that the reg-
ister allocator is invoked to resolve the virtual registers to the actual machine
registers.

Porting a LLVM to a new Architecture

The first thing to describe when LLVM is ported to a new architecture is the
register layout and the associated information like register aliasing and data
types for these registers.

In a second step the instruction set is described by describing

• the input and output data types of the instruction

• a small part of the selection DAG with a special graph description lan-
guage that contains also references to the I/O parameters

• the assembly instruction with the I/O parameters

Figure 3.2 gives a small part of the instruction description of the Alpha archi-
tecture.

The important part of an instruction description is that is contains a descrip-
tion of a small part of the aforementioned selection DAG. The operands in this
description are nodes of the selection DAG, these operands also appear in the
description of the assembly instruction. This links the selection DAG to the
instructions.

3.2 Why LLVM?

The decision to use LLVM as a platform to implement and test the ideas and
algorithms of this thesis was based on these considerations:

• LLVM is a mature and stable compiler, it has a clean code base and the
pass manager infrastructure makes it very easy to add new functionality.

35

1 //Load address

let

3 OutOperandList = (ops GPRC:$RA),

InOperandList = (ops s64imm:$DISP , GPRC:$RB) in

5 {

def LDA : MForm <0x08 , 0, "lda $RA ,$DISP($RB)",

7 [(set GPRC:$RA ,

(add GPRC:$RB ,

9 immSExt16:$DISP

))],

11 s_lda >;

def LDAr : MForm <0x08 , 0, "lda $RA ,$DISP($RB)\t\t!gprellow",

13 [(set GPRC:$RA ,

(Alpha_gprello tglobaladdr:$DISP ,

15 GPRC:$RB))],

s_lda >; //Load address

17 }

Figure 3.2: Part of the Alpha backend instruction description

• Dietmar Ebner, a colleague of the author at the complang-Institute al-
ready had some experience in adding functionality and a tiny part of the
problems that this thesis tried to solve was already implemented. This
code was not used and all of the functionality had to be rewritten to fit
the implementation of the other parts, but it gave important insights on
how to do accomplish certain tasks in LLVM.

• The author had a strong commitment to getting his code actually into the
LLVM source repository. For that it was necessary to be able to cleanly
implement these features without too much tinkering, LLVM provided a
great basis for this.

• Last but not least LLVM lacked support in this area and some good
profiling was needed anyway, so why not implement it?

36

Any sufficiently complicated C or Fortran
program contains an ad-hoc,
informally-specified, bug-ridden, slow
implementation of half of Common Lisp.

Philip Greenspun’s Tenth Rule of
Programming

Chapter 4

Implementation

4.1 Used Implementation

In Section 4.1.1 the old LLVM profiling implementation is explained, in Section
4.1.2 the new implementation that was done during this thesis is described and
the differences to the old implementation are highlighted. Of course the new
implementation was not perfect from the beginning, the encountered obstacles
and their solutions are discussed from Section 4.2 onwards.

4.1.1 History

The LLVM profiling implementation prior to this thesis had the following
structure:

There are three passes that instrument a program either on edge, basic block
or function level, all three passes can be applied independently to a program to
get all three levels of instrumentation. The passes also insert function calls that
parse the command line during start up (to read the profile information file
name) and that write the counters to the profile file at program termination. If
the file is already present on program termination, the new profile information
is simply appended.

The profile information file contains several sections of data, each section has a
header that gives the type of data and the number of entries. With this simple
layout it is possible to combine the data of several executions of the program
in one file. The types of data that can be stored in the profile file are

• command line arguments

• function counters

• basic block counters

37

• edge counters

• path tracing information

• basic block tracing information

• optimal edge counters

(The path tracing information and the basic block tracing information is cur-
rently not used since these parts are unmaintained in LLVM.)

The function calls that are added to the program during the instrumentation
are implemented in a runtime library that must be linked to the program at
compile time. When the program terminated and the profile file was written,
the profile file can be used by the optimiser when the program is recompiled.

Since the profile file is a simple stream of counters it is necessary that, during
compilation when the profile information is loaded, the program has the exact
same structure as when the program was instrumented. This is due to the
fact that the program is traversed in a deterministic way, each edge that is
traversed gets a value from the stream of counters attached. If the program
looks different then also the traversal is different and the association between
counters and edges is done wrongly.

The reading of the profile file is done by a pass that also implements the
profiling information analysis. The profile information is stored in three flat
tables, one for functions executions counts, one for block counts and one for
edge counts. After this pass has been executed the analysis can be accessed
by other passes that are interested in the analysis.

4.1.2 Current implementation

The current implementation retains the structure of the old implementation
and adds features and passes and bugfixes some issues, the main differences
are:

In theory edge instrumentation is sufficient to also gain information on the
execution counts of basic blocks and functions. Since in LLVM it is possible
that a function only consists of one basic block, there are no edges in the
CFG of this function and the old edge instrumentation did not instrument
the function at all. This created error messages during profile analysis since
no profiling information was recorded for this function. The implementation
was changed to at least instrument a virtual edge (0, v) where v is the entry
block of a function. This ensured that even functions without an edge could
be profiled.

The class that stored the profile information analysis was cleaned up. The
old implementation used three huge maps (one for functions, basic blocks and

38

edges) to store execution counts for the program. The maps for blocks and
edges were split up into sub-maps. Each of these two maps now contains a
sub-map for each function. These sub-maps in turn contain the values for the
blocks or edges of this function.

Since the optimal profiling algorithm presented in Section 2.4 uses a maximum
spanning tree to improve the optimal edge counter placement, a pass was
introduced that produces a crude execution count estimation as detailed in
Algorithm 1. This pass presents its results also as profile information analysis
to the instrumentation pass.

The optimal edge instrumentation was modelled after the old edge instrumen-
tation pass: First the edges in the program are counted to create a global array
in the program that contains a cell for each edge. Then the information from
the crude estimator is used to create a maximum spanning tree of the program.
Each edge is checked: if it is in the MST the array cell of the global array is
initialised with -1, otherwise the program is modified to increment the array
cell each time the edge is traversed and the array cell itself is initialised to 0
(see Section 4.4 why these initial values were chosen). The program is then
modified to write the counter array to the profiling file (with a new distinct
type) at program termination.

As a last step the profile loading pass was adapted to accept the new type of
profiling information and to calculate the missing profiling information during
the loading of the file: All the counters are loaded, for counters that are −1
the edge is added to a list. Counters that are greater than −1 are associated
with their edge and added to the profiling information. After all the counters
are read, the execution counts of the edges in the list are calculated according
to Algorithm 3.

4.2 Virtual Edges are necessary

The old implementation had the problem that functions with only one basic
block received no edge instrumentation because there are no edges in the CFGs
of such functions. This was solved by implementing a virtual edge (0, e) from
a virtual block 0 to the entry block of a function.

This edge was only available in the profile analysis so extra checks had to be
performed each time the code iterated over the CFG of a function. To prevent
extra checks, initially there were no additional virtual edges implemented for
returning blocks (blocks that had no successors). This, as the algorithm sug-
gests, soon proved to be non optimal since all edges leading up to this block got
a profiling counter attached during instrumentation. Implementing the virtual
exiting edges (v, 0) reduced the number of instrumented edges by approx. 5%.

Figure 4.1 shows a part from the graph in Figure 2.2 as an example of

39

0

entry

bb10

T F

bb11

return

0

Figure 4.1: Virtual Edges are necessary

this situation. Since the MST algorithm actually treats the two blocks
0 as the same block, it only instruments one of the edges on the cycle
(0, entry, bb10, bb11, return, 0) instead of two.

4.3 General CFGs are hard to estimate

4.3.1 Weighting Exit Edges

The näıve static estimator as shown in Section 2.3.1 does not work on arbitrary
graphs since it assumes that all loops in the CFG are natural loops. A loop
usually consists of:

A Loop Header The basic block where the decision is made whether or not
to execute the loop (again).

Backedges One or more edges going from the loop back into the header.

An Exit Edge The edge that is traversed in case the loop is not executed
any more. In the case of natural loops this edge must be leaving the loop
header.

The algorithm works with loops that have multiple backedges, but edges leav-
ing the loop from anywhere else than the header present severe problems.

40

Consider the loop starting in bb10 in Figure 4.2, it has two exit edges (bb2, bb4)
and (bb10, bb11). The flow that is entering the loop head must leave the loop,
according to the algorithm in its strict implementation all the flow is using the
edge (bb10, bb11). But for loops that have no exit edges leaving the head this
is non applicable.

So the best version is to assign the weights to all exiting edges (also the ones
that leave the loop from the loop body). But then a second problem arises:
edges that have flow attached to them may not be changed again since they
might have been used to calculate other flow. So each edge gets its flow
determined only once, after that the flow must not be changed again.

The loop starting at bb6 has two exit edges (bb2, bb4) and (bb6, bb7). Since the
edge (bb2, bb4) was already set from the outer loop (during the processing of the
loop header at bb10) all flow coming into bb6 is leaving the loop at (bb6, bb7).

The fixed setting of edges leads yet to another problem that is discussed in the
next section.

4.3.2 Loop Exit Edges

An important point with loops is that the weights of the loop exit edges are set
when the header is processed because otherwise, since the flow is multiplied
in the loop, more flow would leave the loop than entering it. This makes it
necessary to ensure that enough flow is reaching this exit edges, there are CFGs
where the flow is split up so many times inside the loop that, without special
measures, not enough flow is entering the (already set) exit edge.

Figure 4.3 shows a such a loop. When the loop header bb1 with incoming flow
1 is processed both exit edges (bb1, return) and (bb7, return) are set to 0.5.
The flow entering the loop is multiplied by 5 and split up four times so that
not enough flow is entering the innermost block bb7 compared to the flow that
is already leaving via edge (bb7, ret).

To prevent such wrong estimates each edge has a so called “minimal weight”
attached, the weight of the edge must be greater or equal to this minimal
weight when the edge is estimated. When the header of a loop is processed
and the exit edge e is set to w the minimal weights along a path from the
header to e are incremented by w. This ensures that enough flow is reaching
the exit edge.

4.3.3 Missing Loop Exit Edges

Every block inside a loop has (directly or via other blocks) the loop header as
a successor, so every block in a loop has at least one successor block. Because
of this, loop blocks will never get a virtual edge (v, 0) attached.

41

0

entry

1

bb10

T F

1

bb

T F

10.5

bb11

0.5

bb1

5.5

bb8

5

bb6

T F

5.5

bb9

5

bb2

T F

55.5

bb7

5

bb3

55

bb4

0.5

bb5

55 0.5

55

return

1

5

10

0

1

Figure 4.2: Weighting Exit Edges

42

bb1

T F

bb2

T F

5.5

return

0.5

bb3

T F

2.75

bb13

2.75

bb4

T F

1.375

bb12

1.375

bb14

x

bb5

T F

0.6875

bb11

0.6875

x

bb7

T F

0.34375

bb10

0.34375

x

0.5x

x

x

Figure 4.3: Loop Exit Edges

43

For loops that have not exiting edges this poses a problem because the flow
entering the loop can not leave via loop exit edges or virtual edges. In those
loops an additional virtual edge (v, 0) is attached to the loop latch v so that
the flow can leave the loop properly.

(The latch block of a loop is usually the block that decides whether or not
to execute the loop again, in this case the latch has lost all edges branching
outside of the loop during the previously executed optimisations.)

4.3.4 Precision Problems

Initially the profile estimator assigned the weight 1 to the function entry
block and distributed this weight from there by splitting the weight equally at
branches. This leads to very small weights when the block is deeply nested or
e.g. a switch statement distributes its incoming weight onto many outgoing
edges. When such a weight is added to a really big weight then precision is
lost leading to a violated flow condition in some node of the graph.

The solution to this problem was twofold, first of all the weight that the algo-
rithm started with for each function was not assumed 1 but 232 so the value
range for a 32-bit value was used optimally. Also the flow of a block was not
distributed equally to all edges of the block but the incoming flow vin was
distributed to n outgoing edges as follows:

v0 = v1 = . . . = vn−2 = bvin
n
c

vn−1 = vin −
∑

i=0,...,n−2

vi

This ensures that every edge gets assigned an integer value and the last edge
gets the remainder, thus preventing rounding and precision errors from creep-
ing in.

4.3.5 Not all CFGs can be properly estimated

As soon as a control flow graph contains non-natural loops it is possible that
the graph is not fully estimatible by the algorithm. This occurs for example
when not all the loops entry edges enter at the loop head but some of them
enter in blocks inside the loop. The loop then can not be recognised as such
and the algorithm can not know what to do with the backedges.

Consider the graph in Figure 4.4, there is one loop starting at h1 and containing
the blocks l1, l2 and l3. The entry block entry not only branches to the loop
head h1 but also right into the loop block l1, so the loop can not be recognised
as natural loop.

44

entry

T F

h1

0 1 def

0.5

l1

0.5

0

l2

0.25

exit

0.25

l3

0.5 0.25

0

Figure 4.4: Non-estimatible CFG with wrong estimate

The estimator starts at block entry and estimates both exiting edges with
weight 0.5. When trying to estimate h1 it can not proceed since the edge
(l3, h1) is not calculated yet, and the loop information does not tell that this
is a backedge that can be ignored for now. So the algorithm tries to estimate
l1 but the edge (h1, l1) also has no value, so the flow passing l1 can not be
estimated. This deadlock situation must be resolved somehow.

The estimator has a fall back solution that allows to assume that the flow on
an uncalculated edge (v1, v2) is 0, but only if there is no path from v2 to v1.
This path-condition is necessary since it is necessary to ensure that the flow
on the edge is not self dependant. If this condition is not observed the wrong
weights in Figure 4.4 are calculated.

It would be possible to estimate these CFGs with expensive backtracking tech-
niques, but the costs are not worth the effort for such a simple estimator.

4.4 How to store a tree

During näıve instrumentation each edge gets a counter attached, all the coun-
ters are stored in a linear fashion in one big array, this array is dumped to a
file when the program has terminated. In this file there is no explicit associ-
ation between the counters and the edges in the program. The counters are
implicitly tied to the edges in the order in which the edges are traversed when

45

traversing the program.

When optimally instrumenting a program the calculated maximum spanning
tree is used to determine which edges to attach a counter to. If only these
counters are stored to the file a problem arises when the profiling information
is read back again: not only the program must be exactly the same, but also
the used spanning tree must be the same that was used to instrument the
edges, otherwise the association between counters and edges is done wrongly.

A MST is created by sorting the edges by weight and then adding edges that
create no cycle in the MST, starting with the heaviest. Since the näıve esti-
mator attaches the same flow to several edges the sorting of this edges is not
unique, thus also the MST is not unique. But when the MST is not unique
then the loading of the edges can go wrong because two different MSTs are
used, one for instrumenting and another one for loading the values from the
profile file. Several techniques were tried to ensure that the same MST that
was used for the instrumentation was also used during reading the profiling
information:

Providing an estimate with unique edge weights. The first attempt in solving
this problem was highly unsuccessful. The idea was to alter the estimation
algorithm as to not split the flow equally amongst edges but instead to ensure
that all the outgoing edges of a block get a different weight assigned. This, first
of all was highly difficult to implement correctly and secondly the estimate still
assigned the same edge weight to several edges, thus not curing the problem.

Predictable edge sorting. Since the MST is different for the same CFG only if
the edges are sorted differently the second attempt was to provide an unique
sorting for edges, so that the MST is unique too. This approach looked some-
what reliable at first, but proved to be unusable on general graphs. The
problem was that the edges hat to be sorted not only by weight but also by
some other distinct features, but due to the nature of the LLVM intermediate
representation there is no such thing as an unique basic block. All the features
that are unique during runtime (name, position in memory) could change when
the same IR is loaded on two different occasions, only the position of the basic
block in the CFG is unique. This unique position would have been a solution
to the problem but only at the additional expense of calculating and storing
these unique numbers before calculating the MST.

Storing the association between counter and edge inside the profiling file. Given
an unique numbering of the edges (that is possible by doing a fixed traversal
of the CFG) it would be possible to store the unique number of the edge that
each counter belongs to in the profiling file. This would, given that the optimal
instrumentation instrumented approximately 50% of the edges give a file size
that is roughly the same as with näıve instrumentation.

All these attempts had one goal, to reduce not only the number of instrumented
edges but also reducing the file size of the profile file by storing only the

46

necessary counters. It emerged that the cost of reducing the file size came
at the price of far more complex algorithms and/or increased compile times.
Since file size is not as much an issue as complexity and runtime, a fairly simple
solution was chosen finally:

Marking unused counters. When the program is instrumented and the array
is prepared for the counter values, each edge gets its own cell in the array.
For edges that get a counter attached (because they are not in the MST) the
counter value in the array is initialised to 0, for edges that have no counter
attached, the value is set to −1. Thus during loading of the profile it is trivial
to determine which edges had a counter attached and for which edges the
execution frequency still has to be calculated.

4.5 Verifying Profiles

Shortly after starting to work on the LLVM profiling support it was apparent
that there was a need to verify the profiling data after the estimator and after
reading in the profile files. For this a pass was written that took the pro-
file information analysis (provided by the estimator or the profile information
loader) and verified that

• for each edge/block/function a value was stored or could be derived from
other information in the profiling analysis information.

• for each basic block the sum of the incoming weights was equal to the
sum of the outgoing weights (flow condition).

Figures 4.5 and 4.6 show a stripped down version of the profile verifier core.

The profile verifier was an important tool for testing the profile estimator, it
found all the problems mentioned in Section 4.3. Verifying the flow condition
of the read in profile information was a little challenging though, the following
two Sections deal with these issues.

4.5.1 Verifying a program containing jumps.

When a program uses setjmp and longjmp to control program flow the in-
coming weight of a block can be smaller than the outgoing weight when the
block is the target of a jump. The profile verifier thus detects if the setjmp

function was used in a block, in this case the incoming weight, and the block
weight which is derived from the incoming edges, is not verified.

47

1 double ProfileVerifierPass :: ReadOrAssert(Edge E) {

double EdgeWeight = PI ->getEdgeWeight(E);

3 if (EdgeWeight == ProfileInfo :: MissingValue) {

// Assertion Code ...

5 ...

return 0;

7 } else {

if (EdgeWeight < 0) {

9 // Assertion Code ...

.. .

11 return 0;

}

13 return EdgeWeight;

}

15 }

Figure 4.5: ProfileVerifier: ReadOrAssert

4.5.2 A program exits sometimes.

When a program uses the exit() function to terminate itself, the outgoing
flow of the block calling exit is 0. Unfortunately also for blocks that just call a
function that may call the exit() function the incoming weight may be bigger
than the outgoing weight. In this case the, the profile verifier checks if directly
or via calls to other functions a call to exit() may be reached. If this is the
case then the flow difference for this block is ignored.

48

void ProfileVerifierPass :: recurseBasicBlock(BasicBlock *BB) {

2 if (BBisVisited.find(BB) != BBisVisited.end()) return;

4 DetailedBlockInfo DI;

DI.BB = BB;

6 DI.inWeight = DI.outWeight = 0;

8 // Read predecessors.

std::set <const BType*> ProcessedPreds;

10 pred_const_iterator bpi = pred_begin(BB), bpe = pred_end(BB);

// If there are none , check for (0,BB) edge.

12 if (bpi == bpe) {

DI.inWeight += ReadOrAssert(PI->getEdge(0,BB));

14 }

for (;bpi != bpe; ++bpi) {

16 if (ProcessedPreds.insert (*bpi).second) {

DI.inWeight += ReadOrAssert(PI->getEdge (*bpi ,BB));

18 }

}

20
// Read successors.

22 std::set <const BType*> ProcessedSuccs;

succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);

24 double w = PI ->getEdgeWeight(PI ->getEdge(BB ,0));

if (w != ProfileInfo :: MissingValue) {

26 DI.outWeight += w;

}

28 for (;bbi != bbe; ++bbi) {

if (ProcessedSuccs.insert (*bbi).second) {

30 DI.outWeight += ReadOrAssert(PI ->getEdge(BB ,*bbi));

}

32 }

34 DI.BBWeight = PI->getExecutionCount(BB);

if (DI.BBWeight == ProfileInfo :: MissingValue) {

36 // Assertion message ...

}

38 if (DI.BBWeight < 0) {

// Assertion message ...

40 }

42 if (DI.inWeight != DI.outWeight) {

// Assertion message ...

44 }

if (DI.inWeight != DI.BBWeight) {

46 // Assertion message ...

}

48
// Mark this block as visited , rescurse into successors.

50 BBisVisited.insert(BB);

for (succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);

52 bbi != bbe; ++bbi) {

recurseBasicBlock (*bbi);

54 }

}

Figure 4.6: ProfileVerifier: recurseBasicBlock

49

50

Chapter 5

Results

5.1 Overview

Implementing an algorithm and verifying that it is working correctly is only
part of the solution. Another important part is to actually verify that the
algorithm is as efficient as promised. This chapter is all about testing the
implementation in various ways and ensuring that it works as intended. Espe-
cially the runtime overhead was measured to check that the proposed increase
in efficiency can indeed be observed.

Chapter 5.2 describes the methods used to do the correctness and performance
measurements, Chapter 5.3 explains how the algorithms where tested to work
correctly. Chapter 5.4 examines the performance penalty on the compiler
during compile time and finally Chapter 5.5 shows and discusses the runtime
performance results.

5.2 Used Methods

For most of the correctness and performance testing the SPEC CPU2000 [46]
benchmark was used. This benchmark is a collection of C and C++ programs
and a testing infrastructure that controls the whole process of building, running
and verifying the benchmarked programs. SPEC CPU2000 tries to maximise
the reproducibility of the performed tests so the tests in this thesis are not
one-off results.

A special feature of the SPEC CPU2000 benchmark is that it is also possible to
do a two phase build. In the first phase the program is build with instrumen-
tation, then the program is executed with a training data set. In the second
phase the program is rebuilt with the profiles generated by the training run to
get the final executable.

51

The SPEC CPU2000 benchmark was used in five different build configurations
to test various properties:

default A regular build.

profile A two phase build which used the old (näıve) edge profiling during
the training run (each edge was instrumented). The final executable was
non-instrumented.

benchmark profile A regular build but with added näıve edge profiling.
This final executable was instrumented.

opt profile Same as profile but with the new optimal edge profiling.

benchmark opt profile Same as benchmark profile but with optimal
edge profiling.

Figure 5.1 gives the core configuration parameters for the five configurations,
the default configuration was used as reference and the benchmark profile
and benchmark opt profile configurations were used to test the profiling
overhead.

The llvm-bytecode script is a wrapper script around LLVM that generates
LLVM intermediate representation from the C or C++ files, llvm-linker is a
wrapper that performed linking, optional instrumentation and generated the
final executable. Since the four last configurations are children of the first
default configuration, they also use these wrapper scripts, but with different
parameters.

Each executable was build by first executing clang on the C or C++ files
and generate LLVM bytecode from those files. Then this bytecode was linked
with llvm-ld together into one single big bytecode file. This bytecode file
was then optimised with the -std-compile-opts from the LLVM opt tool. If
requested (either because this is the first phase of a two phase build or for the
runtime overhead testing) the resulting bytecode was instrumented and the
profiling runtime library was linked into the bytecode. The llc was used to
generate assembler code and finally gcc to compile the final executable from
the assembler.

Setting up the SPEC CPU2000 benchmark and writing the scripts took some
time, but this effort paid of when the final results had to be gathered and the
benchmark was simply run to get all sorts of results.

5.2.1 Used LLVM Version

Since the LLVM code was constantly developed against the top of the devel-
opment tree, the Revision 96682 of the LLVM source code repository from
http://llvm.org/svn/llvm-project/llvm/trunk was used.

52

1 default=default=default=default:

CC = llvm -bytecode $(LLVMOPT)

3 CXX = llvm -bytecode $(LLVMOPT) --gcc g++

CLD = llvm -linker $(LLVMOPT)

5 CXXLD = llvm -linker $(LLVMOPT) --gcc g++

LLVMOPT = -d 2

7

default=default=profile:

9 PASS1_CFLAGS = -p 1 --profiler "-insert -edge -profiling"

PASS2_CFLAGS = -p 2

11

default=default=benchmark_profile:

13 LLVMOPT = -d 2 -p 1 --profiler "-insert -edge -profiling"

15 default=default=opt_profile:

PASS1_CFLAGS = -p 1 --profiler "-insert -optimal -edge -profiling"

17 PASS2_CFLAGS = -p 2

19 default=default=benchmark_opt_profile:

LLVMOPT = -d 2 -p 1 --profiler "-insert -optimal -edge -profiling"

Figure 5.1: Core part of the SPEC CPU2000 configuration

Also the clang project was already mature enough to be used for
compiling and running the SPEC CPU2000 benchmark the llvm-gcc

(which was used during most of the development) was removed and in-
stead clang was used. Since LLVM and clang are developed together
also the SVN Revision 96682 of the clang source code repository from
http://llvm.org/svn/llvm-project/cfe/trunk was used.

5.2.2 Used Hardware

The tests, if not noted otherwise, were performed on a Dual Core
AMD Opteron(tm) Processor 270 with 2 GHz CPU and 8 GB of RAM. The
system was running Debian Linux with a 2.6.25-2-amd64 kernel.

5.3 Correctness

5.3.1 Profile Estimator

As already mentioned in Section 4.5 a LLVM pass was written that verified
that a given profiling information was correct by testing the flow condition in
each basic block of the program. The flow condition states that the sum of the

53

execution counts of the incoming edges has to be equal to the execution count
of the block itself which in turn has to be equal to the sum of the execution
counts of the outgoing edges.

Some small programs where used to verify that the profile estimator does
everything it should, namely splitting the flow at branches and incrementing
the flow inside a loop. Then the estimator was used to estimate all of the C
and C++ programs in the SPEC CPU2000 benchmark and the verifier (Section
4.5) was used to check that the flow condition was nowhere violated.

This verification showed numerous bugs and deficiencies at first (Sections 4.2
and 4.3) but after these problems where solved the profile estimator is believed
to work properly on all CFGs (or to gracefully bail out in case the CFG is really
not determinable with this algorithm).

5.3.2 Instrumentation Algorithm and Profiling Frame-
work

The instrumentation algorithm was checked in three ways:

• For four small C programs the whole process of estimating the CFG,
calculating the MST and instrumenting the graph was observed and ver-
ified.

• Then profiles for these programs were generated by executing the pro-
grams this was also done with the näıve old profile implementation. The
profiles from the old implementation (which instruments all edges and is
thus assumed to be correct. . .) and from the new implementation were
compared, also the verifier was used to check both profiles.

• When those small programs worked properly and the profiles where the
same for the old and new implementation, this process was iterated on
all the C and C++ programs of the SPEC CPU2000 benchmark and
again the profiles where compared.
Except for the cases where the program terminated because of a call to
exit the profiles were exactly the same.

Since the profiling and the comparing of the profiles was done with the tools
LLVM provided for this purpose, this also tested all the infrastructure in the
LLVM, namely the profile loader and the llvm-prof tool. Some bugs were
encountered, most notably that (with the old implementation) no edge instru-
mentation was done in functions with only one basic block.

54

0%

20%

40%

60%

80%

100%
16

4.
gz

ip

17
5.

v
p
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

p
ar

se
r

25
2.

eo
n

25
3.

p
er

lb
m

k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

b
zi

p
2

30
0.

tw
ol

f

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
u
ak

e

18
8.

am
m

p

A
ve

ra
ge

näıve
optimal

Figure 5.2: Percentage of instrumented edges.

5.4 Results Compile Time

One of the goals was to reduce the number of edges needed to generate the
execution profile of a program. That the generated profiles were indeed correct
was discussed in the previous section, this section focusses on the number
of edges inserted. Figure 5.2 shows a quick overview on the percentage of
instrumented edges and Table 5.1 shows the detailed figures for each program
in the SPEC CPU2000 benchmark.

On average, the näıve algorithm instrumented 93.5% of the edges and the
optimal algorithm instrumented 47.5%. That is an improvement of almost a
factor of 2.

Is is interesting to note that even the näıve implementation does not instrument
100% of the edges, since it did not instrument the exiting edges (v, 0) that the
optimal profiling also considered. For the comparisons to be fair this small
“optimisation” of the näıve algorithm has to be taken into account.

Since the näıve instrumentation does not instrument exiting edges the differ-
ence in the number of instrumented edges for small functions was not as big.
This raised the question whether the näıve algorithm works as well as the op-
timal algorithm for programs with many small functions, this is covered in the
next section.

55

Program
Edges Instrumented[%]

N
äı

ve

O
p
ti

m
al

164.gzip 91.907 49.461
175.vpr 88.993 37.577
176.gcc 94.160 43.161
181.mcf 93.811 39.902
186.crafty 95.420 38.543
197.parser 94.028 40.577
252.eon 87.879 43.003
253.perlbmk 93.587 56.435
254.gap 92.799 54.290
255.vortex 97.774 58.094
256.bzip2 90.581 61.605
300.twolf 94.637 39.289
177.mesa 86.687 40.817
179.art 93.927 38.630
183.equake 87.845 37.937
188.ammp 94.817 38.867

Average 93.491 47.498

Table 5.1: Percentage of instrumented edges.

56

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000 10000

Number of basic blocks per function.

Figure 5.3: Number of Functions with a given Number of Blocks

5.4.1 Profiling Small Functions

Figure 5.3 shows the distribution of function sizes (measured in the number
of basic blocks) in the SPEC CPU2000 benchmark. As expected there is a
huge amount of functions that have only 1 or 3 blocks, since unconditional
branches are optimised there are no functions with two blocks. The median of
the function size is at 9 basic blocks, of the 7770 functions in the benchmark,
4016 have 9 basic blocks or less. There are only 874 functions with 50 basic
blocks or more, but also 2 functions with more than 1000 basic blocks.

Figure 5.4 shows how the näıve and optimal number of instrumented edges is
distributed over the function size. For functions with two to six basic blocks
the optimal number of instrumented edges is around 42%, for functions with
more than eleven blocks the optimal number of instrumented edges is around
47% percent. As with the difference in the number of instrumented edges per
program (see Section 5.4.2) the differences in instrumentation between small
and big functions can be attributed to the fact that small functions have less
cycles, thus less edges are instrumented.

For functions of size 1 both algorithms perform equally well because even
the näıve algorithm does not instrument both the incoming and the outgoing
edge. The number of instrumented edges for functions of size 3 and 4 is already
considerably larger for the näıve implementation and grows from there on with
the functions size. The number of instrumented edges for the näıve algorithm
never reaches 100% since the number of basic blocks exiting the function and
thus the number of basic blocks that have no virtual edge attached also grows.

Although the näıve algorithm does not instrument all edges it is still far away

57

0%

20%

40%

60%

80%

100%

1

2-
4

5-
6

7-
10

11
-1

5

16
-2

5

26
-5

0

51
-

T
ot

al

näıve
optimal

Figure 5.4: Instrumented edges per function size.

from being optimal since most functions have 3 or more blocks and for this
functions the optimum is usually below 50%.

5.4.2 Differences in Optima

One interesting thing to note is that for some of the benchmark programs the
optimal instrumentation uses less edges than for others, Table 5.1 shows the
programs sorted by the amount of optimal edges. Especially the 256.bzip2

program, but also 255.vortex and 253.perlbmk are far above the average,
although there are also functions below the average this is not as pronounced.

As discussed in Section 2.4.4 the number of instrumented edges in a function
is the number of all edges minus the number of basic blocks. This leads to the
conclusion that in programs where more edges are instrumented the blocks in
the functions are more tightly interconnected. Also since the optimal instru-
mentation can be seen as breaking up each cycle in a CFG by instrumenting at
least one edge on this cycle (see Section 2.4.5) it can be assumed that programs
where more edges are instrumented have more cycles in their CFGs and the
other programs are more linear in nature.

5.4.3 Build Times

An important question when changing a compiler is: how does the changes
affect compile time? The SPEC CPU2000 benchmark has no native way of
accurately measuring the build times, so the standard UNIX tool time was

58

Program
Edges Instrumented[%]

N
äı

ve

O
p
ti

m
al

175.vpr 88.993 37.577
183.equake 87.845 37.937
186.crafty 95.420 38.543
179.art 93.927 38.630
188.ammp 94.817 38.867
300.twolf 94.637 39.289
181.mcf 93.811 39.902
197.parser 94.028 40.577
177.mesa 86.687 40.817
252.eon 87.879 43.003
176.gcc 94.160 43.161
164.gzip 91.907 49.461
254.gap 92.799 54.290
253.perlbmk 93.587 56.435
255.vortex 97.774 58.094
256.bzip2 90.581 61.605

Maximum 97.774 61.605
Minimum 86.687 37.577
Distance Min-Max 11.087 24.028

Table 5.2: Percentage of instrumented edges (sorted by Optimal).

59

used. The build was done five times and for each program the fastest values
were chosen, Table 5.3 shows the resulting build times in seconds for:

None Best build time without any instrumentation.

Näıve Best build time with näıve instrumentation.

Optimal Best build time with optimal instrumentation.

Näıve Overhead The build time overhead of the näıve instrumentation as
compared to no instrumentation in percent.

Optimal Overhead As Näıve Overhead but for the optimal instrumenta-
tion.

Improvement Improvement of the overhead between näıve and optimal in-
strumentation, lower values mean more improvement.

The build time with näıve instrumentation is on average about 30% higher than
the build time without performing any instrumentation, the build time over-
head with optimal instrumentation is 19%. Although the optimal algorithm
is more complicated than the näıve one (it has to do an estimation, calculate
a maximum spanning tree, insert counter initialisation code and insert the
counters itself) the faster compile times result from the fact that less counters
are inserted and thus the intermediate representation has to be modified less
often.

5.5 Results Run Time

5.5.1 Runtime Results amd64 Hardware

The runtime results where obtained by running the uninstrumented, the
näıvely and the optimally instrumented programs from the SPEC CPU2000
benchmark five times. During these five runs the runtimes itself changed con-
siderably, e.g. for the 181.mcf program the longest run used 31.1% more
time than the fastest run, on average the longest ran was 3.7% longer than the
fastest run. Because of the varying runtimes Section 5.5.2 compares the amd64
results with values from a x86 64 platform. To verify this results on a different
architecture Section 5.5.3 presents runtime results from a ppc32 platform.

Table 5.4 shows the fastest runs for each program on an amd64 platform, the
columns are as follows:

None Best runtime without any instrumentation.

Näıve Best runtime with the näıve instrumentation.

Optimal Best runtime with optimal instrumentation.

60

Program
Instrumentation[s] Overhead[%]

Im
p
ro

ve
m

en
t

N
on

e

N
äı

ve

O
p
ti

m
al

N
äı

ve

O
p
ti

m
al

164.gzip 2.41 2.91 2.78 20.75 15.35 74.00
175.vpr 6.21 7.94 7.30 27.86 17.55 63.01
176.gcc 56.23 79.07 70.14 40.62 24.74 60.90
177.mesa 29.10 50.30 40.75 72.85 40.03 54.95
179.art 1.28 1.47 1.42 14.84 10.94 73.68
181.mcf 1.66 1.90 1.86 14.46 12.05 83.33
183.equake 1.43 1.62 1.58 13.29 10.49 78.95
186.crafty 9.55 11.85 10.97 24.08 14.87 61.74
188.ammp 9.01 13.28 11.20 47.39 24.31 51.29
197.parser 5.08 6.63 6.13 30.51 20.67 67.74
252.eon 74.73 86.41 82.91 15.63 10.95 70.03
253.perlbmk 23.61 33.11 29.19 40.24 23.63 58.74
254.gap 17.42 23.12 21.07 32.72 20.95 64.04
255.vortex 19.99 28.73 25.11 43.72 25.61 58.58
256.bzip2 1.95 2.32 2.20 18.97 12.82 67.57
300.twolf 10.90 13.99 12.92 28.35 18.53 65.37

Average 30.39 18.97 62.41
Minimum 13.29 10.49
Maximum 72.85 40.03

Table 5.3: Build times from the SPEC CPU2000 benchmark.

61

Näıve Overhead The runtime overhead of the näıve instrumentation as com-
pared to no instrumentation in percent.

Optimal Overhead As Näıve Overhead but for the optimal instrumenta-
tion.

Improvement Improvement of the overhead between näıve and optimal in-
strumentation, lower values mean more improvement.

The average runtime overhead on the SPEC CPU2000 benchmark for the näıve
profiling is 14.4% and 7.12% for the optimal profiling which is a reduction
of the overhead by slightly more than 50%, but there are some more extreme
values. For example the optimal overhead for the 181.mcf program was only
24% of the näıve overhead, so the overhead was reduced by 3/4. There are also
examples where the improvement was almost non existent, for the 256.bzip2

program the overhead was only 15% lower for the optimal version.

The differences in the overhead improvements could not be attributed to any
definitive factors, the number of instrumented edges certainly did not make
a difference: the 256.bzip2 and 255.vortex programs had the highest per-
centage of instrumented edges, yet the 256.bzip2 program runtime overhead
was only improved by 15% but the overhead for the 255.vortex program was
improved by 45%.

5.5.2 Runtime Results x86 64 Hardware

Since the amd64 hardware delivered runtimes that where not as stable as
desired, a different hardware platform was used to confirm the results. For
the following results a 8 Core Intel(R) Xeon(R) CPU with 3 GHz and 24GB
of RAM running Debian Linux with a 2.6.30-perfctr kernel was used, on this
hardware the runtimes differed by at most 3.7% and by 0.6% on average.

Table 5.5 shows the fastest runs for each program on and x86 64 platform,
the columns are the same as in Section 5.5.1. The x86 64 platform shows
approximately the same improvements as the amd64 platform.

5.5.3 Runtime Results ppc32 Hardware

To verify the results from Section 5.5.1 on a non-x86 architecture the
SPEC CPU2000 benchmark was also performed on a 1.4 GHz iBook G4 with
a 32-bit PPC processor and 1.5 GB of RAM running a fully patched version of
Mac OS 10.5. The system was in single user console mode, meaning that only
a bare shell with no GUI was active, this reduced the variation of runtimes to
be almost unnoticeable.

62

Program
Instrumentation[s] Overhead[%]

Im
p
ro

ve
m

en
t

N
on

e

N
äı

ve

O
p
ti

m
al

N
äı

ve

O
p
ti

m
al

164.gzip 142 175 156 23.51 9.86 41.94
175.vpr 159 173 164 8.58 2.60 30.31
176.gcc 97 118 110 21.10 13.06 61.92
181.mcf 309 330 314 6.64 1.58 23.87
186.crafty 55 70 61 27.03 10.81 39.98
197.parser 237 266 249 12.15 5.00 41.12
252.eon 63 67 66 6.41 5.29 82.58
253.perlbmk 151 186 166 22.77 9.76 42.87
254.gap 107 117 112 9.69 4.44 45.82
255.vortex 120 162 142 35.90 18.49 51.50
256.bzip2 160 188 184 17.82 15.11 84.79
300.twolf 272 293 288 7.42 5.58 75.27
177.mesa 110 113 105 2.77 -4.09 -147.58
179.art 251 257 255 2.72 1.68 61.85
183.equake 118 125 124 6.01 4.81 80.01
188.ammp 202 243 222 19.95 10.00 50.11

Average 14.40 7.12 49.46
Minimum 2.72 -4.09
Maximum 35.9 18.49

Table 5.4: Best runtimes for each SPEC CPU2000 program (amd64).

63

Program
Instrumentation[s] Overhead[%]

Im
p
ro

ve
m

en
t

N
on

e

N
äı

ve

O
p
ti

m
al

N
äı

ve

O
p
ti

m
al

164.gzip 88 106 96 20.32 8.36 41.13
175.vpr 70 79 72 12.25 3.31 26.99
176.gcc 55 67 63 21.76 14.15 65.01
181.mcf 78 88 82 12.62 4.89 38.78
186.crafty 30 38 32 26.32 6.44 24.47
197.parser 113 131 122 16.52 8.62 52.17
252.eon 35 40 37 13.28 5.00 37.67
253.perlbmk 66 93 75 40.72 13.49 33.14
254.gap 48 59 55 23.24 14.50 62.38
255.vortex 58 81 68 39.44 16.73 42.41
256.bzip2 71 92 84 29.30 18.11 61.80
300.twolf 95 103 98 8.74 3.48 39.83
177.mesa 52 58 54 13.10 5.69 43.48
179.art 35 42 40 19.80 14.51 73.28
183.equake 70 73 71 5.08 1.78 35.08
188.ammp 91 106 99 16.90 9.77 57.79

Average 19.96 9.30 46.60
Minimum 5.08 1.78
Maximum 40.72 18.11

Table 5.5: Best runtimes for each SPEC CPU2000 program (x86 64).

64

Program
Instrumentation[s] Overhead[%]

Im
p
ro

ve
m

en
t

N
on

e

N
äı

ve

O
p
ti

m
al

N
äı

ve

O
p
ti

m
al

164.gzip 307 431 373 40.34 21.26 52.71
175.vpr 478 540 504 13.01 5.43 41.76
181.mcf 852 877 866 2.96 1.63 54.92
256.bzip2 455 554 533 21.83 17.05 78.09
300.twolf 790 929 866 17.69 9.65 54.57
177.mesa 288 348 318 20.72 10.47 50.54
179.art 1169 1310 1298 12.12 11.02 90.91
183.equake 522 538 533 3.00 2.20 73.38

Average 16.46 9.84 59.78
Minimum 2.96 1.63
Maximum 40.34 21.26

Table 5.6: Best runtimes for selected SPEC CPU2000 program (ppc32).

Unfortunately some of the programs did not build and some of the programs
did not run properly since the ppc32 target is not especially well supported by
LLVM but no modifications were made to either LLVM or the SPEC CPU2000
benchmark to make the programs run. This ensured that the results could be
compared without bias. Also, because of the low power of the system, only 3
runs were performed to keep the testing time down.

The results show the same trend as the amd64 results, namely that the run-
time overhead for the näıve instrumentation is approx. 16% and the optimal
overhead is approx. 10%. This improvement is slightly less than on amd64
hardware but since the overall characteristics of the runtimes are quite dif-
ferent between the x86 and ppc32 architectures the cause of this difference
was not determined. Still the results suggest that approx. 50% in runtime
improvement can be expected on different hardware platforms too.

5.5.4 Effectiveness of Profile Estimator

The profile estimator is supposedly placing the edge counters where they are
less likely to be executed, thus reducing the runtime overhead of the program.
To verify this, the instrumentation overhead of a version with active profile
estimator was compared to a version where the estimation was not used and
the maximum spanning tree uses a random edges sorting. Since the difference
between this two variants was small the x86 64 platform (as in Section 5.5.2)
was used for the tests because it delivers more accurate results.

65

Program
Instrumentation[s] Overhead[%]

D
iff

er
en

ce

N
on

e

E
st

im
at

io
n

R
an

d
om

E
st

im
at

io
n

R
an

d
om

164.gzip 88 95 97 8.78 10.25 116.81
175.vpr 70 72 73 3.74 4.86 130.01
176.gcc 55 62 61 13.81 10.78 78.05
181.mcf 79 82 86 4.09 9.57 233.62
186.crafty 30 32 32 6.70 8.62 128.57
197.parser 113 122 123 8.17 8.57 104.91
252.eon 35 37 38 4.82 8.94 185.64
253.perlbmk 66 75 82 13.46 23.62 175.42
254.gap 48 55 54 14.14 13.55 95.79
255.vortex 58 68 70 16.42 18.96 115.44
256.bzip2 71 84 86 18.23 20.71 113.59
300.twolf 95 98 100 3.36 5.87 174.40
177.mesa 52 54 55 5.65 6.37 112.75
179.art 35 40 39 13.54 12.28 90.65
183.equake 71 71 72 -0.88 1.31 -149.92
188.ammp 91 99 99 9.69 9.74 100.54

Average 8.98 10.87 121.04
Minimum -0.88 1.31
Maximum 18.23 23.62

Table 5.7: Runtimes with and without Profile Estimator

In Figure 5.7 the results are shown, the profiling overhead is approx. 20%
higher with random edge placement. For some the mcf.181 program the ran-
dom variant is 133% slower than the estimated variant, but there are also
programs that are slightly faster with random placement.

5.5.5 Using Profiling Data

One of the only ways to use the recorded profiling data for profile based optimi-
sations was to use it instead of the estimated edge weights for calculating the
maximum spanning tree when instrumenting the program. (LLVM currently
has no other profile based optimisations implemented.)

In Figure 5.8 the results are shown, the profiling overhead was about 7% less
for the edges placed with real profiling data as opposed to the edges placed by
the estimated data. It is assumed that the improvement is only small because
of the fact that most of the work of a program happens inside of loops and

66

Program
Instrumentation[s] Overhead[%]

D
iff

er
en

ce

N
on

e

E
st

im
at

io
n

P
ro

f.
D

at
a

E
st

im
at

io
n

P
ro

f.
D

at
a

164.gzip 87.7 95.6 96.5 8.97 10.03 111.83
175.vpr 69.5 72.3 72.3 4.07 4.02 98.85
176.gcc 54.6 62.1 60.7 13.83 11.19 80.95
181.mcf 78.3 81.8 81.1 4.47 3.63 81.15
186.crafty 29.8 31.8 31.5 6.50 5.67 87.28
197.parser 113.2 122.3 121.0 7.99 6.88 86.12
252.eon 35.0 36.7 35.0 4.92 0.05 1.02
253.perlbmk 66.4 75.0 80.5 12.93 21.17 163.68
254.gap 47.8 54.6 52.4 14.01 9.55 68.11
255.vortex 58.4 68.2 66.4 16.74 13.62 81.34
256.bzip2 70.9 84.5 83.8 19.23 18.21 94.68
300.twolf 95.0 98.1 99.0 3.25 4.19 128.91
177.mesa 51.6 54.5 53.9 5.71 4.51 78.96
179.art 34.9 39.9 39.9 14.39 14.50 100.78
183.equake 71.4 70.8 71.0 -0.83 -0.67 81.73
188.ammp 90.5 99.4 99.5 9.80 9.87 100.62

Average 9.12 8.52 93.43
Minimum -0.83 -0.67
Maximum 19.23 21.17

Table 5.8: Runtimes with Estimator and Profiling Data

these loops have to be instrumented in both variants with the same amount
of counters.

67

68

Chapter 6

Conclusions

Being able to profile a program and use this information to improve the pro-
gram (either manually or during the recompilation) is a valuable addition to
the development process. Doing the necessary instrumentation efficiently (dur-
ing both compile time and runtime) is necessary to ensure continued use of
these techniques.

Implementing Knuth’s algorithm for optimal edge counter placement resulted
in 50% less instrumented edges, a 35% drop in compile time overhead and
a 45% drop in runtime overhead. The results were comparable on different
hardware platforms (amd64, x86 64, ppc32) which promises similar results for
other architectures.

Trying to place the instrumented edges in less often executed regions of the
program by using a näıve profiling estimator (see Sections 2.3.1 and 2.4.1) was
also successful: doing the optimal instrumentation with a random spanning
tree (instead of the maximum spanning tree that used the estimates) increased
the profiling overhead by 20%. So the profile estimator is not a huge factor in
improving the profiling runtime overhead, but it contributes around 8% to the
45% overall drop in runtime overhead.

Preparing the profiling information to be used in the backend was very time
consuming. For every pass that transforms the CFG an equivalent transforma-
tion has to be done on the profiling information. The process of adding all this
transformations for the profiling information involved finding the passes that
modify the CFG, finding out where they do the modifications and what those
modifications are and finally adding the same transformation on the profiling
information.

Unfortunately there were no profile based optimisations realised in LLVM so
the effects of having the profiling information available could only be validated
against the profiling instrumentation itself (see Section 5.5.5). The achieved
7% overhead reduction is only small but several profile based optimisations
together could substantially improve the program.

69

6.1 Future Work

Since the profiling data driven edge placement is not much better than the one
with estimated profiles the runtime overhead of the profiling framework can
not be improved too much any more but instrumenting the code even less and
estimating parts of the result may further reduce the overhead.

Also a timed approach could be considered where the counter update code is
switched on/off during runtime e.g. the counters are only updated during 10%
of the running time of the program to deliver approximate results.

Finally a lot of future work can be done by implementing profile based opti-
misations in LLVM and by really using the power these profiling tools give to
the programmer.

70

Acknowledgements

My thanks go to Dietmar Ebner for introducing me to the topics of this thesis
and to Andreas Krall for supervising this thesis at the Vienna University of
Technology. I also want to thank the Institute of Computer Languages and the
Compilers and Languages Group for letting me use their spare workplace, this
was tremendously helpful for keeping in contact with Dietmar and Andreas.

The participants on the LLVM mailing lists were extremely helpful and pro-
vided advice and guidance on the implementation issues and technical details
of the LLVM compiler—thank you for that.

I want to thank the people that I met during my studies: Alexandra Schuster
and Tamara Wenzel who became true friends and Stefan Rümmele for being
the academic I never will be.

I want to thank my dear friends Doris Fried, Rafael Hartmann and Klaus
Böswart for never thinking that my studies are a bad idea. Special thanks
to my family: my parents Franz and Maria Neustifter and my brothers and
sisters and their families for their moral support.

And most importantly: Thank you Eva for everything.

71

72

Literature

[1] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expres-
sions with common subexpressions. J. ACM, 24(1):146–160, 1977.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, US ed edition, 1986.

[3] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. Prentice Hall Professional Technical Reference, 1972.

[4] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design.
Addison-Wesley, August 1977.

[5] F. E. Allen. Program optimization. Annual Review in Automatic Pro-
gramming, 5, 1969.

[6] F. E. Allen and J. Cocke. A program data flow analysis procedure. Com-
mun. ACM, 19(3):137, 1976.

[7] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, 1970.

[8] Andrei Alvares. Static profile patch.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-
20090907/086955.html, 2009.

[9] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling. In Proceed-
ings of the ACM SIGPLAN 1997 conference on Programming language de-
sign and implementation, pages 85–96, Las Vegas, Nevada, United States,
1997. ACM.

[10] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T.
Vandevoorde, Carl A. Waldspurger, and William E. Weihl. Continuous
profiling: where have all the cycles gone? SIGOPS Oper. Syst. Rev.,
31(5):1–14, 1997.

[11] Thomas E. Anderson and Edward D. Lazowska. Quartz: a tool for tun-
ing parallel program performance. SIGMETRICS Perform. Eval. Rev.,
18(1):115–125, 1990.

73

[12] C. T. Apple. The program monitor, a device for program performance
measurement. In Proceedings of the 1965 20th national conference, pages
66–75, Cleveland, Ohio, United States, 1965. ACM.

[13] Ziya Aral and Ilya Gertner. Non-intrusive and interactive profiling in
parasight. In Proceedings of the ACM/SIGPLAN conference on Parallel
programming: experience with applications, languages and systems, pages
21–30, New Haven, Connecticut, United States, 1988. ACM.

[14] Stefan Arnborg. A note on the assignment of measurement points for
frequency counts in structured programs. BIT Numerical Mathematics,
14(3):273–278, 1974.

[15] Matthew Arnold, Michael Hind, and Barbara Ryder. An empirical study
of selective optimization. In Languages and Compilers for Parallel Com-
puting, pages 49–67. Springer Berlin / Heidelberg, 2001.

[16] Matthew Arnold and Barbara G. Ryder. A framework for reducing the
cost of instrumented code. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, pages
168–179, Snowbird, Utah, United States, 2001. ACM.

[17] Thomas Ball. Efficiently counting program events with support for on-line
queries. ACM Trans. Program. Lang. Syst., 16(5):1399–1410, 1994.

[18] Thomas Ball and James R. Larus. Branch prediction for free. SIGPLAN
Not., 28(6):300–313, 1993.

[19] Thomas Ball and James R. Larus. Optimally profiling and tracing pro-
grams. ACM Trans. Program. Lang. Syst., 16(4):1319–1360, 1994.

[20] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings
of the 29th annual ACM/IEEE international symposium on Microarchi-
tecture, pages 46–57, Paris, France, 1996. IEEE Computer Society.

[21] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path
profiling: the showdown. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 134–
148, San Diego, California, United States, 1998. ACM.

[22] Incorporated. Bell Telephone Laboratories, Lucent Technologies Inc., and
AT&T Corporation. Unix Seventh Edition Manual. Bell Labs, 1979.

[23] Jon Louis Bentley. Writing efficient code. Technical report, Department of
Computer Science at Carnegie Mellon University, Pittsburg, April 1981.

[24] Rolf Berrendorf, Heinz Ziegler, and Bernd Mohr. PCL - the performance
counter library. http://www.fz-juelich.de/jsc/PCL/.

[25] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scal-
able cross-platform infrastructure for application performance tuning us-

74

ing hardware counters. In Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM), page 42, Dallas, Texas, United States,
2000. IEEE Computer Society.

[26] Robert G. Burger and R. Kent Dybvig. An infrastructure for Profile-
Driven dynamic recompilation. In Computer Languages, International
Conference on, volume 0, page 240, Los Alamitos, CA, USA, 1998. IEEE
Computer Society.

[27] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Pro-
ceedings of the 30th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 259–269, Research Triangle Park, North Carolina,
United States, 1997. IEEE Computer Society.

[28] Peter Calingaert. System performance evaluation: survey and appraisal.
Commun. ACM, 10(1):12–18, 1967.

[29] V. G Cerf. Measurement of recursive programs. Technical report, Los
Angeles School of Engineering and Applied Science, May 1970.

[30] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen mei
W. Hwu. Profile-guided automatic inline expansion for c programs. Softw.
Pract. Exper., 22(5):349–369, 1992.

[31] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile
information to assist classic code optimizations. Softw. Pract. Exper.,
21(12):1301–1321, 1991.

[32] John Cocke. Programming languages and their compilers: Preliminary
notes. Courant Institute of Mathematical Sciences, New York University,
1969.

[33] John Cocke. Global common subexpression elimination. SIGPLAN Not.,
5(7):20–24, 1970.

[34] John Cocke and Raymond Miller. Some analysis techniques for optimizing
computer programs. In Proc. Second Intl. Conf. of Systems Sciences,
Hawaii, 1969.

[35] Wikipedia contributors. Low level virtual machine.
http://en.wikipedia.org/wiki/Low Level Virtual Machine, 2010.

[36] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves,
Devika Subramanian, Linda Torczon, and Todd Waterman. ACME: adap-
tive compilation made efficient. In Proceedings of the 2005 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for em-
bedded systems, pages 69–77, Chicago, Illinois, USA, 2005. ACM.

[37] C.A. Coutant, R.E. Griswold, and D.R. Hanson. Measuring the perfor-
mance and behavior of icon programs. IEEE Transactions on Software
Engineering, 9(1):93–103, 1983.

75

[38] Saumya Debray and William Evans. Profile-guided code compression. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming lan-
guage design and implementation, pages 95–105, Berlin, Germany, 2002.
ACM.

[39] J.L. Elshoff. The influence of structured programming on PL/I program
profiles. Software Engineering, IEEE Transactions on, SE-3(5):364–368,
1977.

[40] Stéphane Eranian. perfmon2 - the hardware-based performance monitor-
ing interface for linux. http://perfmon2.sourceforge.net/, 2002.

[41] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional
branch directions from previous runs of a program. SIGPLAN Not.,
27(9):85–95, 1992.

[42] Ira R. Forman. On the time overhead of counters and traversal markers. In
Proceedings of the 5th international conference on Software engineering,
pages 164–169, San Diego, California, United States, 1981. IEEE Press.

[43] Aaron J. Goldberg and John L. Hennessy. Performance debugging shared
memory multiprocessor programs with MTOOL. In Proceedings of the
1991 ACM/IEEE conference on Supercomputing, pages 481–490, Albu-
querque, New Mexico, United States, 1991. ACM.

[44] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A
call graph execution profiler. In Proceedings of the 1982 SIGPLAN sym-
posium on Compiler construction, pages 120–126, Boston, Massachusetts,
United States, 1982. ACM.

[45] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An exe-
cution profiler for modular programs. Software: Practice and Experience,
13(8):671–685, 1983.

[46] John L. Henning. SPEC CPU2000: measuring CPU performance in the
new millennium. Computer, 33(7):28–35, 2000.

[47] Donald J. Herman and Fred C. Ihrer. The use of a computer to evaluate
computers. In Proceedings of the April 21-23, 1964, spring joint computer
conference, pages 383–395, Washington, D.C., 1964. ACM.

[48] MIPS Computer Systems Inc. Language Programmer’s Guide. MIPS
Computer Systems, California, 1986.

[49] Daniel H. H. Ingalls. FETE: a fortran execution time estimator. Technical
report, Stanford University, 1971.

[50] Marty Itzkowitz, Brian J. N. Wylie, Christopher Aoki, and Nicolai
Kosche. Memory profiling using hardware counters. In Proceedings of the
2003 ACM/IEEE conference on Supercomputing, page 17. IEEE Com-
puter Society, 2003.

76

[51] Lawrence J. Kenah, Ruth E. Goldenberg, and Simon F. Bate. Vax/Vms
Internals and Data Structures: Version 4.4. Digital Press, 4th revised
edition edition, May 1988.

[52] Donald E. Knuth. An empirical study of FORTRAN programs. Software:
Practice and Experience, 1(2):105–133, 1971.

[53] Donald E. Knuth and Francis R. Stevenson. Optimal measurement points
for program frequency counts. BIT Numerical Mathematics, 13(3):313–
322, 1973.

[54] Nick Kufrin. PerfSuite: an accessible, open source performance analysis
environment for linux. In Proceedings of the 6th International Conference
on Linux Clusters: The HPC Revolution, Chapel Hill, NC, April 2005.

[55] J. R. Larus. Abstract execution: a technique for efficiently tracing pro-
grams. Softw. Pract. Exper., 20(12):1241–1258, 1990.

[56] James R Larus and Thomas Ball. Rewriting executable files to measure
program behavior. SOFTWARE PRACTICE & EXPERIENCE, 24:197—
218, 1994.

[57] J.R. Larus. Efficient program tracing. Computer, 26(5):52–61, 1993.

[58] Edward S. Lowry and C. W. Medlock. Object code optimization. Com-
mun. ACM, 12(1):13–22, 1969.

[59] J. Nievergelt. On the automatic simplification of computer programs.
Commun. ACM, 8(6):366–370, 1965.

[60] Mikael Pettersson. Linux performance counters driver.
http://perfctr.sourceforge.net/.

[61] Karl Pettis and Robert C. Hansen. Profile guided code positioning. SIG-
PLAN Not., 25(6):16–27, 1990.

[62] R.L. Probert. Optimal insertion of software probes in Well-Delimited
programs. IEEE Transactions on Software Engineering, 8(1):34–42, 1982.

[63] Reese T. Prosser. Applications of boolean matrices to the analysis of
flow diagrams. In Papers presented at the December 1-3, 1959, eastern
joint IRE-AIEE-ACM computer conference, pages 133–138, Boston, Mas-
sachusetts, 1959. ACM.

[64] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of
program profiling for software maintenance with applications to the year
2000 problem. In Proceedings of the 6th European SOFTWARE ENGI-
NEERING conference held jointly with the 5th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 432–449,
Zurich, Switzerland, 1997. Springer-Verlag New York, Inc.

77

[65] Edward C. Russell. Automatic program analysis. Technical report, Los
Angeles School of Engineering and Applied Science, March 1969.

[66] Alan Dain Samples. Profile-driven compilation. PhD thesis, University of
California at Berkeley, 1992.

[67] Edwin Hallowell Satterthwaite. Source language debugging tools. PhD
thesis, Stanford University, 1975.

[68] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Har-
rison. Accurate static estimators for program optimization. In Proceedings
of the ACM SIGPLAN 1994 conference on Programming language design
and implementation, pages 85–96, Orlando, Florida, United States, 1994.
ACM.

[69] David W. Wall. Global register allocation at link time. SIGPLAN Not.,
21(7):264–275, 1986.

[70] David W. Wall. Predicting program behavior using real or estimated
profiles. SIGPLAN Not., 26(6):59–70, 1991.

[71] Youfeng Wu and James R. Larus. Static branch frequency and program
profile analysis. In Proceedings of the 27th annual international sym-
posium on Microarchitecture, pages 1–11, San Jose, California, United
States, 1994. ACM.

[72] A. P. Yershov. ALPHA–an automatic programming system of high effi-
ciency. Journal of the ACM, 13(1):17–24, 1966.

[73] Cliff Young and Michael D. Smith. Improving the accuracy of static
branch prediction using branch correlation. In Proceedings of the sixth
international conference on Architectural support for programming lan-
guages and operating systems, pages 232–241, San Jose, California, United
States, 1994. ACM.

[74] Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Perfor-
mance analysis using the MIPS r10000 performance counters. In Proceed-
ings of the 1996 ACM/IEEE conference on Supercomputing (CDROM),
page 16, Pittsburgh, Pennsylvania, United States, 1996. IEEE Computer
Society.

78

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Kurzbeschreibung
	Overview
	What is profiling?
	Profiling in the Literature
	Goals

	Profiling
	Basics
	Dynamic versus Static Profiles
	Types of Profiling Information
	Granularity of Profiling Information

	Methods for Dynamic Profiling
	Instrumentation
	Sampling
	Hardware Counters

	Static Profiling Algorithms
	A Naïve Execution Count Estimator
	A Sophisticated Execution Count Estimator
	Estimators for Call Graphs

	Dynamic Profiling: Optimal Counter Placement
	Overview
	Example
	Virtual Edges
	Number of Instrumented Edges
	Breaking up the Cycles
	Proof: Profiling Edges not in Spanning Tree is Sufficient

	LLVM
	Overview and Structure
	Intermediate Language
	Optimisations and the Pass System
	Frontends
	Backends

	Why LLVM?

	Implementation
	Used Implementation
	History
	Current implementation

	Virtual Edges are necessary
	General CFGs are hard to estimate
	Weighting Exit Edges
	Loop Exit Edges
	Missing Loop Exit Edges
	Precision Problems
	Not all CFGs can be properly estimated

	How to store a tree
	Verifying Profiles
	Verifying a program containing jumps.
	A program exits sometimes.

	Results
	Overview
	Used Methods
	Used LLVM Version
	Used Hardware

	Correctness
	Profile Estimator
	Instrumentation Algorithm and Profiling Framework

	Results Compile Time
	Profiling Small Functions
	Differences in Optima
	Build Times

	Results Run Time
	Runtime Results amd64 Hardware
	Runtime Results x86_64 Hardware
	Runtime Results ppc32 Hardware
	Effectiveness of Profile Estimator
	Using Profiling Data

	Conclusions
	Future Work

	Acknowledgements
	Literature

