
Technische Universität Wien

Diplomarbeit

Creating a GCC Back End for a
VLIW-Architecture

Ausgeführt am Institut für Computersprachen
der Technischen Universität Wien

unter Anleitung von Ao.Univ.Prof. Dipl-Ing. Dr. Andreas Krall

durch

Adrian Prantl

Neustiftgasse 45/12
1070 Wien

7. Mai 2006
Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The Control Processor is a 24-bit, 4-way very long instruction word (VLIW) proces-
sor, developed by On Demand Microelectronics. In this work, a port of the back end
of the GNU Compiler Collection (GCC) is introduced that takes full advantage of the
CPU’s parallelism and generates parallel assembler code. Also, the GNU Binutils and
the Newlib C runtime library were adopted to support the Control Processor.

The presented GCC back end uses a simple pipeline description to model the functional
units of the Control Processor for the instruction scheduler. Based on the results of the
scheduler, a separate pass assigns the instructions to the slots of a VLIW bundle. Using
this technique an average utilisation of up to 2.5 instructions per bundle is achieved.
Special care was taken to support the Control Processor’s unusual byte-lengh of 24 bits,
which affected many design decisions.

In a second part, the existing assembler for the Control Processor was extended to
create object files in the Executable and Linkable Format (ELF). To create a linker
and other utilities for these object files, the GNU Binutils were ported to the new
target. Based upon this, the GNU Debugger was also extended with an interface to the
instruction-level simulator of the Control Processor.

Finally, the C runtime library Newlib was ported to the new target as well, thus
completing the cross-development environment for the Control Processor.

Kurzfassung

Der Control Processor ist ein 24-Bit, 4-fach VLIW (very long instruction word)-Prozessor,
der von On Demand Microelectronics entwickelt wurde. In dieser Arbeit wird eine Port-
ierung der GNU Compiler Collection vorgestellt, die in der Lage ist, den Parallelismus des
Prozessors voll auszunützen und parallele Assemblerbefehle auszugeben. Weiters wur-
den die GNU Binutils und die C-Laufzeitbibliothek Newlib an den Control Processor
angepasst.

Das vorgestellte GCC-Backend verwendet eine einfache Pipelinebeschreibung, um die
Funktionseinheiten des Control Processors für den Instruction-Scheduler zu modellieren.
Anhand der Resultate des Schedulers werden die Befehle in einem eigenen Durchlauf auf
die Slots eines VLIW-Bündels aufgeteilt. Durch diese Methode wird eine Slotausnutzung
von bis zu 2,5 Befehlen pro VLIW-Bündel erreicht. Eine besondere Herausforderung
stellte die ungewöhnliche Wortbreite des Control Processors von 24 Bit dar, die das
Design des Backends entscheidend geprägt hat.

In einem zweiten Teil wurde der bereits vorhandene Assembler des Control Processor
um die Fähigkeit erweitert, ELF-Objektdateien (Executable and Linkable Format) zu
erstellen. Weiters wurden die GNU Binutils auf diese neue Plattform portiert, um den
darin enthaltenen Linker mit diesem Format nutzen zu können. Darauf basierend wurde
auch der GNU Debugger um die Möglichkeit erweitert, den Simulator für den Control
Processor direkt einzubinden.

Um die Entwicklungsumgebung zu vervollständigen, wurde auch die C-Laufzeitbiblio-
thek Newlib für den Control Processor angepasst.

Danksagung

Ich möchte mich an dieser Stelle vor allem bei meinem Betreuer Professor Andreas
Krall bedanken, der mich während des Designs und der Implementierung des GCC-back
ends aber auch später bei der Erstellung dieser Diplomarbeit immer unterstützt hat.

Mein besonderer Dank gilt auch dem gesamten Team von On Demand Microelec-
tronics, allen voran Karl Neumann, der mich während unserer Zusammenarbeit stets
ermutigt und viele hilfreiche Ideen beigesteuert hat. Außerdem möchte ich mich bei Ju-
lia Ogris bedanken, die mir als Autorin des Simulators sehr viele Fragen beantworten
musste.

Schlussendlich möchte ich mich bei meinen Eltern bedanken, die mich bei meinem
Studium unterstützt und meine Neugierde gefördert haben, bei meiner Freundin und
allen meinen Freunden und Studienkollegen mit denen ich die letzten Jahre sehr gerne
verbracht habe.

Contents

1. Introduction 8

2. The On Demand Control Processor 10
2.1. Architecture . 10
2.2. Instruction pipeline . 11
2.3. Instruction format . 11
2.4. Addressing Modes . 12
2.5. Assembler syntax . 12

3. The GNU Compiler Collection 14
3.1. Overview . 14

3.1.1. Different configurations of the GCC 14
3.1.2. Important components of the GCC 15
3.1.3. Compilation with the GCC . 16
3.1.4. The GCC back end . 18
3.1.5. Further documentation . 20

3.2. Port specific observations . 20
3.2.1. Creating code for a 24-bit processor 20
3.2.2. Machine Modes . 21
3.2.3. Definition of instruction patterns 23
3.2.4. Instruction selection . 26
3.2.5. Instruction scheduling for VLIW slots 27
3.2.6. Defining addressing modes . 30
3.2.7. Function prologue and epilogue . 30
3.2.8. Function calls . 31

4. Defining an ABI 32
4.1. Data Types . 32
4.2. Memory Layout . 32
4.3. Register Usage . 33
4.4. Function Stack Frame . 34

5. GNU Binutils 35
5.1. Manipulating object files with libbfd . 35

5.1.1. Sections . 36
5.1.2. Symbols . 36
5.1.3. Relocations . 37

5

Contents 6

5.1.4. Porting the BFD library . 37
5.1.5. Debugging . 38

5.2. The Assembler gas . 39
5.2.1. Porting gas . 39
5.2.2. A comparison with the native assembler 39

5.3. The Linker ld . 39
5.3.1. The Emulation . 40
5.3.2. The Linker Script . 40
5.3.3. Porting ld . 40

6. The GNU Debugger 42
6.1. The structure of GDB . 42
6.2. Using GDB . 42
6.3. Porting the GNU Debugger . 43

7. The New C runtime library 45
7.1. Defining system specific issues . 45

7.1.1. System startup: crt0.o . 46
7.1.2. System Calls . 46

7.2. Porting newlib . 46

8. Generating a complete toolchain 47
8.1. Testing with DejaGNU . 47

8.1.1. Porting DejaGNU . 48

9. Evaluation of the final product 49
9.1. Benchmarks . 49

9.1.1. Generating pseudo-random numbers 49
9.1.2. Encrypting Data . 51
9.1.3. Performing error correction . 52
9.1.4. Discrete Cosine Transform . 52

9.2. Performance improvements with VLIW bundling 53
9.3. Varying the number of memory ports . 53

10.Related Work 58

11.Conclusion 60
11.1. Directions for future work . 60

A. Program Listings 62
A.1. The rand.c benchmark . 62

List of Figures

2.1. Example of the Control Processor’s assembler syntax 13

3.1. Some passes and intermediate representations of the GCC 17
3.2. How to synthesise a push pattern with atomic instructions 24
3.3. How to use an expander pattern to prepare arguments 25
3.4. The GCC instruction pattern for a logical right-shift on the Control Pro-

cessor . 27
3.5. The GCC instruction pattern for a copy operation the Control Processor . 27
3.6. Pipeline description: Reservation of CPU units by an integer instruction . 28
3.7. Pipeline description: Declaration of integer CPU units 29
3.8. How to fake access to the Program Counter 31

4.1. Data memory layout for the On Demand Control Processor 33
4.2. layout of the Function Stack Frame . 34

5.1. The components of the GNU Binutils . 35
5.2. Symbols versus Relocations . 37
5.3. Pointers into two different memories. 38
5.4. The linker script for the On Demand Control Processor 41

9.1. Execution time in correlation to VLIW bundle size 54
9.2. Average number of instructions per VLIW bundle at different sizes 54
9.3. Total number of instruction words in correlation to VLIW bundle size . . 55

A.1. The source code of the pseudo-random number generator. 62
A.2. The generated assembler code for the rand() function. 63

7

1. Introduction

The Control Processor is a 4-way VLIW1 architecture aimed at parsing next-generation
video streams like H.264. The Control Processor was designed by the Vienna-based
On Demand Microelectronics who is specialised in high profile digital signal processing
applications.

A VLIW architecture is basically a statically scheduled version of a superscalar RISC2

processor, where the burden of assigning the instructions to execution units lies on the
programmer. This has the advantage of eliminating the dispatch logic in the processor
and being able to spend more time finding an optimal distribution for the instructions.3

Programming such a machine in assembler is more challenging compared to a classic
RISC processor, because the programmer has to take extra care not to introduce de-
pendencies inside an instruction word. For this reason, it is favourable to provide the
programmer with a compiler that will take care of finding the optimal allocation of func-
tional units with instructions and let the programmer specify the tasks of the processor
in a high-level language such as C. The high-level language approach is also an advan-
tage for the experimental evaluation of architectural parameters such as the number of
parallel functional units in a CPU. A compiler can be constructed in a reasonably con-
figurable way such that changes made to the hardware can be reflected in a relatively
short timeframe.

The goal of the work presented in this document was to create a cross-development
environment for the Control Processor and the C programming language. Already avail-
able was an assembler and an instruction-level simulator that could be incorporated in
the final toolchain.

The GNU compiler collection was an obvious choice for the task, as it is available in
source code, relatively well documented and designed to be highly extendable. Another
important point is that it is well integrated with the rest of the GNU toolchain which
includes the GNU assembler and linker, but also the widely used GNU debugger, a
runtime system and many operating systems. The debugger is an important component
of the overall development environment, because it contains the bridge to the instruction
level simulator which in turn is necessary to perform any serious testing and development
in the absence of actual silicon hardware.

A personal goal that I have for this work is that it serves as a documentation of
the steps that are necessary to create a complete development environment for a new
processing platform. Most of the components of the toolchain are well documented, but
there was not too much documentation about their interaction and the dependencies

1very long instruction word
2reduced instruction set
3[PH98], chapter 6.12, pg. 528

8

9

they impose during the development. Wherever possible references to further existing
documentation are included throughout the text, so it can be used as a guide during the
creation of a new GCC back end.

In the first chapter, the architecture of the On Demand Control Processor is intro-
duced. The description of the toolchain is structured into chapters that discuss each
package in detail, at first with a general overview the tool’s the mode of operation, then
the hands-down description of steps necessary to adopt it to a new architecture, as well
as common pitfalls that are to be avoided. Finally, the complete toolchain is presented
and some examples of the quality of the final compiler are given.

2. The On Demand Control Processor

The On Demand Control Processor is part of On Demand’s scalable video engine (SVEN).
The Control Processor is meant to be used as a bitstream decoder and in its basic
configuration it is powerful enough to handle the parsing of H.264, VC-1 and MPEG2
streams. These are popular formats for the digital distribution of TV broadcasts and
feature films.

Its main features are a 4-way VLIW core, 64 general purpose registers, conditional
execution, support for various extensions and a 24 bit address space.1

2.1. Architecture

The Control Processor is in essence a load/store architecture with a reduced instruction
set (RISC) and in-order execution. Special to it are four mostly independent instruction
units which are fed by very long instruction words (VLIW). These processing units are
called slots. It is up to the assembler programmer and the compiler to properly distribute
the single instructions across the slots.

In its standard configuration, the processor has a total of 64 general-purpose registers,
each with a length of 24 bits. These parameters are meant to be configureable. The
pipeline is transparent to the programmer and has three stages: Fetch, Decode and
Execute/Writeback. Two of the four slots can be provided with a condition which is
evaluated by one of the other two slots. The arithmetic units of the Control Processor
do not support multiplication or division of integers; these features are not needed in its
key field of application. Of course there is no native support for floating point operations
either.

Data memory and program memory live in separate address spaces. The CPU can
address 224 independent words in each address space. While one data word is 24 bits
long, one instruction word is significantly longer, since it has to hold 4 instructions,
including all operands.

The Control Processor supports several extensions for specialised tasks that come up
when decoding modern video streams. These include algorithms like Variable Length
Coding (VLC), Content Adaptive Binary Arithmetic Coding (CABAC), Content Adap-
tive Variable Length Coding (CAVLC), and Exponential Golomb Coding which are nec-
essary to decode H.264 streams for example. These extensions are accessed through the
port interface, where they appear as data memory addresses and can be made available
through library functions in a compiled language such as C.2

1see [Win05], pg. 7
2see [Win05], pg. 8ff

10

2.2. Instruction pipeline 11

2.2. Instruction pipeline

The pipeline of the On Demand Control Processor has three stages which are not visible
to the assembly programmer. There are no branch delay slots, but jumps force the
pipeline to be emptied, inducing a penalty of two cycles.

• Fetch: The first stage is responsible for accessing the code memory in order to
fetch the next instruction word.

• Decode: In the Decode stage data addresses for the more complex addressing modes
are generated and the condition is evaluated. Conditions may be placed for slot 0
and 2 and are executed in slot 1 and 3.

• Execute: In the final stage the actual instructions are executed and a possible data
memory access is performed. Conditional instructions are only executed if their
condition evaluates to true.

The following restrictions emerge from the layout of the pipeline: Only one uncon-
ditional jump is possible per bundle. Two conditions may be applied and occupy an
extra slot per condition, so up to two conditional instructions are can be placed into an
instruction bundle.3

2.3. Instruction format

The Control Processor uses very long instruction words with 4 instructions per code
word in its default configuration. These four instructions are also called an instruction
bundle. One instruction consists of 6 fields: The operation code (OpCode), an address
field, two source registers, a destination register and an immediate field. Both address
and immediate value can be up to 24 bit long.

Slot 0 Slot 1 Slot 2 Slot 3
OpCode Address Src0 Src1 Dst Immediate

Table 2.1.: Format of a very long instruction word

This layout can lead to several inconveniences when using standard tools. The values
should be packed in a way that the total size of an instruction word is a power of 2. To
perform relocations, the GNU linker needs to convert program-specific word addresses
(and especially the immediate field within each micro-instruction) to 8-bit byte addresses
inside an object file; if they cannot be converted through a combination of bitshifts and
adds, a workaround has to be found. This problem does not exist in the actual hardware
implementation; it simply uses a special uncached 216 bit memory for the instruction
words.

3see [Win05], pg. 9ff

2.4. Addressing Modes 12

2.4. Addressing Modes

The On Demand Control Processor supports a total of four different addressing modes,
which include absolute immediate addresses and register relative addresses.

• Immediate: The Address is given as an absolute constant integer.

r0 = port[32];

• Register: The Address is the contents of a register.

r0 = port[r62];

• Register + Immediate: The Address is the sum of a register and a constant integer.

r0 = port[r62 + (-1)];

• Register + Register: The Address is the sum of two registers.

r0 = port[r62 + r2];

These addressing modes apply to every command in the group of memory read/write
instructions. Due to its load/store architecture, the On Demand Control Processor does
not allow memory operands to any other instruction. The jump and jump subroutine
(jsr) instructions allow only for constant operands.4

2.5. Assembler syntax

The syntax of the Control Processor’s assembler is different from that of most general
purpose CPUs, but it is very programmer friendly and easier to read than most common
assembler languages.

The most obvious difference is that operations are not written in prefix but in an
infix notation making it look more like a programming language than an assembler. For
VLIW instructions a mechanism to mark the beginning and end of an instruction bundle
is necessary; this is achieved by putting curly braces around every four operations. Con-
ditions are expressed through the if keyword. Assembler source files are preprocessed
by the standard C preprocessor (cpp).

Data declarations look like typeless C variable and array declarations. The assembler
knows only one data type which is a 24-bit, two’s complement, signed integer. It does
allow the declaration of initialised arrays though.

Figure 2.1 shows a minimalistic example of the assembler’s syntax. The fancy syntax
has its downsides, too; the performance of the assembler is not as great as the typical
GNU assembler implementation that has to parse a much simpler grammar. During the
porting of the GNU toolchain, the different syntax was the reason why On Demand’s
existing lex/yacc based assembler was used instead of the GNU assembler.

4see [Neu05] and [Ogr05]

2.5. Assembler syntax 13

.data
foo = 1;
bar = { 42, 1, 0, 1, 2 }; // Array

.code
{ // instruction bundle

r0 = r1 + 1; // slot 1 (add)
; // slot 2 (nop)
if (r3 < 0) // slot 3 (condition)

port[foo] = 0; // slot 4 (memory access)
}

Figure 2.1.: Example of the Control Processor’s assembler syntax

3. The GNU Compiler Collection

3.1. Overview

Work on the GNU Compiler Collection (GCC) began in 1984 when Richard Stallman
founded the Free Software Foundation and the GNU Project. The goal of the GNU
Project has been to create a software environment consisting entirely of free software.
Stallman started with the now famous Emacs text editor and a shell command inter-
preter, but it was quickly becoming clear that to write free software for a free system
there had to be a free compiler. To fill this gap, the GCC project was started. While
the GCC started as a C-compiler for the Motorola 68000 CPU it was always designed
as a multi-language, multi-platform compiler. It was first released in 1987.1

From then the project has grown enormously and by the end of 2005 it supported over
60 host platforms, programming languages such as C, C++, Objective-C, Objective-
C++, Java, Fortran and Ada and code generation for almost 40 different architectures.2

These numbers only cover the official distribution. There are quite a few language front
ends (such as PASCAL) and architecture back ends that are maintained separately.

3.1.1. Different configurations of the GCC

The GCC can be configured and installed in different ways, depending on the target
platform and the way the compiler is to be used. The configuration system - based on
the GNU Autotools - distinguishes three components that define a platform.

• Build System - This is the system on which GCC will be compiled on. The
configure-script will autodetect this parameter.

• Host - This is the system on which GCC is going to run on. It can be specified
with the -host= parameter. This parameter decides which compiler will be used
to compile the GCC.

• Target - This is the architecture for which GCC will compile code. It can be
specified with the -target= parameter.

The combination of build system, host and target system determine the type of com-
piler that is to be build. There are three configurations:

• Native compiler: This is the default configuration. In this case the compiler is
intended to be run on the same machine as it is being built on and will also

1see [Sta06]
2see [Fou06b]

14

3.1. Overview 15

generate code for this very system. The default system compiler is configured in
this way.

• Cross compiler: This is the common configuration for developing embedded sys-
tems, especially when the development machine is more powerful than the target
machine. The compiler will generate code for a different architecture than the one
it is running on. This configuration is also useful to build a portable project for
many architectures at once.

• Canadian cross compiler: This more exotic case describes a cross compiler being
built by a cross compiler.3

Host and target of the new compiler can be specified as flags to the ./configure
script of the GCC. As with all GNU development tools, GCC expects to be built in a
different directory than the source lies in. This has many advantages: Aside from having
an uncluttered source directory, it is also possible to create two different compilers from
the same source without having to reconfigure the sources every time.

3.1.2. Important components of the GCC

The GNU Compiler Collection consists of many separate tools which work together
during the compilation of a program’s sources. The program the user will interact with
most of the time is called gcc and is the compilation driver. It is a front end that collects
all command line parameters and calls the respective tools in the correct order. Usually
a compilation of a C source goes through the following stages:

• gcc: This is the user-visible front end that decides which programs to call. It
is responsible for decoding the command line parameters and watches over the
different stages of compilation.

• cpp: The C preprocessor. It expands C macros such as #include directives and
is used for C, C++ and some assembler files.

• cc1: The actual C compiler. Its mode of operation will be discussed in more detail
in the next section. Basically, it translates C source into assembler output.

• as: The assembler for the target machine. Its job is to parse the target’s assembly
language and to create a relocateable binary image or object file. The resulting
object file will still contain references to symbols that should be defined elsewhere
and a list of all addresses that have to be changed when the program will finally
be loaded into memory.

• collect2: This tool scans objects for necessary initialisations at startup time and
adds pointers to initialisation functions to a table so they can be called before the
main() method is executed at runtime.

3The name “Canadian” derives from Canada having three major political parties in the 1980ies.

3.1. Overview 16

• ld: This is the GNU Linker and (like the assembler as) it is actually not a part of
the GCC distribution but part of a package called Binutils. The GNU Binutils
are a collection of utilities that handle manipulations of object files such as the the
assembler, linker, the strip and objcopy tools.4 The linker collects all necessary
object files and libraries (which in turn are simply archives of multiple object files)
and copies them together to form the final executable binary. It most importantly
also resolves all references to symbols between all those object files.

Thankfully, not all of these tools have to be rewritten when adding a new machine.
In order to support a new target, mostly the code generation back end of cc1 and the
assembler need to be extended.

3.1.3. Compilation with the GCC

In this section the process of compiling a (C) source file into assembler will be discussed
in detail. A compiler can be divided into three main components: The language front
end which understands the source language and constructs a parse tree, a middle layer
working with an intermediate representation where optimisations and other program
transformations take place and a target machine specific back end handling the actual
generation of assembler code.

The compilation of a program happens in many different phases that are too many to
describe in detail in this section. The majority of the passes during a compilation are
introduced by the optimiser and have to be manually enabled through command line
options. For the author of a back end the details of the optimisation passes are not too
important, although it must be noted that some errors in the machine description only
become apparent with optimisations enabled. The behaviour of the function stack frame
allocation is an example for this, as the frame pointer may be omitted and local variables
may or may not be stored on the stack, depending on the optimisation settings.

When debugging the machine description it can be helpful to have at least a basic
understanding of what happens in the passes that are relevant for the back end. After
most of the RTL-based transformations, the GCC provides a dump of the current state
of the RTL representation of the program. This feature can be enabled with the -dall
command line option. As these dumps are in RTL form5, they only reflect changes made
by the (RTL-based part of the) optimiser and by back-end-specific passes like the sched-
uler. A graphical overview of these passes, dataflow inside GCC and the intermediate
representations is given in figure 3.1. The following passes are especially relevant to the
author of a new back end.

expand: This is the first step of the RTL-based component. Here, the intermediate
representation is expanded from GIMPLE trees created by the front end to the
linear and more machine-near RTL expressions. The expand-dump therefore con-
tains the first attempt at converting the source language into the intermediate
representation used by the machine description.

4The Binutils should therefore be installed before trying to compile GCC.
5An overview of the intermediate representations in GCC is given in chapter 3.1.3

3.1. Overview 17

Frontend Source Language
Parse Tree

language specific

Middle Layer

SSA

static single

assignments

GIMPLE

three-address

form

GENERIC

RTX

instruction

patterns

RTX

reordered

patterns

RTX

registers

allocated

Backend
Assembler Statements

output for gas

RTX

final RTL

parse

transform

gimplifytransform

expand

sched reload

sched2

pattern matching

Figure 3.1.: Some passes and intermediate representations of the GCC

sched: The instruction scheduling pass. Here, instructions are reordered to reduce the
number of pipeline stalls on processors with instruction latencies, as is the case
with many RISC architectures.6

reload: The reload pass is where register allocation takes place. This pass marks a
dividing line; after the reload is complete, instruction definitions may not introduce
any more pseudo registers. The reload process spans a local (in the context of basic
blocks) and a global phase.

sched2: Instruction scheduling is performed twice; before and after register allocation.
The scheduler dump contains the final allocation of the CPU-units defined in the
pipeline automata.

Dumps are also generated for all the optimisations such as common subexpression and
dead code elimination. But for the back end above passes should be the most relevant.7

Intermediate representations within the GCC

The GNU Compiler Collection uses many different kinds of representations for program
code. In the front end, the programming language is parsed by the compiler and the

6see [S+05], chapter 8.5
7see file gcc/passes.c in [Fou05]

3.1. Overview 18

program is stored in a syntax tree. This tree still carries language specific information
which is gradually lost during the compilation.

Since the middle layer has to work with every supported language, a language indepen-
dent representation is constructed by the front end. These trees are called GENERIC.
They represent an entire function in an intermediate language.8

The GENERIC trees are then converted to so-called GIMPLE trees. GIMPLE is
a simplified subset of GENERIC that is used during the optimisation passes.9 That
name is derived from the SIMPLE10 trees of McGill University’s McCAT compiler which
they are based on. GIMPLE trees have expressions already broken down into a three
address form, which is needed for all later program transformations. GIMPLE trees are
a relatively new development and they were added only in the 4.0 branch of the GCC.
Data flow analysis brings the trees into a static single assignment (SSA) form, where
each modification to a variable creates a new instance of that variable, so each variable
is assigned a value exactly once.

Still, the most important intermediate representation is the register transfer language
(RTL). RTL expressions - when printed as a debug information - look very much like Lisp
expressions. These lists of expressions (called RTX for register transfer expressions) are
used for most “classic” optimisations and eventually also for the actual code generation.11

Code generation works by simple pattern matching of instruction templates (which
are - surprise - written in a Lisp-like form) with the register transfer lists.12

3.1.4. The GCC back end

To add a new target to the GCC a new configuration directory has to be added to the
gcc/config/ subdirectory and to the automake scripts.13 The description of a target is
split into three parts:

• targetname.h: This header file contains the definitions of many macros that de-
fine the compiler’s behaviour. A complete list of all possible options is given in
chapter 14 of [S+05]. Not every macro has to be defined for every architecture, but
unfortunately, the documentation fails to tell which macros are absolutely needed
and which may be omitted. As a rule of thumb, it is good practice to prepare
a new header file by copying the documentation and the default values of most
important macros from the internals manual.

• targetname.md: This is the machine description. In this file the semantics of every
assembler instruction of the target machine should be defined. GCC defines a set
of generic instructions which are used by the RTL intermediate representation.

8see [S+05], chapter 10.1
9[S+05], chapter 10.2

10see [Mer03]
11see [S+05], chapter 11
12[Par04] gives a very graphic example of how this process works in chapter 2
13[Par04], chapter 3.3, pg. 59ff provides a detailed description of the modifications to the make script

that are necessary.

3.1. Overview 19

The machine description is then used to map each of these generic instructions to
an assembler instruction, and it may also define side effects or constraints for each
instruction.

There is a basic set of instructions that every back end has to define (mostly move,
basic arithmetic and logic operations and jumps), but most other and more complex
instructions may be left to the compiler to express through weaker operations.
Then there is also the runtime library libgcc where unsupported instructions can
be defined. These often include divisions and floating point operations.

• targetname.c: Many macro definitions can get rather complicated and are better
implemented as separate functions. These functions handle the many details of
the application binary interface (ABI) such as function entry and exit duties.

The runtime library libgcc

Not every processor can support the full feature set. It is the compiler’s job to generate
code for unsupported instruction patterns and in many cases this happens transparently
to the programmer of the machine description. For some of these instructions it is
more efficient to generate calls to library functions instead of inline code. These library
functions form the compiler runtime library libgcc. The libgcc consists of two parts:
one part has to be supplied by the author of the machine description (libgcc1) and a
generic part libgcc2. Both are written in C, although some functions in libgcc1 may
be hardcoded in assembler.
libgcc1 typically contains implementations of basic arithmetic and logic functions

such as integer divisions.
Every target machine uses the same libgcc2, but the set of functions differs depending

on whether there is a native implementation for a particular feature or not. In libgcc2
there are arithmetic functions for non-native double precision integer modes but also
initialisations routines that get called automatically by main() before the user program
is run. To perform these initialisation tasks, the compiler inserts a call to a function
called main() right after the function header of the program’s main() routine. This
function manages an array of function pointers called CTORS that are to be filled in
by the linker and point to the constructors of global C++ objects. Since the program
cannot know whether it will be linked against a C++ module at a later time, this call
has to be inserted into every C program as well.

The libgcc also contains emulation routines for basic floating operations. The imple-
mentation of the floating point functions is located in the file gcc/config/fp-bit.c.

Future plans

By the end of 2005 a discussion among GCC developers started about replacing the
RTL back end with a technologically more advanced version. Currently there exists a
proposal from the developers of the low level virtual machine (LLVM) project, some of
which are now employed by Apple Computer, about merging the GCC front end with the

3.2. Port specific observations 20

LLVM optimiser and code generators.14 The LLVM project is featurewise comparable to
the current GIMPLE/RTL back end, but is implemented in C++ and offers additional
features such as compiling to a byte code (for later use with a just-in-time compiler,
similar to the Java approach) and link-time optimisations.

From the discussion it seems as if consensus is that the RTL back end will be replaced
over time but that it will happen gradually and not too fast, since it would be a too
great effort to rewrite all back ends for all supported architectures.

3.1.5. Further documentation

A good reading before starting to port the GCC to a new architecture is [Nil00] combined
with the official GCC Internals Manual ([S+05]), which serves well as a reference. While
the official manual is quite complete, the meaning of some parts is easier to understand
when compared to an actual implementation in one of the better documented back
ends. One of the best back ends in that concern is the one for the Fujitsu FR-V family
of processors, but the Axis CRIS back end is also very interesting to read, especially
since it is the basis of [Nil00].

3.2. Port specific observations

Porting to specialised hardware can involve solving some tricky problems. Since it has to
support almost 40 different architectures, the GCC is written to be easily retargetable,
but it makes some assumptions about the target machine that can make porting a
bit challenging. In his “Porting GCC for Dunces” Hans-Peter Nilsson writes: “GCC is
specifically aimed at CPU’s with 32-bit general registers and byte-addressable memory”.15

This might look intimidating if one sets out to port to a 24-bit word addressable
machine, but previous ports have shown that something even harder is possible.16

This section contains an overview of the design decisions that were used to create the
back end for On Demand’s Control Processor. Also, there will be many examples of how
to implement certain features in the machine description and a discussion of common
fallacies that make the implementation harder than necessary.

3.2.1. Creating code for a 24-bit processor

One obvious problem was that there was no reference back end for a 24-bit architecture in
the GCC’s standard distribution. Almost all back ends used 8-bit bytes and a wordlength
that is a power of two. The only exceptions were the TMS320C3x and TMS320C4x
digital signal processors from Texas Instruments which used 32-bit bytes, and the pdp10
back end which used a hack to support 36-bit words and is no longer part of the standard
distribution.

14[Lat05]
15[Nil00], pg. 17
16[K0̈5] shows that you can even port GCC to an 8 bit accumulator architecture that has only two

registers

3.2. Port specific observations 21

The difficulties with 24-bit words arise from GCC making assumptions like beeing
able to calculate consecutive addresses by expressions of the form (base addr+1) <<
byteshift, for example. But there are some strategies to minimise these problems that
will be shown in this chapter.

The 24-bit words are also problematic in the compiled binary, as the GNU linker is
not too happy about relocating addresses to targets that are not aligned at a power of
two.

About Bytes and Units

If the smallest addressable unit of an architecture is a byte, that architecture is called
byte-addressable. It is not recommended to try to port GCC to a word-addressable
machine and this will cause a lot of problems that will require many of the GCC’s
internals to be changed.

The size of the smallest addressable unit of the target machine is called a unit in the
GCC jargon, and can be defined through the BITS PER UNIT macro in the targetname.h
file. The default size of a unit is 8 bits.

The GCC sources tend to use the terms UNIT and BYTE interchangeably which is very
confusing and important to remember when browsing through the GCC sources.

Word-addressability

Most modern architectures are byte-addressable. There are several variants, though.
The DEC Alpha, for example, can only address 32- and 64-bit words, but the ad-
dresses are still counted in 8-bit bytes (with the lowest 2 bits ignored), making it a
byte-addressable machine in the GCC sense.

So how can the GCC generate code for a machine that counts addresses in steps of 24
bit and whose registers are 24 bit wide? The solution is this that that machine is actually
byte-addressable, but one byte will be 24 bit long. This implies that all datatypes are
at least 24 bit long as well. The common definition of a byte as an 8-bit entity predates
the GNU compiler collection, where a byte is simply defined as the smallest accessible
unit of a certain processor.

The gist of this dilemma is summed up by the following statements:

1. The GCC does not really distinguish between a Unit and a Byte.

2. The GCC can only generate code for byte-addressable machines.

3. The size of a unit = byte is not necessarily 8, although it should be a power of 2.

3.2.2. Machine Modes

The GCC distinguishes a number of machine modes that correspond to the data types
in the programming language. On 32-bit architectures the machine modes default to the
setup shown in figure 3.1.

3.2. Port specific observations 22

Name Length Description
QImode 8 bit Quarter-Integer
HImode 16 bit Half-Integer
SImode 32 bit Single Integer
DImode 64 bit Double Integer
SFmode 32 bit Single Precision Float
DFmode 64 bit Double Precision Float
BLKmode everything else Arbitrary blocks of memory

Table 3.1.: Common machine modes and their default sizes on a 32-bit processor

Although the name suggests something different, especially libgcc depends on QImode
to be defined, and to be the smallest available mode for the target processor. For this
reason, the Control Processor back end defines QImode as the register-wide 24-bit mode
and HImode as the double precision integer mode with a length of 48 bit.

Selecting the floating point modes is not as critical as the integer modes; on the Control
Processor the QFmode and the HFmode and the floating point format of the back end for
the TMS320C4x from Texas Instruments were chosen.

Floating point emulation

Even if the target machine is integer-only, most programming languages expect that
floating point operations are available. On architectures that support a numerical co-
processor, like the Intel 80386, this is solved by using an FPU simulator, that handles
the illegal instruction interrupt. But for processors that do not support floating point
instructions the compiler has to generate calls to an emulation library. The GCC comes
with such a library, which is part of libgcc. The necessary functions are located in the
gcc/config/fp-bit.c file, which is to be included in the Makefile fragment of the back
end, gcc/config/targetname/t-targetname.

The author of the back end only needs to choose one of the supported storage formats,
and the GCC will substitute library calls for all floating point operations. Also, an
instruction pattern to copy floating point numbers needs to be defined.

Again, the floating point emulation library of the GCC makes some assumptions about
the target machine that may be in conflict with platforms where the size of a byte is
different from 8. The data type declarations expect the machine mode of int to be
SImode, which is only true for byte-addressable 32-bit platforms. Another problem that
may be encountered is that the generated floating point functions have the wrong mode-
suffix; likely sf, for single-precision floats, where it should read qf, as it would make sense
for a register-sized machine mode. This can be fixed by registering the floating point
functions in the TARGET INIT LIBFUNCS, just as it is done with the integer functions of
libgcc1, by a call to the set optab libfunc() function.

3.2. Port specific observations 23

How to implement double-sized integers

Programming languages tend to offer many different data types to the programmer;
processors sometimes don’t. Large integers are necessary to hold the result of an integer
multiplication, but also have uses for filesystem pointers and other things.

The GCC encourages the definition of data types that are unsupported by the target
processor. Once the machine mode has been specified, it is sufficient to define the move
operations using shorter instructions, and GCC will synthesise every other operation.
It does so by splitting the data and storing it into consecutive registers. The resulting
code will not be very efficient if the processor does not have a carry flag, though.

The back end for the On Demand Control Processor defines a 48-bit integer datatype
that way.

3.2.3. Definition of instruction patterns

There are different kinds of instruction patterns that can be defined in the machine
description. In the most straightforward case, a compiler-known instruction pattern
would map directly to an assembler instruction on the target machine. For these cases,
the define insn patterns can be used. Examples for define insn patterns are Figure
3.4 and 3.5. The define insn expression takes five parameters:

1. The name of the instruction. In case of a compiler-known pattern (like movqi), it
is used by the code generator to identify the instruction and its machine mode17.

2. The RTL expression pattern. It defines the semantics of the instruction, and
is also used by the code generator to match RTL expressions of unnamed ex-
pressions. RTL expressions consist of an operation whose operands may contain
subexpressions. Each operand should have a postfix declaring its machine mode.
The match operand expression is used to refer to an operand of the instruction
pattern.18

3. A condition. Conditions control the availability of an instruction on the current
sub-target or in a specific pass of the compilation.

4. The assembler template. This is either a string that has to be processed and
output to the Assembler, or a piece of C-code that returns the correct assembler
template. It can also span several lines to provide different templates for every al-
ternative specified by the constraints. See [S+05], chapter 13.6, for a more detailed
explanation.

5. An optional vector of attributes. Attributes are used by the instruction scheduler
to specify the type of an instruction (integer, jump), for instance.

Sometimes a standard pattern translates to a sequence of assembler instructions. In
this case a define expand pattern should be used. An example for this is the pushqi
pattern on the Control Processor. During code generation, expand patterns are not
17GCC jargon for: data type
18A detailed explanation is given in [S+05], chapter 13.4

3.2. Port specific observations 24

; PUSH
; sp = r62
;
(define_expand "pushqi"

[(set (mem:QI (plus:QI (reg:QI 62) (const_int -1)))
(match_operand:QI 0 "regimm_operand" "ri"))

(set (reg:QI 62) (minus:QI (reg:QI 62) (const_int 1)))]
""
""

)

Figure 3.2.: How to synthesise a push pattern with atomic instructions

identified through their RTL pattern (the second parameter), but by their name. The
RTL sequence that follows the name is then used to describe the operations that the
instruction should be expanded to. They will then replace the pattern that had the
instruction’s name in the program and a new round of pattern matching will start.

Then, there is sometimes the necessity to generate different code for the same standard
instruction depending on the circumstances. An example for this would be the prologue
pattern. This is the other variant of expander definitions. In this variant the RTL
template part is left empty and the RTLs are generated by C-code that is placed in the
last parameter. This C function can deliberately stop the pattern matcher from trying
to find another pattern for the current template via the DONE; macro. This is the way
the function prologue instruction is implemented, for example. If the expander definition
is only used to prepare or check some of the instruction’s parameters, the DONE; macro
can be omitted and the code generator will continue to look for a pattern that matches
the one in the RTL template.

The branch instructions on the On Demand Control Processor are an example for
the second variant of expander definitions. The problem is that the GCC expects the
target processor to use a condition code (CC) register to save the result of a comparison
instruction. On the Control Processor, conditions may be applied to any instruction,
so the compare and branch instructions form a single more complex assembler line. In
the approach taken, the pattern for the cmpqi operations just stores the parameters into
global variables that are later used by the branch pattern which in fact only prepares the
parameters for the real branch pattern that is specified in the RTL template as shown
in figure 3.3.

A third kind of instruction patterns are split patterns. These patterns show the code
generator how to replace a complex instruction with several simpler ones. Note that
this is very similar to the expander definitions: In fact, both patterns are used for the
same purpose, but they are evaluated in different stages of the compilation. Expander
definitions are expanded very early, and are very flexible, whereas splits are performed
in a later pass and impose stricter rules. For instance, it is unsafe to introduce new
pseudo registers after the reload pass has completed. Splits behave almost like peephole

3.2. Port specific observations 25

ilvy.md:

(define_expand "cmpqi"
[(set (reg 60)

(compare (match_operand:QI 0 "register_operand" "r")
(match_operand:QI 1 "regimm_operand" "ri")))]

""
{

ilvy_cmp_op0 = operands[0];
ilvy_cmp_op1 = operands[1];

DONE;
})

(define_expand "bgeu"
[(set (pc)

(if_then_else (match_dup 1)
(label_ref (match_operand 0 "" ""))
(pc)))]

""
"{ operands[1] = ilvy_emit_conditional_branch (GEU); }"

)

ilvy.c:

rtx ilvy_emit_conditional_branch (enum rtx_code code)
{

/* Use the operands stored by the preceding cmp insn */
rtx op0 = ilvy_cmp_op0, op1 = ilvy_cmp_op1;

/* Zero the operands. */
ilvy_cmp_op0 = ilvy_cmp_op1 = NULL_RTX;

/* Return the branch parameters */
return gen_rtx_fmt_ee (code, Pmode, op0, op1);

}

Figure 3.3.: How to use an expander pattern to prepare arguments

3.2. Port specific observations 26

optimisations. They also play an important role with delay slot filling.19

3.2.4. Instruction selection

As mentioned before, the GCC’s instruction selection works by simple pattern matching,
but it does provide mechanisms to control the selection process. One consequence of the
pattern matching algorithm is that the order of the pattern definitions matters; if more
than one pattern matches the RTL template one that was defined earlier will be used.

If no suitable pattern can be found, the expand pass tries to generalise the operation
by using a mathematical equivalent expression or by splitting a complex operation into
smaller sub-operations (an example for this would be a copy operation of an entity in
BLKmode). If this does not work the expander tries to generate a call to a compiler-
known function. A list of these functions is kept in the optabs which can be modified
by the back end to let the compiler know of functions that are specified in the back-end-
specific part of libgcc.

Unlike Burg-based code generators which use a tree-pattern matching algorithm, the
GCC does not offer a too sophisticated cost model, though there is the TARGET RTX COSTS
hook that lets the back end assign costs to specific RTL expressions.20 The scheduler
interprets the cost value that is assigned here as the latency of the instruction.

A more important role in the instruction selection process is occupied by predicates
and constraints. While they both fullfill very similar tasks, which is to impose constraints
on the possible usage of a specific instruction pattern, they are evaluated at different
times. Their relationship could be described as predicates doing a rough preselection
and constraints performing the fine tuning of the operands.

Predicates

A Predicate is used to describe the types of operands a certain instruction may take.
Common predicates are memory operand or register operand. But of course the back
end may define machine-specific predicates, like the often used regimm operand on the
On Demand Control Processor, which was used to denote operations that accept both a
register or an immediate value. Figure 3.4 shows the use of predicates for the logical shift
right operation on the Control Processor. While the destination and source operands
need to be registers, the shift amount can either be given in a register or as an immediate
value.

Constraints

Constraints allow for much more detail in the instruction selection process. As with the
predicates, it is possible to have user defined constraints, too. A constraint is a short
string that is used to define several variations of the same instruction. The example in
figure 3.5 shows a move operation. Moves write to the first operand; thus the “=” in

19see [S+05], chapter 13
20see [S+05], chapter 14

3.2. Port specific observations 27

(define_insn "lshrqi3"
[(set (match_operand:QI 0 "register_operand" "=r")

(lshiftrt:QI
(match_operand:QI 1 "register_operand" "r0")
(match_operand:QI 2 "regimm_operand" "ri")))]

""
"%0 = %1 >>> %2;"

)

Figure 3.4.: The GCC instruction pattern for a logical right-shift on the Control Proces-
sor

the first line. The alternatives are seperated by commas: If the destination is a register,
the source may be a register (r), a memory location (m) or an immediate value (i).
Memory-memory moves are not permitted.

(define_insn "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r, m")

(match_operand:QI 1 "general_operand" "rmi, ri"))]
""
"%0 = %1;"

)

Figure 3.5.: The GCC instruction pattern for a copy operation the Control Processor

3.2.5. Instruction scheduling for VLIW slots

A relatively new addition to the GNU Compiler Collection is the inclusion of a pipeline
hazard generator. To improve performance, modern processors come with many identical
functional units that can process the instruction stream in parallel. On many processors
this happens transparently, like the superscalar and out-of-order architectures, but some
designs take a different approach and let the compiler do the work of assigning the
instructions to functional units of the CPU.

An example for these are the very long instruction word (VLIW) architectures, like
the Intel Itanium or the Fujitsu FR-V family of processors. The On Demand Control
Processor also uses an explicit VLIW encoding.

The GCC provides a powerful description language for processor pipelines which inte-
grates nicely with the rest of the machine description. This language allows the definition
of the processor’s functional units and the constraints that are imposed on the assign-
ment of instructions to those units.

The instruction scheduler depends on an exact description of the processor’s pipeline.
It has to decide on whether an instruction may be issued at the current time, and how

3.2. Port specific observations 28

to order the instructions so that idle cycles can be minimised.
To see if it is legal to issue an instruction, two kinds of constraints must be met:

1. Data dependency: All operands of an instruction must be available. This implies
that an instruction may not depend on the result of any instruction that belongs
to the same instruction bundle.

2. Instruction latency: Often the result of a more complicated calculation or a mem-
ory access will not be available immediately, but takes a fixed number of cycles to
arrive. This is not an issue with the On Demand Control Processor.

To determine the availability of functional units at a certain time, the pipeline descrip-
tion is transformed into a deterministic finite-state automata (DFA) with the following
mapping: States depict issue cycles with the assignment of functional units and transi-
tions correspond to the possibility of issuing a certain instruction at this point in time.21

The machine description has to be extended to assign instruction class attributes to the
particular instruction patterns, so the scheduler knows which processing units are going
to be used, and what the latency of the instruction will be. The pipeline description is
made up of regular expressions which are later used to create the DFA. The expressions
describe how functional CPU units are allocated by each class of instructions. Figure
3.6 shows how an integer operation can execute in each of the units slot0-slot3 and
how the result will be available by the start of the next instruction bundle.

The statement declares that the “integer”-class units will be used and that the default
latency is 1. The statement only applies to instructions that have the attribute “int”
set. The final string parameter contains a regular expression that defines the possible
allocation of the functional units. An expression like “slot2+slot2” means that for two
consecutive cycles the unit “slot2” will be allocated. A “*” is shorthand for multiple
applications of the “+” operator. Alternatives can be specified with the “|” operator.

(define_insn_reservation "integer" 1 (eq_attr "type" "int")
"(slot0) | (slot1) | (slot2) | (slot 3)"

)

Figure 3.6.: Pipeline description: Reservation of CPU units by an integer instruction

The relationship between the functional units of the CPU would be declared as in
figure 3.7.

The names of the units are declared in the define query cpu unit statement. Two
sets define the sequence in which the units may be allocated. The presence set of a given
unit defines a set of slots that have to be already allocated to make the unit available.
The absence set does the opposite and defines units that must not be allocated before.

The code that uses the DFA to perform the actual instruction scheduling is back end
specific; luckily the back end for the FR-V family of processors contains a very general

21see [S+05], chapter 13.19.8

3.2. Port specific observations 29

(define_query_cpu_unit "slot0, slot1, slot2, slot3")

(presence_set "slot1" "slot0")
(presence_set "slot2" "slot1")
(presence_set "slot3" "slot2")

(absence_set "slot0" "slot1 slot2 slot3")
(absence_set "slot1" "slot2 slot3")
(absence_set "slot2" "slot3")

Figure 3.7.: Pipeline description: Declaration of integer CPU units

implementation that can be reused with little modification. It even supports multiple
instruction groups which is a nice feature in case the CPU is not built out of identical
units.

The instruction scheduling algorithm

The bundling of instructions to VLIW packets is a process that happens in three steps22:

1. The GCC scheduling passes: The standard scheduler takes care of instruction
latencies and tries to reorder the instructions in a way that pipeline stalls are
minimised. This pass is only enabled at the optimisation levels -O2, -O3 and -Os.

2. TARGET MACHINE DEPENDENT REORG: This hook is called at all optimisation levels.23

Here, the necessary nops are inserted and the labels are aligned at the instruction
word boundaries.

3. TARGET ASM FUNCTION PROLOGUE: The actual bundling is performed in this hook.
This hook was originally intended to output the assembler code for the function
prologue, but has been superseded by the more powerful prologue instruction
pattern. It is being hijacked for the bundling process because it is called just
before a function is output to the assembler. The function prologue hook clears
a flag for each instruction that should start a new bundle. It also reorders the
instructions for processors that have different instruction classes associated with
the instruction slots. Because this reordering process can destroy the meaning of
the RTL stream and thus confuse the code generator, it can only be performed
right before the assembly output happens.

Eventually, the ASM OUTPUT OPCODE hook interprets the bundling flag and adds the
curly braces that indicate instruction bundles before printing the instructions to the
assembler. While the DFA of the pipeline description is not used to assign the instruc-
tions to execution slots, all three passes use it to determine the correctness of a possible
22see the documentation in file gcc/config/frv/frv.md of [Fou05]
23see [S+05], chapter 14.29

3.2. Port specific observations 30

combination of instructions in a VLIW bundle. The Control Processor back end uses
a simplified version of the FRV back end’s algorithm, because it has only one uniform
class of integer execution units. The scheduler will add an instruction to the current
bundle if the following conditions are satisfied:

• The total number of instructions in a bundle is < 4.

• The DFA allows to add the current instruction. This is done through the query
interface of the pipeline description.

• There are no register or memory conflicts between the current instruction and all
other instructions in the current bundle. For this check, internal data structures
of the GCC can be used.

Unlike the FRV back end, the Control Processor back end currently does not reorder
the instructions. For the reordering, the GCC’s instruction scheduler is used.

3.2.6. Defining addressing modes

The decision wether a specific addressing mode is legal for the target processor is made
by the LEGITIMATE ADDRESS P macro, which should be defined in the targetname.h file.
This macro gets called twice for each address during the compilation. The first time it
is invoked with an RTL expression that may still contain pseudo registers; the second
time, a stricter check is needed, which means that the address will be used in that exact
form as it is passed to LEGITIMATE ADDRESS P.

The GCC can and will use very complex addressing modes that may include side
effects, like a post-increment of the address register - a feature that was included in an
earlier version of the Control Processor. It will also try to generate memory indirect
addresses and address + offset modes. The LEGITIMATE ADDRESS P may be used to
restrict the size of the offset or displacement to 12 bit, as needed by the Control Processor.

3.2.7. Function prologue and epilogue

The prologue and epilogue instruction patterns are generated at the beginning and
end of each function. There are also the older TARGET ASM FUNCTION PROLOGUE and
TARGET ASM FUNCTION EPILOGUE macros that are called before a function is written to
the assembler, but it is recommended to use the instruction patterns instead. However,
the macros are still used as a trigger to perform instruction bundling.

The prologue and epilogue patterns are ideally written as expander definitions that
generate the necessary code to set up the function stack frame and save the callee-saved
registers. This code has to be supplied by the back end, as it depends heavily on the
ABI.

In the Control Processor’s back end the function prologue does the following things:

1. Push the old Frame Pointer to the stack.

2. Set the frame pointer (fp) to the value of the current stack pointer (sp)

3.2. Port specific observations 31

3. Decrement the stack pointer by the size of the stack frame.

4. Save the return address on the stack.

5. Push every callee-saved register that will be used24 by the function.

The epilogue performs the complimentary actions in reverse order. Eventually, it emits
a return instruction.

3.2.8. Function calls

In order to implement call tables, virtual functions or function parameters it is neces-
sary that the target processor supports a call to a non-constant address. The Control
Processor does not have such an instruction. The jump() operation, on the other hand,
would take the destination address in a register, but this approach would still leave the
return address to be written to register 63. This leads to yet another problem: On the
Control Processor, the program counter is not directly accessible either.

To solve this problem a label is emitted just before the jump to the function. Then,
in order to get the program counter (PC) into r63, as the callee function expects it, a
load-immediate of the label is issued. While the actual jump is made, r63 is increased
by one, to point to the address of the next instruction. Figure 3.8 shows the relevant
piece of the machine description.

The XEXP() is just there to cope with an oddity of the assembler’s syntax. Usually
memory references are indicated by enclosing them in a port[] expression, but this does
not apply to the targets of jump instruction. So the operand is de-referenced, to convert
a (mem:qi(reg:qi)) RTX into a (reg:qi) expression.

(define_insn "call"
[(call (match_operand:QI 0 "memory_operand" "U")

(match_operand:QI 1 "general_operand" ""))]
""
{

operands[1] = XEXP(operands[0], 0);
if (REG_P(operands[1])) {

return "{r63 = local_label%=; ; ; ; }\t"
"local_label%=:"
"\t{ r63 = r63 + 1; ; jump(%1); ; }";

}
return "jsr(r63, %1); // call\n";

}
)

Figure 3.8.: How to fake access to the Program Counter

24the regs ever live[regno] predicate can be used to decide this

4. Defining an ABI

The application binary interface (ABI) defines the way that functions communicate with
each other. It defines the calling conventions, the basic data type layout and the way a
function stack frame is set up. The definition of an ABI should be the first step when
porting a compiler. Often the ABI is already existent, but many times it has to be
defined from scratch.

The ABI for the On Demand Control Processor was changed a few times during the
design of the GCC back end. In the beginning the feasibility of 8-bit data types was
evaluated. Since there is not much to gain by having the programming language support
a non-native data type, this idea was discarded.

This chapter describes the final ABI for the On Demand Control Processor.

4.1. Data Types

The Control Processor has 64 registers with a wordlength of 24 bits. The ILVY assembly
language allows for 24- and 12-bit immediate values. See [Win05] for more information.
The standard C data types are defined as follows:

C Type Length
int 24 bit
short int 24 bit
long int 48 bit
char 24 bit
float 24 bit
double 48 bit

Table 4.1.: Common C data types and their respective sizes on the Control Processor

Characters are represented by 24 bit. While this is inefficient, text processing is not
the key field of application of the Control Processor. The Control Processor has no
support for floating point operations; they have to be emulated in software.

4.2. Memory Layout

The data memory can be addressed in steps of 24 bits. Thus, all data structures should
be aligned on 24 bit boundaries. Bytewise addressing modes have to be emulated by the
compiler.

32

4.3. Register Usage 33

Variables are stored at address port[0] and upwards, the stack is located at port[4095]
and grows downwards.

Stack

?

6

Heap

Global Variables

6

0

4096

Figure 4.1.: Data memory layout for the On Demand Control Processor

4.3. Register Usage

Name Usage Comments
r0 function return value
r1-r6 argument registers
r7-r14 callee-saved registers
r15-r60 caller-saved temporary registers
r61 frame pointer (or callee-saved register)
r62 stack pointer (grows downwards)
r63 return address

Table 4.2.: The purpose of the Control Processor’s registers

Register r0 holds the return value of a function. If the return value is larger than the
size of r0, a pointer to a location on the stack is passed. The first six arguments are
passed in registers r1-r6.

Starting at r7, there are 8 callee-saved registers. If a function wants to use these
registers, it has to save them onto the stack and restore their original values before
returning to the caller function.

The bulk of the registers, r15-r60 are caller-saved registers. They may get overwritten
when a function is called. It is good practice to always have more caller-saved registers
than callee-saved registers. To fully utilise the many registers of the Control Processor,
an interprocedural register allocation mechanism would be of advantage. Unfortunately,

4.4. Function Stack Frame 34

the GCC does not yet support this. Function inlining is one way to increase the register
usage, but it also increases the code size significantly.

The frame pointer is stored in r61. It points to the beginning of the function stack
frame and is used in the function epilogue to restore the original layout of the stack on
function return. It may be omitted in some cases1, in which it is used as an additional
callee-saved register.

The stack pointer marks the current bottom end of the stack, and is stored in r61.
Finally, the return address for the current function is passed in r63. This is the address

of the instruction after the last function call.

4.4. Function Stack Frame

The first 6 function arguments are passed in r1-r6, all other parameters are pushed to
the stack. In functions with variable numbers of arguments (such as “,...” parameters
in C) these parameters are passed on the stack to ensure array-like behavior.2

Local Variables reside in temporary registers where possible, and are spilled to the
stack when necessary.

� fp

Function Argument 7

...

Old Return Address

Local Variable 1

Local Variable 2

...

Spilled Register 1

Spilled Register 2
� sp

?

Stack

Figure 4.2.: layout of the Function Stack Frame

1see the documentation of the GCC compiler switch -fomit-framepointer
2see [Nil00] pg. 66f

5. GNU Binutils

The GNU Binutils is a collection of utilities that operate on binary files. They include
tools that are essential for building programs, like the GNU Assembler (gas) and the
GNU Linker (ld).

Subdirectory Description
bfd The BFD library - the basis of all the Binutils
binutils A collection of various binary utilities, such as objdump
gas The GNU Assembler
gprof The GNU Profiler
ld The GNU Linker
libiberty A tiny subset of the C standard library
opcodes The disassembler library

Figure 5.1.: The components of the GNU Binutils

The Binutils can be ported independently from the compiler and ideally two people
or teams could work on the compiler and the binutils at the same time.

In this chapter, an introduction into the most important libraries and tools of the GNU
Binutils is given. Also, there will be short description of the modifications necessary for
supporting a new target architecture.

5.1. Manipulating object files with libbfd

The tools that form the GNU Binutils have in common that they read or write binary
object files at some point. The functions to perform binary file I/O and the management
of the necessary symbol tables are concentrated in the BFD1 library, libbfd. This library
consists of a front end that the programs talk to and a lot of back ends for all sensible
combinations of object formats and architectures.

The BFD library supports many different object file formats, such as a.out, b.out, the
common object file format (COFF) and the executable and linking format (ELF). If a
new architecture is to be defined, it is suggested that the ELF format is chosen. It has
shown to be the most flexible and widest supported format.2

The libbfd has to live a double life, because it is distributed with two different pack-
ages, the GNU Binutils and the GNU Debugger (GDB). This fact complicates porting,
because there are two versions of libbfd that need to be maintained. So it is strongly

1This acronym has been retro-fitted to stand for Binary File Descriptor
2see [Cha03], chapter 1

35

5.1. Manipulating object files with libbfd 36

suggested to use a version of GDB that was released closely after the version of the
Binutils. Otherwise it would be difficult to patch two incompatible versions of the same
library. To make things even more confusing, the GDB and Binutils projects seem to
have release cycles of about a year, but tend to release alternating every 6 months. This
remark is also valid for the disassembler library, libopcode that is also shared by binutils
and GDB.

5.1.1. Sections

A binary file is divided into different sections that are reserved for machine instructions
(“.code”, “.text”), initialised data (“.data”) and unitialised data (“.bss”). The exact
amount and location of sections is different from file format to file format, but the above
three should be supported by all formats. An application may have - depending on the
object format - more than one of each section.3

However, during the assembly some more section names are introduced; they are used
to indicate unresolved references. They are called “const” sections and are the absolute
section, the undefined section, the common section and the indirect section. These
sections are global and values in there may not be changed by the application. However,
they may vanish in the linking process.4

5.1.2. Symbols

For every label5 that is used, the assembler makes an entry into the symbol table. The
symbol table is a list of all labels defined in the current file, and the location they point
to in the context of the file. Therefore the assembler has to pass a list of every symbol
to the BFD library.

Symbols have several flags attached to them.6

• BSF GLOBAL: This defines whether a symbol should be visible from other mod-
ules. A public global variable or the name of a library function should have this
flag.

• BSF LOCAL: Local implies that the name is not unique and may be shared by
multiple labels from different files.

• BSF UNKNOWN: This is for symbols that are referenced in the current file, but
are defined somewhere else.

Some information about symbols is carried by the section a symbol belongs to: For
example, if a symbol is an uninitialised global variable, its section should always point
to com section ptr, which is defined by libbfd. The common keyword is used in the

3For a very technical overview, see [Hau98]
4see [Fou06a], file bfd-in.h
5For an assembler, there is no difference between a label and a variable. Thus the term “label” is used

throughout this section.
6see [Cha03], chapter 2.7, pg. 39

5.1. Manipulating object files with libbfd 37

assembler to mark uninitialised global variables that are located in the “common” data
pool. It will show up as section “*COM*” after the assembly - if looked at with objdump
-x - and the variables will be stored in the “.bss” section after linking.

.data
var list_ptr = list; // Symbol "list_ptr", Reloc for "list"
.code
public main: // public symbol "main"
{

r1 = port[list_ptr + 1]; // Reloc for "list_ptr", addend 1
jsr(r63, free); // Reloc for "free"
;
;

}

Figure 5.2.: Symbols versus Relocations

5.1.3. Relocations

The counterpart of the symbol table is called a relocation. Relocations exist to solve the
following problem: The assembler has to translate all references to symbols into numeric
addresses, but because it assembles only one file at a time, it cannot know the final
numeric value of an address. It is the linker’s job to go through all symbol references
and relocate them to their final values. Therefore the assembler has to prepare a table
containing every symbolic reference within the code and the initialised data. Figure
5.2 shows an example of assembler code that generates symbol table entries as well as
relocations.

Typically, a back end defines many different kinds of relocations. Data might be
initialised to be a simple pointer (word-sized absolute relocation), but can also point to
the member of a data structure; in this case an offset has to be added to the value of
the relocation (this is called the addend in the BFD jargon). A symbolic reference in
the code could be either absolute, like a library call, but also relative to the program
counter (PC-relative), like branches to a very close target on some machines.

In order to support relocations, libbfd has to be extended with a configuration file
for the new architecture, which is to be named [format]-[cputype].c. For each type
of relocation the architecture wants to support, a HOWTO-macro needs to be defined
in this file. The HOWTO-macro explains the linker how to find the exact location and
perform the relocation. This is not trivial, since often only part of a binary encoded
instruction has to be replaced or modified with a new value.

5.1.4. Porting the BFD library

Porting libbfd involves creating two files: a very short CPU definition that is located in
cpu-[cputype].c, which contains the bfd arch info type record for the new architec-

5.1. Manipulating object files with libbfd 38

ture, and the definition of the architectures relocations and other features, [format]-
[cputype].c.

It is best to decide on the types of relocation the architecture needs to support first.
Then, mostly the HOWTO macro and a lookup mechanism to translate the generic
relocation types into the correct mechanism, as described by the HOWTO macro.

The HOWTO macro is insufficient for 24-bit architectures, because it expects the
linker to be able to convert relocated addresses to the target’s native format through a
binary rightshift. The best solution to this problem would be to add a divisor field to
the macro and extend the bfd perform relocation() function to divide every address
by this field. This way, arbitrary bytelengths could be supported. The interim imple-
mentation on the Control Processor moves this task to the elf loader of the simulator,
that has to convert each address before executing a program.

Another issue on the Control Processor is that the way libbfd handles relocations is
not ideally suited for harvard architectures. Consider the following piece of assembler
code:

{
r1 = data;
r2 = data_len;
r3 = 1;
r4 = compare_function;

}
{

jsr(r63, qsort);
;
;
;

}

Figure 5.3.: Pointers into two different memories.

The obvious problem is that the assembler cannot know where an address is pointing
to. On machines where code and data memory have the same bytelength this is not
a problem. But on the Control Processor, the code memory is addressed in steps of 1
instruction word, which is much longer than the 24 bits of a data word. For this reason
the assembler will install an unknown relocation for each symbol which is then replaced
- done by the special function supplied to the HOWTO macro - with a code respectively
data relocation, depending on whether the symbol that is referenced lies in the .text or
in the .data or the .bss section.

5.1.5. Debugging

In the process of debugging newly defined relocation types, the objdump is an essential
tool. Combined with a libopcode disassembler library it can show the symbol tables,

5.2. The Assembler gas 39

assembler instructions and relocations of an object file or a linked executable.
The objdump tool is part of the GNU Binutils distribution and heavily based on the

BFD library.

5.2. The Assembler gas

The GNU Assembler (gas) is really a collection of assemblers that are primarily meant to
be used to work with the output of the GCC. If there is a system assembler on a particular
architecture gas will usually emulate its behaviour. Still the GNU assembler has a
very distinct syntax and is not easily adjusted to support more complicated assembler
languages like the one used for the On Demand Control Processor. But for its main
purpose, which is to be a quick translator for the output of the GCC its design seems to
be appropriate.7

5.2.1. Porting gas

To add a new assembler to the collection of GNU assemblers, the parser for the assembly
language has to be rewritten. Basically this consists of a routine that translates one line
of assembler code into some internal emit * calls, that tell gas how to look up the binary
instruction codes (opcodes) and where to place relocation entries.

5.2.2. A comparison with the native assembler

As mentioned before, the native assembler for the On Demand Control Processor is
different from the GNU Assembler in that it supports a more complicated assembler
dialect and is written in C++. It also makes extensive use of the lex and yacc tools to
parse the assembly language.

This approach was taken because the Control Processor was originally to be pro-
grammed only in assembler and thus had to offer a user-friendly language. It also was
designed to be easily extendible. With the availability of a compiler, however, these
demands have shifted; and performance is now more important over readability.

For this reason, there is a certain possibility that future versions of the Control Pro-
cessor will use a gas based assembler.

5.3. The Linker ld

The GNU Linker is the last tool that is invoked when compiling a program. Its job is
to combine all the different object files and libraries into the final executable. It further
also relocates the data and code sections and ties up all symbol references. To do these
tasks, ld makes extensive use of the BFD library that is an integral part of the GNU
Binutils.

7[EFf02], chapter 1

5.3. The Linker ld 40

GNU ld gives the user full control over the linking process; this is done through the
Linker Command Language which is a superset of the AT&T Link Editor Command
Language syntax. The GNU linker is also known for its ability to continue on errors and
to provide more useful debugging information than older linkers.8

5.3.1. The Emulation

The different combinations of linker scripts and the default behaviour of the linker for
a specific target are called emulations. A linker target usually has to support several
variations, which can be controlled by the user via command line switches.

Each variation has its own default linker script. The linker scripts for a certain target
are generated from a general definition at build time. This general definition consists of
the linker script embedded in a shell script; this shell script has to emit the final linker
script and will be called with different settings of various shell variables.9

With this mechanism it is possible to generate the scripts for all emulations a target
must support.

5.3.2. The Linker Script

The linking process is totally scriptable, which is an important feature, since different
architectures need very different layouts of executable files. The GNU linker allows to
define a default linking script for the target architecture, but the user may also provide
a different script for more flexibility.

Linker Scripts control the final layout of the named sections in the executable file.
Each section can be described by its name and two addresses. There is the virtual
memory address (VMA) that is the address at which the section will be located when
the final executable will be run. Then there is also the load memory address (LMA),
which is the address at which the section will be loaded. These two addresses may point
to the same location, but a section could be loaded into ROM and the be copied into
RAM at runtime. This mechanism makes it possible to initialise global variables in
ROM-able code.10

5.3.3. Porting ld

To port the GNU linker to a new target architecture there is not much to be done. This
is mostly because ld is merely a front end to functionality found in the BFD library.
In most cases it is sufficient to supply a new linker script. Figure 5.4 shows the linker
script for the On Demand Control Processor.

The Control Processor is a Harvard Architecture which means that it has separate
memories and address spaces for data and code. This is usual practice with many
digital signal processors (DSP) that run static code off a specialised instruction memory.

8[CT04], chapter 1
9see [BCTD00], chapter 2

10see [CT04], chapter 3

5.3. The Linker ld 41

Unfortunately this bears a little annoyance, because the linker will always complain
about overlapping code and data sections. The only solution for this problem is to
manually disable the warning in the elf.c file of the BFD library.

The Linker Script of the On Demand Control Processor is a very simple one, which
only loads the individual sections one after another and takes care of the memory layout
described in the application binary interface.

SECTIONS {
. = 0x0; /* let the code start at address zero */
.text : { *(.text) }
. = 0x0; /* data starts at address zero, too */
.data : { *(.data) }
.bss : { *(.bss) }
_end = .; /* _end marks the end of the .bss section */

}

Figure 5.4.: The linker script for the On Demand Control Processor

The end pointer is a special symbol used by the C library Newlib. It marks the end of
the data section and thus the beginning of the heap memory. It is used by the sbrk()
function that is called by malloc() to request another block of memory.

6. The GNU Debugger

Work on the GNU Debugger began shortly after the GCC project was started. Again,
the main author was Richard Stallman, but soon the project would be maintained by
Cygnus Solutions which was founded by John Gilmore and was bought by Red Hat in
2000.

The GNU Debugger has excellent support for C and C++ but also some other lan-
guages, knows about as many target platforms as are supported by the BFD library and
supports remote and simulator based debugging. It is perhaps the most used debugger
to date.1

6.1. The structure of GDB

The GNU Debugger consists of three components.2

1. The user interface.

2. The symbol management part, with binary interpretation performed by the BFD
library, the debug symbol interpreter and also support for the source languages.

3. The target side, which includes execution control and memory manipulation rou-
tines.

A debugging session may either run native, where GDB is compiled to run on the
same machine as the debugged program, remote, where it communicates with the target
machine over a network or simulated where the program is run in a simulator that is
invoked by GDB.3

In the case of an embedded system, choosing one of the last two options is more
sensible. Especially for automated testing (of the GCC, for instance) the simulator
target has many advantages.

6.2. Using GDB

In order to use the GNU Debugger with an integrated simulator, it is necessary to switch
the target for the session. This can be done by issuing a “target sim” command to the
debugger. This will tell GDB to use the target platform’s simulator.

1see [She06], chapter 1
2see [GS05], chapter 2
3see [SPS+05]

42

6.3. Porting the GNU Debugger 43

If the debugger is to be used interactively; to find bugs and inspect unexpected be-
haviour of programs, there exist a number of very good graphical front ends to GDB,
such as the Data Display Debugger (ddd).4

6.3. Porting the GNU Debugger

The GNU Debugger depends - as most of the utilities discussed herein - on the GNU
BFD library and the libopcode disassembler library. Unfortunately, the maintainers of
GDB decided to ship GDB with its own copy of libbfd which is usually a snapshot of
another time in development than the one that comes with the GNU Binutils.

After the modifications of libbfd were carefully transcribed into GDB’s version of
libbfd, the target vector has to be written:

The target vector is the data structure that defines the interface between the GDB
and the debugged process or the simulator.5 The GDB needs very detailed information
about the ABI, as it has to find local variables inside the stack frame, for instance.
This information should go into a file called target-tdep.c in the gdb/ directory of the
sources.

The other important part - at least for an embedded processor - is the simulator
interface. The sim/ subdirectory contains interfaces for all target machines that have
a simulator defined. These interfaces perform execution control (like the loading of a
program and single-stepping through it), target manipulation (like reading and writing
to registers and variables on the simulated machine) but also provide a callback interface
that can be used to perform tasks like printf() on the host machine, so it is possible
to test almost any program on targets that have very limited capabilities.

The simulator interface has a number of function calls that control the simulator and
the callback library:

• sim open(), sim close(): For the Control Processor, these functions initialise
and terminate an instance of the simulator.

• sim load(): This is the function to load a program into the simulator. The
exact functionality varies a little depending on the type of simulator (process or a
hardware). On the Control Processor (hardware) simulator, the program is loaded
into memory, and the program counter is reset to the start symbol.

• sim read(), sim write(): These functions allow GDB to read and write to mem-
ory locations on the simulated hardware.

• sim fetch register(), sim store register(): Through these functions, the
debugger can inspect the values of the simulated CPU’s registers, and also modify
their contents.

4http://www.gnu.org/software/ddd/
5see [GS05], chapter 10

6.3. Porting the GNU Debugger 44

• sim info(): This is a debugging function that asks the simulator to print any
statistics it has collected.

• sim resume(): This call instructs the simulator to either perform a single step or
to resume the simulation. It also allows the debugger to send an event (hardware
interrupt or operating system signal) to the simulated program.

• sim stop(): The stop is an asynchronous event to stop the simulation immedi-
ately.

• sim stop reason(): Through this interface, the debugger can query the reason
why the simulation has stopped. If the simulation was stopped by any signal, the
type of that signal is reported, too.

The creation of breakpoints is handled by a callback in the target-tdep.c file that
registers them with the simulator.

7. The New C runtime library

Many embedded systems make use of the newlib C runtime library. This is a collection
of library functions that were assembled by Cygnus Support and came from different
sources. They were released under a BSD-type license. It is the only part of the system
that is not officially a GNU project.1 The newlib implements a full C standard library,
including an IEEE floating point library. It also supports several operating system
specific calls, such as getpid(), gettimeoftheday() or exit() that are implemented
as stubs wich means that their functionality has to be provided by the user. Alternatively
the newlib also supports several embedded operating systems such as uC/OS or Linux.

The newlib is made up of three parts:

• libc: This is the C runtime library. It contains functions such as malloc(),
printf() and strcpy(). To reduce the size of the library, the amount of supported
features can be controlled by configuration variables. There is an integer-only
version of printf(), for example.

• libm: This is the mathematical part of the runtime library. It implements func-
tions like sinf() or sqrt() that are not part of libgcc2.

• libgloss: Routines that are close to hardware or the operating system are con-
tained in this library. It is the only part of newlib that needs to be modified when
adding a new architecture.

Compiling the newlib can be a good benchmark for testing the quality of a new
compiler back end. Inside the libraries are many complicated initialised data structures
and pointer arithmetic expressions that can prove challenging to get right.

7.1. Defining system specific issues

The GNU low level operating system support library (libgloss) is the part of newlib
that manages the program startup and the bridge between standard library and operat-
ing system (or the debugger, for that matter). These functions contain both hardware
and system specific parts that once belonged to newlib (where they were located in the
libc/sys/ subdirectory) and are no located in a separate library.

The libgloss has two main parts, the crt0.o, handling the startup procedure of
every program and the system call interface.

1see [Gat06]

45

7.2. Porting newlib 46

7.1.1. System startup: crt0.o

The C Runtime Zero (crt0.o) gets linked at address 0 of the .text section. It is
responsible for bootstrapping the application. This process covers the following steps:

• Initialisation of the hardware: For the On Demand Control Processor this means
setting up the stack pointer to the highest memory location available. Most targets
also fill the .bss section with zeros.

• Call main(): This includes setting up the program arguments. The first thing that
main() will do is to call main() which calls all elements of the function pointer
array CTORS in order to initialise all global C++ objects. The CTORS array
has to be filled by the linker.

• Shutdown: This should include a jump to exit(), to signalise the hardware or the
simulator that the program has terminated.

The crt0.o is usually written directly in assembler; the file should be called crt0.s.2

7.1.2. System Calls

The newlib target has to provide an interface to several system calls that can be im-
plemented as calls to an embedded operating system or to interact directly with the
hardware. Of course, not all of these system calls make sense for every platform, so
some are usually defined to simply fail silently.

For testing purposes it can be useful to pass these calls through the simulator interface
of the GNU Debugger (gdb) which can be taught to support host-native system calls
when run in the simulator target. Through this mechanism it is possible to run arbitrary
programs on platforms that do not even have support for the most basic I/O.

7.2. Porting newlib

Porting the newlib basically means to define the system part of the library, which is
libgloss and the /sys subdirectory of libc. Also, the newlib offers control of various
parameters through compile-time flags. These optional features include floating-point
support, reentrant versions of the system calls and the implementation of the malloc()
function.

To port newlib some modifications to the linker script have to be made, too. The
most important addendum is the definition of the end variable, that marks the end
of the .bss section and thus the beginning of the heap. The sbrk() function, which
is responsible to allocate another chunk of heap for later use by malloc(), needs this
variable.

2see [Sav95], chapter 3

8. Generating a complete toolchain

The process of creating a complete compiler toolchain for a new target is rather long
and non-linear. This chapter tries to give an overview of the tasks necessary to create a
full build system and how the different tools work together.

1. The first thing that is needed is the ABI. It defines the way that programs will
behave on the new target and is the specification for compiler, linker and runtime
system.

2. Then, in parallel, work on the assembler and the compiler back end can be started.
Porting the GNU assembler involves porting the BFD library, because the assem-
bler has to generate relocatable object files.

3. Porting GCC involves defining a lot of macros that define the ABI and the ma-
chine itself, and writing the machine description. Once the compiler itself can be
compiled, the newly built compiler will try to compile its support libraries (which
is libgcc1 and libgcc2). For this to work, the assembler for the target machine
must be ready, but also some of the Binutils for creating library archives, like ar.

For testing purposes it is useful to write a little assembler stub that allows to create
executables that can be simulated without the runtime library.

4. Before work on the runtime library can begin, it is necessary to prepare the linker
scripts for the GNU linker.

5. The next step would be to port the runtime library newlib. If newlib should
compile, it will be possible to compile a complete program for the first time.

6. Meanwhile, one can also start porting the GNU Debugger (gdb) to the new tar-
get. The Debugger needs either real hardware, in case of a native version, or an
instruction-level simulator.

7. After these steps the final phase of quality assurance can be started. It is important
not to underestimate the effort of this last step. The testsuite of the GCC will be
introduced in the next section.

8.1. Testing with DejaGNU

The GNU Compiler Collection comes with a very large testsuite that is based on the
DejaGNU testing framework. DejaGNU is written in Expect, a dialect of the TCL

47

8.1. Testing with DejaGNU 48

language. The testsuite contains more than a 20000 testcases that have historically
shown to often break with modifications of the compiler.

The testsuite is loosely structured into different groups:

• C-torture: These testcases were submitted together with bugreports, and make up
the largest part of the testsuite. They are divided into compilation and execution
tests.

• gcc.dg: These tests ensure certain compiler behaviour and usually test specific
features.

• gcc.target: In here are target specific tests. This is the place for back end authors
to write testcases for their new target,

• g++.dg, g77, etc.: Then there are also language specific testcases that are written
in C++ or Fortran. Above tests were all written in C.

The test installed script in the contrib/ directory of GCC is a nice tool to auto-
matically run the tests for the newly build compiler. But be warned that a run of the
testsuite can take several hours to complete!

8.1.1. Porting DejaGNU

In order to support a new target platform - or board, as it is called in the DejaGNU
jargon - it is necessary to add a description of that platform to the DejaGNU sources
and reinstall the framework.

The necessary file should be called basebords/targetname-sim.exp. Again, it is best
to copy the definition from a related platform. The file has to define several Expect-
functions that control the loading of a program and the spawning of a new simulator
process. It also contains the definitions of several variables that inform the DejaGNU
driver of the features of the particular baseboard.

For the On Demand Control Processor, the baseboard was defined to directly spawn
a simulator process, without going over the GDB-bridge.

9. Evaluation of the final product

In this final chapter, some aspects of the code created by the compiler back end for
the Control Processor are presented. This chapter does not try to be a comprehensive
benchmark of the compiler; it aims to be an overview about what the new GCC back end
can do (at the time of writing) and where there is still room for improvement. Finding
a measurement for the code quality is not an easy task, especially because it has a very
restricted featureset that makes comparing it to another platform difficult.

In this chapter, some demonstration programs and their performance on the instruc-
tion level simulator are presented, with attention to various optimisation parameters and
the instruction scheduler.

9.1. Benchmarks

9.1.1. Generating pseudo-random numbers

The first program serves as a demonstration of the features of the compiler. This program
uses a lagged fibonacci sequence that is stored in a short buffer to generate pseudo-random
numbers. This example was chosen because the implementation of the algorithm is really
short and secondly does not use any multiplication at all. The method was devised
in 1958 by G. J. Mitchell and D. P. Moore1 and works by calculating the sequence
fn = fn−24 + fn−55 (mod m). The implementation suggested in [Knu98] uses an even
shorter buffer with only 55 memory cells, but since conditional execution has yet to
be implemented in the compiler, it would generate lots of unnecessary jumps, which is
why the slightly less memory-efficient implementation with 64-word buffer was chosen.
Figure A.1 shows the source code of the program in C.

For the test, the following parameters were varied:

1. Optimisation flags: The program was compiled without optimisation (-O0), opti-
misation for speed (-O3) which does not include loop unrolling, and optimisation
for size (-Os).

2. Number of instruction bundles: The compiler for the Control Processor allows to
specify a special parameter (-mslots=n) which instructs the instruction bundling
pass to pack only up to n instructions into a bundle. The values used were 1 (also
the default value for compilation without optimisation), 2, 3 and 4 (the default
when optimisation is turned on).

1The method is discussed in detail in [Knu98] , chapter 3.2.2, formula (7)

49

9.1. Benchmarks 50

3. Number of memory ports: A second back-end-specific parameter (-mports=n) can
be used to specify the number of memory accesses that are allowed in one instruc-
tion bundle. This parameter is interesting because building a quadruple-ported
memory is much more expensive compared to a single- or dual-ported memory.

These are the parameters that were monitored:

1. Execution speed - Total Cycles: The performance was measured in total number
of cycles used by the instruction level simulator including application startup time.

2. Jump penalty: This is the number of jump penalty wait cycles. Each jump on the
Control Processor costs two additional cycles.

3. Code size: Code size is a very important parameter for the Control Processor.
Aside from memory constraints, a future version may include a cached program
memory and a smaller code size would yield less cache misses which would introduce
unnecessary wait cycles.

4. Slot efficiency: This parameter is very interesting for the design of VLIW proces-
sors. The tradeoff between the number of parallel functional units and code size
is to be considered, which is measured by the average number of CPU slots that
were used per instruction word. The number given in the dynamic slots column
refers to the instructions that are actually executed, so an often used instruction is
counted multiple times. The static slots column, on the other hand, shows the slot
utilisation of all instruction bundles, disregarding how often they are executed.

The assembler code the compiler generated for the rand() function - optimised for
program size and with instruction bundling turned on - is listed in Figure A.2. The
instructions to store register 63 (the return address) on the stack could actually be
omitted, which would save another cycle.

The following tables contain the results of running 1000 iterations of the algorithm in
rand.c under varying conditions. As the base case, shown in table 9.1, the unoptimised
program2 is executed, with instruction bundling disabled.

Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
1 56,097 6,132 1.0 1.0 784 Bytes

Table 9.1.: running the rand.c program with -O0

When optimisations are disabled, only one instruction is issued per instruction word.
This is necessary to facilitate debugging. Since conditional jumps still use two instruction
slots, the average number of slots is slightly higher than 1.

In table 9.2, the program has been optimised for size3 and with the instruction
bundling forced to use 1-4 slots. This is the suggested default set of parameters to

2ilvy-odm-elf-gcc -mslots=1 -O0 -o rand.O0.1.exe rand.c
3ilvy-odm-elf-gcc -mslots=n -Os -o rand.Os.1.exe rand.c

9.1. Benchmarks 51

compile a program for the Control Processor with. This table shows that number of
slots have a direct influence on both codesize as well as performance. Due to data de-
pendency issues, the utilisation of the instruction slots does not grow significantly from
3 slots to 4 slots. The number of memory ports, however, does not have a significant
influence on the result, since the generated code does not access more than two memory
locations per instruction bundle anyway.

Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
1 33,508 6,124 1.0 1.0 464 Bytes
2 22,380 6,124 1.75 1.68 296 Bytes
3 20,265 6,124 2.01 2.09 240 Bytes
4 17,263 6,126 2.55 2.52 200 Bytes

Table 9.2.: running the rand.c program with -Os

If the same program is optimised for speed4 the performance almost doubles compared
to the size-optmised version above.

Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
1 21,427 2,116 1.0 1.0 768 Bytes
2 15,306 2,116 1.54 1.62 496 Bytes
3 14,245 2,116 1.68 2.11 384 Bytes
4 10,244 2,116 2.51 2.54 320 Bytes

Table 9.3.: running the rand.c program with -O3

This is shown in figure 9.3. The strong reduction of jump penalty cycles comes from
GCC actually inlining the rand() function, thus eliminating roughly 1000 calls and
returns at 3 cycles each.

9.1.2. Encrypting Data

The Blowfish algorithm is a cryptographic algorithm that was designed by Bruce Schneier
in 1993. It is a keyed, symmetric block cipher that is known to be very fast, although it
has a relatively big memory footprint of at least 1 kilobyte read-only data.5

The following test measures the effort to encrypt and then decrypt a block of 1024
64-bit words.6 Again, the tests were performed with different optimisation settings and
a varying number of slots and memory ports.

4ilvy-odm-elf-gcc -mslots=n -O3 -o rand.O3.1.exe rand.c
5see [Blo06] and [Sch94]
6The Blowfish algorithm is inherently 32 bit. To yield a comparable result, this benchmark was per-

formed on a specially modified Control Processor with 32-bit registers. Porting GCC to the new
bytelength was done in about half an hour, since it only involves changing a few constants.

9.1. Benchmarks 52

Opt. Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
-O0 1 5,029,722 330,344 1.0 1.0 4,416 Bytes

-Os

1 2,512,218 313,640 1.0 1.0 2,608 Bytes
2 1,881,441 313,640 1.44 1.62 1,656 Bytes
3 1,475,463 313,640 1.94 2.06 1,312 Bytes
4 1,453,815 313,640 1.98 2.15 1,256 Bytes

-O3

1 1,688,164 103,512 1.0 1.0 5,072 Bytes
2 1,160,183 103,512 1.56 1.60 3,272 Bytes
3 1,025,265 103,512 1.78 1.87 2,800 Bytes
4 769,725 103,512 2.47 2.28 2,320 Bytes

Table 9.4.: running the blowfish program with the Control Processor simulator

9.1.3. Performing error correction

The Viterbi algorithm is a method to perform error correction on digital signals that were
transmitted over a very noisy channel. The algorithm uses dynamic programming to find
the most likely sequence (the Viterbi-path) of hidden states that trigger a sequence of
observed events. A common use is the decoding of the convolutional code used by GSM
phones or wireless LAN networks.7

In this benchmark the viterbi algorithm was used to decode short block of noisy data.

Opt. Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
-O0 1 6,273,330 708,614 1.0 1.0 4,928 Bytes

-Os

1 2,380,106 486,854 1.0 1.0 2,056 Bytes
2 1,611,472 454,014 1.88 1.68 1,280 Bytes
3 1,397,096 454,014 2.3 2.03 1,064 Bytes
4 1,294,141 454,018 2.58 2.24 968 Bytes

-O3

1 2,554,382 614,498 1.0 1.0 2,104 Bytes
2 1,607,822 485,186 1.91 1.69 1,296 Bytes
3 1,557,529 614,498 2.29 1.97 1,128 Bytes
4 1,306,859 485,188 2.61 2.23 992 Bytes

Table 9.5.: running the viterbi program with the Control Processor simulator

9.1.4. Discrete Cosine Transform

A discrete cosine transform (DCT) is an integral part of lossy singal encodings. Using
this operation, a time-discrete signal can be transformed into frequency space. The DCT
is closely related to the Fourier transform, but uses only real numbers.8

7see [Vit06]
8see [DCT06]

9.2. Performance improvements with VLIW bundling 53

Opt. Slots Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size
-O0 1 10,977 1,152 1.0 1.0 8,296 Bytes

-Os

1 4,667 992 1.0 1.0 3,728 Bytes
2 3,398 992 1.71 1.61 2,384 Bytes
3 3,108 992 1.95 1.83 2,096 Bytes
4 3,200 1,120 2.11 2.10 1,832 Bytes

-O3

1 3,214 556 1.0 1.0 8,904 Bytes
2 2,340 556 1.7 1.50 6,112 Bytes
3 2,073 556 1.99 1.71 5,368 Bytes
4 2,256 684 2.09 1.77 5,192 Bytes

Table 9.6.: running a discrete cosine transform Control Processor simulator

In this example a discrete signal of 32 values is transformed to the frequency space.
Figure 9.6 shows a suboptimal behaviour of the register allocator at the highest opti-
misation level. What happens is that in order to increase the utilisation of the slots,
more working copies of values are generated, which unfortunately decreases overall per-
formance a little.9

9.2. Performance improvements with VLIW bundling

To generate the diagrams in this section, the data gathered by the benchmarks above
was normalised using the single-slot variant of the Control Processor as baseline. All
tests were made at the highest optimisation level GCC offers (-O3).

In figure 9.1, the number of simulated CPU cycles for each benchmark is plotted
on the y-axis. The four bars for each benchmark represent the speed gained through
adding more slots to an instruction bundle. Figure 9.2 shows the efficiency of the various
instruction bundle sizes. This plot is not normalised; it shows the absolute number of
instructions per (executed) bundle. This corresponds the dynamic slots column in the
benchmark tables. Figure 9.3 shows the reduction of code size as more instructions
are packed into a VLIW bundle. Again, these values are normalised with the single-
instruction configuration as baseline.

The plots show that the current way of instruction bundling yields about a twofold
increase in performance as well a twofold reduction of the number instruction words per
program.

9.3. Varying the number of memory ports

In its default configuration, the Control Processor has one memory port per instruction
slot. Since the cost of a memory with multiple ports is higher than a single- or dual-port
version, it is important to analyse the effect of reducing the number of memory ports.

9For more information, see also chapter 11.1

9.3. Varying the number of memory ports 54

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

rand blowfish viterbi dct

Performance improvements (total cycles) at increasing bundle size

1 slot
2 slots
3 slots
4 slots

Figure 9.1.: Execution time in correlation to VLIW bundle size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

rand blowfish viterbi dct

Dynamic bundling efficiency

1 slot
2 slots
3 slots
4 slots

Figure 9.2.: Average number of instructions per VLIW bundle at different sizes

9.3. Varying the number of memory ports 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

rand blowfish viterbi dct

Code size vs. bundle size

1 slot
2 slots
3 slots
4 slots

Figure 9.3.: Total number of instruction words in correlation to VLIW bundle size

In this section, the previous tests were repeated with a varying number of memory ports
and different optimisation settings.

Opt. Ports Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size

-Os

1 19,264 6,124 2.16 2.16 232 Bytes
2 17,263 6,126 2.55 2.52 200 Bytes
3 17,263 6,126 2.55 2.52 200 Bytes
4 17,263 6,126 2.55 2.52 200 Bytes

-O3

1 11,246 2,116 2.23 2.25 360 Bytes
2 10,244 2,116 2.51 2.54 320 Bytes
3 10,244 2,116 2.51 2.54 320 Bytes
4 10,244 2,116 2.51 2.54 320 Bytes

Table 9.7.: running the rand program with different memory configurations

During one iteration, the rand benchmark accesses only two memory cells of the ring-
buffer containing the last 64 generated values. This is the reason why it does not profit
from adding more than 2 memory ports, as shown in table 9.7.

The performance of the blowfish benchmark is not really affected by the number of
memory ports. Table 9.8 shows only a minor improvements.

9.3. Varying the number of memory ports 56

Opt. Ports Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size

-Os

1 1,531,025 313,640 1.85 1.79 1,504 Bytes
2 1,457,932 313,640 1.97 2.09 1,296 Bytes
3 1,457,931 313,640 1.97 2.10 1,288 Bytes
4 1,453,815 313,640 1.98 2.15 1,256 Bytes

-O3

1 822,249 103,512 2.29 2.08 2,536 Bytes
2 769,725 103,512 2.47 2.24 2,352 Bytes
3 769,725 103,512 2.47 2.28 2,320 Bytes
4 769,725 103,512 2.47 2.28 2,320 Bytes

Table 9.8.: running the blowfish program with different memory configurations

Opt. Ports Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size

-Os

1 1,297,312 454,018 2.57 2.08 1,040 Bytes
2 1,295,197 454,018 2.57 2.21 984 Bytes
3 1,295,197 454,018 2.57 2.21 984 Bytes
4 1,294,141 454,018 2.58 2.24 968 Bytes

-O3

1 1,309,503 485,188 2.6 2.09 1,056 Bytes
2 1,307,915 485,188 2.61 2.20 1,008 Bytes
3 1,307,387 485,188 2.61 2.22 1,000 Bytes
4 1,306,859 485,188 2.61 2.23 992 Bytes

Table 9.9.: running the viterbi program with different memory configurations

9.3. Varying the number of memory ports 57

Similar results exist for the viterbi and dct benchmarks. For completeness, they are
given in table 9.9 and 9.10.

Opt. Ports Total Cycles Jump Penalty Dyn. Slots Stat. Slots Code Size

-Os

1 3,563 1,120 1.79 1.38 2,760 Bytes
2 3,304 1,120 2.01 1.81 2,120 Bytes
3 3,261 1,120 2.05 1.91 2,016 Bytes
4 3,200 1,120 2.11 2.10 1,832 Bytes

-O3

1 2,555 684 1.76 1.45 6,312 Bytes
2 2,327 684 2 1.66 5,528 Bytes
3 2,315 684 2.02 1.69 5,448 Bytes
4 2,256 684 2.09 1.77 5,192 Bytes

Table 9.10.: running the dct program with different memory configurations

10. Related Work

The classic work about porting the GCC is definitely “Using and Porting GNU CC”
by Richard Stallman. This book forms the basis for the GCC Internals Manual which
is a more up-to-date version of the same text, available online and released together
with each version of GCC. This manual is a must-read for everyone who plans to work
with the GCC. [S+05] is structured like a reference manual and covers both language
front ends, the back end and the optimiser. Not all topics are described equally detailed
and some chapters are merely stubs but it still is the most complete description of the
internals of the GCC.

A more practical approach was taken by “Porting GCC for Dunces” by Hans-Peter
Nilsson which aims to be an introduction to writing back ends for the GCC. Nilsson is
the author of the back ends for the Axis CRIS and D. E. Knuth’s hypothetical MMIX
processor. In [Nil00], the development of the CRIS back end is described step by step.
The CRIS is a 32-bit processor with 16 general-purpose registers that was designed with
the GCC in mind. The document describes the intrinsics of the CRIS architecture and
in a second part a selection of the GCC’s target macros and their functions. The focus
of [Nil00] is clearly on the definition of the target macros which are described in [Sta98],
too.

In “Free Development Environment for Bus Coupling Units of the European Installa-
tion Bus” Martin Kögler describes how he adopted the GNU toolchain to the M68HC05
microcontrollers from Freescale (former Motorola). In this work he had to deal with
harsh memory and register constraints, as the M68HC05 has only two 8-bit registers
and only a few tens of bytes of data memory. To conserve memory, new machine mode
sizes in the range of 1 to 8 Bytes were introduced. Also, to ease code generation for
GCC, a set of virtual registers was defined. This work differs from the others in that
it does not only concentrate on the GCC back end but also deals with the other parts
of the toolchain. Due to the fact that the targeted microcontroller is 8-bit and very
constrained the compiler faces a very different set of problems than the ones described
in this work.

VLIW processors are targeted specifically by Jan Parthey’s “Porting the GCCBackend
to a VLIW-Architecture”. He describes the GCC port for the TMS320-C6000 digital
signal processors (C6x) made by Texas Instruments. This diploma thesis contains a very
high-level overview of the compilation process and explains many instruction patterns
of the C6x back end. The work skips one important topic, though, as VLIW packing is
not actually implemented.

This gap is filled by Adrian Strätling in “Optimizing the GCC Suite for a VLIW
Architecture”. In this follow-up work to [Par04], the GCC port for the TI TMS320-
C6000 DSP is enhanced with instruction scheduling, conditional execution and VLIW

58

59

packing. The work focuses on optimising the GCC back end to generate better code and
shows many ways to improve the performance of VLIW code. Strätling dives into more
advanced topics than there were implemented in the Control Processor back end.

The generation of ELF object files using the BFD library is explained in [Gre97]. This
article explains how the BFD library was used to construct a tool that transforms the
output of the Stanford compiler framework SUIF to generic ELF object files that could
be loaded into a simulator for an in-development DSP processor.

11. Conclusion

This work represents the result of a little over six months of work. During this period a
complete development environment for the On Demand Control Processor was created,
almost entirely by adopting the freely available GNU toolchain. The resulting environ-
ment consists of a near-complete C99 compiler, an assembler that creates ELF object
files, a linker, a runtime library and a basic debugger that interfaces to a simulator.

The final compiler shows that GCC is fit for VLIW architectures, as it creates parallel
instruction bundles that exploit the capabilities of the target processor to a high degree.
The experimental evaluation also shows that some kind of global register allocation
would be an advantage, since GCC has difficulties with using the many registers the
Control Processor offers.

Regarding the unusual byte-length of the Control Processor, it seems that many of
the GNU tools (especially the BFD library) would profit from a generalisation of the
assumptions they make on a CPU’s characteristics. But it was also shown that it is still
possible - but not necessarily easy - to create a 24-bit tools from their current versions.
GCC itself does not have a problem with byte-lengths that are not a power of two as
long as the target processor is still byte-adressable.

The performance of the generated code is a good start; the efficiency is increased
by the parallelism the VLIW slots offer, still there are some features left waiting to be
implemented, such as conditional execution and a better register allocation mechanism.

11.1. Directions for future work

Although the presented development environment is already in a very usable shape,
there is still room for improvement. There are interesting features that are yet to be
implemented; this section will point out some of them.

Variable-length Arguments: There are some functions in the C language that support
a variable number of arguments. The best-known example would be the printf()
function. The GCC supplies a standard implementation of this functionality that
unfortunately only works on machines that pass function arguments on the stack.1

In order for the <varargs.h> implementation to work, a handful of macros have
to be defined.

This feature has been left out because standard I/O has not been too much of an
issue at the time of writing.

1see [S+05], chapter 14.11

60

11.1. Directions for future work 61

The BFD library: The BFD library (integral component of the GNU Binutils and GDB)
should be extended to properly support wordsizes that are not a power of 2. The
current implementation of 24-bit relocations on the On Demand Control Processor
is not ideal and could use a better integration with the libbfd.

The GNU Debugger: Unfortunately the port of the GNU Debugger is all but complete;
almost all functions that are necessary to support interactive debugging have not
been implemented. The reason for this was that it was possible to use the debug-
ging functionality of the standalone instruction-level simulator.

Leaf Functions: The GCC allows further optimisations to be made if it knows that a
certain function will be a leaf function. Leaf functions are functions that do not
call any other functions. For that reason, they can omit prologue functionality
like saving the return address register. They also do not need to bother saving
caller-saved registers, naturally.2

These features have not been implemented because they probably only cause a
small performance boost and the Control Processor has a sufficient number of
registers.

Conditional Execution: The On Demand Control Processor allows any instruction to be
preceded by a condition. Using such mechanisms, the compiler could prefix a short
block of instructions with the same condition and thus eliminate a rather expensive
jump. The GCC allows for conditional move and add operations (movmodecc and
addmodecc3) and there is also the define cond exec4 instruction pattern that can
be used for this purpose.

Interprocedural Register Allocation: This is one more interesting project. The Control
Processor offers a lot more registers than are usually needed by a single function.
Thus, it would make sense to implement a way to share a pool of registers by
several functions that are closely related. Unfortunately interprocedural register
allocation is a feature yet to be implemented into GCC.

2see [S+05], chapter 14.7.4
3see [S+05], chapter 13.9
4see [S+05], chapter 13.20

A. Program Listings

A.1. The rand.c benchmark

/* rand.c
* A lagged-fibonacci-sequence pseudo-random number generator
* that works without using multiplications;
* see D. Knuth, TAOCP2: Seminumerical Algorithms, chapter 3.2.2 (7)
*/

unsigned int fibs[64];
int n = 0;

void init_fibs(void) {
/* initialise the array with arbitrary start values, not all even */
for (n = 0; n < 55; n++)

fibs[n] = 1 << n + n;
}

int rand() {
++n;
return fibs[n & 63] = fibs[(n-24) & 63] + fibs[(n-55) & 63];

}

int main() {
int i;
init_fibs();

for (i = 0; i < 1000; i++)
rand();

return rand();
}

Figure A.1.: The source code of the pseudo-random number generator.

62

A.1. The rand.c benchmark 63

public rand:
{

r16 = port[n]; // movqi
r18 = fibs; // movqi
port[r62 + (-1)] = r63; // movqi
r62 = r62 - 1; // subqi3

}{
r17 = r16 + 1; // addqi3
r16 = r16 + (-23); // addqi3
;
;

}{
r19 = r17; // movqi
r17 = r16 & 63; //andqi3
r16 = r16 + (-31); // addqi3
;

}{
r20 = r17; // movqi
r16 = r16 & 63; //andqi3
port[n] = r19; // movqi
r19 = r19 & 63; //andqi3

}{
r20 = r20 + r18; // addqi3
r16 = r16 + r18; // addqi3
r19 = r19 + r18; // addqi3
;

}{
r17 = port[r20]; // movqi
r18 = port[r16]; // movqi
;
;

}{
r17 = r17 + r18; // addqi3
;
;
;

}{
port[r19] = r17; // movqi
r0 = r17; // movqi
;
;

}{
r63 = port[r62]; // movqi
r62 = r62 + 1; // addqi3
;
;

}{
ret(r63);
; ; ;

}

Figure A.2.: The generated assembler code for the rand() function.

Bibliography

[BCTD00] Per Bothner, Steve Chamberlain, Ian Lance Taylor, and DJ Delorie. A guide
to the internals of the GNU linker, 1992-2000.

[Blo06] Blowfish (cipher). http://en.wikipedia.org/wiki/Blowfish (cipher),
2006.

[Cha03] Steve Chamberlain. libbfd, 1991-2003.

[CT04] Steve Chamberlain and Ian Lance Taylor. Using ld, 1991-2004.

[DCT06] Discrete cosine transform. http://en.wikipedia.org/wiki/Discrete
cosine transform, 2006.

[EFf02] Dean Elsner, Jay Fenlason, and friends. Using as, 1991-2002.

[Fou05] The Free Software Foundation. The gcc source code. http://gcc.gnu.org/,
2005.

[Fou06a] Free Software Foundation. The bfd library source code. http://www.gnu.
org/software/binutils and http://www.gnu.org/software/gdb, 2006.

[Fou06b] The Free Software Foundation. Using the GNU Compiler Collection (GCC),
2006.

[Gat06] Bill Gatliff. Porting and using newlib in embedded systems. http://
billgatliff.com/drupal/node/25, 2006.

[Gre97] Jack Greenbaum. Generating object files directly from suif/machsuif using
gnu libbfd.a. http://suif.stanford.edu/suifconf/suifconf2/papers/
15.ps, 1997.

[GS05] John Gilmore and Stan Shebs. GDB Internals, 1990-2005.

[Hau98] Michael L. Haungs. Extending sim286 to the intel386 architecture with 32-
bit processing and elf binary input. http://www.cs.ucdavis.edu/∼haungs/
paper/paper.html, 1998.

[K0̈5] Martin Kögler. Free development environment for bus coupling units of the
european installation bus. Master’s thesis, TU Wien, 2005.

[Knu98] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, 1998.

64

http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://gcc.gnu.org/
http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils
http://www.gnu.org/software/gdb
http://billgatliff.com/drupal/node/25
http://billgatliff.com/drupal/node/25
http://suif.stanford.edu/suifconf/suifconf2/papers/15.ps
http://suif.stanford.edu/suifconf/suifconf2/papers/15.ps
http://www.cs.ucdavis.edu/~haungs/paper/paper.html
http://www.cs.ucdavis.edu/~haungs/paper/paper.html

Bibliography 65

[Lat05] Chris Lattner. Llvm/gcc integration proposal. http://gcc.gnu.org/ml/
gcc/2005-11/msg00888.html, 2005.

[Mer03] J. Merrill. Generic and gimple: A new tree representation for entire functions.
First Annual GCC Developers Summit, 2003.

[Neu05] Karl Neumann. The ilvy assembler source code, 2005.

[Nil00] Hans-Peter Nilsson. Porting gcc for dunces, 2000.

[Ogr05] Julia Ogris. The ilvy simulator source code, 2005.

[Par04] Jan Parthey. Porting the gcc-backend to a vliw-architecture. Master’s thesis,
Chemnitz University of Technology, 2004.

[PH98] David A. Patterson and John L. Hennessy. Computer Organisation and De-
sign. Morgan Kaufmann, 1998.

[S+05] Richard M. Stallman et al. Gcc internals manual. http://gcc.gnu.org/
onlinedocs/gccint/, 2005.

[Sav95] Robert Savoye. Embed with gnu. http://gcc.gnu.org/onlinedocs/
gccint/, 1995.

[Sch94] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher
(blowfish). In Cambridge Security Workshop Proceedings (December 1993),
pages 191–204. Springer-Verlag, 1994.

[She06] Stan Shebs. Gdb: An open source debugger for embedded development.
http://www.redhat.com/support/wpapers/cygnus/cygnus gdb/, 2006.

[SPS+05] Richard Stallman, Roland Pesch, Stan Shebs, et al. GDB Internals, 1988-
2005.

[Sta98] Richard M. Stallman. Using and Porting GNU CC. Free Software Founda-
tion, 1998.

[Sta06] Richard M. Stallman. The gnu project. http://www.gnu.org/gnu/
thegnuproject.html, 2006.

[Vit06] Viterbi algorithm. http://en.wikipedia.org/wiki/Viterbi algorithm,
2006.

[Win05] Siegfried Winterheller. Control Processor Programmer’s Guide. On Demand
Microelectronics, 2005.

http://gcc.gnu.org/ml/gcc/2005-11/msg00888.html
http://gcc.gnu.org/ml/gcc/2005-11/msg00888.html
http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/onlinedocs/gccint/
http://www.redhat.com/support/wpapers/cygnus/cygnus_gdb/
http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html
http://en.wikipedia.org/wiki/Viterbi_algorithm

	Introduction
	The On Demand Control Processor
	Architecture
	Instruction pipeline
	Instruction format
	Addressing Modes
	Assembler syntax

	The GNU Compiler Collection
	Overview
	Different configurations of the GCC
	Important components of the GCC
	Compilation with the GCC
	The GCC back end
	Further documentation

	Port specific observations
	Creating code for a 24-bit processor
	Machine Modes
	Definition of instruction patterns
	Instruction selection
	Instruction scheduling for VLIW slots
	Defining addressing modes
	Function prologue and epilogue
	Function calls

	Defining an ABI
	Data Types
	Memory Layout
	Register Usage
	Function Stack Frame

	GNU Binutils
	Manipulating object files with libbfd
	Sections
	Symbols
	Relocations
	Porting the BFD library
	Debugging

	The Assembler gas
	Porting gas
	A comparison with the native assembler

	The Linker ld
	The Emulation
	The Linker Script
	Porting ld

	The GNU Debugger
	The structure of GDB
	Using GDB
	Porting the GNU Debugger

	The New C runtime library
	Defining system specific issues
	System startup: crt0.o
	System Calls

	Porting newlib

	Generating a complete toolchain
	Testing with DejaGNU
	Porting DejaGNU

	Evaluation of the final product
	Benchmarks
	Generating pseudo-random numbers
	Encrypting Data
	Performing error correction
	Discrete Cosine Transform

	Performance improvements with VLIW bundling
	Varying the number of memory ports

	Related Work
	Conclusion
	Directions for future work

	Program Listings
	The rand.c benchmark

