

Visualization and Manipulation of
Diagrams on The Web

–
Developing e-Learning Support for

Teaching UML in The Large

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Johannes Murth

Matrikelnummer 0427416

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer/Betreuerin: O.Prof. Mag. Dipl.-Ing. Dr. Gerti Kappel
Mitwirkung: Univ.-Ass. Dr. Manuel Wimmer

Wien, 07.12.2009 _______________________ ______________________
 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Johannes Murth, Siebenbrunnengasse 8/12, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 07. Dezember 2009
Johannes Murth

i

ii

Danksagung

Ich bedanke mich für die Betreuung durch Prof. Dr. Gerti Kappel und Univ.Ass.
Dr. Manuel Wimmer, die mir stets freundlich und mit großer Kompetenz zur Seite
gestanden sind. Herzlicher Dank gilt meinen Eltern Walter und Elfi und der gesamten
Familie, die mich auf meinem Weg immer unterstützt haben — im Speziellen meinem
Bruder Martin, der mir durch seine fachkundige Hilfe viele gute Impulse geben konnte.

iii

iv

Abstract

The ability of software engineers to develop clear and comprehensive models according
to a specific problem domain has become an essential factor for the success of software
projects. The trend of Model Driven Software Engineering (MDSE) even increases this
factor. Universities have to qualitatively educate their students in this field to prepare
them for those challenges. At the Vienna University of Technology (VUT), the course
“Object Oriented Modeling” teaches the basics of modeling and the Unified Modeling
Language (UML). Due to the high number of students, various e-Learning elements
have already been established, mainly for teaching the theory behind UML.

The goal of this thesis was to develop a web-based modeling tool, that is integrated
into the e-Learning platform of the VUT using Rich Internet Application technologies.
Thus, students can solve practical modeling exercises comfortably and directly using
the e-Learning platform. Therefore, a generic approach shall be used by utilizing meta-
modeling: Visualization and manipulation of two-dimensional diagrams is based on
certain patterns. A framework was created, that allows for creating complete diagram
editors with drag-and-drop functionality, by specifying the structure of the diagram
elements (abstract syntax) and the visual notation elements (concrete syntax). This
enables to easily create various UML editors and to align the notation elements with
those of the course. Within this thesis, three editors (class diagram, state diagram,
and sequence diagram) have been created with the aid of the framework and integrated
into the e-Learning platform.

v

vi

Kurzfassung

Die Fähigkeit von Software-Entwicklern, zu konkreten Problemstellungen klare und
umfassende Modelle zu erstellen, erweist sich als essenzieller Faktor für den Erfolg
von Software-Projekten. Die neuen Entwicklungen im Bereich von modellgetriebener
Software-Entwicklung verstärken diesen Faktor darüber hinaus. Universitäten haben
die Aufgabe, ihre Studenten in diesem Bereich auf hohem Niveau auszubilden, um
sie auf diese Herausforderungen vorzubereiten. An der Technischen Universität Wien
werden die Grundlagen von Modellierung und der Unified Modeling Language (UML)
im Kurs “Objektorientierte Modellierung” gelehrt. Aufgrund der hohen Studentenzahl
wurden bereits zahlreiche e-Learning Elemente eingeführt, vor allem im Bereich der
theoretischen Grundlagen.

Ziel dieser Arbeit ist es, mithilfe von Rich Internet Application-Technologien ein
web-basiertes Modellierungstool zu erstellen, das in die Lernplattform der TU Wien in-
tegriert werden kann. Mit diesem Tool können Studenten praktische Modellierungsauf-
gaben einfach und direkt auf der Lernplattform lösen. Dabei soll ein generischer,
Metamodell-basierter Ansatz gewählt werden: Die Visualisierung und Manipulierung
von 2D-Diagrammen basiert auf bestimmten Mustern. Ein Framework soll es ermög-
lichen, nur durch die Angabe der Struktur der Diagrammelemente (abstrakte Syntax)
und der visuellen Notationselemente (konkrete Syntax) einen kompletten Editor mit
Drag-and-drop-Funktionalität zu erstellen. Damit wird es ermöglicht, verschiedene
UML-Editoren zu erstellen und die Notationselemente mit denen des Kurses abzustim-
men. Im Zuge der Arbeit werden prototypisch drei UML-Editoren (Klassendiagramm,
Zustandsdiagramm, Sequenzdiagramm) mithilfe des Frameworks erstellt und in die
Lernplattform integriert.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Approach . 2
1.4 Structure . 2

2 Basic Concepts 5
2.1 Metamodeling . 5

2.1.1 Core Concepts . 5
2.1.2 Modeling Languages . 8
2.1.3 Eclipse Modeling Project (EMP) 9

2.2 E-Learning . 11
2.2.1 Learning Management Systems 11
2.2.2 Object-Oriented Modeling Course at the VUT 12
2.2.3 Perspectives of a Course Centered Around a Modeling Tool . . . 14

2.3 Rich Internet Applications . 15
2.3.1 Basics . 15
2.3.2 RIA Technologies . 16
2.3.3 Evaluation and Choice . 20

3 Developing the Web Modeling Framework 25
3.1 Requirements . 25

3.1.1 Visualization and Manipulation of Diagrams 26
3.1.2 Specification of Diagram Types 28
3.1.3 Import and Export Interfaces . 28

3.2 Implementation Technology: Adobe Flex 28
3.2.1 Visual Components . 29
3.2.2 Model-View-Controller Pattern 29

3.3 Definition of Diagram Types . 32
3.3.1 Stencil Set DSL . 32
3.3.2 Stencil View DSL . 35

3.4 Generic Diagram Editing . 38
3.4.1 Common Data Structure for Arranging Diagram Elements 38
3.4.2 Visual UI Components for Visualization and Manipulation . . . 39

3.5 Framework Utilization . 41
3.5.1 Design of a Typical WebMF Application 42
3.5.2 Interplay of the Functionality Parts 42

4 Sample Application 45
4.1 Abstract Syntax . 45
4.2 Concrete Syntax . 46
4.3 Building the Stencil Set Library . 46

4.3.1 Creating an Flex Library Project 46

ix

Contents

4.3.2 Creating a Stencil Set . 48
4.3.3 Creating Stencil Views . 51

4.4 Building an Editor Application . 54
4.4.1 Creating an Flex Application . 54
4.4.2 Creating and Connecting Components 54
4.4.3 Appearance of the Created Application 55

5 Developing e-Learning Support with WebMF 57
5.1 UML Class Diagram Editor . 57

5.1.1 Abstract Syntax . 57
5.1.2 Concrete Syntax . 57
5.1.3 Implementation . 59
5.1.4 Issues . 61

5.2 UML State Diagram Editor . 63
5.2.1 Abstract Syntax . 63
5.2.2 Concrete Syntax . 63
5.2.3 Implementation . 63
5.2.4 Issues . 67

5.3 UML Sequence Diagram Editor . 68
5.3.1 Abstract Syntax . 68
5.3.2 Concrete Syntax . 68
5.3.3 Implementation . 69
5.3.4 Issues . 71

5.4 Integration of Editors Into Moodle . 73
5.4.1 Enabling Import and Export Functions 74
5.4.2 Developing the WebMF Assignment Plug-in for Moodle 74
5.4.3 Creating a Sample Assignment 76

6 Related Work 81
6.1 Oryx Editor . 81

6.1.1 Metamodel . 81
6.1.2 Technologies . 82
6.1.3 Communication and Architecture 82
6.1.4 Usability . 83
6.1.5 Rating . 85

6.2 SLIM . 85
6.2.1 Metamodel . 85
6.2.2 Technologies . 85
6.2.3 Communication and Architecture 86
6.2.4 Usability . 86
6.2.5 Rating . 88

6.3 Web 2.0 Metamodel Browser . 88
6.3.1 Metamodel . 88
6.3.2 Technologies . 88
6.3.3 Communication and Architecture 88
6.3.4 Usability . 89
6.3.5 Rating . 89

6.4 2D Meta Model Browser . 89
6.4.1 Metamodel . 89
6.4.2 Technologies . 90
6.4.3 Communication and Architecture 91

x

6.4.4 Usability . 91
6.4.5 Rating . 91

6.5 Comparison . 91

7 Evaluation 93
7.1 Implementation Effort for WebMF Applications 93
7.2 Evaluation of the Requirements Catalog 94

7.2.1 Diagram . 94
7.2.2 Tool bar . 95
7.2.3 Properties Editor . 96
7.2.4 Import / Export . 96

7.3 Lessons Learned . 96
7.3.1 Recommendations for Enhancement 96
7.3.2 Limitations . 97

7.4 Summary . 97

8 Conclusion 99
8.1 Summary . 99
8.2 Future Work . 99

Bibliography 101

xi

1 Introduction

This chapter gives an overview on the thesis. First, Section 1.1 explains the thesis’ con-
text. The problem description is stated in section 1.2 which is tackled by the approach
presented in Section 1.3. Finally, the thesis’ structure is outlined in Section 1.4.

1.1 Motivation

Object Oriented Modeling (OOM) is one of the most powerful tools in modern software
engineering. Its de-facto standard, the Unified Modeling Language (UML) [22] is an
expressive graphical language for specifying all artifacts used and produced in the soft-
ware development process. It facilitates Software specification, Software construction,
Software visualization, and Software documentation [38].

The trends to Model Engineering (ME), including Model Driven Engineering (MDE)
and Model Driven Architecture (MDA), have even increased the importance of OOM
and UML. Commonly, they see modeling as primary approach in the software develop-
ment process and aim at an automation of the processes themselves [17] [6].

As a result, the ability of software engineers to develop clear and comprehensive
models according to a specific problem domain has become an essential factor for the
success of software projects. To cope with these challenges, engineers need to be familiar
with OOM and UML. They have to formulate parts of the problem domain and their
relationships in semiformal natural language and produce models on the basis of these
formulations. They also have to know relevant design patterns and use state of the
art visual model editors for practical modeling tasks. Further, they need to implement
the modeled artifacts and use modeling as a central approach for realizing software
projects.

To keep up-to-date, universities (and other educational institutes) have to provide
professional training of these skills. One goal of this thesis is to provide qualitative
eLearning support for teaching UML.

1.2 Problem Description

The course “Object Oriented Modeling (OOM)” at the Vienna University of Technology
(VUT) introduces modeling and UML for about 1000 students a year [7]. To cope with
this large number, e-Learning elements have been established. While the theoretical
aspects are covered quite well by the current e-Learning elements, there are some lacks
when it comes to practical modeling exercises.

Currently, the practical modeling exercises are handled only partially on the e-
Learning platform: The problem description of the exercise is presented online. The
student models a diagram apart from the platform (by hand or with a proprietary mod-
eling tool). Then he answers questions about his modeled solution or compares it to
the standard solution that is presented on the platform. Both ways are problematical:
Modeling by hand on a sheet of paper is very inconvenient due to the lack of automa-
tion, especially when there are many diagram elements. On the other side, proprietary

1

1 Introduction

modeling tools are difficult to understand for novices and often do not conform to the
UML standards that are taught in the lecture.

In the future, students shall be able to model their solution by the aid of a software
modeling tool that conforms to the standards of the lecture, and the whole process
shall be integrated in the e-Learning platform.

1.3 Approach

The mentioned problems are tackled by creating a web-based modeling tool that is able
to be integrated into the e-Learning platform of the VUT using Rich Internet Appli-
cation technologies. Thus, students can solve practical modeling exercises comfortable
direct on the e-Learning platform. Therefore, a generic approach is to be used: visu-
alization and manipulation of two-dimensional diagrams is based on certain patterns.
A framework will be created, which allows creating complete editors with drag-and-
drop functionality, by specifying by specifying the structure of the diagram elements
(abstract syntax) and the visual notation elements (concrete syntax). This enables to
easily create various UML editors and to align the notation elements with those of the
course. In the course of this thesis, three UML editors are to be created with the aid
of the framework and integrated into the learning platform.

The thesis combines three big topics: Metamodeling, e-Learning, and Rich Internet
Applications (RIA): With Rich Internet technologies a metamodeling framework is
build that allows an easy creation of diagram editors, which can be used for teaching
modeling.

This approach exhibits several advantages: First, it allows the interactive creation of
diagrams with a graphical sophisticated user interface, without the need of installing
a proprietary modeling software. Then, solution is completely integrated in the e-
Learning platform and the notation elements can be aligned with the lecture. Fur-
thermore, the software is operating system independent and available anytime and
anywhere.

1.4 Structure

This thesis consists of eight chapters:

• Chapter 1 (“Introduction”) introduces the contents of this thesis

• Chapter 2 (“Basic Concepts”) introduces metamodeling, e-Learning and Rich
Internet Applications.

• Chapter 3 (“Developing the Web Modeling Framework”) deals with the main
challenges of developing a web-based, generic framework for the creation of 2D
diagram editors.

• Chapter 4 (“Sample Application”) demonstrates how to use the framework to
build a specific diagram editor.

• Chapter 5 (“Developing eLearning Support with WebMF”) shows the creation
of three UML diagram editors (class diagram, state diagram, sequence diagram)
using the WebMF framework and the integration into the e-Learning platform
Moodle.

2

1.4 Structure

• Chapter 6 (“Related Work”) compares this approach to other approaches in the
field of web based 2D modeling.

• Chapter 7 (“Evaluation”) points out strengths and weaknesses of the approach.

• Chapter 8 (“Conclusion”) summarizes the thesis and suggests topics for future
work.

3

1 Introduction

4

2 Basic Concepts

This chapter explains three topics that are relevant for the creation of the web-based
modeling software. Section 2.1 describes modeling and metamodeling. Section 2.2
introduces e-Learning basics and heuristics for creating effective e-Learning tools. In
Section 2.3, the most popular Rich Internet Application technologies are introduced
and compared.

2.1 Metamodeling

This section introduces metamodeling techniques. First, the core concpets are ex-
plained (Section 2.1.1). Then, the constitution of modeling languages is analyzed
(Section 2.1.2). Finally, the Eclipse Modeling Project (EMP), which is the major
metamodeling framework in the Java environment, is presented (Section 2.1.3).

2.1.1 Core Concepts

Model Driven Engineering (MDE) [39] is a software development methodology which
focuses on creating models rather than computing concepts. It should increase produc-
tivity by simplifying the design processes and communication between team members.
The most important MDE initiative is Model Driven Architecture (MDA) proposed by
the Object Management Group (OMG) 1, which is based upon several OMG standards.

Jean Bezivin [6] stated a paradigm shift in the field of software engineering: Whereas
in classical OOM the basic principle was “Everything is an object”, MDE led to a new
principle: “Everything is a model”. The basic relations of OOM are instanceOf and
inheritsFrom (Figure 2.1): An object can be an instance of a class and a class can inherit
behavior from other classes. In MDE, other relations are focused: A particular view of
the system is representedBy a model, and each model conformsTo its metamodel.

Metamodeling promises a set of advantages: It provides concise and precise definition
of language concepts. It also provides a uniform data exchange format and allows for
validating of the correctness of models. Finally, the administration of modes can be
simplified by the use of model repositories.

A metamodel defines a language for models that confirm to this metamodel. While
each metamodel itself conforms to its metametamodel, this leads to a model hierarchy,
which consists of four (3+1) layers (Figure 2.2) [6]:

The bottom layer (M0) is the real system. This system is representedBy a model
(M1). That model conformsTo its metamodel (M2). In turn, that metamodel con-
formsTo its metametamodel (M3).

To avoid confusion, it is important to do not mix OOM and MDE notions. Figure 2.3
illustrates the different focuses of metamodeling and metaprogramming. The horizontal
axis shows metaprogramming aspects: “Felix” is an instance of the Java class “Cat”.
The vertical axis shows metamodeling aspects: “Felix” is a Java instance. The relations

1OMG: http://www.omg.org/

5

http://www.omg.org/

2 Basic Concepts

Figure 2.1: Basic notions in OOM and MDE [6]

Figure 2.2: Metamodeling: Levels of abstraction [6]

6

2.1 Metamodeling

are also referred as “ontological metamodel” (metamodeling) and “linguistic meta-
model” (metaprogramming) [3].

Figure 2.3: Metamodeling vs. metaprogramming [6]

Meta Object Facility (MOF)

The Meta Object Facility (MOF) [30] is the metametamodel standard for MDA that
was established by the OMG. It defines language concepts for modeling object oriented
structures. These language concepts are reflexive, i.e. MOF is itself described in MOF.
It is cut into two parts: EMOF (essential MOF) and CMOF (complete MOF).

The core constructs (classes, attributes, operations, and parameters) in EMOF are
depicted in Figure 2.4: Objects are defined as generalizable classes (superclass).
Classes have intrinsic properties (Property). Relationships between classes are de-
fined as typed properties. The related Class is defined as type of the property of the
source class. If the relationship is bidirectional, both classes have properties referring
each other with the opposite association.

Figure 2.4: EMOF language core

7

2 Basic Concepts

XML Metadata Interchange Format (XMI)

The OMG Standard XMI [31] allows XML based storage and exchange of models. For
this purpose it defines a set of rules for the transformation of MOF based metamodels
to XML Schema or XML DTD and transformation of MOF based metamodels to XML
documents (Standard file extension: *.xmi).

This allows simple exchange of models between different (UML) modeling tools.
Complementary to XMI, the XMI Diagram Interchange (XMI[DI]) [32] standard, de-
scribes layout information of models.

2.1.2 Modeling Languages

Modeling languages allow for expressing models of a target meta model. Due to the
specific purpose they are also called Domain Specific Languages (DSLs). Modeling
languages can be either textual or visual (diagrammatic), but the theoretical principles
behind them are almost the same [19]. Visual languages are also refered as Domain
Specific Visual Language (DSVL).

Textual languages consist of linear character strings and symbols (words, sentences,
etc.). They reach from natural languages like English to highly formalized languages
like XML. Visual languages, on the other side, basically consist of graphical elements,
but can also contain textual elements (think of a class in a class diagram which shows
the class name on top.

In common, one has to distinguish between the syntax (the notation) and the seman-
tic (the meaning) of a language, since they have different purposes, styles, and usage
(Figure 2.5).

Figure 2.5: Parts of modeling languages

The syntax only describes notational aspects of a language, independently of the
meaning. A syntax description consist of a set of elements (called “expressions”) that
are used in the communication. A textual language can define, e.g., words and how
words can be combined to a sentence. In the same manner diagrammatic languages
define graphical elements and how they can be related together.

The semantic describes the meaning of a notation and consists of two parts. The
semantic domain is a description of the targeted application domain. Its elements
describe the properties of this system. The semantic mapping, however, relates each
syntactic construct to a construct of the semantic domain. This is typically done just

8

2.1 Metamodeling

with a textual description (like in the UML) where new constructs are defined using
other constructs that are already known.

Everything that is seen on a screen or on paper is a syntactic representation, but
also the internal representation in the software system, the so-called abstract syntax
or metamodel is a syntactic representation. Correspondingly, the visual or textual
representation is called concrete syntax. One semantic can be described by multiple
abstract syntaxes, and vice versa. The same holds for the relationship between abstract
syntaxes and concrete syntaxes, resulting that a concrete syntax can describe the same
semantics with different abstract syntaxes (Figure 2.6). For example, the semantics of
UML class diagrams is known, but there are many different implementations that use
different internal data structures.

Figure 2.6: Multiplicity in language definitions

However, there is still disunity about the notions in this field. This thesis keeps to
those that are explained above.

2.1.3 Eclipse Modeling Project (EMP)

The Eclipse Modeling Project [18] is known as the modeling technology for the Java
programming language. It features code-generation for building Java applications based
on simple model definitions. Its main part, the Eclipse Modeling Framework (EMF),
combines Java, XML, and UML. The programmer can specify the model with annotated
Java Classes, XML schema definitions, or an UML tool. On the basis of one of these
definitions, EMF can generate all others (Figure 2.7).

Figure 2.7: EMF Model Creation

While EMF itself is a Eclipse plug-in, it also features simple interfaces for building
EMF viewers and editors for the specified models. The plug-in architecture of Eclipse
uses this concept to share data between various plug-ins.

Abstract Syntax

Ecore, the metamodel of EMF, is based on the EMOF standard. It provides straight-
forward transformation to the elements of the Java language and to XMI. Figure 2.8

9

2 Basic Concepts

shows the Ecore class hierarchy: All elements of Ecore inherit from EObject which is an
equivalent to Java’s java.lang.Object. Primarily, there are two branches: EClassifier
and ETypedElement. EClassifier sums up all types (classes, data types and enu-
merations). ETypedElement covers all elements that have a type (EClassifier), e.g.
attributes (EAttribute), references (EReference), and operations (EOperations).

Figure 2.8: Ecore Class Hierarchy [8]

Figure 2.9 shows the Ecore Kernel. The elements refer to common object ori-
ented concepts (classes, attributes, relationships, inheritance): Inheritance of classes
(EClass) is defined via an association (eSuperTypes). Attributes (EAttribute) and
references (EReference) are aggregated by classes (EClass). References (EReference)
describe cardinality (lowerBound, upperBound) and containment type (containment,
composition if true, association otherwise). Binary associations are described with two
references (EReference) which refer to each other (eOpposite). Finally, data types
(EDataType) base upon Java data types. The structure of Ecore and MOF is similar
and they influence each other in their evolution.

Figure 2.9: Ecore Core Classes

10

2.2 E-Learning

Concrete Syntax

Building on the Ecore / EMF based abstract syntax one can define a textual or visual
concrete syntax. The Graphical Modeling Framework (GMF) allows for defining a
visual concrete syntax and therefore uses the graphics / UI library Graphical Editing
Framework (GEF). Moreover, it provides an infrastructure and runtime environment for
diagram manipulation. The Textual Modeling Framework (TMF) analogously allows
for defining a textual concrete syntax.

2.2 E-Learning

The term e-Learning covers all forms of learning, where digital media are used for the
presentation and distribution of learning materials and/or for the support of interper-
sonal communication [25]. The wide range of e-Learning forms includes:

• Computer-based training (CBT): The use of computers and special learning soft-
ware (e.g. CD-ROM/DVD software)

• Web-based training (WBT): Use of the Internet for providing learning materials
and, additionally, communication facilities

• Blended Learning: The combination of e-Learning and attendance in training
courses. [21]

The main reason to establish e-Learning are time independence and location inde-
pendence (“Learn anytime, anywhere”). These advantages are enabled by Learning
Management Systems.

2.2.1 Learning Management Systems

Learning Management Systems (LMS) are complex software systems which allow to
supply learning material and to organize learning processes. Generally, there are five
functionality areas in LMS (Figure 2.10) [5]:

• Administration: All involved students, contents, and courses are administrated.

• Presentation: Taught contents can be provided as text, graphics, images, audio,
video, etc.

• Communication: Teachers and students can communicate asynchronously (e.g.
e-mail, forums) or synchronously (e.g. chats, application sharing).

• Production: Tools allow for the creation of exercises and assignments.

• Evaluation and rating: The students’ performance can be evaluated and rated.

Moodle

There is a high number of LMS available, both open source and commercial products.
One of the most popular LMS is Moodle2, which is available under open source license.

2Moodle Learning Management System: http://www.moodle.org

11

http://www.moodle.org

2 Basic Concepts

Figure 2.10: Functions of Learning Management Systems [28]

Moodle is also an acronym and stands for “Modular Object Oriented Dynamic Learn-
ing Environment”. It is a classical web application, based on the technologies PHP,
MySQL, HTML, and JavaScript. For functional extension, it provides a comfortable
plug-in mechanism.

Moodle is designed for the typical stakeholders and elements in a learning environ-
ment: courses, modules, resources, teachers, and students. Teachers can create courses
for specific topics and add contents. The course contents are twofold: Resources rep-
resent learning materials (e.g. web pages, text pages or files of any type) that are
provided for the students. Activities encourage students to exercise themselves in the
treated topic (e.g. assignments, forums, chats, wikis, quizzes).

TUWEL

The corporate LMS of the Vienna University of Technology (VUT) is TUWEL (“TU
Wien ELearning”, “VUT e-Learning”) 3. TUWEL builds upon Moodle and was slightly
adapted. It was integrated with the central authentication service of the VUT and the
course administration system TUWIS (“TU Wien Informationssystem”, “VUT infor-
mation system”). Further, the corporate design of the VUT was adopted. Today,
almost 700 courses are available on the TUWEL platform.

2.2.2 Object-Oriented Modeling Course at the VUT

The course “Object-Oriented Modeling (OOM)” at the VUT gives students an un-
derstanding of UML. The contents of teaching are required for advanced courses like
Software Engineering or Model Engineering [7].

Due to the restructuring of course curricula at the VUT in 2006, the number of
attending students jumped to about 1000 each year. The preceding courses had been
much smaller and the practical exercises were supervised by student tutors, who cor-
rected and discussed the solutions with groups of two students. The course administra-
tion saw that this mode did not scale for so many students. First, they could not find

3http://tuwel.tuwien.ac.at/

12

http://tuwel.tuwien.ac.at/

2.2 E-Learning

enough appropriate tutors who were able and willing to hold the tutorials. Second, the
management of the groups led to a large administration overhead.

It was decided to reorganize the course and to divide it into three parts: the lecture,
a practical part and e-Learning.

Figure 2.11: Screenshot of a modeling exercise in the TUWEL OOM course

• The lecture is hold in a traditional manner. The five most relevant UML dia-
grams (class, sequence, state, activity, use case) are presented in the auditorium.
Attendance is recommended but not mandatory.

• In the practical part the students are divided into groups of 50 persons. The
students have to solve a number of modeling exercises for several meetings. For
each exercise a student is picked by the professor to present his solution to the
others. Then the group should discuss different approaches for the exercise. In
practice, the students draw their diagrams on a sheet of paper and take it along
to the meeting. For the presentation, they draw their solution on the blackboard.

• Broad e-Learning support is provided for all diagram types. The contents are
twofold. First, there are multiple choice questions that cover the theoretical back-
ground. For example, a state diagram is presented to the student and he has to

13

2 Basic Concepts

figure out, in which state the system is after a certain sequence of events (Fig-
ure 2.11). Second, there are open modeling exercises with a standard solution.
A textual description of a problem domain is given. The student has to model
his solution. He can do this by hand or with the aid of a modeling tool. Then
he can compare his solution with the standard solution, which is provided by the
course staff on the platform.

All learning materials are provided on the TUWEL course. The administration
(course registration, grading, etc.) is also handled via the e-Learning platform.

An evaluation [7] showed that this new organization performs much better than
the preceding one and is honored by both teachers and students. Nevertheless, more
advanced e-Learning solutions were suggested by the evaluation authors.

2.2.3 Perspectives of a Course Centered Around a Modeling
Tool

While OOM is a short introductory course (3 ECTS 4), the introduction of a compli-
cated commercial modeling tool does not make sense. Moreover, the notation of the
specific diagrams would not conform to the ones used in the course.

The use of a simple tool for drawing diagrams (according to the notation used in
the lecture) throughout the course promises better learning success. As an online tool,
integrated into the e-Learning platform, this tool could be used in a large variety of
forms.

• In the lecture, the lecturer can show the modeling procedure with a beamer in
front of the students.

• For the practical part, the students provide their solutions online. In the meet-
ings, the students’ solution can be displayed in the TUWEL environment on a
beamer. Corrections of the solutions also can be done live.

• The practical modeling exercises in the e-Learning part can be solved directly on
the platform. Optionally, the solutions can be viewed and rated by the course
staff (online assignments).

• Students can post their diagrams in a TUWEL forum to discuss them with the
other students.

Once the framework is established, persons that are involved in the course can uti-
lize the framework for new e-Learning applications with new ideas and miscellaneous
didactic approaches. Independent from the form of integration, the use of such a tool
throughout the course promises many benefits:

• Quick and comfortable creation and manipulation of models with a graphical
sophisticated user interface.

• Available anywhere, anytime.

• No installation of a proprietary modeling software.

• A consistent notation that can be aligned with the lecture.

4ECTS is the European Credit Transfer System which helps to compare courses of universities
across Europe (http://www.ects.at/inhalt1.php)

14

http://www.ects.at/inhalt1.php

2.3 Rich Internet Applications

2.3 Rich Internet Applications

The use of Rich Internet Application (RIA) technology promises several benefits for pro-
viding e-Learning support in the field of UML diagrams. First, this chapter introduces
basic notions (Section 2.3.1) and technologies (Section 2.3.2). Then these technologies
are compared, finally leading to the technology choice for the implementation (2.3.3).

2.3.1 Basics

Over the past years there were essential innovations in the field of web applications. The
use of web applications (social networks, wikis, user generated content, etc.) becomes
more user centered and interactive. Complementary, new technological concepts (Ajax,
thin clients, etc.) support these changes.

Table 2.1: RIA settlement

A RIA is something between a web application and a desktop application (see Ta-
ble 2.1). The strength of traditional desktop applications are their highly responsive
and interactive user interfaces and multimedia abilities. Contrary, the major benefits
of web applications are their high reach 5, low maintenance and platform independence.
RIAs attempt to combine the benefits of both approaches and to avoid their drawbacks.

In a nutshell, the key benefits of RIAs are [34]:

• A rich user interface which is not downloaded repeatedly as in traditional web
applications.

• Interactive UI controls make the application more feel like a desktop application.

• The application reacts immediately to user actions without reloading the entire
application.

• Contrary to traditional web applications some actions can be entirely handled by
the client without asking the server.

• A reach as traditional web applications as they are accessible via the web.

• Maintenance costs are as low as those of conventional web applications. The ap-
plication is not installed locally and therefore no updates have to be distributed.

5

15

2 Basic Concepts

2.3.2 RIA Technologies

The most popular technologies for the creation of RIAs — as stated by Ostermaier [34]
— are briefly described in the following. Later in this section they are evaluated, and
the best fitting technology is used for implementation (Chapter 3).

Flash / Flex

Flash 6 has its origin in multimedia applications. It is primarily used for animations
which are displayed via a Flash Plug-in in the browser window. But with its own
scripting language ActionScript (AS), Flash also allows for building highly interactive
applications.

Flash applications can be developed with the aid of the authoring tool Adobe Flash
[45]. Developers define graphical objects and their transformations for specific points
in time (time line) and specify their interactive behavior (AS).

Figure 2.12: Architecture of Flash/Flex applications

While Flash’s strengths are located in multimedia, it has weaknesses when building
data intensive form based GUIs. Here, Flex [46] comes into play: The Flex API and
SDK allow for building component based applications that compile to Flash binaries
(*.swf). For complicated issues, it follows the approach of Code-Behind [1]: The layout
of components is defined with an XML file (the XML derivative MXML, *.mxml),
whereas the logic of the specific component is encapsulated in an ActionScript class
(*.as).

The standard Flash / Flex deployment architecture is shown in Figure 2.12. The
binary code (UI definition and UI logic) is compressed to a *.swf file and is placed on the
server. The client’s browser loads an HTML page, which defines an embedded object
(the *.swf file) to be executed with the Flash plugin. Further communication between
the application and the server (for example database usage) at runtime (embedded in
the Flash plug-in) is realized via XML requests over HTTP(S).

6Adobe Flash: http://www.adobe.com/flash/

16

http://www.adobe.com/flash/

2.3 Rich Internet Applications

Adobe AIR (Adobe Integrated Runtime) 7, which is built on the same core as Flash
and Flex, is a cross-platform runtime environment for RIAs. Unlike most other RIA
technologies it does not use the web-browser. AIR applications run directly on the
desktop. Like Flex, AIR applications are built with the Adobe Flex Builder around
MXML components and ActionScript classes.

Flash was released by Macromedia in 1999 and the Flash plug-in has actually (De-
cember 2008) a penetration of 99% (i.e. 99% of locally installed browsers can display
this type of content) [2].

Silverlight

Silverlight 8 is a light-weight version of Microsoft’s Windows Presentation Foundation
(WPF) [40]. With Silverlight, developers can build RIAs including videos and anima-
tions using the eXtensible Application Markup Language (XAML [26], XML derivate
for graphical definitions) and JavaScript (logic behind). Silverlight can be seen as Mi-
crosoft’s counterpart to market leader Flash in the field of multimedia integration into
web pages.

Figure 2.13: Architecture of Silverlight applications

The Silverlight deployment architecture is similar to Flash or Flex (Figure 2.13):
The Silverlight application is loaded from the presentation server and running inside
the Silverlight browser plug-in. Further Communication can be realized via HTTP(S)
requests.

It is very advisable to use Silverlight in projects that set up on the .NET framework.
Silverlight plug-ins are available for Internet Explorer, Firefox, Chrome and Safari web
browsers, but not for Opera. In December 2008, the penetration of the Silverlight
plug-in was at only 25 % of PCs [23].

7AdobeAIR: http://www.adobe.com/devnet/air/flex/articles/airf15_training.html
8Silverlight: http://www.microsoft.com/silverlight/default.aspx

17

http://www.adobe.com/devnet/air/flex/articles/airf15_training.html
http://www.microsoft.com/silverlight/default.aspx

2 Basic Concepts

JAVA applets

Java Applets [43] were very early attempts for providing RIA. Applets can run in
the browser on any platform which has installed an adequate Java Runtime (JRE).
The compiled Java Applet bytecode (*.class / *.jar files) is located on the server and
referenced in an HTML object-tag (Figure 2.14).

Figure 2.14: Architecture of applet based applications

An advantage of applets is that they can use the entire J2SE API and have therefore
a broad application range. The communication is not limited to the HTTP(s) and
therefore not bound to the request - response paradigm. High time consumption of
loading the JVM and initializing the applet are major drawbacks of this technology. For
security reasons, applets run in a restricted environment called sandbox. In December
2008 the JVM had a penetration of approximately 88% [2].

AJAX

Ajax (Asynchronous JavaScript and XML) [16] is a concept for building RIAs based on
the established technologies JavaScript and XML. Contrary to other RIA technologies,
Ajax applications don’t need a browser plug-in. With JavaScript, which is provided
by nearly every modern web browser, the Document Object Model (DOM) [10] of the
underlying HTML page can be accessed and manipulated in order to react on UI events.
Further, it provides asynchronous HTTP requests to the server (Figure 2.15). When
the data is received, the registered callback function is called. The underlying data
format of the communication is not limited to XML, as the name presumes, it can also
be formatted in JavaScript Object Notation (JSON) [12] or just plain text. In the case
of Ajax, the UI definition is declared via standard HTML, the logic is implemented in
JavaScript.

There is a huge number of AJAX frameworks available for most popular web tech-
nologies. They reach from low level JavaScript libraries (e.g. script.aculo.us 9, proto-

9scriptaculous JavaScript library: http://script.aculo.us/

18

http://script.aculo.us/

2.3 Rich Internet Applications

Figure 2.15: Architecture of AJAX applications

type 10) to high level, widget based, frameworks (Adobe Spry 11, Google Web Toolkit
12, ASP.NET Ajax 13) which relieve developers from JavaScript coding.

Ajax has a very high reach, as it only requires a JavaScript capable web browser
that provides asynchronous HTTP requests. The major disadvantage of AJAX are
incompatibilities between the web browsers’ different JavaScript implementations.

XUL

XUL (XML User Interface Language) is an XML based language for the description of
RIA user interfaces. The language has been developed in association with the Mozilla
web browser and is used for the browser’s UI. Developers can implement XUL appli-
cations by specifying the UI structure with XUL and implementing application logic
with JavaScript. XUL applications depend on Gecko 14, the Mozilla layout engine.

The standard deployment architecture for XUL applications is illustrated in Fig-
ure 2.16. The UI specification is loaded by the Gecko based web browser. Further
asynchronous communication is realized via simple HTTP requests and XML.

XUL applications run in the rendering engine which is included in the web browser
(e.g. Mozilla Firefox). The major drawback is that ZUL is provided by only less than
a half of all used browsers [44]. Since Microsoft pushes its own declarative UI language
(XAML, see Section 2.3.2), it is improbable that they will support ZUL in Internet
Explorer.

10prototype JavaScript library: www.prototypejs.org/
11Adobe Spry: http://labs.adobe.com/technologies/spry/
12GWT: http://code.google.com/webtoolkit/
13ASP.NET-Ajax: http://www.asp.net/ajax/
14Gecko Layout Engine: http://www.mozilla.org/newlayout/

19

www.prototypejs.org/
http://labs.adobe.com/technologies/spry/
http://code.google.com/webtoolkit/
http://www.asp.net/ajax/
http://www.mozilla.org/newlayout/

2 Basic Concepts

Figure 2.16: Architecture of XUL applications

2.3.3 Evaluation and Choice

There are two prerequisites for this project to allow the integration into the current,
Moodle15 based, e-Learning platform (TUWEL):

1. The RIA can be embedded in HTML (e.g. HTML object tag, JS).

2. The RIA technology is supported by the majority of web browsers (Internet
Explorer, Mozilla Firefox, Opera, Google Chrome, Safari).

From the most popular RIA technologies described in the previous section Java,
Ajax, and Flash/Flex fulfill these prerequisites. There is a large variety among criteria
for RIA technologies. The remaining RIA technologies are compared according to 10
criteria groups, that were identified by Noda and Helwig in [29].

Graphical Richness

Graphical Richness is essential for the creation of a rich, high responsive, interactive
diagram editor. The technology of choice has to provide support for:

• Custom UI components (notation elements, tool bars, property editors), which
ideally can be specified with a declarative language

• UI components that can be arranged freely (absolute layout) and are dynamically
adjustable

• Adequate drawing API (lines, circles, etc.)

• Drag-and-drop support

Flex performs best in this category, it provides declarative UI component specifica-
tion, a rich drawing API, etc.

15Moodle Learning Management System: http://www.moodle.org

20

http://www.moodle.org

2.3 Rich Internet Applications

With Ajax, there are more possible ways for the graphical layout, but all have some
weaknesses. Standard HTML containers would suffice for rendering boxes, but HTML
fails does not support drawing lines etc. The Canvas HTML-Tag provides 2D graphics
with JS functions. But beside challenging scripting code it is not available across all
main browsers (no support for Internet Explorer). Similarly, the more popular SVG
graphics is not available on all major web browser.

Java Applets match the requirements, but are not as comfortable in the implemen-
tation as Flex, which is purposed for these concerns.

Container / Engine Footprint

Container / engine footprint means a measure of influences to the environment of the
local client PC, e.g. the need of installed software, use of local disk space or memory,
etc. Java Applets need the relatively heavyweight JRE to be downloaded and installed,
which still is acceptable. Flash/Flex (lightweight plug-in) and AJAX (no additional
SW) are much lighter.

Application Download

AJAX also has the shortest download time. There is no need to load the whole applica-
tion at the beginning. The downloaded UI, data and logic is all text-based and requires
only little traffic. UI and logic of Java Applets and Flash/Flex is transferred via byte-
code, which creates more traffic. For the case of large applications, both Java Applets
and Flash/Flex provide mechanisms where parts of the application can be downloaded
on demand.

Audio / Video Support

Audio and video support is not very significant for this project. Nonetheless, future
versions could include e.g. learning videos. For these aspects, the multimedia oriented
Flash/Flex technologies have good audio and video support, followed by Java Applets
and Ajax, which only support browser built-in audio and video functionality.

Consistency on Different Computing Environments

Most AJAX applications have serious problems with different browsers and different
browser versions, which often increases production and maintenance costs. JAVA,
and—especially—Flash/Flex applications are more consistent on different client system
environments. It is a major issue for selecting RIA technology.

Server Requirements

All three considered technologies provide standard XML HTTP requests, with which
they can communicate with most web servers. Specific web server technologies can
optimize the communication, but are not necessary. Particularly, the use of JAVA
applets would unify language and communication when using EMF and/or Tomcat
web server.

Plug-in / Runtime Requirement on Client

High reach is guaranteed by all 3 technologies: AJAX does not require any plug-in or
runtime. Flash/Flex depends on an appropriate Flash plug-in, and JAVA applets on

21

2 Basic Concepts

the JAVA JRE, but both are available on most clients.

Development Challenge

AJAX (HTML/JS) coding can be very complex, especially with the browser problem-
atics mentioned above. Flash/Flex’s ActionScript 3 is significantly better as it confirms
to most principles of established object oriented languages like JAVA.

Security Concerns

Flash/Flex and JAVA applications are provided as compressed binaries, the Flash plug-
in (Flash/Flex)—respectively JRE (JAVA Applets)—act as a sandbox. Contrary, the
JS logic of AJAX applications is open to public. Authentication, authorization, and
encryption can be realized with HTTP(s) based communication to a specific web server.

Cost

Almost all parts of RIAs can be realized using cost free technologies: Established web
servers are provided by the Apache Software Foundation 16 (Apache web server, Apache
Tomcat). Client code (HTML, JS, or Java) can be implemented with the help of Eclipse
plug-ins. Only the Flex Builder API for building client UI causes some costs when using
Flex based RIA (actually about $700,-).

Technology Choice

The criteria are weighted upon the relevance for this project (Table 2.2). The graphical
richness is critical for displaying a wide variety of notation elements. Also the con-
sistency on different computing environments is essential for eliminating unsuspected
behavior for certain students, which would cause inequity in their rating.

Table 2.2: Weighting of RIA technology criteria

Table 2.3 shows the summarized rates for the proved technologies, weighted with the
factors above. With an overall score of 8.0, Flex seems to be best suiting, followed by
Java Applets (6.6) and Ajax (4.7).

16Apache Software Foundation: http://www.apache.org

22

http://www.apache.org

2.3 Rich Internet Applications

Table 2.3: Comparison of RIA technologies

23

2 Basic Concepts

24

3 Developing the Web Modeling
Framework

A Framework is to be developed that allows creating complete diagram editors with
the specification of diagram types comprising the diagram elements. This chapter deals
with the main challenges when creating a generic diagram visualization and manipu-
lation framework. First, a requirements analysis (Section 3.1) defines features that
have to be covered by the framework. Then, basic usage of the chosen implementation
technology is explained (Section 3.2).

Based on that, the framework is developed upon two functionality parts (Figure 3.1):
The Diagram Type Definition Mechanism (Section 3.3) allows users of the framework
to define diagram types by specifying the diagram elements, properties, and rules.
And the Generic 2D Diagram Editing Functionality (Section 3.4) provides a common
base structure for diagram elements and user interface components for diagram editing.
Finally, the utilization of the created framwork is explained (Section 3.5)

Figure 3.1: Framework Functionality

3.1 Requirements

The framework has to provide reusable components for the visualization and manip-
ulation of two-dimensional diagrams. It has to handle the UI actions for editing the
diagram elements (add, delete, connect, move, select, and property editing). Further-
more, it has to persist a model of the currently displayed diagram and allow to import
and export this persistent model (Figure 3.2).

The functionality is summarized in requirements catalog (Table 3.1): “Must Have”-
functions are seen essential to provide basic editing, “Nice to have”-functions are com-

25

3 Developing the Web Modeling Framework

Figure 3.2: Use cases of the WebMF

plement functionality and usability improvements. The user interface functions are
equivalent to basic functions of common modeling tools [4]. Details are described in
the following.

3.1.1 Visualization and Manipulation of Diagrams

The use of the editor should be as simple as possible. The user should be able to
start modeling without any introduction by just using a few core actions. Diagram
creation can be allowed in a simple but effective way by providing a diagram area with
drag-and-drop, a tool bar, a properties view, and a selection mechanism (described in
the following). Further, the framework should be extensible and should allow to add
further functions or components for diagram specific demands.

Diagram Area With Drag-and-Drop

The visual elements are shown on a diagram area. The framework has to provide
drag-and-drop mechanisms for different user interactions:

• For creating an element, the user has to drag a notation element from the tool
bar into the diagram area.

• For moving an existing node, the user has to drag-and-drop a node inside the
diagram.

• For (dis-)connecting an edge from/to a node, the user has to drag the edge
endpoint onto/out-of the node.

Node and Edge Elements

A diagram can be modeled as graph that consists of a set of nodes and edges. The
following constructs are sufficient to visualize most diagram types:

26

3.1 Requirements

Table 3.1: Requirements catalog for WebMF

27

3 Developing the Web Modeling Framework

• Nodes and Subnodes: Normal (Top-level) nodes are located with absolute dimen-
sions in the diagram area. Subnodes are nodes that are included in a (parent)
node.

• Edges: Edges connect exactly two nodes with a straight line, one source node
and one target node. Optionally, arrows can be specified.

The user must be able to select each element in the diagram area.

Tool Bar

A tool bar has to allow to add new nodes and edges by dragging an element from the
tool bar to the diagram area. It has to show all node and edge types that can be added
to the diagram.

Selection Mechanism

A selection mechanism has to make sure that at most one diagram element (node or
edge) selected at a time: When the user just clicks (no drag-and-drop operation) on an
element it has to be selected. Optionally, elements have to be highlighted in an other
way, when the user moves the mouse over it (hover).

Properties View

If there is an element selected in the diagram area, a properties view has to allow for
viewing and editing the properties of this selected element.

3.1.2 Specification of Diagram Types

The framework has to provide a mechanism which allows the simple specification of a
specific diagram type. This mechanism has to cover following aspects:

• Specification of all supported element types with their properties, connectivity
of these elements, and possible subnodes of node elements.

• Specification of the visual appearance of each diagram element: This view specifi-
cations should allow to display the elements’ properties in various forms including
graphical shapes, boxes, images, etc.

A declarative form in an XML or similar format of these specifications is preferable.

3.1.3 Import and Export Interfaces

The framework has to provide importation and exportation of diagram models. There-
fore, the model data has to be serialized to an XML format.

For the integration of a framework based editor into TUWEL or another web ap-
plication, the framework has to provide an interface for exchanging data within the
browser’s sandbox. This could be handled via JavaScript and / or HTTP requests.

3.2 Implementation Technology: Adobe Flex

In Section 2.3.3 Adobe Flex was chosen for implementing the Modeling Tool. Basic
concepts of this technology are described in the following.

28

3.2 Implementation Technology: Adobe Flex

3.2.1 Visual Components

All visual components (Figure 3.3) of WebMF presented in the following are based on
Flex’s UIComponent component. This component supports adding child components
and usage of the drawing API. The UIComponentNodeView and UIComponentEdgeView
view base classes directly extend this component. Container components further con-
trol the layout characteristics of the child components, three types are used. The
Canvas container allows absolute positioning of child elements and is used in the di-
agram MVC view DiagramView. The Box container lays out its children vertically or
horizontally. A vertical Box is used for the BoxNodeView view base class. The Panel
container acts like a Box, but additionally shows a title bar.

Figure 3.3: Container components of the WebMF

3.2.2 Model-View-Controller Pattern

Model-View-Controller (MVC) [9] is a software pattern that is applied to separate data-
, presentation- and control-logic. When each part acts independently from each other,
one part can easily be replaced or changed:

• The model contains state and/or data, optionally some application logic.

• The view renders the model’s data and/or state, and requests for updates.

• The controller interprets the user’s input and maps it to the model.

However, it is not always necessary to separate the controller from the view. In Flex
applications the controller usually is included in the view 1.

In this chapter, it is very important to distinguish between the MVC and meta-
modeling notions of “models”:

1The Adobe Flex technology was chosen in Chapter 2.3. Books (e.g. [46]) and the API ref-
erence (http://livedocs.adobe.com/flex/2/langref/package-summary.html) help to
understand the specific constructs and source code of implementation chapters

29

http://livedocs.adobe.com/flex/2/langref/package-summary.html

3 Developing the Web Modeling Framework

• “Model” in terms of metamodeling stands for “Metamodeling layer M1”.

• “Model” in terms of MVC stands for “Model part of Model-View-Controller”.
For clearness, the MVC layers are referred to as “MVC model”, “MVC view”,
and “MVC controller”. The package structure and the class names of the created
framework always relate to the MVC meanings.

Figure 3.4: MVC Pattern in Flex

An example will demonstrate MVC implementation in Flex (Figure 3.4). The exam-
ple allows to view and edit instances of a “Person” entity, which has only one “name”-
property. A model class (PersonModel) holds the data. The view class PersonView is
derived from a UI container component (a visual element that lays out visual child el-
ements) and is used for visualization and manipulation. Details of the implementation
are explained in the subsections.

Model

A MVC model can be specified with an ActionScript 3 class using common object
oriented programming techniques (Listing 3.1). All properties of a person are declared
as instance variables in a class named PersonModel. The [Bindable] metadata tag
(similar to JAVA annotations) causes that changes to this variable are observed at
runtime. When this variable is used in a binding (a mechanism for setting variables
dynamically to the current value of “bound” variables), this binding is updated.

Listing 3.1: MVC Model in Flex, mvc/model/PersonModel.as
1 package mvc.model

2 {

3 /**

4 * Person MVC Model

5 *

6 */

7 public class PersonModel

8 {

9 [Bindable]

10 /**

11 * The person ’s name

30

3.2 Implementation Technology: Adobe Flex

12 */

13 public var name:String;

14
15 public function PersonModel ()

16 {

17 }

18
19 }

20 }

View & Controller

A MVC view can be specified using a Flex MXML Component. MXML components
allow to specify a user interface in a declarative way using an XML dialect. An MXML
component is equivalent to a class defined with ActionScript. Like ActionScript classes,
the MXML code is compiled to bytecode. Following rules are applied:

• Each MXML component (*.mxml file) declares a class. This class extends the
class specified in the XML root tag.

• The name of the *.mxml file specifies the class name, the location in the folder
structure specifies the package (A file named MyComponent.mxml in src/pack/-
subpack is treated as class MyComponent in package pack.subpack).

• Classes in other packages can be accessed via namespace declarations.

• Commonly, an XML tag is treated as instantiation of a class (class name = tag
name, package = namespace) as a member variable. When an “id” attribute is
specified, the attribute value is used as variable name.

• If this class is visual and its parent element is a container, than it is added as a
child in the layout of the parent element.

• Attributes of an XML tag can specify properties (public instance variables or
getter/setter), or event handlers of this instance.

Listing 3.2: MVC View in Flex, mvc/view/PersonView.mxml
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Panel

3 xmlns:mx="http: //www.adobe.com /2006/ mxml"

4 xmlns:model="mvc.model.*"

5 title="A person">

6
7 <!-- A reference to the MVC model that is visualized and manipulated -->

8 <model:PersonModel id="person" />

9
10 <!-- Data Binding of the name property of the MVC model (curly brackets) -->

11 <mx:TextInput

12 id="nameInput"

13 text="{person.name}" />

14
15 <!-- Manipulation of the model in order to UI events (MouseEvent.CLICK event

handler) -->

16 <mx:Button

17 label="Change Name"

18 click="person.name = nameInput.text" />

19
20 </mx:Panel >

31

3 Developing the Web Modeling Framework

Listing 3.2 shows the view definition of the MVC example:

• It creates a class PersonView in mvc.view that extends the mx.Panel component.
The component will be rendered as a container with a title bar (line 2).

• Namespace mx references standard MXML components (line 3) and namespace
model references all classes in the mvc.model package (line 4).

• The property title of the panel is set. The text value is shown in the panel title
bar (line 5).

• An instance variable person references the MVC model (line 8).

• A text input component (nameInput) is added to the panel. The text always
shows the actual value of the name property of the person instance (property
binding, lines 11-13).

• A button control is added to the panel. When the button is clicked, the name of
the person (the MVC model) is set to the actual value of the name input control
(lines 16-18).

3.3 Definition of Diagram Types

The framework has to provide a language with which framework users can define dia-
gram types. This language consists of the specification of the abstract syntax (AS) and
the concrete syntax (CS) 2: The abstract syntax defines the concepts of the language
and their relationships. The concrete syntax defines the physical appearance of the
language. In the case of a graphical language like WebMF that means the graphical
appearance of the language concepts.

The presented approach consists of two languages (Figure 3.5): the Stencil Set DSL
and the Stencil View DSL.

The Stencil Set DSL covers the abstract syntax. It allows for specifying a set of
notation elements, properties that can be set for these elements, and rules that define
how elements can be combined.

Complementary, the Stencil View DSL covers the concrete syntax. It provides a
universal and powerful language for the definition of the visual representation of the
elements by providing the Flex UI components to build custom MVC views.

With this architecture, the framework provides support for a variety of diagram
types. It promises simplicity in the definition of diagram types and avoids complicated
mapping of the notation elements to the abstract syntax, since the models created
by the editors simply contain the spacial information and the property values of the
diagram elements (defined in Section 3.4).

3.3.1 Stencil Set DSL

The Stencil Set DSL covers the abstract syntax of the WebMF DSVL. The language is
inspired by the “Stencil set” concept of the Oryx Editor (Related Work, Chapter 6.1).
It allows for specifying a set of notation elements, properties that can be set for these
elements, and rules that define how elements can be combined.

Concretely, a stencil set specifies structure and properties of the notation elements of
a specific diagram type. It defines the different nodes and edge types, and their property

2The notions are introduced in Chapter 2.1

32

3.3 Definition of Diagram Types

Figure 3.5: Language specification in WebMF

fields (which can be edited in the properties view). It also defines where elements can
be created (or nested) and to which nodes or edges they can be connected. And it
defines for each notation element, which Stencil View definition is to be used for the
rendering.

For defining the metametamodel and the DSL, WebMF makes use of the Flex MXML
component mechanism (see Section 3.2.2): All elements of the stencil set metamodel
are defined as Flex classes. Since every defined class can be instantiated with a tag in
an MXML component, this provides the concrete syntax for defining stencil set models.

The modeled classes are shown in Figure 3.6:

• The StencilSet class includes a collection of stencils. Stencils can be retrieved
by calling getStencilByName() or using the stencils collection.

• The Stencil class defines the characteristics of an element.

– The stencilName is used as unique identifier inside a stencil set.

– The type indicates if this stencil is a “node” or an “edge”.

– The stencilViewClass references the view class that is used to render
elements of this element type. The referenced class is defined via the Stencil
View DSL described later.

– The toolbarIcon references an embedded image which is used in the tool
bar.

– The properties collection comprises the property definitions.

– The canCreateIn and canConnect collections allow to specify rules for the
creation and connection of elements.

– The canCreateInNode() operation uses the defined creation rules and eval-
uates if the specified create operation is allowed.

– The canCreateInNode() operation uses the defined connection rules and
evaluates if the specified connect operation is allowed.

33

3 Developing the Web Modeling Framework

Figure 3.6: Classes for Stencil Set Specification in WebMF

• A property definition (Property) consists of the property name and a default
value. Possible parent nodes (ParentNode) are referred by their stencil name.
Connection rules (Connection) consist of a source and a target node type, each
referred by their stencil name.

These classes are designed in such a way that they can be easily used inside MXML
components for the descriptive definition. This allows quick and clear specification of
stencil sets. The concrete definition of a stencil set is described in the following. In
Section 4.3 provides detailed information about how to create stencil sets.

A template for the definition of the core construction of a stencil set is shown in
Listing 3.3: The StencilSet class is created (line 2) and the stencils array is filled
with a number of node and / or edge stencils.

A template for the definition of a node stencil is shown in Listing 3.4: The created
stencil is identified by the stencil name “MyNode” and is of type “node” (lines 2-3).
The ActionScript class “MyNodeViewClass” is used for visualization (line 4) and the
file “myNodeIcon.gif” is used in the tool bar (line 5) 3. Nodes of this type can be created
as top level node (“Diagram” parent) or inside the node “MyParentNode” (lines 7-11),
created nodes contain two properties “myProperty1” and “myProperty2” (lines 14-15).

A template for the definition of an edge stencil is shown in Listing 3.5: The created
stencil is identified by the stencil name “MyEdge” and is of type “edge”. The Action-
Script class “MyEdgeViewClass” is used for visualization and the file “myEdgeIcon.gif”
is used in the tool bar. Edges of this type can connect nodes of type “NodeA” (source)
to nodes of type “NodeB” (target), created edges contain two properties (“myProp-
erty1” and “myProperty2”).

3The file has to be embedded in the project properties (Project→ Properties; Category “Build
Path”; Tab assets)

34

3.3 Definition of Diagram Types

Listing 3.3: Core construction of a stencil set component
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet

3 xmlns="webmf.model.*"

4 xmlns:mx="http: //www.adobe.com /2006/ mxml">

5 <stencils >

6
7 <!-- add stencils here -->

8
9 </stencils >

10 </StencilSet >

Listing 3.4: Template for the definition of a node stencil in a stencil set component
1 <Stencil

2 stencilName="MyNode"

3 type="node"

4 stencilViewClass="{MyNodeViewClass}"

5 toolbarIcon="@Embed(source=’assets/myNodeIcon.gif ’)">

6
7 <canCreateIn >

8 <ParentNode stencilName="Diagram" />

9 <ParentNode stencilName="MyParentNode" />

10 <!-- ... -->

11 </canCreateIn >

12
13 <properties >

14 <Property name="myProperty1" defaultValue="defaultValue" />

15 <Property name="myProperty2" defaultValue="defaultValue" />

16 <!-- ... -->

17 </properties >

18 </Stencil >

Listing 3.5: Template for the definition of an edge stencil in a stencil set
component

1 <Stencil

2 stencilName="MyEdge"

3 type="edge"

4 stencilViewClass="{MyEdgeViewClass}"

5 toolbarIcon="@Embed(source=’assets/myEdgeIcon.gif ’)">

6
7 <canConnect >

8 <Connection >

9 <source >

10 <SourceNode stencilName="NodeA" />

11 </source >

12 <target >

13 <TargetNode stencilName="NodeB" />

14 </target >

15 </Connection >

16 <!-- ... -->

17 </canConnect >

18
19 <properties >

20 <Property name="myProperty1" defaultValue="defaultValue" />

21 <Property name="myProperty2" defaultValue="defaultValue" />

22 <!-- ... -->

23 </properties >

24 </Stencil >

3.3.2 Stencil View DSL

By use of the Stencil View DSL, the concrete syntax of the single graphical elements
can be specified. It is a universal and powerful language for the definition of the visual
representation of the elements by providing the Flex UI components to build custom
MVC views.

35

3 Developing the Web Modeling Framework

Figure 3.7: Interfaces and view base classes for stencil views

The notation elements can be build upon standard Flex UI components, they only
have to implement the INodeView respectively IEdgeView interface (Figure 3.7). Hence,
the metamodel is represented by the Flex Visual Component API classes, and the DSL
is represented by the Flex MXML component language. The interfaces are described
in the following:

• The common characteristics of node views and edge views are abstracted in
the IViewElement interface. Each view element contains a reference to the un-
derlying model (getModelElement()). It also can be selected and unselected
(selected). The redraw() operation updates the view when the model is
changed.

• Node views visualize a node model (model). The model reference can be used
for retrieving properties (model.getProperty("propertyName")) and children
(model.getChildren("childStencilName")) of a node. The thisNodeView()
method just returns a reference to this object (used for binding this object;
binding this directly would result in runtime errors).

• Each node view is visualized inside a parent node view (parentView). Further,
custom node views specify their bounds (position and size) by implementing the
getBounds() method.

• Edge views visualize an edge model (model). The model reference can be used for
retrieving properties. Each edge view is visualized inside a parent diagram view
parentView. They connect a sourceNodeView to a targetNodeView according
to the edge model. If one of these properties is null, this means that this side is
not connected to a node.

36

3.3 Definition of Diagram Types

View Base Classes

Node views and edge views can be created by implementing the interfaces INodeView
or IEdgeView (Figure 3.7). To ease the development, the WebMF provides three view
base components which have common purposes and can be derived for creating views:

The BoxNodeView component is based on the Flex Box layout container and lays out
its children vertically. It allows adjustment of the size to the size of its contents. The
boundary is rectangular and can have rounded corners. This type of node is widely
spread across many diagram types. The width of the container can be specified, the
height is adjusted dynamically to the contents. All bindings of the component and its
children are recognized automatically.

The UIComponentNodeView component is based on the Flex UIComponent container.
The layout can be specified using absolute positioning of child components, and adding
them manually (UIComponent.addChild()) to the container. Components including
bindings have to be added to the boundComponents array so that they are recognized.
It is very flexible and allows for specifying the appearance of the node with the 2D
graphics engine, but also requires more implementation effort.

Both node view base components provide an array for registering repeater elements
(childRepeaters) 4. All bindings included in these repeaters are recognized automat-
ically.

Figure 3.8: Arrow dimensions and styles

The UIComponentEdgeView component is based on the Flex UIComponent container.
It displays a straight line from source to target and, optionally, various arrows. The
arrow size, angle, and style can be set for both ends of the edge separately (Figure 3.8).

Because more than one edge can connect the same pair of nodes, it is necessary
that edges can be connected at different anchors of the node’s boundary. Since the
size of nodes can change, absolute positions of endpoints are not practicable. The
UIComponentEdgeView endpoint anchor positions are defined with percentages of the
nodes’ size. The example (Figure 3.9) shows two nodes A and B which are connected
by edge e. The relative endpoint anchor a is located on 70% of the node’s width and
15% of the node’s height. The real edge endpoints are located at the intersection points
ia and ib of the nodes’ boundaries and the connection of the two endpoint anchors. The
anchor position percentages are calculated when the user drops the edge endpoint onto
a node (see Section 3.4.2).

The reader may refer to the API documentation 5 for a comprehensive description
of the WebMF view base components.

4Repeaters are used for repeating a set of UI components. The number of repetitions corre-
sponds to the size of the data provider.

5API documentation: http://web.student.tuwien.ac.at/~e0427416/webmf/docs/1.0/

37

http://web.student.tuwien.ac.at/~e0427416/webmf/docs/1.0/

3 Developing the Web Modeling Framework

Figure 3.9: Calculation of edge endpoint positions

3.4 Generic Diagram Editing

Generic diagram editing requires a common data structure for different diagram types
and visual UI components that can manipulate this common data structure.

3.4.1 Common Data Structure for Arranging Diagram
Elements

For the specified requirements, three elements are needed to describe the actual state
of a displayed diagram:

• A diagram contains a number of elements (nodes and edges). Elements can be
added to or removed from the diagram. The diagram conforms to a stencil set
that defines structural information for the distinct types of these elements.

• A node is positioned with absolute (horizontal and vertical) coordinates. It con-
forms to a stencil of the stencil set of the diagram in which it is included. It also
holds the values of a number of properties (which are defined in the stencil set).
A node can have a number of subnodes which can be added or removed.

• An edge can connect a source node to a target node. If an endpoint of the edge
is connected to a node, the connection position (anchor) is stored as percentage
value (see Section 3.3.2). Otherwise the endpoint is positioned with absolute
coordinates in the diagram. Like a node, an edge conforms to a stencil of the
stencil set of the diagram and holds a number of properties.

These aspects are modeled in Figure 3.10.

• The common characteristics of edges and nodes are abstracted through the
ModelElement class. Each element references the stencil type (stencil) and
has a collection 6 for the properties (properties).

• Class NodeModel specifies numeric values for the horizontal and vertical position
in the diagram. Parent/child relationships are represented by the parent and
children associations. The createChild() operation creates a child node of
the specified type (stencil). The removeChild() operation removes the child
node specified by the childNode parameter. The remove() operation deletes all
child nodes and removes this node from its parent. All children of a specific type
can be retrieved with getChildren().

6flash.utils.Dictionary: A Flex collection data type with name-value pairs, similar to
JAVA Map

38

3.4 Generic Diagram Editing

Figure 3.10: Metamodel of diagram elements in WebMF

• Class EdgeModel has two node references: sourceNode and targetNode. The
properties with percentages are used when the according node is set to an existing
node, the other (absolute) properties are used otherwise.

• Class DiagramModel inherits from class NodeModel. The horizontal and vertical
coordinates are ignored. Additionally the diagram has a reference to — and con-
forms to — the related stencilSet and provides the import (setModelXml())
and export (getModelXml()) of the serialized XML model, according to the ref-
erenced stencil set.

3.4.2 Visual UI Components for Visualization and
Manipulation

The framework has to provide three UI Components for generic diagram visualization
and manipulation: A diagram that contains the visual diagram elements, a tool bar
that allows adding new elements to this diagram, and a properties editor that allows
for editing the properties of the currently selected diagram element (Figure 3.11).

The diagram is an area that acts as a container for all element views (nodes and
edges). The layout of this container is absolute, which means that the position of the
children can be specified explicitly. Within this area element views can be moved, con-
nected, or selected. Only zero or one element can be selected in the diagram at a time.
The DiagramView extends the Canvas component, which realizes diagram functionality.
It also handles drag-and-drop events for the manipulation of the diagrams.

The tool bar shows controls for all stencils of the current stencil set. These controls
are enriched with drag-and-drop support, so that they can be added to the diagram.

The properties editor builds upon the DataGrid component and displays two columns,
one for the property names and one for the property values. If an element is selected
in the diagram, all its properties are shown. The values can be edited in the control.
The data in the model is then updated accordingly.

39

3 Developing the Web Modeling Framework

Figure 3.11: UI components of WebMF

Manipulating the Generic Structure

Figure 3.12: Overview over drag-and-drop functionality

All user interactions except the deletion of elements (keyboard DELETE key) are
done with drag-and-drop. Table 3.12 shows, when a certain operations are invoked.
A drag-and-drop operation starts when the user moves the mouse cursor over a user
interface element that supports dragging (the dragged item), and presses the left mouse
button. When the user drags the dragged item over another user interface element that
function as a drop target (the target), the mouse cursor indicates whether this drag-
and-drop operation is allowed (drag over). This depends on the combination of dragged
item, target, and on the certain involved notation elements. If the operation is allowed
and the user releases the mouse button, the operation is executed (drop).

In the following the steps of manipulating the MVC model and the MVC view —
invoked by certain user interactions — is described. The MVC views handle the events

40

3.5 Framework Utilization

that are dispatched by the MVC model elements, and update themselves accordingly.

• Creating a new node: When the user drags a node stencil from the tool bar
into the diagram area or an other node that allows this node type as subnode, a
new node will be created. First, a new NodeModel object is instantiated, and its
coordinates are set according to the mouse drop position. Then, it is added to the
children of the parent node model. This triggers a CreateChildModelEvent
event. The parent view (diagram or node) reacts to the creation of the child,
creates a node view, binds it to the node model and displays it.

• Creating a new edge: When the user drags an edge stencil from the tool bar into
the diagram area, a new edge will be created. First, a new EdgeModel object is
instantiated, and its coordinates are set according to the mouse drop position.
Then, it is added to the parent diagram. This triggers a CreateEdgeModelEvent
event. The parent diagram view reacts on the creation of the edge, creates an
edge view, binds it to the edge model and displays it.

• Connecting/Disconnecting Edge Endpoints: When the user drags an edge end-
point into a node of the right edge endpoint type, the edge will be connected to
this node. First, the source/target node of the EdgeModel is set to to the new
node. The EdgeModel is registered to react on DeleteNodeModelEvent.DELETE
events of the newly connected model (for cascading delete of nodes). Then the
relative endpoint position (width/height percentage of the drop mouse position
to the newly connected model) is set. An ConnectModelEvent is triggered and
the related edge view is updated.

In almost the same manner, when the user drags an edge endpoint to an empty lo-
cation of the diagram area, the edge endpoint will be disconnected: The source/-
target node of the EdgeModel is unset and it is unregistered from delete events
(DeleteNodeModelEvent.DELETE) of the previously connected node model. And
the absolute endpoint position (according to the drop mouse position) is set for
the edge.

• Deleting a node: When a node is selected and the user presses the delete key on
the keyboard, the currently selected node will be deleted. First, all children
of the NodeModel are recursively deleted. The connected edges of the nodes are
informed via the DeleteNodeModelEvent.DELETE event, and are unconnected
(see above). Then the node model is removed from the parent node (or diagram).
This triggers a DeleteChildModelEvent.DELETE event. The parent node view
removes the child from its layout (the unused object can be garbage collected),
and the selection of the parent diagram is set to none.

• Deleting an edge: When an edge is selected and the user presses the delete key on
the keyboard, the currently selected edge will be deleted. First, the EdgeModel
is removed from the parent diagram model. This triggers a DeleteChildModel-
Event.DELETE event. The parent diagram view reacts and removes the child
from its layout (the unused object can be garbage collected), and the selection
of the parent diagram is set to none.

3.5 Framework Utilization

This section demonstrates, how the components of WebMF are utilized to build a
specific diagram editor, and how the different functionality parts work together.

41

3 Developing the Web Modeling Framework

3.5.1 Design of a Typical WebMF Application

For building a typical WebMF editor, five components are assembled in an application
(Figure 3.13). The first two are non-visual. The WebMF Stencil Set DSL and the
WebMF Stencil View DSL are used for building a DSVL (called Stencil Set), which
then is instantiated in the application. Then a Diagram Model is instantiated and
connected with the Stencil Set. Through this connection, the behavior of the Diagram
Model in response to user interaction is adapted.

For the user interaction, the three visual components are utilized. A Diagram View
is connected to the Diagram Model. Thus, the view shows the graphical representation
of this model and initiates manipulation of this model on user interface actions. A tool
bar is connected to the Stencil Set and so shows all notation elements of this Stencil Set.
These notation elements can be dragged into the Diagram View to create new diagram
elements. Finally, a Properties View is connected to the Diagram View and shows the
properties of the currently selected element of the diagram (if any) and permits to edit
them.

Chapter 4 demonstrates the creation of a sample application step by step.

Figure 3.13: Design of a typical WebMF application

3.5.2 Interplay of the Functionality Parts

The relationships between diagram types and the concrete diagram elements in a run-
ning applications are illustrated in Figure 3.14. It shows the relationships on a class
layer as well as on an object layer. A diagram type is described through a stencil set to-
gether with its stencils (specified using the DSLs). Concretely, myStencilSet includes

42

3.5 Framework Utilization

the stencils nodeStencil and edgeStencil.
A diagram model to be visualized and manipulated is described through objects of

the ModelElement (DiagramModel, NodeModel, and EdgeModel) classes. In this case,
the diagram consists of the node node1 and the edge edge1. This diagram is of diagram
type myStencilSet. This implicates that all children of this diagram relate to notation
elements of this diagram type. In this case those are the notation elements nodeStencil
and edgeStencil.

The manipulation of the elements according to the diagram types is implemented in
the generic data structures and the generic UI components.

43

3 Developing the Web Modeling Framework

F
igu

re
3.14:

In
terp

lay
of

th
e

fu
n
ction

ality
p
arts

44

4 Sample Application

This chapter demonstrates how to use the WebMF to build a specific diagram vi-
sualization and manipulation application step by step. First, the Abstract Syntax
(Section 4.1) and the Concrete Syntax (Section 4.2) are defined for the editor. Then, a
WebMF stencil set is created (Section 4.3) upon these specifications. Finally, an appli-
cation is created that uses the created stencil set and the generic visual UI components
of WebMF (Section 4.4).

There are only a few prerequisites to build this sample stencil set and application.
FlexBuilder 3.0 (or higher) with Flex SDK 3.3. (or higher) have to be installed. Also
a web browser with the Flash debug plug-in (comes along with the installation of
Flex Builder) is needed. Finally, the WebMF library SWC (webmf.swc) has to be
downloaded.

4.1 Abstract Syntax

The sample application domain is called “TaiPan”, and is based on an demonstration
example of a GMF Tutorial [14]. The TaiPan application allows for coordinating ports,
ships, and items to transport 1. Ports are identified by their name. From one port a
number of other ports can be navigated (routes) and the distances to these other ports
are known.

Ships are also identified by their name. They transport a number of item packages
with a specific item type and amount. It can be defined, to which ports a ship has to
navigate (destinations). All aspects are modeled in the Abstract Syntax (Figure 4.1).

Figure 4.1: Abstract Syntax of the WebMF TaiPan editor

1The example varies a bit from the one in the GMF Tutorial

45

4 Sample Application

4.2 Concrete Syntax

Ships are visualized as rectangles that show their name on the top. Then the different
items are listed in horizontal lines. Thereby, one item is shown as a square graphics
including the amount of the item. Ports are visualized as ragged shapes. Above this
shape the name of the port is shown.

The routes between the different ports are displayed as simple connection lines. And,
finally, the destination ports of ships are displayed as blocked arrows from the ship to
the port of call.

Table 4.1: Concrete syntax of WebMF TaiPan diagrams

4.3 Building the Stencil Set Library

Although it’s possible to define both stencil set and application logic in a single Flex
application, we suggest to create a stencil set library so that it can be used in several
applications.

To create the stencil set, we first have to create a Flex library project and add the
WebMF library. Then we build the structure of the stencil set component. Finally, we
create stencils (view definitions) for each of the required elements.

4.3.1 Creating a Flex Library Project

We start with the creation of a flex library project “TaiPanStencilSet” (File→ New→
Flex Library Project, Figure 4.2) using the Flex Builder.

Inside the library project, we create the following folder (package) structure (Flex
Navigator view on the left side):

• src (main source folder)

– assets

– taipan

46

4.3 Building the Stencil Set Library

Figure 4.2: Create Flex library project

47

4 Sample Application

∗ stencil

∗ stencilset

Package taipan.stencilset will include the TaiPan stencil set and package
taipan.stencil will include the view definitions. The assets folder will be used for all
embedded images in the views.

To make use of the WebMF we have to include it in the Flex library build path of
your project: In the project properties (Project → Properties), we choose tab Library
path in Flex Library Build Path (Figure 4.3) and add the delivered SWC (webmf.swc).

Figure 4.3: Add WebMF library

4.3.2 Creating a Stencil Set

To create the stencil set, we create a new MXML component (File → New → MXML
Component) in package taipan.stencilset with name “TaiPanStencilSet” and spec-
ify “StencilSet” as superclass (field “Based on:“, Figure 4.4) 2.

Listing 4.1: Core construction of a stencil set component

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet

3 xmlns="webmf.model.*"

4 xmlns:mx="http: //www.adobe.com /2006/ mxml">

5 <stencils >

6
7 <!-- add stencils here -->

8
9 </stencils >

10 </StencilSet >

2We cannot choose the Stencil Set base Component from the framework because Flex Builder
only shows visual components in the drag-and-drop list

48

4.3 Building the Stencil Set Library

Figure 4.4: Creating stencil set component

49

4 Sample Application

After finishing the wizard, Flex Builder shows an automatically generated MXML
file. The XML root tag StencilSet specifies the base component for this non-visual
component. Listing 4.1 shows the core of the stencil set definition after some adaptions:
We change the default namespace to “webmf.model.*” (line 3) 3 and create a stencils
tag inside the root tag. Stencil definitions have to be put inside this tag.

Listing 4.2: taipan/stencilset/TaiPanStencilSet.mxml
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet xmlns="webmf.model .*" xmlns:mx="http://www.adobe.com /2006/ mxml">

3 ...

4 <stencils >

5
6 <Stencil stencilName="Ship" type="node" stencilViewClass="{ShipView}"

toolbarIcon="@Embed(source=’assets/defaultIcon.gif ’)">

7 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

8 <properties > <Property name="name" defaultValue="Shipname" /> </

properties >

9 </Stencil >

10
11 <Stencil stencilName="Port" type="node" ...>

12 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

13 <properties > <Property name="name" defaultValue="A Port" /> </

properties >

14 </Stencil >

15
16 <Stencil stencilName="Item" type="node" ...>

17 <canCreateIn > <ParentNode stencilName="Ship" /> </canCreateIn >

18 <properties > <Property name="type" defaultValue="Rum" /> <Property

name="amount" defaultValue="1" /> </properties >

19 </Stencil >

20
21 <Stencil stencilName="Route" type="edge" ...>

22 <canConnect >

23 <Connection >

24 <source > <SourceNode stencilName="Port" /> </source >

25 <target > <TargetNode stencilName="Port" /> </target >

26 </Connection >

27 </canConnect >

28 <properties > <Property name="distance" defaultValue="0" /> </

properties >

29 </Stencil >

30
31 <Stencil stencilName="ShipDestinationPort" type="edge" ...>

32 <canConnect >

33 <Connection >

34 <source > <SourceNode stencilName="Ship" /> </source >

35 <target > <TargetNode stencilName="Port" /> </target >

36 </Connection >

37 </canConnect >

38 </Stencil >

39
40 </stencils >

41 </StencilSet >

In the TaiPan project we create five stencil definitions (Listing 4.2):

• We specify a unique stencilName for every node and edge. Elements are referred
by this name, e.g. in creation and connection rules. Additionally, we specify the
element type (“node” / “edge”), the view class and the tool bar icon (lines
6/11/16/21/31).

• In the canCreateIn tag we specify, where nodes can be created: Ship and Port
are top-level nodes (can be created in Diagram, lines 7/12). Item nodes can be
created in Ship nodes (line 17).

3Only necessary for non-visual components while base component is not processed automati-
cally

50

4.3 Building the Stencil Set Library

• In the canConnect tag we specify connection rules: Route edges can only connect
two Port nodes (lines 24-25), ShipDestinationPort edges can only connect a
Ship node to a Port node.

• In the properties tag we specify the property types for the elements (lines
8/13/18/28).

4.3.3 Creating Stencil Views

We have to specify only one file per stencil to describe how a specific stencil is displayed,
a so-called stencil view. We create a new MXML Component (File → New → MXML
Component) “MyNodeView” in package taipan.stencil based on the BoxNodeView,
UIComponentView, or UIComponentEdgeView view base component. Then we can spec-
ify the layout using standard Flex components and the features of the WebMF base
components (see elements of the TaiPan project below).

We choose the base component for the stencil views as follows: Simple rectangular
node types with automatic child layout can be displayed using the BoxNodeView view
base class. Other custom node types can be displayed using the UIComponentNodeView
view base class. All edges can be displayed using the UIComponentEdgeView view base
class.

All major aspects of stencil views are covered by this example. Most nodes can be
rendered as rectangular container nodes, based on the BoxNodeView view base class
(ship view and item view). Other nodes can be rendered as custom nodes, based on
the UIComponentNodeView (port view). Edges can be rendered as connecting lines,
optionally with specific arrow types, using the UIComponentEdge view base component
(route view, ship destination port view).

The views can automatically show the current values of model properties (ship view,
item view, port view). Also, images can be displayed using standard Flex compo-
nents (item view, port view). Subnodes can be displayed one after the other by using
Repeater components inside the parent node (item views in ship view).

Ships and Items

A Ship node shall be displayed as rectangular container, which shows the name of the
ship and its transported items in one or more vertical rows (Figure 4.1). To show a
rectangular container, we use the BoxNodeView view base component (Listing 4.3, line
2). Into this component we put a label which shows the name property (line 3) and a
mx:Tile container for the items (line 4) 4.

To dynamically show all included items in this container, we use a mx:Repeater
component which creates an stencil:ItemView for each Item child (line 5), and reg-
ister the repeater for automatic update (line 2). We set the model that the child view
has to render to the current element of the iteration, and set the parentElement to
the current displayed Ship (line 6).

TaiPan Item nodes shall be displayed as little images which are overlaid with a
label indicating the item amount (Figure 4.1). We use the BoxNodeView view base
component (Listing 4.4, line 2) and insert a mx:Canvas container to put children one
upon the other (line 3). To this container, we add the image (line 4) and the text
showing the amount (line 5). The result of the two views is shown in Figure 4.5.

4The mx:Tile container lays out its children in one ore more rows or columns.

51

4 Sample Application

Listing 4.3: taipan/stencil/ShipView.mxml
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <BoxNodeView childRepeaters="{[itemRepeater]}" ...>

3 <mx:Label text="{model.getProperty(’name ’)}" ... />

4 <mx:Tile width="100%">

5 <mx:Repeater id="itemRepeater" dataProvider="{model.getChildren(’Item ’)}

">

6 <stencil:ItemView parentElement="{thisNodeView}" model="{

itemRepeater.currentItem}" />

7 </mx:Repeater >

8 </mx:Tile >

9 </BoxNodeView >

Listing 4.4: taipan/stencil/ItemView.mxml
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <BoxNodeView ... >

3 <mx:Canvas >

4 <mx:Image ... source="@Embed(’assets/item.gif ’)" />

5 <mx:Label ... text="{model.getProperty(’amount ’)}" />

6 </mx:Canvas >

7 </BoxNodeView >

Figure 4.5: Look of a ship with five items and different amounts

Ports

TaiPan Port nodes shall be displayed as ragged yellow Shape with a name label (Fig-
ure 4.1). For the custom form, we use the UIComponentView view base component.
We insert a label that shows the name property (line 11) and an image that shows the
shape (line 12). For both we specify absolute positions and we add them manually
as children of the view (line 3). We specify the bounds of view via the bounds getter
function. The result is presented in Figure 4.6.

Listing 4.5: taipan/stencil/PortView.mxml
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <UIComponentNodeView ...

3 initialize="addChild(image); addChild(label);"

4 boundComponents="{[label]}">

5 <mx:Script >

6 <![CDATA[

7 ...

8 override public function get bounds () :RectangleBounds { return new

RectangleBounds(x, y, 70, 90); }

9]]>

10 </mx:Script >

11 <mx:Label id="label" text="{model.getProperty(’name ’)}" x="0" y="0" width="

70" height="20" />

12 <mx:Image id="image" source="@Embed(’assets/port.gif ’)" x="0" y="20"

width="70" height="70" />

13 </UIComponentNodeView >

52

4.3 Building the Stencil Set Library

Figure 4.6: Look of a port

Routes and Ship Destination Ports

TaiPan Route edges shall be displayed as a simple line without arrows between two
ports that has no arrows (Figure 4.1). We just use the UIComponentEdge view base
component (Listing 4.6, line 2) without further customization effort.

TaiPan ShipDestinationPort edges shall be displayed as a line with a block arrow
at the target (port) side and no arrow on the source (ship) side (Figure 4.1). We use
the UIComponentEdge view base component (Listing 4.6, line 2) and specify that an
arrow is displayed on the target side and that this arrow shall have “block” style (line
3). The result of the tow edge views is presented in Figure 4.7.

Listing 4.6: taipan/stencil/RouteView.mxml

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <UIComponentEdgeView ... >

3 </UIComponentEdgeView >

Listing 4.7: taipan/stencil/ShipDestinationPortView

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <UIComponentEdgeView ...

3 targetArrow="arrow" targetArrowBlock="true">

4 </UIComponentEdgeView >

Figure 4.7: Look of the route and ship destination port edges

53

4 Sample Application

4.4 Building an Editor Application

The component oriented approach of WebMF allows for building very customizable
diagram visualization and manipulation applications. In this sample, we build a web
application that uses the three view components of the WebMF (diagram, tool bar,
and properties editor).

4.4.1 Creating a Flex Application

Once we have created the stencil set library, we can use it in various web applications
(Flex) or desktop applications (AIR). In this sample we will create a Flex web applica-
tion (File→ New→ Flex Project, project name “TaiPanEditor”). After committing the
wizard, the MXML source code of the created main application (TaiPanEditor.mxml)
is shown.

Figure 4.8: Creating sample application project

To make use of the WebMF and the TaiPan stencil set library we have created,
we have to include both in the Flex library build path of the project: In the project
properties (Project → Properties) we select tab Library path in Flex Library Build
Path. There we add the delivered SWC library webmf.swf (“Add SWC...”) and the
stencil set project (“TaiPanStencilSet”) (“Add Project...”) to the build path.

4.4.2 Creating and Connecting Components

In the application, we create and connect the required components (Listing 4.8): First,
we instantiate the previously created stencil set (line 3) and a diagram model that
conforms to this stencil set (line 4). Then we create a tool bar that shows all notation
elements of the stencil set (line 6), a diagram view that visualizes the diagram model

54

4.4 Building an Editor Application

Figure 4.9: Add libraries to application build path

(line 7) and a properties view that shows the properties of the selected element of the
diagram view (line 8).

Listing 4.8: Create and connect components (TaiPanEditor.mxml)
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Application ... layout="vertical">

3 <stencilset:TaiPanStencilSet id="stencilSet" />

4 <model:DiagramModel id="diagramModel" stencilSet="{stencilSet}" />

5 ...

6 <view:ToolBarView ... stencilSet="{stencilSet}" />

7 <view:DiagramView id="diagram" model="{diagramModel}" ... />

8 <view:PropertiesView ... element="{diagram.selectedElement}" />

9 ...

10 </mx:Application >

4.4.3 Appearance of the Created Application

Figures 4.10 and 4.11 show the created sample editor application in the initial state
and after a few user operations.

55

4 Sample Application

Figure 4.10: Screenshot of the created sample editor application

Figure 4.11: Screenshot of the created sample editor application (2)

56

5 Developing e-Learning Support
with WebMF

The created framework is used for the prototypical creation of three UML editors. With
class diagram (Section 5.1), state diagram (Section 5.2) and sequence diagram (Sec-
tion 5.3) both structural and behavioral modeling are covered. Finally, the integration
of an editor into the eLearning platform Moodle is demonstrated (Section 5.4).

The implementation will also show strengths and weaknesses of the framework, which
are presented in Section 7.3 in the evaluation chapter.

5.1 UML Class Diagram Editor

With UML class diagrams, structural aspects of systems can be described through
object classes and their relationships.

5.1.1 Abstract Syntax

The editor prototype shall allow for modeling classes, relationships between classes
and inheritance (Figure 5.1). Centrally, classes are modeled (Class). Each class can
inherit from any number of other classes (inheritsFrom). Classes can be abstract
(isAbstract) and can include attributes (Attribute) and operations (Operation).
Attributes as well as operations have a data type (dataType) and a specific visibility
setting (visibility). Besides, attributes and operations cannot exist outside a class.

Associations (Association) connect the comprising class (from) to the target class
(to, the data type). They also have a visibility setting (visibility). Additionally, the
multiplicity can be described through an interval (lowerBound and upperBound). All
classes, associations, attributes, and operations are identified by their name (name).

5.1.2 Concrete Syntax

The concrete syntax conforms to familiar UML standards, which are taught in the
lecture (Table 5.1). Classes are visualized as rectangles with rounded corners and three
sections that are divided by rules. In the first section the name of the class is shown. In
the case of an abstract class, this is indicated through the stereotype label (“�abstract
�”). The second section shows the attributes of the class in a vertical list. A symbol
on the left side indicates that it is an attribute. Then the name and the data type are
displayed. Accordingly, the third section shows the operations of the class. Function
braces are added to the operation name.

Associations are displayed as arrow from the comprising class to the target class. The
name and the multiplicity is shown nearby the arrow. Generalization (inheritsFrom in
the abstract syntax) is shown as arrow (blocked style) from the class to its superclass.

57

5 Developing e-Learning Support with WebMF

Figure 5.1: Abstract syntax of UML class diagrams

Table 5.1: Concrete syntax of UML class diagrams

58

5.1 UML Class Diagram Editor

5.1.3 Implementation

Stencil Set

We create a stencil set that implements the mentioned aspects (Listing 5.1): Class
nodes are the only top-level nodes (line 6) and can include Attribute and Operation
subnodes (line 11 and 16). Properties define the class name and if the class is abstract
(line 8). Association edges connect two Class nodes (line 23-26). The supertypes
of classes can be modeled with Generalization edges that connect a Class node
(subclass) to an other Class (superclass) (lines 33-36). Attribute and Operation
nodes have properties for specifying the name and the data type (lines 13 and 28).
The elements Association, Attribute and Operation have a property for specifying
visibility (lines 13, 18, 28).

Listing 5.1: Class diagram stencil set

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet ...>

3 ...

4 <stencils >

5
6 <Stencil stencilName="Class" type="node" ...>

7 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

8 <properties > <Property name="name" defaultValue="ClassName" /> <

Property name="abstract" defaultValue="false" /> </properties >

9 </Stencil >

10
11 <Stencil stencilName="Attribute" type="node" ...>

12 <canCreateIn > <ParentNode stencilName="Class" /> </canCreateIn >

13 <properties > <Property name="name" defaultValue="name" /> <Property

name="type" defaultValue="Type" /> <Property name="visibility"

defaultValue="public" /> </properties >

14 </Stencil >

15
16 <Stencil stencilName="Operation" type="node" ...>

17 <canCreateIn > <ParentNode stencilName="Class" /> </canCreateIn >

18 <properties > <Property name="name" defaultValue="name" /> <Property

name="type" defaultValue="Type" /> <Property name="visibility"

defaultValue="public" /> </properties >

19 </Stencil >

20
21 <Stencil stencilName="Association" type="edge" ...>

22 <canConnect >

23 <Connection >

24 <source > <SourceNode stencilName="Class" /> </source >

25 <target > <TargetNode stencilName="Class" /> </target >

26 </Connection >

27 </canConnect >

28 <properties > <Property name="name" defaultValue="name" /> <Property

name="lowerBound" defaultValue="0" /> <Property name="upperBound

" defaultValue="1" /> <Property name="visibility" defaultValue="

public" /> </properties >

29 </Stencil >

30
31 <Stencil stencilName="Generalization" type="edge" ...>

32 <canConnect >

33 <Connection >

34 <source > <SourceNode stencilName="Class" /> </source >

35 <target > <TargetNode stencilName="Class" /> </target >

36 </Connection >

37 </canConnect >

38 </Stencil >

39
40 </stencils >

41 </StencilSet >

59

5 Developing e-Learning Support with WebMF

Classes, Attributes and Operations

For displaying Class nodes, we use the BoxNodeView view base class to show a rect-
angular node (Listing 5.2, line 2) and insert several elements which are grouped with
rules (lines 6/10). To indicate, if the class is abstract, the label at the top with the
text “abstract” is only shown when the appropriate property is set to “true” (line 4).
The class name is displayed with a second label (line 5). Then all Attribute children
and, finally, all Operation children are added at the bottom.

For displaying the Attribute child nodes, we use the BoxNodeView view base com-
ponent and specify “horizontal” direction to show an “attribute” image on the left side
and a label with the attribute name and type on the right side (Listing 5.3, lines 3 and
4). The operation view can be implemented similarly. The result of the three views
definitions at runtime is presented in Figure 5.2.

Listing 5.2: Class view
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:BoxNodeView childRepeaters="{[attributesRepeater , operationsRepeater]}"

...>

3 ...

4 <mx:Label visible="{model.getProperty(’abstract ’) == ’true ’}" text="«

abstract »" ... />

5 <mx:Label htmlText="{model.getProperty(’name ’)}" ... />

6 <mx:HRule ... />

7 <mx:Repeater id="attributesRepeater" dataProvider="{model.getChildren(’

Attribute ’}" ...>

8 <stencil:AttributeView parentView="{thisNodeView}" model="{

attributesRepeater.currentItem}" ... />

9 </mx:Repeater >

10 <mx:HRule ... />

11 <mx:Repeater id="operationsRepeater" dataProvider="{model.getChildren(’

Operation ’}" ...>

12 <stencil:OperationView parentView="{thisNodeView}" model="{

operationsRepeater.currentItem}" ... />

13 </mx:Repeater >

14 </view:BoxNodeView >

Listing 5.3: Attribute view
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:BoxNodeView direction="horizontal" ...>

3 <mx:Image source="assets/ecore/EAttribute.gif" />

4 <mx:Label text="{_model.getProperty(’name ’) + ’ : ’ + _model.getProperty(’

type ’)}" ... />

5 </view:BoxNodeView >

Figure 5.2: Look of a class and an abstract class with some attributes and
operations

Associations and Generalizations

For displaying Association edges, we use the UIComponentEdgeView view base com-
ponent to show a line connector and specify that it additionally shows an arrow on the

60

5.1 UML Class Diagram Editor

target side (Listing 5.4). The generalization view can be implemented similarly. The
results of both view definitions at runtime are presented in Figure 5.3.

Listing 5.4: Association view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:UIComponentEdgeView ...

3 targetArrow="arrow"

4 >

5 </view:UIComponentEdgeView >

Figure 5.3: Look of an association edge and a generalization edge

Editor Application

For creating the application, we create and connect the required components (List-
ing 5.5): First, we instantiate the previously created stencil set (line 3) and a diagram
model that conforms to this stencil set (line 4). Then we create a tool bar that shows all
notation elements of the stencil set (line 6), a diagram view that visualizes the diagram
model (line 7) and a properties view that shows the properties of the selected element
of the diagram view (line 8). The resulting editor application is presented in Figure 5.4.

Listing 5.5: Create and connect components

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Application ... layout="vertical">

3 <stencilset:ClassDiagramStencilSet id="stencilSet" />

4 <model:DiagramModel id="diagramModel" stencilSet="{stencilSet}" />

5 ...

6 <view:ToolBarView ... stencilSet="{stencilSet}" />

7 <view:DiagramView id="diagram" model="{diagramModel}" ... />

8 <view:PropertiesView ... element="{diagram.selectedElement}" />

9 ...

10 </mx:Application >

5.1.4 Issues

The editor could be implemented almost completely, only a few issues appeared during
the implementation of the stencil set.

First, in UML class diagrams the name of associations is shown as label at the center
of the association edge and the multiplicity intervals are shown at the edge endpoints

61

5 Developing e-Learning Support with WebMF

Figure 5.4: Screenshot of the WebMF UML class diagram editor

(Figure 5.5). This functionally, which can be referred to as “edge labels”, is not yet
supported by the WebMF. A mechanism should be provided for easy creation of such
labels for the start point, center and the end point of an edge.

Figure 5.5: Edge labels in UML class diagrams

Second, the data types of attributes or operations can be primitive data types, but
also one of the other classes (Example in Figure 5.6). With the current implementation,
the elements cannot be related. So if the class name of the ClassB is changed, the
attribute b with this class as data type is not updated. Currently, there are no mapping
facilities provided by the framework since a basic idea was to avoid complicated mapping
and to focus on the visualization features.

Figure 5.6: Referencing another class as data type in a UML class diagram

And third, the storage of all property values is problematically. E.g. the isAbstract
property of the class stencil represents a Boolean value. The values that are set
in the properties editor cannot be validated, also the evaluation is error-prone (e.g.
isAbstract == "true").

62

5.2 UML State Diagram Editor

5.2 UML State Diagram Editor

5.2.1 Abstract Syntax

The editor prototype shallow allow for modeling states (including initial state and end
state), activities inside these states, and transitions between states. States (State)
are the central constructs (Figure 5.7). They are identified by their name, and can
comprise activities (Activity). The latter define what to execute (description) and
when this activity is executed (execution, e.g. “entry” / “exit”). Further, there are
two pseudo-states (InitialState / EndState), which both can exist only once.

Transitions (Transition) lead from one state to the next state. Thereby, the out-
going state (source) can be the initial state or a normal state (i.e. not the end state).
Vice versa, this applies to the target state (target). It is also described, what happens
in the course of a transition (description).

Figure 5.7: Abstract syntax of UML state diagrams

5.2.2 Concrete Syntax

The concrete syntax conforms to familiar UML standards, which are taught in the
lecture (Table 5.2). States are visualized as rectangles with two sections that are
divided by rules. The first section shows the name of the state. The second section
shows the details of the state. Concretely, the activities (entry or exit activities, etc.)
are shown in a vertical list, consisting of the execution type and the description of the
executed activity.

The initial state and the end state are shown as circular shapes with no additional
information. Transitions are displayed as simple arrows from the outgoing state to the
ingoing state.

5.2.3 Implementation

Stencil Set

We create a stencil set that implements the mentioned aspects (Listing 5.6): State,
InitialState and EndState nodes are top-level nodes (line 6) and can include subn-
odes of type Activity (line 20). State nodes can include Activity subnodes (line 20).
Transition edges usually connect two State nodes (lines 27-39). Alternatively there

63

5 Developing e-Learning Support with WebMF

Table 5.2: Concrete syntax of WebMF UML state diagrams

can be an InitialState node on the source side or an EndState node on the target
side. Properties are added for all attributes.

Listing 5.6: State diagram stencil set

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet ...>

3 ...

4 <stencils >

5
6 <Stencil stencilName="State" type="node" ...>

7 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

8 <properties > <Property name="name" defaultValue="MyState" /> </

properties >

9 </Stencil >

10
11 <Stencil stencilName="InitialState" type="node" ...>

12 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

13 </Stencil >

14
15 <Stencil stencilName="EndState" type="node" ...>

16 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

17 </Stencil >

18
19 <Stencil stencilName="Activity" type="node" ...>

20 <canCreateIn > <ParentNode stencilName="State" /> </canCreateIn >

21 <properties > <Property name="execution" defaultValue="do" /> <

Property name="description" defaultValue="doSomething" /> </

properties >

22 </Stencil >

23
24 <Stencil stencilName="Transition" type="edge" ...>

25 <properties > <Property name="description" defaultValue="Event" /> </

properties >

26 <canConnect >

27 <Connection >

28 <source > <SourceNode stencilName="State" /> </source >

29 <target > <TargetNode stencilName="State" /> </target >

30 </Connection >

31 <Connection >

32 <source > <SourceNode stencilName="InitialState" /> </source >

64

5.2 UML State Diagram Editor

33 <target > <TargetNode stencilName="State" /> </target >

34 </Connection >

35 <Connection >

36 <source > <SourceNode stencilName="State" /> </source >

37 <target > <TargetNode stencilName="EndState" /> </target >

38 </Connection >

39 </canConnect >

40 </Stencil >

41
42 </stencils >

43 </StencilSet >

States and Activities

For displaying State nodes, we use the BoxNodeView view base class to show a rect-
angular node (Listing 5.7, line 2). At the top we add a label that displays the class
name (line 4), followed by a horizontal rule (line 5) and finally all Activity children
(line 6-8).

For displaying the Activity child nodes, we use the BoxNodeView view base compo-
nent (Listing 5.8). Inside the node we compose the text of a label with the execution
and description properties.

The result of the two views definitions at runtime is presented in Figure 5.8.

Listing 5.7: State view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:BoxNodeView cornerRadius="16" childRepeaters="{[activityRepeater]}" ...>

3 ...

4 <mx:Label text="{model.getProperty(’name ’)}" ... />

5 <mx:HRule ... />

6 <mx:Repeater id="activityRepeater" dataProvider="{model.getChildren(’

Activity ’}">

7 <ActivityView parentView="{thisNodeView}" model="{activityRepeater.

currentItem}" ... />

8 </mx:Repeater >

9 ...

10 </view:BoxNodeView >

Listing 5.8: Activity view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:BoxNodeView ...>

3 <mx:Label htmlText="{model.getProperty(’execution ’)}/& lt;/b>

{model.getProperty(’description ’)}" ... />

4 </view:BoxNodeView >

Figure 5.8: Look of a state including two activities

65

5 Developing e-Learning Support with WebMF

Initial State and End State

For displaying an InitialState node, we use the UIComponentNodeView view base
component (Listing 5.9) and draw a filled circle (line 5). The EndState node view
can be implemented similarly by drawing two filled circles. The results of both view
definitions at runtime are presented in Figure 5.9.

Listing 5.9: Initial state view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <UIComponentNodeView width="31" height="31" ...>

3 <mx:Script >

4 <![CDATA[

5 override protected function draw():void {

6 this.graphics.lineStyle (1);

7 this.graphics.beginFill (0x000000 , 1);

8 this.graphics.drawCircle (15, 15, 15);

9 this.graphics.endFill ();

10 }

11]]>

12 </mx:Script >

13 </UIComponentNodeView >

Figure 5.9: Look of the initial and the end state

Transitions

For displaying Transition edges, we use the UIComponentEdgeView view base compo-
nent to show a line connector and specify that it additionally shows an arrow on the
target side (Listing 5.10, result in Figure 5.10).

Listing 5.10: Transition view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:UIComponentEdgeView

3 xmlns="stateDiagram.stencil .*"

4 xmlns:mx="http: //www.adobe.com /2006/ mxml"

5 xmlns:view="webmf.view.*"

6
7 targetArrow="arrow"

8 targetArrowAngle="20"

9 >

10 </view:UIComponentEdgeView >

Figure 5.10: Look of a transition edge

66

5.2 UML State Diagram Editor

Editor Application

For creating the application, we create and connect the required components (List-
ing 5.11): First, we instantiate the previously created stencil set (line 3) and a diagram
model that conforms to this stencil set (line 4). Then we create a tool bar that shows
all notation elements of the stencil set (line 6), a diagram view that visualizes the di-
agram model (line 7) and a properties view that shows the properties of the selected
element of the diagram view (line 8). The resulting editor application is presented in
Figure 5.11.

Listing 5.11: Create and connect components

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Application ... layout="vertical">

3 <stencilset:StateDiagramStencilSet id="stencilSet" />

4 <model:DiagramModel id="diagramModel" stencilSet="{stencilSet}" />

5 ...

6 <view:ToolBarView ... stencilSet="{stencilSet}" />

7 <view:DiagramView id="diagram" model="{diagramModel}" ... />

8 <view:PropertiesView ... element="{diagram.selectedElement}" />

9 ...

10 </mx:Application >

Figure 5.11: Screenshot of the WebMF UML state diagram editor

5.2.4 Issues

The editor could be implemented almost completely, only a few issues appeared during
the implementation of the stencil set.

First, in a valid UML state diagram there has to be exactly one initial state. This
type is not yet supported but desirable for future enhancements.

Second, states in the UML state diagram are nested sometimes, i.e. there are states
including substates (Figure 5.12). This cannot be implemented with the current func-
tionality. The Stencil View DSL would allow positioning the subelements with absolute

67

5 Developing e-Learning Support with WebMF

layout. Concretely, a Canvas container could be filled with a subnode Repeater, similar
to the activity subnodes.

Currently, when dropping a potential subnode onto an existing node (when this
parent-child relationship is allowed), this causes that the node is added as a child, but
there is no possibility to designate where the child is placed inside its parent, i.e. the
position in the list of children or the relative coordinates inside the parent node. Such
an enhancement of the drag-and-drop mechanism would enable many more diagram
constructions. Of course, these inner node positions have also to be stored in the data
structure.

Figure 5.12: Nesting of states in UML state diagrams

5.3 UML Sequence Diagram Editor

UML Sequence Diagrams are used to show the chronological order of messages between
different objects of an application. The editor prototype shall support the following
aspects (Figure 5.13): Lifelines and messages can be modeled. Lifelines have a role and
a data type. Messages have a description and can be synchronous or asynchronous.

5.3.1 Abstract Syntax

The editor prototype shall allow for modeling the lifelines of actors and the sent mes-
sages (Figure 5.13). Lifelines (Lifeline) show the behavior of a role (role) of a
specific type (type). Every message (Message) has one lifeline as sender (sender)
and one as receiver (receiver). Further they can be synchronous or asynchronous
(isSynchronous).

Figure 5.13: Abstract syntax of WebMF UML sequence diagrams

5.3.2 Concrete Syntax

The concrete syntax conforms to familiar UML standards, which are taught in the
lecture (Table 5.3). Lifelines are visualized as dashed vertical lines with a lifeline head
at the top. This head shows the role and the type of the actor. Messages connect the
sender to the receiver lifeline with an arrow. Different arrow types are used for different
message types (synchronous / asynchronous).

68

5.3 UML Sequence Diagram Editor

Table 5.3: Concrete syntax of WebMF UML sequence diagrams

5.3.3 Implementation

Stencil Set

We create a stencil set that implements the mentioned aspects (Listing 5.12): Lifeline
nodes are top-level nodes and define properties for role and type (lines 6-9). The edges
of type SynchronousMessage and AsynchronousMessage connect two Lifeline nodes
and define a property for their description.

Listing 5.12: Sequence diagram stencil set
1 <?xml version ="1.0" encoding ="utf -8"?>

2 <StencilSet ...>

3 ...

4 <stencils >

5
6 <Stencil stencilName="Lifeline" type="node" ...>

7 <canCreateIn > <ParentNode stencilName="Diagram" /> </canCreateIn >

8 <properties > <Property name="role" defaultValue="role" /> <Property

name="type" defaultValue="Type" /> </properties >

9 </Stencil >

10
11 <Stencil stencilName="SynchronousMessage" type="edge" ...>

12 <canConnect >

13 <Connection >

14 <source > <SourceNode stencilName="Lifeline" /> </source >

15 <target > <TargetNode stencilName="Lifeline" /> </target >

16 </Connection >

17 </canConnect >

18 <properties > <Property name="description" defaultValue="label" /> </

properties >

19 </Stencil >

20
21 <Stencil

22 stencilName="AsynchronousMessage" type="edge" ...>

23 <canConnect >

24 <Connection >

25 <source > <SourceNode stencilName="Lifeline" /> </source >

26 <target > <TargetNode stencilName="Lifeline}" /> </target >

27 </Connection >

28 </canConnect >

29 <properties > <Property name="description" defaultValue="label" /> </

properties >

30 </Stencil >

31
32 </stencils >

33 </StencilSet >

69

5 Developing e-Learning Support with WebMF

Lifelines

For displaying a Lifeline node, we use the UIComponentNodeView view base compo-
nent (Listing 5.13). We define (line 10-12) and add (line 3) a rectangle with an label to
show the lifeline head with role and type. In the draw method we draw the dashes of
the lifeline. The results of the view definitions at runtime is presented in Figure 5.14.

Listing 5.13: Lifeline view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:UIComponentNodeView boundComponents="{[head]}"

3 initialize="this.addChild(headBox); headBox.addChild(head);" ...>

4 <mx:Script >

5 ...

6 override protected function draw():void {

7 // draw dashes

8 }

9 ...

10 </mx:Script >

11 <mx:Box id="headBox" ...>

12 <mx:Label id="head" text="{_model.getProperty(’role ’)} : {_model.

getProperty(’type ’)}" ... />

13 </mx:Box >

14 </view:UIComponentNodeView >

Figure 5.14: Look of a lifeline

Messages

For displaying SynchronousMessage edges, we use the UIComponentEdgeView view
base component to show a line connector and specify that it shows a filled arrow with
block style on the target side (Listing 5.14). The AsynchronousMessage edges can be
implemented similarly, with a normal arrow on the target side (targetArrowBlock=
"false"). The results of both view definitions at runtime are presented in Figure 5.15.

Listing 5.14: Synchronous message view

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <view:UIComponentEdgeView

3 xmlns="sequenceDiagram.stencil .*"

4 xmlns:mx="http: //www.adobe.com /2006/ mxml"

5 xmlns:basic="basic.*"

6 xmlns:view="webmf.view.*"

7
8 targetArrow="arrow"

9 targetArrowBlock="true"

10 targetArrowFill="true"

11 targetArrowSize="10"

12 >

13 </view:UIComponentEdgeView >

70

5.3 UML Sequence Diagram Editor

Figure 5.15: Look of a synchronous and asynchronous messages

Editor Application

For creating the application, we create and connect the required components (List-
ing 5.15): First, we instantiate the previously created stencil set (line 3) and a diagram
model that conforms to this stencil set (line 4). Then we create a tool bar that shows all
notation elements of the stencil set (line 6), a diagram view that visualizes the diagram
model (line 7) and a properties view that shows the properties of the selected element
of the diagram view (line 8). The resulting editor application is presented in Figure 5.4.

Listing 5.15: Create and connect components

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Application ... layout="vertical">

3 <stencilset:SequenceDiagramStencilSet id="stencilSet" />

4 <model:DiagramModel id="diagramModel" stencilSet="{stencilSet}" />

5 ...

6 <view:ToolBarView ... stencilSet="{stencilSet}" />

7 <view:DiagramView id="diagram" model="{diagramModel}" ... />

8 <view:PropertiesView ... element="{diagram.selectedElement}" />

9 ...

10 </mx:Application >

5.3.4 Issues

Overall the UML sequence diagram does not fit well into the schema of WebMF. Many
issues appeared and the result is a fragmentary implementation.

In contrast to other UML diagrams, the position of elements matters in sequence
diagrams. The vertical axis of the diagram represents the timeline (Figure 5.17). So
it makes a difference if a message is sent before or after (in the visualization above or
below) another message. Also, lifelines are placed in a horizontal row (equal distance
d), sometimes a lifeline is below others, when the related actor appears at a later point
in time. This general discrepancy becomes manifest in the following issues.

First, lifelines cannot be realized adequately. Beside the mentioned placement of
the lifelines, they also have to be vertically resizable to show their lifetime. Manual
resizing of nodes — and the storage of the sizes in the data structures — is not yet
supported by the framework. This is also the reason, why execution specification cannot
be implemented for lifelines. The length of these bars is important and has to be set
by the user.

Second, execution specifications and combined fragments, also essential constructs
in UML sequence diagrams, cannot be implemented. Figure 5.18 shows an example
with both constructs. The execution specifications are displayed as bars with variable

71

5 Developing e-Learning Support with WebMF

Figure 5.16: Screenshot of the WebMF UML sequence diagram editor

Figure 5.17: Placement of lifelines in UML sequence diagrams

72

5.4 Integration of Editors Into Moodle

length on the lifeline. As already mentioned, there is no resize functionality in WebMF.
Also, the placement of the execution specification on the lifeline is problematically since
they have to be placed central on it in the horizontal dimension and with an absolute
coordinate according to the time in the vertical dimension. This mismatches with the
alignment system of the framework.

Combined fragments, displayed as one or more fragments according to the number of
operands, cannot be implemented due to the need of special size determination. This
size determination is quite complex as it has to account for several related elements
in different manner. In the horizontal dimension it has to cover all lifelines that are
involved in one of the operands of the combined fragment. In the vertical dimension each
operand has to cover all involved messages and also all execution specifications that are
part of the operand. The different operands have to follow up one to another without
gap. These multiple alignment rules cannot be represented in WebMF. Following the
node-subnode schema, the execution specifications would be subnodes of lifelines. But
they have also to be aligned to the comprising operand. WebMF only supports parent-
child relationships where a child has exactly one parent.

Figure 5.18: Execution specifications and combined fragments in UML sequence
diagrams

Third, a message edge has to be horizontal as long the message is not indicated as
time consuming. This contradicts the automatic adjustment to related nodes (lifelines
or execution specifications) of WebMF. In a correct implementation the begin of an
execution specification has to follow up the message edge’s end point.

Some of these issues could be realized with workarounds, but this seems to be a
hardly feasible solution. UML sequence diagrams do not fit in the concept of WebMF.

Besides, the synchronous message stencil and the asynchronous message stencil are
almost the same. It would be good to encapsulate functionality with an inheritance
mechanism to avoid redundancies and inflated stencil definition files.

5.4 Integration of Editors Into Moodle

This section demonstrates, how WebMF applications are integrated into the Moodle
platform. Concretely, a practical modeling exercise is created for an example Moodle
course, where students have to create an UML class diagram for an assignment.

Section 5.4.1 explains how to enable import- and export functionality in WebMF
applications. Section 5.4.2 describes the functionality of the created Moodle WebMF

73

5 Developing e-Learning Support with WebMF

plug-in. Finally, Section 5.4.3 demonstrates how to use the plugin to create a sample
assignment.

5.4.1 Enabling Import and Export Functions

WebMF features an ImportExportManager class that provides import and export func-
tionality. Listing 5.16) shows the application MXML file of the UML class editor created
in Section 5.1, extended with JavaScript import and export functionality. An instance
of the ImportExportManager is added (line 13). After the application is initialized,
JavaScript import and export are enabled for the edited diagramModel (line 8). These
functions activate communication between the editor application SWF file (which runs
in the Flash Player Plug-in) with the surrounding HTML page.

Listing 5.16: Use Import and Export functions

1 <?xml version ="1.0" encoding ="utf -8"?>

2 <mx:Application

3 xmlns:mx="http: //www.adobe.com /2006/ mxml"

4 xmlns:view="webmf.view.*"

5 xmlns:model="webmf.model .*"

6 xmlns:stencilset="classDiagram.stencilset .*"

7 layout="vertical"

8 initialize="importExportManager.enableJavascriptExport(diagramModel);

importExportManager.enableJavascriptImport(diagramModel);"

9 >

10
11 <stencilset:ClassDiagramStencilSet id="stencilSet" />

12 <model:DiagramModel id="diagramModel" stencilSet="{stencilSet}" />

13 <util:ImportExportManager id="importExportManager" />

14
15 <mx:ApplicationControlBar dock="true">

16 <mx:Label text="WebMF - Class Diagram Editor" />

17 </mx:ApplicationControlBar >

18
19 <mx:HBox height="100%" width="100%">

20 <view:ToolBarView id="toolbar" stencilSet="{stencilSet}" height="100%"

width="200" />

21 <mx:Panel width="100%" height="100%" title="Diagram">

22 <view:DiagramView id="diagram" model="{diagramModel}" width="100%"

height="100%" />

23 </mx:Panel >

24 <view:PropertiesView id="properties" element="{diagram.selectedElement}"

width="200" height="100%" />

25 </mx:HBox >

26
27 </mx:Application >

5.4.2 Developing the WebMF Assignment Plug-in for Moodle

The component oriented approach of WebMF allows for creating diagram editors that
can be integrated in various forms (Figure 5.19). For example, WebMF applications
could be used in Moodle resources (lecture), forums, or assignments. The latter is
realized in this section.

The Moodle e-Learning platform is deployed on a PHP/Apache web server (Fig-
ure 5.20). It features a plug-in mechanism that was used to create the WebMF assign-
ment plugin. The WebMF editor application is running in the Flash Player Plug-in in
the user’s web browser. The communication between client and server is realized with
HTTP GET and POST requests. Additionally, the browser communicates with the
editor application Flash Player Plug-in with JavaScript.

74

5.4 Integration of Editors Into Moodle

Figure 5.19: Components in the e-Learning Application Environment

Figure 5.20: Integration of WebMF editor applications in Moodle

75

5 Developing e-Learning Support with WebMF

Figure 5.21 shows the workflow of a WebMF Moodle assignment. An assignment
starts, when the assignment page is loaded (i.e. when the browser requests the as-
signment HTML page from the Moodle web server). This page includes the WebMF
editor SWF and the initial model XML. When the editor SWF is initialized completely
(inside the Flash Player Plug-in) it notifies the browser by calling a JavaScript function
(swfReady()) that is included in the HTML document. The browser then injects the
initial model XML into the editor (javascriptImport(initialXml)). This is usu-
ally the serialized version of an empty diagram, or — if the user already started this
assignment — the previously saved assignment of this user.

After the user has created his/her solution by using the editors user interface func-
tions he presses the submit button on the assignment HTML page. Then the se-
rialized model XML of the current state of the editor is requested from the SWF
(javascriptExport() / exportModelXml(xmlString)) and submitted to the Moodle
server.

5.4.3 Creating a Sample Assignment

The WebMF assignment Moodle plug-in can be installed on a Moodle installation by
unpacking the webmf-assignment-moodle-plugin.zip archive into MOODLEDIR/mod/
assignment/type. To add a WebMF editor application, the SWF file has to be
copied to MOODLEDIR/mod/assignment/type/webmf/editors/ and registered in the
MOODLEDIR/mod/assignment/type/webmf/editors.php configuration file.

Moodle users with the “Teacher” role can now create a new WebMF assignment
activity (Add an activity... → Assignments → WebMF) to a course (Figure 5.22).
Each assignment has a name, the description is used for the problem description of
the exercise. One of the registered editors can be selected in the “Editors” drop-down
menu. The screenshot in Figure 5.23 shows the created assignment that is currently
used by a student.

76

5.4 Integration of Editors Into Moodle

F
ig

u
re

5.
21

:
W

or
k
fl
ow

of
a

W
eb

M
F

M
o
o
d
le

as
si

gn
m

en
t

77

5 Developing e-Learning Support with WebMF

Figure 5.22: Adding a WebMF Moodle assignment activity

78

5.4 Integration of Editors Into Moodle

Figure 5.23: Screenshot of a WebMF Moodle assignment activity

79

5 Developing e-Learning Support with WebMF

80

6 Related Work

This chapter describes related work in the field of software applications for the visualiza-
tion and manipulation of models. The Oryx Editor (Section 6.1), SLIM (Section 6.2),
and the Web 2.0 Metamodel Browser (Section 6.3) are web based applications, the
2D Meta Model Browser (Section 6.4) is a desktop application. Finally, the presented
applications are compared with the approach of this thesis (Section 6.5).

6.1 Oryx Editor

The Oryx Editor [42] is a browser based generic model editor which features the mod-
eling of business processes with the standardized Business Process Modeling Notation
(BPMN) [33]. It is part of a bigger project called “BPM tool chain” [13] which enables
process model instantiation and process instance execution on the web. 1.

The Oryx Editor allows loading and saving diagrams, and the export to various
formats. The user interface features manipulation of diagram elements via drag-and-
drop and arrangement/alignment functions. Diagrams can be zoomed in and out.
Additionally, diagram manipulation steps can be undone and redone.

6.1.1 Metamodel

The editor is implemented in a generic way: The flexible interfaces allow to extend the
functionality of the editor and to add other process modeling languages (for example
BPEL [24], Petri Nets [36] and FMC2) or completely other modeling languages like
UML. The specifications of the modeling language’s elements are called stencil sets.
These stencil sets include the stencil descriptions and a set of rules.

A stencil specification contains an element type (node or edge), a unique identifier,
the stencils title and a description text. Furthermore, the graphical representation (the
SVG [11] file path) and the icon for the toolbox can be specified. It also contains a list
of groups to which this stencil belongs, a list of roles (used for specifying rules), and a
set of properties that can be set for instances of this stencil.

There are multiple types of rules for stencil sets: Connection rules specify which types
of nodes can be connected. Cardinality rules specify how much instances of a specific
type have to occur in a model. Containment rules describe parent-child relationships
of nodes. Rules extension and stencil set extensions provide programmatic mechanisms
for rules, which cannot be described with the three basic types of rules. Each rule
belongs to a role or a stencil id, which also specifies a unique role. With this concept of
stencils and rules, the Oryx Editor provides a powerful mechanism for the description
of metamodels.

1A demo of the Oryx Editor is available at http://bpt.hpi.uni-potsdam.de/Oryx
2FMC: http://www.fmc-modeling.org/

81

http://bpt.hpi.uni-potsdam.de/Oryx
http://www.fmc-modeling.org/

6 Related Work

6.1.2 Technologies

The client application is based on an XHTML3 page which runs in the browser. There,
GUI components are implemented with the EXT library4 and the diagram is displayed
with Scalable Vector Graphics (SVG). This is an XML based format for the description
of vector graphics and is used for displaying the graphical diagram elements. It was
preferred to Adobe Flex and the HTML Canvas Tag due to its declarative specification,
its availability as an open standard, and the free Integrated Development Environment
(IDE). For the manipulation of the diagram (i.e. the Document Object Model (DOM)
[10]), JavaScript including the prototype.js library 5 is used.

The diagram data is stored as eRDF annotated XHTML, which is a syntax for writing
HTML in a manner that the information in the HTML document can be extracted into
RDF. RDF itself is a graph based formal language for the description of a resource.
The server application is based on an Apache Tomcat Server6 which provides RESTfull
web services [37]. It provides the stencil sets that are described in JSON, a compact
text based data format.

6.1.3 Communication and Architecture

The client application is divided into three layers (Figure 6.1): The application is
embedded in the browser sandbox which contains the RDF metadata (layer 1). Since
multiple applications can be located in one page and access its data store, a Data
Manager is used to synchronize data and avoid data loss (layer 2). The Oryx application
logic (“Oryx” box) is used for viewing and editing functionality and to load stencils
from the Stencil Repository Server (layer 3).

Figure 6.1: Architecture of the Oryx client

Altogether there are three different layers which hold data: the instantiated shapes
and their properties, the RDF data in the DOM, and the persistent data storage on
the server (the Hibernate layer on the tomcat server, shown in Figure 6.2).

3Extensible Hypertext Markup Language (XHTML) [35]
4EXT JS: JavaScript GUI library, http://www.extjs.com
5prototype.js JavaScript library: www.prototypejs.org
6Apache Tomcat web server: http://tomcat.apache.org

82

http://www.extjs.com
www.prototypejs.org
http://tomcat.apache.org

6.1 Oryx Editor

Figure 6.2: Architecture of the Oryx server

The data manager uses AJAX requests through HTTP to synchronize resources
between server and client. It saves (PUT), reloads (GET) or deletes (DELETE) them
using RESTfull services. The underlying data format of the communication is eRDF
annotated XHTML. It also provides event listeners on the managed resources. These
listeners are used by the application logic layer to keep the graphical representation up
to date.

6.1.4 Usability

Figure 6.3 shows the Oryx client application that is running in a web browser. On
the top there is a tool bar with common loading, viewing and editing functionality.
The shape repository on the left side allows to add items of the loaded stencil set via
drag-and-drop. The diagram area is located in the center. The properties bar on the
right side allows for viewing and editing the item which is selected in the diagram area.

The Oryx Editor provides very intuitive modeling editing. Drag-and-drop mecha-
nisms are advanced with the concept of dockers and magnets. Dockers are reference
points of elements (nodes or edges) to “dock on” other elements. Magnets are areas
around the dockers which help to “snap in” into dockers of target elements.

Figure 6.4 illustrates this functionality: The docker (red point on the arrow’s ver-
tex) “snaps in” into a docker when it is dragged over the magnet area around it, i.e.
the connection point is automatically displayed at the exact position of the docker.
Additionally, alignment functions help to arrange elements clearly. The tool bar pro-
vides adding all stencils that are defined in the loaded stencil set. And hovering over
an element produces a menu instantly displaying all outgoing elements allowed in the
stencil set. The graphical user interface components are implemented with the EXT
JavaScript library, which provides desktop feeling for browser applications.

83

6 Related Work

Figure 6.3: Oryx client application

Figure 6.4: Dockers and magnets

84

6.2 SLIM

6.1.5 Rating

The Oryx Editor allows for editing BPMN-based models with very good usability and
features an innovative Dockers and magnets concept. But the implementation is targets
the specific abilities of the Firefox web browser.

6.2 SLIM

SLIM (“Synchronous Lightweight Modeling”) [41] provides synchronous distributed
creation and manipulation of UML diagrams within the browser sandbox. In general,
it is a lightweight environment for collaborative work.

The approach of SLIM is that the development of diagrams in software design is
an inherently collaborative activity with involvement of software developers, domain
experts, and other stakeholders. Thus they try to provide a collaborative solution that
allows people to participate without barriers. This is accomplished by the usage of the
native browser functionality.

6.2.1 Metamodel

The presented SLIM prototype covers the creation and manipulation of UML class
diagrams. It supports packages, classes, interfaces, attributes, operations, stereotypes,
and notes. Unfortunately, none of the documentation provides an insight about how
these UML constructs are represented in a metamodel. The documentation focuses the
challenges in the fields of collaboration in Rich Internet Applications. However, the
SLIM prototype facilitates the export to XMI 2.1 with the UML standard 2.1.2.

6.2.2 Technologies

SLIM avoids the need of installing a browser plug-in like the Flash Player or Java
Applets by relying on functionality that is supported natively by major browsers. To
display the notation elements with browser native functionality, three alternatives had
been investigated. The first alternative, the emulation of vector graphics via HTML
Div-elements does not satisfy the needs due to low performance and high memory
consumption. The second and third alternatives were the HTML 5 Canvas element
and SVG [11]. The availability of these two in modern browsers is equivalent. Since
there already are several implementations for displaying UML via SVG (e.g. uml2svg7),
this technology was chosen.

The most used web browser, Microsoft’s Internet Explorer, does not support SVG
but the equivalent VML (Vector Markup Language). This problem was tackled by the
use of the graphics library of the Dojo Toolkit 8, which provides a uniform programming
interface on top of SVG and VML.

There were also problems while implementing a cross-browser procedure to handle
events for graphical elements (e.g. responding to mouse gestures). SVG and VML
generally provide event handling, but the browser support is limited. The solution was
to put a transparent Div-Element on top as an extra layer which invokes DOM events.

Overall the solution for the user interface is a mix of technologies. There is no
common API for user input and visualization, which often leads to problems in de-
velopment, maintenance, and execution. In contrast, WebMF has a common interface

7uml2svg project: http://uml2svg.sourceforge.net
8Dojo Toolkit: http://www.dojotoolkit.org

85

http://uml2svg.sourceforge.net
http://www.dojotoolkit.org

6 Related Work

for all GUI aspects including visualization and event handling. For the client-server
communication “comet”-technologies were used which are described in the next section.

6.2.3 Communication and Architecture

For SLIM, a Rich Client architecture had been taken over a Thin Client architecture
due to the need for high responsiveness in collaborative editing of diagrams. Concretely,
this means that the application logic is placed on the client (Figure 6.5).

Figure 6.5: SLIM: Thin Client vs. Rich Client [41]

The displayed and manipulated model is placed central on the client (Figure 6.6).
Also the edit, user interface, event, and collaboration components are placed on the
client and interact with the model. The collaboration component facilitates replication
of the change operations of the model on the server.

For the collaboration the server has to inform all clients on updates of the replicated
model. The HTTP protocol is built upon the request/response paradigm and there-
fore stateless. There are a few techniques to tackle this problem, together known as
“Comet”. SLIM uses the long-polling approach. It utilizes a so-called persistent or
long-lived HTTP connection. Connections to the server are kept open until either a
server-side event or a timeout occurs.

6.2.4 Usability

The user interface of the SLIM UML editor builds upon three components (Figure 6.7).
Centrally, the diagram area visualizes current UML model and allows users to edit it.
Resizing as well as repositioning (“move” operation) of elements is supported. On the
left, a tool bar facilitates the creation of new elements. On the right, the properties
panel shows all properties of the currently selected element and allows for editing them.
Further, a chat is offered for the communication of all users that currently view or edit
the diagram. Together they form a comfortable user interface for the manipulation of
diagrams.

86

6.2 SLIM

Figure 6.6: SLIM client server architecture [41]

Figure 6.7: Screenshot of the SLIM UML class diagram editor [41]

87

6 Related Work

6.2.5 Rating

SLIM brings modeling and collaboration together within the browser environment. It
was accomplished to provide a sophisticated user interface and to address all modern
web browsers. It can be discussed, whether the user interface technology mix with
dependence on SVG / VML is better than the dependence on the Flash Player Plugin
or Java Applets.

6.3 Web 2.0 Metamodel Browser

The Web 2.0 Metamodel Browser [15] is a Rich Internet Application which provides
an AJAX-based tree-viewer for efficiently browsing Ecore based metamodels (M2) and
their models (M1). It is an emulation of the Ecore Sample Editor from the EMF
framework9.

6.3.1 Metamodel

The application uses the Eclipse Modeling Framework (EMF) as its metametamodel
(M3). Any model can be browsed when its metamodel is defined with Ecore. The
displayed information about the model items are provided with the EMF label provider
and content provider10.

6.3.2 Technologies

The following technologies are used by the Web 2.0 Metamodel Browser: The dhtm-
lxTree11, an AJAX [16] powered DHTML JavaScript Tree component with rich API,
is used for the visualization of the models. It is embedded in the HTML page. It
interacts via XmlHttpRequest, XML, JavaScript, and JSON [12]. The server is based
on Java servlets12 and JSP13 that run on an Apache Tomcat 5.5. Additionally, the
Eclipse Platform14, EMF and EMF.Edit [8] are used in the server environment.

6.3.3 Communication and Architecture

The architecture of the Web 2.0 Metamodel Browser is shown in Figure 6.8: The main
application parts are the Servlets and JSPs which are located on the Tomcat web
server. They handle the AJAX - requests of the client and store the serialized model
data in files on the web server. The process concerning the Eclipse Platform (from
the .genmodel file to the JAR-file) is necessary for browsing models (M1) related to a
specific metamodel. To provide a specific metamodel, jar files with the specific EMF
and EMF.Edit code have to be generated and put on the web server.

The communication between the server and the client is realized with AJAX requests,
using XML or JSON as data format. Browsing a model starts with displaying an HTML
site with the tree component which only shows the root item. Zooming into an item
leads to dynamically loading the item content with an AJAX request. When clicking an
item, the editor shows the details of the item in the properties view (also AJAX-based).

9The Web 2.0 Metamodel Browser is available at http://metamodelbrowser.org/
10The basics of EMF and Ecore have been introduced in Chapter 2.1.3
11dhtmlxTree JavaScript GUI library: http://scbr.com/docs/products/dhtmlxTree
12Java Servlet Technology: http://java.sun.com/products/servlet/
13Java Server Pages: http://java.sun.com/products/jsp/
14Eclipse IDE: http://www.eclipse.org/

88

http://metamodelbrowser.org/
http://scbr.com/docs/products/dhtmlxTree
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/
http://www.eclipse.org/

6.4 2D Meta Model Browser

Figure 6.8: Basic architecture of the Web 2.0 Metamodel Browser

6.3.4 Usability

Figure 6.9 shows the model view of the Web 2.0 Metamodel Browser and the Ecore
Sample Editor. The functionality is simple and clear. It features expanding and col-
lapsing tree nodes, specific icons for tree elements. Once clicked on a tree item, the
properties view shows all name-value-pairs of the selected item.

6.3.5 Rating

The strengths of the Web 2.0 Metamodel Browser are located in the generic approach
using EMF-based metamodeling and the good performance. But the tree view repre-
sents models not as clear as a diagram, especially when there are many relationships
between elements. And the application does not support editing of models at all.

6.4 2D Meta Model Browser

The 2D Meta Model Browser [27] is a generic graphical browser for metamodels. It
is a desktop application which visualizes metamodels specified with Ecore or MOF.
Therefore it uses an UML Class Diagram-like Notation. The application is integrated
in the Model Transformation for Verification (MTV) project [20] from the University
of Geneva.

6.4.1 Metamodel

The graphical representation in the 2D Meta Model Browser is created via a two-step
transformation process (Figure 6.10). In the first step, an Ecore or MOF metamodel

89

6 Related Work

Figure 6.9: Ecore Sample Editor (left) and Web 2.0 Metamodel Browser (right)

(stored in an XMI-File) is transformed to the created intermediate format SVG4MTV.
This is needed to cope with the discrepancies between MOF and Ecore. The resulting
format SVG4MTV describes graphical diagram objects with their spacial information
Thus it summarizes the logical diagram elements. In the second step, the model ex-
pressed in the intermediate format is transformed to SVG. Each logical diagram element
is transformed to core SVG graphics that can be displayed in the Graphical User In-
terface.

Figure 6.10: Two-step transformation of the 2D Meta Model Browser [27]

6.4.2 Technologies

The 2D Meta Model Browser is based on the Java programming language. The Eclipse
Modeling Framework (EMF) library [8] is used for the metamodeling functionality.
The visualization is based on Scalable Vector Graphics (SVG) [11], Batik (a Java based
toolkit for applications or applets that use SVG)15, and JGraph (a Java framework for
graph visualization and layout)16.

15Batik SVG Toolkit: http://xml.apache.org/batik/
16JGraph Java Open Source Graph Drawing Component: http://www.jgraph.com

90

http://xml.apache.org/batik/
http://www.jgraph.com

6.5 Comparison

6.4.3 Communication and Architecture

The 2D Meta Model Browser is a single desktop application. There is no documentation
or indication for communication functionality.

6.4.4 Usability

The user interface of the 2D Meta Model Browser allows repositioning of the diagram
nodes via drag-and-drop, zooming in and out, and changing the level of details. Chang-
ing the level of details means to choose which diagram element types are visible. For
example, in the case of UML Class diagrams, methods and attributes of classes could
be hidden to provide a better overview of the existing classes. Further, diagrams can
be loaded, saved, and exported to various image formats.

Figure 6.11: 2D Meta Model Browser [27]

6.4.5 Rating

The 2D Meta Model Browser features a clear metamodel mechanism with model trans-
formations. The whole application is based on a uniform platform (Java). The editor
has no model editing functionality and a rudimentary user interface.

6.5 Comparison

A comparison of the approaches presented in this chapter with WebMF is presented
in Table 6.1. Some of them are only for the visualization of (meta-) models, others

91

6 Related Work

allow also editing. Though they all are targeted on different goals, some similiraties
are interesting:

All approaches except the Web 2.0 Metamodel Browser display metamodels as two-
dimensional diagrams. The tree-based approach suffices for simple metamodels, for
more complicated metamodels the diagram view is much clearer.

The metametamodel of WebMF and the Oryx Editor provide proprietary languages
which allow to create “stencil sets”. The Web 2.0 Metamodel Browser and the 2D
Meta Model Browser are based on Ecore. The Ecore metametamodel is a de-facto
standard and a functionality for transforming models to this standard is also desirable
for WebMF.

Rich Internet Application technologies are used in four of five approaches. SLIM,
the Web 2.0 Metamodel Browser and the Oryx Editor use AJAX for the user interface,
the latter exhibits well-known browser compatibility problems. WebMF uses Adobe
Flex as a result of an evaluation of RIA technologies. The implementation with this
technology was quite comfortable with no technology-related bugs.

Table 6.1: Comparison of related work

92

7 Evaluation

In this chapter, the implemented framework is evaluated. First, the implementation
effort for building editor applications using the WebMF framework is analyzed (Sec-
tion 7.1). Then, the realization of the framework features defined in the requirements
catalog is evaluated (Section 7.2). After that, the issues that occured during the im-
plementation of the UML editors are presented (Section 7.3). Finally, the results are
summarized (Section 7.4).

7.1 Implementation Effort for WebMF Applications

In the course of this thesis, a total of four applications have been realized using the
WebMF framework. For a WebMF-experienced developer the implementation takes
about 100 to 120 minutes for one application. This is pretty little effort, particularly
when compared to the implementation effort it would cost when developing the whole
editor from scratch.

Table 7.1: Lines of code of the implemented WebMF applications

For realizing WebMF applications, developers need only basic knowledge in XML
(for implementing the metamodel) and Adobe Flex (for implementing the views).

Table 7.1 shows the Lines of Code (LOC) of the developed applications 1. For each
application, one file for the structure (Stencil Set) and one file per notation element
have to be implemented. The files for the stencil set definitions have about 100 LOC,
with a clear structure. The LOC of stencil node views reach from 11 (Item View in
TaiPan Diagram, Activity View in UML State Diagram) to 60 (Class View in UML
Class Diagram). Node views that are based on the UIComponentNodeView (e.g. Lifeline
View in UML Sequence Diagram) view base class are commonly more complex than
those which are based on the BoxNodeView base class. All stencil edge views can be
implemented without much effort (7 to 12 LOC).

1The listings in Chapters “Sample Application” and “UML Applications” are partly shortened.

93

7 Evaluation

7.2 Evaluation of the Requirements Catalog

At the beginning of this thesis (Section 3.1) a requirements catalog was created for
WebMF. The realization of the features including usability issues is evaluated here.

7.2.1 Diagram

Display Nodes, subnodes, and edges

All elements are displayed correctly. Some issues appeared during the implementation
of applications. (Chapters 4, 5).

In some cases, it is a problem, that nodes cannot be resized manually (e.g. for UML
Sequence Diagram lifelines).

The framework does only support two types of adjustment: subnodes to parent nodes,
and edge endpoints to nodes. Other adjusting mechanisms can not be implemented
(some elements could not be realized in the UML Sequence Diagram editor).

Also edge labeling features are missing: Labels that are automatically positioned
beside an edge (at start point, end point, or central) that can show properties of the
edge (e.g. name of association in a UML class diagram).

Finally, edges that have the same node as source and target are not displayed properly
(feature was explicitly not requested). The common solution of this issue is the use of
edge bend points.

Move nodes (drag-and-drop)

(Top level-) Nodes can be moved from one point in the diagram to another by dragging
them. While dragging, the node is also shown (semitransparent) at the potential new
position.

If the selection of multiple elements would be supported, the user also could move
multiple elements at once. Also, moving edges via drag-and-drop should be supported.

Connect edges to nodes (drag-and-drop)

Edges can be connected and disconnected to/from nodes by dragging an endpoint onto
the node. A symbol indicates, if the specific connect operation is allowed or forbidden
in the specific metamodel. Once an edge is connected to a node it is readjusted when
the position or size of the node changes.

An issue is that while dragging an edge endpoint, the edge is not displayed with the
new endpoint position. This behavior would be expected.

Delete nodes and edges (DEL key)

When a node, subnode, or edge is selected in the diagram and the user presses the
DELETE key than this element is deleted. When a node is deleted, also all subnodes
are deleted. Edges that are connected to the node are disconnected.

If the selection of multiple elements would be supported, the user also could delete
multiple elements at once. An alternative to disconnecting edges from nodes that are
deleted is to cascade deletion.

94

7.2 Evaluation of the Requirements Catalog

Edges that connect two nodes

Edges that connect exactly two nodes (source node and target node) have been imple-
mented.

Edges that connect more than two nodes

Edges that connect more than two nodes are quite unusual and have not been imple-
mented.

Connection of edges on different points of nodes

This feature was implemented properly. Details are described in Section 3.3.2.

Drag and Drop usability: different mouse cursors

This feature was implemented properly. Details are described in Section 3.4.2.

Select element (highlight)

If an element (node, subnode, or edge) is selected, it is highlighted.
The selection of more than one element for moving / or deleting them is desirable

for faster editing. This could be done with a rectangular selection tool with which the
user can mark several elements at once.

Hover highlighting

This feature was implemented properly. When the user moves the mouse cursor over
an element (node, subnode, or edge), the element is highlighted.

Different arrow types for edges

This feature was implemented properly. Edge arrows can be displayed with different
styles: The size and the angle can be specified. And the arrow can have block (3rd
line) style and/or can be filled (arrow is filled black).

Displaying property labels in nodes

This feature was implemented properly. Binding expressions can be used to show the
current values.

Displaying images in nodes

This feature was implemented properly. The mx:Image component can be included in
node views.

7.2.2 Tool bar

Add new nodes/edges from tool bar (drag-and-drop)

This feature is implemented properly.

95

7 Evaluation

Show icons of elements in tool bar

This feature is implemented properly.

7.2.3 Properties Editor

Show properties of selected element

This feature is implemented properly.

Edit properties of selected element

The feature is implemented. Since the framework’s metametamodel does not support
data types for element properties, the property editor cannot validate property values.

7.2.4 Import / Export

Import / export interface for browser sandbox

This feature is implemented properly (see Section 5.4).

Import / export to file system

This feature was not implemented.

7.3 Lessons Learned

In Chapter 5 three UML editor prototypes were implemented. The issues that appeared
during implementaion are summarized in the following.

Two of the three UML editor prototypes could be implemented satisfactorily. The
class diagram and the state diagram, which have a similar optical appearance fit into
the schemes of WebMF and only showed some possibilities for future enhancements
of WebMF. In contrast, the sequence diagram could not be realized as desired and
spotlighted limitations of the framework. In the following the issues that appeared
during the implementation are summarized and categorized.

Recommendations for enhancements are features that could extend the existing
framework, which can be easily implemented in future versions. On the other side,
limitations are problem areas that impede the realization of specific diagram func-
tionality. This functionality can only be realized, when the basic functionality of the
framework is changed or adapted.

7.3.1 Recommendations for Enhancement

Data types should be provided for element properties, the current solution that stores
all property values as string literals is error-prone. Also, additional rule types should be
provided. For example, one would want to limit the number of diagram elements of the
same type, such as OCL constraints 2 for defining well-formedness rules. For specific
node types, the size has to be set by the user, instead of the automatic adjustment
to included elements. To support this, user interface has to support resize operations,
and the size of nodes has to be persisted in the underlying data structures. In many

2OCL: A OMG standard language for defining rules on UML diagrams.

96

7.4 Summary

diagram types attributes of edges are shown nearby edges, e.g. the association name
of UML class diagram. This “edge labeling” functionality is not yet supported and
recommended for future work. Finally, it occurs that diagram elements are almost
equivalent in their behavior. A facility for the implementation of inheritance between
syntax definitions would help to avoid redundancy.

7.3.2 Limitations

Sometimes, diagram elements relate to each other, although they are not connected in
the visualization, e.g. classes in class diagrams that are used as data types of attributes.
These cannot be linked together, i.e. only one element of the concrete syntax can refer
to one element in the abstract syntax. There are no mapping facilities provided by the
framework since a basic idea was to avoid complicated mappings and to focus on the
visualization features.

Parent-child relationships are limited twofold: First, there is no way for specifying
the location of a child node inside the parent node. The children of a node are just
shown one after the other, in the order of the adding as children. Second, an element
can only be a child of exactly one parent. Sometimes, the alignment of an element is
affected by more elements.

Currently, there are two types of composition mechanisms that are supported by
WebMF: parent-child relationships and the connection of two nodes with an edge.
Other relationships could be established beside them. But it has to be taken into
account that more flexibility in the application often causes more complexity and more
implementation effort. The framework supports a few simple constructs, with which
editors can be built with little effort. A solution with a compromise of the aspects is
left as subset for future work.

7.4 Summary

The realization of WebMF editor applications is rapid and straightforward. Commonly,
only little programming effort is needed. Developers need only basic knowledge in XML
(for implementing the metamodel) and Adobe Flex (for implementing the views).

The editors that were built in the course of this thesis show that the framework can
be used for a variety of diagram types. WebMF concentrates on simple structures of
diagrams with nodes, subnodes, and edges. Other, more complicated structures are not
supported. To allow them, developers would have to extend or adapt the framework.

Limitations of the framework are located at the abstract syntax. The parent-child
relationship is limited so that a node can only be child of one parent. Other composition
mechanisms that allow nesting of nodes are not supported. Further, there are no
mapping mechanisms provided by WebMF. The use of the Flex MXML components
for defining the concrete syntax is quite powerful and universal.

The integration of WebMF based diagram editors into the Moodle e-Learning plat-
form works without problems. Together, this allows quick creation of e-Learning re-
sources.

97

7 Evaluation

98

8 Conclusion

This chapter summarizes this thesis (Section 8.1) and points out problem areas for
future work (Section 8.2).

8.1 Summary

E-Learning is on the advance, also in teaching UML. The usage of a modeling tool
that allows for aligning the notation elements to the taught contents promises a better
understanding of the practical application of UML.

The major goal of this thesis was to develop a web-based modeling tool that is
integrated into the learning platform of the Vienna University of Technology. A generic,
metamodeling based approach was claimed, where complete editors can be created
by specifying the structure of the diagram elements (abstract syntax) and the visual
notation elements (concrete syntax).

Modeling tools have a rich and highly responsive user interface. To provide a mod-
eling tool on an e-Learning platform — running directly in the browser environment
— requires the use of Rich Internet Application (RIA) technologies. It was evaluated,
which technology is best-suited for the specific requirements. Further, E-Learning ba-
sics and e-Learning platforms have been studied and the use of a modeling tool for
teaching UML has been reasoned.

By the use of the chosen RIA technology Adobe Flex the Web Modeling Framework
(WebMF) was developed. It allows for the creation of diagram editors by specifying
the structure of a diagram type and the visual appearance of the notation elements.
Therefore, it features generic diagram editing functionality and provides two domain
specific languages (DSLs) for the definition of the diagram types.

WebMF was employed for the creation of four applications, one example application
for the demonstration of the framework’s functionality and three UML diagram editors
for teaching UML, which also showed strengths and weaknesses of the framework. The
strength of WebMF is the rapid and easy creation of diagram editors with only little
programming skills and effort.

Limitations of the framework are located at the abstract syntax. The parent-child
relationship is limited so that a node can only be child of one parent. Other composition
mechanisms that allow nesting of nodes are not supported. Further, there are no
mapping mechanisms provided by WebMF. The use of the Flex MXML components
for defining the concrete syntax is quite powerful and universal.

Finally, for the integration into the Moodle e-Learning platform, a plug-in was de-
veloped. This plug-in allows creating “practical modeling exercise”-assignments which
are completely handled by the learning platform.

8.2 Future Work

For future work, several interesting topics arise. Some improvements in the field of
metamodeling are suggested: The created framework could be complemented with ele-

99

8 Conclusion

ment structures that are currently not supported. By the use of model transformation,
the serialized models of the drawn diagrams could be transformed to data models that
can be reused in other applications, e.g. commercial UML editors. Furthermore, the
export of diagrams to the model exchange formats XMI [31] and XMI-DI [32] are
preferable.

It is also suggested that the developed UML editors are enhanced and used within the
eLearning platform of the “Object Oriented Modeling (OOM)” course at the Vienna
University of Technology. Lecturers as well as students shall comment the application
of the tool in an evaluation. The results of the course rating tool of the TU Vienna 1

will give further feedback.

1Students rate curses they attend: http://www.tuwien.ac.at/lehre/evaluation/lvbew_
handbuch

100

http://www.tuwien.ac.at/lehre/evaluation/lvbew_handbuch
http://www.tuwien.ac.at/lehre/evaluation/lvbew_handbuch

Bibliography

[1] Adobe Systems, Inc. Flex quick start: Building custom components.
http://www.adobe.com/devnet/flex/quickstart/building_components_
using_code_behind/, August 2008.

[2] Adobe Systems, Inc. Flash player penetration.
http://www.adobe.com/products/player_census/flashplayer/, 2009.

[3] Atkinson, C., and Kühne, T. Rearchitecting the UML infrastructure. ACM
Trans. Model. Comput. Simul. 12, 4 (2002).

[4] Barnes, D. J., and Kölling, M. Objects First with Java—A Practical
Introduction using BlueJ. Pearson Education, Edinburgh Gate, UK, 2003.
Hinweise, Materialien, Software, Diskussionsforen, etc.
http://www.bluej.org/objects-first/, biburl =
http://www.bibsonomy.org/bibtex/2349a55484979776ac66031fe469ae014/n770,
keywords = imported.

[5] Baumgartner, P., Häfele, H., and Maier-Häfele, K. E- Learning
Praxishandbuch. Auswahl von Lernplattformen. Studien Verlag, September 2002.

[6] Bézivin, J. On the unification power of models. Software and Systems Modeling
4, 2 (May 2005).

[7] Brandsteidl, M., Seidl, M., Wimmer, M., Huemer, C., and Kappel, G.
Teaching models @ big - how to give 1000 students an understanding of the uml.
Warsaw University of Technology.

[8] Budinsky, F., Brodsky, S. A., and Merks, E. Eclipse Modeling Framework.
Pearson Education, 2003.

[9] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. Pattern-oriented software architecture: a system of patterns. John Wiley &
Sons, Inc. New York, NY, USA, 1996.

[10] Chang, B., Litani, E., Kesselman, J., and Rahman, R. Document Object
Model (DOM) Level 3 Abstract Schemas Specification. World Wide Web
Consortium, Note NOTE-DOM-Level-3-AS-20020725, July 2002.

[11] Chris Lilly, D. J. Scalable Vector Graphics (SVG).
http://www.w3.org/Graphics/SVG/, 2004.

[12] Crockford, D. RFC4627: JavaScript Object Notation, 2006.

[13] Czuchra, M., Peters, N., Polak, D., and Tscheschner, W. BPM
Toolchain - Oryx in Action.
http://images.apple.com/science/poster/pdf/130_czuchra.pdf, 2006.

101

http://www.adobe.com/devnet/flex/quickstart/building_components_using_code_behind/
http://www.adobe.com/devnet/flex/quickstart/building_components_using_code_behind/
http://www.adobe.com/products/player_census/flashplayer/
http://www.bluej.org/objects-first/
http://images.apple.com/science/poster/pdf/130_czuchra.pdf

Bibliography

[14] Eclipse Foundation. GMF Tutorial.
http://wiki.eclipse.org/index.php/GMF_Tutorial, August 2008.

[15] Flandorfer, J. Web 2.0 metamodelbrowser, 2007.

[16] Garrett, J. J. Ajax: A new approach to web applications.
http://adaptivepath.com/ideas/essays/archives/000385.php, February
2005.

[17] Greenfield, J., Short, K., Cook, S., and Kent, S. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004.

[18] Gronback, R. C. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional, 2009.

[19] Harel, D., and Rumpe, B. Modeling languages: Syntax, semantics and all
that stuff, part i: The basic stuff. Tech. rep., Jerusalem, Israel, Israel, 2000.

[20] Heck, S. Model transformation for verification: Building the basis for a generic
tool. http:
//smv.unige.ch/student-projects/finished-projects/files/heck.pdf,
2005.

[21] Häfele, H., and Maier-Häfele, K. 101 e-learning-Seminarmethoden :
Methoden und Strategien für die Online- und blended-learning-Seminarpraxis.
ManagerSeminare-Verl.-GmbH, Bonn, 2004.

[22] Hitz, M., and Kappel, G. UML @ Work. Dpunkt Verlag, September 2005.

[23] Howlett, S. Microsoft’s Silverlight vs Adobe’s Flash: November 2008 Update.
Tech. rep., imason inc., 2008.

[24] Jordan, D., and Evdemon, J. Web services business process execution
language version 2.0. OASIS Standard, April 2007.

[25] Kroeger, H., and Reisky, A. Blended Learning - Erfolgsfaktor Wissen.
Norbert Meder, Bertelsmann, 2004.

[26] Macvittie, L. XAML in a Nutshell. O’Reilly, Sebastopol, 2006.

[27] Monnet, X. E. Development of a 2d meta model browser for the mtv
framework, October 2006.

[28] Niegemann, H. M. Kompendium E-Learning. Springer, Berlin, Heidelberg u.a.,
2004.

[29] Noda, T., and Helwig, S. Rich Internet Applications - Technical Comparison
and Case Studies of AJAX, Flash, and Java based RIA. Tech. rep., UW
E-Business Consortium, 2005.

[30] Object Management Group (OMG). Meta Object Facility (MOF)
Specification, April 2002.

[31] Object Management Group (OMG). OMG XML Metadata Interchange
(XMI) Specification Version 2.0.
http://www.omg.org/cgi-bin/doc?formal/2003-05-02, May 2003.

102

http://wiki.eclipse.org/index.php/GMF_Tutorial
http://adaptivepath.com/ideas/essays/archives/000385.php
http://smv.unige.ch/student-projects/finished-projects/files/heck.pdf
http://smv.unige.ch/student-projects/finished-projects/files/heck.pdf
http://www.omg.org/cgi-bin/doc?formal/2003-05-02

Bibliography

[32] Object Management Group (OMG). OMG XML Metadata Diagram
Interchange Information (XMI-DI) Specification Version 1.0.
http://www.omg.org/cgi-bin/doc?formal/06-04-04, 2004.

[33] Object Management Group (OMG). Business Process Modeling Notation
(BPMN), Version 1.0, 2006.

[34] Ostermayer, L. Evaluation and comparison of ajax frameworks regarding
applicability, productivity and technical limitations. Master’s thesis, Vienna
Technical University, 2008.

[35] Pemberton, S. XHTML 1.0: The Extensible HyperText Markup Language
(Second Edition). World Wide Web Consortium, Recommendation
REC-xhtml1-20020801, August 2002.

[36] Reisig, W. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Scie. Springer-Verlag, Berlin, Germany, 1985.

[37] Richardson, L., and Ruby, S. RESTful Web Services. O’Reilly, Sebastopol,
CA, USA, 2007.

[38] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ,
USA, 1991.

[39] Schmidt, D. C. Model-driven engineering. IEEE Software 39, 2 (February
2006).

[40] Sells, C., and Griffiths, I. Programming Windows Presentation Foundation.
O’Reilly Media, Inc., 2005.

[41] Thum, C., Schwind, M., and Schader, M. Slim - a lightweight environment
for synchronous collaborative modeling. In MoDELS (2009), vol. 5795 of Lecture
Notes in Computer Science, Springer.

[42] Tscheschner, W. Oryx dokumentation, 2007.

[43] Ullenboom, C. Java ist auch eine insel, 2006.

[44] W3 Schools. Web statistics and trends. Tech. rep., 2009.

[45] Weschkalnies, N. Adobe Flash CS3: Das Praxisbuch zum Lernen und
Nachschlagen, 1 ed. Galileo Press, 2007.

[46] Widjaja, S. Rich Internet Applications mit Adobe Flex 3, 1 ed. Hanser
Fachbuch, 2008.

103

http://www.omg.org/cgi-bin/doc?formal/06-04-04

	Introduction
	Motivation
	Problem Description
	Approach
	Structure

	Basic Concepts
	Metamodeling
	Core Concepts
	Modeling Languages
	Eclipse Modeling Project (EMP)

	E-Learning
	Learning Management Systems
	Object-Oriented Modeling Course at the VUT
	Perspectives of a Course Centered Around a Modeling Tool

	Rich Internet Applications
	Basics
	RIA Technologies
	Evaluation and Choice

	Developing the Web Modeling Framework
	Requirements
	Visualization and Manipulation of Diagrams
	Specification of Diagram Types
	Import and Export Interfaces

	Implementation Technology: Adobe Flex
	Visual Components
	Model-View-Controller Pattern

	Definition of Diagram Types
	Stencil Set DSL
	Stencil View DSL

	Generic Diagram Editing
	Common Data Structure for Arranging Diagram Elements
	Visual UI Components for Visualization and Manipulation

	Framework Utilization
	Design of a Typical WebMF Application
	Interplay of the Functionality Parts

	Sample Application
	Abstract Syntax
	Concrete Syntax
	Building the Stencil Set Library
	Creating an Flex Library Project
	Creating a Stencil Set
	Creating Stencil Views

	Building an Editor Application
	Creating an Flex Application
	Creating and Connecting Components
	Appearance of the Created Application

	Developing e-Learning Support with WebMF
	UML Class Diagram Editor
	Abstract Syntax
	Concrete Syntax
	Implementation
	Issues

	UML State Diagram Editor
	Abstract Syntax
	Concrete Syntax
	Implementation
	Issues

	UML Sequence Diagram Editor
	Abstract Syntax
	Concrete Syntax
	Implementation
	Issues

	Integration of Editors Into Moodle
	Enabling Import and Export Functions
	Developing the WebMF Assignment Plug-in for Moodle
	Creating a Sample Assignment

	Related Work
	Oryx Editor
	Metamodel
	Technologies
	Communication and Architecture
	Usability
	Rating

	SLIM
	Metamodel
	Technologies
	Communication and Architecture
	Usability
	Rating

	Web 2.0 Metamodel Browser
	Metamodel
	Technologies
	Communication and Architecture
	Usability
	Rating

	2D Meta Model Browser
	Metamodel
	Technologies
	Communication and Architecture
	Usability
	Rating

	Comparison

	Evaluation
	Implementation Effort for WebMF Applications
	Evaluation of the Requirements Catalog
	Diagram
	Tool bar
	Properties Editor
	Import / Export

	Lessons Learned
	Recommendations for Enhancement
	Limitations

	Summary

	Conclusion
	Summary
	Future Work

	Bibliography

