
▪ ▪ ▪

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Evaluation of Temporal and
Spatial Partitioning in the

Time-Triggered System-on-a-Chip
Architecture

Abstract

Temporal and spatial partitioning ensure that one component cannot interfere
with the correct behavior of other components in the value and time domain. The
time-triggered system-on-chip (TTSoC) architecture provides a framework for the
design and implementation of systems-on-chip (SoCs) with inherent temporal and
spatial partitioning. Multiple heterogenous IP-cores are interconnected by a time-
triggered network-on-chip (TTNoC), which uses a precise interface specification
to encapsulate the communication activities of components. To dynamically ad-
just the system to changing communication and power requirements, integrated
resource management is provided. Within this thesis, the effectiveness of temporal
and spatial partitioning in the TTSoC architecture is investigated. Therefore, an
experimental FPGA-based setup is designed using the TTSoC execution platform.
This setup allows the injection of faults in the system, while monitoring the be-
havior of components. The system is exposed to different load scenarios, bit flips
that simulate transient and permanent faults, and reconfiguration scenarios, to
observe the system behavior in the presence of faults. The results of the experi-
ments provide evidence for the correctness of temporal and spatial partitioning and
demonstrate the suitability of the TTSoC architecture as an execution platform
for component-based design.

Evaluierung der Zeitlichen und
Räumlichen Abgrenzung in der

Time-Triggered System-on-a-Chip
Architektur

Kurzfassung

Zeitliche und räumliche Abgrenzung stellen sicher, dass eine Komponente das kor-
rekte Verhalten anderer Komponenten im Werte- und Zeitbereich nicht stören
kann. Die Time-Triggered System-on-Chip (TTSoC) Architektur bietet die Grund-
lage für die Entwicklung und Realisierung von Systems-on-Chip (SoC) mit
inhärenter zeitlicher und räumlicher Abgrenzung. Mehrere verschiedenartige IP-
cores werden mittels eines Time-Triggered Network-on-Chip (TTNoC) verbunden,
welches eine präzise Schnittstellenspezifikation nutzt um die Kommunikation von
Komponenten abzukapseln. Um dynamisch auf sich verändernde Kommunikations-
und Leistungsbedingungen reagieren zu können, wird integriertes Ressourcenma-
nagement bereitgestellt. In dieser Arbeit wird die Effektivität der zeitlichen und
räumlichen Abgrenzung in der TTSoC Architektur untersucht. Deshalb ist eine
experimentelle, FPGA basierte SoC Struktur entwickelt worden, die die TTSoC
Architektur als Plattform verwendet. Dieser Aufbau ermöglicht das absichtliche
Einstreuen von Fehlern in das System, während das Verhalten von Komponenten
beobachtet wird. Das System wird verschiedenen Belastunsszenarien, Bit Flips,
welche transiente und permanente Fehler simulieren, und Rekonfigurationsszena-
rien ausgesetzt, um zu beobachten wie sich das System in der Gegenwart von
Fehlern verhält. Die Ergebnisse der Experimente zeigen die Korrektheit zeitlicher
und räumlicher Abgrenzung, und demonstrieren die Eignung der TTSoC Archi-
tektur als Plattform für die Entwicklung von zuverlässigen Systemen bestehend
aus Einzelkomponenten.

Acknowledgments

At the beginning, I want to thank all of those who contributed in one or the other
way to the realization of this thesis. It’s been hard work with many ups and downs,
but at the end I was able to finish this work with the support and help of many
people.

First of all, I have to express my gratitude to the advisor of my thesis, Priv. Doz.
Dipl.-Ing. Dr. Roman Obermaisser, who gave me the opportunity to accomplish
my experiments and finally write this document. He patiently provided me with
valuable comments and positive criticism, and thereby, raised my interest to con-
tinue my academic career.

Thanks to my colleagues and stuff at the Department of Computer Engineering
at the Vienna University of Technology, and particularly to Christian Paukovits,
who supported me within countless discussions.

I’m especially grateful to my girlfriend Martina, as her love encouraged me every
day more to make progress with this thesis. Also thanks for proof-reading the
document during the past days.

Furthermore, I would like to thank my brother Daniel for proof-reading my thesis,
and thus, contributing to improve my work.

Special thanks to my parents, not only for making my educational and academic
career possible, but also for their affection, support and valuable advices during
my whole lifetime.

– Oliver Höftberger

Vienna, January 2010

Danksagung

Zu Beginn möchte ich allen danken, die auf die eine oder andere Weise zur
Durchführung dieser Diplomarbeit beigetragen haben. Es war viel Arbeit, mit
ebenso vielen Höhen und Tiefen, aber am Ende konnte ich diese Arbeit mit der
Unterstützung und der Hilfe vieler Leute erfolgreich abschließen.

Zuerst muss ich dem Betreuer meiner Diplomarbeit, Priv. Doz. Dipl.-Ing. Dr. Ro-
man Obermaisser, meinen Dank aussprechen, der mir die Möglichkeit gegeben hat,
meine Experimente durchzuführen und schließlich dieses Dokument zu verfassen.
Geduldig unterstützte er mich mit wertvollen Kommentaren und konstruktiver
Kritik, und steigerte dadurch mein Interesse für eine weitere akademische Lauf-
bahn.

Dank auch an meine Kollegen und die Mitarbeiter des Instituts für Technische In-
formatik der Technischen Universität Wien, und vor allem an Christian Paukovits,
für die Unterstützung in unzähligen Diskussionen.

Ganz besonders dankbar bin ich meiner Freundin Martina, da ihre Liebe mich
jeden Tag aufs Neue dazu ermutigt, an meiner Diplomarbeit weiter zu arbeiten.
Ich danke ihr außerdem, dass sie in den letzten Tagen dieses Dokument für mich
durchgelesen und korrigiert hat.

Weiters möchte ich meinem Bruder Daniel dafür danken, dass er meine Diplomar-
beit korrekturgelesen, und so zur Verbesserung meiner Arbeit beigetragen hat.

Speziell möchte ich noch meinen Eltern danken, nicht nur dafür, dass sie mir meine
schulische und akademische Laufbahn ermöglicht haben, sondern auch für deren
Zuneigung, Unterstützung und wertvolle Ratschläge in meinem bisherigen Leben.

– Oliver Höftberger

Wien, Jänner 2010

Contents

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the Thesis . 2

2 Basic Concepts 3
2.1 Dependability . 3

2.1.1 Impairments . 3
2.1.2 Means . 4
2.1.3 Attributes . 5

2.2 Fault hypothesis . 6
2.2.1 Fault containment region (FCR) 6
2.2.2 Failure mode assumption . 7
2.2.3 Failure rate assumption . 8
2.2.4 Maximum number of failures 8
2.2.5 Recovery interval of an FCR 9

2.3 Partitioning . 9
2.4 Fault Injection . 10

2.4.1 Simulation-based fault injection 10
2.4.2 Hardware fault injection . 12
2.4.3 Software implemented fault injection 13

3 Partitioning in the TTSoC Architecture 15
3.1 The TTSoC architecture . 15

3.1.1 Properties of the TTSoC architecture 15
3.1.2 Architectural Elements . 19

3.2 Partitioning in the TTSoC . 22

ix

4 Related Work 25

4.1 Æthereal . 25

4.1.1 Connections in Æthereal . 26

4.1.2 Configuration of Æthereal 27

4.2 MANGO . 28

4.2.1 Network adapter . 29

4.2.2 Router . 29

4.3 Nostrum . 30

4.3.1 Temporally Disjoint Networks 31

4.3.2 Looped Containers . 32

4.3.3 Theory of Operation . 33

4.4 HERMES . 33

4.5 Comparison . 35

5 Experiments & Fault Injection Framework 39

5.1 Hypotheses . 40

5.1.1 Temporal partitioning . 40

5.1.2 Spatial partitioning . 40

5.1.3 Stability of communication during reconfiguration 41

5.1.4 Bounded reconfiguration delay 41

5.2 Evaluation of hypotheses . 42

5.2.1 Traffic load experiment . 42

5.2.2 Bit-flip experiment . 43

5.2.3 Reconfiguration experiment 44

5.3 Structural overview of framework 44

5.4 Fault injection environment . 46

5.4.1 Hardware . 46

5.4.2 Development software and configuration 47

5.4.3 Experiment coordination and data logging 48

5.5 Experimental TTSoC structure . 49

5.5.1 Micro components . 49

5.5.2 Network-on-Chip (NoC) . 51

5.5.3 Communication channels . 52

5.5.4 Communication structure 55

5.6 Experiments in detail . 56

5.6.1 Traffic load experiment . 56

5.6.2 Bit-flip experiment . 60

5.6.3 Reconfiguration experiment 64

5.7 Test procedure . 67

5.8 Communication scheduling . 69

x

6 Results 73
6.1 Classification of message faults . 73
6.2 Latency and jitter . 76
6.3 Traffic load experiment . 77

6.3.1 Periodic event communication 77
6.3.2 Sporadic event communication 80
6.3.3 Periodic state communication 80

6.4 Bit flip experiment . 84
6.4.1 Periodic event communication 85
6.4.2 Sporadic event communication 87
6.4.3 Periodic state communication 90

6.5 Reconfiguration experiment . 92
6.5.1 Periodic event communication 94
6.5.2 Sporadic event communication 97
6.5.3 Periodic state communication 103

7 Interpretation of Results 113
7.1 General aspects . 113

7.1.1 Latency and jitter . 113
7.1.2 Traffic load experiment . 114
7.1.3 Bit flip experiment . 114
7.1.4 Reconfiguration experiment 115

7.2 Hypotheses . 119
7.2.1 Temporal partitioning . 119
7.2.2 Spatial partitioning . 120
7.2.3 Stability of communication during reconfiguration 120
7.2.4 Bounded reconfiguration delay 120

8 Conclusion 123

Acronyms and Abbreviations 125

List of Symbols 130

Bibliography 131

Index 137

Curriculum Vitae 141

xi

xii

List of Figures

2.1 Pathology of faults . 4

3.1 Structure of the TTSoC architecture 20

4.1 Implementation of Æthereal connections 26

4.2 Structure of MANGO network . 28

4.3 MANGO master/slave communication structure 29

4.4 Temporally disjoint networks of Nostrum 32

4.5 HERMES router with two VCs . 34

5.1 Structure of experimental TTSoC setup 45

5.2 Communication structure of the experiments 55

5.3 Memory structure of the UNI of the bit-flip experiment 63

5.4 Array with scheduled communication channels 70

5.5 Conflict in scheduling of different periods 71

6.1 Classification of message faults . 74

6.2 Timeline illustrating the latency of messages 76

6.3 Diagram of latency of RefCom1 in the traffic load experiment with
periodic event communication . 78

6.4 Diagram of latency of RefCom2 in the traffic load experiment with
periodic event communication . 79

6.5 Diagram of lost messages of the probe communication in the traffic
load experiment with periodic event communication 79

6.6 Diagram of latency of RefCom1 in the traffic load experiment with
sporadic event communication . 81

6.7 Diagram of latency of RefCom2 in the traffic load experiment with
sporadic event communication . 81

6.8 Diagram of lost messages of the probe communication in the traffic
load experiment with sporadic event communication 82

6.9 Diagram of latency of RefCom1 in the traffic load experiment with
periodic state communication . 83

xiii

6.10 Diagram of latency of RefCom2 in the traffic load experiment with
periodic state communication . 83

6.11 Diagram of lost messages of the probe communication in the traffic
load experiment with periodic state communication 84

6.12 Diagram of latency of RefCom1 in the bit flip experiment with pe-
riodic event communication . 86

6.13 Diagram of latency of RefCom2 in the bit flip experiment with pe-
riodic event communication . 87

6.14 Diagrams of data integrity of ProbeCom in the bit flip experiment
with periodic event communication 88

6.15 Diagram of latency of RefCom1 in the bit flip experiment with spo-
radic event communication . 89

6.16 Diagram of latency of RefCom2 in the bit flip experiment with spo-
radic event communication . 89

6.17 Diagrams of data integrity of ProbeCom in the bit flip experiment
with sporadic event communication 90

6.18 Diagram of latency of RefCom1 in the bit flip experiment with pe-
riodic state communication . 91

6.19 Diagram of latency of RefCom2 in the bit flip experiment with pe-
riodic state communication . 92

6.20 Diagrams of data integrity of ProbeCom in the bit flip experiment
with periodic state communication 93

6.21 Diagram of latency of RefCom1 in the first experimental configura-
tion of the reconfiguration experiment with periodic event commu-
nication . 95

6.22 Diagram of latency of RefCom2 in the first experimental configura-
tion of the reconfiguration experiment with periodic event commu-
nication . 96

6.23 Errors of RefCom1 in the first experimental configuration of the
reconfiguration experiment with periodic event communication . . . 97

6.24 Errors of RefCom2 in the first experimental configuration of the
reconfiguration experiment with periodic event communication . . . 98

6.25 Diagram of latency of RefCom1 in the second experimental config-
uration of the reconfiguration experiment with periodic event com-
munication . 99

6.26 Diagram of latency of RefCom2 in the second experimental config-
uration of the reconfiguration experiment with periodic event com-
munication . 99

6.27 Lost messages in the probe communication channel during the first
experimental configuration of the reconfiguration experiment with
periodic event communication. 100

xiv

6.28 Lost messages in the probe communication channel during the sec-
ond experimental configuration of the reconfiguration experiment
with periodic event communication. 100

6.29 Diagram of latency of RefCom1 in the first experimental configura-
tion of the reconfiguration experiment with sporadic event commu-
nication . 101

6.30 Diagram of latency of RefCom2 in the first experimental configura-
tion of the reconfiguration experiment with sporadic event commu-
nication . 102

6.31 Errors of RefCom1 in the first experimental configuration of the
reconfiguration experiment with sporadic event communication . . . 103

6.32 Errors of RefCom2 in the first experimental configuration of the
reconfiguration experiment with sporadic event communication . . . 104

6.33 Diagram of latency of RefCom1 in the second experimental config-
uration of the reconfiguration experiment with sporadic event com-
munication . 105

6.34 Diagram of latency of RefCom2 in the second experimental config-
uration of the reconfiguration experiment with sporadic event com-
munication . 105

6.35 Lost messages in the probe communication channel during the first
experimental configuration of the reconfiguration experiment with
sporadic event communication. 106

6.36 Lost messages in the probe communication channel during the sec-
ond experimental configuration of the reconfiguration experiment
with sporadic event communication. 106

6.37 Diagram of latency of RefCom1 in the first experimental configura-
tion of the reconfiguration experiment with periodic state commu-
nication . 107

6.38 Diagram of latency of RefCom2 in the first experimental configura-
tion of the reconfiguration experiment with periodic state commu-
nication . 108

6.39 Errors of RefCom1 in the first experimental configuration of the
reconfiguration experiment with periodic state communication . . . 109

6.40 Errors of RefCom2 in the first experimental configuration of the
reconfiguration experiment with periodic state communication . . . 110

6.41 Diagram of latency of RefCom1 in the second experimental config-
uration of the reconfiguration experiment with periodic state com-
munication . 111

6.42 Diagram of latency of RefCom2 in the second experimental config-
uration of the reconfiguration experiment with periodic state com-
munication . 111

xv

6.43 Lost messages in the probe communication channel during the first
experimental configuration of the reconfiguration experiment with
periodic state communication. 112

6.44 Lost messages in the probe communication channel during the sec-
ond experimental configuration of the reconfiguration experiment
with periodic state communication. 112

7.1 Omission of period cycle after reconfiguration 117

xvi

List of Tables

5.1 Features of the Stratix R© III FPGA Development Kit 47
5.2 Features of the micro components in the experimental TTSoC design 49
5.3 Encapsulated communication channels of the experiments 53
5.4 experiment config: Configuration data structure for the traffic load

experiment from the PC to the FPGA board. 57
5.5 ttsoc mgt msg: Management data structure for the traffic load ex-

periment from the GW to the other components. 57
5.6 ttsoc com msg: Communication data structure of reference and

probe communication. 57
5.7 ttsoc incoming msg: Data structure for incoming messages of refer-

ence and probe communication. 57
5.8 ttsoc data msg: Data structure to transmit the collected messages

from the RC3 component to the GW and to the PC. 58
5.9 Parameters of the traffic load experiment. 59
5.10 experiment config: Configuration data structure for the bit-flip ex-

periment from the PC to the FPGA board. 61
5.11 ttsoc mgt msg: Management data structure for the bit-flip experi-

ment from the GW to the other components. 61
5.12 Parameters of the bit-flip experiment. 61
5.13 Statistical bit-flip coverage of different memory regions. 63
5.14 experiment config: Configuration data structure for the reconfigu-

ration experiment from the PC to the FPGA board. 64
5.15 Parameters of the reconfiguration experiment. 66

6.1 Data integrity of traffic load experiment: event & periodic messages 78
6.2 Data integrity of traffic load experiment: event & sporadic messages 80
6.3 Data integrity of traffic load experiment: state & periodic messages 82
6.4 Data integrity of bit flip experiment: event & periodic messages . . 85
6.5 Data integrity of bit flip experiment: event & sporadic messages . . 87
6.6 Data integrity of bit flip experiment: state & periodic messages . . 91
6.7 Data integrity of reconfiguration experiment: event & periodic mes-

sages . 95

xvii

6.8 Data integrity of reconfiguration experiment: event & sporadic mes-
sages . 101

6.9 Data integrity of reconfiguration experiment: state & periodic mes-
sages . 107

xviii

Chapter 1

Introduction

In the past decades the semiconductor industry developed chips with ever in-
creasing complexity and number of transistors per chip, while the management
of complexity becomes more and more challenging. To reduce the cognitive com-
plexity [Kop08] of building embedded computer systems, component-based design
methodologies have been introduced, which allow prevalidated components to be
combined. Multiple components are integrated into a single chip to build a system-
on-chip (SoC), which additionally helps to stop the increase in the number of node
computers [Obe07]. An embedded execution platform is required for the integra-
tion of multiple heterogenous components, which are interconnected by a network-
on-chip (NoC). For this purpose the time-triggered system-on-chip (TTSoC) ar-
chitecture was developed at the Institute of Computer Engineering at the Vienna
University of Technology. One of the key properties of this architecture is to
support composability [KO02], i.e., the composition of component services with-
out side-effects. Several independent functional units can be integrated into a
single chip where the communication amongst these components is based on a
time-division-multiple-access (TDMA) scheme. As a consequence, self-contained
functional units in the system cannot be influenced by other malfunctioning units.
The architecture presents a predictable and deterministic interconnection with in-
herent error containment, which makes the development of complex systems easier
[OSHK08]. To satisfy changing communication and power demands of individ-
ual components, the TTSoC architecture provides support for integrated resource
management.

1.1 Motivation

It is the objective of this thesis to provide evidence that one component cannot
interfere with the correct behavior of other components in the value and time do-

1

1.2. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

main. Temporal partitioning guarantees the independence of temporal properties
of messages exchanged by distinct subsystems, while spatial partitioning assures
that no data is invalidated in the communication subsystem. Therefore, the fo-
cus of this work is to evaluate those mechanisms, that are designed to ensure the
independence of individually designed and validated components.

To obtain adequate results, an experimental framework is developed, upon which
distinct fault injection experiments are executed. Using fault injection, faults are
intentionally introduced to simulate faulty behavior of subsystems. The behavior
of distinct components in the framework, in the presence of such adverse condi-
tions, gives information about the correctness of hypotheses concerning temporal
and spatial partitioning.

1.2 Structure of the Thesis

Chapter 2 explains the basic concepts of the thesis. The reader is introduced to
the terminology which will be used in subsequent chapters.

Thereafter, in chapter 3 the architectural concept and fundamental properties of
the TTSoC architecture are presented. Especially, the partitioning in the TTSoC
architecture is detailed.

An overview of related work is given in chapter 4. Different existing solutions for
SoC architectures are described and finally compared to the TTSoC architecture.

The actual hypotheses, which have to be evaluated by this thesis, are declared in
chapter 5. Three different experimental scenarios are explained that are used to
verify the correctness of these hypotheses. Additionally, a detailed description of
the experimental framework gives an insight into the functionality of the evaluation
process.

Chapter 6 presents the results of the experiments. For each experimental scenario
the outcome is illustrated by multiple diagrams and tables.

In chapter 7 the results are interpreted and discussed with respect to the validity
of hypotheses. At last, chapter 8 brings a conclusion of the presented work.

2

Chapter 2

Basic Concepts

In this chapter background information is presented to introduce different terms
and expressions used in this thesis. The first section introduces different terms of
dependability. Then, in the second section, the purpose and required attributes of
fault hypotheses are explained. The next section gives an overview about distinct
viewpoints of the partitioning of systems. In section 2.4 the purpose and the
process of fault injection will be discussed.

2.1 Dependability

Dependability is defined as the ability to trust a computer system in the way that
its user can rely on the correct delivery of services. The service of a system is its
behavior as the user can observe it. A user may either be a human or another
computer system [Lap92].

In [Lap95] different aspects of dependability were elaborated, which are then
grouped into the three classes: impairments, means, attributes.

2.1.1 Impairments

Impairments to dependability – faults, errors, failures – are circumstances which
cause or come from the deviation of the delivered service from its specification.
These circumstances are undesired but not necessarily unexpected.

When the actual delivered service deviates from the specified or intended system
function, a system failure occurred. The unintended internal state of the system,
which is responsible for the system failure, is called error. A fault is the cause
of an error and thus, indirectly liable for the occurrence of subsequent failures
[ALR00]. In a system faults, may reside (e.g., software faults), that have not been

3

2.1. DEPENDABILITY CHAPTER 2. BASIC CONCEPTS

activated yet. Thus the fault does not yet have any effect on the system behavior.
Before such a fault results in an error, it needs to be activated. In case of a system
composed of multiple components, the failure of one component may propagate to
cause a fault in another component, and thus, the whole system may fail. Figure
2.1 illustrates the fault-error-failure chain in a system with multiple components.
To prevent this propagation of failures, a well designed system contains distinct
fault containment regions (see subsection 2.2.1).

Figure 2.1: Pathology of faults.

According to the phase in which a fault is created, there is a distinction between
development faults and operational faults [Lap92]. Development faults can further
be divided into design faults – faults introduced during the design phase – and
implementation faults – faults introduced during the system implementation. Op-
erational faults appear while the system is in operation and may have physical
reasons or may also be caused by user interactions [Ade03].

The persistence of faults is another important classification. Faults that occur
only once and remain in the system for some time before they disappear without
repair are called transient faults . These faults often have physical reasons like
radiation, lightning strokes or electromagnetic interferences. If a transient fault
affects the state of a system it can also result in a permanent error [Kop97]. In
contrast, a permanent fault appears and remains in the system until an explicit
repair action is applied. Examples are damaged connections, functional design
errors or hardware defects due to manufacturing problems. Between these classes,
the group of intermittent faults can be identified as permanent faults that appear
like transient faults. A cause of intermittent faults can be, e.g., loose connections,
critical timing or aging of components [Ade03].

For a more detailed description of faults the interested reader is referred to [Lap92].

2.1.2 Means

The means for dependability are a set of methods and techniques to improve
dependability. In [Lap92] four different classes of these methods and techniques
are introduced:

Fault prevention: is concerned with the prevention of the occurrence
and introduction of faults.

4

CHAPTER 2. BASIC CONCEPTS 2.1. DEPENDABILITY

Fault tolerance: tries to guarantee a correct system service despite
the presence of faults.

Fault removal: means to reduce the number and seriousness of
present faults in the system.

Fault forecasting: comprises methods and techniques to estimate the
present number, future incidence and the consequences of faults.

2.1.3 Attributes

There are five important attributes of dependability which were defined in [Lap92]:
reliability, safety, maintainability, availability and security.

Reliability: This attribute is defined by the continuity of the service.
It specifies the probability that a system provides its intended service
up to time t when the system was in operation at t = t0. With a con-
stant failure rate of λ failures/hour, the reliability is given by [Kop97]:

R(t) =
1

eλ(t−t0)
(2.1)

The mean-time-to-failure (MTTF) is given in hours and is the inverse
of the failure rate: 1/λ.

Safety: The safety of a system regards the prevention of critical fail-
ure modes in a system. Especially the avoidance of catastrophic conse-
quences on the environment is of concern. The cost of a critical failure
can be orders of magnitude higher than the expected utility when the
system is operational.

Maintainability: A system that can be repaired after the occurrence
of a failure is said to be maintainable. The probability M(d) that
the system will be restored within the duration d after a failure is a
measure of maintainability. Similarly to reliability, the mean-time-to-
repair (MTTR) is defined as the inverse of the constant repair rate µ
(repairs/hour).

Availability: The correct operation of a system is sometimes dis-
rupted by durations where the system does not provide its intended
function. As a measure of the alternation of correct and incorrect de-
livery of system service, the attribute of availability A is introduced.
It defines the fraction of time that the system is ready for use.

5

2.2. FAULT HYPOTHESIS CHAPTER 2. BASIC CONCEPTS

If there are constant failure and repair rates in the system, the avail-
ability is defined as:

A =
MTTF

MTTF +MTTR
(2.2)

The sum in the denominator of the equation (MTTF +MTTR) is also
called the mean-time-between-failures (MTBF).

Security: The ability of a system to prevent unauthorized disclosure of
information and improper alterations of data is referred to as security.

2.2 Fault hypothesis

During the design and validation of fault-tolerant systems the fault hypothesis
is of high importance. It specifies assumptions about the behavior of a system
in the presence of faults [Ade03]. Assumptions on the types of faults, the rate
at which components fail and how components fail are the core of the fault hy-
pothesis [OP06]. The assumption coverage [Pow92] defines at which degree these
assumptions hold in reality. If the assumptions made in the fault hypothesis are
not correct, the whole system may fail as the fault-tolerance mechanisms of a
safety-critical system are built upon these assumptions.

The next subsection defines the unit of failure – the fault containment regions
– of a system. Afterwards, the different failure modes are specified. The last
three subsections describe assumptions about the failure rate, maximum number
of failures and the recovery interval.

2.2.1 Fault containment region (FCR)

A fault containment region (FCR) is a set of components that may either fail as
an atomic unit or works correctly regardless of any arbitrary logical or electrical
fault outside the region [KPJ+01][LH94]. In contrast, no other component outside
the FCR is influenced by a fault inside the FCR. By the usage of shared physical
resources (e.g., power supply, timing source), the occurrence of external faults (e.g.,
electromagnetic interference, spatial proximity) or an improper system design can
compromise the independence of FCRs [OP06].

A fault inside one FCR that results in the failure of that FCR may become a fault
at system-level (compare the fault-error-failure chain in subsection 2.1.1). The
fault-tolerance mechanisms employed in the system need to be able to tolerate
such system-level faults. Otherwise, the system-level fault may lead to the failure

6

CHAPTER 2. BASIC CONCEPTS 2.2. FAULT HYPOTHESIS

of the whole system. A typical approach to cope with the failure of components
is to use N-modular redundancy [Avi71]. The service request is processed by N
replicated components that all provide the equal service. A voting mechanism
either decides (e.g., based on majority) which of the outcomes of the replicas to
use or it combines the results to one singe output (e.g., average value). Triple-
modular redundancy (TMR) is the most frequently used variant of N-modular
redundancy.

2.2.2 Failure mode assumption

When an FCR fails, different effects of this failure can be observed by the user of the
FCR’s services. These effects can be categorized to define distinct failure modes
[OP06][Cri91]. Based on the assumed failure modes, the degree of redundancy
necessary to guarantee correct error processing, can be identified. The following
hierarchy of failure modes is based on the rigidity of assumptions:

Fail-stop failures: When an FCR omits to produce any output to
subsequent inputs a fail-stop failure occurred. The FCR needs to be
restarted before it returns to its intended behavior. A fail-stop failure
is detected by all correct operating FCRs.

Crash failures: A crash failure is very similar to fail-stop failures:
the FCR does not produce any outputs. The difference is that crash
failures possibly are not detected by correct FCRs.

Omission failures: In case of an omission failure, the sending FCR
fails to send a message, or the receiving FCR does not receive a message
which was previously sent. Consequently, the receiver cannot respond
to an input. Similarly to crash failures, omission failures may remain
undetected.

Timing failures: An FCR that suffers a timing failure produces its
output too early or too late relating to the temporal specification.

Byzantine or Arbitrary failures: For the byzantine failure no re-
strictions can be applied. Even forging of messages and ”two-faced”
FCR behavior must be considered. This behavior is described as the
problem of Byzantine Generals [LSP82].

7

2.2. FAULT HYPOTHESIS CHAPTER 2. BASIC CONCEPTS

Additionally, the following different types of failure modes can be distinguished
[Kop03][OP06]:

Babbling Idiot: When a babbling idiot failure occurs, the FCR sends
untimely messages. Thus, the communication channel may be monop-
olized by the FCR.

Slightly-off-Specification (SoS): This is a special kind of byzantine
failure which can be differentiated into temporal and value SoS failures.
An example for a value SoS failure is, when the electrical voltage is
close to the threshold between logical 0 and logical 1. The value can
be judged to be 0 by one observer and to be 1 by the other recipient.
A temporal SoS failure may arise when a message is slightly outside
its specified interval of the receive instant. Due to the fact, that clocks
cannot be perfectly synchronized, one of two different receivers accepts
the message while the other receiver detects a message timing failure.

Masquerading: This is a failure where one component uses the iden-
tity of another component without authority to send or receive mes-
sages.

2.2.3 Failure rate assumption

The specification of the arrival rate of failures of FCRs is another part of the fault
hypothesis. It defines the temporal distance between the occurrence of two succes-
sive failures, without compromising the correct operation of the system [Ade03].
For the failure rate assumption, both must be considered, the different failure
modes and the persistence of failures. Transient failures disappear by themselves
while permanent failures require an explicit repair action.

2.2.4 Maximum number of failures

The fault hypothesis must also include the maximum number of failures the system
can handle. The number of tolerated failures determines the level of redundancy
in the system. It depends on the failure rate and the recovery interval of FCRs.
Typically, the occurrence of one single failure is assumed in present day safety-
critical systems [OP06].

8

CHAPTER 2. BASIC CONCEPTS 2.3. PARTITIONING

2.2.5 Recovery interval of an FCR

After the occurrence of a failure in an FCR, it must recover to provide the specified
functionality again. The maximum duration between the failure of the FCR and
the instant where the FCR operates correctly again is called the recovery interval.
For permanent failures, the recovery interval either equals the mission time or
the duration between maintenance actions. After a transient failure, the sum of
the failure detection latency, the FCR restart duration and the state restoration
duration build the recovery interval [OP06].

2.3 Partitioning

The partitioning of a system into different fault containment regions (FCRs) is
done to ensure fault containment. These FCRs need to be independent from each
other, so that a failure in one FCR does not propagate to cause a failure in another
FCR [Obe07]. In an inadequately partitioned system a fault in one FCR could
corrupt code, control signals or data owned by another FCR. On the other hand, it
could also have an impact on the ability of another FCR to access shared resources
(e.g., processor, communication subsystem).

When a system is partitioned, two dimensions of partitioning can be distinguished,
according to the two types of hazards which may arise [Rus99]:

Spatial partitioning: Spatial partitioning prevents that one FCR
changes private data of another FCR (in memory or in transit). Ad-
ditionally, the FCR is not allowed to command private devices nor
actuators owned by different FCRs.

Temporal partitioning: With temporal partitioning it is ensured
that one FCR cannot affect the access of other FCRs to shared re-
sources (e.g., shared CPU, communication network). Also the tempo-
ral behavior of the services of these resources may not be altered (e.g.,
rate of access, latency, jitter).

In a well partitioned system the effort of system integration, verification and vali-
dation can be reduced [WH09]. Due to the separation of functionality to distinct
FCRs, where faults are contained and isolated, the components can be verified in-
dependently and the system integration can be carried out with previously tested
components. This loose coupling of FCRs also allows the coexistence of compo-
nents with different criticality levels.

9

2.4. FAULT INJECTION CHAPTER 2. BASIC CONCEPTS

2.4 Fault Injection

Dependability evaluation of fault-tolerant computer systems, based on the analysis
of failures and errors in operational systems, is quite difficult. The destructiveness
of severe failures and a long error latency complicate the detection of reasons of
failures in operational systems. Fault injection is a widely accepted technique for
dependability and robustness evaluation of computer systems, that can eliminate
these drawbacks [Koo02]. It can be used to determine the behavior of the system
in the presence of faults by deliberately introducing faults into the system, and
thus, accelerating the occurrence of faults [AAA+90].

Using fault injection techniques it is possible to [HTI97]:

• identify dependability bottlenecks

• analyze the system behavior in the presence of faults

• find out the error detection coverage and effectiveness of recovery ca-
pabilities

• determine the effectiveness of fault tolerance mechanisms

Typically, a fault injection environment consist of the target system (whose de-
pendability is to be evaluated), a fault injector , fault library , workload generator
with workload library , a controller, monitor, data collector and a data analyzer .
While the target system executes commands provided by the workload generator,
the fault injector introduces faults into the system (e.g., by corrupting memory or
interfering with computational logic). A monitor keeps track of the execution of
commands and eventually triggers the data collector to sample information. The
collected data can either be processed online or offline by the data analyzer. It is
the controllers duty to guide the evaluation process.

Depending on the design phase in which fault injection is applied and the tech-
niques used, different types of fault injection can be distinguished: simulation-based
fault injection, hardware fault injection and software implemented fault injection
[GS95].

2.4.1 Simulation-based fault injection

The simulation-based fault injection is a low-cost, non-intrusive dependability eval-
uation concept applied during the design phase. Faults are injected into a simula-
tion model of the system under test. It can be used to evaluate the effectiveness
of fault-tolerance mechanisms and dependability measures of the system model.

10

CHAPTER 2. BASIC CONCEPTS 2.4. FAULT INJECTION

As the system in early design phases often only consists of high-level abstractions,
this fault injection technique does not provide feedback about temporal behavior.
The early detection of design faults, on the other hand, reduces the cost of cor-
recting conceptual errors. Simulation-based fault injection provides a high degree
of controllability and observability, as faults can even be injected to regions which
are inaccessible to fault injection methods based on physical devices [FSK98]. The
overhead of time introduced by hardware and software simulations limit the prac-
tical application of simulation-based fault injection.

Depending on the level of abstraction, simulation-based fault injection can be
classified [LN09][Ade03]:

Electrical level simulation: For this class of fault injection the cur-
rents and voltages in a circuit model are changed to simulate realistic
hardware faults like transient faults. This allows the observation of
physical reasons (e.g., metastability or electromagnetic interference)
for higher level faults. Due to high simulation effort fault injection
at the electrical level is appropriate to evaluate the behavior of vital
components of the circuit (e.g., the interface from analog to digital
components) rather than the whole system.

Gate level simulation: Simulation-based fault injection at gate level
is applied to simulate physical faults where the cost of fault injection
at the electrical level is to high. At this level faults are injected to
logic gates. Typical fault models are stuck-at faults and inversion of
logic levels. Gate level fault injection can be used to obtain informa-
tion about the effect of faults at gate level to higher levels. For large
computer systems this fault injection approach is infeasible.

Register transfer level (RTL) simulation: System models imple-
mented using hardware description languages such as VHDL or Verilog
are used to simulate RTL faults. Read and write operations at regis-
ters and memory locations are modified to inject faults. This type of
fault injection can be employed to determine the effectiveness of error
detection mechanisms aimed at the detection of faults in registers and
memories. The complexity of modern multicore SoCs makes it difficult
to evaluate complete systems.

Another grouping of simulation-based fault injection is according to the applied
mechanisms [LN09]:

Simulator command: Built-in commands of the simulator are used
to inject faults to variables and signals of the model of the target sys-
tem. The quantity of commands offered by the simulator determine

11

2.4. FAULT INJECTION CHAPTER 2. BASIC CONCEPTS

the appropriateness of such fault injection techniques. An advantage
of simulator commands is that the system model need not be changed
for fault injection.

Simulation code modification: Two types of simulation code mod-
ification can be differentiated: saboteur techniques and mutant tech-
niques . In the first case a saboteur component is added to the system
model to inject faults. This module changes values or timing char-
acteristics of distinct signals. The mutant technique is based on the
modification or corruption of existing modules of the target system.
The drawback of both techniques is, that the system model needs to
be changed for fault injection.

Simulator modification: This type of simulation-based fault injec-
tion rather changes the simulator than the simulation model. For eval-
uation, the target system is considered either as black- or white-box.
Various kinds of faults can be injected at the boundary of the system
model. Thus, no modification of the system model is required.

2.4.2 Hardware fault injection

During hardware fault injection experiments the target system is exposed to phys-
ical disturbances (e.g., radiation, electromagnetic interference, extreme thermal
conditions, pin forcing), which even might lead to the destruction of prototype
hardware. Additional hardware facilities are required to perform hardware fault
injection. As these techniques are executed on real hardware prototypes, no tim-
ing assumptions are necessary and a high time-resolution of hardware triggering
and monitoring is possible. Distinct types of hardware fault injection allow the
introduction of faults to locations that are inaccessible to other fault injection
techniques. Depending on the location to which the faults are injected and the
types of faults, two different categories are defined in [HTI97]:

Hardware fault injection with contact (pin-level injection):
Injectors with physical contact to the target system are used to
produce voltage and current changes at the desired locations of the
tested system. So the duration and the location of faults can be easily
controlled. Two methods of pin-level injection are commonly used:

Active probes : Probes are attached to selected pins of the integrated
circuit to force determined voltages or currents to flow. The technique is
especially applicable for injection of stuck-at or bridging faults. When
additional current is carelessly forced to a device it may result in the
damage of the target hardware.

12

CHAPTER 2. BASIC CONCEPTS 2.4. FAULT INJECTION

Socket insertion: A socket is placed between the target hardware and
its circuit board. Stuck-at, open and even more complex logic faults
can be injected by the socket. The analog value of signals can be forced
to a desired level or the signals of pins can be logically combined.

Hardware fault injection without contact: The target system is
exposed to radiation, electromagnetic fields or extraordinary thermal
conditions. This generates currents in the device or alters its electrical
characteristics, which is similar to natural physical phenomena that
either affect the device transiently or permanently. The problem of
contactless hardware fault injection is, that it is difficult to control the
faults in the time and space domain. This is because the precise mo-
ment and location of the discharge of heavy-iones and electromagnetic
pulses cannot be exactly controlled.

2.4.3 Software implemented fault injection

Software implemented fault injection is a technique for the insertion of faults to
a target system that does not require expensive hardware. With software fault
injection, both, software and hardware faults in the target system, can be emulated.
Software faults include the target application as well as faults in the operating
system. This can hardly be done with hardware fault injection techniques.

For software implemented fault injection the original code is extended with mech-
anisms – implemented with more code – that alter the existing syntax or forces
a state when the software is operational. Thus, the software or its behavior, re-
spectively, is modified for fault injection [Voa97]. Faults can only be introduced to
locations that are accessible to software (memory locations and registers). In case
faults need to be injected to inaccessible regions, other fault injection techniques
have to be used [Ade03].

Software fault injection techniques are in the time and spatial domain high con-
trollable and repeatable. On the other hand, the additional code may influence
the workload on the target system and even may introduce behavioral changes
of the original software. Due to poor time-resolution, software implemented fault
injection is not appropriate to emulate short latency faults of, for example, a data
bus or the CPU.

In [HTI97] software fault injection methods are distinguished, based on when faults
are injected:

Compile-time injection: To emulate effects of hardware, software
and transient faults, errors are introduced to the source code of the
target application by modification or insertion of instructions. This

13

2.4. FAULT INJECTION CHAPTER 2. BASIC CONCEPTS

equals an erroneous software image that is loaded to the target system.
When the target program is executed and the modified code reached,
the fault is activated.

No additional software is needed during the execution of the experi-
ments. As the modified code is only used for fault injection experi-
ments, no perturbations are introduced to the final target system. The
hard-coding of faults allows the introduction of permanent faults, but
no injection of faults during runtime is possible.

Runtime injection: For runtime injection of faults, additional com-
mands are placed in the target application. The fault injection code
is executed along with the original target program. Transient and in-
termittent faults in memory and registers can be injected when this
code is triggered. Common triggering mechanisms for runtime fault
injection can be differentiated into:

Time-out: A hardware or software timer interrupt is used to trigger the
injection of faults at predetermined instants in time. The code to inject
faults is linked to the interrupt service routine. This technique does not
require substantial modification of the target application or workload
program. As the faults are injected at arbitrary chosen instants in
time, realistic emulation of unpredictable fault effects, like transient or
intermittent faults, can be achieved.

Exception/trap: Hardware exceptions or software traps transfer the
control to the fault injector. Faults are injected on the occurrence of
certain events or conditions (e.g., a fault is injected before a specified
instruction is executed).

Code insertion: Additional instructions in the target program enable
the injection of faults before particular instructions of the original ap-
plication. In contrast to compile-time code modification methods, this
technique rather inserts code than modifying existing instructions, and
fault injection is performed during runtime. Compared to the trap
method, the fault injector is part of the target program instead of be-
ing executed as interrupt service routine in system mode.

14

Chapter 3

Partitioning in the TTSoC
Architecture

This chapter summarizes the properties of the TTSoC architecture and gives an
architectural overview. Afterwards, the partitioning in the TTSoC architecture is
presented. Especially, the architectural components needed to implement temporal
and spatial partitioning are detailed.

3.1 The TTSoC architecture

The development of the TTSoC architecture is driven by the desire to gain an
architectural framework with support of composability [KO02], that provides a
component-based design methodology and that clearly decouples computational
components from the communication infrastructure. It incorporates many features
which are elaborated in [OSHK08] and [Pau08]. The result is a predictable and
deterministic time-triggered network-on-chip (NoC) with inherent fault isolation
to interconnect the computational components. In the following subsection the key
properties of the architecture can be found. Afterwards, the architectural elements
of the TTSoC architecture are presented in subsection 3.1.2.

3.1.1 Properties of the TTSoC architecture

The following properties are essential for the TTSoC architecture and help to
improve the design and understanding of a system-on-chip (SoC).

15

3.1. TTSOC ARCHITECTURE CHAPTER 3. PARTITIONING

Elevation of the level of design abstractions

The level of abstraction is essential for the management of complexity [Kop08] of
evolving designs. A conceptual model of components is necessary to create stable
intermediate forms for the assembling to systems-of-systems. The component’s
properties need to be detailed by an adequate interface specification. Hence, the
internal structure and interactions within a component need not be known and
can be disregarded. The additional advantage is, that in case of a change or
enhancement of a component’s implementation due to technological improvements,
no redesign of the whole system is required.

In the TTSoC architecture a micro component builds such a unit of abstraction. Its
functionality is provided to other interacting micro components at a well-defined
message-based network interface [GIJ+03]. As there is a strict division into the
processing within micro components and their interactions among each other, the
TTSoC architecture represents a communication-centric model [BM02], [WG02]
which can be applied in a multitude of applications.

Predictability and determinism

The predictability of the on-chip interconnection is a pivotal property of the
TTSoC architecture. A time-triggered communication schedule is used to assign
different slots of time to each micro component. It is also specified whether the
component is supposed to use the communication system for sending or receiv-
ing during this dedicated time slots. The communication system with the time-
triggered schedule protects the micro components from interfering one another.

This leads to a deterministic behavior of the communication subsystem, i.e. the
ability to reason about the future behavior and derive the future state of a system,
when an initial state and future inputs are known. With deterministic systems
it is possible to implement triple-modular redundancy (TMR), which allows the
transparent masking of hardware errors within micro components [Pol94].

Error containment through encapsulation

Also elementary for the TTSoC architecture is the integrated error containment, as
it makes modular certification easier and helps to increase robustness and compos-
ability [OKSH07]. Due to a strict separation of the SoC into independent micro
components which may only interact by exchanging messages via the NoC, the
property of error containment can be achieved. As the time-triggered approach
makes it possible to protect the NoC from unauthorized access by the use of
guardians at each component, misbehavior of any micro component (e.g., message
timing failures), may not affect the operation of other components.

16

CHAPTER 3. PARTITIONING 3.1. TTSOC ARCHITECTURE

Encapsulated communication channels [Pau08], that are represented in the time-
triggered communication schedule, build the basis for the encapsulation paradigm.
The communication of a micro component is only visible to other components if
they share the same communication channel. With such an encapsulated com-
munication channel, a micro component obtains a guaranteed bandwidth and a
bounded latency of communication is assured. Additionally, temporal ordering
and a consistent delivery order of messages at all micro components can be guar-
anteed, i.e., each micro component receives its messages in the same order as they
were sent and all components obtain their incoming messages in the same order.
Message ordering is vital for distributed consensus protocols and agreement algo-
rithms. It is also necessary to achieve replica determinism [Pol94], i.e., replicated
components are in the same state at about the same time [Kop97, p. 40].

The mechanism of encapsulation also helps to reduce the cognitive complexity, as
interfering subsystems show a more complicate behavior than clearly encapsulated
systems do. This in turn keeps the effort of testing and validation smaller than
for systems with interfering components.

Global time base and clock domains

Providing a single clock domain for a whole SoC brings many troubles with it. To
overcome these problems, multiple clock domains are introduced in the TTSoC
architecture with the advantage of a simplified handling of clock skew, clocking
down of individual IP blocks for power management or the support of heteroge-
neous IP blocks with different speeds [OSHK08]. The TTSoC architecture provides
a system-wide global time base beside the existence of multiple clock domains. The
global time base is a sparse time base – as described in [Kop97, p. 55] – gener-
ated by internal clock synchronization, that also supports synchronization to a
SoC-external reference time.

In the sparse-time model, the dense timeline of the real world is partitioned into
durations where events can take place – duration of activity – and intervals where
no events are allowed – duration of silence. Events inside the same interval of
activity are said to happen simultaneous, while events, that are timestamped at
different durations of activity and that are the required interval of silence apart
from each other, can be consistently temporally ordered in the whole distributed
system without the usage of an agreement protocol [Kop92]. All events in the
sphere of control of the system are assured to happen within an interval of activ-
ity. On the other hand, an agreement protocol is necessary to assign events to a
particular duration of activity when they are outside the sphere of control of the
system.

With the global time base, a temporal coordination of actions of micro components

17

3.1. TTSOC ARCHITECTURE CHAPTER 3. PARTITIONING

in a SoC or of an ensemble of different SoCs is possible. When distinct timestamps
are assigned at different micro components, they can be related to each other.
Hence, timestamps that have been assigned to events at one micro component are
also meaningful outside this micro component.

According to [Pau08] the TTSoC architecture supports the following clock do-
mains:

• The coordination of actions in the system is based on the global time
base. For example, the start of communication is triggered by the
global time at each micro component simultaneously. Its granularity
determines how tight events can be synchronized. As the global time
base may be relatively slow compared to other clock domains, it can
span the whole system, whereas clock skew and driver capacity remain
sufficiently small to be easily handled by system designers.

• Despite the synchronization of communication activities at all micro
components (e.g., the start instant of communication) by the global
time base, the communication subsystem has its own clock domain.
The frequency of this system-wide clock is higher than that of the global
time base. Each elementary data package – called flit – which a message
consists of, is transmitted from one network element to the neighboring
element within one cycle of the communication system clock. Hence,
data can be transported faster between micro components than with
the granularity of the global time base.

As each micro component may run on its own clock frequency, that is
typically faster than the global time base, the communication subsys-
tem needs to be able to deal with different clock domains. Therefore an
asynchronous handshake protocol is applied at the boundaries of the
different clock domains.

• A micro component itself can be composed of modules like processor
cores, memories and IP blocks that all may have a distinct local clock
domain which is transparent outside the micro component.

Due to this structure of clock domains, local modifications of clock domains, ei-
ther of micro components or the communication subsystem (e.g., changing the
frequency), do not require the redesign of the complete system.

Integrated resource management

The integrated resource management feature of the TTSoC architecture concerns
the adaptation of resources according to the actual demand of the application.

18

CHAPTER 3. PARTITIONING 3.1. TTSOC ARCHITECTURE

Changing requirements can address communication resources (e.g., bandwidth,
latency, latency jitter), computational resources (e.g., dynamic allocation of micro
components to application subsystems), and power (e.g., power limiter) [OSHK08].

In case a micro component suffered a permanent fault, a spare micro component
can take on the application functionality of the failed micro component. Hence,
the SoC is able to carry out its specified services despite the failure of a micro com-
ponent. Furthermore, the individual switching of micro components into defined
application modes helps to implement power-aware systems [UK03].

3.1.2 Architectural Elements

In figure 3.1 the general structure of the TTSoC architecture is illustrated. Mul-
tiple, possibly heterogenous IP blocks – so called micro components – are inter-
connected by the central time-triggered NoC [OSHK08]. The architecture distin-
guishes between trusted and non-trusted elements. The trusted subsystem prevents
a fault (e.g., a design fault) inside the host of a micro component from violating
the temporal interface specification of the micro component. As the trusted sub-
system inhibits the untimely access to the NoC, the communication between other
micro components cannot be disrupted by a faulty micro component.

The TTSoC architecture introduces two architectural elements – the trusted net-
work authority (TNA) and the resource management authority (RMA) – that
support dynamic resource allocation. The RMA receives requests for resource re-
location and calculates the new resource requirements, which must be granted by
the TNA. Afterwards, the SoC is reconfigured according to the newly approved
resource allocation. This can be done, for example, by dynamically updating the
time-triggered communication schedule or by switching between power modes.

Micro component

The TTSoC architecture allows the integration of distinct application subsystems
– which probably have different criticality levels – to one overall system. A micro
component is a nearly autonomous, possibly heterogenous IP block, that belongs
to a particular application subsystem. These self-contained micro components are
built by a host and a trusted interface subsystem (TISS). Application services
are performed by the host, while the TISS protects the time-triggered NoC from
unauthorized access. For this purpose, the TISS contains a table with a priori
knowledge – a communication schedule – about sending and receiving instants of
its corresponding micro component. Hence, the micro component cannot access
the NoC outside the allowed intervals. As the micro component has no access to
the schedule, no fault within the host can disrupt the exchange of messages of

19

3.1. TTSOC ARCHITECTURE CHAPTER 3. PARTITIONING

Figure 3.1: Structure of the TTSoC architecture: shaded area
represents the trusted subsystem, hosts of micro components are
not trusted. From [OSHK08].

other micro components.

Only by the exchange of messages on the time-triggered NoC the micro compo-
nents of an application subsystem can interact with each other. Thus, each micro
component is encapsulated. Temporal and spatial interference with other micro
components is prevented by design. A faulty micro component that delivers faulty
input is the only way of affecting other micro components.

The paradigm of encapsulation supports replica determinism[Pol94], composabil-
ity [KO02] and the integration of application subsystems with different criticality
level into a single SoC.

Time-triggered NoC

The objective of the time-triggered NoC, beside the interconnection of micro com-
ponents, is clock synchronization and the predictable transport of messages. A
global time base is provided by synchronization of multiple clock domains used in
the system. This enables that actions in the SoC or in an ensemble of SoCs are
temporally coordinated.

The time-triggered NoC consists of several interconnected fragment switches that
transport individual flits (fragments of a message), one per clock cycle. The TISS
of one micro component is connected to exactly one of these fragment switches.
A route from one sending micro component to the receiving micro components is

20

CHAPTER 3. PARTITIONING 3.1. TTSOC ARCHITECTURE

determined by the fragment switches that need to be traversed by a message. To
move the message through the NoC the message contains a header that tells each
fragment switch to which of its output ports the message must be forwarded.

For the predictable transport of messages a TDMA scheme is used to partition the
existing bandwidth into periodic conflict-free sending slots. These slots can either
be used for the periodic transport of messages or sporadic transport of messages.
Sporadic transmission means, that the sending slot is only used if there actually
is a message to be sent. Otherwise, the slot remains unused. Pulsed data streams
[Kop06] are used to allocate the sending slots to micro components. These are
time-triggered periodic unidirectional data streams which transmit fixed length
data pulses according to a priori knowledge from one sender to n receivers. The
transmission is carried out at a specified phase of each cycle of a periodic control
system [OSHK08]. This allows an efficient transport of large data of applications
requiring temporal alignment of sender and receiver.

The allocation of TDMA slots to micro components is accomplished by the 3-
tuple < pulse period, pulse phase, duration > which determines a pulsed data
stream. Such a pulsed data stream comprises periodic pulses of specified pulse
period and pulse phase. The pulse phase gives the offset to the start instant of the
pulse relative to the start of the pulse’s period. Pulses are composed of at least
one fragment , which also might be interleaved by other pulse’s fragments. The
duration is defined as the time between the first and the last fragment of a pulse.
Furthermore, a fragment is a set of flits , that are atomic entities which occupy
exactly one TDMA slot.

Elements for resource management

Integrated resource management is intended to dynamically allocate computational
resources (i.e., micro components) to application subsystems, communication re-
sources and power modes to micro components. Two architectural elements are
used for this purpose: the TNA and the RMA.

Upon a request for resource relocation, the RMA calculates new schedules and
the allocation of computational resources. Application specific knowledge (e.g.,
communication topology) is necessary for these tasks. As the RMA is not part of
the trusted subsystem, it may not change the configuration of the SoC directly. The
actual reconfiguration must be granted and executed by the TNA. This separation
of duties results from the fact, that the actual calculation of resource allocation
is much more demanding that the sole check of validity. Thus, in contrast to the
TNA, the RMA does not require a stringent certification process.

The TNA finds potential violation of resource allocation (e.g., a collision on the
NoC). In case the new schedule cannot be permitted, it will be rejected and the

21

3.2. PARTITIONING IN THE TTSOC CHAPTER 3. PARTITIONING

SoC is not reconfigured. Otherwise, the TISSes of the affected micro components
are updated and the new allocation of resources is activated.

Encapsulated communication channels

The physical separation of micro components entails the encapsulation on the
level of micro components. For achieving encapsulation with respect to the com-
munication infrastructure, encapsulated communication channels are introduced
to the TTSoC architecture. These are unidirectional channels for the transmission
of messages from one source to multiple destinations at a priori known points in
time [OSHK08]. Communication actions are only visible to participants connected
to the same encapsulated communication channel. Ports – which can be distin-
guished between output and input ports – denote the endpoints of the encapsulated
communication channels. Each micro component can be attached to multiple com-
munication channels. As there can be multiple destinations of one encapsulated
communication channels, single-cast, multi-cast and broad-cast topologies are pos-
sible.

To each encapsulated communication channel a specific pulsed data stream is
assigned, that reserves a set of TDMA slots for this channel. The TISS of each
micro component accesses the time-triggered NoC according to the TDMA slots
assigned to a communication channel. A time-triggered schedule that holds the
points in time when to access the NoC – the so-called message descriptor list
(MEDL) – is part of the TISS. This MEDL cannot be accessed by the host of a
micro component. It can only be altered during the reconfiguration process by the
TNA. Hence, a faulty host cannot introduce interferences to the communication
subsystem.

3.2 Partitioning in the TTSoC

To detect errors which propagate from one application to another one, distinct
fault-containment regions (FCRs) are needed. A FCR prevents the propagation
of errors across its interfaces so that no failure in one FCR may cause a fault
in another FCR [Obe07]. If there is only one FCR in a system, an error can
affect both, the messages sent by an application and the proper function of error
detection mechanisms.

To preserve the independence of FCRs and to avoid common mode failures, a
system must be effectively partitioned. The TTSoC architecture allows the co-
existence of components with different criticality levels within a single hardware
platform. Hence, it is of paramount importance that no failure is able to propa-
gate from any component with lower criticality level to components with higher

22

CHAPTER 3. PARTITIONING 3.2. PARTITIONING IN THE TTSOC

criticality level.

The existence of physical faults in a computer chip – like a particle strike or a
permanent hardware defect – can never be ruled out. Thus, for the design of
ultra-dependable systems the entire SoC needs to be considered as one single
FCR [OKSH07]. As, for example, the breakdown of the power supply or the
shared oscillator may disrupt the operation of the entire SoC. In case of an ultra-
dependable system different FCRs can only exist if distinct computer chips are
interconnected to build a larger system-of-systems.

On the other hand, in the TTSoC architecture distinct FCRs are integrated that
prevent the propagation of design faults and permanent or transient physical faults
– that are restricted to an individual component – from one FCR to other FCRs.

The TTSoC architecture distinguishes between two different types of FCRs
[OKSH07]:

Trusted Subsystem: This FCR includes the actual time-triggered
NoC and a trusted interface subsystem (TISS) for each of the micro
components. By assumption the trusted subsystem is free of design
faults. Its small and simple design simplifies the formal analysis and
minimizes the probability of transient physical faults.

The communication subsystem uses a time-division-multiple-access
(TDMA) scheme. The available communication bandwidth is split
into periodic sending slots, that are free of conflicts. Each of these
slots can contain periodic or sporadic messages. In contrast to periodic
messages, a sporadic message is only sent if a new event has to be trans-
mitted. The usage of predefined conflict-free sending slots guarantees
the predictable transport of messages.

Due to the time-triggered design the possibility of, so-called, Heisen-
bugs is largely eliminated, as logical and temporal controls are unam-
biguously separated and no race conditions can exist. Heisenbugs are
design errors in the software which result in quasi-random failures. In
contrast to these errors, Bohrbugs are software design errors that create
reproducible failures, and hence, are easier to correct.

The sparse global time base, which is provided by the trusted subsys-
tem, builds one of the core mechanisms for the time-triggered design,
as all control signals are derived from this distributed notion of time.
All TISSes are guaranteed to be in the same state within each interval
of silence of the sparse time base.

Micro Components: The host of a micro component provides the
services of the actual application. The hardware and software design

23

3.2. PARTITIONING IN THE TTSOC CHAPTER 3. PARTITIONING

of the micro components need not be free of design errors. Especially,
in the case of non safety-critical components the effort of formal proves
and certification is out of scale. But even though, a malicious fault
inside a non safety-critical host must not affect the correct function
of other – potentially safety-critical – micro components. The TISSes
connected to the individual micro components act as guardians to pre-
vent the unauthorized access to the NoC. Hence, the trusted subsystem
ensures the encapsulation of each of the micro components.

The only interaction between the micro components is based on the exchange
of messages on the time-triggered NoC. Any failure in the sending component
must propagate through the time-triggered NoC to cause a fault in another micro
component.

Generally, there is a distinction between message timing failures and message value
failures as it was defined in [CA85] and adopted for the TTSoC architecture in
[OKSH07]. Essentially, a message timing failure occurs when the send instant of
a message or its moment of reception is outside of the specification. A message
value failure means that a message is not valid (e.g., the CRC does not match) or
a valid message contains data structures that are not correct.

The concept of time-triggered communication prevents the existence of race con-
ditions where distinct hosts try to send at the same time. Each TISS contains
a priori knowledge about the sending and receiving instants of its corresponding
micro component. It acts as a guardian to ensure the predictable transport of
messages. Thus, no message timing failures may arise.

24

Chapter 4

Related Work

Different SoC architectures using NoCs for component interconnection have been
proposed until now. This chapter gives an overview of these architectures and
related work. After the presentation of each architecture, in section 4.5 these
are compared with the TTSoC architecture. Especially, characteristics relating to
temporal and spatial partitioning as well as reconfiguration are outlined.

4.1 Æthereal

Æthereal [GDR05] is an architecture for NoCs that provides both guaranteed ser-
vices (GS) and best-effort services (BES).

Guaranteed services: These services comprise uncorrupted, lossless,
ordered data delivery as well as guaranteed throughput and bounded
latency. For guaranteed services resources need to be reserved to be
able to provide the services also during worst case scenarios.

Best-effort services: A best-effort service is free to use the band-
width that is not reserved for guaranteed services. Also for best-effort
services data integrity, lossless and ordered data delivery are assured.

An Æthereal NoC consists of routers and network interfaces. Routers transport
data from one network interface to another one and are further divided into GS
routers and BES routers. GS routers transmit only data for guaranteed services
while BES routers transport all other messages. Each of the network interfaces
(NIs) is on one side attached to an IP-core and on the side connected with one
of the routers. NIs convert the local protocol used by the IP-core to the router
view on communication – to packets – and provide end-to-end services to the IP
modules.

25

4.1. ÆTHEREAL CHAPTER 4. RELATED WORK

The NoC provides a shared-memory abstraction [RDG+04] to IP modules. A
transaction-based protocol is used for communication. Request messages (e.g.,
read or write commands to addresses, possibly with data) issued by the master
IP module initiate a transaction. The request message is then processed by slave
IP modules addressed in the request. Slave modules may reply with response
messages (e.g., status of the command executed, requested data). This concept is
used for compatibility to existing protocols like AXI, OCP or DTL.

The decoupling of computation and communication together with guaranteed ser-
vices reduces the complexity of system development and facilitates the composition
of independently designed and validated IP modules.

4.1.1 Connections in Æthereal

Æthereal communication is based on connections that can be point-to-point, mul-
ticast (multiple slaves; all executing each transaction) or narrowcast (multiple
slaves; only one slave executes the transaction). A connection is divided into uni-
directional point-to-point channels reaching from a single master to a single slave.
Connections contain request channels (from master to slave) and response channels
(from slave to master).

Each channel comprises a buffer at the NI of the sender and a buffer at the re-
ceiver’s NI. Guaranteed message delivery is ensured by the usage of credit-based
flow control which prevents router and NI buffer overflows [RDP+05]. Figure 4.1
illustrates the implementation of Æthereal connections.

Figure 4.1: Implementation of Æthereal connections. From [RDP+05].

A counter a the sender side of a channel keeps track of the available space in the
receiver’s buffer. Initially the value of the counter equals the size of the receiving
buffer. Whenever data is transmitted from the sender buffer to the receiver, the
counter is decremented. After the receiver consumed data from its receiving buffer,
a credit is generated to indicate that additional space at the receiver is free. The

26

CHAPTER 4. RELATED WORK 4.1. ÆTHEREAL

credits are transported – either in a dedicated message or piggypacked in the
header of another data packet – to the previous sender. There the credits are
added to the counter.

As mentioned earlier, Æthereal provides guaranteed services (GS) and best-effort
services (BES). Dedicated GS routers and BES routers are placed in parallel, where
GS routers have higher priority. The guarantee of throughput and latency for GS is
accomplished by implementing connections as pipelined time-division-multiplexed
circuits [RDP+05]. For this purpose the routers and NIs in the network require
a common notion of synchronicity. Reservation of bandwidth is realized with
tables in the NIs that contain entries for reserved time slots. These time slots tell
the NI when to send or receive data packets and the route on which a packet is
transported. The size S of the tables determines the granularity of bandwidth Bi

that is reserved by one entry. A slot equals 1
S

of the maximum bandwidth. Thus,
when N slots are reserved for a connection, its total bandwidth is N ·Bi.

Unreserved time slots in the tables can be used by BES routers for best-effort
transmission of packets. The header of these packets contains routing information
which is used by BES routers to determine the desired output port of the router.
Link-level flow control is used to prevent the overflow of the input buffer of the
subsequent router or NI.

4.1.2 Configuration of Æthereal

The configuration in Æthereal is done to adapt communication demands to specific
use-cases [HCG07], e.g., when the mp3 player of a mobile phone is switched on
or off. Connections need to be established or broken down and bandwidth must
be reserved or released. Thus, the new configuration is loaded to the NI of each
IP-core that has changed communication requirements in the new configuration.

The configuration data comprises the path through the network of routers, a queue
identifier to specify the target queue at the receiver’s NI, end-to-end flow control
credits and the time slots to determine when the channel uses the network link
[HG07]. This information can either be calculated off-line or on-line. A dedicated
configuration master executes the configuration actions.

The existing infrastructure – i.e., routers and wires – is used to transport configu-
ration data to the NIs. Thus, no additional control network is needed. Configura-
tion connections are established from the configuration master to those NIs which
actual configuration deviates from the new one. These connections comprise a
configuration request channel and a configuration response channel. Three types
of operations of the configuration master to manage channels and connections are
distinguished:

27

4.2. MANGO CHAPTER 4. RELATED WORK

• open a new connection

• modify an existing connection

• close an existing connection

When the configuration connection is finally set up, the configuration master sends
the new configuration data to the corresponding NI. Configuration registers are
read and written through a memory-mapped configuration port which is a logical
port in the NI. These configuration registers hold control information about the
path through the network (using source routing), the destination queue, the service
level (GS or BES), flow control space, the slot table, etc.

4.2 MANGO

In [Bje05] the MANGO (Message-passing Asynchronous Network-on-chip provid-
ing Guaranteed services over open core protocol (OCP) interfaces) architecture
is presented, which is a clockless NoC implementation with guaranteed commu-
nication services. It uses an individual clock domains for each IP-core while the
network links and routers are kept entirely clockless. This approach is also known
as globally-asynchronous locally-synchronous (GALS) [MVK+99]. In Figure 4.2
the structure of a MANGO network is illustrated. It comprises network adapters
attached to the IP-cores, and routers that are interconnected by links.

Figure 4.2: Structure of MANGO network. From [BS05a].

28

CHAPTER 4. RELATED WORK 4.2. MANGO

The MANGO architecture offers connection-oriented guaranteed services (GS) –
with respect to hard latency and bandwidth bounds – and connection-less best-
effort (BE) routing.

4.2.1 Network adapter

The network adapter (NA) [BMOS05] is the interface between the clocked IP-core
and the asynchronous clockless NoC. At the side of the IP-core, a socket-based
OCP interface – the core interface (CI) – is provided. On the other side, the
network interface (NI) connects the NA to the network. In the NA, messages sent
by the IP-core, which are realized as OCP transactions, are packetized, switched
through the network as a stream of datagrams – called flits – and depacketized
at the receiver. Thus, the NA implements transaction handshaking at the CI,
encapsulation of transactions for the packet-switched network, and synchronization
of the clockless NoC with the local clock region.

Memory-mapped read/write transactions are used for communication. Therefore
two types of NAs are required: an OCP initiator attached to a master IP-core,
and an OCP target at the slave IP-core. This structure is depicted in figure 4.3.
It can be seen, that the NA comprises a request and a response path.

Figure 4.3: Master/slave communication structure. From [BMOS05].

OCP transactions are transformed to packets – and vice versa – by the handshak-
ing and encap/decap modules. The transmit and request modules serialize and
reassemble, respectively, packets in the clockless domain. Sync modules conduct
the synchronization of the clocked domain with the clockless domain.

4.2.2 Router

MANGO routers [BS05a] are composed of two types of sub-routers, according to
the service class [BS06]: connection-oriented guaranteed service (GS) routers and

29

4.3. NOSTRUM CHAPTER 4. RELATED WORK

connection-less best-effort (BE) routers. GS routers switch data streams on GS
connections, while BE routers use routing information in the header of packets for
dynamic routing.

Physical links are shared by multiple, logically independent virtual channels (VC).
Each of the VCs is buffered individually, which implies that a router with P input
ports and an equal number of output ports contains P ·V buffers, where V is the
number of VCs.

For GS and BE services distinct flow control mechanisms are implemented, which
prevent that flits stall on the links, and the overflow of buffers. GS flow control uses
a share-based concept. When the buffer at receiver side is free, a sharebox at the
output port of the sending router admits a flit to the shared media. The sharebox
locks, to prevent subsequent flits to be transmitted. At the other side, the flit is
received by an unsharebox. After the flit leaves the unsharebox, an unlock control
wire is toggled. This signals to the sharebox that the next flit can be received, and
the sharebox is unlocked to admit the subsequent flit to the media. BE routers
use credit-based flow control where the sender keeps track of free buffer space at
the receiver.

While BE packets use source routing, where the path is contained in the packet
header, GS routers implement virtual circuits through the network [BS06]. Steer-
ing bits determine the input-to-output VC mapping of a router. These are pro-
grammed to the GS routers via BE packets routed to the GS programming inter-
face. The entire route of a packet from sender NA to the receiving NA is given
by the sequence of VCs. The programming is centrally managed by a dedicated
system programming unit.

Link arbitration is done by a dedicated link arbiter that controls access to the
physical link and guarantees a fairly shared bandwidth between the VCs. Hard per
connection latency and bandwidth guarantees are provided by the Asynchronous
Latency Guarantee (ALG) algorithm [BS05b].

4.3 Nostrum

In [MNT02] the Nostrum NoC architecture is presented. Nostrum provides two dis-
tinct Quality-of-Service guarantees for NoC communication: guaranteed bandwidth
and latency (GB) and best-effort (BE) packet delivery. It uses a mesh topology
for packet switched routing. The architecture distinguishes between resources (e.g.,
processors, memory) and switches. The latter ones are connected to – at most four
– nearest switch neighbors and to its corresponding resource.

A layered approach is used by the Nostrum backbone [MNT+04], that is based on
the NoC. Resources are equipped with a network interface (NI), that is layered

30

CHAPTER 4. RELATED WORK 4.3. NOSTRUM

above the network. NIs implement a set of services that can be used by the resource
network interface (RNI), or directly by the IP-core. The RNI is a customized
interface between the standard services of the NI and the internal communication
infrastructure of the IP-core.

GB traffic uses virtual circuits (VC) which are implemented using looped containers
and temporally disjoint networks (TDN) [MNTJ04]. Looped containers are data
packets traveling on a pre-defined route through the network. They are used to
guarantee access to the network, as an empty container can be loaded by a resource.
TDNs result from the deflective routing [FR92] policy applied, which introduces
an implicit time-division-multiplexing in the NoC.

Due to the concept of deflective routing, packets are not explicitly queued in the
switches. Packets remain only for one clock cycle in a switch. This implies that
packets must leave a switch in the same order as they entered. Furthermore,
packets that enter a switch simultaneously also must leave simultaneously. As the
switching decision is made for each packet individually in the switches, packets may
be transported on different routes with different lengths. Thus, the reordering of
packages is possible.

4.3.1 Temporally Disjoint Networks

As, due to the deflective routing, packets cannot be reordered within switches, an
implicit time-division-multiplexing schema is created – referred to as temporally
disjoint networks (TDN). This is the result of the network topology and the number
of buffer stages in switches.

Topology: When packets are sent at the same clock cycle, a colli-
sion may only appear if both are on a multiple distance of the small-
est round-trip delay. A coloring scheme is used by Millberg et al.
[MNTJ04] to confirm this statement.

Switches in the mesh network are colored black and white in that way,
that black switches are only connected to white ones, and vice versa –
see figure 4.4a. Thus, a packet on the path to its destination need to
traverse black and white switches in an alternating order, and packets
residing in distinct colored switches will never meet.

The colored network can be restructured to obtain the bipartite graph
illustrated in figure 4.4b. This graph in turn can be collapsed to a
graph with one black and one white switch and two uni-directional
links. When two packets are in differently colored switches it is logically
the same as both packets were in different networks – i.e., TDN.

31

4.3. NOSTRUM CHAPTER 4. RELATED WORK

Figure 4.4: Temporally disjoint networks of Nostrum: (a) colored
4x4 mesh network; (b) network drawn as bipartite graph; (c) dis-
joint networks with buffer stages.

Buffer stages: When additional buffering in the switches is applied, a
second set of TDNs is created. This can be seen in figure 4.4c. Hence,
a packet routed on the network must visit buffers in the following cyclic
order: wi → wo → bi → bo.

The total number of TDNs can be calculated by TDNs introduced by the topology
multiplied with TDNs resulting from additional buffer stages. In each of the TDNs
a different communication type can be implemented, e.g., different priorities, traffic
types or load conditions.

4.3.2 Looped Containers

In Nostrum bandwidth and latency guarantees are achieved with looped containers
(LC) which implement virtual circuits (VC). Such a container travels in a loop
between source and destination resource and can be loaded with information. This
concept is based on two policies:

• Packets already in transit have precedence compared to packets waiting
to be launched to the network.

• The difference between the number of packets entering a switch and
those which leave after being switched, is zero after some point in time.

32

CHAPTER 4. RELATED WORK 4.4. HERMES

The consequence is, that a switch which always receives a packet at each of its
input ports must route these packets to the output ports in the next cycle. Hence,
it will never be able to serve packets of its corresponding resource and this resource
cannot send messages.

When an empty LC arrives at the input of a switch, it can be used to transport a
package of the resource connected to that switch. This is, because an output port
is reserved to that LC. The LC is marked as loaded and sent to the receiver, where
it is discharged and possibly reloaded. Otherwise, it is sent back and flagged as
empty.

4.3.3 Theory of Operation

LCs and TDNs are combined to enable a set of VCs to share the same link. One
TDN can be used by only one VC, while a VC can subscribe to multiple TDNs.
A switch can handle as many simultaneous VCs as the number of TDNs.

A VC’s route, and thus of its LCs, is defined during system design. To adapt for
bandwidth requirements, the actual number of LCs on a VC can be changed at
run-time.

When multiple resources read the content of a LC without freeing the container,
also multi-cast communication can be realized.

4.4 HERMES

HERMES [MCM+04] is a NoC infrastructure intended for low area overhead packet
switching networks. The architecture actually only supports best-effort services
using source routing. Individual packets can experience arbitrarily long delays
as each application is treated equally. It uses a mesh topology of interconnected
routers on which the XY routing strategy is based. On its local port, a router
connects one IP-core with the NoC. Adaptive time-division-multiplexing (TDM)
is used to implement virtual channels (VCs) – also referred to as lanes [MTCM05].

Wormhole routing is applied for transmission of packets, where each packet is
divided into flits, which is the smallest transportable unit. The header flit contains
the address of the target router, that is based on the X and Y coordinates in the
mesh network structure. In the second flit, the number of flits in the packet payload
is specified. The actual packet content follows the path of the header flit.

A HERMES router with two VCs is depicted in figure 4.5. It comprises five
bidirectional ports: four to connect neighboring routers and one local port for an
IP-core. Except for the local port, all ports support individually buffered VCs

33

4.4. HERMES CHAPTER 4. RELATED WORK

to increase the utilization of physical channels and throughput. These VCs are
implemented using TDM on the physical channel. In case of n distinct VCs, a
packet can use at least 1/n of the available bandwidth of the physical channel. If
no other packets need to be transferred on this channel, the whole bandwidth can
be used by one sole packet.

Figure 4.5: HERMES router with two VCs. From [MTCM05]

Credit based flow control is used between the routers to prevent the overflow of
buffers. Each router keeps track of the available buffer space associated with a
VC. When the input buffer is full, the neighboring router is denied to send further
flits.

Packets received at the input ports of a router are checked, whether this is already
the target router or not. In the latter case, an XY routing algorithm is applied,
that first aligns the packet on the horizontal line to the coordinates of the target
router – packet is sent on the east or west output of router. A horizontally aligned
packet is sent on the vertical outputs of the router – north or south – to the
destination. If there is no output VC free, the packet must wait until a connection
on that output is closed.

The established connection in the router, from input VC to output VC, is stored
in a routing table. A connection remains in the routing table until all of the flits
– specified in the second header flit – have been transmitted. Afterwards, the
connection is automatically closed and the VC can be used for another packet.

34

CHAPTER 4. RELATED WORK 4.5. COMPARISON

4.5 Comparison

Here, distinct characteristics of the architectures presented above will be compared
to the TTSoC architecture. Beside some general characteristics, the main focus
is on properties that relate to temporal and spatial partitioning as well as the
reconfiguration of communication patterns.

Service classes: The four NoC architectures described in this chap-
ter distinguish two types of services: communication with guarantee
of bandwidth and latency, and best-effort communication. Æthereal,
MANGO and Nostrum support both types of service, while the HER-
MES architecture in the actual version only provides best-effort ser-
vices.

The TTSoC architecture does not differentiate service classes, but it
supports the exchange of state and event messages. Guaranteed band-
width and bounded latency are ensured by the concept of encapsulated
communication channels. A priory knowledge of communication in-
stants is used to reserve physical channels at determined instants for
each connection. Thus no network contention can appear. BE services
can be implemented using a channel for event communication. New
messages from the host that arrive at the network interface of a mi-
cro component are placed in a queue. At predefined instants, the first
message in the queue is transported to the receiver. When the queue
is empty, no message is sent. In case of a full queue, the message must
either be discarded or the sender must wait until a message from the
queue is sent.

Clock domain: Æthereal, Nostrum and HERMES are based on a sin-
gle clock domain for communication. Thus, synchronization of all com-
munication partners is necessary. Unlike this, MANGO uses a clockless
network which does not require synchronous participants of communi-
cation. IP-cores can operate completely asynchronous with respect to
each other.

The TTSoC architecture supports multiple clock domains. Beside in-
dividually clocked IP-cores, the communication system uses its own
system-wide clock domain for data transmission. Another independent
clock domain is the system-wide global time base. It is used to co-
ordinate and synchronize actions and communication activities in the
whole system. Multiple clock domains have the advantage, that not the
complete system must be adopted when the frequency requirements of
one component are changed.

35

4.5. COMPARISON CHAPTER 4. RELATED WORK

Arbitration method: Similarly to the TTSoC architecture, the
Æthereal architecture uses TDMA for access control to the physical
communication channel. The arbitration of the other architectures is
based on the actual traffic on the network. The TDMA scheme of
Æthereal is implemented by a slot table, where an entry corresponds
to a predefined time slot for sending. This table equals one global pe-
riod. In contrast, the TTSoC architecture supports multiple concurrent
periods. Thus, the period of communication can be customized to the
needs of periodic applications.

Predictability: Established guaranteed services in Æthereal,
MANGO and Nostrum provide predictable communication with
respect to bandwidth and latency. On the other hand, the predictable
reconfiguration of communication to another application mode is
not supported. Æthereal and MANGO transport reconfiguration
information using BE traffic, which depends on the load on the
communication channels. In Nostrum additional bandwidth can only
be reserved if another looped container can be launched. This is only
possible if there is free capacity on the network.

The TTSoC architecture provides both, predictable communication due
to the a priory knowledge of communication instants and predictable
reconfiguration. Also for reconfiguration encapsulated communication
channels are used, for which bandwidth is reserved.

Message order: Temporal ordering of messages within a communica-
tion channel is assured by each of the architectures. As the switching
decision for BE packets in Nostrum depends on the current network
load, individual packets may take different routes, and hence, can be
reordered.

Reordering of packets due to different network paths can also appear
in the TTSoC architecture. However, the high abstraction level of
messages from the underlying communication structure prevents the
delivery of messages in a wrong order. Additionally, the TTSoC ar-
chitecture ensures the consistent delivery of messages across the whole
NoC. This means, that messages are delivered at each micro component
at the same instant. Different messages from diverse senders are deliv-
ered in the same order in each micro component, which is a prerequisite
for replica determinism [Pol94].

Reconfiguration: All architectures, except for the HERMES NoC
which only supports BE traffic, can be reconfigured according to new
communication demands. In MANGO, virtual channels are connected

36

CHAPTER 4. RELATED WORK 4.5. COMPARISON

to open or close a connection for guaranteed services. Creation or
destruction of looped containers in Nostrum can be used for reconfigu-
ration of bandwidth and latency depending on new demands. Æthereal
allows the reconfiguration of individual channels, while other channels
remain unchanged and operational. Thus, a smooth change from one
application mode to another one is possible. Reconfigurations in the
TTSoC architecture are executed at a global reconfiguration instant
and at all affected micro components simultaneously.

Temporal alignment: An important feature that is unique to the
TTSoC architecture comes with the introduction of the global time
base. Applications in the TTSoC architecture can be temporally aligned
[OSHK08]. This is important when a short latency between sender and
receiver is required – like in many real-time systems. For example in a
control loop where the sensor data is acquired by one micro component,
processed by another micro component and afterwards a third micro
component must operate an actuator. With the TTSoC architecture
it is possible to temporally coordinate these three tasks to reduce the
end-to-end latency of the control loop.

37

4.5. COMPARISON CHAPTER 4. RELATED WORK

38

Chapter 5

Experiments & Fault Injection
Framework

The fault injection experiments of the TTSoC architecture are based on the proto-
type implementation discussed in [Pau08]. This prototype consists on one hand of
the network components implemented by VHDL code. On the other hand, a soft-
ware driver is provided which can be used to access the hardware components from
the micro processor’s program code. A field programmable gate array (FPGA)
onto which the hardware implementation of the TTSoC prototype was downloaded
builds the heart of the experiments. The hardware design consists of several micro
processors connected to the TTNoC.

At first, the hypotheses about the behavior of the system in general and in case of
an error are stated. Upon these hypotheses different experiments are arranged to
evaluate whether the hypotheses on the system behavior are correct. The second
section explains the scope of each of the experiments carried out and the methods
used to obtain results about the system behavior.

In the following sections the complete framework for the accomplishment of the
experiments is presented. Section 5.3 presents an overview of the experimental
structure together with an introduction of the functional purpose of each compo-
nent in the structure. Then section 5.4 describes the environment employed during
the evaluation. Afterwards, the detailed internal structure of the TTSoC, that is
common for all experiments, will be explained. In section 5.6 parameters are de-
fined, that are individually set for each type of experiment. Thereafter comes the
description of the actual test procedure used to obtain the required communica-
tion data. At last, the program, that was implemented to do the scheduling of the
communication channels, will be characterized in section 5.8.

39

5.1. HYPOTHESES CHAPTER 5. EXPERIMENTS & FRAMEWORK

5.1 Hypotheses

Four hypotheses are in the scope of this thesis. In this section these hypotheses are
elaborated and will be evaluated by the subsequent experiments. Essentially, the
independence of temporal and spatial properties of one micro component’s com-
munication from the behavior of other micro components and the reconfiguration
functionality of the TTSoC architecture are of interest.

5.1.1 Temporal partitioning

The temporal properties of messages exchanged by components are
not influenced by the behavior – i.e., the communication and the oper-
ations in the UNI – of other components.

The temporal properties of messages comprise the transport time (latency), the
latency jitter, message omission, message order and message duplicates. The la-
tency gives the time between the generation of the message and its delivery at the
receiver. In case of any variation of the latency on one communication channel,
the duration between the lowest latency and the maximum latency is referred to
as jitter.

The communication behavior of a component means the amount of messages gen-
erated and transmitted. If the component produces more messages than the com-
munication channel is capable to transport, the messages are placed in an output
buffer. Finally, when the buffer is full, some of the messages generated must be
dropped but other communication channels must be independent from this behav-
ior.

Operations in the UNI – particularly write operations – can alter the interactions of
a component with the communication network. As the UNI contains both, control
and status information, a modification may either change the message content,
alter local communication parameters or even disrupt and turn off communication
channels. However, even a malicious behavior of a component inside the UNI may
not affect communication channels of other components.

5.1.2 Spatial partitioning

The behavior of a component – i.e., the communication and the
operations in the component’s UNI – cannot affect the integrity of the
communication of other components.

The integrity of communication is determined by the fractions of correct and cor-
rupted messages. A message is corrupted (invalidated), when its content was

40

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.1. HYPOTHESES

altered during its transport. This comprises the time, which the message is in the
output buffer, the network and in the input buffer of the receiving micro compo-
nent, until it is delivered to the host. A modified or even malicious behavior of a
component (see 5.1.1) may not bring a change of this property in the communica-
tion channels of other components.

5.1.3 Stability of communication during reconfiguration

The reconfiguration of one communication channel has no impact
on the temporal properties and the data integrity of messages exchanged
on another channel, that was not reconfigured.

When an encapsulated communication channel is reconfigured the schedules of
both sides – the sender and all receivers – need to be updated. As it is very
likely that there also exist different communication channels, the reconfiguration
of one channel must not influence the temporal and spatial properties (see 5.1.1
and 5.1.2) of the other communication channels.

5.1.4 Bounded reconfiguration delay

The reconfiguration of communication channels is predictable and
completed within a bounded interval of time.

It is of importance that the process of reconfiguration has finished within deter-
mined bounds. The reconfiguration of one communication channel in one com-
ponent often requires changes in the whole schedule. Thus, also communication
channels may be concerned which are not reconfigured. Especially for these chan-
nels the duration of the reconfiguration process is crucial, as an unpredictable and
long duration of reconfiguration may also halt the communication of uninvolved
communication channels.

For example, when one micro component needs to be exchanged by a spare micro
component due to a permanent fault, also all of the communication channels used
by the failed component must be reconfigured. If this micro component is part of
the control system of a car that drives at around 100 km/h, the output on the
actuators will be frozen until the reconfiguration is completed. An upper bound
must exist for the reconfiguration as otherwise – when the reconfiguration needs
too much time – an accident could be the consequence.

41

5.1. EVALUATION CHAPTER 5. EXPERIMENTS & FRAMEWORK

5.2 Evaluation of hypotheses

To evaluate the correctness of the hypotheses above, different experiments were
applied. The first concentrates on the traffic load and the inter-arrival time (IAT),
that is the duration between the arrival of two successive messages at the encap-
sulated communication channel. The second one is based on a bit-flip model to
simulate the effect of transient, intermittent and permanent physical faults as well
as software design faults of one host. As last experiment a reconfiguration scheme
serves to determine possible side-effects of reconfiguration on the communication
of static encapsulated communication channels, when the communication channels
of the hosts are reconfigured.

As there is a difference in the semantics of event and state communication and,
additionally, event messages can either be periodic or sporadic, each experiment is
repeated with periodic event messages , sporadic event messages and periodic state
messages .

In the following subsections the purpose and functionality of these experiments
are explained in more details. The exact parameters and communication details
can be found later in chapter 5 along with the complete experimental framework.

5.2.1 Traffic load experiment

The traffic load experiment addresses the question whether the communication
behavior of one micro component can influence the temporal properties (latency,
jitter, message order etc.) and the data integrity of the messages exchanged by
other micro components. According to the first two hypotheses neither a compo-
nent with its involved encapsulated communication channels that is added to the
system nor any malfunctioning component, that generates an arbitrary amount
of messages at any frequency, should be able to impose changes to the temporal
properties and data integrity of the communication of other components.

To find out if the hypotheses can be violated a reference communication with two
distinct periods will be established. Each of two components (reference compo-
nent 1 (RC1) and reference component 2 (RC2)) sends messages containing a
sequence number, the time of message generation – the time when the message
was placed in the output buffer – and a checksum via this dedicated reference
communication channels. Two other components (gateway component (GW) and
reference component 3 (RC3)) receive this information and add the time of re-
ception. During this communication a third communication channel is used on
which another component (the fault injection component (FIC)) sends messages
with a varying IAT starting from slow communication (IATslow = 100ms) to fast
(IATfast = 61µs). This latter communication channel will be referred to as probe

42

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.2. EVALUATION

communication. At a certain rate of the probe communication’s IAT, messages
will be lost as they are produced faster than the channel can transmit its packages.
Nevertheless, this fact is not in conflict with the temporal and spatial partitioning
property as it does not concern the reference communication channels.

From the recorded information the latencies, jitter, lost and corrupted messages
can be calculated. If a change in the temporal properties of the reference com-
munication can be observed when varying the IAT of the probe communication,
then the hypothesis of temporal partitioning is disproved. On the other hand, if
the number of lost and corrupted messages increases with shorter IAT, so spatial
partitioning is not valid.

5.2.2 Bit-flip experiment

The bit-flip experiment is also aimed at the hypotheses of temporal and spatial
partitioning. It investigates whether it is possible for one host in a micro compo-
nent to affect the integrity or temporal properties of messages exchanged by other
components. A component that writes to its UNI either in a correct way or due
to a malfunction may not disrupt the communication of other micro components.
No data messages should be lost nor any modification of a data field may occur.
A change of temporal properties of the reference communication when bit-flips ap-
pear at the fault injection component are also forbidden, as temporal partitioning
is assumed.

In order to determine whether this hypothesis is correct or if one channel can dis-
turb another one, two different reference communication channels are observed.
The components RC1 and RC2 each send messages containing a sequence num-
ber, the instant of global time of the message generation and a checksum via its
corresponding communication channel. These packages are received at the com-
ponents GW and RC3, which add a time stamp of the moment of reception to the
data package. Also the FIC component sends messages with the same content on
its own communication channel to the same receivers. Meanwhile, some bit-flips
at an arbitrary position are introduced to the UNI of the FIC component. This
may lead to the loss or corruption of messages on the probe communication of the
FIC component or even cause its total breakdown. But on the other hand, the
reference communication should not notice any of these effects.

The collected data packages are analyzed to find lost messages or data corruption.
In case of lost or corrupted data packages the hypothesis of spatial partitioning
is disproved. Additionally, latencies and jitter can be calculated to underline the
results of the other experiments w.r.t. temporal partitioning.

43

5.2. STRUCT. OVERVIEW CHAPTER 5. EXPERIMENTS & FRAMEWORK

5.2.3 Reconfiguration experiment

With the reconfiguration experiment the side-effects of reconfiguration of commu-
nication channels should be evaluated. According to the hypothesis of indepen-
dence of reconfiguration, the reconfiguration of one encapsulated communication
channel does not affect the communication on other communication channels, when
temporal and spatial partitioning is given.

In order to prove that the reconfiguration of communication channels does not
influence the communication of independent communication channels, the period
and schedule of the FIC component – especially the probe communication channel
– is reconfigured repeatedly at equidistant points in time. Meanwhile, the data
packages on the reference communication channels are observed at the components
GW and RC3. Although the probe communication channel is received at all other
hosts and, hence, the schedules of all hosts need to be reconfigured simultaneously,
no impact should be visible at the reference communication channels.

The reconfiguration is done by the trusted network authority (TNA). It receives a
set of schedules for each processor which are then used to replace the old schedules.
The TNA must send the schedules to each component in the similar period, so
all components start execution of the new message descriptor list (MEDL) at the
same point of global time. The MEDL contains all send and receive instants of
the distinct communication channels.

Similarly to the traffic load experiment, the IAT of the probe communication is
changed from slow (IATslow = 10ms) to fast message generation (IATfast = 61µs)
from testrun to testrun. This may lead to the loss of data packages of probe
communication when the IAT is shorter than the period, but it must not influence
the reference communication channels.

After the experiment, the data of the reference and probe communication channels
is inspected to find lost or corrupted data packages as well as changes of latency
and jitter, respectively. Any discontinuity in the temporal properties or data
integrity indicates the violation of temporal and/or spatial partitioning induced
by reconfiguration.

5.3 Structural overview of framework

The structure of the TTSoC during the experiments was chosen to contain six mi-
cro components interconnected by the NoC that consists of two fragment switches
(FS) and one TISS for each of the host processors. A schematic overview of the
structure is presented in figure 5.1.

The gateway micro component (GW component) is connected via ethernet to a host

44

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.3. STRUCT. OVERVIEW

Figure 5.1: Structure of the experimental TTSoC setup: each host
processor (light gray) is connected to the communication subsystem
(dark gray) by its local TISS

PC which sends experimental parameters at the beginning of each testrun. Before
the testrun actually starts the GW component communicates these parameters to
the other micro components by the NoC. While the test is in progress the GW
component stores communication packages both from reference communication
and probe communication – that comes from the pretended faulty component.
When a particular testrun is over the GW component pushes the experimental
data, which was recorded during the testrun and collected by the GW via the
NoC, through the ethernet interface to the host PC.

In the TTSoC architecture the trusted network authority (TNA) is part of the
trusted and certificated communication subsystem. Here, it serves to enable frag-
ment switches and to carry out the reconfiguration of the TISSes of the individual
micro components. Especially, during the reconfiguration experiment this compo-
nent performs the required changes of the schedules.

The fault injection component (FIC) builds one of the central components of
the experiments. This component attempts to disrupt the communication of the
reference components by intentionally introducing errors. As the TISS of the FIC
is already part of the trusted subsystem the intentional misbehavior of the FIC may
only address faults in the temporal and spatial domain, e.g. frequency of message
generation and arbitrary bit flips in the uniform network interface (UNI).

45

5.3. FI ENVIRONMENT CHAPTER 5. EXPERIMENTS & FRAMEWORK

In figure 5.1 the reference components (RC) are denoted by RC1, RC2 and RC3.
These components establish a reference communication using different periods.
While RC1 and RC2 continuously generate data packages that are sent via the
NoC, RC3 receives this data and stores it in the component’s local memory, sim-
ilarly as the GW component does during the testrun. At the end of each testrun
the GW component requests the collected data which is then transported over the
NoC to the GW component. There it is forwarded via ethernet to the host PC.

On the host PC runs a Java application that drives the experiment. It is responsi-
ble for the reconfiguration of the experiment hardware, software download to the
micro components, the parameterization of each testrun as well as for the logging
of experiment data.

5.4 Fault injection environment

This section contains a description of the environmental elements of the fault
injection experiments. This includes the used hardware as well as software tools
utilized for development and experiment management.

5.4.1 Hardware

The prototype implementation of the TTSoC architecture was tested on an
Altera R© Stratix R© III FPGA Development Kit. This board is a commercial off-
the-shelf product which contains the required FPGA device as well as external
memory and communication interfaces. Due to the high number of logic elements
in the FPGA the entire hardware design fits in a single FPGA chip. Some impor-
tant features of the Stratix R© III Development Kit are detailed in table 5.1 (a full
description can be found at Altera’s product homepage1).

The development board was interconnected with a standard PC – that was used
for experiment coordination and data logging – via the on-board USB-Blaster

TM
of

the development kit. This connection served as configuration interface for all auto-
matic testruns, i.e. hardware design download to the FPGA and programming of
micro processors, and for debugging during the development of the experiments. A
second connection was established using an Ethernet interface which was respon-
sible for parameter setup at the beginning of each testrun and for data collection
when a testrun had finished. The ethernet connection uses the on-board Marvell R©

88E1111 Ethernet PHY base-T device that is directly connected to the FPGA.

1http://www.altera.com/products/devkits/altera/kit-siii-host.html

46

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.4. FI ENVIRONMENT

Feature Description

FPGA Stratix III EP3SL150F1152
142 500 equivalent logic elements
744 user I/O pins
384 18 x 18 multipliers

Memory devices 128 Mbyte DDR2 SDRAM DIMM
16 Mbyte DDR2 SDRAM devices
36 Mbit QDRII SRAM device
4 Mbyte PSRAM
64 Mbyte flash memory

Clocking 125 MHz oscillator
50 MHz oscillator

Configuration On-board USB-Blaster
TM

JTAG download port
User I/O System reset pushbutton

Reset pushbutton
DIP switch (x8)
LEDs (x8)
Quad 7-segment display
128 x 64 dot pixels graphics display
LCD (16 character x 2 line)

Interfaces USB 2.0
10/100/1000 Ethernet
HSMC interfaces

Table 5.1: Features of the Stratix R© III FPGA Development Kit

5.4.2 Development software and configuration

The FPGA hardware design was generated using Altera’s Quartus R© II v8.1 Sub-
scription Edition design software. It is a tool that transforms source code written in
an hardware description language (e.g., VHDL) into a chip layout either for down-
loading onto an FPGA or for manufacturing of an application specific integrated
circuit (ASIC). Additionally, the SOPC Builder (System on a Programmable Chip
Builder) tool, that comes with the Quartus R© software, was applied for assembling
TTSoC network components and micro components. The SOPC Builder is a
graphical tool that provides a wide range of standard components as micro pro-
cessors, memory units, interfaces, etc. which can be interconnected to compose
larger systems or even systems-of-systems.

For the development of the micro component’s software the Altera Nios R© II Em-
bedded Design Suite (EDS) was used. It is a C/C++ software development tool

47

5.4. FI ENVIRONMENT CHAPTER 5. EXPERIMENTS & FRAMEWORK

especially designed for Nios R© micro processor systems that were composed by
the Quartus R© tool chain. If desired the Nios R© II EDS automatically adds the
MicroC/OS-II real-time operating system or the NicheStack R© TCP/IP Stack in
case of an implemented ethernet connection, which are both free in case of non-
commercial usage.

Both, hardware configuration and software download to the micro processors are
done with an JTAG interface connected to the on-board USB-Blaster

TM
. For

hardware configuration setup the Quartus R© II Programmer was used which was
repeatedly called by the Java experiment management application. Similarly, the
Nios R© II download tool was called after the hardware was configured. This stores
the binary program code into the corresponding instruction memory of each micro
processor and resets the processor afterwards to start its execution.

5.4.3 Experiment coordination and data logging

As every experiment consists of thousands of individual testruns that produce
a huge amount of logged data, an application is needed to automatically start
each testrun and store the data for further examination. Thus, a simple Java
application was developed that allows the variation of the experiment’s parameters
to find the optimum values for the actual testruns. This Java software runs on the
Eclipse platform2 which is an open source developing environment that already
incorporates the necessary Java Runtime Environment.

For each testrun the software downloads the hardware design via JTAG UART
into the FPGA by invoking the Quartus R© Programmer with the binary file as
parameter. Afterwards a batch file is called that copies the download script into
the execution directory of the Nios R© II EDS and launches the Nios R© II Shell
which automatically starts executing the previously copied script. Step-by-step
the Nios R© II downloader stores the binary program code of each processor in
the corresponding instruction memory of each processor in the SoC. When the
program was downloaded the processor is reset, so it starts execution at its reset
vector which points to the newly installed instructions and the processor is doing
its tasks.

After all processors are equipped with their programs it can be assumed that
the GW component already created an ethernet server socket. Hence, the Java
application tries to establish a connection to the GW component. If this was
successful the parameters for the actual testrun are calculated and sent via ethernet
to the GW component. Otherwise, in case the connection could not be established,
the testrun is aborted.

2Downloaded from: http://wwww.eclipse.org

48

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.4. EXP. TTSOC

During the actual testrun on the development board the software waits until the
GW component starts sending the recorded communication data. This data is
stored in an .csv-file for each testrun individually. Subsequently, the next testrun
starts by downloading the hardware design to the FPGA board. All data files are
finally processed by some Matlab scripts to obtain the results.

5.5 Experimental TTSoC structure

The following sections present a more detailed description of the TTSoC structure,
which was already introduced in section 5.3. At first, the concrete implementation
of the components illustrated in figure 5.1 is explained. Afterwards, the NoC with
its communication channels and the communication structure will be defined.

5.5.1 Micro components

As each of the micro components has its specific tasks in the experiments the
components are equipped with different CPUs and peripherals. Additionally, the
equipment of the Stratix R© III Development Kit impose restrictions on the design
of micro components. Especially, the number of FPGA internal memory blocks
is limited what implies that host processors with a high amount of stored data
– GW component, RC3 and the TNA in the reconfiguration experiment – need
to be extended with external memory devices. That, in turn, entails that these
processors may not run at a frequency as high as it is possible for processors with
internal memory, because the access time of external memory devices is higher
than for internal memory blocks. Table 5.2 summarizes the features of the micro
components in the experimental TTSoC design.

GW TNA FIC RC1 RC2 RC3

Processor Nios II/f Nios II/s Nios II/s Nios II/s Nios II/s Nios II/s
(Nios II/f)

CPU clock freq. 100 MHz 100 MHz 200 MHz 200 MHz 200 MHz 100 MHz
Instruction cache 32 kB 2 kB 512 Byte 512 Byte 512 Byte 8 kB
Memory type external external internal internal internal external
Memory size 16 MB 1 MB 104 kB 88 kB 88 kB 15 MB
Port memory size 65 kB 8 kB 16 kB 8 kB 8 kB 16 kB
Interrupt timer 1 ms 1 ms 15 µs 1 ms 1 ms 1ms

Table 5.2: Features of the micro components in the experimental TTSoC design

49

5.5. EXP. TTSOC CHAPTER 5. EXPERIMENTS & FRAMEWORK

The different components are composed as follows:

GW component: This component uses a Nios II/f CPU which is a 32-
bit RISC processor that supports additional data caches. Data caching
was necessary since otherwise the data sent by ethernet was corrupted
by conflicting access of CPU and ethernet controller to the data and
instruction memory. Hence, a data cache with a size of 8 kB was
implemented beside the 32 kB of instruction cache. The CPU runs at
a frequency of 100 MHz and a timer interrupt period of 1 ms.

Due to the high amount of data accumulated during each testrun, this
component is connected to an external 16 MByte DDR2 SDRAM device
which serves as instruction as well as data memory. This brings the
advantage of a big data storage with the expenses of slower data access.

Additionally, the GW component is equipped with the Opencores
10/100 Ethernet MAC 8.03 with Avalon interface 3. It is an open source
media access controller which drives the Marvell R© 88E1111 Ethernet
PHY that is mounted on the Development Kit board. The Ethernet
PHY is responsible for the generation of the electrical signals on the
physical ethernet medium.

TNA component: The TNA component uses the less advanced Nios
II/s CPU with 2 kB instruction cache during the traffic load and bit-flip
experiments. It is also a 32-bit RISC processor but does not support
data caches. For the reconfiguration experiment the processor type was
changed to the Nios II/f CPU, as due to the high amount of reconfig-
uration information the caching of data became necessary. Hence, a
data cache with a size of 2 kB was added.

In both cases the processor runs at a frequency of 100 MHz and has
a timer interrupt period of 1 ms. As the amount of internal memory
blocks is rather limited and the MEDL information in the reconfigura-
tion experiment requires several kB of memory the TNA is also con-
nected to an external DDR2 SDRAM device which it shares with the
RC3 component. Nevertheless, the memory it may use for instructions
is restricted to 1 MB.

Due to the ability of the TNA to enable/disable the fragment switches,
a two bit wide I/O port is needed. Hence, each of the bits enables/dis-
ables one of the fragment switches.

FIC component: A Nios II/s processor that runs at 200 MHz builds
the heart of this component. It comprises 512 bytes of instruction

3Downloaded from: http://www.niosforum.com/pages/project details.php?p id=115&t id=18

50

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.5. EXP. TTSOC

cache. Due to the message generation paradigm of the FIC, which is
based on a timer interrupt, the timer needs the short period of 15 µs
to be able to generate the desired number of messages per second.

The 104 kB of data and instruction memory are built of fast internal
memory blocks.

RC1 and RC2: Both, RC1 and RC2 are identical components that
only differ in the message generation period. They are composed of
NiosII/s processors with 512 bytes of instruction cache that run at
200 MHz. Because of the small size of program code and a nearly
vanishing amount of stored data the whole memory consists of 88 kB
internal memory. The interrupt timer has a period of 1 ms as for this
components new messages are automatically generated when the old
one was successfully transmitted.

RC3 component: This component primarily has to accumulate data
that was transmitted on the NoC. Hence, it is connected to an external
DDR2 SDRAM device which it shares with the TNA component, how-
ever, 15 MB are reserved to the RC3 component. The processor used
is also a Nios II/s with a frequency of 100 MHz and 8 kB instruction
cache. The interrupt timer of the RC3 component is set to 1 ms.

Most of the interrupt timers are only used to determine the end of the experiment,
hence, they need no fine granularity. Only the FIC component uses its timer
for message generation that’s why its timer period is that short. Additionally to
the mentioned peripherals all components are equipped with a JTAG UART for
program download and debugging.

5.5.2 Network-on-Chip (NoC)

To connect a component with the TTNoC a TTSoC frontend module is appended
to each processor. This module is already part of the NoC and offers the possibility
to the micro component’s host processor to access its TISS. While the TTSoC
frontend contains the control and status interface of the TISS, the actual state or
event information is placed into and read from the port memory.

The port memory is implemented as dual-ported memory which can be accessed
by the processor as well as by the NoC. Because of the different communication
demands of the components the size of the port memory is varying from component
to component – it can be found in table 5.2.

In figure 5.1 the network structure of the experimental setup is shown. There are
two fragment switches linked together to form the backbone of the communication

51

5.5. EXP. TTSOC CHAPTER 5. EXPERIMENTS & FRAMEWORK

network. On each of these fragment switches three micro components are con-
nected, where GW, FIC and RC1 share the first fragment switch and TNA, RC2
and RC3 the second one.

5.5.3 Communication channels

Different encapsulated communication channels are used to perform the testruns.
Each of them is dedicated to a destined task during the experiments. Table 5.3
gives an overview of the encapsulated communication channels that were used to
perform the experiments. For each channel the sender and all receivers are given.
The periods – i.e., the time between two successive messages on a channel – are
indicated in seconds along with the size of the messages in 32-bit data words.
The port type gives the semantics of the data transmitted by the corresponding
channel. An event port only transfers data if a new message was explicitly pushed
into the interface by the host. On the other side, a state port sends the data that
was most recently created once in a period. At last the sender port id and the
receiver’s port id are presented which can be arbitrarily assigned except for port
127 that is used for reconfiguration purposes on receiver-side.

The encapsulated communication channels of table 5.3 are explained as follows:

ProbeCom: Communication channel used by the FIC component to
transmit messages containing a sequence number, a time stamp of mes-
sage generation and a checksum – resulting in three 32-bit words. The
communication on this channel is accelerated during the experiment to
test the temporal and spatial partitioning of the encapsulated commu-
nication channels. For the traffic load and bit-flip experiments a short
period should result in the transmission of a high amount of messages
while the test is running. During the reconfiguration experiment the
period of the probe communication is changed by the TNA to find
possible side-effects of reconfiguration.

Depending on the actual experiment parameter this channel is either
interfaced as event port or state port.

RefCom: Both channels are needed as constant communication during
the experiment. The same messages as for the probe communication
are exchanged. A short and longer period are used to simulate fast
and a slower communication while enough messages are transmitted
to observe any discontinuity. If there is any change in the temporal
properties (latency, jitter, etc.) of messages exchanged on this channels
then the temporal partitioning of the TTSoC architecture would be
disproved. In the same way, if there are any lost or corrupted messages

52

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.5. EXP. TTSOC

Period Message size Port S- R-
Channel Sender Receiver(s) (in sec) (in words) type Port Port

ProbeCom FIC GW 2−12 3 event & 16 16
RC1 (2−5 state 16
RC2 to 16
RC3 2−14) 16

RefCom1 RC1 GW 2−12 3 event & 17 17
RC3 state 17

RefCom2 RC2 GW 2−9 3 event & 18 18
RC3 state 18

MgtCom GW FIC 2−2 1 event 0 0
RC1 0
RC2 0
RC3 0

SchedCom GW TNA 2−3 128 event 100 100
DataCom1 RC1 GW 2−6 361 event 1 1
DataCom2 RC2 GW 2−6 361 event 2 2
DataCom3 RC3 GW 2−6 361 event 3 3
DataCom4 FIC GW 2−6 361 event 4 4
CfgCom1 TNA GW 21 (2−3) 832 (100) event 64 127
CfgCom2 TNA FIC 21 (2−3) 832 (100) event 65 127
CfgCom3 TNA RC1 21 (2−3) 832 (100) event 66 127
CfgCom4 TNA RC2 21 (2−3) 832 (100) event 67 127
CfgCom5 TNA RC3 21 (2−3) 832 (100) event 68 127

Table 5.3: Encapsulated communication channels of the experiments. The num-
bers in brackets denote that this value is changed for other experiments.

on this channels which can be traced back to the actual type of fault
injection, then the spatial partitioning of the TTSoC architecture need
to be questioned.

Similarly to the probe communication, this channel is implemented
both as event and as state port, depending on the actual parameters.

MgtCom: The GW component uses this channel to transmit the pa-
rameters of the actual testrun to all participants. As all recipients get
the message at the same instant of global time, the involved components
are synchronized by the reception of a management message. Before
the end of a testrun the GW component broadcasts a message on this
channel which is only processed by the RC3 component. This message
signifies that the GW component is ready to receive the accumulated

53

5.5. EXP. TTSOC CHAPTER 5. EXPERIMENTS & FRAMEWORK

data packages from RC3 for relaying them to the host PC.

As this channel is not needed very often and with only a little amount
of data a large period with one 32-bit data word is used. For not trans-
mitting useless management messages during the testrun, this channel
works with event semantics.

SchedCom: Only in the reconfiguration experiment this channel be-
tween the GW component and the TNA is needed. It is used to trans-
mit the new reconfiguration data – ten different schedules for each host
– to the TNA component. Due to the high amount of communicated
data this channel uses a medium period with large packages.

After the schedules are sent to the TNA this channel is not needed any
more. Furthermore, the transmitted data has event semantics, hence,
this channel is implemented as event port.

DataCom1,2 and 4: These channels are applied to send a periodic
sign of life to the GW component until the actual testrun is started.
Hence, the GW component knows which of the processors are already
booted and thus are ready to receive the testrun parameters. A middle
period helps to shorten the start-up phase while the message size allows
to use this channels also for data transfer and debugging. As after the
start no more communication is needed on these channels, they are
implemented for event communication.

DataCom3: While the system starts up, this channel is used by the
RC3 component to generate a sign of life, like the other data com-
munication channels do. Later, the recorded communication messages
of probe and reference communication are transported through this
channel to the GW component. Several kilo bytes of data need to be
transferred by this channel. Thus, a middle period with high message
size – that can carry 72 messages of probe and reference communica-
tion – was chosen for the channel. Also here an event port is applied
as the communication is irregular during the experiment.

CfgCom: All five reconfiguration channels are used by the TNA to
enable the different periods at the TISS of each micro component and
to change the schedules of the encapsulated communication channels.
Because this is done only once during the testruns of the traffic load
and bit-flip experiments the largest period possible is sufficient. For
the reconfiguration experiment this period is shortened to achieve a
higher rate of reconfigurations. The message size was reduced for the
reconfiguration experiment, as the port memory space was needed for
queuing purposes.

54

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.5. EXP. TTSOC

This channel also serves for synchronization during the reconfiguration
experiment. The actual test phase starts after the first reconfiguration
is achieved.

At receiver-side the reconfiguration needs to be at port 127 as this
is done automatically by the TISS. Event semantics best fit for the
reconfiguration purposes of this communication channels.

5.5.4 Communication structure

The structure of communication of the fault injection experiments is presented in
figure 5.2. The numbers in the figure represent the sequence of communication in
the experiment.

Figure 5.2: Communication structure of the experiments. The dashed line
is only used in the reconfiguration experiment.

The workflow is as follows:

0. Only in reconfiguration experiment: The GW component sends
the schedules for reconfiguration to the TNA component

1. Reconfiguration of TISSes by the TNA component – five different chan-
nels are used though only one is depicted

2. Components FIC, RC1, RC2 and RC3 signal that the processor is online

55

5.5. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

3. The GW component pushes the testrun parameters on the MgtCom
channel

4. During the test phase:

(a) Components FIC, RC1 and RC2 send data messages which
are recorded at GW and RC3

(b) Only in reconfiguration experiment: The TNA recon-
figures the TISSes of the micro components

5. A request for experiment data is sent from the GW component to RC3

6. RC3 sends all collected RefCom and ProbeCom messages to the GW
component

5.6 Experiments in detail

This section details characteristics of the experiments, like data structures, experi-
ment parameters, message generation schematics, etc., that are individual for each
experiment.

5.6.1 Traffic load experiment

The general setup, that is already described in the previous sections, builds the ba-
sis for this experiment. To carry out the traffic load experiment a software for each
of the micro components was developed that uses the encapsulated communication
channels, discussed in subsection 5.5.3 for management purposes, synchronization
and the actual experimental communication.

The data structures of the actually transmitted messages are presented in the fol-
lowing paragraphs. Also the exact parameters used to accomplish the traffic load
experiment are detailed here. One of the most important property for this exper-
iment – the scheme for generation of new messages – builds the last paragraph.

Data structures

Different data structures were used on the distinct communication channels and the
ethernet connection. In the following tables the data fields of the most important
structures are detailed. Each table contains the name of the data field in the C
program code, the field size in bytes and a short description.

56

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.6. EXPERIMENT DETAILS

Name Size in bytes Description

cfg duration 2 Duration of the test phase
cfg kValue low 2 inter-arrival time (IAT) in µs – low value
cfg kValue high 1 IAT in µs – high byte
cfg random 1 Random value for the testrun
cfg type 1 Actual type of the testrun (event, state,

periodic, sporadic)

Table 5.4: experiment config: Configuration data structure for the traffic load
experiment from the PC to the FPGA board.

Name Size in bytes Description

type random 1 Type of testrun and random value
kvalue high 1 High byte of the IAT in µs
kvalue low duration 2 Low value of the IAT in µs

and duration of test phase

Table 5.5: ttsoc mgt msg: Management data structure for the traffic load experi-
ment from the GW to the other components.

Name Size in bytes Description

msg seqNr 4 Sequence number of the reference and
probe communication channel

msg timestamp 4 Global time base timestamp of
the generation instant

msg checksum 4 Sum of sequence number and
timestamp

Table 5.6: ttsoc com msg: Communication data structure of reference and probe
communication.

Name Size in bytes Description

msg rcv time 8 Global time base timestamp of
the reception instant

msg received 12 Message of type ttsoc com msg that is
received from reference or probe
communication channel

Table 5.7: ttsoc incoming msg: Data structure for incoming messages of reference
and probe communication.

57

5.6. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

Name Size in bytes Description

sender id 1 Identification of the sending component
channel nr 1 Identification of the channel this data

is coming from
msg type 1 Signal if there are further messages following

or if all data of the channel was transmitted
pkgs transmitted 1 Number of messages transmitted in the

actual data message
data pkg 1440 Array of data messages of type

ttsoc incoming msg

Table 5.8: ttsoc data msg: Data structure to transmit the collected messages from
the RC3 component to the GW and to the PC.

Experiment parameters

Table 5.9 presents the parameters that were applied for the traffic load experiment.
The inter-arrival time (IAT) – that denotes the duration between the arrival of
two successive messages at an encapsulated communication channel – is given for
the three different communication channels used during the actual test phase.
Especially the parameters of the probe communication channel are defined more
precisely because they are varied during the experiment.

The whole experiment is repeated three times for:

• event communication with periodic messages

• event communication with sporadic messages

• state communication with periodic messages

Each of these three sub-experiments consists of 2001 testruns where everyone of
the testruns is composed of three phases. The reconfiguration of the test hardware,
the test phase with the test communication on the board and the final collection
of communication data. The actual duration of the communication during a test
phase was defined to be one second.

In all testruns where event communication was used, the reference communication
messages are periodically generated. Only the probe communication is switched
from periodic to sporadic behavior. If the messages of the reference communication
would be sent in a sporadic way – in form of message generation at random instants
in time – one could not know whether the changes in the temporal properties
of messages exchanged come from the moment of message generation or from
influences of the probe communication channel.

58

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.6. EXPERIMENT DETAILS

Event port & Event port & State port &
Parameter periodic messages sporadic messages periodic messages

Number of testruns 2001 2001 2001
Duration of testrun 1000 ms 1000 ms 1000 ms

IAT of RC1 0.24 ms 0.24 ms 0.24 ms
(reference comm.)

IAT of RC2 1.95 ms 1.95 ms 1.95 ms
(reference comm.)
Max. IAT of FIC 100 ms 100 ms 100 ms

(probe comm.)
Min. IAT of FIC 61 µs 61 µs 61 µs
(probe comm.)

Msg. transmission 0.24 ms 0.24 ms 0.24 ms
period (probe comm.)

Max. random − 2 x IAT −
value (RVmax)

Generation scheme IAT IAT + IATRV IAT
(probe comm.)

Table 5.9: Parameters of the traffic load experiment.

Message generation scheme

Messages for both reference communication channels are produced with a constant
IAT in all testruns. Hence, the temporal properties of these channels should be
constant as well. Otherwise, the temporal partitioning property of the TTSoC
architecture would be disproved. RC1 uses period 2 with 4096 messages per second
while for RC2 period 5 with 512 messages per second (msg/sec) is employed.

The probe communication channel uses period 2 for message transmission during
the whole experiment. On the other side, the generation of messages is varied
from 10 msg/sec (or 100 ms IAT) to 16 384 msg/sec (or 61 µs IAT). In case the
FIC component generates more than 4096 msg/sec it produces its messages faster
than they can be transmitted by the communication subsystem. When the send
buffer is full with messages to send, new messages are thrown away and this data
is lost. The rate of change of the IAT (∆IAT) from testrun to testrun is constant
on the number of msg/sec. It is calculated by the following equation:

∆IAT =
16 384 msg/sec− 10 msg/sec

2001 testruns − 1
(5.1)

For periodic communication the calculated IAT is used to set the timer for the
next message generation. Differently to this scheme, the simulation of sporadic

59

5.6. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

communication is done by requesting a new random value for each generated mes-
sage and adding this random value to the IAT.

The actual IAT (IATact) between two messages can be calculated by the following
equations:

IATRV = (RAND mod (IAT ∗RV)) (5.2)

IATact = IAT + IATRV (5.3)

In the equation RAND means the random value generated by the C-command
rand(). As this command returns at least a 15-bit value it must be calculated
modulo the maximum random value (IAT * RV) to get the actual random value.
Due to the fact that the random parameter RV = 2 and the rand() function
is uniformly distributed, the mean value of the random part is around one IAT.
Hence, the average IAT (IATavg) of the sporadic communication is about 2∗ IAT .

5.6.2 Bit-flip experiment

As in the traffic load experiment, the general setup discussed in the preceding
sections builds the fundament of the bit-flip experiment. The particular structure
of this experiment is very similar to the traffic load experiment. Even the data
structures are quite similar and only modified very slightly. Hence, the paragraph
about data structures just contains the changes from the data structures already
listed for the traffic load experiment.

Data structures

The changes in the data structures origin from the value of the IAT that was left
out. Instead a random initial value was introduced to initialize the random gener-
ator of the FIC processor. Without this new value the pseudo random generator
would produce the same sequence of random values in each testrun. This is be-
cause of the automatic reset of the hardware after each testrun. As especially for
the bit-flip experiment different sequences of random values are vital the initial
value for the random generator comes from the PC.

Experiment parameters

The parameters of the bit-flip experiment are presented in table 5.12. Nearly all
parameters are the same for the three sub-experiments. The IATs for reference
and probe communication are constant except for the sporadic message generation,

60

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.6. EXPERIMENT DETAILS

Name Size in bytes Description

cfg duration 2 Duration of the test phase
cfg rand init 2 Initialization value for the rand() function
cfg random 1 Random value for the testrun
cfg type 1 Actual type of the testrun (event, state,

periodic, sporadic)

Table 5.10: experiment config: Configuration data structure for the bit-flip exper-
iment from the PC to the FPGA board.

Name Size in bytes Description

rand init duration 2 Initialization value for the rand() function
and duration of the testrun

type random 1 Type of testrun and random value

Table 5.11: ttsoc mgt msg: Management data structure for the bit-flip experiment
from the GW to the other components.

where the IAT is influenced by a random value. Similarly to the traffic load
experiment, the reference messages are always periodically generated, where period
2 is used by RC1 and period 5 by RC2. The message transmission of the probe
communication is also done with period 2.

Event port & Event port & State port &
Parameter periodic messages sporadic messages periodic messages

Number of testruns 2000 2000 2000
Duration of testrun 1000 ms 1000 ms 1000 ms

IAT of RC1 0.24 ms 0.24 ms 0.24 ms
(reference comm.)

IAT of RC2 1.95 ms 1.95 ms 1.95 ms
(reference comm.)

IAT of FIC 0.24 ms 0.24 ms 0.24 ms
(probe comm.)
Max. random − 5 −
value (RVmax)

Generation scheme IAT IAT ∗ RVact IAT
(probe comm.)
Bit-flip interval 1 ms 1 ms 1 ms

Table 5.12: Parameters of the bit-flip experiment.

Sporadic messages are generated by simply multiplying the IAT with the actual
random value (RVact), which is generated by the processors pseudo random gen-

61

5.6. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

erator. This value is limited to RVmax, that is set to 5 and hence, an average IAT
(IATavg) of 3 ∗ IAT is reached.

The bit-flip interval in table 5.12 gives the time between two successive bit-flips.
As it is set to 1 ms about 1000 bit-flips occur during each testrun, which last
1000 ms.

Bit-flip model

The bit-flip experiment simulates the incidental change of one or more values in
the UNI of a host processor. Such a bit-flip may occur either by any malfunction
of the host as well as by transient environmental upsets. As these events do not
follow any rule, the bit-flips need to be at an arbitrary position but uniformly
distributed.

According to [Pau08] the UNI of a host consists of four different memory regions:

• Port Memory (Data Memory)

• Port Configuration Memory

• Port Synchronization Memory

• Register File

Because not all of the available memory space is actually used by the TISS, the
experiment concentrates on those regions in memory, where a bit-flip may have
any influence on the system behavior. A schema of this memory structure is
shown in figure 5.3. The port memory is physically separated from the rest of
the UNI and consists of 4096 words of 32-bit length. Port configuration and port
synchronization memory both use 128 words of memory while the register file has
a width of 15 words.

As can be seen in table 5.12, a bit-flip occurs every milli second. To do so, firstly
the memory region for the value change is chosen by the random generator. After
one of the four regions is selected, the concrete memory word (32-bit) is calculated
by requesting a random value and then doing a modulo operation with the actual
memory region width. At last, an arbitrary position for the bit-flip inside the data
word is found by using the random generator a third time. Finally, the selected
word is read from the memory, the bit value at the required position is changed
and the data word is written back to memory.

A bit-flip in the port memory may only lead to the corruption of data messages,
because this memory region does not contain any control or status information.
Contrary to this are bit-flips in other memory regions, which can result in data

62

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.6. EXPERIMENT DETAILS

Figure 5.3: Memory structure of the UNI of the bit-flip experiment. Gray
regions are used by the TISS. The port memory is physically separated
from the other regions.

loss or the shut down of a channel or the host’s complete communication sub-
system. Due to the uniform distribution of the random generator output each of
the memory regions will be selected around the same number of times. Hence, a
smaller region is covered better with bit-flips than a bigger memory space. Table
5.13 presents the figures about the statistical coverage of each memory region.

Memory size Coverage
Memory region (bits) (times)

Port Memory 131 072 3.81
Port Configuration Memory 4 096 122.07
Port Synchronization Memory 4 096 122.07
Register File 480 1 041.66

Total 139 744 14.31

Table 5.13: Statistical bit-flip coverage of different memory regions.

During each sub-experiment 2000 testruns are executed with each containing 1000
bit flips. This results in a total of about 2 Mio. bit-flips. Statistically a quarter of
them happen at every distinct memory region. In total all bit positions of the UNI
are flipped around 14.31 times, which means that each bit changes its value more
than 14 times during the whole sub-experiment. Due to the fact, that corrupted
data messages may not disturb the communication of other channels, the coverage

63

5.6. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

of the portmemory is kept relatively low compared to control and status interfaces.

5.6.3 Reconfiguration experiment

Also for the reconfiguration experiment the background setup has already been
discussed. It uses some additional channels and some modifications of the hardware
design. Apart from this, the reconfiguration experiment is very similar to the
traffic load experiment, except that the TNA component periodically reconfigures
the schedules of all components. The next paragraphs describe the differences
to the data structures of the previous experiments, the actual parameters of the
reconfiguration experiment and the process of reconfiguration.

Data structures

The data structures used for this experiment are the very similar to the structures
already presented. Only for the communication from the PC to the TTSoC had
been adapted to enable the transmission of the schedules. The information about
the size and a checksum of the schedules is sent in the first data block from the PC
to the FPGA board. Afterwards, the actual schedules are pushed as a byte stream
which is finally examined at the FIC component to find the real beginning of each
individual schedule. The checksum byte – which is a sum over all bytes of the
schedules modulo 256 – is first calculated at the host PC. The same calculation is
done at the FIC component. In case of a checksum mismatch at the receiver side
the testrun can not be started and must be repeated.

Name Size in bytes Description

cfg duration 2 Duration of the test phase
cfg rand init 2 Initialization value for the rand() function
cfg random 1 Random value for the testrun
cfg type 1 Actual type of the testrun (event, state,

periodic, sporadic)
cfg schedule size 2 Size of schedules in byte
cfg check byte 1 Byte for end-to-end check of schedule
cfg kValue high 1 IAT in µs – high byte
cfg kValue low 2 IAT in µs – low value

Table 5.14: experiment config: Configuration data structure for the reconfiguration
experiment from the PC to the FPGA board.

64

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.6. EXPERIMENT DETAILS

Experiment parameters

As the reconfiguration experiment is based on the traffic load experiment, also
most of the parameters are kept the same. In table 5.15 all parameters of the
experiment are listed. The duration of the testruns was changed to 1500 ms to
allow 10 reconfigurations during one testrun. Reference communication periods
and message generation scheme remain unchanged and a description can be found
in subsection 5.6.1.

Due to the reconfiguration process, the period of the probe communication can
be varied from period 9 with 32 msg/sec down to period 0 with 16 834 msg/sec.
The very slow period at the beginning of each testrun results in the loss of data
packages of the probe communication as more messages are generated than can
be transmitted. With an increased period the percentage of lost messages must
decrease. For reconfiguration purposes period 11 is applied. Hence, the duration
between two reconfigurations is 125 ms or eight reconfigurations per second.

Schedule structure

Basically, a particular schedule that is sent to one micro component is a bit stream
of alternating configuration flits and blocks of actual scheduling information. The
configuration flit is a header with information about the memory region to which
the following data is written, together with the size of this upcoming data. At last
a – so called – terminal flit is introduced to signal the end of scheduling information
to the receiver’s TISS.

A TISS that receives such an information on port 127 automatically interprets the
data and stores it to the according memory region. Each of this memory regions
has a specific purpose.

The memory regions to which is written during the reconfiguration process are:

• message descriptor list (MEDL): contains information about when,
which port is sending or receiving data

• routing information memory (RI): the route from the sender to all
receivers is stored in this memory

• burst configuration memory (BCFG): specifies the position in port
memory where the data of a channel is loaded from or stored to

• Register file: only used to enable the required periods

65

5.6. EXPERIMENT DETAILS CHAPTER 5. EXPERIMENTS & FRAMEWORK

Event port & Event port & State port &
Parameter periodic messages sporadic messages periodic messages

Number of testruns 2001 2001 2001
Duration of testrun 1500 ms 1500 ms 1500 ms

IAT of RC1 0.24 ms 0.24 ms 0.24 ms
(reference comm.)

IAT of RC2 1.95 ms 1.95 ms 1.95 ms
(reference comm.)
Max. IAT of FIC 100 ms 100 ms 100 ms

(probe comm.)
Min. IAT of FIC 61 µs 61 µs 61 µs
(probe comm.)

Max. transmission 31.25 ms 31.25 ms 31.25 ms
period (probe comm.)

Min. transmission 61 µs 61 µs 61 µs
period (probe comm.)

Max. random − 2 x IAT −
value (RVmax)

Generation scheme IAT IAT + IATRV IAT
(probe comm.)
Reconfiguration 125 ms 125 ms 125 ms

interval
Number of 10 10 10

reconfigurations

Table 5.15: Parameters of the reconfiguration experiment.

Reconfiguration process

All schedules for each host are calculated in advance by the host PC (see section
5.8). There are 10 different schedules for every host, which differ in the period
of the probe communication. The other encapsulated communication channels
remain unchanged in period and instance of port operation. At the beginning
of each testrun these schedules are transmitted via the GW component to the
TNA. After that, the TNA enables the necessary periods of the remaining micro
components. Before the actual test phase can start, the TNA must wait some
instants until the GW component transmitted all management data.

It is essential for the correct function of the TTSoC that all micro components
switch to the new schedule at the same instant of global time. Otherwise, the
sending operations of the communication subsystem may be unsynchronized and
messages can be lost. To transmit the schedules for each host within the same in-

66

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.7. TEST PROCEDURE

stant of global time, the communication subsystem of the TNA is disabled. Then,
the schedules are written into the port memory and afterwards the communication
subsystem is enabled again. The first one of the schedules of each host triggers
the start of the actual test phase at each host. At the beginning the probe com-
munication period is 31.25 ms.

After one reconfiguration is completed, the next schedule is sent to the reconfigu-
ration queue of the TNA. This ensures that the schedules of all hosts are already in
the port memory when the next reconfiguration is done by the TNA. The fastest
period (61 µs) of the probe communication is when the last schedule is transmitted.

The newly reconfigured schedule is activated when the reconfiguration instant is
triggered. This instant must be at the same time at all components and lets the
scheduler restart at the initialization vector which points to the new schedule.

5.7 Test procedure

The Java application on the host PC starts with downloading the hardware design
to the FPGA board and installing the programs of all micro components. In case
of the reconfiguration experiment before the design and programs are downloaded,
the schedules must be calculated for all hosts and reconfiguration steps. This
is done only once at the beginning of the experiment because the schedules are
similar for all testruns.

As the GW component is one of the first processors that start execution – while
other components are still waiting for their program code – it can be assumed that
it already created an ethernet server socket when the Java management application
finishes installing the programs of all processors. The PC creates an ethernet client
socket and establishes an ethernet connection to the GW component on the FPGA
development board. Parameters for the actual testrun are calculated and pushed
– together with the schedules, in case of the reconfiguration experiment – via
ethernet to the GW component.

For the reconfiguration experiment the schedules are transmitted to the TNA
component via the schedule communication channel. If there would be a failure in
this communication the checksum at the TNA component would not match and
the TNA stops its operation. Then a timeout is raised as the micro components
can not be reconfigured and the testrun must be repeated.

Before the real test communication is done, the communication channels – with
periods faster than 2s – need to be enabled by the TNA. This is done by sending
a reconfiguration message through the NoC to each of the micro components.
For this purpose an encapsulated communication channel is established between
the TNA and each component named configuration channel (see CfgCom1-5 in

67

5.7. TEST PROCEDURE CHAPTER 5. EXPERIMENTS & FRAMEWORK

subsection 5.5.3).

Whenever a component started execution and has done its initialization routines it
sends a sign of life to the GW component to signal that it is ready for the testrun
parameters. The GW component waits until all participating components have
sent such messages. If one component cannot be started correctly it does not send
this sign of life and a timeout restarts the testrun. Afterwards, the GW component
transmits the parameters of the actual testrun which it received previously from the
PC. The data is split up into two messages which are received at all participants
of the experiment simultaneously. The channel used for the distribution of the
testrun’s parameters will be referred to as management communication channel
(MgtCom).

At the beginning the components are not synchronized to each other as each pro-
cessor starts executing its program immediately after its individual reset. Because
the messages in the TTNoC are received at the same moment of global time by
all receivers, the second management message of the GW component serves as
synchronization instant. Upon the reception of this message the port operation
complete interrupt is raised what in turn triggers the start of the experiment.
Only for the reconfiguration experiment the start of the experiment is triggered
by the first of ten reconfigurations.

During the testrun, the components RC1 and RC2 repeatedly generate messages
which are stored in the port memory by the TTSoC frontend. Such a message
consists of a sequence number starting at zero, the timestamp of the global time
base when this message was created and a checksum which is the sum of sequence
number and timestamp. The message descriptor list (MEDL) in the TISS deter-
mines the instant in which the message is read from the port memory and actually
sent over the TTNoC. Whenever a message was physically transmitted via the
NoC the port operation complete interrupt on the sender-side is activated what
on the other hand initiates the automatic generation of the next message. The
first of this messages is generated at the beginning of the testrun to start this
chain reaction. Both component’s communication channels will be referred to as
reference communication – RefCom1 and RefCom2 respectively.

At the same time the FIC component generates its messages triggered by its timer
interrupt. This is the probe communication (ProbeCom) where the frequency of
message generation is varied from testrun to testrun during the IAT and reconfig-
uration experiments. According to the current testrun parameters the FIC creates
the messages in either equidistant time intervals (for periodic communication) or
to simulate sporadic communication at a random instant within a time window.
The structure of the messages is the same as for the reference communication.

Components GW and RC3 receive the data from reference communication and
probe communication. When a new message comes in the TISS automatically

68

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.7. COMM. SCHEDULING

adds a time stamp of reception to the message. Then the port operation complete
interrupt is raised what causes the host processor to copy the message from the
port memory to its local storage where it is appended to the queue of incoming
messages.

After the duration of the testrun is over, the GW component creates packages
with the recorded messages and sends them via ethernet to the host PC. Subse-
quently, it sends a request message to the RC3 component via the management
communication channel. Thus, the RC3 component knows that the GW is ready
to receive its data and it also packs its accumulated messages and transmits them
through the NoC to the GW component. The communication channel used for
this transmission is the data collection channel (DataCom). The GW receives the
packages and relays them via ethernet to the PC.

When the last package of messages is received by the host PC, the Java application
stores the recorded data in a comma-separated text file for each testrun separately.
Thereafter, the next testrun is initiated until all testruns of the experiment are
completed.

The resulting files with the testrun data are evaluated using a Matlab script that
opens each data file, reads the used testrun parameters and checks if there was any
lost data package in the reference communication. For each testrun the minimum,
maximum and average latency are calculated to observe potential influences of the
probe communication on the reference communication.

5.8 Communication scheduling

To simplify the scheduling of encapsulated communication channels and the gen-
eration of the resulting message descriptor list (MEDL) a Java application was
developed. After the structure of the NoC with its fragment switches and micro
components was specified and the desired parameters of encapsulated communi-
cation channels were entered, this software calculates the scheduling of message
transport and automatically creates a routing table. The software was used for
two purposes. On one hand, the result are the three files that are necessary as
memory initialization files during synthesizing the hardware design with Quar-
tus: medl.hex, bcfg.hex and ri.hex. On the other side, it was slightly modified
and added to the Java management application to receive the schedules for the
reconfiguration experiment.

The scheduler simply generates an array of instants that spans the duration of
one period of the slowest period defined in the communication channel list. Figure
5.4 depicts an array with scheduled communication channels. A scheduled com-
munication channel periodically occupies the instants within this array that are

69

5.8. COMM. SCHEDULING CHAPTER 5. EXPERIMENTS & FRAMEWORK

one period away from each other – e.g., a period of 8 instants is scheduled two
times within a period of 16 instants. If all communication channels in the list can
be scheduled without any conflicts, then the schedule is guaranteed to be free of
interference.

Figure 5.4: Array with scheduled communication channels. Each
channel has a distinct period.

The algorithm starts to assign a 12-bit phase value to the first communication
channel in the list. This channel has, preferably, the shortest period because its
more difficult to schedule short periods than longer ones. The phase partitions
the period into 212 finer time slices and determines the instant within the period
when the channel operation shall be triggered. The scheduler first assigns high
instant values to prevent itself from a lock situation where no more channel can
be scheduled.

If the algorithm would start with phase zero for short periods, conflicting situations
may arise when different periods are used simultaneously for diverse communica-
tion channels. Such a situation is illustrated for the short period 0 and the large
period 12 in figure 5.5.

In the figure it is assumed that the small period 0 – whose period bit is at 2−14

in the global time format – has a phase with all bits equal 0. This means, that
whenever the bit at position 2−14 is toggled and all bits less than this position are
equal 0 – due to the phase of period 0 –, then the sending of new data of this
encapsulated communication channel (with period 0) is triggered. On the other
hand, the least significant bit (LSB) of period 12 is higher than the most significant
bit (MSB) of period 0 – in this case the LSB of period 12 is equal to the period bit
of period 0. The sending of messages of period 12 is only triggered when all bits
less than the LSB of the phase of period 12 are equal to 0 – otherwise none of the

70

CHAPTER 5. EXPERIMENTS & FRAMEWORK 5.8. COMM. SCHEDULING

Figure 5.5: Conflicting phase values of different periods. In case
of a zero phase of the short period 0 no communication channel
with the large period 12 or higher can be scheduled

bits in the phase value of period 12 could toggle to the desired value. Consequently,
whenever the phase of period 12 matches and thus the communication is triggered
also the phase of period 0 matches and, hence, both try to send at the same time.

To not run into this conflict, the algorithm first fills the phase with 1 bits. Only if
the encapsulated communication channel cannot be scheduled with this constraint,
some phase bits are set to 0.

71

5.8. COMM. SCHEDULING CHAPTER 5. EXPERIMENTS & FRAMEWORK

72

Chapter 6

Results

This chapter presents the results of the three different experimental scenarios.
Each of them was further partitioned into three sub-scenarios for periodic and
sporadic generation of event messages as well as for the periodic generation of
state messages. The results of the experiments were stored in a file for each testrun
individually. A Matlab script helps to calculate mean-, max- and min-values of
latencies as well as to detect irregularities (message loss, data corruption, etc.) in
the communication.

First of all, the different types of message faults are defined which are distinguished
in the subsequent sections. Afterwards, in an individual section for each exper-
imental scenario – i.e., the traffic load experiment, the bit flip experiment and
the reconfiguration experiment – diagrams and tables are illustrating the actual
outcomes of the experiments.

6.1 Classification of message faults

During the evaluation of the experiment data the messages received are classified
according to their correctness. In figure 6.1 this classification of messages is il-
lustrated. A messages is either correct or incorrect . The latter class is further
partitioned into invalid messages , which are incorrect in the value domain (due
to corruption), and untimely messages , that are incorrect in the time domain. A
message can be untimely when it is late, lost (omission), received in the wrong
order or duplicated .

Messages are categorized as follows:

Correct messages: These are data packages received with correct se-
quence number, timestamps and checksum. The sequence number is

73

6.1. CLASSIFICATION OF MESSAGE FAULTS CHAPTER 6. RESULTS

Figure 6.1: Classification of message faults.

an incremental value. The correctness of the message content – i.e.,
sequence number, send timestamp and checksum – is proved by adding
the sequence number and the send timestamp. If this value equals the
checksum, then the message content is correct in the value domain.

To evaluate the correctness of the receive timestamp an estimated time
window is calculated. If the receive time of a message lies inside this
window, it is classified to be correct, otherwise the message is untimely.
This window of time (τrcv1,2) is calculated by the following equation:

τrcv1,2 = τold + (∆seq ∗ δperiod)±Θwnd (6.1)

In the equation τold is the receive timestamp of the last correct mes-
sage. ∆seq denotes the distance between the sequence number of the
last correct message and the actual one. The length of the send period
is given by δperiod, and Θwnd is added or subtracted, respectively, to
define a window of time to allow a small variance of the receive times-
tamp. Θwnd is defined to equal one tick of the global time base to cover
imprecision of clock synchronization.

In case of sporadic event communication, due to the random time be-
tween two successive messages, the receive time is defined by the fol-
lowing equation:

τrcv1,2 = τold + ((∆seq + x) ∗ δperiod)±Θwnd , x ∈ N0, x < xmax (6.2)

The variable x denotes, that the receive timestamp is valid at distinct
points on the timeline, which are at a distance of one period to each
other. It is in the range from 0 to xmax, where xmax give the maximum
random value.

74

CHAPTER 6. RESULTS 6.1. CLASSIFICATION OF MESSAGE FAULTS

Lost messages: A lost message means, that a message was either not
transmitted at all or a data package actually traversed the communi-
cation network but it was damaged in such a way that it could not
be associated with any original message anymore, e.g. when sequence
number and send timestamp are out of the allowed range. Due to this,
the group of lost messages also comprises packages included in another
group, especially, the group of corrupted messages.

Invalid messages: When the content of a message received was cor-
rupted during transmission, it is said to be invalid. This can be proved,
using the checksum. In case the sum of sequence number and send
timestamp is not equal to the checksum, the message is invalid.

Message duplicates: This class contains messages that were received
more than once. The very first of these messages will be classified to be
correct while each following data package that can be associated with
a correct message is added to this category. A message corresponds
to another one if the entire message content is equal – i.e., sequence
number, send timestamp and checksum. This implies, that the message
was actually correct and that the message was transmitted more than
once, rather than corrupted.

If no new message was generated, state messages are repeated automat-
ically after one duration of the send period. Due to this fact, in case of
state communication, this class contains only multiple sent messages
when at least one other correct data package was transmitted between
two multiple messages. For instance, when messages are ordered as
follows (the notation is <sequence number, timestamp, checksum>):

. . . , < 136, 1000, 1136 >,< 136, 1000, 1136 >, . . .

. . . , < 137, 1010, 1147 >, . . . , < 136,1000,1136 >, . . .

Message order faults: A message order fault is, when a message that
was generated before another message is actually transmitted later, e.g.
the sequence

. . . , < 136, 1000, 1136 >, . . . , < 139, 1030, 1169 >,< 137, 1010, 1147 >, . . .

indicates such a fault. The sequence number and the send timestamp
must be in between of the two neighboring correct messages, and the
checksum must be valid.

75

6.2. LATENCY AND JITTER CHAPTER 6. RESULTS

Late messages: A message is late, when it is received after the ex-
pected time, and hence, the receive timestamp is outside of the specified
receive window τrcv1,2 .

6.2 Latency and jitter

The latency is the duration between the generation of a message in one micro
component and its actual delivery at another micro component. This includes the
time, a message remains in the output buffer, and the time this message is in the
NoC. Figure 6.2 presents a timeline to illustrate the latency of messages. After a
message x was transmitted to its receiver, the new messages x + 1 is generated.
The gray region around the message generation denotes a small imprecision of
the generation instant, that comes from uncertainties of the operating system to
switch to the interrupt service routine plus one clock cycle of the global time
base for the instant, at which the timestamp is acquired. Also the send instant of
message x+1 as well at the delivery (with the acquisition of the receive timestamp)
contain imprecisions due to the imperfection of clock synchronization. The sum
of all uncertainties is called jitter.

Figure 6.2: Timeline illustrating the latency of messages.

The latency is composed of a computational and a communication latency. The
computational latency is the time, the message is generated and kept in the output
buffer. Communication latency is the duration the message is transported on the
network. As in the experiments a new message is generated immediately after the
preceding message was sent, the message is in the output buffer for nearly one
complete period.

Due to the concept of shadow buffers [Pau08] for state messages, the latency of
state messages is the length of one period longer than the latency of event messages.
While the communication system repeatedly sends the message from one half of
the output buffer (the active buffer), the host is allowed to write a new message to
the second half of the buffer (the shadow buffer). In case of a new valid message in
the shadow buffer, the buffers are switched, and the shadow buffer becomes active.

76

CHAPTER 6. RESULTS 6.3. TRAFFIC LOAD EXPERIMENT

As the buffers are switched at the end of the period, the latency of the message
is extended by the length of one period. The jitter is not affected by the usage of
shadow buffers.

6.3 Traffic load experiment

The traffic load experiment is based on the variation of the inter-arrival time (IAT)
of the probe communication. Hence, the influence of the IAT on the reference
communication channels is of highest interest. A table is given for each sub-
scenario that states information about the recorded data packages within this test
time. In particular, the number of total messages generated, the percentage of lost
and corrupted messages as well as the percentage of other message faults can be
found there. For the traffic load experiment the results are presented by figures
showing the mean, minimum and maximum value of the latencies of the reference
communication channels versus the IAT of the probe communication channel. The
IAT of the probe communication was adapted during the experiment where the
range of the variation corresponds to the width of the x-axis.

At the end of each sub-scenario a figure with the lost messages of the probe com-
munication channel depicts the rise of data loss when the messages are produced
at higher rate than the communication subsystem is able to transport them.

6.3.1 Periodic event communication

In table 6.1 statistics about the traffic load experiment with periodic event mes-
sages are presented. During the experiment about 8.20 Mio. messages of RefCom1
and 1.02 Mio. data packages of RefCom2 were collected. From the table it is ap-
parent that no reference communication channel experienced either any data loss
nor corruption nor any other failure of a message during the experiment, hence,
no further diagram is shown with this information. The probe communication
channel produced more than 20 Mio. messages in total but nearly two thirds of
them have not been transmitted.

Figures 6.3 and 6.4 depict the latency of RefCom1 and RefCom2, respectively.
This latency gives the duration from the moment of message generation until the
instant of its reception at the GW or RC3 component. In each figure the mean-,
min- and max-value of the latency is shown on the y-axis while the x-axis represents
the IAT of the probe communication – which is decreased from testrun to testrun.

Both figures present a mean-value of the latency that remains constant while the
FIC’s IAT is decreased. In figure 6.3 the maximum difference from the found max-
value to the corresponding min-value – which will be called the message transport

77

6.3. TRAFFIC LOAD EXPERIMENT CHAPTER 6. RESULTS

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 20.01 Mio.
Messages lost 0.0% 0.0% 63.9%
Messages corrupted 0.0% 0.0% 0.0%
Message duplicates 0.0% 0.0% 0.0%
Other message faults 0.0% 0.0% 0.0%

Table 6.1: Data integrity of the traffic load experiment with periodic event mes-
sages of the communication channels.

Figure 6.3: Diagram of the latency of RefCom1 in the traffic load
experiment with periodic event communication.

jitter – is around 3µs which equals three cycles of the global time base. The figures
show that also the jitter is constant in a range of two to three cycles of global time
in all testruns.

The same is valid for the RefCom2 channel depicted in figure 6.4. Again, there is
a jitter of at maximum three global time base cycles.

As the IAT of the probe communication is decreased during the experiment it
reaches a value where more messages are generated than can be transported. This
behavior can be seen in figure 6.5. Beginning at about 0.250 ms some messages
cannot be transmitted as the send buffer is full. The percentage of lost messages
increases until the end of the experiment where it reaches a maximum value of
82% of lost messages.

78

CHAPTER 6. RESULTS 6.3. TRAFFIC LOAD EXPERIMENT

Figure 6.4: Diagram of the latency of RefCom2 in the traffic load
experiment with periodic event communication.

Figure 6.5: Diagram of lost messages of the probe communication
in the traffic load experiment with periodic event communication.

79

6.3. TRAFFIC LOAD EXPERIMENT CHAPTER 6. RESULTS

6.3.2 Sporadic event communication

Similar results were observed for the event communication with sporadic messages.
Table 6.2 shows that again no reference communication message was lost nor cor-
rupted. For both reference communication channels the total number of messages
transported is the same as it was for the periodic event communication. Due to the
message generation scheme for sporadic messages, the number of probe communi-
cation messages generated is less than a half of the previous sub-scenario. More
than a quarter of these messages have never been transported by the network. This
is because more messages were generated than the communication subsystem was
capable to transport with the selected configuration of communication periods.

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 8.61 Mio.
Messages lost 0.0% 0.0% 28.1%
Messages corrupted 0.0% 0.0% 0.0%
Message duplicates 0.0% 0.0% 0.0%
Other message faults 0.0% 0.0% 0.0%

Table 6.2: Data integrity of the traffic load experiment with sporadic event mes-
sages of the communication channels.

The latencies of the RefCom1 and RefCom2 channels are presented in the figures
6.6 and 6.7, respectively. Mean-, min- and max-values of the latency can be found
on the y-axis while the x-axis gives the IAT of the probe communication.

As already observed for the periodic event communication, the mean-value is con-
stant when the IAT of the probe communication is varied. Also the jitter from
min- to max-value shows the same pattern like before and does not deviate from
the known values.

In figure 6.8 the percentage of lost messages on the probe communication channel
is shown. When the IAT of this channel is decreased, more messages are generated
and – beginning at an IAT of about 0.125 ms – some of the data packages are
never transmitted. Because less than a half of the messages are generated in this
sub-scenario, also the IAT value, at which the first messages are lost, lies around
a half of the value in the first sub-scenario.

6.3.3 Periodic state communication

The values and figures for the periodic state communication appear to be very
similar to the first two sub-scenario. In table 6.3 numbers about total messages
generated, lost and corrupted are presented. For the reference communication,

80

CHAPTER 6. RESULTS 6.3. TRAFFIC LOAD EXPERIMENT

Figure 6.6: Diagram of the latency of RefCom1 in the traffic load
experiment with sporadic event communication.

Figure 6.7: Diagram of the latency of RefCom2 in the traffic load
experiment with sporadic event communication.

81

6.3. TRAFFIC LOAD EXPERIMENT CHAPTER 6. RESULTS

Figure 6.8: Diagram of lost messages of the probe communication
in the traffic load experiment with sporadic event communication.

this data is equal to the previous experiments. The FIC component generated
around 18.78 Mio. messages, where more than a half of them is lost. None of the
communication channels experienced data corruption.

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 18.78 Mio.
Messages lost 0.0% 0.0% 56.4%
Messages corrupted 0.0% 0.0% 0.0%
Other message faults 0.0% 0.0% 0.0%

Table 6.3: Data integrity of the traffic load experiment with periodic state messages
of the communication channels.

The figures 6.9 and 6.10 depict the latencies of the reference communication chan-
nels 1 and 2. Both diagrams are nearly the same as for the event communication
experiments. The mean values are constant in the whole range of the IAT of the
probe communication. Also the jitter is constant and does not contain irregulari-
ties.

The diagram in figure 6.11 shows the percentage of lost messages of the probe
communication channel, when the IAT is decreased. Beginning at 0.250 ms some
messages that were generated by the test application are not transmitted. The

82

CHAPTER 6. RESULTS 6.3. TRAFFIC LOAD EXPERIMENT

Figure 6.9: Diagram of the latency of RefCom1 in the traffic load
experiment with periodic state communication.

Figure 6.10: Diagram of the latency of RefCom2 in the traffic load
experiment with periodic state communication.

83

6.4. BIT FLIP EXPERIMENT CHAPTER 6. RESULTS

highest value of data loss is when the IAT is set to the shortest value and hence,
four times more messages are generated than can be transmitted. In case that
less messages are generated – due to the state semantics of this communication
channel – the last message transmitted is repeated.

Figure 6.11: Diagram of lost messages of the probe communication
in the traffic load experiment with periodic state communication.

6.4 Bit flip experiment

In the bit flip experiment the FIC component experiences the change of bit val-
ues in the network interface at random positions. During each testrun – with a
duration of 1000 ms – one bit is flipped every 1 ms.

At first, tables will be given that provide information about the total number
of messages sent, the percentage of lost and corrupted messages as well as the
percentage of other message faults. Then diagrams are presented that show the
mean, minimum and maximum values of the latency of the reference communi-
cation channels while bit flips are injected to the network interface of the FIC
component. On the x-coordinate the number of these bit flips is plotted. As the
bit flips appear in equidistant points in time, the abscissa can implicitly be inter-
preted as a timeline. Beginning from the left, the system starts in a fault free state.
Incrementally more bit flips occur until the maximum of 1000 flips is reached at
the right side of the figure. This means that to calculate the according latency

84

CHAPTER 6. RESULTS 6.4. BIT FLIP EXPERIMENT

value in the diagrams, the messages received during one testrun are indexed from
zero to the maximum number of messages. All messages containing the same in-
dex build one set of data for which the latency values (mean, min and max) are
calculated. In the diagrams, these values are ordered by the index, starting from
index zero to the maximum index value.

Each sub-scenario closes with the presentation of the message faults in the output
channel of the FIC component. The first figure indicates the decreasing percentage
of correctly transmitted messages while the number of bit flips rises. Then the
percentages of lost, corrupted and message duplicates is shown. The last two
diagrams give the percentages of messages received in the wrong sequence and the
messages received too late.

6.4.1 Periodic event communication

In the bit flip experiment with periodic event communication around 8.20 Mio.
messages of RefCom1 and 1.02 Mio. messages of RefCom2 are transmitted. This
can be seen in table 6.4. Obviously, there were no faults in any data package of
the reference channels. Hence, no further diagrams of message faults in the ref-
erence communication are needed. In contrast, the probe communication channel
of the FIC component had to deal with distinct types of faults. About 8.07 Mio.
messages were generated in total. 71.0% of them were never transmitted or were
corrupted in that way, that it was impossible to relate the received data package
with the original message. In around 10.4% of all data transmissions the probe
communication channel had to deal with faults of the remaining types (message
duplicates, message order faults and late messages).

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 8.07 Mio.
Messages lost 0.0% 0.0% 71.0%
Messages corrupted 0.0% 0.0% 39.6%
Message duplicates 0.0% 0.0% 8.0%
Other message faults 0.0% 0.0% 2.4%

Table 6.4: Data integrity of the communication channels in the bit flip experiment
with periodic event messages.

The latencies of the reference communication channels RefCom1 and RefCom2
versus the number of bit flips in the FIC’s network interface are illustrated in the
figures 6.12 and 6.13, respectively. The bold blue line depicts the mean value of the
latency while the green one is the minimum value and the red one is the maximum
value of the message transmission latency. In both figures all three latency values

85

6.4. BIT FLIP EXPERIMENT CHAPTER 6. RESULTS

remain in a constant range – between lowest minimum value to highest maximum
value – which is a window of less than 3µs. This corresponds to a jitter of three
cycles of the global time base.

Figure 6.12: Diagram of the latency of RefCom1 in the bit flip
experiment with periodic event communication.

The diagrams in figure 6.14 present the impact of bit flips in the FIC’s network
interface. With an increased number of bit flips (x-axis of the diagrams) the
percentage of correctly transmitted messages decreases (a). Simultaneously, the
probability of lost and corrupted data packages increases, (b) and (c). As the
number of lost data packages is not only based on the actual reception of messages,
both, the set of lost and the set of corrupted messages are not disjunct. The
remarkable drop at the high end of the percentage of corrupted messages can be
explained by the rapid increase of messages that where never transmitted, at the
end of the testruns. Thereby, comparatively fewer messages can be classified as
corrupted and the corresponding percentage drops down.

Diagrams (d) and (e) show the percentage of messages that were sent more than
once and the percentage of message order faults. The last chart (f) indicates the
fraction of late messages when the number of bit flips rises.

86

CHAPTER 6. RESULTS 6.4. BIT FLIP EXPERIMENT

Figure 6.13: Diagram of the latency of RefCom2 in the bit flip
experiment with periodic event communication.

6.4.2 Sporadic event communication

During the testruns with sporadic event communication around 8.20 Mio. data
packages of RefCom1 and 1.02 Mio. messages of RefCom2 were exchanged. Also
in table 6.5 this information can be found along with a summary about the found
message faults. The analysis of the experiment data turned out, that none of the
information exchanged by the reference communication channels was classified as
faulty. The probe communication channel, on the other hand, lost 72.3% of its 4.71
Mio. messages generated. Around 65.0% of all received messages were corrupt and
17.1% were transmitted more than once. A sum of 0.3% of message order faults
and late messages appeared.

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 4.71 Mio.
Messages lost 0.0% 0.0% 72.3%
Messages corrupted 0.0% 0.0% 65.0%
Message duplicates 0.0% 0.0% 17.1%
Other message faults 0.0% 0.0% 0.3%

Table 6.5: Data integrity of the communication channels in the bit flip experiment
with sporadic event messages.

87

6.4. BIT FLIP EXPERIMENT CHAPTER 6. RESULTS

Figure 6.14: Diagrams of data integrity of ProbeCom in the bit flip ex-
periment with periodic event communication. The x-axis represents the
number of bit flips in the FICs network interface.

Figures 6.15 and 6.16 indicate the latencies of the messages exchanged by RefCom1
and RefCom2, respectively. On the x-axis the advancing number of bit flips in the
FIC’s network interface is displayed. The mean value of the latency is represented
by the bold blue line. The minimum and maximum value of the latency are drawn
by the green and the read line. Again, the range from the lowest minimum value
to the highest maximum value – the jitter – is constant in the entire duration of
each testrun of the experiment.

Diagrams with the different types of message faults in the probe communication
channel are presented in figure 6.17. In the first chart (a) the decreasing percentage
of correctly transmitted messages is depicted. The next graphs give the increasing
number of lost messages (b) and the rising number of corrupted messages (c) when
the number of bit flips is advanced. The fractions of message duplicates, message
order faults and late messages are shown in figures (d), (e) and (f).

88

CHAPTER 6. RESULTS 6.4. BIT FLIP EXPERIMENT

Figure 6.15: Diagram of the latency of RefCom1 in the bit flip
experiment with sporadic event communication.

Figure 6.16: Diagram of the latency of RefCom2 in the bit flip
experiment with sporadic event communication.

89

6.4. BIT FLIP EXPERIMENT CHAPTER 6. RESULTS

Figure 6.17: Diagrams of data integrity of ProbeCom in the bit flip ex-
periment with sporadic event communication. The x-axis represents the
number of bit flips in the FICs network interface.

6.4.3 Periodic state communication

Table 6.6 provides a summary about the messages transmitted during the exper-
iment with periodic state communication. On the RefCom1 channel 8.20 Mio.
messages traversed the communication network while on RefCom2 only 1.02 Mio.
data packages were sent. As for the previous two variants of the experiment, also
here no faulty message could be found on the reference communication channels.
In the table no entry for message duplicates exists as due to the state semantics of
the messages, the very last message is automatically repeated if no new message
was put into the output buffer. Hence, messages are indeed transmitted more than
once but in this variant of the experiment this is no fault.

Also for the probe communication channel 8.20 Mio. messages were generated.
Approximately 49.0% of them where lost or could not be associated with the
originally generated message. The corrupted part of the total messages is 23.8%
and 4.0% of other faults were identified.

90

CHAPTER 6. RESULTS 6.4. BIT FLIP EXPERIMENT

RefCom1 RefCom2 ProbeCom

Messages total ∼ 8.20 Mio. ∼ 1.02 Mio. ∼ 8.20 Mio.
Messages lost 0.0% 0.0% 49.0%
Messages corrupted 0.0% 0.0% 23.8%
Other message faults 0.0% 0.0% 4.0%

Table 6.6: Data integrity of the communication channels in the bit flip experiment
with periodic state messages.

The charts 6.18 and 6.19 present the latencies of the messages exchanged on the
reference communication channels 1 and 2. When the number of bit flips in the
FIC’s UNI is increased (x-axis), the minimum latency value (green line) and the
maximum value (red line) stay an a constant range. The mean value of the latency
is drawn as a bold blue line. Similarly to the previous sections, the jitter of the
latencies is three clock cycles of the global time.

Figure 6.18: Diagram of the latency of RefCom1 in the bit flip
experiment with periodic state communication.

The last figure of this section (figure 6.20) contains diagrams with the individual
classes of message faults. First of all, the percentage of correctly transmitted
messages is shown versus the number of bit flips in the system (a). Then the
fractions of lost and corrupted messages compared to the total number of messages
are presented in (b) and (c). Finally, (e) and (f) depict the percentages of message
order faults and late messages. No line with the message duplicates is given as
this is not relevant in case of messages with state semantics.

91

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.19: Diagram of the latency of RefCom2 in the bit flip
experiment with periodic state communication.

6.5 Reconfiguration experiment

The reconfiguration experiment was accomplished with two distinct configurations
concerning the probe communication channel. In the first configuration the probe
communication channel is received at the components GW, RC1, RC2 and RC3.
This implies, that the TISSes of these micro components have to be reconfigured
when the period of the probe communication is changed. During the second config-
uration the probe communication channel is only received by the RC3 component.
Thus, the other micro components are not affected by the reconfiguration of probe
communication.

Ten different transmission periods are used for the probe communication channel in
the reconfiguration experiment. For all other communication channels, the period
remains constant during the entire experiment. To switch the TISSes of the distinct
hosts to the new period, the TNA component initiates the reconfiguration of the
schedules. As the reconfiguration channel with the actual parameters is capable of
executing eight reconfigurations per second the duration of one testrun was set to
1500 ms to cover a wide range around the reconfiguration instants. Simultaneously
to the reconfiguration of the periods, the IAT of the probe communication channel
is increased from testrun to testrun, similarly to the traffic load experiment (see
section 6.3).

Each subsection starts with a table containing an overview of the data integrity
in the corresponding sub-scenario. Afterwards, diagrams that show the latency of

92

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.20: Diagrams of data integrity of ProbeCom in the bit flip ex-
periment with periodic state communication. The x-axis represents the
number of bit flips in the FICs network interface.

the reference communication channels versus the period length of probe communi-
cation using the first configuration, will be presented. To obtain the values for the
charts, the corresponding data records of all testruns were related to each other,
similarly to the bit flip experiment. This means, that each entry in the output of
a testrun is indexed from zero to the maximum number of messages transmitted.
Afterwards, the entries of all testruns that have the same index build one set of
data. The latency values (mean, min, max) of this data set correspond to one data
point in the diagram.

As the data of the first experimental configuration included some lost messages
as well as late messages, figures illustrating the occurrence of such errors are pre-
sented. These figures show the errors from two distinct perspectives:

• errors versus the IAT of the probe communication channel : a data point
equals the accumulated number of errors of one individual testrun.

• errors versus the period length of probe communication: a data point

93

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

is obtained by adding errors that appear at the same instant inside the
testruns.

Afterwards, the latency of the reference communication channel using the second
configuration is presented. It is calculated the same way as for the first experimen-
tal configuration. At the end of each sub-scenario, the number of lost messages
in the probe communication for both configurations is illustrated in two charts
for each configuration. The figures represent lost messages versus IAT of probe
communication and versus the period length of probe communication, respectively.

6.5.1 Periodic event communication

Table 6.7 presents information about the total number of messages sent during
both experimental configurations with periodic event communication and the data
integrity of the communication channels. In the first configuration, around 11.26
Mio. messages of RefCom1 and 1.28 Mio. messages of RefCom2 were sent. Data
evaluation turned out, that 0.06% of the RefCom1 channel messages have been
lost. Additionally, 0.02% of the messages of RefCom1 and 0.16% of RefCom2 have
been received too late. This means, that though a message was in the output
buffer of the sending micro component, no message was actually transmitted at
the scheduled instant.

In the second configuration, around 10.86 Mio. messages of RefCom1 and 1.23 Mio.
messages of RefCom2 have been transmitted. None of the reference communication
channels experienced any kind of message error, which is in contrast to the first
configuration.

On the probe communication channel about 25.05 Mio. messages were generated
in the first experimental configuration and 22.54 Mio. in the second configuration.
In both cases more than 84% of all messages have not been received. No other
types of message errors were found in the probe communication channel.

In figures 6.21 and 6.22 the latencies of messages of the reference communication
channels RefCom1 and RefCom2 are presented for the first configuration. On the
x-axis the period length of probe communication is given. Both diagrams contain a
distinctive peak immediately after a reconfiguration instant. There the send time
slot was missed and the message was transmitted one duration of the send period
later.

94

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

RefCom1 RefCom2 ProbeCom

Messages total ∼ 11.26 Mio. ∼ 1.28 Mio. ∼ 25.05 Mio.
Messages lost 0.06% 0.00% 85.60%

First
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.02% 0.16% n/a
Other message faults 0.00% 0.00% 0.00%

Messages total ∼ 10.86 Mio. ∼ 1.23 Mio. ∼ 22.54 Mio.
Messages lost 0.00% 0.00% 84.65%

Second
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.00% 0.00% n/a
Other message faults 0.00% 0.00% 0.00%

Table 6.7: Data integrity of the reconfiguration experiment with periodic event
messages of the communication channels.

Figure 6.21: Diagram of the latency of RefCom1 in the first
experimental configuration of the reconfiguration experiment
with periodic event communication.

95

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.22: Diagram of the latency of RefCom2 in the first
experimental configuration of the reconfiguration experiment
with periodic event communication.

As during the first configuration messages of the reference communication channels
were lost and late, charts are generated that indicate the number of errors and the
moment when these occur (figure 6.23 and 6.24). For each of both channels the
number of lost messages is depicted versus the IAT of the probe communication
channel and versus the period length of probe communication. In RefCom1, the
number of lost messages is constant until the IAT of the probe communication
reaches a certain value (figure 6.23a). The second perspective – figure 6.23b – gives
the same errors. It shows that these errors are located at two of the reconfiguration
instants. RefCom2 does not contain lost messages, that’s why the line constantly
equals zero.

The diagrams containing the number of late messages (figures 6.23 and 6.24, c
and d, respectively) present a comparable picture for both channels. For each IAT
value of the probe communication channel, one send time slot is missed. Similarly
to lost messages, late messages are located at one reconfiguration instant.

The latency of the reference communication channels in the second configuration
can be found in figures 6.25 and 6.26. As one reconfiguration is accomplished after
the other, no significant change of the latencies can be observed. There are no
peaks as in the first experimental configuration of the sub-scenario. The range
from the lowest minimum latency to the highest maximum latency is less than
3µs and equals three clock cycles of global time.

96

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.23: Errors in the communication of RefCom1 in the first experi-
mental configuration of the reconfiguration experiment with periodic event
communication. (a) and (b) show lost messages; (c) and (d) late messages.

At last, for each experimental configuration of the sub-scenario two diagrams with
the percentage of lost messages are presented (figures 6.27 and 6.28). The first
ones (a) show the rise of lost messages when the IAT of the probe communication
channel is increased. In the second charts (b), no messages are lost until the
third reconfiguration is accomplished and the percentage jumps to around 50% of
lost messages. Then, the percentage of lost messages decreases stepwise, as more
reconfigurations are accomplished, and hence, the transmission speed of the probe
communication is raised.

6.5.2 Sporadic event communication

The total number of sent messages and information about data integrity of the
communication channels in both experimental configuration of the sub-scenario
with sporadic event communication is presented in table 6.8. Around 11.27 Mio.
messages of RefCom1 and 1.28 Mio. messages of RefCom2 have been transmitted

97

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.24: Errors in the communication of RefCom2 in the first experi-
mental configuration of the reconfiguration experiment with periodic event
communication. (a) and (b) show lost messages; (c) and (d) late messages.

using the first configuration. 0.02% of the messages of RefCom1 were lost and
0.02% of messages were received too late. On RefCom2 no messages were lost but
0.16% of messages were received too late.

With the second configuration 10.86 Mio. messages of RefCom1 and 1.23 Mio.
messages of RefCom2 were produced. In this configuration none of the reference
communication channels contained any kind of erroneous message.

The probe communication channel had to transmit 10.76 Mio. messages in the
first configuration and 9.73 Mio. messages in the second configuration. About
37.38% of the message using the first configuration and 71.18% of messages in the
second configuration have not been received. The probe communication channel
did not contain other types of errors.

98

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.25: Diagram of the latency of RefCom1 in the second
experimental configuration of the reconfiguration experiment
with periodic event communication.

Figure 6.26: Diagram of the latency of RefCom2 in the second
experimental configuration of the reconfiguration experiment
with periodic event communication.

99

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.27: Lost messages in the probe communication chan-
nel during the first experimental configuration of the recon-
figuration experiment with periodic event communication.

Figure 6.28: Lost messages in the probe communication chan-
nel during the second experimental configuration of the recon-
figuration experiment with periodic event communication.

100

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

RefCom1 RefCom2 ProbeCom

Messages total ∼ 11.27 Mio. ∼ 1.28 Mio. ∼ 10.76 Mio.
Messages lost 0.02% 0.00% 37.38%

First
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.02% 0.16% n/a
Other message faults 0.00% 0.00% 0.00%

Messages total ∼ 10.87 Mio. ∼ 1.23 Mio. ∼ 9.73 Mio.
Messages lost 0.00% 0.00% 71.18%

Second
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.00% 0.00% n/a
Other message faults 0.00% 0.00% 0.00%

Table 6.8: Data integrity of the reconfiguration experiment with sporadic event
messages of the communication channels.

The latencies of messages of RefCom1 and RefCom2 versus the period length of
probe communication in the first experimental configuration are depicted in figure
6.29 and 6.30, respectively. Similarly to the first sub-scenario, the diagrams contain
a peak at the instant of a reconfiguration. The maximum value of the latency has
a peak when the send time slot was missed, and thus, the message was transported
one period length later.

Figure 6.29: Diagram of the latency of RefCom1 in the first
experimental configuration of the reconfiguration experiment
with sporadic event communication.

101

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.30: Diagram of the latency of RefCom2 in the first
experimental configuration of the reconfiguration experiment
with sporadic event communication.

The number of lost messages as well as the number of late messages in the first
configuration are depicted in the figures 6.31 and 6.32. Each type of error is shown
versus the IAT of the probe communication channel and versus the period length
of probe communication. For RefCom1, the number of lost messages versus the
IAT of the probe communication is constant one. In RefCom2 no lost message
was found. Hence, the line is constantly zero.

The number of late messages versus the IAT of probe communication of both
channels equals one. As can be seen in the diagrams, errors only occur at recon-
figuration instants.

Figures 6.33 and 6.34 present the latency of the reference communication channels
in the second experimental configuration. The minimum and maximum latency
remain in a constant range, while one reconfiguration is accomplished after the
other. The distance between the lowest minimum latency and the highest maxi-
mum latency equals three clock cycles of global time.

For each experimental configuration of this sub-scenario, the number of lost mes-
sages versus the IAT of probe communication (a) and versus the period length of
probe communication (b) is given in figures 6.35 and 6.36. There is an increase of
lost messages when more messages are produces on the probe communication chan-
nel. On the other hand, no messages are lost until the third reconfiguration, where
a jump to 50% lost messages occurs. Afterwards, the number of lost messages is

102

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.31: Errors in the communication of RefCom1 in the first ex-
perimental configuration of the reconfiguration experiment with sporadic
event communication. (a) and (b) show lost messages; (c) and (d) late
messages.

stepwise decreased when the period length is reduced, and thus, communication
speed is accelerated.

6.5.3 Periodic state communication

In table 6.9 for both experimental configurations of the sub-scenario the total
number of messages produced and information about the data integrity of com-
munication channels with periodic state messages can be found. The reference
communication channels RefCom1 and RefCom2 generated in the first configura-
tion 16.34 Mio. and 2.05 Mio. messages, respectively. 21.88% of the messages of
RefCom1 and 5.80% of RefCom2 have not been transmitted. 0.02% of messages
of RefCom1 and 0.10% of RefCom2 were received too late.

The reference channels generated 9.71 Mio. messages for RefCom1 and 1.08 Mio.
messages for RefCom2, using the second configuration. Both channels were free of
any type of message errors.

103

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.32: Errors in the communication of RefCom2 in the first ex-
perimental configuration of the reconfiguration experiment with sporadic
event communication. (a) and (b) show lost messages; (c) and (d) late
messages.

On the probe communication channel 24.25 Mio. messages in the first configuration
and 21.14 Mio. messages using the second configuration were sent. Of those
messages 37.38% were lost using the first configuration and 71.18% with the second
configuration. No other kind of error was found in the analyzed data.

The diagrams 6.37 and 6.38 illustrate the latency of messages of the reference
channels versus the period length of probe communication in the first experimental
configuration of the sub-scenario. There are several peaks of the maximum latency
in both diagrams. Each peak equals the double of the period length. When a send
time slot is missed, such a peak occurs.

104

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.33: Diagram of the latency of RefCom1 in the second
experimental configuration of the reconfiguration experiment
with sporadic event communication.

Figure 6.34: Diagram of the latency of RefCom2 in the second
experimental configuration of the reconfiguration experiment
with sporadic event communication.

105

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.35: Lost messages in the probe communication chan-
nel during the first experimental configuration of the recon-
figuration experiment with sporadic event communication.

Figure 6.36: Lost messages in the probe communication chan-
nel during the second experimental configuration of the recon-
figuration experiment with sporadic event communication.

106

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

RefCom1 RefCom2 ProbeCom

Messages total ∼ 16.34 Mio. ∼ 2.05 Mio. ∼ 24.25 Mio.
Messages lost 21.88% 5.80% 77.66%

First
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.02% 0.10% n/a
Other message faults 0.00% 0.00% 0.00%

Messages total ∼ 9.71 Mio. ∼ 1.08 Mio. ∼ 21.14 Mio.
Messages lost 0.00% 0.00% 76.55%

Second
Messages corrupted 0.00% 0.00% 0.00%

config.
Late messages 0.00% 0.00% n/a
Other message faults 0.00% 0.00% 0.00%

Table 6.9: Data integrity of the reconfiguration experiment with periodic state
messages of the communication channels.

Figure 6.37: Diagram of the latency of RefCom1 in the first
experimental configuration of the reconfiguration experiment
with periodic state communication.

107

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.38: Diagram of the latency of RefCom2 in the first
experimental configuration of the reconfiguration experiment
with periodic state communication.

The charts of the figures 6.39 and 6.40 present for the reference communication
channels in the first experimental configuration the number of lost and late mes-
sages. Both error types are depicted versus the IAT of the probe communication
and versus the period length of probe communication.

The latency of the reference communication channels in the second experimental
configuration is shown in figures 6.41 and 6.42. When more reconfigurations are
accomplished, the minimum latency and maximum latency remain in a constant
range. The distance from the lowest minimum latency to the highest maximum
latency equals three clock cycles of global time.

At last, for both experimental configuration of the sub-scenario the number of
lost messages of the probe communication channel versus the IAT of the probe
communication (a) and versus the period length of probe communication (b) is
presented in figures 6.43 and 6.44. With higher IAT of probe communication, also
the number of lost messages increases. In contrast, the number of lost messages
decreases, when the period length of the probe communication is decreased.

108

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.39: Errors in the communication of RefCom1 in the first experi-
mental configuration of the reconfiguration experiment with periodic state
communication. (a) and (b) show lost messages; (c) and (d) late messages.

109

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.40: Errors in the communication of RefCom2 in the first experi-
mental configuration of the reconfiguration experiment with periodic state
communication. (a) and (b) show lost messages; (c) and (d) late messages.

110

CHAPTER 6. RESULTS 6.5. RECONFIGURATION EXPERIMENT

Figure 6.41: Diagram of the latency of RefCom1 in the second
experimental configuration of the reconfiguration experiment
with periodic state communication.

Figure 6.42: Diagram of the latency of RefCom2 in the second
experimental configuration of the reconfiguration experiment
with periodic state communication.

111

6.5. RECONFIGURATION EXPERIMENT CHAPTER 6. RESULTS

Figure 6.43: Lost messages in the probe communication chan-
nel during the first experimental configuration of the recon-
figuration experiment with periodic state communication.

Figure 6.44: Lost messages in the probe communication chan-
nel during the second experimental configuration of the recon-
figuration experiment with periodic state communication.

112

Chapter 7

Interpretation of Results

This chapter focuses on the interpretation of the results with respect to the hy-
potheses presented in section 5.1. At first, general aspects of the results are pro-
vided. Then, in section 7.2, based on the results of the experiments, a discussion
about the validity of the hypotheses is presented.

7.1 General aspects

In this section, observations are presented, that cannot be associated with one
individual hypothesis. Especially, the appearance of faults in the probe communi-
cation will be commented.

7.1.1 Latency and jitter

As already discussed in section 6.2, the latency of messages is defined by the
duration between the generation of a message in one micro component and its
delivery at another component. Due to the generation of messages for the reference
communication channels immediately after the preceding message was sent, the
new message waits in the output buffer nearly for the duration of the channel’s
period.

Except for the reconfiguration experiment using the first configuration, where the
probe communication is received by RC1, RC2, RC3 and GW, the jitter of the
reference communication channels is less than 3µs. This equals three cycles of the
global time base. The three cycles are composed of:

• one cycle for the operating system to switch to the interrupt service
routine (ISR), that generates new messages

113

7.1. GENERAL ASPECTS CHAPTER 7. INTERPRETATION

• one cycle to acquire the send timestamp at message generation

• one cycle to acquire the receive timestamp at message delivery

However, the jitter value is small compared to the average latency, which is around
239.4µs for RefCom1 and 1948.4µs for RefCom2.

7.1.2 Traffic load experiment

As expected of the faulty component, on the probe communication channel, a
lot of messages have been lost during the experiments. The fraction of message
omission increased with an decreasing IAT of the probe communication channel.
As already mentioned in previous chapters, messages are placed in the output
buffer until they are eventually sent. In case of more messages entering the buffer
than are actually transmitted, the buffer will be full and all subsequent messages
will be discarded until a message leaves the buffer.

Periodic and sporadic sub-scenarios differ in the fraction of lost messages, as due
to the sporadic message generation scheme, statistically one half of the probe
messages are generated than for periodic sub-scenarios. Thus, the output buffer
first overflows with lower IAT value of the probe communication.

7.1.3 Bit flip experiment

During the bit flip experiment, the probe communication channel experienced
distinct types of message faults. The appearance of these faults can be explained
as follows:

Lost messages: In the bit flip experiment, messages for the probe
communication channel are generated not faster than the period of the
channel. Hence, the output buffer is never full. Message omission ap-
pears, when due to a bit flip in the sender’s UNI, the output channel
is completely deactivated though further messages are generated, or
when the output buffer settings are manipulated in a way, that mes-
sages already in the buffer are not transmitted any more.

As the probability, that a bit flip manipulates one of these control
registers, rises with the total number of bit flips in the system, also the
percentage of message loss rises.

Corrupted messages: A bit flip in the output buffer directly alters
the content of a message. Alternatively, the bit flip can corrupt the

114

CHAPTER 7. INTERPRETATION 7.1. GENERAL ASPECTS

control registers indicating the range of the output buffer. Then, parts
of a memory region can be transmitted as message although these do
not belong to the output buffer, and hence, the faked message is classi-
fied as invalid. The probability of such incidents rises with the number
of bit flips that occurred in the system.

Message duplicates: These appear, when a bit flip manipulates the
control registers of the communication channel that indicate which mes-
sages in the buffer already have been sent and which must be sent.
Thus, the TISS can send a message that already has been transmitted.

Message order faults: The order of messages can be changed in a
similar way as message duplicates appear. A bit flip affecting the con-
trol registers, can cause a message to be ignored by the TISS. Some of
the subsequent messages are transmitted until the control registers are
altered a second time. The previously skipped message is now trans-
mitted and the order of message delivery is violated.

Due to the fact that state communication uses shadow buffers, where
not more than two messages can remain in the buffer simultaneously,
the reordering of messages cannot appear as the old message is replaced
immediately by the next new message. This is also supported by the
results depicted in figure 6.20e, where no message order faults were
observed.

Late messages: The reason for a message to arrive too late is, when
the channel is switched off for some time and then it is reactivated.
Thus, the messages in the buffer are sent some time later.

7.1.4 Reconfiguration experiment

Three types of faults were observed during the reconfiguration experiments. The
first type of faults is message loss in the probe communication, which is similar
to the traffic load experiment. In the reference communication two distinct types
of faults appear, when the first experimental configuration was applied. On one
hand, the latency of messages is increased after the reconfiguration of the probe
communication channel. On the other hand, messages of the reference channels
are lost.

Message omission of probe communication

Message omission in the probe communication channel during the reconfiguration
experiment originates from the overflow of the output buffer, as already discussed

115

7.1. GENERAL ASPECTS CHAPTER 7. INTERPRETATION

for the traffic load experiment. The probability of a full buffer increases when
the IAT of the probe communication decreases. Due to the usage of different
communication periods for the probe communication, message omission is also
observed for IATs around 100ms, which is in contrast to the traffic load experiment.
Especially at the start of each testrun, the output buffer is susceptible to an
overflow, as only 32 messages per second are transmitted.

On the other hand, the percentage of lost messages decreases with faster commu-
nication periods. In the diagrams presenting lost messages in the probe communi-
cation with event messages (figures 6.27, 6.28, 6.35 and 6.36), it can be seen that
within the first two periods (with 31.250ms and 15.625ms) no message is lost.
This is caused by the output buffers that hold more messages than with the first
two periods are transmitted (4 messages with the first period and 8 with the sec-
ond). As for state communication no such output buffers are used, this behaviour
cannot be observed in figures 6.43 and 6.44.

Increased latency in reference communication after reconfiguration

In the diagrams of the reconfiguration experiment, peaks in the latency of the
reference communication channels were observed. This is depicted in a different
way in the diagrams containing the number of late messages (figures 6.23, 6.24,
6.31, 6.32, 6.39 and 6.40).

The increase of latency of reference communication messages is restricted to the
first configuration of the reconfiguration experiment. In this configuration, the
probe communication channel is received by RC1, RC2, RC3 and GW. Hence, all
of these micro components need to be reconfigured at each reconfiguration instant.
Whenever the latency has a peak in the diagrams, the amount of increase equals
the length of the period of the corresponding channel (244.1µs for RefCom1 and
1953.1µs for RefCom2). This means, that the sender delayed a message, that has
already been in the output buffer, for the length of the period.

The peak in the latency value appears in those messages, that are sent immediately
after the reconfiguration instant, where the probe communication adapts its period
to be equal to the period of the reference communication. In other words, where
reference communication and probe communication have the same period.

This behavior is explained by figure 7.1. The initialization vector points to the
first time slot of the specified period, where messages are sent or received. This
initialization vector is used only once after the reconfiguration of the TISS to
instruct the TISS, when to start with the first communication action. All following
activities are organized as a cyclic linked list, where one entry points to the next
one. After the reconfiguration is completed, the initialization vector is loaded and
communication activities may begin.

116

CHAPTER 7. INTERPRETATION 7.1. GENERAL ASPECTS

The figure depicts two cycles of an example period, and each cycle is partitioned
into eight time slots. Within gray slots, communication activities are scheduled.
Reconfiguration starts at the same instant as the first cycle begins, and it needs
about the duration of three time slots to finish. Hence, when the initialization
vector is loaded, the first three time slots already passed by. The initialization
vector points to the second time slot, which is already over within the actual
cycle. Thus, the communication system cannot execute communication activities
with that period, until the second time slot of the next cycle. That’s why in the
first cycle no message can be transported, and thus, messages waiting in the output
buffer are delayed for the length of the period.

Figure 7.1: Omission of period cycle after reconfiguration.

Due to the message generation scheme, where messages are produced after the
actual transmission of the preceding message, in the meanwhile no further message
is generated. Consequently, also the generation of subsequent messages is delayed,
and thus, the latency of only one message is affected by this behavior.

In the diagrams of state communication, each peak has a width of two messages,
which means that two subsequent messages have been delayed. This originates
from the shadow buffering of the state communication channels. In contrast to
event ports, where only one message is kept in the output buffer, due to the message
transmission as fast as the message generation, state ports hold two messages in
the buffer – one that is actually transmitted, and the other one acts as shadow
buffer. As both messages are already in the buffer, both of them are delayed when
the above mentioned phenomenon arises.

Using the second experimental configuration, no messages are delayed. The probe
communication channel is only received by the RC3 micro component, and hence,
other TISSes are not concerned by the reconfiguration of the probe communication
channel. Especially not those micro components, that send reference messages.

117

7.1. GENERAL ASPECTS CHAPTER 7. INTERPRETATION

Message omission in the reference communication

Omission of messages in the reference communication channel only appears in
the first experimental configuration, where the probe communication channel was
received by all micro components. No lost messages in the reference communication
were found during the execution of the second experimental configuration, where
the probe communication channel was only received by the RC3 component.

In the first experimental configuration, message omission results from the capacity
overload of the receiving micro components. The GW micro component received
and stored the reference communication channel 1 (RefCom1) and the probe com-
munication channel, while RC3 did the same with the second reference communi-
cation channel and the probe communication channel (ProbeCom). Both receiving
micro components (GW and RC3) are thus coupled with the probe communica-
tion channel, as a control signal is raised each time a message arrives on the probe
communication channel.

Looking at the results of the sub-scenarios with event communication, it is obvious,
that on the reference communication channel 2 (RefCom2) no messages are lost.
With full load, the RU3 micro component has to receive and store around 16 500
messages/second (about 500 from RefCom2 and 16 000 from ProbeCom). In figure
6.23a, which depicts the number of lost messages of RefCom1, the number of lost
messages is constant until a certain value of the IAT of the probe communication.
There, the total number of messages received exceeds around 17 000 messages/sec-
ond, which the GW micro component is not capable to handle. In case of sporadic
probe communication, less than a half of the messages on the ProbeCom channel
are generated, and thus, there is no such phenomenon.

The high amount of lost messages in the reference communication during the first
experimental configuration with state messages – presented in the figures 6.39b
and 6.40b – also originates from capacity overload. In this case, shadow buffering
is used, which implies that a messages is overwritten when the interrupt handler is
not fast enough to read and store the message before. Whenever a message on the
ProbeCom channel arrives, a message on the RefCom channels is lost. Thus, the
number of lost messages increases with the number of messages on the ProbeCom
channel. After a certain reconfiguration, i.e., when reference and probe channel
transmit the same number of messages, interrupts are interleaved and no message is
lost. After the subsequent reconfiguration, additional messages on the ProbeCom
channel are lost, but no messages on the reference channel. Message loss in the
last period of figure 6.39b results from the same phenomenon as described in the
previous paragraph.

This problem does not arise with event messages, as the input buffer is able to
hold up to 15 messages. Incoming messages are buffered – instead of overwritten

118

CHAPTER 7. INTERPRETATION 7.2. HYPOTHESES

– and read all at once, when the interrupt handler services the request.

In the second experimental configuration, where RefCom1 and RefCom2 are re-
ceived by the GW micro component and the ProbeCom channel by the RC3 com-
ponent, no messages of the reference communication channels were lost. This
results from the fact, that no micro component must handle more messages than
it is able to. As the GW micro component is not connected to the control signals of
the probe communication, the GW component is decoupled from the probe com-
munication, and it does not react to messages sent on the probe communication
channel.

7.2 Hypotheses

For the discussion of the first two hypotheses – i.e., temporal and spatial parti-
tioning – primarily the results of the first two experiments – i.e., the traffic load
experiment and the bit flip experiment – are used. In case of the hypotheses
concerning the reconfiguration property of the TTSoC architecture, basically the
third experiment is in the focus of the argumentation. But for the comparison of
a system with and without reconfiguration, also the other two experiments will be
referred to.

7.2.1 Temporal partitioning

The results of the traffic load experiment and the bit flip experiment show that the
temporal properties of messages exchanged by one micro component are not af-
fected by the behavior of other micro components. No matter how many messages
were generated and sent on the probe communication channel, no faulty message
was received on anyone of the reference communication channels. The latency of
messages on the reference channels is nearly constant with an expected jitter (see
section 7.1.1). There is no increased variability in the latency, even when the IAT
of the probe communication is decreased.

Also during the bit flip experiment no faulty message on the reference communi-
cation channels was received. Both reference channel’s latency was in the same
range as for the traffic load experiment. The number of injected bit flips to the
UNI of the fault injection component (FIC) does not have any influence on the
temporal properties of the messages exchanged between the reference components.

Hence, the results of both types of experiment are an evidence that the hypothesis
of temporal partitioning is valid.

119

7.2. HYPOTHESES CHAPTER 7. INTERPRETATION

7.2.2 Spatial partitioning

The data integrity of messages exchanged by one micro component is not influenced
by the behavior of another micro component. In none of the three experimental
scenarios a corrupted message of any reference communication channel was re-
ceived. When one micro component – i.e., the FIC – decrements the IAT of its
communication channel, and thus sends more messages, no messages that are ex-
changed between two other micro components are altered. This is verified by the
traffic load experiment and the reconfiguration experiment, where the IAT as well
as the channel period of the probe communication channel were decreased.

A faulty host of a micro component that arbitrarily or maliciously writes to its UNI
cannot disturb or modify messages exchanged by other micro components. This
has been proved by the bit flip experiment. Thus, with the three experimental
scenarios also the hypothesis of spatial partitioning is validated.

7.2.3 Stability of communication during reconfiguration

Results of the reconfiguration experiment show that the reconfiguration of one
communication channel does not affect temporal properties and data integrity of
messages exchanged on another communication channel. Only when both channels
use the same period and share a common micro component, messages can be
delayed for the length of the period.

During the experiments using both experimental configurations, no message has
been corrupted by the communication system, what proves the stability of spatial
partitioning. On the other hand, temporal properties of communication channels
are unaffected when period and micro components of both communication channels
are different. This has been shown by the second configuration of the experiments.
Even when the participating micro components are the same, but with a different
period to be reconfigured, no violation of temporal partitioning appeared. That
can be seen when looking at the results with the first experimental configuration,
especially for the second reference communication channel.

7.2.4 Bounded reconfiguration delay

Reconfiguration activities during the experiments finished within a bounded inter-
val. There are no more effects of reconfiguration, after the first cycle of a period. As
explained in section 7.1.4, communication may stall for the length of one period,
immediately after the reconfiguration. This occurs only, when the initialization
vector of the period points to an instant smaller than the duration of the recon-
figuration. Thus, the dispatcher must wait until the same instant within the next

120

CHAPTER 7. INTERPRETATION 7.2. HYPOTHESES

period, to start communication. Due to the fact that the reconfiguration is trig-
gered at all involved micro components at the same instant, all micro components
consistently have to wait for the same time, until communication starts.

Therefore, the reconfiguration of communication channels is predictable and com-
pleted within a bounded interval of time.

121

7.2. HYPOTHESES CHAPTER 7. INTERPRETATION

122

Chapter 8

Conclusion

Within this thesis temporal and spatial partitioning in the TTSoC architecture
have been evaluated. Different behaviors of micro components – i.e., load sce-
narios, faults of a host, and reconfiguration scenarios – have been simulated by
means of fault injection. To observe the stability of communication under adverse
conditions, reference communication channels between distinct micro components
were established and monitored. A variation of data integrity or in the tempo-
ral behavior of these reference channels would indicate violations of temporal and
spatial partitioning.

Experiments with a micro component trying to send more messages, than its com-
munication channel is intended for, turned out, that this channel actually encap-
sulates temporal requirements and other channels do not notice any difference.
Faulty behavior of a host has been simulated in another experiment. It showed,
that output channels of the faulty component are corrupted in distinct ways, but
all other communication channels remain completely unaffected. A third experi-
mental scenario investigated the stability of communication during reconfiguration
activities, as well as the bounded reconfiguration delay. Exchange of messages on
channels, that were not reconfigured, was proved to be stable during the reconfig-
uration process. Additionally, it was found that the reconfiguration of communi-
cation channels is completed within a predictable bound.

These results present the TTSoC architecture as a predictable and robust embed-
ded execution platform and communication infrastructure for the interconnection
of multiple heterogenous IP-cores. The properties of temporal and spatial parti-
tioning in the architecture enable the individual design, verification and integration
of distinct application subsystems into one single SoC.

123

CHAPTER 8. CONCLUSION

124

Acronyms and Abbreviations

ASIC application specific integrated circuit Electrical circuit pro-
duced on semi-conductors that performs a specified functionality
which can not be changed after its manufacturing.

BCFG burst configuration memory Part of the TISS memory which
holds the start and end address of each encapsulated communi-
cation channel in port memory.

FCR fault containment region A self-contained component in which
a failure is encapsulated and may not propagate to cause failures
in other components.

FIC fault injection component The micro component in the exper-
imental setup that tries to disrupt the communication of other
micro components.

FPGA field programmable gate array Integrated circuit whose inter-
connections and logical function can be electronically configured
so that a specified functionality is executed. A configured FPGA
acts like an ASIC.

GW gateway component Micro component of the experimental
setup, which is responsible for data exchange with the host PC
and for experiment management.

IAT inter-arrival time Time between the arrival of two successive
messages at an encapsulated communication channel.

MEDL message descriptor list List that contains the instants in time
when to fetch and deliver a message in the time-triggered net-
work.

MTBF mean-time-between-failures The average duration (in hours)
between the occurrence of failures.

125

ACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONSACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONS

MTTF mean-time-to-failure The average duration (in hours) until a
failure occurs in a system.

MTTR mean-time-to-repair The average duration (in hours) to repair
the system – or one of its components – after the system failed.

NoC network-on-chip Communication infrastructure on a single die
to interconnect computational components.

RC1 reference component 1 First micro component that periodically
sends data packages on a reference communication channel.

RC2 reference component 2 Second micro component that periodi-
cally sends data packages on a reference communication channel.

RC3 reference component 3 Micro component that receives and col-
lects data packages that were exchanged on the reference and
probe communication channels.

RI routing information memory Part of the TISS memory that
holds information about the route of encapsulated communica-
tion channels in the NoC.

RMA resource management authority Dedicated micro component of
the TTSoC architecture that receives requests for resource relo-
cation from other micro components in the system and calculates
the new resource allocation.

RTL Register transfer level Level of abstraction in the design of
integrated circuits where the system is considered by the signal
flow between registers.

SoC system-on-chip A multicore computer system on a single chip.

SoS slightly-off-specification Failure mode, where temporal or value
specifications do not securely hold. Different communication
partners may judge the results differently.

TDMA time-division-multiple-access Communication paradigm where
only one component/computer is allowed to send data at each
point in time.

126

ACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONSACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONS

TISS trusted interface subsystem Interface between micro compo-
nents and the time-triggered NoC. It protects the communication
subsystem from unauthorized access.

TMR triple-modular redundancy Fault tolerance mechanism that
uses three different computational units that all do similar calcu-
lations. A voting unit decides if he outcomes are correct or not
and if there is a faulty computational unit.

TNA trusted network authority Part of the certificated communica-
tion subsystem of the TTSoC architecture. It decides whether a
proposed schedule is in conflict with the existing schedule and if
not, it reconfigures the TISSes of the micro components.

TTNoC time-triggered network-on-chip Communication infrastructure
on a single die to interconnect computational components whose
medium access is controlled by a predefined schedule.

TTSoC time-triggered system-on-chip A multicore computer system on
a single chip interconnected by a time-triggered communication
network.

UNI uniform network interface Interface between the TISS and its
corresponding host.

127

ACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONSACRONYMS AND ABBREVIATIONS ACRONYMS AND ABBREVIATIONS

128

List of Symbols

Symbol Description Page

∆IAT rate of change of the inter-arrival time (IAT) 59
∆seq difference between two sequence numbers 74
δperiod duration of a period 74
Θwnd window of time to allow some variance of the timestamp 74
λ constant failure rate of a system (failures/hour) 5
µ constant repair rate in a system (repaires/hour) 5
τold receive timestamp of last correct message 74
τrcv1,2 estimated window for receive timestamp 74
A availability of a system 5

IATact actual IAT value between two messages 60
IATavg average IAT reached with sporadic communication 60
IATRV IAT value calculated by the random generator 66
M(d) probability that the system can be restored within the duration

d after a failure
5

R(t) reliability of a system 5
RVact actual random value returned by the random generator 61
RVmax maximum random value to limit the output of the random

generator
66

129

LIST OF SYMBOLS LIST OF SYMBOLSLIST OF SYMBOLS LIST OF SYMBOLS

130

Bibliography

[AAA+90] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie,
E. Martins, and D. Powell. Fault Injection for Dependability Validation:
A Methodology and Some Applications. In IEEE Trans. on Software
Engineering, volume 16(2), pages 166–182, 1990. 10

[Ade03] A. Ademaj. Assessment of Error Detection Mechanisms of the Time-
Triggered Architecture Using Fault Injection. Dissertation, Institute of
Computer Engineering, Vienna University of Technology, Vienna, Aus-
tria, 2003. 4, 6, 8, 11, 13

[ALR00] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental Concepts of De-
pendability. In Proc. of the 3rd IEEE Information Survivability Work-
shop, pages 7–12, 2000. 3

[Avi71] A. Avizienis. Fault-Tolerant Computing: An Overview. In Computer,
volume 4, pages 5–8, 1971. 7

[Bje05] T. Bjerregaard. The MANGO clockless network-on-chip: Concepts
and implementation. Dissertation, Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, 2005. Available at:
http://www2.imm.dtu.dk/pubdb/p.php?4025. 28

[BM02] L. Benini and G. De Micheli. Networks on Chips: A new SoC Paradigm.
Computer, 35:70–78, 2002. 16

[BMOS05] T. Bjerregaard, S. Mahadevan, R.G. Olsen, and J. Sparsø. An OCP
Compliant Network Adapter for GALS-based SoC Design Using the
MANGO Network-on-Chip. In Proc. of the Int. Symp. on System-on-
Chip, pages 171–174, 2005. 29

[BS05a] T. Bjerregaard and J. Sparsø. A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-Chip.
In Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’05), volume 2, pages 1226–1231, 2005. 28, 29

131

BIBLIOGRAPHY BIBLIOGRAPHY

[BS05b] T. Bjerregaard and J. Sparsø. A Scheduling Discipline for Latency and
Bandwidth Guarantees in Asynchronous Network-on-Chip. In Proc. of
the 11th Int. Symp. on Asynchronous Circuits and Systems (ASYNC
2005), pages 34–43, March 2005. 30

[BS06] T. Bjerregaard and J. Sparsø. Implementation of guaranteed services in
the MANGO clockless network-on-chip. In IEEE Proc.-Computers and
Digital Techniques, volume 153(4), pages 217–229, July 2006. 29, 30

[CA85] F. Cristian and H. Aghili. Atomic Broadcast: From simple message
diffusion to Byzantine agreement. Proc. 15th IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS 15), pages 200–206, 1985. 24

[Cri91] F. Cristian. Understanding Fault-tolerant Distributed Systems. Commu-
nications of the ACM, 34(2):56–78, 1991. 7

[FR92] U. Feige and P. Raghavan. Exact Analysis of Hot-Potatoe Routing. In
Proc. of the 33rd Annual Symp. on Foundations of Computer Science,
pages 553–562, Oct. 1992. 31

[FSK98] P. Folkesson, S. Svensson, and J. Karlsson. A Comparison of Simula-
tion Based and Scan Chain Implemented Fault Injection. In Twenty-
Eighth Int. Symp. on Fault-Tolerant Computing (FTCS 28), pages 284–
293, 1998. 11

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal Network on Chip:
Concepts, Architectures, and Implementations. In IEEE Design & Test
of Computers, volume 22(5), pages 414–421, Sept.-Oct. 2005. 25

[GIJ+03] M. Gaudel, V. Issarny, C. Jones, H. Kopetz, E. Marsden, M. Paulitsch
N. Moffat, D. Powell, B. Randell, A. Romanowsky, R. Stroud, and
F. Taiani. Final Version of DSoS Conceptual Model. Technical re-
port cs-tr-782, University of Newcastle, April 2003. Available at
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/782.pdf. 16

[GS95] J. Güthoff and V. Sieh. Combining Software-Implemented and
Simulation-Based Fault Injection into a Single Fault Injection Method. In
Twenty-Fifth Int. Symp. on Fault-Tolerant Computing (FTCS 25), pages
196–206, 1995. 10

[HCG07] A. Hansson, M. Coenen, and K. Goossens. Undisrupted Quality-of-
Service during Reconfiguration of Multiple Applications in Networks on
Chip. In Design, Automation & Test in Europe Conference & Exhibition,
pages 1–6, April 2007. 27

132

BIBLIOGRAPHY BIBLIOGRAPHY

[HG07] A. Hansson and K. Goossens. Trade-Offs in the Configuration of a Net-
work on Chip for Multiple Use-Cases. In First International Symposium
on Networks-on-Chip, pages 233–242, May 2007. 27

[HTI97] M.C. Hsueh, T.K. Tsai, and R.K. Iyer. Fault Injection Techniques and
Tools. In Computer, volume 30(4), pages 75–82, 1997. 10, 12, 13

[KO02] H. Kopetz and R. Obermaisser. Temporal composability. Computing &
Control Engineering Journal, 13(4):156–162, 2002. 1, 15, 20

[Koo02] P. Koopmann. What’s Wrong With Fault Injection As A Benchmarking
Tool? In DSN Workshop on Dependability Benchmarking, pages 31–36,
2002. 10

[Kop92] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time
Systems. In Proc. of 12th International Conference on Distributed Com-
puting Systems, pages 460–467, 1992. 17

[Kop97] H. Kopetz. Real-Time Systems. Design Principles for Distributed Em-
bedded Applications. Kluwer Academic Publishers, Norwell, Messachusets
(USA), 1st edition edition, April 1997. ISBN 0-7923-9894-7. 4, 5, 17

[Kop03] H. Kopetz. Fault Containment and Error Detection in the Time-
Triggered Architecture. In Proc. of the Sixth Int. Symp. on Autonomous
Dezentralized Systems (ISADS), pages 139–146, 2003. 8

[Kop06] H. Kopetz. Pulsed Data Streams. In 5th IFIP Working Conference
on Distributed and Parallel Embedded Systems, pages 105–114, Braga
(Portugal), 2006. Springer Verlag. ISBN 0-387-39361-7. 21

[Kop08] H. Kopetz. The Complexity Challenge in Embedded System Design.
In 11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), pages 3–12, May 2008. 1, 16

[KPJ+01] H. Kopetz, M. Paulitsch, C. Jones, M.-O. Killijian, E. Marsden, N. Mof-
fat, D. Powell, B. Randell, A. Romanovsky, and R. Stroud. Revised Con-
cepts of DSoS Conceptual Model. Project Deliverable for Dependable
Systems of Systems (DSoS). Research Report 35/2001. Vienna Univer-
sity of Technology, Real-Time System Group, Vienna, Austria, 2001. 6

[Lap92] J.C. Laprie, editor. Dependability: Basic Concepts and Terminology -
in English, French, German, and Japanese. Springer Verlag, Vienna
(Austria), 1992. ISBN 0-387-82296-8. 3, 4, 5

133

BIBLIOGRAPHY BIBLIOGRAPHY

[Lap95] J.C. Laprie. Dependability of computer systems: concepts, limits, im-
provements. Sixth Int. Symp. on Software Reliability Engineering, pages
2–11, 1995. 3

[LH94] J.H. Lala and R.E. Harper. Architectural Principles for Safety-Critical
Real-Time Applications. In Proceedings of the IEEE, volume 82, pages
25–40, 1994. 6

[LN09] D. Lee and J. Na. A Novel Simulation Fault Injection Method for De-
pendability Analysis. In IEEE Design & Test of Computers, volume
26(6), pages 50–61, 2009. 11

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Prob-
lem. ACM Trans. on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982. 7

[MCM+04] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. HERMES: an
infrastructure for low area overhead packet-switching networks on chip.
In Integration, the VLSI Journal, volume 38(1), pages 69–93, Oct. 2004.
33

[MNT02] M. Millberg, E. Nilsson, and R. Thid. The Nostrum Pro-
tocol Stack and Suggested Services Provided by the Nos-
trum Backbone. Technical report TRITA-IMIT-LECSR02:01,
LECS, IMIT, KTH, Stockholm, Sweden, Nov. 2002. Avail-
able at: http://www.imit.kth.se/info/FOFU/NOC/docs1/Reports-
2002/millberg.pdf. 30

[MNT+04] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The
Nostrum Backbone - a Communication Protocol Stack for Networks on
Chip. In Proc. of the 17th Int. Conference on VLSI Design, pages 693–
696, 2004. 30

[MNTJ04] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed Band-
width using Looped Containers in Temporally Disjoint Networks within
the Nostrum Network on Chip. In Proc. of the Design, Automation and
Test in Europe Conference and Exhibition, volume 2, pages 890–895, Feb.
2004. 31

[MTCM05] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual Channels
in Networks on Chip: Implementation and Evaluation on Hermes NoC.
In Proc. of the 18th Annual Symp. on Integrated Circuits and System
Design, pages 178–183, Sept. 2005. 33, 34

134

BIBLIOGRAPHY BIBLIOGRAPHY

[MVK+99] J. Muttersbach, T. Villinger, H. Kaeslin, N. Felber, and W. Ficht-
ner. Globally-Asynchronous Locally-Synchronous Architectures to Sim-
plify the Design of On-Chip Systems. In Proc. of the Twelfth Annual
IEEE International ASIC/SOC Conference, pages 317–321, Sept. 1999.
28

[Obe07] R. Obermaisser. Temporal partitioning of communication resources in an
integrated architecture. IEEE Transactions on Dependable and Secure
Computing, October 2007. 1, 9, 22

[OKSH07] R. Obermaisser, H. Kopetz, C. El Salloum, and B. Huber. Error con-
tainment in the time-triggered system-on-a-chip architecture. Interna-
tional Embedded Systems Symposium (IESS), June 2007. 16, 23, 24

[OP06] R. Obermaisser and P. Peti. A Fault Hypothesis for Integrated Architec-
tures. In Int. Workshop on Intelligent Solutions in Embedded Systems,
pages 1–18, 2006. 6, 7, 8, 9

[OSHK08] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz. The Time-
Triggered System-on-a-Chip Architecture. In IEEE International Sym-
posium on Industrial Electronics (ISIE), pages 1941–1947, 2008. 1, 15,
17, 19, 20, 21, 22, 37

[Pau08] C. Paukovits. The Time-Triggered System-on-Chip Architecture. Disser-
tation, Institute of Computer Engineering, Vienna University of Technol-
ogy, Vienna, Austria, 2008. 15, 17, 18, 39, 62, 76

[Pol94] S. Poledna. Replica Determinism in Distributed Real-Time Systems: A
Brief Survey. Real-Time Systems, Kluwer Academic Publishers, 6:289–
316, 1994. 16, 17, 20, 36

[Pow92] D. Powell. Failure Mode Assumptions and Assumption Coverage. In
Twenty-Second Int. Symp. on Fault-Tolerant Computing (FTCS 22),
pages 386–395, 1992. 6

[RDG+04] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage.
An Efficient On-Chip Network Interface Offering Guaranteed Services,
Shared-Memory Abstraction, and Flexible Network Configuration. In
Proc. of the Design, Automation and Test in Europe Conference and
Exhibition, volume 2, pages 878–883, Feb. 2004. 26

[RDP+05] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens. An Efficient On-Chip NI Offering Guaran-
teed Services, Shared-Memory Abstraction, and Flexible Network Config-
uration. In IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, volume 24(1), pages 4–17, Jan. 2005. 26, 27

135

BIBLIOGRAPHY BIBLIOGRAPHY

[Rus99] J. Rushby. Partitioning in Avionics Architectures: Requirements,
Mechanisms, and Assurance. NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, June 1999. Avail-
able at http://www.md.kth.se/RTC/SC3S/papers/Rushby-Partitioning-
NASA-99-cr209347.pdf. 9

[UK03] O.S. Unsal and I. Koren. System-level power-aware design techniques in
real-time systems. Proc. of the IEEE, 91:1055–1069, 2003. 19

[Voa97] J. Voas. Software Fault Injection: Growing ’Safer’ Systems. In IEEE
Aerospace Conference, volume 2, pages 551–561, Feb. 1997. 13

[WG02] P. Wielage and K. Goossens. Networks on Silicon: Blessing or Nightmare?
In Euromicro Symposium on Digital System Design, pages 196–200, 2002.
16

[WH09] J. Windsor and K. Hjortnaes. Time and Space Partitioning in Spacecraft
Avionics. In Third IEEE Int. Conf. on Space Mission Challanges for
Information Technology, pages 13–20, 2009. 9

136

INDEX INDEX

Index

Symbols
Æthereal . 25

A
active probes .12
arbitrary failure . 7
ASIC . 47, 125
assumption. .6
assumption coverage 6
attributes . 5
availability . 5

B
Babbling idiot .8
BCFG . 65
bit flip experiment 84
bit-flip experiment 43
bit-flip model . 62
Bohrbugs . 23
broad-cast . 22
byzantine failure . 7

C
classification of message faults73
clock domain. .17
clock synchronization 20
communication channels 52
communication schedule.19
communication scheduling.69
compile-time injection 13
composability . 1, 20
configuration channel 67
consistent delivery order 17
correct message . 73

corrupted message 73
crash failure .7
credit-based flow control 26

D
data analyzer . 10
data collector . 10
data communication channel 54
data integrity . 42
dependability . 3
design fault .4, 23
determinism . 16
development fault . 4
duplicate message 73
duration . 21

E
electrical level simulation.11
encapsulated communication channel17,

22
encapsulation.16, 20
error . 3
error containment 16

F
fail-stop failure . 7
failure. .3
failure mode . 7
failure mode assumption 7
failure rate assumption 8
fault . 3
fault containment region 6
fault forecasting . 5
fault hypothesis . 6

137

INDEX INDEX

fault injection . 10
fault injection component.42, 45
fault injection environment 10, 46
fault injector . 10
fault library . 10
fault prevention . 4
fault removal . 5
fault tolerance. .5
fault-containment region 22
FCR . 6
FCR . 6, 22
FIC . 42, 45
flit . 18, 21
FPGA . 39
fragment . 21
fragment switch . 20
framework . 39

G
gate level simulation 11
gateway component 42, 44
global time base. .17
GW. .42

H
hardware fault injection 12
Heisenbugs . 23
HERMES . 33
host. .19
host PC. .46
hypothesis . 40

I
IAT 42, 57–59, 77, 129
impairments. .3
implementation fault 4
incorrect message 73
integrated resource management.18
inter-arrival time . 42
intermittent fault . 4
invalid message . 73

J
jitter .40, 76, 78, 113

L
late message . 73
latency 40, 76, 77, 113
lost message . 75

M
maintainability . 5
management communication channel53,

68
MANGO. 28
masquerading . 8
maximum number of failures 8
means .4
MEDL 22, 44, 65, 68, 69
message descriptor list22, 44
message duplicates 75
message omission 73
message order fault 75
message timing failure.24
message value failure 24
micro component 16, 19, 23
MTBF . 6
MTTF . 5
MTTR . 5
multi-cast . 22
mutant technique 12

N
network-on-chip . 51
NoC. 1, 15
Nostrum . 30

O
omission failure . 7
operational fault . 4

P
partitioning . 9, 22
period . 52
periodic event messages 42
periodic pulse . 21
periodic state messages.42
permanent fault 4, 23

138

INDEX INDEX

physical fault . 23
pin-level injection 12
port . 22
predictability . 16
probe communication 43
probe communication channel 52
pulse period. .21
pulse phase . 21
pulsed data stream. 21

R
RC1 . 42
RC2 . 42
RC3 . 42
reconfiguration channel.54
reconfiguration experiment 44, 92
recovery interval . 9
reference communication 42
reference communication channel 52
reference component42, 46
register transfer level 11
register transfer level simulation 11
reliability . 5
replica determinism 17, 20
resource management authority 19
Results . 73
RI . 65
RMA. .19, 21
RTL . 11
RTL simulation . 11
runtime injection . 14

S
saboteur technique 12
safety . 5
schedule communication channel 54
scheduler. .69
security . 5
shadow buffer . 76
share-based flow control 30
simulation-based fault injection 10
single-cast . 22

slightly-off-specification 8
SoC . 1, 15
socket insertion . 13
software fault injection 13
SoS . 8
sparse time . 17
spatial partitioning 9
sporadic event messages 42

T
TDMA . 1, 21, 23
temporal alignment 37
temporal ordering 17
temporal partitioning 9
temporal property.42
timing failure . 7
TISS . 19, 23
TMR . 7, 16
TNA. 19, 21, 44, 45
traffic load experiment.42, 77
transient fault . 4, 23
triple-modular redundancy 7
trusted interface subsystem 19, 23
trusted network authority 19, 44, 45
trusted subsystem 19, 23
TTNoC . i, 39
TTSoC. i, 1, 15, 39, 59
TTSoC architecture 15

U
UNI . 43, 45, 62
untimely message 73

W
workload generator10
workload library . 10

139

INDEX INDEX

140

Curriculum Vitae

Oliver Höftberger

October 24th , 1982 Born in Haag/Hausruck (Austria)

September 1989 – Primary School in
June 1993 Weibern (Austria)

September 1993 – Secondary School in
June 1997 Hofkirchen/Trattnach (Austria)

September 1997 – Upper Secondary Technical and Vocational School for
June 2002 Computing & Organization in Leonding (Austria)

January 2003 – Military Service in
September 2003 Hörsching (Austria)

October 2003 – Bachelor Studies of Computer Science at the
February 2007 Vienna University of Technology

February 2007 – Semester abroad at the
June 2007 University of Alicante (Spain)

since June 2007 Master Studies of Computer Science at the
Vienna University of Technology

INDEX INDEX

142

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis

	2 Basic Concepts
	2.1 Dependability
	2.1.1 Impairments
	2.1.2 Means
	2.1.3 Attributes

	2.2 Fault hypothesis
	2.2.1 Fault containment region (FCR)
	2.2.2 Failure mode assumption
	2.2.3 Failure rate assumption
	2.2.4 Maximum number of failures
	2.2.5 Recovery interval of an FCR

	2.3 Partitioning
	2.4 Fault Injection
	2.4.1 Simulation-based fault injection
	2.4.2 Hardware fault injection
	2.4.3 Software implemented fault injection

	3 Partitioning in the TTSoC Architecture
	3.1 The TTSoC architecture
	3.1.1 Properties of the TTSoC architecture
	3.1.2 Architectural Elements

	3.2 Partitioning in the TTSoC

	4 Related Work
	4.1 Æthereal
	4.1.1 Connections in Æthereal
	4.1.2 Configuration of Æthereal

	4.2 MANGO
	4.2.1 Network adapter
	4.2.2 Router

	4.3 Nostrum
	4.3.1 Temporally Disjoint Networks
	4.3.2 Looped Containers
	4.3.3 Theory of Operation

	4.4 HERMES
	4.5 Comparison

	5 Experiments & Fault Injection Framework
	5.1 Hypotheses
	5.1.1 Temporal partitioning
	5.1.2 Spatial partitioning
	5.1.3 Stability of communication during reconfiguration
	5.1.4 Bounded reconfiguration delay

	5.2 Evaluation of hypotheses
	5.2.1 Traffic load experiment
	5.2.2 Bit-flip experiment
	5.2.3 Reconfiguration experiment

	5.3 Structural overview of framework
	5.4 Fault injection environment
	5.4.1 Hardware
	5.4.2 Development software and configuration
	5.4.3 Experiment coordination and data logging

	5.5 Experimental TTSoC structure
	5.5.1 Micro components
	5.5.2 Network-on-Chip (NoC)
	5.5.3 Communication channels
	5.5.4 Communication structure

	5.6 Experiments in detail
	5.6.1 Traffic load experiment
	5.6.2 Bit-flip experiment
	5.6.3 Reconfiguration experiment

	5.7 Test procedure
	5.8 Communication scheduling

	6 Results
	6.1 Classification of message faults
	6.2 Latency and jitter
	6.3 Traffic load experiment
	6.3.1 Periodic event communication
	6.3.2 Sporadic event communication
	6.3.3 Periodic state communication

	6.4 Bit flip experiment
	6.4.1 Periodic event communication
	6.4.2 Sporadic event communication
	6.4.3 Periodic state communication

	6.5 Reconfiguration experiment
	6.5.1 Periodic event communication
	6.5.2 Sporadic event communication
	6.5.3 Periodic state communication

	7 Interpretation of Results
	7.1 General aspects
	7.1.1 Latency and jitter
	7.1.2 Traffic load experiment
	7.1.3 Bit flip experiment
	7.1.4 Reconfiguration experiment

	7.2 Hypotheses
	7.2.1 Temporal partitioning
	7.2.2 Spatial partitioning
	7.2.3 Stability of communication during reconfiguration
	7.2.4 Bounded reconfiguration delay

	8 Conclusion
	Acronyms and Abbreviations
	List of Symbols
	Bibliography
	Index
	Curriculum Vitae

