
Technische Universität Wien

M A G I S T E R A R B E I T

Generating Structured Documents to Create
Reports by Integrating Data from

CMS/DMS and EAI Systems

Ausgeführt am Institut für

Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter Anleitung von Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

und Univ.Ass. Dipl.-Ing. Dr.techn. Alexander Schatten als verantwortlich

mitwirkendem Universitätsassistenten

durch

Peter Gerstbach, Bakk. rer. soc. oec.

http://www.gerstbach.at/

3. Mai 2006

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.gerstbach.at/

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Arbeit selbständig und ohne fremde

Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den benutzten

Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Wien, 3. Mai 2006 Peter Gerstbach

ii

Acknowledgments

I would like to express my gratitude to the following people for their support and assis-

tance in writing this thesis:

• my parents for a lifetime of love, support, encouragement, guidance and inspiration.

• my darling Ingrid, for being patient, providing constant support, and for proof-

reading my thesis.

iii

Abstract

Structured documents are omnipresent in businesses as they contain vital information

and may be created and processed automated. Apart from text parts and graphics they

contain metadata commonly displayed using a characteristic layout. Some examples of

structured documents include offers, contracts, business reports, letters, and catalogs.

For creating such documents a system which automates this process is very helpful

because uniform documents are filled with different data. The processing logic and the

layout is defined only once at the beginning. Afterwards an automated process retrieves

the data from external system and creates the documents according to the defined rules.

In this thesis existing software applications and technologies are analyzed that are able

to create structured documents. Apart from business reporting systems, commonly used

within databases, the main focus lies on XML-related systems, for example stylesheet

designer and solutions for application integration (EAI). The use of XML enables new

ways to create structured documents. Therefore document processing with XML is

discussed separately and technologies such as XSLT and XSL-FO are described.

Furthermore the development of such a system is described supporting the integration

of external data from CMS, DMS and EAI systems in addition to document creation.

These data can be converted automated and repeatedly to appealing documents using

templates. The deployment of standardized technologies like XSLT and XSL-FO enables

a flexible and open transformation approach. Due to a graphical user interface the

creation of such templates is simple and can be performed without specific knowledge

about XML and XSLT.

iv

Kurzfassung

Strukturierte Dokumente sind im Geschäftsleben allgegenwärtig, da sie wichtige Infor-

mationen enthalten und automatisiert erzeugt und weiter verarbeitet werden können.

Neben den einzelnen Text- oder Grafik-Bestandteilen enthalten sie Metainformationen,

die meist durch ein bestimmtes Layout dargestellt werden. Beispiele strukturierter Do-

kumente sind: Angebote, Verträge, Geschäftsberichte, Briefe oder Kataloge. Für solche

Dokumente ist ein System, das deren automatisierte Erzeugung unterstützt, besonders

hilfreich, weil viele gleichartige Dokumente mit unterschiedlichen Daten gefüllt werden.

Die Verarbeitungslogik und das Layout wird einmal zu Beginn festgelegt, während ein

automatisierter Prozess in Folge die benötigten Daten aus externen Systemen lädt und

die Dokumente entsprechend den Regeln generiert.

Diese Diplomarbeit analysiert Softwaresysteme und Techniken, die strukturierte Do-

kumente erstellen und verarbeiten können. Neben Business Reporting Systeme, die mei-

stens in Verbund mit Datenbanken angewendet werden, liegt der Schwerpunkt auf XML-

bezogene Systeme wie beispielsweise Stylesheet-Designer oder Lösungen zur Anwen-

dungsintegration (EAI). Die Etablierung von XML hat neue Möglichkeiten geschaffen,

um strukturierte Dokumente zu erstellen. Deswegen wird das Thema der Dokument-

verarbeitung mit XML gesondert behandelt und Techniken wie XSLT und XSL-FO

beschrieben.

Weiters wird die Entwicklung eines XML-basierten Dokumentmanagement-Systems

beschrieben, das neben der Dokumenterstellung auch die Einbindung von externen Da-

ten aus CMS, DMS und EAI Systemen ermöglicht. Durch die Anfertigung von Do-

kumentvorlagen können diese Daten automatisiert und wiederholt zu ansprechenden

Schriftstücken weiterverarbeitet werden. Der Einsatz von standardisierten Techniken wie

XSLT und XSL-FO ermöglicht einen flexiblen und offenen Ansatz, um die Transforma-

tion durchzuführen. Da eine grafische Oberfläche die einfache Erstellung dieser Vorlagen

ermöglicht, können jedoch auch Anwender ohne Kenntnisse von XML und XSLT das

Programm benutzen.

v

Contents

1 Introduction to Enterprise Reporting 1

2 Reporting Business Data 5

2.1 Stylesheet Designer . 5

2.1.1 Altova XML Suite . 5

2.1.2 XSLFast . 6

2.1.3 Stylus Studio . 7

2.1.4 VXT . 8

2.2 Enterprise Reporting . 9

2.2.1 Crystal Reports . 11

2.2.2 Jasper Reports . 11

2.3 Enterprise Application Integration . 12

2.3.1 Inubit Business Integration Server 12

2.3.2 Output Management . 13

3 Document Processing with XML 14

3.1 Document Processing Technologies . 16

3.1.1 Low-Level . 16

3.1.2 DSSSL . 17

3.1.3 CSS . 19

3.1.4 The XSL Family . 21

3.1.5 XSLT . 22

3.1.6 XSL-FO . 36

3.1.7 Streaming Transformations for XML 45

3.2 Document Processing Systems and Formats 45

3.2.1 DocBook . 46

3.2.2 TEI . 48

3.2.3 OpenDocument . 49

3.2.4 WordprocessingML . 50

vi

3.2.5 DITA . 52

4 Implementing an XML-based Document Management System 55

4.1 InStruct Overview . 56

4.2 The Template Designer . 58

4.3 The Document Engine . 59

4.4 The Document Generation Process . 60

4.5 Generator Prototypes . 62

4.5.1 Generating the Stylesheet . 62

4.5.2 Generating the XML Document 64

4.5.3 Conclusion . 67

4.6 Implementation of the Generator . 67

4.6.1 Document Model . 68

4.6.2 Stylesheet Model . 73

4.6.3 Transformation from Document to the Stylesheet Model 77

4.6.4 Stylesheet Serialization . 82

4.6.5 Final Transformation Process . 83

5 Conclusion 88

5.1 Future Work . 89

A Examples and Listings 91

A.1 Addressbook Example . 91

A.2 Books Example . 92

A.3 XSL-FO Example . 93

A.4 Purchase Order Example . 95

vii

1 Introduction to Enterprise Reporting

and Document Processing

In the mid 20th century many countries passed from the industrial to the information

era. In these years, the number of information workers (employees primarily handling

information) surpassed the number of industrial workers [MS01, p. 4]. However, apart

from simple telephones, information technology hardly existed.

Nowadays information is largely available electronically. Electronic data processing

has accelerated and improved business, although not all promises told about the advan-

tages of IT have become true. The integration of different data sources is still a challenge

also there is an enduring need of making documents available on paper.

Reasons to print out documents or to create electronic documents with appealing

layout are diverse. Still not all business transactions can be performed electronically

due to legal restrictions. Contracts, invoices, reports are printed on paper although their

content creation process is more and more automated. Aside from legal and technical

argues, there are important social reasons to keep up with printed documents or at least

nice looking electronic ones. E.g., people often prefer to own a physical item in place

of a virtual one and like elaborate documents more than meaningful but unemotional

ones. Furthermore electronic documents offer the possibility to provide always up-to-

date versions which is especially important for reporting. Other features are imaginable

for security-relevant areas, where the filtering of information or the use of cryptography

increases privacy.

At present the IT industry offers different systems for storing and processing data and

documents. While EAI (Enterprise Application Integration) systems are used to bring

a set of enterprise applications and their data together, documents are mostly stored

and retrieved using Document Management Systems (DMS) and Content Management

Systems (CMS). DMS evolved from systems used to store images of paper documents,

while CMS is a newly-made term, frequently used to define web applications used for

managing websites and web content. Furthermore, the creation of documents is mostly

done with another group of tools, ranging from word processing and office suites to

desktop-publishing systems.

1

1 Introduction to Enterprise Reporting

Business Cases In such a heterogeneous systems landscape many business cases tend

to be inefficient. They are time expensive, error-prone and difficult to monitor. The

following list shows some business cases where an integrated and automated approach

may increase efficiency:

• Capital Management - Stock and Funds Reports: the process is triggered

manually or time-based and causes information to be retrieved from financial sys-

tems (up-to date funds and stock data) and CRM systems (names, addresses).

Later the document becomes generated and data from previous steps inserted. In

accordance to the defined workflow the documents may then be reviewed (quality

assurance), archived and delivered to the addressee.

• Logistics - Contract Order Creation in Logistics: this business case is ini-

tiated by the call center system or the CRM that take an order. Information is

retrieved from cargo and ERP systems managing the disposition of vehicles, people

and performing up-to-date calculations. After this step the document is created

and processed according to the workflow.

• Sales Offer: the document author uses the editor to create a new sales offer with

data input possibility. Parts of the document’s content may be linked with CMS

systems, such as terms and conditions. Up-to-date calculations are performed by

ERP systems and customer data is retrieved using a CRM system. Multi-channel

delivery may be used to create output in various formats.

The Missing Link In the early days of the information era, systems acted as “pa-

perwork factories” to get employees paid, customers billed, products shipped, and son

on. Later the focus shifted to producing reports for the management [MS01, p. 15].

To provide the information for knowledge-enriched reports a system like this needs to

integrate different data sources (for example using an EAI system) and has to have the

ability to manage documents. The implementation of such a system was the intend for

starting this thesis.

Structured Documents with InStruct In 2004 the GFT Technologies’ office in Vienna

launched the InStruct project. InStruct is a document management system that facil-

itates the creation and management of structured documents. Beyond standard DMS-

functionality such as versioning, search and retrieval and user management it combines

DMS with EAI systems, provides means to support workflows and offers a visual editor

to create structured documents enriched with data and formatting.

2

1 Introduction to Enterprise Reporting

Template Designer

Instruct Server
Document Engine

CMS EAI DMS

Templateworks on

Documentgenerates

contains

data

Figure 1.1: Instruct Overview

InStruct is served in two parts: the Template Designer and the Document Engine (see

figure 1.1). The designer facilitates the creation of structured document templates by

using a WYSIWYG like user interface. It allows to insert XML data from any external

systems and supports some other standards related to CMS and DMS (e.g. WebDAV).

The result of the designer is a template that may be rendered to a final document using

real or test data. The Document Engine is used to mass-produce documents by using

templates from the designer as input and including the necessary data from external

systems. A SOAP interface allows to integrate the engine into a workflow management

system.

Both, the designer and the engine use a generator component to create the output.

This component, classified as XML document processing, uses XSLT and XSL-FO to

produce PDF and other output formats.

The Structure of this Thesis This thesis covers aspects ranging from XML document

processing to the implementation of InStruct’s document generator components. The

following chapter 2 (Reporting Business Data, page 5) provides an overview of related

work including stylesheet generators and reporting tools. Knowing the potentials and

limitations of these tools is crucial to understand the need for an enhanced and integrated

document management system, as InStruct is aimed to be.

Today, XML is the tool of choice for many data-centric applications as well as for

applications processing documents. On account of this, chapter 3 (Document Processing

with XML, page 14) introduces into the concepts of XML document processing. Current

and historic tools are discussed and usage examples are given. The main part of this

3

1 Introduction to Enterprise Reporting

chapter deals with the two technologies that are primarily used for InStruct’s generator

component, namely XSLT and XSL-FO. In document processing XML can be used as

the connector between the word of data and the world of documents.

Chapter 4 (Implementing an XML-based Document Management System, page 55)

describes the implementation of the InStruct software system. The idea of this part

is to give a view on how XSLT and XSL-FO can be used in a real-life system, how

the requirements influence the decision making and what kinds of problems have to be

solved in practice. Chapter 5 (Conclusion, page 88) sums up the thesis.

4

2 Reporting Business Data

Together with the increased awareness of the problems associated with electronic docu-

ments, initiatives have been launched to tackle these issues. This chapters compares some

existing products that have been evaluated at different stages of the InStruct project.

The first section (2.1) describes some stylesheet designers for transforming XML con-

tent into arbitrary formats including HTML and PDF. These visual tools create XSLT

stylesheets that can then be used to mass produce documents from any XML data.

The second section (2.2) is about enterprise reporting tools that emerged when data-

bases have been started to be used as primary store for information. Currently these

tools often lack functions to process XML data in an adequate way but on the contrary

they are proved and tested. It is likely that these two groups of products (XML and

database related) will merge together in future. Of course, the need to integrate different

data sources and application is well known to the industry. This leads to EAI systems

that are addressed in section 2.3. Such solutions mostly provide reporting tools as well

as tools for handling XML and XSLT transformations.

2.1 Stylesheet Designer

This section describes some stylesheet designers that produce XSLT stylesheets to format

XML content using XSL-FO. The underlying technologies for this transformation process

are described in section 3.1.

2.1.1 Altova XML Suite

Altova is one of the leading providers of XML editors. The company started with

XMLSpy, an XML developing environment that facilitates editing and working with

XML. It provides different visual views on plain XML, XML Schema and other formats.

A built-in XSLT processor can be used to test and debug newly created XSLT stylesheets.

Beside XMLSpy, StyleVision and MapForce are two other XML-related products of

Altova. StyleVision is an XSL stylesheet designer, while MapForce is a data-centric

XML mapping tool that may be as well used to access databases, flat files or EDI data.

It generates conversion code in XSLT, XQuery, Java, C++ or C#. This section focuses

on StyleVision which overlaps with many topics in this thesis.

5

2 Reporting Business Data

StyleVision offers two different windows for editing XSLT stylesheets. On the one

hand a XML text editor exists that provides syntax highlighting and helpers for cre-

ating elements from the XSLT and XSL-FO namespace; on the other hand there is a

design view that allows to design a stylesheet using drag and drop functions that create

transformation code for HTML, Word/RTF and XSL-FO using a unified approach. The

three different transformations can be run and previewed from within the program.

After a new document is created, StyleVision asks for the structure of the source file.

This can be provided by using a sample XML, a DTD or an XML Schema. The structure

of these files are then displayed on the left-hand-side of the window and can then be

dragged from there to the editing view. Droping an item on the editing view forces

one ore more <xsl:for-each> elements to be created on each of the three XSLT files

for HTML, RTF and XSL-FO. The match attribute contains the name of the dropped

element. The for-each instruction ensures that all elements with the same name are

processed, whatever cardinality is specified in the describing grammar. The graphical

representation of a for-each element is a tag-like symbol, shown in figure 2.1. If an object

on the designer is selected, its properties (which correspond to FO properties) can be

adjusted using the view on the bottom left.

The use of for-each constructs results in an XSLT file containing one big root tem-

plate with all transformation code in it. The XSLT-aware power user can use special

commands to convert a selected for-each element into an own template element, which

may be re-used at different places in the stylesheet. However the designer view does

not allow to edit the used XPath expressions by hand. The automatic creation of these

XPath expressions sometimes failes. This results in a bad expressions which hast to be

corrected by hand. Otherwise StyleVision recognizes a change of the underlying XML

Schema after the time of editing. In this case it shows a pop-up window and marks all

usages of non existent Elements.

To sum up, StyleVision offers a good designer for XSLT, although an XSLT expert is

still likely to use a more or less simple XML editor.

2.1.2 XSLFast

XSLFast is a graphical editor for XSL-FO documents, developed by jCatalog Software

AG. It uses a WYSIWYG like approach that facilitates the creation of XSL-FO doc-

uments in many aspects. XSLFast allows the integration of different XSL formatters,

including Apache’s FOP and RenderX’s XEP. Similiar to Altova’s product, XSLFast

offers a structure view from which items can be dragged to the current working sheet.

XSLFast supports both absolute and relative (floating) positioning, focing the absolute

6

2 Reporting Business Data

Figure 2.1: Screenshot of Altova’s StyleVision

Source: [Alt]

positioning. It enables the user to define pixel-perfect layouts. In contrast the pro-

gram seems to have problems with floating blocks that are not placed in the resulting

document as expected.

Although XSLFast focuses on XSL-FO, which perforce difficult handling, many tasks

can be fulfilled quickly. Although some bugs and inconsistencies with the FO specifica-

tions lead to problems with the integration into other products.

2.1.3 Stylus Studio

Stylus Studio is an integrated development environment for XML. It is shipped with

XML editors, XSL, XSLT and XQuery tools, a Schema editor and other tools.

The XSLT Editor is a text editor for XSLT files that facilitates programming XSLT

code. It comes with some outstanding features that are explained here in short. The

refactoring capability allows to extract named templates. This facilitates the creation

7

2 Reporting Business Data

of modular, re-usable stylesheet code. Backmapping is an interesting feature that eases

troubleshotting: a click in the transformed document opens the part of the stylesheet

that created the selected node. A profiler can be used to trace every detail of an XSLT

transformation. It can be used to identify bottlenecks and analyze performance. In

conjunction with the backmapping feature, good candidates for optimizations can easily

be found with the profiler. Figure 2.2 shows a screenshot of the profiler window.

Figure 2.2: Screenshot of Stylus Studio’s Profiler

Source: [Pro]

The XSLT Designer is a WYSIWYG designer to create XSLT stylesheets. The user

interface is comparable to Altova’s StyleVision. The XML source tree window provides

a visual representation of the input document being used. Its items are annotated with

symbols and icons, while double clicking or drag and drop create new templates for the

selected XML element. Backmapping and the profiler is available from the Designer

view as well as from the XSLT editor view.

The combination of different editors using one single interface makes Stylus Studio a

comprehensive XML IDE which is a good alternative to the market-leading Altova XML

Suite.

2.1.4 VXT

VXT is a visual language for the specification of XML document transformations [CC02].

It so differs from the products in former sections, although VXT includes as well an

interactive environment to create and edit transformations.

The approach introduces a set of visual elements that represent the structure of the

source, the target and the transformations steps. The authors point out that all mature

languages used to transform XML documents such as XSLT or other script languages

make use of a textual syntax. Textual languages mostly use a two-dimensional syn-

tax, but only the first dimension conveys semantics. The second dimension is limited to

8

2 Reporting Business Data

increase readability through indentation and new lines. In contrast, a graphical represen-

tation takes full advantage of both dimension resulting in a representation of structures

that is often easier to grasp.

The visual language can be exported to two target languages: Circus [VDLP02] and

XSLT (see as well section 3.1.5). The structure of the documents can be illustrated with

a node-link and a tree-map representation that are more expressive than simple trees.

The nodes in both representations convey information like node type, cardinality and

the association to the parent node and the children.

The used transformation model is close to one found in XSLT: a transformation rule

consists of a pattern and a template. If the pattern matches an element in the source

XML, the template is created in the result document. Patterns that differ from patterns

in XPath are indicated using transparency, different borders and colors. Transformation

rules, like deep copy or apply rules are made visible using different icons and arrows.

Beside the visual language aspect, VXT is also an interactive environment in which

transformations can be run and debugged.

2.2 Enterprise Reporting

The ever-increasing demand for high quality information drives the development of re-

porting systems that produce unified reports to gain different views on distributed data.

This process, in business also termed enterprise reporting, includes querying different

data sources and transforming the results to create human-readable reports.

Usually any structured data may be used as data sources. The most obvious and

supported data sources are relational databases, XML data and those coming from en-

terprise information systems and data warehouses. The transformation step may include

selecting only certain parts of the retrieved data, joining together multiple sources, trans-

lating coded data, deriving new calculated values, or grouping and summarizing parts of

data. The created reports may be delivered using browsers, e-mail, file system storage

or even fax and printers. Supported formats vary from PDF or Postscript to HTML,

XML or application specific formats like Excel. Figure 2.3 shows a possible architecture

of such a system.

Responding to the high demand for reporting tools the market offers products ranging

from standalone systems to full fledged enterprise solutions. One of the most known

9

2 Reporting Business Data

XML

Data Retrieval

Transformation

S
ec

ur
ity

Delivery & Distribution

Export

Output Formats:
● HTML
● PDF
● Excel
● Custom

Output Targets:
● Browser
● E-Mail
● File Share
● Custom

A
P

I

DB EAI

Report
Designer

Report
Manager

External
Systems

Report
Viewer

Custom

Data Sources

Interactive
Transformation

Figure 2.3: Reporting Architecture

reporting tools is Crystal reports1 others are Oracle Reports2, Crystal Clear 3, JReports4,

or the open source product JasperReports5. Beside these all-in-one solutions, others also

allow the integration of the report engine in external applications using APIs. This

enables the developing of reporting solutions that are independent of tool vendors. In

[Veg01] a system like this is described. It uses JSP pages on top of a Tomcat server

offering web-based access to corporate reports in an easy and expandable way.

1Crystal Reports: http://www.businessobjects.com/products/reporting/crystalreports/, see
as well section 2.2.1

2Oracle Reports: http://www.oracle.com/technology/products/reports/
3Crystal Clear: http://www.inetsoftware.de/products/crystalclear/
4JReports: http://www.jinfonet.com/
5JasperReports: http://jasperreports.sourceforge.net/, see as well section 2.2.2

10

http://www.businessobjects.com/products/reporting/crystalreports/
http://www.oracle.com/technology/products/reports/
http://www.inetsoftware.de/products/crystalclear/
http://www.jinfonet.com/
http://jasperreports.sourceforge.net/

2 Reporting Business Data

The following sections gives an overview of two reporting tools, namely Crystal Reports

and JasperReports.

2.2.1 Crystal Reports

Crystal Reports is a Business Intelligence application created by Crystal Decisions (now

owned by Business Objects) used to gather data and design reports. Supported data

sources are native, ODBC, OLE DB, and JDBC connectivity to relational, OLAP, XML,

legacy and Enterprise data sources.

The product includes a visual design environment that allows to format and design

reports using a drag-and-drop interface and object-oriented explorers. Wizards and Ex-

perts simplify common used reporting tasks like connecting to data sources or selecting,

grouping and sorting data. Due to the important requirement for creating consistent

reports, customized templates can be designed and applied. Those templates specify

standards in formatting and logic to ensure this consistency. Often used report elements

and functions can be stored in a central repository for sharing, reuse, and single-point

updating across multiple reports.

Reporting viewing and interaction is possible in different ways. Mostly static export

formats include PDF, XML, HTML, RTF and Excel. The web publishing feature of the

server edition allows interactive reports to be uploaded on the web with enabled secu-

rity and scheduling features. With the help of interactive reports (client-side DHTML,

ActiveX or Java components) data may be explored using drill down, scroll, export

and print functions. On the server-side Crystal Reports allows to integrated the cre-

ated reports into existing systems, applications and infrastructure. To accomplish this

development kits are available for J2EE, .NET and COM.

2.2.2 Jasper Reports

JasperReports is a popular open source Java reporting tool using XML templates to

generate reports that can be delivered onto the screen, to the printer or into PDF,

HTML, Excel, CSV and XML files. It is entirely written in Java and can be used in a

variety of Java enabled applications, including J2EE or Web applications, to generate

dynamic content. Its main purpose is creating page oriented, ready to print documents

in a simple and flexible way [Jas].

Although the copyrights of the code is owned by a company, JasperReports is still

licensed under the LGPL (Lesser General Public License). This makes JasperReports an

interesting candidate for integration into other applications. For example IBM covers in

11

2 Reporting Business Data

an article the generation of online reports using JasperReports and WebSphere Studio

[Oli04]. The article describes a sample Web application using the reporting tool to

create dynamic reports in HTML and PDF. The application is deployed to a WebSphere

Application Server and uses DB2 UDB as an enterprise data repository.

2.3 Enterprise Application Integration

Enterprise application integration (EAI) solutions bring together a set of enterprise com-

puter applications. An important part of EAI is data integration. With adapter help

an integrative view on different interfaces and data sources is offered. Many EAI so-

lutions support XSLT to manage the growing amount of XML data. The following

section describes the Inubit Business Integration Server, an EAI related software appli-

cation. Other products of this category include IBM’s WebSphere, Microsoft’s Biztalk

or Webmethods.

2.3.1 Inubit Business Integration Server

The Business Integration Server from Inubit (Inubit IS)6, a German supplier of standard

software, offers a platform for business process integration. It allows the exchange of

business data using the most diverse transfer protocols and data formats. It integrates

business applications and brings them together with the IT application of other busi-

ness partners. Inubit IS provides tools for Business Process Modeling (BPM), system

integration (EAI), workflow management (WFM), reporting, and corporate performance

management (CPM).

Inubit IS follows an integral XML-based approach and thus responds to the growing

importance of XML in the world of business documents. Data loaded into the server

are first transferred into an XML format before it is further processed. Contrariwise, if

required, the XML data stream is recoded into the required target format (e.g. EDI-

FACT). This approaches permit the use of XSLT and other XML related technologies.

Business processes are described using UML-compliant activity diagrams. The techni-

cal realization is accomplished using so-called technical workflows that automate business

processes on the basis of XML. A technical workflow consists of defined modules, con-

nected to each other, which represent the data flow and processing logic. One module

is the XSLT Converter that falls into the category of Data Converters. Other data con-

verters access relational databases, mainframes, ERP systems, and Web Services. The

6Inubit: http://www.inubit.com/

12

http://www.inubit.com/

2 Reporting Business Data

XSLT Converter performs an XSLT transformation, while the applied stylesheet may be

edited directly in the application.

In the stylesheet editor XML sample files or XSD Schema files may be used to define

the source and target format for the transformation. The stylesheet can be edited using

a simple text editor, an external stylesheet editor or with a graphical tool. The tool

allows using drag and drop to assign source elements to the desired target elements.

However, the view is centric to the XSLT syntax and therefore does not support a non

XSLT-aware user.

Beside the integration aspect the Inubit IS also offers a report generator for graphical

visualization used to create reports for business activity monitoring (BAM) or external

systems, e.g. for invoice processing.

2.3.2 Output Management

Output management solutions, also referred to as document automation solutions are also

known as low-cost EAI systems. In the very beginning such tools were used to deliver

customized report printouts across an enterprise. Today they rather handle multichannel

delivery of information to users and applications [Rap01]. They supply a single point of

control for enterprise documents ranging from creation to final disposition.

Output Management solutions uses one centralized document repository that eases

document related tasks. They usually provide strong content extraction and format-

ting capabilities and modules to connect to other systems for application integration.

Common supported destinations vary from print and fax to email and web. Solutions

typically include functions for routing and tracking the output job, transformations, re-

porting of job status events, and redelivery to alternate devices. The benefits from using

document automation are a reduction of paper and postal charges, increase in quality

of service, and the transition to more flexible business processes. Today output man-

agement solutions combine the print related processes with online processes and offer

access through web clients. The shift from print to online-services lead to a paperless

office in future.

Systems from this category that have been evaluated at GFT are Xultation Suite7,

Scriptura XBOS8, ISIS Papyrus9 and Invaris10.

7Metafocus: http://www.metafocus.no/en/
8Scriptura Inventive Designers: http://www.inventivedesigners.com/scriptura/
9ISIS Papyros: http://www.isis-papyrus.com/

10Invaris Solutions: http://www.invaris.com/

13

http://www.metafocus.no/en/
http://www.inventivedesigners.com/scriptura/
http://www.isis-papyrus.com/
http://www.invaris.com/

3 Document Processing with XML

A document is described as a unit of recorded information structured for human con-

sumption [Lev91]. The world of information is growing and documents are a major part

of it. Document processing means using new technologies to create and edit/modify

documents. It functions include the capability to create, edit, merge, and format docu-

ments [Ope98]. With the help of a software system considerable time saving economies

can be achieved. On the one hand data must not be re-entered anymore resulting in an

improvement of speed and a decrease of errors. On the other hand a software may assist

the author with functions like layout and spell checking.

Currently, there are various different document processing systems existing. Most

companies use office suites to facilitate the work with simple stand-alone documents.

When demands on layout increase, desktop publishing tools are offering good solutions.

They increase the capabilities but introduce concepts that many users are not familiar

with. In this case the creation of documents is often outsourced to professionals. In case

of documents, that make heavy use of cross-references and need access to external data,

the IT industry offers many powerful but expensive document processing systems which

need to be integrated in the company’s workflow. Another feature of these systems is

the efficient organization of documents which becomes more and more important for

large companies.

Recent developments have shown that the technology for document processing is

widening. Until recently, the technology has been limited mostly to generate, print,

and transport text documents preciser and faster. Now we can see a shift to better

computer-based information management that includes document processing. These

advances include digital image processing, hypertext, multimedia documents and im-

proved concepts for retrieving information and data [MS01, p. 421].

Since 1998, when the final XML recommendation has been published, document pro-

cessing is tightly related to this technology. XML, the general-purpose markup language,

fits perfectly for to overcome many problems associated with documents and its manag-

ing.

Although computers have been used for many years for document processing, many

problems regarding the format chaos and interoperability are still existing. XML al-

lows to create special-purpose markup languages that may be targeted at a specific

14

3 Document Processing with XML

domain but still remaining processable by standard XML tools. Examples of such docu-

ment markup languages are given in section 3.2 including DocBook, the Open Document

Format and others. The transformation of XML documents may be done with XSLT

combined with XSL-FO; these tools and others are discussed in section 3.1.

One important aspect of many existing markup languages is their heavy use of generic

markup, in contrary to visual markup. Generic markup uses metadata (“data about

data”) to describe the semantics of the content which reveals more information about

it. By using elements describing structure, it is possible to separate content from style.

This change in attitude can be seen on the evolution of HTML. Previous versions of

the hypertext markup language contained many elements referring to layout concepts

(e.g. the element) while the upcoming XHTML 2 will introduce new techniques

for structuring content (e.g. the <section> element) [Bra05]. Another example is the

replacement of the element (standing for bold) in favor of the element

used to mark a portion of text as important.

Nowadays many word processors use hard-formatting for annotating content with

style. Changing the style of such a document means spending much time on a job which

could be done in minutes if the the style was separated from content. This separation

of concerns often implies to move away from WYSIWYG tools and to force the user to

think in terms of semantics than in terms of formattings.

Generic markup has two major advantages: it allows intelligent search algorithms

to query data in respect to metadata and it causes complete independence of the final

electronic medium. For example, if a document must be made available on print and

on the web, it is important that a simple transformation from the source to different

target formats is possible. XML is cost beneficial for cases where more than one media

is involved (statistically for greater than 1.6 media) [Paw02]. If the same document is

processed many times with only small changes or if the document is part of a periodic

publication, the look and feel becomes recognizable and thus important. This fact is

often utilized by companies to promote their corporate identity. Given the example of a

newspaper or a magazine a change in style always attracts the attention of the reader.

Therefore supporting a constant layout and style is fundamental to document processing.

The use of XML may also decrease transformation costs at the initial stage of the

publishing process. If the source material is available electronically but in different

formats (e.g. databases, proprietary formats), the use of XML document processing

may cause advantages. In this case no human effort is needed to transform the source to

the target format, where it can be used as input for the next processing stage. Summing

15

3 Document Processing with XML

up, XML document processing is especially suitable if different medias are involved and

repeatability is an issue.

3.1 Document Processing Technologies

This part introduces some technologies commonly used for document processing with

XML. The first subsection introduces low-level approaches for XML processing. The

second subsection covers DSSSL, a language for specifying stylesheet for SGML docu-

ments and CSS, a massively used language in web publishing. DSSSL can be seen as the

predecessor of the nowadays most often used technologies: XSLT and XSL-FO. Their

importance is the reason why most of this section is dedicated to these two specifica-

tions. The final subsection after the XSL-Family deals with streaming transformations,

an alternative to XSLT for large data applications.

Beside the technologies quoted above there are as well other tools like TeX and LaTeX

that can perform similar tasks but are not covered here. These mature tools have a

big community and are capable of producing high quality documents. There are also

some well known desktop publishing packages like Adobe InDesign and Frame Maker.

However, these tools are lacking standardization and often do not support XML very

well.

3.1.1 Low-Level

When writing about XML processing, the two widely used APIs, SAX and DOM need to

be mentioned. They are low-level APIs which are easy to understand, providing direct

access to XML data. The Simple API for XML (SAX) is a widely adopted API for XML,

and is a ”de facto” standard, implemented in many programming languages. SAX allows

to implement an event-based transformation process that allocates less system resources.

It is used for serial processing, mostly reading. When using SAX to implement a parser,

the programmer has to provide callback-methods which are invoked by the parser during

the traversal of the XML document. However, by calling such methods it is also possible

to use SAX to create XML documents.

The Document Object Model (DOM) is a W3C recommendation that provides ways for

manipulating HTML and XML documents. Initially, web browsers implemented various

interfaces to manipulate HTML using JavaScript. To increase interoperability the W3C

developed DOM which ended in a well-established interface. With a DOM-parser an

in-memory tree of an XML documents can be created. After parsing it is possible to

16

3 Document Processing with XML

change nodes or create new ones as needed. Hence, DOM is best used for applications

where the document elements have to be randomly accessed and manipulated.

Compared to more sophisticated concepts (like XSLT) the two low-level APIs requires

a minor learning effort but reusability is often limited. Although template-like process-

ing as in XSLT is possible in SAX, applications are usually targeted at specific XML

instances. However, low-level APIs often provide a basis for higher-level languages or

may be used to build rich applications like the publishing framework Apache Cocoon.

3.1.2 DSSSL

Before the first recommendation of XML has been published by the W3C the Standard

Generalized Markup Language (SGML) was a well established metalanguage in which

markup languages for documents could be defined. During the whole history of SGML

great effort has been put into defining a style language capable of formatting Markup

for screen and print.

The first partially successful attempt was FOSI (Formatting Output Specification)

deployed by the United States Department of Defense. At the same time DSSSL, the

Document Style Semantics and Specification Language, has been developed. DSSSL is

an ISO/IEC standard and is based on a subset of the Scheme programming language,

a dialect of Lisp. DSSSL contains both a transformation language and a style language

that makes it an extremely powerful but also complicated language. Hence a cut-down

version of DSSSL has been introduced in 1995 for the Internet: DSSSL-o (for DSSSL-

online) [NH01]. Given that XML is a true subset of SGML, DSSSL can also be used to

transform and format XML documents.

DSSSL enables formatting and other processing specifications to be associated with

elements to produce and layout a document. During the DSSSL transformation process

formatting information may be added to the result of the transformation [ISO96]. Figure

3.1 shows the conceptual model of DSSSL and illustrates this whole process.

The transformation part of DSSSL allows combining structures, creating new elements

and associating new descriptions with particular sequences of content. The latter means

that a sequence of elements in the source document may trigger the association of dif-

ferent formatting characteristics. For example, a paragraph following a warning may be

required to be presented differently from all other paragraphs [ISO96].

Regarding to the style language the basic modules of an DSSSL stylesheet are so called

flow objects like paragraph, line-field, character, external-graphic, or box. Every

flow object has its own properties that controls the final layout. Flow objects support

bi-directional writing modes, which implies that feeds are specified with start and end

17

3 Document Processing with XML

© ISO/IEC ISO/IEC 10179:1996(E)

11

1

Figure 1 – DSSSL Conceptual Model

The shaded areas indicate the parts of the processing model that are standardized by DSSSL.

6.3 DSSSL Languages

Each of the DSSSL processes is controlled by the appropriate DSSSL language. The
transformation language controls the transformation process. Likewise, the style language
controls aspects of the formatting process.

6.3.1 The Transformation Language

The transformation process transforms an SGML document into another SGML document under
the control of the transformation-specification. The SGML document that is the result of this
transformation process may then be used as input to the formatting process.

In the transformation process, a user identifies portions of the SGML document that are to be
mapped or transformed. For each node matching the specified portions of SGML content and
structure, the transformation is accomplished according to the specification describing the new
structures to be created.

All operations performed in this transformation process are independent of the later formatting
process. Operations during the transformation process may include the following:

— Combining structures

DSSSL Specification

Style
Specification

Transformation
Specification

SGML
Document

Transformer SGML
Document

Source
Document

Result
Document

Formatting
Process

DSSSL-driven
Formatter

Output of
Formatter

Transformation
Process

SPDL or
other
output
format

Figure 3.1: DSSSL Conceptual Model

Source: [ISO96, p. 11]

values instead of left and right.

Listing 3.1 shows a DSSSL example converting a H1 element into a paragraph with

increased font size, bold and uppercase letters and with spaces before and after.

Listing 3.1: DSSSL Example

1 (element H1

2 (make paragraph

3 font -size: (* 1.2 (inherited -font -size))

4 space -before: 2em

5 space -after: 1em

6 font -weight: ’bold

7 (uppercase)))

A DSSSL-Stylesheet can be processed by a DSSSL engine, for example James Clark’s

free Jade1. Jade supports RTF, XML, TeX, MIF and SGML output.

1Jade: http://jclark.com/jade/

18

http://jclark.com/jade/

3 Document Processing with XML

3.1.3 CSS

Cascading Stylesheets (CSS) is a stylesheet language allowing to describe the presen-

tation of structured documents. The most common use of CSS is in conjunction with

HTML. The first CSS recommendation was published by the W3C in 1996, followed by

CSS 2 in 1998. Currently CSS 3 is under development.

In the beginnings of HTML in the early 1990s various browsers developed their own

style language used to customize the appearance of web documents. Originally style

sheets were primarily aimed at the end-user who could decide about the appearance of

a web document. Later the stylistic capabilities of HTML grew and style sheets became

less important. In 1994 the concept of Cascading Stylesheets was proposed by H̊akon

Wium Lie. The concept of cascading referred to the capability for a document’s style

to be inherited from other style sheets. As a next step, the W3C organized the ongoing

development of CSS and in 1996 the first recommendation was published. Nevertheless

it took more than three years before any web browser implemented CSS1 completely.

The adoption of the new style language was difficult because many implementations

remained inconsistent and faulty up to the present [Wik05, Cascading Style Sheets].

With CSS 2 and the upcoming CSS 3 capabilities of the style language increased and

allowed web developers to describe the presentation of their sites fine-grained.

Although CSS is primarily used to format HTML or XHTML it is also capable of

formatting plain XML. Listing 3.2 shows a css file that can be used to define the pre-

sentation of an addressbook file (the structure of this example is introduced in appendix

A.1). In the XML file the stylesheet can be added by using the processing instruction:

<?xml-stylesheet href="addressbook.css" type="text/css"?>

The result in a web browser may look like figure 3.2.

Listing 3.2: CSS stylesheet for the addressbook example

1 addressbook {

2 display:block;

3 font -family:sans -serif;

4 padding :1em;

5 }

6 addressbook:before {

7 content:attr(name);

8 font -size:large;

9 }

10 person {

19

3 Document Processing with XML

11 display:block;

12 }

13 surname {

14 font -weight:bold;

15 }

16 surname:after {

17 content:": "

18 }

19 gender {

20 display:none;

21 }

Figure 3.2: Addressbook Example: XML with CSS style

A CSS style sheet contains a list of rules. Each rule consists of a selector and a dec-

laration block. A declaration block consists of a semicolon-separated list of declarations.

Each declaration consists of a property and a value separated by a colon:

selector { property:value; property:value; ... }

CSS information can be provided by the author using an external CSS file, an internal

style section, or inline definitions overriding the general style. Additionally a user or the

user agent may also specify styles. If more than one rule applies to a structured element

the style information of each rule is cascaded according to its weight.

Beside the concept of cascading the inheritance is another important concept of CSS.

CSS defines some properties that are inherited by the children of an element in the

20

3 Document Processing with XML

document tree. This concept is demonstrated in the following line containing a h1

heading element with an emphasizing element inside:

<h1>This is an important heading!</h1>

If a color is assigned to the heading the emphasized ”important” will inherit the

color of the parent element. Together with the concept of cascading the formatting of

structured documents with CSS is easy to learn but still powerful.

3.1.4 The XSL Family

XSL, which stands for Extensible Stlyesheet Language, is a family of W3C recommenda-

tions for defining XML document transformation and presentation. It consists of three

parts [W3C05a]: first XSL Transformations (XSLT) a language for transforming XML,

second XML Path Language (XPath) an expression language to access or refer parts of

an XML document, and third XSL Formatting Objects (XSL-FO) an XML vocabulary

for specifying formatting semantics.

All three parts can be set together to create a PDF document out of an XML docu-

ment. Therefore an XSLT stylesheet transforms the XML to an FO document, which

can then be rendered to PDF. Nevertheless XSLT is helpful on its own because it pro-

vides a way to transform one XML document into another, using a powerful language.

The following sections covers XSLT (including XPath) and XSL-FO.

At the beginning of XSL there was a proposal submitted to the World Wide Web

Consortium (W3C) in August 1997. The W3C published this note which defined XSL

as a stylesheet language for the Web community to provide functionality beyond CSS

[W3C97]. According to this note XSL is based on DSSSL and shares its fundamental

design principles and processing model. XSL supports all functionalities of CSS so that

a translation from CSS to XSL is possible. In contrary to DSSSL and CSS, XSL is

expressed in XML syntax. All these amendments result in stylesheets that should be

clear and easy to create.

While XML’s popularity grew, the W3C set up a working group in January 1998

to organize and accelerate the development of the stylesheet language. During that

time, the first implementations have been published. Soon it became clear that the

transformation part of the language could be of importance in other areas too. For

example, a direct transformation from XML to HTML was an important field. That is

why the working group decided to split up the two parts into two specifications, namely

XSLT and XSL-FO. In November 1999 the first XSLT recommendation was published,

followed by the XSL recommendation (with the formatting part) in October 2001.

21

3 Document Processing with XML

Section 3.1.5 covers the XSLT recommendation while XSL-FO is addressed in the

succeeding section 3.1.6. Currently the W3C already works on new versions of both

specifications. Some aspects of these upcoming versions are discussed at the end of each

section.

3.1.5 XSLT

XSLT, standing for Extensible Stylesheet Language: Transformations, is a language for

transforming XML documents [W3C01]. In most cases it is used to convert one XML

document into another. However, it is also possible to transform an XML document

into HTML or any other text-based format like comma-separated values or Java code.

The concepts of XSLT are explained in detail in the first section. Section 3.1.5.2 intro-

duces usage scenarios and shows which XSLT programming styles relates to them. Soon

after the publication of the first XSLT recommendation, the first processors have been

available. Some of them are addressed in section 3.1.5.3 and put into categories. Section

3.1.5.4 summarizes how the performance of transformations can be optimized, followed

by an outlook about the future directions of this recommendation.

3.1.5.1 Concepts of XSLT

XSLT is a sophisticated but powerful language to transform XML documents. Com-

pared to low-level XML processing technologies like SAX or DOM, XSLT is a high-level

declarative programming language. Thus, it is more complicated and induces a higher

learning effort, especially for programmers used to object oriented and procedural de-

velopment. However, XSLT offers many advantages. For example, XSLT drives the

separation of the transformation process in multiple stages. If one input format needs

to be transformed into multiple output formats the different transformation stages help

to increase reuseability and allow the development in teams.

This section describes the XSLT language in the current version 1.0 of the recommen-

dation. If some parts are related to the upcoming version 2.0 it is explicitly stated.

An XSLT processor takes a stylesheet and a XML source document as input and

transforms it to a result document as shown in figure 3.3. Internally the processor

constructs a tree from the XML source and applies the transformation on it. The result

of this transformation is called the result tree. The concept of the tree is the same as

defined in XPath and consists of nodes corresponding to the components of the XML

document.

XSLT is a high-level declarative language free of side effects. It enables a programmer

22

3 Document Processing with XML

XSLT Processor

Source
Document

»XML«

Stylesheet
»XSLT«

Result
Document

Figure 3.3: XSLT core process

to write a stylesheet that can be successfully applied to many different but similar XML

documents. In XSLT the transformation can be expressed as a set of template rules.

These template rules define the output that is generated if particular patterns occur in

the input. During the transformation process the processor creates the output according

to these template rules.

Template Rules While other programming languages modularize source code by using

classes, methods or procedures, XSLT is based on template rules. Each template rule

is expressed as an <xsl:template> element. This element may have a match attribute

which value is called a pattern. A pattern is a subset of an XPath expression and

determines the nodes of the source tree matched by the template rule.

For example, the element <xsl:template match="/"> matches the root node of the

source tree. A template with the pattern book matches a <book> element, and the

pattern book[@isbn="052101624X"] matches a <book> element whose isbn attribute

satisfies the given condition.

By starting an XSLT transformation, the processor first parses the stylesheet and

creates an internal tree representation of it. In the second step it searches for a template

which matches the document node of the source tree. Finding no suitable template, a

built-in template is used. If the right template has been chosen, the processor executes

its content, a sequence constructor.

In addition to the match attribute a mode can be defined for each template rule. When

23

3 Document Processing with XML

using mode processing, the current mode may be specified and then only the rules having

this mode are processed. This feature is useful if the same node in the source tree are

processed more than once, in different ways.

Sequence Constructor A sequence of XSLT instructions, literal result elements and

text nodes inside a template rule is called a sequence constructor. It can be seen as the

equivalent in XSLT to a block in a block-structured programming language like C or

Java [Kay04b]. By evaluating a sequence constructor, the result is (mostly) a sequence

of items.

Sequence constructors can be nested: given a template rules, looking like this:

1 <xsl:template match ="/ addressbook">

2 <html >

3 <head >

4 <title >My Addressbook </title >

5 </head >

6 <body >

7 <xsl:apply -templates/>

8 </body >

9 </html >

10 </xsl:template >

The template rule contains a sequence constructor consisting the literal result ele-

ment <html> that copies itself to the output. Inside the html element, there is a nested

sequence constructor, containing the <head> and the <body> element, that become eval-

uated in the same manner. The <title> element, that is nested inside the <head>

contains the string ”My Addressbook” that is called a text node; it gets copied to the

output as well. The <body> element holds an instruction that becomes evaluated: this

<xsl:apply-templates/> instruction causes that each child of the current node is se-

lected and the matching template rule is evaluated.

Items inside a Stylesheet This section gives a closer look at the elements that may

occur in a stylesheet. The following categorization of the elements is determined by the

location, where they can be placed in the stylesheet.

• The root element of a stylesheet is the element <xsl:stylesheet>. A synonym

for this is the element <xsl:transform>. Both elements are equivalent relating to

usage and effect.

24

3 Document Processing with XML

• Top-level elements are immediate children of the <xsl:stylesheet> element.

If their namespace is the XSLT namespace they are also called declarations. These

elements mostly set options, regarding the whole stylesheet (<xsl:output>, <xsl:

character-map>, or <xsl:key> ...) or are used to structure and modularize

the stylesheet (<xsl:template>, <xsl:import>, or <xsl:include/>). Another

kind of top-level elements are user-defined data elements. They have namespaces

outside the XSLT namespace and are often applied to control behavior that is

implementation-defined.

• Instructions are the elements setting up a sequence constructor, hence they may

all be children of a <xsl:template> element or other elements that can contain

a sequence constructor. There are three different kinds of instructions: XSLT

instructions, extension elements and sequence constructors.

– XSLT Instructions are elements in the XSLT namespace like <xsl:for-each>

or xsl:value-of. They are used for specific actions like iterating over other

instructions or constructing nodes in the output.

– Extension Elements are instructions defined by the vendor or the user.

Their namespaces have to be defined as an attribute of the <xsl:stylesheet>

element. For example, an extension may be used to define a sql-query

element that returns the result of a query on a relational database.

– Literal Result Elements are elements within a sequence constructor that

are neither part of the XSLT namespace nor declared as extension. Such

elements are copied to the result tree. This facilitates the creation of elements

in the output by just writing them down in the stylesheet.

As a whole, XSLT defines about 50 declarations and instructions. The following list

offers some of the most important elements, grouped into six categories 2.

• Elements defining the structure of the stylesheet: <xsl:stylesheet>,

<xsl:include>, <xsl:import>. The element stylesheet is the root element

of a stylesheet, the two other elements allow to unitize the stylesheet by includ-

ing/importing parts of the stylesheet from different locations.

• Elements related to template rules: <xsl:template>, <xsl:apply-tem-

plates>, <xsl:call-template>. These elements admit to define and call tem-

plate rules that can be used to modularize a stylesheet. Noted as well in the

paragraph about template rules above.

2compare a similar grouping in [Kay00, p. 151]

25

3 Document Processing with XML

• Elements used to create or copy nodes: <xsl:element>, <xsl:attribute>,

<xsl:text>, <xsl:value-of>, <xsl:copy>, <xsl:copy-of>. They can be used

to create new nodes in the output tree and to copy values and complete nodes

from the input to the output tree.

• Elements used to define program flow: <xsl:if>, <xsl:choose>, <xsl:

when>, <xsl:otherwise>, <xsl:for-each>. These elements define sequence con-

structors, that are used for conditional processing and iteration. Elements in-

side the if condition are evaluated only if some given condition is fulfilled. The

for-each element is similiar to apply-templates and selects sequence of nodes

and performs the processing on them.

• Elements used to define variables and parameters: <xsl:variable>, <xsl:

param>. Variables and Parameters are equivalent to those in other programming

languages, with the only respect that their value cannot be changed after it has

been assigned during declaration.

• Elements used to control the output: <xsl:output>, <xsl:result-docu-

ment>3. The format of the output (doctype, media-type, ..) can be configured and

multiple result-documents may be created.

Variables, Parameters and Side Effects XSLT allows global and local variables to be

defined. However, the use of variables is quite different to other programming languages.

By defining a variable a name and a value have to be set. As the type system of XSLT

is defined by the XPath specification, the type of a variable is as well defined by XPath.

Hence, it can consist of a number, strings or even nodes. After the variable has been

defined, it can be subsequently referenced in an XPath expression.

There is one notable difference of variables, compared to conventional programming

languages: the value of a variable cannot be changed, once it has been set. The reason

lies in the design of the language: as already stated XSLT is free of side effects. If a

procedure of a programming language changes the environment (for example change the

value of a global variable) it is said to have side effects. If a procedure has side effects

it becomes important how often and in what order a procedure is called. Whereas

XSLT was designed to be a declarative language without side effects. This means that

applying a template never changes the environment. It is up to a processor to determine

the best order which makes optimization possible. For example it would be possible to

run transformations in different threads or to choose an order of processing that is more

3This instruction is new in XSLT 2.0.

26

3 Document Processing with XML

memory efficient. When talking about variables this implies that it is not possible to

change the value of a variable after it has been declared and initialized.

Parameters are like variables except that they are used to supply values from outside,

when the transformation is invoked, or when applying a template or a function.

3.1.5.2 Processing Styles

Push vs. Pull Processing An often cited characteristic feature of XSLT is that pro-

grammers may choose between pull and push processing style. In many known program-

ming languages processing is controlled by loops. In XSLT loops are possible as well,

but very often a different approach is preferred.

In a traditional programming language iteration is implemented using a loop. For

example, given a list of books (refer to appendix A.2), where each book has a title, an

author, and a description, a loop is used to iterate over all books to output them as

HTML. In XSLT an <xsl:for-each> element performs this iteration, using only one

root template that contains the following snippet:

Listing 3.3: books.xslt using pull processing

9 <h1>Books</h1>

10 <xsl:for -each select="books">

11 <xsl:for -each select="book">

12 <h2>

13 <xsl:value -of select="title"/>

14 </h2>

15 <p>

16 <xsl:text >by </xsl:text >

17 <xsl:value -of select="author"/>

18 </p>

The pull processing style is about selecting nodes explicitly and deciding what to do

with them. Usually this style is easy to understand for XSLT beginners. While most

think this is a good approach, there is another implementation possible, that may be

better. When using the classic push processing style, a template has to be written for

each kind of node that can be found in the input. Given the book example, there are

templates for the title, the author and the other elements. Those templates are called

by the book template:

Listing 3.4: books.xslt using push processing

14 <xsl:template match="book">

27

3 Document Processing with XML

15 <xsl:apply -templates/>

16 </xsl:template >

17 <xsl:template match="author">

18 <p>

19 <xsl:text >by </xsl:text >

20 <xsl:value -of select="."/>

21 </p>

22 </xsl:template >

23 <xsl:template match="title">

24 <h2>

25 <xsl:value -of select="."/>

26 </h2>

27 </xsl:template >

Compared to each other, both transformation have the same results: a list of the

books and their description. Which approach is best suited for a given case is a matter

of the match between the source and the result. This was well noted by Jeni Tennison

in [Ten01]:

If the result follows the structure of the source, then a push method is more

natural—the source drives the process. If the result has a substantially differ-

ent structure from the source, then a pull method is more natural—the result

drives the process.

A good example for the first approach, where the result follows the structure of the

source, is a text-document: paragraphs from the input are transformed to paragraphs

in the output (for example HTML), some formatting is added, or some special elements

in the input are replaced by pre-defined icons. In this case the push approach is the way

to go.

A business report is a good example for the second approach: the input is a data-

oriented XML file that contains sales data, the output is a document that is used for

a presentation of the data. The resulting structure of the document is totally different

from the data. Hence a pull approach is better suited.

Of course, not every case can be put into one of these two categories. Often a document

contains both data- and document-oriented XML; this would result into a stylesheet that

uses both the pull and the push style. And finally, the pull method is needed when the

source must be present in the result more than once: an article might be formatted

using the push approach, while the table of contents at the beginning of the document

is generated using the pull approach.

28

3 Document Processing with XML

XSLT Instruction vs. XPath Expression In some cases an XSLT instruction can be

replaced by an appropriate XPath expression or vice versa. Bongers [Bon04, p. 75]

demonstrates how this can be accomplished with an XSLT 2.0 processor. The following

two examples can be applied on the addressbook example (see appendix A.1).

The XSLT-oriented approach uses a template to output the name and e-mail address

of a person using a template and value-of instructions:

<xsl:template match="person">

<xsl:value-of select="forename"/>

<xsl:text> </xsl:text>

<xsl:value-of select="surname"/>

<xsl:text> </xsl:text>

<xsl:value-of select="e-mail"/>

</xsl:template>

The output of this part of the transformation for a person might look like this:

John Green example@mail.com

The XPath-oriented approach uses new sequence expressions, introduced in XPath 2.0.

With the XPath expression shown above all parts of the sequence are separated with

a whitespace. The result of the transformation is the same as with the XSLT-oriented

approach.

<xsl:template match="person">

<xsl:value-of select="(forename, surname, e-mail)"/>

</xsl:template>

Another possibility to replace XSLT with an XPath 2.0 expression arises when evaluat-

ing conditional processing [Bon04, p. 123]. This example outputs the correct salutation,

dependent from the gender of a person. In XSLT 1.0 this can be done with the following

choose instruction:

<xsl:choose>

<xsl:when test="gender=’male’">Mr.</xsl:when>

<xsl:otherwise>Ms.</xsl:otherwise>

</xsl:choose>

XPath 2.0 supports expression that may contain if-then-else parts as followed:

29

3 Document Processing with XML

<xsl:value-of select="if (gender=’male’) then ’Mr.’ else ’Ms.’"/>

Other possibilities where different XSLT instructions or XPath expressions produce

similar results are shown in section 3.1.5.4 about performance optimizations. The perfor-

mance tips reveal that choosing between these two approaches often affects performance.

3.1.5.3 Processors

The software responsible for transforming source trees into result trees using an XSLT

stylesheet is referred to as the processor [W3C05c]. This chapter makes an attempt to

categorize processors and contains information about the two prevalent implementations,

Xalan and Saxon.

XSLT processors can be categorized in many different ways. For example this can be

based on their internal way of processing, their capabilities or their intended audience.

When using XSLT 2.0, processors can be easily divided into two groups, which are

defined in the specification:

• A basic XSLT processor is an XSLT processor that implements XSLT 2.0 with the

exception of constructs related to schema processing.

• A schema-aware XSLT processor covers the full specification, including all schema

related constructs.

Currently, Saxon is one of the rare complete implementations of XSLT 2.0. A free

version (a basic XSLT processor) is available for download at SourceForge4. A schema-

aware version is available on a commercial license.

Interpreting and Compiling Processors Another distinction may be drawn between

interpreting and compiling processors. A compiling processor generates executable code

from an XSLT to speed up the process of transformation. Most of the available processors

are interpreting processors. An interpreting processor parses and interprets the XSLT

and applies it on the XML file.

In contrast to the above mentioned a compiling processor takes a stylesheet as input

and generates executable code as its output. In case of Java this is of course not machine

code but Java bytecode. This bytecode can then be executed by a Java Virtual Machine

to start the transformation. The generated class file is commonly called a translet.

The first compiling XSLT processor was XSLTC developed by Sun Microsystems.

It was donated to the Apache Open Source Foundation and is now a component of

4Saxon-B at SourceForge: http://saxon.sourceforge.net/

30

3 Document Processing with XML

the Xalan-J2 project. The Apache community has agreed to make XSLTC the default

processor for developing XSLT 2.0 and in Java 1.5 XSLTC was chosen as the default

transformer [Suna].

The question whether to compile or not is an ancient question of computer science.

This is often referred to as the Compile Conjecture and depends on many factors like the

kind of project [Pun03]. When speaking about XSLT processors, the claim is, that such

a translet is both smaller and faster. The purpose of this is to make it ideal for small

devices with limited memory and slow processors. In practice XSLT’s translets are in fact

smaller: the class-file itself is about two times smaller than the stylesheet. The library,

which is needed to execute the class-file, is also noticeable smaller than the comparable

library for an interpreting processor. By comparing speed, the run-time transformation

performance is about the same as an interpreting processor. At first glance this might

be unexpected, but in fact Sun has proved right that a good interpreter using techniques

such as just-in-time compilation is able to be as fast as traditional compiled code [Kay00,

p. 840]. So the only relevant advantage of translets are that no XSLT file is needed to

be parsed. Most of the work (building the tree, sorting and serializing) is exactly the

same whether the stylesheet becomes compiled or not [Kay01]. Other advantages are

that translets can be moved between machines or downloaded and that the source code

of the stylesheet is hidden.

At XML Europe 2003 Jacek R. Ambroziak officially released his compiling XSLT pro-

cessor Gregor. Ambroziak, who was the architect of Sun’s XSLTC processor, started

with Gregor a second approach to build a high performance compiling processor. Cur-

rently version 1.1. can be obtained. In [Amb03] Ambroziak outlines that a fast XSLT

processor is a key factor to real-time XML processing. For example a web portal, where

the information requested is natively available as XML, may use Gregor with its algo-

rithmic optimizations to achieve a low latency. However, code optimizations as discussed

in 3.1.5.4 or caching strategies as implemented in Cocoon may yield a similar result.

Hardware Accelerators Another kind of processors are hardware accelerators. Ac-

cording to [Sch05] XML based traffic on network will grow up close to 50% in 2008.

To accomplish this increase in traffic and workload, hardware accelerators for XML

processing including XSLT may alleviate the problem.

Current hardware solutions from DataPower5 and Sarvega6 use a rack-mountable

network device to accelerator common types of XML processing. These systems sup-

5DataPower XA35 XML Accelerator: http://www.datapower.com/products/xa35.html
6Sarvega Speedway XSLT Accelerator: http://www.sarvega.com/xml-processing.html

31

http://www.datapower.com/products/xa35.html
http://www.sarvega.com/xml-processing.html

3 Document Processing with XML

port XSLT transformations, schema validation and SOAP routing. In the box a XSLT

stylesheet is converted to machine code optimized for the built in processor.

Xalan Xalan is a widely-used opensource XSLT processor developed by the Apache

Software Foundation. Both a C++ and also a Java versions are available. This section

mainly focuses on the current Xalan-Java version 2. Xalan is possibly the most used

XSLT processor, since it is shipped with Java 1.4 and has been set up as the default

transformer of the JAXP implementation [Sunb]. Xalan also contains the compiling

XSLT processor XSLTC, which is the default transformer in Java 1.5.

Xalan implements TrAX, the Java Transformation API for XML which is part of

JAXP. It may be configured to work with any XML parser that implements JAXP. It

can process Stream, SAX or DOM input, and output to a Stream, SAX or DOM. Xalan

also supports Java and scripting language extensions, that allows calls to a procedural

languages from within the stylesheet.

Currently Xalan does not support XSLT 2.0. Although there is a XSLT 2.0 branch in

apache’s CVS, it has not been altered for almost 2 years. However, as already stated,

the compatibility notes of Java 1.5 let assume that XSLTC will be the default processor

for developing XSLT 2.0 support [Suna].

Saxon Saxon is an XSLT and XQuery processor for Java developed by Michael Kay7.

Saxon comes in different versions, as explained below.

Saxon 6.5.3 is a mature and stable implementation of XSLT 1.0. Additionally many

of the features that were defined in the XSLT 1.1 working draft are implemented as

well. Saxon implements the JAXP interfaces and can process SAX and DOM inputs. It

supports EXSLT 8 extension functions and extension elements to be used across different

XSLT processors; additionally Saxon provides some own extensions.

The current Saxon 8.x releases support the XPath 2.0 and XSLT 2.0 specifications,

that are at the moment under development by the W3C. Saxon 8 is available in two

versions: Saxon-B is a non-schema aware open-source processor; Saxon-SA is based on

Saxon-B, additionally providing schema-aware processing and available as a commercial

product.

7Michael Kay is the editor of the W3C’s XSLT 2.0 recommendation
8EXSLT homepage: http://www.exslt.org/

32

http://www.exslt.org/

3 Document Processing with XML

3.1.5.4 Performance

This section tells about solutions for high performance XSLT processing. According to

Moore’s Law the complexity of an integrated circuit will double in about 18 months

[Wik05, Moore’s Law]. Although exponentially improved hardware does not necessarily

imply exponentially improved speed, the performance increase is definitely considerable.

Nevertheless the demand for high performance XML processing doubles every year or

even faster. Because of this gap performance optimization of XML processing is a very

important issue today.

As already mentioned before, XSLT is a high-level declarative language. Because of

concepts like template rules the traditional sequential programming becomes obsolete.

But a poorly optimized XSLT processor, or (even more widespread) poorly programmed

stylesheets cause considerable performance bottlenecks.

Before thinking about details of performance and optimization some best practices

about performance should be considered. Of course these best practices apply as well

to any other technology. In a first step the performance requirements should be defined.

Then, a prototype often helps to evaluate the risk. The get correct data, where the

bottlenecks are located, measurements should be made at every stage of development.

Finally, code should only be optimized if it gives measurable benefits.

Before deciding about the processor used, benchmarks usually help to measure per-

formance of different approaches. Well-established benchmarks include XSLTMark from

DataPower9 and the XSLT Benchmark from Sarvega10. Although benchmarks mostly

try to be neutral it is important to measure the performance with data, representative

of the real workload. The results should be measured, saved and compared with respect

to the tips above. Tracing facilities11 are helpful to investigate which instructions are

executed most often and in what time. This helps finding bottlenecks which should be

optimized at first.

Efficient use of XSLT For a simple transformation the performance depends largely

on the cost of parsing the input, building the tree and the output. For this reason

big effort should be put into this part before thinking about writing efficient XSLT

code. The following paragraphs summarize some performance tips from Michael Kay

and others from the XSL mailing List [Mul] and the XSLT FAQs [K+05] maintained by

Dave Pawson.

9XSLTMark: http://www.datapower.com/xmldev/xsltmark.html
10XSLT Benchmark: http://www.sarvega.com/xslt-benchmark.php
11For example Saxon provides a tracing facility with the -T option.

33

http://www.datapower.com/xmldev/xsltmark.html
http://www.sarvega.com/xslt-benchmark.php

3 Document Processing with XML

Usually an XSLT processor builds a tree of the input documents at the very beginning

- that is why very large XSLT transformations should be avoided if possible. Splitting

a document into smaller pieces may also improve performance. The limit depends on

memory size and can be considered at about 10MB. However there exists some powerful

XSLT processors which support streaming mode, so they can even handle great amounts

of data in reasonable time. The same matter applies to the output document: Serializing

the result is a time-consuming process. The use of imports, if possible, is recommended.

For example, if you’re generating HTML, the use CSS makes the document considerably

smaller.

From the technical aspect of the matter the source document should be supplied as a

SAX or byte stream, not as a DOM. Since a DOM parser builds a memory-exhaustive

tree of the source document, SAX should be always preferred to DOM. Most processors

use an internal tree model, which represents the stylesheet; a DOM parser would build

a tree that has to be reread by the processor to build its own tree.

Caching is another important approach to speed up transformations. The XSLT pro-

cessor and the stylesheet should be kept in memory between runs. This eliminates high

startup costs. Some processors even support compiling or serializing the stylesheet.

XSLT APIs, like the Java Transformation API for XML (TrAX), provide ways to con-

struct a processor instance which can be applied multiple times on different documents

without having to re-load the stylesheet. If you use the same source document repeat-

edly, it should be kept in memory too. Although this situation is not as common as

using a stylesheet repeatedly it can improve the transformation considerably. Of course

this also applies to the result document: instead of doing the same transformation twice,

the results should be cached.

Splitting complex transformations into several stages may also increase performance.

Very complex transformations are difficult to understand; hence, using a pipeline is

recommended. This increases modularity, maintainability and reusability and makes

performance optimization possible. A pipeline also allows to configure the process more

precisely. By using the result of a transformation as input of another transformation or

another process serializing the document and reparsing it should be avoided in either

case.

Writing efficient XSLT Although usually more time is spent on building the tree than

on navigating it, there are some very expensive operations to be avoided if possible. Of

course, every XSLT processor is trying to optimize queries but compared to a database

query engine, those optimizations are of an entirely different art. A database query

34

3 Document Processing with XML

engine can optimize by rearranging queries to exploit persistent indexes. An in-memory

processor does not have this opportunity because the only indexes available are those

that are constructed transiently for the duration of a transformation or query [Kay04c].

The following list shows some XPath and XSLT-related hints extracted from the XSL

mailing List [Mul] and the XSLT FAQs [K+05], which should help to write efficient

XSLT.

Some XPath expressions and XSLT instructions should be used with care, including

//item, <xsl:number>, and count(). The expression // is a shortcut for /descendant-

or-self::node()/. For example //item will select any item element in the document.

To accomplish this task the processor has to traverse the whole document which is very

expensive. Therefore the use of // should be avoided in favor of a more explicit path.

The count function returns the number of nodes in the argument node-set. With the

number instruction a similar task can be achieved. Both instructions may need to access

many nodes and thus should be reviewed carefully. Often the same result can be yielded

using the position() function.

A node-set should not be evaluated more than once. Instead it should be saved in

a variable. This is very important in particular when sorting nodes - a very expensive

operation. In this case the result should be saved in a temporary tree (known as result

tree fragment in XSLT 1.0). If some nodes need to be evaluated often, keys should be

used. The <xsl:key> element allows to declare a named key, that can be referenced

with the key() function in expressions and patterns. Most processors make use of an

index or a hash table to offer fast access to the defined nodes.

When using the preceding[-sibling] or following[-sibling] axes caution is advised: These

XPath expressions may also access many nodes. They should be avoided or optimized

by using variables and keys. Another risky XPath expressions are the ones that contains

the equals operator to compare non-singular node-sets; to process such a operations

many nodes must be traversed. To output the text value of a simple PCDATA element,

<xsl:value-of> should be used in preference to <xsl:apply-templates>. Although

the built-in template for text nodes performs an implicit value-of, an explicit call may

enhance performance.

3.1.5.5 Outlook

Soon after the publication of the XSL 1.0 recommendation W3C started working on

a successor. The first working draft was version 1.1 but soon it became clear that

larger, strategic decisions are needed which will one day result in XSLT 2.0. The current

candidate recommendation of XSLT 2.0 is from November 3, 2005 and has the following

35

3 Document Processing with XML

main enhancements to the 1.0 specification [W3C05c][Kay04b]:

• There are many new features introduced that have been missing in the current

specification. The most important ones are a built-in ability for grouping (this is

similar to grouping in SQL) and some new functions for handling of strings and

numerics including regular expressions.

• XML Schema: an XSLT 2 processor can now be schema aware. This means that

information from a schema, to which the source or the result document validates,

can be used in processing. For example this makes it possible to sort dates and

other types that have a natural order which differs from simple strings or numbers.

• XSLT 2.0 is developed alongside XPath 2.0, so all modifications in XPath are also

relevant to XSLT 2.0.

• With a new instruction multiple output documents are now possible.

• Temporary trees allows it to use a tree, which was created while processing, to be

used as input in another part of processing.

Currently, there are already some implementations of the current XSLT 2.0 candidate

recommendation.

In [Kay04a] Michael Kay illustrates that the new features introduced in XSLT 2.0 ex-

tend the scope of the language. The combination of the grouping feature, the new string

manipulations, and regular expressions, make transformations possible which take data

from legacy ASCII-based formats to standardized XML vocabulary (up-conversion).

With the unparsed-text() function it is possible to load text from a resource identi-

fied by an URI. The new functions and instructions for regular expressions now enables

string manipulations that are known from Perl and similar languages; and the new

grouping instruction allows to add an additional layer of hierarchy in the result tree that

is not present in the source tree. Although there exists workarounds (like the Muenchian

grouping) for some grouping problems the new instruction provides a simple way defin-

ing grouping criteria. For up-conversion this is of relevance because grouping allows to

replace the implicit structure in texts (detected by string manipulations) with explicit

markup.

3.1.6 XSL-FO

The Extensible Stylesheet Language (XSL) [...] is a language for expressing stylesheets.

Designers can use an XSL stylesheet to express their intensions how structured content

36

3 Document Processing with XML

(XML) should be presented; that is, how the source content should be styled, laid out,

and paginated onto some presentation medium, such as a window in a Web browser or

a hand-held device, or a set of physical pages in a catalog, report, pamphlet, or book.

[W3C01]

The quotation from the XSL specification above shows that XSL is targeted at a

very broad area of applications. XSL consists of two parts: a language for transforming

XML documents and an XML vocabulary for specifying formatting semantics. The

transformation part (XSLT) is described in section 3.1.5, the formatting part (XSL-FO,

while FO stand for Formatting Objects) is the topic of this section.

In short XSL-FO is just another XML based markup language: a document layout

language. Nevertheless in conjunction with XSLT it is much more than this. XSL-FO

provides means to define fine-grained formattings, but the actual content may come

from arbitrary structured XML. While XSLT performs the transformation of the source

document to XSL-FO, an FO processor intereprets these results.

According to [Paw02] the following cases show where XSL-FO is a good choice for the

document production process (extract):

• The source XML is valid to a schema (or DTD) that changes not at all or slowly.

• The document format is easily repeatable.

• Automation is desirable.

• Human checking of the final form is not essential and does not add process value.

The first point is mainly required by XSLT. A meaningful transformation is only

possible if the source document structure is known in advance. It is almost impossible

to write a XSLT stylesheet if the source is only well-formed but not valid to a schema.

In addition to validity, the source should also be well structured. The more variable

content is allowed the more the stylesheet has to ”guess”.

One main advantage of XML document processing is automation. XSLT and XSL-FO

supports automation at best. It is even usual that no human checking is performed on

the final form. This makes XSL-FO very useful in an automated process. A drawback

of XSL might arise by using many different charsets and fonts. A XSL formatters must

be configured to work with fonts that are not initially supported. Otherwise the output

will have glyphs missing.

37

3 Document Processing with XML

3.1.6.1 Concepts of XSL-FO

As already stated XSL-FO is often used in conjunction with XSLT. The diagram of

XSL conceptual model (figure 3.4) shows a source tree (XML), transformed in a result

tree (actually an XSL-FO document), itself rendered by the XSL formatting on devices

including printers, a cell phone and a Web browser [W3C01]. XSL-FO is often used in

this two stage process. However, the use of a formatter on a cell phone is currently out

of focus because such a transformation process is far too resource intensive for a small

device.

Source Tree Result Tree

XSL Transformer

Result document

XSL Formatter
XML XSL

FO

Figure 3.4: XSL Two Processes: Transformation & Formatting

Source: [W3C01]

Any source tree that an XSLT processor can process may be used as input. Usually

this is an XML file that validates against a known schema. This file will be transformed to

an FO document by applying a stylesheet on it. The stylesheet was created to work with

any XML file that conforms to the schema. At the first stage it creates the elements from

the FO namespace using literal result elements and other XSLT instructions. The second

stage of the process is performed by the XSL Formatter. The formatter renders the FO

file to a result document. Most formatters use Adobe’s Portable Document Format

(PDF) as the main output format; other formats include Postscript or Microsoft’s Rich

Text Format (RTF).

An FO document is an XML vocabulary made up of Formatting Objects which are an-

notated with Formatting Properties. For example, a Block is a Formatting Object com-

monly used for formatting paragraphs, headlines or captions. The element <fo:block> is

used to define a Block. It can have many Formatting Properties, for example font-size,

with absolute values like 14pt or relative ones like 120%. An example of such a Block

definition that defines a formatting property using an attribute looks like this:

38

3 Document Processing with XML

<fo:block font-size="14pt">Some content.</fo:block>

FO capabilities XSL-FO is a very powerful and feature-full formatting language. It

allows to define page layouts that differs according to well defined rules. For example

it is possible to use different page layouts on odd and even page respectively. Beside

the already explained blocks it supports graphics, inlines, tables and lists which can

be formatted using a huge set of formatting properties. With their help it is possible

to specify absolute positioning, borders and margins, backgrounds, fonts, hyphenation,

text alignment and wrapping and many other things.

Beside the features, well known to most end users, FO also supports many advanced

features. For example an FO document may specify a writing-mode like right-to-left (e.g.

used in Farsi, Arabic and Hebrew texts) and top-to-bottom (e.g. traditional Chinese

and Japanese texts).

In this context the naming of the elements becomes important. Instead of naming the

regions of a page header, body, and footer, FO calls them region-before, region-body and

region-start to make the name independent from the writing-mode. FO defines at least

five regions which may be used to put content in and which layout can be defined by

the page layout. Figure 3.5 shows the page model of an FO document containing the

five regions.

Region-before

Region-after

R
eg

io
n-

st
ar

t

Region-body

R
eg

io
n-

en
d

Figure 3.5: XSL Page Model

39

3 Document Processing with XML

Formatting Objects An XSL-FO document contains a tree of formatting objects.

Those formatting objects can be categorized into three types:

• The skeletal structure of an FO document is made of declarations, pagination and

layout formatting objects. They are used to define the layout of the pages and how

the regions of the pages should be filled.

• Block-level formatting objects represent smaller parts of a document like para-

graphs, lists, or tables.

• Inline-level formatting objects resided inside of blocks and are most commonly used

to format a portion of text.

The appearance of a formatting object is specified by formatting properties. Every

formatting object has its own set of supported formatting properties.

The root node of an FO document is the <fo:root> element. It contains layout

definitions and a page sequence list. The former can be used to define paper sizes and

margins of the regions of a page. The latter contains <fo:page-sequence> elements

used to split up a document into parts with different page layouts. A page sequence

contains a <fo:flow> or a <fo:static-content> element for each region of the page.

Flows are used to define content flow ing over many pages, static-content is repeated on

every page and is typically used for headers and footers.

Block-level formatting objects include paragraphs, lists and tables. They represent

smaller parts of a document. Blocks can be nested and therefore allow to structure a

document. The most simple block in FO is the <fo:block> element. It may contain

CDATA-sections (characters) making up the text of a paragraph and other block-level

elements or inline-level elements. A block always starts a new line.

Inline-level formatting objects may be placed only inside a block-level object and

cannot contain block-level elements. They do not start a new line and therefore they

are used to format portions of text. For example inlines can be used to format a word

in bold letters or to place an image next to some text.

Formatting Properties The structure of a document is based on the formatting ob-

jects it contains. The actual formatting of these objects are determined by the format-

ting properties of each formatting object. The specification lists the set of supported

properties for each formatting object. E.g, the <fo:block> element may have font prop-

erties (font-family, font-size, font-weight, ...), border properties (border-bottom,

border-top, ...) and many others.

40

3 Document Processing with XML

XSL’s property system is similar to CSS’s. Actually CSS is often cited from within

the FO specification: both specifications share concepts and many formatting properties

have the same name and the same meaning as in CSS. While in HTML CSS properties

are defined inside the style element using a comma-separated list XSL-FO uses standard

XML attributes for them.

The following paragraphs summarize the two most important concepts needed to be

known regarding property refinement:

The property system supports inheritance. Many but not all properties are inheritable.

This means that those inheritable properties are propagated down the formatting object

tree from a parent to each child: an <fo:inline> element inside an <fo:block> element

inherits the value of each inheritable property (e.g. font-size) from its parent—unless it

is not set directly on the inline element. Inheritance has the advantage that a child must

not declare again all properties already declared on the parent, or one of it’s ancestors.

Some property values use relative types. During the refinement process the actual

values of those relative values must be computed. The font-size, for example, may be

specified using the value 120%; this percentage value relates to the font-size value of the

parent object. If the parent has a font size of 10pt the value of the child’s font-size

property is computed to 12pt.

Areas As already stated in the previous section an XSL-FO document contains a tree

of formatting objects. This tree serves as input to a formatter. From this input a

formatter generates an ordered tree of Areas, the Area-Tree. One formatting object

might produce more than one area. For example, a block element produces two areas if

it is split over a page boundary (see figure 3.6).

Page 2

Page 1

<fo:block>

</fo:block>

Area 1

Area 2

Figure 3.6: A Block split over a Page Boundary

In principal FO specifies two different area types:

41

3 Document Processing with XML

• Inline-Areas correspond to chunks inside a block, for example characters and inline

images.

• Block-Areas correspond to paragraphs, lists and tables.

Two more area types are defined that correspond to a single glyph (Glyph-area) and

a line inside a block (Line-area). After this there are some other areas related to the

page layout.

A formatting object may have properties that specify its formatting. What a property

is for a formatting object, is a trait for an area. In most cases properties and traits

correspond one-to-one because normally one area corresponds to one formatting object.

Figure 3.7 summarizes the XSL process for a sample formatting object block and two

attributes: objectification turns the block XML element to the block formatting object

and its attributes into properties. After refinement properties become traits (units are

normalized) and then a block area is created for the block formatting object [W3C01].

Element
<fo:block>

start-indent='2em'

font-size='20pt'

Formatting Object
fo:block

Attributes:

start-indent='2em'

font-size='20pt'

Formatting Object
fo:block

start-indent='40pt'

font-size='20pt'

Properties: Traits:

objectify

Area
block-area

start-indent='40pt'

font-size='20pt'

Traits:

refinement area generation

Figure 3.7: FO-to-Area Process

3.1.6.2 Formatters

This sections focuses on three implementations of XSL-FO formatters, namely Apache

FOP, RenderX XEP and Antenna House XSLFormatter.

Apache FOP According to Apache FOP website, FOP is the world’s first print for-

matter driven by XSL formatting objects [Apa]. FOP is written in Java and released as

open source software under the Apache License. Several output formats are supported

(e.g. PDF, PS, PCL, SVG) and others can be added using plug-ins. The primary output

42

3 Document Processing with XML

target is PDF. The latest version of FOP is 0.20.5 and was released in July 2003. After

a complete redesign addressing the design issues for layout and performance, the FOP

team is currently working on stable release for FOP 1.0. The current version of this

branch is 0.92 beta and already implements many new features compared to the older

branch.

RenderX XEP XEP is a commercial XSL-FO and SVG processor written in Java.

In the current version 4.4 it supports the output formats PDF and Postscript. A free

personal edition is available for private use. RenderX also provides a connectivity kit

for an easy integration of the XEP engine in other applications like jEdit, Ant, Cocoon,

Java Servlets and J2EE applications.

Antenna House XSLFormatter XSLFormatter V3.3 is a commercial XSL-FO for-

matter that supports the PDF output format. It includes support to render SVG and

WMF/EMF vector graphics and MathML. XSLFormatter provides interfaces for .NET,

COM, Java, C++/C and for SOAP/HTTP Web Services.

XSL-FO standard compliance, as recommended by the W3C, is classified into three

categories: Basic, Extended and Complete. However, FOP’s support of FO is limited

(version 0.20.5). Most basic formatting objects and properties are supported, but a sig-

nificant number is missing. In addition some elements from the extended and complete

sets are also implemented. XEP supports nearly all basic elements as well as a large

number of extended and complete elements. The feature set of XSLFormatter is com-

parable to those of XEP, with each formatter supporting a few features the other does

not support.

3.1.6.3 Example

Figure 3.8 illustrates a simple example how XSL-FO can be used in conjunction with

XSLT to create a nice looking PDF document. An XML file that conforms to some

document vocabulary is used as input. Inside of a root <document> element multiple

<section> elements with titles can be placed. The sections contains the actual text

wrapped with <para> elements that represents paragraphs.

Then a stylesheet is applied to the XML file. The root template of the stylesheet

creates the <fo:root> element and all the page-masters. Another template creates

page-sequences whenever a <section> element in the input XML is encountered. For

the content of the section an <fo:flow> is created that contains the title of the section

43

3 Document Processing with XML

and the following paragraphs. In addition to the flow an <fo:static-content> object

is created that becomes the page header. It contains the title of the section as well.

Another template transforms the <para> elements into <fo:block> elements.

XML XSL-FO

XSL Transformer

PDF

XSL Formatter

<document>
 <section>
 <title>
 Header
 </title>
 <para>
 Some content
 </para>
 </section>
</document

<root>
 ...
 <page-seq>
 <flow>
 <block>
 Some content
 </block>
 </flow>
 ...
 </page-seq>
</root>

Header

Page 1

Header

Some content

XSLT

Figure 3.8: XSL Two Process: Transformation & Formatting — Example

The source code producing an output as shown in figure 3.8 is available in appendix

A.3.

3.1.6.4 Outlook

In December 2003 the first working draft of a revised version of XSL, version 1.1, was

published by the W3C. The current working draft is from July 2005. XSL 1.1 introduces

new functionality to support change marks, indexes, multiple flows, and bookmarks.

Some existing functionality has been extended to support partial sums, and page number

referencing [W3C05b].

These new features are especially useful for business-type documents, like invoices,

purchase orders or marketing materials. XSL 1.0 supports markers that can be retrieved

to calculate, for example, subtotals. Since XSL 1.1 markers can be retrieved inside of

table headers or footers. This makes it possible to create subtotals of a table at the end

of a page or to create tables that contain ”Continued on next page” captions.

In XSL 1.0 it is only possible to obtain the total amount of pages, if an object on the

last page is known, that can be referenced. XSL 1.1 simplifies this with a new property

that can be used as well, when it is not known which object is the last one. Another

important feature are multiple flows. In XSL 1.0 a page-sequence can only contain one

flow. In XSL 1.1 it is now possible to have several flows. This can be used for example to

layout magazines, where several articles are starting on the first page, and every article

is continued on a later page. Multiple flows can also be used to accomplish more complex

page layouts, like wrapping text around images [Bal04].

44

3 Document Processing with XML

Of course the working draft is still subject to change but it is expected to be taken

through the W3C Recommendation track process soon. Some implementations of XSL

already support some of the new features that will be introduced in the upcoming version.

3.1.7 Streaming Transformations for XML

Streaming Transformations for XML (STX) is a one-pass transformation language for

XML documents. As such it is intended as an alternative to XSLT providing high-speed

and low memory consumption. Unlike XSLT there is no need to construct an in-memory

tree of the XML document which makes STX suitable for very large data and resource

constrained applications [BBC+].

The requirements leading to the current STX specification are discussed in [Bec04].

The most important requirement is the stream-oriented architecture. The source docu-

ments are supplied in the form of streams of XML events, for example using SAX. Using

a stream-oriented approach decreases memory consumption because not the whole doc-

ument must be present in memory. However, the power of serial transformations are

limited. So the language offers the possibility to process arbitrary transformations -

at the expense of memory. STX code is is very similar to XSLT: it is XML based

and many instructions that have counterparts in XSLT have the same local-name. The

specification is platform independent and compatible to the W3C’s XML family specifi-

cations. Currently there exists two implementations: the Java-based Joost and the perl

implementation XML::STX.

3.2 Document Processing Systems and Formats

As described in the preceding section, there are many technologies waiting for deploy-

ment. This section presents some approaches using the quoted technologies. Most

technologies for document processing are domain-independent. Because knowledge rep-

resentation is strongly related to domains, corporate cultures and communities, the sys-

tems introduced in this section are mainly targeted at specific domains. Most attempts

to define a universal DTD ended up either unused or unfinished [DPS01].

DocBook, for example, tries to fulfill the need for a vocabulary in which to write com-

puter hardware and software documentation. The Text Encoding Initiative focuses on

literary and linguistic texts for online research, teaching, and preservation. Furthermore,

current office suites also support XML formats, like WordprocessingML and OpenDocu-

ment. Their intent is to introduce a interchangeable format that simplifies interchange

of documents, extraction of data and integration within external systems. All these

45

3 Document Processing with XML

approaches have in common that they use XML to describe the structure of documents.

They offer schemas describing the vocabulary and tools to work with documents.

The document processing formats of this chapter serve as perfect examples of a

document-oriented use of XSLT. A well structured XML file is transformed to an XSL-FO

document (and thus PDF in subsequent steps) with the use of a complex and customiz-

able stylesheet. This approach is a good example for separation of concerns (SoC) which

is commonly used in XML based publishing systems (cp. Apache Cocoon). The main

purpose of SoC is to separate content, logic, and style. At the beginning of the web a

HTML page always intermingled content and style. For example, content was described

using headings and paragraphs: <h1>...</h1>...<p>...; while style was defined us-

ing attributes or style-related elements: This lead to

a tight contract between those two concerns: a change in the style affected all pages

and adding new content often broke the style otherwise. The document-oriented use of

XSLT is one possibility to overcome these problemes: All concerns are isolated which

increases maintainability and reuseablity. The source XML file contains the content

while the style is stored only in the XSLT stylesheet. During the transformation process

the stylesheet is applied to the XML file and the final document can be created. This

concept has many benefits because it allows using different stylesheets: one for XSL-FO,

a second for HTML, a third for WML or even one for the format of a word prosessor. On

the other side the same stylesheets can be applied to many different XML documents

and must not be aware about the changing content of the input.

3.2.1 DocBook

DocBook is a schema providing a system for writing structured documents using SGML

or XML. It is maintained by the DocBook Technical Comittee of the Organization for the

Advancement of Structured Information Standards (OASIS). DocBook is in particular

dedicated to books and other documentation about computer hard- and software but it

is not limited to this domain [EN02]. DocBook 4.3 is the current version of DocBook.

It is published as an DTD for XML and a DTD for SGML. Additionally, there is an

unofficial W3C XML Schema and a Relax NG version of DocBook available [OAS04].

DocBook is a very complex schema with more than 400 elements allowing to define

meta data as well as structured content. Listing 3.5 shows a very simple DocBook

example that contains a book. In the <bookinof> element some metadata about the

book and the author is provided. A chapter begins with a title, a section and a paragraph.

Many elements like a paragraph can contain mixed content thus text intermingled with

46

3 Document Processing with XML

elements like <emphasis>, code or <quote> that allows to structure the text fine-grained.

Listing 3.5: A simple DocBook file

1 <?xml version="1.0" encoding="UTF -8"?>

2 <!DOCTYPE book PUBLIC " -//OASIS//DTD DocBook XML V4.3//EN"

3 "http: //www.oasis -open.org/docbook/xml /4.3/

docbookx.dtd">

4 <book>

5 <bookinfo >

6 <title>Book Title</title>

7 <author >

8 <firstname >Peter</firstname >

9 <surname >Gerstbach </surname >

10 </author >

11 </bookinfo >

12 <chapter >

13 <title>Chapter Title</title>

14 <sect1>

15 <title>Section Title</title>

16 <para>Some <emphasis >important </emphasis > paragraph.</para

>

17 </sect1>

18 </chapter >

19 </book>

Since DocBook is especially targeted at writers of technical documents about comput-

ers there are many elements for this domain. They range from programming language

terms (classname, methodname, parameter) to terms describing graphical user inter-

faces (guibutton, guilabel, guimenu). Of course there are also elements suitable for

any domain to define lists, citations, footnotes or hypertext links.

DocBook XSL Stylesheets Norman Walsh, who takes the chair of the DocBook Tech-

nical Committee, developed a set of XSL stylesheets that generate PDF/print documents

or Web/HTML content out of DocBook compliant documents [Wal05]. Beside the XSL

stylesheets there are other publishing tools for DocBook like DSSSL stylesheets or perl

scripts. Beyond PDF and HTML other supported target formats are Microsoft HTML

Help, UNIX man pages, TeX/LaTeX and OpenOffice.

The current release (1.68.1) contains stylesheets to generate XSL-FO documents. They

may be used to generate PDF documents in a second transformation step. Since they

47

3 Document Processing with XML

Figure 3.9: PDF generated by DocBook-Stylesheets

must be able to handle a huge amount of elements defined in DocBook the transformation

process of a simple document is even complex. However, one gets satisfied with an

appealing PDF document, containing a title page, a table of contents with hyperlinks and

content pages with page numbers (see figure 3.9). The real power of DocBook becomes

visible, by transforming one single input document into multiple output documents.

This simplifies publishing on different media in an elegant way.

3.2.2 TEI

The acronym TEI stands for Text Encoding Initiative and is a consortium which main-

tains and develops a standard for the representation of literary and linguistic texts in

digital form. The initiative was launched in 1987 and enhanced to an independent

membership consortium, hosted by academic institutions in the US and in Europe.

The TEI’s Guidelines for Electronic Text Encoding and Interchange were first pub-

lished in 1994, followed by new editions in 1999 and 2002. Currently, they define some

400 textual components which can be expressed using SGML or XML markup. The TEI

scheme is available as a modular DTD that may be customized for particular research or

production environments. A very popular subset is TEI Lite, a small part of the whole

TEI system, selected to include the most commonly used elements. The next major

release of TEI will be version P5, a complete revision of the original with a number of

48

3 Document Processing with XML

fundamental changes.

A TEI-conformant text contains a header and text. The header may store the full

bibliographic description of an electronic file, the relationship between an electronic text

and its source, non-bibliographic aspects and the revision history for a file. The text

can have an optional front or back matter. Among this is the body of the text located,

grouped in the case of a composite text.

A prose text sometimes contains a series of paragraphs (marked up using the <p>

element) or it may be grouped using chapters, sections, etc. (element <div>). Some

other tags provide the encoding of structure and semantics of verse and performance

texts (speakers, stage directions, etc.). In addition TEI supports many ongoing concepts

like page and line numbers, highlighting of text passages, notes, cross references, lists

and tables.

Similar to DocBook, TEI offers as well XSLT stylesheets to transform TEI XML

files12. Supported target formats are (X)HTML, Latex and XSL Formatting Objects

although the stylesheets concentrate on the elements found in TEI Lite. With the help

of stylesheets it is also possible to import and export TEI documents to OpenOffice and

Microsoft Word13.

3.2.3 OpenDocument

The OpenDocument format, short for the OASIS Open Document Format for Office

Applications, is a XML-based file format specification for office applications developed

by the Organization for the Advancement of Structured Information Standards (OASIS).

It supports documents containing text, spreadsheets, charts, and graphical documents,

and is intended to provide an alternative to proprietary document formats. OpenDoc-

ument has its origins in the OpenOffice.org XML file format initially developed by Sun

Microsystems. In December 2002 the Technical Committee for OpenDocument was

founded, followed by a first draft in March 2003. OpenDocument was approved as an

OASIS Standard in May 2005 [OAS05]. The OpenDocument specification is available

for free download and use.

A number of office suite applications currently support OpenDocument including the

most prominent ones: OpenOffice and KOffice. Up to now, Microsoft has never stated

officially to support OpenDocument in its Office suite. However, there already exists

some conversion tools used as plugins to read the OpenDocument format in Microsoft

Office. Since OpenDocument aims at guaranteeing long-term access to office documents

12TEI XSLT stylesheets: http://tei.sourceforge.net/
13TEI-Specific tools: http://www.tei-c.org/Software/

49

http://tei.sourceforge.net/
http://www.tei-c.org/Software/

3 Document Processing with XML

without legal or technical barriers, it has quickly become an important topic for govern-

ments. For example, the US State Massachusetts endorses the OpenDocument format

for its public records and the European Union proposes the format as an international

ISO/IEC standard.

Listing 3.6: OpenDocument Example

1 <office:document -content >

2 <office:automatic -styles >

3 <style:style style:name="T1" style:family="text">

4 <style:text -properties fo:font -style="italic"/>

5 </style:style >

6 </office:automatic -styles >

7 <office:body >

8 <office:text >

9 <text:p text:style -name="Standard">An <text:span

text:style -name="T1">important </text:span > paragraph.</

text:p >

10 </office:text >

11 </office:body >

12 </office:document -content >

Listing 3.6 shows how the paragraph “An important paragraph.” is represented in

OpenDocument. The text of the paragraph is placed in the <text:p> element at line 9,

where the italic word is wrapped within the <text:span> element having a style-name

property that references a style defined at line 3. In OpenDocument, the XML code

from the listing above is packed with the name content.xml in an ZIP archive with a

structure known from JAR (Java Archive) packages. The archive may contain other files

like meta-data, styles, and images.

3.2.4 WordprocessingML

WordprocessingML (also known as WordML) is Microsoft’s XML schema introduced

with the release of Microsoft Office Word 2003. It is a lossless format containing all

information Word needs to re-open a document. It contains the text, formatting, styles,

metadata, images, etc. that is also available in the traditional .doc format. The new

XML-based format has several advantages: it allows the creation of Microsoft Word

documents with standard XML tools; it simplifies retrieval of portions of text, and the

conversion between Word and other formats is much simpler. Many XSLT stylesheets

for transforming WordprocessingML can be found on the internet proving the fact.

50

3 Document Processing with XML

However, the WordprocessingML schema is far away from being elegant. It was not

designed from scratch for the purpose of creating documents in XML markup. Instead,

it is an unveiling of the internal structures that have been existing in Microsoft Word

for years [LLR04]. For example, WordprocessingML does not make use of mixed content

that is common in the world of markup. Next, properties are set using empty sub-

elements instead of attributes; and the text embedded hierarchically using headings

is flattened into a sequence of paragraphs. Listing 3.7 shows how the paragraph “An

important paragraph.” is represented in WordprocessingML. The empty element <w:i/>

indicates how italic text is defined.

Listing 3.7: WordprocessingML Example

1 <w:p>

2 <w:r>

3 <w:t>An </w:t>

4 </w:r>

5 <w:r>

6 <w:rPr>

7 <w:i/>

8 </w:rPr>

9 <w:t>important </w:t>

10 </w:r>

11 <w:r>

12 <w:t> paragraph.</w:t>

13 </w:r>

14 </w:p>

Although WordprocessingML’s differs in terms of purpose and elegance, there are

existing some transformation approaches for it. For example there are XSLT stylesheets

available tranforming FO to WordML and the other way round. Microsoft offers a

WordML-to-HTML stylesheet and the Word XML Software Developer Kit contains a

tool14 that turns Microsoft Word into a lightweight stylesheet editor: given an XML file

that becomes formatted using Microsoft word, this tool generates an XSLT stylesheet

from it that will apply the formattings on similar XML files. The result document is a

WordprocessingML file ready to be opened in Microsoft Word.

14XSLT Inference Tool: https://partner.microsoft.com/global/competency/iwsolutions/

40021644

51

https://partner.microsoft.com/global/competency/iwsolutions/40021644
https://partner.microsoft.com/global/competency/iwsolutions/40021644

3 Document Processing with XML

3.2.5 DITA

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for

authoring, producing, and delivering technical information. The architecture and the

DTD was designed by a cross-company workgroup available at IBM’s developerWorks

Web site beginning in 1999. After significant updates it outgrowed its prototype stage.

In June 2005 DITA version 1.0 was approved as an OASIS Standard.

DITA is an architecture for creating topic-oriented, information-typed content ready

to be reused in a variety of ways. As such it differs significantly from DocBook al-

though they play in the same domain. While DocBook was designed for single technical

narratives, DITA focuses on discrete technical topics collected into information sets:

• A topic is a chunk of information about a subject. A DITA-topic is a container

for a body and any number of nesting topics. In detail, it consists of a title, a

body, an optional short description, a prolog and metadata. Listing 3.8 contains

a sample of a topic.

• The information type describes the content of a topic. DITA has three types of

this: a generic topic, tasks, and reference topics. Additional information types

may be derived from these three basic types using specialization shown in figure

3.10. Different information types usually support different kind of content.

Listing 3.8: DITA topic sample [DPH01]

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet href="ss/dit2htm.xsl" type="text/xsl"?>

3 <topic id="sample1">

4 <title >Title for the topic</title>

5 <body>

6 <p>A topic may contain nearly any combination of text

elements , including lists ...</p>

7

8 List item.

9 List item.

10

11 <p>definition lists ...</p>

12 <dl>

13 <dlentry >

14 <dt>Term</dt>

15 <dd>definition </dd>

52

3 Document Processing with XML

16 </dlentry >

17 </dl>

18 <p>and so on.</p>

19 </body>

20 <concept id="minicncpt">

21 <title>This is a concept in the "include zone"</title>

22 <conbody >

23 <p>Roses are red.</p>

24 </conbody >

25 </concept >

26 </topic>

Figure 3.10: DITA Information Types

Source: [Pri01]

DITA provides both, a DTD and a XML Schema representation of the architecture.

An implementation of the specification is available: the DITA Open Toolkit15 transforms

DITA content (for example topics) into deliverable formats. Therefore it uses XSLT

stylesheets to convert topics into XHTML or XSL-FO. A set of topics may be turned

into HTML Help, Java Help, and Eclipse Help. The invocation of the publishing process

may be executed by an Ant script.

The transformation of a set of documents from one XML type to another using DITA

is discussed in [Les01]. The author uses an automated process to transform documen-

tation of an Apache project (Apache XML) to DITA XML. A Servlet is then used

15DITA Open Toolkit: http://dita-ot.sourceforge.net/

53

http://dita-ot.sourceforge.net/

3 Document Processing with XML

to dynamically transform DITA XML to HTML and a XSL-FO formatter is used to

generate documentation in PDF format.

54

4 Implementing an XML-based

Document Management System

Up to now this thesis has discussed systems and technologies for reporting and XML

document processing. In chapter 2 some tools used for reporting business are discussed.

Among these tools some are based on stylesheet generation and processing, working

directly with XML input files. Other tools from the enterprise reporting and applica-

tion integration domain provide similar features but are often not specialized in XML

processing. Chapter 3 describes document processing with XML. It points out the ad-

vantages that can be yielded if a XML-centric approach of generating documents is

selected. Then some XML technologies are discussed, ranging from low-level APIs like

SAX and DOM to high-level languages such as XSLT.

In the following the implementation of a document management system is described

that is able to generate reports using enterprise data sources. During the development

of the application, solutions introduced in the former chapters of this thesis has been ap-

plied. Hence, this chapter provides an example how a reporting system may be designed

and developed that uses different XML technologies to generate reports.

Roughly speaking, the application consists of a Template Designer and a Document

Engine (refer to the following section 4.1 for an introduction to InStruct). The applica-

tion uses XSLT to transform an input XML document to the desired output format. For

this reason, the Template Designer is comparable to the stylesheet designers introduced

in chapter 2.1. With the assistance of the designer it is possible to create a template (in

fact an XSLT stylesheet) that transforms an XML document to a well-designed PDF

document. However, the application supports as well other data sources that make

it comparable to enterprise reporting systems from chapter 2.2 and EAI systems from

chapter 2.3.

The second component, the Document Engine, may be used to mass-produces docu-

ments. As already stated, the document generation process uses various XML document

processing technologies introduced in chapter 3.1, for example XSLT as the transforma-

tion language, XSL-FO to describe the desired document, and SAX to serialize XML in

a fast and memory-efficient way. During the design phase of the application some doc-

ument processing systems and formats (see Chapter 3.2) like DocBook, OpenDocument

55

4 Implementing an XML-based Document Management System

and DITA has been reviewed and checked for feasibility.

On the following pages the implementation of the InStruct-application is described in

deep. The discussed solutions and technologies from the former chapters are picked up

and referred accordingly. The focus lies especially on InStruct’s document generation

component developed by the author. The other parts of the system like the Template

Designer were mainly contributed by other team members and are covered only in brief.

4.1 InStruct Overview

InStruct is a document management system fully implemented in Java that facilitates

the creation and management of structured documents. The project has been started

in 2004 at GFT Technologies Office in Vienna. Beyond standard DMS-functionality

such as versioning, search and retrieval and user management it combines DMS with

EAI system, provides workflow support and offers a visual editor to create structured

documents enriched with data and formatting.

Template Designer Document Editor

Instruct Server
Document Engine

CMS EAI DMS

Adapter Layer

SAP RDBMS File ...

Core Components

Additional Components

External Systems/Data

Instruct Components

Figure 4.1: Instruct Components

56

4 Implementing an XML-based Document Management System

Instruct consists of the following core components (see figure 4.1): Template De-

signer, Document Editor, Document Engine, and an Adapter Layer. Apart from these

components there are several essential additional components which make InStruct an

enterprise solution with a multitude of functionalities. These additional components

are a Document repository and management system (DMS), a Content repository and

management system (CMS), and a Workflow engine (connected using EAI). The core

components have been built by the project team, whereas for the additional components

existing software systems have been chosen.

The Template Designer is a graphical user interface helping to build the document

template in a WYSIWYG-like way. A user can create a document template, set the

layout and define data mappings. The intended user of the Template Designer is an

advanced end-user, knowing the data sources and their relations and being able to create

a well structured document template. This template will be used later to generate a

document. In the Document Editor a user works with such a document: an instance

of a template. The user can add data to and change documents. In special cases the

adaptation of layout data is permitted. To use the Document no in-deep knowledge of

the consuming data is needed.

The Document Engine serves several purposes:

• It generates the target documents based on the defined document template and

the corresponding dynamic data.

• It manages the communication to additional components such as the CMS, DMS

and EAI.

• It is the central hub for communication to all clients and manages the complete

set of necessary metadata.

From within the Designer it is possible to connect to a DMS (for example using

WebDAV), browse and search in it and display properties. Document templates and

documents may be stored to and retrieved from the system. Apart from DMS InStruct

also supports CMS using the Java Content Repository API (JCR). This allows the

storing and retrieving of parts of content (for example terms and conditions) with or

without formattings. Instruct EAI features are based on the Java Connection Archi-

tecture (JCA). They allow to retrieve data from external systems, for example XML

schemes, mapping information and example or real data sets. All three types of systems

may also be accessed from within the Document Engine that executes the document

generation process.

57

4 Implementing an XML-based Document Management System

4.2 The Template Designer

The Template Designer is a Java based stand-alone application. It was implemented

on the basis of the Eclipse Rich Client Platform. This platform provides a minimal set

of plug-ins to build a Java-based rich client application that can compete with native

applications on any platform. It contains the Eclipse Runtime, the Standard Widget

Toolkit, JFace and the Workbench. The WYSIWYG-like editor of the Template De-

signer uses the Graphical Editing Framework (GEF) that allows developers to create a

rich graphical editor from an existing application model. It employs an MVC (model-

view-controller) architecture which enables changes to be applied to the model from the

view. The design of InStruct’s model is described in section 4.6.1.

Figure 4.2 shows a screenshot of the Template Designer. From the pallet on the right-

hand-side model elements like text blocks, lists, tables or images may be dragged onto

the editor view in the center of the window. The template in the screenshot represents

a letter for a purchase order. It has a table with cells containing text boxes grayed

out. These boxes reference data of XML files using XPath expressions. A template may

be associated with multiple XML Schema files describing the structure of XML files.

These XML files store the information that gets included when the final document is

generated from the template. The lower part of the window shows the properties of the

currently selected item in the editor. This property view allows to set formattings like

text alignment, colors, fonts, etc. The outline view on the left-hand-side displays the

structure (outline) of a template that is currently open in the editor. The use of a tree

structure provides a better view of the template compared to the 2-dimensional editor.

For example, it indicates the structure of the second row of the table, that is wrapped

inside a ForEach model element. This element ensures that the final document contains

a row for each purchase order item in an underlying XML file.

To insert data from XML documents first an XML Schema file must be assigned to

the template for each XML file to be used. Then various model elements represent-

ing XSLT instructions may be included in the template. The ForEach model element

representing the XSLT instruction for-each has been already described, other model

elements are ValueOf (the grayed out boxes) and Choose. The XPath expressions used

by these elements may either be defined by hand or automatically by using drag and

drop. Therefore each assigned XML Schema file is outlined as a tree of items in the

XSD Schema View. From there an item can be dropped onto the editor resulting in the

58

4 Implementing an XML-based Document Management System

Figure 4.2: Screenshot of Instruct Template Designer

appropriate XPath expression for this item to be generated. Afterward such expressions

can be edited using an XPath Editor. It provides a list of possible XPath functions and

operators and performs a syntax check of the expression. During document generation

the XPath expressions are evaluated by resolving the data from XML documents.

4.3 The Document Engine

The transformation process, from the stylesheet to the final document, might be either

executed on the client using the Template Designer or on the server using the Document

Engine. The Designer permits a quick preview of the template at design time, the Engine

is used in production to mass-produce documents. It provides the following features:

• Define Workflows: The Document Engine allows to define a workflow for a given

job. This enables the system to automate for example standardized letters and

reports including triggers, data capture and final output generation. Scenarios

with user interaction (notifications, activation) are as well possible.

• Data Capture: Data can either be captured actively by the Document Engine

(pull mode) or submitted by an external application (push mode), e.g. an EAI

59

4 Implementing an XML-based Document Management System

system.

• Document Generation: This covers the full document generation process from

the stylesheet to the final document including the integration of data.

• Syndication: It includes the generation of the media-specific documents and the

publishing in various formats (print, e-mails, server uploads, etc.).

The Document Engine is written in Java. For connectivity the open source enterprise

service bus (ESB) messaging framework Mule1 is used. Supported interfaces include

Web Services, JMS, HTTP, SMTP and many others. The functionality of the Document

Engine can thus integrated into other systems using one of these interfaces. However,

the document engine can be installed in several ways:

• As a stand-alone application

• As a stand-alone application with an application server providing its functionality

as a web service

• Using a message driven approach (JMS listener with attached message driven

beans)

• In a service oriented architecture where the single services can be embedded in any

J2EE compliant application server

Purchase Order Example. In the appendix the InStruct system is illustrated using a

simple purchase order example (section A.4 on page 95).

4.4 The Document Generation Process

InStruct’s document generation process is the main part of this implementation chapter.

The process is based on XSLT and is explained in detail in the following paragraph and

in figure 4.3.

As already presented, the Template Designer is a visual tool facilitating the creation

of document templates. The user can drag new elements from the palette and drop them

onto the editor view. These new elements may be static elements, like text boxes and

images, or dynamic elements that represent loops and conditions and define the mapping

to data sources. All changes on these elements are stored in the document model. From

1Mule: http://mule.codehaus.org/

60

http://mule.codehaus.org/

4 Implementing an XML-based Document Management System

Template
Designer XSLT

XSLT

Generator

XSL
FO PDF

XSL-FO

Formatter

Preview inside of Template Designer:

Mass-production with Document Engine:

XML

Dummy XML files
XSLT

Processor

XML

XML files data
external systems

XSL
FO PDF

XSL-FO

Formatter

XSLT

Processor

EAI

DMS

CMS

Figure 4.3: Document Generation Process

this document model an XSLT file can be generated by using the XSL Generator. The

generated XSLT stylesheet is going to be used internally by the preview component of

the designer and externally by the document engine. With the preview component the

user checks how the generated document looks like. In this case an XSL-FO formatter

takes the stylesheet and applies it to a sample XML file. Inside, the formatter calls an

XSLT processor to transform the XML file to an XSL-FO file; this will be rendered to

the output format—usually Adobe’s Portable Document Format (PDF). The PDF will

then be presented to the user. If the user is satisfied with the results the stylesheet will

be exported to the document engine. The document engine performs the same steps as

the preview component, with the only difference that the real data sources are queried

instead of using a sample XML file. These transformation steps on the document engine

can be invoked manually, by using a Web Service, messaging or other interfaces. Such

mass produced PDFs can be printed, sent by e-mail, or archived afterwards.

The implementation of the generator and the requirements that influenced the design

of components dependent on the generation process are covered in-deep in section 4.6.

61

4 Implementing an XML-based Document Management System

4.5 Generator Prototypes

The aim of the document generation process is to transform the input (which may consist

of one or more XML files) into the output (usually PDF). At first two prototypes with

different design-aproaches of this process have been developed to ensure feasibility. In

the following sections each approach is discussed in detail and at the end a conclusion

is drawn.

The main point is where to store what information: There is “static” information (for

example a paragraph of text), there are “dynamic” elements (like loops and conditions),

and there are elements including external data. All these types of information may be

either stored in the stylesheet or in the source XML file. The two approaches differ in

this matter. In the following each approach is examined focusing on how it incorporates

the concepts of separation of concerns (cp. section 3.2).

4.5.1 Generating the Stylesheet

Document
»XML«

Generated by
 Template
Designer

dynamic
Style-
sheet

»XSLT«

Result
Document
»XSL-FO«

XML

XML data from
external systems

Style-
sheet

»XSLT«

Approach 2: Generating the
XML document

Approach 1: Generating the stylesheet

XML
XML data from
external systems

XSLT Processor

Resolved by processor
via document() function

Transformation
Input

Transformation
Input

static
XSLT

imports

Generated by
 Template
Designer

Figure 4.4: Two Generator Prototypes with different Design Approaches

On the upper part of figure 4.4 the first approach is illustrated. The XSLT stylesheet

is generated by the template designer according to the user’s definitions made in the

62

4 Implementing an XML-based Document Management System

graphical user interface. It contains static elements like simple paragraphs and dynamic

elements referring to XML data from external systems. With these two parts the trans-

formation is executed: The stylesheet is applied to the XML file resulting in an FO

document. If the processor encounters static elements it copies it to the output; by

encounting dynamic elements the actions are performed and, for example, data from the

external XML is queried.

This approach seems to be straightforward and easy but under the hood the structure

of the generated stylesheet is not as perfect as it seems. In a typical document-oriented

stylesheet the use of XSLT realizes many benefits. However, in this case a data-oriented

XML is transformed to a document-oriented FO and some of these benefits disappear.

To investigate the structure of the stylesheet, it helps to take a closer look at an

example. Please refer to appendix A.1 for a short introduction to the addressbok-

example. Based on this XML file the following sentence could be the head of a letter

designed by the template designer:

Dear Mr Green,

or, writing to a woman

Dear Ms White,

This very simple sentence already contains the three major concern areas of a typical

document. The following list shows how the information is distributed among stylesheet

and XML file.

• Content: Fixed content must be stored in the stylesheet because it is common to

all documents and the information can not be found in the XML data file. In the

letter example above the fixed content is the word Dear and the text of the letter.

Both is placed inside a fo:block element.

• Logic: Logic must be stored in the stylesheet as well. In the example above the

system has to decide about using Mr or Ms depending on if the letter will be writ-

ten to a man or a woman. This can be done with the XSLT instruction<xsl:if>

that reads the <gender> element from the input XML document. The surname of

the person is inserted using an <xsl:value-of> instruction.

• Style: The salutation should be formatted in Helvetica 12pt ; this style information

is stored in the stylesheet using formatting properties of the <fo:block> element.

63

4 Implementing an XML-based Document Management System

Listing 4.1: XSLT for the sample letter, Approach I

13 <xsl:for -each select="addressbook/person">

14 <fo:block break -before="page" font -family="Helvetica

" font -size="12pt">

15 <xsl:text >Dear </xsl:text >

16 <xsl:if test="gender=’male ’">

17 <xsl:text >Mr </xsl:text >

18 </xsl:if >

19 <xsl:if test="gender=’female ’">

20 <xsl:text >Ms </xsl:text >

21 </xsl:if >

22 <xsl:value -of select="surname"/>

23 <xsl:text >,</xsl:text >

24 </fo:block >

25 <fo:block font -family="Helvetica" font -size="12pt">

Here follows the text of the letter.</fo:block >

26 </xsl:for -each>

The list above shows that all information is stored in the stylesheet. From view of

separation this can be considered as a disadvantage of this approach. Additionally, the

stylesheet uses the pull programming style and contains only one big template where all

XSLT instructions are embedded. However, the XSLT is intuitive and easy to write

because it is a fairly straightforward approach. Leading graphical XSLT stylesheet

designers are also using this approach.

4.5.2 Generating the XML Document

The second prototype implements another design approach. It is illustrated in the lower

part of figure 4.4. Again the XML input file is coming up from an external system. A

second XML file contains the structure and the content of the document, hence, called

the document-XML file. Listing 4.2 shows such a document-XML for the letter example.

It consists of two parts: the <styles> element contains all styles defined for this spe-

cific document; the <content> element holds the actual content plus the logic elements.

A style has a unique name, some properties (the same as defined in FO), and may in-

herit properties from another style. The content may consist of elements representing

paragraphs, lists, tables, images and other block- and inline-level elements. Also there

are logic elements like <for-each> and <value-of> standing for the corresponding XSL

elements.

64

4 Implementing an XML-based Document Management System

Listing 4.2: Document-XML for the sample letter, Approach II

1 <?xml version="1.0" encoding="UTF -8"?>

2 <document >

3 <styles >

4 <style name="standard">

5 <property name="font -family" value="Helvetica"/>

6 <property name="font -size" value="12pt"/>

7 </style>

8 <style name="break" inherits="standard">

9 <property name="break -before" value="page"/>

10 </style>

11 </styles >

12 <content >

13 <for -each id="person">

14 <p style="break">Dear <value id="salutation"/>

15 <value id="name"/>,</p>

16 <p style="standard">Here follows the text of the letter.</

p>

17 </for -each>

18 </content >

19 </document >

After saving the template the generator creates both, the XSLT file and the document-

XML file; together they are holding all information needed for the transformation. Dur-

ing the transformation the XSLT processor reads the document-XML and applies the

stylesheet to it. The stylesheet consists of two parts: a static part which must not be

generated and a dynamic part which is generated. The static part is referenced from

the generated stylesheet via an import instruction.

The static part contains the instructions that convert the nodes of the document into

FO nodes. For each element in the source file (e.g. <p>) a template with a correspond-

ing match attribute (match="p") exists. For example a <p> element is transformed to a

<fo:block> element and an element to an <fo:inline> with appropriate format-

tings added. This fixed stylesheet containing all these template rules can be used for all

documents.

The dynamic part of the stylesheet comprises all instructions that handle logic. E.g.,

the document-XML contains a <value> element transformed to Mr respectively Ms.

Listing 4.3 lists the template responsible for the salutation. The data parameter is

needed because nodes from two different XML files must be read. The current node

65

4 Implementing an XML-based Document Management System

comes from the document-XML which contains the <value> element. The nodes from

the data-XML are first created using the document() function. After this they are

passed to the template using the data parameter. The parameter now contains the

<gender> element used for deciding which salutation should be used.

Listing 4.3: XSLT for the sample letter, Approach II

50 <xsl:template match="value[@id=’salutation ’]">

51 <xsl:param name="data" select="’’"/>

52 <xsl:for -each select="$data">

53 <xsl:if test="gender=’male ’">

54 <xsl:text >Mr </xsl:text >

55 </xsl:if >

56 <xsl:if test="gender=’female ’">

57 <xsl:text >Ms </xsl:text >

58 </xsl:if >

59 </xsl:for -each>

60 </xsl:template >

The following list sums up how the main concerns are distributed among the files:

• Content: Fixed content is stored in the document-XML using a well defined

schema. In the letter example above the fixed content is the word Dear and the

text of the letter. Both texts are placed inside the p element.

• Logic: Logic must be stored in the dynamic part of the stylesheet because XSLT

does not allow to build full XPath expressions with variables. In the letter example

the salutation and the name of the person is the logic part.

• Style: The style information is stored in the document-XML namely in the styles

element at the beginning of the document. Each style element then has some

properties which represents the formatting properties to be used in the formatting

objects.

The second approach better succeeds in separating all three concerns. It also uses a

more advanced XSLT programming style. Holding the content in the XML file makes the

use of the push model (see 3.1.5.2) possible. Another advantage is about serialization and

roundtripping which does not relate directly to XSLT. The model only exists in memory

and must be serialized at the end of each editing session. By using approach II it can

be serialized into the same XML which will then be input for the XSLT tranformation

66

4 Implementing an XML-based Document Management System

process. By starting a new session the XML file can be parsed back, so the model is

available again in memory.

As a disadvantage may be seen that during the generation process all the information

must be splitted into structure which is stored in the XML document, and logic stored in

an XSLT stylesheet. The implementation of this splitting is time-consuming and yields

no direct benefit. Linking the logic (stored in the stylesheet) and the data it operates

on (stored in both document-XML and data-XML) is complicated and inflexible. Next

the document-XML file must be valid against an XML Schema. This schema is rather

complex because it contains elements for representing both structure and formatting.

This would lead to numerous elements converted to FO elements one-to-one. The main

loss results from using two input XML files. Although XSLT allows the use of multiple

input files using the document() function—the handling of such templates is complicated

(see listing 4.3).

4.5.3 Conclusion

For design and architecture purposes a clean separation of concerns is desirable. In a sce-

nario like DocBook—where XSLT is just used to do formatting and restructuring—this

yields to an increase in maintainability. In the case of a data-to-document transforma-

tion, where the XSLT is primarily responsible to perform logic instructions, separation

of concerns is hard to implement and does not necessarily increase clarity.

In the case of InStruct the XSLT stylesheet is generated and must not be edited

afterwards by humans. In addition, each designed template results in one stylesheet

that can be invoked multiple times by the document engine. So there is no imperative

to separate content, logic and style. A flexible solution is far more important. For that

reasons the first approach was selected, to meet best the requirements.

4.6 Implementation of the Generator

The purpose of the generator is to create an XSL stylesheet out of the document model

that was produced by a visual tool. In short the process connects four artifacts:

• The Document Model is the in-memory-representation of the template, con-

structed by the Template Designer. The XSL Generator converts this model into

the Stylesheet Model.

• The Stylesheet Model is an in-memory-representation of the XSL stylesheet

containing both objects representing elements from the XSLT namespace and the

67

4 Implementing an XML-based Document Management System

FO namespace. The XSL Marshaller then serializes the Stylesheet Model into the

Stylesheet.

• In production the XSL Stylesheet can be used by the Document Engine to mass-

produce documents or it is used in the Template Designer to generate a preview

of the document. In the end the final artifact is the PDF Document.

• The PDF Document is generated by an XSL-formatter using the generated

stylesheet from the former step and the XML files as input.

Document
»object model«

Stylesheet Model
»object model«

Visitor builds

Stylesheet
Model

Stylesheet
»XML stream«

Visitor builds

XML using SAX XSLT

Designer

×

save

load

Figure 4.5: Stylesheet Generation

Figure 4.5 shows the two generation steps from the internal Document Model to the

XSL stylesheet. The following sections describe the process and the artifacts in detail.

4.6.1 Document Model

The document model is an important design artifact of InStruct. It represents the

template document that can be constructed with the Template Designer. It serves

multiple purposes:

• for the GUI it functions as the model of the model-view-controller (MVC) archi-

tecture,

• the XSL Generator uses the model as input and creates the XSL stylesheet from

it, and

• by saving the application has to make the model persistent to be able to restore

it in subsequent sessions.

68

4 Implementing an XML-based Document Management System

Those purposes led to some important requirements:

• First, the model has to be independent from the view so that it can satisfy the

MVC paradigm. Additional views can only be implemented easily if the model is

separated from all views.

• Second, it must contain all information that is needed for the XSL stylesheet gen-

eration. Since FO is used in the stylesheet, the model should be similar expressive

than FO.

• Third, to support persistence it has to be possible to mark some parts of the model

as persistent while others remain transient. To increase robustness the serialized

data should also remain parseable even if the underlying model has changed due

to updates.

MVC Architecture The Model-View-Controller architecture separates the applica-

tion’s data model user interface and control logic into three distinct components. The

model is the domain-specific representation of the information on which the application

operates [Fow02, p. 56]. One main benefit of the MVC architecture is that the model

remains stable (as long as the modeled domains remains the same) whereas the view

usually undergoes frequent change. In case of InStruct the modeled domain is XSL and

the model’s complexity strongly depends on the features the editor should support.

Input for Generator. The second requirement is that the model must contain all in-

formation needed for the XSL stylesheet generation. XSL-FO in version 1.0 is already a

very complex specification. Although not all XSL-FO features have to be implemented

from the very beginning the system design has to be very generic. Thus it should be

able to add some feature in a later version without changing the whole system. The

most important concepts of FO must be supported by the document model.

This leads to a model comparable to the elements defined in XSL-FO and XSLT:

there are block-level objects like Text, List and Table; there are inline-level objects like

Image and Inline; and there are so-called logic objects like LogicForEach, LogicIf and

LogicValueOf allowing to define containers that are later transformed to the appropriate

XSLT instructions.

Another important part of the model is about properties. The FO specification defines

a huge amount of Formatting Properties that determine the final appearance of the

document. The template designer supports most of them. A formatting property is far

more complex than a simple list of attributes: there are different types of properties

69

4 Implementing an XML-based Document Management System

that belong to different groups, the fine-grained inheritance system and the possibility

to define compound properties. Instruct’s style and property system is outlined more

precisely in section 4.6.1.

Persistence. The model should support persistence so that it can be restored in a

subsequent session without loss of data. For this persistence three different approaches

have been evaluated: Native Java Serialization, XML Data Binding and Java Long-Term

Persistence for JavaBeans.

Native Java Serialization is a common serialization technique available in any Java

version. It is easy to implement but has some major drawbacks: the biggest problem

with native Java serialization is that deserialization fails if the underlying classes have

changed. This causes compatibility problems when product updates occur. In addition

the serialized data is binary, and hence it is not very well suited for persistence over a

long period.

XML Data Binding provides a way to convert objects to XML and back (see as well

4.6.2). Although there are existing many tools for XML Data Binding with Java none

of them fulfilled all requirements. One problem with XML data binding is that most of

the tools generate Java classes out of XML Schema and not in reverse. In the case of

InStruct, another problem had been, that these generated classes can not be changed

afterwards. This implies that the classes can be used as data containers only but not to

implement business logic.

Java Long-Term Persistence for JavaBeans is a Java Specification Request of the Java

Community Process released in May 2002 [Jav02]. Although it is primarily targeted at

IDE vendors to provide a standard way to archive JavaBeans in long-term it can be

used with all bean-like Java objects. A stable implementation can be found in the Java

2 Standard edition since version 1.4. With the class XMLEncoder objects can be made

persistent using a standardized XML format. The class XMLDecoder may then be used

to parse this XML and reconstruct the objects. BeanInfo classes are provided to define

in detail which attributes and methods should be used by the persistence system. Java

Long-Term Persistence was chosen for the implementation because it proved to be stable

and flexible enough to fulfill all requirements for persisting the document model.

UML Class Diagram

Based on the requirements the document model was designed with the knowledge

about formatting objects in mind (left-hand-side of figure 4.6). Base class of almost

all classes in the model is the abstract class ModelElement. It has an association with

70

4 Implementing an XML-based Document Management System

the Style class storing formatting properties, offering some methods common to all

model elements and implementing the observer pattern to notify listeners about changes

of properties. Concrete subclasses of ModelElement are Document (the root object),

PageMaster that contains a page layout, PageSequence, and Flow.

ContentElement

Block

TextInline
text : String

Container

LogicForEachLogicChoose

ImageInline

Table

Document

PageMaster

PageSequence

Flow

Style
name : String

getFormattingValue()

0..1

0..n

+parent
Style

0..1

+childStyles
0..n

ModelElement

getValue()

1

0..n

+parent
1

+children
0..n

doc:Document

pm:PageMaster

ps:PageSe
quence

body:Flow

block2:Block

header:Flow

block3:Block

table1:Table

container1:
Container

inline1:Tex
tInline

block1:Block

inline2:Tex
tInline

All aggregations
realized with the
child/parent
aggregation.

Figure 4.6: UML Class Diagram and Instance Diagram “Document Model”

Another abstract class is ContentElement inherited from ModelElement. It is the base

class for all classes that are visible on the user interface. Example of subclasses are Block,

TextInline, or Table that represent the formatting objects fo:block, fo:inline, and

fo:table.

One of the most notable associations is the parent/children aggregation of the class

ModelElement. With this aggregation the hierarchy of instances may be built as shown

on the right-hand-side of figure 4.6: doc (class Document) is the root object of the

model owning a page sequence and a body. The body has two children, container1

and block2. The former has again two children, block1 and table1 and so on. The

aggregation is navigable in both directions, that enables each model element to find its

parent.

Styles and Properties

XSL-FO supports a very complex property system (see section 3.1.6.1). The most

important parts of this concept are implemented in Instruct’s model. Additionally a

71

4 Implementing an XML-based Document Management System

style concept is implemented allowing to reuse styles for model components. Figure 4.7

shows the parts of the UML class diagram relevant to the style concept.

ColorType
blue : int
red : int
green : int

get...()

Length
unit
value : double

get...()

Percentage
value

getValue()

FontFamily
font : String

getFont()

XPath
xpath

getXPath()

URIType
uri : URI

getURI()

EnumBorderWidth
THIN : String
MEDIUM : String
THICK : String

EnumAlign
LEFT : String
CENTER : String
RIGHT : String
JUSTIFY : String

ModelElement

1

0..n

+parent
1

+children
0..n EnumType

value

getEditorValue() : ValueType

Style
name : String

0..1

0..n

+parentStyle

0..1

+childStyles
0..n

ValueType

toFOString()
toGUIString()
getPredefinedValues()

<<Interface>>

1
+editorValue

1

0..n

+formattingValue

0..n

PropertyManager
<<Singleton>>

FormattingProperty
valueTypes : Class[]
inheritable : boolean
key : String
label : String

1
+initialValue

*

+formattingProperties

*

1

Style stores instances of ValueType
in a Map using instances of
FormattingProperty as keys.

Figure 4.7: UML Class Diagram “Property and Style System”

As already shown in the main UML diagram a ModelElement has an association to a

Style. In this context a style is used to store the information about the appearance of an

object. A Style may have a parent from which it inherits the appearance information.

For example this makes it possible to define a style named important that inherits all

values from a style named standard (with a font Times 12pt but colors the text in red.

At system startup the PropertyManager (a Singleton) creates for each Formatting

Property defined in XSL-FO one instance of the class FormattingProperty that rep-

resents it. This class owns a unique key, an internationalized label and a list of value

classes used for this Formatting Property. A value class is a class that implements the

ValueType interface, for example FontFamily, Length, or Percentage. These classes

correspond to the datatypes specified in the XSL-FO specification.

Now turning back to styles: a Style stores its appearance information in an associative

array. As key it uses the key attribute of the instance standing for the formatting

72

4 Implementing an XML-based Document Management System

property. For the value it uses an instance of a value class. The code snippet in listing

4.4 shows how a style with a font size of 12pt may be created.

Listing 4.4: Creating Styles and Properties

1 Style style = new Style ();

2 ValueType length = new Length("12pt");

3 style.setFormattingValue("font -size", length);

The inheritance hierarchy of a Style is fully transparent to a model element. The

model element calls the getFormattingValue() method of its style and gets a ValueType

object returned. If this value was specified on the style or one of its parents does not

make a difference for the calling model element. Additionally to the inheritance of

styles properties can be inherited as well. This behavior is specified in XSL-FO and is

implemented by getValue() method in the ModelElement class.

Figure 4.8 is an activity diagram showing how formatting values are resolved. In a

first step the model Element tries to get the value of a specified property from its style.

If the style does not return any value the parent model is consulted. If a style is asked

for a property it first looks inside its map, if a value for the desired property is found

there. If nothing is found the style asks its parent style. If all steps do not return any

values the initial value for this property (as defined by XSL-FO) is returned.

get value from model element

get value from styleget value from style

ask parent style[no value found]

[value found]

ask parent model element[no value found]

[value found]

get initial
value

[no value found & no parent]

Figure 4.8: Resolving Inherited Property Values

4.6.2 Stylesheet Model

The generation process causes the Document Model to be converted to the Stylesheet

Model. This step creates an in-memory representation of the XSL stylesheet. The

73

4 Implementing an XML-based Document Management System

Stylesheet Model is independent from the Document Model and focuses only on XSL

and XSLT. Its design is driven by the following requirements:

• Completeness. It must be possible to create all elements needed in the final

stylesheet. These are elements from the XSLT namespace, XSLT extensions, and

all used literal result elements: XSL-FO and SVG.

• Simple Use. The objects should be intuitive to use. They should have construc-

tors and getters/setters for their attributes to facilitate programming.

• Marshalling. It must be able to marshal the XSLT model to XML in order to

produce the XSLT stylesheet.

• Memory usage should not be too exhaustive.

• Incremental Updates. It should be possible to update only parts of the XSLT

model, if a part of the underlying document model is changing. This should

increase performance which is an important requirement for the whole generation

process.

The following sections describe what has been done finding the best model for XSL

and XSLT representation. First some existing open source projects were analyzed if

their internal models may be of use for the project. Then some code generators based

on XML Data Binding were investigated. After this it became apparent that both ways

did not meet the requirements a new model was written.

Evaluation of Existing Models

The open source community provides many XSLT processors that each comes with

its own data model. The most known open source processors include Apache’s Xalan

and Michael Kay’s Saxon. The model of both processors were considered as a basis for

the generator’s stylesheet model.

Apache Xalan. The source of Xalan-J of the current version 2.6 was inspected. The ob-

jects representing the XSLT elements are contained in the package org.apache.xalan.-

templates. For each XSLT element exists an equivalent object. All the objects have

well defined methods. For example the class ElemForEach represents the xsl:for-each

element and has a setSelect() method that takes an XPath object as input.

74

4 Implementing an XML-based Document Management System

Saxon. The Saxon-model (version 8.4) stores its elements in the package net.sf.-

saxon.style. The model is backed by a complex system of inherited classes and in-

terfaces. The class XSLForEach provides a public generic method for setting attributes.

The attribute that stores the select value is declared private and therefore cannot be

accessed from outside. In exchange each class provides a validate() method allowing

to check if the object is valid to the XSLT specification.

Both XSLT processors, Xalan and Saxon, parse existing XSLT stylesheets and build up

some internal model. Nevertheless both do not offer the capability to use their internal

model from outside and to serialize it back to XSLT documents. Another problem is

the lacking possibility to integrate literal-result elements (in this case XSL-FO elements)

easily. That is why these two attempts have been dropped.

Apache FOP. Currently FOP is the only open source XSL-FO formatter. The latest

maintenance release is 0.20.5 from mid 2003. It was tested if it possible to use FOP’s

model as a basis for generating the elements from the XSL-FO namespace. FOP has

similar drawbacks as Xalan and Saxon. Especially, it lacks integration and serialization

features. Additionally the source code is hardly documented which makes any modifi-

cations difficult.

Evaluation of XML Data Binding Tools

Another attempt was to use a Data Binding Tool. XML Data Binding provides

a way to convert objects both to XML and reverse. Most Data Binding frameworks

generate classes and interfaces from an XML Schema or DTD. These classes can then be

instantiated. The frameworks allow to marshal those objects to XML and to unmarshal

XML back to objects. The produced XML is valid against the defined schema and

usually the objects can be validated against the same schema in-memory [Ger04].

This section demonstrates the attempts using the Data Binding Tools JAXB2, XML-

Beans3 and Castor4.

Schema from the XSLT 2.0 Draft The current XSLT 2.0 working draft contains a

non-normative XML Schema describing the structure of an XSLT stylesheet. Although

2JAXB (Java Architecture for XML Binding) implementation from sun, version 1.0.4: http://java.
sun.com/webservices/jwsdp/

3Apache XMLBeans, version 1.0.3: http://xmlbeans.apache.org/, originally developed by BEA
Systems

4The Castor Project, version 0.9.6: http://www.castor.org/

75

http://java.sun.com/webservices/jwsdp/
http://java.sun.com/webservices/jwsdp/
http://xmlbeans.apache.org/
http://www.castor.org/

4 Implementing an XML-based Document Management System

it uses many advanced XML Schema constructs it only describes the most important

constraints of an XSLT stylesheet.

Unfortunately, all three tools failed to work with the given XML Schema as input.

JAXB was able to generate some classes (although with warnings) but terminated in

a NullPointerException while running a simple marshalling task. With Castor and

XMLBeans it was even not possible to generate the classes. Both complained about

errors in the XML Schema. Further investigations showed up that XMLBeans’ schema

validator reports an error in the schema that is actually correct. In this case XMLBeans

tripped over a special part of the schema specification allowing a complex type with

simple content to be derived by restriction from a complex type with mixed content

[Kay05]. Drawing a conclusion, the XML schema published in the working draft can

not be used as a basis for the XSLT model. Currently, it seems that it is more a good

quality check for schema processors.

RelaxNG schema from Norman Walsh Another attempt was to use the RelaxNG

schema for XSLT 2.0 by Norman Walsh [Wal04] written to provide a grammar-checker

for the text editor Emacs. Sun’s JAXB implementation has a experimental support

for RelaxNG. First, the RelaxNG compact syntax had to be converted into the XML

syntax. After some binding customizations JAXB was able to generate classes based on

the schema. Soon it became clear that the generated classes may be very useful to check

the grammar of an XSLT 2.0 file in Emacs but not to build an XSLT model. JAXB

maps every XSLT element to an interface with a nested object containing the actual

data. The resulting object model is far away from being elegant.

The experiences gained using Norman Walsh’s RelaxNG schema demonstrates that

data binding tools currently often does not produce code that meets high demands.

Another general problem with XSLT and the data binding approach is about literal

result elements. Literal result elements are elements inside the stylesheet which are no

XSLT instructions and thus get copied as-is to the result document. Because of literal

result elements a stylesheet does not consist of elements from the XSLT namespace only.

This hast to be addressed in a schema for XSLT. It also implies a data binding approach

being able to handle arbitrary elements in a usable way.

Realization

The two preceding sections illustrate that both existing models from open source

projects and XML data binding-approaches did not fulfill the requirements. As a result

76

4 Implementing an XML-based Document Management System

a new object model has been developed from scratch. Because no complicated features

like validation are needed the Stylesheet Model is based on a few simple classes.

Classes representing formatting objects implement the abstract class Formatting-

Object. It provides a map and accessor-methods that offer storing and reading format-

ting properties. A descendant of this class is the class FormattingObjectWithContent

used for all formatting objects that can have (mostly) arbitrary content. It implements

the Interface ObjectWithContent and its sole method getContent() returning a list

with all children of an instance. For objects representing elements from the XSLT

namespace an analog implementation exists. Both implementations use a special list

allocated not until an element is inserted.

A convenient usage of most FO classes are realized with constructors and getter-

s/setters for often used properties. The XSLT classes provide getters/setters for each

attribute. Classes representing XSLT elements with mandatory attributes (such as the

test attribute of the <xsl:if> element) do not provide a default constructor but a

constructor with parameters for the mandatory attributes. However, beyond this, no

further validation is implemented.

4.6.3 Transformation from Document to the Stylesheet Model

As a first step of the generation process the Document Model is transformed to the

Stylesheet Model. The result is not already the final serialized stylesheet but only an in-

memory representation. The Stylesheet Generator takes the Document Model as input

and generates this in-memory representation of the XSL stylesheet: an instance of the

Stylesheet Model (see preceding section 4.6.2). Since the Document Model was designed

with XSL-FO in mind many document model elements are already similar to XSLT and

XSL-FO elements. So they can be converted to their corresponding elements of the

Stylesheet Model.

The Stylesheet Generator uses the Visitor Pattern [GHJV95, p. 331] to create the

stylesheet objects. This behavioral pattern allows an operation to be performed on the

elements of an object structure. Additionally it lets you define a new operation without

changing the classes of the elements on which it operates. In the case of InStruct those

elements are objects of the Document Model which should remain independent from

the Stylesheet Generator. For each object in the Document Model there exists a visit

method in the StylesheetVisitor class accepting a special object from the Document

Model. If invoked the method constructs the Stylesheet Model instance. For example,

the signature of the visit method for a block may look like this:

77

4 Implementing an XML-based Document Management System

public void visitBlock(Block block)

During the transformation process the visitor comes to a Block object and calls this

method that creates an instance of the FOBlock class.

The drawback of the visitor pattern is that each visited objects (elements of the

Document Model) and also each new constructed objects (elements from the Stylesheet

model) must ”know” their parents and children.

An example: a Block may have children (e.g. a TextInline) and can itself be placed

inside a Container. The corresponding objects from the XSL model are FOBlock con-

taining FOInline objects and can itself be placed inside an FOBlockContainer. When

the visitBlock method is invoked a new FOBlock object is constructed and must be

added as a chil to an already existent FOBlockContainer; then the visit method is called

iteratively for all the Block’s children.

In the method visitBlock(Block block) we know the block itself (given as param-

eter), and of course the newly created FOBlock instance; thus we are able to iterate over

the block’s children. Nevertheless, the parent of the newly created FOBlock is missing.

It was created in a preceding invocation of another visit method. To be able to get the

instance of the needed container the visit method is extended with another parameter

that contains a reference to an object used as the parent of the newly created object.

Now it follows the extended signature of the visit method for a block :

public void visitBlock(Block block, Object parent)

The parameter block is the instance of the Block element visited. The parameter

parent is an object of the Stylesheet Model to which the newly created object is added.

When invoked the visitBlock() method constructs a new FOBlock object that is added

to the given parent.

The use of the parent parameter makes incremental generation of the Stylesheet

possible: in this case only the changed parts have to be re-generated, while all unmodified

object remain untouched. The incremental approach improves the performance of the

generation process.

The Stylesheet Generator implements the Visitor pattern using a reflection mecha-

nism similar to [Blo00]. The implementation uses reflection to call the appropriate visit

method instead of calling the accept(Visitor) method as proposed by [GHJV95]. This

has the advantage that the elements on which the operation is performed have no visitor-

specific methods at all. A disadvantage of this more flexible approach is caused by the

78

4 Implementing an XML-based Document Management System

use of reflection: renaming a class in the document model breaks the link between this

class and the visit method. This also applies to automatic class name refactoring.

For each class of the document model the Reflective Visitor has a corresponding visit

method as already explained: given the class Block the visitor implements the method

visitBlock(Block block). Additionally there is a new method visit(Object obj,

Object parent) (see listing 4.5). A call of this method starts the conversion: it uses

reflection to gain the class name of the given object obj, in this example Block. Then it

creates a Method object for the visitor’s method with the name visitBlock and invokes

it. The visitBlock method constructs a FOBlock object later serialized to the XSL-FO

element fo:block.

Listing 4.5: Reflective Visitor’s visit Method

1 public void visit(Object o, Object parent) {

2 // This strips off the package information giving us just

the class name

3 String fullClassName = o.getClass ().getName ();

4 String className = fullClassName.substring(fullClassName.

lastIndexOf(’.’) + 1);

5 String methodName = "visit" + className;

6 // Now we try to invoke the method visit

7 try {

8 // Get the method visitFoo(Foo foo)

9 Method m = getClass ().getMethod(methodName , new Class[]

{ o.getClass (), Object.class });

10 // Try to invoke visitFoo(Foo foo)

11 m.invoke(this , new Object [] { o, parent });

12 } catch (Exception e) {

13 // Handle exceptions

14 }

15 }

In general, the entry point of the generation is an instance of the Document class,

the root class of the Document Model. For the document object the root object of the

stylesheet (class XSLStylesheet) and the root template (class XSLTemplate) (with a

match attribute that has the value ”/”) are generated. All children of the document

object are then converted to their XSL representation iteratively: it has children that

represent the FO page-sequences. For each child the visit Method is called. The page-

sequences have children on its own, that are as well visited. This iterative process is

repeated until a leaf-node is found. This assures that the whole tree of the document

79

4 Implementing an XML-based Document Management System

model is traversed and converted to the Stylesheet Model.

The resulting stylesheet has only one root template. Whenever there is a LogicFor-

Each object in the document tree an XSL for-each statement is generated. This XSLT

programming-style is also known as the pull -style. Table 4.1 shows how the objects of

the document model are represented in XSLT or XSL-FO respectively.

Document model XSL-FO/XSLT

Document xsl:stylesheet, xsl:template ("/")

PageMaster* fo:layout-master-set, fo:simple-page-master,

fo:page-sequence-master

PageSequence* fo:page-sequence

Flow* fo:flow, fo:static-content

Block, TextInline fo:block, fo:inline

Table fo:table

Style, FormattingValue Attributes (Formatting Properties) of each Formatting

Object

LogicForEach xsl:for-each

LogicChoose xsl:choose

LogicValueOf xsl:value-of

... ...

Table 4.1: Mapping between the Document Model and XSL

Mapping Abnormalities: Tables The table above shows that most Document Model

elements have obvious representations in XSLT or XSL: a Flow is converted to FOFlow,

a Block to FOBlock and so on. However some elements must be treated separately. This

section tells how tables with a dynamic number of rows and columns respectively are

handled.

To understand the problem one needs to know how tables must be defined in XSL-FO.

Usually a table defines a number of rows which themselves have a number of cells. The

columns evolve implicit from this definition (however it is possible to define rows to be

able to specify formatting properties on them). This row-centric structure has a major

impact on how loops on tables have to be implemented.

Figure 4.9 shows how three possible ways of surrounding table rows or columns with a

for-each instruction. In part (A) on the left a table is shown containing a list of regions

and their sales: each region is placed in one row. A for-each instruction is used to iterate

over all <region> elements in an XML file. The source code in the middle left shows how

80

4 Implementing an XML-based Document Management System

<table>
 <row>
 <cell>Region</cell>
 <cell>Sales</cell>
 </row>
 <xsl:for-each select="region">
 <row>
 <cell>
 <xsl:value-of select="name"/>
 </cell>
 <cell>
 <xsl:value-of select="sales"/>
 </cell>
 </row>
 </xsl:for-each>
</table>

Region X
€#Sales

Region South
€3MSales

North
€4M

Region Sales
€#X

Region Sales
€3MSouth
€4MNorth

<table>
 <row>
 <cell>Region</cell>
 <xsl:for-each select="region">
 <cell>
 <xsl:value-of select="name"/>
 </cell>
 </row>
 </xsl:for-each>
 </row>
 <row>
 <xsl:for-each select="region">
 <cell>
 <xsl:value-of select="sales"/>
 </cell>
 </xsl:for-each>
 </row>
</table>

Region X
#€Year X

Region South
€3.0M2003

North
€4.0M

€3.5M2004 €4.2M
€3.1M2005 €4.3M

(A) (B)

(C)

Figure 4.9: Tables and For-Each

this can be implemented in XSLT. Note that the names and structure of the fo:table

are shortened (and thus not correct) for the sake of brevity. It shows a row wrapped

by an <xsl:for-each> instruction. The row contains cells that output the name of the

region and its sales.

In part B the same table is given, but with its axes swapped. Now there exists a

column for each region and its sales. Due to the row-centric structure of tables the

implementation for this table is a bit more complex. Yet there are two for-each instruc-

tions: one for the first row containing the names of the regions; another one for the

second row that contains the sales.

Of course a combined version of the table with both a dynamic number of rows and

81

4 Implementing an XML-based Document Management System

columns is possible. This can be used to create a table offering the sales of different

regions in different years (see part (C) in the figure).

4.6.4 Stylesheet Serialization

In the former step the Document Model was transformed to the Stylesheet Model. The

Stylesheet Serialization now serializes the Stylesheet Model to XML fed as input for the

XSLT transformer. This step can be compared to the marshalling step in an XML data

binding environment or the serialization of a DOM tree.

For the serialization of the Stylesheet Model a visitor pattern is used again. For

performance reasons a SAX-based approach was selected. A DOM-based solution would

mean building just another expensive object tree in memory. Instead the Stylesheet

Model is serialized using an implementation of a SAX XMLReader as proposed in [Sun04,

p. 272]. With a SAX XMLReader an arbitrary data structure can be converted to XML

using XSLT. This concept works as follows: At first, a visitor is written reading the data

from the model and generating SAX events, like it would be done by a real parser. Then

this SAX “parser” is used to contruct a SAXSource for the transformation:

SAXVisitorReader reader = new SAXVisitorReader(stylesheet);

Source xslt = new SAXSource(reader, null);

This source contains the final XSLT stylesheet. If this stylesheet is needed for a

transformation it may be directly used to create a XSLT transformer object to make

the transformation. If the stylesheet has to be saved an identity transformation may be

used to serialize the source to a file. In this case the source is wired to a result object

using a transformer to execute the conversion.

The UML sequence diagram in figure 4.10 points out how the reader and the visitor

generate the SAX events. First, the SAXVisitorReader constructs a new SAXVisitor

object and passes the current ContentHandler. The ContentHandler is provided by

the SAX-enabled XSLT processor that performs the transformation. The reader then

begins the XML document by calling the startDocument() method. The subsequent

processing is then passed to the visitor. The Visitor calls recursively all visit methods for

the Stylesheet Model’s elements. These visit methods call the appropriate methods of the

ContentHandler, for example startElement(). If the visitor has finished its processing

the reader finalizes the XML document by calling the endDocument() method of the

ContentHandler.

It is important to note that this sequence is executed not until the XSLT transfor-

mation actually starts: at first the source object is created using a SAXSource linked to

82

4 Implementing an XML-based Document Management System : ... : SAXVisitorReader : SAXVisitor

 :
ContentHandler

 : SAXVisitorReader

 : SAXVisitor

startDocument()

visit(Object)

endDocument()

visitXSLStylesheet(XSLStylesheet)

Visits all
children recursive.
Each visit method then
calls methods from the
ContentHandler.

startElement(String, String, String, Attributes)

endElement(String, String, String)

visitChildren(List)

 File: h:\sync\Uni\Magisterarbeit\Grafiken\UML\saxvisitor.mdl 11:39:29 Dienstag, 29. November 2005 Sequence Diagram: Logical View / sequence
 Page 1

Figure 4.10: UML Sequence Diagram “Stylesheet Serialization”

the reader. By starting the transformation the source is read and the process described

above is triggered. This kind of processing is typical for SAX applications using passive

handlers.

4.6.5 Final Transformation Process

The final transformation process wires the stylesheet with the input XMLs and produces

the result document. This transformation is done by an XSLT processor and an XSL-FO

formatter. In most cases the final output will be Adobe’s Portable Document Format

(PDF) but also other formats, like Rich Text Format, are possible if they are supported

by the formatter. This section describes the transformation process, its execution and

the way the XML data is resolved.

The Java API contains the Transformation API for XML (TrAX), used to transform

XML in various ways. Most often it is implemented by XSLT processors to provide a

simple way of integrating a processor into a Java application. If the API is utilized it

83

4 Implementing an XML-based Document Management System

Result
Document

»PDF«

creates
Style-
sheet

»XSLT«

generates is applied

XML

 Template
Designer

 XSLT
Processor

 XSL
Formatter

+

resolved

resolved

?
External ressources (e.g.
images) are resolved by
the formatter.

XML
Case 1:

In case of only one
XML input: normal
input to processor.

input

The intermediate XSL-
FO document is used
directly as input to the
formatter.

Case 2:
In case of more than one

XML input: XMLs are
resolved by processor

via document() function
and an URIResolver.

Figure 4.11: Instruct’s Transformation Process

is possible to change the processor at configuration time or at runtime. The transfor-

mation API can deal with many possible combinations of inputs and outputs, and is

not specialized for any of the given types. The five most important TrAX-classes and

interfaces to be used in InStruct’s transformation process are:

• TransformerFactory: This is the vendor-neutral interface to the processor.

• Transformer: An instance of this class is created by the factory and performs the

transformation.

• Source: This interface contains the information needed to act as the input of a

transformation. It is used for both, the XML data and the stylesheet. There are

implementations for DOM, SAX and stream inputs.

• Result: This interface contains the information needed to act as the output of a

transformation. There are as well implementations for DOM, SAX and streams.

• URIResolver: An implementation of this interface is called by a processor to

resolve URIs used in document(), <xsl:import>, and <xsl:include> and returns

a Source object.

The transformation process is described in figure 4.11. The process starts with a

Source object containing the stylesheet. The generation of this stylesheet either hap-

pens at transformation time or it has been already finished at a preceding serialization

84

4 Implementing an XML-based Document Management System

step. An implementation of the TransformerFactory class now creates a Transformer

instance using the stylesheet. Depending on the number of XML input files there are

two different cases how the input for the Transformer is processed:

• Case 1: There is only one XML input file available that is provided as a Source

object. This is the normal case for XSLT transformations: the transformation will

be started by applying the stylesheet on this single XML source.

• Case 2: There are two or more XML input files to be processed. They all have to

be provided as Source objects and they must be made available to the processor.

Since a normal transformation supports only one XML input the stylesheet has

to instruct the processor to load each XML using the document() function. In

this case the processor calls the resolve method of its URIResolver to access the

document.

The Transformer uses the source objects and the optional URIResolver to perform

the XSLT transformation resulting in an XSL-FO tree. Typically this result is directly

used as input for the XSL formatter that creates the final document, for example a PDF.

Instruct uses Saxon-B to process the XSLT 2.0-compliant stylesheets and RenderX XEP

as the XSL-FO-Formattter.

The Resolver Concept

The answer to the problem of using more than one XML file in the transformation

process is the topic of this section. Generally a transformation uses one stylesheet to

transform one XML file. If data from more than one XML file is involved at least two

different solutions to this problem are possible:

• All XML files may be stored in one big file like using a container. For example, the

root element may be <container> with a sequence of <item> elements containing

the root elements of each single XML file.

• The use of XSLT’s document function and an optional use of a resolver to load the

appropriate files at run-time. This is the recommended approach for this problem

and is used in this project.

XSLT’s document function allows the access to XML documents identified by a URI.

This URI might be an absolute URL (typically one that starts with “http:” or “file:”),

85

4 Implementing an XML-based Document Management System

a relative one (interpreted relative to the URI of the document), or a globally unique

URI (like one that identifies a book by its ISBN, for example: urn:isbn:1570629641).

An XSLT processor is usually able to interpret the familiar URLs using the http, ftp

or file protocol. If a specific processor is not able to interpret a URI provided using

the document function many APIs allow to define external resolver that may be written

to accomplish this task. This permits the use of any URI to resolve a specific XML

document. In Java this can be done with the interface URIResolver and its method

resolve(String href, String base). An implementation of this interface can be

used during a transformation. If the processor encounters a document function it calls

the resolve method and provides the URI and the optional base-URI as parameters

of the method. It is the task of the implementation to search and to return the XML

source referenced by the URI.

InStruct uses this concept to resolve any XML documents in cases of templates using

more than one XML document. The decision which XML document will be returned

is made at runtime depending on the document generation workflow. The XML might

be read from the local filesystem, or come from a DMS or EAI system. Instruct uses

opaque URIs starting with the scheme instruct: followed by the scheme-specific-part

containing particulars sufficient to identify the correct XML instance: the name of the

root element and its namespace. During the transformation the resolve method is called

and the XML matching the root element is returned.

Dynamic Stylesheets

The resolver concept for loading XMLs is one possibility to use a resolver. Another

application of resolvers is the loading of stylesheets. In Java a URIResolver is not

only called by the processor if a document function is encountered but also on the

XSLT instructions xsl:import and xsl:include that are used to reference another

stylesheet. Typically these instructions modularize a stylesheet and increase readability

and reuseability of parts of stylesheets.

In combination with a resolver an include or import instruction can be used to create

stylesheets dynamically. By loading the stylesheet prior to start of transformation, the

resolve method is called to turn a URI used in includes or imports into an XML Source

object. Hence, it is possible to generate the stylesheet contained in the object at run-

time. InStruct uses this concept to update templates by loading parts of a stylesheet from

a content management system (CMS). Therefore a text or a component, for example

the general terms and conditions of a company, first has to be stored in the CMS using

XSLT/XSL-FO markup. This component can then be included into the stylesheet at

86

4 Implementing an XML-based Document Management System

run-time and allows to use up-to-date texts and components without even touching the

template.

87

5 Conclusion

This final chapter summarizes the work presented in this thesis. In addition, opportu-

nities for future research in this area are pointed out and briefly discussed.

The main purpose of this thesis has been to examine how structured documents can

be created by combining CMS, DMS and EAI systems. The first part of this thesis

examines some systems offering solutions in this area. Stylesheet Designer for XSLT

are shipped already with excellent functions while having a integration deficiency. The

creation of stylesheets using WYSIWYG is simple but it is not a subject where the input

data come from and how this data flow may be automated. Enterprise reporting systems

focuses mainly on this topic. Data from existing systems are queried and the results are

prepared to create reports of them. Since those tools emerged from the database domain

they do not support XML data very well. However, EAI systems concentrate especially

on XML technologies leading to a good support for XML processing tasks including the

import of data from external systems but CMS and DMS tools are often neglected.

The subsequent part covers technologies to be used in the XML document processing

domain. Beside outgrown and minor powerful languages like DSSSL and CSS the main

focus is lain on XSLT and XSL-FO that can be used in conjunction to transform and

format XML. However it is essential to learn these complex languages prior to be able

to exploit their power. The thesis also introduces some implementations of the two

specifications proved to be stable for deployment. However there is still work to do in the

field of formatting. The usage of XML document processing technologies is demonstrated

with some XML based formats. DocBook, TEI and DITA can be best processed using

XSLT and XSL-FO. They reveal the power of XML as things are now. Obviously

OpenDocument and WordML are mostly used within word processors. XML tools able

to work with documents from word processors will probably gain importance in future.

The final part of this thesis describes the implementation of InStruct, a system in-

tended to help creating structured documents while integrating data from CMS, DMS

and EAI systems. As such it offers a solution not provided by any existing application.

The author developed parts of the system including the document model and the doc-

ument generation component. Finally, the document model is used as the “M” of the

MVC implementation of the designer GUI, as input for the generation of the stylesheet

and as the basis for persistence. The document generation component first generates a

XSLT stylesheet as designed by the user. Then it transforms multiple XML files with

88

5 Conclusion

the help of the stylesheet to a final result document in PDF and other formats. Flexible

resolvers allow the handling of multiple XML files and the use of dynamic stylesheets

with automated update features.

It might be interesting to compare the final software to the products, processes and

technologies from the chapters one to three. First, to demonstrate that InStruct is able

to fulfill the requirements needed to support the business cases from chapter one (stock

and funds reports in capital management, contract order creation in logistics, and sales

offers): Using InStruct the process might be triggered manually or time-based. On the

one hand data can be retrieved from external systems using an EAI adapter and on

the other hand resources can be included from content management systems. Then,

up-to-date calculations can be performed and finally multi-channel delivery is used to

create various output formats.

By comparing InStruct to the products presented in chapter two many commonalities

can be found. InStruct has some features of a stylesheet designer: it supports XML

input and generates an XSLT stylesheet to transform the input to the desired output.

Additionally, it offers many ongoing features traditionally found only in EAI tools like

integration with content and document management systems. This points out that

InStruct fits perfectly into an existing EAI solution to take over document-related tasks.

Chapter three introduces the concept of XML document processing, InStructs is mak-

ing use of. The process starts with an arbitrary XML file. It is transformed using a

stylesheet that applies logic and layout. The process is executed by an engine, support-

ing monitoring and management of the workflow. At the end of the process the output is

created which might be a binary format or XML again. The implementation uses XML

Schema to describe the input data, relies on XSLT and XPath for the transformation,

XSL-FO for the formatting and uses a SAX-based approach to meet the requirements

in terms of throughput.

5.1 Future Work

There are still many possibilities for the improvement of the current system. The most

important ones to be tackled in the future are:

• Enhancement of dynamic stylesheets: The current Saxon release includes

extension functions to compile and execute stylesheets which can be constructed

dynamically or loaded from an external source. These extensions may be used

89

5 Conclusion

for the adaption of transformation process to support updates of the stylesheet at

time of execution.

• Standardization: The current system uses the JAXP API for all XSLT trans-

formations making it possible to replace the processor easily. At the moment no

related interface for XSL-FO formatters is available. If such an interface (for ex-

ample JAXG [Mär05]) becomes established the implementation may yield profit.

• Evaluation of a XSLT-centric stylesheet generation process: After sim-

plifying the XML format used for model persistence, an XSLT-centric approach

to generate the final XSLT stylesheet would be possible. However, the benefits of

such a bootstrapping method should be evaluated in advance.

• XSLT Mapper: Due to the generic architecture of the XSLT generation compo-

nents the creation of an XSLT mapping tool for XML-to-XML transformations is

feasible. Such a transformation would fit perfectly into the process from the EAI

system to the final document.

90

A Examples and Listings

A.1 Addressbook Example

This thesis uses a recurring example of a simple addressbook. Listing A.1 shows an

XML file representing an address book. The root element is <addressbook> consisting

of multiple <person> elements. In addition to the person’s forename and surname the

gender and an e-mail address may be specified.

Listing A.1: A simple addressbook XML file

1 <?xml version="1.0" encoding="ISO -8859 -1"?>

2 <addressbook xmlns:xsi="http://www.w3.org /2001/ XMLSchema -

instance" xsi:noNamespaceSchemaLocation="addressbook.xsd" name

="My Addressbook">

3 <person id="john">

4 <forename >John</forename >

5 <surname >Green</surname >

6 <gender >male</gender >

7 <e-mail>example@mail.com</e-mail>

8 </person >

9 <person id="clara">

10 <forename >Clara</forename >

11 <surname >White</surname >

12 <gender >female </gender >

13 <e-mail>example@mail.com</e-mail>

14 </person >

15 <person id="peter">

16 <forename >Peter</forename >

17 <surname >Gerstbach </surname >

18 <gender >male</gender >

19 <e-mail>example@mail.com</e-mail>

20 </person >

21 </addressbook >

91

A Examples and Listings

A.2 Books Example

Another example is an XML file that stores information about books. The root element

is books containing <book> elements. Each book specifies a title, an author, an ISBN

number, a publisher and a description of the book. The description may contain elements

from the XHTML namespace. Listing A.2 shows such a file.

Listing A.2: A simple books XML file

1 <?xml version="1.0" encoding="UTF -8"?>

2 <?xml -stylesheet type="text/xsl" href="books -push.xslt"?>

3 <books xmlns:xhtml="http://www.w3.org /1999/ xhtml" xmlns:xsi="

http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="books.xsd">

4 <book>

5 <title>The Art of Peace</title>

6 <author >Morihei Ueshiba </author >

7 <ISBN>1570629641 </ISBN>

8 <publisher >Shambhala </publisher >

9 <description >Description of this book with optional <

xhtml:em >HTML</xhtml:em > elements.</description >

10 </book>

11 <book>

12 <title>Hagakure: The Book of the Samurai </title>

13 <author >Yamamoto Tsunetomo </author >

14 <ISBN>4770029160 </ISBN>

15 <publisher >Kodansha International </publisher >

16 <description >Description of this book with optional <

xhtml:em >HTML</xhtml:em > elements.</description >

17 </book>

18 </books>

92

A Examples and Listings

A.3 XSL-FO Example

The following listings contain the source code of the example in the XSL-FO chapter

on page 43. The subsequent figure shows the result of the transformation rendered to

PDF.

Listing A.3: XSL-FO Example: XML Source File

1 <?xml version="1.0" encoding="UTF -8"?>

2 <document >

3 <section >

4 <title>Header </title>

5 <para>This is the first paragraph.</para>

6 <para>This is the second paragraph.</para>

7 </section >

8 </document >

Listing A.4: XSL-FO Example: XSLT Stylesheet Producing XSL-FO Output

1 <?xml version="1.0" encoding="UTF -8"?>

2 <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org /1999/

XSL/Transform" xmlns:fo="http://www.w3.org /1999/ XSL/Format">

3 <xsl:output version="1.0" encoding="UTF -8" indent="no" omit -

xml -declaration="no" media -type="text/html"/>

4 <xsl:template match="/">

5 <fo:root >

6 <fo:layout -master -set>

7 <fo:simple -page -master master -name="default -page" page -

height="210mm" page -width="148mm" margin="2cm">

8 <fo:region -before extent="1cm"/>

9 <fo:region -after extent="1cm"/>

10 <fo:region -body margin -top="1cm" margin -bottom="1cm"/>

11 </fo:simple -page -master >

12 </fo:layout -master -set>

13 <xsl:apply -templates select="document/section"/>

14 </fo:root >

15 </xsl:template >

16 <xsl:template match="section">

17 <fo:page -sequence master -reference="default -page" initial -

page -number="1" format="1">

18 <fo:static -content flow -name="xsl -region -before">

93

A Examples and Listings

19 <fo:block >

20 <xsl:value -of select="title"/>

21 </fo:block >

22 </fo:static -content >

23 <fo:static -content flow -name="xsl -region -after">

24 <fo:block text -align="center">Page <fo:page -number/>

25 </fo:block >

26 </fo:static -content >

27 <fo:flow flow -name="xsl -region -body">

28 <fo:block font -size="16pt" space -after="0.5em">

29 <xsl:value -of select="title"/>

30 </fo:block >

31 <xsl:apply -templates/>

32 </fo:flow >

33 </fo:page -sequence >

34 </xsl:template >

35 <xsl:template match="para">

36 <fo:block >

37 <xsl:apply -templates/>

38 </fo:block >

39 </xsl:template >

40 <xsl:template match="em">

41 <fo:inline font -style="italic">

42 <xsl:apply -templates/>

43 </fo:inline >

44 </xsl:template >

45 </xsl:stylesheet >

94

A Examples and Listings

Header
This is the first paragraph.
This is the second paragraph.

Header

Page 1

Figure A.1: XSL-FO Example: Result of the Transformation Rendered to PDF

A.4 Purchase Order Example

The following example illustrates InStruct using a simple purchase order example: a

customer orders some items using an online shop and receives a notification of the

ordered items.

Listing A.5: The Purchase Order XML file

1 <?xml version="1.0" encoding="UTF -8"?>

2 <purchaseOrder xmlns:xsi="http://www.w3.org /2001/ XMLSchema -

instance" xsi:noNamespaceSchemaLocation="po.xsd" orderDate="

2006 -04 -01">

3 <shipTo >

4 <name>Peter Gerstbach </name>

5 <street >Some Street 1</street >

6 <zip>1130</zip>

7 <city>Vienna </city>

8 <country >Austria </country >

95

A Examples and Listings

9 </shipTo >

10 <billTo >

11 <name>GFT Technologies GmbH</name>

12 <street >Canovagasse 7/2</street >

13 <zip>1010</zip>

14 <city>Vienna </city>

15 <country >Austria </country >

16 </billTo >

17 <items >

18 <item partNum="101-AA">

19 <productName >Western Digital Raptor 150GB SATA</

productName >

20 <quantity >3</quantity >

21 <price currency="EUR">500</price>

22 <shipDate >2006 -04 -08</shipDate >

23 </item>

24 <item partNum="345-CD">

25 <productName >Corsair DIMM 2GB PC2 -667 DDR2</productName >

26 <quantity >2</quantity >

27 <price currency="EUR">250</price>

28 <shipDate >2006 -04 -08</shipDate >

29 </item>

30 <item partNum="123-CA">

31 <productName >NEC PlasmaSync 61"</productName >

32 <quantity >1</quantity >

33 <price currency="EUR" >14000</price >

34 <shipDate >2006 -04 -10 </ shipDate >

35 </item >

36 </items >

37 </purchaseOrder >

96

A Examples and Listings

Application
(Shop)

DMS
Repository

Print

Mail

Portal

Fax

...

InStruct:

Post-
Processing

archive
integrateintegrate

Multi Channel Delivery

1 2 3 4

5

 Integration + Structured Documents

CMS

Figure A.2: A typical InStruct process including data integration and document gener-

ation.

1. The XML file from the external application (the shop system) is transformed using

the XSLT stylesheet.

2. Larger units of text (for example the general terms and conditions) may be loaded

from a CMS.

3. The workflow may also include a manual post processing of the document.

4. Other resources like images my be loaded from a DMS. The DMS can also be used

as final archiving system.

5. Finally, the Document Generator performs multi-channel delivery.

97

A Examples and Listings

Figure A.3: Screenshot of the InStruct Designer.

The Screenshot shows the Designer while editing the purchase order stylesheet. The

Outline View at the top left corner shows the structure of the stylesheet. The Schema

View at the bottom left is a graphical representation of the XML Schema describing

the XML. The main View in the center shows the WYSIWYG-editor for the

stylesheet. The Property View at the bottom allows to define the behaviour and

formatting of the elements including XPath expressions.

98

A Examples and Listings

IT Equipment Ltd.
Main Street 23
12345 City
Country

Purchase Order Example

Thank you for your order on April 1, 2006.
Here are the details of your order.

Ship To
Peter Gerstbach
Some Street 1
1130Vienna
Austria

Bill To
GFT Technologies GmbH
Canovagasse 7/2
1010Vienna
Austria

Items
SumPriceQuantityProduct Name
15005003Western Digital Raptor 150GB SATA

5002502Corsair DIMM 2GB PC2-667 DDR2
14000140001NEC PlasmaSync 61"
16000Overall:

General Terms and Conditions...

Page 1 of 1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

Figure A.4: The final purchase order document generated by the Document Generator.

Most data is retrieved from the XML file (listing A.5). Larger units of text (the general

terms and conditions) are loaded from a CMS. Calculations (e.g. the sums on the right)

are performed using XPath expressions. Special XSL-FO expressions allow to output

page-related data (“Page X of Y”). Dates may be formatted using the current locale.

99

List of Figures

1.1 Instruct Overview . 3

2.1 Screenshot of Altova’s StyleVision . 7

2.2 Screenshot of Stylus Studio’s Profiler . 8

2.3 Reporting Architecture . 10

3.1 DSSSL Conceptual Model . 18

3.2 Addressbook Example: XML with CSS style 20

3.3 XSLT core process . 23

3.4 XSL Two Processes: Transformation & Formatting 38

3.5 XSL Page Model . 39

3.6 A Block split over a Page Boundary . 41

3.7 FO-to-Area Process . 42

3.8 XSL Two Process: Transformation & Formatting — Example 44

3.9 PDF generated by DocBook-Stylesheets 48

3.10 DITA Information Types . 53

4.1 Instruct Components . 56

4.2 Screenshot of Instruct Template Designer 59

4.3 Document Generation Process . 61

4.4 Two Generator Prototypes with different Design Approaches 62

4.5 Stylesheet Generation . 68

4.6 UML Class Diagram and Instance Diagram “Document Model” 71

4.7 UML Class Diagram “Property and Style System” 72

4.8 Resolving Inherited Property Values . 73

4.9 Tables and For-Each . 81

4.10 UML Sequence Diagram “Stylesheet Serialization” 83

4.11 Instruct’s Transformation Process . 84

A.1 XSL-FO Example: Result of the Transformation Rendered to PDF . . . 95

A.2 A typical InStruct process including data integration and document gen-

eration. 97

A.3 Screenshot of the InStruct Designer. 98

100

List of Figures

A.4 The final purchase order document generated by the Document Generator. 99

101

List of Tables

4.1 Mapping between the Document Model and XSL 80

102

Listings

3.1 DSSSL Example . 18

3.2 CSS stylesheet for the addressbook example 19

3.3 books.xslt using pull processing . 27

3.4 books.xslt using push processing . 27

3.5 A simple DocBook file . 47

3.6 OpenDocument Example . 50

3.7 WordprocessingML Example . 51

3.8 DITA topic sample [DPH01] . 52

4.1 XSLT for the sample letter, Approach I 64

4.2 Document-XML for the sample letter, Approach II 64

4.3 XSLT for the sample letter, Approach II 66

4.4 Creating Styles and Properties . 73

4.5 Reflective Visitor’s visit Method . 79

A.1 A simple addressbook XML file . 91

A.2 A simple books XML file . 92

A.3 XSL-FO Example: XML Source File . 93

A.4 XSL-FO Example: XSLT Stylesheet Producing XSL-FO Output 93

A.5 The Purchase Order XML file . 95

103

Bibliography

[Alt] Altova. Altova stylevision. Website: http://www.altova.com/products_

xsl.html.

[Amb03] Jacek Ambroziak. Introducing gregor 1.0 xml transformation framework: En-

abling fast xslt transforms on critical paths. In Proceedings of the XML Eu-

rope 2003 Conference, London, England, 2003. http://www.idealliance.

org/papers/dx_xmle03/papers/03-03-07/03-03-07.html.

[Apa] The Apache Software Foundation. Apache fop. Website: http://

xmlgraphics.apache.org/fop/.

[Bal04] Klaas Bals. Using xsl-fo 1.1 for business-type documents. In Pro-

ceedings of the XML Europe 2004 Conference, Amsterdam, The Nether-

lands, 2004. http://www.idealliance.org/papers/dx_xmle04/papers/

04-02-01/04-02-01.html.

[BBC+] Oliver Becker, Paul R. Brown, Petr Cimprich, Christian Nentwich, and

Tolja Zubow. Streaming transformations for xml. Website: http://stx.

sourceforge.net/.

[Bec04] Oliver Becker. Serielle Transformationen von XML. Dissertation, Humboldt-

Universität Berlin, 2004. http://edoc.hu-berlin.de/dissertationen/

becker-oliver-2004-11-26/PDF/Becker.pdf.

[Blo00] Jeremy Blosser. Java tip 98: Reflect on the visitor design pattern. Web-

site: http://www.javaworld.com/javaworld/javatips/jw-javatip98.

html, July 2000.

[Bon04] Frank Bongers. XSLT 2.0 – Das umfassende Handbuch. Galileo Press GmbH,

1st edition, 2004.

[Bra05] Herbert Braun. Das neue Web. c’t, 15:172–178, 2005. Heise Zeitschriften

Verlag.

104

http://www.altova.com/products_xsl.html
http://www.altova.com/products_xsl.html
http://www.idealliance.org/papers/dx_xmle03/papers/03-03-07/03-03-07.html
http://www.idealliance.org/papers/dx_xmle03/papers/03-03-07/03-03-07.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://www.idealliance.org/papers/dx_xmle04/papers/04-02-01/04-02-01.html
http://www.idealliance.org/papers/dx_xmle04/papers/04-02-01/04-02-01.html
http://stx.sourceforge.net/
http://stx.sourceforge.net/
http://edoc.hu-berlin.de/dissertationen/becker-oliver-2004-11-26/PDF/Becker.pdf
http://edoc.hu-berlin.de/dissertationen/becker-oliver-2004-11-26/PDF/Becker.pdf
http://www.javaworld.com/javaworld/javatips/jw-javatip98.html
http://www.javaworld.com/javaworld/javatips/jw-javatip98.html

Bibliography

[CC02] Gerardo Canfora and Luigi Cerulo. A visual approach to define xml to fo

transformations. In SEKE ’02: Proceedings of the 14th International Con-

ference on Software Engineering and Knowledge Engineering, pages 563–570,

Ischia, Italy, 2002. ACM Press.

[DPH01] Don Day, Michael Priestley, and Gretchen Hargis. Frequently asked questions

about the darwin information typing architecture, March 2001. Website:

http://www-128.ibm.com/developerworks/xml/library/x-dita3/.

[DPS01] Don Day, Michael Priestley, and David Schell. Introduction to the darwin

information typing architecture, March 2001. Website: http://www-128.

ibm.com/developerworks/xml/library/x-dita1/.

[EN02] Elke and Michael Niedermair. XML für Print und Screen. Franzis’ Verlag

GmbH, 2002.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley Professional, 2002.

[Ger04] Peter Gerstbach. XML Data Binding. Bakkalaureatsarbeit, Vi-

enna University of Technology, 2004. http://www.gerstbach.at/2004/

XMLDataBinding/.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison Wesley, Reading, Mas-

sachusetts, 1995.

[ISO96] ISO/IEC. Document Style Semantics and Specification Language (DSSSL),

1996. ISO/IEC Standard: 10179:1996(E).

[Jas] JasperSoft Corporation. Jasperreports. Website: http://jasperreports.

sourceforge.net/.

[Jav02] Java Community Process. Long-Term Persistence for JavaBeans Specifi-

cation, May 2002. Technical Specification: http://www.jcp.org/en/jsr/

detail?id=057.

[K+05] Michael Kay et al. XSL FAQ, Performance. Website: http://www.dpawson.

co.uk/xsl/sect4/N9883.html, 2005.

[Kay00] Michael Kay. XSLT Programmer’s Reference. Wrox Press Ltd., Birmingham,

UK, 2000.

105

http://www-128.ibm.com/developerworks/xml/library/x-dita3/
http://www-128.ibm.com/developerworks/xml/library/x-dita1/
http://www-128.ibm.com/developerworks/xml/library/x-dita1/
http://www.gerstbach.at/2004/XMLDataBinding/
http://www.gerstbach.at/2004/XMLDataBinding/
http://jasperreports.sourceforge.net/
http://jasperreports.sourceforge.net/
http://www.jcp.org/en/jsr/detail?id=057
http://www.jcp.org/en/jsr/detail?id=057
http://www.dpawson.co.uk/xsl/sect4/N9883.html
http://www.dpawson.co.uk/xsl/sect4/N9883.html

Bibliography

[Kay01] Michael Kay. XSL List: translets vs. templates. Mailing list

archive: http://www.biglist.com/lists/xsl-list/archives/200112/

msg00614.html, December 2001.

[Kay04a] Michael Kay. Up-conversion using xslt 2.0. In Proceedings of the XML 2004

Conference, Washington, D.C., U.S.A., 2004. http://www.idealliance.

org/proceedings/xml04/abstracts/paper111.html.

[Kay04b] Michael Kay. XSLT 2.0 Programmer’s Reference. Wrox Press Ltd., 3rd

edition, 2004.

[Kay04c] Michael Kay. XSLT and XPath Optimization. In Proceedings of the XML

Europe Conference, Amsterdam, The Netherlands, 2004. http://www.

idealliance.org/papers/dx_xmle04/papers/02-03-02/02-03-02.html.

[Kay05] Michael Kay. XSL List: Bug in schema for xslt 2.0? Mail-

ing list archive: http://biglist.com/lists/xsl-list/archives/200502/

msg00745.html, February 2005.

[Les01] Donald M. Leslie. Transforming documentation from the xml doctypes used

for the apache website to dita. In SIGDOC ’01: Proceedings of the 19th

Annual International Conference on Computer Documentation, pages 157–

164, Sante Fe, New Mexico, USA, 2001. ACM Press.

[Lev91] Roger E. Levien. The civilizing currency: documents and their revolutionary

technologies. Technology 2001: The Future of Computing and Communica-

tions, pages 205–239, 1991. MIT Press, Cambridge, MA, USA.

[LLR04] Simon St. Laurent, Evan Lenz, and Mary Mc Rae. Office 2003 XML. O’Reilly

Media, Inc., 2004.

[Mär05] Jeremias Märki. JAXG - java api for xml graphics processing, 2005. Website:

http://jeremias-maerki.ch/dev/jaxg/.

[MS01] Barbara C. McNurlin and Ralph H. Sprague. Information Systems Manage-

ment in Practice. Prentice Hall, 5th edition, 2001.

[Mul] Mulberry Technologies. XSL-List – open forum on xsl. Website: http:

//www.mulberrytech.com/xsl/xsl-list/.

[NH01] Simon North and Paul Hermans. Sams Teach Yourself XML in 21 Days.

Pearson Professional Education, 2001.

106

http://www.biglist.com/lists/xsl-list/archives/200112/msg00614.html
http://www.biglist.com/lists/xsl-list/archives/200112/msg00614.html
http://www.idealliance.org/proceedings/xml04/abstracts/paper111.html
http://www.idealliance.org/proceedings/xml04/abstracts/paper111.html
http://www.idealliance.org/papers/dx_xmle04/papers/02-03-02/02-03-02.html
http://www.idealliance.org/papers/dx_xmle04/papers/02-03-02/02-03-02.html
http://biglist.com/lists/xsl-list/archives/200502/msg00745.html
http://biglist.com/lists/xsl-list/archives/200502/msg00745.html
http://jeremias-maerki.ch/dev/jaxg/
http://www.mulberrytech.com/xsl/xsl-list/
http://www.mulberrytech.com/xsl/xsl-list/

Bibliography

[OAS04] OASIS DocBook Technical Committee. DocBook Schemas, October 2004.

Technical Specification: http://www.docbook.org/oasis/.

[OAS05] Oasis open document format for office applications (opendocument) tc faq,

2005. Website: http://www.oasis-open.org/committees/office/faq.

php.

[Oli04] Ricardo Olivieri. Generating online reports using jasperreports and web-

sphere studio. Website: http://www-128.ibm.com/developerworks/

websphere/library/techarticles/0411_olivieri/0411_olivieri.

html, November 2004.

[Ope98] The Open Group. Data Interchange Services, 1998. Website:

http://www.opengroup.org/architecture/togaf7-doc/arch/p3/trm/

tx/tx_d_int.htm.

[Paw02] Dave Pawson. XSL-FO. O’Reilly, Cambridge, MA, USA, August 2002.

[Pri01] Michael Priestley. Specializing topic types in dita, March 2001. Website:

http://www-128.ibm.com/developerworks/xml/library/x-dita2/.

[Pro] Progress Software Corporation. Stylus studio xslt profiler. Website: http:

//www.stylusstudio.com/xslt_profiler.html.

[Pun03] Steve Punte. Fast XSLT. Website: http://www.xml.com/pub/a/2003/04/

02/xsltc.html, April 2003.

[Rap01] Lowell Rapaport. Transactions: output management becomes low-cost EAI.

Transform Magazine, 10(10):17–20, 2001. CMP Media, Inc., USA.

[Sch05] Ronald Schmelzer. Solving the very large messaging problem in the en-

terprise. Technical report, ZapThink, February 2005. Website: http:

//www.zapthink.com/report.html?id=WP-0137).

[Suna] Sun Microsystems. Java 2 Platform Standard Edition 5.0 Compatibil-

ity with Previous Releases. Website: http://java.sun.com/j2se/1.5.0/

compatibility.html.

[Sunb] Sun Microsystems. Release Notes for Java 2 SDK. Website: http://java.

sun.com/j2se/1.4.2/relnotes.html#JAXP_xslt.

107

http://www.docbook.org/oasis/
http://www.oasis-open.org/committees/office/faq.php
http://www.oasis-open.org/committees/office/faq.php
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0411_olivieri/0411_olivieri.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0411_olivieri/0411_olivieri.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0411_olivieri/0411_olivieri.html
http://www.opengroup.org/architecture/togaf7-doc/arch/p3/trm/tx/tx_d_int.htm
http://www.opengroup.org/architecture/togaf7-doc/arch/p3/trm/tx/tx_d_int.htm
http://www-128.ibm.com/developerworks/xml/library/x-dita2/
http://www.stylusstudio.com/xslt_profiler.html
http://www.stylusstudio.com/xslt_profiler.html
http://www.xml.com/pub/a/2003/04/02/xsltc.html
http://www.xml.com/pub/a/2003/04/02/xsltc.html
http://www.zapthink.com/report.html?id=WP-0137
http://www.zapthink.com/report.html?id=WP-0137
http://java.sun.com/j2se/1.5.0/compatibility.html
http://java.sun.com/j2se/1.5.0/compatibility.html
http://java.sun.com/j2se/1.4.2/relnotes.html#JAXP_xslt
http://java.sun.com/j2se/1.4.2/relnotes.html#JAXP_xslt

Bibliography

[Sun04] Sun Microsystems. The J2EE 1.4 Tutorial, December 2004. Tech-

nical Documentation: http://java.sun.com/j2ee/1.4/docs/tutorial/

doc/J2EETutorial.pdf.

[Ten01] Jeni Tennison. XSL List: Rescuing xslt from niche status. Mail-

ing list archive: http://www.biglist.com/lists/xsl-list/archives/

200102/msg01143.html, February 2001.

[VDLP02] Jean-Yves Vion-Dury, Veronika Lux, and Emmanuel Pietriga. Experimenting

with the circus language for xml modeling and transformation. In DocEng

’02: Proceedings of the 2002 ACM Symposium on Document Engineering,

pages 82–87, McLean, Virginia, USA, 2002. ACM Press.

[Veg01] Carlos Alonso Vega. Java and reports, some solutions for the past, present

and future. In SIGUCCS ’01: Proceedings of the 29th Annual ACM

SIGUCCS Conference on User Services, pages 275–278, Portland, Oregon,

USA, 2001. ACM Press.

[W3C97] W3C World Wide Web Consortium. A Proposal for XSL, August 1997. W3C

Note: http://www.w3.org/TR/NOTE-XSL.html.

[W3C01] W3C World Wide Web Consortium. Extensible Stylesheet Language (XSL),

October 2001. W3C Recommendation: http://www.w3.org/TR/xsl/.

[W3C05a] The Extensible Stylesheet Language family (XSL), August 2005. Website:

http://www.w3.org/Style/XSL/.

[W3C05b] W3C World Wide Web Consortium. Extensible Stylesheet Language (XSL)

Version 1.1, July 2005. W3C Working Draft: http://www.w3.org/TR/2005/

WD-xsl11-20050728/.

[W3C05c] W3C World Wide Web Consortium. XSL Transformations (XSLT) Version

2.0, November 2005. W3C Candidate Recommendation: http://www.w3.

org/TR/2005/CR-xslt20-20051103/.

[Wal04] Norman Walsh. Validating XSLT 2.0. Website: http://norman.walsh.

name/2004/07/25/xslt20, July 2004.

[Wal05] Norman Walsh. Docbook xsl stylesheets. Website: http://wiki.docbook.

org/topic/DocBookXslStylesheets, October 2005.

108

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf
http://www.biglist.com/lists/xsl-list/archives/200102/msg01143.html
http://www.biglist.com/lists/xsl-list/archives/200102/msg01143.html
http://www.w3.org/TR/NOTE-XSL.html
http://www.w3.org/TR/xsl/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/2005/WD-xsl11-20050728/
http://www.w3.org/TR/2005/WD-xsl11-20050728/
http://www.w3.org/TR/2005/CR-xslt20-20051103/
http://www.w3.org/TR/2005/CR-xslt20-20051103/
http://norman.walsh.name/2004/07/25/xslt20
http://norman.walsh.name/2004/07/25/xslt20
http://wiki.docbook.org/topic/DocBookXslStylesheets
http://wiki.docbook.org/topic/DocBookXslStylesheets

Bibliography

[Wik05] Wikimedia Foundation Inc. Wikipedia, the free encyclopedia. Website: http:

//en.wikipedia.org/, 2005.

109

http://en.wikipedia.org/
http://en.wikipedia.org/

	1 Introduction to Enterprise Reporting
	2 Reporting Business Data
	2.1 Stylesheet Designer
	2.1.1 Altova XML Suite
	2.1.2 XSLFast
	2.1.3 Stylus Studio
	2.1.4 VXT

	2.2 Enterprise Reporting
	2.2.1 Crystal Reports
	2.2.2 Jasper Reports

	2.3 Enterprise Application Integration
	2.3.1 Inubit Business Integration Server
	2.3.2 Output Management

	3 Document Processing with XML
	3.1 Document Processing Technologies
	3.1.1 Low-Level
	3.1.2 DSSSL
	3.1.3 CSS
	3.1.4 The XSL Family
	3.1.5 XSLT
	3.1.6 XSL-FO
	3.1.7 Streaming Transformations for XML

	3.2 Document Processing Systems and Formats
	3.2.1 DocBook
	3.2.2 TEI
	3.2.3 OpenDocument
	3.2.4 WordprocessingML
	3.2.5 DITA

	4 Implementing an XML-based Document Management System
	4.1 InStruct Overview
	4.2 The Template Designer
	4.3 The Document Engine
	4.4 The Document Generation Process
	4.5 Generator Prototypes
	4.5.1 Generating the Stylesheet
	4.5.2 Generating the XML Document
	4.5.3 Conclusion

	4.6 Implementation of the Generator
	4.6.1 Document Model
	4.6.2 Stylesheet Model
	4.6.3 Transformation from Document to the Stylesheet Model
	4.6.4 Stylesheet Serialization
	4.6.5 Final Transformation Process

	5 Conclusion
	5.1 Future Work

	A Examples and Listings
	A.1 Addressbook Example
	A.2 Books Example
	A.3 XSL-FO Example
	A.4 Purchase Order Example

