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Abstract

This master thesis focuses on the reconstruction of destroyed text documents, which
were mechanically destructed with the help of so-called cross-cut shredders. These
machines cut a piece of paper into equally sized, usually rectangular, slices, which
leads to the fact that these shreds are indistinguishable on the basis of their shape.
The ambition of this master thesis is to automatically reconstruct cross-cut shredded
text documents true to original. To fulfil this aim a genetic algorithm (GA) has been
developed, implemented and tested.

At the beginning a formal definition of this problem and references to related work
will be given. While there are some approaches published dealing with the recon-
struction of destroyed paper in general, there is barely work done in the field of
cross-cut shredding. An introduction to the working principle of GAs as well as
other mainstreams of evolutionary computation will be given.

The considered problem obviously also has two-dimensional geometric aspects. Due
to the fact that the most popular GA operators were designed to work on one-
dimensional solution representations, some proved operators were adapted and oth-
ers newly created to match the needs of this master thesis.

To further improve the GA a local search phase based on variable neighbourhood
search (VNS) is embedded.

Finally computational results for ninety instances based on ten different documents
are presented, which were used for evaluating the designed operators. It could
be shown that one of the presented approaches outperforms previously described
methods based on ant colony optimisation and VNS only.
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Zusammenfassung

Der Fokus dieser Masterarbeit liegt auf der Rekonstruktion von zerstörten Textdoku-
menten, die durch den maschinellen Einsatz von sogenannten Cross-Cut Schreddern
vernichtet wurden. Diese Geräte schneiden das Papier in regelmäßige, gleichgroße —
bevorzugterweise rechteckige — Teile, was dazu führt, dass diese Schnipsel anhand
ihrer Form nicht mehr unterscheidbar sind. Das Bestreben dieser Masterarbeit ist
nun maschinell durch Cross-Cut Schredder vernichtete Dokumente originalgetreu
wiederherzustellen. Hierfür wurde ein Genetischer Algorithmus (GA) entwickelt,
implementiert und getestet um sich dieser Herausforderung zu stellen.

Zu allererst wird aber eine formale Definition dieses Problems gegeben und auf
verwandte Themen verwiesen. Während nämlich für die Papierrekonstruktion an
sich ein paar wenige Ansätze bereits publiziert wurden, ist das Gebiet rund um
den Cross-Cut Schredder noch kaum erschlossen. Weiters wird eine Einführung
in das Funktionsprinzip von GAs und darüber hinaus in die anderen Gebiete der
Evolutionären Algorithmen gegeben.

Das behandelte Problem bezieht sich, im geometrischen Sinne, auf einen zweidi-
mensional Raum. Da die ausgereiften GA Operatoren aber auf eindimensionalen
Lösungsrepräsentationen arbeiten, mussten für diese Masterarbeit bewährte Opera-
toren adaptiert und neue entworfen werden.

Um den GA noch weiter zu verbessern wurde eine lokale Suche mittels variabler
Nachbarschaftssuche (VNS) eingebunden.

Schlussendlich werden die Testergebnisse von neunzig Instanzen basierend auf zehn
Dokumenten präsentiert, wobei diese Resultate zur Evaluation der erstellten Op-
eratoren dienen. Einer dieser Ansätze war nachweisbar im Stande die bisherigen
Methoden aufbauend auf Ameisenkolonie Optimierung und alleiniger VNS zu schla-
gen.
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CHAPTER 1

Introduction

In his utopian novel Nineteen Eighty-Four George Orwell (1903–1950) presented the
perfect way to devour a document. Not only that the paper itself is dropped into
the so-called memory hole to be burned there, moreover all cross-references to the
document are deleted and thus its existence vaporized, as Orwell named it. The
complete description of vaporization and the public system enabling this process is
given here [26].

While the year 1984 is long gone, Orwell’s suggestion still remains unimplemented
so far. Nowadays the device that resembles the memory hole the most—maybe not
in performance but at least in distribution—is the so-called shredder.

Despite the digitalisation of our world most documents are yet printed on paper,
sometimes because of legal reasons. On the other hand these papers have to be
destroyed sufficiently when not needed anymore, also because of legal reasons.

In certain situations might arise the need to reconstruct the—either manually or
mechanically—destroyed documents for any reasons whatsoever. One of the most
famous examples of document reconstruction is the case of the “Stasi Akten“. The
Ministry for State Security, colloquial Stasi, was the official state security service
of the communistic German Democratic Republic. Before the reunification with the
Federal Republic of Germany in 1990 the Stasi destroyed great parts of its printed
database. This resulted in 16000 bags containing 600 million snippets either torn
apart or shredded. In more than ten years the content of only 250 bags were manually
restored by 15 employees. To help them a computer aided reconstruction program
was commissioned [1].
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1 Introduction

(a) (b)

Figure 1.1: (a) Shows the Ativa V5088C industrial shredder for about 60.000$
(b) Shows the Ativa LD100 home office shredder for 50$ both taken from [3]

The easiest way to make a sheet of paper unreadable would be to tear it apart but
this makes every piece of it unique because the paper edges can be distinguished
through their different shape. They are frayed and feature shearing effects. In [28]
the rebuilding problem is called the reconstruction of manually torn paper documents
(RMTPD) and this term will also be used here.

A better safety degree can be gained by using a mechanical device—the shredder.
This gadget uses against each other rotating knives through which the paper is
passed, which results in snippets of the same shape and size. Because of the cutting
process the edges are flat and no additional shape information can be retrieved on
the borders of the snippets.

Therefore all information that can help to rebuild the original document, must be
extracted from the inner regions of the snippets, i.e., only the printed texture and the
way this structure was cut apart. This directly leads to a differentiation between text
documents and printed pictures. Because of the entire different structure of these
two types, different approaches for the information retrieval will promise satisfying
results. This master thesis will only discuss the reconstruction of text documents.

The basic model of shredders, the strip shredders, cut the sheets along their whole
length and thus producing so-called strips, which are as long as the original sheet
of paper see Fig. 2.1a. Again the term from [28], which is reconstruction of strip
shredded text documents (RSSTD), will be used within this master thesis.

More complex and thus more secure shredders also cut along the width and there-
fore create snippets or shreds that are smaller than the original document’s height,

2



1 Introduction

Table 1.1: DIN standard EN 15713 for shredders according to [2]

security level average area max. cutting width
in mm2 in mm

1 5000 25
2 3600 60
3 2800 16
4 2000 12
5 800 6
6 320 4

see Fig. 2.1b and Fig. 2.1c, respectively. These shreds are the product of the so-
called cross-cut shredders. This problem is denoted as the reconstruction of cross
cut shredded text documents (RCCSTD) in [28]. Overall the German Institute for
Standardisation (DIN) defines a standard for shredders differentiating between six
security levels, see Tab. 1.1.

As already hinted it is necessary to gain as much information from the snippets
as possible to reconstruct the original document. This directly leads to pattern
recognition approaches to collect these information.

Overall the snippets must be digitised first to apply these methods. Again different
techniques, which work on the digitised snippets, are used for printed text and
pictures. For pictures the so-called content-based image retrieval collects information
like colour or texture [13]. While this technique still is in its infancy, the optical
character recognition (OCR) is a technically mature approach to extract letters
from a text document [27].

However an implementation of an OCR approach is as complex as time-consuming
and thus beyond the scope of this master thesis. Moreover the focus of this thesis lies
on the combinatorial optimisation methods to rebuild a document, after the pattern
recognition was done. Therefore, to gain information from the snippets, a quite
simple but nonetheless efficient approach was used in a way that it can easily be
expanded. In the end a reconstruction system must of course contain an information
retrieval approach as well as a combinatorial optimisation method to process these
data.

In the next section a formal defintion of the problem and references to related work
will be given. Afterwards the The Theorie of Evolution and the main working
principles of Evolutionary Algorithms will be discussed, before the, for this master
thesis designed, algorithm is presented.
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CHAPTER 2

Problem Definition

Due to the lack of shape information helping to restore the shredded documents
it is convenient to choose a combinatorial approach as done for this master thesis.
For this purpose a formal definition of the problem will be given in the following.
Although slightly extended and redefined the nomenclature and definition are based
on [28].

Initiatively the following properties of the shreds need to be assumed. To ensure
that the algorithm later presented will work correctly, only shredding devices will
be considered, which cut the whole page along a horizontal and vertical grid, as
visualised in Fig. 2.1b. This leads to rectangular shreds that are all of the same
height and width. While duplex print is a common feature for office printers, it
is not considered here. Therefore all the shreds only contain information on one
side.

Furthermore must be considered that in some situations no statement about the
correct position of shreds can be made at all; for example consider a text written in
columns and then cut right between them. While there is a good chance that each
fragment can be reconstructed properly, the correct order of the columns can only
be restored from the document’s context. Another example, which often occurs in
cross-cut shredding, is a horizontal cut between two lines. Again without the context
a complete reconstruction is beyond the scope of the current computer systems.

4



2 Problem Definition

(a) (b) (c)

Figure 2.1: Three different cutting patterns

2.1 Formal Problem Definition

Let S = {1, . . . , n} be a set of rectangular, geometrically identical shreds that are
the result of a shredding device with the above mentioned characteristics. While the
shreds 1, . . . , n−1 contain the text of the original document, all the blank shreds are
combined to a single special shred n, which will be called the virtual shred. This is
mainly done for modelling reasons. There is to note that no useful information can
be extracted from completely empty shreds. While shreds 1, . . . , n− 1 must appear
exactly once, the virtual shred might be utilised several times, e.g. for filling empty
regions.

Furthermore it is assumed that the correct orientation of each shred is already
known, e.g, by determing them in a pre-processing step, and therefore no operation,
like rotation, needs to be considered in the further context. A pattern recognition
technique, for example described in [7], could be used to realise this pre-processing.

Obviously it is the goal to minimise the overall error made during the reconstruction
process, i.e., placing only these shreds next to each other, which were neighbours in
the original document. For estimating their error when placing two shreds i, j ∈ S
next to each other two functions are needed for the formal definition; see Sec. 2.2 for
the error estimation function ch(i, j) and cw(i, j), which computes the error made
when i is left or on top of j, respectively.

A solution of the reconstruction of cross cut shredded text documents (RCCSTD)
problem is defined as an injective map Π : S \{n} → D2 of shred positions p = (x, y)
in the two-dimensional (Euclidean) space D2, with x, y ∈ D = {1, . . . , n − 1}, such
that every space is filled with one shred at most and each shred i ∈ S \ {n} occurs
exactly once, while the virtual shred is assigned to the remaining empty spaces, i.e.,
n acts as a placeholder. See Fig. 2.2b for a visualisation.
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2 Problem Definition
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Figure 2.2: (a) A bunch of cross-cut shreds that awaits to be reconstructed
(b) Drawing of a solution; shreds {1, . . . , n− 1} are grey; the virtual shred is white

Moreover the function s(p) returns the shred at position p:

s(p) =

{
i if there is a shred i ∈ S such that Π(i) = p

n otherwise
, ∀p ∈ D2

0,

with D0 = {0, . . . , n}. To enhance the space D2 to D2
0 means that the whole solution

is surrounded by virtual shreds, which is again done for modelling reasons.

On the basis of s(p) with p = (x, y) ∈ D2 the four neighbours of a shred can be
defined as:

sl =̂ s((x− 1), y) st =̂ s(x, (y − 1))

sr =̂ s((x+ 1, y)) sb =̂ s(x, (y + 1))

The aim of RCCSTD is now to find an assignment of shreds to positions within
a solution such that the overall error induced by all realised neighbourhoods is
minimised, which leads to the following cost function:

c(Π) =
∑

p∈{1,...,n}2
ch(sl(p), s(p)) + cw(st(p), s(p)). (2.1)

At first sight it can be seen that this representation barely sets a limit to the size of
the solution. On the other hand allows this attempt that well matching sequences of
shreds can stay together and are not forced to be torn apart at the end of a row or
column of limited capacity, which would also contradict the building block hypothesis
from Sec. 3.2.1.

6



2 Problem Definition

2.2 Error Estimation Function

How good do two shreds fit together if sited next to each other?

The answer to this question can be found in the error estimation function, which
deals with the problem to evaluate how good or bad the shreds i and j match
together.

Obviously there are multiple approaches to define such a function. Common to all
of them is that none will work perfectly over all problems. A discussion about these
approaches and their drawbacks can be found in [28]. In the following only the
function, which was used within this master thesis, will be introduced.

Given a set S = {1, . . . , n} of shreds, having the characteristics mentioned above,
the error estimation function will compute the quality of two neighbours i, j ∈ S.

The idea is now to ignore the features of the inner regions and to focus only on the
(colour) information along the edges. Considering that all the shreds are digitised by
a scanner the information to deal with is represented as an image with a previously
defined resolution. Hence the number of (image) pixels along the y-axis of a shred
i ∈ S will be called hi while the number of pixels along the x-axis will be wi.

Due to the fact that all shreds feature the same size and shape it is likely that the
digitised snippets are all of the same resolution and therefore it is assumed that:

hi = hj ∧ wi = wj ∀i, j ∈ S

thus for convenience the indices will be omitted and h will always refer to the height
while w stands for the width.

While most documents are printed in black and white, it seems sufficient to work
with the B/W colour space, which indeed proved efficient for the reconstruction of
strip shredded text documents (RSSTD) problem—see [28]. But the RCCSTD shreds
are usually smaller than the RSSTD strips, thus less information is contained along
the edges. Moreover preliminary tests have shown that the expansion to the 8-bit
grayscale colour space pays off and builds therefore the base for the error estimation
function.

When shred i is left of j then the right edge of i and the left edge of j lie opposite to
each other. Otherwise when i is on top of j then the bottom edge of i touches the
top edge of j. Knowing now that all shreds are of the same size and thus resolution,
the edges of two shreds can be compared simply by comparing the opposite pixels
of the edges. To smooth the side-effects of rasterisation two pixels above and below
the current position will also be considered in a weighted sum following the idea
taken from [6].

7



2 Problem Definition

left side of
shred A

right side of
shred B

5%

10%

70%

10%

5%

5%

10%

70%

10%

5%

(a) (b)

Figure 2.3: (a) Visualises the weighted average of two opposite pixels taking their
neighbours into account; (b) A small reconstructed document, note the frayed edge
around the “hm“

As already mentioned two functions are needed: one for the relation between left and
right ch(i, j) and the other cw(i, j), for the top and bottom relations, with i, j ∈ S.

Obviously the best case for both ch(i, j) and cw(i, j) would be two perfectly fitting
shreds. Which means no error will occur at all. Thus this case should lead to an
error equal zero. Moreover the value of ch(i, j) and cw(i, j) should increase the more
error is made, which leads to the following requirement:

ch(i, j) ≥ 0

cw(i, j) ≥ 0
∀i, j ∈ S.

Furthermore we assume that the grayscale value of a pixel can be retrieved by the
functions:

vl(i, y), vr(i, y) ∈ {0, . . . , 255} with 1 ≤ y ≤ h for the left and right edge
vt(i, x), vb(i, x) ∈ {0, . . . , 255} with 1 ≤ x ≤ w for the top and bottom edge

of each shred i ∈ S.

The main idea of the error estimation is to compare the weighted average of the five
grayscale pixels of shred i with the corresponding average value of shred j along the
x-axis or the y-axis and build the sum over all errors along an edge. A visualisation
of this weighting can be seen in Fig. 2.3a.

8



2 Problem Definition

This leads to the formal definition of ch(i, j):

ch(i, j) =
h−2∑
y=3

eh(i, j, y) (2.2)

eh(i, j, y) =

{
1 if e′h(i, j, y) ≥ τ

0 otherwise
(2.3)

e′h(i, j, y) =
∣∣∣0.7 · (vr(i, y)− vl(j, y)

)
+ 0.1 ·

(
vr(i, y + 1)− vl(j, y + 1)

)
+ 0.1 ·

(
vr(i, y − 1)− vl(j, y − 1)

)
+ 0.05 ·

(
vr(i, y + 2)− vl(j, y + 2)

)
+ 0.05 ·

(
vr(i, y − 2)− vl(j, y − 2)

)∣∣∣
(2.4)

and cw(i, j):

cw(i, j) =
w−2∑
x=3

ew(i, j, x) (2.5)

ew(i, j, x) =

{
1 if e′w(i, j, x) ≥ τ

0 otherwise
(2.6)

e′w(i, j, x) =
∣∣∣0.7 · (vt(i, x)− vb(j, x)

)
+ 0.1 ·

(
vt(i, x+ 1)− vb(j, x+ 1)

)
+ 0.1 ·

(
vt(i, x− 1)− vb(j, x− 1)

)
+ 0.05 ·

(
vt(i, x+ 2)− vb(j, x+ 2)

)
+ 0.05 ·

(
vt(i, x− 2)− vb(j, x− 2)

)∣∣∣
(2.7)

The pixel weighting factors and the threshold τ were chosen through a process of
preliminary tests. The best results were reached when setting τ = 25, which means
that a difference of more than 10% of grayscale shades will result in an error.
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2 Problem Definition

2.3 About the Complexity

Drawing attention to the complexity of a problem like this means to disucss how
much can be anticipated from an algorithm. In computer science there is a set of
so-called NP-complete problems. One of the most famous is the travelling salesman
problem defined in [20].

These problems have in common that till now no polynomial algorithm is known
that can always solve one these problems in an optimal manner. The insteresting
fact is that if an algorithm is found for one problem it can be mapped to all the
other problems in a way that it would still work in polynomial time. Nowadays only
exponential algorithms could optimally solve NP-complete problems but for larger
instances computing a solution with these algorithms is beyond the scope of current
computer technologies. Thus the best approach yet is to design specific polynomial
algorithms for each problem that approximate as best as possible to the optimal
solution.

In [28] the RSSTD is directly mapped to the (symmetric) travelling salesman prob-
lem and thus RSSTD proves to be NP-complete. Furthermore there is to note that
strip shredding is a special case of cross cut shredding, there are no vertical cuts.
Therefore RCCSTD is at least as complex to solve as RSSTD and thus RCCSTD
is NP-hard, which means that it is at least as hard to solve as the NP-complete
problem of RSSTD.

2.4 Related Work

The procedure of document reconstruction reminds a lot of playing with a jigsaw
puzzle. Because the latter is a game, thus the rules are conceived to have fun playing
it. Therefore two requirements are made for every jigsaw. In a high quality jigsaw
puzzle the pieces fit perfectly into another, which makes the result singular. More-
over the result is always announced on the packing and so the information printed
on the pieces also helps to identify each piece’s position. These two assumptions and
some handwork will lead to a finished jigsaw. When on the other hand the computer
should solve one, then some related work can be found in [4, 8, 9, 14, 38].

Reconstructing destroyed documents is done for serious reasons and would not be
necessary if the result is already known, which destroys the second assumption.
While hand torn snippets might be unique in shape it is not mandatory. Moreover
because of frayed edges it is likely that two snippets would not perfectly fit together.
How to deal with this problem and others arising with hand torn paper are discussed
in [11, 18, 28].
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2 Problem Definition

Mechanically destroyed paper snippets look all the same, which flattens the first
requirement for jigsaw puzzles. Thus another method is needed to find out if two
snippets fit together, like the error estimation function presented in Sec. 2.2.

These methods are in some way the main commonness between working on a jig-
saw puzzle and reconstructing destroyed documents because the human brain owns
excellent abilities in the fields of pattern recognition and image processing, which
are used when working with jigsaw pieces to match to edges or to identify the im-
printed image. Therefore it is obvious to use computer vision techniques for an error
estimation function.

To extract printed letters the field of optical character recognition offers various
mature methods like described in [27]. But very often the characters on the edges are
cut apart and not identifiable and thus a stronger approach for information retrieval
is needed. This directly leads to image processing and the until now infantile but
fast developing field of content-based image retrieval.

These systems are used to gain and store information from an image to manage
a database of images. Museums, medical image management, multimedia libraries
and document archives are some examples where these applications are used. The
indexing and retrieval was usually achieved by a text-based approach, which means a
text description of either key words or free text for each image. While this approach
is subjective and some visual information cannot be described at all, an alternative
form of description relies on the inherent properties of the images. The idea is to
use data like patterns, colours, textures, shapes of image objects and their related
layout and location information to extract standardised information and store it in
the database. How to extract these data and deal with it can be found in [13].

An implementation of the previously mentioned kind of content description is for
instance realised in theMPEG-7 standard, which is introduced in [22]. Ukovich et al.
used these MPEG-7 descriptors in [35] in the context of the strip shredding problem.
They expanded their list of extracted features with characteristics especially related
to text documents like line spacing or text colour in [34]. Then they used all the
collected information from many sheets of paper and designed a clustering algorithm
in [36]. This algorithm builds groups or clusters of strips with equal features. Taking
into account that each sheet of paper differs a little bit in its design from the others,
these groups can be seen as a way to differentiate the strips and assign them to one of
the orignal sheets. This represents an interesting approach of pre-processing because
now only each page has to be reconstructed on its own and not all permuations of
all shreds must be considered at once.

Another problem is to find the correct orientation of the shreds. A shred that is
rotated by 180◦ might fit well at a certain position, according to the error estimation
function, but the position of the shred is wrong anyway. As already mentioned this
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problem is already solved by definition for this master thesis. Of course the shreds
do not automatically orientate correctly but a procedure to solve this problem is
needed as described in [5] or [21].

All the related work mentioned till now does in fact not deal with the RCCSTD
or cross-cut shredding in general but with related problems like hand torn or strip
shredded paper. The only work, to the best knowledge, about RCCSTD is done by
Prandtstetter and published in [28] and [29]. In [28] various algorithms are presented
to solve the RCCSTD like an ant colony optimisation, a variable neighbourhood
search, based on integer linear programming techniques and several constructions
heuristics. Moreover sample instances were provided to demonstrate the quality of
the algorithms. In [29] a vast set of test results is presented using the instances
previously mentioned. These results and the underlying instances will be used as
comparison for the test results of this thesis.
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CHAPTER 3

Evolutionary Algorithms

In this master thesis the previously defined problem of document reconstruction is
solved by means of an evolutionary algorithm (EA). This kind of metaheuristic is
inspired by the biological evolution and thus makes it one representative of a bionic
approach in computer science.

Before the working principles and different classes of EAs are described a short
historical side trip through the theses about evolution will be made, while a more
detailed abstract to that theme can be found in [17]. Furthermore an introduction
to genetics and evolutionary factors will be given, but which is limited to the ter-
minology of EAs only, while the wide field of these aspects is satisfyingly discussed
in [12].

3.1 (Re|E)volution

In the 17th century James Ussher(1581–1656) the archbichop of Armagh assessed
the creation of our world according to the bible on 23 October 4004 BC at 6:00 pm.
This calculation was so accurate that in 1701 the church of England accepted this
date and published it in the introduction of the King-James-Bible till the beginning
of the 20th century.

In the 18th century Carl von Linné (1707–1778) published the Systema naturae a
complete encyclopaedia containing all then known 4000 animals and 14000 plants.
Linné assumed that all kinds find their beginning in an act of creation and from that
moment on no other life forms will be created nor existing kinds will extinguish.
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3 Evolutionary Algorithms

Since these works were pulished the picture of our world and universe has changed
a lot. The universe aged from thousands of years—according to Ussher—to billions.
Therefore life had enough time to evolve in different directions and nowadays we
know millions of different kinds. So for better understanding of the Theorie of
Evolution a short historical survey will be given here.

3.1.1 The History of Revolution

The idea of an evolutionary movement, that enabled the multiple forms of life on
earth out of some primitive kinds, can first be found at the beginning of the 19th
century. Charles Darwin’s grandfather Erasmus Darwin established such a theory
which later profoundly affected the zoologist Jean Baptiste de Lamarck.

It is comprehensible that in the 18th century Linné’s idea of the constancy of all
kinds seemed rational. The change that affect life forms happens in millions of
years, a period that was then beyond imagination. Not only that variations between
following generations are barely recognisable, there are also great gaps between the
fossil materials that provide information about the evolutionary process. But by
finding more and more fossils scientists were forced to rethink the theory of the
constancy of kinds due to huge contradictions. How was it for instance possible to
find fossils of sea dwellers in alpine regions?

It was Georges Baron de Cuvier (1769–1832) the founder of palaeontology who
proved at the end of the 18th century the extinction of old and the creation of new
species by interpreting fossil discoveries, which led Cuvier to his Catastrophism.
This theory assumed that by natural catastrophes all kinds—local or global—were
extinguished. After a certain disaster nature was reset and new kinds were created,
which would not alter until the next catastrophe.

After studying various kinds of animals and plants Jean Baptiste de Lamarck (1744–
1829) recognised the astounding ability of all life forms to adjust to the surround-
ing world in a seemingly optimal manner. In 1809 Lamarck described in his work
Philosophie zoologique a complete theory of evolution that assumed four principles:

Adaptive Force allows each organism to adjust to its surrounding environment.
Due to Lamarck each kind will improve until the limit of development is at-
tained.

Spontaneous Generation is the origin of the variation of kinds. In the face of the
adaptive force the question arises of a mechanism that explains the existence
of all the various species that are well adapted to their environment. The spon-
taneous generation—which resembles nowadays the mutation—is responsible
for the creation of new kinds in the focus of their environment.
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Complexifying Force helps each kind to better adjust to the general living condi-
tions. According to Lamarck the necessity of a species is responsible for the
development of certain characteristics. Lamarck saw a desire to perfection in
nature itself, which helps all kinds to evolve the needed attributes.

Soft Inheritance allows parents to pass acquired characteristics and abilities as
well as already inherited features on to their next descendants.

At the end of the 19th century Lamarck’s theory was abandoned. Especially the soft
inheritance was not maintainable any more. But while in previous theories always
the whole kind was considered as a continuous being, it was Lamarck who first set
the individual in the focus of evolution. The individual became the driving factor
in the development of each kind. This point also became one of the main principles
of Darwin’s Theory of Evolution.

3.1.2 The Theory of Evolution

An advancement to Lamarck’s theses was developed by Charles Darwin (1809–1882).
Darwin’s Theory of Evolution builds the fundament of our present evolutionary
biology. While Lamarck was focused on the temporal development of populations,
Darwin now deals with the endless variation of different kinds.

Darwin’s probably best known book is On the Origin of Species by Means of Natural
Selection. One important approach of his work was that human kind is part of the
evolutionary process and therefor the Homo Sapiens loses any special status and
becomes just another part of nature, which Darwin describes in The Descent of
Man. His work in general does not present a single theory about evolution but a
bunch of theses that deal with the problem. So the main themes of his theory can
be summarised as the following:

Evolution Itself Darwin sees the world not as a statical but as a dynamical system.
Especially the flora and fauna changes because of the creation of new and the
extinction of old kinds. This point is the complete antagonism of Linné’s
picture of the world and life forms.

Combined Evolution Akin organisms share the same ancestors. In the end all
groups of organisms find their derivation in a single form of life.

Multiplication of Kinds The huge variation of kinds is explained by the idea that
every species derives to various new kinds.

Gradualism The evolutionary process happens slowly throughout gradual changes
of the populations. The change performs continuous over a long period of time
without sudden incoherent alterations.

15



3 Evolutionary Algorithms

Figure 3.1: Genome of a human cell, taken from [12]

Natural Selection Important for a long term existence of a population is a great
set of genetical variations. The small amount of individuals that are very
well adapted to the environment will survive and build the base of the follow-
ing generations. This means that the terms of nature will select the parents
because of their survival.

3.1.3 Genetics

In evolutionary algorithms a solution is represented comparable to the genetic in-
formation stored in a cell. Therefore the definition of some terms and a short
introduction to the evolutionary process will be given here.

Every cell except the red blood cell has at least one nucleus. In this nucleus the
genetic information is stored in normally more than one chromosome, see Fig. 3.2a.
The human cell nucleus for instance contains 46 chromosomes in the form of 23
chromosome pairs, see Fig. 3.1. The chromosomes can be distinguished because of
their length and shape.

Each chromosome consists of a complex folded and winded double-stranded high
polymer in form of a double helix. This molecule is called the deoxyribonucleic acid
or short DNA and is constructed of nucleotides, see Fig. 3.2b. These nucleotides are
the smallest components of genetic information and its order encrypts this informa-
tion.

The genotype embodies the genetic information, i.e., the elementary traits of each
life form, while the appearance of the life form is called the phenotype. Thus the
phenotype describes characteristics like the hair colour or the blood group. The
creation of a new genotype, which leads to a new living being but also the whole
evolutionary process works in the molecular setting around the DNA and depends
on certain factors.
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(a) (b)

Figure 3.2: (a) Scheme of a chromosome; (b) the DNA doulbe helix; from [12]

3.1.4 Evolutionary Factors

Nowadays with the knowledge of genetics the process of evolution according to
Darwin can be much more exerted than to his time. As a result modern science
describes five evolutionary factors:

Selection Darwin recognised that life forms create much more descendants than
necessary to sustain their own kind and that these descendants are not all
alike. Moreover he assumed that every life form is challenged all the time for
better life conditions, more food and a life partner. He concluded that only
the fittest of every kind can survive this every day struggle, what he therefore
called surviving of the fittest.

This natural selection leads to a gradual improvement of every species and so
to a better surviving in its environment. Thus the fitness of a life form can
best be measured by the number of the remaining descendants.

Mutation By observing the evolutionary process the alteration of genes from de-
scendants and therefore the growing variety of individuals of the same kind
play an important part. The mutation—i.e., the change of the genotype—is
in that case the driving force and happens accidentally.
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Figure 3.3: Different states of vertebrates in the embryonic development, from [12]

Recombination During the recombination a new gene is created by taking parts of
the genes from both parents. This enhances the chance for a better adapted
individual but is not a warranty due to the fact that the parts are chosen
randomly.

Genetic Drift Accidental changes in the gene pool are called genetic drift. These
changes can happen without mutation and selection because of a disease or a
natural disaster. This leads to the extinction of one population and another
group with a different gene pool will get the chance to spread.

Isolation Groups of individuals can evolve differently when they cannot share the
same gene pool anymore. The most common type of isolation is a geographical
separation. In that case a population gets divided because of an environmental
change and thus each group will develop in a different direction according to
its needs.

3.1.5 Proofs

One proof for Darwin’s Theory of Evolution is that embryos of vertebrates are barely
distinguishable. Nearly all vertebrates—including the human kind—for instance
reach an embryonic state in which gill arches are applied despite the fact that they
are never fully developed, see Fig. 3.3. This can also be seen as a proof that the
evolution of vertebrates began with gills breathing life forms.

Rudimental organs represent one of the most impressive proofs, which deal with
degenerated organs because they became useless. The human body delivers good
examples such as the human tailbone a relic of a tail or the useless muscles of the
earlap.
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3.2 Evolutionary Process as Metaheuristic

In the late 1950’s computer scientists started to experiment with the simulation of
basic mechanisms of evolution to solve optimisation problems. Then the concept of
the Evolutionary Algorithm (EA) was born, see [24]. The idea, as referenced in [24],
was to use the computational power to create a bunch of solutions using fast and
simple algorithms and selecting the best solution in the end, i.e., population based
search, instead of putting all the power in the creation of one solution by a slow and
complex approach as it is done normally, i.e., point based search.

Using the known evolutionary factors recombination, mutation and selection new
descendants are created based on already existing individuals from a population.
A human readable solution itself can be seen as the phenotype while its encoding
for the computational use is the genotype—comparable to the chromosome in na-
ture. Therefore it is necessary to find a formal representation—like the DNA and
its nucleotides—which allows the EA to apply the recombination and mutation op-
erators to create descendants in a fast and simple manner. Moreover a function is
needed that evaluates the quality of a solution which can be used for the selection
of the best adapted individuals of a population.

Considering these principles a general EA according to Nissen, see [24], would have
the structure as seen in Alg. 1.

One of the most outstanding differences of EAs and the natural evolutionary process
is that the replication uses only individuals of the current population. In nature
it is mostly common that each individual follows its own reproduction cycle with
a—maybe younger or older—partner. A freedom that cannot be given for EAs,
because the huge complexity underlying natural reproduction is beyond any current
computer system.

The complex natural system needs to be reduced to a manageable structure and
therefore in EAs the ascendent population is extinguished and totally replaced by
the new population. Thus all individuals in a population are of the same age. This
does not mean that all the individuals of the old generation are lost. Commonly
some of the best individuals are passed on to the next generation, which means
that their chromosome is cloned and added to the current population but the old
population itself is lost and their structure cannot be reproduced. This limitation
also makes it impossible that an older individual can replicate with an individual
created in the current generation.

To control this kind of reproduction a defined number of generations is set at the be-
ginning of every EA, which is usually the breaking condition of the loop in Alg. 1.
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Algorithm 1: A general EA scheme

output: The best solution found within the EA

begin1

Configure a set of strategy parameters;2

Initialise the population P (0);3

t← 0;4

Evaluate each individual from P (0);5

repeat // start the reproduction cycle6

t← t+ 1;7

Select; // choose from the parents8

Replicate; // generate the descendants9

Diversify; // vary the descendants10

Evaluate descendants;11

Create new population P (t);12

until breaking condition reached ;13

Return best solution found;14

end15

Following the scheme from Alg. 1 there are different approaches to use the idea
of evolution for optimisation problems and beyond. Furthermore in [24] Nissen
differentiates between four mainstreams of EAs:

• Genetic Algorithm (GA)

• Evolutionary Strategy (ES)

• Genetic Programming (GP)

• Evolutionary Programming (EP)

The implemented EA for this master thesis resembles a genetic algorithm. Thus the
ideas and functions of the GA will be discussed in more detail. The other three EA
mainstreams will be shortly summarised, while more exhaustive introductions can
be found in [17, 19, 24, 31].

3.2.1 Genetic Algorithm

GAs were introduced by John Holland in the 1960’s, who wanted to explain the
mechanisms of adaptive systems by the use of biological evolution. He implemented
his ideas in the form of so-called reproductive plans. Shortly after, his approach was
also used for optimisation problems, see [24].
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The main working principle of a GA is the building block hypothesis, see [31]. In
an optimal solution or phenotype every part of the underlying genotype needs to
be arranged in a perfect manner. It is very unlikely that the optimal solution is a
member of the initial population but some members might have perfectly arranged
parts, like building blocks, in their genotype. Because these individuals are at least
partly perfect they will be better evaluated and therefore it is more likely for them
to be chosen as parents, following the pattern of nature. As a result the better
parts of the parent individuals will be passed on to the descendants and sometimes
an individual with more optimal building blocks on the correct positions is created.
Repeating this progress often and with a satisfying large population the individuals
will develop towards the optimal solution. In technical literature this drift towards
better adjusted solutions is often referred to convergence.

The GA imitates the evolutionary process to create new populations which consist of
individuals. In this abstract case these individuals are now artificial chromosomes.
Considering the scheme from Alg. 1 the there introduced methods will be applied
in the following way:

Configure
Configuring the strategy parameters includes such decisions as the number of in-
dividuals of a population and the number of generations to be created. The most
important part of this point is to find a satisfying representation for the chromosome,
i.e., the genotype.

For simple problems a string of bits can be used, so that each bit or a set of bits
stand for a value in subject to the application. But even in simple cases it proves
to be difficult to use a normal binary encoding because of its variable Hamming
distance and therefore, as discussed in [24], small changes in the string can lead to
big changes in the phenotype. A more stable representation would be the Gray code
which is a binary code with a constant Hamming distance equal one and thus small
changes in the genotype remain small in the phenotype.

In recent years more complex chromosome representations were used, which should
resemble much to the problem definition and thus appear more natural for the
user.

Initialise
To begin with the reproduction cycle a starting population is needed. Normally the
individuals of this first population are created using a stochastic approach.
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Evaluate
The qualities of all individuals need to be computed such that the population mem-
bers can be differentiated during the selection process. Therefore a mathematical
function is needed to evaluate each individual’s quality. This evaluation function
is the actual optimisation criterion for the GA, which will be either minimised or
maximised according to the problem definition. There are no certain requirements
for this function but for a more efficient convergence it is useful that the evaluation
function proves to be continuous.

Select
In the selection phase individuals are chosen for the later replication phase, which
represent the parents of the new generation. It is necessary to select as many parents
as needed to assure that enough individuals can be created so that the population
size remains constant.

The ancestors are selected stochastically according to their evaluation. An equally
distributed approach would lead to the fact that good and bad individuals would
have the same chance to be selected and poor characteristics would be still passed to
the descendants, which contradicts to the selection in biological evolution. Consid-
ering this makes the separation between evaluation function and a special selection
function obvious.

The so-called fitness function fulfils this demand and is linked to the evaluation
function. The evaluation function is the measure of the quality of an individual,
while the fitness function is the base of the selection process. For each individual
is a fitness value computed proportional to its quality. Thus the fitness function
assesses the selection likelihood for each individual so that a better solution is more
likely to be chosen than a worse. This also follows the surviving of the fittest principle
from chapter 3.1.4. In [31] it is alluded to the fact that an equivalence of evaluation
and fitness would be formally wrong.

Replicate
During the replication new individuals are created based on the parents selected
before. This resembles the recombination in nature and for GAs it is often called
crossover because a crossover of each parent’s chromosome is done to create a new
one. Usually two parents create one or two new individuals during one crossover pro-
cess. The recombination must be repeated as long as there are enough descendants
to build a new population.

While in nature the recombination happens randomly and thus there is no warranty
that the new individual will be of better quality, in a GA the recombination can be
done following strict rules for a better convergence. These rules improve the chance
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Figure 3.4: Two examples for the one-point crossover

that only the good parts of the parents are passed on to the descendants, which will
lead to better solutions during the optimisation process. The whole recombination
works on the genotype and therefore all crossover operations are done with the chro-
mosomes. The following recombination types will help to understand the proceeding
and were used for this diploma thesis. While the concrete implementation of these
operators according to the defined problem will be discussed later, an overview of
the operators will be given here.

One-point crossover Introduced by Holland [10] himself the one-point crossover
is a simple working crossover and a perfect example of the building block
hypothesis, see 3.2.1. Here two parents build the base for two new individuals.
The idea is that a randomly selected point splits the parents’ chromosomes
into two building blocks. These blocks are passed on to the descendants, one
block from every parent. Thus each new individual inherits the first part from
one parent and the second part from the other. This also means that identical
individuals create descendants indistinguishable from their parents. As seen in
Fig. 3.4a the one-point crossover can produce descendants that vary in many
ways from their parents. On the other side there will be no differences in a bit
where both parents share the same value, as shown in Fig. 3.4b.

Using two splitting points will help to find better building blocks, which is
realised in the two-point crossover, as the name indicates. Furthermore a
variable number of splitting points leads to the n-point crossover.

Position sorting crossover The previously described crossover, in all its variations,
takes for each part the order information from only one parent into account.
Thus, like many other crossover operators, the order common to both parents
is not preserved. An approach which considers both orders is featured in [15]
called the position sorting crossover. Here the average position for each value
is computed according to both of the parents’ locations. Sorting the values
according to the calculated positions results in the new sequence, which rep-
resents the new descendant. Therefore the position sorting crossover can only
create one child from two parents. See Fig. 3.5 for an example: the relative
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4 2 6 1 3 5

4 3 6 5

1 2 3 4 5 6

2 1

parent A

parent B

positions of values

descendant

2 4 2.5 5.5 4.52.5

Figure 3.5: An example for the position sorting crossover

position of elements x and y are preserved in the newly created child. For a
better understanding an example of this crossover is given in Fig. 3.5. There
it is easy to see that one value, which stands in both parents before another,
is also positioned before it in the descendant.

Edge recombination crossover In [37] an operator is described especially designed
for the, in [20] introduced, travelling salesman problem (TSP)—the edge re-
combination crossover.

Usually chromosomes, encoding a TSP route in a graph, are represented as
a string of vertices and two neighbouring vertices in the string are treated as
an edge. Therefore a route like [a, b, c, d, a] stands for the edges ab, bc, cd,
da. When dealing with symmetric problems of that kind the direction of the
edges does not matter and thus the route [a, d, c, b, a] would encode the same
solution in the phenotype but with complete different representations in the
genotype.

The edge recombination crossover solves this problem because it does not
operate on the chromosome itself but extracts the edges from the string to
create a so-called edge list. This edge list contains for each vertex a list of its
neighbours from both parent strings. Thus each list linked to a vertex holds
from two, both parent neighbours are identical, to four, all neighbours are
different, elements. If a vertex in the edge list is linked to less vertices it is
more likely that the represented edges are part of a good or maybe optimal
solution and therefore these edges should be selected for the new individual.

To follow the procedure of the edge recombination crossover an example for
an edge listis given in Fig. 3.6. The first step is to build the edge list. The
initial vertex current can be chosen arbitrarily and is then deleted from the
lists linked to each vertex. If there are any vertices linked to current, i.e., the
list of current is not empty, then the vertex with the least elements in its list is
selected as the next current and saved as the next element in the descendant
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parent A

parent B

descendant

1 2 3 4 5

4 3 5 2 1

1 2 5 3 4

edge table
vertex    neighbour

1:    2,4,5
2:    1,3,5 
3:    2,4,5
4:    1,3,5
5:    1,2,3,4

Figure 3.6: An example for the edge recombination

string. Ties are broken randomly. This process is repeated until all vertices
are members of the descendant. Although this process can be extended to
more than two parents, like in [33], usually the offspring is created from only
two parents, see [37].

Diversify
In nature errors occur during the recombination process. In this diversification—
also called mutation—Darwin saw the driving force for the variety of individuals.
In contrast to recombination the mutation in a GA happens accidentally. Moreover
not every individual will be mutated. Thus a probability factor is needed, which
defines how many members of a population will be affected by mutation. This
mutation rate is one more important strategy parameter which must be defined
in the configuration phase. Due to the fact that the mutation alters parts of the
chromosome, it does not create a new chromosome but replaces the original one.
The primary goal of mutation is to overcome local optima during the optimisation
process. While in other EA variants the mutation plays a leading part, in GAs it
is only of subordinate importance. To the most common approaches belong these
ideas:

One-bit inversion A simple approach to alter the genotype is to change the value of
one of the chromosome’s bits. This is attained by selecting a random position
and inverting the bit value there. An example of this process can be seen in
Fig. 3.7a. The change is affecting the genotype only a little and choosing a
proper representation the effect on the phenotype will be small, too. Moreover
there is to note that this mutation type just alters one bit of the chromosome
but does not effect any other value or their arrangement.
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1 0 1 0 1 0

1 1 1 0 1 0
(a)

1 1 1 0 0 0

1 0 0 1 1 0
(b)

Figure 3.7: (a) Shows an example for the one-bit inversion; (b) for the two-bit switch

Two-bit switch Using more complex chromosome representations simple opera-
tions like the one-bit inversion would lead to undefined solutions. Then another
approach of mutation is needed like swapping the position of two values. By
selecting two random positions and interchanging the values there, the mu-
tated individual still features the same values but a rearranged order, as seen
in Fig. 3.7b.

Create new Population
As already mentioned the old population is at the end of one cycle extinguished
and replaced with the currently new created generation. This process is called
generational replacement. It might happen that none of the new individuals is better
than their ancestors, which would mean that there was no improvement during this
generation and this could lead to even worse results later on. To minimise this risk
it appears useful to let some of the best ancestors survive.

This idea of elitism counteracts the discussed problems of generational replacement
by keeping some of the best individuals from the old generation. Therefore it is
either possible to create less individuals during the recombination or to skip the
worst individuals by keeping the best ancestors. Sometimes elitism can lead to a
too fast convergence. Weak elitism deals with this problem in the way that the
ancestors are passed to the next generation only in a mutated form.

3.2.2 Evolutionary Strategy

While GAs are best used for combinatorial problems the idea of an ES is to opti-
mise functions defined on real numbers. ESs were introduced in the 1960s by Ingo
Rechenberg and Hans-Paul Schwefel for optimisation in the technical-physical field,
see [31].
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In the case of ES the chromosome is represented by a string of real numbers whereas
every number resembles an optimisation factor. In an ES the current population
usually is called with the Greek letter µ and the set of descendants with λ.

The process of an ES resembles the already pictured general EA scheme shown
in Alg. 1. First the starting population is created stochastically. To get the next
population new individuals are created on the base of the current population. The
relation between the sizes of µ and λ is usually set from 1 to 7, i.e., every individual
has one to seven descendants.

The idea is to create a vast number of new individuals therefore the selection process
can deal with a lot of opportunities to choose. This is possible because of very fast
recombination and mutation algorithms, while the mutation proves to be the more
important operator.

For recombination two different crossovers are commonly used, see [24]. The discrete
recombination decides randomly for each position in the string if the value from the
first parent or the second is taken and passed to the descendant string. Another
approach—the intermediate recombination—is to compute for every number in the
string the mean from both parents’ numbers and thus create the values for the new
individual.

During the mutation for each real number from the string a random value is gen-
erated and added to the number. This is achieved by using a normally distributed
function with an expectation equal to zero, i.e., it is, very likely that the real numbers
are changed only slightly or not at all.

In the selection phase µ individuals have to be chosen to build the next population.
In ESs elitism is always applied, which means that the best individuals of both sets µ
and λ will be taken. One normally differentiates between two selection strategies:

Plus strategy There the best µ chromosomes are chosen from both the ancestors
and the descendants. This means that the next generation includes individuals
from µ+ λ and therefore this kind of ES is also called (µ+ λ)-ES.

Comma strategy The other approach is to create the new population on the base
of the best individuals from λ alone. Because in that strategy the ancestors are
not considered in the first place, a check is needed if the best of all individuals
is a member of the older population. If so then this individual is added to the
next population. This approach leads to the so-called (µ, λ)-ES.
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3.2.3 Genetic Programming

While normally the length of the chromosomes are fixed, some problems require a
variable chromosome size. GPs use chromosomes with a totally different structure,
which can also be interpreted as programs. Therefore GPs create programs—or
more precisely program codes—that optimise their I/O behaviour according to the
problem definition. John R. Koza was the main driving force in the development of
GPs [24].

Thus for a GP a finite set of functions and function symbols F and a finite set of
tokens T (constants and variables) must be defined. Each chromosome C = F ∪ T
is therefore a compound function and represented as a list of these components.

For turning this formal list into source code that can be compiled and run, a pro-
gramming language is needed which is comparable to this chromosome structure.
In principle any programming language would fulfil this task but, because of its
list representation, LISP (List-Processing) provides the perfect base for this require-
ment.

The structure of a GP is the same as in Alg. 1 with the exception that there is no
mutation. As any EA a GP also begins with a starting population which is created
stochastically whereas attention should be paid that the individuals do not get too
complex.

Computing the fitness, i.e., the fitness of a program, rather poses a challenge. There-
fore the fitness is assessed based on some case studies and the quality of their program
outputs. The selection process afterwards is comparable to that of a GA.

The recombination can be done by choosing a logically correct part of each parent
chromosome and interchanging these parts for the descendant chromosomes. Again
attention should be paid that the individuals will not become too complex.

3.2.4 Evolutionary Programming

EPs are only a small fragment in the world of EAs but non the less interesting.
They were originally introduced by Lawrence J. Fogel, Alvin J. Owens and Michael
J. Walsh to generate intelligent Automata, while EPs were later also adapted to
deal with optimisation, see [24]. Normally the purpose of an EP is to optimise a
multidimensional function with the global optimum in its origin.

The interesting aspect of EPs is that the evolutionary process is done from the point
of view of the phenotype. The idea is to mutate the individual itself and not the
chromosome to reach the optimum and therefore the mutation is the only operator
needed.
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Despite the missing recombination the process of the algorithm is comparable to
an ES. First the starting population is generated stochastically. Then a copy of
the population is created and the mutation is applied to all the copied individuals.
After that the population has to be reduced to the original size using the selection
operator.

The selection is not directly done through the fitness instead each individual i of
the big population must compete against a set of other individuals from the same
population. The contest is then achieved by computing the fitness of the individuals
and comparing the fitness of i to the fitness of its competitors. Now counting every
time i wins, will lead to a ranking of all the individuals. The best of this ranking
are chosen as the base for the next generation, which automatically guarantees that
the very best individual is part of the survivors.

3.3 Other Metaheuristics

The algorithm implemented for this master thesis resembles a GA. But beside the
various kinds of EAs the field of metaheuristics offers many different other ap-
proaches. Some of these have already been pursued for solving RCCSTD, namely
the ant colony optimisation (ACO) and the variable neighbourhood search (VNS).
Because the results of the ACO will be compared with the GA in Sec. 6 and the
VNS was used to improve the GA results the ideas of both metaheuristics will be
shortly described here.

3.3.1 Ant Colony Optimisation

Another bionic approach is the ACO, which belongs to the field of swarm intelligence
algorithms, see [32]. Due to the fact that simple ants are able to solve complex tasks
such as food transportation and finding the shortest path, agent ants are created in
the computer to simulate the cooperative behaviour of real ants.

In the real world ants orientate and coordinate themselves along so-called pheromone
trails. Pheromone is an olfactive and volatile secretion that ants atomise along their
way. On the other hand ants follow the smell along a pheromone trail and the larger
the amount of this secretion, the larger is the probability that the ants will follow
that path, while the pheromone evaporates over the time.

Therefore if an ant trail is blocked by a barricade, then some ants will try to bypass
along the one side and others along the other side. The ants that choose the shorter
way will be faster and thus more ants will pass this section, which increases the
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Algorithm 2: A general ACO scheme

output: The best solution found within the ACO

begin1

Initialise the pheromone trail;2

repeat3

for each ant do4

Construct solution using the pheromone trail;5

Update the pheromone trails;6

end7

until breaking condition reached ;8

Return best solution found;9

end10

pheromone intensity along this path and therefore more and more ants will choose
this way around the barricade. Because of this mechanism ants are able to find the
shortest path between two points.

A possible computer simulation of this process, according to [32], can be seen in
Alg. 2. After the pheromone trail is initialised the optimisation process starts.
Within this process solutions are constructed (line 5) according to a simple stochastic
greedy method that creates a solution for each ant. Then the pheromone must be
updated in relation to the generated solutions. To avoid a too fast convergence each
pheromone value is reduced automatically by a fixed proportion, which simulates
the pheromone evaporation in nature. In the end, after a certain time period, the
best solution found will be returned.

3.3.2 Variable Neighbourhood Search

A VNS [16] in general is a metaheuristic that consists of a local search procedure
and is extended by a method to overcome local optima, by exploring predefined
neighbourhoods for better solutions. This is achieved either randomly or a set
of neighbourhoods is fathomed systematically. Thus the idea of VNS is to find
different local optima and that the global optima is a local optima to the other
neighbourhoods.

The deterministic version of VNS is the so-called variable neighbourhood descent
(VND). The VND builds the base for VNS by exploring the neighbourhoods in
descent to a local optima. Thus the VND relies on the definition of proper neigh-
bourhood structures Nl, with l = 1 . . . lmax. Starting with N1(x) and x, as the initial
solution, an improvement is searched within the current neighbourhood, in that case
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N1. If this is not possible the next structure Nl+1 in the hierarchy is taken and ob-
served. If an improvement was found the algorithm returns to the first structure
and restarts the search considering the new local optima x.

For VNS, which is a stochastic algorithm, a set of neighbourhood structures Nk,
with k = 1 . . . kmax, is defined at first. Then each iteration of VNS contains three
steps:

shaking randomly takes an initial solution x from the current neighbourhood Nk.

local search generates a new solution x′. If x′ is better than x then x = x′ and the
procedure is restarted with N1.

move If no improvement was found, the algorithm moves to the next neighbourhood
structure Nk+1.

Instead of local search a VND method is often applied for VNS. Therefore the
neighbourhoods can be explored systematically by the deterministic VND, while
the VNS sets the starting point randomly.

3.3.3 Hybrid Metaheuristics

The use of hybrid metaheuristics became more and more important over the last
years. For many optimisation, either real-life or classical, problems the best results
were found by this approach, see [32]. In [32] four different possible combinations
for metaheuristics are mentioned:

• combining some metaheuristics with each other

• combining metaheuristics with exact methods

• combining metaheuristics with constraint programming

• combining metaheuristics with machine learning

Within this master thesis the developed GA is combined with the VNS from [28],
which therefore resembles the first item in the list mentioned above. Therefore
the approach to combine two metaheuristics will be discussed in the following. A
combination of GA with another heuristic is also called a memetic algorithm. Good
results combining a GA with VND were achieved in [25].

Moreover a graduation [32] between a low-level hybridisation and a high-level hybridi-
sation can be made. In the low-level approach a given function of one metaheuristic
is solved by another metaheuristic, thus the algorithms are linked to each other.
But this type of hybridisation is barely used.
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In the high-level approach independent metaheuristics are used like a pipeline each
using the output of the previous algorithm as its input. Thus the metaheuristics are
executed in a sequence.

A popular combination scheme is to create the initial population by greedy heuris-
tics, which is also done for this master thesis. Another approach is to use a meta-
heuristic to improve the already generated solutions. Within this work this is done
twice with the help of the VNS. Once to improve the best individuals every few
generations and on the other hand to improve the very best individual found at the
end of the reproduction cycle.
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CHAPTER 4

A Memetic Algorithm for the
RCCSTD Problem

Based on the mechanisms described in Sec. 3.2.1 a genetic algorithm (GA) was de-
signed for this master thesis to reconstruct cross-cut shredded documents as defined
in Sec. 2.1. In this section the main ideas and the used operators will be described.

Previously other reconstruction approaches have been implemented for this frame-
work like a variable neighbourhood search (VNS) described in [23] and moreover
an ant colony optimisation (ACO), based on integer linear programming techniques
(ILP) and some construction heuristics, see [28].

The VNS was also used to further improve the solutions created by the GA. This
approach, to combine a GA with another metaheuristic, is also called a memetic
algorithm. Due to the fact that for this thesis only the GA part was newly cre-
ated, the described algorithm will always be referred to as GA and not as memetic
algorithm.

Taking the classic structure of an evolutionary algorithm, like shown in Alg. 1, the
procedure was adapted for the specific needs of this work. The new structure for
this thesis can be seen in Alg. 3.

The main difference to a classic GA as shown in Alg. 1 is the fact that the evaluation
of individuals is done directly after the recombination or mutation and thus its value
is computed by the operators. This is done because in certain test situations only
the better individual was chosen from recombination operators that created two
descendants. Therefore the individuals must be evaluated at once. In addition to
the GA from Alg. 1, a local search procedure, the VNS, is performed.
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4 A Memetic Algorithm for the RCCSTD Problem

The reproduction cycle is repeated until the a certain number of generations is
reached. This specific number is assigned as an input variable. It is also the only
breaking condition for the loop, because preliminary tests have shown that even after
long times of stagnation an improvement was still possible. Another input variable
is the population size, which defines the number of individuals for each population
P (t) at the moment t.

The initialisation of the population (line 3) is performed using two construction
heuristics, namely the row building heuristic and the Prim-based heuristic, originally
introduced in [28]:

row building heuristic takes into account that usually for each line of a text docu-
ment the beginning and the end of the line is white. Thus this heuristic takes
a shred with a white side on the left and repeatedly adds shreds to this line,
using best fit, until a shred with a white right side is found and therefore the
end of line reached. Then a new line is started following the same procedure.

Prim-based heuristic is based on the algorithm of Prim [30], which was designed
to find a minimum spanding tree. Like the Prim algorithm this heuristic starts
with an arbitrarily chosen shred, in that case at p = (1, 1). The next shred is
added arround the already existing solution and the new shred must stick to
the solution on at least one side. To find the next shred a best fit approach is
used.

The rest of this section is dedicated to the methods used in the main loop and the
operators created for them will be discussed.

4.1 Selection

For selecting the parents individuals are randomly chosen from the preceding popu-
lation using an equally distributed function. This seemingly simple approach takes
into account that the error estimation function (EEF) from Sec. 2.2 performs well
for this assignment. Tests have shown, however, that for many instances solutions
can be created whose objective with respect to EEF is smaller than the original
document evaluation. Therefore, when relying on a fitness function, which is highly
dependent of EEF, the probability that correct solution features are preferred, is
reduced.

To compensate this simple equally distributed approach only the better offspring
is taken from crossover operators which create two descendants. This leads to the
assumption that mostly better individuals are created for the next generation. More-
over elitism is performed in a way that ten percent of the best individuals from the
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Algorithm 3: The GA for this thesis

input : Number of generations generations, population size size
output: The best solution found within the GA

begin1

t← 0;2

Initialise the population P (t);3

repeat // start the reproduction cycle4

t← t+ 1;5

Select(P (t− 1)); // choose from the parents6

Recombine(P (t)); // generate & evaluate the descendants7

Mutate(P (t)); // mutate descendants8

Create new population P (t); // new population from descendants9

ImproveSolutions(P (t)); // improve some individuals10

until t == generations;11

ImproveFinalSolution(P (generations)); // improve best individual12

return best individual;13

end14

previous population are passed unchanged to the next. This approach was also
verified by preliminary tests.

4.2 Recombination

For the recombination several crossover operators have been designed. Based on the
crossovers mentioned in Sec. 3.2.1 these operators have been adapted according to
the specific problem of document reconstruction.
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Algorithm 4: Horizontal block crossover

input : solution1, solution2: the parent individuals
output: newSolution1, newSolution2: the descendant individuals

begin1

Create newSolution1, newSolution2;2

Compute splitHorizontal; // randomly chosen3

for i← 0; i < splitHorizontal; i++ do4

row = solution1.getLine(i); // copy top half from solution15

newSolution1.add(row);6

end7

for i← splitHorizontal; i < number of lines2; i++ do8

for j ← 0; j < end of line; j++ do9

shred = solution2.getLine(i).getColumn(j);10

if shred /∈ newSolution1 or shred == virtualShred then11

row.add(shred); // bottom half from solution212

end13

newSolution1.add(row);14

end15

forall shred /∈ newSolution1 do // copy remaining shreds16

add shred to empty space in newSolution1 using BestFitHeuristic;17

end18

Repeat lines 4 to 18 for newSolution2;19

return newSolution1, newSolution2;20

end21

4.2.1 Horizontal block crossover

The horizontal block crossover (HBX) follows the idea of the one-point crossover
(1PX). Nevertheless the basic approach described earlier cannot be directly adopted.
Due to the more complex representation of RCCSTD each shred has to occur exactly
once. The scheme of HBX is printed in Alg. 4.

While for 1PX a splitting point is chosen, which defines where the parents will be
taken apart, for this two-dimensional problem a line as breakpoint is needed. More-
over, this line is chosen randomly by simulating a Gaussian distribution function
and of course according to the shorter of the two parents. For simplicity two equally
distributed random integers were generated and added, which resembles the throw
of two dices. The Gaussian distribution was chosen, because bigger blocks can be
created, when it is more likely that the two parts split apart are of equal size.
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Parent 1

Parent 2

Offspring 1

Offspring 2

(a)

Parent 1

Parent 2

Offspring 1

Offspring 2

(b)

Figure 4.1: (a) Shows an example for HBX; (b) shows an example for VBX;
in both figures the black shreds are added using best fit

For newSolution1 the upper part of solution1 and the lower part of solution2
is taken, while for newSolution2 it is the other way round. The lines 4 to 18 in
Alg. 4 describe how to create newSolution1. The whole procedure must be repeated
again for newSolution2 as hinted in line 19. An example for HBX is presented in
Fig. 4.1a.

In line 4 to 7 the upper part is inherited unchanged from one parent like for the 1PX.
It can, however, happen that one shred occurring in the upper part of one parent
also occurs in the lower part of the second parent. If the lower part would just be
copied, some shreds could be found twice in the descendant while others would be
left out.

Therefore a check, like the one in line 11, is needed to make sure that only new
shreds will be chosen for the lower part. Some shreds might be left out during this
procedure.

These are added to the end of each line or instead of an empty shred, the so-called
virtual shred, using a best fit heuristic. This heuristic computes the EEF value
for every possible position and adds the shred at the position with the lowest EEF
value.
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Algorithm 5: Vertical block crossover

input : solution1, solution2: the parent individuals
output: newSolution1, newSolution2: the descendant individuals

begin1

Create newSolution1, newSolution2;2

Compute splitV ertical; // randomly chosen3

for i← 0; i < number of lines1; i++ do4

for j ← 0; j < splitV ertical; j++ do5

shred = solution1.getLine(i).getColumn(j);6

row.add(shred); // copy right half from solution17

end8

newSolution1.add(row);9

end10

for i← 0; i < number of lines1; i++ do11

for j ← splitV ertical; j < end of line2; j++ do12

shred = solution2.getLine(i).getColumn(j);13

if shred /∈ newSolution1 or shred == virtualShred then14

newSolution1.getLine(i).add(shred); // left half from solution215

end16

end17

forall shred /∈ newSolution1 do // copy remaining shreds18

add shred to empty space in newSolution1 using BestFitHeuristic;19

end20

Repeat procedure for newSolution2;21

return newSolution1, newSolution2;22

end23

While the copying of the first part can be done in O(n), in the worst case the upper
part of one parent is equal to the lower part of the other. Thus the best fit heuristic
must be used for half of the shreds, which leads to a worst case complexity of O(n2)
for HBX.

4.2.2 Vertical block crossover

The vertical block crossover (VBX), shown in Alg. 5, can be seen as the complimen-
tary approach of HBX. In that case the splitting line is moving vertically through
the solution and cuts it into two halfs. While HBX passes long horizontal parts on
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to the descendants, the vertical block crossover was designed to hand long vertical
parts on to the offspring.

Taking the longest column of both parents into account, the line is again computed
with the pseudo Gaussian distribution used in HBX. Both descendants inherit the
left part unchanged from one parent. For the right part it is again important to make
sure that in the end each shred occurs only once. Remaining shreds are analog to
HBX added using a best fit heuristic, see the example in Fig. 4.1b.

Because of the best fit process the complexity of VBX is, like that of HBX, O(n2).

4.2.3 Best neighbour crossover

As already mentioned above, it might occur during the optimisation that there are
empty slots within the solution. To handle such slots efficiently they are filled with
placeholders—the so-called virtual shred. Due to the general design of the operators
utilised it is, however, likely that empty shreds are introduced. Obviously, this leads
in most cases to solutions with large empty regions.

To overcome this drawback, i.e., to delete obsolete virtual shreds to make solutions
more compact, the best neighbour crossover (BNX) was designed, which scheme can
be seen in Alg. 6.

The idea is to take two individuals and decide for each position of the offspring
whether to take the shred from one parent or the other. This means that in certain
situations if one block from the first parent and the other block from the second are
positioned next to each other in the parents and fit together well than they will be
passed to the offspring.

Due to the fact that both parents will be of different form, one descendant will
inherit the shape of the first parent and the other the shape of the second parent.
Beacuse the virtual shreds are ignored the offspring will be more compact in shape
than the parents’.

For newSolution1 the first non virtual shred from solution1 is taken and added,
see line 3. Following the structure of solution1 all the other shreds are added
by iteratively comparing if the shred from solution1 or solution2 fits better,
according to EEF, at the current position, which is done in the lines 11 to 15.

If one of the two possible shreds is a virtual shred, than the other snippet will be
taken. On the other hand if both are virtual shreds than they are skipped and the
shreds on the next position in the parents’ line will be taken into account, compare
lines 8 and 9. In newSolution1 the current position will of course not be skipped
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Algorithm 6: Best neighbour crossover

input : solution1, solution2: the parent individuals
output: newSolution1, newSolution2: the descendant individuals

begin1

Create newSolution1, newSolution2;2

Copy upper left non virtualShred from solution1 to newSolution1;3

for i← 0; i < number of lines1; i++ do4

for j ← 1; j < number of columns1; j++ do5

shred1 = solution1.getLine(i).getColumn(j);6

shred2 = solution2.getLine(i).getColumn(j);7

if shred1 and/or shred2 is virtualShred then8

ignore the virtualShred and add the other or none9

else10

if shred1 fits better than shred2 at current position then11

newSolution1.getLine(i).add(shred1);12

else13

newSolution1.getLine(i).add(shred2);14

end15

end16

end17

end18

Repeat procedure for newSolution2;19

return newSolution1, newSolution2;20

end21

and thus the offspring will not contain any virtual shreds in the end, making the
descendants more compact.

The procedure from lines 3 to 18 must be repeated for newSolution2 starting with
the first non virtual shred of solution2 and inheriting the structure of the latter
parent.

To create the offspring both parents are iteratively observed but each position is
only visited once for each descendant, which leads to a runtime of O(2 · n) for one
child, with each individual containing n shreds. Thus the whole crossover has a
complexity of O(n).
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Algorithm 7: 2D position sorting crossover

input : solution1, solution2: the parent individuals
output: newSolution1, newSolution2: the descendant individuals

begin1

Create newSolution1, newSolution2;2

forall shreds ∈ solution1 do3

Get position1 of shred in solution1;4

Get position2 of shred in solution2;5

relativePositionX[shred]← b(position1.x+ position2.x)/2c;6

relativePositionY [shred]← b(position1.y + position2.y)/2c;7

end8

forall shreds ∈ solution1 do9

Add shred to newSolution1 in line relativePositionY [shred] using10

BestFitHeuristik for the column;
end11

forall shreds ∈ solution1 do12

Add shred to newSolution2 in column relativePositionX[shred] using13

BestFitHeuristik for the line;
end14

return newSolution1, newSolution2;15

end16

4.2.4 2D position sorting crossover

The 2D position sorting crossover (2PSX), which is based on the idea of the position
sorting crossover introduced in [15], picks up the idea to position a shred within the
offspring in relation to the position of the shred in both parents.

For this purpose an intermediate position for each shred is computed, which is then
used as a decision basis for placing each shred in the offspring. Alg. 7 outlines the
basic principle of 2PSX in pseudo-code.

Since it is most likely that multiple shreds are assigned to the same intermediate
position, only the exact computed x coordinate is used. The second coordinate is
determined using the best fit heuristic.

A second offspring is generated analog by using the exact y coodinate and best
fitting the x coodinate. Because of the best fit heuristic the complexity for this
crossover is O(n2).
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4.2.5 2D edge recombination

The 2D edge recombination (2DERX), see Alg. 8, is modelled on the edge recom-
bination crossover (ERX) from [37]. The original ERX was considered for the one
dimensional symmetric travelling salesman problem, where two parents are creat-
ing one descendant. Thus each list linked to a vertex holds from two, both parent
neighbours are identical, to four, all neighbours are different, elements.

In the case of this master thesis the situation is different because cross-cut docu-
ment reconstruction is two dimensional and the relation between two shreds is not
symmetric. This means that usually there is a difference if one shred is left or right
of another snippet and likewise for the top and bottom relations.

Thus there is not only one edge list but four neighbour lists, in each case one for
the relation of the top, the bottom, the left and the right position next to each
shred. Therefore each list could only contain two entries for a two parent approach.
Preliminary tests have shown that with this approach the descendant is only a copy
of one of the parents.

Therefore in a first test phase the number of parents was varied between two and
six. A similar approach with more than two parents was already followed for the
classic ERX operator in [33]. In the end the number of parents was increased to
four for this operator. By this enhancement the number of list entries is one (in
all solutions one shred has the same neighbour) up to four (all neighbours are
different for a shred in each parent), which rather resembles ERX.

Every new shred that is added to newSolution, is then chosen according to these
neighbour lists. At the beginning these lists have to be initialised, which is done
in the lines 3 to 5 of Alg. 8. Moreover is a visualisation of these lists shown in
Fig. 4.2.

A starting shred is chosen based on the number of entries in all four lists together
and added as the first shred to the newly generated offspring. After this shred is
added, it must not be considered as a possible neighbour any more and thus it is
deleted from the neighbour lists left, right, top and bottom of all shreds.

Furthermore it is necessary to know which positions are empty and which are already
filled with a shred. It would be too time-consuming to search the whole structure
of newSolution, to find a free place for the next shred. Therefore in line 8 the
currentFreePositionsList is introduced. Each time a shred is added, a check is
made whether there is an empty or filled neighbour at each side of the new shred.
The empty spaces are added to the currentFreePositionsList, which therefore
organises the possible locations for the next shreds.
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Algorithm 8: 2D edge recombination

input : solution1, solution2,solution3, solution4: the parent individuals
output: newSolution: the descendant individual

begin1

Create newSolution;2

forall shred ∈ solution1 do3

Create the neighbourhood lists left, right, top, bottom for each side of4

shred taking solution1, solution2,solution3, solution4 into account;
end5

Get starting shred and add to newSolution;6

Delete shred from left, right, top, bottom;7

Add free spaces to currentFreePositionsList; // the spaces around shred8

counter = 1; // the first shred was already added9

while counter < numOfShreds do10

if currentFreePositionsList.isEmpty then // no free positions left11

Get new starting shred and add to newSolution;12

Delete shred from left, right, top, bottom;13

Add new free spaces to currentFreePositionsList;14

else // there are free positions left15

Choose next position to be filled from currentFreePositionsList;16

Choose shred according to left, right, top, bottom;17

Add shred at position to newSolution;18

Delete shred from left, right, top, bottom;19

Delete position from currentFreePositionsList;20

Add new free spaces to currentFreePositionsList;21

end22

counter++;23

end24

return newSolution;25

end26
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Figure 4.2: An example of neighbour lists of 2DERX

After the first shred is added, there are possible neighbours stored in the neighbour
lists and free spaces available to add the remaining shreds. This is then done in the
loop from line 10 to 24. The more interesting part are the lines 16 to 21. At first,
line 16, the position is chosen, where the next shred will be added. This is decided
according to the number of possible shreds that are available at each position and
the position with the least opportunities is taken, because this means that some
parents match in that specific case.

There exist one, the position is on the brink, up to four, the free position is sur-
rounded with shreds, possible neighbours, depending on the position of the free
space. Therefore the neighbour lists of the surrounding shreds must be taken into
account to select the next shred, as is done in line 17. If there is already a shred
located above the free position the bottom list of this shred is taken and in the same
way the other neighbour lists are handled. If one or more shreds occur in each of
the considered lists, this one shred is chosen or in the case of more opportunities it
is decided randomly. Otherwise if the lists have no shred in common, all the shreds
from the lists are considered and one of them is chosen randomly. This new shred
is then added to newSolution.

Then the shred is deleted from the neighbour lists, line 19, and the now filled position
from the currentFreePositionsList, line 20. Afterwards the free positions around
the new shred are added to the currentFreePositionsList, line 21. If a position
would be empty but in the neighbour lists surrounding the space are no entries, this
position is obviously not added, because then no shred could be found to fill the
space.

What to do, if there are no free positions left, which can happen, if all the neighbour
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Figure 4.3: (a) An example for a horizontal flop; (b) an example for a vertical flop

lists of the already added shreds are empty, is shown in the lines 12 to 14. This
happens to be a kind of restart and the same is done as in line 6 to 8. A new shred is
chosen, according to the number of possible neighbours and added to newSolution
being the first shred in a new line. Therefore new positions can be added to the
currentFreePositionsList and the process from line 16 to 21 starts again. The
whole loop is repeated until all shreds are added to newSolution.

The updating of the neighbour lists already has a complexity of O(n2), for n shreds.
The other operations can be achieved in linear time, which leads to a complexity of
O(n2) for 2DERX.

4.3 Mutation

In addition to the main purpose of these operators, i.e., to mutate individuals, they
have to fulfil a second none the less important function, namely to compensate
side-effects such as too long lines or too long columns.

The individuals to be mutated were chosen randomly by an equally distributed
function. In the following each of the mutation approaches will be described.
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Algorithm 9: Horizontal flop

input : solution: the individual to be mutated
output: newSolution: the mutated individual

begin1

Create newSolution;2

maxLine← number of lines;3

Compute splitHorizontal; // randomly chosen4

for i← splitHorizontal; i < maxLine; i++ do5

row = solution.getLine(i); // copy the bottom half to the top6

newSolution.add(row);7

end8

for i← 0; i < splitHorizontal; i++ do9

row = solution.getLine(i); // copy the top half to the bottom10

newSolution.add(row);11

end12

return newSolution;13

end14

4.3.1 Horizontal flop

The horizontal flop (HFM), visualised in Alg. 9, is the mutating equivalent of HBX.
In the case of the mutation the parent individual is horizontally split into two parts
between two rows of shreds dividing the solution into an upper half and a lower
half, see the example in Fig. 4.3a.

As for the recombination the splitting position is chosen randomly on the base of a
pseudo Gaussian distribution function.

The lower part of the parent is then copied to the upper part of the descendant and
the same is done for the other half. Thus all left-right and top-bottom relations are
inherited to the newSolution except the relations along the splitting line. Roughly
speaking the parent individual made a flip-flop.

The complexity of this mutation is dependent from the number of lines of solution,
which can be up to n lines, using n shreds. Thus in the worst case the complexity
of this mutation is O(n).
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Algorithm 10: Vertical flop

input : solution: the individual to be mutated
output: newSolution: the mutated individual

begin1

Create newSolution;2

maxLine← number of lines; maxColumn← number of columns;3

Compute splitHorizontal; // randomly chosen4

for i← 0; i < maxLine; i++ do5

pos← 0;6

for j ← splitV ertical; j < end of line; j++ do7

row.add(solution.getLine(i).getColumn(j)); // copy left to right8

pos++;9

end10

Fill space maxColumn− end of line with virtualShred;11

for j ← 0; j < splitV ertical; j++ do12

row.add(solution.getLine(i).getColumn(j)); // copy right to left13

end14

newSolution.add(row);15

end16

return newSolution;17

end18

4.3.2 Vertical flop

The vertical flop (VFM), see Alg. 10, is the logical add-on to the other three op-
erators already described. Now, as for the VBX, the splitting line moves vertically
along a column of shreds, dividing the solution into a left and right half. This line
is again chosen randomly taking the parents longest column into account.

For each line the newSolution inherits the left side from the parents right half, as
shown in line 7 to 10, and then vice versa, see line 12 to 14.

Due to the fact that the lines of solutions in general do not share the same length,
the left side of the descendant is filled with virtual shreds, as done in line 11. Other-
wise the right half would be shifted to the end of each line and thus the top-bottom
relations could not be passed on from the parent to the descendant, as visualised in
Fig. 4.3b.

All the n shreds must be copied in their new order to newSolution, which leads to
a complexity of O(n).
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Algorithm 11: Switch two

input : solution: the individual to be mutated; repeat: the number of switches
output: newSolution: the mutated individual

begin1

for i← 0; i < repeat; i++ do2

Choose shredA randomly;3

Choose shredB randomly;4

Get positionA of shredA;5

Get positionB of shredB;6

positionA← shredB;7

positionB ← shredA;8

end9

return newSolution;10

end11

4.3.3 Switch two

Mainly the switch two (S2M) mutation operator is the most simple but also most
flexible one. The basic idea is to randomly swap two shreds. This operation can,
however, be repeated up to 10 times.

Due to efficient datastructures an application of this operator can be performed in
O(1).

individual mutated individual

1 2 3 4 5 6

1 5

2

3

4

6

(a)

individual mutated individual

(b)

Figure 4.4: (a) An example for the break column; (b) an example for the break line
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Algorithm 12: Break column

input : solution: the individual to be mutated
output: newSolution: the mutated individual

begin1

Create newSolution;2

maxLine← number of lines;3

Compute lines; // number of lines to remove at most one-fifth4

for i← 0; i < (maxLine− lines); i++ do5

row = solution.getLine(i); // copy all lines except last lines6

newSolution.add(row);7

end8

pos← 0; // add remaining shreds to the copied lines9

for j ← i; j < maxLine; j++ do10

for k ← k; k < end of line; k++ do11

shred← solution.getLine(j).getColumn(k); // get current shred12

newSolution.getLine(pos).add(shred); // add at end of line pos13

pos++;14

if pos == (maxLine− lines) then15

pos← 0; // reset pos16

end17

end18

return newSolution;19

end20

4.3.4 Break column

The break column (BCM) helps to control a side-effect of a recombination in that
case of the 2DERX, which creats individuals with short but many lines.

Within this mutation the bottom fifth of all rows (or less) are selected and in the
following removed, see line 4 of Alg. 12. The shreds of these lines are added to
the end of the remaining lines. All the shreds from the bottom lines are taken,
see code-lines 10 and 11, and added in turn to the top lines while every new shred
appends a line beneath the previous, code-line 13. If the last line of newSolution is
reached the process restarts with the first line, see code-lines 15 and 16. An example
is shown in Fig. 4.4a

Up to one-fifth of n shreds are copied within this mutation, which results in a
complexity of O(n).
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Algorithm 13: Break line

input : solution: the individual to be mutated
output: newSolution: the mutated individual

begin1

Create newSolution;2

longestLine← position of longest line;3

maxColumn← longestLine.size();4

Compute split; // randomly chosen5

for i← 0; i < longestLine; i++ do6

row = solution.getLine(i); // copy until longest line7

newSolution.add(row);8

end9

row = Shreds of longestLine from begin until split;10

newSolution.add(row); // keep first part of shreds in line11

for i← longestLine+ 1; i < number of lines; i++ do12

row = solution.getLine(i); // copy from longest line to end13

newSolution.add(row);14

end15

row = Shreds of longestLine from split until end;16

newSolution.add(row); // add second part of shreds to the end17

return newSolution;18

end19

4.3.5 Break line

The break line (BLM) was designed because first tests showed that especially HBX
and VBX created solutions, whose lines grew longer over the time. This is certainly
because of the best fit heuristic that often adds remaining shreds to the end of lines.
But with the help of the BLM this problem is under control.

The idea is to find the longest line of the parent individual and choose a point
randomly where this line should be split apart. Again the pseudo Gaussian approach
from HBX was used for line 5 of Alg. 13.

Then the first half of solution is copied to newSolution until the longest line is
reached, see lines 6 to 9. From this line only the shreds from the beginning until the
splitting point are added to newSolution as indicated in line 10. Afterwards the
rest of the lines are copied. In the end a new line is created where the second half
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of the longest line from the breaking point until the end is added, see line 16. This
makes newSolution one line longer but with less columns, see Fig. 4.4b.

In the worst case there are n−1 lines using n shreds, one line must have two shreds,
ohterwise no line could be broken. This results in a complexity of O(n).

4.4 Improvement

As a common proceeding a GA is extended by a heuristic, which is used to improve
the quality of the individuals. As mentioned above this extension of a GA is called
a memetic algorithm. The idea is to use fast and simple algorithms every few
generations to fathom new solution opportunities. Thus restrictions that could
emerge from the population based search can be mended with the point based search
of the heuristics, see 3.2.

Important is to turn the attention on the phrase fast and simple, because the im-
provement strategies are usually applied to many individuals and thus too complex
approaches would have devastating effects concerning the computation time.

The already mentioned VNS with VND, introduced in [23] and advanced in [28],
was used as an improvement strategy for the GA. The moves and neighbourhoods
created for this VNS, taken from [28], will be described in the following, while the
general working principle of VNS is outlined in Sec. 3.3.2. At first there must be a
differentiation made between these moves:

SwapMove swaps two different shreds i and j, with i, j ∈ S.
ShiftMove allows to shift a rectangular region of shreds within the solution. There-

for the position and size of the region, the shifting direction and distance must
be defined.

These moves lead to the following seven neighbourhood structures:

N1: One swap move is applied within the current solution.

N2: Within this neighbourhood structure one shred is shifted either horizontally or
vertically.

N3: This structure shifts a single row or column of defined length.

N4: In that case the length and width of the rectangle of shreds to be shifted can
be chosen arbitrarily.

N5: One single shred is first shifted horizontally and then vertically.
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N6: This structure allows to shift a square of shreds first horizontally and then
vertically.

N7: Contrary to N6 now a rectangle of shreds is shifted first horizontally and then
vertically.

To fulfil the fast and simple criteria mentioned above only three of the large pool of
possible neighbourhood operations are utilised. These specific moves according to
their implementation are described in Sec. 5.3.

The VNS is then applied over its complete runtime to ten percent of the best indi-
viduals of the current population.

To further reduce the the negative effect of VNS on computation time, this local
improvement phase is only applied to the individuals of every five thousandth pop-
ulation. For comparisons of GA configurations with and without the application of
VNS to individuals see Sec. 6.

4.5 Final improvement

Having an improvement heuristic already implemented it would of course be sugges-
tive to use it again at the end of the GA. The ImproveSolutions(P (t)) is called many
times every few thousand generations within the reproduction cycle. In prospect of
an even better improvement, it may be convenient to allow a longer search time for
the ImproveFinalSolution(P (generations)) execution of VNS but to apply it only
to the best individual of the last population. The concrete moves based on the
previously described neighbourhood structures are mentioned in Sec. 5.3.

Although the local improvement phase ImproveSolutions(P (t)) was only applied
during one test configuration, this final improvement is performed each run.
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CHAPTER 5

Implementation

The whole GA, described in Sec. 4, was then implemented in JAVA 1.6 and extends
an already existing framework. This framework consists of a graphical user interface
(GUI) and a command line interface (CLI). Moreover does the framework handle
the data representation of the shredded pages and computes the EEF values, see
Sec. 2.2.

The GUI is able to visualise a strip or cross-cut shredded page and the implemented
algorithms can be consecutievly applied to one instance. Because of the visualisation
it is possible to visually check the quality of a reconstructed document.

The CLI on the other hand is designed for the purpose of testing. It allows to apply
one algorithm to one instance at a time and the progress of the algorithm can be
controlled on the command line by logging messages. All the tests for this thesis,
see Sec. 6, were done with the help of the CLI.

In the implemented framework a possible solution is saved as a two dimensional Java
ArrayList, in which all lines are linked to one ArrayList and the columns of each line
are stored in an ArrayList of their own. All shreds have a unique number, which
are saved in the column ArrayLists as integers. Exactly this approach was taken for
the GA to represent the genotype of each individual. The shred images linked to
the integer values on the stored positions would conform to the phenotype.
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Figure 5.1: A schematic illustration of the GA components and their dependencies

5.1 Module Structure

In the following a schematic illustration of the GA components and the position of
the GA within the framework will be given.

Fig. 5.1 shows the GA components and the connections between them. The center
builds the abstract GA class itself, which is a JAVA implementation of Alg. 3. The
test configurations HVREA, BNREA, EBNREA and HVREA+VNS, from Sec. 6, are derived
from that class.

The input, i.e., the shredded document, is represented by the class CCProblem.
Within this class the shreds and the EEF values for all shreds compared with each
other are stored. The output, i.e., the reconstructed document or in case of the GA
the individual, is handled by the CCSolution class. For each individual an instance
of this class is created, which stores for instance the fitness of the individual and the
position of each shred within the solution.

The crossover operators are all derived from the GARecombination interface, while
the GAMutation interface builds the base for all mutation operators. The classes
derived from these two interfaces are implementations of the operators described in
Sec. 4.

In Fig. 5.2 the position of the GA within the whole framework can be seen. The
ACO, GA, VNS and ILP components represent the implementations of the other recon-
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Figure 5.2: A framework illustration and the connection between its components

struction approaches. The connection between the GA and VNS components hints at
the collaboration between these two algorithms.

These components can be used in the surrounding of the GUI or the CommandLine.
All the algorithms use the CCProblem class as input. The output is, as for the GA,
handled by the CCSolution class. In case of the GUI a graphical visualisation of
the reconstructed document is possible based on the position informations stored in
CCSolution. The CommandLine on the other hand uses the fitness value, i.e., the
overall error made according to EEF, from CCSolution as output.

5.2 Starting the Framework

To compile and run both the GUI and the CLI the JAVA based program ANT is
used. The following several parameters control, which instance is taken or define
the cutting pattern and are always called from the command line:

guiCrossCut starts the GUI.

crossCutAlgorithm starts Algorithm using the CLI setup.

-DinputFile selects the document, which is cut apart and then reconstructed. The
file format must be *.png.

-DnumOfShredsX sets the horizontal number of shreds.

-DnumOfShredsY sets the vertical number of shreds.

-DEAGenerations sets the number of generations of the GA.

-DEAIndividuals sets the population size of the GA.
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For example the line:

ant crossCutEA3 -DinputFile p03 -DnumOfShredsX 8 -DnumOfShredsY 7
-DEAGenerations 8000 -DEAIndiduals 200

starts the GA type BNREA, see Sec. 6, with the instance p03, using a 8x7 cutting
pattern and for the GA the number of generations is set to 8.000 with a population
size of 200 individuals. Using guiCrossCut for instance instead of crossCutEA3
would start the GUI.

5.3 VNS Settings

The neighbourhood structures described in Sec. 4.4 were then implemented in the
framework and used for the VNS call within the GA.

Within the ImproveSolutions(P (t)) method the VNS is then applied to the ten
percent of the best individuals of the current population. For the VNS used in that
case the following fast and simple moves are used:

SimpleSwap swaps two different shreds within the solution.

SimpleShift shifts a single shred either horizontally or vertically.

SimpleBlockShift takes a square block and shifts it either horizontally or vertically.

For the ImproveFinalSolution(P (generations)) to further enlarge the improvement
potential additional more complex moves are applied:

SimpleDoubleShift can shift a single shred both horizontally and vertically.

SimpleDoubleBlockShift shifts a square block both horizontally and vertically.

RectangleBlockShift takes a rectangle block and shifts is either horizontally or
vertically.

RectangleDoubleBlockShift shifts a rectangle shaped block both horizontally and
vertically.
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CHAPTER 6

Tests

To test the implemented operators ten sampling instances (p01–p10) were chosen, see
App. B. Since the main focus of this thesis lies on the reconstruction of shredded text
documents all of these ten instances consist of type writer written text. Nevertheless,
some of them also contain small images and figures. Moreover not all of them have
the shape of the common DIN A4 format, namely p06, p07 and p08.

For the test the documents were horizontally and vertically cut apart using 8, 11
or 14 cuts, which leads to nine different cutting patterns for each instance from 9x9
snippets up to 15x15 snippets.

6.1 Configurations

Based on preliminary tests configurations were figured out such that the crossover
and mutation operators interact in a promising manner. Unluckily it turned out
that the 2D position sorting crossover failed to improve the initial population at all
and thus it was ignored during the final test phase. For the remaining operators the
following configurations were settled.

All the configurations have in common that a population size of 300 individuals is
used over a period of 30.000 generations. At the end of the GA itself, i.e., after the
30.000 generations, the VNS from [28] is applied to the best individual of the last
population using the moves described in Sec. 4.5.
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HVREA
This setup tests the horizontal block crossover combined with the vertical block
crossover. While both operators create two descendants out of two parents only the
best offspring from each crossover was chosen to improve the quality of the next
population. On 25% of all individuals mutation was applied whereas the concrete
probability for choosing the according mutation operator is shown in Tab. 6.1.

Table 6.1: The mutation probabilities for the HVREA

HFM VFM BLM S2M

5% 5% 10% 5%

BNREA
With this configuration the best neighbour crossover is tested. Because it is the only
crossover used in this setup both descendants of the operator were used for the next
population. A mutation rate of 25% was applied, while the concrete probabilities
can be found in Tab. 6.2.

Table 6.2: The mutation probabilities for the BNREA

HFM VFM S2M

5% 15% 5%

EBNREA
The purpose of this configuration is to test the effect of the 2D edge recombination.
Because of the side-effects of 2DERX, the columns get normally too long, a high
mutation rate for BCM is needed and the BNX was also used to make the individuals
more compact. Moreover in the first 8.000 generations only the BNX with the best
of both descendants creates the new population. This is again done to smooth the
side-effects of 2DERX. The idea is to create a better starting setup for 2DERX,
which proved very efficient due to preliminary tests. After this beginning phase the
2DERX, which can only create one child, and the BNX with the better offspring
together build the new population. An overall mutation rate of 35% is chosen with
the specific probabilities shown in Tab. 6.3.
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Table 6.3: The mutation probabilities for the EBNREA

BLM BCM S2M

10% 20% 5%

HVREA+VNS
This configuration intends to show the possibilities of document reconstruction us-
ing the GA created for this thesis with additional help from the VNS. The setup
parameters from the original HVREA are taken but the population size is expanded
to 700 individuals and the reproduction cycle lasts 70.000 generations. Moreover
VNS, using simpler but faster moves like described in Sec. 4.4, is applied every
5.000 generations to the best 10% of individuals of the current population. In the
end VNS is used to improve the best individual of the last population in the usual
way.

Due to the fact that this approach is more time consuming and thus the probability
of finding better solutions is much higher, this configuration can not be seen as a
competitor to the three configurations mentioned before. It is, however, interesting
to see how regularly performed local search phases influence the performance of this
GA setting.

6.2 Results

Each configuration was tested with 30 runs on all 90 instances, i.e., the ten sample
pages with nine cutting patterns each. Then the mean percentage gap for each in-
stance and each configuration was computed. Moreover a student t-test was applied
comparing all the configurations pairwise.

Detailed test results can be found in App. A. Tab. A.1 shows the results for each
instance after the end of the GA and before the VNS call, while the results after
the VNS call can be found in Tab. A.2. For comparison the computational results
of instances p01–p05 using the ant colony optimisation (ACO) from [29] are also
shown in these tables.

At first glance it can be seen that some instances can be solved true to original by
all the tested configurations. Excluding these instances a hierarchy arises with the
HVREA+VNS as the best and the BNREA as the worst configuration, while the
HVREA usually remains better than the EBNREA. Bringing the ACO into this
hierarchy it performs a bit better than the HVREA without the VNS at the end but
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(a) (b)

Figure 6.1: (a) Cutting p01 into 9x9 shreds is easy to solve
(b) while cutting it into 15x15 shreds it becomes one of the most difficult instances

a bit worse than the HVREA with the VNS in the end. The ACO is usually better
than the EBNREA without the VNS and equal to it with the VNS at the end.

While the error estimation function (EEF) from Sec. 2.2 performs well for text
documents, it does not take into account that the error induced by the original
document is the minimal error. Because of the massive usage of local improvement
and the long period of time available HVREA+VNS was able to find an adjustment
of shreds with an EEF value smaller than the original one for many instances, which
is represented by a negative percentage gap in the tables.

Comparing the results it appears that for some documents a reconstruction is easier
than for others. While samples like p02, p03 and p04 can be reconstructed efficiently
others like p01, p08 and p09 are difficult to solve.

On the other hand the reconstruction also depends on the cutting pattern. A very
good example for this is p01 which can be solved easily if the cutting pattern is 9x9
shown in Fig. 6.1a, while the pattern 15x15, Fig. 6.1b, is one of the most difficult
to solve. Moreover for all the instances regarding this sample no adjustment was
found with an EEF value smaller than the value of the original document.
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Figure 6.2: Reconstructing these two samples depends on the cutting pattern
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Figure 6.3: These instances are all equally difficult to solve
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Comparing the quality of the solutions of all configurations and all cutting patterns
for one sample confirms this discussion. The two charts in Fig. 6.2 show two samples,
where different patterns lead to either easily or difficult reconstructable instances of
the same document. In these diagrams two neighbouring bars stand for the same
configuration but the left bar always represents the performance of the GA alone
and the right with the VNS applied in the end.

For sample p05 and a pattern of 9x9 cuts all configurations were able to perfectly
reconstruct the original document. Using the 15x9 pattern an adjustment with a
smaller EEF value is found by all configurations. In all the other cases this instance
proves to be difficult to solve.

For sample p08 the HVREA+VNS can find better adjustments in seven out of nine
situations. But all the other configurations perform bad if this document is cut apart
15 times vertically, while the VNS helps a lot to solve the other cutting patterns.

In Fig. 6.3 two samples are shown, whose reconstructions do not depend that much
on the cutting pattern. For sample p03 the VNS can barely find any improvement,
while the VNS helps a lot for p06.

Another point of interest is the behaviour of the crossover operators during the
optimisation process. In other words how fast do these operators converge? To
discuss this question some instances were taken and analysed in reference to the
convergence of the crossover operators.

In that case the behaviour of HVREA+VNS solving four different instances was
observed alone, because the higher amount of generations within this configuration
made it difficult to compare it to the other approaches. The diagram in Fig. 6.4
indicates that the great advancement of improvement is done during the first 25.000
generations. There is to note that all 5.000 generations VNS was applied and after
10.000 generations the improvement steps can clearly be seen in the chart. This
means that the GA alone is not able to create better solutions but the further
improvement is possible because the newly created solutions build a better base for
the VNS.

In the two instances shown in Fig. 6.5, the operators behave alike. The best config-
uration is the HVREA, closely followed by the EBNREA and the BNREA placed
last. The right side of the x-axis marks the end of the GA and the VNS applied
afterwards.

A typical behaviour, which can also be seen here, is that the VNS improves the
BNREA the most. While this configuration without the VNS is always defeated
by the others, the VNS helps to significantly improve the BNREA and in some
cases there is no significant difference to the EBNREA after the VNS improvement
according to the student t-test, see Tab. A.2.
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generations x1000
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Figure 6.4: The convergence of the HVREA+VNS configuration

Comparing the convergence of the operators the HVREA clearly converges the
fastest, followed by the BNREA while the EBNREA shows the slowest convergence.
This leads to the consideration that for the EBNREA more than 30.000 generations
would emerge in an even better result using 300 individuals, while the other two
operators do not need a longer reproduction cycle.

The diagram in Fig. 6.6a shows a situation, in which the EBNREA proves to be
better than the HVREA, both without the VNS. It is also one of the most difficult
instances to solve for the BNREA, again without the VNS. Taking the VNS into
account the result for all the operators is nearly the same. Again the BNREA
benefits the most from the applied VNS.

The chart in Fig. 6.6b shows the behaviour of the crossover operators applied to the
9x9–p09 instance. This instance is the opposite of the diagram previously discussed.
Here the HVREA performs much better than the other two. Moreover it is an
instance, which can barely be improved by the VNS, especially for HVREA.
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generations x1000
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Figure 6.5: The operators behave alike solving these two instances
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6 Tests
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Figure 6.6: Two instances with completely different behaviour
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CHAPTER 7

Conclusion and Future Work

In this master thesis the problem of reconstructing cross-cut shredded documents
was presented and a genetic algorithm (GA) designed to solve this problem. Due
to the definition this problem is two dimensional and asymmetric. One ambition
was to extend approved crossover and mutation operators in a way that they can
be applied to this problem.

While this was possible for the one-point crossover and the edge recombination,
the two dimensional approach of the position sorting crossover failed to meet the
requirements.

To evaluate a reconstructed document a so-called error estimation function (EEF)
was introduced, which computes the error made, when placing two shreds next to
each other. While this function performs well, one problem is that the error induced
by the original document is not necessarily the minimal error, i.e., there might be
an adjustment of shreds with an EEF value smaller than the value of the original
document.

The implementation of the designed GA was then tested on ten samplings with nine
different cutting patterns each and always using an evaluation according to EEF.
One observation of the test results was that even akin looking documents proved
to be both easy and difficult to reconstruct. Another point is that the result of
the reconstruction often depends on the cutting pattern, i.e., the number of cuts
horizontally and vertically.

The results have shown that with a small computational effort a reconstruction of at
least two thirds of a document is possible. Having more computational power and
taking the usage of local improvement into account a nearly perfect reconstruction is
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7 Conclusion and Future Work

always possible. Furthermore, it was possible to outperform a previously introduced
ant colony optimisation approach using one of the GA variants presented within this
work.

Nevertheless all the samples introduced represented one single printed page. The
GA was never tested on multi page samples but it would be interesting see the
results of these tests.

The introduced EEF only works with grayscale values and is designed for the field of
reconstructing text documents. Extending the EEF to the RGB colour space would
surely help to reconstruct images.

Another approach would be to formulate a new and different EEF, which is based
on the matters of optical character recognition to solve text documents or an EEF
for images based on the methods of image processing and content-based image re-
trieval.

A possible extension for the framework could be to allow human interaction in a
way that the optimisation process can be paused and the best solution for instance
is shown. As soon as two shreds in such a solution are correctly positioned with
respect to each other, the user can stick them together such that the optimisation
can be continued handling these two shreds as one large shred.
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APPENDIX A

Results

Table A.1: The mean percentage gaps over 30 runs and corresponding standard
deviations for the tested configurations without the application of VNS in the
end are listed here. For comparisons the available ACO results from [29] are also
presented. Moreover the values in columns p correspond to the student t-test with
5% error level and indicate the relation between two neighbouring configurations.

HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
1

9 9 2094 0.0% (0.0) ≈ 0.0% (0.0) ≈ 0.0% (0.0) ≈ 0.0% (0.0) 0.0% (0.0)
9 12 3142 41.6% (7.0) > 34.6% (7.7) > 24.2% (6.3) > 6.9% (5.7) 21.0% (4.8)
9 15 3223 46.9% (6.1) > 37.6% (6.9) > 25.3% (12.0) > 6.3% (6.3) 30.7% (2.1)

12 9 2907 42.2% (8.2) > 27.7% (8.9) > 18.7% (10.9) > 0.5% (7.6) 25.2% (3.2)
12 12 3695 41.2% (6.5) > 36.9% (6.9) > 27.6% (4.8) > 6.6% (2.3) 27.5% (2.9)
12 15 3825 56.3% (7.5) > 50.1% (5.1) > 34.4% (5.4) > 10.2% (2.0) 32.7% (3.2)
15 9 2931 39.0% (5.9) > 32.5% (5.4) > 1.6% (6.2) ≈ 0.0% (0.0) 29.1% (4.1)
15 12 3732 50.5% (7.1) > 40.8% (6.3) > 27.9% (8.8) > 9.0% (4.3) 32.5% (2.6)
15 15 3870 53.8% (7.2) > 43.8% (6.5) > 39.9% (5.0) > 11.5% (2.2) 33.2% (3.2)

in
st

an
ce

p0
2

9 9 1434 4.0% (17.7) > -10.4% (7.5) > -23.4% (6.2) > -29.7% (0.6) 4.8% (4.6)
9 12 1060 57.3% (20.6) > 38.1% (13.8) > 7.9% (8.1) > 0.0% (0.4) 35.3% (5.1)
9 15 1978 27.7% (10.7) > 11.6% (8.4) > 0.4% (3.5) > -11.0% (0.9) 21.7% (3.6)

12 9 1396 -3.8% (10.4) > -12.9% (5.4) > -17.7% (9.2) > -30.4% (1.4) 13.4% (4.2)
12 12 1083 34.6% (15.2) > 10.9% (6.2) > 5.9% (10.2) > -0.2% (1.1) 27.7% (5.0)
12 15 1904 14.5% (9.0) > -3.6% (3.5) < 3.0% (6.9) > -10.7% (2.0) 19.7% (3.5)
15 9 1658 15.4% (7.8) > 9.4% (7.1) > -6.5% (8.4) > -16.3% (2.0) 13.8% (4.0)
15 12 1503 25.5% (10.9) > 15.1% (8.7) > 9.2% (10.9) > 0.1% (0.5) 19.8% (3.3)
15 15 2283 10.4% (6.1) > 6.3% (4.2) ≈ 3.9% (6.9) > -6.3% (2.3) 12.6% (1.7)
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A Results

HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
3

9 9 2486 7.2% (7.0) > -2.9% (4.1) > -5.6% (4.7) ≈ -5.8% (5.0) 6.7% (4.8)
9 12 2651 34.7% (10.1) > 25.6% (7.3) > 12.1% (8.5) > 0.9% (3.7) 30.0% (3.6)
9 15 2551 26.7% (7.0) > 19.0% (5.4) > 2.6% (4.3) > -0.3% (1.3) 18.0% (2.6)

12 9 3075 19.8% (6.1) > 14.1% (5.6) > 10.2% (5.0) > 4.0% (1.2) 11.6% (2.9)
12 12 3377 31.6% (8.4) ≈ 29.0% (6.1) > 20.3% (5.9) > 0.5% (4.7) 23.3% (2.5)
12 15 3313 29.1% (5.9) > 21.3% (6.3) > 4.7% (7.4) > -3.5% (0.4) 16.3% (2.1)
15 9 3213 27.8% (6.5) > 21.3% (4.6) > 13.7% (6.3) > 0.2% (2.5) 13.6% (2.3)
15 12 3278 50.4% (5.2) > 41.6% (7.0) > 25.6% (11.6) > 10.8% (4.3) 36.3% (2.1)
15 15 3308 42.0% (5.3) > 31.9% (5.2) > 7.1% (7.3) > 0.3% (1.9) 27.0% (1.4)

in
st

an
ce

p0
4

9 9 1104 21.4% (13.2) > 5.7% (13.9) > -13.6% (14.6) > -25.0% (10.8) 18.4% (7.2)
9 12 1463 13.7% (11.0) > 6.2% (8.9) > -3.0% (9.8) > -15.1% (3.0) 15.6% (4.5)
9 15 1589 -0.8% (5.4) > -7.3% (4.9) > -14.2% (8.7) > -24.0% (1.7) 3.8% (3.3)

12 9 1515 37.2% (11.8) > 28.8% (11.3) > 16.6% (12.5) > -7.0% (6.3) 26.3% (5.3)
12 12 2051 23.3% (4.7) > 16.4% (6.5) > 11.3% (7.6) > -8.4% (4.2) 20.6% (1.9)
12 15 2146 2.2% (5.2) ≈ 0.9% (3.9) > -10.0% (5.2) > -19.4% (1.3) 7.6% (1.8)
15 9 1567 26.4% (10.0) > 17.3% (8.2) > 11.6% (9.9) > 0.9% (3.8) 12.5% (4.1)
15 12 1752 35.4% (9.0) > 30.3% (8.2) > 21.5% (9.6) > 4.1% (4.0) 27.0% (2.6)
15 15 2026 11.4% (7.7) > 8.1% (4.5) > -1.6% (6.3) > -11.0% (1.5) 3.9% (1.6)

in
st

an
ce

p0
5

9 9 690 0.0% (0.1) ≈ 0.0% (0.0) ≈ 0.0% (0.0) ≈ 0.0% (0.0) 13.6% (8.2)
9 12 888 72.8% (20.2) > 37.9% (22.9) ≈ 34.8% (22.6) > 1.2% (4.3) 69.0% (7.4)
9 15 1623 59.2% (13.7) > 43.6% (8.7) > 30.8% (12.8) > 5.5% (4.4) 36.2% (4.5)

12 9 1016 25.2% (15.7) > 13.7% (12.2) > 1.9% (6.6) > -0.7% (0.0) 23.4% (4.5)
12 12 1325 52.1% (13.1) > 31.3% (12.1) ≈ 25.3% (22.0) > -11.3% (3.8) 36.6% (3.1)
12 15 1986 64.9% (11.0) > 48.6% (7.2) > 37.3% (13.1) > 7.5% (4.0) 34.5% (2.6)
15 9 1010 -15.5% (6.9) > -18.9% (0.1) > -19.3% (0.1) > -19.4% (0.0) -9.4% (1.4)
15 12 1156 75.9% (17.3) > 50.8% (13.7) > 6.7% (21.3) > -8.5% (5.7) 51.5% (3.9)
15 15 1900 65.2% (32.4) ≈ 53.2% (8.6) > 38.1% (15.0) > -3.0% (3.7) 38.5% (3.7)

in
st

an
ce

p0
6

9 9 2184 19.9% (7.4) > 9.8% (6.6) ≈ 9.9% (5.1) > -11.0% (2.1)
9 12 2915 21.9% (7.5) > 8.5% (7.0) ≈ 5.5% (7.5) > -13.9% (1.8)
9 15 2265 61.2% (14.2) > 41.4% (9.8) > 32.5% (17.5) > -1.9% (2.9)

12 9 2162 33.5% (6.6) > 23.9% (6.6) ≈ 21.5% (7.5) > -3.3% (1.9)
12 12 3031 43.4% (8.0) > 28.1% (4.9) > 22.8% (5.8) > -5.3% (1.8)
12 15 2401 89.5% (15.2) > 54.8% (11.6) ≈ 47.6% (17.2) > 3.5% (3.5)
15 9 2719 30.8% (7.1) > 23.2% (4.8) > 14.0% (8.3) > -10.1% (2.3)
15 12 3452 50.4% (16.6) > 23.7% (5.1) > 16.9% (4.6) > -9.0% (2.1)
15 15 2928 81.9% (9.4) > 57.2% (10.8) ≈ 56.0% (10.6) > 0.1% (2.6)

in
st

an
ce

p0
7

9 9 6461 -10.9% (4.8) > -16.1% (3.1) ≈ -14.9% (3.4) > -27.5% (1.1)
9 12 6856 -2.0% (4.7) > -5.4% (4.2) < -0.7% (6.1) > -25.0% (1.6)
9 15 6952 11.4% (6.7) > 1.4% (6.5) < 13.1% (7.6) > -26.4% (3.9)

12 9 6758 -15.1% (4.2) > -19.8% (3.4) ≈ -20.6% (3.3) > -34.8% (0.9)
12 12 7090 2.9% (6.7) > -8.5% (6.7) < 5.0% (5.9) > -31.7% (1.5)
12 15 7325 14.5% (8.0) > 2.6% (7.3) < 13.1% (7.3) > -32.6% (1.9)
15 9 6979 3.2% (5.0) > -5.2% (2.5) > -8.2% (2.7) > -24.8% (1.0)
15 12 7358 16.0% (9.8) > -5.7% (6.3) < 12.8% (6.4) > -26.3% (2.5)
15 15 7551 26.3% (6.2) > 12.4% (6.7) < 24.7% (6.2) > -25.7% (2.4)
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A Results

HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
8

9 9 3467 24.7% (5.6) > 15.4% (4.8) > 12.3% (4.5) > -7.4% (1.0)
9 12 3978 29.2% (6.5) > 17.0% (4.6) ≈ 19.4% (5.6) > -5.7% (1.2)
9 15 3726 58.1% (8.8) > 34.0% (6.2) < 45.5% (7.4) > 0.5% (1.8)

12 9 3901 37.3% (7.5) > 23.9% (4.3) > 21.5% (4.7) > -1.5% (1.5)
12 12 4305 46.5% (8.5) > 26.3% (3.9) < 34.3% (5.3) > -1.7% (1.7)
12 15 4225 78.5% (8.4) > 44.9% (6.5) < 56.2% (7.2) > 0.9% (2.1)
15 9 4656 29.9% (5.0) > 17.9% (3.6) > 15.7% (3.5) > -7.5% (1.1)
15 12 5042 41.6% (6.6) > 21.6% (5.2) < 27.1% (3.9) > -7.0% (1.1)
15 15 4909 79.9% (8.7) > 42.7% (9.5) < 51.0% (6.0) > -1.6% (1.6)

in
st

an
ce

p0
9

9 9 3319 58.6% (6.9) > 51.5% (5.6) > 30.5% (6.3) > 9.6% (3.2)
9 12 3522 58.0% (8.3) > 48.6% (6.3) > 33.8% (4.8) > 1.8% (2.6)
9 15 4906 30.7% (5.6) > 21.6% (4.8) < 25.0% (4.8) > -1.7% (1.5)

12 9 3506 42.1% (5.5) > 36.3% (4.9) > 23.8% (9.2) > 4.3% (3.4)
12 12 3706 44.3% (7.7) > 35.5% (4.8) > 27.8% (7.0) > -2.0% (3.2)
12 15 4922 35.1% (9.7) > 14.5% (5.9) < 26.5% (3.9) > -2.0% (2.2)
15 9 4460 53.4% (4.7) > 45.4% (4.1) > 30.3% (6.0) > 10.8% (3.4)
15 12 4690 57.7% (6.1) > 47.3% (4.4) > 33.3% (4.6) > 3.2% (2.6)
15 15 6171 42.7% (6.0) > 25.6% (3.4) ≈ 24.9% (3.7) > -1.3% (1.9)

in
st

an
ce

p1
0

9 9 3979 50.4% (8.6) > 38.6% (7.3) > 26.9% (6.0) > 6.7% (2.8)
9 12 6496 15.0% (3.1) > 9.2% (3.1) ≈ 7.9% (2.6) > -4.6% (0.8)
9 15 7821 31.4% (2.5) > 24.6% (1.8) > 14.7% (2.6) > -0.4% (0.9)

12 9 3535 62.4% (8.4) > 52.2% (8.1) > 34.5% (9.6) > 9.9% (3.3)
12 12 5708 24.2% (4.4) > 18.1% (2.9) > 15.6% (3.5) > -0.4% (1.2)
12 15 7138 36.2% (5.3) > 27.7% (3.7) > 16.7% (3.8) > 0.8% (1.3)
15 9 5190 46.1% (6.3) > 38.0% (4.9) > 20.9% (6.9) > 2.0% (2.0)
15 12 7183 26.8% (4.3) > 19.9% (3.4) > 11.9% (2.6) > -3.6% (1.2)
15 15 8356 40.2% (3.1) > 29.8% (2.7) > 20.2% (1.9) > 0.6% (1.6)

Table A.2: The mean percentage gaps over 30 runs and corresponding standard
deviations for the tested configurations with the application of VNS in the end are
listed here. For comparisons the available ACO results from [29] are also presented.
Moreover the values in columns p correspond to the student t-test with 5% error
level and indicate the relation between two neighbouring configurations.

HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
1

9 9 2094 0,0% (0,0) ≈ 0,0% (0,0) ≈ 0,0% (0,0) ≈ 0,0% (0,0) 0,0% (0,0)
9 12 3142 27,6% (5,3) ≈ 28,8% (6,1) > 21,1% (4,9) > 6,9% (5,7) 21,0% (4,8)
9 15 3223 30,7% (6,2) ≈ 28,4% (5,8) > 20,1% (10,3) > 6,3% (6,3) 30,7% (2,1)

12 9 2907 32,5% (6,5) > 19,4% (6,8) ≈ 16,6% (9,8) > 0,5% (7,6) 25,2% (3,2)
12 12 3695 26,2% (4,4) ≈ 23,6% (5,6) > 20,7% (3,4) > 6,6% (2,3) 27,5% (2,9)
12 15 3825 28,7% (6,3) ≈ 28,1% (3,6) > 24,2% (4,3) > 10,2% (2,0) 32,7% (3,2)
15 9 2931 31,6% (5,9) > 28,4% (4,5) > 1,6% (6,2) ≈ 0,0% (0,0) 29,1% (4,1)
15 12 3732 29,5% (5,3) ≈ 28,6% (5,7) > 22,4% (7,7) > 8,9% (4,3) 32,5% (2,6)
15 15 3870 32,2% (4,5) ≈ 30,1% (5,9) ≈ 28,4% (3,3) > 11,5% (2,2) 33,2% (3,2)
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HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
2

9 9 1434 -9,2% (7,7) > -13,3% (7,4) > -24,0% (5,8) > -29,7% (0,6) 4,8% (4,6)
9 12 1060 26,4% (10,9) ≈ 28,7% (9,4) > 6,1% (6,1) > 0,0% (0,4) 35,3% (5,1)
9 15 1978 6,2% (5,0) > 2,3% (3,8) > -0,7% (3,2) > -11,0% (0,6) 21,7% (3,6)

12 9 1396 -10,6% (7,0) > -14,0% (4,6) > -18,7% (8,6) > -30,4% (1,4) 13,4% (4,2)
12 12 1083 21,9% (9,8) > 9,4% (5,2) > 5,2% (8,9) > -0,3% (1,1) 27,7% (5,0)
12 15 1904 5,2% (5,0) > -5,1% (3,4) < 0,8% (6,1) > -10,8% (2,0) 19,7% (3,5)
15 9 1658 7,2% (5,6) ≈ 6,6% (7,0) > -7,2% (7,8) > -16,3% (2,0) 13,8% (4,0)
15 12 1503 17,7% (9,5) ≈ 13,2% (8,3) > 7,4% (8,7) > 0,1% (0,5) 19,8% (3,3)
15 15 2283 5,6% (4,1) ≈ 4,0% (4,2) ≈ 2,2% (4,7) > -6,3% (2,3) 12,6% (1,7)

in
st

an
ce

p0
3

9 9 2486 5,8% (6,0) > -3,2% (4,0) > -5,8% (4,4) ≈ -5,8% (5,0) 6,7% (4,8)
9 12 2651 26,8% (6,6) > 22,6% (6,4) > 11,8% (8,1) > 0,9% (3,7) 30,0% (3,6)
9 15 2551 18,3% (6,9) > 12,4% (5,5) > 2,1% (3,8) > -0,3% (1,3) 18,0% (2,6)

12 9 3075 15,3% (5,1) > 11,9% (5,5) ≈ 9,9% (4,8) > 4,0% (1,2) 11,6% (2,9)
12 12 3377 22,2% (6,6) ≈ 21,4% (5,2) > 16,3% (5,2) > 0,5% (4,7) 23,3% (2,5)
12 15 3313 16,8% (6,3) > 13,2% (6,9) > 2,3% (4,7) > -3,5% (0,4) 16,3% (2,1)
15 9 3213 19,7% (5,1) > 16,1% (4,7) > 11,7% (5,2) > 0,1% (2,5) 13,6% (2,3)
15 12 3278 31,0% (6,3) ≈ 28,4% (7,2) > 22,6% (11,1) > 10,7% (4,3) 36,3% (2,1)
15 15 3308 24,3% (4,7) > 21,7% (5,0) > 5,7% (6,3) > 0,3% (1,9) 27,0% (1,4)

in
st

an
ce

p0
4

9 9 1104 14,5% (13,8) > 3,1% (15,0) > -13,7% (14,6) > -25,0% (10,8) 18,4% (7,2)
9 12 1463 11,2% (10,1) > 5,5% (8,3) > -3,2% (9,7) > -15,2% (2,9) 15,6% (4,5)
9 15 1589 -4,2% (5,4) > -7,8% (5,0) > -14,5% (8,4) > -24,0% (1,7) 3,8% (3,3)

12 9 1515 28,3% (11,4) ≈ 24,0% (10,9) > 14,9% (10,9) > -7,1% (6,3) 26,3% (5,3)
12 12 2051 17,4% (3,3) > 13,4% (4,7) > 9,5% (6,4) > -8,4% (4,2) 20,6% (1,9)
12 15 2146 -1,8% (3,6) ≈ -0,8% (3,8) > -10,6% (5,0) > -19,4% (1,3) 7,6% (1,8)
15 9 1567 20,9% (7,9) > 14,7% (8,1) ≈ 11,2% (9,5) > 0,9% (3,8) 12,5% (4,1)
15 12 1752 29,9% (7,6) ≈ 27,1% (7,7) > 20,8% (9,2) > 4,0% (4,0) 27,0% (2,6)
15 15 2026 5,1% (5,1) ≈ 3,2% (4,2) > -2,7% (6,0) > -11,0% (1,5) 3,9% (1,6)

in
st

an
ce

p0
5

9 9 690 0,0% (0,1) ≈ 0,0% (0,0) ≈ 0,0% (0,0) ≈ 0,0% (0,0) 13,6% (8,2)
9 12 888 61,7% (19,9) > 33,8% (23,2) ≈ 33,1% (21,1) > 1,2% (4,3) 69,0% (7,4)
9 15 1623 41,9% (9,8) > 35,5% (8,7) > 27,5% (11,9) > 5,4% (4,4) 36,2% (4,5)

12 9 1016 21,6% (14,9) > 12,2% (11,1) > 1,7% (6,2) > -0,7% (0,0) 23,4% (4,5)
12 12 1325 35,8% (10,9) > 24,1% (10,8) ≈ 19,9% (18,0) > -11,3% (3,8) 36,6% (3,1)
12 15 1986 37,2% (5,0) ≈ 35,9% (5,4) ≈ 31,7% (11,0) > 7,4% (4,0) 34,5% (2,6)
15 9 1010 -17,0% (5,5) ≈ -19,0% (0,2) > -19,3% (0,1) > -19,4% (0,0) -9,4% (1,4)
15 12 1156 56,8% (12,6) > 38,7% (14,9) > 3,9% (17,7) > -8,5% (5,7) 51,5% (3,9)
15 15 1900 28,4% (25,6) ≈ 31,0% (6,3) > 24,2% (11,0) > -3,2% (3,6) 38,5% (3,7)

in
st

an
ce

p0
6

9 9 2184 11,4% (5,2) > 4,8% (5,3) ≈ 6,7% (4,9) > -11,1% (2,0)
9 12 2915 6,6% (3,6) > 1,8% (5,0) ≈ 0,4% (5,6) > -13,9% (1,8)
9 15 2265 29,5% (5,2) ≈ 27,0% (7,0) > 20,1% (10,8) > -2,0% (3,0)

12 9 2162 21,5% (5,2) > 15,6% (5,0) ≈ 13,6% (4,4) > -3,3% (1,8)
12 12 3031 17,1% (3,7) > 13,8% (3,3) ≈ 12,1% (4,2) > -5,3% (1,7)
12 15 2401 44,6% (7,3) > 39,4% (7,8) > 29,3% (8,8) > 3,4% (3,5)
15 9 2719 12,8% (4,3) ≈ 12,1% (3,7) > 4,3% (5,5) > -10,3% (2,3)
15 12 3452 10,9% (3,9) > 8,1% (3,0) > 4,9% (3,5) > -9,1% (2,1)
15 15 2928 33,0% (5,5) ≈ 30,3% (4,9) > 22,8% (5,8) > 0,0% (2,6)
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HVREA BNREA EBNREA HVR+VNS ACO

x y orig mean dev p mean dev p mean dev p mean dev mean dev

in
st

an
ce

p0
7

9 9 6461 -19,9% (3,4) ≈ -20,8% (2,3) ≈ -20,5% (2,8) > -27,5% (1,1)
9 12 6856 -11,3% (3,8) ≈ -12,6% (3,6) ≈ -12,6% (4,5) > -25,0% (1,6)
9 15 6952 -10,3% (3,5) ≈ -10,0% (4,2) ≈ -8,0% (6,1) > -26,4% (3,9)

12 9 6758 -26,3% (3,1) ≈ -26,9% (3,0) > -28,5% (2,4) > -34,8% (0,9)
12 12 7090 -16,9% (3,5) > -19,9% (4,3) ≈ -19,8% (4,3) > -31,8% (1,5)
12 15 7325 -15,5% (3,2) ≈ -14,1% (4,6) > -17,4% (3,9) > -32,7% (1,9)
15 9 6979 -15,2% (2,3) ≈ -15,5% (2,4) > -17,5% (1,7) > -24,8% (1,0)
15 12 7358 -11,7% (3,6) > -16,0% (5,2) < -11,9% (6,2) > -26,4% (2,6)
15 15 7551 -10,5% (3,2) ≈ -9,6% (4,0) ≈ -9,4% (3,6) > -25,7% (2,4)

in
st

an
ce

p0
8

9 9 3467 9,1% (3,8) > 5,1% (3,5) ≈ 6,3% (3,0) > -7,5% (1,1)
9 12 3978 10,4% (3,4) > 7,9% (3,2) ≈ 8,1% (3,1) > -5,8% (1,2)
9 15 3726 20,2% (3,9) ≈ 18,3% (4,8) ≈ 19,8% (4,3) > 0,4% (1,8)

12 9 3901 17,6% (3,8) > 13,6% (5,0) ≈ 13,2% (2,6) > -1,6% (1,5)
12 12 4305 16,6% (3,7) > 13,2% (3,0) ≈ 13,5% (3,1) > -1,8% (1,7)
12 15 4225 23,3% (3,4) > 21,2% (4,4) ≈ 22,4% (5,1) > 0,8% (2,1)
15 9 4656 7,2% (4,0) > 3,3% (3,2) ≈ 3,9% (2,4) > -7,6% (1,1)
15 12 5042 7,3% (2,8) > 5,1% (2,3) ≈ 5,3% (2,3) > -7,1% (1,1)
15 15 4909 17,2% (4,0) > 14,9% (3,7) ≈ 14,3% (2,6) > -1,7% (1,6)

in
st

an
ce

p0
9

9 9 3319 42,1% (7,2) ≈ 39,3% (5,7) > 27,7% (6,1) > 9,6% (3,2)
9 12 3522 32,5% (6,7) ≈ 31,3% (6,1) > 23,9% (4,8) > 1,7% (2,6)
9 15 4906 15,6% (4,4) > 12,5% (3,6) ≈ 11,9% (4,4) > -1,7% (1,5)

12 9 3506 29,1% (4,1) ≈ 27,1% (5,5) > 20,9% (8,4) > 4,2% (3,4)
12 12 3706 23,1% (5,4) ≈ 21,4% (4,2) ≈ 19,3% (6,1) > -2,1% (3,2)
12 15 4922 12,3% (3,7) > 7,9% (3,9) < 14,5% (3,9) > -2,1% (2,2)
15 9 4460 34,7% (4,6) ≈ 34,9% (4,2) > 25,3% (4,9) > 10,7% (3,4)
15 12 4690 27,0% (4,1) ≈ 27,9% (3,8) > 20,4% (3,2) > 3,1% (2,7)
15 15 6171 13,4% (3,0) ≈ 13,3% (3,3) > 11,6% (2,3) > -1,3% (1,9)

in
st

an
ce

p1
0

9 9 3979 28,1% (6,7) ≈ 24,8% (7,4) > 20,4% (4,9) > 6,7% (2,8)
9 12 6496 5,2% (2,4) > 3,7% (2,3) ≈ 3,3% (2,0) > -4,6% (0,8)
9 15 7821 10,3% (2,1) ≈ 10,8% (2,4) > 6,9% (2,0) > -0,4% (0,9)

12 9 3535 34,5% (6,9) ≈ 32,1% (5,4) > 23,7% (6,9) > 9,8% (3,3)
12 12 5708 12,3% (2,8) > 10,5% (2,6) ≈ 10,1% (2,8) > -0,5% (1,3)
12 15 7138 13,5% (2,8) ≈ 12,6% (2,2) > 10,3% (2,9) > 0,7% (1,3)
15 9 5190 23,5% (4,5) > 20,0% (4,5) > 12,5% (3,3) > 2,0% (2,0)
15 12 7183 10,4% (3,0) > 8,0% (2,8) > 5,3% (2,1) > -3,6% (1,2)
15 15 8356 12,1% (2,5) ≈ 12,2% (2,3) > 9,4% (2,1) > 0,6% (1,6)
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APPENDIX B

Instances

Figure B.1: Instance p06
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B Instances

Figure B.2: Instance p01
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B Instances

Figure B.3: Instance p02
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B Instances

Figure B.4: Instance p03
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B Instances

Figure B.5: Instance p04

78



B Instances

Figure B.6: Instance p05
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B Instances

Figure B.7: Instance p07

Figure B.8: Instance p08
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B Instances

Figure B.9: Instance p09
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B Instances

Figure B.10: Instance p10
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