
Dissertation

SSA-Based Code Generation
Techniques for Embedded

Architectures

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

a.o.Univ.-Prof. Dipl.-Ing. Dr. Andreas Krall
E185/1

Institut für Computersprachen

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Dietmar Ebner
Matr.Nr.: 9926321
Schlagergasse 6/15

A-1090 Wien

Wien, Juni 2009

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



Kurzfassung

Eingebettete Systeme sind in zahlreichen Gebieten wie Unterhaltungselektronik, mobile
Kommunikation, Bildverarbeitung oder Fahrzeugbau längst allgegenwärtig. Entwick-
ler sind heute mit Rechenanforderungen konfrontiert, die vor nicht allzu langer Zeit
noch Stand der Technik im Supercomputing-Bereich waren. Immer kürzere Entwick-
lungszyklen bei gleichzeitig steigender Komplexität erfordern optimierende Übersetzer,
die Hochsprachen möglichst optimal auf die jeweilige Zielarchitektur übersetzten.

Nahezu in jedem modernen Übersetzer wird die Quellsprache zumindest an aus-
gewählten Punkten in eine Zwischendarstellung basierend auf sogenannter SSA-Form
(static single assignment) transformiert. Dabei wird das Quellprogramm in eine Form
gebracht, in der jede skalare Variable genau einmal im gesamten Programm definiert
wird. Dadurch wird die Analyse und Verwaltung von erreichbaren Definitionen überflüs-
sig und zahlreiche Analysen und Optimierungen werden erheblich vereinfacht. Bisher
wurde SSA-Form hauptsächlich für maschinenunabhängige Optimierungen verwendet.
Eine Reihe interessanter Eigenschaften macht sie jedoch auch zu einer vorteilhaften
Basis für maschinenabhängige Codegenerierungstechniken. In dieser Arbeit werden im
Speziellen zwei Teilprobleme betrachtet, die erheblichen Einfluss auf die Qualität op-
timierender Übersetzer haben: Instruktionsauswahl und Registerzuteilung. In beiden
Fällen ziehen heute vorherrschende Techniken noch keinen Nutzen aus den Vorteilen
von SSA-Form.

Die Aufgabe der Instruktionsauswahl ist es, die Zwischendarstellung des Übersetzters
auf Instruktionen der Zielarchitektur in effektiver Art und Weise zu übersetzen. Eine
weit verbreitete Technik dafür ist so genanntes Pattern Matching. Dabei wird der Be-
fehlssatz der Zielarchitektur mit Hilfe mehrdeutiger Grammatiken modelliert. Diese
werden verwendet, um eine kostenminimale Überdeckung des Eingabeprogramms in
Form von Datenflussbäumen zu berechnen. Eine solche Überdeckung entspricht einer
konkreten Auswahl von Instruktionen der Zielarchitektur. Traditionelle Techniken sind
auf Datenflussbäume beschränkt. In den letzten Jahren wurden jedoch Ansätze vor-
geschlagen, die es erlauben, die Techniken für ganze Funktionen mit im Allgemeinen
zyklischem Kontrollfluss zu erweitern. Die verwendeten Muster müssen jedoch in einer
Baumgrammatik vorliegen, in der jede Produktion eine einfache baumartike Struktur
hat. Zahlreiche Instruktionen verbreiteter Architekturen können nicht mit derartigen
Grammatiken modelliert werden. Diese Arbeit stellt eine Generalisierung bestehender
Techniken vor, die es erlaubt, allgemeinere Graphgrammatiken zu verarbeiten um damit
den Befehlssatz verbreiteter Architekturen vollständig zu beschreiben.

Das zweite in dieser Arbeit behandelte Optimierungsproblem ist Spilling – ein Teil-
problem der Registerzuteilung. Ziel is es, die beliebig große Menge an temporären Vari-
ablen, die während der Instruktionsauswahl generiert wurden, einer endlichen Anzahl

i



ii

von Maschinenregistern zuzuordnen. Im Allgemeinen muss eine Teilmenge dieser Vari-
ablen in den Hauptspeicher ausgelagert werden. Dieser Vorgang ist in der Literatur unter
dem Begriff Spilling bekannt und hat wesentlichen Einfluss auf das Laufzeitverhalten
des erzeugten Maschinencodes aufgrund der hohen Speicherlatenzzeiten. Üblicherweise
wird das Registerzuteilungsproblem erst nach Elimination der SSA-Form behandelt.
Entwicklungen der letzten Jahre auf dem Gebiet der SSA-basierten Registerzuteilung
ermöglichen jedoch eine getrennte Betrachtung der einzelnen Teilprobleme, insbeson-
dere Spilling. Diese Arbeit stellt einen neuen flexiblen Ansatz für Spilling vor. Die neue
Technik bietet wesentliche Vorteile, insbesondere für Architekturen mit sehr wenigen
Registern.

Anstatt problemspezifischer Algorithmen werden beide betrachteten Teilprobleme mit
Hilfe von allgemeinen kombinatorischen Optimierungsproblemen modelliert und gelöst.
Im Fall der Instruktionsauswahl verwenden wir Partitioned Binary Quadratic Program-
ming (PBQP) – ein generalisiertes quadratisches Zuordnungsproblem. Für das Spilling-
Problem entwickeln wir ein Schnittproblem unter Nebenbedingungen, das so genan-
nte Constrained Min-Cut (CMC) Problem. Beide betrachteten Probleme sind NP-
vollständig. Nichtsdestotrotz zeigen Experimente mit umfangreichen Testprogrammen,
dass beweisbar optimale Lösungen unter akzeptablen Zeitvorgaben berechnet werden
können.



Abstract

Embedded systems have become prevalent in various areas such as mobile communica-
tion, consumer electronics, image processing, and automotive. Often, the complexity of
these systems has reached a point that would have been state-of-the-art in the super-
computing domain not long ago. With decreasing time-to-market cycles and increased
software complexity, optimizing compilers that effectively translate applications written
in high-level languages to a particular target platform have already become indispensable
tools.

Almost all modern compiler infrastructures translate high-level programming lan-
guages at some point to an internal intermediate representation based on static single
assignment (SSA) form. The main idea is to transform a program such that each scalar
variable has exactly one definition in the program. Explicitly maintaining so-called use-
def chains becomes dispensable and several traditional optimization and analysis passes
simplify to a great extent. While SSA form has been traditionally used for high-level
optimizations, it has some interesting properties that make it also a valuable tool for
backend code generation techniques. In this thesis, we consider two subproblems that
are vital for high-quality code generators: instruction selection and register allocation.
In both cases, the prevalent techniques are based on traditional program representations
that do not take advantage of SSA form.

Instruction selection aims to translate a compiler’s intermediate code representation
to a target-dependent form in a way that is efficient for a particular micro-architecture.
A popular algorithmic approach is pattern matching: the target instruction set is mod-
eled using ambiguous cost-annotated graph grammars such that a cover of the program
represented in the form of data flow trees can be used to obtain a favorable and se-
mantically equivalent machine representation. Previous work extends the scope of these
techniques to the computational flow of a whole function using so-called SSA graphs.
However, these techniques are confined to simple tree grammars where each produc-
tion has tree structure. In this thesis, we show that numerous architectural features of
popular embedded architectures cannot be modeled using tree grammars and present a
generalization of previous work that is able to deal with generalized graph grammars.

The second subproblem considered in this thesis is spilling for programs in SSA form.
Spilling is a subtask of register allocation, which aims to map an unlimited set of tem-
poraries produced by the instruction selector to a finite set of machine registers. In
general, a subset of these variables has to be deferred to main memory. This process is
known as spilling in register allocation literature and has profound effects on the code
quality of compilers for embedded systems due to large memory access latencies. Tra-
ditionally, compilers eliminate SSA form prior to register allocation. However, recent
work shows that programs in SSA form have several interesting properties. In particu-

iii



iv

lar, these properties allow for a decoupled approach of spilling that is independent from
the remaining register allocator. We propose a new approach to the spilling problem
in the most-flexible spill-everywhere model and demonstrate its advantage compared to
traditional heuristic techniques, especially for machines with few registers.

In both cases, the proposed techniques are based on a modeling of the problem in
the form of generic combinatorial optimization problems. In the case of instruction
selection, the underlying problem is partitioned binary quadratic programming (PBQP),
which is a generalized quadratic assignment problem. Our approach to spilling is based
on constrained min-cut (CMC) problems. In both cases, we proof that the underlying
decision problem is NP complete. However, we present experimental evidence using
major benchmark suites showing that algorithms delivering optimal or near-optimal
results are feasible, even for very large programs.



Acknowledgments

First of all, I want to thank my advisor Andreas Krall for his outstanding support during
the last years. He motivated me to pursue a Ph.D. in this field and I owe him most of
my knowledge about compilers and embedded systems.

Special thanks also belong to Bernhard Scholz from the University of Sydney. Almost
all of the research work in this thesis has been done together with him and his excellent
ideas and his enthusiasm often helped me through the hard times.

Thanks also to Christoph Keßler from Linköping University for reviewing this thesis.
My thanks also belong to Jens Knoop, the head of the computer languages group, who
has always been supportive and encouraging and who contributed invaluable contacts
to the international scientific community.

Most of the work in this thesis was partially funded by the Christian Doppler Foun-
dation, which is an excellent source of funding for application-oriented research. Thanks
also to OnDemand Microelectronics for their input, their funding, and their contribu-
tions during our three-year research project.

Many people contributed to the instruction selector that is part of this thesis. Thanks
to Peter Wiedermann, who was an exceptional masters student, for the port to LLVM.
Thanks also to Albrecht Kadlec and Florian Brandner for helping out with the ARM
grammar.

Last but not least, I want to thank Anna for the love she has given me, all my friends
for the time we spent together, and my parents for their support during all those years.

v



Contents

1 Introduction 1
1.1 The Embedded Computing Landscape . . . . . . . . . . . . . . . . . . . 5

1.1.1 Types of Embedded Processors . . . . . . . . . . . . . . . . . . . 6
1.1.2 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Example Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 CHILI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The LLVM Compiler Infrastructure . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 LLVM Virtual Instruction Set . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Backend Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Static Single Assignment Form . . . . . . . . . . . . . . . . . . . 18
1.4.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Network Flow Theory . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Partitioned Boolean Quadratic Programming 26
2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Algorithms for PBQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Branch & Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Code Generation for SSA Graphs 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 RTL-Based Instruction Selection . . . . . . . . . . . . . . . . . . 45
3.2.2 Tree Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 PBQP-Based Instruction Selection . . . . . . . . . . . . . . . . . 47

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Instruction Selection using Complex Patterns . . . . . . . . . . . . . . . 54

3.4.1 Identifying Patterns in SSA Graphs . . . . . . . . . . . . . . . . . 55
3.4.2 Problem Transformation . . . . . . . . . . . . . . . . . . . . . . . 55

vi



Contents vii

3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Spilling in the Context of SSA-Based Register Allocation 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 SSA-Based Register Allocation . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Motivation and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Constrained Min-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusions 94



List of Figures

1.1 Phase layout of optimizing compilers. . . . . . . . . . . . . . . . . . . . . 2
1.2 Schematic layout of a reference design for mobile multimedia decoding

(SVENM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Developer board with multiple VLIW cores, peripherals, off-chip memory,

and a general purpose control processor (ARM). . . . . . . . . . . . . . . 10
1.4 Overview of the CHILI architecture. . . . . . . . . . . . . . . . . . . . . . 12
1.5 Overview of the LLVM compiler infrastructure. . . . . . . . . . . . . . . 14
1.6 Example LLVM bitcode corresponding to a simple c-function computing

a vector dot product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 SSA form (right) for the program fragment to the left. So-called Φ-

functions are used to disambiguate multiple definitions at join points in
the control flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Example SSA graph for the control flow graph fragment shown Figure 1.7. 22

2.1 Example PBQP represented as a PBQP-graph. The optimal solution is
highlighted and has objective value 59. . . . . . . . . . . . . . . . . . . . 28

2.2 A fragment of the search tree for a B&B based PBQP algorithm. . . . . 34
2.3 Average runtime for the heuristic algorithm on a large set of randomly

generated PBQP problems for various densities. . . . . . . . . . . . . . . 39
2.4 Average runtime for the B&B algorithm compared to the number of irre-

ducible nodes. Note the logarithmic scale on the y-axis. . . . . . . . . . . 42

3.1 An instruction selector translates a compiler’s IR to a low-level machine-
dependent representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Example of a data flow tree and a rule fragment with associated costs. . 46
3.3 PBQP-instance derived from the example shown in Figure 3.2. The gram-

mar has been normalized by introducing additional nonterminals. . . . . 49
3.4 Motivating example showing a number conversion route. . . . . . . . . . 50
3.5 SSA-graph of the motivating example introduced in in Figure 3.4. . . . . 51
3.6 Fragment of rules with complex patterns for div-mod and postincrement

store instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Example: topology constraints. . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Example: memory dependencies. . . . . . . . . . . . . . . . . . . . . . . 54
3.9 PBQP graph for the example shown in Figure 3.7. We use k as a short-

hand for the term 3− 2M . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 Overview of the PBQP-based instruction selector. . . . . . . . . . . . . . 60
3.11 Number of instances per graph size. . . . . . . . . . . . . . . . . . . . . . 63

viii



List of Figures ix

3.12 PBQP problem size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Properties of programs in SSA form allow to execute the spilling phase
only once (b) instead of the typical iteration scheme found in graph-
coloring allocators (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Motivating example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Modeling for a single variable. . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Accounting for store costs. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Reduction of multi-way cut to CMC. . . . . . . . . . . . . . . . . . . . . 79
4.6 Reduction of the relaxed problem L(µ) to a standard s-t min-cut instance. 82
4.7 Improvement for a varying number of registers for spill code placement

compared to the linear scan allocator of LLVM. Execution times have been
gathered using a cycle-accurate simulator for a 4-way VLIW processor. . 86

4.8 Distribution of ILP solver times for SPECINT 2000 with 14 general pur-
pose registers (ARM) using ILOG CPLEX 10. . . . . . . . . . . . . . . . 87

4.9 Average quality of three different Lagrange heuristics compared to the
precomputed optimal solution over the whole SPECINT 2000 benchmark
set. The x-axis denotes the number of iterations for the subgradient
optimization algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Runtime comparison for the various CMC algorithms. . . . . . . . . . . . 90



1 Introduction

Embedded systems have become a prevalent part of our everyday life and it is very
unlikely that this trend is going to decline anytime soon. In fact, general-purpose com-
puting accounts for less than 1% of the microprocessors sold every year [Tur99]. The vast
majority of microprocessors are employed in embedded applications accounting for about
half of the annual microprocessor revenue. Application areas for those systems range
from consumer electronics to the communications and automotive market, frequently
imposing real-time requirements and heavy computational workloads.

As a consequence, demands imposed on embedded systems are fundamentally different
from the general-purpose computing domain. Depending on the particular application
area, energy requirements, production costs, or physical dimensions are often the de-
termining aspects. On the other hand, common requirements from the general-purpose
computing domain such as binary backward compatibility and standard compliance are
much less of an issue. Embedded systems are often designed to run a single application
for their entire live range. These applications are tailored to the underlying hardware.
Instead of binary compatibility, embedded system designers are thus more concerned
with source code and tool compatibility. Thus, the compiler becomes a critical tool glu-
ing more and more complex applications written in high-level languages to specialized
target architectures.

At the same time, applications such as media processing impose computational work-
loads that stretch system capabilities to their limits. Traditional superscalar techniques
require for a 2 – 3x speedup in performance very roughly an increase of about 80x in area
and, maybe even more important, about 12x in power consumption [KTJR05]. For nu-
merous mobile applications with critical energy and cost requirements, this is a cost too
high to bear. Embedded system designers thus frequently employ application specific
accelerators and simple explicit parallel RISC architectures. The latter architectural
paradigm – Very Large Instruction Word (VLIW ) – originated in the supercomputing
domain and gradually found its way into today’s embedded system architectures, e.g.,
ST2xx, TI C6xxx, NXP TriMedia. For those systems, the burden to effectively dis-
cover and exploit instruction-level parallelism (ILP) is solely left to the compiler, thus
emphasizing the vital role of optimizing compilers for embedded systems.

While both the superscalar and VLIW paradigm have their advocates, it is often
overlooked that the complex problems in analyzing and exploiting the available par-
allelism is common to both architectural styles. Thus, compiler complexity depends
rather on the amount of ILP that has to be obtained than on the particular architec-
tural style [FFY05]. The main difference is that VLIW architectures usually make more
fine grained parallelism practical.

Today, compilers mainly rely on highly tuned and computationally efficient heuris-

1



2

High Level Optimizer

C C++ Java

Instruction Selector

Low Level Optimizer

(Region) Scheduler

Alias
Information
Database

Register Allocation

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR

Assembly
Code

Opt. HLIR

HLIR

Target
Machine

Description

Figure 1.1: Phase layout of optimizing compilers.

tics that produce reasonably good code quality in a short amount of time. However, in
the context of embedded systems where application-specific extensions and architectural
variants are employed to tune those systems for a single or a small number of applications,
compilers have to fulfill additional requirements that are hard to meet using heuristic
approaches. First, hardware architectures and application-specific extensions usually
evolve much faster than the corresponding compilers. Therefore, easily retargetable
backends that are capable to cope with architectural peculiarities and asymmetries are
required. Second, heuristic techniques often fail to effectively exploit architectural fea-
tures requiring significant amount of engineering to tune applications to a particular
hardware platform.

Optimizing compilers are huge and complex software projects, e.g., recent versions
of gcc contain about 1.2 million lines of C-code, disregarding the large C++ and Java
runtime libraries. Modern compilers are composed of several components, each of them
operating on different intermediate representations of the original source code; see Fig-
ure 1.1. The front-end is responsible to transform the input program into a high-level
intermediate representation that is largely independent of the particular source lan-
guage. So-called high-level optimizers perform the traditional set of scalar and loop
optimizations, do function inlining and cache re-organizations, and remove dead code
and redundant computations. Some compilers go through various forms of high-level
intermediate representations with decreasing abstraction level. Finally, the back-end is
responsible to convert the source and target independent intermediate representation
into machine-dependent instructions, perform target-dependent optimizations and code
re-organizations, and to do static instruction scheduling and register allocation.



3

As depicted in Figure 1.1, most compiler backends are structured into several phases
that concentrate on a particular subproblem, e.g., instruction selection, register alloca-
tion, or scheduling. This approach, which we follow in this thesis, is beneficial from a
software engineering point of view as it allows for a separation of concern. Also, with
most of these subproblems being NP complete in general, performance requirements
are an even stronger argument for this separation. However, it is important to note
that these advantages come for significant costs. Interdependencies among the partic-
ular phases are usually ignored, leading to suboptimal code. This dilemma – known
as phase ordering problem – is difficult to resolve since several phases have conflicting
goals. One prominent example are interdependencies among scheduling and register al-
location. Allocating machine registers to program variables introduces additional “false”
dependencies that limit the freedom for the instruction scheduler. On the other hand,
scheduling may overlap otherwise independent live ranges and thus increase the register
pressure, which may lead to additional spill code. Likewise, there are interdependencies
among instruction selection and scheduling as the costs of a particular instruction in
general depend on interference and resource constraints imposed by a particular sched-
ule.

One approach proposed in literature is to account for phase ordering issues heuris-
tically, e.g., Goodman and Hsu [GH88] propose different scheduling techniques that
favor pipeline delays and register demand respectively and that are applied dynam-
ically according to the estimated register pressure. Similar but more sophisticated
techniques have been proposed more recently by Norris et al. [NP98]. Another ap-
proach is to combine several phases to a single optimization problem. Bednarski and
Keßler [BK04, KB06] propose dynamic programming for combined instruction selec-
tion, scheduling, and register allocation. Likewise, both Wilson et al. [WGB94] and
Chang et al. [CCK97] propose techniques that simultaneously perform these subprob-
lems using integer linear programming. However, for large programs, the complexity
of the formulations results in prohibitively high computation times. Despite significant
amount of research, phase ordering issues are thus still considered to be an open research
question.

Most modern compiler frameworks transform intermediate code, at least at some stage
in the compilation process, into so called static single assignment (SSA) form [CFR+91a].
The basic idea which was proposed by researchers from IBM in the late eighties is to
transform a program such that each scalar variable has exactly one point of definition
in the program. Thus, explicitly maintaining use-def chains is dispensable and several
traditional optimization and analysis passes simplify to a great extent. While SSA
form has been traditionally used for high-level optimizations, it has some interesting
properties that make it also a valuable tool for backend code generation techniques.

In this thesis, two subproblems of code generators are considered: instruction selection
and spilling. The corresponding stages in the phase diagram are highlighted in purple in
Figure 1.1. While those are very different problems in general, there are two important
characteristics in the approach presented in this thesis that are common to both:

1. Both techniques are based on properties for programs in SSA form and can be



4

used to maintain SSA form until late in the compilation process.

2. While traditional techniques are based on problem specific heuristics, we use in
both cases a reduction to general combinatorial optimization problems. This allows
us to exploit well-known results from graph theory and to apply generic solver
libraries for different subproblems.

Contributions

The contributions of this work are two-fold. First, we propose new SSA-based algo-
rithms for two important subproblems of optimizing compilers: instruction selection
and spilling. For the instruction selection problem, we propose a generalization of pre-
vious work that allows to use general graph grammars instead of tree grammars for
the modeling of the target architecture. For the spilling problem, we introduce a new
mathematical formulation for the most-general spill-everywhere model and develop ef-
fective algorithms that deliver optimal or near-optimal solutions. For both techniques,
we present experimental results that show significant improvements compared to previ-
ous techniques. Experiments with large benchmark sets show that our techniques scale
even to very large programs. We consider two example architectures representing dif-
ferent architectural paradigms from the embedded systems domain, i.e., an embedded
VLIW architecture designed for video and audio decoding and a traditional ARM core
as representative for simple RISC architectures.

The second major category of contributions in this work are theoretical results for the
underlying combinatorial optimizations problem. We implement and extend previously
proposed algorithms for the so-called partitioned binary quadratic programming prob-
lem. The work for spilling is based on a new variant of the well-known min-cut problem
with additional side constraints. We present an exact ILP formulation and a Lagrange
relaxation that is used to guide simple greedy heuristics towards the optimal solution.
Both problems are NP complete. Nevertheless, optimal solutions can be found within
reasonable time limits, even for very large programs.

Guide to this Thesis

Chapter 1 gives a short introduction to embedded systems and compilers, in particular
LLVM [LA04] which is used throughout this thesis for the evaluation of the proposed
techniques. Preliminaries for the remaining chapters and summaries of results that are
important for the rest of the thesis are given in Section 1.4. Chapter 2 introduces parti-
tioned binary quadratic programming (PBQP) – a generalized combinatorial optimiza-
tion problem that is used later on as an algorithmic vehicle for the instruction selection
problem. Several algorithms are presented and evaluated for problem instances from
various applications such as address mode selection, register allocation, and instruc-
tion selection. We present a new approach to generalized instruction selection that is
able to cope with complex machine instructions in Chapter 3. The problem is solved
by reducing the problem of matching SSA graphs with generalized graph grammars to



1.1. The Embedded Computing Landscape 5

PBQP. We hereby achieve both improved code quality and improved retargetability to
new architectures or variants. The latter is achieved by supporting more expressive
graph grammars that are flexible enough to describe popular embedded instruction set
architectures to their full extend. Chapter 4 summarizes recent advances in SSA based
register allocation and presents a new formulation of the spilling problems to the so-
called constrained min-cut problem. The latter is a special variant of the well-known
min-cut problem with additional knapsack constraints. We implemented and evaluated
several algorithms and present results for two examples of real-world architectures us-
ing major benchmark suites. Conclusions and an outlook to future work is given in
Chapter 5.

1.1 The Embedded Computing Landscape

Embedded Computing is a very wide field stretching from tiny 8-bit micro-controllers to
full-featured parallel RISC architectures for mobile multimedia applications. Lifetimes
span from less than a year for average mobile phones to often more than thirty years
for infrastructure such as telephone switches. Consequently, there is no sharp definition
that distinguishes embedded systems from general-purpose computing. As a result,
most definitions found in literature characterize embedded systems by what they are
not rather than what they are.

One of these features that distinguish embedded computing is the lack of versatility.
Usually, embedded devices serve few or even only a single purpose. Software is often
closely tied to the hardware and pre-installed by the manufacturer with no or only
limited ways of changing it, e.g., firmware upgrades. However, this distinction becomes
more and more fuzzy with PDAs and mobile phones capable to execute third-party
applications and Java bytecode.

Another characteristic property that is typical for embedded systems is the lack of
binary backward compatibility. In the general purpose computing, strict binary com-
patibility has been the only viable path to commercial success. This is hardly an issue
in the embedded domain. Developers are willing to adopt and recompile the application
for each new product generation. Many systems are built using very simple operating
systems that are closely tied to the underlying hardware or even no operating system
at all. However, with rising complexity of the applications used within embedded sys-
tems, rewriting the whole software stack for each hardware generation becomes quickly
infeasible. Thus, compilers and tools form the compatibility layer that matters most for
embedded system development.

A very informal but probably the most concise definition for embedded systems is in
terms of their intended use. Usually, embedded devices are commodities that serve a
particular purpose that is very different from “computing”. This is also the main reason
for the very different requirements imposed on embedded systems. While higher per-
formance is almost always an appealing goal in the general-purpose computing domain,
this is not necessarily the case for embedded applications. The main goal is to be as
fast as necessary using the minimum amount of resources possible. Apart from produc-



1.1. The Embedded Computing Landscape 6

tion costs, mobile applications are also often constrained by two more aspects that are
hardly an issue for general purpose computing, i.e., energy demand and physical dimen-
sions. For several applications such as mobile communications or mobile multimedia
processing, these are usually the determining “performance” criteria rather than raw
computational power.

1.1.1 Types of Embedded Processors

Processing cores used in embedded systems are usually divided into four main categories
that range from very small serial controllers to full-blown micro-processors. In increasing
complexity, these categories can be summarized as follows:

1. Microcontrollers These cores are commodity components that can be found in
almost all electronic devices. Usually, they include small memories, I/O buses,
and peripherals and are based on very simple 8- or 16-bit microprocessors.

2. Digital Signal processors (DSPs) These are processing units built for very
special compute-intensive loop-oriented kernels. They are designed with a small
family of signal processing algorithms in mind and are optimized for very effi-
cient arithmetic operations. Usually, full floating arithmetic is replaced with sim-
ple fixed-point representation. Special instructions, e.g., multiply-accumulate, are
very common to allow for efficient implementation of common vector and matrix
operations such as dot products.

3. Embedded General-Purpose Microprocessors These are often general pur-
pose processor designs or scaled-down versions of former architectures from the
general purpose domain such as ARM, MIPS, PowerPC, or Motorola 68K. Char-
acteristics are 32-bit datapaths, complete and standardized instruction set archi-
tectures, and relatively large external memories. Most of these processors are sold
in the form of soft-cores, i.e., licensed building blocks that are combined by the
application designer to larger systems-on-a-chip (SoCs).

4. Computational Microprocessors These are devices that can be found in high-
end portable devices and are usually close descendants of full-featured workstation
designs such as PowerPC, SPARC, or Alpha. With companies such as VIA and
Intel entering the embedded market with specialized micro-architectures for x86,
their adapted designs also fall into this category, e.g., VIA Nano, Intel Atom. They
adopt full 32 or 64-bit datapaths and are usually combined with peripherals and
memory management units in order to support full-featured operating systems.
Application areas are commodity devices such as PDAs or netbooks.

Traditionally, DSPs have been the fastest growing sector in the embedded semicon-
ductor market. Modern designs found in applications such as mobile communication,
filtering, audio compression, or signal synthesis, combine one or more traditional DSPs
with general-purpose microprocessors. DSPs hereby often execute a single program on a



1.1. The Embedded Computing Landscape 7

stream of data. The irregular datapaths and designs make it hard to compile high-level
programs efficiently. Thus, even today, it is not uncommon to develop code in assembly
language, which is a very cost and labor intensive endeavor. Thus, several analysts pre-
dict that classic DSPs will migrate into designs that are much closer to general purpose
microprocessors and VLIW designs.

The techniques proposed in this thesis mainly apply to the last two groups of process-
ing cores: computational microprocessors and embedded general-purpose microproces-
sors. However, the borders to classical DSPs become more and more blurred and some
techniques might also be relevant for this field. This is true especially for the part on
instruction selection where the additional flexibility compared to traditional techniques
might help to cope with the irregularities found in typical DSP designs.

1.1.2 Application Areas

In this section, we briefly summarize a rough taxonomical characterization for 16-bit and
wider architectures based on their application area as given by Fisher et al. [FFY05]. The
authors identify three major embedded computing markets with distinct requirements:

1. Image Processing and Consumer Electronics This market is among the
fastest growing segments of embedded computing and includes consumer electron-
ics such as printers, digital cameras, and (mobile) video and audio devices. These
devices operate on digital media, which is today comprised of huge amounts of data
that has to be transferred and processed within embedded systems. Most systems
thus employ embedded general purpose microprocessors with a large amount of
RAM and fast memory connectors. The high computational requirements of mod-
ern digital video codecs such as H264 or VC-1 requires significant computational
power. Several companies such as ST Microelectronics or Texas Instruments thus
offer specialized designs based on VLIW principles with special accelerator units
and large memory bandwidth. Consumer electronics are high-volume commodities
that have to cope with huge cost pressure and often sell for less than the cheap-
est computational microprocessor available. This fact as well as size and power
constraints are important factors for the choice of microprocessors in this field.

2. Communications This is a very diverse market ranging from wired and cellular
phone network infrastructure to mobile cellular phone handsets and networking in-
frastructures such as routers. All this application have very different requirements
and characteristics.

Wired and mobile phone infrastructure has to support a huge number of relatively
low bandwidth clients, summing up to vast data rates. Additionally, wired net-
works are based on analog signal transmission, requiring the analog-to-digital and
digital-to-analog conversion in the data center. On the other hand, cellular net-
works are based on various digital encoding and protocol techniques such as GSM
or UMTS.



1.2. Example Architectures 8

Even larger data rates can be found in typical network backbones. A typical
router has about 32 interfaces with a bandwidth of about 10 Gbit/s each, trans-
lating to several hundred million routing decisions per interface on smaller package
sizes. Routing decisions are based on so-called routing tables with about 50.000 to
100.000 entries. Almost all components exceed the capabilities of general purpose
microprocessors. Thus, systems are usually based on customized processors, so-
called application specific integrated circuits (ASICs), or field-programmable gate
arrays (FPGAs).

A very different set of characteristics can be found in cellular phone handsets.
These systems are usually based on a combination of general purpose micropro-
cessors and DSPs, e.g., Texas Instruments OMAP series. Processors traditionally
run on relatively low clock rates of a few hundred MHz and include a relatively
small number of RAM. This trend has changed with recent developments in the
smartphone market where more powerful systems are adopted that can be used to
drive built-in digital cameras and multimedia decoders. A limiting factor in this
market is energy consumption. Typical standby power is a few milliwatts while
transmission power rises drastically to several hundred milliwatts.

3. Automotive The use of embedded microprocessors in the automotive market has
grown dramatically in the last decade. Today, it is not uncommon to find between
50 to 100 processors in a single vehicle. These chips are used for a wide range of
applications such as controlling, safety features, instrumentation, and entertain-
ment. Consequently, different architectural styles are used. Fault tolerant low
level real time systems are often based on DSPs or simple RISC microprocessors.
High-end microprocessors are usually based on traditional RISC architectures such
as PowerPC and are designed for relatively low frequencies.

A distinguishing characteristic of the automotive market is the high degree of
integration among the different subsystems, e.g., self-diagnostic and reporting,
sensor networks, or controlling. Individual components, so-called “smart-nodes”,
hook up to standardized communication systems such as CAN or FlexRay.

1.2 Example Architectures

The techniques presented in this thesis have been evaluated using two example architec-
tures for embedded general purpose microprocessors. One of which is ARM, a simple
32-bit RISC core that is by far the most widely used architecture in the mobile electron-
ics market. The second architecture, OnDemand CHILI, is a representative for explicitly
parallel VLIW architectures that are frequently found within numerically intensive ap-
plications such as video en-/decoding.

Embedded processors are hardly sold on their own. Instead, multiple processing cores
along with external memories and peripherals are combined to a single system-on-a-chip
(SoC). A reference design for such a system for mobile multimedia applications is shown



1.2. Example Architectures 9

2x CHILI VIDEO
Processors

ARM
Control
Processor

OSD
Scaler
CFC
CSC

LCD Ctrl
BT656
TV

PAL/NTSC

High Speed Memory Bus (AXI/AHB) 

JTAG
Debug
Port

Clock Gen
PLL

Test
Modes

Onchip
Peripheral
Control

IO / Media Bus
Bridge

Test Access
Module (TAM)

Local 
SRAM 64kB

Boot
Memory IF

DRAM
Controller

IO
 B

u
s 

M
e

d
ia

 B
u

s 
I2S Audio In

SPDIF Audio Out

I2S Audio Out

GPIO
I2S Master

CF/MMC/SD/
SDIO Slave

CF/MMC/SD/
SDIO Master

Multimedia IF
Slave

DCC Camera In
BT656

Camera

CF/MMC/SD/
SDIO Card

MMI

I2S
Audio In

Card
Master

SPDIF
Audio Out

GPI
GPO

I2S
Audio Out

Main clocks Test ctrl

Clk mode
Pdwn
Test
misc

IEEE 1146
Serial debug port

mDDR
8Mx32

Boot Flash
8Mx8

Display

LCD
BT656
TV

SVENm

IEEE 1146
Boundary scan

REFCLK
TVCLK

Test

Figure 1.2: Schematic layout of a reference design for mobile multimedia decoding
(SVENM).

in Figure 1.2. The system combines an ARM control processor capable to drive full-
featured operating systems such as Linux with two CHILI VLIW cores that are used to
run computationally intensive video decoders such as H264. There is a small amount of
on-chip core memory on each of the VLIWs and all the processing cores are connected
to a global mobile DRAM controller. Additionally, there is a large number of peripheral
controllers and interfaces such as audio and video connectors, flash memory controller,
and debug interfaces. A picture of the reference design shown in Figure 1.2 in real silicon
is given in Figure 1.31.

1.2.1 ARM

ARM processors today account for approximately 90% of all 32-bit microprocessors
found in embedded systems. The architecture has been developed by ARM Ltd. – a
spin-off of Acorn Computers founded in the late nineties. It is important to note that
ARM Ltd. does not fabricate real silicon itself but licenses ARM cores to semiconductor
partners that include them into customized SoCs.

Basic Architecture ARM is a simple 32-bit Von Neumann architecture featuring 16
general purpose registers (two of which are reserved for the stack pointer and link register
and r15 denotes the program counter). A so-called program status register (CPSR)

1Image included with permission of OnDemand Microelectronics



1.2. Example Architectures 10

Figure 1.3: Developer board with multiple VLIW cores, peripherals, off-chip memory,
and a general purpose control processor (ARM).

reflects the current processor state. There are four condition code flags (negative/zero
result, carry, overflow) that allow for conditional execution of instructions. This can be
used to improve code density and to reduce the number of branch instructions using
if-conversion, i.e., the conversion of control into data dependencies by the compiler.
Dedicated flags are used to enable/disable interrupts and switch among two operations
modes, i.e., ARM mode and Thumb mode.

ARM Mode In ARM mode, all instructions are 32-bit wide and have to be word
aligned. All instructions have full access to the available general purpose registers.
Instructions can be executed conditionally by post-fixing them with the corresponding
condition code field. A special field (signify bit) in the instruction word defines if data
processing instructions affect the processor status word.

ARM Thumb Mode Thumb mode has been introduced to improve code density for
compiler generated code (marketing data claims code size reductions of about 65%).
ARM Thumb is a 16-bit instruction set implementing only a subset of the functionality
available in ARM mode. A special branch instruction (bx) can be used to switch among
the two operation modes. For most instructions, one source and the destination register
have to be identical. With few exceptions, instructions are only allowed to address the
lower half of the register file.



1.2. Example Architectures 11

[<Rn>, #± <imm12>]!
LDR|STR {B} <Rd>, [<Rn>, ± <Rm>]!

pre- [<Rn>, ± <Rm> <shift> #<imm>]!
increment [<Rn>, #± <imm8>]!

LDR|STR {H|SH|SB} <Rd>, [<Rn>, ± <Rm>]!
[<Rn>], #± <imm12>

LDR|STR {B} <Rd>, [<Rn>], ± <Rm>
post- [<Rn>], ± <Rm> <shift> #<imm>
increment [<Rn>], #± <imm8>

LDR|STR {H|SH|SB} <Rd>, [<Rn>], ± <Rm>

Table 1.1: Available ARM pre-/postincrement addressing modes with implicit address
calculation.

A major adjustment has been proposed in 2003 with the introduction of Thumb-2.
The instruction set extends the Thumb mode with some additional 32-bit instruction
and can be seen as a compromise between ARM and ARM Thumb mode with the goal
to achieve both high code density and decent performance.

The Barrel Shifter The 32-bit barrel shifter is only available in ARM mode and can be
used without performance penalty in combination with most arithmetic instructions and
address calculations. The shift amount can be specified either using a 5-bit immediate
value or using the least significant byte of an additional source register. The operation
can be a logic or arithmetic shift operation or a rotate right operation (with and without
carry bit).

Addressing Modes Powerful indexed addressing modes are available for both load and
store operations. There are variants operating on signed/unsigned bytes, half-words, or
words. Addresses are specified using a base register plus an optional offset, which can
either be added to or subtracted from the base registers. The offset can be a register
optionally shifted by an immediate value or an unsigned 12-bit immediate. For half-word
and signed half-word/byte operations, the offset is restricted to 8-bit immediates or an
unshifted register. Additionally, ARM supports a large range of pre- and post-increment
addressing modes with implicit address calculation; see Table 1.1.

Core Extensions The ARM architecture has gradually evolved from the early ARM1
series to ARM11 and, most recently, the ARM Cortex family. Discussing the differences
among all the available variants is beyond the scope of this work, but there is a number
of widely-used core extensions that are important in practice.

Many embedded applications do not require floating point at all and are based on
(saturated) integer arithmetic. For those that do, several instruction set extensions are
available that provide full single and double precision IEEE 754 floating point arithmetic.



1.2. Example Architectures 12

!"#$#%!&'(

)*+%#,

,(-./%

012-
#!3!"4

$&.56%

3'72-'5-2&1

+89-(:%;<9

*521%*(:&'8%=)>3*?

@A@A

*59-('*59-('

+65B(

CDCD

)*3%

!&1-'&66('

!

&

1

-

'

&

6

)5-5%*(:&'8%

+<7989-(:

!&'(%*(:&'8

/56-

!"#$#%+89-(:

@A @A

)*3%!&1-'&6
@A@A

E('2F/('56%

E&'-%#,

Figure 1.4: Overview of the CHILI architecture.

The most popular of which is VFP, which even supports short vector instructions.
Another core extensions is an advanced 128-bit SIMD (single instruction multiple

data) unit marketed under the term NEON. It features a separated register file and
additional functional units that support integer and single-precision floating point oper-
ations from 8 to 64-bits, processing up to 16 operations in the same cycle. The primary
market for NEON are mobile media and signal processing applications.

Further extensions such as TrustZone are found in a few variants only and target niche
markets with security-sensitive applications.

1.2.2 CHILI

The CHILI processor is a good example for wide-issue VLIW cores that are popular for
media processing applications with high computational requirements. The architecture
has been developed by OnDemand Microelectronics, an Austrian start-up company,
and features 4 parallel execution units. Each slot has access to an unclustered general
purpose register file offering 64 32-bit registers. The instruction set is a general load/store
RISC architecture extended with a small number of general purpose instructions for
multimedia processing and limited support for SIMD processing.

A block diagram for the CHILI architecture is given in Figure 1.4. As common for
VLIW architectures, encoding and instruction memory bandwidth is a critical issue.
Thus, each processing core is connected to a relatively large instruction cache that is
managed by a dedicated fetch unit, which pre-fetches and aligns instructions from main



1.2. Example Architectures 13

memory. Each core has a small on-chip memory (SRAM) and is connected to a DMA
controller using a peripheral port interface.

Memory Subsystem The CHILI core is split into the processing core and the data
memory subsystem (DMS). The latter is responsible for DMA transfers among core
memory and external DRAM and provides non-blocking memory accesses for the pro-
cessing core, i.e., an issued load instruction does not stall the processing core unless the
value is actually required to proceed with the calculations. This allows to pre-fetch re-
quired values from slow external memories while the core is busy with other operations
and helps to hide the long access latencies. Each load and store operation supports
direct addressing modes using a register or a fully qualified 32-bit immediate value as
value as register indirect addressing modes. In the latter case, the offset can be specified
using another source register or a 32-bit immediate value. The DMS allows transparent
access to off-chip external memories. However, in general it is more efficient to transfer
larger blocks to the core memory using the DMA engine, which is controlled using a
peripheral port interface.

Conditional Execution Most existing general purpose architectures have either only
partial support for predicated execution (mostly restricted to conditional moves, e.g.,
DEC Alpha, Sun Sparc v9) or nullify the result based on the value of an additional
boolean source predicate (Itanium, ARM), which has to be evaluated beforehand. The
CHILI differs from these architectures in that conditions are evaluated alongside to the
instruction to be predicated within the same bundle. Therefore, the full range of binary
comparisons is provided in addition to special test instructions that evaluate to true if
a particular bit is set or unset respectively. However, these computations require an
additional slot in the instruction word. In particular, even slots can be used to evaluate
the predicate for the instruction in the directly succeeding slot. The only exception
are currently load and store instructions, which cannot be executed conditionally. If
multiple instructions are defining a register within the same bundle, the value produced
in the slot with the highest index is kept.

SIMD Extensions CHILI’s SIMD extensions allow to perform parallel 8-bit and 16-
bit arithmetic on each of the processor’s 32-bit wide execution units. This allows to
execute up to 16 8-bit operations and up to 8 16-bit operations in a single cycle. Special
permute instructions can be used to efficiently pack and unpack values into registers.
Permutations can either be specified using immediate values or can be programmed
using special permute registers that can be loaded using dedicated instructions. These
extensions are especially valuable for video and audio decoding algorithms that often
operate on vectors of 8-bit values.

Instruction Set Extensions Apart from the SIMD extensions, there are some addi-
tional instruction set extensions that are uncommon for RISC machines and which are
mainly heritages from the DSP world. These instruction include multiply-accumulate



1.3. The LLVM Compiler Infrastructure 14

LLVM

bitcode
bitcode
linker

LLVM

bitcode

static
backend

high-level
optimizer

high-level
optimizer

front-end1

..
.

front-endn

CPUJIT

compile-time

runtime

Figure 1.5: Overview of the LLVM compiler infrastructure.

operations, clip instructions that can be used to enforce upper and lower bounds, or sum
of absolute differences, which is very common within signal processing algorithms. Fur-
thermore, there are specialized instructions for alignment and rounding and for counting
of leading zeros/ones. All of which have applications in the architecture’s target market.

1.3 The LLVM Compiler Infrastructure

This section gives a short introduction to the LLVM compiler infrastructure – a modern,
open source compiler framework that originated at the University of Illinois and that
served as the framework for the experimental evaluation of the techniques proposed in
this thesis.

LLVM is an acronym for “low-level virtual machine” and is both a well-defined virtual
instruction set as well as a set of components that can be used to build various tools
such as static code generators, just-in-time translators (JITs), static code analyzers, or
dynamic simulators.

1.3.1 Overview

LLVM is based on a modular design of loosely coupled libraries that operate on a well-
defined intermediate representation. The main purpose of LLVM is the development of



1.3. The LLVM Compiler Infrastructure 15

static and dynamic compilers. Figure 1.5 show the basic structure of code generators
based on LLVM. Various front-ends translate high-level languages such as C, C++,
Objective C, or Fortran into so-called LLVM bitcode. In addition, there are active
projects implementing LLVM front-ends for virtual machine languages such as Java
Bytecode or Microsoft’s CLI. At the time of writing, the main front-end for LLVM is
based on the gcc compiler infrastructure and translates gcc’s intermediate representation
(GIMPLE) into LLVM bitcode. This is a relatively simple task and abstracts away much
of the complexity of dealing with the various source languages. Most features of modern
high-level programming languages are hereby lowered to very simple constructs.

LLVM bitcode serves as both input and output format for various readily available
analysis and optimization passes. This includes most of the traditional scalar optimiza-
tions, loop transformations, code motion and redundancy elimination, and sophisticated
analysis passes such as alias analysis or loop dependence tests. Theses optimizations can
be applied in the traditional way separated to each translation unit. Alternatively, the
design of LLVM allows for transparent link-time optimizations by linking LLVM bitcode
modules together before optimizations are applied.

The backend infrastructure permits code generation ahead-of-time as well as during
runtime. The latter allows to ship LLVM bitcode files instead of machine dependent
binaries. These can be translated for a particular machine on-the-fly (JIT) or on the
first execution (install-time optimization). Furthermore, there is limited support for
profile-guided optimizations, i.e., training data is used to gather additional information
for a particular application that can be used to improve the code quality of a subsequent
translation pass.

1.3.2 LLVM Virtual Instruction Set

The intermediate representation used by LLVM modules is a fully-typed RISC-like vir-
tual instruction set. In contrast to many other compiler infrastructures, there is no
hierarchy of intermediate representations with varying abstraction level. Instead, all
analyzers and optimization passes operate on the same representation, which is light-
weight and low-level while being rich enough for most interesting tasks. The language
is universal in that it is independent of the particular source language and comes with
its own basic type system.

It is important to note that LLVM bitcode is fundamentally different from virtual
machines such as Java bytecode or CLI. First, LLVM bitcode is not target machine
independent. Peculiarities defined by the particular application binary interface (ABI)
or by the target machine such as alignment, mapping of high-level types, or calling
conventions, are explicitly represented by the front-end. Thus, object code represented
by LLVM bitcode is not portable from one architecture to another in general. Another
characteristic that distinguishes LLVM bitcode is the lack of features such as garbage
collection, that one would expect from virtual machines. However, it is possible to
implement those features on-top of LLVM.

LLVM bitcode can be represented in one of different forms, all of which are seman-
tically equivalent. First, there is an in-memory compiler intermediate representation



1.3. The LLVM Compiler Infrastructure 16

f loat
dot product ( f loat ∗a ,

f loat ∗b ,
unsigned n) {

f loat sum = . 0 f ;
unsigned i ;
for ( i =0; i < n ; ++i )

sum += a [ i ] ∗ b [ i ] ;
return sum ;

}

define f loat @dot product ( f loat ∗ %a ,
f loat ∗ %b ,
i32 %n) nounwind {

entry :
br label %bb1

bb : ; preds = %bb1
%0 = getelementptr f loat ∗ %a , i32 %i . 0
%1 = load f loat ∗ %0, a l i g n 4
%2 = getelementptr f loat ∗ %b , i32 %i . 0
%3 = load f loat ∗ %2, a l i g n 4
%4 = mul f loat %1, %3
%5 = add f loat %4, %sum . 0
%6 = add i32 %i . 0 , 1
br label %bb1

bb1 : ; preds = %bb , %entry
%i . 0 = phi i32 [ 0 , %entry ] , [ %6, %bb ]
%sum . 0 = phi f loat [ 0 . 0 , %entry ] , [ %5, %bb ]
%7 = icmp u l t i32 %i . 0 , %n
br i1 %7, label %bb , label %bb2

bb2 : ; preds = %bb1
br label %return

re turn : ; preds = %bb2
ret f loat %sum . 0

}

Figure 1.6: Example LLVM bitcode corresponding to a simple c-function computing a
vector dot product.

that is used by LLVM analyzers and optimization passes. It is represented in a C++
class hierarchy and there are various methods for in-memory construction and debug-
ging. Next, there is an efficient on-disk representation that is suitable for fast loading
for just-in-time compilers. The third form is a human readable text representation that
is very helpful for debugging and can even be used to write LLVM code by hand using
an assembly-like language. There are tools to convert among all these forms without
loss of information.

A verification pass asserts that LLVM bitcode is well-formed, i.e., it adheres LLVM
syntax and its type system and each scalar value is in strict SSA form. There are no
restrictions concerning reads from and writes to memory locations. However, a dedicated
pass (mem2reg) identifies memory locations whose address is never taken and promotes
them to virtual registers, inserting phi functions where appropriate. This effectively
removes burden of SSA construction from the front-end by mapping local variables to
stack references that are processed by mem2reg later on.

A simple example showing LLVM bitcode for a vector dot product is shown in Fig-
ure 1.6. Note, that all variables are fully typed. A special function (getelementptr) is
used to obtain the address of an aggregate data structure in a type-safe way. Memory
access instructions are represented explicitly by loads and stores. The example is in
strict SSA form, i.e., each variable is defined exactly once and each use is dominated by



1.3. The LLVM Compiler Infrastructure 17

its definition. Phi-functions are used to disambiguate different values at join points, e.g.,
at the beginning of basic block bb1. Note that the actual semantics of each operation
depend on the type of its arguments, e.g., floating-point versus integer add.

1.3.3 Backend Infrastructure

A “backend” translates LLVM bitcode into a usually equivalent program representation.
In most cases, this is the assembly language for a particular hardware platform. However,
there are also backends that translate LLVM bitcode to C or virtual machines. The C-
backend is interesting as it allows to use the LLVM infrastructure on platforms that are
not explicitly supported by applying a generic vendor compiler to LLVM’s output.

At the time of writing, LLVM supports about a dozen different target architectures
and variants such as X86( 64), PowerPC (32/64), Alpha, Sparc, Itanium, ARM, or Cell.
A VLIW backend and the necessary additions for the OnDemand CHILI core has been
developed by our group. All backends are based on a target independent code generator
infrastructure, which consists of five main components:

• Abstract Target Machine Descriptions Target machine characteristics that
are important for code generation such as descriptions of the particular instruc-
tion set architecture, functional units, or register files, are defined using a dedicated
description language called TableGen. Descriptions are independent from a par-
ticular component and can be effectively organized in a class hierarchy to obtain
concise descriptions by factoring out common information, e.g., most arithmetic
operations such as add or sub differ only in their opcode while the set of operands
and register constraints remains the same. TableGen descriptions are independent
of a particular algorithm. However, there are different “backends” that are used to
generate target specific data structures and algorithms at compiler compile time.

• Machine Code Infrastructure LLVM provides a set of classes to represent
target specific machine instructions in a target independent way. Some components
such as the set of valid opcodes or registers are generated from backend descriptions
at compiler compile time. Code is organized in the form of classical control graphs
while straight line segments without control flow are, as usual, represented by basic
blocks. Apart from few exceptions, the semantics of a particular operation are not
known any more. It is the job of the instruction selector to convert LLVM bitcode
into a semantically equivalent machine representation for a particular target.

• Target-Independent Components Almost all major backend components are
implemented in the form of target-independent algorithms that make use of the
backend descriptions during runtime or that are partially generated for a partic-
ular target at compiler compile time. This includes instruction selection, register
allocation, and scheduling. For several tasks, multiple algorithms are implemented
that can be selected using command line options.



1.4. Preliminaries 18

• Abstract Interfaces for Target-Specific Hooks The generic LLVM backend
infrastructure provides a small number of abstract target interfaces that are im-
plemented for each of the available target architectures. These interfaces provide
functionality that cannot be derived from the abstract machine descriptions, e.g.,
construction of frequently used machine instructions, folding of memory operands,
or abstract interpretation of branch instructions. In addition, several backends
implement target-specific low-level optimizations and transformations that are im-
portant for effective code generation.

• JIT Infrastructure The LLVM JIT is largely target-independent and shares
most of the backend infrastructure that is also required for the static code genera-
tor. The main additional requirement is a description of the encoding of machine
instructions in the corresponding TableGen description.

1.4 Preliminaries

This section gives a brief introduction into related areas that are heavily used in the
subsequent chapters. For a more detailed description, the reader is referred to the
provided citations.

1.4.1 Static Single Assignment Form

Static single assignment (SSA) form is a program representation in which each vari-
able has a single static assignment in the source code [CFR+91a]. This property does
in general not hold for intermediate representations derived from generic imperative
programming languages. Thus, multiple definitions of the same variable are usually dis-
ambiguated by sub-scripting them with unique version numbers. The main advantage of
SSA form is that so-called use-def chains, i.e., a datastructure that maps a use of a vari-
able to the set of potential reaching definitions, are explicit in SSA form. This simplifies
several analyses and optimizations, e.g., constant propagation, dead code elimination,
partial redundancy elimination, strength reduction, or value numbering. In practice,
SSA form is usually linear in the size of the original program while use-def chains in
general require a quadratic amount of space2 .

The conversion of generic programs into SSA form is well-understood and, in gen-
eral, requires the insertion of so-called Φ-nodes to disambiguate definitions of the same
variable at program join points. These Φ-nodes always have as many arguments as a
particular basic block has predecessors and its semantics are such that the result is the
ı-th argument if and only if control flow entered the block via the ı-th predecessor.

To illustrate these concepts with an example, consider the code fragment in Figure 1.7,
which shows the result of SSA conversion of the example to the left. The input program
has two assignments for variable i. Therefore, it is not in SSA form. The code is

2There are worst-case examples for which SSA form is also quadratic in the size of the original program.



1.4. Preliminaries 19

x = foo ( ) ;
i f (x > 0)
i = 1 ;

else
i = 2 ;

p r i n t (x , i ) ;

x0 = foo ( ) ;
i f (x0 > 0)
i1 = 1 ;

else
i2 = 2 ;

i3 = Φ(i1, i2) ;
p r i n t (x0 , i3 ) ;

Figure 1.7: SSA form (right) for the program fragment to the left. So-called Φ-functions
are used to disambiguate multiple definitions at join points in the control
flow graph.

transformed into SSA form by splitting variable i into variable i1 and i2. A Φ-function
merges the values of program variable i1 and i2 and assigns the result to variable i3.

It is important to note that Φ-functions have special semantics that have to be carefully
considered.

• Event though Φ-functions are usually denoted as a sequence of individual state-
ments at the beginning of a linear code sequence, they have parallel semantics,
i.e., all the arguments of Φ-functions in a particular block are read before they are
written.

• Liveness is usually defined by the existence of a path from a given program point to
a use of a particular variable that does not containing a definition. This does not
hold for Φ-functions as a particular argument is only used when control flow enters
via the corresponding predecessor. However, we can maintain the usual definition
of liveness by thinking of Φ-functions as parallel copies of the corresponding right
hand side to the variables at the left hand side at the very end of the particular
predecessor block.

A simple SSA construction algorithm might attempt to insert Φ-functions at every join
point. This is clearly unfeasible in practice as there will be a large number of unnecessary
Φ-functions. Thus, most compilers generate so-called pruned SSA form, which contains
Φ-functions only for variables that are actually live at a potential insertion point.

Several analyses and transformations require to insert code along edges in the control
flow graph. This can be accomplished easily if either the source has only a single succes-
sor block or the target has only a single predecessor block by inserting the code in one
of these blocks. If both conditions are violated, an edge is called critical. Critical edges
can easily be removed by inserting an empty block along the edge. Programs in SSA
form where all critical edges have been removed are in so-called edge-split SSA form.

Notation In the following, we consider control flow graphs CFG(N , E) in SSA form.
The nodes s and e are distinguished nodes denoting the (artificial) start and end vertex



1.4. Preliminaries 20

respectively. Edges E ⊆ N × N denote the transfer of control in the program. We
denote with V the set of program variables in CFG. Each node in CFG corresponds to
a labeled single instruction ` of the form

` : (d1, . . . , dm)← op(u1, . . . , un).

The sets D` ⊆ V and U` ⊆ V denote the subset of variables used and defined at `
respectively. For each v ∈ V , def(v) denotes the unique label defining v. Each label
` has an ordered set of predecessors preds(`) which are denoted by (pred1

` , . . . , predk` ).
As usual, confluence points of multiple reaching definitions are disambiguated using Φ
functions. A label ` dominates a label `′ (denoted by ` � `′) if all paths from s to `′

contain `. Label ` strictly dominates `′, if ` � `′ and ` 6= `′.
We say a variable v is live at label `, if there is a path from ` to a usage of v that does

not contain a definition of v. This definition is not precise in the context of Φ-functions
as their result depends on the particular predecessor by which a label has been reached.
Therefore, we treat Φ-arguments like virtual usages right after at the corresponding
predecessor. The set of variables live at label ` is denoted by L`. Two variables v, v′ ∈ V
are said to interfere iff there exists a label in the program where both are live.

A program in SSA form is called strict, if each usage of a variable v is dominated by
its definition def(v). The usage of strict SSA form is no restriction as we can easily add
artificial definitions for undefined values without altering the program semantics. For
some languages such as Java, strictness is even a requirement.

SSA Construction SSA form can be computed efficiently. The most widely used al-
gorithm which is also used in this thesis is based on work by Cytron et al. [CFR+91a].
The algorithm can be divided into three basic steps:

(1) Compute the so-called dominance frontier from the control flow graph

(2) For each variable, determine the location for Φ-functions

(3) Rename the original variables by sub-scripting them with unique version numbers

The dominance frontier for a label ` is the set of all nodes `′ such that ` dominates
a predecessor of `′, but does not strictly dominate `′. Loosely speaking, the dominance
frontier describes the “border” between dominated and undominated labels. The domi-
nance frontier can be computed efficiently in time proportional to the size of the original
control flow graph plus the size of the dominance frontiers. Aside from pathological
worst-case examples with very large dominance frontiers, the execution time of the al-
gorithm is usually dominated by the size of the graph and thus runs in “practically”
linear time. The required dominator tree can be easily computed using a classic bitvec-
tor data-flow algorithm. However, this might be very slow in the worst-case. A more
efficient algorithm, which has been implemented for the experimental evaluation in this
thesis, is the so-called Lengauer-Tarjan algorithm [LT79], which has time complexity
O((|N |+ |E|) log(N|+ |E|)).



1.4. Preliminaries 21

The SSA construction algorithm outlined above is based on the observation that when-
ever a label ` contains a definition of a variable a, then any node `′ needs a Φ-function for
a ((iterated) dominance-frontier criterion). Thus, the insertion of Φ-functions outlined
in step (2) can be accomplished by a simple worklist algorithm. In the worst-case, the
number of inserted Φ-functions can be quadratic in the size of the graph. Again, there
is strong experimental evidence that, in practice, the number of inserted Φ-functions
grows only linearly.

After Φ-functions have been inserted, the algorithm walks the dominator tree in step
(3), renaming different definitions with a fresh sub-scripted version. Uses of a variable are
renamed to reflect the closest definition of the variable that is above in the dominator
tree. The algorithm has time complexity proportional to the size of the control flow
graph after insertion of Φ-functions.

SSA Destruction At some point in the code generation process, Φ-functions have to
be eliminated as they are not useful for execution on a real machine. The traditional
approach is to translate a program in SSA form to an equivalent general program without
Φ-functions. Although it is tempting to simply remove the Φ-functions and to drop the
indexes, thereby assigning each occurrence of a variable its original name, this is an
incorrect transformation in general. The reason is that program transformations on
SSA form can lead to interfering live ranges of individual versions derived from the same
variable.

The simplest algorithm for SSA elimination replaces each Φ-function of the form
v = Φ(v0, . . . , vn) with n move instructions of the form v = vi at the very end of the i-th
predecessor. There are more elaborate strategies that minimize the number of additional
move instructions [BCH+02].

Recent work suggests that is beneficial to maintain SSA form until register allocation.
This is the approach that is also taken in this thesis; see Chapter 4 for a detailed
discussion.

Properties of Programs in SSA Form Programs in SSA form have a number of inter-
esting properties. First, their interference graphs are chordal [HGG06, PP05, BDMS05].
A graph is called chordal if each cycle of length four or more has a chord, which is an
edge joining two non-adjacent nodes in the cycle. As chordal graphs are a subset of
perfect graphs, they inherit their properties. Most importantly, the chromatic number
of perfect graphs equals the size of the largest clique. This property even holds for each
induced subgraph. There is a so-called perfect elimination order that allows to color
perfect graphs optimally in polynomial time. Furthermore, for strict SSA form, the
following properties hold [BCH+02]:

• If variables v, w ∈ V interfere, then either def(v) � def(w) or def(w) � def(v).

• If variables v, w ∈ V interfere and def(v) � def(w), then v is live at def(w).

• Each label ` at which a value v is live, is dominated by def(v) [HG06].



1.4. Preliminaries 22

1 2 foo() 0

Φ cmp

print jmp

Figure 1.8: Example SSA graph for the control flow graph fragment shown Figure 1.7.

One of the most important properties for SSA-based register allocation is that for each
clique C in the interference graph, there exists a label where all variables from C are live.
As interference graphs are perfect, the size of the largest clique corresponds precisely
to the number of registers required. This can easily be determined by computing the
maximum number of variables live at some label.

SSA Graphs Large parts of this thesis make use of so-called SSA graphs [GSW95]. SSA
graphs are an abstract representation of procedures in SSA form and accurately describe
the flow of computation for the whole function. Nodes in the SSA graph represent a
single operation while edges describe a flow of data that is produced at the source node
to the target node. Note that incoming edges have an order which reflects the argument
order of the particular operation. The edges of the SSA graph accurately describe the
data dependencies among the operations. Note that there are no explicit nodes for the
definition or use of a variable. Consequently, move-operations are omitted entirely from
the graph. In contrast to classical tree or DAG representations, SSA graphs allow for
cycles that describe the flow of computation across loop boundaries. To illustrate the
concept of SSA graphs, Figure 1.8 shows the SSA graph for the code fragment introduced
in Figure 1.7.

Formally, a SSA graph is denoted as a quadruple G = (V,E, op, opnum) with a set
of nodes V , a set of edges E ⊆ V × V , a function op : V → Σ, and a function
opnum : E → N. The set Σ is a ranked alphabet of operand symbols. Each node in V has
an associated arity τV : V → N . For an edge e = (u, v), 1 ≤ opnum(e) ≤ τV (v) denotes
the order of arguments for the operation op(v). For any node u, |preds(u)| = τV (u)
and for any two incoming edges (v, u), (w, u) v, w ∈ preds(u), v 6= w we require that
opnum((v, u)) 6= opnum((w, u)). For all operations except Φ-nodes, the arity τV (u)
of a node u ∈ V and the arity of its operation τΣ(op(u)) are equal and can be used
interchangeably. A (data) path π is a sequence of nodes v1, . . . , vk such that (vi, vi+1) ∈ E
for all 1 ≤ i < k. A path is cyclic if there are several occurrences of a node in the path.
The length of a path π is given by |π|.



1.4. Preliminaries 23

1.4.2 Integer Linear Programming

Parts of this work make use of (integer) linear programming and duality theory. A linear
program (LP) is an optimization problem consisting of an objective function and several
constraints. George B. Dantzig proposed the following standard model:

maximize cTx
subject to Ax ≤ b

x ≥ 0

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm. The objective is to find a vector x̂ ∈ Rn such that
cT x̂ = max {cTx | Ax ≤ b}.

Linear Programs can be solved in polynomial time. The most widespread algorithms
are the simplex [Chv83], the ellipsoid and the interior point method [RT97]. Unfortu-
nately, adding so-called integrality constraints renders the problem NP-complete in the
general case [GJ79]. A special but very common case occurs when all variables have to
be zero or one. This variant is called 0/1 integer linear program (ILP).

For every linear program

P = max {cTx | Ax ≤ b}

(primal problem) the corresponding dual problem D is defined as

D = min {yT b | ATy = cT , y ≥ 0}.

Primal and their dual problems are closely connected. If D is the dual problem of a
primal problem P , then the dual of D is equal to P . Duality can be used to prove the
optimality of linear programs in an elegant way:

Theorem 1.4.1 (Weak duality). If x̂ is a feasible solution of P and ŷ is a feasible
solution of D, then cT x̂ ≤ ŷT b.

Theorem 1.4.2 (Strong duality). If P has an optimum solution x̂, then D has an
optimum solution ŷ and cT x̂ = ŷT b.

In other words, every feasible solution of D gives us a bound on the optimum value
of D and we can use a solution to the dual problem as a certificate for the optimality of
the primal problem.

1.4.3 Network Flow Theory

Given a digraph G(V,E), a capacity function c(u, v) for each edge (u, v) ∈ E, and two
distinguished nodes s (source) and t (sink), the maximum flow problem is to maximize
the net outward flow from s under the constraint that the flow into any vertex other
than s and t equals the flow out of it and the flow along each edge (u, v) is non-negative



1.4. Preliminaries 24

and does not exceed its capacity c(u, v) [AMO93]. More formally, the maximum flow
problem can be stated as a linear combinatorial optimization problem as follows:

max
∑

(s,j)∈E xs,j

subject to∑
(i,j)∈E xi,j −

∑
(j,k)∈E xj,k ≤ 0 ∀j ∈ V \ {s, t}

flow conservation constraints

0 ≤ xi,j ≤ ci,j (i, j) ∈ E
capacity constraints

(1.1)

The flow conservation constraints state that for each node, the total flow into this node
is at most the total flow out of it. It is easy to show that if these inequalities hold for
all nodes, the they must be in fact satisfied with equality as a deficit at one of the nodes
implies a surplus at some other nodes.

A minimum cut is a separation of V into disjoint subsets S and T such that s ∈ S,
t ∈ T , and

∑
(u,v)∈S×T c(u, v) is minimal. Edges e ∈ S × S̄ are called cut-edges.

A very famous statement in graph theory known as max-flow min-cut theorem [FD62]
states that the maximum flow through a given network is exactly equal to the weight
of a minimum cut. In fact, this is a special case of the more general strong duality
theorem; see Theorem 1.4.2. Introducing new variables yi for the right hand side of the
flow conservation constraints in Equation 1.1 and variables zi,j for capacity constraints,
we can derive the dual problem as follows:

min
∑

(i,j)∈E ci,jzi,j

subject to

yj − yi + zi,j ≥ 0 ∀(i, j) ∈ E
yt = 1
ys = 0
ze ≥ 0
yi ≥ 0

(1.2)

Equation 1.2 is an exact characterization of the min-cut problem. Variable zi,j is one
if (i, j) is a cut-edge and zero otherwise. The constraint matrix is totally unimodu-
lar [AMO93], i.e., the solution of the relaxed problem gives the optimal integral solution.
This implies that a polynomial time solver for linear programming may be employed to
solve the problem (e.g. interior-point). Better performing s-t min-cut algorithms ex-
ist [SW97] or max-flow algorithms can determine the solution of an instance of the s-t
min-cut problem. For the maximum-flow problem, a variety of algorithms exist. Their



1.4. Preliminaries 25

complexity is usually in the order of O(V 3), with some sophisticated algorithms slightly
below.



2 Partitioned Boolean Quadratic
Programming

Introduction Partitioned Boolean Quadratic Programming (PBQP) is a generalized
quadratic assignment problem that has proven to be effective for a wide range of ap-
plications in embedded code generation, e.g., instruction selection, register assignment,
address mode selection [Eck03], or bank selection for architectures with partitioned mem-
ory [SBX08]. Instead of problem-specific algorithms, these problems can be modeled in
terms of generic PBQPs that are solved using a common solver library. PBQP is flexi-
ble enough to model irregularities of embedded architectures that are hard to cope with
using traditional heuristic approaches.

In this chapter, we give a formal definition of PBQP and present two algorithmic ap-
proaches that have proven to be effective tools in practice, i.e., a polynomial time heuris-
tic solver that is optimal for a subclass of PBQP and an exponential branch & bound
algorithm. We give a simple proof that shows the NP-completeness of PBQP and give
an intuitive graphical interpretation of the problem. In Section 2.3 we shortly describe
the application of PBQP for various sub-problems of embedded code generators. Exper-
imental evidence for the effectivity of the proposed algorithms is given in Section 2.4.

2.1 Problem Definition

A PBQP is a generalized quadratic assignment problem proposed by Scholz and Eckstein
for various sub-problems of embedded code generation [SE02a, Eck03]. Consider a set
of discrete variables X = {x1, . . . , xn} and their finite domains {D1, . . . ,Dn}. A solution
of PBQP is a simple function h : X → D where D is D1 ∪ . . . ∪Dn; for each variable xi
we choose an element di in Di. The quality of a solution is based on the contribution of
two sets of terms:

1. for assigning variable xi to the element di in Di. The quality of the assignment is
measured by a local cost function c(xi, di).

2. for assigning two related variables xi and xj to the elements di ∈ Di and dj ∈ Dj.
We measure the quality of the assignment with a related cost function C(xi, xj, di, dj).

Thus, the total cost of a solution h is given as

f=
∑

1≤i≤n

c(xi, h(xi)) +
∑

1≤i<j≤n

C (xi, xj, h(xi), h(xj)) . (2.1)

26



2.1. Problem Definition 27

PBQP asks for an assignment with minimum total costs.
We can alternatively formulate PBQP using matrix notation: a discrete variable xi is

represented as a boolean vector −→xi whose elements are zeros and ones and whose length
is determined by the number of elements in its domain |Di|. Each 0-1 element of −→xi
corresponds to an element of Di. An assignment of xi to di is represented as a unit
vector whose element for di is set to one. Hence, a valid assignment for a variable xi
is modeled by the constraint −→x T

i

−→
1 = 1 that restricts vectors −→xi such that exactly one

vector element is assigned one; all other elements are set to zero.
The related cost function C(xi, xj, di, dj) is decomposed for each pair (xi, xj). The

costs for the pair are represented as matrix Cij. A matrix element corresponds to an
assignment (di, dj). Similarly, the local cost function c(xi, di) is mapped to cost vec-
tors −→ci . Quadratic forms and scalar products are employed to formulate PBQP as a
mathematical program:

Definition 2.1.1. Let X = 〈−→x 1, . . . ,
−→x n〉 be a n-tuple of boolean decision vectors −→x i ∈

{0, 1}|Di| and let ci ∈ R|Di| and Ci,j ∈ R|Di|×|Dj | denote local and related cost vectors and
matrices respectively. The partitioned boolean quadratic problem (PBQP) is defined as
the following minimization problem:

min f(X) =
∑

1≤i≤n

−→x T
i
−→c i +

∑
1≤i<j≤n

−→x T
i Cij−→x j. (2.2)

s.t. ∀1 ≤ i ≤ n : −→x i ∈ {0, 1}|Di| (2.3)

∀1 ≤ i ≤ n : −→x T
i

−→
1 = 1 (2.4)

A solution satisfying Constraints 2.3 and 2.4 maps each boolean decision vector −→x i to
a binary vector that contains a single one element. This defines a one-to-one mapping
among decision vectors −→x i and elements in their domain Di. Thus, the domain for
the objective function is the cross product of the domains for the individual variables
D1×· · ·×Dn. The solution to a PBQP is not necessarily unique, i.e., there are in general
multiple solution vectors X̄ with the same minimal objective value.

PBQP-Graphs It is more instructive to denote a PBQP in a graphical representation.
Such an interpretation can be obtained by an directed graph G = (V,E,C, c). For
each decision vector −→x i, we construct a node vi ∈ V . Likewise, we introduce edges
e = (vi, vj) for each pair of decision variables whose cost matrix Ci,j is different from
the zero matrix. The cost functions c and C map nodes and edges to the original cost
vectors and matrices respectively.

Note, that due to the properties of quadratic forms, there is an implicit reverse edge
e′ = (vj, vi) for each edge e = (vi, vn) and C(e) = C(e′)T . Note also that a PBQP-graph
is free of self- and multi-edges.

Example To illustrate the concepts introduced so far, image a multinational company
that tries to optimize the location of its production sites. For each manufacturing base,
there is a number of choices. Each of these choices has associated costs that represent



2.1. Problem Definition 28

v1

l1 l2
( 16 4 )

v2

l3 l4
( 10 8 )

v3

l5 l6 l7
( 12 14 4 )

v4

l8 l9
( 22 13 )

l1 l2
l3 0 17
l4 15 16

l5 l6 l7
l1 5 12 2
l2 13 0 12

l3 l4
l5 5 2
l6 4 7
l7 14 12

l3 l4
l8 4 13
l9 0 16

Figure 2.1: Example PBQP represented as a PBQP-graph. The optimal solution is
highlighted and has objective value 59.

location-dependent expenses such as rent, taxes, and costs of labor. At the same time,
goods have to be shipped among the different production sites. These costs depend
on the particular choice for the location of the production sites involved. Some of the
premises do not interact at all. Thus, their interaction costs are zero no matter where
they are located. Denoting with xi the decision vector for production site vi, the example
can easily be stated as a PBQP as follows:

min f(X) =
−→x T

1

(
16 4

)
+−→x T

2

(
10 8

)
+−→x T

3

(
12 14 4

)
+−→x T

4

(
22 13

)
+

−→x 1

(
5 12 2
13 0 12

)
−→x T

3 +−→x 3

 5 2
4 7
14 12

−→x T
2 +

−→x 2

(
0 17
15 16

)
−→x T

1 +−→x 4

(
4 13
0 16

)
−→x T

2

The same example represented as a PBQP graph is shown in Figure 2.1. There are 4
production sites v1 to v4, three of which interact heavily. Node v4 represents a site that
exchanges goods only with site v2. Edges are labeled with a cost matrix that represents
the interaction costs among the adjacent nodes. A solution to the PBQP selects one of
the possible locations for each production site such that the overall costs are minimized.
For the given example, a valid solution vector would be X̄ = 〈(1, 0), (1, 0), (0, 0, 1), (0, 1)〉
corresponding to the assignment highlighted in Figure 2.1. The optimal objective value
for this example is 59.



2.1. Problem Definition 29

In general, finding a solution to this minimization problem is NP hard. However, for
many practical cases, the PBQP instances are sparse, i.e., many of the cost matrices
Ci,j are zero matrices and do not contribute to the overall solution. Thus, optimal or
near-optimal solutions can often be found within reasonable time limits.

2.1.1 Related Problems

It is sometimes tempting to reduce an optimization problem to a related problem for
which efficient algorithmic approaches are available. In this section, we consider two
choices that suggest them-self: linear programming and the quadratic assignment prob-
lem.

Integer Linear Programming We have already introduced (integer) linear program-
ming in Section 1.4.2. A compact linearization of PBQP can be obtained as follows.
First, the PBQP decision vectors −→x i are mapped to 0-1 variables yij where j is in the
range between 1 and |Di|. A constraint is added to the integer program that restricts the
solution of yij such that exactly one of the variables is set to one, i.e., only one element
of the domain is assigned to PBQP variable xi. This gives us the following formulation:

min f =
∑

1≤i≤n

∑
1≤j≤|Di|

c(xi, dj)yij +
∑

1≤i≤n

∑
1≤j≤|Di|

∑
1≤k≤n

∑
1≤l≤|Dk|

C(xi, xk, dj, dl)yijykl

s.t. ∀1 ≤ i ≤ n : ∀1 ≤ j ≤ |Di| : yij ∈ {0, 1}

∀1 ≤ i ≤ n :
∑

1≤j≤|Di|

yijE = 1

The remaining quadratic term C(xi, xk, dj, dl) yijykl in the objective function for the
matrix elements can be linearized using a standard technique [AF05] resulting in a
quadratic number of 0-1 variables in the linear integer program.

Quadratic Assignment Problem The quadratic assignment Problem (QAP) [CEL98,
KB57, BÇPP98] is a well-known NP-complete optimization problem that can be defined
by the following problem statement: consider the set {1, 2, . . . , n} and two n×n matrices
A,B ∈ Rn×n. Denoting with Sn the set of all permutations of {1, 2, . . . , n}, the quadratic
assignment problems is to find a permutation π ∈ Sn that minimizes the following term:

min
π∈Sn

n∑
i=1

n∑
j=1

Aπ(i),π(j)Bi,j. (2.5)

A generalized variant of QAP (generalized Koopmans-Beckmann QAP) includes an ad-
ditional matrix F ∈ Rn×n that represents a linear term in the objective function:

min
π∈Sn

n∑
i=1

n∑
j=1

Aπ(i),π(j)Bi,j +
n∑
i=1

Fπ(i),i. (2.6)



2.2. Algorithms for PBQP 30

A frequently used motivation for QAP is the facility location problem, in which n facilities
are to be assigned to n locations. In this case, A represents a flow matrix that denotes
the amount of material being shipped among two facilities and B is a distance matrix
that represents the distance among two locations. QAP has several further applications
in various fields such as scheduling, statistical data analysis, or wiring problems in
electronics.

A permutation π ∈ Sn can be seen as a bijection from the set 1, 2, . . . , n to itself, i.e.,
both the domain and the codomain are the same set and we are looking for an one-to-
one mapping among them. Note that this is different from PBQP where each decision
variable has its own domain.

Several variants of QAP have been considered in literature. The one with probably
the most similarities to PBQP is the so-called Quadratic Semi-Assignment Problem
(QSAP), which has been investigated by Malucelli and Petrolani [MP94, MP95]. The
main difference to QAP is that n facilities have to be assigned to m locations while each
of the locations can have 0, one, or many facilities assigned. Similar to the approach
presented in Section 2.2.1, Malucelli and Petrolani identify a subclass of QSAP that can
be solved in polynomial time.

2.1.2 Complexity

PBQP is well-known to be NP-complete. Eckstein presents a proof [Eck03] by reduction
from MAXCUT, which is one of Karp’s original NP-complete problems. An alternative
proof has been proposed by Jackschitsch [Jak04] using a reduction from SAT. The same
result can easily be obtained by means of the quadratic assignment problem which has
been introduced above.

Theorem 2.1.2. PBQP is NP-complete.

Proof. We reduce an instance of the generalized Koopmans-Beckmann QAP with co-
efficient matrices A,B, F ∈ Rn×n to PBQP. The PBQP graph is given by Kn — the
complete graph with n nodes and n(n−1)

2
edges. Nodes are denoted by v1, . . . , vn and

have domain {1, 2, . . . , n}. The cost vector for node vi corresponds to the i-th row of
coefficient matrix F . Among any two nodes vi and vj, the cost matrix Ci,j = (ck,l) is
defined as follows:

Ci,j = (ck,l) =

{
∞ k = l
Ak,lBi,j otherwise

The ∞ coefficients in the diagonals of the constraint matrices make sure that no two
facilities are assigned the same location. The objective value of the QAP corresponds
exactly to a solution of the constructed PBQP.

2.2 Algorithms for PBQP

In this section, we introduce two algorithmic approaches for PBQP that have been proven
to be efficient in practice for sparse instances, i.e., a polynomial-time heuristic algorithm
and a branch-&-bound based algorithm with exponential worst case complexity.



2.2. Algorithms for PBQP 31

2.2.1 Heuristic Algorithm

In this section, we introduce an algorithm for PBQP proposed by Scholz and Eckstein
[SE02a, Eck03]. For a certain subclass of PBQP, their algorithm produces provably
optimal solutions in time O(nm3), where n is the number of discrete variables and m is
the maximal number of elements in their domains, i.e., m = max (|D1|, . . . , |Dn|). For
general PBQPs, however, the solution may be sub-optimal.

Algorithm 1 PBQP Heuristic

{Phase I: reduction}
while ∃v ∈ V : deg v > 0 do

choose vertex v ∈ V : 0 < deg(v) ≤ deg(v′) ∀v′ ∈ V : deg(v′) > 0
if deg(v) == 1 then

RI(v)
else if deg(v) == 2 then

RII(v)
else

RN(v) {solution may be sub-optimal if RN is applied}
remove v from the graph

{Phase II: trivial solution}
for all vi ∈ V do

determine solution for vi by finding the minimum element in ci

{Phase III: back-propagation}
re-insert the remaining nodes in reversed elimination order until a solution for the
original graph is obtained

The algorithm works in three phases; see Algorithm 1. First, the PBQP graph is
reduced until only nodes of degree 0 are left. For these nodes, a solution can easily
be found using a local minimum computation. In a last step, the eliminated nodes
are re-inserted in reversed order thereby computing a solution for the original problem
instance.

Phase I: Reduction

Eliminating nodes from the PBQP graph is equivalent to the elimination of decision
vectors from the original problem. The algorithm removes nodes from the graph until
only nodes of degree 0 remain. Nodes to be removed are chosen according to their degree
in increasing order. In practice, this can be accomplished efficiently by putting nodes
into buckets according to their degree. The algorithm selects a node from the bucket
with the smallest index that is non-empty.

Nodes with degree one or two can be eliminated without loss of optimality using re-
ductions RI and RII respectively. If the algorithm reaches a point where only nodes with



2.2. Algorithms for PBQP 32

degree three or more are left, the problem becomes irreducible and a heuristic is applied,
which is called RN. The heuristic chooses a beneficial discrete variable and a good as-
signment for it by searching for local minima. The obtained solution is guaranteed to
be optimal if the reduction RN is not used [Eck03].

RI Reduction Let vi be a node with degree one and let vj denote its only adjacent
vertex in the PBQP graph, we can eliminate vi and the incident edge (vi, vj) simply by
removing them from the PBQP graph. The cost vector associated with vj is increment
by the minimum costs over all possible choices of vi. More formally, the updated cost

vector
−→
c′ j is given by

−→c ′j(a) = −→c j(a) + min(Cj,i(a, :) +−→c i).

As for reduction RII, it is easy to show that the optimal objective value for the modified
graph corresponds to the optimal value of the original problem. A formal proof is given
by Eckstein [Eck03].

RII Reduction Reduction RII follows the same idea as reduction RI. The operation
is applied to nodes vi with degree two. The two adjacent nodes are denoted by vj and
vk respectively. Vertex vi is removed and the minimal costs for vi depending on choices
for vj and vk are added to the cost matrix Cj,k. The new cost matrix C ′j,k is defined as
follows:

C ′j,k(a, b) = Cj,k(a, b) + min(Cj,i(a, :) + Ck,i(b, :) +−→c i).

RN Reduction PBQP graphs that cannot be reduced using reductions RI and RII
are called irreducible. The smallest example for an irreducible graph is the complete
graph with four nodes K4. One possibility to deal with irreducible graphs is recursive
enumeration. However, recursive enumeration has exponential worst-case complexity
which makes it an infeasible approach for most applications. Instead, a heuristic called
RN is applied that reduces a node using a local minimum computation. The basic idea
is to make a decision as if the node and the adjacent vertices are disconnected from the
rest of the PBQP graph. While reductions RI and RII can be shown to maintain the
optimality of the obtained solution, RN does not and leads to sub-optimal solutions in
general. Let vi denote a vertex of degree three or more, we heuristically select the index
with minimal costs from the cost vector −→c ′ defined as follows:

−→c ′(a) = −→c i(a) +
∑

(vi,vj)∈E

min(Ci,j(a, :) +−→c j).

Let si denote such an index with minimal costs in −→c ′, it remains to update the cost
vectors for adjacent nodes accordingly. For each adjacent node vj, the new modified cost
vector −→c ′j evaluates to −→c ′j = −→c j + Ci,j(si, :).



2.2. Algorithms for PBQP 33

Phase II: Trivial Solution

Upon completion of the reduction phase, there are only nodes with degree 0 left in the
PBQP graph. This corresponds to a PBQP in matrix notation where all cost matrices
are the zero matrix and the cost function is reduced to

min f(X) =
∑

1≤i≤n

−→x T
i
−→c i.

Since there are no dependencies among the decision variables, the minimization problem
is equivalent to the evaluation of the term∑

1≤i≤n

min
xi

−→x T
i
−→c i.

Thus, we can determine the solution for each decision variable xi by finding the smallest
element in its associated cost vector ci.

Phase III: Back-Propagation

Algorithm 2 Back-Propagation

for all vi ∈ V do
svi

= k : ci(k) = min(ci)
while S not empty do

pop node vi from S
−→c = −→c i
for all (vj, vi) ∈ E do
−→c + = Cj,i(svj

, :)
svi

= k : c(k) = min(c)

In the back-propagation phase, nodes are re-inserted in reversed elimination order.
At each step, the solution for the newly inserted node can be easily determined as the
decision vectors for adjacent nodes are already known; see [Eck03] for a formal proof. The
algorithm for a PBQP graph G = (V,E,C, c) is shown in pseudo-code in Algorithm 2.
We denote with S the stack of eliminated nodes from Phase I.

2.2.2 Branch & Bound

Branch & Bound (B&B) is a very generic and efficient enumeration scheme for combina-
torial optimization problems that has been successfully applied to a large set of NP hard
optimization problems, e.g., integer programming, knapsack problem, traveling sales-
man problem, maximum satisfiability problem, or QAP, which has been introduced in
Section 2.1.1.

The main idea is to arrange the search space such that large parts can be explored
only implicitly. At any point in the optimization process, we maintain a pool of yet



2.2. Algorithms for PBQP 34

P

xi1 =
(1, 0, . . . , 0)

. . .
xi1 =

(0, 0, . . . , 1)

xi2 =
(1, 0, . . . , 0)

. . .
xi2 =

(0, 0, . . . , 1)

Figure 2.2: A fragment of the search tree for a B&B based PBQP algorithm.

unexplored subspaces together with the best solution found so far. Initially, there is
only one subset representing the whole solution space and the best solution is set to
∞1. Subspaces are created dynamically and arranged in a so-called search tree. The
key-idea is that large portions of these subspaces can be eliminated by comparing their
lower bounds with the best solution found so far.

Any B&B algorithm consists of the following key ingredients:

1. Bounding procedure: for a given subspace of the solution space, compute a tight
lower bound on the best solution value that is obtainable within this subspace.

2. Selection strategy: select the next live subproblem to be investigated in the search
procedure. Popular techniques are breath first search (BFS), depth first search
(DFS), and best first search. The latter always selects the subproblem with the
lowest bound among the set of live subproblems. An experimental evaluation of
the various strategies for QAP can be found in [CP99].

3. Branching rule: divide the considered subspace into two or more subspaces to be
considered in subsequent iterations of the algorithm.

An advantage of B&B based algorithms that becomes more and more important with
the rise of multi- and many-core systems is their ability to scale naturally with the
number of cores.

PBQP allows for a natural mapping to the B&B scheme outline so far [HS06]. As in
Section 2.2.1, reductions RI and RII can be applied until a irreducible graph remains.
A subspace of the solution space is represented by a node in a search tree as shown in
Figure 2.2. A subspace is divided into smaller subspaces by selecting a yet unconsidered
decision vector xi from one of the leaf nodes and creating |Di| child nodes, each of which

1Without loss of generality, we assume minimization problems within this chapter.



2.3. Applications 35

representing one of the possible assignments for xi. The whole set of partial assignments
for a subspace of the solution space can be obtained by walking the search tree back to
the root node.

A simple lower bound fl on the objective function can be obtained using the following
term:

fl =
∑

1≤i≤n

min ci
∑

1≤i<j≤n

min Ci,j.

For inner nodes on the search tree, some of the variables xi are already included in the
partial assignment and evaluate to constants that replace the minimum computation
and lead to tighter bounds in general. Note that we can derive the new lower bound
after a branching operation in an incremental way using the lower bound of the parent
node.

Leaf nodes that are not yet solved are called live. We maintain the set of live nodes in
a priority queue according to their lower bound. The selection strategy is to expand the
node with smallest lower bound first. This corresponds to the best first search strategy
in the taxonomy introduced above.

A whole subspace can be pruned from the search if its lower bound exceeds a global
upper bound on the value of the optimal solution. Initially, the global upper bound
can be set to ∞. However, faster convergence can be achieved in general by applying a
heuristic algorithm such as the method proposed in Section 2.2.1 in a pre-processing step.
This will allow the B&B algorithm to prune large subspaces early in the optimization
process.

2.3 Applications

PBQP has its origins in optimizing code generators for embedded systems. In the fol-
lowing, we give a brief description of three applications from this field and how they map
to PBQP, i.e., instruction selection, register allocation, and addressing mode selection.

Instruction Selection We discuss instruction selection in detail in Chapter 3. The goal
is to translate a compiler’s intermediate code representation into a low-level intermediate
representation or to machine code. A popular algorithmic approach for the instruction
selection problem is pattern matching. The basic idea is to map instruction selection to
a graph covering problem. The target instruction set is described using an ambiguous
cost-annotated graph grammar. The instruction selector seeks for a cost-minimal cover.
Each of the selected rules has an associated semantic action that is used to emit the
corresponding machine instruction. Each rule consists of so-called terminal symbols and
nonterminals. Terminal symbols match the corresponding labels of the dataflow trees.
Nonterminals are used to chain individual rules together. Rules that translate from one
nonterminal to another are called chain rules.

PBQP nicely maps to the pattern matching problem [EKS03, EBS+08] for whole SSA
graphs; c.f. Section 1.4.1. The input grammars are normalized such that they are either
simple base rules that cover a single node in the SSA graph or chain rules that translate



2.3. Applications 36

among nonterminals. The PBQP graph is structural equivalent to the SSA graph. The
domain for each node is defined by the set of applicable base rules. Cost matrices along
the edges of the SSA graph reflect the costs for the translation among different non-
terminals. In practice, the PBQP instances are relatively sparse. Thus, the heuristic
proposed in Section 2.2.1 is highly effective, even for very large graphs.

Register Allocation Register allocation aims to map an unlimited set of temporary
variables produced by the instruction selector to a finite set of machine registers such
that variables with interfering live ranges are assigned different registers. Variables that
cannot be assigned during this process are mapped to locations in main memory, which
is costly in almost every respect: code size is increased due to additional instructions
transferring data to and from their assigned locations (spill code), performance is de-
creased due to large memory access latencies, and overall energy dissipation suffers from
the additional workload.

Scholz and Eckstein were the first to propose PBQP for the register allocation problem
[SE02b, Eck03, HKS03]. More recently, Hames et al. published experimental results for
large benchmark sets using various PBQP algorithms [HS06]. The register allocation
problem can be mapped to PBQP as follows: there is a node in the PBQP graph for each
symbolic register in the considered code fragment. The domain for each node is basically
defined by the set of machine registers that can be assigned to a particular live range.
Additionally, each node can be assigned to a distinguished state sp that represents the
option of spilling the corresponding variable to main memory. Local cost vectors reflect
the costs for a particular assignment. For the sp-state, these are the costs for spilling
the corresponding variables to main memory. The remaining elements correspond to
the costs for the assignment of the associated machine register. Preferred registers can
easily be modeled by adding a penalty to the undesired options.

Cost matrices along the edges of the PBQP graph are used to model the constraints
of the register allocation problem. Most importantly, variables that are live at the same
time in the program cannot be assigned to the same machine register. In this case, so-
called interference matrices are introduced whose costs are ∞ if the particular choices
for the incident nodes alias. Note that the distinguished spill option sp aliases with
nothing, not even with itself.

Copy instructions from one variable to another can be eliminated if both the source
and the target variable are assigned to the same machine register. This optimization
is known as coalescing in register allocation literature and can easily be modeled by
introducing so-called affinity edges with negative costs if the register for source and
target nodes coincide. Furthermore, the PBQP based approach allows to model irregular
architectures that are hard to cope with using traditional techniques.

Experimental results [HS06] show that the basic heuristic proposed in Section 2.2.1
performs poorly for large register allocation problems. However, the authors propose
effective modifications to the general scheme that change the order in which irreducible
nodes are processed. Their technique is similar to existing graph-coloring heuristics.
The modified algorithm produces solutions whose costs are within 3% of the optimal



2.3. Applications 37

solution.

Addressing Mode Selection Addressing mode selection (AMS) [ES03, Eck03] is an
optimization for embedded architectures, e.g., DSP processors, with explicit address
generation units. Even for simple architectures, AMS is a NP complete optimization
problem [ORA+01]. The goal is to select among different addressing modes supported
by the target architecture, e.g., indirect addressing (with/without offset), pre-/post in-
crement/decrement addressing, or modulo addressing. These modes often differ in their
pipeline characteristics or in the size of their encoding.

The algorithm proposed by Eckstein et al. [ES03] performs address mode selection
for each address register separately. The input for their algorithm is a control flow
graph (CFG) of the program. For each node in the CFG, the AMS algorithm decides
among the various addressing modes based on a cost model. The offset value denotes
the difference among the value of the address register and the access value of a particular
addressing mode. For an addressing mode, the offset values before and after execution of
an instruction are called entry and exit offsets and are denoted by the pair 〈ei, xi〉. For
some addressing modes there is only one such pair, e.g., indirect addressing is specified
using the set {〈0, 0〉}, post increment addressing can be described by {〈0, 1〉}, and so
on. However, for several addressing modes, these sets can become large, e.g., indirect
addressing with offset is characterized by the set

⋃
c∈C {〈−c,−c〉}.

The main idea of addressing mode selection is to shift the value of the address register
in consideration between consecutive instructions, i.e., each instruction i is replaced by
the sequence ar = ar− ei; i; ar = ar+ xi. To maintain the program semantics, exit and
entry values of consecutive instructions must match. A peephole optimization is used
to eliminate sequences of add instructions and to rewrite the addressing modes.

The mapping of AMS to PBQP includes decision vectors whose domain is defined by
the set of offset values. A node in the PBQP graph represents a set of edges from the
CFG that share a common source or destination node. On the other hand, edges in the
PBQP graph correspond to nodes in the CFG.

There are no local costs for nodes in the PBQP graph, i.e., all cost vectors ci are zero
vectors. Cost matrices among nodes in the PBQP graph represent the minimum costs
among all applicable addressing modes given the offset assignments at the source and
destination node. A configurable cost function can be used to optimize for performance,
code size, or a trade-off among both.

Experimental results show that PBQP graphs generated in this way are hardly ir-
reducible. This means that the heuristic introduced in Section 2.2.1 delivers optimal
results for most cases in practice. The reason is that these control flow graphs are de-
rived from structural high-level languages like C. However, in general these languages
include features such as goto that can lead to irreducible graphs.



2.4. Experimental Evaluation 38

data-set #problems reducible optimal B&B solved
BANKSEL 14 8 57.2% 14 100.0% 14 100.0%
ALLOC 3.020 715 23.7% 819 27.1% 2837 93.9%
ISEL 181.202 178.727 98.6% 180.886 99.8% 181.201 100.0%

Table 2.1: Solver statistics for three different data-sets derived from real-world applica-
tions.

2.4 Experimental Evaluation

We implemented and evaluated both the heuristic and the B&B based algorithm de-
scribed in Section 2.2. First, we consider three different PBQP data-sets obtained from
real-world applications:

• BANKSEL: these are instances for a bank selection problem for architectures with
partitioned memory [SBX08]. The data-set represents smaller embedded bench-
marks.

• ALLOC: these are instances from a PBQP based register allocator implemented
for LLVM. The data files have been obtained using the SPEC2000 suite, which
represents large real-world applications. The target architecture is X86.

• ISEL: instances in this data-set have been obtained from an ARMv5 instruction
selector based on PBQP. Again, SPEC2000 has been used. While the register
allocator processes a function at a time, the instances in this data-set represent
pattern matching problems for individual blocks.

Solver statistics for these data-sets are given in Table 2.1. All benchmarks have been
executed on an Intel Xeon based workstation running at 3GHz. The column “reducible”
shows the number of graphs that can be fully reduced using reductions RI and RII. Thus,
the heuristic proposed in Section 2.2.1 is guaranteed to deliver an optimal solution. For
the data-set ISEL, this is the case in about 98.6% of the cases, i.e., the PBQP graphs
are very sparse. Much harder instances are contained in the data-set ALLOC, where
more than 76% of all instances are irreducible.

The B&B based algorithm could solve all instances from data-sets BANKSEL and
ISEL within a time limit of 300 CPU seconds. This picture changes considering data-set
ALLOC. More than 180 problems could not be solved within the time limit. Increasing
the time limit does not change this picture significantly. The optimal solutions obtained
from the B&B algorithm confirm that the heuristic solutions for irreducible graphs are
optimal in almost all cases for data-sets BANKSEL and ISEL. For the register allocator,
the majority of all solutions is suboptimal and requires problem specific heuristics [HS06].

To show that the heuristic algorithm scales nicely, we generate a set of random PBQP
instances with varying number of nodes. Among any pair of nodes, we create an edge
with probability p which varies from 10% to 60%. In each setting, we generate 100
randomly generated problems. Note, that the number of edges grows quadratically in



2.4. Experimental Evaluation 39

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100  200  300  400  500  600  700

ru
nt

im
e 

[m
se

c]

#nodes

p=60%
p=50%
p=40%
p=30%
p=20%
p=10%

Figure 2.3: Average runtime for the heuristic algorithm on a large set of randomly gen-
erated PBQP problems for various densities.

p=10% p=20% p=30% p=40% p=50% p=60%
100 44.52 63.55 73.24 79.16 83.21 86.24
200 125.57 155.13 168.38 175.85 181.05 184.76
300 214.52 250.79 265.90 274.40 279.79 283.90
400 307.62 347.74 364.44 373.32 379.12 383.42
500 402.30 445.94 463.18 472.66 478.73 483.00
600 498.26 544.24 562.06 572.23 578.44 582.69
700 595.14 643.03 661.59 671.45 678.03 682.48

Table 2.2: Average number of necessary RN reductions for the randomly generated
PBQP graphs.



2.4. Experimental Evaluation 40

the number of nodes, e.g., graphs with 700 nodes and density p = 70% contain on
average 147.000 non-zero cost matrices. Figure 2.3 shows the runtime of the heuristic
algorithm for these graphs with various edge probabilities. Note that the runtime is not
strictly linear in the number in the nodes. The reason is that we select the RN node to
be reduced heuristically. The strategy selects nodes with maximum degree and minimal
local minimum. Using this strategy, the algorithm becomes quadratic in the number of
nodes for bounded domains in the worst-case.

All the graphs in the random data set contain a relatively large number of edges
compared to the sparse graphs obtained from real-world data sets. There are no reducible
graphs. Thus, the computed solutions are not optimal in general. The average number
of necessary RN reductions for the various settings is shown in Table 2.2. The table
clearly shows that most nodes require RN reductions (87% over the whole benchmark
set). This is very different from our real-world data-sets. For the benchmark set ISEL,
the maximum percentage of RN reductions is 23%, with only 0.1% on average. Instances
from data-set BANKSEL show similar characteristics (0.8% max, 0.2% on average). The
instances obtained from the register allocation problem are significantly harder with a
maximum of 70% and an average of 13.6% of RN reductions.

Solving PBQP problems with a large number of irreducible nodes to optimality with
the B&B solver is hopeless. While the algorithm performs very well for sparse real-world
data-sets, almost none of the problems from the randomly generated instances can be
solved within a time limit of 300 CPU seconds. This is consistent with closely related
problems [CEL98] for which experimental results suggest that optimal techniques are
feasible up to about 30 nodes.

To show to which extend the B&B based algorithm is applicable, we consider a set of
random sparse graphs that resembles the instances derived from practical applications
more closely. Instead of varying edge probabilities, we select p such that the number
of edges is proportional to the number of nodes by a factor ρ ≈ |E|

|V | . Again, we con-
sider graphs with varying number of nodes, generating 100 random samples for each
configuration.

The experimental results for both the heuristic algorithm and the B&B algorithm are
given in Table 2.3. The top left element of each cell shows the number of graphs out of
100 samples for which the heuristic could compute a provably optimal solution, i.e., they
where reducible. The top right element denotes the number of graphs for which the B&B
algorithm could compute an optimal solution within a time limit of 300 CPU seconds.
Note that both the number of reducible graphs and the number of instances solved to
optimality is strictly decreasing with increasing ρ and with an increasing number of
nodes. The bottom left number denotes the number of graphs for which an optimal
solution is known and for which the heuristic produced a suboptimal result. Note that
in the vast majority of cases, the heuristic produced actually an optimal solution even
though RN reductions had to be applied. Even if the result is suboptimal, the result is
very close to the optimal solution. The bottom right number shows the average ratio in
percent of the heuristically computed objective value compared to the optimum solution
from the B&B algorithm. We only consider problems that are known to be suboptimal.
Even in these cases, the average ratio never falls below 99%, i.e., the produced solutions



2.4. Experimental Evaluation 41

ρ=0.7 ρ=0.8 ρ=0.9 ρ=1.0 ρ=1.1 ρ=1.2

100
93 100 65 100 34 100 13 100 1 100 0 93
3 99.55 10 99.45 20 99.52 29 99.47 50 99.42 60 99.23

200
89 100 48 100 21 100 2 90 0 55 0 17
1 99.72 10 99.65 24 99.68 47 99.57 43 99.61 13 99.45

300
86 100 37 99 7 89 0 59 0 9 0 0
2 99.82 17 99.83 36 99.77 41 99.66 6 99.77 - -

400
86 100 37 99 3 78 0 23 0 0 0 0
0 - 14 99.87 29 99.84 13 99.84 - - - -

500
83 100 30 100 3 62 0 9 0 0 0 0
2 99.88 19 99.91 34 99.87 7 99.85 - - - -

Table 2.3: Solver statistics for a random set of sparse graphs. Each cell containts the
number of reducible graphs for which the heuristic delivers optimal solutions
(top left), the number of graphs solved to optimality by the B&B solver
within 300 CPU seconds (top right), the number of graphs for which an
optimal solution is known and the heuristic produced an actual suboptimal
result (bottom left), and the average quality among these problems compared
to the optimal solution (bottom right).

are very close to the optimum.
The runtime of the B&B algorithm is largely determined by the number of RN nodes

in practice. Figure 2.4 shows the solver time for the B&B algorithm on the sparse graphs
used before compared to the number of RN nodes. Note that the y-axis is drawn with
logarithmic scale. The algorithm is clearly exponential in the number of RN nodes for
the considered instances.

Short Summary Quadratic assignment problems are among the hardest optimizations
problems considered in literature. PBQP is a generalized variant that has proven to
be useful for various subtasks of embedded code generators. For most applications in
practice, the arising problems are relatively sparse and can be solved to optimality even
for large problems. Our results show that a previously proposed heuristic performs well
in these cases and produces provably optimal solutions or solutions that are very close
to the optimum. We compare this technique with a new B&B based algorithm that
is exponential in general. In practice, its runtime depends largely on the number of
irreducible nodes. For our real-wrold instances, most problems could be solved within a
time limit of 300 CPU seconds.



2.4. Experimental Evaluation 42

 10

 100

 1000

 10000

 100000

 0  1  2  3  4  5  6  7  8  9

av
er

ag
e 

ru
nt

im
e 

[m
se

c]

#RN nodes

Figure 2.4: Average runtime for the B&B algorithm compared to the number of irre-
ducible nodes. Note the logarithmic scale on the y-axis.



3 Code Generation for SSA Graphs

3.1 Introduction

Instruction selection is a transformation step in a compiler which translates the inter-
mediate code representation into a low-level intermediate representation or to machine
code; c.f. Figure 3.1. Usually, a machine description is used to adapt a generic algo-
rithm for a particular instruction set. The various techniques found in literature differ
in when this specialization happens, i.e., during compile time or even before during com-
piler compile time by generating a specialized version of the algorithm for each target
machine.

Most Standard techniques confine their scope to statements or basic blocks achieving
only locally optimal code. In this chapter, we describe and evaluate a new technique that
extends previous work by Eckstein et al. [EKS03, Jak04] and that is able to perform
instruction selection for whole functions in SSA form.

Our approach uses a discrete optimization problem for selecting instructions. Similar
to classic tree pattern matching [Ert99, FHP92a], this approach maps the instruction
selection problem to a graph grammar parsing problem where production rules have
associated costs. The grammar parser seeks for a cost minimal syntax derivation for a
given input graph. The parsed graph is the SSA graph [GSW95]; c.f. Section 1.4.1.

Previous approaches restrict patterns to trees such that complex patterns with multi-
ple inputs and multiple results cannot be matched. For example, the DIVU instruction in
the Motorola 68K architecture performs the division and the modulo operation for the
same pair of inputs. The approach in [EKS03] cannot take advantage of coalescing both
operations into a single DIVU. Other examples of instructions are the RMW (read-modify-
write) instructions on the IA32/AMD64 architecture, autoincrement- and decrement
addressing modes of several embedded systems architectures, the IRC instruction of the
HPPA architecture, and fsincos instructions of various math libraries. These complex
patterns are usually handled in tree-based approaches using a local peephole optimizer
in a post-processing step for code strengthening or are exposed to the programmer in the
form of compiler known functions (intrinsics) requiring significant efforts. To overcome
these deficiencies, we introduce in this chapter an algorithm that is able to handle gen-
eral graph patterns with arbitrary cost functions while accounting for potential memory
dependencies [EBS+08].

This chapter is organized as follows: In Section 3.2, we give an introduction to in-
struction selection and survey related work. Our generalized approach is motivated in
Section 3.3, and in Section 3.4 we outline the algorithm for instruction selection. Im-
plementation details are given in Section 3.5 and in Section 3.6 we discuss experimental

43



3.2. Related Work 44

Lowering
(optional)

Instruction
Selection

Machine
Description

Machine-Dependent
Backend

Code Generator

IR
Target

Program

Figure 3.1: An instruction selector translates a compiler’s IR to a low-level machine-
dependent representation.

results.

3.2 Related Work

Due to its significant contribution to the overall code quality of a compiler, instruction
selection received a lot of attention in the recent past [ECG06, GLM+06, DR06, EKS03,
LB00, Ert99, NK97]. In this section, we give a brief overview of the most important
techniques found in literature ordered by increasing scope. This includes efficient local
techniques such as RTL-based instruction selection, (tree) pattern matching, and whole-
function instruction selection based on PBQP. The latter is the basis for the generalized
pattern matching algorithm proposed in this chapter and is thus described in more detail.

With few exceptions, most of these approaches are limited to tree-shaped patterns. A
notable exception are some integrated techniques that combine instruction selection with
additional subproblems such as register allocation and scheduling. Keßler and Bednarski
propose an enumeration scheme for such an integrated approach [BK04, KB06] based
on branch & bound techniques. The authors do not implement pattern matching as
discussed in Section 3.2.2. However, instructions in their machine description are allowed
to be composed of several tree-shaped subgraphs (forest patterns) or general DAGs. An
enumeration algorithm inductively searches the solution space, which is organized in
so-called enumeration trees. As their algorithm solves an integrated code generation
problem, it is only suitable for relatively small regions known to be important for overall
performance. The authors report that problems up to 20 to 40 nodes can be solved to
optimality in practice.

Another approach that is able to deal with a special class of DAG patterns, i.e.,
SIMD (single instruction multiple data) instructions, has been presented by Leupers
and Bashford [LB00]. The authors propose to decompose data flow graphs into simple
trees that can be processed using standard tree pattern matching techniques. Instead of



3.2. Related Work 45

computing only the cheapest tree cover, all possible alternatives are stored during the
labeling phase. Later, an integer linear programming based algorithm is applied that
selects SIMD instructions by selecting among the possible alternatives. Constraints in
this model ensure consistency and a valid packing of individual nodes to SIMD instruc-
tions. The objective function is to maximize the use of SIMD instructions across the
data flow graph.

A similar heuristic technique with support for so-called multi-output instruction has
recently been proposed by Scharwächter et al. [SYL+07]. The authors consider in-
struction set extensions that execute frequently used tuples of instructions concurrently.
These patterns are also a special case of generalized DAG patterns considered in this
work. Again, so-called candidate sets are precomputed that denote the set of applicable
tree rules. In general, a node can be a candidate for several multi-output instructions.
The problem of finding a covering for these shared nodes is a maximum weighted inde-
pendent set problem that is solved heuristically.

3.2.1 RTL-Based Instruction Selection

Register Transfer Lists (RTL) are a popular machine-independent intermediate repre-
sentation used in several compiler infrastructure such as Zehpyr/VPO [RD98] or GCC
[GCC]. A RTL is a simultaneous composition of list of effects. An effect computes the
value of an expression and stores it in a location, which is either a single mutable storage
cell or an aggregate of mutable cells. The value of an expression can either be constant,
fetched from a storage location, or the result of the application of an operator to a list
of argument expressions. Even though an RTL is machine-independent, its semantics
do depend on the particular target architecture.

Algorithm 3 RTL-based code generation scheme.

1: Forward substitution
2: Combination of independent effects
3: Removal of useless effects
4: Validation based on a machine-description

Code generators in RTL-based compilers are based on the four-step scheme depicted
in Algorithm 3. Forward substitution forms more complex expressions by substituting
sub-expressions with their defining RTL. Likewise, step (2) combines individual RTLs
to a single expression. After application of these rules, the results are verified against
the machine descriptions. Step (3) simplifies redundant effects that might result from
the application of the previous steps. RTL expressions that do not represent a native
instruction are discarded in step (4).

The scope of this approach is limited to simple patterns and constitutes a form of
“poor-man’s instruction selection” achieving only locally optimal code. Thus, the code
quality of RTL-based compilers such as GCC strongly depends on post-pass RTL-based
optimizations such as common subexpression elimination (CSE) that make up for missed
opportunities.



3.2. Related Work 46

imm <- IMM : 0

reg <- REG : 0

reg <- imm : 1

reg <- SHL(reg, reg) : 1

reg <- SHL(reg, imm) : 1

reg <- ADD(reg, reg) : 1

reg <- LDW(reg) : 1

reg <- LDW(ADD(reg, reg)) : 1

reg <- LDW(ADD(reg, SHL(reg, imm))) : 1

REG:a REG:i CST:2

SHL

ADD

LDW

Figure 3.2: Example of a data flow tree and a rule fragment with associated costs.

3.2.2 Tree Pattern Matching

Tree pattern matching is a well known and widely used technique for instruction selection
introduced by Aho and Johnson [AJ76]. The unit of translation is a single statement
represented in the form of a data flow tree(DFT). The basic idea is to describe the
target instruction set using an ambiguous cost-annotated graph grammar. The instruc-
tion selector seeks for a cost-minimal cover of the DFT. Each of the selected rules has
an associated semantic action that is used to emit the corresponding machine instruc-
tion, either by constructing a new intermediate representation or by rewriting the DFT
bottom-up.

An example DFT along with a set of rules representing valid ARM instructions is
shown in Figure 3.2. Each rule consists of terminal symbols (denoted in upper-case)
and nonterminals (lower-case). Terminal symbols match the corresponding labels of the
dataflow trees. Nonterminals are used to chain individual rules together. Rules that
translate from one nonterminal to another are called chain rules. Note that there are
multiple possibilities to obtain a cover of the data-flow tree using the rule fragment to
the left. Each rule has associated costs. The cost of a tree cover is the sum of the costs
of the selected rules.

Aho and Johnson [AJ76] were the first to propose a dynamic programming algorithm
in order to obtain cost-minimal covers. Balachandra et al. [BDB90] present an important
extension that reduces the algorithm to linear time by precomputing itemsets, i.e., static
lookup tables, at compiler compile time. Their approach is based on the following two-
pass scheme:

(1) labeling: use dynamic programming in order to determine a minimum-cost cover
of the given DFT bottom-up.



3.2. Related Work 47

(2) reduce: traverse the DFT in postfix order and execute the semantic actions asso-
ciated with the chosen rules to obtain a semantically equivalent target program.

The same technique was applied by Fraser et al. [FHP92a] in order to develop burg —
a tool that converts a specification in the form of a tree grammar into an optimized tree
pattern matcher written in C. While burg computes costs at generator generation time
and thus requires constant costs, iburg [FHP92b] can handle dynamic costs by shifting
the dynamic programming algorithm to instruction selection time. This allows the use
of dynamic properties for cost computations, e.g., concrete values of immediates. The
additional flexibility is traded for a small penalty in execution time. Ertl et al. [ECG06]
save the computed states for tree nodes in a lookup table. This approach retains the
flexibility of dynamic cost computations at nearly the speed of precomputed tree parsing
automata.

In general, these approaches are limited in scope to simple statements. DAG matching
techniques are an approach to overcome these limitations. However, DAG matching is
an NP-complete problem [Pro98].

Ertl [Ert99] presents a generalization of tree pattern matching for DAGs. The al-
gorithm makes its choice of rules as if it was parsing a tree, irrespective of sharing of
subgraphs. This approach does not lead to optimal solutions in general. However, the
author shows that it does for a certain class of grammars. A checker (DBurg) can deter-
mine if a given grammar is within this class or not. The author also shows that several
grammars derived from practice indeed are DAG optimal or have only few rules that
may produce suboptimal results.

Liao et al. [LDKT95]present a DAG matcher based on a mapping to the binate cov-
ering problem, which is known to be NP-complete. The authors consider accumulator-
based architectures that require implicit partial scheduling of the nodes in the DAG.
Both branch & bound and heuristic algorithms are used to solve these problems. The
authors do consider data transfer costs and memory spill costs but do not use general
tree or graph grammars as discussed before. Experimental results show that optimal
solutions can only be found for small to moderate sized basic blocks. In many cases,
these optimal solutions are better than heuristically produced results. Large basic blocks
can either be broken into simpler basic blocks, which can be covered using their exact
algorithm, or heuristics can be used that restrict the number of matches.

3.2.3 PBQP-Based Instruction Selection

PBQP-based instruction selection extends the scope of traditional DAG-based approaches
to the computational flow of a whole function, which leads to cyclic data flow trees in
general. Clearly, the NP-completeness of DAG matching extends to SSA graphs as well.
As shown by Eckstein et al. [EKS03] the instruction selection problem is modeled as
PBQP in a straightforward fashion. A solution for the PBQP instance induces a com-
plete cost minimal cover of the SSA graph. The PBQP formulation overcomes many
of the deficiencies of traditional techniques [FHP92a, FHP92b, AJ76], which often fail
to fully exploit irregular instruction sets of modern architectures and need to employ



3.2. Related Work 48

ad-hoc techniques for irregular features (e.g., peep-hole optimizations, etc.). Instead of
acyclic data flow trees, the authors propose so-called SSA-graphs; c.f. Section 1.4.1.

In the PBQP based approach [EKS03] an ambiguous graph grammar consisting of
tree patterns with associated costs and semantic actions is used to find a cost-minimal
cover of the SSA-graph. The input grammar is normalized, i.e., each rule is either a base
rule or a chain rule. A base rule is a production p of the form nt0 ← op(nt1, . . . , ntkp)
where nti (for all i, 0 ≤ i ≤ kp) are non-terminals and op is a terminal symbol (i.e. an
operation that is represented as a node in the SSA graph). A chain-rule is a production
of the form nt0 ← nt1, where nt0 and nt1 are non-terminals. A production rule nt ←
op1(α, op2(β), γ)) can be normalized by rewriting the rule into two production rules
nt← op1(α, nt′, γ) and nt′ ← op2(β) where nt′ is a new non-terminal symbol and α, β
and γ denote sequences of operands of arbitrary length. This transformation can be
iteratively applied until all production rules are either chain rules or base rules.

The instruction selection problem for SSA graphs is modeled in PBQP as follows. For
each node u in the SSA graph, a PBQP variable xu is introduced. The domain of the
variable xu is the subset of base rules Ru = {r1, . . . , rku} whose operations op match
the operation of the SSA node u. The cost vector −→c u = wu · 〈cost(r1), . . . , cost(rku)〉
of variable xu encodes the costs of selecting a base rule ri where cost(ri) denotes the
associated cost of base rule ri. Weight wu is used as a parameter to optimize for various
objectives including speed (e.g. wu is the expected execution frequency of the operation
in node u) and space (e.g. the wu is set to one).

An edge in the SSA graph represents data transfer between the result of an operation
u, which is the source of the edge, and the operand v which is the tail of the edge.
To ensure consistency among base rules and to account for the costs of chain rules, we
impose costs dependent on the selection of variable xu and variable xv in the form of
a cost matrix Cuv. An element in the matrix corresponds to the costs of selecting a
specific base rule ru ∈ Ru of the result and a specific base rule rv ∈ Rv of the operand
node. Assume that ru is nt ← op(. . . ) and rv is · · · ← op(α, nt′, β) where nt’ is the
non-terminal of operand v whose value is obtained from the result of node u. There are
three possible cases:

1. If the nonterminal nt and nt’ are identical, the corresponding element in matrix
Cuv is zero, since the result of u is compatible with the operand of node v.

2. If the nonterminals nt and nt′ differ and there exists a rule r : nt′ ← nt in the
transitive closure of all chain-rules, the corresponding element in Cuv has the costs
of the chain rule, i.e. wv · cost(r).

3. Otherwise, the corresponding element in Cuv has infinite costs prohibiting the se-
lection of incompatible base rules for the result u and operand v.

To illustrate this transformation, consider the example shown in Figure 3.3. The figure
shows the cost vectors and matrices for the original example introduced in Figure 3.2.
The grammar has been normalized as described above by introducing artificial nonter-
minals t1, t2, and t3. The domain for each node is the set of applicable base rules, e.g.,



3.2. Related Work 49

R1 imm <- IMM
R2 reg <- REG
R3 reg <- imm
R4 reg <- SHL(reg, reg)
R5 reg <- SHL(reg, imm)
R6 t1 <- SHL(reg, imm)
R7 reg <- ADD(reg, reg)
R8 t2 <- ADD(reg, t1)
R9 t3 <- ADD(reg, reg)
R10 reg <- LDW(reg)
R11 reg <- LDW(t2)
R12 reg <- LDW(t3)

REG:a
R2

( 0 ) REG:i
R2

( 0 ) CST:2
R1

( 0 )

SHL
R4 R5 R6

( 1 1 0 )

ADD
R7 R8 R9

( 1 0 0 )

LDW
R10 R11 R12

( 1 1 1 )

reg reg reg
reg 0 0 0

reg imm imm
imm 1 0 0

reg t1 reg
reg 0 ∞ 0
reg 0 ∞ 0
t1 ∞ 0 ∞

reg reg reg
reg 0 0 0

reg t2 t3
reg 0 ∞ ∞
t2 ∞ 0 ∞
t3 ∞ ∞ 0

Figure 3.3: PBQP-instance derived from the example shown in Figure 3.2. The grammar
has been normalized by introducing additional nonterminals.



3.3. Motivation 50

void convert (char ∗ txt , char ∗ds , int b , int x )
{

int d ;
char ∗p=txt ;
do {

d = x % b ;
x = x / b ;
∗p++ = ds [ d ] ;

} while ( x > 0 ) ;
∗p=0;
r e v e r s e ( txt ) ; // re ve r s e s t r i n g

}

char buf [N] , d i g i t s [ ]= ” 0123456789ABCDEF” ;
convert ( buf , d i g i t s , 1 0 , 4 7 1 1 ) ;

Figure 3.4: Motivating example showing a number conversion route.

the SHL has alternatives R4, R5, and R6 while the last rule is a result of normalizing the
grammar. The highlighted elements depict a cost-minimal solution of the PBQP with
costs one. A solution of PBQP determines which base rules and chain rules are to be
selected. A traversal over the basic blocks using the SSA graph is sufficient to execute
the associated semantic rules in order to emit the code.

Chain Rule Placement Chain rules can either be emitted at the basic block corre-
sponding to the source node or right before each use, i.e., at the destination node.
In [SS07], a more sophisticated technique is introduced that allows a more efficient
placement of chain rules across basic block boundaries. This technique is orthogonal to
the generalization to complex patterns presented in this chapter. An optimal placement
is computed by the construction of a min-cut problem for the given control flow graph.
A solution for this problem can be found in polynomial time. There is a trade-off among
performance and code size that is captured accurately in the proposed network flow
model.

3.3 Motivation

Even though PBQP-based instruction selection is a suitable technique for whole-function
instruction selection, the technique as proposed in [EKS03] is limited to tree patterns
that restrict the modeling of advanced features found in common embedded architec-
tures. In particular, there is not support for machine instructions with multiple results.

To motivate our generalization, consider the C fragment given in Figure 3.4 that
shows a number conversion routine. On an architecture, which supports a divmod in-



3.3. Motivation 51

st

0

inc st

φ

txt

reverse()

div mod

ld[]

ds

>

0

φ b

x

Figure 3.5: SSA-graph of the motivating example introduced in in Figure 3.4.



3.3. Motivation 52

P1) 〈lo← div(x : reg1, y : reg2), hi← mod(x, y)〉
[2] {emit divmod r(reg1),r(reg2)}

P2) 〈← st*(x : reg1, reg2), reg← inc(x)〉
[3] {emit addi tmpreg,r(reg1),0;

movsw r(reg2),(tmpreg)++)}
P3) ← st*(reg1, reg2)

[2] {emit sw r(reg2),(r(reg1))}
P4) reg← inc(reg)

[2] {emit addi r(tmpreg),r(reg),4}
C1) reg← lo

[2] {emit mflo r(reg)}
C2) reg← hi

[2] {emit mfhi r(reg)}

Figure 3.6: Fragment of rules with complex patterns for div-mod and postincrement
store instructions.

struction and post-increment addressing modes, the instruction selector could exploit
these features for reducing code size and improving the execution speed of the program.
However, neither the pattern for divmod nor the pattern for the post-increment store
can be expressed in terms of tree shaped productions as depicted in the SSA graph
in Figure 3.5. Both patterns have multiple in-coming and out-going edges and cover
multiple non-adjacent nodes in the SSA graph at the same time.

In this work we introduce a new approach that is able to cope with complex patterns
as shown in our motivating example [EBS+08]. An excerpt of a cost augmented graph
grammar describing the divmod instruction and the post-increment addressing mode
is listed in Figure 3.6. In the graph grammar, each pattern is a tuple of productions
constituting a DAG shaped pattern, costs, and the semantic actions. For example the
divmod pattern P1 shown in Figure 3.6 can only be applied if the arguments for the
div and the mod node are identical. This is expressed by naming the arguments of the
div node with x and y. These labels are re-used in the rule for mod expressing that
the same arguments have to match. The associated cost function for a pattern is shown
in brackets. The underlying architecture of the example assumes a MIPS R2000 like
division instruction, i.e., both the quotient and the remainder are stored in dedicated
registers. The rules C1 and C2 emit the move instructions (mflo and mfhi respectively)
to retrieve the values of the divmod instruction.

Tree patterns do not destroy the topological order for emitting the code, however,
complex patterns can: a cyclic data dependency occurs if a set of operations in the SSA
graph is matched by a pattern for which there exists a path in the SSA graph that exits
and re-enters the complex pattern within the basic block. This cycle would imply that
operations are executed on the target hardware before the values of the operands are
available. Hence, the matcher must prohibit those cycles in the minimum cost cover by
finding a topological order among the patterns. The example in Figure 3.7 illustrates the



3.3. Motivation 53

*p:=r+4;

*q:=p+4;

*r:=q+4;

inc st*

p

inc

st*

q

st*

inc

r

(a) Input Block (b) SSA Graph

Figure 3.7: Example: topology constraints.

problem of finding a cover that does not cause any cyclic data dependencies. The code
fragment contains three feasible instances of a post-increment store pattern (cf. P2, P3,
P4 in Figure 3.6). Assuming that we know that p, q, and r point to mutually distinct
memory locations, there are no further dependencies apart from the edges shown in the
SSA graph. The example obviously gives rise to a topological order of the semantic
rules as long as we do not select all three instances of the post-increment store pattern
concurrently.

Modeling memory accesses in the instruction selection of a compiler is a challenging
problem. SSA graphs do not reflect memory dependencies. However, they do have
memory operations that impose data dependencies among memory operations includ-
ing loads and stores. For example consider the example shown in Figure 3.8 that de-
picts a typical read-modify-write (RMW ) pattern such as “add r/m32, imm32” in the
IA32/AMD64 architecture. A corresponding production rule might be formulated as
stmt ← st*(x : reg1,+(ld(x), imm)). If we have to assume that p and q might ad-
dress the same memory location, we have to account for the antidependency among
statements (1) and (2) and the output dependency among statements (2) and (4);
depicted in Figure 3.8(b) with dotted lines. There is obviously no topological order
among the highlighted part forming the RMW pattern and the store corresponding to
instruction (2), i.e., we cannot apply the pattern even if it is the cheapest graph cover.
To ensure the existence of a topological order among the chosen productions, the SSA
graph is augmented with additional edges representing potential data dependencies.



3.4. Instruction Selection using Complex Patterns 54

(1) x1:=*p;

(2) *q:=1;

(3) x2:=x1+2;

(4) *p:=x2;

st *

+

2

p

ld

RMS Pattern

st *

q 1

WAR

WAW

(a) Input Block (b) SSA Graph

Figure 3.8: Example: memory dependencies.

3.4 Instruction Selection using Complex Patterns

The extension of the instruction selector [EKS03] is mainly concerned about prohibiting
cycles in the selection of patterns and considering memory dependencies for the instruc-
tion selection. We can restrict the algorithm to normalized grammars that consist of the
following types of productions: (1) chain rules of the form nt0 ← nt1, and (2) tuples of
base rules of the form nt0 ← op(nt1, . . . , ntkp)

Algorithm 4 Generalized PBQP instruction selection

1: identify instances of complex patterns within basic blocks
2: transform the problem to an instance of PBQP
3: obtain a solution for the PBQP instance using a generic solver
4: for all basic blocks b do
5: compute a topological order for the subgraph Sb ⊆ B that is induced by basic

block b
6: apply the semantic rules associated with the chosen productions in the order

computed in step (5).

The main scheme of our algorithm for matching complex DAG patterns is shown in
Algorithm 4. Steps (1), (2), and (5) differ from the approach described in [EKS03].
First, we identify concrete tuples of nodes in the SSA graph that can be used to form
patterns specified in the input grammar. Next, we transform the problem to an instance
of PBQP that is processed using a generic solver library.

The problem formulation ensures the existence of a topological order among the chosen
productions and allows for a straight-forward back-transformation that maps a solution
vector of PBQP to a complete graph cover. The partial order among the particular



3.4. Instruction Selection using Complex Patterns 55

nodes is defined by the edges in the SSA graph and additional data dependencies among
load and store instructions. We can thus use a reversed post-order traversal to apply
the semantic actions associated with the chosen productions in a proper order on the
subgraphs induced by individual basic blocks. This process rewrites those subgraphs in
a bottom-up fashion into target specific DAGs that are directly passed to a prepass list
scheduler.

3.4.1 Identifying Patterns in SSA Graphs

As described in Section 3.3, generalized productions cover a tuple instead of individual
nodes in the SSA graph. The matcher has to choose among them based on associated
cost functions. Therefore, we enumerate instances of complex patterns in step (1) of
Algorithm 4, i.e., concrete tuples of nodes that match the terminal symbols specified
in a particular production. More formally, an instance of a complex production p is a
|p|-tuple

(v1, . . . , v|p|) ∈ V |p| vi 6= vj ∀ 1 ≤ i < j ≤ |p|
of nodes in the SSA graph such that oi = op(vi) ∀ 1 ≤ i ≤ |p|, i.e., each node matches
the terminal symbol of the corresponding base rule. An instance l is called viable if
costsp(l) < ∞. The set of all viable instances for a production p and an SSA graph G
is denoted by Ip(G).

A dependency between two instances of complex patterns p and q within a basic block
b is denoted by p ≺b q. Note that this relation might have cycles as shown in examples
in Section 3.3. The relation defines the partial order in which the semantic actions have
to be applied and can be naturally derived from the edges in the SSA graph augmented
with potential memory dependencies.

3.4.2 Problem Transformation

This section describes the transformation of the generalized instruction selection problem
to an instance of PBQP. We define the set of decision variables X = {x1, . . . , xn} along
with their finite domains {D1, . . . ,Dn}. A local cost vector ci = (c1, . . . , c|Di|) specifies
the costs of assigning variable xi to a particular element in its domain. For related
variables xi and xj, we establish matrix costs Cij that valuate a particular assignment
of xi and xj.

Decision Variables Decision variables are created both for nodes in the SSA graph and
for each of the enumerated instances of complex patterns. The whole set of variables
X = X1 ·∪ X2 is defined as follows.

For each SSA node u ∈ V , we introduce a variable xu ∈ X1. The domain of xu is
defined by the set of applicable base rules arising from two different sources:

1. Simple productions consisting of a single base rule; these are handled just like in
previous approaches



3.4. Instruction Selection using Complex Patterns 56

2. Base rules arising from complex productions. These rules are treated as a set of
simple base rules, e.g., the production

〈stmt← st*(x : reg1, reg2), reg← inc(x)〉

is decomposed into stmt〈← st*(x : reg1, reg2)〉 and 〈reg← inc(x)〉. All base rules
with the same signature obtained from the decomposition of complex productions
contribute only to a single element to the domain for xu. Base rules derived from
productions p for which u does not appear in any of the instances in Ip(G) can be
safely omitted.

While the former group represents the set of patterns that can be used to obtain a cover
for node u, the second class of base rules can be seen as a proxy for the whole set of
instances of (possibly different) complex productions in which u arises. The costs for
elements in xu are 0 for the proxy states corresponding to the selection of a complex
instance, otherwise they reflect the real costs of the corresponding simple rule.

For each instance l ∈ Ip(G) of a complex production p, we create a distinct decision
variable xl ∈ X2 that encodes whether the particular instance is chosen or not, i.e., the
domain consists of the elements on and off. As we will describe later, it is sometimes
necessary to further refine the state on in order to guarantee the existence of a topological
order among the chosen nodes. The local costs for xl are set to be 0 if xl is off and
costsp(l) otherwise.

Constraints Constraints can be formulated in PBQP in terms of quadratic cost func-
tions represented by cost matrices that “glue” the particular variables together. Among
the two sets of variables X1 and X2 we create three different types of related costs, i.e.,
X1 → X1, X1 → X2, and X2 → X2.

The first type of cost matrices is established among adjacent variables u, v ∈ X1.
Therefore, we add matrix costs Cuv as outlined in Section 3.3 that enforce compatibility
between two rules and account for the cost of chain rules. If no derivation exists, the
costs are set to∞ with the effect that the transition is prohibited. Among identical non-
terminals, costs are 0. More formally, let e = (u, v) be an edge in the SSA graph and let
ntu0 ← ou(nt

u
1 , . . . , nt

u
n) and ntv0 ← ov(nt

v
1, . . . , nt

v
m) denote the base rules corresponding

to variables u and v. We define

CX1→X1
uv = we mincosts(ntu0 , nt

v
opnum(e))

while mincosts(nti, ntj) denotes the minimal costs for all chain rule derivations from nti
to ntj. The function mincosts can be easily derived by computing the transitive closure
for all chain rules in the grammar, e.g., using the Floyd-Warshall algorithm [Flo62].



3.4. Instruction Selection using Complex Patterns 57

For each variable xl ∈ X2 corresponding to an instance l, we need to create constraints
ensuring that the corresponding proxy state is selected on all variables xu ∈ X1 that
represent the SSA nodes u forming l. Therefore, we create matrix costs CX1→X2

ul such
that the costs are zero if xl is set to off or xu is set to a base rule that is not associated to
the instance l. Otherwise, costs are set to∞. Thus, when one of the instances correlated
to a particular node u in the SSA graph is selected, the only remaining element in the
domain of u with costs less than ∞ is the associated proxy state corresponding to the
particular base rule fragment.

So far, the formulation allows the trivial solution where all of the related variables
encoding the selection of a complex pattern are set to off (accounting for 0 costs) even
though the artificial proxy state for xu has been selected. We overcome this problem by
adding a large integer value M to the costs for all proxy states. In exchange, the costs
c(v) for variables xv ∈ X2 are set to (c(v)− |l|M) while |l| denotes the number of nodes
for instance l. Thus, the penalties for the proxy states are effectively eliminated unless
an invalid solution is selected.

The last type of matrix costs is established among variables xu ∈ X2 and xv ∈ X2

where xu 6= xv. These matrices ensure that

• two instances lu and lv covering the same nodes in the SSA graph cannot be selected
at the same time, i.e. assigned to the state on

• the set of selected instances does not induce cyclic data dependencies

The basic idea is to reduce the problem to the task of finding an induced acyclic sub-
graph within the dependence graph Db(G) that can be defined as follows.

• there is a node w ∈ Db(G) for every instance lw ∈ Ip(G) consisting of SSA nodes
in block b

• there is a directed arc (w1, w2) ∈ Db(G) iff lw1 ≺b lw2

Any subset of instances that is selected at the same time induces a subgraph G′ ⊆
Db(G) that has to be acyclic to allow for a valid emit order. We exploit the property
that every acyclic directed subgraph of Db(G) gives rise to a not necessarily unique topo-
logical order. Note that it is sufficient to reduce the problem to the strongly connected
components of Db(G). We can integrate this idea into the problem formulation obtained
so far as follows:

1. for every strongly connected component Si of Db(G), we compute an upper bound
max(Si) on the number of instances represented by nodes in Si that can possibly
be selected at the same time without multi-coverage of SSA nodes. In general, this
subtask can be reduced to the maximum independent set problem which is known
to be NP complete. However, it is sufficient to solve the problem heuristically
since the bounds are only used to decrease the problem size of the PBQP instance.



3.4. Instruction Selection using Complex Patterns 58

2. for all decision variables representing complex instances within a non-trivial strongly
connected component Si, i.e., its cardinality is greater than one, we replace the
state on in their domain with the elements 1, . . . , |max(Si)| representing their in-
dex in a topological order. The costs of those elements corresponds to the costs of
the former on state.

3. we establish matrix costs Cuv among variables xu, xv ∈ X2 for instances u and v
respectively as follows

CX2→X2
uv =


∞, if xu 6= off ∧ xv 6= off ∧

(xu = xv ∨ u ∩ v 6= ∅ ∨
((u, v) ∈ Si ⊆ Db ∧ xu > xv)),

0, otherwise.

If one or both instances are set to off, the element of CX2→X2
uv is zero. Otherwise,

if both u and v are within the same strongly connected component in Db(G) and
u ≺b v, we want to make sure that the index assigned to u is less than the index
assigned to v. Similarly, costs are set to∞ if xu = xv or u∩v 6= ∅ in order to ensure
that no two instances can be assigned to the same index and instances covering a
common node cannot be selected at the same time. These cost matrices constrain
the solution space such that no cyclic data dependencies can be constructed in any
valid solution.

The decision variables and matrices described above constitute a complete PBQP for-
mulation for t‘he generalized instruction selection problem.

Example One way to think of an instance of PBQP is as a directed labeled graph.
Nodes represent decision variables that are annotated with the local cost vectors and
edges among nodes represent non-zero cost matrices. For each node, the solver selects a
unique element from its domain such that the corresponding overall costs are minimized.

Using this notation, we illustrate the PBQP formulation presented above in Figure 3.9
using the example SSA graph shown in Figure 3.7 and the rule fragments given in
Figure 3.6. Base rules and cost matrices for the address variables p, q, and r are omitted
for simplicity. Decision variables X1 for SSA nodes are denoted in circles while those for
complex instances are represented by rounded squares. We use k as a placeholder for
the term 3 − 2M1 representing the costs for production P3 minus the penalty that has
been added on adjacent variables in X1. The example shows all three types of matrix
costs that can arise in the problem transformation. Note, that the corresponding nodes
for all three instances (2, 1), (3, 5), and (6, 4) of production P3 are within one and the
same strongly connected component in the dependence graph Db(G).

1M denotes a sufficiently large integer constant.



3.4. Instruction Selection using Complex Patterns 59

p

q r

(3, 5)

off 1 2 3
(0 k k k)

(6, 4)

off 1 2 3
(0 k k k)

(2, 1)

off 1 2 3
(0 k k k)

5 : inc

P4 P2

(2 M)

4 : inc

P4 P2

(2 M)

1 : inc

P4 P2

(2 M)

3 : st*

P3 P2

(2 M)

2 : st*

P3 P2

(2 M)

6 : st*

P3 P2

(2 M)

(

0
∞

∞

∞

0
0

0
0

)

(

0
∞

∞
∞

0
0

0
0

)

( 0
∞

∞

∞

0
0

0
0

)

(

0
∞

∞
∞0

0
0

0

)

(

0
∞

∞
∞

0
0

0
0

)

(

0
∞

∞
∞

0
0

0
0

)

(

0 0

0 0

)(

0 0

0 0

)

(

0 0

0 0

)









0 0 0 0

0 ∞ 0 0

0 ∞ ∞ 0

0 ∞ ∞ ∞

















0 0 0 0

0 ∞ 0 0

0 ∞ ∞ 0

0 ∞ ∞ ∞

















0 0 0 0

0 ∞ 0 0

0 ∞ ∞ 0

0 ∞ ∞ ∞









Figure 3.9: PBQP graph for the example shown in Figure 3.7. We use k as a shorthand
for the term 3− 2M .

Correctness In order to show the correctness of our formulation, we have to show that
(a) the solution of the PBQP corresponds to a complete pattern matching of the SSA
graph and (b) there is a topological order in which the semantic actions associated with
the selected patterns can be executed.

Assuming M is a value larger than the costs of any feasible matching, it is easy to
show that there is an isomorphism among a solution of the PBQP with objective value
less than M and a complete cover of the graphs with rules from the input grammar.
In particular, an optimal solution to the PBQP corresponds to a min-cost matching for
the input graph. The selected rules are determined by the assignments of the decision
vectors in the PBQP and vice versa.

Tree patterns cannot introduce circular dependencies except for indirect memory de-
pendencies among inner nodes such as demonstrated in the example in Figure 3.8.
These cases can be eliminated beforehand and cannot induce cyclic data dependen-
cies among chosen pattern fragments. However, as shown before, DAG shaped patterns
can. The proposed modeling effectively enforces the existence of a concrete topological
order among the selected patterns. No cycles are possible in any valid solution unless at
least one ∞ term is chosen.

For general grammars and applied to irreducible graphs, the heuristic algorithm pro-
posed in Section 2.2.1 cannot be guaranteed to deliver a solution that satisfies all con-
straints modeled in terms of ∞ costs. This would be a NP-complete problem. One way
to work around this limitation is to include a small set of rules that cover each node
individually and that can be used as a fallback rule in situations where no feasible solu-
tion has been obtained. This corresponds to macro substitution techniques and ensures



3.5. Implementation Details 60

LLVM
bitcode

SSA-graph
builder

SSA
graph

PBQP
mapping

PBQP
graph

Grammar
PBQP
solver

Machine
IR

emit in-
structions

PBQP
graph

Figure 3.10: Overview of the PBQP-based instruction selector.

a correct but possibly suboptimal matching. In practice, this is no severe limitation as
grammars are usually written by defining a simple but complete set of rules covering
each node individually and adding more complex rules later on. These limitations do
not apply to exact techniques such as the B&B algorithm introduced in Section 2.2.2.
It is also straight-forward to extend the heuristic algorithm with a backtracking scheme
on RN reductions, which would clearly also be exponential in the worst case.

3.5 Implementation Details

We have implemented the global instruction selector described in Section 3.4 within
LLVM ; c.f. Section 1.3. Benchmarks are converted using the gcc based frontend (llvm-gcc)
into LLVM intermediate code that is further processed using the standard set of machine-
independent optimizations and fed into the code generation backend.

A rough overview of the implementation of the improved instruction selector is given
in Figure 3.10. We create SSA graphs from the LLVM intermediate representation. For
each backend, a rule grammar with normalized rules and precomputed chain closures is
generated at compiler compile time using a dedicated tablegen backend; see Section 1.3.
The SSA graph and the grammar are used to map the problem to a generic PBQP in-
stance as shown in Section 3.4.2. A generic solver library is used to solve these instances.
The selected graph cover determines a unique baserule for each node in the SSA graph
that is used to execute the associated semantic actions. These actions rewrite the inter-
mediate representation bottom-up such that, upon completion, each node corresponds
to a native machine instruction.

Both the existing LLVM instruction selector and our PBQP instruction selector are
implemented as graph transformations that rewrite a selection graph representing LLVM
intermediate code into target dependent machine instructions. Prior to code generation,



3.5. Implementation Details 61

a legalize phase that is common to both instruction selectors lowers certain DAG nodes
to target dependent constructs, e.g., floating point instructions are converted into library
calls and 64bit operations are lowered into 32bit arithmetic.

A subsequent prepass scheduler converts the result graphs into a sequence of machine
instructions while accounting for resource constraints of the target processor. This ap-
proach is superior to the workflow of most existing compilers that usually have to rebuild
a data dependence graph from a fixed topological order during scheduling, since the same
data structure along with precious annotations from alias analysis can be passed from
one phase to another without loss of information.

The existing LLVM instruction selector implements a bottom up pattern matching
approach on the scope of basic blocks. Most architecture dependent parts are generated
from a target description at compiler compile time. While the algorithm efficiently
handles simple patterns, custom C++ code has to be used in order to match instructions
that cannot be expressed using the existing infrastructure. While this approach makes it
difficult to retarget the code generator and to implement application specific instruction
set extensions, it is very efficient in terms of compile time and is applicable in the realm
of just in time compilers.

We consider the existing ARMv5 backend of LLVM 2.1 and implement a correspond-
ing grammar for our new instruction selector. Most of the complex addressing modes
available on ARM cannot be handled by the bottom up approach implemented in LLVM.
Therefore, a preprocessing algorithm tries to identify pre- and post-increment memory
accesses and rewrites them into target dependent DAG nodes. Additionally, the instruc-
tion selector is bypassed for certain nodes such as cmov instructions, multiplies, or the
complex addressing modes available both for arithmetic/logic and memory access in-
structions. Those cases are handled by handwritten, target dependent C++ procedures
aside from the generic algorithm.

In contrast to the existing LLVM instruction selector, our algorithm can be fully
retargeted using a grammar with the extensions presented in Section 3.4 and does not
necessitate the ad-hoc techniques implemented for LLVM. The grammar consists of a
total number of 555 normalized rules; 46 rules are complex rules consisting of multiple
base rules that could not be handled with previous approaches. A base set of 80 rules
has been automatically derived from the existing machine description. About 40 rules
are used for the various ARM addressing modes. Dedicated nonterminals are used to
efficiently describe repeating pattern fragments such as the arithmetic operations with
flexible addressing mode 1 that implicitly shift/rotate one of the source registers by
another register or immediate value.

Composite rules are necessary for the available pre- and post-increment addressing
modes on ARMv5 which cannot be expressed as simple tree patterns (see Table 3.1).
An example of a post-increment store pattern has already been shown in Figure 3.6.
In our prototype implementation, the cost functions account for move instructions that
inevitably have to be inserted by the register allocator if the base register is used (maybe
indirectly) by another SSA node that has to be scheduled after the load/store instruction
that is part of the pattern. In those cases, the old value has to be saved into a temporary
register, which effectively increases the costs of our patterns. We compute those cost



3.6. Experimental Results 62

[<Rn>, #± <imm12>]!
LDR|STR {B} <Rd>, [<Rn>, ± <Rm>]!

pre- [<Rn>, ± <Rm> <shift> #<imm>]!
increment [<Rn>, #± <imm8>]!

LDR|STR {H|SH|SB} <Rd>, [<Rn>, ± <Rm>]!
[<Rn>], #± <imm12>

LDR|STR {B} <Rd>, [<Rn>], ± <Rm>
post- [<Rn>], ± <Rm> <shift> #<imm>
increment [<Rn>], #± <imm8>

LDR|STR {H|SH|SB} <Rd>, [<Rn>], ± <Rm>

Table 3.1: ARMv5 pre-/postincrement addressing modes.

functions efficiently using precomputed successor sets.
Since SSA form is maintained in LLVM until register allocation, machine instructions

cannot both read and define the same operand. Therefore, all instructions with autoin-
crement addressing have an additional (virtual) destination operand <Rt> along with
a constraint for the register allocator of the form <Rt> = <Rn>. While our approach
would be capable to capture some complex ARM instructions such as LDRD|STRD (load/-
store double) and LDM|STM (load/store multiple), those pattern require constraints of the
form <Ri> = <Rj>+1, which currently cannot be handled by the register allocator.
Those modifications are beyond the scope of this work.

In addition to pre- and post-increment loads and stores, we implement complex pat-
terns for swap instructions (swp, swpb), and the signify versions of various instructions
such as adds and movs that implicitly set the Z flag in the processor status register
(CPSR). Those instructions can be effectively used to replace an explicit cmp instruc-
tion in counting loops. However, since the induction variable in most counting loops is
increased, we use a simple prepare-pass that checks for loop carried dependencies and
reverts them, thereby frequently allowing for the application of typical subs patterns.

Even though there is neither a hardware div nor a mod instruction on ARMv5, we can
fold the necessary calls into the runtime library (libgcc) into a combined function that
delivers both the quotient and the remainder at the same time ( aeabi [u]idivmod).

3.6 Experimental Results

We apply our prototype implementation to three different suites of benchmarks, i.e.,
typical DSP kernels mostly taken from the fixed point branch of the DSPstone suite
[uVSM94], medium sized applications from the MiBench suite [lm], and general purpose
programs represented by the SPECINT 2000 benchmark suite [SPC].

All programs have been cross compiled using one core of a Xeon DP 5160 3GHz with
24GB of main memory. The DSP kernels and the MiBench suite are executed with the



3.6. Experimental Results 63

 1

 10

 100

 1000

 10000

 100000

> 120
110-120

100-110

90-100
80-90

70-80
60-70

50-60
40-50

30-40
20-30

10-20
0-10

N
um

be
r 

of
 G

ra
ph

s

Class

Graph Size SPEC INT2000

Figure 3.11: Number of instances per graph size.

free, cycle accurate instruction set simulator included in the gdb2 project. This approach
is not feasible for large benchmarks such as those from the SPEC suite. Therefore, we
execute them on real hardware. The target board running a Linux 2.4.22 kernel is
equipped with an Intel XScale IOP80321 (600MHz) and 512MB of memory. For floating
point operations, we use the IEEE754 implementation that ships with gcc since there is
no hardware floating point unit available on our target. Both the original backend and
our PBQP based implementation have been verified against a gcc 4.0.2 cross compiler
which has also been used to build binutils and glibc. Execution times have been
gathered using the unix time utility considering the best out of 10 runs on the unloaded
machine.

Benchmarks compiled for the instruction set simulator have been linked with newlib –
a C library implementation for embedded systems. We omit those benchmarks from the
MiBench suite that use operating system features such as sockets and pipes that are not
implemented in newlib. Likewise, we do not provide results for the most simple bench-
marks in the DSPstone suite such as complex update or startup since all considered
compilers produce the same few instructions.

For the DSP kernels, we extend the simulator with a simple stopwatch facility that is
triggered by dedicated reserved opcodes and allows us to obtain cycle accurate measures
for inner loops without startup and I/O overhead.

The most difficult PBQP instances are generated for the SPEC suite. We present
results for all benchmarks except 252.eon which is written in C++ and therefore cannot

2http://sourceware.org/gdb/

http://sourceware.org/gdb/


3.6. Experimental Results 64

benchmark gcc LLVM PBQP LLVM
PBQP

dsp-fft 768393 868252 741807 1.17
dsp-fir 333 167 150 1.11
dsp-fir2dim 2430 1149 1149 1.00
dsp-lms 812 598 553 1.08
dsp-matrix 16127 16191 13893 1.17
misc-cmac 1691443 1608654 1565287 1.03
misc-convert 2117 1924 1228 1.57
misc-dct8x8 196377 116682 113594 1.03
misc-qsort 22187557 24541181 21219621 1.16
misc-serpent 3463333 2062079 2067729 1.00
misc-vdot 20707 20717 18716 1.11

Table 3.2: Execution time [cycles] for inner loops of various DSP benchmarks (mostly
taken from the DSPstone suite).

be compiled with our prototype implementation. Figure 3.12 shows the number of SSA
graphs over the whole benchmark set compared to the number of nodes (partitioned
into classes of size ten). Note the logarithmic scale of the y-axis. The vast majority of
graphs (99.5%) has less than 100 nodes. The largest graph over the whole benchmark
set can be found in 176.gcc and consists of 1613 nodes and 1026 edges.

In order to solve the PBQP instances, we compare the heuristic approach described
in [SE02a, Eck03] with an optimal algorithm based on branch & bound [HS06]. Fur-
thermore, the solver time for the PBQP instances is compared to a linearization of the
problems that are solved with ILOG CPLEX 10. The PBQP is translated to a linear
program with 0-1 variables.

Computational Results Cycle accurate results for the DSP kernels and the MiBench
suite are shown in Table 3.2 and 3.3 respectively. We compare the results obtained
with gcc, the original LLVM 2.1 backend, and our new instruction selector based on
PBQP. Speedups for the DSP kernels are up to 57% (misc-convert, see Figure 3.4)
with an average of 13%. The largest gains for the MiBench suite could be achieved for
automotive-susan with a speedup of 10%. Only a single benchmark (consumer-lame)
shows a slowdown by 5% that is caused by spill code due to an inferior register allocation.
All results have been obtained with the heuristic PBQP solver.

Next, we consider the benchmarks from the SPECINT 2000 suite. Detailed results
are shown in tables 3.4 and 3.5 respectively. All of the benchmarks could be compiled
with the heuristic PBQP solver within half a minute, most of them took only a cou-
ple of seconds. The compile time slowdown compared to LLVM is about a factor of 2
and is mainly caused by the overhead for building the SSA graphs on top of the stan-
dard selection graph data structures and the immature prototype implementation of our
matcher. Column mem. denotes the maximum amount of memory required to represent



3.6. Experimental Results 65

benchmark gcc LLVM PBQP LLVM
PBQP

basicmath 6980.14 6992.17 6989.30 1.00
bitcount 93.06 109.35 106.67 1.03
susan 679.63 763.69 696.55 1.10
jpeg 15.53 16.36 15.18 1.08
lame 2447.82 2470.31 2592.58 0.95
dijkstra 482.79 323.46 323.43 1.00
stringsearch 9.96 10.28 9.94 1.03
blowfish 1.42 1.41 1.41 1.00
rijndael 897.08 540.06 535.59 1.01
sha 19.63 19.82 18.73 1.06
crc32 833.12 753.29 753.29 1.00
fft 1552.64 1558.51 1558.22 1.00
adpcm 656.61 854.71 801.46 1.07
gsm 3054.84 3103.48 3077.01 1.01

Table 3.3: Execution time [megacycles] for the MiBench suite.

the PBQP instances (max. 642 KB). None of the benchmarks compiled with the PBQP
based instruction selector is slower than the LLVM compiled version while speedups are
up to 10%. Over the whole benchmark suite, the average speedup is about 5%.

For the simple approach where each rule is either a base rule or a chain rule, the
size of the PBQP problem for a particular grammar is at most linear in the size of the
graph. This is no longer the case for our generalization since we enumerate combinations
of nodes. In general, the number of instances for a k-ary pattern in a SSA graph with
n nodes is bound by O(

(
n
k

)
) which is in O(nk). Thus, for worst case examples, the

exhaustive enumeration for composite patterns quickly renders the problem intractable.
However, as our experiments show, this does not appear to be a burden in practice

since there is usually only a reasonably small number of viable alternatives for complex
patterns within a basic block. Figure 3.12 shows the average problem size in bytes per
graph size that is necessary to represent the PBQP problem. The graph shows an almost
linear behavior in the size of the input graphs.

The number of decision variables for PBQP is determined by the size of the input
graph and the number of instances that could be identified. Over the whole benchmark
set, only 1.1% of all variables were used to select among compound rule alternatives.
Likewise, about 94.9% of nonzero matrices were established among nodes representing
simple operations, 2.8% had to be used to enforce consistency among regular nodes and
pattern variables, and about 2.2% were required to ensure the existence of a topological
order among them. Over the whole benchmark set, about 18.618 opportunities for pre-
and post-increment instructions could be identified; a maximum of 92 within a single
graph.

If there are no RN nodes in the reduction phase of the heuristic solver, the solution is



3.6. Experimental Results 66

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700

P
ro

bl
em

 S
iz

e 
[b

yt
es

]

Graph Size

Problem Size SPEC INT2000

Figure 3.12: PBQP problem size.



3.6. Experimental Results 67

num. execution time [sec]
benchmark graphs gcc LLVM PBQP LLVM

PBQP

164.gzip 1204 385.95 427.34 392.47 1.09
175.vpr 5630 219.34 262.39 242.49 1.08
176.gcc 75500 40.60 42.18 41.65 1.01
181.mcf 416 328.21 326.20 324.79 1.00
186.crafty 7341 389.95 402.81 376.72 1.07
197.parser 5997 74.46 77.12 76.54 1.01
253.perlbmk 32748 92.03 130.43 120.90 1.08
254.gap 28886 62.43 54.31 49.22 1.10
255.vortex 18270 174.74 140.03 133.65 1.05
256.bzip2 1005 314.41 288.98 288.08 1.00
300.twolf 9104 171.76 179.78 173.74 1.03

Table 3.4: Execution time for the SPECINT 2000 suite for various instruction selection
algorithms.

optimal. If RN nodes occur in the reduction phase, we are interested in the quality of
the obtained solution. Note that almost all of the input graphs (177.870) could be solved
without RN reductions and, hence, are optimally solved by the heuristic solver. For the
remaining graphs (7968), we compare the solution with an optimal solution obtained by
the branch & bound solver.

Results are given in the column “solver statistics” in Table 3.5. The first column (opt1)
contains the number of instances that could be solved directly to provable optimality by
the heuristic solver. The remaining cases have been verified by the B&B solver. Most of
them could not be improved further (opt2) while only a small number (shown in column
sub.) was suboptimal. This shows that in practice the solution of the heuristic PBQP
solver coincides with the optimal solution or is very close to the optimal solution.

To show the effectiveness of the PBQP approach for instruction selection, we compare
the branch & bound solver with a state of the art integer linear programming ILOG(tm)
CPLEX 10 solver. Therefore, We obtain a linear program for PBQP by applying stan-
dard techniques to linearize the PBQP objective function; see Chapter 2. For the SPEC
benchmark the total solver time for all PBQP instances for instruction selection was 196
seconds whereas the ILP solver required more than 163 hours. The PBQP branch &
bound solver solved all instances optimally whereas CPLEX could not find an optimal
solution for 15 instances within a 10 hours time cut-off. Note the use of the branch &
bound solvers increases the compile time by 50% on average. However, the compile time
slowdown to the heuristic solver can be substantial (e.g. 186.crafty benchmark) reaching
factors up to 30. Detailed compile time statistics for both our heuristic PBQP solver
and the optimal B&B algorithm are given in Table 3.5.



3.6. Experimental Results 68

mem compile time [sec] solver statistics
benchmark [kb] LLVM HEU B&B HEU

LLVM

B&B

LLVM
opt1 opt2 sub.

gzip 49 0.16 0.34 0.49 2.13 3.06 1080 118 6
vpr 148 1.07 2.09 3.07 1.95 2.87 5176 403 51
gcc 537 10.24 21.78 33.05 2.13 3.23 72751 2640 109
mcf 99 0.06 0.13 0.18 2.17 3.00 381 35 0
crafty 220 1.42 3.38 102.84 2.38 72.42 6527 765 49
parser 55 0.68 1.44 2.05 2.12 3.01 5729 245 23
perlbmk 642 4.20 9.4 12.92 2.24 3.08 31526 1176 46
gap 384 3.37 7.69 11.24 2.28 3.34 27292 1587 7
vortex 200 2.34 5.18 7.15 2.21 3.06 18107 161 2
bzip2 69 0.13 0.27 0.41 2.08 3.15 879 124 2
twolf 101 1.64 3.25 4.56 1.98 2.78 8422 668 14

Table 3.5: Compile time and solver statistics for the SPECINT 2000 suite.

Short Summary Significant improvements of up to 57% for typical DSP code and up
to 10% for MiBench and SPECINT 2000 benchmarks (5% on average) prove that there
is significant potential in comparison with standard instruction selection techniques.
Using a heuristic PBQP solver, all benchmarks could be compiled within less than half a
minute, with about 99.83% of all problem instances solved to optimality. The comparison
of the PBQP instruction selector with a linearization to integer linear programming
confirms the efficiency and effectiveness of instruction selection based on PBQP solvers.



4 Spilling in the Context of
SSA-Based Register Allocation

4.1 Introduction

Register allocation is a crucial task for optimizing compilers. The objective is to map
an unlimited set of temporaries produced by the instruction selector to a finite set of
machine registers such that temporaries with interfering live ranges are assigned different
registers. Those temporaries that cannot be assigned during this process are mapped
to locations in main memory. These memory accesses are very costly in almost every
respect: code size is increased due to additional instructions transferring data to and
from their assigned locations (spill code), performance is decreased as there is a widening
gap among processor and memory speed, and – last but not least – overall energy
dissipation significantly suffers from the additional workload. Thus, whether for general
purpose computing or embedded systems, register allocation is a critical subtask.

In this work, we assume that register allocation is performed with respect to a fixed
order of the instructions computed by a so-called pre-pass scheduler. This approach is by
no means optimal as there are well known interdependencies among register allocation
and scheduling. The order in which nodes in the dependence graph are evaluated has
an important impact on the required number of registers. On the other hand, register
allocation introduces additional false dependencies that constrain subsequent schedulers.
While there are linear-time algorithms to compute an evaluation order requiring as few
registers as possible for trees [SU70], the problems becomes NP complete for unrestricted
DAGs [Set73]. Several authors propose scheduling heuristics that dynamically minimize
register pressure if necessary [GH88, NP98]. Furthermore, Keßler and Rauber propose
an optimal algorithm based on an efficient enumeration scheme that is able to compute
optimal contiguous evaluations, even for relatively large DAGs [KR95]. Approaches
that integrate several dependent code generation phases such as instruction selection,
scheduling, and register allocation within a combined optimization model are briefly
discussed in Chapter 1.

Register allocation has been among the first compiler-related problems that attracted
significant interest in the research community. Already in the early eighties, Chaitin [Cha82]
made one of the most influential contributions by establishing the close connection of
register allocation with general graph coloring – a well known NP-complete problem.
The graphs to be colored (so-called interference graphs) represent the unlimited set of
virtual registers as nodes that are adjacent if they are concurrently live at any point in
the program. In this setting, register allocation can be solved by finding a vertex color-

69



4.1. Introduction 70

ing with at most K colors, where K denotes the number of machine registers. There are
recent extensions for architectures with irregular register files [RN03, SRH04] and numer-
ous follow-up papers have been published on two particular subproblems: spilling and
coalescing [CH90, BCT94, GA96, PM98]. The objective of spilling is to defer a subset of
the variables to memory so to allow for a valid allocation of the remaining temporaries
while coalescing aims to minimize the overhead of register-to-register moves by assigning
them to the same machine register. What is common to graph coloring based approaches
and most techniques proposed around the turn of the century [GW96a, PS99, SE02b]
is that both spilling and coalescing are considered to be inherent subproblems that are
solved concurrently.

Appel and George [AG01] were among the first who proposed a two-phase approach
where the spilling problem and the actual register assignment problem are decomposed
and solved separately. More importantly, they showed empirically that the decomposi-
tion does not significantly degrade the overall allocation quality. Their original motiva-
tion was to decouple the tasks to allow for more efficient algorithms. However, in general
it is not guaranteed that there is a valid k coloring even if there are no more than k
variables simultaneously live at any given point in the program. To work around this,
the authors introduced parallel copies at every program point that assign each variable
to a freshly named temporary in the hope that subsequent coalescing will remove most
of them.

The necessity for this last step disappears for programs in SSA form due to interesting
properties of the corresponding interference graphs that have been discovered indepen-
dently by several research groups [HG06, BDMS05]. The authors show that interference
graphs of programs in SSA form are chordal. This special class of graphs allows to solve
several problems, known to be NP complete for general graphs, in polynomial time, e.g.,
maximum clique, maximum independent set, minimum clique covering, and minimum
coloring. In particular, one can compute an optimal coloring of a graph G(V,E) in
O(|V |+ |E|) time. The chromatic number corresponds exactly to the maximum number
of registers that are simultaneously live. Furthermore, Φ-operations can be eliminated
in a way that no additional registers are necessary, though for the cost of additional
swap operations. Thus, spilling can be performed as a separate step before coloring,
coalescing, and SSA destruction while avoiding iterations among the particular steps.
The fact that most modern compiler infrastructures maintain SSA form throughout
the compilation process anyway is another strong incentive for recent SSA based ap-
proaches [HG06, PP08]. The large number of additional copy-related variables caused
by Φ-nodes complicates coalescing. However, recent work [GH07] suggests that the prob-
lem can be solved efficiently in practice, and near-optimal polynomial time algorithms
are likely to be found in the near future.

This chapter presents a new approach to spilling by modelling it as a discrete com-
binatorial optimization problem. Most previous work on this topic is based on the
spill-everywhere model, i.e., a variable is removed entirely from the interference graph
requiring a corresponding store instruction after each definition and a re-load instruction
right before each use. This model is largely motivated by graph coloring register alloca-
tion where nodes that cannot be colored are simply removed from the graph, effectively



4.2. SSA-Based Register Allocation 71

spilling the entire live-range. In this chapter, we consider a more flexible model also
known as load-store optimization, where live-ranges can be split arbitrarily. We assume
a RISC like instruction set with explicit load and store instructions to transfer values
from and to dedicated memory locations. Programs are converted to strict edge-split
SSA form i.e., there is a single static definition for each value, each use of a variable is
dominated by its definition, and there is no control flow edge that leads from a node
with multiple successors to a node with multiple predecessors. The main motivation for
our choice is that spilling is most useful within such a setting and some descriptions are
more comprehensible. However, our concepts easily translate to general programs with
multiple definitions per variable.

This chapter is organized as follows: The next section gives an overview of SSA-based
register allocation. Section 4.7 covers related work for the spilling problem. A formal
problem description along with an 0/1 linear programming formulation is presented in
Section 4.3 and Section 4.4 respectively. We show how this formulation can be used
to derive a polynomial time algorithm using Lagrangian relaxation in Section 4.5. The
technique is evaluated both for a traditional embedded ARM micro-architecture and
CHILI – a 4-way VLIW processor. Experiments with SPECINT 2000 benchmarks and
embedded media applications (Section 4.6) show that spilling is a major performance
contributor and can be solved to optimality even for large benchmarks in reasonable
time.

4.2 SSA-Based Register Allocation

Our approach to spilling is based on programs in SSA forms due to the following reasons

• The chromatic number of interference graphs for programs in SSA form equals
the maximum number of registers that are simultaneously live. Thus, there is no
necessity to insert additional spill code in the register allocator after the pre-spilling
phase.

• Programs in strict SSA form have the useful property that each variable is defined
exactly once and each use is dominated by a definition. Thus, the defining label
constitutes a natural choice for the insertion of spill code that saves a value to
memory.

It is important to note that the proposed algorithm can also be combined with traditional
register allocators that are applied after SSA elimination. In this case it cannot be
guaranteed that there is an allocation without further spills and the register allocator
has to bring its own spilling heuristics. However, the amount of additional spill code
is usually much smaller after a pre-spilling phase, decreasing the effect of simplistic
heuristics on the final code quality.

Traditional graph-coloring register allocators invoke a spilling heuristic if they reach
a point where no more physical registers are available; see Figure 4.1 (a). This can be
an expensive process and requires to tightly integrate spilling and coalescing heuristics



4.2. SSA-Based Register Allocation 72

Compiler IR build coalesce allocate

spill

Machine IR

(a) Traditional graph-coloring allocation.

Compiler IR spill allocate coalesce Machine IR

(b) SSA-based register allocation.

Figure 4.1: Properties of programs in SSA form allow to execute the spilling phase only
once (b) instead of the typical iteration scheme found in graph-coloring al-
locators (a).

with the register allocator. In contrast, SSA-based register allocators allow for a phase
decoupling as depicted in Figure 4.1 (b). Each phase is executed only once. SSA
destruction is usually handled in the coalescing phase.

Assignment Phase A very tempting technique for the assignment phase is graph col-
oring for the reasons already pointed out in the introduction, i.e., interference graphs for
programs in SSA are chordal and allow thus for polynomial time algorithms for graph
coloring. This can be accomplished by finding a so-called perfect elimination order,
which can be obtained by successively removing simplicial nodes until all vertices have
been processed. A vertex u is called simplicial, if u together with its adjacent nodes in-
duces a clique in the interference graph. There are always at least two simplicial vertices
in a chordal graph [Dir61]. Furthermore, removing a node from a chordal graph leaves it
chordal. Thus, the procedure always succeeds. The chromatic number K equals exactly
the size of the largest clique. Once a perfect elimination order has been obtained, finding
an optimal coloring can simply be done by re-inserting the nodes in reverse order. After
each insertion, the node is colored with a color that is not yet used by its neighbors.
The vertex is simplicial, thus its neighbors form a clique of at most K − 1 nodes and
there is at least one color left.

A technique that is able to cope with irregular register files and aliasing is proposed
by Pereira et al. [PP08]. Their algorithm views the allocation problem as the problem of
solving a set of puzzles. The register file corresponds to the puzzle board and program
variables represent the puzzle pieces. The complexity of the puzzles depends on the
structure of the puzzle board. Spilling is invoked if there is no solution to a given puzzle.



4.3. Motivation and Modeling 73

However, the algorithm can also be combined with a pre-spilling phase as proposed in
this work such that no further spilling is necessary.

Coalescing Phase Coalescing aims to remove register-to-register copies in a program
by assigning the same register to both the source and the destination variable. If such an
assignment succeeds, the original copy instruction can be removed, which benefits both
performance and code size. However, there is also a trade-off: coalescing live ranges has
a negative impact on the interference graph that might lead to additional spill code. Sev-
eral approaches account for these effects and restrict coalescing or avoid harmful trans-
formations by speculative coalescing that can be undone if necessary [BCT94, GA96].

For SSA-based register allocators, coalescing plays a special role. Implementing Φ
nodes in a näıve way by replacing them with simple copy instructions may raise the
register demand and destroy the chordality of interference graphs. In order to account
for the parallel semantics of Φ nodes, they are interpreted as permutations the registers
on incoming control flow edges [Hac07]. These permutations can be implemented by
swap instructions in practice.1 Thus, coalescing has to maximize the number of fixed
points of these permutations.

The starting point for coalescing is an interference graph G = (V,E,A) where V and
E denote the set of vertices and edges of the interference graphs as usual and A is
an additional set of edges representing the affinity among the adjacent nodes. These
affinity edges have positive weight that represents a penalty whenever the adjacent
edges are assigned different colors. Affinity edges are inserted for each explicit copy
instruction. Additionally, there are affinity edges among operands of a Φ function and
the corresponding variable at the left-hand-side. The objective is to find a valid coloring
such that the penalties incurred by affinity edges is minimized.

Coalescing for programs in SSA form is known to be NP complete [Hac07]. However,
solving these problems to optimality seems to be feasible in practice even for large sized
instances. Experimental evidence therefore is given by Grund et al. [GH07] who propose
an algorithm based on integer linear programming.

4.3 Motivation and Modeling

Our approach to the spilling problem is based on a reduction to a well-defined combinato-
rial optimization problem. The graph in Figure 4.2(a) shows a node-labeled control flow
graph (CFG) in SSA form with program variables a , b, and c. For the latter variable,
Φ-functions have been inserted that disambiguate multiple reaching definitions. Edge
frequencies are denoted along the arcs in the CFG. Liveness for strict variables is defined
in the usual way: a variable v is live at label `, if there is a (possibly empty) path from
` to a label `′ such that v ∈ U`′ and the path does not include def(v). In our example,
variable a is live at labels l2 to l9 while the live range of variable b spans across labels l4
to l8. Note the special meaning of φ-functions in this respect: their arguments are only

1On architectures without a native swap instructions, a sequence of simple xor instructions can be
used instead.



4.3. Motivation and Modeling 74

l1: def a

l2: c=Φ(0, c'')

l3: def b

l6: def c'

l4: use a

l7: c''=Φ(c', c)

l5: use c

l8: use b

1

100

2080

20

320

80

400

100

99

l9: use a

1

l1: def a

l2: c=Φ(0, c'')

l3: def b

l6: def c'

l4: use a'

l7: c''=Φ(c', c)
     b''=Φ(b', b)

l5: use c

l8: use b''

1

100

2080

20

320

80

400

99

l9: use a''

1

store a

load a'

load b'

load a''

store b

(a) Input program in SSA form (b) Spilling transformation for two registers

Figure 4.2: Motivating example.



4.3. Motivation and Modeling 75

used if control flow enters a label along the corresponding in-edge, e.g., variable c is live
at label l5 but not at l6. For the consideration of liveness, we can treat phi functions
as if their arguments are used at the end of the particular predecessor block. We are
assuming a RISC architecture where all arguments to an instruction have to reside in
a register. Likewise, results are always written into one or more destination registers.
Transfers from memory into registers and vice versa can be accomplished using explicit
load and store instructions. Consequently, the number of registers live at a particular
label ` cannot exceed k − |D`| in order to allow for a coloring with k registers.

The objective of spilling is to insert load- and store-instructions along the edges of
the CFG in order to split live ranges such that that the overall costs are minimized.
Costs may be constant to minimize for code size, proportional to the edge frequencies
to optimize for execution time, or any combination of the two. Furthermore, we can
easily add support for re-materialization by justifying the cost-function accordingly.
This is most useful for constants or constant expressions such as frame-pointer indirect
addressing.

Assuming a total number of two registers, we show a cost-minimal transformation
with respect to the given edge-weights for our example in Figure 4.2(b). Live ranges for
variables a and b have been split by storing them to a dedicated location in memory at
the point of definition and re-loading them before they are used. In order to maintain
SSA form, we have to insert additional Φ-nodes and rename references to reflect those
changes accordingly. A very efficient standard algorithm therefore is given by Cytron
et al. [CFR+91b].

Many algorithms insert re-load instructions for spilled variables right before they are
used. However, this can be arbitrarily bad in general, e.g., inserting a re-load for variable
a in Figure 4.2(b) within the inner loop right before label l4 increases the costs of the
transformation significantly.

Considering a single variable v, we can compute the overall costs for reloading its
value from memory using a simple min-cut computation. Therefore, we transform the
control flow graph into a weighted network Nv as shown in Figure 4.3. For each node in
the CFG at which v is live, we also generate a node in our min-cut network. Likewise,
edges are introduced that reflect the cost of inserting a re-load instruction. Furthermore,
we introduce an artificial source s and sink t respectively. For all successors of def(v), we
add an additional edge from s to the corresponding node in Nv with weight zero. This
reflects the fact that a value is always available right after its definition. For each label
at which v is used, an arc with cost ∞ is inserted. The intention of this transformation
is as follows: any s-t cut with weight less than∞ corresponds to a valid segmentation of
the original live range such that re-load instructions are placed on every cut-edge passing
from a node in S to a node in partition T . The weight of the cut reflects precisely the
costs of the transformation in the chosen cost model. The cut that has been chosen for
the example in Figure 4.2 is depicted by the bold dotted line. It consists of the edges
(l3, l4) and (l8, l9) which are exactly the places where we inserted the re-load instructions
before.

Solving the min-cut problems isolated for each variable does not lead to a meaning-
ful solution as the model always allows for the trivial solution where the S-partition is



4.3. Motivation and Modeling 76

s

l2

l3

l6

l4

l7

l5

l8

0

100

2080

20

320

80

400

100

99

l9

1

t

∞

∞

S

T

Figure 4.3: Modeling for a single variable.

constituted by nothing but the s-node. This is the equivalent of assigning a machine
register to each variable for the entire live range. In order to account for register con-
straints, we identify source and sink nodes for each of the generated networks (one per
variable). Thus, we obtain a combined network flow problem for the whole function.
Nodes in the combined graph are assigned to disjoint partitions. For each label ` in
the CFG, we define a partition Q` that includes all the nodes from networks Nv that
correspond to label `. Thus, each partition Q` includes exactly one node per variable
live at `. Furthermore, a partition Q` has capacity k − |D`|. Intuitively, the capacity of
a partition denotes the number of live ranges that may pass through a particular label
without exceeding register constraints.

We can thus reduce the problem where to insert re-loads to the problem of finding a
minimum cut in the combined network subject to the conditions |T ∩Q`| ≤ k− |D`| for
each partition Q`. This model allows us to formulate spilling as a well-defined combina-
torial optimization problem and its similarity with generic network flow problems allows
us to derive some interesting properties from graph theory. The model also allows for
the design of simple greedy heuristics as it is straight-forward to find feasible solutions,
e.g., by heuristically assigning |Q`| − k + |D`| nodes to the S partition.

The proposed model assumes that the value of each definition is always available in
memory. This is easy to achieve in strict SSA form as all uses are dominated by their
definition. It is sufficient but not necessarily optimal to store a value right after its point



4.4. Constrained Min-Cut 77

s

l1

l2

0

li

t

∞

c1,2

ci-1,i

rv

c

∞

∞

∞

Figure 4.4: Accounting for store costs.

of definition. As these spill instructions usually do not come for free, it might be desirable
to account for their costs within the optimization model. One way to incorporate them
to the constrained min-cut problem presented so far is shown in Figure 4.4. For each
variable v, an additional node rv is inserted. We introduce an additional arc (rv, t) whose
weight corresponds to the costs of storing the particular variable. We have to account
for those costs only if there is at least one re-load operation. In other words, there is a
node other than s that is assigned to the S partition. We can model this constraint by
adding additional arcs with weight ∞ from each label other than s and t to the newly
introduced node rv. Those edges imply that rv ∈ S if any of the adjacent nodes other
than t is in S. For values that allow for re-materialization such as initializations with
constants or constant expressions, store costs are usually 0 and the additional node can
be safely removed. Otherwise, the same considerations discussed for re-loads apply: the
cost function can be used to optimize for any combination of code size and performance.

4.4 Constrained Min-Cut

We are now going to formalize the proposed constrained min-cut problem (CMC) in
more detail.

Definition 4.4.1. Let G(V,E) be a digraph with edge weights w(u, v) ∈ Z+, for each
edge (u, v) ∈ E. Further, let s, t ∈ V denote two distinguished vertices and let P =
{{s}, {t}, Q3, . . . , Qr} denote a disjoint partitioning of the nodes in V . Each disjoint set
Qi, for all i, (1 ≤ i ≤ r), has associated a capacity ci ∈ N.

Find a separation of V into two disjoint sets S and T such that s ∈ S, t ∈ T , for all
i, (1 ≤ i ≤ r), |T ∩Qi| ≤ ci, and

∑
(u,v)∈(S×T )∩E w(u, v) is minimal.



4.4. Constrained Min-Cut 78

We may formulate CMC as a quadratic integer program as follows.

min
∑

(u,v)∈E
w(u, v)(1− xu)xv

s.t xt − xs ≥ 1∑
u∈Qi

xu ≤ ci for all 1 ≤ i ≤ r

xu ∈ {0, 1} for all u ∈ V

(4.1)

Decision variables xu are 0-1 integer variables with the interpretation that xu is zero if
vertex u is in S and one if it is in T . Linearizing the given model leads to the following
ILP.

min
∑

(u,v)∈E
w(u, v)yuv

s.t. xt − xs ≥ 1

xu − xv + yuv ≥ 0 for all (u, v) ∈ E∑
u∈Qi

xu ≤ ci for all 1 ≤ i ≤ r

xu ∈ {0, 1} for all u ∈ V
yuv ∈ {0, 1} for all (u, v) ∈ E

(4.2)

Disregarding the capacity constraints in line four of Equation 4.2, the model corre-
sponds exactly to the well-known min-cut problem, which has some interesting prop-
erties [AMO93, Vaz04]. First, its constraint matrix is totally unimodular. Thus, even
if we relax the integrality constraints, each extreme point solution can be shown to be
integral, with each coordinate being 0 or 1. This clearly implies that the problem can be
solved in polynomial time. In fact, there are max-flow algorithms that can be used to
compute a minimum cut in time O(|V ||E| log |V |). Unfortunately, adding the capacity
constraints renders the problem NP complete.

Theorem 4.4.2. The decision problem of CMC is NP complete.

Proof. The problem is clearly in NP because a node u is either in set S or in set T . This
decision can be non-deterministically taken per node and it can be verified in polynomial
time whether a solution is feasible, i.e., the weight of the cut is below a given threshold.
We show the NP completeness by reducing the multi-way cut problem to the CMC
problem.

The multi-way cut problem is defined as follows: Given a digraphG(V,E), edge weights
w(u, v) ∈ Z+ for all edges, and terminal vertices F ⊆ V , a multiway cut is a set of edges
whose removal disconnects the terminals from each other. The multiway cut problem
asks for the minimum weight of such a cut set. The corresponding decision problem is



4.4. Constrained Min-Cut 79

t11 t12 t13

s

∞

Qt1

t

∞∞

t21 t22 t23

s

∞
Qt2

t

∞

∞

t31 t32 t33

s

∞
Qt3

t

∞

∞

(a) Terminal t1 (b) Terminal t2 (c) Terminal t3

u1 u2 u3

t

M M M

Qu
u1 u2 u3

Qu

v1 v2 v3

Qv

cuv cuv cuv

(d) Node u ∈ V \ {t1, t2, t3} (e) Edge (u, v) ∈ E

Figure 4.5: Reduction of multi-way cut to CMC.

NP complete [DJP+94] for |F | ≥ 3. The multi-way cut problem can also be seen as a
placement problem, i.e., a node is assigned to a disjoint set of a terminal vertex in F .
Cut edges are edges whose source is assigned to a different disjoint set than its tail.

We reduce all instances of the 3-multi-way cut problem to CMC as outlined in Fig-
ure 4.5. For each node u in the multi-way cut we construct a disjoint set Qu with
capacity cu equal to one in the CMC problem. Every disjoint set Qu contains three
nodes {u1, u2, u3} and, thus, at most one of the nodes can be placed in set T . There
are four possible solutions in the CMC problem for the three nodes in Qu: (S, S, S),
(T, S, S), (S, T, S), and (S, S, T ) where S and T refer to the placement in which disjoint
set CMC places the three nodes of Qu. To reduce the number of possible solutions for
disjoint set Qu to three possible solutions, we add the edges {(u1, t), (u2, t), (u3, t)} with
edge weight M to the digraph as shown in Figure 4.5(d). With these three additional
edges possible solution (S, S, S) attracts 3M additional costs per node. If M is a suffi-
ciently large integer number, (S, S, S) is excluded as a possible solution because solutions
(T, S, S), (S, T, S), and (S, S, T ) have costs of 2M .

The interpretation of a possible solution is the placement of node u in either disjoint
set of terminal vertex t1, t2, or t3 of the multi-way cut problem. For terminal vertices
t1, t2, and t3 we make sure that there exists only a single possible solution by adding
edges with infinite costs as shown in Figure 4.5(a)-(c) forcing CMC to assign node t1
the solution (T, S, S), t2 (S, T, S) and t3 (S, S, T ). Modeling the costs of an edge in the
multi-way cut problem is given in Figure 4.5(e). Every edge (u, v) in the 3-multi-way



4.5. Lagrangian Relaxation 80

cut problem is mapped to three edges in the CMC problem as shown in Figure 4.5(e).
An edge (u, v) in the multi-way cut problem connects two partitions Qu and Qv in the
3-multi-way cut problem. There are three possible solutions for Qu and Qv and the costs
for each pair of solutions is given below in the table:

(Qu, Qv) (T, S, S) (S, T, S) (S, S, T )
(T, S, S) 0 wuv wuv
(S, T, S) wuv 0 wuv
(S, S, T ) wuv wuv 0

If solutions of Qu and Qv are the same, the edges in CMC are no cut edges; otherwise
there exists exactly one cut edge between the two disjoint sets Qu and Qv since one edge
is from S to S, one edge is from T to S and is no cut edge, and one edge is from S to
T which is a cut edge and attracts of costs of wuv.

The ILP formulation given in Equation 4.2 provides already a feasible algorithmic
approach to the CMC problem. As our experiments show, mature solver technology
can be used to solve instances, even from very large functions, within reasonable time
limits. However, the special structure of the polytope permits a decomposition of the
problem by relaxing a subset of the constraints. The remaining problem can be solved
using generic algorithms for network flow problems allowing us to draw upon standard
algorithms from graph theory that are widely available.

4.5 Lagrangian Relaxation

Lagrangian relaxation [AMO93] is a general solution approach for mathematical pro-
grams that allows for the decomposition of problems in order to exploit their special
properties. In particular, this approach is perfectly tailored for problems with an embed-
ded network structure. We are now going to apply this technique to the CMC problem
in order to derive a polynomial-time near-optimal algorithmic solution approach that
does not rely on integer linear programming.

Therefore, consider the CMC formulation presented in Equation 4.2 and let X denote
the set of solutions that satisfy the constraints of the basic min-cut problem without the
additional capacity constraints. We can reformulate the constrained min-cut problem
as follows:

z∗ = min {cx : x ∈ X,Ax ≤ d}.

The side constraints Ax ≤ d denote the capacity constraints for partitions Qi with
capacity vector d. Relaxing those side constraints, we obtain the following Lagrangian
relaxation:

L(µ) = min {cx+ µ(Ax− d) : x ∈ X}.

We hereby effectively remove a subset of the constraints bringing them into the objective
function with associated Lagrangian multipliers µ. Thus, a solution to the relaxed
problem is not necessarily feasible for the original problem. However, LP theory states
that for any value for the Lagrangian multipliers µ, the value L(µ) is a lower bound



4.5. Lagrangian Relaxation 81

on the optimal objective value of the original problem. The sharpest possible bound is
given by a solution to the so-called Lagrangian multiplier problem L∗ = maxµ≥0 L(µ).
We have the following well-known relations among those optimization problems

L(µ) ≤ L∗ ≤ z∗.

This is useful as it provides us with an optimality test: for any vector of Lagrangian
multipliers µ, if x is a feasible solution to the original optimization problem and L(µ) =
cx, then L(µ) is an optimal solution of the Lagrangian multiplier problem and x is an
optimal solution for the original CMC problem. Furthermore, if for some choice of µ, the
solution x∗ of the Lagrangian relaxation is feasible for the original optimization problem
and additionally x∗ satisfies the complementary slackness condition µ(Ax∗−b) = 0, then
x∗ is also an optimal solution to the original CMC problem.

Lagrangian relaxation is mainly useful if we have a way to solve the Lagrangian re-
laxation efficiently. Considering the situation for the CMC problem, we can state L(µ)
as follows:

min
∑

(u,v)∈E
w(u, v)yuv +

∑r
i=1 µi

∑
u∈Qi

(xu − ci)

s.t. xt − xs ≥ 1

xu − xv + yuv ≥ 0 for all (u, v) ∈ E

xu ∈ {0, 1} for all u ∈ V
yuv ∈ {0, 1} for all (u, v) ∈ E

(4.3)

The polyhedron defined by the set of inequalities already corresponds to a standard
min-cut problem. The main difference is in the objective function: instead of minimizing
solely the weight of the cut, there is an additional Lagrangian term

∑r
i=1 µi

∑
u∈Qi

(xu−
ci). In other words, for each partition Qi, there is an associated Lagrangian multiplier µi
that gets added to the objective function for each node that ends up in the T -partition.
Note that, for a constant µi, in the Lagrange term µici evaluates to a constant and
we can rewrite the term to

∑r
i=1 µi

∑
u∈Qi

xu and consequently to
∑

u∈V µχ(u)xu where
χ(u) is index i such that u ∈ Qi. Note that index i is unique because the node set V is
disjointly partitioned. We are now going to present how we can transform the problem to
a standard s-t min-cut instance that can easily be solved using an appropriate max-flow
algorithm.

In fact, the problem at hand is a special case of Stone’s problem [Sto77]. The original
motivation was a process allocation problem: a set of tasks T = {t1, . . . , tr} is to be
mapped to two processors α and β. Each task may have a different execution time on
each of the processors and there are communication costs if two tasks are mapped to
distinct processors. More formally, let wα(t) and wβ(t) denote the executions costs for
mapping task t to processors α or β and let wαβ(t) denote the communication costs, the



4.5. Lagrangian Relaxation 82

s

l1

l2

0

li

t

∞

ci-1,i

μ1 μ2 μ3 S

T

Figure 4.6: Reduction of the relaxed problem L(µ) to a standard s-t min-cut instance.

objective is to minimize the following objective function:

min
∑
t∈α

wα(t) +
∑
t∈β

wβ(t) +
∑

t1∈α,t2∈β

wαβ(t1, t2). (4.4)

Stone solves the problem algorithmically by employing a s-t min-cut reduction that is
very similar to our approach. Tasks are represented by nodes in the network. Edges
among a distinguished source s and each node correspond to the costs of executing a
particular task at processor α. Likewise, there are edges among nodes and an artificial
sink t that correspond to the execution costs at processor β. Communication costs are
represented using edges among the particular nodes. It is easy to see that any s-t min-
cut directly corresponds to an optimal solution for the minimization problem given in
Equation 4.4.

We use basically the same construction in order to account for the additional costs
of nodes mapped to the T partition for the proposed relaxation L(µ). The original
network is augmented with edges of the form (s, v); see Figure 4.6. As there is at most
one partition Qi that includes v, the weight of those edges reflects exactly the value of
the corresponding Lagrangian multiplier µi. Each edge contributes to the weight of a
s-t min-cut in the augmented network if and only if the corresponding node v is in the
T partition. Thus, we can use a generic max-flow algorithm to solve L(µ) quickly. In
practice, we use an implementation of the push-relabel algorithm with time complexity
O(|V |3). However, there are algorithms with a slightly better time characteristic of
O(|V ||E| log |V |).

While we now have an efficient vehicle in order to solve the relaxed problem for a fixed
µ, it remains to show how to solve the Lagrangian multiplier problem L∗ = maxµ≥0 L(µ).
We therefore use a variant of subgradient optimization that is an adaption of Newton’s
method for solving systems of non-linear equations. The basic principle is to gradually
adapt the vector of Lagrangian multipliers for an initial choice µ0 as follows:

µk+1 = [µk + θk(Ax
k − d)]+.



4.6. Experimental Evaluation 83

The scalar θk denotes the step length in the k-th iteration and xk is a solution vector
of the subproblem L(µk). As we are relaxing inequalities, we never consider negative
elements in our vector µ. Thus, µk is set to zero if the update strategy would cause
it to become negative (denoted by [ ]+). The choice of the step length is important in
practice for convergence of the process. We use a popular standard heuristic that adapts

the step length after every iteration as follows: θk = λk(U−L(µk))
||Axk−d||2 . In this expression, U

denotes the best upper bound to the problem found so far, λk is a scalar that is gradually
decreased and ||Axk − d||2 denotes the Euclidean norm of the inner term.

The process allows for an intuitive representation: if for any partition Qi, the term
(Axk − d)i is zero or negative, the capacity constraints imposed on Qi are satisfied.
However, if the term is greater than zero, µi serves as a penalty that directs the min-cut
algorithm to put some of the nodes from the T to the S-partition. The step length
directs the algorithm to move quickly towards the optimum at the beginning of the
approximation, while we proceed with more care once we are close to the optimal value
L∗.

A theoretical discussion of convergence criteria and the rationale for choosing the step
length is beyond the scope of this work. As it is a standard technique in combinatorial
optimization, the interested reader is referred to relevant literature, e.g., Ahuja et al.
[AMO93].

In general, a solution to the Lagrangian multiplier problem is not necessarily feasible
for the original optimization problem. A popular approach is to use the values obtained
from the relaxation in order to solve the remaining problem using enumeration techniques
such as branch-&-bound. The efficiency of those techniques largely depends on the size
of the duality gap. An interesting result in combinatorial optimization states that the
bound obtained from Lagrangian relaxation is always as sharp as the bound obtained
from an LP relaxation. An even stronger statement for problems satisfying the integrality
property (such as s-t min-cut) guarantees that both bounds are exactly equal. Thus,
solving the Lagrangian multiplier problem is equivalent to solving the LP relaxation but
does not rely on linear programming and can often be solved more efficiently.

An alternative technique that can be used to obtain near-optimal solutions is the use of
so-called Lagrange heuristics. We have implemented several greedy strategies and present
their results in the following section. The main idea is that solutions to the Lagrangian
multiplier problem are usually very close to the solution of the original problem while
only a small number of relaxed constraints remain violated. A Lagrange heuristic is
an algorithm that resolves violated constraints in a greedy manner, often achieving
excellent results. An additional advantage is that the computed bound provides us with
an performance guarantee in respect to the optimal solution.

4.6 Experimental Evaluation

We have implemented and evaluated the proposed techniques using LLVM; see Sec-
tion 1.3.. All programs have been cross compiled using one core of a Xeon DP 5160
3GHz. The ILP formulation for CMC is solved using ILOG CPLEX(tm) 10. Standard



4.6. Experimental Evaluation 84

graph algorithms such as an implementation of the push-relabel max-flow algorithm are
taken from the boost graph library.

First, we are interested in the potential for exact spilling compared to heuristics. As
a reference, we use the default allocator of LLVM 2.4 – an improved implementation
of linear scan register allocation with backtracking in the case of spilling. We compare
results for a varying number of available registers with a modified backend where we per-
form spilling right before the standard register allocator. Register allocation in LLVM is
traditionally performed after SSA elimination. Thus, even though we spill a sufficiently
large number of registers, the register allocator might insert additional spill code that is
not strictly necessary. We present benchmarks for two representative embedded archi-
tectures: a 4-way VLIW core for audio-/video-decoding and an ARM processor as an
example for an embedded RISC architecture.

The first experiment is based on an OnDemand(TM) CHILI core; see Section 1.2.
Execution times have been gathered using a cycle-accurate simulator. We use typical
benchmarks reflecting the characteristics of embedded media applications provided by
OnDemand(TM), most of them are taken from the freely available MiBench suite. Both
the simulator and the compiler have been modified to support a varying number of
registers, allowing us to make experiments for several different settings.

We present data for various configurations with 8, 12, 16, and 32 registers in Fig. 4.7.
For small register files, the achieved speedup on top of LLVM is substantial for all
benchmarks, ranging from about 8% to almost 30%. Not surprisingly, the potential
for improved spilling techniques decreases with increasing number of machine registers.
On average, there is an improvement of about 15.5% for the scarcest setting, gradually
decreasing to 6.5%, 3%, and 0.9% for 12, 16, and 32 registers respectively. None of the
benchmarks showed additional speedup for 64 registers.

Solver times for those benchmarks are definitely within practical limits. Our ILP-
based algorithm finished within a few seconds for most of the benchmarks, the most
difficult being automotive-susan and video-h263 with 24 and 23 seconds respectively.
This includes the time spent on the CMC reduction as well as SSA reconstruction after
insertion of spill code.

In order to test our approach on larger benchmarks, we consider the widely-used
SPECINT 2000 suite. Running those benchmarks on a bare-metal VLIW is infeasible
as they require an underlying operating system and a complete libc implementation.
Therefore, we use an ARMv7 board (OMAP3 EVM) at 500 MHz with 128MB of main
memory running a Linux 2.6.22 kernel. Profiles are obtained using the input set “train”
while the reported execution times were gathered using the “test” inputs. Floating point
operations are emulated using a IEEE754 softfloat library. We measured execution times
using the unix time utility considering the best out of 10 runs on an unloaded machine
for each configuration.

ARM processors support two different instruction sets: ARM and ARM Thumb.
While in ARM mode, the processor fetches 32-bit instructions and has access to the
full register file with 16 registers. Thumb mode is a more compressed 16-bit instruction
set architecture that allows for smaller code size at a significant performance penalty.
In Thumb mode, most instructions can only access the lower half of the register file



4.6. Experimental Evaluation 85

ARM ARM Thumb
Benchmark Source CPLEX BLY LLVM CMC BLY LLVM CMC

[LOC] [sec] [sec] [%] [%] [sec] [%] [%]
164.gzip 5615 12.72 12.11 13.07 15.44 14.00 12.00 17.25
175.vpr 11301 103.44 12.85 6.64 6.73 16.50 1.54 0.61
176.gcc 132922 483.39 7.89 8.83 13.20 n/a n/a n/a
181.mcf 1494 1.16 1.30 1.56 1.56 1.41 1.44 4.44
186.crafty 12939 75.37 30.31 13.86 12.18 40.30 16.40 12.32
197.parser 7763 19.88 12.18 0.91 3.92 14.14 -5.80 2.54
253.perlbmk 72206 285.81 1.70 0.00 8.97 1.78 1.00 4.71
254.gap 35759 47.15 3.67 -0.81 3.67 4.21 -1.64 34.94
255.vortex 49232 1026.44 33.76 -0.79 -1.86 42.39 6.99 10.30
256.bzip2 3236 18.32 27.83 0.69 6.02 40.35 9.98 10.55
300.twolf 17822 124.74 1.34 11.67 17.54 n/a n/a n/a
Mean 13.18 4.91 7.79 19.45 4.33 10.44

Table 4.1: Experimental results using the SPECINT 2000 benchmark suite showing the
execution times for both ARM and ARM Thumb mode. We compare three
different algorithms: a generalized furthest first heuristic (BLY), the linear
scan register allocator from LLVM 2.4 (LLVM), and our improved spill code
placement algorithm (CMC). All results are relative to BLY. We use the
geometric mean for speedups; for the absolute figures we use the arithmetic
mean.



4.6. Experimental Evaluation 86

!"#$%&'() *%+,"'-.&/(-0 ,-*".$12&,3! 1-4-*%''&!#(*' 5$#-%&367) 5$#-%&'(-06 !5-.!0-

&89::

:9::

89::

;:9::

;89::

6:9::

689::

):9::

)89::

!!"#!

!$"%$

%"!$

&#"%'

!$"('

!("))

!'"')

#"'*

$"!$

&")%

!("!*

$"*!

*"'$

$"')

#"%)

*"%$

("(( ("(&

&")$

("$#

&"#$

("'&
("!+

!"!#

)"*(

("%%

<

;6

;7

)6

='
(
.%
5-
'
-+
1>
?@
A

Figure 4.7: Improvement for a varying number of registers for spill code placement com-
pared to the linear scan allocator of LLVM. Execution times have been gath-
ered using a cycle-accurate simulator for a 4-way VLIW processor.

and only a subset of the addressing modes is available. Hence, the register pressure
is much higher than in ARM mode. Note, that some of the architectural registers are
special-purpose and cannot be used for generic program variables, e.g., program counter
or stack pointer.

Table 4.1 shows the results for both ARM and ARM Thumb execution. We use (1)
a generalization of Belady’s algorithm as proposed in [HGG06] (BLY) as a baseline,
(2) LLVM 2.4 standard spilling heuristic, and (3) our spill code placement based on
CMC using CPLEX to compute an optimal solution. Note that in ARM Thumb mode
two benchmarks fail due to bugs in the LLVM backend that we could not yet solve
(i.e., 176.gcc and 300.twolf). On average, LLVM is about on par with a gcc cross-
compiler at its highest optimization level. The spilling heuristic of LLVM shows an
improvement of 4.91 and 4.33 percent for ARM and ARM Thumb mode respectively
compared to the generalized Belady heuristic. The algorithm has been implemented
as described in [HGG06], i.e., we compute partial solutions for basic blocks that are
heuristically combined to obtain a solution for the whole function. The main reason for
the performance regressions compared to the other algorithms is that there is no explicit
considerations of loop structures and block weight, which often leads to avoidable spill
code within inner loops. The speedup obtained with our CMC reduction compared to
BLY is about 10.44% on average for ARM Thumb mode and 7.79% for the generic ARM
instruction set.

Not surprisingly, most of the solver time is spent in a few large functions. Fig. 4.8



4.6. Experimental Evaluation 87

 0

 2

 4

 6

 8

 10

 12

 14

< 1310.72

< 655.36

< 327.68

< 163.84

< 81.92

< 40.96

< 20.48

< 10.24

< 5.12

< 2.56

< 1.28

< 0.64

< 0.32

< 0.16

< 0.08

 < 0.04

 < 0.02

< 0.01

P
er

ce
nt

ag
e

Solver Time [sec]

Figure 4.8: Distribution of ILP solver times for SPECINT 2000 with 14 general purpose
registers (ARM) using ILOG CPLEX 10.

shows the distribution of solver times for CPLEX over the whole benchmark set. Note
the logarithmic scale on the x-axis. Almost all of the benchmarks can be solved within
60 seconds. There are only three functions exceeding this limit, the largest of which is
BMT Test from 255.vortex consisting of about 4.500 basic blocks. The CMC reduction
leads to a network with about 375.000 nodes and 418.000 edges and can be solved to
optimality in slightly more than 13 minutes.

Lagrange Relaxation To overcome the limitations of ILP solvers, we have shown in
Section 4.5 how the relaxation of capacity constraints leads to a problem that can be
solved using efficient generic network flow algorithms. We evaluate the general solu-
tion approach for three different greedy Lagrange heuristics with increasing algorithmic
complexity. For any partial solution, we visit each partition Qi in order, while evict-
ing [|T ∩ Qi| − ci]+ many nodes from the T partition according to one of the following
strategies:

• SIMPLE Nodes are simply ordered according to their effect on the objective func-
tion, preferring those causing a low penalty.



4.6. Experimental Evaluation 88

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

P
er

ce
nt

ag
e

Iterations

SIMPLE
REGION
MIN-CUT

Figure 4.9: Average quality of three different Lagrange heuristics compared to the pre-
computed optimal solution over the whole SPECINT 2000 benchmark set.
The x-axis denotes the number of iterations for the subgradient optimization
algorithm.

• REGION This is basically the same strategy as before with the addition that we
also remove nodes in the neighborhood as long as this does not increase the overall
penalty. As we might well decrease the overall effect on the objective function, this
approach can be seen as a simple hill-climbing heuristic.

• MIN-CUT This algorithms computes for each node within a partition the optimal
set of nodes to be moved from the T to the S partition such that the overall weight
of the cut is minimized.

Fig. 4.9 shows the average ratio of the optimal solution and the solution obtained
from each of the greedy heuristics. The metric corresponds to the weighted spill costs
as modelled in the CMC formulation. The x-axis denotes the number of iterations for
the sub-gradient approximation algorithm. The average quality for the pure heuristic
without the Lagrangian relaxation corresponds to x = 0. The two simple strategies
perform initially very poor with an average of only 25% and 41% respectively. The graph
clearly shows how approximations to the Lagrangian multiplier problem effectively guide



4.6. Experimental Evaluation 89

the heuristics towards the optimum. After thirty iterations, the average quality for the
simple strategies is improved to 63% and 75%. The MIN-CUT heuristic shows initially
an average quality of almost 91% and climbs up to more than 95%.

Detailed performance results for the various algorithms are given in Figure 4.10. Each
figure shows the runtime for all non-trivial benchmarks from the SPECINT 2000 suite.
The y-axis shows the runtime of the algorithm in seconds. Each of the plots (a) to (e)
features a polynomial asymptotic function that has been computed using a least squares
approximation. Note that y-axis are drawn with logarithmic scale and that (a) and (b)
show a smaller value range.

The performance of integer linear programming based algorithms strongly depends on
the particular solver. It is very interesting that most of the problems are integral, even if
integrality constraints are dropped. Among the whole benchmark suite, only 18 problems
have a non-integral solution and require branch & bound. Thus, in practice almost all
the time is spent in the simplex algorithm solving the LP relaxation. We compare two
different ILP solvers: ILOG CPLEX and the open source GNU linear programming
kit (glpk)2. Performance results for both solvers are shown in Figure 4.10 (a) and
(e) respectively. While both algorithms indicate an asymptotic quadratic runtime in
practice, the constant differs by more than an order of magnitude. In fact, there were
15 instances that could not be solved by glpk within a time limit of half an hour while
all benchmarks where solved by CPLEX.

The performance of the algorithms based on Lagrangian relaxation largely depends on
the particular Lagrangian heuristic. At most 20 iterations have been used for the Newton
approximation. The strategy SIMPLE is very fast and shows an asymptotic linear
runtime in practice (|V |1.02). Note that the worst-case performance is determined by the
max-flow algorithm, which is in the order of O(|V ||E| log |V |). The more sophisticated
Lagrangian heuristics REGION and MINCUT show quadratic behavior, but with a much
larger constant.

A comparison among all algorithms is given in Figure 4.10 (f). Note that the CPLEX
based algorithm is among the fastest techniques while the GLPK solver performs worst
compared to the rest of the field. The MINCUT heuristic delivers solutions that are
very close to the optimum, but for significant computational costs.

Apart from Lagrangian heuristics, the proposed relaxation is very tempting for two
more reasons. First, it provides us with bounds that can be used to give a provable
certificate on the quality of solutions. Second, those bounds are valuable for enumeration
schemes such as branch-&-bound in order to prune the search space more effectively. One
last advantage we want to point out is that Lagrangian heuristics lead to progressive
algorithms that deliver quickly feasible solutions which are gradually improved as the
algorithm proceeds. Thus, we can effectively trade compile time for code quality, which
is a very appealing property for optimization algorithms.

2http://www.gnu.org/software/glpk

http://www.gnu.org/software/glpk


4.6. Experimental Evaluation 90

 1

 10

 100

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

ILP (CPLEX)

y=k n^2
ILP (CPLEX)

(a)

 1

 10

 100

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (SIMPLE)

y=k n^1
Lagrange (SIMPLE)

(b)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (REGION)

y=k n^2
Lagrange (REGION)

(c)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Lagrane Approximation (MINCUT)

y=k n^2
Lagrange (MINCUT)

(d)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

ILP (GLPK)

y=k n^2
ILP (GLPK)

(e)

 1

 10

 100

 1000

 10000

 100000

 0  100000  200000  300000  400000  500000  600000  700000

#nodes

Runtime Comparison

ILP (GLPK)
Lagrange (MINCUT)
Lagrange (REGION)

ILP (CPLEX)
Lagrange (SIMPLE)

(f)

Figure 4.10: Runtime comparison for the various CMC algorithms.



4.7. Related Work 91

4.7 Related Work

Spilling has been mainly considered in the context of a particular register allocation
scheme. Thus, the proposed strategies and metrics are often based on the particular
program representation that is used by the allocation algorithm, e.g., live intervals in
the case of linear scan allocators or interference graphs for graph coloring based tech-
niques. Usually, spilling is invoked only if the allocation algorithm fails, often leading
to backtracking or iteration of the whole process.

Apart from iterative models, comprehensive optimal formulations have been proposed
that consider spilling as an inherent subproblem [GW96b, FW02]. In these approaches,
all aspects of register allocation such as spilling, coalescing, rematerialization, live range
splitting, or architectural irregularities are modeled within a unified framework, e.g.,
ORA [GW96b] uses an ILP solver to obtain optimal or near optimal solutions. However,
these approaches do not consider spilling as a separate optimization problem.

One of the first heuristic algorithms directly solving a simple variant of the spilling
problem has been proposed by Belady [Bel66] in a slightly different context: paging
of virtual memory with write back. The problem basically corresponds to unweighted
spilling for basic blocks. Belady’s algorithm is a furthest-first heuristic, i.e., the variable
that is used furthest in the future is evicted. Recently, Guo et al. [GGP04] empirically
showed that this simple heuristic can be both efficient and effective, especially for large
basic blocks.

A generalization of Belady’s algorithm to the scope of a whole function is presented
by Hack [Hac07]. The heuristic is applied individually to each basic block. The notion
of “furthest first” is extended to the global scope by recursively computing the minimum
over all successor blocks. In a separate step, the partial solutions computed by applying
the heuristic locally are combined to obtain a solution for the whole function. Let N(`, v)
denote the applied distance metric for variable v and label `, the authors propose the
following generalization:

N ′(`, v) =

{
∞, if v is not live at `
1 +min`′∈succs(`)N(`′, v), otherwise.

N(`, v) =

{
0, if v is used at `
N ′(`, v), otherwise.

This approach can be implemented efficiently for SSA form. We include an implemen-
tation of their method in our experiments in Section 4.6.

Another approach for the local spilling problem is given by Hsu et al. [HFG89]. The
problem is mapped to the task of finding a shortest path within a weighted DAG that
contains nodes for each instruction and each configuration that may occur at this node.
Edges correspond to transition costs. As the graph grows exponentially with the number
of variables and registers, the authors propose pruning rules that improve the perfor-
mance of their algorithm, allowing them to solve blocks with about up to 100 nodes.

Important theoretic insight into local register allocation has been contributed by
Farach [FL98, FCL00]. Similar to our approach, Farach considers both a simplified



4.7. Related Work 92

version where stores are disregarded (weighted caching) and a more complex variant
where both spills and re-loads are minimized. For the first problem, Farach presents
an ILP with the consecutive ones property. Thus, there is an equivalent minimum cost
network flow problem that can be solved in polynomial time. Variables are spilled at the
very beginning and reloaded at the very end of so-called value ranges, which are maxi-
mal sequences of program points where a live variable can be evicted. A unit of flow in
the network corresponds to a surplus of live variables on a node. There are backward
arcs among nodes on which the flow is unrestricted. Forward arcs for each value range
account for spilling costs. For the more complex variant where store costs are included
in the cost model, Farach proves NP completeness using a reduction from the set cover
problem. There is a multi-commodity flow formulation for the harder model. Farach
also presents an efficient 2-approximation using a variant of the furthest-first heuristic.

Work presented so far did only consider the spilling problem for straight-line code
segments. The first relevant complexity result for global unweighted spilling in the
spill-everywhere model is given by Yannakakis et al. [YG87]. The authors show that
determining the maximum k-colorable subgraph of a chordal graph is NP complete.
While there is a polynomial time algorithm for fixed k, its time complexity is exponential
in k, which is prohibitive for most practical applications.

Pereira et al. propose an efficient linear-time heuristic based on enumeration of max-
imal cliques in interference graphs. [PP05]. While this is a hard problem in general, it
can be solved efficiently for chordal graphs. Their heuristic iteratively removes nodes
that appear in most of the cliques until the graph is k-colorable. Complexity results and
heuristics for various variants of the spilling problem in the spill-everywhere model are
also given by Bouchez et al. [BDR07].

Few papers are about the more-general load-store optimization problem that is consid-
ered in this work. Probably the most important piece of related work is given by Appel
and George [AG01]. They present an AMPL3 model to describe and generate an ILP
formulation that solves the global weighted spilling problem. Additionally, as they focus
on X86 architectures, they also include address mode selection for CISC instruction that
optionally obtain their operand(s) directly from a specified memory location. For each
variable live at a particular program point, four binary decision variables are introduced
that encode the location (register or main memory) of the variable before and after the
label. Constraints ensure the consistency among those variables and proper resource al-
location. The most important result of their work is the insight that the spilling problem
can be solved efficiently in practice and that the decomposition from register allocation
does not significantly degrade the overall allocation quality.

One last work we want to point out even though it addresses a much wider problem
is presented by Koes and Goldstein [KG06]. The authors propose a reduction of the
register allocation problem including spilling, assignment, rematerialization, and limited
support for instruction selection to multicommodity flows. As in this work, the authors
propose Lagrangian relaxation combined with greedy heuristics to obtain a progressive
algorithm. Global register allocation cannot be expressed with multicommodity flows

3http://www.ampl.com

http://www.ampl.com


4.7. Related Work 93

and is modeled using so-called split- and merge-nodes at block boundaries with special
semantics. The authors hereby solve a significantly harder problem: instead of deciding
if a variable should be held in memory or register at a particular program point, they
explicitly model every possible assignment to a particular register along with all the
possible storage class transitions.

Short Summary The results show that traditional heuristics perform sufficiently well
when the number of machine registers is large, but leave significant potential for improve-
ment on architectures with few registers. The separation of spilling from allocation and
coalescing is favorable in several respects. First, it allows a separation of concerns,
thereby simplifying the design and implementation of allocation/spilling frameworks for
compilers. Second, it allows us to take advantage of efficient algorithms for allocation
and coalescing that benefit from the chordality of interference graphs for programs in
SSA form. Empirical results show that optimal spill code placement lead to performance
improvements of more than 15% on average for machines with few registers.



5 Conclusions

Embedded systems usually operate in very restricted environments and have to meet
strict performance and energy requirements. Thus, compilers have to generate high-
quality code that effectively utilizes the resources of the target architecture.

In this thesis, we have considered two important subproblems for embedded code
generators: instruction selection and spilling. For both techniques, SSA form proved to
be a valuable tool. This encourages a compiler design where SSA form is maintained
until register allocation. Also, we advocate the use of general combinatorial optimization
problems instead of problem-specific algorithms. This allows to draw upon existing
algorithms and theoretical insights. At the same time, these algorithms can be shared
for various applications.

Instruction Selection The first considered code generation problem, instruction se-
lection for irregular architectures, still imposes considerable challenges in spite of the
remarkable amount of attention it has received in the past. First, the limited scope of
most standard approaches is leading to suboptimal code not accounting for the compu-
tational flow of a whole function. Second, many architectural features commonly found
in the area of embedded systems cannot be expressed using well-known techniques such
as tree pattern or DAG matching.

We present a generalization to PBQP based instruction selection that can cope with
complex DAG patterns with multiple results. The approach has been implemented in
LLVM for an embedded ARMv5 architecture. Extensive experiments show improve-
ments of up to 57% for typical DSP code and up to 10% for MiBench and SPECINT
2000 benchmarks (5% on average). Using a heuristic PBQP solver, all benchmarks
could be compiled within less than half a minute, with about 99.83% of all problem
instances solved to optimality. The comparison of the PBQP instruction selector with
a linearization to integer linear programming confirms the efficiency and effectiveness of
instruction selection based on PBQP solvers.

Spilling SSA form allows us to consider spilling as an independent optimization prob-
lem. Our experiments show that traditional heuristics perform sufficiently well when
the number of machine registers is large, but leave significant potential for improvement
on architectures with few registers. The separation of spilling from allocation and coa-
lescing is favorable in several respects. First, it allows a separation of concerns, thereby
simplifying the problem at hand. Second, it allows us to take advantage of efficient
algorithms for allocation and coalescing that benefit from the chordality of interference
graphs for programs in SSA form.

94



95

We present a reduction of the spilling problem in the load-store optimization model to
a well-defined combinatorial framework: constrained min-cut problems. The proposed
model is interesting as it is based on a generic network flow substructure. We present an
ILP formulation and a Lagrange relaxation that takes advantage of these properties and
thus allows us to solve the problem using generic max-flow algorithms. Empirical results
show that optimal solutions are feasible, even for large functions, and lead to performance
improvements of more than 15% on average for machines with few registers.



Bibliography

[AF05] Warren P. Adams and Richard J. Forrester. A simple recipe for concise
mixed 0-1 linearizations. Oper. Res. Lett., 33(1):55–61, 2005.

[AG01] Andrew W Appel and Lal George. Optimal spilling for cisc machines with
few registers. In International Conference on Programming Languages De-
sign and Implementation, pages 243 – 253. ACM Press, 2001.

[AJ76] A. V. Aho and S. C. Johnson. Optimal code generation for expression trees.
J. ACM, 23(3):488–501, 1976.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[BCH+02] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Tim-
othy S. Oberg, and Steven W. Reeves. Fast copy coalescing and live-range
identification. In PLDI, pages 25–32, 2002.

[BÇPP98] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. The quadratic
assignment problem. Technical Report 126, Graz University of Technology,
1998.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation. Transactions on Programming Languages
and Systems (TOPLAS), 16(3):428 – 455, 1994.

[BDB90] A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable
code generation using bottom-up tree pattern matching. Computer Lan-
guages, 15(3):127–140, 1990.

[BDMS05] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh.
Polynomial-time graph coloring register allocation. In 14th International
Workshop on Logic and Synthesis. ACM Press, 2005.

[BDR07] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity
of spill everywhere under SSA form. In Santosh Pande and Zhiyuan Li,
editors, Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’07), San
Diego, California, USA, June 13-15, 2007, pages 103–112. ACM, 2007.

96



Bibliography 97

[Bel66] Laszlo A. Belady. A study of replacement algorithms for virtual storage
computers. IBM Syst. J., 5:78–101, 1966.

[BK04] Andrzej Bednarski and Christoph W. Keßler. Exploiting symmetries for
optimal integrated code generation. In Hamid R. Arabnia, Minyi Guo, and
Laurence Tianruo Yang, editors, Proceedings of the International Confer-
ence on Embedded Systems and Applications, ESA ’04 & Proceedings of the
International Conference on VLSI, VLSI ’04, June 21-24, 2004, Las Vegas,
Nevada, USA, pages 83–92. CSREA Press, 2004.

[CCK97] C-M Chang, C-M Chen, and C-T King. Using integer linear programming
for instruction scheduling and register allocation in multi-issue processors,
July 18 1997.

[CEL98] F. CELA. The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer, Massachessets, USA, 1998.

[CFR+91a] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

[CFR+91b] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. TOPLAS, 13(4):451–490, October 1991.

[CH90] Fred C. Chow and John L. Hennessy. The priority-based coloring approach
to register allocation. ACM Trans. Program. Lang. Syst., 12(4):501–536,
1990.

[Cha82] G J Chaitin. Register allocation and spilling via graph coloring. Symposium
on Compiler Construction, 17(6):98 – 105, 1982.

[Chv83] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York,
1983.

[CP99] J. Clausen and M. Perregaard. On the best search strategy in parallel
branch-and-bound - best-first-search vs. lazy depth-first-search. Annals of
OR, (90):1–17, 1999.

[Dir61] G A Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematis-
chen Seminar der Universiat Hamburg, volume 25, pages 71 – 75. University
of Hamburg, 1961.

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, P. D. Sey-
mour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM
J. Comput., 23(4):864–894, 1994.



Bibliography 98

[DR06] João Dias and Norman Ramsey. Converting intermediate code to assembly
code using declarative machine descriptions. In Alan Mycroft and Andreas
Zeller, editors, CC, volume 3923 of Lecture Notes in Computer Science,
pages 217–231. Springer, 2006.

[EBS+08] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter
Wiedermann, and Albrecht Kadlec. Generalized instruction selection using
SSA -graphs. In Krisztián Flautner and John Regehr, editors, Proceedings of
the 2008 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’08), Tucson, AZ, USA, June 12-
13, 2008, pages 31–40. ACM, 2008.

[ECG06] M. Anton Ertl, Kevin Casey, and David Gregg. Fast and flexible instruction
selection with on-demand tree-parsing automata. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN conference on Programming language design
and implementation, pages 52–60, New York, NY, USA, 2006. ACM Press.

[Eck03] Erik Eckstein. Code Optimization for Digital Signal Processors. PhD Thesis.
TU Wien, November 2003.

[EKS03] Erik Eckstein, Oliver König, and Bernhard Scholz. Code Instruction Se-
lection Based on SSA-Graphs. In Andreas Krall, editor, SCOPES, volume
2826 of Lecture Notes in Computer Science, pages 49–65. Springer, 2003.

[Ert99] M. Anton Ertl. Optimal Code Selection in DAGs. In Principles of Program-
ming Languages (POPL ’99), 1999.

[ES03] Erik Eckstein and Bernhard Scholz. Addressing mode selection. In CGO,
pages 337–346. IEEE Computer Society, 2003.

[FCL00] Farach-Colton and Liberatore. On local register allocation. ALGORITHMS:
Journal of Algorithms, 37, 2000.

[FD62] Jr. L.R. Ford and D.R.Fulkerson. Flows in Networks. Princeton University
Press, Princeton, N.J., 1962.

[FFY05] Joseph A. Fisher, Paolo Faraboschi, and Clifford Young. Embedded com-
puting: a VLIW approach to architecture, compilers and tools. Morgan
Kaufmann Publishers, 2005.

[FHP92a] C. Fraser, R. Henry, and T. Proebsting. BURG – Fast Optimal Instruction
Selection and Tree Parsing. ACM SIGPLAN Notices, 27(4):68–76, April
1992.

[FHP92b] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engi-
neering a simple, efficient code-generator generator. ACM Letters on Pro-
gramming Languages and Systems, 1(3):213–226, September 1992.



Bibliography 99

[FL98] Martin Farach and Vincenzo Liberatore. On local register allocation. In
SODA, pages 564–573, 1998.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345,
1962.

[FW02] Changqing Fu and Kent D. Wilken. A faster optimal register allocator. In
MICRO, pages 245–256. ACM/IEEE, 2002.

[GA96] Lal George and Andrew W Appel. Iterated register coalescing. Transactions
on Programming Languages and Systems (TOPLAS), 18(3):300 – 324, 1996.

[GCC] GCC Website. http://gcc.gnu.org.

[GGP04] Jia Guo, Maria Jesus Garzaran, and David A. Padua. The power of belady’s
algorithm in register allocation for long basic blocks. In Lawrence Rauch-
werger, editor, Languages and Compilers for Parallel Computing, (16th
LCPC’03), volume 2958 of Lecture Notes in Computer Science (LNCS),
pages 374–390. Springer-Verlag (New York), College Station, Texas, USA,
October 2003, Revised Papers 2004.

[GH88] James R. Goodman and Wei-Chung Hsu. Code scheduling and register
allocation in large basic blocks. In 1988 International Conference on Super-
computing (2nd ICS’88), pages 442–452, St. Malo, France, July 1988. ACM
Press.

[GH07] Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for op-
timal coalescing. In Shriram Krishnamurthi and Martin Odersky, editors,
Compiler Construction, 16th International Conference, CC 2007, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2007, Braga, Portugal, March 26-30, 2007, Proceedings, volume
4420 of Lecture Notes in Computer Science, pages 111–125. Springer, 2007.

[GJ79] M. Garey and D. Johnson. Computers and interactability: A guide to the
theory of NP-completeness, 1979.

[GLM+06] J. Guo, T. Limberg, E. Matus, B. Mennenga, R. Klemm, and G. Fettweis.
Code generation for STA architecture. In Proc. of the 12th European Con-
ference on Parallel Computing (Euro-Par’06). Springer LNCS, 2006.

[GSW95] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond Induction
Variables: Detecting and Classifying Sequences Using a Demand-Driven
SSA Form. ACM Transactions on Programming Languages and Systems,
17(1):85–122, 1995.

[GW96a] Goodwin and Wilken. Optimal and near-optimal global register allocation
using 0-1 integer programming. SOFTPREX: Software–Practice and Expe-
rience, 26, 1996.

http://gcc.gnu.org


Bibliography 100

[GW96b] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global
register allocation using 0-1 integer programming. Software Practice and
Experience, 26(8):929–965, August 1996.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universität Karlsruhe, October 2007.

[HFG89] W. Hsu, C. Fischer, and J. Goodman. On the minimization of loads/stores in
local register allocation. IEEE Trans. on Softw. Eng., 15(10):1252, October
1989.

[HG06] Sebastian Hack and Gerhard Goos. Optimal register allocation for ssa-form
programs in polynomial time. Information Processing Letters, 98(4):150–
155, May 2006.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register Allocation
for Programs in SSA-Form. In Andreas Zeller and Alan Mycroft, editors,
Compiler Construction 2006, volume 3923, pages 247–262. Springer, March
2006.

[HKS03] Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph coloring vs.
optimal register allocation for optimizing compilers. In László Böszörményi
and Peter Schojer, editors, Modular Programming Languages, Joint Modu-
lar Languages Conference, JMLC 2003, Klagenfurt, Austria, August 25-27,
2003, Proceedings, volume 2789 of Lecture Notes in Computer Science, pages
202–213. Springer, 2003.

[HS06] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
PBQP. In David E. Lightfoot and Clemens A. Szyperski, editors, JMLC,
volume 4228 of Lecture Notes in Computer Science, pages 346–361. Springer,
2006.

[Jak04] Hannes Jakschitsch. “Befehlsauswahl auf SSA-Graphen”. Master’s thesis,
Fakultät für Informatik, Universität Karlsruhe (TH),Germany, 2004.

[KB57] T. C. Koopmans and M. J. Beckmann. Assignment problems and the loca-
tion of economic activities. Econometrica, 25:53–76, 1957.

[KB06] Christoph W. Keßler and Andrzej Bednarski. Optimal integrated code gen-
eration for VLIW architectures. Concurrency and Computation: Practice
and Experience, 18(11):1353–1390, 2006.

[KG06] David Ryan Koes and Seth Copen Goldstein. A global progressive register
allocator. ACM SIGPLAN Notices, 41(6):204–215, June 2006.

[KR95] Christoph W. Keßler and Thomas Rauber. Generating optimal contiguous
evaluations for expression DAGs. Comput. Lang, 21(2):113–127, 1995.



Bibliography 101

[KTJR05] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and Parthasarathy
Ranganathan. Heterogeneous chip multiprocessors. IEEE Computer,
38(11):32–38, 2005.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Code Generation and Op-
timization, CGO 2004, pages 75–88, Palo Alto, CA, March 2004. IEEE
Computer Society.

[LB00] Rainer Leupers and Steven Bashford. Graph-based code selection tech-
niques for embedded processors. ACM Transactions on Design Automation
of Electronic Systems., 5(4):794–814, 2000.

[LDKT95] Stan Liao, Srinivas Devadas, Kurt Keutzer, and Steve Tjiang. Instruction
selection using binate covering for code size optimization. In Proc. Int’l
Conf. on Computer-Aided Design, pages 393–399, 1995.

[lm] MiBench Website. http://www.eecs.umich.edu/mibench/.

[LT79] Thomas Lengauer and Robert E. Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. ACM Transactions on Programming Languages and
Systems, 1(1):121–141, July 1979.

[MP94] F. Malucelli and D. Pretolani. Quadratic semi-assignment problems on
structured graphs. Ricerca Operative, 69:57–78, 1994.

[MP95] F. Malucelli and D. Pretolani. Lower bounds for the quadratic semi-
assignment problem. European Journal of Operational Research, 83:365–375,
1995.

[NK97] Albert Nymeyer and Joost-Pieter Katoen. Code generation based on formal
BURS therory and heuristic search. Acta Inf., 34(8):597–635, 1997.

[NP98] Cindy Norris and Lori L. Pollock. Experiences with cooperating register
allocation and instruction scheduling. International Journal of Parallel Pro-
gramming, 26(2):241–283, 1998.

[ORA+01] Guilherme Ottoni, Sandro Rigo, Guido Araujo, Subramanian Rajagopalan,
and Sharad Malik. Optimal live range merge for address register allocation
in embedded programs. Lecture Notes in Computer Science, 2027, 2001.

[PM98] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In Pro-
ceedings of the 1998 International Conference on Parallel Architectures and
Compilation Techniques (7th PACT’98), pages 196–204, Paris, France, Oc-
tober 1998. IEEE Computer Society.

http://www.eecs.umich.edu/mibench/


Bibliography 102

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation
via coloring of chordal graphs. In Kwangkeun Yi, editor, Programming
Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba,
Japan, November 2-5, 2005, Proceedings, volume 3780 of Lecture Notes in
Computer Science, pages 315–329. Springer, 2005.

[PP08] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation by
puzzle solving. In Rajiv Gupta and Saman P. Amarasinghe, editors, Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages 216–
226. ACM, 2008.

[Pro98] Todd A. Proebsting. Least-Cost Instruction Selection in DAGs is NP-
Complete. http://research.microsoft.com/˜ toddpro/papers/proof.htm, 1998.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Transactions on Programming Languages and Systems (TOPLAS),
21(5):895 – 913, 1999.

[RD98] Norman Ramsey and Jack W. Davidson. Machine descriptions to build tools
for embedded systems. Lecture Notes in Computer Science, 1474:176ff, 1998.

[RN03] Johan Runeson and Sven-Olof Nyström. Retargetable graph-coloring reg-
ister allocation for irregular architectures. In Andreas Krall, editor, Pro-
ceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems, Vienna, Austria, April 2003, volume 2826 of ACM In-
ternational Conference Proceeding Series, pages 240–254, 2003.

[RT97] C. Roos and T. Terlaky. Advances in linear optimization, 1997.

[SBX08] Bernhard Scholz, Bernd Burgstaller, and Jingling Xue. Minimal placement
of bank selection instructions for partitioned memory architectures. ACM
Trans. Embedded Comput. Syst, 7(2), 2008.

[SE02a] Bernhard Scholz and Erik Eckstein. Register Allocation for Irregular Ar-
chitectures. In LCTES-SCOPES ’02: Proceedings of the Joint Conference
on Languages, Compilers and Tools for Embedded Systems, pages 139–148,
2002.

[SE02b] Bernhard Scholz and Erik Eckstein. Register allocation for irregular archi-
tectures. ACM SIGPLAN Notices, 37(7):139–148, July 2002.

[Set73] Ravi Sethi. Complete register allocation problems. In 5th annual ACM
symposium on Theory of computing, pages 182 – 195. ACM Press, 1973.

[SPC] SPEC2000 Website. http://www.spec.org.

http://www.spec.org


Bibliography 103

[SRH04] Michael D. Smith, Norman Ramsey, and Glenn H. Holloway. A generalized
algorithm for graph-coloring register allocation. In William Pugh and Craig
Chambers, editors, Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation 2004, Washington, DC,
USA, June 9-11, 2004, pages 277–288. ACM, 2004.

[SS07] Stefan Schäfer and Bernhard Scholz. Optimal chain rule placement for in-
struction selection based on SSA graphs. In SCOPES ’07: Proceedingsof the
10th international workshop on Software & compilers for embedded systems,
pages 91–100, Nice, France, 2007. ACM.

[Sto77] H. S. Stone. Multiprocessor scheduling with the aid of network flow algo-
rithms. IEEE Transactions on Software Engineering, SE-3(1):85–93, Jan-
uary 1977.

[SU70] Sethi and Ullman. The generation of optimal code for arithmetic expressions.
JACM: Journal of the ACM, 17, 1970.

[SW97] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM,
44(4):585–591, 1997.

[SYL+07] Hanno Scharwächter, Jonghee M. Yoon, Rainer Leupers, Yunheung Paek,
Gerd Ascheid, and Heinrich Meyr. A code-generator generator for multi-
output instructions. In Soonhoi Ha, Kiyoung Choi, Nikil D. Dutt, and
Jürgen Teich, editors, Proceedings of the 5th International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS 2007,
Salzburg, Austria, September 30 - October 3, 2007, pages 131–136. ACM,
2007.

[Tur99] Jim Turley. Embedded processors by the numbers. Embedded Systems Pro-
gramming, 1999.

[uVSM94] Vojin z̆ivojnović, Juan M. Velarde, Christian Schläger, and Heinrich Meyr.
DSPSTONE: A DSP-oriented benchmarking methodology. In Proceedings
of the International Conference on Signal Processing and Technology (IC-
SPAT’94), 1994.

[Vaz04] V. V. Vazirani. Approximation Algorithms. Springer, 2004.

[WGB94] Thomas Charles Wilson, Gary William Grewal, and Dilip K. Banerji. An
ILP solution for simultaneous scheduling, allocation, and binding in multiple
block synthesis. In ICCD, pages 581–586. IEEE Computer Society, 1994.

[YG87] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph
problem for chordal graphs. Information Processing Letters, 24(2):133 –
137, 1987.


	Introduction
	The Embedded Computing Landscape
	Types of Embedded Processors
	Application Areas

	Example Architectures
	ARM
	CHILI

	The LLVM Compiler Infrastructure
	Overview
	LLVM Virtual Instruction Set
	Backend Infrastructure

	Preliminaries
	Static Single Assignment Form
	Integer Linear Programming
	Network Flow Theory


	Partitioned Boolean Quadratic Programming
	Problem Definition
	Related Problems
	Complexity

	Algorithms for PBQP
	Heuristic Algorithm
	Branch & Bound

	Applications
	Experimental Evaluation

	Code Generation for SSA Graphs
	Introduction
	Related Work
	RTL-Based Instruction Selection
	Tree Pattern Matching
	PBQP-Based Instruction Selection

	Motivation
	Instruction Selection using Complex Patterns
	Identifying Patterns in SSA Graphs
	Problem Transformation

	Implementation Details
	Experimental Results

	Spilling in the Context of SSA-Based Register Allocation
	Introduction
	SSA-Based Register Allocation
	Motivation and Modeling
	Constrained Min-Cut
	Lagrangian Relaxation
	Experimental Evaluation
	Related Work

	Conclusions

