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Abstract

By using the Markovian model in life insurance, life insurance contracts can be described

through a stochastic process. The state of a contract at any time over the insurance period

is given by the value of the corresponding path of the process at this time. Each of the

so-called transition probabilities indicates the probability for the process to have a transi-

tion from one specified state to another one. As the stochastic process modelling the life

insurance contracts is chosen to be a Markov process, future states of a concrete contract

only depend on the corresponding path’s present state but not on previously visited states.

Benefits and contributions of individually defined amounts at individually specified points

in time or even continuously effected payments can be defined for such a contract. For

remaining in one state or for certain transitions the specified payments become due.

Besides precisely analysing the theoretical background of the Markovian model, the practi-

cal application of Thiele’s differential equation constitutes an essential part of this diploma

thesis. With the objective of being able to calculate the reserve for such individually

created contracts, a routine has been written in the C programming language.
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Kurzfassung

Die Anwendung des Markov-Modells in der Lebensversicherung erlaubt die Darstellung

von Lebensversicherungsverträgen mittels eines stochastischen Prozesses, wobei der Zu-

stand eines konkreten Vertrags zu jedem Zeitpunkt der Vertragslaufzeit durch den Wert

des zugehörigen Pfades dieses Prozesses gegeben ist und den einzelnen Zustandsübergängen

sogenannte Übergangswahrscheinlichkeiten zugeordnet werden. Der verwendete stochasti-

sche Prozess ist sogar ein Markovprozess, das heißt, die zukünftige Entwicklung des Pro-

zesses hängt nur vom aktuellen Vertragszustand ab, nicht aber davon, wie der Prozess

den derzeitigen Zustand erreicht hat. Für einen derart modellierten Vertrag können nun

Leistungen und Beiträge, die bei Verbleiben des Vertrags in bestimmten Zuständen oder

bei bestimmten Übergängen fällig werden, individuell definiert werden: Die Zahlungszeit-

punkte sind frei wählbar beziehungsweise besteht die Möglichkeit stetig geleisteter Zahlun-

gen, außerdem kann die Höhe jeder einzelnen Zahlung beliebig festgelegt werden.

Neben der genauen Analyse der zugrundeliegenden Theorie für das Markov-Modell

beschäftigt sich diese Arbeit vor allem mit der praktischen Umsetzung der Thieleschen

Differentialgleichung zur Berechnung des Reserveverlaufs für nach diesem Modell indi-

viduell gestaltete Lebensversicherungsverträge. Hierfür wurde ein Programm in der Pro-

grammiersprache C entwickelt.
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Chapter 1

Introduction

For any insurance contract, the insurance company incurs certain defined expenses (de-

clared insurance benefits and arising costs) but also collects a specified revenue (contribu-

tions paid by the insured person for the insurance coverage) over the insurance period of

the contract. Both expenses and revenue are effected just under certain conditions (e.g.

staying alive or having died) the performance of which can be described by probabilities.

So the insurance company has certain expectations concerning the commitments it has to

pay and the contributions it collects. These expectations at any time t during the insurance

period are described by the prospective reserve: The prospective reserve is the difference

between the expected discounted expenses and the expected discounted revenue. In other

words, the reserve is the value the insurer has to provide to balance the difference between

expected expenses and revenue at any point in time t over the insurance period.

The central theme of this diploma thesis is the calculation of the prospective reserve in

life insurance. With the objective of considering very individually created contracts, i.e.

contracts having benefits and contributions of individually defined amounts at individu-

ally specified points in time or even continuously effected payments, the following insurance

model has been chosen:

In contrast to classical life insurance, in this model a finite set S = {1, . . . , n} describes

the so-called state space consisting of the possible states for the considered insurance con-

tract. So for T denoting the insurance period, at any time t ∈ T the insured person or,

more precisely, the contract is in one state i ∈ S.

A simple example is S = {∗, †} where ∗ denotes the state “alive” and † the state “dead”.

S = {∗, ⋄1, ⋄2, . . . , ⋄m, †} constitutes a more complex state space with ∗ signifying the state
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Figure 1.1: States of an insurance contract changing between t and ∆t

“active”, ⋄k for k ∈ {1, . . . , m} denoting the state “invalid for the k-th year” and † de-

scribing the state “dead” as before.

When using S as the set of individually defined states also the following state space is con-

ceivable: S = {∗∗, ∗†, †∗, ††} represents the set of the possible states of a contract for two

insured persons. In this case, the elements of S are composed of all possible combinations

of the two persons’ single states ∗ (“alive”) and † (“dead”).

Figure 1.1 shows possible changes of a contract’s state from time t to t + ∆t for S =

{1, . . . , n}.

The state of the contract at any time t over the insurance period is represented by a

stochastic process {Xt(ω)}t∈T with values in S. Transitions between the states are de-

scribed by probabilities. The contractual payments are defined depending on the states:

For remaining in one state or for certain transitions, the specified payments become due.

The stochastic process representing the contract’s state model shall have a special qual-

ity: Assuming that a future state of the contract only depends on the present state but

not on previous states is an intelligent and useful possibility of modelling an insurance con-

tract. A stochastic process fulfilling this property is called Markov process. So this special

quality leads to the expression Markovian model in life insurance which describes a stochas-

tic life insurance model with a Markov process representing the corresponding state model.

Considering contracts with payments at individually specified points militates for a

time-continuous insurance model. Any discretisation with regard to the payment times

leading to a time-discrete model would reduce the degree of individuality for the contracts.
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Furthermore, a time-continuous model allows the definition of time-continuous payments

which are not so relevant for practical application but very important for theoretical con-

siderations and for comparative examples sheding light on the correlation of continuous

and different discrete payments.

Besides introducing the relevant theoretical aspects of the Markovian life insurance

model, an essential part of this diploma thesis is the practical application of the deduced

formulas. For this reason, one chapter is dedicated to the required numerical methods and

in two chapters the important considerations for practical application are described and

some examples are given.

The structure of this diploma thesis is as follows: Chapter 2 is dedicated to the Markov

process after which not only the Markovian life insurance model but also the title of this

diploma thesis is named. Starting from a stochastic process, all the relevant properties of

the Markov process are described in this chapter which prepares for using the Markovian

model as the considered stochastic life insurance model in Chapter 3. There, the con-

struction of the Markovian model is successively deduced and explained in order to arrive

at a formula for calculating the prospective reserve. As this formula is constituted by an

ordinary differential equation, Chapter 4 deals with the different methods for numerically

solving ordinary differential equations. My contribution to this diploma thesis can be found

in Chapter 5 and 6: In Chapter 5, the important considerations for implementing Thiele’s

differential equation as well as the structure of the created routine are explained and some

examples are given. Chapter 6 deals with the integrated consideration of the character of

an insurance contract and explains the arising changes with respect to both the theoretical

background and the practical application. Appendix A contains the source code of the

created routine.
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Chapter 2

Markov Processes

As it has already been mentioned in Chapter 1, a stochastic life insurance model defined

for a finite set of states

S = {1, . . . , n}, n ∈ N (2.1)

constitutes the starting point for this diploma thesis. In this model, a stochastic process

with values in S describes the state of the insured person or of the insurance contract over

the insurance period. Transitions between the states are characterised by probabilities.

In this chapter, based on parts of chapter 2 in [Koller, 2000], important definitions and

properties of Markov processes are described. So this chapter prepares for using the Marko-

vian model as the considered stochastic life insurance model which is explained in chapter

3. Basic knowledge in measure theory and probability theory is assumed.

Definition 2.1 (Stochastic process). Let (Ω,A,P) be a probability space, (S,S) a mea-

surable space and T a set. Then, a family {Xt}t∈T of random variables Xt : Ω → S, t ∈ T ,

i.e.

X : Ω × T → S, (ω, t) 7→ Xt(ω)

constitutes a stochastic process on (Ω,A,P) with state space S.

For every ω ∈ Ω,

X(ω) : T → S, t 7→ Xt(ω)

defines a trajectory or path. These paths are assumed to be càdlàg (continuous on the

right, limit on the left).
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2.1 The Markov process and its fundamental charac-

teristics

In the following, S 6= ∅ will be a countable set and T ⊂ R will denote an interval.

A Markov process is a special stochastic process fulfilling the Markov property:

Definition 2.2 (Markov process). Let {Xt}t∈T denote a stochastic process on (Ω,A,P)

with values in S. X is called Markov process if the Markov property

P [Xtn+1 = in+1|Xt1 = i1, . . . , Xtn = in] = P [Xtn+1 = in+1|Xtn = in] (2.2)

holds ∀n ∈ N, t1 < . . . < tn+1 ∈ T and i1, . . . , in+1 ∈ S with P [Xt1 = i1, . . . , Xtn = in] > 0.

The right-hand side of (2.2) clearly shows that this probability only depends on the

last visited state Xtn but not on the states of the process before tn.

Now, several properties of this special stochastic process are described, starting with

the definition of the transition probabilities.

Definition 2.3 (Transition probabilities). For a Markov process {Xt}t∈T with values

in S, the transition probability from state i at time s to state j at time t, s ≤ t, i, j ∈ S

for P [Xs = i] > 0 is the conditional probability

pij(s, t) := P [Xt = j|Xs = i] (2.3)

For P [Xs = i] = 0, pij(s, t) is defined to be 0.

On the one hand, when choosing a mathematical model to describe certain phenomena

in reality, a desired quality of the model is to reflect the considered situations as accurately

as possible. On the other hand, the model should be quite easy to handle in a mathemat-

ical sense.

For the case of the Markov process modelling life insurance contracts, the desired property

of mathematical simplicity is fulfilled as the Markovian model allows easy computation

of relevant probabilities and expected values. Nevertheless, the Markovian model is very

suitable for describing a life insurance contract with its different states and possible tran-

sitions. A special quality of the Markov process is that it allows the treatment of contracts

6



with both continuous and discrete payment functions.

Sometimes the information about the last visited state of the contract is not sufficient for

calculating required probabilities (e.g. when thinking of the state “invalid” for which the

probabilities of dying and reactivating depend on how long the contract has already been

in this state). In such a case, either the Markovian model with differently defined states

(e.g. “invalid for the k-th year”, k = 1, . . . , m) can be applied or a completely different

model has to be used.

The following theorem describes the composition of the transition probabilities when

taking into account the state of the process at an intermediate point t ∈ [s, u].

Theorem 2.4 (Chapman-Kolmogorov equation). Let {Xt}t∈T be a Markov process

with values in S, s, t, u ∈ T with s ≤ t ≤ u and i, k ∈ S with P [Xs = i] > 0. Then

pik(s, u) =
∑

j∈S

pij(s, t)pjk(t, u) (2.4)

Proof. To prove Theorem 2.4, the set

S∗ := {j ∈ S : P [Xt = j|Xs = i] > 0} = {j ∈ S : P [Xt = j, Xs = i] > 0} (2.5)

is used instead of S to avoid division by 0. Equation (2.5) holds because P [Xs = i] > 0.

pik(s, u) = P [Xu = k|Xs = i]

=
∑

j∈S∗

P [Xu = k, Xt = j|Xs = i] (2.6)

=
∑

j∈S∗

P [Xu = k|Xt = j, Xs = i]P [Xt = j|Xs = i]

=
∑

j∈S∗

P [Xu = k|Xt = j]P [Xt = j|Xs = i] (2.7)

=
∑

j∈S∗

pjk(t, u)pij(s, t)

=
∑

j∈S

pij(s, t)pjk(t, u) (2.8)

(2.6) holds because at an intermediate point t, s ≤ t ≤ u, the process is in any state

j ∈ S∗. j ∈ S \ S∗ does not make any contribution because P [Xt = j|Xs = i] = 0

implies P [Xu = k, Xt = j|Xs = i] = 0. In (2.7), P [Xu = k|Xt = j, Xs = i] is replaced
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by P [Xu = k|Xt = j] because of the Markov property. In (2.8), S∗ can be replaced by S

again because pij(s, t) = 0 for j ∈ S \ S∗.

Definition 2.5 (Transition matrix).

{P (s, t)}s, t∈T, s≤ t =








p11(s, t) p12(s, t) . . . p1n(s, t)

p21(s, t) p22(s, t) . . . p2n(s, t)
...

...
. . .

...

pn1(s, t) pn2(s, t) . . . pnn(s, t)








s, t∈T, s≤ t

(2.9)

is called a family of stochastic transition matrices if the following four characteristics are

fulfilled ∀ s, t ∈ T, s ≤ t:

• pij(s, t) ≥ 0 ∀ i, j ∈ S

• ∑
j∈S pij(s, t) = 1 ∀ i ∈ S

• pij(s, s) = δij ∀ i, j ∈ S with δij denoting the Kronecker delta δij =





1 if i = j

0 if i 6= j

• pik(s, u) =
∑

j∈S pij(s, t)pjk(t, u) ∀ i, k ∈ S, s, t, u ∈ T, s ≤ t ≤ u

which is equal to P (s, u) = P (s, t)P (t, u) in matrix notation.

In the definition above, the property of being a stochastic matrix results from the facts

that all elements of the matrix are non-negative and that all of its rows sum to unity. For

s = t, P (s, s) is equal to the identity matrix




1 0
. . .

0 1


, in the following referred to as

In.

Definition 2.6 (Transition matrix for the Markov process). A Markov process has

transition matrices P (s, t) with s, t ∈ T, s ≤ t if

P [Xt = j|Xs = i] = pij(s, t)

holds ∀ s, t ∈ T, s ≤ t and i, j ∈ S with P [Xs = i] > 0.

8



2.2 Continuous time Markov processes

With the aim of being able to treat any individually customised life insurance contract, a

time-continuous consideration is required. So continuous time Markov processes are dis-

cussed in this section, starting with the introduction of the so-called transition intensities.

Definition 2.7 (Transition intensities). Let {P (s, t)}s, t∈T, s≤ t be a family of transition

matrices and {Xt}t∈T a Markov process having those transition probabilities.

{P (s, t)}s, t∈T, s≤ t and the Markov process are called regular if the transition intensities

µij(t) = lim
△tց0

pij(t, t + ∆t)

∆t
∀ i, j ∈ S, i 6= j (2.10)

and

∑

j∈S
j 6=i

µij(t) =
∑

j∈S
j 6=i

lim
△tց0

pij(t, t + ∆t)

∆t

= lim
△tց0

1 − pii(t, t + ∆t)

∆t
∀ i ∈ S

exist ∀ t ∈ T and if they are continuous in t.

In Definition 2.7, the intensity denoted by µij(t) refers to a transition from state i to

state j at time t whereas
∑

j∈S
j 6=i

µij(t) describes the intensity of leaving state i and passing

over into any other state j 6= i.

The transition intensities µij(t) can be read as the right-hand derivatives of the corre-

sponding transition probabilities. Because P (t, t) = In,

µij(t) = lim
△tց0

pij(t, t + ∆t) − pij(t, t)

∆t
(2.11)

= lim
△tց0

pij(t, t + ∆t) − δij

∆t
(2.12)

=
∂

∂u+
pij(t, u)

∣∣∣∣∣
u = t

∀ i, j ∈ S

holds for i, j ∈ S and even i = j with ∂
∂u+f(u) denoting the right-hand derivative of f at

u. As δij = 0 for i 6= j, obviously (2.11) and (2.12) are equivalent to (2.10) in Definition

2.7.
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Although for all calculations in the remaining part of this chapter and in the next chapter

only µij(t), i 6= j are of interest, also for i = j in [Koller, 2000] an intensity is defined

through

µii(t) = −
∑

j∈S
j 6=i

µij(t) ∀ i ∈ S, (2.13)

completing the introduction of µij(t), j 6= i.

The definition of µii(t) in (2.13) can be explained by the following consideration:

When taking the sum of the intensities ∀ j ∈ S (including j = i), (2.12) leads to

∑

j∈S

µij(t) =
∑

j∈S

lim
△tց0

pij(t, t + ∆t) − δij

∆t

= lim
△tց0

∑
j∈S pij(t, t + ∆t) − 1

∆t
∀ i ∈ S (2.14)

which holds because a derivative and a finite sum can be interchanged.
∑

j∈S pij(t, t+∆t) = 1 implies that (2.14) is equal to 0 which is equivalent to the definition

of µij(t) in (2.13).

For i 6= j,

µij(t)∆t ≈ pij(t, t + ∆t) (2.15)

= P [Xt+∆t = j|Xt = i] for P [Xt = i] > 0

can be taken as the infinitesimal transition probability i → j of the interval [t, t + ∆t].

Another way of phrasing (2.15) is

pij(t, t + ∆t) = µij(t)∆t + o(t) (2.16)

where o(x) signifies that for a function f(x) being of order o(x), limxց0
f(x)

x
= 0.

Λ(t) =




µ11(t) µ12(t) . . . µ1n(t)

µ21(t) µ22(t) . . . µ2n(t)
...

...
. . .

...

µn1(t) µn2(t) . . . µnn(t)




(2.17)

denotes the matrix containing the transition intensities with

Λ(t) = lim
△tց0

P (t, t + ∆t) − In

∆t
=

∂

∂u+
P (t, u)

∣∣∣∣∣
u = t

10



To see how the transition probabilities and the transition intensities are related to each

other, now the Kolmogorov forward and backward equations are formulated and proved:

Theorem 2.8 (Kolmogorov differential equations). The Kolmogorov forward equa-

tion

∂

∂t
P (s, t) = P (s, t)Λ(t) (2.18)

∂

∂t
pij(s, t) = − pij(s, t)

∑

k∈S
k 6=j

µjk(t) +
∑

k∈S
k 6=j

pik(s, t)µkj(t) ∀ i, j ∈ S (2.19)

and the Kolmogorov backward equation

∂

∂s
P (s, t) = − Λ(s)P (s, t) (2.20)

∂

∂s
pij(s, t) =

∑

k∈S
k 6=i

µik(s)pij(s, t) −
∑

k∈S
k 6=i

µik(s)pkj(s, t) ∀ i, j ∈ S (2.21)

hold for a regular family {P (s, t)}s, t∈T, s≤ t of transition matrices and a finite set S.

The forward equation regards changes with respect to state j at time t whereas the

backward equation refers to changes with respect to state i at time s. If the component-wise

equations (2.19) and (2.21) are rewritten in differential form

dt pij(s, t) = − pij(s, t)
∑

k∈S
k 6=j

µjk(t)dt +
∑

k∈S
k 6=j

pik(s, t)µkj(t)dt ∀ i, j ∈ S (2.22)

ds pij(s, t) =
∑

k∈S

k 6=i

µik(s)pij(s, t)ds −
∑

k∈S

k 6=i

µik(s)pkj(s, t)ds ∀ i, j ∈ S, (2.23)

the following interpretation taken from [Wolthuis, 1994] gives a good intuitive understand-

ing:

Starting from state j at time s, the left-hand side of (2.22) can be interpreted as the change

in the probability for the contract to be in state j over the interval [t, t + ∆t). The right-

hand side can be read as the difference between the expected number of transitions over

∆t from any state k 6= j to state j and that from state j to any other state k, given that

the contract is in state i at time s.

A similar interpretation can be given for (2.23) with respect to the change in the proba-

bility for the contract to be in state i over the interval [s, s + ∆s).
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By means of the Kolmogorov forward and backward equations, {P (s, t)}s, t∈T, s≤ t can be

calculated for given t → Λ(t), t ∈ T .

Proof. To prove Theorem 2.8, first for both equations the difference quotients are built.

After applying the Chapman-Kolmogorov equation (2.4), the limits for ∆t → 0 and ∆s →
0, respectively, are calculated.

• For s ≤ t < t + ∆t and s, t, t + ∆t ∈ T ,

∂

∂t
P (s, t) = lim

△tց0

P (s, t + ∆t) − P (s, t)

∆t

= lim
△tց0

P (s, t)P (t, t + ∆t) − P (s, t)P (t, t)

∆t

= P (s, t) lim
△tց0

P (t, t + ∆t) − In

∆t

= P (s, t)Λ(t)

• For s < s + ∆s ≤ t and s, s + ∆s, t ∈ T ,

∂

∂s
P (s, t) = lim

△sց0

P (s + ∆s, t) − P (s, t)

∆s

= lim
△sց0

P (s + ∆s, s + ∆s)P (s + ∆s, t) − P (s, s + ∆s)P (s + ∆s, t)

∆s

= lim
△sց0

In − P (s, s + ∆s)

∆s
P (s + ∆s, t)

= −Λ(s)P (s, t)

12



Chapter 3

Calculating the reserve for a

stochastic life insurance model

In Chapter 2, several properties of Markov processes have been discussed and it has been

mentioned to what extent a Markov process represents a suitable model for life insurance

contracts.

In this chapter, the remaining components for creating a life insurance model are presented

and analysed, with the aim of obtaining a formula for calculating the prospective reserve

of life insurance contracts.

First, in a few lines the topic of interest and discounting is covered very briefly. A con-

siderably more detailed discussion will take place for the payment functions specifying the

benefits and contribution payments for life insurance contracts. Here, the stochastic model

is successively built up: Starting with a deterministic payment stream and step-by-step

including interest and the stochastic component finally leads to expectation values repre-

senting the prospective reserve of a contract.

The same structure of successively approaching the stochastic model can be found in

[Koller, 2000] which serves as principal source for this chapter. The following three refer-

ences which have been important sources when preparing for this diploma thesis represent

further literature concerning stochastic life insurance models: In [Wolthuis, 1994], beside

very detailed explanations also many examples help the reader get a comprehensive insight

into the Markovian model in life insurance mathematics. A very detailed presentation of

life insurance mathematics in general and in particular of using the Markovian model is

given in [Milbrodt and Helbig, 1999]. Great importance is attached to profoundly dealing

with the required fundamental theoretical principles of measure theory and analysis. In

[Norberg, 2001], the basic facts are described in a very clear presentation which very well

13



completes the information given through the other chosen books.

As in Chapter 2, basic knowledge in measure theory and probability theory is assumed.

3.1 Interest and discounting

The interest is an important component of life insurance contracts. Choosing a certain

interest or interest model for a life insurance contract affects the calculated discounted

values and therefore the premiums paid by the insured person. A too low interest implies

very high contribution payments whereas a too high interest can cause the insurer’s ruin.

An interest model can either be deterministic or stochastic. Thiele’s differential equa-

tion representing the central equation for calculating the prospective reserve of a life in-

surance contract is formulated at the end of this chapter. Because this equation requires

deterministic interest the following definition only refers to the deterministic case:

Definition 3.1. The deterministic function δ(t) describes the force of interest at time t.

The corresponding discounting function is denoted by

v(s, t) = exp

(
−
∫ t

s
δ(τ)dτ

)
(3.1)

For s = 0, instead of v(0, t) the expression v(t) will be used.

3.2 Deterministic payment functions

For every insurance contract, the contractual payments define at which point of time which

amounts have to be paid, depending on the state of the contract or the specified transition

at this time. Again, the state space is denoted by S = {1, . . . , n}, n ∈ N and T ⊂ R

signifies the insurance period.

In this section, only deterministic payment streams are considered which describe cer-

tain amounts that are paid for being in a specified state or for a transition from one state

to another one. For now, any stochastic component describing the state of a contract over

the time is left out. So the question of whether the payments effectively are realised or not

and the influence of probabilities are not taken into account in this section.
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To get a first insight in how payments will be defined in later parts of this chapter, I

start with the following definition:

Definition 3.2.

• Assume that the contract is in state i ∈ S over [0, t] ⊂ T . Then aii(t) denotes the

sum of the payments realised in state i over the interval [0, t].

• aij(t) for i, j ∈ S, i 6= j describes the payment which is realised for a transition from

state i to state j at time t ∈ T .

Notice that aii(t) and aij(t) differ in so far that for every t, aij(t) is a single payment

whereas aii(t) signifies the accumulated payments until time t.

For example, the classical term insurance has the state space S = {∗, †} consisting of

the two states ∗ = ”alive“ and † = ”dead“. a∗∗(t) decreases by the amount of the contri-

bution payment at each contribution payment time. a∗†(t) represents the benefit paid if

the insured person dies at time t. a††(t) and a†∗(t) are equal to 0 ∀ t ∈ T .

In order to analyse important properties of deterministic payment functions, for the

remaining part of this section I will use a more generally defined function A which does

not refer to any state of the contract.

The definition of this payment function first requires the introduction of the following

property:

Definition 3.3 (Function of bounded variation). Let T ⊂ R be an interval and

f : T → C a function with C denoting the set of all complex numbers. Then the total

variation of f over T is defined through

V a(f, T ) := sup

{
n∑

i=1

|f(b
(n)
i ) − f(a

(n)
i )|

}

where the supremum is taken over all partitions a
(n)
1 < b

(n)
1 ≤ a

(n)
2 < b

(n)
2 ≤ . . . ≤ a(n)

n <

b(n)
n , n ∈ N of the interval T.

f is of bounded variation over T if V a(f, T ) < ∞.
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Definition 3.4 (Deterministic payment stream). A right-continuous function

A : T → R, t 7→ A(t)

of bounded variation is called deterministic payment function or deterministic payment

stream.

In Definition 3.4, A(t) can be read as the accumulated payments until time t. By us-

ing this interpretation, the successive approach to the full life insurance model will continue.

As A is a function of bounded variation, some useful properties now are explained:

• For A : T → R there exists a uniquely defined signed measure on the Borel-σ-algebra

σ(T ) of T which I also denote by A. For this measure,

A((a, b]) = A(b) − A(a)

• A can uniquely be written as the difference A = A+ − A− of two right-continuous,

non-decreasing finite functions A+ and A− which increase on disjoint sets. A+ and

A− then uniquely define non-negative measures on (T, σ(T )).

With respect to a life insurance contract, A = A+ − A− can be interpreted as the

difference between insurance benefits (A+) and contributions (A−), both regarded as

positive amounts.

When considering a payment function as introduced in Definition 3.4, the value of this

payment stream is of great interest. By using the discounting function (3.1) the present

value of A can be calculated:

Definition 3.5 (Present value). For a deterministic payment stream A : [0,∞) →
R, t ≥ 0 and v ∈ L1(A), i.e. v integrable on A, the value of A at time t is

V (t, A) :=
1

v(t)

∫

(0,∞)
v(s)dA(s) =

∫

(0,∞)
exp

(∫ t

s
δ(τ)dτ

)
dA(s)

Under the same assumptions, the prospective value of A at time t is

V +(t, A) :=
1

v(t)

∫

(t,∞)
v(s)dA(s)
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As A is assumed to be deterministic, the present values V (t, A) and V +(t, A) are de-

terministic functions, too. By contrast, contingent payment streams will be considered in

the next section. Then V (t, A) and V +(t, A) will be random variables for which also the

calculation of expectation values will be of interest.

3.3 Stochastic payment functions

The deterministic payment function A which has been defined in the previous section is

furnished with a stochastic component and so becomes a stochastic payment stream in this

section.

Definition 3.6.

• A stochastic payment function or stream is a stochastic process {At}t∈T for which

almost all paths are right-continuous and of bounded variation.

• Let {At}t≥ 0 be a stochastic payment stream on (Ω,A,P) and F : [0,∞)×Ω → R a

bounded, product measurable function. Then, for almost all ω ∈ Ω

(F · A)t(ω) =
∫

(0,t]
F (s, ω)dAs(ω) =:

∫ t

0
FdA (3.2)

and in differential notation

d(F · A) = FdA

For fixed ω ∈ Ω, F (·, ω) : [0,∞) → R is measurable and A(ω) can be split up into

A+(ω) and A−(ω) with the corresponding non-deterministic and non-negative measures

A+(ω) and A−(ω). Then
∫

(0,t]
F (s, ω)dAs(ω) =

∫

(0,t]
F (s, ω)dA+

s (ω) −
∫

(0,t]
F (s, ω)dA−

s (ω)

With the aim of more precisely describing the payment streams for life insurance contracts,

the payment functions aii and aij defined in section 3.2 are picked up again:

• aii(t) for i ∈ S represents the accumulated payments for a contract that has been in

state i until time t without interruption. In the following, aii(t) is assumed to be of

bounded variation which implies aii(t) =
∫ t
0 daii(s).
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• aij(t) is the single payment effected at time t if a transition from state i to state j

occurs at time t, i, j ∈ S, i 6= j.

In addition to that, two more functions are defined now:

Definition 3.7. Let {Xt}t∈T be a stochastic process on (Ω,A,P) with values in S. For

i ∈ S,

Ii(t, ω) =





1 if Xt(ω) = i

0 if Xt(ω) 6= i
(3.3)

is the indicator function with respect to the process {Xt}t∈T at time t.

The function

Nij(t, ω) = #{τ ∈ (0, t) : Xτ− = i and Xτ = j} (3.4)

describes the number of transitions from i to j of the process over the interval (0, t).

When describing the payment stream of a life insurance contract, for every path ω

Ii(t, ω) provides the information whether the contract is in state i at time t or not. Anal-

ogously, for ω ∈ Ω, Nij(t, ω) indicates a transition from state i to state j of the process by

increasing by 1 at time t.

Definition 3.8. For a life insurance contract with state space S and payment functions

aii(t) and aij(t) being of bounded variation,

Aii(t, ω) =
∫

(0,t]
Ii(s, ω)daii(s) (3.5)

Aij(t, ω) =
∫

(0,t]
aij(s)dNij(s, ω) (3.6)

and

A(t, ω) =
∑

i∈S

Aii(t, ω) +
∑

i∈S

∑

j∈S
j 6=i

Aij(t, ω) (3.7)

are the corresponding contractual non-deterministic payment streams.

Whereas aii(t) and aij(t) indicate deterministic payment functions for the stay in one

state or for a certain transition, the payment streams Aii(t, ω), Aij(t, ω) and A(t, ω) in

Definition 3.8 describe the effectively realised payments for one possible path ω of the

stochastic process modelling the contract.
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So Aii(t, ω) represents the accumulated payments until t for those periods in (0, t] in which

the contract is in state i for the path ω. Analogously, for the path ω the value of Aij(t, ω)

is equal to the accumulated payments for effectively occurred transitions from i to j over

(0, t]. A(t, ω) represents the whole payment stream including all states and all transitions

for a path ω.

In Definition 3.8, formula (3.2) of Definition 3.6 is applied: When defining Aii(t, ω),

Ii(s, ω) corresponds to the product measurable function F in Definition 3.6 and aii(s) rep-

resents the payment stream As(ω) which, in this special case, is deterministic. For Aij(t, ω),

aij(s) describes the function F which, in this case, is not furnished with a stochastic com-

ponent and Nij(s, ω) corresponds to the stochastic payment stream As(ω).

In differential notation, (3.5)-(3.7) are written as

dAii(t, ω) = Ii(t, ω)daii(t) (3.8)

dAij(t, ω) = aij(t)dNij(t, ω) (3.9)

and

dA(t, ω) =
∑

i∈S

dAii(t, ω) +
∑

i∈S

∑

j∈S
j 6=i

dAij(t, ω) (3.10)

It is clearly evident that dAii(t, ω) and dAij(t, ω) in (3.8)-(3.10) are the values by which

the commitments of the insurer with respect to the insured person are increased at time t

for path ω.

The present value of a payment stream (cf. Definition 3.5) can also be determined for

every path of a non-deterministic payment stream. As only the prospective consideration

of payment streams is of interest for the remaining part of this chapter, I just give the

formula of the prospective present value with respect to the stochastic payment stream

A(t) = {A(t, ω)}ω∈Ω:

V +(t, A) :=
1

v(t)

∫

(t,∞)
v(s)dA(s) (3.11)

=
1

v(t)

∑

i∈S

∫

(t,∞)
v(s)dAii(s) +

1

v(t)

∑

i∈S

∑

j∈S
j 6=i

∫

(t,∞)
v(s)dAij(s) (3.12)

Obviously, in (3.11) and (3.12) V +(t, A) is a random variable.
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3.4 Expectation values leading to the total prospec-

tive reserve

In this section, expectation values for the stochastic functions defined in the previous

section will be introduced in order to arrive at a formula for the prospective reserve.

Definition 3.9. Let F = {Ft}t≥0 be a filtration and let the stochastic payment stream A

and the discounting function v be adapted to F. Then

V +
F (t, A) = E[V +(t, A)|Ft] (3.13)

is called the prospective reserve for A at time t ≥ 0.

Let more precisely the contract be represented by a Markov process {Xt}t≥ 0 and let F =

{Ft}t≥ 0 be the natural filtration generated by {Xt}t≥ 0, i.e. Ft = σ({Xs}s≤ t) ∀t ≥ 0. Then

V +
i (t, A) = E[V +(t, A)|Xt = i] (3.14)

defines the prospective reserve for the Markov process {Xt}t≥ 0 and the payment stream A

if v(t) is deterministic or only depends on Xt.

Obviously, in (3.14) the Markov property (cf. Definition 2.2) is used: For a Markov

process, the conditional expectation with respect to Ft does only depend on the state Xt

at time t.

In the following, the prospective reserve V +
i (t, A) (cf. (3.14)) will be used to calculate

the expected values of different discounted payment streams finally leading to a concrete

formula for calculating the prospective reserve.

Because the expectation values in Definition 3.9 need not necessarily exist, the following

definition constitutes the qualities required for an insurance model having well-defined

prospective reserves:

Definition 3.10 (Regular insurance model). A regular insurance model is defined as

a model with

• {Xt}t≥ 0 being a regular Markov process with finite state space S

• aii(t), aij(t) : [0,∞) → R being the deterministic contractual payment functions of

bounded variation as defined in section 3.3.
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• δi(t) being right-continuous functions of bounded variation modelling the force of

interest

In the following, it is assumed that δ(t) =
∑

i∈S Ii(t)δi(t) (Markovian force of interest)

for t ≥ 0 with Ii(t) denoting the indicator function.

Definition 3.11. Let i, j, k be states in S.

The prospective reserve for remaining in one state j over the period (t,∞) given that Xt = i

is

V +
i (t, Ajj) = E

[
1

v(t)

∫

(t,∞)
v(τ)dAjj(τ)|Xt = i

]
(3.15)

and the prospective reserve for transitions from state j to state k over (t,∞) given that

Xt = i is

V +
i (t, Ajk) = E

[
1

v(t)

∫

(t,∞)
v(τ)dAjk(τ)|Xt = i

]
(3.16)

Then, the total prospective reserve for a given state i of the contract at time t is composed

of V +
i (t, Ajj) and V +

i (t, Ajk) for the different states:

V +
i (t, A) =

∑

j∈S

V +
i (t, Ajj) +

∑

j∈S

∑

k∈S
k 6=j

V +
i (t, Ajk) (3.17)

With the aim of calculating V +
i (t, Ajj) and V +

i (t, Ajk) now the functions dAii(t) =

Ii(t)daii(t) and dAij(t) = aij(t)dNij(t) describing the change of the stochastic payment

streams Ajj(t) and Ajk(t) at time t are considered in more detail.

First, a theorem is formulated which afterwards allows calculating V +
i (t, Ajj) and

V +
i (t, Ajk):

Theorem 3.12. Let {Xt}t≥0 be a regular Markov process and i, j, k ∈ S, j 6= k. Then

E

[∫

(t,∞)
Ij(τ)dajj(τ)|Xt = i

]
=
∫

(t,∞)
pij(t, τ)dajj(τ) (3.18)

holds for ajj being of bounded variation and

E

[∫

(t,∞)
ajk(τ)dNjk(τ)|Xt = i

]
=
∫

(t,∞)
ajk(τ)pij(t, τ)µjk(τ)dτ (3.19)

is valid for ajk being a measurable function and ajkµjk being integrable over [t,∞).
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For the proof of (3.19) further considerations are required:

Assume a regular Markov process with intensities µij(t), i, j ∈ S, i 6= j and
∑

j∈S
j 6=i

µij(t) ≤
λ. Furthermore assume a Poisson process having an intensity bounded by |S|λ where | · |
denotes the cardinality of a set. Then, such a Markov process can be constructed by means

of the described Poisson process that way that the Markov process only has a point of dis-

continuity if the Poisson process has.

The following theorem shows an important property of a Poisson process:

Theorem 3.13. For N = {Nt}t≥ 0 being a Poisson process with intensity λ > 0,

lim
tց 0

1

t
P [Nt ≥ 2] = 0 (3.20)

i.e. P [Nt ≥ 2] = o(t) for t ց 0.

For t ≥ 0, Nt denotes the number of events that have occurred up to time t, and

P[(Ns+t − Ns) = k] = e−λt(λt)k

k!
. As for a Poisson process the probability distribution func-

tion of Ns+t−Ns is equal to that of Nt, Theorem 3.13 shows that there cannot be 2 or more

events (”transitions“) at any time t. When proving Theorem 3.12, this property will be

used for a Markov process which is regarded as constructed by means of a Poisson process.

Proof.

P [Nt ≥ 2] = 1 − P [Nt = 0] − P [Nt = 1] = 1 − e−λt − λte−λt

Then adding the two parts

lim
tց 0

1 − e−λt

t
= − lim

tց 0

e−λt − 1

t
= − d

dt
e−λt

∣∣∣∣∣
t=0

= λ

and

lim
tց 0

− λte−λt

t
= − λ

gives the desired result.

Now, the validity of (3.18) and (3.19) in Theorem 3.12 can be shown:
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Proof.

• To prove equation (3.18), Fubini’s theorem allows interchanging the integral over

(t,∞) and the expectation value. So

E

[∫

(t,∞)
Ij(τ)dajj(τ)|Xt = i

]
=

∫

(t,∞)
E [Ij(τ)dajj(τ)|Xt = i]

=
∫

(t,∞)
P [Xτ = j|Xt = i] dajj(τ)

=
∫

(t,∞)
pij(t, τ)dajj(τ)

• The proof of (3.19) is more complex:

First, the proposition is proved for a simple function ajk = I(u,v]. Then it is explained

how this result can be generalised for any integrable ajk being of bounded variation.

In a first step, ajk(τ) = I(u,v](τ) and t ≤ u < v < ∞. Because {Xτ}τ ≥0 is a regular

Markov process, µjk : [0,∞) → [0,∞) is continuous and therefore bounded on [u, v]

and ajkµjk is integrable. By using h(τ) := E[Njk(τ)|Xt = i],

E

[∫

(t,∞)
ajk(τ)dNjk(τ)|Xt = i

]
= E

[∫ v

u
1dNjk(τ)|Xt = i

]

= E [Njk(v) − Njk(u)|Xt = i]

= h(v) − h(u) =
∫ v

u
h′(τ)dτ

So to prove that
∫ v

u
h′(τ)dτ =

∫

(t,∞)
ajk(τ)pij(t, τ)µjk(τ)dτ

for ajk = I(u,v] it has to be shown that

h′(τ) = pij(t, τ)µjk(τ)

For this purpose, the difference quotient is used and then lim∆τց0 is applied:

h(τ + ∆τ) − h(τ)

∆τ
=

E [(Njk(τ + ∆τ) − Njk(τ)) |Xt = i]

∆τ

=
1

∆τ

∑

l∈S

E
[
I{Xt=l}Njk(τ + ∆τ) − Njk(τ)|Xt = i

]
(3.21)

holds because the process is in any state l ∈ S at time t.

(3.21) =
1

∆τ

∑

l∈S

E [Njk(τ + ∆τ) − Njk(τ)|Xt = i, Xτ = l]P [Xτ = l|Xt = i]

=
1

∆τ

∑

l∈S

E [Njk(τ + ∆τ) − Njk(τ)|Xτ = l] pil(t, τ) (3.22)
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holds because of the Markov property.

In the expectation value of (3.22), Njk(τ + ∆τ) − Njk(τ) denote the number of

transitions from state j to state k over (τ, τ + ∆τ ]. When applying lim∆τց0, for

every addend in (3.22)

lim
∆τց0

1

∆τ
E [Njk(τ + ∆τ) − Njk(τ)|Xτ = l]

= lim
∆τց0

1

∆τ

∞∑

m=0

mP [(Njk(τ + ∆τ) − Njk(τ)) = m|Xτ = l]

= lim
∆τց0

1

∆τ
1P [(Njk(τ + ∆τ) − Njk(τ)) = 1|Xτ = l]

because according to Theorem 3.13 more than one transition over (τ, τ + ∆τ ] is not

possible for lim∆τց0. For the same reason, the sum in (3.22) reduces to the addend

for which l = j and so

lim
∆τց0

1

∆τ

∑

l∈S

P [(Njk(τ + ∆τ) − Njk(τ)) = 1|Xτ = l] pil(t, τ)

= lim
∆τց0

1

∆τ
P [(Njk(τ + ∆τ) − Njk(τ)) = 1|Xτ = j] pij(t, τ)

= lim
∆τց0

1

∆τ
P [Xτ+∆τ = k|Xτ = j] pij(t, τ)

= pij(t, τ)µjk(τ)

So for ajk = I(u,v], the desired result has been shown. For step functions with

half-open intervals (u, v], the proposition holds as well because of linearity. All

B ∈ B([t,∞)) for which the function ajk = IB fulfills the proposition, constitute

a monotone class. This class contains all finite unions of (u, v], t ≤ u < v < ∞ and

therefore (3.19) is valid for all B ∈ B([t,∞)). Linearity leads to the desired result for

any step function. According to the monotone convergence theorem, the proposition

holds for non-negative functions ajk. ajk = a+
jk − a−

jk provides the result for any

integrable function ajk.

Due to Theorem 3.12, now V +
i (t, Ajj) and V +

i (t, Ajk) can be calculated:

Theorem 3.14. Assume a regular insurance model with deterministic functions modelling

the force of interest and t ∈ [0,∞). Then the prospective reserve for remaining in one state

j over (t,∞) given that Xt = i is

V +
i (t, Ajj) =

1

v(t)

∫

(t,∞)
v(τ)pij(t, τ)dajj(τ) (3.23)
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and the prospective reserve for transitions from state j to state k over (t,∞) given that

Xt = i is

V +
i (t, Ajk) =

1

v(t)

∫

(t,∞)
v(τ)ajk(τ)pij(t, τ)µjk(τ)dτ (3.24)

Proof. After having used Definition 3.11 as well as (3.8) and (3.9), (3.23) and (3.24) directly

result from Theorem 3.12:

V +
i (t, Ajj) = E

[
1

v(t)

∫

(t,∞)
v(τ)dAjj(τ)|Xt = i

]

= E

[
1

v(t)

∫

(t,∞)
v(τ)Ij(τ)dajj(τ)|Xt = i

]

=
1

v(t)

∫

(t,∞)
v(τ)pij(t, τ)dajj(τ)

V +
i (t, Ajk) = E

[
1

v(t)

∫

(t,∞)
v(τ)dAjk(τ)|Xt = i

]

= E

[
1

v(t)

∫

(t,∞)
v(τ)ajk(τ)dNjk(τ)|Xt = i

]

=
1

v(t)

∫

(t,∞)
v(τ)ajk(τ)pij(t, τ)µjk(τ)dτ

(3.23) and (3.24) now allow calculating the total prospective reserve for an insurance

contract which is a formula composed of the prospective reserves for the different partial

commitments of the insurance company:

Theorem 3.15. For a regular insurance model with deterministic functions modelling the

force of interest and t ∈ [0,∞)

V +
i (t) =

1

v(t)

∫

(t,∞)
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)µjk(τ)dτ


 (3.25)

holds ∀ i ∈ S.

Proof. Formula (3.10) and Theorem 3.14 are applied:

V +
i (t) =

1

v(t)
E

[∫

(t,∞)
v(τ)dA(τ)|Xt = i

]
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=
1

v(t)
E



∫

(t,∞)
v(τ)

∑

j∈S


dAjj(τ) +

∑

k∈S

k 6=j

dAjk(τ)


 |Xt = i




=
1

v(t)
E



∫

(t,∞)
v(τ)

∑

j∈S


Ij(τ)dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)dNjk(τ)


 |Xt = i




=
1

v(t)

∫

(t,∞)
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




3.5 Thiele’s differential equation

Starting from equation (3.25), a recurrence relation is derived in this section in order to

simplify calculating V +
i (t). The recurrence relation allows using already calculated values

V +
i (u), u > t to determine V +

i (t). In a further step, based on the recurrence relation,

Thiele’s differential equation is introduced as a useful formula for practical application.

To simplify the proofs for the next two theorems, the total prospective reserve dis-

counted to 0 will be used instead of V +
i (t):

Definition 3.16. For a regular insurance model with deterministic functions modelling the

force of interest,

W+
i (t) := v(t)V +

i (t), t ≥ 0, i ∈ S (3.26)

is defined as the total prospective reserve discounted to 0.

V +
i (t) is calculated with respect to the present value at time t of the stochastic payment

stream whereas W+
i (t) refers to the present value at time 0. Because the interest is deter-

ministic, it does not make any difference whether W+
i (t) is considered or V +

i (t). Dividing

W+
i (t) by v(t) leads back to V +

i (t) in any case and vice versa. For reasons of simplification,

W+
i (t) will be referred to as the ”total prospective reserve“ as well. But when regarding

the corresponding formulas, it will be clearly evident which of the two expressions V +
i (t)

and W+
i (t) is considered.
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Theorem 3.17. For a regular insurance model with deterministic interest, the recurrence

relation

W+
i (t) =

∑

j∈S

pij(t, u)W+
j (u)

+
∫

(t,u]
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ


 (3.27)

In (3.27), the total prospective reserve W+
i (t) is split up into the prospective reserve for

the two intervals (t, u] and (u,∞). The second term on the right-hand side of (3.27) shows

the expected payments discounted to 0 over (t, u] whereas in the first term the expected

payments for (u,∞) are described by the sum of the total prospective reserves W+
i (u) at

time u multiplied by the corresponding transition probabilities. So W+
i (t) can be read as

the expected discounted payments for a first interval (t, u] plus the expected discounted

reserve required for time u.

Proof. The central idea of this proof is to split up W+
i (t) into two integrals over (t, u] and

(u,∞) and to apply the Chapman-Kolmogorov equation (2.4) to the second integral:

W+
i (t) =

∫

(t,∞)
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)µjk(τ)dτ




=
∫

(t,u]
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




+
∫

(u,∞)
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




=
∫

(t,u]
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




+
∫

(u,∞)
v(τ)

∑

j∈S

∑

jl∈S

pil(t, u)plj(u, τ)


dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)µjk(τ)dτ




=
∫

(t,u]
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)µjk(τ)dτ



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+
∑

l∈S

pil(t, u)
∫

(u,∞)
v(τ)

∑

j∈S

plj(u, τ)


dajj(τ) +

∑

k∈S

k 6=j

ajk(τ)µjk(τ)dτ




︸ ︷︷ ︸
W+

l
(u)

The introduction of Thiele’s differential equation is split up into two steps: First, the im-

portant formula is given with restriction to a prospective reserve without discontinuities

having a simple proof based on the Chapman-Kolmogorov equation and the already con-

sidered formulas. Afterwards a more general version of Thiele’s differential equation is

described which allows a finite number of discontinuities such as all the formulas which

have already been considered in this chapter. Proving the general formula is much more

complex so that the full proof will not be given here.

Theorem 3.18 (Thiele’s differential equation I). Let {Xt}t≥ 0, aii, aij and {δt}t≥ 0

constitute a regular insurance model with aij being continuous and aii being continuously

differentiable ∀ i, j ∈ S, i 6= j.

Then, ∀ i ∈ S the total prospective reserve W+
i (t) is continuous and its change for t ≥ 0 is

described by Thiele’s differential equation

d

dt
W+

i (t) = − v(t)


a′

ii(t) −
∑

j∈S
j 6=i

µij(t)aij(t)




+



∑

j∈S

j 6=i

µij(t)


 W+

i (t) −
∑

j∈S

j 6=i

µij(t)W
+
j (t) (3.28)

with a′
ii(t) = d

dt
aii(t).

Proof. Starting from Theorem 3.17, the difference quotient for W+
i (t) is calculated and

then lim∆tց 0 is applied:

W+
i (t) =

∑

j∈S

pij(t, t + ∆t)W+
j (t + ∆t)

︸ ︷︷ ︸
I

+
∫

(t,t+∆t]
v(τ)

∑

j∈S

pij(t, τ)


dajj(τ) +

∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




︸ ︷︷ ︸
II
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holds according to Theorem 3.17 for u = t + ∆t, ∆t > 0. Splitting up the first term I into

i = j and
∑

j∈S, j 6=i and using

pij(t, t + ∆t) = µij(t)∆t + o(∆t), i 6= j

and

pii(t, t + ∆t) = 1 −



∑

j∈S

i6=i

µij(t)


∆t + o(∆t)

leads to

I =


1 −



∑

j∈S

i6=i

µij(t)


∆t


W+

i (t + ∆t) +
∑

j∈S

i6=i

µij(t) ∆t W+
j (t + ∆t) + o(∆t)

Because v, ajj, ajk and µjk are continuous functions, the integral in the second term II

can be replaced by the value of the integrand at time t multiplied by ∆t:

II =
∫

(t,t+∆t]
v(τ)

∑

j∈S

pij(t, τ)


a′

jj(τ) +
∑

k∈S
k 6=j

ajk(τ)µjk(τ)dτ




= v(t)
∑

j∈S

pij(t, t)a
′
jj(t)∆t + v(t)

∑

j∈S

pij(t, t)
∑

k∈S
k 6=j

ajk(t)µjk(t)∆t + o(∆t)

= v(t)a′
ii(t)∆t + v(t)

∑

k∈S
k 6=i

aik(t)µik(t)∆t + o(∆t)

Inserting W+
i (t) = I + II into

W+
i

(t+∆t)−W+
i

(t)

∆t
gives

W+
i (t + ∆t) − W+

i (t)

∆t
=



∑

j∈S
i6=i

µij(t)


W+

i (t + ∆t) −
∑

j∈S
i6=i

µij(t)W
+
j (t + ∆t) (3.29)

−v(t)


a′

ii(t) +
∑

j∈S

k 6=i

aij(t)µij(t)


+

o(∆t)

∆t

Applying lim∆tց 0 leads to the desired result.

With the objective of a combined treatment of contracts with continuous and discrete pay-

ment streams, a second version of Thiele’s differential equation shall allow discontinuities
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of the total prospective reserve. [Koller, 2000] provides a formula for a differential equation

describing the change of the p-th moment

V
(p)
i (t) := E[(V +(t))p|Xt = i], p ≥ 1 (3.30)

of V +(t). V +(t) there denotes the present value of the stochastic payment stream for a life

insurance contract allowing discontinuities. By contrast to Thiele’s differential equation I,

[Koller, 2000] uses V
p
i (t) instead of W

p
i (t).

As for the remaining part of this diploma thesis only the (total) prospective reserve V +
i (t)

or W+
i (t) is of interest, I just give the special case for p = 1 of the theorem describing the

formula d
dt

V
(p)
i (t) in [Koller, 2000]:

Theorem 3.19 (Thiele’s differential equation II). Let {Xt}t≥ 0 be a Markov process

with µij being piece-wise continuous functions ∀ i, j ∈ S, i 6= j. Let aii be piece-wise

continuously differentiable and aij and δi be piece-wise continuous ∀ i, j ∈ S, i 6= j. Let

[0, T ] ⊂ R signify the insurance period of a life insurance contract and D ⊂ (0, T ) denote

the finite set of discontinuities appearing in aii, aij, µij or δi. Then Thiele’s differential

equation for the total prospective reserve V +
i (t) allowing discontinuities

d

dt
V +

i (t) = − a′
ii(t) −

∑

j∈S
j 6=i

µij(t)aij(t)

+


δi(t) +

∑

j∈S

j 6=i

µij(t)


 V +

i (t) −
∑

j∈S

j 6=i

µij(t)V
+
j (t), i ∈ S (3.31)

holds ∀ t ∈ (0, T ) \ D and is completed by the conditions

V +
i (t−) = V +

i (t) + daii(t), i ∈ S (3.32)

∀ t ∈ D.

Equation (3.31) is also valid for all points of discontinuity t ∈ D if the differential

notation dV +
i (t) is considered.

Proof. In [Koller, 2000], the proof of the complete theorem describing d
dt

V
(p)
i (t) for p ≥ 1

can be found on p.71-75.
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The second version of Thiele’s differential equation given through (3.31) and (3.32) pro-

vides a formula which allows calculating the total prospective reserve for a life insurance

contract which very individually can be defined through the functions aii, aij , µij and δi.

In order to prepare practical applications, the following chapter deals with the question

which of the different numerical discretisation methods are qualified to calculate a solution

of Thiele’s differential equation.
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Chapter 4

Numerical solutions for initial value

problems in ordinary differential

equations

The subject of this chapter is the numerical solution of an initial value problem (IVP)

consisting of an ordinary first order differential equation and a corresponding initial value.

Concerning the introduced numerical methods, only those are presented in detail which

are relevant for solving Thiele’s differential equation (cf. Section 5.1, equation (5.3)). In

section 4.5 and 5.2, the reasons for choosing those methods are pointed out.

Principal sources of this chapter are [Auzinger, 2007], [Kloeden and Platen, 1992] and

[Stetter, 1985]. A good description of the important methods is given in [Press et al., 2007]

where great importance is attached to providing relevant information for the practical ap-

plication of those methods. Further particular references are quoted at the corresponding

positions in the text.

4.1 The initial value problem and its solvability

For the remaining part of this chapter, every considered IVP will be an IVP of standard

form which is defined as follows:
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Definition 4.1 (Initial value problem of standard form).

y′ = f(t, y) and y(0) = y0 with f : G ⊂ Rn+1 → Rn (4.1)

y, y′, y0 ∈ Rn (4.2)

n ∈ N, t ∈ [0,T] ⊂ R (4.3)

(0, y0) ∈ G (4.4)

In (4.1)-(4.4), the field line for (t, y) ∈ G with y′ = f(t, y) representing the vectors in

the field line is considered. A function y(t) for which the field line holds shall be found.

This solution function y(t) is determined through the initial condition y(0) = y0. So f(t, y)

represents the right-hand side of the differential equation with t being the independent vari-

able and y = y(t) = (y1(t), . . . , yn(t)), n ∈ N being the dependent variable and unknown

solution. Although any desired integration interval [a, b] ⊂ R can be chosen, w.l.o.g. it is

sufficient here to consider the integration interval [0, T ] ⊂ R.

The next paragraphs deal with two theorems that specify under which conditions an

existing or a unique solution of an IVP of standard form can be ensured. Before phrasing

the theorems it is useful to presume the following characteristics for the region G introduced

in Definition 4.1:

• G := {(t, y) : |t| < ρ1, ||y − y0||2 < ρ2} with ‖.‖2 symbolising the Euclidean norm in

Rs

• The closed envelope G of G is defined through G := {(t, y) : |t| ≤ ρ1, ||y−y0||2 ≤ ρ2}.

Then, the Peano Existence Theorem says:

Theorem 4.2 (Peano Existence Theorem). An IVP as defined in (4.1)-(4.4) with

• f being continuous in G and therefore being bounded there and

• ||f(t, y)||2 ≤ A(t) with A(t) being an integrable function supplying
∫ t
0A(τ)dτ ≤ ρ2 for

all t with |t| ≤ α, 0 < α ≤ ρ1

has at least one solution which exists for |t| ≤ α.

The Picard-Lindelöf Theorem even ensures the existence of a unique solution under the

following conditions:
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Theorem 4.3 (Picard-Lindelöf Theorem). For an IVP as introduced in (4.1)-(4.4)

with

• f being continuous in G,

• ||f(t, y)||2 ≤ M in G and

• ‖f(t, y1) − f(t, y2)‖2 ≤ L ‖y1 − y2‖
with Lipschitz constant L ≥ 0 and (t, y1), (t, y2) ∈ G

there exists a single unique solution for |t| < α = min {ρ1,
ρ2

M
}.

The proofs of these two theorems for instance can be found in [Hartman, 1964], chapter

II.

In section 5.1.4, the required conditions for the two theorems are discussed for Thiele’s

differential equation posed as an IVP which can facilitate understanding the meaning of

the different requirements.

For the remaining part of this chapter, by using the expression IVP I will always refer

to an IVP of standard form as specified in Definition 4.1 for which the existence of a unique

solution over the considered integration interval is guaranteed.

4.2 The idea of approximating a solution of an IVP

by using the explicit Euler method

The easiest way of numerically approximating a solution of an IVP is to split up the inte-

gration interval into equidistant sub-intervals and to replace the real solution curve by a

linear function on each sub-interval. The whole exact solution curve then is approximated

by a polygonal chain.

For this purpose, a constant step size h is chosen and the considered integration interval

[0, T ] is split up into m = T
h

equidistant sub-intervals [tk−1, tk], k = 1, . . . , m, m ∈ N with

t0 = 0, tm = T and tk = t0 + kh.
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In the following, y(tk) will always represent the exact solution at time tk while yk will

signify the approximated solution at tk. In general, only at the beginning of the consid-

ered integration interval [0, T ], the exact solution y(0) and the approximated one y0 are

identically equal.

The right-hand side f(t, y) of the differential equation describes the field line in G and

G in which, according to the initial condition, the real solution curve y(t) is embedded.

In other words, f(t, y) represents the slope of each solution curve y(t) of the differential

equation for t ∈ [0, T ].

The idea of the numerical calculation is to start in (0, y0) and to act as if the slope of

the solution curve at (0, y0), i.e. f(0, y0), held for the whole sub-interval [0, t1]. By doing

this, the line segment in [0, t1] is calculated through y1 = y0+hf(0, y0) with y1 representing

the approximation of y(t) at t = t1. Provided that y(t) is not linear in [0, t1], (t1, y1) is not

a point on the real solution curve y(t) of the IVP but on another solution curve ỹ(t) of the

regarded differential equation having another initial value.

Having calculated y1, (t1, y1) then is the initial value for the next step of numerically solving

the IVP. Again, f(t1, y1) is ”frozen” for the sub-interval [t1, t2] in order to obtain the line

segment for this interval.

The procedure described above is exactly what the explicit Euler scheme does. So the

formula for the explicit Euler method is:

y0 = y(0) (4.5)

yk = yk−1 + hf(tk−1, yk−1), k = 1, . . . , m (4.6)

The explicit Euler scheme is the simplest one of the one-step methods for solving or-

dinary differential equations. A one-step method calculates the approximated solution for

each sub-interval by only using information of this sub-interval. In the case of the explicit

Euler method, this information consists of the initial value for the regarded sub-interval

[tk−1, tk] and the right-hand side of the differential equation at this point.

By contrast, a multistep method refers to several previous function values yk−1, yk−2, ...

when calculating yk (cf. section 4.5).

When numerically approximating a solution of an IVP by means of the explicit Euler

method or any other discretisation method in each step a certain error occurs. To describe

these errors I introduce two terms:
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Definition 4.4 (Local and global discretisation error).

• The local discretisation error lk indicates the error that occurs when calculating the

k-th step of the discretisation:

lk := y(tk; tk−1, yk−1) − yk, k = 1, . . . , m (4.7)

with y(tk; tk−1, yk−1) representing the exact solution at tk of the differential equation

starting from (tk−1, yk−1).

• The global discretisation error ek signifies how much the approximated solution after

the k-th step differs from the exact solution of the original IVP:

ek := y(tk; t0, y0) − yk, k = 1, . . . , m (4.8)

Remark 4.5. In literature, the local discretisation error sometimes is defined different

from (4.7):

l̃k :=
y(tk; tk−1, yk−1) − y(tk−1)

h
− f(tk−1, ytk−1

), k = 1, . . . , m (4.9)

This definition refers to the difference between the real difference quotient of the interval

[tk−1, tk] and the slope in (tk−1, ytk−1
). The relation between lk and l̃k simply is

lk = h l̃k (4.10)

Notice that different definitions of the local discretisation error also have effect on further

properties of a discretisation method introduced in the following. For example, a consistency

order p (cf. (4.11)) calculated for lk is equal to a consistency order of p − 1 for l̃k.

The definition of the local error lk as in (4.7) can be found in [Kloeden and Platen, 1992]

whereas, for instance, in [Auzinger, 2007] the used definition is the one for l̃k as in (4.9).

Figure 4.1 shows the first two steps of the explicit Euler method as well as the local

and global errors of those two steps for an IVP of dimension 1. The function values of the

real solution curve y(t) at time t1 and t2 in the figure are denoted by y(t1) and y(t2) as an

abbreviation of the expressions y(t1; t0, y0) and y(t2; t0, y0) in Definition 4.4. Furthermore,

ỹ(t2) is used instead of y(t2; t1, y1)

When applying a numerical method it is preferable that its accuracy can be augmented

by increasing the computational effort. In other words, calculating with a smaller step size
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Figure 4.1: The first two steps of the explicit Euler method

leads to a better approximation if a “useful” discretisation scheme is applied. To determine

whether this quality is fulfilled for the explicit Euler method, the convergence of the Euler

approximation to the exact solution for h → 0 has to be analysed.

There are two characteristics of a discretisation scheme which are inevitable for its conver-

gence:

1. A discretisation method fulfills the quality of being consistent if the local error lk

becomes close to 0 for h → 0, i.e.

‖lk‖ → 0 as h → 0 (4.11)

The method is called consistent of order p if ‖lk‖ = O(hp).

2. The stability of a discretisation method signifies that the global effect of local errors

remains bounded uniformly for h → 0. A one-step method has to fulfill the “step-

by-step” stability in order to be a stable discretisation scheme:

For two “parallel” steps

(tk−1, yk−1) 7→ (tk, yk) (4.12)

(tk−1, ỹk−1) 7→ (tk, ỹk) (4.13)
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of a one-step method with step size h applied to an IVP, the method is called stable

if

‖yk − ỹk‖ ≤ (1 + Sh)‖yk−1 − ỹk−1‖ (4.14)

holds uniformly for h ≤ h0 with some h-independent constant S and h0 > 0.

Now, the explicit Euler method is analysed with regard to its properties of consistency

and stability. The order of consistency for the explicit Euler method is derived as follows:

For a twice continuously differentiable function y(t), the local discretisation error lk as

defined in (4.7) can be rewritten by using the Taylor formula with remainder

y(tk) = y(tk−1) + y′(tk−1)h +
1

2
y′′(θ)h2, θ ∈ (tk−1, tk) (4.15)

and taking into account y(tk−1) = yk−1 for y(tk; tk−1, yk−1) in (4.15):

lk = y(tk; tk−1, yk−1) − yk (4.16)

= yk−1 + y′(tk−1)h +
1

2
y′′(θ)h2 − yk (4.17)

= yk−1 + y′(tk−1)h +
1

2
y′′(θ)h2 − (yk−1 + h f(tk−1, yk−1)︸ ︷︷ ︸

y′(tk−1)

) (4.18)

=
1

2
y′′(θ)h2 (4.19)

If y′′(t) is bounded on [0, T ], i.e. if there exists M ≥ 0 with supt∈[0,T ] ‖y′′(t)‖ = M ,

‖lk‖ =
1

2
h2‖y′′(θ)‖ ≤ 1

2
h2M (4.20)

and therefore

‖lk‖ = O(h2) = O(hp) with p = 2 (4.21)

This means that the local discretisation error for the explicit Euler method is of order

p = 2. Because of

‖lk‖ ≤ 1

2
h2M

h→0−→ 0 (4.22)

also the order of consistency of the explicit Euler method is p = 2.
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The proof of the explicit Euler method being a stable discretisation scheme is elaborated

in the following lines by considering two parallel Euler steps yk = yk−1 +hf(tk−1, yk−1) and

ỹk = ỹk−1 + hf(tk−1, ỹk−1):

‖yk − ỹk‖ = ‖yk−1 − ỹk−1 + h (f(tk−1, yk−1) − f(tk−1, ỹk−1)) ‖ (4.23)

≤ ‖yk−1 − ỹk−1‖ + h‖f(tk−1, yk−1) − f(tk−1, ỹk−1)‖ (4.24)

≤ ‖yk−1 − ỹk−1‖ + hL‖yk−1 − ỹk−1‖ (4.25)

= (1 + Lh)‖yk−1 − ỹk−1‖ (4.26)

for a Lipschitz constant L ≥ 0 with respect to y for the right-hand side f of the differential

equation supplying ‖f(t, y)− f(t, ỹ)‖ ≤ L‖y − ỹ‖.

After having analysed the qualities of consistency and stability now the theorem con-

cerning the convergence of the explicit Euler scheme can be formulated:

Theorem 4.6 (Convergence of the explicit Euler method). Assume y(t) being twice

continuously differentiable and y′′(t) bounded on [0, T ], i.e. supt∈[0,T ] ‖y′′(t)‖ = M . Then

the global error ek = y(tk; t0, y0)− yk (cf. (4.8)) of the explicit Euler method with step size

h satisfies

‖ek‖ ≤ 1

2
(eLtk − 1)

M

L
h (4.27)

provided that e0 = 0.

‖ek‖ = O(h) = O(h1) (4.28)

implies that the explicit Euler method is convergent of order p = 1.

Proof. To prove Theorem 4.6, an Euler step

yk−1 → yk := yk−1 + hf(tk−1, yk−1) (4.29)

and a “parallel” step starting from the exact solution y(tk−1; t0, y0)

y(tk−1; t0, y0) → ỹk := y(tk−1; t0, y0) + hf(tk−1, y(tk−1; t0, y0)) (4.30)

are considered. For these two parallel steps (4.29) and (4.30)

‖yk − ỹk‖ ≤ (1 + Lh)‖yk−1 − y(tk−1; t0, y0)‖ (4.31)
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holds because of the explicit Euler method’s property of stability (4.26).

With the aim of determining the size of the global error ek,

||ek|| = ‖yk − y(tk; t0, y0)‖ ≤ ‖yk − ỹk‖ + ‖ỹk − y(tk; t0, y0)‖ (4.32)

is used. By taking into account that ỹk − y(tk; t0, y0) = lk and by inserting (4.31) into

(4.32) this leads to

||ek|| ≤ (1 + Lh)‖ yk−1 − y(tk−1; t0, y0)︸ ︷︷ ︸
ek−1

‖ + ||lk|| (4.33)

≤ (1 + Lh)||ek−1|| +
1

2
h2M (4.34)

because of the explicit Euler method’s property of consistency (4.26).

By using the discrete Gronwall lemma (cf. [Auzinger, 2007], section 2.1), this recursively

formulated upper estimate of ek can be rewritten as an estimate which only depends on e0:

||ek|| ≤ eLtk ||e0|| +
eLtk − 1

Lh

Mh2

2
(4.35)

Having supposed e0 = 0, this leads to

||ek|| ≤ 1

2
(eLtk − 1)

M

L
h (4.36)

The complete proof including the calculation of the discrete Gronwall lemma can be

found in [Auzinger, 2007].

Remark 4.7. Assume that e0 6= 0 and furthermore assume that e0 remains constant or

bounded for h ց 0, i.e. e0 = O(h). Then, according to Theorem 4.6, an upper estimate

for the global error can be found through

||ek|| ≤ eLtk ||e0|| +
1

2
(eLtk − 1)

M

L
h (4.37)

and the explicit Euler method is convergent of order p = 1.

Remark 4.8. The convergence theorem refers to the case of a constant step size h and

therefore of an equidistant grid. If h is variably chosen for each step, a conclusion con-

cerning the convergence as in Theorem 4.6 cannot be drawn. For further considerations

see section 4.4.

41



4.3 Improved explicit one-step methods

Achieving higher accuracy with the explicit Euler method by decreasing the step size in-

creases the numerical effort. This is the reason why it is useful to deal with alternatives

to the explicit Euler method for solving IVPs. Furthermore, it shall be mentioned that for

an extremely small step size another problem occurs: There is a minimum step size hmin

for each IVP below which the accuracy of the approximations cannot be improved because

the roundoff error is dominating.

The objective is to construct discretisation methods which are more efficient than the

explicit Euler scheme which means that better approximations can be achieved with less

computational effort. Such a desired method has a higher order of convergence than p = 1

then.

4.3.1 How constructing an improved explicit one-step method

It is easy to imagine that better approximations can be obtained if more information is

taken into account: Instead of only using the field line of the initial point of the regarded

sub-interval [tk−1, tk], the slope at several points in this interval can be included into the

calculation.

Of course, these points are unknown. But it is sufficient to approximate one or more

solution values in the interval [tk−1, tk] which can then be used to construct a better ap-

proximation of the exact solution at tk.

In contrast to the explicit Euler method which has been described in (4.5)-(4.6) through

y0 = y(0)

yk = yk−1 + hf(tk−1, yk−1), k = 1, . . . , m

a general explicit one-step method for the solution of an IVP is a discretisation scheme of

the form

y0 = y(0) (4.38)

yk = yk−1 + hϕ(tk−1, yk−1; h), k = 1, . . . , m (4.39)

The function ϕ depending on the step size h and on the initial point (tk−1, yk−1) for the

actual step is called increment function.

42



A simple example of an explicit one-step method which uses more information than the

explicit Euler method is the so-called improved Euler method :

Y2 = yk−1 +
h

2
f(tk−1, yk−1) (4.40)

yk = yk−1 + hf(tk−1 +
h

2
, Y2) (4.41)

So an intermediate value Y2 is calculated by an explicit Euler step with step size h
2

in order

to use the field line at (tk−1 + h
2
, Y2) to predict the value yk. Inserting (4.40) into (4.41)

shows that

ϕ(tk−1, yk−1; h) = f

(
tk−1 +

h

2
, yk−1 +

h

2
f(tk−1, yk−1)

)
(4.42)

The improved Euler method is the simplest case of the explicit Runge-Kutta methods

which are described in the following subsection.

As well as for the explicit Euler scheme, consistency and stability are necessary for the

convergence of the approximations calculated by means of an improved explicit one-step

method, too.

Remark 4.9. For higher order one-step methods, the local error typically is an expression

involving higher order derivatives of y(t) with respect to t. So to guarantee consistence or

convergence of a certain order the corresponding smoothness of y(t) is required.

It can be shown that the improved Euler method is consistent with order p = 3 and

convergent with order p = 2 (see [Auzinger, 2007]).

4.3.2 Runge-Kutta methods

In the previous subsection, the improved Euler method has already been designated as a

very simple explicit Runge-Kutta method.

As a generalisation, an explicit s-stage Runge-Kutta method is defined as follows:

Definition 4.10 (Explicit s-stage Runge-Kutta method). An explicit one-step method

which calculates yk by starting from yk−1 and using s recursively generated intermediate

values (“stages”) Yi at the points τi := tk−1 + γih, i = 1, . . . , s, γ1 = 0

Y1 = yk−1

Y2 = yk−1 + hα21f(τ1, Y1)
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Y3 = yk−1 + h (α31f(τ1, Y1) + α32f(τ2, Y2))
... (4.43)

Ys = yk−1 + h (αs1f(τ1, Y1) + αs2f(τ2, Y2) + . . . + αs,s−1f(τs−1, Ys−1))

yk = yk−1 + h (β1f(τ1, Y1) + β2f(τ2, Y2) + . . . + βs−1f(τs−1, Ys−1) + βsf(τs, Ys))︸ ︷︷ ︸
ϕ(tk−1,yk−1;h)

is called explicit s-stage Runge-Kutta method.

So there are s intermediate points τi ∈ [tk−1, tk] for which the corresponding approxi-

mations Yi are calculated by using the information of the already available approximations

Yj, j = 1, . . . , i − 1, weighted by αij .

Finally, weights βi allow combining the field lines for each calculated point (τi, Yi), i =

1, . . . , s in order to obtain the corresponding increment function ϕ.

An explicit s-stage Runge-Kutta method is usually symbolised by the coefficient tableau

0

γ2 α21

γ3 α31 α32

...
...

...
. . .

γs αs1 αs2 . . . αs,s−1

β1 β2 . . . βs−1 βs

For example, the corresponding tableau of the improved Euler method is

0
1
2

1
2

0 1

It can be proved that every Runge-Kutta method is stable so that an order p + 1 of

consistency implies an order p of convergence. However, to achieve a certain order of con-

vergence, the coefficients γi, αij and βi must satisfy the corresponding order conditions

which can be derived by Taylor expansion.

The coefficients γi, αij and βi determined for some examples can be found in [Stetter, 1985],

[Auzinger, 2007], and [Kloeden and Platen, 1992]. For a more detailed background the
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reader is referred to the literature dealing more thoroughly with this topic.

So the objective is to find γi, αij and βi, i = 1, . . . , s, j = 1, . . . , i which allow achieving

a very high order p of convergence by using only a few stages s.

The following table explains which values of s lead to which optimal order p:

s ≤ 4 p = s

5 ≤ s ≤ 7 p = s − 1

8 ≤ s ≤ 9 p = s − 2

The fourth order Runge Kutta methods are the most commonly used, representing a

good compromise between accuracy and computational effort.

4.4 Adaptive step size

At the beginning of section 4.3, it has already been explained why it is recommendable

to use improved solving methods having higher orders of convergence: Higher accuracy is

achieved without making the step size that small that there were heavy losses of efficiency

as well as comparatively elevated influence of roundoff errors.

But also with higher order schemes it can be necessary to choose a small step size, at least

for parts where the slope changes very fast.

In figure 4.2, the local error of the j-th step is very small whereas the one of the k-th

step is not. Decreasing the step size over the whole regarded interval would lead to a better

approximation in the right-hand part of the shown function. But at the same time, this

would cause needless computational effort in the region of the left-hand side.

By contrast, a variable step size would allow adjusting the actual step size to the function’s

properties in each step which would lead to more accurate approximations without loss of

efficiency.

Adaptive step size works as follows:

• For each new calculated approximation value yk, the local error, i.e. the quantity (4.7)

has to be determined. Because the real solution y(tk; tk−1, yk−1) is usually unknown

the local error is estimated. Even so, the estimated local error is also called observed

local error.
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Figure 4.2: Why it is useful to have variable step size

• Then, the estimated local error is compared to a chosen error level. If the observed

error is small enough the step is accepted. If not, yk is rejected and the step has to

be repeated for some smaller step size.

• Whether the step is accepted or not, a new step size has to be determined. The

new step size is used to repeat the step which has been rejected or to execute the

following step if yk has been accepted. The aim is to calculate a new step size for

which the accuracy requirements are fulfilled as narrowly as possible (so that not too

much effort is caused).

To estimate the local error there are two established methods:

1. The first possibility is to use two discretisation schemes having different orders of

convergence. The difference between the results then is an estimate of the local er-

ror.

Some Runge-Kutta methods make a very precious contribution here: The so-called

embedded Runge-Kutta formulas are pairs of Runge-Kutta schemes having the fol-

lowing properties:
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• They have different numbers of stages s, s and are of different orders p, p

(usually, p = p + 1).

• The coefficient tableau of the more accurate scheme contains all coefficients

γi and αij, i = 1, . . . , s, j = 1, . . . , i of the lower order scheme. As it has s

intermediate values (s > s), it is completed by the additional coefficients having

as indices i = s + 1, . . . , s and j = 1, . . . , i.

• The weights βi, βi are different for two such schemes.

The following coefficient tableaus correspond to a Runge-Kutta method with s = 4,

p = 4 and a second one with s = 6, p = 5 which together form an embedded Runge-

Kutta formula.

0
1
2

1
2

1
2

1
4

1
4

1 0 −1 2
1
6

0 2
3

1
6

0
1
2

1
2

1
2

1
4

1
4

1 0 −1 2
2
3

7
27

10
27

0 1
27

1
5

28
625

−1
5

645
625

54
625

−378
625

14
336

0 0 35
336

162
336

125
336

So almost without additional effort, every step can be executed with both schemes

in order to obtain two approximations of different accuracy for every step. The

difference then is a useful estimate of the local error.

2. The other way is the so-called procedure of step-doubling : Each step is taken twice,

once as a full step with step size h = tk − tk−1

(tk−1, yk−1)
h→ (tk, yk) (4.44)

then, independently, as two half steps with step size h
2

= tk−tk−1

2

(tk−1, yk−1)
h
2→ (tk−1 +

h

2
, yk− 1

2
)

h
2→ (tk, yk) (4.45)

The difference between yk and yk, again, serves as an estimate of the local error.
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The desired error level ǫ > 0 can be chosen to be an absolute or a relative error bound

or a mixed version:

ǫ = ǫabs + ǫrel (ay||yk|| + ay′ ||f(tk, yk)||) (4.46)

with ǫabs and ǫrel being the absolute and relative component of the bound, respectively,

and ay and ay′ representing the scaling factors regulating the influence of yk and f(tk, yk).

How can now, starting from the actual step size h, the observed local error lk and a desired

error level ǫ, the step size for the next step be determined?

For a discretisation scheme with local error of order p,

||lk|| = ||y(tk; tk−1, yk−1) − yk|| = O(hp) ≈ hpc (4.47)

with c > 0 depending on the considered IVP and on the position tk−1. It is assumed that

c changes slowly with reference to t. Then, the following way of proceeding seems natural:

The estimated local error of the actual step (cf. (4.44) and (4.45))

||yk − yk|| =: s ≥ 0 (4.48)

can be used to calculate c:

c ≈ s

hp
(4.49)

With the aim of achieving the tolerance ǫ with the new step size hnew

hp
newc ≈ ǫ (4.50)

hnew is determined as follows:

hnew = p

√
ǫ

c
= p

√
ǫ

s
hp = p

√
ǫ

s
h (4.51)

The formula (4.51) is relevant for both repeating one step because it has been rejected

and determining the next step size after an accepted step. In the first case, hnew is the

step size the actual step is repeated with, in the second case the next step has length hnew.

Usually, some safety factor S < 1 (e.g. S = 0.8) is included in the formula

h′
new = S p

√
ǫ

s
h (4.52)

to avoid coming too close to the tolerance level ǫ.
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As it has already been mentioned in Remark 4.8, when using adaptive step size it is

not possible to formulate a convergence declaration like it is done in Theorem 4.6 for an

equidistant grid. Regarding things from a different point of view, the theoretical state-

ments and conclusions in section 4.2 and 4.3 have been derived by supposing simplified

conditions which are not true in practical implemention. So the convergence conclusions

have been drawn with respect to a constant step size over the whole integration interval

whereas in practical applications adaptive step size leads to a non-equidistant grid which

locally is adapted to the properties of the IVP.

Nevertheless, having a vague idea of the global error’s size in the considered calculation is

of great interest also in this case. The user keeping in mind a certain global error level has

the following opportunity:

Taking into account the length T of the integration interval as well as the behaviour of the

field line, he can choose the local error tolerance ǫ that way that most likely his desired

global error level is achieved. Usually, the local error level will then be chosen to have some

decimal powers less than the global one (e.g. for a desired global error of about 10−5, the

local error will be ǫ = 10−7).

The user also has the possibility to call the routine twice with two different tolerance levels

(e.g. ǫ1 and ǫ2 = ǫ1
10

) and by calculating the difference of the two results to gain an estimate

of the global error size.

In any case, there is no possibility to have an a priori estimate of the global error when

using adaptive step size. But analysing the differential equation and its field line as well

as realising the just explained proceedings at least allows the user a posteriori forming an

opinion concerning the size of the occurred global error.

4.5 Further methods for solving IVPs

In the preceding parts of this chapter, only explicit one-step methods have been discussed.

But these methods are just one type of numerical solving schemes for IVPs. According to

a differential equation’s properties it makes sense to use different types of discretisation

methods for different IVPs.

In contrast to the explicit methods which all of the already introduced solving schemes

belong to, there is the important class of implicit solving methods. Furthermore, as opposed

to the one-step schemes, also multi-step methods (explicit and implicit) can be used to solve

IVPs. In addition to those two big classes of discretisation schemes, there also exist further
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methods which, for example, represent a combination of multi-step methods.

The first two of the now mentioned classes of solving methods are briefly explained in the

following two subsections. But as it turns out that the choice of an explicit Runge-Kutta

method for solving Thiele’s differential equation is justified under certain conditions (see

Section 5.2), I will not go into detail with those additional methods.

4.5.1 Implicit solving methods

As described in section 4.3, the information used for advancing an approximated solution

from (tk−1, yk−1) to (tk, yk) need not necessarily come from the initial point of the considered

interval. Also intermediate function values of (tk−1, tk] can be included into the calculation

which, of course, are unknown at this moment.

Instead of approximating an intermediate value as shown in section 4.3, it is also possible

to solve an equation which contains unknown values.

The implicit Euler scheme

y0 = y(0) (4.53)

yk = yk−1 + hf(tk, yk), k ∈ {1, . . . , m} (4.54)

is an example of a simple implicit discretisation method.

Also a Runge-Kutta method can be implicit: To determine the intermediate values Yi, i =

{1, . . . , s}, not only already calculated values Yj, j = {1, . . . , i− 1} but also unknown ones

(j = {i, . . . , s}) are used then.

So for an implicit solving method, the approximated solution is calculated by solving a

non-linear system in each step.

Implicit schemes are indispensable methods for solving so-called stiff IVPs. A system

of ordinary differential equations is called stiff if its Jacobian matrix ∂fi(t,y)
∂yj

has eigenvalues

λi with Re λi ≪ 0 besides eigenvalues of moderate size. As it will turn out that this is

not the case for Thiele’s differential equation provided that certain conditions are fulfilled

(see Section 5.2) it is not necessary to go more into detail here. The reader whose interest

for implicit solving methods after all has been aroused is referred to [Auzinger, 2007] and

[Stetter, 1985].

4.5.2 Multi-step methods

In section 4.2, I have already explained the difference between a one-step method and a

multi-step method. When calculating yk, a multi-step method does not only refer to yk−1
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but also includes yk−2, yk−3, ... into the calculation in order to achieve better approximated

values.

Like the other solving methods which have already been mentioned also multi-step meth-

ods can either be explicit or implicit schemes. Implicit multi-step schemes belong to the

class of the implicit solving methods discussed in the previous subsection and therefore are

left out here. So in the next lines, only some properties of the explicit multi-step methods

are briefly described.

The decided advantage of an explicit multi-step method is its efficiency: For each new

step (tk−1, yk−1) → (tk, yk) only one new evaluation is required. Then the field line in

(tk−1, yk−1) completes the already available values f(t, y) for (tk−2, yk−2), (tk−3, yk−3), ... in

order to calculate yk.

By contrast, adaptive step size is very difficult or even impossible to apply on multi-

step methods. Firstly, the fact that information of previous function values yk−2, yk−3, ...

is used complicates the procedure of changing the step size: Previous function values for

a completely new grid defined through the new step size are indispensable after having

changed the step size. Secondly, too abruptly changing the step size in multi-step methods

can cause unstable behaviour.

So if the evaluation of the right-hand side of the differential equation is not too expensive

and if the properties of the differential equation do not enforce very small steps, a higher

order one-step method combined with adaptive step size is a good alternative to a multi-

step method.
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Chapter 5

The practical application of Thiele’s

differential equation

The aim of this chapter is to discuss how the theoretical considerations in Chapter 3 can be

put into practice. More precisely, Thiele’s differential equation will be used to calculate the

total prospective reserve of life insurance contracts defined through the Markovian model

for a finite number n ∈ N of states and over a finite insurance period [0, tEnd]. Whereas

in literature [0, T ] is a commonly used interval denoting the insurance period, I have cho-

sen tEnd instead of T to signify the end of the insurance period. As in Section 5.3.1

the introduced variable T constitutes the chosen numerical algorithm for solving Thiele’s

differential equation, the choice of tEnd here will avoid confusion.

In contrast to Chapter 1 where the state space has been introduced as S = {1, . . . , n},
as of now every insurance contract is assumed to start in an initial state 0. Therefore the

state space

S = {0, . . . , n − 1}, n ∈ N

will be used for the remaining part of this diploma thesis. For reasons of simplification, I

will sometimes write about state j and k, always meaning that j and k are elements of the

state space S even if it is not explicitly mentioned. Using t will in any case imply that t is

element of the insurance period [0, tEnd], in the following also referred to as “integration

interval”. In Chapter 3, I have throughout used the expression “total prospective reserve”

to avoid mixing it up with the prospective reserves for the different partial commitments.

As in this chapter there is no risk of confusion, I will simply use the expression “reserve”

when talking about the total prospective reserve.
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5.1 Thiele’s differential equation posed as an initial

value problem

5.1.1 Thiele’s differential equation

For a life insurance contract defined through the Markovian model, the course of the

reserve {V +(t)}t∈[0,tEnd] over the insurance period [0, tEnd] can be calculated by using

Thiele’s differential equation which describes how the reserve V +(t) changes over the time

t. In order to guarantee a combined treatment of continuous and discrete payment streams,

discontinuities of the reserve have to be allowed and, as in (3.31) and (3.32), TDE consists

of a differential equation for the continuous parts and an additional formula corresponding

to the points of the finite set of discontinuities D ⊂ [0, tEnd] of the reserve. So the

component-wise formula of Thiele’s differential equation (TDE) which holds for all j ∈ S

is

d

dt
V +

j (t) = − a′
jj(t) −

∑

k∈S
k 6=j

µjk(t)ajk(t)

+
(
δ′j(t) +

∑

k∈S
k 6=j

µjk(t)
)

V +
j (t) −

∑

k∈S
k 6=j

µjk(t)V
+
k (t) ∀t ∈ [0, tEnd] \ D

(5.1)

with

V +
j (t−) = V +

j (t) + ∆a
(d)
jj (t) + ∆δ

(d)
j (t)

or ∀t ∈ D

V +
j (t) = V +

j (t+) + ∆a
(d)
jj (t) + ∆δ

(d)
j (t)

(5.2)

Corresponding to an n state insurance contract, (5.1) is an n dimension system of

ordinary differential equations in which t is the independent variable and

V +(t) =
(
V +

0 (t), . . . , V +
n−1(t)

)
is the dependent variable and unknown solution – a vec-

tor of the reserves at time t in state 0, . . . , n − 1.

In the remaining part of my diploma thesis, I will frequently refer to TDE by using the

general expressions fj(t, V
+) for d

dt
V +

j (t) and f(t, V +) for d
dt

V +(t), respectively.

In Chapter 3, TDE for the continuous case (cf. equation (3.28)) has been deduced and

also a formula for the reserve allowing discontinuities (cf. equations (3.31) and (3.32)) has
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been presented. (5.1) and (5.2) slightly differ from (3.31) and (3.32). By contrast to the

formulas of Chapter 3 where V +
j (t) is a càdlàg function, here it can have both càdlàg parts

and parts where it is continuous on the left with limit on the right. The other modification

concerning the functions δ′j and ∆δ
(d)
j ensures more flexibility with respect to the interest.

So by using the modified formulas (5.1) and (5.2) very individually created contracts can

be considered.

Now the different symbols in (5.1) and (5.2) will be briefly described just to get an

idea of which functions cause changes of the reserve. In Section 5.1.3 the components of

TDE and their properties will be explained in detail. For better understanding, also the

functions ajj and δj now are described in a few words although they do not appear in (5.1)

and (5.2).

• ajj(t):

the accumulated payment stream for state j describing the “sum” of the payments

from time 0 until time t, provided that the contract has always been in state j

• a′
jj(t):

the value by which the continuous component (cf. Section 5.1.3) of ajj(t) is increased

at time t, i.e. the continuously effected payment at time t paid for remaining in state

j

• ∆a
(d)
jj (t):

the discrete payment at time t for remaining in state j

• ajk(t):

the payment paid for the transition from state j to state k at time t

• µjk(t):

the transition intensity for the transition from state j to state k at time t

• δj(t):

the accumulated interest from time 0 until time t provided that the contract has

always been in state j

• δ′j(t):

the value by which the continuous component of δj(t) is increased at time t, i.e. the

force of interest at time t for remaining in state j

• ∆δ
(d)
j (t):

the interest added at the discrete point in time t for remaining in state j
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The continuous change (cf. (5.1)) of the reserve V +
j (t) at time t consists of four parts:

1. the continuously effected payment at time t for remaining in state j

2. the sum of the expected payments at time t for transitions from state j to state

k, k 6= j. Intuitively spoken, the addends of this term represent the values of the

payments the insurer has to provide if the corresponding transitions occur. In actual

fact, the reserve is an expected value and it increases or decreases by the expected

payments whether the corresponding transition occurs or not.

3. The third term indicates that on the one hand V +
j (t) increases by the continuously

realised interest of the already existing value. On the other hand, it increases by

the expected profit due to its own value becoming available because of transitions

j → k, k 6= j.

4. The fourth term describes the amounts which are subtracted because they are, based

on the expected transitions, transferred from V +
j (t) to V +

k (t), k 6= j.

An intuitive idea of 3 and 4, again, is that V +
j (t) becomes available while V +

k (t) has to be

provided for the corresponding transition. In reality, independently from the transitions,

the reserve changes by the expected amounts.

At the points of discontinuity, i.e. at t ∈ D, discrete payments and interest cause

changes of the reserve (cf. (5.2)).

Notice that the payment functions a′
jj, ∆a

(d)
jj and ajk can have positive or negative

values. If these payments are benefits or costs and therefore positive the reserve (regarded

in the common positive direction of time) decreases by effecting the payments. Negative

payments (contributions) let the reserve increase.

5.1.2 The initial value problem

Starting from TDE, an initial condition is required to form an initial value problem (IVP).

By means of the equivalence principle an appropriate initial condition can be found:

For every insurance contract having as insurance period the interval [0, tEnd], the speci-

fied insurance benefits determine the given insurance coverage. The price for buying this

insurance coverage is paid in terms of contributions which obviously depend on the scale

of the defined benefits. The equivalence principle as premium principle is based on the
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law of large numbers and works as follows: When considering a large number N ∈ N of

identical insurance contracts which are all issued at time 0, according to the corresponding

transition probabilities the sum of all expected discounted benefits is equal to the sum of

all expected discounted contributions at time 0 for N → ∞. So for every single insurance

contract it is justified to regard the expected discounted benefits as equal to the expected

discounted contributions at time 0, provided that a sufficiently large number of insurance

contracts is issued and that safety margins are taken into account.

Coming from classical life insurance mathematics, the equivalence principle usually refers

to the net reserve because only benefits and contributions but not costs are included in the

calculation. But as for the Markovian model positive values of a′
jj(t), ∆a

(d)
jj (t) and ajk(t)

can also signify arising costs that the insurer has to pay, for this life insurance model the

equivalence principle allows determining the gross contributions.

Because the reserve introduced in Chapter 3 is defined as the difference between the ex-

pected discounted benefits and costs and the expected discounted contributions with con-

dition to the actual state, according to the equivalence principle the reserve of the initial

state 0 at time 0 is equal to 0, i.e. V +
0 (0) = 0. This important result is used when cal-

culating the contribution heights (see Section 5.1.5) but does not lead to an appropriate

initial condition here. By contrast, the value of the reserve for all states at time tEnd can

be determined analogously and provides the desired result: When the insurance period

is over, i.e. at time tEnd, there are no more future benefits or costs and no more future

contributions. Following the equivalence principle, V +
j (tEnd) = 0 for all states j ∈ S

which constitutes the required initial condition.

So for the special case where the reserve does not have any discontinuities, i.e. D = ∅, the

course of the reserve can be described through the following IVP consisting of TDE and

the corresponding initial condition (component-wise formula, ∀j ∈ S):

d

dt
V +

j (t) = − a′
jj(t) −

∑

k∈S
k 6=j

µjk(t)ajk(t)

+
(
δj(t) +

∑

k∈S
k 6=j

µjk(t)
)

V +
j (t) −

∑

k∈S
k 6=j

µjk(t)V
+
k (t), t ∈ [0, tEnd]

V +
j (tEnd) = 0 (5.3)

So having an initial condition for tEnd means that instead of calculating the reserve in the

common positive direction it is computed following the opposite direction.

If D 6= ∅ the course of the reserve is given through a sequence of contiguous IVPs
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which have to be solved successively starting at tEnd and following the negative direction

of t: The whole integration interval [0, tEnd] is split up into a sequence of m sub-intervals

[ti−1, ti], i = 1, . . . , m, m ∈ N with t0 = 0, tm = tEnd and ti in between signifying the

remaining points of discontinuity. So starting at time tEnd, the reserve is calculated from

one point of discontinuity until the next one in order to arrive at time 0. If required,

V +
j (t−) and V +

j (t+), respectively, are calculated at the beginning and at the end of the

sub-intervals.

Two different types of discontinuities of the reserve can be distinguished:

• additional additive values which occur at discrete times t, i.e. ∆a
(d)
jj (t) and ∆δ

(d)
j (t)

• discontinuities of the right-hand side of the differential equation caused by disconti-

nuities of at least one of the components a′
jj, ajk, µjk and δ′j at those points

For the fist type of discontinuity, the proceeding of calculating the reserve in the way it

has been described above is evidently clear: The differential equation is well-defined also

at those points for which additional discrete values are defined. So the integration over

[0, tEnd] is simply interrupted at those points and the discrete values are added before

continuing with the integration.

By contrast, it has not been described in detail which properties of the functions a′
jj , ajk,

µjk and δ′j let occur discontinuities of the second type. These details as well as an exact

description of the proceeding for calculating the reserve for this type of discontinuity will

be given in the following subsection.

5.1.3 Describing the continuous and discrete components of TDE

As it can be seen from (5.1) and (5.2), the components of TDE consist of both continuous

and discrete functions in order to allow considering a broad range of individually created

contracts. Of course, it is presumed that these functions exist and have finite values over

the whole insurance period.

1. Payments for remaining in state j ∈ S:

• ajj(t) =
∫ t
0 dajj(s) is a function representing the accumulated payment stream

from time 0 until time t, t ∈ [0, tEnd] provided that the contract has always

been in state j. It contains both continuously effected payments and payments
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realised at discrete points in time. ajj(t) can be split up into a continuous and

a discrete component

ajj(t) = a
(c)
jj (t) + a

(d)
jj (t)

with

a
(d)
jj (t) =

∑

0≤s≤t

∆a
(d)
jj (s) =

∑

0≤s≤t

(
a

(d)
jj (s+) − a

(d)
jj (s−)

)

and

a
(c)
jj (t) = ajj(t) − a

(d)
jj (t)

• ∆a
(d)
jj (t) is the discrete payment at time t for remaining in state j. As it has been

described in the previous subsection, the integration has to be interrupted at

this point and ∆a
(d)
jj (t) has to be added. Then the integration can be continued.

• a′
jj(t) =

da
(c)
jj

(t)

dt
describes the change of the continuous component a

(c)
jj (t) of the

accumulated payment stream ajj(t), i.e. the continuously effected payment at

time t paid for remaining in state j.

In contrast to the type of discontinuity where an additional discrete value has

to be taken into account, discontinuities of a′
jj(t) cause discontinuities of the

right-hand side of the differential equation. For a′
jj(t) two cases of discontinuity

can be distinguished:

– If a
(c)
jj is differentiable but not continuously differentiable at time t, a′

jj is

either càdlàg or continuous on the left with limit on the right at t.

– If a
(c)
jj is not differentiable at time t, a′

jj does not exist at t. Figure 5.1

shows this case of discontinuity of a′
jj: The function ajj illustrates that

contributions are paid continuously over the interval [0, 4) in state j. In the

same state, annuity benefits are paid continuously over the interval [4, 10).

So a
(c)
jj (t) is not continuously differentiable at t = 4 and t = 10.

In both of those two cases there is no additional discrete value which has to be

added. Nevertheless, the integration interval has to be split up at those points of

discontinuity. All that has to be done then is to continuously extend a′
jj for each

sub-interval at those points where it is not defined. Interrupting the integration

at the points of discontinuity and continuing with the next sub-interval leads to

the desired result.

2. The function ajk:

Whereas a′
jj and ∆a

(d)
jj help defining continuous and discrete payments for remaining
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Figure 5.1: a′
jj(t) and a

(c)
jj (t)

in state j, different payment types and times for the transition payments are all

described by the function ajk.

• There can be variable finite heights of the payments, depending on the time of

the transition and, of course, on the states j and k.

• For each payment it can be chosen whether to effect the payment immediately

at the point of time the transition occurs at or to realise it at an individually

specified later date.

Depending on whether the payment is immediately effected or at a later time, ajk

has different meanings:

• If the payment is defined to be effected immediately at time t, ajk(t) is equal to

the value fixed for the transition from state j to state k at time t.

• If the payment is defined to be realised at a later time than time t, nevertheless

the reserve is adjusted immediately at time t. Because the full value fixed for

the transition is not paid immediately but at a later time, not the full value has

effect on the reserve but only the discounted one. So in this case, ajk(t) is the

discounted value of the full value specified for the transition. That is why there
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Figure 5.2: ajk effected immediately vs. ajk effected at later paying times

occur discontinuities of ajk in t even if the value fixed for the transition remains

constant over the insurance period.

Figure 5.2 shows a payment function ajk for payments of amount 1 effected at the

same time t the transition occurs at, as well as a payment function ajk for payments of

the same height effected at individually chosen paying times. The two functions are

symbolized by the red and the black curve, respectively. The black curve indicates

that if a transition occurs in the interval (0, 1.5], the amount of 1 is paid at the end of

this interval. The remaining part of the black curve can analogously be interpreted.

Notice that Figure 5.2 just shows an example! ajk need not necessarily be a function

which is continuous on the left with limit on the right over [0, tEnd] – it can also

contain càdlàg parts.

For the points of discontinuity of ajk the proceeding is exactly the same as it has

been described for a′
jj: The integration interval is split up at those points, ajk is

continuously extended and the sequence of IVPs is solved successively.

3. µjk:

Also the functions µjk modelling the transition intensities from state j to state k

61



can be individually defined. One can easily imagine µjk having discontinuities in t,

when thinking of transitions that are only possible up to a certain time t∗ but not

afterwards. As µjk also is a function describing values for transitions from one state to

another one, it has similar properties as ajk and therefore the points of discontinuities

are treated the same way as for ajk.

4. The functions describing the interest for state j ∈ S:

As the functions δj, δ′j and ∆δ
(d)
j are functions which describe values for remaining

in state j they show the same properties as the functions ajj, a′
jj and ∆a

(d)
jj and can

be treated in the same way. The only restriction for the functions modelling the

interest is to be deterministic functions in order to guarantee the validity of Thiele’s

differential equation.

5.1.4 Solvability of the initial value problem

Before starting to calculate a solution it has to be clarified whether the IVP (5.3) for D = ∅
respectively each IVP of the sequence of IVPs for D 6= ∅ has a solution and whether this

solution is the unique one. In other words, I carefully consider which conditions the IVPs

have to fulfill or in which cases I have to be attentive in order to effectively obtain an

existing and unique solution.

The IVP (5.3) for D = ∅ respectively each IVP of the sequence of IVPs for D 6= ∅ repre-

sent initial value problems as described in Definition 4.1. For each of those IVPs a solution

has to be calculated in the negative direction of t. This fact does not change anything for

the following paragraphs in which the application of the Peano Existence Theorem and

the Picard-Lindelöf Theorem is discussed. In both theorems, solutions are considered in

an interval which is symmetric in t with respect to the initial value. So it does not make

any difference whether to regard a solution on the right-hand side or on the left-hand side

of the initial point of time.

I will write about several estimates taken from the two theorems. Instead of the 2-norm

I will use the 1-norm which is easier to handle for the IVP (5.3). That does not make any

difference concerning the existence of the calculated upper bounds because the different

p-norms are equivalent to each other in a finite space. Of course, I will take into account

the conversion constants.
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As described in section 4.1, I start by considering a region

G = {(t, V +) : |t| < ρ1, ||V +(t) − V +(tEnd)||1 <
√

nρ2}

and its closed envelope

G = {(t, V +) : |t| ≤ ρ1, ||V +(t) − V +(tEnd)||1 ≤
√

nρ2}

For the IVP (5.3), I consider the integration interval [0, tEnd] with finite value tEnd.

Consequently, it is possible to find a value ρ1 for which |t| < ρ1 as well as |t| ≤ ρ1 holds

∀t ∈ [0, tEnd].

For the values of V + an upper bound
√

nρ2 is prescribed so that together with the choice

of the initial value V +(tEnd) only values of V +(t) lying in the region defined through

V +(tEnd) and
√

nρ2, i.e. ||V +(t) − V +(tEnd)||1 <
√

nρ2 and ||V +(t) − V +(tEnd)||1 ≤√
nρ2, respectively, are considered. For my purposes,

√
nρ2 can be chosen to be a large

finite number.

The calculations can only take place in the region defined through G and G, respectively.

So I have to make sure that the solution V +(t) does not get outside the region because it

cannot be foreseen what happens then.

The Peano Existence Theorem (cf. Theorem 4.2) guarantees the existence of a solution

for an IVP under certain conditions which now are analysed for the IVP (5.3).

• First, f(t, V +) has to be continuous in G. After having split up the interval [0, tEnd]

at the points of discontinuity as it has already been described and after having

continuously extended f(t, V +) at the beginning and at the end of each sub-interval,

the continuity condition is fulfilled.

• The second condition to be fulfilled is that f has to be bounded in such a way that

||f(t, V +)||1 ≤
√

nA(t) with
∫ t

0

√
nA(τ)dτ ≤ √

nρ2 ∀t with |t| ≤ α, 0 < α ≤ ρ1

This means that ||f(t, V +)||1 has an upper bound
√

nA(t) which is integrable so that

the solution V +(t) remains ≤ √
nρ2 within a (small) interval t, |t| ≤ α, 0 < α ≤ ρ1

and there can be calculated. The procedure restarts at t in order to obtain a solution

over [0, tEnd].

For my purposes, it is sufficient to consider a very generous global upper bound√
nA(t) = B. I also suppose global upper bounds B0 for the absolute values of each

of the components a′
jj(t), ajk(t), δj(t) and µjk(t) of f . Those upper bounds shall be
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valid ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , n}, k 6= j, and over the whole integration interval

[0, tEnd] for all choices of those functions corresponding to their description in the

previous subsection. By using those upper bounds, I want to estimate an upper

bound B for f :

||f(t, V +)||1 =
n∑

j=1

|fj(t, V
+)| ≤ ||V +||1(2n − 1)B0 + nB0 + n(n − 1)B2

0 ≤ B

with V + such that ||V +(t) − V +(tEnd)||1 ≤
√

nρ2.

Then
∫ t
0

√
nA(τ)dτ =

∫ t
0 Bdτ = tB ≤ √

nρ2 for all t with |t| ≤ α, 0 < α ≤ ρ1.

So a solution V + remaining bounded, i.e. ||V +(t) − V +(tEnd)||1 ≤ √
nρ2, can be

calculated within an interval of length t ≤
√

nρ2

B
. Then the procedure restarts for new

initial values but for the same upper bounds ρ1,
√

nρ2 and B0.

Only too big values of B can cause difficulties: Then t ≤
√

nρ2

B
becomes close to 0

which means that the calculation almost does not proceed or is even stopped. In

fact, too big values of B are caused by too big initial values V +(tEnd) because we

consider values V +(t) in a region around V +(tEnd) and big values of V + make B

increase (provided that ρ1,
√

nρ2 and B0 are fixed). So too big values of V + can also

be detected through small integration steps which can be observed by the user when

applying a numerical solving algorithm to the IVP.

Summarising, for f being continuous and bounded in the way it is described above, the

existence of a solution in [0, tEnd] is ensured.

According to the Picard-Lindelöf Theorem (cf. Theorem 4.3), an IVP has a unique

solution if the conditions which are now discussed for the case of the IVP (5.3) are fulfilled:

• f(t, V +(t)) has to be continuous in G:

This property of f can be deduced from its property of being continuous in G which

is required in the Peano Existence Theorem.

• ||f(t, V +)||2 ≤ M in G

also follows from the fact that ||f(t, V +)||1 ≤ B in G for appropriate upper bounds

as required in the Peano Existence Theorem (which is equivalent to ||f(t, V +)||2 ≤
1√
n
B =: M in G).

• f(t, V +) has to be Lipschitz continuous with respect to V +, i.e. there must be a Lip-

schitz constant L ≥ 0 supplying ||f(t, V +
1 ) − f(t, V +

2 )||2 ≤ L||V +
1 − V +

2 ||2 for (t, V +
1 )

and (t, V +
2 ) ∈ G.

64



The existence of a Lipschitz constant L is definitely ensured if f(t, V +) is differen-

tiable and if its partial derivatives with respect to the components of V + are bounded.

Above, I have assumed f(t, V +) to be continuous in G for this first consideration.

Then a local Lipschitz constant LL can be found through

LL = sup
t∈[ti,tj ]

∥∥∥∥∥
∂f(t, V +(t))

∂V +(t)

∥∥∥∥∥
2

for those parts [ti, tj ] where f is differentiable and has bounded partial derivatives

with respect to the components of V +.

At the points t∗ of non-differentiability, a possible value for the local Lipschitz con-

stant LL is the maximum of the local Lipschitz constants calculated for the left-hand

and the right-hand interval with respect to t∗.

A global Lipschitz constant L then can be found through

L = maxLL

Of course, those considerations are only correct if the partial derivatives of f(t, V +)

with respect to V + are bounded over [0, tEnd]. In the IVP (5.3) they all only con-

sist of sums of δj and µjk. As I have supposed |δj(t)| ≤ M0 and |µjk(t)| ≤ M0

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , n}, k 6= j, t ∈ [0, tEnd] the derivatives all are bounded

which completes the considerations concerning the Lipschitz condition.

To summarise the results of the preceding considerations, the validity of the Picard-Lindelöf

Theorem requires

• upper bounds ρ1 for |t|, √
nρ2 for ‖V +(t) − V +(tEnd)‖1 and M0 for each of the

functions |a′
jj(t)|, |ajk(t)|, |δj(t)| and |µjk(t)|

as well as

• f being a continuous function in t.

Then the existence of a unique solution of the IVP (5.3) can be guaranteed.

5.1.5 Calculating the real heights of the contributions

Contributions are always paid when remaining in specified states j ∈ S. So in (5.1) and

(5.2) they are represented by negative values of the functions a′
jj and ∆a

(d)
jj which means
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that the premiums can be paid continuously or at discrete points of time or both. For the

following considerations any information about the states in which contributions have to

be paid is not required and therefore left out.

When considering an insurance contract for which certain benefits are defined, the heights

of the contributions for this contract are determined by the scale of the benefits. Never-

theless, it is possible to prescribe sort of a course of the premium payments. For better

understanding, I will introduce some symbols:

• Let π′(t), t ∈ [0, tEnd] denote the function describing the real heights of the contin-

uously effected contributions and

• let ∆π(d)(t) denote the real contribution heights paid at discrete points of time t.

This means that for a given insurance contract the scale of the contributions paid through

π′(t) and ∆π(d)(t) corresponds to the scale of the defined benefits. By contrast,

• let b′(t), t ∈ [0, tEnd] stand for the function describing the course of the continuously

effected contribution payments given apart from some proportional factor pF and

• let ∆b(d)(t) denote the contribution heights paid at discrete points of time t given

apart from pF .

Then for an insurance contract having uniquely defined benefits, the course of the con-

tribution payments can be given through b′(t), t ∈ [0, tEnd] and ∆b(d)(t) for all discrete

points t. Obviously,

π′(t) = b′(t) pF

and

∆π(d)(t) = ∆b(d)(t) pF.

So for a course of the contribution payments given apart from pF , this factor can be

calculated by using the equivalence principle: At time 0, the expected discounted benefits

of a contract are equal to the expected discounted contributions, in symbols

E0[discounted benefits] = E0[discounted real contributions].

This is equivalent to

E0[discounted benefits]
︸ ︷︷ ︸

(1)

= E0[discounted contributions apart from pF ]
︸ ︷︷ ︸

(2)

pF.
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(1) can be determined by calculating the reserve at time 0 for the given contract by means

of (5.1) and (5.2) when leaving out any contribution payments (b′(t) and ∆b(d)(t)). Analo-

gously, (2) can be calculated by leaving out all benefits and multiplying by (−1) (because in

contrast to the positive benefit payments the contribution payments have negative values).

Finally, pF can be determined by calculating (1)
(2)

.

5.2 Solving Thiele’s differential equation by means of

a discretisation method

To calculate the course of the reserve V +(t) for a given insurance contract over the in-

surance period [0, tEnd], Thiele’s differential equation ((5.1) and (5.2)) respectively the

corresponding sequence of IVPs has to be solved by using a discretisation method.

5.2.1 Choosing a suitable numerical method for solving TDE

The numerical methods for solving ordinary differential equations have already been de-

scribed in Chapter 4. To decide which discretisation schemes are qualified for solving an

IVP it is useful to distinguish between a stiff and a non-stiff differential equation: A system

of ordinary differential equations y′ = f(t, y) is called stiff if its derivative with respect to

y, i.e. the function df(t,y)
dy

has eigenvalues λi with real part Re λi ≪ 0, possibly besides

eigenvalues of moderate size. For TDE (5.1) in matrix notation

d

dt
V +(t) = A(t) + B(t) V +(t)

with

A(t) = −




a′
00(t)

a′
11(t)
...

a′
(n−1)(n−1)(t)



−




∑
k 6=0 µ0k(t)a0k(t)

∑
k 6=1 µ1k(t)a1k(t)

...
∑

k 6=(n−1) µ(n−1)k(t)a(n−1)k(t)




and

B(t) =




c0 −µ01(t) . . . −µ0(n−1)(t)

−µ10(t) c1
. . .

...
...

. . .
. . . −µ(n−2)(n−1)(t)

−µ(n−1)0(t) . . . −µ(n−1)(n−2)(t) cn−1



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where

cj = δ′j(t) +
∑

k 6=j

µjk(t), j ∈ 0, . . . , n − 1

as well as

V +(t) =




V +
0 (t)

V +
1 (t)
...

V +
n−1(t)




the derivative with respect to V + is the matrix B(t).

Provided that the functions µjk, j 6= k are bounded that way that do not cause eigen-

values λi with Re λi ≪ 0, TDE constitutes a non-stiff differential equation and therefore it

is not necessary to use an implicit discretisation method. As adaptive step size is very diffi-

cult or even impossible to apply on multi-step methods, the explicit Runge-Kutta schemes

constituting the most important class of the explicit one-step methods seem to be a good

choice for solving TDE provided that the described conditions are fulfilled. An additional

possibility to determine whether the chosen method is qualified or not is to observe the

course of the step sizes: If the step size becomes very small (which can also be detected by

observing that the calculation takes a comparatively long time) the applied method does

not seem to be the best choice.

One of the requirements guaranteeing an existing and unique solution is the continuity

of the right-hand side of (5.1) over each sub-interval. When applying a discretisation

method (5.1) has to fulfill further conditions concerning the smoothness of the solution

function V +(t) and depending on the order of convergence of this method.

The improved Euler method (cf. (4.40) and (4.41)) as a simple example of the Runge-

Kutta methods is convergent of order 2 and requires V +(t) to be three times continuously

differentiable. So what are the conditions the right-hand side of (5.1) has to fulfill in order

to guarantee three times continuous differentiability of V +(t)? The first three derivatives

of V +(t) are:

dV +(t)

dt
= f(t, V +(t)) (5.4)

d2V +(t)

dt2
=

∂f(t, V +)

∂t︸ ︷︷ ︸
I

+
∂f(t, V +)

∂V +
︸ ︷︷ ︸

II

dV +(t)

dt︸ ︷︷ ︸
III

(5.5)
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d3V +(t)

dt3
=

∂2f(t, V +)

∂t2︸ ︷︷ ︸
IV

+ 2
∂2f(t, V +)

∂V + ∂t︸ ︷︷ ︸
V

dV +(t)

dt︸ ︷︷ ︸
=III

+
∂2f(t, V +)

∂(V +)2

︸ ︷︷ ︸
V I




dV +(t)

dt︸ ︷︷ ︸
=III




2

+
∂f(t, V +)

∂V +
︸ ︷︷ ︸

=II

d2V +(t)

dt2︸ ︷︷ ︸
=I+II·III

(5.6)

In (5.5) and (5.6),

• I is continuous if the derivatives of the functions a′
jj(t), ajk(t), µjk(t) and δ′j(t) with

respect to t exist and if they are continuous.

• II is equal to the matrix B(t) described before. As all elements of B(t) consist of

the functions µjk(t) and δ′j(t) and as those functions are assumed to be continuous

in each sub-interval, the continuity of II is fulfilled.

• III is equal to the right-hand side of TDE (5.1) and therefore assumed to be contin-

uous in each sub-interval.

• IV is continuous if the second derivatives of the functions a′
jj(t), ajk(t), µjk(t) and

δ′j(t) with respect to t exist and if they are continuous.

• V is continuous if the derivatives of the functions µjk(t) and δ′j(t) with respect to t

exist and if they are continuous.

• V I is equal to 0 as the right-hand side of TDE is linear in V +.

So to guarantee three times continuous differentiability of V +(t), the components a′
jj(t),

ajk(t), µjk(t) and δ′j(t) at least have to be twice continuously differentiable. If there are

points where this condition is not fulfilled, the integration interval has to be split up at

these points, again (cf. Sections 5.1.2 and 5.1.3).

The generalised statement for an explicit Runge-Kutta method of order p is that V +(t)

has to be p+1 times continuously differentiable, i.e. that the functions a′
jj(t), ajk(t), µjk(t)

and δ′j(t) have to be p times continuously differentiable to guarantee the convergence when

applying this method.

5.2.2 Settings for solving TDE by means of a numerical method

When using a discretisation method for solving an ordinary differential equation, certain

settings can be specified:
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• First, a numerical algorithm has to be chosen. For the case of TDE, this will be one

of the Runge-Kutta methods.

• Secondly, if adaptive step size shall be used, a desired error level consisting of an

absolute and a relative error bound can be chosen (cf. Section 4.4, (4.46)). Adaptive

step size only allows specifying a desired error level for the local error but not for the

global one. Nevertheless, an a-posteriori estimate of the global error can be obtained

as described in Section 4.4.

• Every algorithm starts with an initial step size. In order to avoid numerous rejections

of unsuitable initial step sizes, the user has to specify a value for the initial step size

which, according to the properties of the differential equation, he regards as more or

less suitable.

5.3 The realisation in the C programming language

Besides the detailed theoretical considerations concerning the calculation of the reserve for

the Markovian model, an important constituent part of this diploma thesis is the practical

application of TDE: I have written a programme to calculate the course of the reserve

V +(t) over t ∈ [0, tEnd] for given life insurance contracts by using the C programming

language. In this chapter, I will describe the structure of this routine and explain all im-

portant components.

Concerning the applied discretisation methods, I have used the GSL ODEIV package

of the GNU Scientific Library (GSL), a free software library written in C for numerical

calculations in applied mathematics and science. In the following subsection, I will briefly

describe the functions of this package and how they are used.

5.3.1 The GSL functions for solving ordinary differential equa-

tions

The GSL ODEIV package provides several functions for solving ordinary differential equation

(ODE) initial value problems. The user can choose between a couple of different solving

methods on the one hand and whether to leave the initial step size unchanged over the

integration interval or to use adaptive step size control on the other hand.
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The ODE system

The routines are able to solve a first order system of n dimensions

dyi

dt
= fi(t, y1(t), . . . , yn(t))

together with some initial value (t0, y(t0)).

All information about the system that the routines need is stored in a variable of type

gsl odeiv system having four components:

• int (*function) (double t, const double y[], double dydt[], void

*params);

is a pointer to a function describing the right-hand side of the differential equation

system depending on the arguments t and y and the parameters params, and storing

it in the array dydt. The function returns an integer value in order to inform whether

the calculation has been successful or not.

• int (*jacobian) (double t, const double y[], double *dfdy, double

dfdt[], void *params);

is a pointer to a function calculating

∂fi(t, y, params)

∂t
, i ∈ {1 . . . dim}

and the Jacobian matrix

Jij =
∂fi(t, y, params)

∂yj

, i ∈ {1 . . . dim}, j ∈ {1 . . . dim}

and storing them in the arrays dfdt and dfdy respectively. Also this function returns

an integer value indicating whether the calculation has been successful or not. Only

some of the implicit algorithms solving the system use the Jacobian matrix.

• size t dimension;

is the dimension of the differential equation system.

• void *params;

is a pointer to data of an unspecified type so that any differential equation system can

be described using the required parameters stored in an individual data structure.
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The stepping functions

The lowest level functions are the stepping functions which, starting from initial values y[]

at time t, calculate the solution of the ODE at time t + h as well as a value estimating the

resulting local error.

After having defined the ODE system the user has to choose an algorithm for solving the

system, e.g. const gsl odeiv step type *T = gsl odeiv step rk8pd for choosing the

embedded Runge-Kutta Prince-Dormand (8,9) method. The GSL ODEIV package pro-

vides several explicit and two implicit Runge-Kutta methods as well as three other implicit

methods.

gsl odeiv step *s = gsl odeiv step alloc(T,dim) creates a new stepper object which

contains all required information concerning the chosen algorithm for the calculation of one

step.

By using the command gsl odeiv step apply one step from t to t + h is calculated for

given initial values y[], the ODE system information &sys and the created stepper object

s. The called routine first calculates the result of the step and then a value estimating the

local error occurred during this step. In most methods, error estimation is either done by

step doubling or by using two algorithms of different order. Then the difference between

the two results gives an approximation of the local error occurred during this step.

When calculating without adaptive step size control, the values of the estimation errors

don’t have any consequences. In the following paragraph, it is described how error estima-

tion can be used to adjust the step size in order to keep the local error on each step within

a desired error level.

Adaptive step size control

By using adaptive step size control it is possible to obtain an approximation of the solution

of the ODE having a certain accuracy on each step. The proceeding is exactly the same

as described in Section 4.4.

The GSL ODEIV package provides two control types to determine the desired error level

ǫi:

• The standard control type:

When using the standard control type, the desired error level ǫi for each component is

calculated by taking into account the absolute and relative errors eps abs and eps rel

and the factors a y and a dydt for scaling y(t) and y′(t):

ǫi = ǫabs + ǫrel(ay|yi| + adydth|y′
i|)
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gsl odeiv control *c = gsl odeiv control standard new(double eps abs,

double eps rel, double a y, double a dydt); is the command for creating a

new step size control object for the standard control type.

There are two special types of the standard control object: The commands

gsl odeiv control *c = gsl odeiv control y new(double eps abs, double

eps rel); and gsl odeiv control *c = gsl odeiv control yp new(double

eps abs, double eps rel); are equivalent to creating a new step size control ob-

ject for the standard control type with a y = 1, a dydt = 0 and a y = 0, a dydt = 1

respectively. So the first one will keep the local error on each step within an absolute

error of eps abs and a relative error of eps rel with respect to the solution yi(t) and

the second one within an absolute error of eps abs and a relative error of eps rel with

respect to the solution y′
i(t).

• The scaled control type:

gsl odeiv control *c = gsl odeiv control scaled new(double eps abs,

double eps rel, double a y, double a dydt, const double scale abs[],

size t dim); creates a new step size control object for the scaled control type.

In this case the formula for ǫi is

ǫi = ǫabsscale absi + ǫrel(ay|yi| + adydth|y′
i|)

So for the scaled control type the desired error level is calculated by including an

absolute error which is scaled for each component.

Using the evolution object

The highest level component is the evolution function which combines the information

returned by the stepping function and the control function and - according to the results

- continues with the next step or by repeating the last step for some smaller step size in

order to calculate the solution of the ODE over the considered interval.

gsl odeiv evolve *e = gsl odeiv evolve alloc(dim); creates a new evolution ob-

ject which contains all required information for using the evolution function for the calcu-

lation.

To calculate the solution of the ODE system in the interval [t, tEnd] by using the evolution

object the user has to call the function gsl odeiv evolve apply in a loop:

while ( t<tEnd )

{
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int s t a tu s = g s l o d e i v e v o l v e a pp l y ( e , c , s , &sys , &t , tEnd , &

h , y ) ;

i f ( s t a tu s != GSL SUCCESS)

break ;

}

The arguments are

• pointers e to the evolution object, c to the step size control object, s to the stepper

object and &sys to the ODE system information

• the end of the considered integration interval tEnd and a pointer &t to the actual

point of the integration interval

• a pointer &h to the initial step size

• and initial values y[].

If any function called by the evolution function returns a value indicating that the

calculation has not been successful the step will be aborted and the return value status

will inform the user about the error.

5.3.2 The structure of the programme

1. As I have decided to use the GSL ODEIV package to calculate a solution of TDE,

the following settings are required to be specified in the function main.c:

• A discretisation method has to be chosen (one of the explicit Runge-Kutta

methods).

• A control type together with the required values eps abs, eps rel, a y and a dydt

has to be chosen to specify the desired error level.

• The initial step size has to be specified.

Furthermore, the commands for creating the corresponding stepper object, control

object and evolution object have to be executed.

2. All information of the right-hand side of TDE is contained in the variable sys:

• The function function describes the right-hand side of TDE, i.e. the formula

(5.1). For given t ∈ [0, tEnd], function value y[] (corresponding to the vector
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V +(t)) and the required parameters specifying the right-hand side of TDE it

calculates the corresponding value of the differential equation

• As the function jacobian is not used for the explicit Runge-Kutta methods the

pointer to this function is set to 0 in my programme.

• the dimension of TDE, i.e. the number of states

• params is a pointer to a structure which contains all parameters specifying the

right-hand side of TDE. So function represents sort of a frame which is filled by

using the elements of the parameter structure in order to determine the values

of this function

3. The connection between the functions of the GSL ODEIV package and the informa-

tion of TDE contained in sys is established by means of the function

gsl odeiv evolve apply. In a loop until the end of the considered integration in-

terval (or sub-interval), this function induces one step of the calculation by using the

GSL ODEIV functions. For this purpose, the information concerning the integration

interval, the initial values y[], the right-hand side of TDE in sys as well as the chosen

settings are delivered to the GSL ODEIV functions.

5.3.3 The parameters

The component params in sys is a pointer to the data structure allParameters t. This

data structure consists of all parameters which are required to calculate TDE. In other

words, the individual properties of any insurance contract are given through the elements

of the structure allParameters t. allParameters t contains the following information:

• the number of insured persons belonging to the contract

• the number of states per person, in the following also referred to as “single states”

• the number of states in the contract, also referred to as “contract states”. If there is

only one insured person the number of states per person and the number of contract

states are the same.

• the age of the insured persons at the beginning of the insurance period, i.e. at t = 0

(the “initial ages”)

• the insurance period
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• the parameters required for calculating the transition intensities as well as the func-

tion calculating the transition intensities µjk(t), j 6= k

• the function calculating the value of the payments a′
jj(t) and ajk(t) as specified for

the contract as well as a second function of this type which always returns the value 0

(the second function is required for calculating the real heights of the contributions).

A third function of this type is either set to the first or the second function (more

details will be given afterwards)

• the upper bound upper of the actual integration sub-interval which is needed for

calculating ajk(t)

• the proportional factor pF (contributions are given apart from this factor)

• a function describing all points of discontinuity of TDE as well as the value of ∆a
(d)
jj (t)

and ∆δ
(d)
j (t). Furthermore a variable jumpLists of data structure threeJumpLists t

containing three lists: The first list j1 contains the same information as the function

describing the points of discontinuity. The second list j2 only contains the points of

discontinuity having negative values of ∆a
(d)
jj (t). The third list j3 only consists of

one entry having a negative value of ∆a
(d)
jj (t). j3 is only needed if the character of

the insurance contract is taken into account and will be described in Chapter 6.

• the function calculating the values of the force of interest δ′j(t) as well as the function

representing the discounting function which is needed for calculating ajk(t)

• a variable that can have two values indicating whether the character of the insurance

contract is taken into account or not. All details concerning the character of an

insurance contract are left out in this chapter but are described in Chapter 6.

So when starting to execute the programme a variable of type allParameters t is

created and every element of it is given a special value or function characterising the cho-

sen insurance contract. The user can modify the command assigning a certain insurance

contract to this variable by choosing one of the available insurance contracts that I have

already implemented. Furthermore, it is possible to write new functions and choose appro-

priate values for the parameters in order to create a new insurance contract that afterwards

can be chosen in the main programme.
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5.3.4 The insured persons and the states of the contract

If only one insured person is part of an insurance contract, the states of the contract de-

scribe situations for this single person. So in this case the single states are identically equal

to the contract states.

By contrast, when having more than one insured person the contract states represent sit-

uations of the whole group of insured persons. Obviously, these contract states depend on

the single states of all persons: For example, the single states ∗ (“alive”) and † (“dead”)

lead to the contract states ∗∗, ∗†, †∗ and †† for a contract having two insured persons.

Of course, in TDE only the contract states are considered. But as the transition intensities

for the contract states will be composed of the transition intensities for the single states,

the introduction of the number of insured persons and of the single states is indispens-

able: The function calculating the transition intensities for the contract states requires the

information concerning the insured persons and the single states.

5.3.5 The payment functions

The payment functions in TDE (5.1) and (5.2) consist of the continuously effected pay-

ments a′
jj(t) for remaining in state j, the transition payments ajk(t) for the transitions

j → k, j 6= k and the discrete payments ∆a
(d)
jj (t) for remaining in state j.

As the discrete payments ∆a
(d)
jj (t) cause discontinuities they are described below in the

paragraph which explains how to deal with the points of discontinuity listed in jumpLists.

In my programme, the payments a′
jj(t) and ajk(t) are together described in one func-

tion: According to the values of j and k, the function distinguishes between j = k and

j 6= k and calculates the required value depending on j, k and t. The different functions

calculating a′
jj(t) and ajk(t) for the different implemented examples can be found in ajk.c.

If the transition payment ajk(t) is defined not to be paid immediately at t but at a later

time, instead of the full value only the discounted value of ajk(t) has effect on the reserve.

The function calculatePaymentValue in payments.c checks whether a discounted value

is defined or not and calculates the desired result by using the discounting function. Of

course, the fact that a transition payment is effected at a later time causes a point of

discontinuity at this later date (cf. Section 5.1.3). So the integration has to be interrupted

at this point which has to be indicated in the function describing all points of discontinuity

as well as the discrete values ∆a
(d)
jj (t) and ∆δ

(d)
j (t).
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This function is used to create the list j1 of discontinuities which is arranged in de-

scending order with respect to t. j1 consists of three different types of entries:

• points of discontinuity where a discrete payment ∆a
(d)
jj (t) is effected - then the entry

also contains the value of this payment.

• points of discontinuity where a discrete interest ∆δ
(d)
j (t) is realised - then the entry

also contains the value ∆δ
(d)
j (t)

• points of discontinuity caused by discontinuities of one of the functions a′
jj(t), ajk(t),

δ′j(t) and µjk(t) or of one of their k-th derivatives (as far as they are required for the

convergence of the applied discretisation method). In this case, the entry signifies

that there is no discrete value which has to be added.

5.3.6 The interest functions

The functions modelling the interest in TDE (5.1) and (5.2) consist of the continuously

realised interest δ′j(t) and the interest ∆δ
(d)
j (t) realised at discrete points of time. Fur-

thermore, there is a discounting function v(t1, t2) calculating the value at time t1 of one

unit paid at time t2. The discounting function is only used to determine the discounted

values of ajk(t) which are defined to be paid at a later time. The parameter upper in

allParameters t is required here to indicate the point of time the transition payment

ajk(t) is paid at. ajk(t) v(t, upper) then is the corresponding discounted value.

For reasons of simplification, for all the implemented examples modelling different in-

surance contracts, δ′j(t) is a constant function δ′j(t) = 0.03 and there is no interest realised

at discrete points of time.

5.3.7 Modelling the transition intensities

The chosen model

Assigning priorities while working on my diploma thesis, I did not choose the question of

how modelling the transition intensities as a problem of prime importance. Having prop-

erly integrated the functions calculating the transition intensities into the programme is

much more essential than greatly fitted values produced by those functions.

Starting from a classical insurance contract with one insured person and two states per

person, i.e. “alive” and “dead”, I just needed mortality intensities as transition intensi-

ties. I chose a simple model together with estimated parameters found in Section 3.4
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of [Møller and Steffensen, 2007]: Møller and Steffenson describe the Gompertz-Makeham

model in which the mortality intensities are calculated through

µ(x + t) = α + βcx+t (5.7)

where x denotes the age of the insured person, t the time since the beginning of the in-

surance period and α, β and c are the parameters estimated for the Danish population in

2003.

The estimated values for males and females are:

α β c

male 0.000134 0.0000353 1.1020

female 0.000080 0.0000163 1.1074

By calculating the one-year mortality probabilities

1px = exp


−

1∫

0

µ(x + τ)dτ


 = exp


−

1∫

0

(α + βcx+τ)dτ


 = exp

(
−α − β

cx+1 − cx

ln(c)

)

I could compare the Danish values to the Austrian ones using the life table ÖStt2000 2002

and realise that they conform very well for x ∈ [30, 80]. Nevertheless, I use them as well

for ages below 30 and above 80.

For insurance contracts having more than one possible transition I also chose a very simple

way of calculating the transition intensities: Every intensity is deduced from the mortality

intensity and just multiplied with some proportional factor.

In contracts having more than one insured persons the probabilities and therefore the in-

tensities are assumed to be independent.

One possibility to obtain better fitted transition intensities is to fit a model to Austrian

biometric data and to estimate the parameters for this model. Furthermore, the effects of

dependence because of having more than one insured person could be taken into account

more carefully. But as it has already been mentioned this has not been the central point

of this diploma thesis.

The intensity parameters

parInt is an array of dimension pers x nPers which contains elements of the data structure

parameters Int. The data structure parameters Int consists of the parameters α, β

and c and the array p of dimension nPers.
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state 0 state 1 state 2

person 0

person 1

Table 5.1: parInt of dimension 2 x 3

Table 5.1 shows the array for pers = 2 and nPers = 3. Every element parInt[i][j]

of the array (i ∈ {0, 1} denoting the insured person and j ∈ {0, 1, 2} denoting the state)

contains values α, β, c and p = {p0, p1, p2} leading to the transition intensities for person

i:

µi
j•(x + t) = α + βcx+t (5.8)

is the transition intensity for person i to leave state j.

µi
jk(x + t) =

(
α + βcx+t

)
pk (5.9)

is the transition intensity for person i from state j to state k under the condition that

person i leaves state j. µi
jj(x + t) is not used in the calculation and therefore pj = 0 in

parInt[i][j].

Obviously, the parameters α, β and c determine whether the insured person is male oder

female.

The functions calculating the transition intensities

Let us first consider an insurance contract with one insured person: The number of contract

states is equal to the number of states per person. So a transition from contract state j

to contract state k is caused by the person’s transition from the person’s state j to the

person’s state k.

For an insurance contract containing more than one insured person, a transition from

contract state j to contract state k is caused by one of the persons’ transition from one

person’s state to another one.

For this reason it was necessary to write two types of functions for calculating the transition

intensities:

1. One function calculating the transition intensity for a given person, given person’s

initial and following state and remaining parameters t, x and parInt.
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2. One function having as arguments the contract state j, the contract state k and the

remaining required parameters t, x and parInt. This function chooses the person and

this person’s initial and following state corresponding to the transition from contract

state j to contract state k and calls the function described above.

The first function is used for every insurance contract, always called by the second

function which is individual for each contract and an element of the variable of type

allParameters t.

5.3.8 Calculating the reserve

As it has already mentioned in Section 5.3.2, the function gsl odeiv evolve apply induces

one step of the calculation by using the GSL ODEIV functions. gsl odeiv evolve apply

is called in a loop which is stopped at every point of discontinuity indicated by one of

the lists j1, j2 and j3. Then the discrete values are added and the loop for the next

sub-interval is started.

This procedure is executed three times:

1. The list j1 is used, but pF = 0 implies that the contributions are left out in order to

determine the expected discounted benefits.

2. This time, the benefits are left out by using the second of the payment functions in

allParameters t which always returns the value 0. Using the list j2 in which only

the contribution payments are described leads to the expected value of the discounted

contributions.

3. After having determined pF by dividing the expected discounted benefits by the

expected discounted contributions, the reserve is calculated for the original payment

function and for the original list j1 which leads to the desired course of the reserve.

5.4 Examples

In this section some concrete examples calculated by using the implemented programme

are discussed. First, the course of the reserve for three classical insurance contracts is

examined and compared to the course of the reserve for the same examples calculated

using the discrete recursion. Then, the more complex case of a long-term care insurance

for two insured persons is presented.
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Figure 5.3: Term insurance

5.4.1 Simple classical insurance contracts

This subsection is about three simple classical insurance contracts: The course of their

reserve in state 0 calculated by using the time-continuous markov model is compared to

the corresponding reserve calculated by using the time-discrete markov recursion. By

calculating the one year mortality probabilities based on the mortality intensities used

in the time-continuous calculation (cf. formula (5.8)), the corresponding time-discrete

calculation can be made.

Term insurance

This example considers a term insurance for a male insured person of initial age 50. There

are two contract states “alive”(∗) and “dead”(†). The insurance period is 20 years. The

defined death benefit is 100000, paid at the end of the year the insured person dies in.

Contributions are of constant height and paid at the beginning of each year k = 1, . . . , 20.

The force of interest is constant with δ′j(t) = 0.03 over the insurance period.

As shown in Figure 5.3, the values of the reserve in state 0 calculated in the time-continuous

model are equal to the values of the corresponding reserve in the time-discrete model at

the end of each year k, k = {0, . . . , 20}. At times k, i.e. at integer values ⌈t⌉, the reserve in

state 0 in the time-continuous model has a discontinuity of positive height: contributions

are paid. Basically, the continuous change of the reserve is influenced by the expected
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Figure 5.4: Term and endowment insurance

death benefits which are subtracted. This is the reason why the reserve decreases between

the discrete contribution payments over the whole insurance period.

The function setInsuranceModel01M describing this example in C can be found in

parameters.c in the appendix.

Term and endowment insurance

An endowment insurance for a male insured person of initial age 50 is considered. Again,

there are two contract states “alive”(∗) and “dead”(†). The insurance period is 20 years.

The defined death benefit is 100000, paid at the end of the year the insured person dies

in. The defined endowment benefit is 300000, paid at the end of the insurance period.

Contributions are of constant height and paid at the beginning of each year k = 1, . . . , 20.

The force of interest is constant with δ′j(t) = 0.03 over the insurance period.

Figure 5.4 shows the typical increasing course of the reserve in state 0 for the term and

endowment insurance. Again, the values of the reserve in state 0 calculated in the time-

continuous model are equal to the values of the corresponding reserve in the time-discrete

model at the end of each year k, k = {0, . . . , 20}.
This example is described by the function setInsuranceModel02M and can be found in

parameters.c in the appendix.
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Figure 5.5: Annuity insurance

Annuity insurance

The third classical example considers an annuity insurance for a male insured person of

initial age 30. There are two contract states “alive”(∗) and “dead”(†). The insurance

period is 70 years. Contributions are of constant height and paid at the beginning of each

year k = 1, . . . , 35 whereas for k = 36, . . . , 70, annuity benefits of height 12000 are paid at

the beginning of each year k, always provided that the contract remains in state ∗. The

force of interest is constant with δ′j(t) = 0.03 over the insurance period.

Figure 5.5 shows the typical course of the reserve in state 0 of an annuity insurance: In

the interval where the contributions are paid, the course of the reserve is similar to that

in Figure 5.4. From t = 35 on annuity benefits are paid. Between those payments, the

reserve is increasing because of the interest.

Also this example can be found in parameters.c in the appendix: setInsuranceModel04M

5.4.2 Long-term care insurance

As an example of a complex insurance contract I have chosen a long-term care insurance

for two insured persons. Figure 5.6 shows the different states and the possible transitions

for this example. There are three single states for each insured person: “active”(∗), “in

need of care”(C) and “dead”(†). 9 contract states which are shown in the figure result

from these single states. The arrows symbolising the possibility of remaining in one state
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Figure 5.6: Long-term care insurance insurance

have been left out in the figure in order to keep it clear and easy to understand.

Two possible ways of specifying an insurance contract for this state space have been con-

sidered:

1. A symmetric version described in the function setInsuranceModel2Lives02a:

The payments for remaining in one state are defined as follows:

• state 0: Contributions are paid

• states 1 and 2: One of the two insured persons is still “active”, the other one is

in need of care. The active one cares for the other one. So in these states, no

contributions but also no benefits are paid.

• state 3: Both insured persons are in need of care. A “full” annuity is paid.

• states 6 and 7: One of the two insured persons has already died, the other one

is in need of care. A “half” annuity is paid.

• states 2, 5 and 8: No contributions and no benefits are paid.

In addition to these payments also transition payments are defined: For each of the

following transitions

• 0 → 4
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• 1 → 4

• 0 → 5

• 2 → 5

a transition benefit is paid. For all other transitions no benefits are paid.

2. A non-symmetric version is described in the function setInsuranceModel2Lives02b:

In this case, the first of the insured persons has sort of a maintaining function. The

payments for remaining in one state are defined as follows:

• states 0 and 4: The “maintaining” person is active, the other one is “active”, too,

or has already died. So contributions are paid (by the “maintaining” person).

• state 3: Both insured persons are in need of care. A “full” annuity is paid.

• states 1, 6 and 7: Either one of the two insured persons is in need of care

and the other one has already died. Or the “maintaining” person is in need

of care whereas the other one is still “active”. Then the “active” one cares for

the “maintaining” person. In both cases, a “half” annuity is paid because the

“maintaining” person can no longer earn money.

• states 2, 5 and 8: No contributions and no benefits are paid.

As in the symmetric version, additional transition payments are defined for the fol-

lowing transitions:

• 0 → 4

• 1 → 4

• 0 → 5

• 2 → 5

For all other transitions no benefits are paid.
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Chapter 6

Taking into account the character of

an insurance contract

For every life insurance contract, a certain risk is covered by the insurance company:

Benefit payments which are defined for certain events (e.g. for remaining in a state or for

specified transitions) are effected if these events occur. So depending on how the benefits

are defined in a contract, the risk for the insurer can consist in

• a specified transition j → k of the contract if benefits are defined for this transition

(transition benefits) or for remaining in state k (annuities)

• remaining in the actual state j if benefits (annuities) are defined for this state

In classical life insurance, the so called capital at risk (car) at time t is defined as

follows:

car(k, k + 1) = death benefit − reserve(k)

car(k, k + 1) < 0 ⇔ endowment character

car(k, k + 1) > 0 ⇔ death character

as there are no states and only one-year transition probabilities and as the death benefit

is a constant value over the whole insurance period.

For the time-continuous Markovian model the capital at risk can be defined analogously:

car(t, j, k) = ajk(t) + V +
k (t) − V +

j (t)
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So for this model, the expressions “endowment character” and “death character” are mod-

ified as follows:

car(t, j, k) < 0 ⇔ “character of remaining”

car(t, j, k) > 0 ⇔ “transition character”

In Section 5.1.2 it has been mentioned that using the equivalence principle in order to

determine the contributions is justified if a sufficiently large number of insurance contract

is issued and if safety margins are included in the contributions. These safety margins are

obtained by modifying the transition intensities:

If car(t, j, k) > 0 the risk for the insurer consists in the transition j → k of the contract.

So the corresponding transition intensity µjk(t) is increased by a certain factor in order to

increase the probability for this transition in the calculation. Analogously, for car(t, j, k) <

0 the corresponding transition intensity µjk(t) is decreased by a certain factor in order to

increase the contract’s probability of remaining in state j in the calculation.

In other words, the probabilities for effectively realising the benefit payments are increased

which implies that the value of the expected discounted benefits is greater than it would

be when using the non-modified transition intensities. Following the equivalence principle,

also the value of the expected discounted contributions is greater – now safety margins are

included in the contributions.

6.1 The modified model

The modification of the transition intensities as described in the previous section implies

that in TDE the transition intensities µjk(t), j 6= k are replaced by µjk(t, V
+
j (t), V +

k (t)), j 6=
k which do not only depend on t but also on V +. The proof of Theorem 3.18 (TDE) starts

with expressing the reserve W+
j (t), j ∈ S as follows:

W+
i (t) =


1 −



∑

j∈S

i6=i

µij(t)


∆t


W+

i (t + ∆t) +
∑

j∈S

i6=i

µij(t) ∆t W+
j (t + ∆t)

+ v(t)


a′

ii(t)∆t +



∑

j∈S
j 6=i

µij(t)aij(t)


∆t


+ o(∆t) (6.1)

In (6.1), Theorem 3.17 is applied for u = t+∆t, ∆t > 0 and each transition probability

is approximated by the corresponding transition intensity multiplied by the length ∆t of

the considered interval. So starting from W+(t + ∆t) at time t + ∆t, the reserve W+(t)
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at time t is approximated by using the values at time t of the functions a′
ii, aij , µij and v,

i.e. the values a′
ii(t), aij(t), µij(t) and v(t). Because in the proof lim∆tց0 is considered it

is also possible to use the values a′
ii(t + ∆t), aij(t + ∆t), µij(t + ∆t) and v(t + ∆t) at time

t + ∆t as it is done when numerically solving TDE in my programme.

Replacing µij(t + ∆t) by µij(t + ∆t, W+
i (t + ∆t), W+

j (t + ∆t)) means that the Markovian

model defined in Chapter 3 is locally modified: In each step t + ∆t → t, instead of the de-

fined transition intensities µij(t+∆t) different intensities µij(t+∆t, W+
i (t+∆t), W+

j (t+∆t))

are used. So together with ∆t, the new intensities still can be used to locally approximate

the transition probabilities as in (6.1). By contrast, global probability functions cannot be

determined:

When calculating with the simple intensities µij(t+∆t) global probability functions pij(s, u)

are uniquely defined by the intensities and they hold for any insurance contract defined for

the Markovian model. But when using intensities µij(t+∆t, W+
i (t+∆t), W+

j (t+∆t)), the

individual values of the reserve are required to calculate the values of the intensity func-

tions and therefore also the values of the probability functions. So probability functions

can only be determined for a concrete path of W+(t).

6.2 The practical application of TDE

As it has been described in the preceding section, the intensity functions

µjk(t, V
+
j (t), V +

k (t))

now depend on further parameters V +
j (t) and V +

k (t). This means that V + as a parameter

appears in the functions µjk on the right-hand side of TDE. This causes additional require-

ments concerning the functions µjk in order to guarantee the existence and uniqueness of

a solution and the convergence of an applied discretisation method. When regarding the

derivatives of V +(t) with respect to t (cf. (5.4) – (5.6)), there are only important changes

in those terms containing derivatives of f(t, V +) with respect to V +.

• II: To ensure the existence and the continuity of this term, the functions µjk have

to be continuously differentiable with respect to V +. The same holds for term V .

• V I: This term is continuous if the functions µjk are twice continuously differentiable.

So the convergence for an explicit Runge-Kutta method of order p can be guaranteed if,

in addition to the requirements described in Section 5.2, the functions µjk are p times

89



Figure 6.1: µjk(t, car(t, j, k)) for fixed j, k and t - first version

continuously differentiable with respect to V +.

The values of the functions µjk(t, V
+
j (t), V +

k (t)) can be determined as follows: For fixed

states j and k and also for fixed t, the value of µjk(t) (without character!) constitutes the

starting point for the calculation. Depending on the value of car(t, j, k) = ajk(t)+V +
k (t)−

V +
j (t), the value of µjk(t, V

+
j (t), V +

k (t)) is lower, equal or greater than µjk(t):

µjk(t, V
+
j (t), V +

k (t)) =






µjk(t) (1 + d1) if car(t, j, k) > 0

µjk(t) if car(t, j, k) = 0

µjk(t) (1 − d2) if car(t, j, k) < 0

with positive values d1 and d2 (see also Figure 6.1).

Obviously, according to this definition µjk is not even continuous in V + and therefore

does not fulfill the condition of being p times continuously differentiable. In this case, the

required smoothness cannot be achieved by splitting up the integration interval at these

points before solving TDE because as the functions µjk depend on the concrete path of V +,

their points of discontinuity as well as the discontinuities of their derivatives are unknown.

So the functions µjk have to be modified in order to fulfill the required smoothness condi-

tions. Such a modified intensity function for fixed j, k and t is shown in Figure 6.2. The

corresponding definition is:

µjk(t, V
+
j (t), V +

k (t)) =






µjk(t) (1 + d1) if car(t, j, k) > c

spline(car(t, j, k)) if |car(t, j, k)| < c

µjk(t) (1 − d1) if car(t, j, k) < −c
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Figure 6.2: µjk(t, car(t, j, k)) for fixed j, k and t - second version

with positive values d1 and d2.

So in the interval (−c, c) there is a spline function connecting the points

(−c, µjk(t)(1 − d2)) and (c, µjk(t)(1 + d1)) fulfilling the required smoothness conditions.

The coefficients a0, . . . , am for this function

s(x) = amxm + am−1x
m−1 + . . . + a2x

2 + a1x + a0

are determined by solving a system of linear equations representing the desired function

values and values of the derivatives at the points −c and c. So to guarantee p times

continuous differentiability of µjk with respect to V +, 2 (p + 1) conditions are required: p

conditions concerning the values of the k-th derivative k = 1, . . . , p and one condition for

the function value, all at −c, and the same number of conditions at c.

6.3 The realisation in C

6.3.1 The variable useChar

As it has already been mentioned in Section 5.3.3, one element of the data structure

allParameters t is the variable useChar which indicates whether the character of the

insurance contract is taken into account or not. So by setting useChar to 1, the reserve

is calculated by using intensities which depend on the capital at risk. This means that

whenever an intensity is calculated, the value of the corresponding capital at risk is de-

termined in order to calculate the value of the intensity as described in the previous section.
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As in the GSL ODEIV package the highest order Runge-Kutta method is of order 8, a

spline function guaranteeing 8 times continuous differentiability of µjk with respect to V +

has been implemented. so no matter which Runge-Kutta method is used, the smoothness

requirements are always fulfilled.

It shall be mentioned here that the values −c and c as well as d1 and d2 are arbitrarily

chosen. Any estimation of concrete values for safety margins has not been part of this

diploma thesis. The programme just has the functionality of being able to increase or

decrease the calculated intensities by chosen values.

6.3.2 Calculating the real contribution heights

The calculation of the real contribution heights by determining the proportional factor pF

as

pF =
E0[discounted benefits]

E0[discounted contributions apart from pF ]

(cf. Section 5.1.5) does not necessarily lead to the desired result V +
0 (0) = 0 when taking

into account the character of an insurance contract. The reason is that the course of the

capital at risk over the time can change when leaving out the contributions or the benefits.

So when taking into account the character of an insurance contract, another algorithm has

to be used to calculate the real contribution heights. The regula falsi method has been

chosen for this purpose.

The algorithm works as follows: The reserve res0,0(pF ) in the initial state 0 at time

0 is regarded as a function of pF . By applying the regula falsi method (see Figure 6.3),

the root of res0,0(pF ) , i.e. the proportional Factor pF ∗ supplying res0,0(pF
∗) = 0 can be

calculated. Two values pF1 and pF2 such that res0,0(pF1) > 0 and res0,0(pF2) < 0 are

necessary to start the regula falsi method.

Assuming that res0,0(pF ) as a function of the proportional factor is continuous and mono-

tone in pF over the interval (pF1, pF2), the intermediate value theorem implies the existence

of one single root in the interval (pF1, pF2).

A first initial value pF1 for which res0,0(pF1) > 0 is obtained by calculating the expected

discounted benefits, i.e. by calculating the reserve for pF1 = 0.

For the second initial value pF2, res0,0(pF2) < 0 is required which means that there are

comparatively more premiums than benefits.

pF2 =
E0[discounted benefits]

E0[discounted contributions apart from pF ]
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Figure 6.3: Regula falsi method

does not necessarily lead to res0,0(pF2) < 0. So it is assumed that the “sum” of the

contributions ∫ tEnd

0
b′(t)dt +

∑

t

∆b(d)(t)

is paid at the end of the insurance period tEnd. Then calculating the expected discounted

value

E0[discounted modified contributions apart from pF ]

and

pF2 =
E0[discounted benefits]

E0[discounted modified contributions apart from pF ]

leads to the desired second initial value pF2 for which res0,0(pF2) < 0.

The third list j3 in jumpLists is a list which consists of one single entry: the contri-

bution payment described above which is used for calculating pF2.

Having pF1 with res0,0(pF1) > 0 and pF2 with res0,0(pF2) < 0, the regula falsi

method works as follows: It computes the root of the line passing through the two points

(pF1, res0,0(pF1)) and (pF2, res0,0(pF2)) as an approximation of the root of res0,0(pF ). The
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calculated root approximation is taken as pF3 in order to start the program calculating

the reserve of the contract again. If |res0,0(pF3)| < eps for a chosen eps > 0, pF3 is the

searched value of pF ∗ and the routine can be terminated. Otherwise,

res0,0(pF3) ≥ 0 ⇒ pF1 := pF3

res0,0(pF3) < 0 ⇒ pF2 := pF3

gives the new points to start the regula falsi again.
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Appendix A

Source code

The following source code written in the C programming language contains all functions

which are required to calculate the course of the reserve as it has been explained in the

previous parts of this diploma thesis. Concerning the different examples that I have imple-

mented, only those are given here which have been described in Section 5.4. The complete

code containing further examples is available on request.

/∗ Fi l e main . c ∗/

#include <s td i o . h>

#include <g s l / g s l e r r n o . h>

#include <g s l / g s l mat r i x . h>

#include <g s l / g s l o d e i v . h>

#include <f loat . h>

#include <math . h>

#include ” ajk . h”

#include ”boolean . h”

#include ” ca l cReserve . h”

#include ” funcJac . h”

#include ” i n t e n s i t i e s . h”

#include ”jump . h”

#include ”more . h”

#include ”parameters . h”

#include ”payments . h”

#include ” r e gu l aFa l s i . h”

#include ”vDelta . h”

int main (void )

{ /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ De f i n i t i on of the requ i red v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// Index v a r i a b l e s :

long i = 0 ;

boo l ean t ok = 0 ;
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// Data s t ruc t u r e conta in ing the parameters :

a l lPa r amete r s t ∗ a l lP = a l l o ca t eA l lPa r amete r s ( ) ;

// For using the GSL func t i on s :

const g s l o d e i v s t e p t yp e ∗ T = 0 ;

g s l o d e i v s t e p ∗ s = 0 ;

g s l o d e i v c o n t r o l ∗c = 0 ;

g s l o d e i v e v o l v e ∗e = 0 ;

g s l ode i v s y s t em sys = {0 , 0 , 0 , 0} ;

double tEnd = 0 . 0 ; // the end of the i n t e g ra t i on i n t e r v a l

double t = 0 . 0 ; // the beg inn ing o f the i n t e g ra t i on i n t e r v a l ; t i s index v a r i a b l e

double h = 0 . 0 ; // i n i t i a l s t ep s i z e

double ∗y = 0 ; // s o l u t i on func t ion

boo l ean t (∗ setModel ) ( a l lPa r amete r s t ∗) = 0 ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Assigning the v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ The user can modify these s e t t i n g s ! ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// Choose a model r e p r e s en t i n g the cons idered insurance cont rac t :

setModel = &setInsuranceModel02M ;

ok = setModel ( a l lP ) ;

i f ( ok != 1) // != 1: an error has occurred in setModel !

{
f p r i n t f ( s tder r , ” Error ( setModel ) ! \n” ) ;

return −1;

}

// GSL: D i s c r e t i s a t i on method , c on t ro l ob j ec t , . . . :

T = gs l o d e i v s t e p r k 8pd ; // choose an a lgor i t hm

s = g s l o d e i v s t e p a l l o c (T, al lP−>nModel ) ;

c = g s l o d e i v c on t r o l y n ew (1 e−09, 0 . 0 ) ;

// choose a con t ro l ob j ec t , eps abs and e p s r e l

e = g s l o d e i v e v o l v e a l l o c ( al lP−>nModel ) ;

// g s l ode i v s y s t em components ( modi f i ca t ion not requ i red ! ) :

sys . f unc t i on = func ;

sys . j acob ian = 0 ; // jac i s not requ i red f o r the e x p l i c i t a l gor i t hms

sys . dimension = al lP−>nModel ;

sys . params = al lP ;

// The in t e g ra t i on i n t e r v a l ; i n i t i a l s t ep s i z e :

tEnd = 0 . 0 ; // beg inn ing o f the i n t e g ra t i on i n t e r v a l

t = al lP−>i n sPer i od ; // end of the i n t e g ra t i on i n t e r v a l ; t i s index v a r i a b l e

h = −1.0; // choose an i n i t i a l s t ep s i z e

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End of choice ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Calcu la t ion and r e s u l t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

y = calcReserveAndPremFactor ( al lP , tEnd , &t , &h , s , c , e , &sys ) ;
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p r i n t f ( ”\n\n” ) ;

p r i n t f ( ”Resul t : \n” ) ;

for ( i = 0 ; i <= al lP−>nModel − 1 ; i++)

p r i n t f ( ”y[% ld ] = %f ” , i , y [ i ] ) ;

p r i n t f ( ”\n” ) ;

p r i n t f ( ”premFactor = %f \n” , al lP−>premFactor ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Freeing a l l o c a t e d memory ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (y )

{
f r e e (y ) ;

y = 0 ;

}
f r eeA l lParameter s ( a l lP ) ;

g s l o d e i v e v o l v e f r e e ( e ) ;

g s l o d e i v c o n t r o l f r e e ( c ) ;

g s l o d e i v s t e p f r e e ( s ) ;

return 0 ;

}

/∗ Fi l e a j k . c

∗ conta ins the d e f i n i t i o n of a l l f unc t i on s concerning the cont inuous payments a j j ’ ( t ) and

ajk ( t )

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include <math . h>

#include ” ajk . h”

// func t ion calculateConstValueA

double calculateConstValueA (double t , long j , long k )

{ // j and k denote the cont rac t s t a t e s

i f ( ( j == 0) && (k == 1) )

return 100000 .0 ;

else

return 0 . 0 ;

} // end calculateConstValueA

// func t ion calculateConstValueAZero

double calculateConstValueAZero (double t , long j , long k )

{ // j and k denote the cont rac t s t a t e s

return 0 . 0 ; // no b e n e f i t s

} // end calculateConstValueAZero
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// func t ion calculateConstValueA2Lives02

double calculateConstValueA2Lives02 (double t , long j , long k )

{ // j and k denote the cont rac t s t a t e s

i f ( ( ( j == 0) | | ( j == 1) ) && (k == 4) )

return 100000 .0 ;

else i f ( ( ( j == 0) | | ( j == 2) ) && (k == 5) )

return 100000 .0 ;

// These payments are death b e n e f i t s : One person remains a c t i v e whi l e the second one

// d i e s a f t e r having been a c t i v e ( j==0)or in need of care ( j==1 or j==2)

else

return 0 . 0 ; // no b e n e f i t s f o r any other t r an s i t i o n

} // end calculateConstValueA2Lives02

/∗ Fi l e a j k . h

∗ conta ins the de c l a ra t i on of a l l f unc t i on s concerning the cont inuous payments a j j ’ ( t )

and ajk ( t )

∗/

double calculateConstValueA (double t , long j , long k ) ;

double calculateConstValueAZero (double t , long j , long k ) ;

double calculateConstValueA2Lives02 (double t , long j , long k ) ;

/∗ Fi l e boolean . h

∗ conta ins the d e f i n i t i o n of the data s t ruc t u r e boo lean e and i t s d e f i n i t i o n as boo l e an t

∗/

#ifndef BOOLEANH

#define BOOLEANH

typedef enum boo l ean e

{
f a l s e = 0 ,

t rue = 1

} boo l ean t ;

#endif // BOOLEAN H

/∗ Fi l e ca lcReserve . c
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∗ conta ins the d e f i n i t i o n of the f unc t i on s calcReserveAndPremFactor and ca l cu l a t eRe se r v e

∗/

#include <s td i o . h>

#include <f loat . h>

#include <math . h>

#include <g s l / g s l e r r n o . h>

#include <g s l / g s l o d e i v . h>

#include ” ajk . h”

#include ”boolean . h”

#include ” ca l cReserve . h”

#include ” funcJac . h”

#include ”jump . h”

#include ”more . h”

#include ” r e gu l aFa l s i . h”

#include ”vDelta . h”

// func t ion calcReserveAndPremFactor

double ∗ calcReserveAndPremFactor ( a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time , double

∗h ,

g s l o d e i v s t e p ∗ s , g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e ,

g s l ode i v s y s t em ∗ sys )

{
long j = 0 ;

double ∗y1 = 0 ;

double ∗y2 = 0 ;

double ∗y3 = 0 ;

double ∗yH = 0 ;

double s ing l eP = 0 . 0 ;

double premFactor = 0 . 0 ; // requ i red f o r useChar == 0

double premFactor1 = 0 . 0 ;

double premFactor2 = 0 . 0 ;

double eps prem = 1e−07;

// A l l o ca t i n g memory f o r the vec tor y o f dimension nModel

// and i n i t i a l i s i n g by 0 prov ides the r i g h t i n i t i a l va lues y ( tEnd ) .

y1 = c a l l o c ( al lP−>nModel , s izeof (double) ) ;

i f ( y1 == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r y1 ) ! \n” ) ;

e x i t (−1) ;

}
y2 = c a l l o c ( al lP−>nModel , s izeof (double) ) ;

i f ( y2 == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r y2 ) ! \n” ) ;

f r e e ( y1 ) ;

e x i t (−1) ;

}
y3 = c a l l o c ( al lP−>nModel , s izeof (double) ) ;

i f ( y3 == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r y3 ) ! \n” ) ;
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f r e e ( y1 ) ;

f r e e ( y2 ) ;

e x i t (−1) ;

}
yH = c a l l o c ( al lP−>nModel , s izeof (double) ) ;

i f (yH == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r yH) ! \n” ) ;

f r e e ( y1 ) ;

f r e e ( y2 ) ;

f r e e ( y3 ) ;

e x i t (−1) ;

}

// Ca l cu l a t i n g the expec t ed d i scounted b e n e f i t s :

premFactor1 = al lP−>premFactor ;

y1 = ca l cu l a t eRe s e r v e ( y1 , a l lP , tEnd , time , h , s , c , e , sys ) ;

i f ( y1 [ 0 ] <= DBL EPSILON)

{
f p r i n t f ( s tder r , ”No con t r i bu t i on s => V0(0) must not be <= 0!\n” ) ;

f r e eThr e ePo i n t er s ( y1 , y2 , y3 ) ;

e x i t (−1) ;

}

/∗ Di s t i n gu i s h i ng between two cases :

∗ useChar == 0 => premFactor = E[ b e n e f i t s ] /E[ con t r i b u t i on s ]

∗ useChar == 1 => c a l c u l a t i n g premFactor by means of the regu la f a l s i method

∗/

i f ( a l lP−>useChar == 0)

{
s ing l eP = singlePremiumTimeZero ( al lP−>jumpLists−>j 1 ) ;

i f ( s ing l eP < 0) // s i n g l e premium payment at t ime 0

premFactor = y1 [ 0 ] / f abs ( s ing l eP ) ; // because s ing l eP i s negat i ve

else // no s i n g l e premium payment at t ime 0

{
al lP−>premFactor = 1 . 0 ;

a l lP−>jumpLists−>whichList = 2 ;

al lP−>calcValA = al lP−>calcValA2 ;

y2 = ca l cu l a t eRe s e r v e ( y2 , a l lP , tEnd , time , h , s , c , e , sys ) ;

i f ( y2 [ 0 ] >= DBL EPSILON)

{
f p r i n t f ( s tder r , ” Contr ibut i ons != 0 , no b e n e f i t s => W0(0) must not be >= 0!\n”

) ;

e x i t (−1) ;

}
premFactor = y1 [ 0 ] / f abs ( y2 [ 0 ] ) ;

}

al lP−>premFactor = premFactor ;

a l lP−>jumpLists−>whichList = 1 ;

al lP−>calcValA = al lP−>calcValA1 ;

y3 = ca l cu l a t eRe s e r v e ( y3 , a l lP , tEnd , time , h , s , c , e , sys ) ;
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p r i n t f ( ”useChar == 0 : \n” ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y1[% ld ] = %.3 f ” , j , y1 [ j ] ) ;

p r i n t f ( ”\n\n” ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y2[% ld ] = %.3 f ” , j , y2 [ j ] ) ;

p r i n t f ( ”\n\n” ) ;

p r i n t f ( ”premFactor = %.3 f \n” , premFactor ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y3[% ld ] = %.3 f ” , j , y3 [ j ] ) ;

p r i n t f ( ”\n” ) ;

i f ( y1 )

{
f r e e ( y1 ) ;

y1 = 0 ;

}
i f ( y2 )

{
f r e e ( y2 ) ;

y2 = 0 ;

}
return y3 ;

}
else // useChar == 1

{
al lP−>premFactor = 1 . 0 ;

a l lP−>jumpLists−>whichList = 3 ;

al lP−>calcValA = al lP−>calcValA2 ;

yH = ca l cu l a t eRe s e r v e (yH, al lP , tEnd , time , h , s , c , e , sys ) ;

i f (yH [ 0 ] >= DBL EPSILON)

{
f p r i n t f ( s tder r , ” Contr ibut i ons != 0 , no b e n e f i t s => W0(0) must not be >= 0!\n” ) ;

e x i t (−1) ;

}
premFactor2 = y1 [ 0 ] / f abs (yH [ 0 ] ) ;

a l lP−>premFactor = premFactor2 ;

a l lP−>jumpLists−>whichList = 1 ;

al lP−>calcValA = al lP−>calcValA1 ;

y2 = ca l cu l a t eRe s e r v e ( y2 , a l lP , tEnd , time , h , s , c , e , sys ) ;

p r i n t f ( ”useChar == 1 : \n” ) ;

p r i n t f ( ”premFactor1 = %.3 f \n” , premFactor1 ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y1[% ld ] = %.3 f ” , j , y1 [ j ] ) ;

p r i n t f ( ”\n\n” ) ;

p r i n t f ( ”E [ d i s counted s i n g l e payment at t=insPer i od ] : \n” ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”yH[% ld ] = %.3 f ” , j , yH [ j ] ) ;

p r i n t f ( ”\n\n” ) ;

p r i n t f ( ”premFactor2 = %.3 f \n” , premFactor2 ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y2[% ld ] = %.3 f ” , j , y2 [ j ] ) ;
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p r i n t f ( ”\n\n” ) ;

i f ( y2 [ 0 ] > eps prem )

{
f p r i n t f ( s tder r , ”More con t r i bu t i on s than b en e f i t s => W0(0) must not be > 0 ! \n” ) ;

e x i t (−1) ;

}
else i f ( f abs ( y2 [ 0 ] ) < eps prem ) // y2 [ 0 ] i s c l o s e enough to 0 => c a l c u l a t i on

terminated !

{
i f ( y1 )

{
f r e e ( y1 ) ;

y1 = 0 ;

}
i f ( y3 )

{
f r e e ( y3 ) ;

y3 = 0 ;

}
return y2 ;

}
else

{
y3 = r e gu l aFa l s i ( premFactor1 , y1 , premFactor2 , y2 , y3 , a l lP , tEnd ,

time , h , s , c , e , sys , eps prem ) ;

return y3 ;

}
}

} // end calcReserveAndPremFactor

// func t ion ca l cu l a t eRe se r v e

double ∗ ca l cu l a t eRe s e r v e (double ∗y , a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time ,

double ∗h ,

g s l o d e i v s t e p ∗ s , g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e ,

g s l ode i v s y s t em ∗ sys )

{
long j = 0 ;

double t = ∗ time ;

jump t ∗ ju = 0 ;

double tStop = 0 . 0 ; // upper bound of the ac t ua l sub−i n t e r v a l

// The c a l c u l a t i on of the d i f f e r e n t i a l equat ion i s i n t e r rup t e d at t ime

tS top .

i f ( a l lP−>jumpLists−>whichList == 1)

ju = al lP−>jumpLists−>j 1 ;

else i f ( a l lP−>jumpLists−>whichList == 2)

ju = al lP−>jumpLists−>j 2 ;

else i f ( a l lP−>jumpLists−>whichList == 3)

ju = al lP−>jumpLists−>j 3 ;

else

{
f p r i n t f ( s tder r , ” Inva l i d jumpList ! \n” ) ;
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e x i t (−1) ;

}

i f ( ( ju != 0) && ( ju−>time > t ) ) // The jumps are arranged in descending order with

r e spe c t to t .

{
f p r i n t f ( s tder r , ” Error : Jump at t>i n sPer i od ! \n” ) ;

e x i t (−1) ;

}

while (1)

{
i f ( ju == 0)

tStop = tEnd ;

else

tStop = ju−>time ; // I f tS top == insPeriod == t , the f o l l ow i n g whi l e loop i s not

executed

// now . The jump ( see below ) i s e f f e c t e d b e f o r e .

while ( t > tStop )

{
int s t a tu s = g s l o d e i v e v o l v e app l y ( e , c , s , sys , &t , tStop , h , y ) ;

i f ( s t a tu s != GSL SUCCESS)

break ;

}

p r i n t f ( ” be f o r e jump : t=%.2f , ” , t ) ;

for ( j = 0 ; j <= al lP−>nModel−1; j++)

p r i n t f ( ”y[% ld ]=%.3 f ” , j , y [ j ] ) ;

p r i n t f ( ”\n” ) ;

i f ( ju != 0)

{
for ( j = 0 ; j <= al lP−>nModel−1; j++)

{
i f ( ju−>he ight [ j ] < 0 . 0 ) // con t r i b u t i on payment

y [ j ] += ju−>he ight [ j ] ∗ al lP−>premFactor ;

else

y [ j ] += ju−>he ight [ j ] ;

}
}

p r i n t f ( ” a f t e r jump : t=%.2f , ” , t ) ;

for ( j = 0 ; j <= al lP−>nModel−1; j++)

p r i n t f ( ”y[% ld ]=%.3 f ” , j , y [ j ] ) ;

p r i n t f ( ”\n” ) ;

i f ( ( tStop == tEnd ) && ( ju == 0) )

{
p r i n t f ( ”\n\n” ) ;

break ;

}

i f ( ju−>t r ans == 1) // Only i f tS top == poin t o f t ime a time−d i s p l ac ed

al lP−>upper = ju−>time ; // t r an s i t i o n payment i s e f f e c t e d at => al lP−>upper i s
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// s e t to t h i s po in t o f t ime time .

ju = ju−>next ;

}

return y ;

} // end ca l cu l a t eRe se r v e

/∗ Fi l e ca lcReserve . h

∗ conta ins the de c l a ra t i on of the f unc t i on s calcReserveAndPremFactor and ca l cu l a t eRe se r v e

∗/

#include ”parameters . h”

double ∗ calcReserveAndPremFactor ( a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time , double

∗h ,

g s l o d e i v s t e p ∗ s , g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e ,

g s l ode i v s y s t em ∗ sys ) ;

double ∗ ca l cu l a t eRe s e r v e (double ∗y , a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time ,

double ∗h ,

g s l o d e i v s t e p ∗ s , g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e ,

g s l ode i v s y s t em ∗ sys ) ;

/∗ Fi l e funcJac . c

∗ conta ins the d e f i n i t i o n of the func t ion func which r epr e s en t s Thie l e ’ s d i f f e r e n t i a l

∗ equat ion . The func t ion jac i s not requ i red f o r the e x p l i c i t d i s c r e t i s a t i o n methods

∗ which are used f o r Thie l e ’ s d i f f e r e n t i a l equat ion and i t need not be de f ined here .

∗/

#include <g s l / g s l e r r n o . h>

#include <g s l / g s l mat r i x . h>

#include ” ajk . h”

#include ” funcJac . h”

#include ”parameters . h”

#include ”payments . h”

#include ”vDelta . h”

// func t ion func

int func (double t , const double y [ ] , double f [ ] , void ∗params )

{
a l lPa r amete r s t ∗ a l lP = ( a l lPa r amete r s t ∗) params ;

long j = 0 ;

long k = 0 ;

double sum1 = 0 . 0 ;

double sum2 = 0 . 0 ;
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double sum3 = 0 . 0 ;

double payment = 0 . 0 ;

double ∗ i n t e n s i t y J = 0 ; // f o r an array of l eng t h nModel

i n t e n s i t y J = (double ∗) c a l l o c ( al lP−>nModel , s izeof (double) ) ;

i f ( i n t e n s i t y J == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r i n t e n s i t y J ) !\n” ) ;

e x i t (−1) ;

}
// For index j in the f o l l ow i n g loop , i n t e n s i t y J [ k ] w i l l be the va lue o f the i n t e n s i t y

// f o r the t r an s i t i o n from cont rac t s t a t e j to cont rac t s t a t e k .

// Forming nModel equat ions :

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

{
f [ j ] = 0 . 0 ; // I n i t i a l i s i n g the j−th equat ion :

// For each of the nModel equat ions f i r s t t hree sums (sum1 , sum2 , sum3) are

c a l c u l a t e d

// and then equat ion f [ j ] i s composed of the se sums and the remaining f a c t o r s .

// 1 s t sum :

sum1 = calculatePaymentValue ( t , j , j , a l lP ) ;

for (k = 0 ; k <= al lP−>nModel − 1 ; k++)

{
i f (k != j )

{
payment = calculatePaymentValue ( t , j , k , a l lP ) ;

i n t e n s i t y J [ k ] = al lP−>c a l c I n t ( t , j , k , a l lP−>parInt , a l lP−>x , al lP−>useChar , y

, payment ) ;

sum1 += i n t en s i t y J [ k ] ∗ payment ;

}
}

// 2nd sum :

for (k = 0 ; k <= al lP−>nModel − 1 ; k++)

i f (k != j )

sum2 += i n t en s i t y J [ k ] ;

// 3rd sum :

for (k = 0 ; k <= al lP−>nModel − 1 ; k++)

i f (k != j )

sum3 += i n t en s i t y J [ k ] ∗ y [ k ] ;

// Ca l cu l a t i n g f [ j ] :

f [ j ] = (−1)∗sum1 + ( al lP−>de l t a + sum2) ∗y [ j ] − sum3 ;

// Reset :

sum1 = 0 . 0 ;

sum2 = 0 . 0 ;

sum3 = 0 . 0 ;

payment = 0 . 0 ;

for (k = 0 ; k <= al lP−>nModel−1; k++)

i n t e n s i t y J [ k ] = 0 . 0 ;
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}

i f ( i n t e n s i t y J != 0)

{
f r e e ( i n t e n s i t y J ) ;

i n t e n s i t y J = 0 ;

}

return GSL SUCCESS ;

}

/∗ Fi l e funcJac . h

∗ conta ins the de c l a ra t i on of the func t ion func

∗/

int func (double t , const double y [ ] , double f [ ] , void ∗params ) ;

/∗ Fi l e i n t e n s i t i e s . c

∗ conta ins the d e f i n i t i o n of a l l f unc t i on s concerning the t r an s i t i o n i n t e n s i t i e s

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include <math . h>

#include ” i n t e n s i t i e s . h”

#include ”vDelta . h”

/∗ Function a l locat eParameter s In t :

∗ a l l o c a t e s memory f o r a two dimension array ( pers x nPers ) o f v a r i a b l e s o f t he data

∗ s t ruc t u r e parameters In t t . Furthermore a l l o c a t e s memory f o r an array of l eng t h nPers

∗ i n s i de each of those v a r i a b l e s .

∗/
parameter s Int t ∗∗ a l l o ca t ePar amete r s In t ( long pers , long nPers )

{
long i = 0 ;

long j = 0 ;

parameter s Int t ∗∗ par Int = c a l l o c ( pers , s izeof ( parameter s Int t ∗) ) ;

i f ( par Int == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r par Int ) ! \n” ) ;

e x i t (−1) ;

}
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for ( i = 0 ; i <= pers −1; i++)

{
par Int [ i ] = c a l l o c ( nPers , s izeof ( parameter s Int t ) ) ;

i f ( par Int [ i ] == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r par Int [% ld ] ) !\n” , i ) ;

e x i t (−1) ;

}
for ( j = 0 ; j <= nPers −1; j++)

{
par Int [ i ] [ j ] . p = c a l l o c ( nPers , s izeof (double) ) ;

i f ( par Int [ i ] [ j ] . p == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r par Int [% ld ] [% ld ] . p) !\n” , i , j ) ;

e x i t (−1) ;

}
}

}

return par Int ;

} // end a l locat eParameter s In t

// Function setParametersIn t

boo l ean t setParameter s Int ( parameter s Int t ∗∗ parInt , long i , long j , long nPers , double

alpha ,

double beta , double c , double ∗p)

{
// Parameters o f the person no . i f o r the t r an s i t i o n from s i n g l e s t a t e j to s i n g l e

s t a t e k

long k = 0 ;

par Int [ i ] [ j ] . alpha = alpha ;

par Int [ i ] [ j ] . beta = beta ;

par Int [ i ] [ j ] . c = c ;

for (k = 0 ; k <= nPers −1; k++)

par Int [ i ] [ j ] . p [ k ] = p [ k ] ;

return t rue ;

} // end setParametersInt

/∗ Function ca l cu l a t e In t en s i t y 1Pe r son

∗ f o r the t r an s i t i o n from s i n g l e s t a t e j to s i n g l e s t a t e k

∗ of the person no . i having i n i t i a l age x [ i ]

∗/
double ca l cu l a t e In t e n s i t y1Pe r s on (double t , long i , long j , long k , parameter s Int t ∗∗

parInt ,

long ∗x , boo l ean t useChar , double capAtRisk )

{
double c = 1 . 0 ;

double d = 0 . 1 ;

double i n t e n s i t y = ( par Int [ i ] [ j ] . alpha + par Int [ i ] [ j ] . beta

∗ pow( par Int [ i ] [ j ] . c , ( x [ i ]+ t ) ) ) ∗ par Int [ i ] [ j ] . p [ k ] ;
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i f ( useChar == 0)

return i n t e n s i t y ;

else

{
i f ( capAtRisk < (−1)∗ c )

return i n t e n s i t y ∗ (1−d) ; // ”Character o f remaining”

else i f ( capAtRisk > c )

return i n t e n s i t y ∗ (1+d) ; // Transi t ion charak t e r

else

return spl ineOfDegree17 ( i n t en s i ty , c , d , capAtRisk ) ;

}
} // end ca l cu l a t e In t en s i t y 1Pe r son

/∗ Function ca lcu la t e In t ens i t yMode l01M

∗ f o r the t r an s i t i o n from cont rac t s t a t e j to cont rac t s t a t e k

∗ This func t ion can be used f o r a l l insurance con t rac t s having only one insured person .

∗/
double ca l cu l ate Intens i tyMode l01M(double t , long j , long k , parameter s Int t ∗∗parInt , long

∗x ,

boo l ean t useChar , const double ∗y , double payment )

{
double capAtRisk = 0 . 0 ; // c ap i t a l at r i s k

i f ( useChar == 1)

capAtRisk = payment + y [ k ] − y [ j ] ;

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 0 , j , k , parInt , x , useChar , capAtRisk ) ;

} // end ca lcu la t e In t ens i t yMode l01M

/∗ Function ca l cu l a t e In t en s i t yMode l 2L iv e s02

∗ f o r the t r an s i t i o n from cont rac t s t a t e j to cont rac t s t a t e k

∗ [ 0 = (∗ ,∗) , 1 = (∗ ,P) , 2 = (P,∗ ) , 3 = (P,P) , 4 = (∗ ,+) , 5 = (+ ,∗) ,

∗ 6 = (P,+) , 7 = (+,P) , 8 = (+,+) ]

∗/
double ca l cu l a t e In t en s i tyMode l 2L i v e s 02 (double t , long j , long k , parameter s Int t ∗∗ parInt ,

long ∗x , boo l ean t useChar , const double ∗y , double payment )

{
double capAtRisk = 0 . 0 ; // c ap i t a l at r i s k

i f ( useChar == 1)

capAtRisk = payment + y [ k ] − y [ j ] ;

i f ( ( ( j==0) && (k==5)) | | ( ( j==1) && (k==7)) | | ( ( j==4) && (k==8)) )

// person no .0 d i e s a f t e r having been in s i n g l e s t a t e ” a c t i v e ” , i . e . has a

// t r an s i t i o n from s i n g l e s t a t e 0 to s i n g l e s t a t e 2 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 0 , 0 , 2 , parInt , x , useChar , capAtRisk ) ;

else i f ( ( ( j==0) && (k==4)) | | ( ( j==2) && (k==6)) | | ( ( j==5) && (k==8)) )

// person no .1 d i e s a f t e r having been in s i n g l e s t a t e ” a c t i v e ” , i . e . has a

// t r an s i t i o n from s i n g l e s t a t e 0 to s i n g l e s t a t e 2 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 1 , 0 , 2 , parInt , x , useChar , capAtRisk ) ;
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else i f ( ( ( j==0) && (k==2)) | | ( ( j==1) && (k==3)) | | ( ( j==4) && (k==6)) )

// person no .0 becomes in need of care , i . e . has a

// t r an s i t i o n from s i n g l e s t a t e 0 to s i n g l e s t a t e 1 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 0 , 0 , 1 , parInt , x , useChar , capAtRisk ) ;

else i f ( ( ( j==0) && (k==1)) | | ( ( j==2) && (k==3)) | | ( ( j==5) && (k==7)) )

// person no .1 becomes in need of care , i . e . has a

// t r an s i t i o n from s i n g l e s t a t e 0 to s i n g l e s t a t e 1 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 1 , 0 , 1 , parInt , x , useChar , capAtRisk ) ;

else i f ( ( ( j==2) && (k==5)) | | ( ( j==3) && (k==7)) | | ( ( j==6) && (k==8)) )

// person no .0 d i e s a f t e r having been in need of care , i . e . has a t r an s i t i o n

// from s i n g l e s t a t e 1 to s i n g l e s t a t e 2 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 0 , 1 , 2 , parInt , x , useChar , capAtRisk ) ;

else i f ( ( ( j==1) && (k==4)) | | ( ( j==3) && (k==6)) | | ( ( j==7) && (k==8)) )

// person no .1 d i e s a f t e r having been in need of care , i . e . has a t r an s i t i o n

// from s i n g l e s t a t e 1 to s i n g l e s t a t e 2 :

return ca l cu l a t e In t e n s i t y1Pe r s on ( t , 1 , 1 , 2 , parInt , x , useChar , capAtRisk ) ;

else

return 0 . 0 ; // f o r a l l o ther t r a n s i t i o n s : i n t e n s i t y == 0

} // end ca l cu l a t e In t en s i t yMode l 2L iv e s02

// Function f reeParametersIn t

void f r eeParameter s Int ( long pers , long nPers , parameter s Int t ∗∗ par Int )

{
long i = 0 ;

long j = 0 ;

i f ( par Int )

{
for ( i = 0 ; i <= pers −1; i++)

{
i f ( par Int [ i ] )

{
for ( j = 0 ; j <= nPers −1; j++)

{
i f ( par Int [ i ] [ j ] . p )

{
f r e e ( par Int [ i ] [ j ] . p ) ;

par Int [ i ] [ j ] . p = 0 ;

}
}

f r e e ( par Int [ i ] ) ;

par Int [ i ] = 0 ;

}
}

f r e e ( par Int ) ;

par Int= 0 ;

}
} // end f reeParametersIn t
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/∗ Function spl ineOfDegree17

∗ This s p l i n e func t ion

∗ s ( x ) = a17∗xˆ17+a16∗xˆ16+a15∗xˆ15+a14∗xˆ14+...+a3∗xˆ3+a2∗xˆ2+a1∗x+a0

∗ f u l f i l l s t he f o l l ow i n g cond i t i on s :

∗
∗ s ( c ) = i n t e n s i t y ∗(1+d) =: d2 ;

∗ s(−c ) = i n t e n s i t y ∗(1−d) =: d1 ;

∗ s ’( c ) = 0; (1 s t d e r i v a t i v e )

∗ s ’(−c ) = 0; (1 s t d e r i v a t i v e )

∗ 2nd de r i v ( c ) = 0;

∗ 2nd de r i v (−c ) = 0;

∗ 3rd de r i v ( c ) = 0;

∗ 3rd de r i v (−c ) = 0;

∗ 4 th de r i v ( c ) = 0;

∗ 4 th de r i v (−c ) = 0;

∗ 5 th de r i v ( c ) = 0;

∗ 5 th de r i v (−c ) = 0;

∗ 6 th de r i v ( c ) = 0;

∗ 6 th de r i v (−c ) = 0;

∗ 7 th de r i v ( c ) = 0;

∗ 7 th de r i v (−c ) = 0;

∗ 8 th de r i v ( c ) = 0;

∗ 8 th de r i v (−c ) = 0;

∗ So lv ing the system of l i n e a r equat ions l e ads to the c o e f f i c i e n t s which are

∗ de s c r i b e d in the func t ion .

∗ spl ineOfDegree17 c a l c u l a t e s s ( x ) at x = capAtRisk .

∗/
double spl ineOfDegree17 (double i n t en s i t y , double c , double d , double capAtRisk )

{
double s p l i n e = 0 . 0 ;

double a0 = i n t e n s i t y ; // = (d1+d2 ) /2

double a1 = 109395.0/65536 .0 ∗ 2∗d/c ; // = 109395.0/65536.0 ∗ ( d2−d1 )/c

double a2 = 0 . 0 ;

double a3 = −36465.0/8192.0 ∗2∗d/pow( c , 3 ) ;

double a4 = 0 . 0 ;

double a5 = 153153.0/16384 .0 ∗2∗d/pow( c , 5 ) ;

double a6 = 0 . 0 ;

double a7 = −109395.0/8192.0 ∗2∗d/pow( c , 7 ) ;

double a8 = 0 . 0 ;

double a9 = 425425.0/32768 .0 ∗2∗d/pow( c , 9 ) ;

double a10 = 0 . 0 ;

double a11 = −69615.0/8192.0 ∗2∗d/pow( c , 11 ) ;

double a12 = 0 . 0 ;

double a13 = 58905 .0/16384 .0 ∗2∗d/pow( c , 13 ) ;

double a14 = 0 . 0 ;

double a15 = −7293.0/8192.0 ∗2∗d/pow( c , 15 ) ;

double a16 = 0 . 0 ;

double a17 = 6435 .0/65536 .0 ∗2∗d/pow( c , 17 ) ;

s p l i n e = a17 ∗pow( capAtRisk , 17 ) + a16∗pow( capAtRisk , 16 ) + a15∗pow( capAtRisk , 15 )

+ a14 ∗pow( capAtRisk , 14 ) + a13∗pow( capAtRisk , 13 ) + a12∗pow( capAtRisk , 12 )

+ a11 ∗pow( capAtRisk , 11 ) + a10∗pow( capAtRisk , 10 ) + a9∗pow( capAtRisk , 9 )

+ a8∗pow( capAtRisk , 8 ) + a7∗pow( capAtRisk , 7 ) + a6∗pow( capAtRisk , 6 )

+ a5∗pow( capAtRisk , 5 ) + a4∗pow( capAtRisk , 4 )
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+ a3∗pow( capAtRisk , 3 ) + a2∗pow( capAtRisk , 2 ) + a1∗ capAtRisk + a0 ;

return s p l i n e ;

} // end spl ineOfDegree17

/∗ Fi l e i n t e n s i t i e s . h

∗ conta ins the de c l a ra t i on of a l l f unc t i on s concerning the t r an s i t i o n i n t e n s i t i e s as we l l

as

∗ t he d e f i n i t i o n of the data s t ruc t u r e parameters In t s and i t s d e f i n i t i o n as

parameters In t t

∗/

#ifndef INTENSITIES H

#define INTENSITIES H

#include ”boolean . h”

// De f i n i t i on of the data s t ruc t u r e parameters In t s

typedef struct parameter s Int s

{
double alpha ;

double beta ;

double c ;

double ∗p ;

} parameter s Int t ;

parameter s Int t ∗∗ a l l o ca t ePar amete r s In t ( long pers , long nPers ) ;

boo l ean t s etParameter s Int ( parameter s Int t ∗∗ parInt , long i , long j , long nPers , double

alpha ,

double beta , double c , double ∗p) ;

double ca l cu l a t e In t e n s i t y1Pe r s on (double t , long i , long j , long k , parameter s Int t ∗∗
parInt ,

long ∗x , boo l ean t useChar , double capAtRisk ) ;

double ca l cu l ate Intens i tyMode l01M(double t , long j , long k , parameter s Int t ∗∗parInt , long

∗x ,

boo l ean t useChar , const double ∗y , double payment ) ;

double ca l cu l a t e In t en s i tyMode l 2L i v e s 02 (double t , long j , long k , parameter s Int t ∗∗ parInt ,

long ∗x , boo l ean t useChar , const double ∗y , double

payment ) ;

void f r eeParameter s Int ( long pers , long nPers , parameter s Int t ∗∗ par Int ) ;

double spl ineOfDegree17 (double i n t en s i t y , double c , double d , double capAtRisk ) ;

#endif // INTENSITIES H
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/∗ Fi l e jump . c

∗ conta ins the d e f i n i t i o n of a l l f unc t i on s concerning the

∗ d i s c o n t i n u i t i e s (” jumps”) and the d i s c r e t e payments

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include ”jump . h”

#include ”boolean . h”

#include ”more . h”

/∗ Function al locateJumpEntry :

∗ a l l o c a t e s memory fo a v a r i a b l e o f type jump t

∗/
jump t ∗ al locateJumpEntry ( long nModel )

{
jump t ∗ entry = ( jump t ∗) c a l l o c (1 , s izeof ( jump t ) ) ;

i f ( entry == 0)

{
f p r i n t f ( s tder r , ” Error ( al locateJumpEntry ) ! \n” ) ;

e x i t (−1) ;

}
entry−>he ight = (double ∗) c a l l o c ( nModel , s izeof (double) ) ;

i f ( entry−>he ight == 0)

{
f p r i n t f ( s tder r , ” Error ( al locateJumpEntry ) ! \n” ) ;

f r e e ( entry ) ;

entry = 0 ;

}

return entry ;

} // end al locateJumpEntry

/∗ Function al locateThreeJumpLis ts

∗ a l l o c a t e s memory f o r a v a r i a b l e o f type threeJumpLis t s t

∗/
thr eeJumpLi s t s t ∗ a l l ocateThreeJumpList s ( thr eeJumpLi s t s t ∗ jumpLists )

{
jumpLists = ( thr eeJumpLi s t s t ∗) c a l l o c (1 , s izeof ( thr eeJumpLi s t s t ) ) ;

i f ( jumpLists == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l ocateThreeJumpList s ) ! \n” ) ;

e x i t (−1) ;

}

return jumpLists ;

} // end al locateThreeJumpLis ts

/∗ Function allocJumpAndSetComponents

∗ Memory i s a l l o c a t e d f o r a new entry o f a jump l i s t j , t he

∗ d e l i v e r e d va lues are ass i gned to the components o f t h i s entry

∗ and the entry i s c o r r e c t l y i n s e r t e d in to the jump l i s t j .
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∗/
jump t ∗allocJumpAndSetComponents ( jump t ∗ j , double t , boo l ean t trans ,

long nModel , double ∗ he ight )

{
long k = 0 ;

jump t ∗ jumpEntry = allocateJumpEntry ( nModel ) ;

jumpEntry−>time = t ;

jumpEntry−>t r ans = trans ;

for (k = 0 ; k <= nModel−1; k++)

jumpEntry−>he ight [ k ] = he ight [ k ] ;

// In s e r t i n g the entry in to the jump l i s t j :

return i n s e r tJumpIdent i ca lT imesPos s ib l e ( j , jumpEntry ) ; // Return va lue : t he l i s t ’ s

f i r s t e lement

} // end allocJumpAndSetComponents

/∗ Function jumpsConstTermPremAnnually

∗
∗ This func t ion c r ea t e s the l i s t j which conta ins the d i s c o n t i n u i t i e s (” jumps”) as we l l

as

∗ t he d i s c r e t e payments f o r a l l cont rac t s t a t e s . Each entry i s c reat ed by c a l l i n g the

∗ f unc t ion allocJumpAndSetComponents and by using the poin t o f t ime t , t he array he i g h t

∗ conta in ing the he i g h t s o f t he d i s c r e t e payments and the add i t i o n a l informat ion t rans

∗ (==1: time−d i s p l ac ed t r an s i t i o n payment ; ==0: d i s c r e t e payment ) .

∗
∗ In the f i r s t par t o f t he funct ion , the e n t r i e s caused by time−d i s p l ac ed t r an s i t i o n

∗ payments are cons idered ( t rans==1) , a f t e rwards the e n t r i e s f o r the d i s c r e t e payments

∗ ( t rans== 0) .

∗
∗ So f o r the time−d i s p l ac ed t r an s i t i o n payments , t he jump he i g h t i s always equa l to 0 .

∗ These e n t r i e s only make the i n t e g ra t i on s top at the se poin t s o f d i s c on t i n u i t y in order

∗ to guarantee the convergence o f the app l i e d d i s c r e t i s a t i o n method .

∗ After having creat ed the e n t r i e s f o r the time−d i s p l ac ed t r an s i t i o n payments , t he

v a r i a b l e

∗ t r i s poining to i s s e t to 1 . I f t here are no time−d i s p l ac ed t r an s i t i o n payments , i t i s

∗ not modi f ied .

∗
∗ Concerning the d i s c r e t e payments , b e n e f i t s ( p o s i t i v e jump he i g h t s ) and con t r i b u t i on s

∗ ( negat i ve jump he i g h t s ) can be d i s t i n g u i s h e d . The con t r i b u t i on s are g i ven apart from a

∗ propor t i ona l f a c t o r premFactor which i s element o f a l lP . When adding the va lues o f the

∗ d i s c r e t e payments , t he jump he i g h t s are mu l t i p l i e d by the ac t ua l va lue o f premFactor

∗ i f they are negat i ve .

∗
∗ return va lue : po in t e r to the l i s t j

∗
∗ Discre t e i n t e r e s t and jumps of he i g h t 0 caused by d i s c o n t i n u i t i e s o f o ther f unc t i on s

∗ than ajk ( t ) or by d i s c o n t i n u i t i e s o f d e r i v a t i v e s o f the r i g h t−hand s i de o f TDE could

∗ a l s o l ead to e n t r i e s in the jump l i s t . But these p o s s i b i l i t i e s have not been cons idered

ye t .

∗/
jump t ∗ jumpsConstTermPremAnnually ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r

)
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{
double ∗ he ight = 0 ;

long k = 0 ;

boo l ean t t rans = 0 ;

he i ght = al locateArrayOfDouble ( nModel ) ;

// TIME−DISPLACED TRANSITION PAYMENTS:

t r ans = 1 ;

// paid at the end of the year the t r an s i t i o n occurs in , jump he i g h t s == 0;

for (k = 1 ; k <= insPer i od ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

∗ t r = 1 ; // i . e . t here are time−d i s p l ac ed t r an s i t i o n payments

// DISCRETE PAYMENTS FOR REMAINING IN A STATE:

t r ans = 0 ;

// Contract s t a t e 0 : Time 0 u n t i l t ime insPeriod −1:

// con t r i b u t i on payments ( at the beg inn ing o f each year )

he ight [ 0 ] = −1.0;

for (k = 0 ; k <= insPer i od − 1 ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

freeArrayOfDouble ( he i ght ) ;

return j ;

} // end jumpsConstTermPremAnnually

/∗ Function jumpsConstTermAndEndowPremAnnually

∗
∗ St ruc ture and content s o f t he func t ion : c f . jumpsConstTermPremAnnually

∗/
jump t ∗ jumpsConstTermAndEndowPremAnnually ( jump t ∗ j , double insPer iod , long nModel ,

boo l ean t ∗ t r )

{
double ∗ he ight = 0 ;

long k = 0 ;

boo l ean t t rans = 0 ;

he i ght = al locateArrayOfDouble ( nModel ) ;

// TIME−DISPLACED TRANSITION PAYMENTS:

t r ans = 1 ;

// paid at the end of the year the t r an s i t i o n occurs in , jump he i g h t s == 0;

for (k = 1 ; k <= insPer i od ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

∗ t r = 1 ; // i . e . t here are time−d i s p l ac ed t r an s i t i o n payments

// DISCRETE PAYMENTS FOR REMAINING IN A STATE:

t r ans = 0 ;

// cont rac t s t a t e 0 : t ime 0 u n t i l insPeriod −1:

// Cont r i bu t ion payments ( at the beg inn ing o f each year )

he ight [ 0 ] = −1.0;

for (k = 0 ; k <= insPer i od − 1 ; k++)
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j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

// cont rac t s t a t e 0 : t ime insPeriod : endowment b e n e f i t

he ight [ 0 ] = 300000 .0 ;

j = allocJumpAndSetComponents ( j , insPer iod , trans , nModel , he i ght ) ;

freeArrayOfDouble ( he i ght ) ;

return j ;

} // end jumpsConstTermAndEndowPremAnnually

/∗ Function jumpsAnnuityAnnuallyPremAnnually

∗
∗ St ruc ture and content s o f t he func t ion : c f . jumpsConstTermPremAnnually

∗/
jump t ∗ jumpsAnnuityAnnuallyPremAnnually( jump t ∗ j , double insPer iod , long nModel ,

boo l ean t ∗ t r )

{
double ∗ he ight = 0 ;

long k = 0 ;

boo l ean t t rans = 0 ;

he i ght = al locateArrayOfDouble ( nModel ) ;

// DISCRETE PAYMENTS FOR REMAINING IN A STATE:

// Contract s t a t e 0 : t ime 0 u n t i l 34: c on t r i b u t i on payments ( at the beg inn ing o f each

year )

he ight [ 0 ] = −1.0;

for (k = 0 ; k <= 35−1; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

// cont rac t s t a t e 0 : t ime 35 un t i l insPeriod −1:

// annui ty b e n e f i t s ( paid at the beg inn ing o f each year )

he ight [ 0 ] = 12000 . 0 ;

for (k = 35 ; k <= insPer i od − 1 ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

// There are NO TIME−DISPLACED TRANSITION PAYMENTS: <=> ∗ t r == 0

∗ t r = 0 ;

freeArrayOfDouble ( he i ght ) ;

return j ;

} // end jumpsAnnuityAnnuallyPremAnnually

// Function jumps2Lives02a

jump t ∗ jumps2Lives02a ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r )

{
double ∗ he ight = 0 ;

long k = 0 ;

boo l ean t t rans = 0 ;

he i ght = al locateArrayOfDouble ( nModel ) ;
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// TIME−DISPLACED TRANSITION PAYMENTS:

t r ans = 1 ;

// paid at the end of the year the t r an s i t i o n occurs in , jump he i g h t s == 0;

for (k = 1 ; k <= insPer i od ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

∗ t r = 1 ; // i . e . t here are time−d i s p l ac ed t r an s i t i o n payments

// DISCRETE PAYMENTS FOR REMAINING IN A STATE:

t r ans = 0 ;

// cont rac t s t a t e 0 = (∗ ,∗) : t ime 0 u n t i l insPeriod −1:

// con t r i b u t i on payments ( at the beg inn ing o f each year )

he ight [ 0 ] = −1.0; // he i g h t [ 1 ] , . . . , h e i g h t [ nModel −1]: == 0

for (k = 0 ; k <= insPer iod −1; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

// cont rac t s t a t e 6 = (P,+) and cont rac t s t a t e 7 = (+,P) :

// time 0 u n t i l insPeriod −1/12: annui ty b e n e f i t s ( paid at the beg inn ing o f each month )

// h a l f annui ty

he ight [ 0 ] = 0 . 0 ;

he i ght [ 6 ] = 1200 . 0 ;

he i ght [ 7 ] = 1200 . 0 ;

for (k = 0 ; k <= insPer i od ∗12 − 1 ; k++)

j = allocJumpAndSetComponents ( j , k /12 . 0 , trans , nModel , h e i ght ) ;

// cont rac t s t a t e 3 = (P,P) : t ime 0 u n t i l insPeriod −1/12:

// annui ty b e n e f i t s ( paid at the beg inn ing o f each month )

// f u l l annui ty

he ight [ 6 ] = 0 . 0 ;

he i ght [ 7 ] = 0 . 0 ;

he i ght [ 3 ] = 2400 . 0 ;

for (k = 0 ; k <= insPer i od ∗12 − 1 ; k++)

j = allocJumpAndSetComponents ( j , k /12 . 0 , trans , nModel , h e i ght ) ;

freeArrayOfDouble ( he i ght ) ;

return j ;

} // end jumps2Lives02a

// Function jumps2Lives02b

jump t ∗ jumps2Lives02b ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r )

{
double ∗ he ight = 0 ;

long k = 0 ;

boo l ean t t rans = 0 ;

he i ght = al locateArrayOfDouble ( nModel ) ;

// TIME−DISPLACED TRANSITION PAYMENTS:

t r ans = 1 ;

// paid at the end of the year the t r an s i t i o n occurs in , jump he i g h t s == 0;

for (k = 1 ; k <= insPer i od ; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

116



∗ t r = 1 ; // i . e . t here are time−d i s p l ac ed t r an s i t i o n payments

// DISCRETE PAYMENTS FOR REMAINING IN A STATE:

t r ans = 0 ;

// cont rac t s t a t e s 0 = (∗ ,∗) and 4 = (∗ ,+) :

// time 0 u n t i l insPeriod −1: c on t r i b u t i on payments ( at the beg inn ing o f each year )

he ight [ 0 ] = −1.0;

he i ght [ 4 ] = −1.0;

for (k = 0 ; k <= insPer iod −1; k++)

j = allocJumpAndSetComponents ( j , k , trans , nModel , he i ght ) ;

// cont rac t s t a t e s 1 = (∗ ,P) , 6 = (P,+) and 7 = (+,P) :

// time 0 u n t i l insPeriod −1/12: annui ty b e n e f i t s ( paid at the beg inn ing o f each month )

// h a l f annui ty

he ight [ 0 ] = 0 . 0 ;

he i ght [ 4 ] = 0 . 0 ;

he i ght [ 1 ] = 1200 . 0 ;

he i ght [ 6 ] = 1200 . 0 ;

he i ght [ 7 ] = 1200 . 0 ;

for (k = 0 ; k <= insPer i od ∗12 − 1 ; k++)

j = allocJumpAndSetComponents ( j , k /12 . 0 , trans , nModel , h e i ght ) ;

// cont rac t s t a t e 3 = (P,P) : t ime 0 u n t i l insPeriod −1/12:

// annui ty b e n e f i t s ( paid at the beg inn ing o f each month )

// f u l l annui ty

he ight [ 1 ] = 0 . 0 ;

he i ght [ 6 ] = 0 . 0 ;

he i ght [ 7 ] = 0 . 0 ;

he i ght [ 3 ] = 2400 . 0 ;

for (k = 0 ; k <= insPer i od ∗12 − 1 ; k++)

j = allocJumpAndSetComponents ( j , k /12 . 0 , trans , nModel , h e i ght ) ;

freeArrayOfDouble ( he i ght ) ;

return j ;

} // end jumps2Lives02b

/∗ Function bui ldThreeJumpLists

∗
∗ Firs t , by using the func t ion al locateThreeJumpLists , memory i s a l l o c a t e d f o r the

v a r i a b l e

∗ jumpLists .

∗
∗ Then , a func t ion of type createJumps i s c a l l e d which c r ea t e s the i n d i v i d u a l l i s t o f

∗ d i s c o n t i n u i t i e s f o r the cons idered insurance contract , and the poin t e r to t h i s l i s t i s

∗ saved in jumpLists−>j 1 . The va lue o f t r1 (==1: there are time−d i s p l ac ed t r an s i t i o n

payments ;

∗ ==0: there are not ) which has been modi f ied in the func t ion of type createJumps i s

copied to

∗ jumpLists−>t r an sEx i s t . I t w i l l be needed in the d i scount ing func t ion f or the time−
d i s p l ac ed

∗ t r an s i t i o n payment .

∗
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∗ A second l i s t jumpLists−>j 2 i s c reat ed which only conta ins those e n t r i e s o f j1 which

have

∗ negat i ve jump he i g h t s r e pr e s en t i n g the con t r i b u t i on payments .

∗
∗ A t h i r d l i s t jumpLists−>j 3 only c on s i s t s o f one s i n g l e entry : t he con t r i b u t i on payment

at t ime

∗ insPeriod with he i g h t = sum of a l l c on t r i b u t i on payments in j2 .

∗
∗ return va lue = poin te r to a v a r i a b l e o f type threeJumpLis t s t .

∗/
thr eeJumpLi s t s t ∗bui ldThreeJumpLists ( thr eeJumpLi s t s t ∗ jumpLists ,

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) ,

double insPer iod , long nModel )

{
boo l ean t tr1 = 0 ; // f o r j1

long i = 0 ;

jump t ∗ ju = 0 ;

boo l ean t t r2 = 0 ; // f o r j2

double sumOfPremiums = 0 . 0 ;

double ∗ he ight = 0 ;

boo l ean t t r3 = 0 ; // f o r j3

jumpLists = a l l ocateThreeJumpList s ( jumpLists ) ;

// j1 :

jumpLists−>j 1 = createJumps ( jumpLists−>j1 , insPer iod , nModel , &tr1 ) ;

jumpLists−>t r an sEx i s t = tr1 ;

ju = jumpLists−>j 1 ;

// j2 :

while ( ju != 0)

{
for ( i = 0 ; i <= nModel −1; i++)

{
i f ( ju−>he ight [ i ] < 0)

{
jumpLists−>j 2 = allocJumpAndSetComponents ( jumpLists−>j2 ,

ju−>time , tr2 , nModel , ju−>he ight ) ;

break ;

}
}

ju = ju−>next ;

}

// j3 :

sumOfPremiums = calculateSumOfPremiumsAllStates ( jumpLists−>j2 , nModel ) ;

he i ght = al locateArrayOfDouble ( nModel ) ;

he i ght [ 0 ] = (−1.0) ∗ sumOfPremiums;

jumpLists−>j 3 = allocJumpAndSetComponents ( jumpLists−>j3 , insPer iod , tr3 , nModel , he i ght

) ;

freeArrayOfDouble ( he i ght ) ;

jumpLists−>whichList = 1 ; // j1 i s used f o r the f i r s t c a l c u l a t i on of the re serve .
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return jumpLists ;

} // end bui ldThreeJumpLists

/∗ Function inser tJumpIdent i ca lTimesPoss i b l e

∗ This func t ion i n s e r t s the entry at the r i g h t po s i t i on in to the jump l i s t j ( which i s

arranged

∗ in descending order with r e spe c t to t ) and re turns the poin t er to the f i r s t e lement o f

∗ t he modi f ied l i s t .

∗/
jump t ∗ i n s e r tJumpIdent i ca lT imesPos s ib l e ( jump t ∗ j , jump t ∗ entry )

{
jump t ∗ jSave = j ;

jump t ∗prev = 0 ;

i f ( j == 0) // there i s no entry in the l i s t

return entry ;

else

{
// Search the next smal l e r entry

while ( j−>time > entry−>time )

{
i f ( j−>next != 0)

{
prev = j ;

j = j−>next ;

}
else // entry i s i n s e r t e d a f t e r the l a s t entry o f j

{
j−>next = entry ; // entry−>next = 0 au t omat i c a l l y

return jSave ;

}
}

// In s e r t i n g entry b e f o r e j :

entry−>next = j ;

i f ( prev != 0) // entry i s not i n s e r t e d b e f o r e the f i r s t e x i s t i n g element o f the

l i s t

{
prev−>next = entry ;

return jSave ;

}
else

return entry ;

}

} // end inser tJumpIdent i ca lTimesPoss i b l e

/∗ Function calculateSumOfPremiumsAl lStates

∗ This func t ion c a l c u l a t e s the sum of a l l d i s c r e t e payments o f negat i ve he i g h t no matter

f o r

∗ which cont rac t s t a t e they are de f ined .
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∗/
double calculateSumOfPremiumsAllStates ( jump t ∗ j , long nModel )

{
double sum = 0 . 0 ;

long i = 0 ;

while ( j != 0)

{
for ( i = 0 ; i <= nModel−1; i++)

{
i f ( j−>he ight [ i ] < 0)

sum += j−>he ight [ 0 ] ;

}
j = j−>next ;

}
sum ∗= (−1.0) ; // the func t ion s h a l l re turn the p o s i t i v e va lue o f the sum .

return sum ;

} // end calculateSumOfPremiumsAl lStates

/∗ Function singlePremiumTimeZero

∗
∗ By means of t h i s func t ion i t can be determined whether there i s a s i n g l e premium

payment

∗ at time 0 or not . At time 0 , the insurance cont rac t i s in i n i t i a l s t a t e 0 , so a s i n g l e

∗ premium payment at t ime 0 − i f t he re i s one − has to be de f ined f o r s t a t e 0 !

∗ Element a f t e r element o f the jump , i t i s determined whether there i s a negat i ve jump

he i g h t

∗ in s t a t e 0 or not ( the e lements are arranged in descending order with r e spe c t to t ) .

∗ I f t here i s a negat i ve jump he ight , t he corresponding poin t of t ime t i s compared to 0 .

∗ t==0: s i n g l e premium payment at t ime 0.

∗ t he va lue o f the s i n g l e premium payment i s re turned .

∗ t !=0: there i s at l e a s t one payment a f t e r t ime 0

∗ => t here i s no s i n g l e premium payment at t ime 0

∗ => t he va lue 1.0 i s (non−negat i ve va lue ) i s re turned

∗/
double singlePremiumTimeZero ( jump t ∗ j )

{
double eps = 1e−13;

while ( j != 0)

{
i f ( j−>he ight [ 0 ] < 0)

{
i f ( ( j−>time < eps ) && ( j−>time > (−1)∗ eps ) )

return j−>he ight [ 0 ] ; // s i n g l e premium payment at t =0; return va lue negat i ve

else

return 1 . 0 ; // return va lue p o s i t i v e <=> no s i n g l e premium payment at t ime 0

}
else

j = j−>next ;

}
return 1 . 0 ; // There i s no negat i ve d i s c r e t e payment .
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} // end singlePremiumTimeZero

// Function freeJumpList

void f r eeJumpList ( jump t ∗ j )

{
jump t ∗next ;

while ( j != 0)

{
next = j−>next ;

i f ( j−>he ight )

{
f r e e ( j−>he ight ) ;

j−>he ight = 0 ;

}
f r e e ( j ) ;

j = next ;

}
} // end freeJumpList

// Function freeThreeJumpLists

void f r eeThreeJumpLists ( thr eeJumpLi s t s t ∗ jumpLists )

{
i f ( jumpLists != 0)

{
f r eeJumpList ( jumpLists−>j 1 ) ;

f r eeJumpList ( jumpLists−>j 2 ) ;

f r eeJumpList ( jumpLists−>j 3 ) ;

f r e e ( jumpLists ) ;

jumpLists = 0 ;

}
} // end freeThreeJumpLists

/∗ Fi l e jump . h

∗ conta ins the d e f i n i t i o n of the data s t ruc t u r e jump s and i t s d e f i n i t i o n as jump t as

we l l as

∗ t he de c l a ra t i on of a l l f unc t i on s concerning the d i s c o n t i n u i t i e s (” jumps ”) and the

∗ d i s c r e t e payments

∗/

#ifndef JUMP H

#define JUMP H

#include ”boolean . h”

typedef struct jump s
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{
double time ;

double ∗ he ight ;

boo l ean t t rans ; // t rans == 1: time−d i s p l ac ed t r an s i t i o n payment at t h i s po in t

// of t ime => jump he i g h t == 0

struct jump s ∗next ; // poin t e r to the l i s t ’ s next element

} jump t ;

typedef struct thr eeJumpLi s t s s

{
jump t ∗ j 1 ; // l i s t o f d i s c o n t i n u i t i e s ( d i s c r e t e payments and

// other d i s c o n t i n u i t i e s ) o f t he cons idered insurance contrac t

jump t ∗ j 2 ; // l i s t o f d i s c o n t i n u i t i e s which only conta ins those e n t r i e s o f j1 which

have

// negat i ve he i g h t (=con t r i b u t i on s ) . This l i s t i s requ i red to c a l c u l a t e the expec t ed

// di scounted con t r i b u t i on s at t ime 0.

jump t ∗ j 3 ; // l i s t o f d i s c o n t i n u i t i e s which only conta ins one s i n g l e entry : a

con t r i b u t i on

// payment at t ime insPeriod with he i g h t = sum of the con t r i b u t i on he i g h t s o f j2 .

// Tis l i s t i s used to c a l c u l a t e premFactor i f useChar==1.

boo l ean t t r an sEx i s t ;

// t ran sEx i s t == 1: there are e n t r i e s wi th he i g h t==0 which correspond to

d i s c o n t i n u i t i e s

// caused by time−d i s p l ac ed t r an s i t i o n payments .

// t r an sEx i s t == 0: there are no time−d i s p l ac ed t r an s i t i o n payments .

long whichList ; // i n d i c a t e s which o f the jump l i s t s j1 , j 2 and j3 has to be used .

} thr eeJumpLi s t s t ;

jump t ∗ al locateJumpEntry ( long nModel ) ;

thr eeJumpLi s t s t ∗ al locateTwoJumpLists ( thr eeJumpLi s t s t ∗ jumpLists ) ;

jump t ∗allocJumpAndSetComponents ( jump t ∗ j , double t , boo l ean t trans , long nModel ,

double ∗ he ight ) ;

jump t ∗ jumpsConstTermPremAnnually ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r )

;

jump t ∗ jumpsConstTermAndEndowPremAnnually ( jump t ∗ j , double insPer iod , long nModel ,

boo l ean t ∗ t r ) ;

jump t ∗ jumpsAnnuityAnnuallyPremAnnually( jump t ∗ j , double insPer iod , long nModel ,

boo l ean t ∗ t r ) ;

jump t ∗ jumps2Lives02a ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r ) ;

jump t ∗ jumps2Lives02b ( jump t ∗ j , double insPer iod , long nModel , boo l ean t ∗ t r ) ;

thr eeJumpLi s t s t ∗bui ldThreeJumpLists ( thr eeJumpLi s t s t ∗ jumpLists ,

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) ,

double insPer iod , long nModel ) ;

jump t ∗ i n s e r tJumpIdent i ca lT imesPos s ib l e ( jump t ∗ j , jump t ∗ entry ) ;

double calculateSumOfPremiumsAllStates ( jump t ∗ j , long nModel ) ;

double singlePremiumTimeZero ( jump t ∗ j ) ;
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void f r eeJumpList ( jump t ∗ j ) ;

void f r eeThreeJumpLists ( thr eeJumpLi s t s t ∗ jumpLists ) ;

#endif // JUMP H

/∗ Fi l e more . c

∗ conta ins the d e f i n i t i o n of f u r t he r f unc t i on s

∗/

#include <s t d l i b . h>

#include <s td i o . h>

#include ”more . h”

// func t ion f reeThreePoin te rs

void f r e eThr e ePo i n t e r s (double ∗y1 , double ∗y2 , double ∗y3 )

{
i f ( y1 )

{
f r e e ( y1 ) ;

y1 = 0 ;

}
i f ( y2 )

{
f r e e ( y2 ) ;

y2 = 0 ;

}
i f ( y3 )

{
f r e e ( y3 ) ;

y3 = 0 ;

}
} // end f reeThreePoin te rs

/∗ f unc t ion al locateArrayOfLong :

∗ a l l o c a t e s memory f o r an array of l eng t h n and data type long

∗/
long ∗ al locateArrayOfLong ( long n)

{
long ∗ array = ( long ∗) c a l l o c (n , s izeof ( long ) ) ;

i f ( array == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r array o f long ) \n” ) ;

e x i t (−1) ;

}

return array ;

} // end al locateArrayOfLong
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// func t ion freeArrayOfLong :

void f reeArrayOfLong ( long ∗ array )

{
i f ( array )

{
f r e e ( array ) ;

ar ray = 0 ;

}
} // end freeArrayOfLong

/∗ f unc t ion al locateArrayOfDoub le :

∗ a l l o c a t e s memory f o r an array of l eng t h n and data type doub le

∗/
double ∗ al locateArrayOfDouble ( long n)

{
double ∗ array = (double ∗) c a l l o c (n , s izeof (double) ) ;

i f ( array == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r array o f double ) \n” ) ;

e x i t (−1) ;

}

return array ;

} // end al locateArrayOfDoub le

// func t ion freeArrayOfDouble :

void f reeArrayOfDouble (double ∗ array )

{
i f ( array )

{
f r e e ( array ) ;

ar ray = 0 ;

}
} // end freeArrayOfDouble

/∗ Fi l e more . h

∗ conta ins the de c l a ra t i on of f u r t he r f unc t i on s

∗/

void f r e eThr e ePo i n t e r s (double ∗y1 , double ∗y2 , double ∗y3 ) ;

long ∗ al locateArrayOfLong ( long n) ;

void f reeArrayOfLong ( long ∗ array ) ;

double ∗ al locateArrayOfDouble ( long n) ;
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void f reeArrayOfDouble (double ∗ array ) ;

/∗ Fi l e parameters . c

∗ conta ins the d e f i n i t i o n of a l l f unc t i on s concerning the parameters

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include ” ajk . h”

#include ”more . h”

#include ”parameters . h”

#include ”vDelta . h”

// func t ion a l locat eA l lParameter s

a l lPa r amete r s t ∗ a l l o ca t eA l lPa r amete r s ( )

{
a l lPa r amete r s t ∗ a l lP = c a l l o c (1 , s izeof ( a l lPa r amete r s t ) ) ;

i f ( a l lP == 0)

{
f p r i n t f ( s tder r , ” Error ( a l l o c a t i n g memory f o r a l lP ) ! \n” ) ;

e x i t (−1) ;

}

return a l lP ;

}

/∗ Function setAl lParameters

∗ each component o f a v a r i a b l e o f data s t ruc t u r e a l lParame t e r s t

∗ i s g i ven a concre t e va lue or poin t e r to a func t ion

∗/
boo l ean t setA l lParameter s (

a l lPa r amete r s t ∗ al lP ,

long pers ,

long nPers ,

long nModel ,

long ∗x ,

double insPer iod ,

parameter s Int t ∗∗ parInt ,

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ , long ∗ ,

boolean t , const double ∗ , double) ,

double (∗ calcValA ) (double , long , long ) ,

double (∗ calcValA1 ) (double , long , long ) ,

double (∗ calcValA2 ) (double , long , long ) ,

double upper ,

double premFactor ,

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) ,

thr eeJumpLi s t s t ∗ jumpLists ,

double del ta ,

125



double (∗ calcDiscFunc ) (double , double , double) ,

boo l ean t useChar )

{
al lP−>per s = per s ;

a l lP−>nPers = nPers ;

a l lP−>nModel = nModel ;

a l lP−>x = x ;

al lP−>i n sPer i od = insPer i od ;

a l lP−>par Int = par Int ;

a l lP−>c a l c I n t = ca l c I n t ;

a l lP−>calcValA = calcValA ;

al lP−>calcValA1 = calcValA1 ;

al lP−>calcValA2 = calcValA2 ;

al lP−>upper = upper ;

a l lP−>premFactor = premFactor ;

a l lP−>createJumps = createJumps ;

a l lP−>jumpLists = jumpLists ;

a l lP−>de l t a = de l t a ;

a l lP−>calcDiscFunc = calcDiscFunc ;

a l lP−>useChar = useChar ;

return t rue ;

} // end setAl lParameters

// De f i n i t i on of the func t ion setInsuranceModel01M :

boo l ean t setInsuranceModel01M( a l lPa r amete r s t ∗ a l lP )

{
/∗ TERM INSURANCE:

∗ male insured person , x = 50

∗ insurance per iod = 20 years

∗ f o r c e o f i n t e r e s t ( de l t a , constant ) = 0.03

∗ death b e n e f i t = 100000 ( constant ) , paid at the end of the year the insured person

d i e s in

∗ con t r i b u t i on s : constant he i gh t , paid at the beg inn ing o f the year

∗/

// Def ining and i n i t i a l i s i n g the d i f f e r e n t v a r i a b l e s :

long per s = 0 ;

long nPers = 0 ;

long nModel = 0 ;

long ∗x = 0 ;

double i n sPer i od = 0 . 0 ;

parameter s Int t ∗∗ par Int = 0 ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ ,

long ∗ , boolean t , const double ∗ , double) = 0 ;

double (∗ calcValA ) (double , long , long ) = 0 ;
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double (∗ calcValA1 ) (double , long , long ) = 0 ;

double (∗ calcValA2 ) (double , long , long ) = 0 ;

double upper = 0 . 0 ;

double premFactor = 0 . 0 ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) = 0 ;

thr eeJumpLi s t s t ∗ jumpLists = 0 ;

double de l t a = 0 . 0 ;

double (∗ calcDiscFunc ) (double , double , double) = 0 ;

boo l ean t useChar = 0 ;

double ∗p = 0 ;

boo l ean t ok = 0 ;

// Assignment :

per s = 1 ;

nPers = 2 ;

nModel = 2 ;

insPer i od = 2 0 . 0 ;

x = al locateArrayOfLong ( per s ) ;

x [ 0 ] = 50 ;

p = al locateArrayOfDouble ( nPers ) ;

p [ 0 ] = 0 . 0 ;

p [ 1 ] = 1 . 0 ;

par Int = a l l o ca t ePar amete r s In t ( pers , nPers ) ;

ok = setParameter s Int ( parInt , 0 , 0 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p) ;

i f ( ok != 1) // != 1: an error has occurred in setParametersIn t

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
c a l c I n t = &ca l cu l ate Intens i tyMode l01M ;

calcValA1 = &calculateConstValueA ;

calcValA2 = &calculateConstValueAZero ;

calcValA = calcValA1 ;

// upper i s not modi f ied ( upper == 0.0)

// premFactor i s not modi f ied ( premFactor == 0.0)

createJumps = &jumpsConstTermPremAnnually ;

jumpLists = bui ldThreeJumpLists ( jumpLists , createJumps , insPer iod , nModel ) ;

d e l t a = 0 . 0 3 ;

calcDiscFunc = &ca l cu l ateCons tantDi s count ingFunct i on ;

useChar = 0 ;
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ok = setAl lParameter s ( a l lP , pers , nPers , nModel , x , insPer iod , parInt , c a l c In t ,

calcValA ,

calcValA1 , calcValA2 , upper , premFactor , createJumps , jumpLists ,

del ta ,

calcDiscFunc , useChar ) ;

i f ( ok != 1) // != 1: an error has occurred in setAl lParameters

{
f p r i n t f ( s tder r , ” Error ( s e tA l lParameter s ) ! \n” ) ;

return(−1) ;

}

f reeArrayOfDouble (p) ;

return t rue ;

} // end setInsuranceModel01M

// De f i n i t i on of the func t ion setInsuranceModel02M :

boo l ean t setInsuranceModel02M( a l lPa r amete r s t ∗ a l lP )

{
/∗ TERM AND ENDOWMENT INSURANCE:

∗ male insured person , x = 50

∗ insurance per iod = 20 years

∗ f o r c e o f i n t e r e s t ( de l t a , constant ) = 0.03

∗ death b e n e f i t = 100000 ( constant ) ,

∗ paid at the end of the year the insured person d i e s in

∗ endowment b e n e f i t : 300000 ( paid at t=insPeriod )

∗ con t r i b u t i on s : constant he i gh t , paid at the beg inn ing o f the year

∗/

// Def ining and i n i t i a l i s i n g the d i f f e r e n t v a r i a b l e s :

long per s = 0 ;

long nPers = 0 ;

long nModel = 0 ;

long ∗x = 0 ;

double i n sPer i od = 0 . 0 ;

parameter s Int t ∗∗ par Int = 0 ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ ,

long ∗ , boolean t , const double ∗ , double) = 0 ;

double (∗ calcValA ) (double , long , long ) = 0 ;

double (∗ calcValA1 ) (double , long , long ) = 0 ;

double (∗ calcValA2 ) (double , long , long ) = 0 ;

double upper = 0 . 0 ;

double premFactor = 0 . 0 ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) = 0 ;

thr eeJumpLi s t s t ∗ jumpLists = 0 ;

double de l t a = 0 . 0 ;

double (∗ calcDiscFunc ) (double , double , double) = 0 ;

boo l ean t useChar = 0 ;
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double ∗p = 0 ;

boo l ean t ok = 0 ;

// Assignment :

per s = 1 ;

nPers = 2 ;

nModel = 2 ;

insPer i od = 2 0 . 0 ;

x = al locateArrayOfLong ( per s ) ;

x [ 0 ] = 50 ;

p = al locateArrayOfDouble ( nPers ) ;

p [ 0 ] = 0 . 0 ;

p [ 1 ] = 1 . 0 ;

par Int = a l l o ca t ePar amete r s In t ( pers , nPers ) ;

ok = setParameter s Int ( parInt , 0 , 0 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p) ;

i f ( ok != 1) // != 1: an error has occurred in setParametersIn t

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
c a l c I n t = &ca l cu l ate Intens i tyMode l01M ;

calcValA1 = &calculateConstValueA ;

calcValA2 = &calculateConstValueAZero ;

calcValA = calcValA1 ;

// upper i s not modi f ied ( upper == 0.0)

// premFactor i s not modi f ied ( premFactor == 0.0)

createJumps = &jumpsConstTermAndEndowPremAnnually ;

jumpLists = bui ldThreeJumpLists ( jumpLists , createJumps , insPer iod , nModel ) ;

d e l t a = 0 . 0 3 ;

calcDiscFunc = &ca l cu l ateCons tantDi s count ingFunct i on ;

useChar = 0 ;

ok = setAl lParameter s ( a l lP , pers , nPers , nModel , x , insPer iod , parInt , c a l c In t ,

calcValA ,

calcValA1 , calcValA2 , upper , premFactor , createJumps , jumpLists ,

del ta ,

calcDiscFunc , useChar ) ;

i f ( ok != 1) // != 1: an error has occurred in setAl lParameters

{
f p r i n t f ( s tder r , ” Error ( s e tA l lParameter s ) ! \n” ) ;

return(−1) ;

}

f reeArrayOfDouble (p) ;

return t rue ;

} // end setInsuranceModel02M
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// De f i n i t i on of the func t ion setInsuranceModel04M :

boo l ean t setInsuranceModel04M( a l lPa r amete r s t ∗ a l lP )

{
/∗ ANNUITY:

∗ male insured person , x = 30

∗ insurance per iod = 70 years

∗ f o r c e o f i n t e r e s t ( de l t a , constant ) = 0.03

∗ con t r i b u t i on s : constant he i gh t , paid at the beg inn ing o f the year k = 1 , . . . , 35

∗ annui ty b e n e f i t s = 1000 ( constant ) , paid at the beg inn ing o f the year k = 36 ,

. . . , 70

∗/

// Def ining and i n i t i a l i s i n g the d i f f e r e n t v a r i a b l e s :

long per s = 0 ;

long nPers = 0 ;

long nModel = 0 ;

long ∗x = 0 ;

double i n sPer i od = 0 . 0 ;

parameter s Int t ∗∗ par Int = 0 ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ ,

long ∗ , boolean t , const double ∗ , double) = 0 ;

double (∗ calcValA ) (double , long , long ) = 0 ;

double (∗ calcValA1 ) (double , long , long ) = 0 ;

double (∗ calcValA2 ) (double , long , long ) = 0 ;

double upper = 0 . 0 ;

double premFactor = 0 . 0 ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) = 0 ;

thr eeJumpLi s t s t ∗ jumpLists = 0 ;

double de l t a = 0 . 0 ;

double (∗ calcDiscFunc ) (double , double , double) = 0 ;

boo l ean t useChar = 0 ;

double ∗p = 0 ;

boo l ean t ok = 0 ;

// Assignment :

per s = 1 ;

nPers = 2 ;

nModel = 2 ;

insPer i od = 7 0 . 0 ;

x = al locateArrayOfLong ( per s ) ;

x [ 0 ] = 30 ;

p = al locateArrayOfDouble ( nPers ) ;

p [ 0 ] = 0 . 0 ;
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p [ 1 ] = 1 . 0 ;

par Int = a l l o ca t ePar amete r s In t ( pers , nPers ) ;

ok = setParameter s Int ( parInt , 0 , 0 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p) ;

i f ( ok != 1) // != 1: an error has occurred in setParametersIn t

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
c a l c I n t = &ca l cu l ate Intens i tyMode l01M ;

calcValA1 = &calculateConstValueAZero ;

calcValA2 = &calculateConstValueAZero ;

calcValA = calcValA1 ;

// upper i s not modi f ied ( upper == 0.0)

// premFactor i s not modi f ied ( premFactor == 0.0)

createJumps = &jumpsAnnuityAnnuallyPremAnnually ;

jumpLists = bui ldThreeJumpLists ( jumpLists , createJumps , insPer iod , nModel ) ;

d e l t a = 0 . 0 3 ;

calcDiscFunc = &ca l cu l ateCons tantDi s count ingFunct i on ;

useChar = 0 ;

ok = setAl lParameter s ( a l lP , pers , nPers , nModel , x , insPer iod , parInt , c a l c In t ,

calcValA ,

calcValA1 , calcValA2 , upper , premFactor , createJumps , jumpLists ,

del ta ,

calcDiscFunc , useChar ) ;

i f ( ok != 1) // != 1: an error has occurred in setAl lParameters

{
f p r i n t f ( s tder r , ” Error ( s e tA l lParameter s ) ! \n” ) ;

return(−1) ;

}

f reeArrayOfDouble (p) ;

return t rue ;

} // end setInsuranceModel04M

// De f i n i t i on of the func t ion setInsuranceMode l2Lives02a :

boo l ean t setInsuranceMode l2L ives02a ( a l lPa r amete r s t ∗ a l lP )

{
/∗ LONG TERM CARE INSURANCE (SYMMETRIC) :

∗ 1 s t insured person ( person no . 0 ) : male , x [ 0 ] = 50

∗ 2nd insured person ( person no . 1 ) : female , x [ 1 ] = 50

∗ 3 s i n g l e s t a t e s : a c t i v e (∗) , in need of care (C) , dead (+)

∗ insurance per iod = 40 years

∗ f o r c e o f i n t e r e s t ( de l t a , constant ) = 0.03

∗ 9 cont rac t s t a t e s : cont rac t s t a t e 0 = (∗ ,∗) ,

∗ cont rac t s t a t e 1 = (∗ ,P) ,

∗ cont rac t s t a t e 2 = (P,∗ ) ,
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∗ cont rac t s t a t e 3 = (P,P) ,

∗ cont rac t s t a t e 4 = (∗ ,+) ,

∗ cont rac t s t a t e 5 = (+ ,∗) ,

∗ cont rac t s t a t e 6 = (P,+) ,

∗ cont rac t s t a t e 7 = (+,P) ,

∗ cont rac t s t a t e 8 = (+,+)

∗
∗ Payments f o r remaining in a cont rac t s t a t e :

∗ cont rac t s t a t e 0 : c on t r i b u t i on s ( constant , paid at the beg inn ing o f each year )

∗ cont rac t s t a t e 1 , 2 : no con t r i b u t i on s , no b e n e f i t s

∗ cont rac t s t a t e 6 , 7 : annui ty ( h a l f )

∗ cont rac t s t a t e 3 : annui ty ( f u l l )

∗ cont rac t s t a t e 4 , 5 , 8 : no con t r i b u t i on s , no b e n e f i t s

∗
∗ Payments f o r t r an s i t i o n s :

∗ cont rac t s t a t e 0 −> 4 ,

∗ cont rac t s t a t e 1 −> 4 ,

∗ cont rac t s t a t e 0 −> 5 ,

∗ cont rac t s t a t e 2 −> 5:

∗ payment o f 100000 ( b e n e f i t f o r the f i r s t death )

∗ paid at the end of the year the t r an s i t i o n occurs in

∗ For a l l o ther t r an s i t i o n s there are no b e n e f i t s .

∗ Assumption : independent mor t a l i t y p r o b a b i l i t i e s and i n t e n s i t i e s

∗/

// Def ining and i n i t i a l i s i n g the d i f f e r e n t v a r i a b l e s :

long per s = 0 ;

long nPers = 0 ;

long nModel = 0 ;

long ∗x = 0 ;

double i n sPer i od = 0 . 0 ;

parameter s Int t ∗∗ par Int = 0 ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ ,

long ∗ , boolean t , const double ∗ , double) = 0 ;

double (∗ calcValA ) (double , long , long ) = 0 ;

double (∗ calcValA1 ) (double , long , long ) = 0 ;

double (∗ calcValA2 ) (double , long , long ) = 0 ;

double upper = 0 . 0 ;

double premFactor = 0 . 0 ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) = 0 ;

thr eeJumpLi s t s t ∗ jumpLists = 0 ;

double de l t a = 0 . 0 ;

double (∗ calcDiscFunc ) (double , double , double) = 0 ;

boo l ean t useChar = 0 ;

double ∗p1 = 0 ;

double ∗p2 = 0 ;

boo l ean t ok = 0 ;
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// Assignment :

per s = 2 ;

nPers = 3 ;

nModel = 9 ;

insPer i od = 4 0 . 0 ;

x = al locateArrayOfLong ( per s ) ;

x [ 0 ] = 50 ;

x [ 1 ] = 50 ;

// FOR EACH OF THE TWO INSURED PERSONS

// p1 = weight [ t r an s i t i o n to a c e r t a i n s i n g l e s t a t e | g i ven t ha t

// the s i n g l e s t a t e (∗) (= 0 in parIn t ) i s l e f t ]

p1 = al locateArrayOfDouble ( nPers ) ; // can be used f o r both persons

p1 [ 0 ] = 0 . 0 ; // == 0 , because the s i n g l e s t a t e (∗) i s l e f t !

p1 [ 1 ] = 1 . 0 ; // the same p r o b a b i l i t y o f dy ing and of becoming in need of care

p1 [ 2 ] = 1 . 0 ;

// p2 = weight [ t r an s i t i o n to a c e r t a i n s i n g l e s t a t e | g i ven t ha t

// the s i n g l e s t a t e (P) (= 1 in parIn t ) i s l e f t ]

p2 = al locateArrayOfDouble ( nPers ) ; // can be used f o r both persons

p2 [ 0 ] = 0 . 0 ; // == 0 , because (P) −> (∗) i s not p o s s i b l e !

p2 [ 1 ] = 0 . 0 ; // == 0 , because the s i n g l e s t a t e (P) i s l e f t !

p2 [ 2 ] = 2 . 0 ; // s i n g l e s t a t e (P) : p r o b a b i l i t y o f dy ing i s twice as high as in s i n g l e

s t a t e (∗)

par Int = a l l o ca t ePar amete r s In t ( pers , nPers ) ;

// person no .0 , l e av i ng the s i n g l e s t a t e (∗) (= 0 in parIn t ) :

ok = setParameter s Int ( parInt , 0 , 0 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p1 ) ;

i f ( ok != 1) // != 1: an error has occurred in setParametersIn t

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .0 , l e av i ng the s i n g l e s t a t e (P) (= 1 in parIn t ) :

ok = setParameter s Int ( parInt , 0 , 1 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p2 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .1 , l e av i ng the s i n g l e s t a t e (∗) (= 0 in parIn t ) :

ok = setParameter s Int ( parInt , 1 , 0 , nPers , 0 . 000080 , 0 .0000163 , 1 . 1074 , p1 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .1 , l e av i ng the s i n g l e s t a t e (P) (= 1 in parIn t ) :

ok = setParameter s Int ( parInt , 1 , 1 , nPers , 0 . 000080 , 0 .0000163 , 1 . 1074 , p2 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;
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return(−1) ;

}

c a l c I n t = &ca l cu l a t e In t en s i tyMode l 2L i v e s 02 ;

calcValA1 = &calculateConstValueA2Lives02 ;

calcValA2 = &calculateConstValueAZero ;

calcValA = calcValA1 ;

// upper i s not modi f ied ( upper == 0.0)

// premFactor i s not modi f ied ( premFactor == 0.0)

createJumps = &jumps2Lives02a ;

jumpLists = bui ldThreeJumpLists ( jumpLists , createJumps , insPer iod , nModel ) ;

d e l t a = 0 . 0 3 ;

calcDiscFunc = &ca l cu l ateCons tantDi s count ingFunct i on ;

useChar = 0 ;

ok = setAl lParameter s ( a l lP , pers , nPers , nModel , x , insPer iod , parInt , c a l c In t ,

calcValA ,

calcValA1 , calcValA2 , upper , premFactor , createJumps , jumpLists ,

del ta ,

calcDiscFunc , useChar ) ;

i f ( ok != 1) // != 1: an error has occurred in setAl lParameters

{
f p r i n t f ( s tder r , ” Error ( s e tA l lParameter s ) ! \n” ) ;

return(−1) ;

}

f reeArrayOfDouble ( p1 ) ;

freeArrayOfDouble ( p2 ) ;

return t rue ;

} // end setInsuranceMode l2Lives02a

// De f i n i t i on of the func t ion setInsuranceMode l2Lives02b :

boo l ean t setInsuranceModel2L ives02b ( a l lPa r amete r s t ∗ a l lP )

{
/∗ LONG TERM CARE INSURANCE (NON−SYMMETRIC) :

∗ 1 s t insured person ( person no .0 , maintaining pos i t i on ) :

∗ male , x [ 0 ] = 50

∗ 2nd insured person ( person no . 1 ) : female , x [ 1 ] = 50

∗ 3 s i n g l e s t a t e s : a c t i v e (∗) , in need of care (C) , dead (+)

∗ insurance per iod = 40 years

∗ f o r c e o f i n t e r e s t ( de l t a , constant ) = 0.03

∗ 9 cont rac t s t a t e s : cont rac t s t a t e 0 = (∗ ,∗) ,

∗ cont rac t s t a t e 1 = (∗ ,P) ,

∗ cont rac t s t a t e 2 = (P,∗ ) ,

∗ cont rac t s t a t e 3 = (P,P) ,

∗ cont rac t s t a t e 4 = (∗ ,+) ,

∗ cont rac t s t a t e 5 = (+ ,∗) ,

∗ cont rac t s t a t e 6 = (P,+) ,

∗ cont rac t s t a t e 7 = (+,P) ,
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∗ cont rac t s t a t e 8 = (+,+)

∗
∗ Payments f o r remaining in a cont rac t s t a t e :

∗ cont rac t s t a t e 0 , 4 : c on t r i b u t i on s ( constant , paid at the beg inn ing o f each year )

∗ cont rac t s t a t e 1 , 6 , 7 : annui ty ( h a l f )

∗ cont rac t s t a t e 3 : annui ty ( f u l l )

∗ cont rac t s t a t e 2 , 5 , 8 : no con t r i b u t i on s , no b e n e f i t s

∗
∗ Payments f o r t r an s i t i o n s :

∗ cont rac t s t a t e 0 −> 4 ,

∗ cont rac t s t a t e 1 −> 4 ,

∗ cont rac t s t a t e 0 −> 5 ,

∗ cont rac t s t a t e 2 −> 5:

∗ payment o f 100000 ( b e n e f i t f o r the f i r s t death )

∗ paid at the end of the year the t r an s i t i o n occurs in

∗ For a l l o ther t r an s i t i o n s there are no b e n e f i t s .

∗ Assumption : independent mor t a l i t y p r o b a b i l i t i e s and i n t e n s i t i e s

∗/

// Def ining and i n i t i a l i s i n g the d i f f e r e n t v a r i a b l e s :

long per s = 0 ;

long nPers = 0 ;

long nModel = 0 ;

long ∗x = 0 ;

double i n sPer i od = 0 . 0 ;

parameter s Int t ∗∗ par Int = 0 ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ ,

long ∗ , boolean t , const double ∗ , double) = 0 ;

double (∗ calcValA ) (double , long , long ) = 0 ;

double (∗ calcValA1 ) (double , long , long ) = 0 ;

double (∗ calcValA2 ) (double , long , long ) = 0 ;

double upper = 0 . 0 ;

double premFactor = 0 . 0 ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) = 0 ;

thr eeJumpLi s t s t ∗ jumpLists = 0 ;

double de l t a = 0 . 0 ;

double (∗ calcDiscFunc ) (double , double , double) = 0 ;

boo l ean t useChar = 0 ;

double ∗p1 = 0 ;

double ∗p2 = 0 ;

boo l ean t ok = 0 ;

// Assignment :

per s = 2 ;

nPers = 3 ;

nModel = 9 ;

insPer i od = 4 0 . 0 ;
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x = al locateArrayOfLong ( per s ) ;

x [ 0 ] = 50 ;

x [ 1 ] = 50 ;

// FOR EACH OF THE TWO INSURED PERSONS

// p1 = weight [ t r an s i t i o n to a c e r t a i n s i n g l e s t a t e | g i ven t ha t

// the s i n g l e s t a t e (∗) (= 0 in parIn t ) i s l e f t ]

p1 = al locateArrayOfDouble ( nPers ) ; // can be used f o r both persons

p1 [ 0 ] = 0 . 0 ; // == 0 , because the s i n g l e s t a t e (∗) i s l e f t !

p1 [ 1 ] = 1 . 0 ; // the same p r o b a b i l i t y o f dy ing

p1 [ 2 ] = 1 . 0 ; // and of becoming in need of care

// p2 = weight [ t r an s i t i o n to a c e r t a i n s i n g l e s t a t e | g i ven t ha t

// the s i n g l e s t a t e (P) (= 1 in parIn t ) i s l e f t ]

p2 = al locateArrayOfDouble ( nPers ) ; // can be used f o r both persons

p2 [ 0 ] = 0 . 0 ; // == 0 , because (P) −> (∗) i s not p o s s i b l e !

p2 [ 1 ] = 0 . 0 ; // == 0 , because the s i n g l e s t a t e (P) i s l e f t !

p2 [ 2 ] = 2 . 0 ; // s i n g l e s t a t e (P) : p r o b a b i l i t y o f dy ing i s twice as high

// as in s i n g l e s t a t e (∗)

par Int = a l l o ca t ePar amete r s In t ( pers , nPers ) ;

// person no .0 , l e av i ng the s i n g l e s t a t e (∗) (= 0 in parIn t ) :

ok = setParameter s Int ( parInt , 0 , 0 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p1 ) ;

i f ( ok != 1) // != 1: an error has occurred in setParametersIn t

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .0 , l e av i ng the s i n g l e s t a t e (P) (= 1 in parIn t ) :

ok = setParameter s Int ( parInt , 0 , 1 , nPers , 0 . 000134 , 0 .0000353 , 1 . 1020 , p2 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .1 , l e av i ng the s i n g l e s t a t e (∗) (= 0 in parIn t ) :

ok = setParameter s Int ( parInt , 1 , 0 , nPers , 0 . 000080 , 0 .0000163 , 1 . 1074 , p1 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}
// person no .1 , l e av i ng the s i n g l e s t a t e (P) (= 1 in parIn t ) :

ok = setParameter s Int ( parInt , 1 , 1 , nPers ,

0 . 000080 , 0 .0000163 , 1 . 1074 , p2 ) ;

i f ( ok != 1)

{
f p r i n t f ( s tder r , ” Error ( s e tParameter s Int ) ! \n” ) ;

return(−1) ;

}

c a l c I n t = &ca l cu l a t e In t en s i tyMode l 2L i v e s 02 ;
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calcValA1 = &calculateConstValueA2Lives02 ;

calcValA2 = &calculateConstValueAZero ;

calcValA = calcValA1 ;

// upper i s not modi f ied ( upper == 0.0)

// premFactor i s not modi f ied ( premFactor == 0.0)

createJumps = &jumps2Lives02b ;

jumpLists = bui ldThreeJumpLists ( jumpLists , createJumps , insPer iod , nModel ) ;

d e l t a = 0 . 0 3 ;

calcDiscFunc = &ca l cu l ateCons tantDi s count ingFunct i on ;

useChar = 0 ;

ok = setAl lParameter s ( a l lP , pers , nPers , nModel , x , insPer iod , parInt , c a l c In t ,

calcValA ,

calcValA1 , calcValA2 , upper , premFactor , createJumps , jumpLists ,

del ta ,

calcDiscFunc , useChar ) ;

i f ( ok != 1) // != 1: an error has occurred in setAl lParameters

{
f p r i n t f ( s tder r , ” Error ( s e tA l lParameter s ) ! \n” ) ;

return(−1) ;

}

f reeArrayOfDouble ( p1 ) ;

freeArrayOfDouble ( p2 ) ;

return t rue ;

} // end setInsuranceMode l2Lives02b

// Function f reeAl lParameters

void f r eeA l lParameter s ( a l lPa r amete r s t ∗ a l lP )

{
i f ( a l lP != 0)

{
f r eeParameter s Int ( al lP−>pers , a l lP−>nPers , a l lP−>par Int ) ;

freeArrayOfLong ( al lP−>x ) ;

f reeThreeJumpLists ( a l lP−>jumpLists ) ;

f r e e ( a l lP ) ;

a l lP = 0 ;

}
} // end f reeAl lParameters

/∗ Fi l e parameters . h

∗ conta ins the d e f i n i t i o n of the data s t ruc t u r e a l lParameters s

∗ and i t s d e f i n i t i o n as a l lParame t e r s t as we l l as

∗ t he de c l a ra t i on of a l l f unc t i on s concerning the parameters .

∗/
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#ifndef PARAMETERSH

#define PARAMETERSH

#include ” i n t e n s i t i e s . h”

#include ”jump . h”

#include ”boolean . h”

typedef struct a l lPa r amete r s s

{
// General parameters :

long per s ; // number o f insured persons in the cont rac t

long nPers ; // number o f s t a t e s per person ( s i n g l e s t a t e s )

long nModel ; // number o f cont rac t s t a t e s

long ∗x ; // i n i t i a l ages o f the insured persons

double i n sPer i od ; // insurance per iod

/∗ ∗∗∗∗∗∗∗∗ ∗/

// I n t e n s i t i e s :

parameter s Int t ∗∗ par Int ;

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ , long ∗ ,

boolean t , const double ∗ , double) ;

/∗ ∗∗∗∗∗∗∗∗ ∗/

// Payments :

double (∗ calcValA ) (double , long , long ) ;

double (∗ calcValA1 ) (double , long , long ) ;

double (∗ calcValA2 ) (double , long , long ) ;

double upper ; // ac t ua l upper bound f o r d i scount ing the time−d i s p l ac ed t r an s i t i o n

payments

// Jumps ( D i s con t i nu i t i e s ) :

double premFactor ;

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) ;

thr eeJumpLi s t s t ∗ jumpLists ;

/∗ ∗∗∗∗∗∗∗∗ ∗/

// In t e r e s t and di scount ing :

double de l t a ; // f o r c e o f i n t e r e s t ( constant )

double (∗ calcDiscFunc ) (double , double , double) ;

// Taking in to account the charac t e r o f the insurance cont rac t :

boo l ean t useChar ; // the charac t e r i s taken in to account (1)

// the charac t e r i s not taken in to account (0)

} a l lPa r amete r s t ;

// Dec larat ion of the func t ion a l locat eA l lParame ters :

a l lPa r amete r s t ∗ a l l o ca t eA l lPa r amete r s ( ) ;
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// Dec larat ion of the func t ion setAl lParameters :

boo l ean t setA l lParameter s (

a l lPa r amete r s t ∗ al lP ,

long pers ,

long nPers ,

long nModel ,

long ∗x ,

double insPer iod ,

parameter s Int t ∗∗ parInt ,

double (∗ c a l c I n t ) (double , long , long , parameter s Int t ∗∗ , long ∗ ,

boolean t , const double ∗ , double) ,

double (∗ calcValA ) (double , long , long ) ,

double (∗ calcValA1 ) (double , long , long ) ,

double (∗ calcValA2 ) (double , long , long ) ,

double upper ,

double premFactor ,

jump t ∗(∗ createJumps ) ( jump t ∗ , double , long , boo l ean t ∗) ,

thr eeJumpLi s t s t ∗ jumpLists ,

double del ta ,

double (∗ calcDiscFunc ) (double , double , double) ,

boo l ean t useChar ) ;

// Dec larat ion of the f unc t i on s set InsuranceMode l . . . :

boo l ean t setInsuranceModel01M( a l lPa r amete r s t ∗ a l lP ) ;

boo l ean t setInsuranceModel02M( a l lPa r amete r s t ∗ a l lP ) ;

boo l ean t setInsuranceModel04M( a l lPa r amete r s t ∗ a l lP ) ;

boo l ean t setInsuranceMode l2L ives02a ( a l lPa r amete r s t ∗ a l lP ) ;

boo l ean t setInsuranceModel2L ives02b ( a l lPa r amete r s t ∗ a l lP ) ;

// Dec larat ion of the f unc t i on s f reeA l lParameters :

void f r eeA l lParameter s ( a l lPa r amete r s t ∗ a l lP ) ;

#endif // PARAMETERS H

/∗ Fi l e payments . c

∗ conta ins the d e f i n i t i o n of the func t ion calculatePaymentValue

∗/

#include <s td i o . h>

#include ”payments . h”

// func t ion calculatePaymentValue

double calculatePaymentValue (double t , long j , long k , a l lPa r amete r s t ∗ a l lP )

{
double d i s c = 0 . 0 ;

double payment = 0 . 0 ;
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i f ( j == k) // d i s c=v ( tUpper , tLower )=v ( t , t ) =1.0; no di scount ing !

d i s c = al lP−>calcDiscFunc ( t , t , a l lP−>de l t a ) ;

else

i f ( a l lP−>jumpLists−>t r an sEx i s t == 0)

// there are no jumps of he i g h t 0 (= the time−d i s p l ac ed t r an s i t i o n payment t imes )

// <=> t r an s i t i o n payments are e f f e c t e d immediate ly <=> no di scount ing !

d i s c = al lP−>calcDiscFunc ( t , t , a l lP−>de l t a ) ;

else

d i s c = al lP−>calcDiscFunc ( t , a l lP−>upper , a l lP−>de l t a ) ;

payment = al lP−>calcValA ( t , j , k ) ;

i f ( payment < 0) // con t r i b u t i on payment

payment ∗= al lP−>premFactor ;

return d i s c ∗ payment ;

} // end calculatePaymentValue

/∗ Fi l e payments . h

∗ conta ins the de c l a ra t i on of the func t ion calculatePaymentValue

∗/

#include ”parameters . h”

double calculatePaymentValue (double t , long j , long k , a l lPa r amete r s t ∗ a l lP ) ;

/∗ Fi l e r e gu l aFa l s i . c

∗ conta ins the d e f i n i t i o n of the f unc t i on s r e gu l aFa l s i and calcSecantAndCutWithXAxis

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include <math . h>

#include <g s l / g s l e r r n o . h>

#include <g s l / g s l o d e i v . h>

#include ” r e gu l aFa l s i . h”

#include ” ca l cReserve . h”

#include ”more . h”

// func t ion r e gu l aFa l s i

double ∗ r e gu l aFa l s i (double premFactor1 , double ∗y1 , double premFactor2 , double ∗y2 , double

∗y3 ,

a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time , double ∗h ,

g s l o d e i v s t e p ∗s ,

g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e , g s l ode i v s y s t em ∗ sys ,

double eps prem )
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{
while (1)

{
double premFactor3 = 0 . 0 ;

long j = 0 ;

premFactor3 = calcSecantAndCutWithXAxis ( premFactor1 , y1 [ 0 ] , premFactor2 , y2 [ 0 ] ) ;

p r i n t f ( ”premFactor3 = %.10e \n” , premFactor3 ) ;

a l lP−>premFactor = premFactor3 ; // update premFactor in a l lP

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

y3 [ j ] = 0 . 0 ; // r e s e t y3

y3 = ca l cu l a t eRe s e r v e ( y3 , a l lP , tEnd , time , h , s , c , e , sys ) ;

for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

p r i n t f ( ”y3[% ld ] = %.3e ” , j , y3 [ j ] ) ;

p r i n t f ( ”\n” ) ;

i f ( f abs ( y3 [ 0 ] ) <= eps prem )

{
f r e e ( y1 ) ;

f r e e ( y2 ) ;

return y3 ;

}
else

{
i f ( y3 [ 0 ] > 0)

{
for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

y1 [ j ] = y3 [ j ] ;

premFactor1 = premFactor3 ;

}
else

{
for ( j = 0 ; j <= al lP−>nModel − 1 ; j++)

y2 [ j ] = y3 [ j ] ;

premFactor2 = premFactor3 ;

}
}

}
} // end re gu l aFa l s i

// func t ion calcSecantAndCutWithXAxis

double calcSecantAndCutWithXAxis (double p1 x , double p1 y , double p2 x , double p2 y )

{
double t = (−1) ∗ p1 y / ( p2 y − p1 y ) ;

return p1 x + t ∗ ( p2 x − p1 x ) ;

} // end calcSecantAndCutWithXAxis
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/∗ Fi l e r e gu l aFa l s i . h

∗ conta ins the d e f i n i t i o n of the f unc t i on s r e gu l aFa l s i and calcSecantAndCutWithXAxis

∗/

#include ”parameters . h”

double ∗ r e gu l aFa l s i (double premFactor1 , double ∗y1 , double premFactor2 , double ∗y2 , double

∗y3 ,

a l lPa r amete r s t ∗ al lP , double tEnd , double ∗ time , double ∗h ,

g s l o d e i v s t e p ∗s ,

g s l o d e i v c o n t r o l ∗c , g s l o d e i v e v o l v e ∗e , g s l ode i v s y s t em ∗ sys ,

double eps prem ) ;

double calcSecantAndCutWithXAxis (double p1 x , double p1 y , double p2 x , double p2 y ) ;

/∗ Fi l e vDel ta . c

∗ conta ins the d e f i n i t i o n of the the d i scount ing func t ion ( v ( tLower , tUpper , d e l t a ) )

∗/

#include <s td i o . h>

#include <s t d l i b . h>

#include <math . h>

#include ”vDelta . h”

// func t ion ca lcu la t eCons tantDiscount ingFunct ion

double ca l cu l ateCons tantDi s count ingFunct i on (double tLower , double tUpper , double de l t a )

{
return exp ((−1)∗ de l t a ∗( tUpper − tLower ) ) ;

} // end ca lcu la t eCons tantDiscount ingFunct ion

/∗ Fi l e vDel ta . h

∗ conta ins the de c l a ra t i on of the d i scount ing func t ion ( v ( tLower , tUpper , d e l t a ) )

∗/

double ca l cu l ateCons tantDi s count ingFunct i on (double tLower , double tUpper , double de l t a ) ;
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Kapitel 7, Numerische Behandlung gewöhnlicher Differentialgleichungen, auf Basis des

Buches ”Numerische Mathematik 2” von Stoer, J. und Bulirsch, R.

145



[Wolthuis, 1994] Wolthuis, H. (1994). Life insurance mathematics (The Markovian Model).

CAIRE Education Series 2. CAIRE: Brussels. x, 255 p. .

146


