
D I S S E R T A T I O N

Numerical Methods for

Topography Simulation

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik
von

Otmar Ertl

Reinprechtsdorfer Straße 20/16
A-1050 Wien, Österreich

Matrikelnummer 0026810
geboren am 22. Februar 1982 in Vöcklabruck

Wien, im Mai 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die Simulation von Herstellungsschritten in der Halbleiterfertigung erlaubt nicht nur
ein besseres Verständnis der zugrunde liegenden Physik, sondern auch die Prozessop-
timierung ohne teure Experimente. Viele Schritte in der Prozesskette, um integrierte
Schaltungen herzustellen, verändern die Topographie der Waferoberfläche durch Ätzen
oder Abscheidung neuer Materialschichten. Diese Arbeit präsentiert neue numerische
Verfahren, die eine effiziente und genaue Simulation solcher Prozesse erlauben.

Ein Hauptproblem der Topographiesimulation stellt die korrekte zeitliche Beschrei-
bung der geometrischen Veränderungen, insbesondere in drei Dimensionen, dar. Da-
her wurde basierend auf der Level-Set-Methode eine Technik entwickelt, die neueste
Algorithmen und Datenstrukturen, wie die Sparse-Field-Methode oder hierarchische
Lauflängenkodierung, benutzt, um Rechenzeit sowie Speicherverbrauch zu minimieren
und die Zeitentwicklung großer dreidimensionaler Geometrien zu ermöglichen. Eine ge-
naue Berücksichtigung verschiedenener Materialschichten und der davon abhängigen
Oberflächenraten ist für Ätzprozesse besonders wichtig und konnte mit einer neuarti-
gen Multi-Level-Set-Methode erreicht werden. Zudem wurden Algorithmen für diverse
geometrische Operationen und für den Test auf gerichtete Sichtbarkeit und Konnek-
tivität verwirklicht. Um moderne Multikernprozessoren auszunützen, wird ein neuer
Ansatz für die Parallelisierung der hierarchischen Lauflängenkodierung präsentiert.

Ein weiteres Problem ist die Bestimmung der Oberflächenraten für realistische Topo-
graphiesimulationen. Erweiterte Modelle für die Beschreibung der Oberflächenkinetik
erfordern die Kenntnis der Teilchenflussverteilung an der Oberfläche. Obwohl meistens
ballistischer Teilchentransport angenommen werden kann, ist die Berechnung dennoch
sehr aufwändig, wenn Reemissionen oder spiegelartige Reflexionen berücksichtigt wer-
den sollen. Simulationen sind daher oft limitiert auf vereinfachte Modelle oder kleine
Strukturen. Ein vielversprechender Ansatz, um diese Einschränkung zu überwinden,
ist eine Monte-Carlo-Methode, die durch die Simulation vieler Teilchentrajektorien
die Flussverteilung bestimmt. Diese Arbeit präsentiert ein neues Verfahren, das diese
Monte-Carlo-Berechnung direkt auf die implizite Oberflächendarstellung der Level-
Set-Methode anwendet. Zudem wurde der Rechenaufwand durch die Anwendung von
erweiterten Raytracing-Algorithmen und -Datenstrukturen, die für die Bedürfnisse von
Topographiesimulationen adaptiert und optimiert wurden, reduziert.

Schlussendlich werden die gezeigten numerischen Methoden anhand verschiedener in
der Literatur beschriebene Prozessmodelle getestet, um die vielfältige Anwendbarkeit,
insbesondere für große dreidimensionale Strukturen, zu demonstrieren.

ii

Abstract

The simulation of semiconductor manufacturing steps allows for a better understand-
ing of the underlying physics as well as for process optimizations, without the need for
costly experiments. Many steps in the process chain for building integrated circuits al-
ter the topography of the wafer surface by etching or deposition of new material layers.
In this work, new numerical techniques for an efficient and more accurate simulation
of such processes are presented.

A major concern of topography simulations is an accurate description of the geometric
changes over time, especially in three dimensions. For this purpose, a fast framework
based on the level set method was developed. Using the latest algorithms and data
structures, such as the sparse field method and hierarchical run-length encoding, the
computation time and the memory consumption was minimized, which enabled the
handling of the time evolution of large three-dimensional geometries. An accurate
description of different material regions and material-dependent surface rates, which
is especially important for the simulation of etching processes, was achieved using
a novel multi-level-set technique. Moreover, algorithms for geometrical operations
and testing of directional visibility and connectivity have been realized. In order to
capitalize on modern multi-core processors, a new approach for the parallelization of
the hierarchical run-length encoding is presented.

Another concern of realistic topography simulation is the determination of surface
rates. Advanced surface kinetics models require the calculation of the particle flux
distributions on the surface. Although the particle transport can be approximated to
be ballistic for many processes, their calculation is still computationally very intensive,
since reemissions or specular-like reflexions need to be considered. Three-dimensional
simulations are, therefore, often limited to simplified models or small structures. A
promising approach to overcome these limitations is a Monte Carlo technique, which
simulates many particle trajectories in order to derive the corresponding flux distri-
butions. In this work, a new technique to apply the Monte Carlo calculation directly
to the implicit level set surface representation is presented. Furthermore, in order to
minimize the computational costs of this approach, advanced ray tracing algorithms
and data structures were applied. These methods have been adapted and optimized
for the requirements of topography simulations.

Finally, the presented numerical methods were tested on various process models which
have been reported in literature in order to demonstrate their wide applicability, es-
pecially for large three-dimensional structures.

iii

Acknowledgement

First, I would like to thank my advisor Prof. Siegfried Selberherr for providing me
with a perfect working environment, allowing me the freedom to pursue my own ideas,
and giving me the opportunity to attend several international conferences.

I am also very grateful to my colleagues Johann Cervenka and Franz Schanovsky for
their support concerning the computer cluster, Paul-Jürgen Wagner for helping me
with many LaTeX issues, and Lado Filipović for proofreading this work.

Finally, I would like to thank Stefan Halama, who gave me the opportunity to gain a
lot of experience during an internship with an impressive company.

iv

Contents

Kurzfassung ii

Abstract iii

Acknowledgement iv

Contents v

List of Figures ix

List of Tables xiv

List of Algorithms xv

List of Abbreviations xvi

List of Symbols xvii

1 Introduction 1

1.1 Semiconductor Process Technology . 1
1.2 Technology Computer-Aided Design 2
1.3 Motivation . 3
1.4 Outline of the Thesis . 3

2 Process Modeling 5

2.1 Continuum Approach . 5
2.2 Transport Kinetics . 6

2.2.1 Reactor-Scale Transport . 6
2.2.2 Feature-Scale Transport . 9
2.2.3 Reemission . 10

2.3 Surface Kinetics . 12
2.3.1 Linear Surface Reactions . 13
2.3.2 Non-Linear Surface Reactions 14
2.3.3 Transport-Independent Surface Reactions 15

3 Surface Evolution 16

3.1 Boundary Evolution Techniques . 16
3.1.1 Segment-Based Methods . 16

v

Contents

3.1.2 Cell-Based Methods . 17
3.1.3 The Level Set Method . 18

3.2 Solving the Level Set Equation . 18
3.2.1 Upwind Scheme . 19
3.2.2 Lax-Friedrichs Scheme . 20
3.2.3 Stability . 21
3.2.4 Surface Velocity Extension . 21

3.3 Approximations to Geometric Variables 22
3.3.1 Surface Normal . 22
3.3.2 Curvature . 23

3.4 Acceleration Techniques . 23
3.4.1 The Narrow Band Method . 24
3.4.2 The Sparse Field Method . 24

3.5 Level Set Data Structures . 28
3.5.1 Trees . 28
3.5.2 Run-Length Encoding . 28
3.5.3 Dynamic Tubular Grid . 30
3.5.4 Hierarchical Run-Length Encoding 32

4 A Fast Level Set Framework 34

4.1 Initialization . 34
4.1.1 Closest Point Transformation 34
4.1.2 H-RLE Data Structure Setup 37

4.2 Sequential Data Access . 38
4.2.1 Basic Iterator . 38
4.2.2 Offset Iterator . 39

4.3 Sparse Field Implementation . 42
4.3.1 Time Integration . 42
4.3.2 Pruning and Consistency Check 43
4.3.3 Dilation . 43

4.4 Boolean Operations . 45
4.4.1 Implementation . 45
4.4.2 Chemical-Mechanical Planarization 47
4.4.3 Pattern Transfer . 47

4.5 Smoothing . 49
4.6 Multiple Material Regions . 50

4.6.1 Level Set Representation . 51
4.6.2 Time Evolution . 53
4.6.3 Isotropic Material Dependent Etching 55

4.7 Directional Visibility Check . 57
4.7.1 Directional Etching . 58
4.7.2 Simple Bosch Process Simulation 59

4.8 Void Detection . 61
4.8.1 Connected Components . 61

vi

Contents

4.8.2 Graph Setup Algorithm . 62
4.8.3 Algorithmic Complexity . 63
4.8.4 Preservation of Voids . 63
4.8.5 Isotropic Deposition . 64
4.8.6 Isotropic Etching . 65

4.9 Surface Extraction . 65
4.10 Parallelization . 67

4.10.1 Parallelization Strategy . 67
4.10.2 Data Access . 69
4.10.3 Benchmarks . 69

5 Surface Rate Calculation 71

5.1 Conventional Approach . 71
5.1.1 Algorithmic Complexity . 74
5.1.2 Limitations . 74

5.2 Ray Tracing . 74
5.2.1 Surface Representation . 76
5.2.2 Tangential Disks . 77
5.2.3 Particle Traversal . 79
5.2.4 Algorithmic Complexity . 80
5.2.5 Boundary Conditions . 80
5.2.6 Spatial Subdivision . 82
5.2.7 Splitting Strategies . 83
5.2.8 Neighbor Links Arrays . 85
5.2.9 Parallelization . 87
5.2.10 Benchmarks . 88

5.3 Generation of Random Vectors . 90
5.3.1 Power Cosine Distribution . 91
5.3.2 Coned Cosine Distribution . 92
5.3.3 Direction Vector Calculation 93
5.3.4 Cosine Distribution . 94
5.3.5 Direction Vector Sampling Benchmarks 96

5.4 Implementation Details . 97
5.4.1 Simulation Flow . 98
5.4.2 Model Implementation . 98

6 Applications 102

6.1 Chemical Vapor Deposition . 102
6.2 Plasma Etching . 103
6.3 Anisotropic Wet Etching . 107
6.4 Bosch Process . 110

6.4.1 Process Time Variations . 112
6.4.2 Lag Effect . 114

6.5 Focused Ion Beam Processing . 116

vii

Contents

7 Summary and Outlook 119

A Line–Triangle Intersection 121

B Ray–Isosurface Intersection 123

B.1 Setup of the Polynomial . 124
B.2 Root Finding . 125

C Inequalities 126

Bibliography 128

List of Publications 139

Curriculum Vitae 141

viii

List of Figures

2.1 The particle transport is broken up by describing the transport to P on
reactor-scale and the transport from P to S on feature-scale. 7

3.1 A problematic case which may occur and which needs special consid-
eration. For the update of the neighboring pair of active grid points
(black) with LS values ±0.4 opposite signed surface velocities (arrows)
are used. This leads to a neighboring pair of non-active grid points with
opposite signed LS values. 26

3.2 Two examples, where the sparse field method produces inefficient sets of
active (black) grid points. The surface S moves with a uniform positive
surface velocity (arrows). After a time step some active grid points
(squares) do not have a neighbor with opposite signed LS value. . . . 27

3.3 A LS function representing a triangle is resolved on a 12 × 12 grid.
Only the LS of defined grid points (green) must be stored. Memory can
be saved by not storing the LS values of all other positive (blue) and
negative (red) undefined grid points. The LS values of all defined grid
points are given on the right-hand side. 29

3.4 The RLE data structure for the example given in Figure 3.3. For each
of the 12 grid lines along the x1-direction an index is stored in the start
indices array to the corresponding run type sequence. Three different
types of run codes can be distinguished: Undefined runs which are
either positive (blue) or negative (red), and defined runs (green) whose
run codes give the corresponding start indices in the LS values array.
Another array stores the run breaks from which the start and end indices
of a run can be obtained. The size of the run breaks array is always
equal to the difference of the sizes of the run types array and the start
indices array. 29

3.5 The defined grid points and their associated LS values of the example
shown in Figure 3.3 as stored in a DTG. The hierarchical structure is
obtained by subsequent projection of grid points to a lower dimension,
and combining connected sequences of indices along a grid line. The
minimum and maximum indices of such a sequence are stored together
with an array index which provides access to its members. Since the
topmost array always contains just a single entry with value 0, it can
be omitted. This array is not included in the original definition of the
DTG and is only shown to emphasize the hierarchical structure. . . . 31

ix

List of Figures

3.6 The H-RLE data structure applies run-length encoding hierarchically
over all grid dimensions in order to obtain an efficient LS data struc-
ture which combines the advantages of run-length encoding and the
hierarchically organized DTG. 32

3.7 The segmentation of the grid (black thick lines) which is implicitly de-
fined by the H-RLE data structure. Each segment represents either a
run of positive (blue) or negative (red) undefined grid points or a single
defined grid point (green). 32

4.1 The orientation of the normal vector ~n on a line segment and on a
triangle as defined in this work with respect to the order of nodes ~xi. . 34

4.2 (a) Two segments of the surface mesh (gray) meet on a grid line (black).
Hence, for both grid points the distance is equal to both segments. As
consequence the determination of the signed distance according to (4.4)
is ambiguous. (b) The distance transform can produce inefficient sets of
active grid points. The bottom left grid point does not have an opposite
signed neighbor. 36

4.3 (a) A surface embedded in a domain with extensions 4 × 5. However,
due to the different boundary conditions in x1-direction (reflective) and
x2-direction (periodic) 5×5 grid points are used for the discretization of
the level set function. (b) Basic iterators traverse the segments of the H-
RLE data structure according to their numbering. (c) The segmentation
as seen by an iterator with offset (−1,−1). (d) The same for an iterator
with offset (2, 1). 39

4.4 Boolean operations can be calculated using level sets. The union of a
cuboid (a) and a cone (b) subtracted by a sphere (c) is the structure
shown in (d). 46

4.5 After an isotropic deposition process the structure is exposed to CMP.
This process is realized using Boolean operations applied on the LS
representations of the initial surface (blue) and the surface after the
deposition (yellow). 48

4.6 Boolean operations using level sets can be applied to describe pattern
transfer. 49

4.7 The final surface after a smoothing operation is applied to the geometry
given in Figure 4.5a. The curvature is limited by κmin = −0.1 and
κmax = 0.05. 50

4.8 (a) A geometry consisting of three different materials, whereM1 repre-
sents the substrate,M2 the mask, andM3 a passivation layer. (b) De-
scription of the structure using three enclosing LSs. (c) Alternative
representation where one LS describes the common surface and two
others the interfaces between the different material regions. 51

4.9 Renumbering of material regions (a) leads to a different LS representa-
tion (b). 52

x

List of Figures

4.10 A test structure with lateral extensions 1200 × 200 and three layers on
top of the substrate (red). The first layer cannot be clearly seen, since
it has a thickness of only 0.5. The second layer (blue) and the mask
(green) both have a thickness of 50. 56

4.11 The multi-LS representation of the initial geometry. Four LS functions
are used to describe the four different material regions. 56

4.12 The final geometry after isotropic etching with material-dependent etch
rates. The etch rate was 0.1 grid spacings per time step for the mask,
and 0.025 for the very thin layer. For the other two material regions
the etch rate was set to 1. 56

4.13 A surface S and its H-RLE representation are shown. In this example,
the LS values are only defined for the active grid points. Positive (blue)
and negative (red) runs of undefined grid points are assumed to have
LS values +∞ and −∞, respectively. The dark green grid points do
not fulfill the visibility criterion. 58

4.14 The structure given in Figure 4.12 after processing with a directional
material-dependent etch process. 59

4.15 A schematic illustration of the Bosch process. The deposition of a
passivation layer protects the sidewalls during the subsequent etching
cycle. 60

4.16 The simulation of a Bosch process. The corresponding level set rep-
resentation is shown for different times. The corresponding number of
applied deposition and etching cycles can be retrieved from the subfig-
ure captions. 60

4.17 (a) The surface S of a geometry with a void. Blue and red points have
positive and negative LS values, respectively. Defined grid points are
also colored green. (b) The corresponding segments of the H-RLE data
structure. Their numbers give the vertex of the reduced graph they are
assigned to. (c) The reduced graph which is set up to find the connected
components. 63

4.18 Isotropic deposition of a 60 grid spacings thick layer onto the structure
given in Figure 4.14. Due to the varying hole diameters, the voids
form at different points of time leading to different thicknesses of the
deposited layer within the cavities. 64

4.19 Isotropic etching of a “Swiss cheese”-structure with a constant etch rate
of 1 grid spacing per time unit. (a) Initial geometry. (b)-(g) Illustration
of the time evolution of the corresponding zero LS. 66

4.20 The parallel version of the H-RLE data structure given in Figure 3.7.
An array of index vectors defines the grid segmentation. Each CPU
processes the grid points of one segment in lexicographical order and
writes the updated LS values into an own H-RLE data structure. For all
other grid points which do not belong to the current CPU, run codes are
inserted instead. They describe in which H-RLE data structure these
points are stored. 68

xi

List of Figures

5.1 If a particle trajectory intersects any tangential disk (thick black) D(~p),
it contributes to the rates of the corresponding active grid point (black)
~p ∈ L0. Due to the curvature of the surface S, the calculation of the
particle trajectory must be continued for a few grid spacings in order
to obtain correct rates. However, new reemitted particles (dashed) are
always launched from the surface intersection point. To avoid multiple
intersection tests of the same disk, only those grid points which are
opposite to the entry face are checked, if they are active and if their
corresponding disk is intersected. The numbers show which points are
processed in which cell. 78

5.2 Additional particles are started from positions, which are offset by a
multiple of the lateral domain extension, in order to account for the
primary flux coming through the open domain boundaries. 81

5.3 The computational effort for calculating a particle trajectory can be
reduced by using a subdivision of the simulation domain into boxes.
Empty grid cells are combined in larger boxes while non-empty grid cells
(gray) are boxes by their own. There are various splitting strategies to
obtain a suitable decomposition. 83

5.4 The arrays B+
l and B−

l with l ∈ {1, 2} store the neighbor links of all
subboxes for the positive and negative xl-direction, respectively. The

array indices i
(k)
1 and i

(k)
2 , which are stored together with box Bk in

array Q, give access to the corresponding links. The additional arrays
A±

l with l ∈ {1, 2} allow fast access from the outside. 85
5.5 A deposition process simulation was used for the benchmarks. 88
5.6 The sum of the given direction ~v and a random unit vector ~ω′ uniformly

distributed over a sphere leads to a cosine distribution. 97
5.7 Flow chart of the simulation algorithm. 99

6.1 Two-dimensional simulations of a deposition process for various sticking
coefficients s and reaction orders η. 103

6.2 The initial geometry was resolved on a grid with lateral extensions
1400 × 835. 104

6.3 The profile after deposition of a 15 grid spacings thick layer. 104
6.4 The profile after deposition of a 30 grid spacings thick layer. 104
6.5 The final profiles after 150 s of etching in a SF6/O2 plasma for different

gas compositions. The two level sets which are used to represent the
two material regions, the mask and the substrate, are shown. 106

6.6 Plasma etching simulation for a three-dimensional structure. The same
parameters are used as for the simulation presented in Figure 6.5c. . . 107

6.7 Anisotropic wet etching of a silicon substrate through a quadratic aper-
ture. The lateral extensions of the simulation domain are 8µm × 8µm
and the grid resolution is ∆x = 10 nm. The simulation boundaries are
aligned to 〈100〉 directions. 108

xii

List of Figures

6.8 The LS representations at different times for an anisotropic wet etching
process. The lateral domain boundaries are aligned to 〈110〉 directions.
The structure size is 20 µm× 20 µm. 109

6.9 The final profiles after 20 cycles for different combinations of deposi-
tion/etching process times. 113

6.10 Deep reactive ion etching of holes with varying diameters (0.5 µm, 1µm,
1.5 µm, 2 µm, and 2.5 µm). The lag effect is the reason for the different
depths. The structure is resolved on a grid with lateral extensions
500 × 140. 114

6.11 The characteristic dependence of the neutral and ion fluxes at the bot-
tom center on the aspect ratio. 115

6.12 Ion beam milling of a step structure for an incident angle of 45◦. . . . 116
6.13 (a)-(g) Serpentine scan of 30×6 pixels with dwell time of 4 ms. (h) Four

passes of a serpentine scan with dwell time of 1ms. 117

A.1 The line defined by the point ~a and the unit vector ~ω intersects the
triangle given by ~x1, ~x2, and ~x3, if the signed areas A1, A2, and A3

have the same sign. (a) A1 < 0, A2 < 0, and A3 < 0, which implies
that the line intersects the triangle. (b) No intersection, since A1 > 0,
A2 < 0, and A3 < 0. 122

xiii

List of Tables

4.1 The average computation time for a time integration step and the num-
ber of required time steps for the material-dependent etching process
shown in Figure 4.12 using an AMD Opteron 8222 SE processor (3GHz). 57

4.2 The average computation times for a time integration step, the direc-
tional visibility test, and the normal vector calculation for the direc-
tional etching process shown in Figure 4.14. 59

4.3 The average computation time for a time integration step and the void
detection algorithm. The number of vertices of the maximum reduced
graph during the entire simulation is also given, and is very small com-
pared to the number of defined grid points. 64

4.4 Benchmarks for a time integration step of a sphere expanding with
constant speed. The computation times as well as the parallel efficiency
are given for varying sphere diameters d and number of used CPUs. . 69

5.1 Comparison of different data structures for ray tracing. All tests were
carried out on 16 cores of AMD Opteron 8435 processors (2.6 GHz). . 89

5.2 Parallel scalability of the example shown in Figure 5.5. The neighbor
links arrays data structure using the SAH with χ = 0.8 was used for
these benchmarks. 90

5.3 Runtimes for sampling 100 million direction vectors on an Intel Core 2
Duo E6600 processor running at 2.4 GHz. 97

6.1 The numeric values of the parameters used for the passivation cycle of
the Bosch process. 112

6.2 The numeric values of the parameters used for the etching cycle of the
Bosch process. 112

xiv

List of Algorithms

5.1 Setup of the neighbor links array data structure. 87
5.2 Generation of a (cos θ)ν sin θ distributed variate. 92
5.3 Generation of a cos(π

2 θ/θcone) sin θ distributed variate. 93
5.4 Sampling a random vector ~ω satisfying ~ω · ~v = cos θ. 95
5.5 Picking a random point on unit sphere. 95
5.6 Generation of a cos θ distributed unit vector around ~v. 96

B.1 Calculation of the interpolation coefficients from the LS values using
template metaprogramming in C++. 124

B.2 Calculation of the coefficients for the two-dimensional case. 125
B.3 Calculation of the coefficients for the three-dimensional case. 125

xv

List of Abbreviations

BTRM ballistic transport and reaction model
CFL Courant-Friedrichs-Lewy
CMP chemical-mechanical planarization
CPU central processing unit
CVD chemical vapor deposition
DC direct current
DTG dynamic tubular grid
EVRM equi-volume rate model
FIB focused ion beam
FWHM full width at half maximum
H-RLE hierarchical run-length encoded
IC integrated circuit
KOH potassium hydroxide
LS level set
MC Monte Carlo
MEMS microelectromechanical systems
OM object median
PVD physical vapor deposition
RF radio frequency
RLE run-length encoded
SAH surface area heuristic
SM spatial median
STL standard template library
TCAD technology computer-aided design
TEOS tetraethyl orthosilicate

xvi

List of Symbols

A area
Aref reference area
~bmax maximum index vector of a rectangular axis aligned box
~bmin minimum index vector of a rectangular axis aligned box
B rectangular axis aligned box
CCFL CFL number
d diameter
D number of dimensions
D−

i backward difference operator
D0

i central difference operator
D+

i forward difference operator
D tangential disk
e elementary charge = 1.602 × 10−19 C
~ei unit vector in xi-direction
E energy
F flux on surface S
F src flux on source plane P
F tot total flux through source plane P
~gmax maximum index vector of grid
~gmin minimum index vector of grid
G reemission probability function
G set of all grid point index vectors, G ⊆ Z

D

H Hamiltonian

Ĥ numerical approximation to the Hamiltonian
I electric current
kB Boltzmann constant = 1.381 × 10−23 J K−1

L layer of grid points, L ⊆ G
m mass
M number of different material regions
M material region
~n normal unit vector on S, ~n = (n1, . . . , nD)
~nP normal unit vector on P pointing towards S
NB number of boxes of the spatial subdivision
NCPU number of CPUs
ND number of defined grid points

xvii

List of Symbols

NE number of edges in a graph
NR number of surface rates
NP number of simulated particles
NV number of vertices in a graph
O big O notation
~p grid point indices, ~p = (p1, . . . , pD) ∈ Z

D

P pressure
P source plane
q particle species
Q number of process relevant particle species
r radius
R surface rate
s sticking probability
S surface
t time
T temperature
v̄ mean particle velocity
V surface velocity (field)
w particle weight factor
~x point in space, ~x = (x1, . . . , xD) ∈ R

D

~xcp closest point on surface
Y yield function
Y tot total sputter rate
Γ arrival flux distribution on surface S
Γre reemitted flux distribution on surface S
Γsrc arrival flux distribution on source plane P
δ Dirac/Kronecker delta function
∆t time increment
∆x grid spacing
η surface reaction order
θ polar angle
Θ surface coverage
κ mean curvature
λ̄ mean free path
ν exponent in power cosine distribution
ρ bulk density
σ standard deviation
φ azimuthal angle
χ weight factor for SAH
~ω direction unit vector
Ω solid angle

xviii

1 Introduction

Over the past 50 years, few developments have influenced human life more than the
evolution of semiconductor technology. Electronic devices, such as computers or mobile
telephones, which are now taken for granted, would have not been possible without the
exponential technological progress experienced over decades, as proposed by Moore’s
Law [83]. The drive to reduce costs while increasing functionality has lead to the
development of fabrication technologies that allow the production of devices with
feature sizes under 100 nm. This enables the manufacture of integrated circuits (ICs)
with billions of devices on a single chip.

The wide range of knowledge gained from the production of small structures had an
impact also on fields other than electronics. The highly developed processes are used
in a modified form to manufacture small sensors and actuators, generally known as
microelectromechanical systems (MEMS).

1.1 Semiconductor Process Technology

Starting with a raw silicon wafer, many processing steps are necessary to obtain a
final structure with the desired properties. The main processing steps used for ICs
and MEMS manufacturing are listed in the following.

Lithography processing steps define patterns on the surface. The standard procedure
transfers the mask information to the wafer surface, coated with a photoresist,
using optical imaging. A final development step removes exposed regions of the
photoresist.

Etching processes are used to remove material from the wafer. One can distinguish
between wet and dry etching processes using liquid or gaseous etching agents,
respectively. The first are characterized by isotropic uniform or crystallographic
direction dependent etch rates, while the latter also allow directional etching.
Therefore, to transfer patterns defined by the photoresist onto the wafer surface,
dry etching processes are mainly used today.

Deposition of new material layers is essential for creating insulators, conductors, or n-
and p-type semiconductors. It is possible to categorize deposition processes into
physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes
depending on the primary mechanism used to add a material to the surface. In

1

1 Introduction

the first case, this is condensation of the corresponding vaporized material. In
the second case, the underlying mechanism is a chemical reaction at the surface.

Chemical-mechanical planarization is used to flatten an irregular wafer surface. The
combination of a chemical slurry with mechanical polishing allows for a very
accurate planarization of the surface. This is important for photolithography,
where the entire wafer surface needs to be within the depth of field of the optical
imaging system.

Oxidation converts silicon to silicon dioxide on top of the surface using oxygen (dry
oxidation) or water (wet oxidation). Silicon layers are used as insulators, as
masks, or as scattering layers for ion implantation. To grow silicon dioxide
layers on top of non-silicon layers tetraethyl orthosilicate (TEOS) deposition or
silane pyrolysis are used instead.

Ion implantation is the common technique to introduce dopants into the semiconduc-
tor. High energy ions are able to penetrate into the target. The penetration
depth can be controlled by the ion energy and the incidence angle. Subsequent
annealing allows for the redistribution of dopants and repairs lattice defects
caused by ion bombardment.

Diffusion of dopants from the wafer surface into the semiconductor is another tech-
nique for doping. The dopants can be supplied from a gas or liquid phase, or
from a pre-deposited layer. Diffusion within the semiconductor is mainly con-
trolled by temperature and is often a parasitic effect of subsequent processing
steps which operate at higher temperatures.

Focused particle beams are generated by accelerating ions or electrons towards the
wafer surface and focusing them using an electromagnetic imaging system sim-
ilar to that of electron microscopes [133]. Beam diameters down to 10 nm are
possible and can be used for structuring either by local removal or deposition
of material. The small throughput of particle beam processes is not feasible for
series production of ICs. However, they are useful for sample sectioning, mask
repair, or MEMS fabrication [99, 132].

1.2 Technology Computer-Aided Design

The short product development cycle in today’s semiconductor industry would not
have been possible without the heavy support of computational resources. Technology
computer-aided design (TCAD) plays a crucial role in semiconductor product devel-
opment. TCAD aims to model the entire semiconductor process flow, as well as device
and circuit operation. Such simulations are essential to obtain a better understanding
of the underlying physics. Moreover, if appropriate physical models, together with nu-
merical schemes solving the governing equations, are available, process flows or device
designs can be optimized on the computer instead of doing time- and cost-intensive
experiments in the real world.

2

1 Introduction

An interesting aspect in the field of TCAD is that the complexity of some problems
scales with the currently available computation power. This is in contrast to other
technical fields, where it is acceptable to wait for faster central processing units (CPUs)
to make a problem solvable. However, this is not possible in the semiconductor indus-
try, since TCAD addresses the design of next generation CPUs.

As a consequence, TCAD is a demanding field always hindered by the constraint
given by available computational resources. Hence, the development and usage of fast
and well scaling algorithms is essential for TCAD in order to counter the increasing
problem sizes.

1.3 Motivation

This work continues the work at the Institute for Microelectronics at the Vienna
University of Technology on the simulation of semiconductor processes which alter the
topography, such as etching and deposition processes. The first topography simulator
developed at the institute by Strasser [122, 123] and Pyka [93] uses a structuring
element algorithm. A better approach is the level set (LS) method [86], which has been
implemented by Heitzinger within the ELSA framework [40]. Sheikholeslami extended
this framework to three dimensions and used it for the Topo3D simulator [111]. Due
to a poor scaling behavior with problem size, Topo3D reaches its computational limits
easily, when calculating the particle transport for advanced physical models on larger
structures. Furthermore, it is not able to describe etching processes on structures
with multiple materials. The goal of this work was to investigate, improve, and develop
algorithms which are convenient to overcome the shortcomings of previous topography
simulators.

1.4 Outline of the Thesis

A general prerequisite for computer simulations is the existence of an appropriate
mathematical model describing the physical behavior. Therefore, an overview of com-
mon models used for topography simulations is provided in Chapter 2. After justifying
the usage of a continuum model, models for particle transport as well as for surface
kinetics are discussed. Generalized equations are presented, which are able to cover a
large variety of different process models.

From the numerical point of view, two techniques are necessary to perform topography
simulations. First, a method is needed which is able to describe the evolving geometry
over time. This is the topic of Chapter 3, where an overview of different approaches
including their basic ideas are given at the beginning. The main part of this chapter
deals with the LS method which is used throughout this work. Chapter 4 continues

3

1 Introduction

thematically with the LS method and gives a detailed description of a fast LS frame-
work which was developed and implemented using modern LS algorithms and data
structures, enhanced by the capability of handling multiple material regions. The last
part of this chapter describes the parallelization on shared memory computers.

The LS method requires the knowledge of the surface velocities in order to calculate
the deformation of the geometry over time. Hence, a second method is required which
efficiently calculates the required surface rates by solving the corresponding particle
transport and surface reaction equations of the implemented model. The solution of
the generalized model equations, as introduced in Chapter 2, is the topic of Chapter 5.
There, Monte Carlo (MC) simulations are proposed to solve the transport equations
and to overcome some limitations of the conventional direct integration technique. For
this MC approach a well behaved scaling law can be obtained, if modern ray tracing
techniques are used, which are discussed in more detail and which are optimized for
the needs of topography simulation.

All the numerical techniques are finally demonstrated in Chapter 6 for a selection of
different processes. Among the examples are simulations of CVD, plasma etching,
anisotropic wet etching, the Bosch process, and focused ion beam (FIB) processing.
Finally, Chapter 7 concludes with a brief summary and gives some ideas for future
work.

4

2 Process Modeling

The main focus of this work is put on three-dimensional simulations of a topography
changing process, especially for the simulation of thin film deposition and etching
with particle transport in rarefied gas phases. This chapter attempts to integrate a
wide range of popular models within a generalized version of the ballistic transport
and reaction model (BTRM) [21]. In the following section, physical models for the
description of the solid body, the particle transport to the surface, as well as the surface
reaction are discussed.

2.1 Continuum Approach

Since the aim of semiconductor processing is the modification of the wafer surface,
an appropriate model to describe the solid body is required. The natural way is
an atomistic description, where the process is simulated using cellular automata or
Monte Carlo techniques [13, 33, 47, 78, 118]. These atomistic approaches are able
to predict characteristics as a microstructure or as surface roughness. However, the
atomistic treatment is computationally very intensive and is therefore limited to small
structures.

If the main concern is the prediction of the final shape of the structure, and not
the microscopic properties, and if the typical structure sizes are much larger than
the typical lattice constant, the solid body can be described as a continuum. The
continuum approach mathematically represents the solid body as a region M ∈ R

D

with the surface S = ∂M as its boundary. Here D is the number of dimensions.
Material deposition or removal is simply described by moving the interface S with
respect to the deposition or removal rates on the surface.

Subsequent process steps often result in a multi-layer structure consisting of different
material types. A common assumption within the continuum approach is that process
relevant properties are homogeneous within each material region. Furthermore, the
transition between two material layers is assumed to be abrupt. Hence, the entire
geometry M can be described by M disjoint material regionsMi which fulfill

M =
M⋃

i=1

Mi and Mi ∩Mj = ∅ for all i 6= j. (2.1)

5

2 Process Modeling

As a consequence, knowing the surface and the interfaces between the different material
regions is sufficient to describe the different material regions.

2.2 Transport Kinetics

In dry processes, where the wafer is exposed to a gas phase, the flux distribution
of particles on the surface is usually the crucial factor for the local deposition or
etching rates. Common models for the particle transport within the process chamber
to the wafer surface divide the gas phase region by a plane P just above the surface
S as depicted in Figure 2.1 [32, 80]. A first model describes the transport within the
reactor-scale region to P and allows the determination of the flux distribution

Γsrc = Γsrc(~x; q, ~ω,E) with ~x ∈ P (2.2)

which describes the number of arriving particles of species q with incident direction ~ω
and energy E per unit area. Here ~ω is a unit vector. The total flux F src

q of particles
of type q crossing P is the integral over all directions and energies

F src
q (~x) =

∞∫

0

∫

~ω·~nP>0

Γsrc(~x; q, ~ω,E) dΩ dE. (2.3)

Here ~nP denotes the normal vector to P pointing towards S (see Figure 2.1).

A second model describes the continued particle transport from P to S within the
feature-scale region using (2.2) as a boundary condition. The advantage of dividing
the gas phase region is that the particle transport acts on different length scales, and
hence, different transport models can be applied to each region.

2.2.1 Reactor-Scale Transport

Although process simulation in the reactor-scale region is not the scope of this work,
some basic considerations of different transport models and typical characteristics of
flux distribution on P are given in this section. The transport of particles can be
characterized by the mean free path λ̄. For an ideal gas λ̄ calculates as [22]

λ̄ =
kBT√
2πd2P

. (2.4)

Here kB = 1.381 × 10−23 J K−1 denotes the Boltzmann constant, T is the temperature,
P is the pressure, and d is the collision diameter of a gas molecule, which is about
0.4 nm for most molecules of interest [91].

If the mean free path is much smaller than the representative physical length scale,
which is true in the case of the reactor dimension, the transport is said to be in the

6

2 Process Modeling

Figure 2.1: The particle transport is broken up by describing the transport to P on reactor-
scale and the transport from P to S on feature-scale.

continuum regime [32, 80]. This is usually the case for CVD and dry etching processes
with typical pressures in the range 1Pa to 100 Pa and a typical temperature of 500 K
resulting in a mean free path in the range 100 µm to 10 mm. Hence, the velocities
of a neutral particle species qneu can be assumed to follow the Maxwell–Boltzmann
distribution, leading to a cosine-like directional dependence of the flux distribution on
P

Γsrc(~x; qneu, ~ω,E) = F src
neu

1

π
cos θ with cos θ = ~ω · ~nP . (2.5)

Here the energy distribution is neglected, because the kinetic energy for typical process
temperatures is usually too small to play a role in the surface reaction. θ is the angle
between the incident direction ~ω and ~nP . F src

neu is the flux on P and can be assumed
constant for all ~x ∈ P at feature-scale. The value for F src

neu can either be obtained by
calculating the reactor-scale transport or experimentally by measurements.

In many processes plasmas are used, leading to the need to model ion transport. Ions
are accelerated towards the wafer surface due to the plasma sheath potential. This
leads to a narrow angle distribution often described as power cosine distribution [91],
also known as Phong distribution in the field of computer graphics [90]

Γsrc(~x; qion, ~ω,E) ∼ (cos θ)ν . (2.6)

For large exponents ν this is equivalent to a normal distribution

(cos θ)ν ≈ exp(−βθ2) with ν = 2β ≫ 1. (2.7)

7

2 Process Modeling

Together with the energy distribution ǫion(E) where
∫∞
0 ǫion(E) dE = 1 the arrival flux

distribution can be expressed as

Γsrc(~x; qion, ~ω,E) = F src
ion

1 + ν

2π
(cos θ)ν ǫion(E). (2.8)

If no collisions occur in the sheath, and if the final energy of ions is much larger than
the initial random thermal energy, E ≫ kBT , the cosine exponent ν can be estimated
by [34]

ν =
2E

kBT
. (2.9)

For direct current (DC) biased plasmas the final ion energy can be assumed to be
monoenergetic with E = eVsheath, where e = 1.602 × 10−19 C denotes the elementary
charge and Vsheath is the sheath potential. Hence, the energy distribution can be
approximated by a Dirac delta function

ǫion(E) = δ(E − eVsheath). (2.10)

Radio frequency (RF) biased plasmas result in more complex energy distributions with
a characteristic bimodal shape. Plasma sheath simulations using MC techniques are
able to predict the energy distribution function and can also incorporate ion collisions
in the plasma sheath region [27, 56].

For most processes the flux distribution Γsrc does not vary significantly over P at
feature-scale. However, this is not true for processes working with local particle bom-
bardments such as FIBs. The spatial intensity distribution of such a beam is usually
described by a Gaussian profile [57, 132, 133]

Γsrc(~x; qion, ~ω,E) ∼ I

e
· 1

2πσ2
exp

(

− r2

2σ2

)

, (2.11)

where I denotes the beam current with typical values in the range 1 pA to 10 nA [99]
and r is the distance from the center line of the beam. σ is proportional to the beam
diameter d, which is commonly defined as the full width at half maximum (FWHM),
thus σ = d 1

2
√

2 ln 2
.

At feature-scale it is a reasonable approximation to regard the beam as monoenergetic
and unidirectional. If E0 is the ion beam energy, typically ranging from 10 kV to 50 kV
[99], and if ~ω0 represents the incidence direction, the arrival angular energy flux dis-
tribution can be written as

Γsrc(~x; qion, ~ω,E) =

I

e
· ~ω0 · ~nP

2πσ2
exp

(

−‖~x− ~x0‖2 − (~ω0 · (~x− ~x0))
2

2σ2

)

δ2(~ω − ~ω0)δ(E − E0). (2.12)

Here δ2 denotes a two-dimensional delta distribution satisfying
∫

f(~ω)δ2(~ω−~ω0) dΩ =
f(~ω0).

8

2 Process Modeling

2.2.2 Feature-Scale Transport

Plane P together with surface S represent the boundary of the feature-scale region
(see Figure 2.1). If the arriving flux distribution Γsrc is known at P, and for all
surface points ~x ∈ S the reemitted flux distribution Γre = Γre(~x; q, ~ω,E) is given,
the particle transport through the feature-scale region is well-defined. This allows the
determination of the arriving angular energy particle flux distribution Γ = Γ(~x; q, ~ω,E)
on the surface S, which principally defines the surface rates. The dependence of the
reemitted flux distribution Γre on the local arrival flux distribution Γ will be discussed
later.

For most processes the frequency of particle–particle collisions at feature-scale is neg-
ligible relative to particle–surface collisions [21]. For comparison, according to (2.4)
the mean free path for an ideal gas at room temperature (T ≈ 300 K) and atmospheric
pressure (P ≈ 100 kPa) is approximately 60 nm, which is of the same magnitude as
typical sizes of modern structures. However, most dry processes operate at much lower
pressures, where the mean free path is much larger than typical feature sizes. This
validates the assumption of ballistic transport within the feature-scale region.

The average particle velocities are usually much larger than the surface rates. Kinetic
theory gives the mean particle velocity v̄ of an ideal gas as [22]

v̄ =

√

8kBT

πm
. (2.13)

For typical temperatures T and molecular weights m the average velocity is larger than
100 m s−1. In comparison, the surface rates in most processes are well below 1 µm s−1.
As a consequence, the surface can be regarded to be constant and the travel time
of particles can be neglected for calculating the arrival flux distribution at a certain
time.

In the ballistic transport regime the particle trajectories of neutral particles are straight
lines. For charged particles, such as ions, electromagnetic forces must be incorporated.
Incident ions charge insulating layers, such as SiO2. This leads to a static electric field
influencing the ion trajectories [30, 48]. If the electric field becomes strong enough, the
trajectories can be disturbed significantly, which affects the final profile. For exam-
ple, charging is an essential mechanism for the notching effect which can be observed,
if polysilicon-on-insulator structures are overetched [48]. Despite the importance of
charging for the description of some effects, this work does not incorporate electro-
magnetic forces for the intra-feature particle transport. However, as will be outlined
in Chapter 7 the main ideas of this work can be extended to incorporate electrostatic
fields.

In the absence of electromagnetic forces the trajectories of all particles are straight
lines. The particles which arrive at a surface point ~x ∈ S with incident direction ~ω

9

2 Process Modeling

can either originate from P or from the surface itself due to reemission, as shown in
Figure 2.1. Thus, the particle transport at feature-scale can be described by

Γ(~x; q, ~ω,E) dΩ =

−~ω · ~n(~x)

‖~x− ~x′‖2 Γsrc(~x
′; q, ~ω,E) dA′ if ~x′ ∈ P,

−~ω · ~n(~x)

‖~x− ~x′‖2 Γre(~x
′; q, ~ω,E) dA′ if ~x′ ∈ S.

(2.14)

Here ~x′ ∈ P ∪ S is the point seen from point ~x in direction −~ω, thus ~ω = ~x−~x′

‖~x−~x′‖ . dA′

is an infinitesimal surface element of S or P around ~x′. ~n(~x) is the surface normal at
point ~x.

2.2.3 Reemission

For the determination of the arrival flux distribution Γ the reemitted flux distribution
Γre must be known. This work assumes that the reemission is related to the incident
flux distribution by

Γre(~x; q, ~ω,E) =

Q
∑

q′=1

∞∫

0

∫

~ω′·~n(~x)<0

G(~x; q, ~ω,E; q′, ~ω′, E′)Γ(~x; q′, ~ω′, E′) dΩ′ dE′. (2.15)

G(~x; q, ~ω,E; q′, ~ω′, E′) is the reemission probability function which describes the condi-
tional probability for the emission of a particle of species q and energy E into direction
~ω, if a particle of species q′, direction ~ω′, and energy E′ strikes the surface at point
~x ∈ S. Q is the number of process relevant particle species. This model assumes that
the time between the incidence and the induced reemissions is negligible. A further
assumption is that the new particles are reemitted exactly from the same location,
where the incident particle has hit the surface.

The description, using the reemission probability function, is quite general in the sense
that many effects can be properly treated. For example, perfect reflection of particles
of type q would be described by

G(~x; q, ~ω,E; q, ~ω′, E′) = δ(E − E′)δ2(~ω − ~ω′ + 2 · ~n(~x) · (~n(~x) · ~ω′)). (2.16)

A more realistic description of specular-like reflexions of ions is given in [15]. If the
incident direction is given by the azimuthal and the polar angle ~ω′ = (φ′, θ′) relative
to the surface normal ~n with φ′ ∈ [0, 2π[and θ′ ∈

]
π
2 , π

]
, then the average reemitted

direction is ~ωavg = (φavg, θavg) = (φ′,min(π − θ′, θmax)). Here θmax is a constant
parameter smaller than, but close to π

2 . The reemitted direction ~ω is distributed
around ~ωavg according to

G(~x; q, ~ω,E; q′, ~ω′, E′) ∼
{

cos
(

π
2

θ
π
2
−θavg

)

if θ ≤ π
2 − θavg,

0 else,
(2.17)

with θ = arccos (~ω · ~ωavg).

10

2 Process Modeling

Diffusive reemission of a neutral particle species qneu is usually described by the rela-
tion

G(~x; qneu, ~ω,E; qneu, ~ω′, E′) = (1− s)
1

π
cos θ with cos θ = ~n · ~ω. (2.18)

Here s is the probability that an incident particle remains sticking on the surface. The
directional distribution of diffusive reemitted particles follows the Knudsen cosine law
[37]. Since the total kinetic energy of neutrals is usually given only by their thermal
energy, the energy distribution of neutrals can be neglected.

The incidence of high energetic ions can lead to sputtering of particles on the surface,
which are redeposited somewhere else. For example, if qion denotes ions and qsp denotes
a sputtered particle type for which the kinetic energy can be neglected and a cosine-
like directional distribution can be assumed, the reemission probability function takes
the form [60]

G(~x; qsp, ~ω,E; qion, ~ω′, E′) = Y (θ′, E′) · 1
π

cos θ. (2.19)

Here Y (θ′, E′) is a yield function describing the average number of sputtered particles
per incidence of an ion at angle θ′ and energy E′. Commonly, yield functions are
approximated by

Y (θ,E) ∼ f(θ) ·max
(

0,
√

E −
√

Eth

)

(2.20)

This reflects the observed linear growth with the root of the incident energy E, which
must be larger than the threshold energy Eth to permit sputtering [120]. The angu-
lar dependence is usually obtained by measurements. A semi-empirical formula was
proposed by Yamamura et al. [76, 136]

f(θ) = (cos θ)−C1 · exp
(

C2 ·
(

1− (cos θ)−1
))

. (2.21)

Here C1 and C2 are positive fitting parameters. For C1 > C2 this function exhibits a
maximum at inclined incidence and is decreasing towards zero for θ → π

2 .

In general, the reemission probability function may itself depend on the flux distribu-
tion

G = G(~x; q, ~ω,E; q′, ~ω′, E′; Γ). (2.22)

For example, the sticking probability in (2.18) can depend on the so-called surface
coverage which describes the fraction of occupied surface sites. The coverage may be
influenced by the fluxes of inhibitors which adsorb on the surface and lead to some
passivation of the surface. If the reemission probability function shows a dependence
on the flux distributions, (2.15) will be non-linear and the calculation of the particle
transport will get more complicated. This issue will be addressed in further detail in
Section 5.4.1.

Finally, it should be noted that in the presence of different material regions the ree-
mission probabilities are also dependent on the material type on the surface. As an

11

2 Process Modeling

example, the type and the number of sputtered particles vary with the material on the
surface. Therefore, for each material type exposed during the process, an individual
reemission probability function must be defined.

2.3 Surface Kinetics

Once the particle transport to the surface is computed, the etch or deposition rate can
be determined, which gives the desired surface velocity. In this work the arrival flux
distributions are assumed to be in a pseudo-steady state. They only depend on the
surface profile and the arrival flux distribution at plane P and not on their history.
The surface velocity V (~x) with ~x ∈ S can be written as a functional of the local
arriving flux distribution Γ(~x)

V (~x) = V (Γ(~x)). (2.23)

For the numerical representation of the continuous flux distribution Γ some form of dis-
cretization is required. If the functions rl(~x; q, ~ω,E) with 1 ≤ l ≤ NR are appropriate
weight functions which map Γ(~x) to a finite number of scalar values given by

Rl(~x) :=

Q
∑

q=1

∞∫

0

∫

~ω·~n(~x)<0

rl(~x; q, ~ω,E)Γ(~x; q, ~ω,E) dΩ dE, (2.24)

the surface velocity can be written as a function of these scalars

V (~x) = V (R1(~x), R2(~x), . . . , RNR
(~x)). (2.25)

To save memory it is necessary to minimize the number of discretized values NR that
need to be stored for each surface point. In Section 5.2 a method will be presented
which does not require a discretization of the flux distribution in order to calculate
the particle transport. Hence, the choice of weight functions must be appropriate
primarily for an accurate calculation of the surface velocity.

Luckily, most models require only a minimum number of weight functions rl. Typically,
all the information needed from the flux distribution Γ for a certain particle type can
be mapped to a single value representing a certain rate using a single weight function.
This is not surprising, since only the total flux, in case of neutrals, or the effective
sputter yield, in case of high energy ions, is required for common process models. The
total flux Fq′(~x) of particles of species q′ is obtained by choosing rl(~x; q, ~ω,E) := δqq′

which yields

Rl(~x) =

∞∫

0

∫

~ω·~n(~x)<0

Γ(~x; q′, ~ω,E) dΩ dE = Fq′(~x) (2.26)

For particles with higher kinetic energies, which are generally ions, the total flux is
of less interest. The contribution of such particles to the surface velocity depends on

12

2 Process Modeling

the incident angle θ and energy E and is described by a yield function Y (θ,E) as
introduced in Section 2.2.3. The total sputter rate Y tot

q′ (~x) for particles of species q′

can be obtained by choosing rl(~x; q, ~ω,E) := δqq′Y (θ,E)

Rl(~x) =

∞∫

0

∫

~ω·~n(~x)<0

Γ(~x; q′, ~ω,E)Y (θ,E) dΩ dE = Y tot
q′ (~x). (2.27)

Generally, all the Rl values represent a rate on the surface, such as flux or total sputter
rate of a certain particle species. Therefore, from now on, they will be interpreted as
surface rates. The surface velocity V is a function of these surface rates.

2.3.1 Linear Surface Reactions

In many models the surface velocity is simply written as a linear function of rates

V (~x) =

NR∑

l=1

Cl ·Rl(~x), (2.28)

where Cl are constant coefficients. If this is the case, the individual contributions can
be combined into a single rate R which is obtained by taking the superposition of all
weight functions rl as the new weight function

r(~x; q, ~ω,E) :=

NR∑

l=1

Cl · rl(~x; q, ~ω,E). (2.29)

The surface velocity can then be written as

V (~x) = R(~x). (2.30)

Simple deposition and etching models often assume such a linear surface reaction. If
only a single particle species dominates the surface reaction, the surface velocity is
typically modeled as

V (~x) =
1

ρ
·∆m · s · F (~x). (2.31)

Here F is the total incident flux of particles, s is the sticking or reaction probability,
∆m is the mass which is deposited (∆m > 0) or removed (∆m < 0) from the surface
per reacting incident particle, and ρ is the bulk density [91]. Advanced models use
multiple particle types. For example, a linear model for TEOS deposition is given
in [51]. There, different reaction paths are assumed. TEOS is modeled to be either
deposited directly with a small sticking coefficient or through deposition of a very
reactive intermediate with a large sticking coefficient, that is formed by gas phase
reactions. Linear surface reactions are also used for some simple etching models,
which require the incorporation of physical etching (sputtering) as well as chemical

13

2 Process Modeling

etching. If the two components are independent from each other, the reaction can be
described by (2.28) [91].

Processes operating in the transport-controlled regime, which means that the particle
transport to the surface is the crucial limiting factor for the surface velocity, can
often be described by linear reaction models. There the surface velocity is essentially
proportional to the particle transport to the surface.

2.3.2 Non-Linear Surface Reactions

In general, the surface velocity (2.25) is not a linear function. As an example, the
sticking probability in (2.31) can depend on the local arriving particle flux, if higher
order surface kinetics are assumed [21]

s(~x) ∼ F (~x)η−1. (2.32)

Here η is the order of the reaction. Obviously, in the case of non-linear reaction kinetics
(η 6= 1) the sticking coefficient depends on the flux.

Other examples, where non-linear surface reactions need to be incorporated, are pro-
cesses with ion-enhanced etching. There physical (ions) and chemical (neutrals) com-
ponents act in a synergistic manner, so that the etch rate is larger than that obtained
by summing up their individual contributions.

The Langmuir adsorption model is able to capture this behavior [91]. The idea is to
assume an absorbed state of byproducts. The fraction of surface sites covered by these
byproducts is called the surface coverage Θ = Θ(~x). The etch rate is then composed
of three contributions

V (~x) = −αch ·Θ(~x)
︸ ︷︷ ︸

chemical etching

−αph · Y tot
ph (~x)

︸ ︷︷ ︸

physical sputtering

−αie ·Θ(~x) · Y tot
ie (~x)

︸ ︷︷ ︸

ion-enhanced etching

. (2.33)

The first term corresponds to chemical etching which is proportional to the coverage,
the second term represents physical sputtering with the total sputter rate Y tot

ph (~x), and
the last term is due to ion-enhanced etching, which is proportional to the coverage
and the total ion-enhanced etching rate Y tot

ie (~x). The total yields are both calculated
using a weight function similar to that used in (2.27). Two different total yields are
introduced, since in the general case the physical sputter yield and the ion-enhanced
etching yield are not equal. The constants αch, αph, and αie in (2.33) are model
parameters.

For the coverage Θ(~x) a balanced equation can be set up as follows

dΘ

dt
(~x) = βad · (1−Θ(~x)) · F (~x)

︸ ︷︷ ︸

adsorption

−βch ·Θ(~x)
︸ ︷︷ ︸

chemical etching

−βie ·Θ(~x) · Y tot
ie (~x)

︸ ︷︷ ︸

ion-enhanced etching

. (2.34)

14

2 Process Modeling

The first term describes the adsorption of chemical components, which is proportional
to the total arriving flux F (~x) of neutrals and the fraction of empty surface sites
(1−Θ(~x)). The second and the third term are losses due to chemical and ion-enhanced
etching, respectively, which are both proportional to the coverage. The constants βad,
βch, and βie are again model parameters.

A common approach is to assume that the coverage is always in a steady state ∂Θ
∂t (~x) =

0. Therefore, the coverage can be explicitly expressed as a function of the rates F (~x)
and Y tot

ie (~x),

Θ(~x) =
βadF (~x)

βadF (~x) + βch + βieY tot
ie (~x)

, (2.35)

and can be plugged into (2.33). The result is a non-linear function of the rates for the
surface velocity.

2.3.3 Transport-Independent Surface Reactions

The surface velocity can sometimes be assumed to be independent of any particle
transport, if the process is reaction-limited, where enough reactants are always on the
surface. This is generally the case for wet processes for which the diffusive transport
to the surface can be neglected. The simplest case is isotropic etching with a constant
etch rate.

The description of anisotropic wet etching is more complex, since the etch rate can
depend on the crystallographic direction [96]. In this case the surface velocity depends
only on the surface orientation described by the normal direction ~n(~x)

V (~x) = V (~n(~x)). (2.36)

15

3 Surface Evolution

The simulation of the topography changing processes requires a method capable to
describe geometric deformations over time. To observe the final profile it is primarily
important to track the surface S(t) over time. The initial surface S(t = 0) can be
extracted from the initial geometry (S = ∂M). During topography simulations the
surface velocities V (~x) in normal direction are calculated at the surface points ~x ∈
S(t). To obtain the final profile after the complete process time, tprocess, the following
problem must be solved:

• Given: S(t = 0) and V (~x) for all ~x ∈ S(t) and t ∈ [0, tprocess],

• Required: S(tprocess).

This chapter first gives an overview of different numerical methods for tracking moving
boundaries. The pros and cons of these techniques are briefly discussed. Finally the
focus is placed on the LS method which is probably the most popular method used in
modern topography simulators, especially for three dimensions.

3.1 Boundary Evolution Techniques

The various approaches used to solve the boundary tracking problem can be classified
into three categories. For each of them the basic concepts are presented in the following
sections.

3.1.1 Segment-Based Methods

Segment-based methods explicitly describe a boundary. This means that a boundary
in two- or three-dimensional space is usually represented as line segmentation [38, 52]
or as triangulation [12, 31, 59, 68, 105, 131], respectively. The time evolution of the
boundary is computed by advancing all nodes in the normal direction according to the
given surface velocities at every time step. Since the surface normal is not defined at
the nodes, it must be obtained by averaging the normals of neighboring segments.

The drawback of segment-based methods is that accumulation or rarefaction of nodes
can occur, especially at regions with high curvature or large differences in surface
velocities. Therefore, nodes must be deleted or inserted to keep their density, and
consequently the surface resolution, appropriate. A further problem is the proper

16

3 Surface Evolution

treatment of self-intersections, which can occur if, for example, two different parts of
the boundary merge. Hence, much effort is necessary to obtain an efficient and, more
importantly, a robust boundary tracking algorithm, especially in three dimensions.

3.1.2 Cell-Based Methods

Cell-based methods use a grid of cubic cells to represent the geometry. Numerical
values assigned to cells describe their contents. One can distinguish between methods
using discrete and continuous values.

In the first case integral values are used to mark vacuum cells or cells with same
properties of matter [26, 42, 93, 118, 122, 123]. To calculate the time evolution of
the surface the state of the cells near the surface must be successively modified in
consideration of the given surface rates. The cell removal technique, which was used
to simulate photo resist development, determines the time required to completely
remove each surface material cell [26, 42]. Iteratively, the state of the cell with the
smallest removal time is changed, and the removal times are recalculated for all surface
cells. Another technique is the building block model which was applied to deposition
simulation [118]. This stochastic technique successively adds material cells with a
probability proportional to the local deposition rate.

A further method, developed at the Institute for Microelectronics at the Vienna
University of Technology, is based on the so-called structuring element algorithm
[93, 122, 123], which is based on the Huygens–Fresnel principle and can be applied
to deposition as well as etching processes. Appropriate structuring elements are used
to construct the surface front after a certain time step. In the case of isotropic de-
position, these structuring elements are spheres with a radius equal to the time step
multiplied by the deposition rate. The states of all cells covered by these structuring
elements are changed to obtain the profile after each time step. By nature the dis-
crete cell representation of the geometry leads to an unrealistic stepped contour. As a
consequence, the determination of the surface orientation requires a costly averaging
procedure [123].

Continuous cell values are able to describe the surface position more accurately. Values
between 0 and 1 describe the filled [29] or removed [54, 106, 139] fraction of the
cell volume. The given surface rates and the conservation of mass result in cellular
automata-like update rules for the values of the surface cells. The surface can be
extracted using the equi-volume rate model (EVRM) [29], which also allows a more
accurate computation of surface normals than the discrete approaches.

Contrary to segment-based methods the cell-based techniques are very robust and
insusceptible to topographic changes. Due to the quite simple update rules the imple-
mentation is very easy for two- and three-dimensional cases.

17

3 Surface Evolution

3.1.3 The Level Set Method

Another technique to describe moving boundaries over time is the LS method [86].
The surface S is described as the zero LS of a continuous function Φ(~x, t) defined on
the entire simulation domain

S(t) = {~x : Φ(~x, t) = 0}. (3.1)

Such a function can be obtained by a signed distance transform [53, 77]

Φ(~x, t = 0) :=

− min
~x′∈S(t=0)

‖~x− ~x′‖ if ~x ∈M(t = 0),

+ min
~x′∈S(t=0)

‖~x− ~x′‖ else.
(3.2)

Using the implicit representation of the surface (3.1) the time evolution of the surface
driven by a scalar velocity field V (~x) can be described by the LS equation

∂Φ

∂t
+ V (~x)‖∇Φ‖ = 0. (3.3)

The velocity field can be obtained from the velocities given on the surface by extrap-
olation, as will be described later in Section 3.2.4.

The LS method is able to describe the position of the surface with sub-grid accuracy.
Furthermore, this method allows an accurate calculation of geometric variables, such
as the surface normal or the curvature. Similarly to cell-based methods, the implicit
description of the surface position allows handling of topographic changes without
special consideration.

After successful demonstrations for the applicability of the LS method to topography
simulation [4, 5, 6, 108], this technique has become the most popular technique to
track a surface over time, especially in three dimensions. The LS method is used by
many academic groups for two-dimensional [8, 112, 113] or three-dimensional topog-
raphy simulation [46, 65, 96, 98]. The topography simulators earlier developed at the
Institute for Microelectronics at the Vienna University of Technology, as ELSA [40]
and Topo3D [111], also use the LS method for surface evolution. Furthermore, the
newer commercial topography simulators such as the two- and three-dimensional Vic-
tory process simulator by Silvaco [43, 126], the two-dimensional Sentaurus Topography
simulator by Synopsys [127], or PLENTE by Process-Evolution [16, 17] are also based
on the LS method.

3.2 Solving the Level Set Equation

In this section numerical schemes for solving the LS equation are discussed. Since the
LS equation belongs to the class of Hamilton-Jacobi equations

∂Φ

∂t
+ H(~x,∇Φ, t) = 0 for H(~x,∇Φ, t) = V (~x)‖∇Φ‖ (3.4)

18

3 Surface Evolution

with H denoting the Hamiltonian, many numerical schemes developed for the solution
of Hamilton-Jacobi equations can also be applied to the LS equation.

Generally, the solution of a partial differential equation requires a discretization in
time as well as in space. In case of the LS equation the simulation domain is usually
discretized using regular grids which allow the application of simple finite difference
schemes. In the following, ∆x denotes the grid spacing. Individual grid points are
identified by an index vector ~p = (p1, . . . , pD) ∈ G ⊆ Z

D, where G denotes the set of
index vectors of all grid points of the discretized simulation domain.

For regular grids the finite difference method is the most suitable method to solve the
LS equation. As the name suggests, it approximates derivates by finite differences.
The discretized version of (3.4) using the first-order forward Euler method [92] writes
as

Φ(t+∆t)(~p) = Φ(t)(~p)−∆t · Ĥ(~p,Φ(t), V (~p)). (3.5)

Here Ĥ is an appropriate finite difference approximation to the Hamiltonian H of the
LS equation evaluated at grid point ~p. Ĥ depends on the discretized values of the LS
function Φ(t) at time t and also on the current value of the velocity field V (~p) at grid
point ~p.

In the following discussion different approximations for the Hamiltonian are presented,
which result in different time integration schemes. Since these approximations are
based on finite differences, it is useful to introduce a notation for finite differences.
The central difference operator is represented by D0

i

D0
i Φ(~p) :=

Φ(~p + ~ei)− Φ(~p− ~ei)

2∆x
, (3.6)

where ~ei is the unit vector along the i-th grid direction. Furthermore, the forward
difference D+

i and the backward difference D−
i operator are defined as

D±
i Φ(~p) := ±Φ(~p± ~ei)− Φ(~p)

∆x
. (3.7)

3.2.1 Upwind Scheme

Based on the Engquist-Osher scheme [28], Osher and Sethian proposed a finite differ-
ence upwind scheme to solve the LS equation over time [86, 110]. The scheme uses
the following approximation for the Hamiltonian

Ĥ(~p,Φ, V (~p)) := max (V (~p), 0)∇+Φ(~p) + min (V (~p), 0)∇−Φ(~p). (3.8)

Depending on the sign of the surface velocity V this upwind scheme selects an appro-
priate one-sided approximation for ‖∇Φ‖

∇±Φ(~p) :=

√
√
√
√

D∑

i=1

(
max

(
±∂−

i Φ(~p), 0
))2

+
(
min

(
±∂+

i Φ(~p), 0
))2

(3.9)

19

3 Surface Evolution

to guarantee a stable solution. ∂±
i Φ are one-sided approximations to the first deriva-

tives with respect to the i-th direction

∂±
i Φ(~p) := D±

i Φ(~p)∓∆x

2
ζ(D±

i D±
i Φ(~p),D+

i D−
i Φ(~p))

︸ ︷︷ ︸

second order term

. (3.10)

ζ is a switch function and is defined as

ζ(a, b) :=

a if (0 ≤ a ≤ b) ∨ (0 ≥ a ≥ b),

b if (0 ≤ b < a) ∨ (0 ≥ b > a),

0 else.

(3.11)

Depending on whether the second order term in (3.10) is included or not the previ-
ous equations describe the second or the first order space scheme as given in [110].
The advantage of these schemes is that they can be straightforwardly implemented
without special knowledge of the surface velocity function V . However, stability is
only guaranteed for convex speed laws. That means the scheme is stable for convex
Hamiltonians with respect to the first order derivatives of the LS function qi := ∂Φ

∂xi
.

This is the case, if the matrix
(

∂2H
∂qi∂qj

)

is positive-semidefinite [110].

Unfortunately non-convex Hamiltonians occur frequently in topography simulations.
In the general case the surface velocities depend on the surface normal (see for ex-
ample (2.24) or (2.36)). As shown later in Section 3.3.1 the surface normal can be
expressed using the first order derivatives of the LS function. Hence, the convexity of
the Hamiltonian is actually given by the model specific surface velocity function.

Non-convex Hamiltonians occur often, if yield functions are involved, which depend on
the incident angle as described by (2.21). Models for anisotropic wet etching processes
(see Section 2.3.3) can also lead to non-convex Hamiltonians.

3.2.2 Lax-Friedrichs Scheme

To solve the LS equation for non-convex Hamiltonians the Lax-Friedrichs scheme can
be applied [87, 110]. Some artificial dissipation is introduced to obtain stability. The
approximation to the Hamiltonian for this scheme is written as

Ĥ(~p,Φ, V (~p)) := V (~p)∇0Φ(~p)−
D∑

i=1

αi ·
∂+

i Φ(~p)− ∂−
i Φ(~p)

2
(3.12)

using the central gradient approximation

∇0Φ(~p) :=

√
√
√
√

D∑

i=1

(
∂−

i Φ(~p) + ∂+
i Φ(~p)

2

)2

. (3.13)

20

3 Surface Evolution

∂±
i Φ are again the one-sided approximations defined in (3.10). Again, depending on

whether the second order term in (3.10) is included or not, the scheme is second or
first order accurate in space, respectively [110].

The constants αi are dissipation coefficients which should fulfill

αi ≥ max
~x

∣
∣
∣
∣

∂H

∂qi

∣
∣
∣
∣

with qi :=
∂Φ

∂xi
(3.14)

in order to guarantee stability [85, 110].

The choice of these dissipation coefficients is the main problem for the applicability
of this scheme. Larger values lead to unnecessary smoothing of the surface, while
smaller values cause numerical instabilities. The analytical evaluation of the right-
hand side in (3.14) to find the optimal values for the constants αi is usually not
possible for general surface velocities. However, often the optimal values cannot be
straightforwardly evaluated, because the velocity field may depend on the particle
transport which further depends on the surface geometry. Hence, the likely best way
to find the optimal values is to test different values and analyze the results [98].

3.2.3 Stability

In time integration schemes, such as the first-order forward Euler method, information
from a grid point to a neighbor grid point can at most propagate with the velocity given
by the ratio of the grid spacing and the time increment, ∆x

∆t . In order to calculate the
movement of a surface, its maximum speed must be smaller than this critical value

max
~p∈G
|V (~p)| ≤ ∆x

∆t
. (3.15)

This condition needs to be fulfilled in order to guarantee a stable time integration and
is known as the Courant-Friedrichs-Lewy (CFL) condition [24].

For each integration step the time increment must be adapted to fulfill the CFL con-
dition. In practice, a positive constant CCFL ∈]0, 1], the so-called CFL number, is
defined and an appropriate time increment is chosen according to

∆t = CCFL ·
∆x

max
~p∈G
|V (~p)| . (3.16)

3.2.4 Surface Velocity Extension

In topography simulations the velocity field V has no physical meaning, since the
surface velocity can only be determined at points on the surface, where the surface
velocity corresponds to the local deposition or etch rate. The LS method, however,

21

3 Surface Evolution

requires a velocity field, for which the values must be known for at least all grid
points which are updated in time. Hence, to enable the solution of the LS equation a
technique is required which extrapolates the surface velocities from the surface to all
those grid points.

Assuming that V (~x) is available for all points ~x ∈ S(t), different techniques have been
developed to obtain a surface velocity field which allows a stable time integration of
the LS equation. In [73], it was proposed to define the surface velocity field as

V (~x) := V (~xcp(~x)) with ~xcp(~x) := arg min
~x′∈S
‖~x′ − ~x‖. (3.17)

Hence, the surface velocity at a certain point ~x is set to the velocity of its closest
surface point ~xcp(~x) ∈ S. Since the velocity field needs to be known for all grid points,
all their corresponding closest surface points must be determined.

A less costly technique to extrapolate the surface velocities based on an alternative
formulation of the problem [7] is

‖∇Φtemp‖ = 1, (3.18)

Φtemp(~x) = 0⇔ Φ(~x) = 0, (3.19)

∇V · ∇Φtemp = 0. (3.20)

Here, the first two equations define a signed distance function Φtemp with the same
zero LS as Φ. The solution of this boundary value problem fulfills (3.17). The system
of equations can be efficiently solved using the fast marching method [109]. With this
finite difference scheme the surface velocity field can be obtained for all grid points
with an optimal linear complexity.

3.3 Approximations to Geometric Variables

One strength of the LS method is the simple calculation of geometric variables, such as
the surface normal or the curvature, directly from the implicit surface representation
given by the LS function.

3.3.1 Surface Normal

Generally, the normal vector at point ~x on the LS of a smooth function is given by

~n(~x) =
∇Φ

‖∇Φ‖ . (3.21)

22

3 Surface Evolution

At grid points ~p ∈ G the i-th component of the normal vector can be approximated
by

ni(~p) ≈ D0
i Φ(~p)

√
∑D

j=1

(

D0
j Φ(~p)

)2
. (3.22)

Here D0
i is the central difference operator as defined in (3.6). The normal vector

for a grid point close to the surface S represented by the zero LS is also a good
approximation for the normal on the surface for the closest surface point. The closest
surface point ~xcp(~p) ∈ S of a nearby grid point ~p can be approximated by [135]

~xcp(~p) ≈ ~p− ~n(~p) · Φ(~p)

‖∇Φ‖ , (3.23)

if the grid point indices ~p are equal to the grid point coordinates. Here the last factor
corresponds to the approximated signed distance to the surface. For the denominator
the same approximation is used as in (3.22).

3.3.2 Curvature

Solving the LS equation with a velocity field that is proportional to the curvature can
be used for smoothing as will be demonstrated in Section 4.5. For an arbitrary point
~x the (mean) curvature of the corresponding LS is defined as

κ(~x) = ∇~n(~x) = ∇ · ∇Φ

‖∇Φ‖ . (3.24)

At grid points ~p ∈ G the mean curvature can be approximated by [110]

κ(~p) =

∑

i6=j

(
D0

i Φ(~p)
)2 ·D+

j D−
j Φ(~p)−D0

i Φ(~p) ·D0
j Φ(~p) ·D0

i D
0
j Φ(~p)

(
∑D

i=1

(
D0

i Φ(~p)
)2
) 3

2

. (3.25)

3.4 Acceleration Techniques

The LS method as initially proposed in [86] uses a LS function which is defined on the
entire simulation domain. Consequently, the memory requirements for the discretiza-
tion of the LS function scale with the domain size. The scaling law of the computation
time for the time update scheme is similar. However, the optimal complexity for
storing and evolving a surface over time should linearly depend on the surface area
(measured in grid spacings). Different approaches have been developed in the past to
make the LS method more efficient.

23

3 Surface Evolution

3.4.1 The Narrow Band Method

To obtain a linear scaling law for the computation time the narrow band method
was introduced [3]. This approach makes use of the fact that only the LS values of
grid points close to the surface have an influence on the zero level set and thus on
the actual position of the surface. By updating only a subset of grid points in time,
namely only those within a band around the surface with a typical width of a couple
of grid spacings, the computation time can be drastically reduced. Since the number
of these so-called active grid points within the band is approximately the surface area
times the narrow band width, an optimal linear scaling for the time integration is
obtained. From time to time, the narrow band needs to be re-initialized, if the surface
approaches its boundary.

3.4.2 The Sparse Field Method

A further development of the narrow band method is the sparse field method [135],
which further reduces the computational effort by considering just a single layer of
active grid points for time integration.

The method classifies all grid points ~p ∈ G depending on their LS value as follows

Li :=

{~p ∈ G : i− 1
2 ≤ Φ(~p) < i + 1

2} if i < 0,

{~p ∈ G : −1
2 ≤ Φ(~p) ≤ 1

2} if i = 0,

{~p ∈ G : i− 1
2 < Φ(~p) ≤ i + 1

2} if i > 0.

(3.26)

The sparse field LS method assumes that from any two neighboring grid points with
different signed LS values at least one belongs to L0

∀~p ∈ G, ~p′ ∈ η(~p) : sgn(Φ(~p)) 6= sgn(Φ(~p′))⇒ {~p, ~p′} ∩ L0 6= ∅. (3.27)

Here η(~p) denotes the set of the closest neighbor grid points of ~p. In an infinite regular
grid each grid point has 2D such neighbors, if D is the number of dimensions. The
signum function is assumed to be two-valued; sgn(0) can be either 1 or −1. For
numerical float data types the sign bit can be used to evaluate the sign. (3.27) is
equivalent to the statement that the grid points with positive and negative signed LS
values are separated by those belonging to L0.

A further requirement of the sparse field LS method is that the layers Li fulfill

Li =

{

~p ∈ G : sgn(Φ(~p)) · min
~p′∈L0

‖~p− ~p′‖1 = i

}

, (3.28)

where ‖·‖1 denotes the Manhattan norm. Once the grid points fulfill (3.26) to (3.28)
the sparse field LS method can be applied. The method itself maintains these proper-
ties over time. A proper technique to initialize the LS values appropriately is described
later in Section 4.1.1.

24

3 Surface Evolution

The idea of the sparse field method is now to consider only active grid points, namely
those belonging to the most inner layer L0, for time integration. However, the previ-
ously introduced numerical schemes also need the LS values of neighbor grid points,
thus those of neighboring layers. For example, if second order derivatives are needed
the LS values of grid points in layers L±1 and L±2 are required. After each time step,
the LS values of non-active grid points must also be updated. Furthermore, the sets of
grid points belonging to the individual layers may change and must be redetermined.
The different sets of grid points Li are originally represented as a list of pointers to
the corresponding memory representations. The basic procedure of the sparse field
method is presented in the following steps:

1. Update the LS values of all active grid points ~p ∈ L(t)
0 in time using an appro-

priate finite difference scheme as described in the previous sections.

2. If there are any two neighboring grid points ~p, ~p′ ∈ L0 for which Φ(~p) < −1
2 and

Φ(~p′) > 1
2 the absolute LS values of both points are reduced to Φ(~p) = −1

2 and
Φ(~p′) = 1

2 , respectively.

3. In the order i = ±1,±2, . . . the LS values of all grid points in the i-th layer

~p ∈ L(t)
i are updated using

Φ(t+∆t)(~p) =

min
~p′∈η(~p)∩L(t)

i−1

Φ(t+∆t)(~p′) + 1 if i > 0

max
~p′∈η(~p)∩L(t)

i+1

Φ(t+∆t)(~p′)− 1 if i < 0
. (3.29)

4. Finally, the layers L(t+∆t)
i for the next time step are determined using (3.26).

Alternatively, due to the nature of the update scheme the determination of the
layers using (3.28) is equivalent.

As previously mentioned, depending on the finite difference approximations used in
the numerical update scheme a certain neighborhood around the active layer L0 is
required. For example, if second order space schemes are used the availability of the
LS values of all grid points in the layers L0,L±1,L±2 is sufficient. Consequently, the
update rule (3.29) can be limited to grid points which are contained by these layers
in the next time step.

Item 2 does not exist in the original description of the sparse field method [135]. It
has been proposed in [A18] to improve the robustness of the algorithm. If arbitrary
velocity fields are allowed, cases may occur which contradict the assumption (3.27). As
depicted in Figure 3.1 the update of the opposite signed LS values of two neighboring
active grid points can lead to a pair of neighboring grid points, none of which belongs
to L0.

Another problem which may occur was already mentioned in the original paper [135].
The update scheme potentially leads to dense sets of active grid points, which do
not have an opposite signed neighbor grid point. Figure 3.2 shows two examples,

25

3 Surface Evolution

Figure 3.1: A problematic case which may occur and which needs special consideration. For
the update of the neighboring pair of active grid points (black) with LS values ±0.4 opposite
signed surface velocities (arrows) are used. This leads to a neighboring pair of non-active grid
points with opposite signed LS values.

where so-called inefficient sets of active grid points are produced. They often appear
in regions, where the surface converges, and do not necessarily need to be close to
the surface afterwards, as illustrated by the second example. Hence, these points do
not contribute to the description of the surface, and updating them is not necessary.
The consideration of these non-relevant grid points makes the expansion of the surface
velocity field more complicated and computationally more intensive. Even worse, dense
sets of such points could be produced, essentially increasing the memory consumption
and the calculation time during time integration. To avoid the accumulation of such
active grid points a pruning procedure was proposed to keep L0 an efficient set of active
grid points, so that each active grid point has an opposite signed neighbor point:

∀~p ∈ L0 : ∃~p′ ∈ η(~p) : sgn Φ(~p) 6= sgn Φ(~p′). (3.30)

The pruning procedure removes active grid points from L0, which do not fulfill this
criterion and finally updates all layers Li and the corresponding LS values using (3.28)
and (3.29), respectively. In Section 4.3 a robust algorithmic realization of the sparse
field method including the pruning procedure will be presented.

For the sparse field method the CFL condition (3.15) can be written as

max
~p∈L(t)

0

∣
∣
∣Φ(t+∆t)(~p)− Φ(t)(~p)

∣
∣
∣ ≤ 1, (3.31)

which ensures that the surface advances at most one grid spacing per time step. For
each step the time increment ∆t is chosen in such a way that

max
~p∈L(t)

0

∣
∣
∣Φ(t+∆t)(~p)−Φ(t)(~p)

∣
∣
∣ = CCFL (3.32)

is fulfilled, where CCFL again denotes the predefined CFL number. A good choice for
this positive constant is a value smaller than or equal to 0.5, which guarantees that

only grid points of the active layer L(t)
0 change the sign of their LS value within a time

step. This follows from the fact that the absolute LS values of grid points ~p 6∈ L(t)
0

26

3 Surface Evolution

Figure 3.2: Two examples, where the sparse field method produces inefficient sets of active
(black) grid points. The surface S moves with a uniform positive surface velocity (arrows).
After a time step some active grid points (squares) do not have a neighbor with opposite signed
LS value.

are, according to (3.26), larger than 0.5 while the maximum change of the LS value
is limited by CCFL, as stated in (3.32). The time step can be directly calculated by
inserting (3.5) in (3.32)

∆t =
CCFL

max
~p∈L(t)

0

∣
∣
∣Ĥ(~p,Φ(t), V (~p))

∣
∣
∣

. (3.33)

The sparse field method saves more computation time than the narrow band method
for several reasons. First, only a minimal set of active grid points is involved in the time
integration procedure. Furthermore, the time consuming surface velocity extension can
be avoided. This extension is necessary for topography simulations, since the velocities
are only defined on the surface and the LS method requires a velocity field [7]. Finally,
the sparse field method does not require regular re-initializations, unlike the narrow
band method [3]. The sparse field method was first applied in the field of topography
simulation in [94].

27

3 Surface Evolution

3.5 Level Set Data Structures

The presented acceleration techniques do not need the LS values of all points in the
grid. Hence, it is sufficient to store only the LS values of all defined grid points. The set
of defined grid points is the union of all active grid points plus those of neighboring
grid points which are needed to construct the finite differences as required by the
update scheme. In the following, an overview of efficient data structures for storing
the discretized LS function is presented.

3.5.1 Trees

Quad- and octtrees for two and three dimensions, respectively, have been successfully
applied to the LS method [46, 71, 81, 121]. The LS values of defined grid points are
stored within leaf nodes and can be accessed in logarithmic time. By using an adaptive
grid with increasing resolution close to the surface, an optimal linear scaling law with
surface area can be obtained. At the surface the same maximum resolution is generally
used, because the solution of the LS equation with the finite difference method is more
complex and less accurate on non-uniform grids.

Despite the optimal scaling law, the internal pointer structure of trees leads to a
significant memory overhead. Furthermore, the memory layout of trees is usually not
very convenient for fast serial processing.

3.5.2 Run-Length Encoding

Instead of using an adaptive grid to represent the entire simulation domain, it is better
to use a regular grid with an appropriate resolution and store only the LS values of
defined grid points needed for the time integration scheme.

Run-length encoding along a certain grid direction is an efficient technique for this
purpose [45]. In the following, run-length encoding is explained for the x1-direction.
However, it can be applied to all other grid directions analogously. Each line of
grid points parallel to the x1-direction is separately run-length encoded. Consecutive
undefined grid points, for which the LS values do not need to be stored, are combined
in runs. It is advantageous to use two different run codes, depending on whether
the corresponding run contains only grid points where the LS function is positive or
negative, respectively. In this way the sign of the LS function is available for all grid
points. This information is useful, since it reveals on which side of the surface a grid
point is located.

To demonstrate, run-length encoding is applied to the two-dimensional example shown
in Figure 3.3. There, a triangle is described by the LS. The LS function is resolved on
a grid with extensions 12×12. Figure 3.4 shows the corresponding run-length encoded

28

3 Surface Evolution

Figure 3.3: A LS function representing a triangle is resolved on a 12 × 12 grid. Only the
LS of defined grid points (green) must be stored. Memory can be saved by not storing the LS
values of all other positive (blue) and negative (red) undefined grid points. The LS values of
all defined grid points are given on the right-hand side.

Figure 3.4: The RLE data structure for the example given in Figure 3.3. For each of
the 12 grid lines along the x1-direction an index is stored in the start indices array to the
corresponding run type sequence. Three different types of run codes can be distinguished:
Undefined runs which are either positive (blue) or negative (red), and defined runs (green)
whose run codes give the corresponding start indices in the LS values array. Another array
stores the run breaks from which the start and end indices of a run can be obtained. The size
of the run breaks array is always equal to the difference of the sizes of the run types array and
the start indices array.

(RLE) data structure which consists of 4 arrays in order to store only the LS values of
defined grid points near the boundary. To address array entries, zero based indexing
is used.

The LS values of all defined grid points are stored in lexicographical order in the
LS values array. Sequences of positive undefined, negative undefined, or defined grid
points are represented by integral run codes stored within the run types array. In
case of a defined sequence the run code gives the corresponding start index in the LS
values array. Grid indices at which new runs start are given in the run breaks array.

29

3 Surface Evolution

Direct access to run codes for a specific line of grid points is provided by the start
indices array. The size of this array is equal to the number of grid lines parallel to
the x1-direction. In the two-dimensional case the size of this array is equal to the grid
extension in the x2-direction, which is equal to 12 in this example. The index of the
first run break for a given grid line can be obtained by subtracting the index of the
corresponding entry in the start indices array from the content of the same entry.

The RLE data structure provides fast random access to LS values of defined grid points.
The LS value of a certain grid point ~p = (p1, . . . , pD) can be found by accessing the
corresponding RLE grid line through the start indices array. The array index of the
grid line is calculated as

∑D
i=2(pi − gmin

i)
∏i−1

j=2(g
max
j − gmin

j + 1), where ~gmin and ~gmax

denote the minimum and maximum index vectors of the grid. A binary search of p1

within the corresponding run breaks is necessary to find the correct run code. If the
run is defined, the index of the LS value of ~p can be calculated using the run code, the
first grid index of the run obtained from the run breaks array or the grid extensions,
and p1.

The complexity of accessing the LS value of a specific grid point is mainly given by
the binary search, which scales logarithmically with the number of runs within a grid
line. In the worst case, if all defined grid points belong to the same grid line and are
separated by runs of undefined grid points (undefined runs), the complexity is of order
O(log ND), where ND denotes the number of defined grid points. However, in practice
a much better performance can be expected.

The memory requirements of the RLE data structure scale according to O(ND +
∏D

i=2(g
max
i − gmin

i + 1)). The lexicographical order of LS values is very advantageous,
because it allows fast serial processing. However, in contrast to tree data structures,
since the data structure is based on arrays, it is not possible to add or remove grid
points efficiently, except at the end. If the set of defined grid points changes, the entire
data structure must be reset.

3.5.3 Dynamic Tubular Grid

Another data structure for storing only the LS values of defined grid points is the
dynamic tubular grid (DTG) [84]. The DTG is hierarchically organized over the
dimensions and is able to store a certain subset of grid points together with some
data. The DTG can be used to store sparse data on grids with an arbitrary number
of dimensions. The basic structure of a DTG is shown in Figure 3.5.

The basic idea of the DTG is to apply subsequent orthogonal projections along all grid
directions on the set of defined grid points. First, a projection along the x1-direction
leads to a set of defined grid points in a lower-dimensional subspace, which is stored
using a DTG with lower dimensionality. Hence, the DTG is recursively defined. For
each projected defined grid point an index is stored in this lower-dimensional DTG.
This index gives access to all the defined grid points which are projected to the same

30

3 Surface Evolution

Figure 3.5: The defined grid points and their associated LS values of the example shown in
Figure 3.3 as stored in a DTG. The hierarchical structure is obtained by subsequent projection
of grid points to a lower dimension, and combining connected sequences of indices along a grid
line. The minimum and maximum indices of such a sequence are stored together with an array
index which provides access to its members. Since the topmost array always contains just a
single entry with value 0, it can be omitted. This array is not included in the original definition
of the DTG and is only shown to emphasize the hierarchical structure.

lower-dimensional grid point. Sequences of defined grid points along the projection
direction are stored in a compact way using the minimum and maximum indices and
an index giving access to the individual members of the sequence.

The memory requirements of the DTG scale linearly with the number of defined grid
points, ND. Random access to the data of grid points requires a binary search within
the array holding the minimum and maximum indices of sequences along each grid
direction. Similarly to the RLE data structure, the binary searches lead to a worst
case logarithmic complexity O(log ND). In practice, since the data structure is very
cache coherent, random access is almost as fast as for a full grid.

Sequential access can be realized in constant time using iterators moving over the data
structure in lexicographical order as described in [84]. Neighbor access to grid points,
which is essential in calculating finite differences, can also be performed in constant
time, if a stencil of iterators is moved simultaneously over the data structure.

The DTG allows storage of defined grid points on an infinite domain. The indices of
points can take arbitrary values and do not need to be within a certain range, as is the
case for a full grid representation. (The index values are only limited by the minimum
and maximum possible representable values of the used integral data type.) For a full
grid to mimic an infinite grid, grid extensions must be adapted, when the LS reaches
the full grid boundary.

31

3 Surface Evolution

Figure 3.6: The H-RLE data structure applies run-length encoding hierarchically over all grid
dimensions in order to obtain an efficient LS data structure which combines the advantages of
run-length encoding and the hierarchically organized DTG.

Figure 3.7: The segmentation of the grid (black thick lines) which is implicitly defined by
the H-RLE data structure. Each segment represents either a run of positive (blue) or negative
(red) undefined grid points or a single defined grid point (green).

3.5.4 Hierarchical Run-Length Encoding

The RLE data structure is also able to store the sign of the LS function for all unde-
fined grid points, while the DTG has ideal linear scaling memory requirements and is
adaptive in all grid directions. A data structure that combines the advantages of the
RLE and DTG data structures is the hierarchical run-length encoded (H-RLE) data
structure [44].

As shown in Figure 3.6 the H-RLE data structure is hierarchically organized, similar
to the DTG. However, instead of storing sequences of defined grid points, which are

32

3 Surface Evolution

projected to the same grid point in the lower dimensional space, run-length encoding is
applied. Hence, the H-RLE data structure is able to store the sign of the LS function for
all undefined grid points and, in addition, it shows the same characteristics regarding
memory consumption and random access as the DTG.

The H-RLE data structure leads to an inherent segmentation of the entire grid. All grid
points either belong to an undefined run or are defined grid points. Figure 3.7 shows
the corresponding segmentation of the two-dimensional example given in Figure 3.3.
The number of segments for the worst case is ND · (2D + 1) = O(ND). However, if
many defined grid points are neighbored, which is a common case for the LS method,
the number of segments is much smaller.

33

4 A Fast Level Set Framework

This chapter describes the realization of a fast LS framework based on the sparse field
LS method and the H-RLE data structure. The framework is able to describe multiple
material regions and also supports Boolean operations which are particularly useful
for geometrical operations. Furthermore, by taking advantage of the H-RLE data
structure, fast algorithms for a unidirectional visibility test and for void detection are
realized. Finally, a parallelization strategy for algorithms on the H-RLE data structure
is presented.

4.1 Initialization

Dependent on the number of dimensions, the initial boundary is usually given as an
oriented line segmentation or an oriented triangulation, respectively. The orientation
of a line segment or a triangle is defined in this work as shown in Figure 4.1. The
normal vector always points to the positive region of the LS function. Without loss
of generality, grid point coordinates are assumed to be equal to their indices ~p. As a
consequence, the grid spacing is unity (∆x = 1).

4.1.1 Closest Point Transformation

As mentioned in Section 3.1.3 the LS function is usually initialized as a signed distance
function. In case of the sparse field LS method it is better to use the smallest (signed)
Manhattan distance

Φ(~p) := ±min
~x∈S
‖~p− ~x‖1, (4.1)

Figure 4.1: The orientation of the normal vector ~n on a line segment and on a triangle as
defined in this work with respect to the order of nodes ~xi.

34

4 A Fast Level Set Framework

rather than the smallest Euclidean distance, for the initialization. With the latter,
the first time step of the sparse field LS method gives wrong results for the position
of a (non-axis-parallel) plane moving with constant speed. However, if initialized with
the Manhattan distance, trilinear interpolation of the LS function correctly describes
the position of the plane after the first time step. The reason for this behavior is the
update scheme (3.29) which also corresponds to a Manhattan distance calculation.

It is not necessary to calculate the initial LS values for the entire grid. Only grid points
close to the boundary have to be considered. In particular, the sparse field method
requires the determination of all active grid points together with their LS values only
at the beginning. If the sign of the LS function is known for all other grid points, the
additional layers can be determined using (3.28). The required LS values can then be
computed using (3.29). The knowledge of the sign for the LS values at all points of
the grid is also a prerequisite for the setup of the H-RLE data structure.

The signs of the LS values are unambiguously defined, if the set of all grid points with
an opposite signed neighbor is known. This set of grid points clearly separates the
positive and the negative grid points from each other. To satisfy all the requirements
for the initialization of the sparse field method and the H-RLE data structure, the LS
framework determines all grid points for which the LS value is in the range [−1, 1].

This set of grid points contains all the required information, because due to (4.1) all
grid points are included, which have an opposite signed neighbor. Before setting up
the H-RLE data structure, the LS framework collects all these grid points together
with their LS values and stores them in a list. In the following sections an efficient
technique is described to obtain this list in linear time.

Since the Manhattan distance is only needed for grid points close to the boundary, the
distance computation can be simplified. For these points the Manhattan distance can
be approximated by the smallest distance to the boundary along any paraxial direction.
In other words, the smallest unsigned distance of a grid point is approximated by

|Φ(~p)| := min{α ≥ 0 : ∃k : ~p + α · ~ek ∈ S ∨ ~p− α · ~ek ∈ S}. (4.2)

Here ~ek denotes the unit vector pointing in the xk-direction (1 ≤ k ≤ D).

In practice the distance transform is carried out by an iteration over all segments of
the discretized boundary representation. For each segment all intersecting grid lines
are determined. The number of possible grid lines can be confined using the bounding
box of the segment. In the two-dimensional case the test whether a grid line intersects
a line segment or not is trivial. In the three-dimensional case the intersection test with
a triangle is more difficult and is described in Appendix A. For each intersecting grid
line the intersection point ~q = (q1, . . . , qD) is calculated and all grid points ~p on that
grid line are considered for which

|pk − qk| ≤ 1 + ε1. (4.3)

35

4 A Fast Level Set Framework

(a) (b)

Figure 4.2: (a) Two segments of the surface mesh (gray) meet on a grid line (black). Hence,
for both grid points the distance is equal to both segments. As consequence the determination
of the signed distance according to (4.4) is ambiguous. (b) The distance transform can produce
inefficient sets of active grid points. The bottom left grid point does not have an opposite signed
neighbor.

Here it is assumed that the grid line is parallel to the k-th axis direction, hence
parallel to ~ek. ε1 is a small positive constant (0 < ε1 ≪ 1), introduced for numerical
reasons, which ensures the calculation of the initial LS values for all grid points directly
neighbored to the boundary. Thus, ε1 must be larger than the maximum numerical
error for the calculation of the distance |pk − qk|. In this work ε1 = 10−4 is used.

The signed distance of a grid point ~p to the current segment is given by

τ(~p, k) = sgn(nk) · (pk − qk) . (4.4)

The sign of the k-th component of the normal vector ~n can be obtained by considering
the orientation of the surface segment with respect to ~ek. In two dimensions the
distance is positive, if the vertex ~x1 is on the left-hand side. In case of three dimensions
the sign is positive, if the vertices ~x1, ~x2, and ~x3 are seen counterclockwise.

If for each grid point ~p the distance with the smallest absolute value |pk − qk| is kept,
at least all grid points with LS values in the range [−1, 1] will be properly initialized
after iterating over all segments of the boundary mesh. However, this procedure can
lead to problems as depicted in Figure 4.2a, where the wrong sign could be assigned
to the LS value of both grid points, since both segments are equally distanced. To
resolve this ambiguity without additional consideration of neighbor segments, another
distance is measured using

τ ′(~p, k) = sgn(pk − qk) · (pk − qk − ε2 · tk) (4.5)

in order to determine the closest segment for a certain grid point ~p. Here ~t =
(t1, . . . , tD) denotes the unit vector pointing from ~q to the centroid ~c of the segment

~t :=
~c− ~q

‖~c− ~q‖ with ~c :=
1

D

D∑

i=1

~xi. (4.6)

36

4 A Fast Level Set Framework

ε2 is again a small positive constant (0 < ε2 ≪ 1). However, the distance which is
finally assigned to Φ(~p) is still calculated using (4.4). ε2 = 10−6 is used for all LS
initializations in this work.

The initialization procedure is now as follows: For each segment and for all intersecting
grid lines all grid points fulfilling (4.3) are determined. The indices ~p of these grid
points are appended to a list along with their corresponding distances τ and τ ′, defined
in (4.4) and (4.5), respectively. Finally the list is lexicographically sorted with respect
to the grid point indices. If there are more entries with the same ~p, (which is not
very often the case,) τ of that entry with the smallest corresponding τ ′ is used for the
initial LS value Φ(~p).

The entire initialization algorithm has a complexity of O(ND log ND + NS), where ND

is the final number of defined grid grid points in the H-RLE data structure. NS is
the total number of segments of the boundary mesh. The logarithmic term is due
to the sorting algorithm which cannot be avoided, since the setup of the H-RLE
data structure requires a sorted list as well. This initialization algorithm can produce
inefficient sets of active grid points as exemplified in Figure 4.2b, which can be avoided
by appending a pruning procedure, as mentioned earlier (see Section 3.4.2).

4.1.2 H-RLE Data Structure Setup

The H-RLE data structure can be set up by inserting all defined grid points in lexico-
graphical order along with their LS values. In this way only the ends of the dynamic
arrays must be modified, which can be performed with constant complexity using, for
instance, vectors from the standard template library (STL) [124].

The LS framework provides two functions for setting up the H-RLE data structure.
The first function allows the insertion of a single defined grid point, while the other
one adds a new run of undefined grid points (undefined run) together with a specific
run code, indicating the sign of their LS values. Both functions take two parameters.
The first parameter is the index vector of the first grid point of the segment. (See
Section 3.5.4 for the definition of a segment regarding the H-RLE data structure.) The
second parameter takes the LS value for the defined grid point, or the run code for
the new run, respectively. By appending successive new defined grid points and new
undefined runs in lexicographical order, the H-RLE data structure can be set up in
linear time.

For example, the following is done to set up the H-RLE data structure as given in
Figure 3.6, for which the corresponding segmentation is shown in Figure 3.7: For each
segment, one of the two setup functions must be called. The first segment is the
positive undefined run starting at (0, 0). Then, the same function must be called with
start indices (0, 2). Next, the second function for inserting defined grid points must be
called multiple times with indices (2, 2) , (3, 2) , . . . , (9, 2) along with the corresponding
LS values. Afterwards, another positive undefined run is inserted which starts at

37

4 A Fast Level Set Framework

(10, 2), and so on. Runs are automatically finished, if another new run with a different
run code is started or a defined grid point is inserted.

The previously described closest point transform algorithm does not deliver informa-
tion about the start indices of undefined runs. The output is only a sorted list of all
grid points which have at least one neighbor with opposite LS sign. However, from
this list and the grid boundaries all starting indices can be derived.

4.2 Sequential Data Access

For an easy sequential access to LS values of grid points stored within a H-RLE data
structure iterators have been developed. These iterators can be moved over the data
structure in linear time with respect to the number of defined grid points. They are
the basis for the realization of algorithms such as the sparse field LS method with
optimal linear scaling.

4.2.1 Basic Iterator

The basic iterator traverses the H-RLE data structure in sequential order and stops
at every segment, thus at every defined grid point and at every undefined run. The
iterator can be moved either forward or backward. Each step requires constant time
on average. Since the number of segments is proportional to the number of defined
grid points (see Section 3.5.4), a traversal of the entire data structure is possible in
linear time.

The iterator allows access to all stored information of the current segment:

• The iterator provides a function that returns the minimum and maximum index
vectors of the current segment. If the segment contains only a single grid point,
as is the case for defined grid points, both index vectors are identical.

• The LS sign can be queried for the current segment. This is also possible for
segments which are undefined runs. In this case the sign can be retrieved from
the run code.

• If the current segment is a defined grid point, its LS value can be accessed using
the iterator. For undefined runs +∞ or −∞ is returned instead. Floating-point
data types fulfilling the IEEE standard for binary floating-point arithmetic [49]
provide numerical representations for +∞ and −∞. Alternatively, the maximum
and minimum representable value can be used instead.

Figure 4.3b shows a two-dimensional example of a H-RLE data structure with sequen-
tially numbered segments. The numbering corresponds to the traversal sequence of the
iterator. The second position refers to the positive undefined run which contains the

38

4 A Fast Level Set Framework

(a) (b)

(c) (d)

Figure 4.3: (a) A surface embedded in a domain with extensions 4× 5. However, due to the
different boundary conditions in x1-direction (reflective) and x2-direction (periodic) 5× 5 grid
points are used for the discretization of the level set function. (b) Basic iterators traverse the
segments of the H-RLE data structure according to their numbering. (c) The segmentation as
seen by an iterator with offset (−1,−1). (d) The same for an iterator with offset (2, 1).

grid points (0, 2), (1, 2), and (2, 2). Hence, in this case the minimum and maximum
index vectors are (0, 2) and (2, 2), respectively.

Aside from stepping forward and backward the basic iterator can also be moved to
any segment, specified by an index vector belonging to that segment. However, this
corresponds to a random access operation with a logarithmic complexity in the worst
case.

4.2.2 Offset Iterator

If access to neighbor grid points is needed, additional iterators are used which are
moved simultaneously with a central basic iterator over the H-RLE data structure

39

4 A Fast Level Set Framework

[44, 84]. Each additional iterator has a predefined offset relative to the central iterator.
For example, to enable the calculation of first order differences in two dimensions four
additional iterators are necessary with offset index vectors (±1, 0) and (0,±1).

As described earlier the H-RLE data structure is able to store the LS values of a finite
set of points of a grid with infinite extensions. However, sometimes it is desireable to
limit the simulation domain by using periodic or reflective boundary conditions. In to-
pography simulations, such boundaries are usually used for lateral extensions. (Infinite
boundaries are also implemented as reflective boundaries, for which the corresponding
minimum and maximum grid indices are set to the limits of the used integral data
type.)

Boundary conditions must be incorporated while traversing an offset iterator over the
H-RLE data structure. The movement is not as continuous as for the basic iterator,
because, due to the boundary conditions, leaps within the data structure may be
necessary to reach the next position. At reflective boundaries the moving direction of
an offset iterator may also be reversed.

To enhance the usability of iterators an offset iterator has been implemented which
provides the same functionality as the basic iterator and which automatically incor-
porates the applied boundary conditions. It is initialized with a certain offset index
vector. The behavior of an offset iterator amounts to a basic iterator moving over the
H-RLE data structure, obtained by shifting all segments of the H-RLE data structure
according to the (reversed) offset with consideration of the boundary conditions.

Figure 4.3 exemplifies the behavior of offset iterators. Figure 4.3a shows a small surface
which is resolved on a simulation domain of size 4 × 5, with reflective and periodic
boundary conditions along the x1- and x2-direction, respectively. Storing the LS values
of defined grid points using the H-RLE data structure leads to the segmentation as
given in Figure 4.3b. Figure 4.3c and Figure 4.3d show the segmentation of the H-RLE
data structure as seen for iterators with offsets (−1,−1) and (2, 1), respectively.

The (−1,−1)-iterator gives access to the (−1,−1)-neighbors of all grid points with
indices in the range given by the start and end index vectors returned by the offset
iterator. For example, the fourth position of the (−1,−1)-iterator refers to the positive
undefined run with segment number 2. The minimum and maximum index vector
are (0, 3) and (3, 3), respectively, which means that the referenced segment contains
the (−1,−1)-neighbors for the grid points (0, 3), (1, 3), (2, 3), and (3, 3). A look at
Figure 4.3b confirms that for these grid points the (−1,−1)-neighbors belong to the
positive undefined run with number 2. During a complete traversal of the (−1,−1)-
and the (2, 1)-iterator the segments of the H-RLE data structure are passed in the order
(8, 9, 1, 2, 3, 5, 6, 7) and (1, 2, 3, 4, 4, 3, 6, 7, 8, 9, 10, 10, 9, 1), respectively. For reflective
boundaries it may not be necessary for all segments to be visited by an offset iterator.
For example, the (−1,−1)-iterator never stops at segment 4.

A traversal over the entire H-RLE data structure can be performed with linear com-
plexity for all offset iterators, independent of the offset index vector. In most cases,

40

4 A Fast Level Set Framework

the next segment can be reached in constant time by stepping forward, similar to the
basic iterator. Alternatively, in the case of reflective boundary conditions backward
steps can be necessary, as is the case for the movement of the (2, 1)-offset iterator from
point (3, 1) to (4, 1) (see Figure 4.3d). If the next iterator position is neither the next
nor the previous segment, a random access operation is necessary. This is the case,
when the next iterator position is on another x1-grid line (parallel to the x1-direction)
and the first position of the offset iterator must be found there. Due to the offset the
first segment is not necessarily the first position.

A random access operation requires a binary search. In order to estimate the additional
costs for the binary searches during a complete traversal over the H-RLE data structure
all x1-grid lines, to which at least one defined grid point belongs, are considered. Let
Z be the number of these grid lines. The distribution of defined grid points over these
Z grid lines is given by the positive numbers u1, u2, . . . , uZ with

∑Z
z=1 uz = ND. ND is

the total number of defined grid points. Iterators will only traverse these grid lines. In
order to find the start position on the z-th grid line a binary search is necessary which
has a worst case logarithmic complexity O(log uz). Hence, the total costs during a
complete traversal over the H-RLE data structure are O(

∑Z
z=1 log uz) which can be

further estimated as

O(
∑Z

z=1 log uz) ≤ O(
∑Z

z=1 uz) = O(ND). (4.7)

Therefore, the total additional costs due to the binary searches for the worst case sce-
nario are of order O(ND), which proves the linear complexity for a complete traversal
of offset iterators.

Several offset iterators can be grouped and moved simultaneously over the data struc-
ture to enable neighbor access to grid points. As an example, an iterator for first order
finite differences in two dimensions can be built from 5 iterators with offsets (0, 0),
(±1, 0), and (0,±1). The common set of grid points of all iterators is given by the
maximum of all their minimum index vectors and the minimum of all their maximum
index vectors. The current iterator positions only apply for grid points within this
range. To go to the next grid points the common range must be moved forward. This
is performed by advancing only those iterators for which their maximum index vector
is equal to the upper bound of the common range. In this way an iteration over the
H-RLE data structure can be carried out in linear time. However, by nature, the
costs are directly proportional to the number of iterators in the group. Due to the
inherent incorporation of boundary conditions arbitrary stencils of iterators can be
easily formed. This allows a simple implementation of algorithms for the H-RLE data
structure.

41

4 A Fast Level Set Framework

4.3 Sparse Field Implementation

The H-RLE data structure does not support efficient insertion or deletion of defined
grid points except at the end. However, the sparse field LS method changes the set of
defined grid points at every time step. The only efficient way to get a new H-RLE data
structure with a different set of defined grid points is to set it up from the beginning.
This can be carried out on-the-fly by simultaneously iterating over the existing H-
RLE data structure and inserting the desired defined grid points into the new data
structure.

In the following sections the realization of the sparse field LS method for the H-RLE
data structure is described in further detail. Every time step requires the application
of a couple of operations which all process the H-RLE data structure sequentially using
the previously described iterators. As a consequence, all these operations exhibit a
linear performance.

The sparse field implementation extends the original H-RLE data structure by one
additional array which has the same size as the array holding the LS values. For each
defined grid point an integral value is stored, which gives information on whether a
defined grid point is active or not. In the first case, the corresponding value gives the
number of the active grid point. The numbering corresponds to the lexicographical
order of active grid points. By contrast, non-active defined grid points are indicated
by setting the corresponding array entries to the maximum representable value.

4.3.1 Time Integration

For the time integration step it is assumed that the defined grid points of the H-RLE
data structure include at least all active grid points as well as all neighbors which
are needed for the applied time integration scheme. Furthermore, at each active grid
point the surface velocity field must be known. To update the LS values of all active
grid points in time, first the time increment ∆t needs to be determined according
to (3.33). This requires an iteration over the data structure using a finite difference
stencil of iterators. At each active grid point the approximations to the Hamiltonian
are calculated and stored in a separate array, because they are needed again, after the
determination of the time increment, for updating the LS values.

After updating the LS values of all active grid points, the LS values of all other defined
grid points are no longer needed. Hence, it is favorable to reduce the set of defined
grid points. This can be performed during the same initial iteration. Every active grid
point is inserted together with its LS value into a new H-RLE data structure. The
signs of all non-active grid points are maintained and stored within the new H-RLE
data structure as members of undefined runs. After the iteration, the memory used
for storing the old H-RLE data structure can be freed.

42

4 A Fast Level Set Framework

Once the time increment is known and the approximations to the Hamiltonian are cal-
culated for all active grid points, it is possible to update the LS values of all active grid
points using (3.5). This operation could be realized by processing the data structure
using a basic iterator. However, since the new H-RLE data structure only contains
active grid points, the array holding the LS values has the same size as the array for
the approximations to the Hamiltonian. Therefore, the update of the LS values can
simply be implemented by a multiplication of the Hamiltonian array with the time
increment ∆t followed by a subtraction from the LS values array of the H-RLE data
structure.

4.3.2 Pruning and Consistency Check

So far the H-RLE data structure contains the updated LS values Φ(t+∆t)(~p) for all grid

points from the active layer L(t)
0 . As described in Section 3.4.2 a pruning procedure is

necessary to avoid dense sets of active grid points. Again, a stencil of iterators, similar
to that required for the computation of first order finite differences, is moved over the
data structure. At the same time a new H-RLE data structure is set up in which all
changes are stored. The new H-RLE data structure is constructed by copying the old
one, while skipping defined grid points which do not have an opposite signed neighbor.
These grid points are added to undefined runs instead.

Since the neighbors of active grid points (belonging to L(t)
±1) have not been updated yet,

this early pruning procedure works only if the signs of non-active grid points (6∈ L(t)
0)

are not altered during the entire time integration step. According to Section 3.4.2 the
signs of non-active grid points are maintained, if the CFL number CCFL fulfills

CCFL ≤
1

2
. (4.8)

As a consequence, the presented implementation of the sparse field method only allows
CFL numbers satisfying this condition.

Before a defined grid point is inserted into the new H-RLE data structure, it is first
checked, if its LS value is greater than 1

2 or smaller than −1
2 , while that of any neigh-

boring defined grid point is less than −1
2 or larger than 1

2 , respectively. If this is
the case, the prerequisite of the sparse field LS method (3.27) would be violated. To
guarantee the robustness of the algorithm the LS value must be reduced to ±1

2 (while
keeping its sign) before insertion into the new H-RLE data structure. After completing
the iteration over the old H-RLE data structure and finishing the setup of the new
one, the old H-RLE data structure can be deleted.

4.3.3 Dilation

The set of defined grid points in the H-RLE data structure is as a result of the pruning

procedure a subset of L(t)
0 . The LS values are all in the range [−1, 1] due to restriction

43

4 A Fast Level Set Framework

(4.8). For the next time step the LS values of all new active grid points ~p ∈ L(t+∆t)
0

must be known. Furthermore, the LS values of neighboring layers, as needed for the
time integration scheme, must be updated. This requires a dilation procedure which
extends the set of defined grid points and calculates their corresponding LS values
using the update scheme (3.29).

To extend the set of defined grid points on the positive and the negative side by a
single layer, a stencil of iterators, which allows access to neighbor points, is moved
over the H-RLE data structure. If any iterator from the stencil encounters a defined
grid point, a defined grid point is inserted into the new H-RLE data structure. If
the position of the central iterator represents a defined grid point, its LS value is
simply copied. Otherwise, the LS value must be determined using the update scheme
(3.29) and the LS values of neighbor points, which can be accessed by the non-central
iterators. Here, positive and negative undefined runs are regarded to have LS values
+∞ or −∞, respectively. Since at least one iterator is at the position of a defined grid
point the LS value of the newly inserted grid point is always defined. After completing
the iteration, the old H-RLE data structure can be deleted. The new H-RLE data
structure now contains all previously defined grid points along with the newly added
defined grid points.

After the first application of the dilation procedure, the LS values of all grid points in

layers L(t)
±1 are updated. Since the CFL condition (3.31) implies that

L(t+∆t)
0 ⊆

(

L(t)
−1 ∪ L

(t)
0 ∪ L

(t)
1

)

, (4.9)

the updated LS values are available for all new active grid points ~p ∈ L(t+∆t)
0 . Similarly,

a second run of the dilation procedure which updates all points in layers L(t)
±2 ensures

that at least for all grid points ~p ∈ L(t+∆t)
±1 the updated LS values are available, and

so on. The number of repetitions of the dilation procedure depends on how many
additional layers of defined grid points are needed for the time integration scheme. As
an example, for the second order approximation, which requires two additional layers,
three iterations are necessary in total.

However, this procedure also adds defined grid points to the H-RLE data structure,
which are not really needed for the finite difference scheme. If NL additional layers are

necessary, the last iteration which updates all points of layers L(t)
±(NL+1) also adds some

new points which are actually members of L(t+∆t)
±(NL+1). The insertion of these grid points

can easily be avoided according to (3.26), if only grid points for which the new LS value
fulfills |Φ(t+∆t)(~p)| ≤ NL + 1

2 are added. The procedure can be further optimized by
inserting new grid points as late as possible to speed up successive iterations over the
H-RLE data structure. It is favorable to add only defined grid points with an absolute
LS value not larger than k − 1

2 during the k-th iteration.

The dilation procedure scales with O(ND ·NL
2), where ND is the number of defined

grid points before dilation and NL is the number of added layers. Hence, this algorithm

44

4 A Fast Level Set Framework

is only efficient for small NL, which is the case, if first (NL = 1) or second order finite
difference schemes (NL = 2) are used. For larger NL, an algorithm similar to the fast
marching method [109] could probably be the better choice. However, this technique
would require random access to the H-RLE data structure resulting in a non-linear
performance with respect to ND.

The pruning and consistency check, as described in the previous section, can be in-
cluded during the first dilation cycle. This avoids an iteration over the H-RLE data
structure and accelerates the sparse field method.

4.4 Boolean Operations

If geometries are represented as level sets, Boolean operations can be expressed as
simple operations on the corresponding LS functions [89, 110]. If one considers the
sets MA, MB , and MC and the corresponding boundaries SA = ∂MA, SB = ∂MB ,
and SC = ∂MC , which are represented by the LS functions ΦA, ΦB , and ΦC , the LS
counterparts of Boolean operations are listed in the following.

Union: MA =MB ∪MC ⇔ ΦA = min(ΦB ,ΦC) (4.10)

Intersection: MA =MB ∩MC ⇔ ΦA = max(ΦB,ΦC) (4.11)

Complement: MA = R
D \MB ⇔ ΦA = −ΦB (4.12)

Relative complement: MA =MB \MC ⇔ ΦA = max(ΦB,−ΦC) (4.13)

Here the convention is used that the LS function ΦX is negative for all ~x ∈MX .

Boolean operations are very useful for more general topography simulations, if con-
secutive process steps, like etching and/or deposition processes, should be simulated
or several materials are involved.

4.4.1 Implementation

If the H-RLE data structure is used, Boolean operations can be implemented in a
very efficient manner. The minimum or maximum of two LS functions is obtained
by moving two basic iterators over the corresponding H-RLE data structures. The
common range of both iterators is defined as the maximum of both minimum index
vectors and by the minimum of both maximum index vectors. To advance the pair
of iterators to the next position, all iterators are moved forward, whose maximum
index vector is equal to the maximum index vector of the common range. This is in
analogy to the realization of neighbor access using a stencil of iterators, as described
in Section 4.2.2.

At every step, the minimum or the maximum LS value of both iterators is calculated.
Recalling that the LS value of undefined runs is +∞ or −∞ (see Section 4.2.1), the

45

4 A Fast Level Set Framework

(a) Cuboid MA. (b) Cone MB .

(c) Sphere MC . (d) Resulting geometry (MA ∪MB) \MC .

Figure 4.4: Boolean operations can be calculated using level sets. The union of a cuboid (a)
and a cone (b) subtracted by a sphere (c) is the structure shown in (d).

result can also take these values. In this case an undefined run is inserted into the
new H-RLE data structure using the minimum index vector of the common range.
Otherwise, if the result is not +∞ or −∞, at least one of the two iterators must be at
the position of a defined grid point. Hence, the common range is exactly this single
grid point, for which the common minimum and maximum index vector are identical.
This index vector is used to add a defined grid point to the H-RLE data structure.

46

4 A Fast Level Set Framework

The resulting new H-RLE data structure does not necessarily fulfill (3.30). Hence, grid
points belonging to L0 do not necessarily have an opposite signed neighbor leading to
inefficient sets of active grid points. To avoid dense sets of such nonrelevant grid points
they must be removed using a pruning procedure as described in Section 4.3.2.

Overall, the calculation of the minimum or the maximum of two LS functions ΦA and

ΦB can be carried out in linear time O(N
(A)
D + N

(B)
D), if N

(A)
D and N

(B)
D denote the

corresponding numbers of defined grid points. The determination of the complement
requires only the inversion of the sign. This can be performed without rebuilding the
H-RLE data structure, by simply changing the sign of all values in the LS array and
interchanging the run codes of all positive and negative undefined runs. The applica-
tion of Boolean operations on H-RLE data structures is demonstrated in Figure 4.4.
It shows the relative complement of a sphere in the union of a cuboid and a cone.

4.4.2 Chemical-Mechanical Planarization

If a geometry is represented as LS, Boolean operations can easily be calculated. They
can be applied to simulate various semiconductor processes in a simplified manner. For
example, the simplest model for chemical-mechanical planarization (CMP) assumes
that everything is cut away above a certain height. Hence, the new structure M′ is
obtained by

M′ =M∩ {~x : ~x · ~n ≤ c}, (4.14)

where ~n is the normal vector and c the distance to the origin of the cutting plane
Pcmp = {~x : ~x · ~n = c}. By setting up a LS function Φcmp, whose zero LS represents
Pcmp (4.14) can be written as

Φ′ = max(Φ,Φcmp). (4.15)

Here Φ and Φ′ are the LS functions describingM and M′, respectively.

Figure 4.5 shows an example, for which CMP is used to flatten the geometry after an
isotropic deposition process. Boolean operations are applied to both, the LS function
representing the initial structure and the LS function representing the final structure
after the deposition process.

4.4.3 Pattern Transfer

Boolean operations can also be used to transfer a pattern defined by a given mask
onto a structure. It is assumed that the initial geometry is a two-layer structure like
that shown in (Figure 4.6a). The geometry can be alternatively described by two LS
functions (Figure 4.6b). The first LS function Φ1 represents the interface between the
two layers and the second Φ2 describes the surface. To transfer the mask pattern to

47

4 A Fast Level Set Framework

(a) The initial geometry with a bounding box
500 × 500 × 300 measured in grid spacings.

(b) The corresponding LS representation.

(c) Isotropic deposition. (d) Chemical-mechanical planarization.

Figure 4.5: After an isotropic deposition process the structure is exposed to CMP. This
process is realized using Boolean operations applied on the LS representations of the initial
surface (blue) and the surface after the deposition (yellow).

the structure the top layer needs to be selectively removed. This can be expressed by
the following Boolean operation

Φ′
2 = min(Φ1,max(Φ2,Φmask)). (4.16)

Here the LS function Φmask represents the mask, if it is extruded to the third dimension
(Figure 4.6c). The final minimum and maximum coordinates of the extruded mask
must be at least smaller and larger than the minimum and maximum coordinates of
the LSs representing the initial structure, respectively. The final structure is shown in
Figure 4.6d.

48

4 A Fast Level Set Framework

(a) The mask (brown) defines the pattern which
is finally transfered onto the initial structure
(blue) by partially removing the resist (yellow).

(b) The LS representation of the two-layer
structure.

(c) The mask is extruded to three dimensions
and also represented as LS.

(d) The final structure with the transfered pat-
tern.

Figure 4.6: Boolean operations using level sets can be applied to describe pattern transfer.

4.5 Smoothing

The LS method also provides a simple way to smooth a given geometry. Setting the
surface velocity in the LS equation equal to the mean curvature leads to a smoothed
surface [110]. The definition of the mean curvature and its approximation were given in
Section 3.3.2. The introduction of a lower limit κmin < 0 and an upper limit κmax > 0
for regions with negative and positive curvature, respectively, controls the amount of
smoothing. The smoothing algorithm is realized by setting the surface velocity field

49

4 A Fast Level Set Framework

Figure 4.7: The final surface after a smoothing operation is applied to the geometry given
in Figure 4.5a. The curvature is limited by κmin = −0.1 and κmax = 0.05.

as follows

V (~p) =

{

0 if κmin ≤ κ(~p) ≤ κmax,

−κ(~p) else,
(4.17)

and solving the LS equation over time until all surface velocities are equal to 0.
Figure 4.7 demonstrates smoothing for the test structure given in Figure 4.5a with
κmin = −0.1 and κmax = 0.05.

4.6 Multiple Material Regions

General topography simulations require the treatment of different material regions
(see Section 2.1). Etch processes especially require the distinction of different material
regions, such as a mask and a substrate, to which different etch rates have to be
applied. Hence, the geometric information of material regions is necessary during
time evolution. Usually the initial geometry is given as a triangulated mesh, where
each element is assigned to a certain material. In the case of etching, this irregular
grid must be accessed many times to query the material region of surface points in
order to calculate the correct surface velocities. Therefore, if search trees are used, for
which queries are of logarithmic complexity, a linearithmic algorithm for time evolution
can be expected. If consecutive deposition and etching processes must be simulated,
a costly and challenging modification of the irregular mesh is necessary after each
processing step.

Instead of using an irregular mesh for the material regions and a regular grid for
the LS method simultaneously, multiple LS functions can be used instead. The initial
geometric information is simply mapped from the irregular mesh to the regular grid by
means of additional LS functions. In the following sections a multi-LS technique using
the sparse field method and the H-RLE data structure is described. With the ability to

50

4 A Fast Level Set Framework

(a) (b) (c)

Figure 4.8: (a) A geometry consisting of three different materials, whereM1 represents the
substrate, M2 the mask, and M3 a passivation layer. (b) Description of the structure using
three enclosing LSs. (c) Alternative representation where one LS describes the common surface
and two others the interfaces between the different material regions.

resolve the material-dependent surface velocities with sub-time-step accuracy, a more
accurate final profile is obtained, especially in the presence of thin layers or large etch
rate ratios.

4.6.1 Level Set Representation

For the following considerations the entire structure M is assumed to be composed
of M disjoint material regions M1,M2, . . . ,MM satisfying (2.1). There are several
possibilities to represent the different material regions by LS functions. One way is to
describe each material region Mk by an enclosing LS function Φk [46]

Φk(~x) ≤ 0 ⇔ ~x ∈Mk (4.18)

as shown in Figure 4.8b. However, using this representation, very thin layers with
thicknesses smaller than one grid spacing cannot be properly resolved. However, some
etching processes require the treatment of very thin passivation layers. If the passi-
vation layer becomes thinner than the grid spacing, it can vanish abruptly, and the
etching of the underlying material would start too early. This can lead to significant
errors, especially for large etch rate ratios.

Instead, different material regions can be described by M LS functions satisfying

Φk(~x) ≤ 0 ⇔ ~x ∈
k⋃

i=1

Mi. (4.19)

51

4 A Fast Level Set Framework

(a) (b)

Figure 4.9: Renumbering of material regions (a) leads to a different LS representation (b).

Here ΦM describes the surface of the entire structure M and the other LS functions
correspond to interfaces as depicted in Figure 4.8c. This LS representation is often
more convenient for topography simulation, because thin layers, such as the passivation
layer M3 in Figure 4.8a, are described more accurately.

The LS configuration according to (4.19) depends on the numbering of the material
regions. For comparison, a different LS representation, obtained through relabeling
of the material regions is shown in Figure 4.9. The most suitable LS representation
depends on the problem. If the mask is completely removed during the etch process,
the configuration given in Figure 4.8c might be better. If underetching of the mask is
expected, the LS representation shown in Figure 4.9b is favorable.

If the geometry is described using (4.19), the number of the material region which is
on the surface can easily be determined using

mat(~x) := min{1 ≤ k ≤M : Φk(~x) = 0}. (4.20)

mat is the surface material function which is defined for all surface points ~x ∈ S.

For the following considerations all LS functions are assumed to fulfill

Φ1(~x) ≥ Φ2(~x) ≥ . . . ≥ ΦM(~x). (4.21)

This inequality is inherently satisfied, if the geometry is described by (4.19) and the
LS functions are initialized as distance functions.

Some processes deposit new material layers on top of the structure. The described
LS representation allows for easy additions of new material regions. It is sufficient to
introduce a new LS function ΦM+1, which satisfies ΦM+1(~x) ≤ ΦM(~x). In practice,

52

4 A Fast Level Set Framework

to model the deposition of a new material, the new LS function is first initialized
according to ΦM+1(~x) = ΦM (~x). Then the LS equation is solved for this topmost LS
function ΦM+1, which represents the new surface. Stripping the top most material
layer MM is also very simple by deleting the top most LS function ΦM (~x).

4.6.2 Time Evolution

The different material regions must be taken into account during time evolution, es-
pecially for the simulation of etching. Common approaches use a single velocity field
which is set up in dependence of the material types on the surface [110]. This field is
assumed to be constant for the duration of the time integration step. However, if the
etch front reaches another material within that time step, for which the value of the
etch rate differs significantly, as is the case for mask or etch stop layers, the surface
is advanced with the wrong velocity. For the LS representation introduced in (4.19) a
more accurate technique is presented in this section, which is able to resolve varying
surface velocities with sub-time-step accuracy.

Initially only the topmost LS function ΦM , which represents the surface, is updated
in time. Thereby, the surface velocities of different materials which are on the surface
and which can be retrieved from the surface material function (4.20) are incorporated.
In the following, it is always assumed that material of type MM is deposited, if the
surface velocities are positive. If another material should be deposited instead, a new
material layer must be added, as described previously. Negative surface velocities
stand for material removal, and the material dependence on the surface velocity must
be incorporated during the time evolution of ΦM .

After updating the topmost LS function ΦM in time, all other LS functions repre-
senting the interfaces between material regions, are adapted according to the Boolean
operation

Φ
(t+∆t)
k (~x) = max

(

Φ
(t)
k (~x),Φ

(t+∆t)
M (~x)

)

. (4.22)

This adaption rule maintains relation (4.21). For pure deposition processes, where the
surface velocity is positive everywhere on the surface, (4.22) does not change the other
LS functions. However, if there are any regions on the surface with negative surface
velocities, these Boolean operations must be performed.

There is still the open question of how to change ΦM under consideration of the differ-
ent material regions with sub-time-step accuracy. For simplicity M different velocity
fields Vk(~x) (1 ≤ k ≤ M) are introduced, one for each material type. The value of
Vk(~x) at a certain surface point ~x ∈ S is defined as the surface velocity, which would
be obtained, if material Mk was on the surface at that point, i.e. mat(~x) = k holds.
However, Vk(~x) is still calculated using the arriving flux distribution Γ(~x; q, ~ω,E). This
distribution can be assumed to be constant for the duration of the time integration
step, because small changes of the geometry usually do not show much influence on

53

4 A Fast Level Set Framework

particle transport. Even if the material type changes on small parts of the surface dur-
ing the time step, which leads to different reemission probabilities, the flux distribution
remains approximately the same.

Due to the convention that only the topmost material MM can be deposited, the
surface velocity fields must obey

Vk(~x) ∈ R
−
0 for 1 ≤ k < M, (4.23)

VM (~x) ∈ R. (4.24)

The time evolution of ΦM is computed using a generalization of the update rule (3.5)

Φ
(t+∆t)
M (~p) = Φ

(t)
M (~p)−

M∑

k=1

∆tk(~p) · Ĥ(~p,Φ
(t)
M , Vk(~p)), (4.25)

which is applied to all active grid points ~p ∈ L(t,M)
0 . Here, in accordance with the

sparse field method, L(t,M)
0 denotes the active layer of ΦM at time t. ∆tk(~p) denotes

the time for which the surface velocity Vk(~p) is used during the time integration of
the LS value at point ~p. The sum of all these times must satisfy

∑M
k=1 ∆tk(~p) = ∆t.

To incorporate material-dependent surface velocities with sub-time-step accuracy they
are approximated for a given time step ∆t using

∆tk(~p) =

Φ
(t)
k

(~p)−Φ
(t)
k−1(~p)

Ĥ(~p,Φ
(t)
M

,Vk(~p))
if k > k′(~p),

∆t−∑M
l=k+1 ∆tl(~p) if k = k′(~p),

0 if k < k′(~p).

(4.26)

For each active grid point ~p the material number k′(~p) is chosen to be the smallest
number (1 ≤ k′(~p) ≤M) for which all ∆tk(~p) are non-negative, if they are calculated
according to (4.26). If VM (~p) is positive, k′(~p) is always set to M . k′(~p) can be inter-
preted as the material type which is locally on the surface after the time integration
step. Insertion of (4.26) into (4.25) yields

Φ
(t+∆t)
M (~p) = Φ

(t)
k′ (~p)−∆tk′(~p) · Ĥ(~p,Φ

(t)
M , Vk′(~p)). (4.27)

It should be noted that it is not necessary to evaluate the velocity fields Vk for all k and

at all active grid points ~p ∈ L(t,M)
0 . For an active grid point ~p it is sufficient to calculate

Vk(~p) for k′(~p) ≤ k ≤M . Vk(~p) with k < M is also not relevant, if Φ
(t)
k (~p) = Φ

(t)
k−1(~p).

Moreover, if VM (~x) is never positive, due to the applied model, then the determination

of VM (~p) can also be omitted in the case of Φ
(t)
M (~p) = Φ

(t)
M−1(~p). Hence, for a certain

active grid point only the local surface velocities for those materials, which are actually
involved during the time step, must be determined.

54

4 A Fast Level Set Framework

The time integration step ∆t is chosen according to (3.32) in such a way that

max
~p∈L(t,M)

0

∣
∣
∣Φ

(t+∆t)
M (~p)− Φ

(t)
M (~p)

∣
∣
∣ = CCFL (4.28)

is satisfied. Due to the limitation CCFL ≤ 1
2 (4.8) it is sufficient for the solution of

(4.26) to store only LS values up to an absolute value of 1 within the H-RLE data
structures for the LS functions Φ1,Φ2, . . . ,ΦM−1. LS values of positive and negative
undefined grid points are again considered to be equal to +∞ and −∞, respectively
(compare Section 4.2.1).

The presented multi-LS method can be realized by adapting the time integration
procedure described in Section 4.3.1. While iterating over the surface LS function
ΦM using a stencil of iterators, which allows the calculation of the required finite
differences, M − 1 additional basic iterators are simultaneously moved over the corre-
sponding H-RLE data structures of Φ1,Φ2, . . . ,ΦM−1. These iterators allow access to
the LS values as needed in (4.26).

4.6.3 Isotropic Material Dependent Etching

To demonstrate the multi-LS approach, an isotropic etching process is applied to
the test structure given in Figure 4.10. The lateral extensions of this geometry are
1200× 200 (in terms of grid spacings). The structure consists of three layers on top of
a substrate. The layer thicknesses are, from top down, 50, 50, and 0.5. The top layer
is a mask with four circular holes with diameters 20, 40, 60, and 80, respectively.

The way in which the different material regions are labeled defines the LS represen-
tation according to (4.19). Since underetching of the mask is expected, the mask is
assigned to M3. The complete numbering can be seen in Figure 4.10. The corre-
sponding LS representation of the initial structure is depicted in Figure 4.11. Four LS
functions are used to describe the four different material regions.

The multi-layer structure is exposed to an etch process. The etch rate is assumed to
be 0.1 grid spacings per time unit for the mask (M3) and 0.025 for the very thin layer
(M2). For the other two material regions the etch rate is set to 1. The profile after
120 time units is shown in Figure 4.12. Although the very thin layer has a thickness
smaller than a grid spacing, its small etch rate is accurately incorporated during time
evolution.

In order to prove the linear scaling of the entire time evolution algorithm, this etch
process is applied to the same geometry, only scaled by various factors. The process
times are scaled accordingly. Table 4.1 lists the average computation times for a single
time step for scale factors 0.5, 1.0, 1.5, 2.0, and 2.5. The calculation time scales
well with the surface size which itself scales quadratically with the scale factor. The
total number of required time steps is also given. The numbers are obtained using

55

4 A Fast Level Set Framework

Figure 4.10: A test structure with lateral extensions 1200× 200 and three layers on top of
the substrate (red). The first layer cannot be clearly seen, since it has a thickness of only 0.5.
The second layer (blue) and the mask (green) both have a thickness of 50.

Figure 4.11: The multi-LS representation of the initial geometry. Four LS functions are used
to describe the four different material regions.

Figure 4.12: The final geometry after isotropic etching with material-dependent etch rates.
The etch rate was 0.1 grid spacings per time step for the mask, and 0.025 for the very thin
layer. For the other two material regions the etch rate was set to 1.

56

4 A Fast Level Set Framework

Scale factor 0.5 1.0 1.5 2.0 2.5

Lateral grid resolution 600× 100 1200× 200 1800× 300 2400× 400 3000× 500
Time integration (avg.) 0.38 s 1.56 s 3.44 s 6.10 s 9.81 s
Num. time steps 1002 2035 3070 4104 5139

Table 4.1: The average computation time for a time integration step and the number of
required time steps for the material-dependent etching process shown in Figure 4.12 using an
AMD Opteron 8222 SE processor (3 GHz).

CCFL = 0.5. The simulation was carried out on an AMD Opteron 8222 SE processor
with a CPU clock speed of 3 GHz.

4.7 Directional Visibility Check

Some processes are characterized by almost unidirectional and normal incident particle
transport from the source plane to the surface. In this case the H-RLE data structure
can be useful for the computation of surface velocities for the active grid points. The
surface velocity field at active grid points is usually obtained by taking the surface
velocity of the closest surface point. The surface velocity of a surface point depends
on the visibility from the particle source along the incidence direction. Instead of
determining the visibilities for surface points and mapping the information to the
active grid points, it is possible to compute the visibility information directly for all
active grid points.

In the following section, an active grid point is called visible, if the corresponding
closest surface point is visible. Furthermore, it is assumed that the incidence direction
is equal to the positive x1-direction. Then, an active grid point ~p can be regarded as
visible, if the LS values of all grid points ~p′ = ~p− k · ~e1 with k > 0 are larger than or
equal to that of grid point ~p

~p is visible ⇔ ∀k > 0 : Φ(~p) ≤ Φ(~p− k · ~e1). (4.29)

Thereby, the LS values of positive and negative undefined grid points are again as-
sumed to be ±∞, respectively. Figure 4.13 illustrates by means of an example, which
active grid points are visible. Taking advantage of the lexicographical ordering, it is
sufficient to iterate once over the H-RLE data structure to determine the visibilities
for all active grid points. Hence, this visibility test is of optimal complexity O(ND),
where ND denotes again the number of defined grid points, which is proportional to
the surface size measured in grid spacings.

57

4 A Fast Level Set Framework

Figure 4.13: A surface S and its H-RLE representation are shown. In this example, the LS
values are only defined for the active grid points. Positive (blue) and negative (red) runs of
undefined grid points are assumed to have LS values +∞ and −∞, respectively. The dark
green grid points do not fulfill the visibility criterion.

4.7.1 Directional Etching

For a visible grid point the local flux on the surface can be computed as

F (~p) = F src ·max(0,−n1(~p)), (4.30)

where F src denotes the incident flux from the source. n1 is the first component of the
normal vector ~n as defined in Section 3.3.1. If the etch yield is independent of the
incidence direction, the surface velocity can simply be set proportional to the total
flux. Therefore the surface velocity can be written as

V (~p) = −Vmax ·max(0,−n1(~p)), (4.31)

where Vmax is the maximum etch rate for normal incidence. As a demonstration,
directional etching is applied to the structure given in Figure 4.12. The result, after
a process time of 60 time units, is shown in Figure 4.14. The maximum etch rate was
assumed to depend on the material. Vmax = 0.025 and Vmax = 1 (grid spacings per
time unit) were assumed for the mask (M3) and the substrate (M1), respectively. The
average computation times for time integration, normal calculation, and directional
visibility check are given in Table 4.2 and prove the linear scaling with surface size.

The rounding at the bottom observed in Figure 4.14 can be ascribed to the finite
difference scheme for solving the LS equation. All schemes inherently introduce some
amount of dissipation in order to obtain a stable solution. The rounding can be
reduced, if a finer grid with a smaller grid spacing is used for the calculation.

58

4 A Fast Level Set Framework

Figure 4.14: The structure given in Figure 4.12 after processing with a directional material-
dependent etch process.

Scale factor 0.5 1.0 1.5 2.0 2.5

Lateral grid resolution 600× 100 1200× 200 1800× 300 2400× 400 3000× 500
Time integration (avg.) 0.46 s 2.00 s 4.16 s 7.42 s 12.02 s
Visibility test (avg.) 0.02 s 0.08 s 0.17 s 0.30 s 0.47 s
Normal calc. (avg.) 0.08 s 0.32 s 0.71 s 1.28 s 2.04 s
Num. time steps 302 602 903 1203 1505

Table 4.2: The average computation times for a time integration step, the directional visibility
test, and the normal vector calculation for the directional etching process shown in Figure 4.14.

4.7.2 Simple Bosch Process Simulation

The multi-LS technique, in combination with directional etching, enables the simula-
tion of a Bosch process using a simplified model. The Bosch process is used for high
aspect ratio etching by alternating passivation and etching cycles [67]. The deposition
of a passivation layer protects the side walls from chemical etching during the sub-
sequent etching cycle. Directional etching caused by ion bombardment removes the
passivation layer at the bottom, so that the radicals are able to attack the substrate.
The basic principle of a Bosch process is shown in Figure 4.15.

In a simplified model chemical etching and deposition can be assumed to be isotropic.
Physical etching due to ions is regarded as perfect directional. Figure 4.16 shows the
development of a 2.5 µm-hole during a Bosch process. The deposition rate has been
set to 10 nm s−1. The chemical etch rate has been 3 nm s−1, 90 nm s−1, and 4.5 nm s−1

for the passivation layer, the mask, and the substrate, respectively. 5.47 nm s−1,
11.8 nm s−1, and 59.1 nm s−1 have been the corresponding directional etch rates. 20
cycles with 5 s deposition and 12 s etching were computed. The grid spacing has been
set to 25 nm which corresponds to lateral grid extensions of 140 × 70. For the time
evolution CCFL = 0.5 has been used.

59

4 A Fast Level Set Framework

Figure 4.15: A schematic illustration of the Bosch process. The deposition of a passivation
layer protects the sidewalls during the subsequent etching cycle.

(a) 0/0

(b) 1/0

(c) 1/1 (d) 19/19 (e) 20/19 (f) 20/20

Figure 4.16: The simulation of a Bosch process. The corresponding level set representation is
shown for different times. The corresponding number of applied deposition and etching cycles
can be retrieved from the subfigure captions.

The Bosch process is also an example which requires an accurate description of the
thin passivation layer. Furthermore, the accurate resolution of the material-dependent
surface velocities over time reduces the accumulation of large errors. Since all applied
methods including the time evolution and the visibility check can be performed in lin-
ear time, the calculation of this simplified Bosch process is very fast. The computation
time on an Intel Core 2 Duo E6600 processor clocking at 2.4 GHz is approximately
10 min.

60

4 A Fast Level Set Framework

4.8 Void Detection

As described in Section 2.3.3 the particle transport can be neglected for some models,
if the surface reaction is not limited by the amount of reactants arriving at the surface.
However, it is necessary to check if a surface point is connected to the source, because
otherwise no reaction would occur on the surface. Obviously, the surface of voids
within a structure is not connected to the outside, and hence the surface velocity
must be set equal to zero. Therefore, it is necessary to find all existing voids. Since
voids can be produced during deposition or disappear during the etching processes,
the geometry must be tested for voids at every time step.

One way to check the geometry for voids is to extract an explicit surface from the
implicit surface representation using a technique such as the marching cubes algorithm
[70] and to check the triangulated version of the surface for connectivity. However,
since this method is computationally very expensive, it would be convenient to have an
efficient method to detect voids directly using the implicit LS surface representation.

4.8.1 Connected Components

The LS function which represents the surface S, partitions the simulation domain into
connected components. In the following section a fast algorithm is presented which
uses inherent properties of the H-RLE data structure to determine the corresponding
component each grid point belongs to. The determination of connected components
gives information about existing voids. If there are no voids, there are only two
components which correspond to the bulk material and the region above the surface
as part of the process chamber. The obtained connectivity information can also be used
to ensure that the geometry of voids does not change after they have been formed.

Two neighboring grid points are defined to be connected, if and only if they have the
same LS sign. If they do not have the same sign, they are separated by the zero LS
which is the surface. The connectivity relations between neighboring grid points can be
described by a graph, where each grid point corresponds to a vertex. The connectivity
of two neighboring grid points is represented by an edge between the corresponding
vertices. According to elementary graph theory the connected components of a graph
can be determined with a complexity of O(NV + NE), where NV and NE denote the
number of vertices and edges, respectively [117]. Obviously, setting up a full graph
with vertices for each point on the regular grid is not reasonable, since the memory
requirements and the computation of the connected components scale with the domain
size and not linearly with the surface size.

61

4 A Fast Level Set Framework

4.8.2 Graph Setup Algorithm

If the H-RLE data structure is used, the utilization of the following properties al-
lows the setup of a reduced graph which already combines several grid points within
a vertex, and consequently, for which it is much easier to determine its connected
components:

• As already mentioned in Section 3.5.4 the H-RLE data structure leads to a
segmentation of the grid. Such a segment is either a defined grid point or an
undefined run which combines one or more undefined grid points with the same
LS sign (compare Figure 3.7).

• All grid points within a segment are connected. The connectivity follows for
undefined runs from the fact that all contained grid points are neighbored and
have the same sign. Hence, if any points of two different neighboring segments
are connected, all of their points are also connected to each other.

• Two segments are neighbored, if and only if at least one of their corresponding
first points is a neighbor to the other segment. The first point of a segment
means the first point according to the lexicographical order given by the HRLE
data structure. Its index vector is equal to the start index vector of a basic iter-
ator positioned at the corresponding segment. As a consequence, it is sufficient
to obtain all required connectivity relations between segments, by testing the
neighboring points of all first points for connectivity.

To set up the reduced graph an array is needed to store a reference to the corresponding
vertex for each segment in the H-RLE data structure. Using a basic iterator the H-
RLE data structure is sequentially traversed and for each segment the following two
tasks are performed:

1. The neighboring points of the first grid point in the current segment are tested
for connectivity. If none of the corresponding connected neighbor segments is
assigned to a vertex, a new vertex is inserted into the graph to which the current
segment is assigned. Otherwise, the current segment is assigned to an arbitrary
vertex to which a connected neighbor belongs.

2. All connected neighbor segments which do not belong to any vertex are assigned
to the same vertex as the current segment. If there is a connected neighbor
belonging to a different vertex, a new edge between the corresponding vertices
is inserted in the graph.

Figure 4.17 shows an example with a LS representing a geometry with a void. After
the procedure each segment is assigned to a vertex of the reduced graph. Due to the
incorporation of connectivity relations during the setup, the number of vertices of the
reduced graph is usually only a fraction of the number of defined grid points.

62

4 A Fast Level Set Framework

(a) (b) (c)

Figure 4.17: (a) The surface S of a geometry with a void. Blue and red points have positive
and negative LS values, respectively. Defined grid points are also colored green. (b) The
corresponding segments of the H-RLE data structure. Their numbers give the vertex of the
reduced graph they are assigned to. (c) The reduced graph which is set up to find the connected
components.

4.8.3 Algorithmic Complexity

The setup of the graph requires a sequential traversal over the H-RLE data structure.
A first order finite difference stencil is used to enable fast access to neighbor grid
points. Hence, the neighbor grid points of the first point of each segment can be
tested for connectivity in constant time. As a consequence, the overall complexity
required to set up the reduced graph exhibits a linear scaling with the number of
defined grid points ND. For the size of the reduced graph NE + NV ≤ O(ND) holds,
since each segment in the H-RLE data structure leads to the insertion of, at most, one
vertex and 2D edges, if D is the number of dimensions. As previously mentioned, the
connected components of a graph can be obtained with linear complexity, which leads
to an overall algorithmic complexity of O(ND).

The memory requirements are also optimal. For each segment of the H-RLE data
structure a reference of the corresponding vertex must be stored. The memory re-
quirements for the reduced graph can usually be neglected, because, in practice, the
number of vertices is much smaller than the number of segments.

4.8.4 Preservation of Voids

The connectivity information can be used to ensure that voids do not change over
time. If the LS values of all active grid points which do not belong to and are not
connected to any neighbor grid point belonging to the region above the surface, are not
changed during time integration, the shapes of all voids are maintained. Depending

63

4 A Fast Level Set Framework

Figure 4.18: Isotropic deposition of a 60 grid spacings thick layer onto the structure given
in Figure 4.14. Due to the varying hole diameters, the voids form at different points of time
leading to different thicknesses of the deposited layer within the cavities.

on the orientation of the surface, the region above the surface is represented by the
connected component which contains the first or the last grid point in the H-RLE data
structure.

4.8.5 Isotropic Deposition

The presented void detection algorithm can be applied to isotropic deposition in order
to ensure that voids do not change from the point in time they are formed. At every
time step the void detection algorithm is used to determine all active grid points which
must not change in order to preserve the shape of voids. The LS values of all other
active grid points are updated in time. Figure 4.18 shows an example, where the
void detection algorithm has been applied during a deposition process. Since the hole
diameters are not equal, the cavities are disconnected from the source at different
times.

Scale factor 0.5 1.0 1.5 2.0 2.5

Lateral grid resolution 600× 100 1200× 200 1800× 300 2400× 400 3000× 500
Time integration (avg.) 0.48 s 2.52 s 4.40 s 7.73 s 12.42 s
Void detection (avg.) 0.18 s 0.73 s 1.65 s 2.93 s 4.68 s
Num. of vertices (max.) 87 157 309 429 615
Num. time steps 563 1188 1690 2373 2818

Table 4.3: The average computation time for a time integration step and the void detection
algorithm. The number of vertices of the maximum reduced graph during the entire simulation
is also given, and is very small compared to the number of defined grid points.

64

4 A Fast Level Set Framework

Table 4.3 lists the average calculation times for time integration and void detection for
the isotropic deposition process. Furthermore, the number of vertices of the maximum
reduced graph during the simulation is also given. Obviously, the number of vertices
is very small compared to the number of defined grid points, which is at least in the
order of the lateral grid extensions. Hence, the memory consumption of the reduced
graph can be neglected, as already stated previously.

4.8.6 Isotropic Etching

Another application of the void detection algorithm is perfect isotropic etching ap-
plied to structures with voids. The surface is only advanced at locations, where it
is connected to the source. As an example, isotropic etching of a “Swiss cheese”-like
structure has been simulated. Figure 4.19 shows the initial geometry and the evolution
over time. The etch rate is assumed to be 1 grid spacing per time unit.

4.9 Surface Extraction

For visualization or further processing an explicit surface representation is more con-
venient than the implicit LS representation. To obtain a line segmentation or a trian-
gulation from the LS function, the marching squares or the marching cubes algorithm
[70] can be applied in two or three dimensions, respectively. The grid cells are pro-
cessed in sequential order. If all corner grid points have the same LS sign, the surface
does not intersect the cell. If there are any grid points with different signs, a surface
segmentation is set up for the corresponding cell. The surface vertices are obtained as
the intersection points of the zero LS with the cell edges. The surface elements of a
cell are obtained using a predefined lookup table from the LS signs of all its corners.
Since all grid cells need to be processed, the original algorithm scales with the domain
size.

However, if the H-RLE data structure is used to represent the LS function, this al-
gorithm can be implemented with linear complexity with respect to the number of
defined grid points, which is usually proportional to the surface area. A cell-shaped
stencil of 2D iterators is used and moved across the H-RLE data structure. These
iterators enable easy access to the LS values at all corners, as needed to determine
any intersection points on edges. However, references to all new vertices on edges,
which are attached to cells that have not been processed yet, are buffered in queues.
When the stencil of iterators reaches a neighboring cell, according to the lexicograph-
ical processing order, vertices on edges, which have already been computed can easily
be found. This avoids adding the same vertex twice and ensures the connectivity of
all surface elements throughout neighboring grid cells.

65

4 A Fast Level Set Framework

(a) Initial geometry with lateral extensions
200 × 400.

(b) t = 0 (c) t = 40 (d) t = 80

(e) t = 120 (f) t = 160 (g) t = 200

Figure 4.19: Isotropic etching of a “Swiss cheese”-structure with a constant etch rate of 1
grid spacing per time unit. (a) Initial geometry. (b)-(g) Illustration of the time evolution of
the corresponding zero LS.

66

4 A Fast Level Set Framework

4.10 Parallelization

The increasing number of cores which are integrated in a single processor requires
algorithms that are able to run in parallel. A parallelized version of the sparse field
LS method for shared memory machines is already presented in [11]. There, a full
grid is used which is distributed over multiple threads by partitioning the grid into
slabs. If the H-RLE data structure is used, parallelization is more complicated. Run-
length encoding is not predestined for parallelization, since the data structure is set
up serially. In the following section a technique is described which distributes the
information over multiple H-RLE data structures to enable parallel processing.

4.10.1 Parallelization Strategy

In order to achieve a high efficiency, all computational work should be uniformly
distributed over all CPUs. According to an idea described in [11] a good load balance
is obtained for the sparse field LS method, if the number of processed active grid
points is the same for all CPUs. This can be achieved by analyzing the distribution of
active grid points along a certain grid direction and defining slabs of the grid which all
contain approximately an equal number of active grid points. If each thread processes
one of these slabs, the expected runtimes are similar, and a good parallel efficiency
can be obtained.

If a non-static data structure, such as the H-RLE data structure, is used instead of a
full grid, parallelization is more complicated. As described previously in Section 4.3
the data structure must be rebuilt several times for every time step. Adding grid
points to the data structure is only possible sequentially and in lexicographical order,
and hence cannot be accomplished in parallel. A solution of this problem is to use as
many H-RLE data structures as CPUs. This way, each thread may add grid points
to its own H-RLE data structure at the same time. However, it must be ensured
that all grid points are processed by exactly one thread. Therefore, the entire grid
needs to be partitioned in advance. In order to maintain all the good properties of
the H-RLE data structure, such as the fast sequential access and the small memory
requirements, it is advantageous to divide the grid into sequences of grid points which
contain approximately an equal number of active or defined grid points.

If NCPU CPUs are used, the partitioning is characterized by NCPU index vectors. Each
index vector represents the start of a sequence of consecutive grid points, which is as-
signed to a thread and which is stored in the corresponding H-RLE data structure.
For grid points stored in the H-RLE data structure of another thread, new run codes
are introduced. For each CPU a new run code is defined, which provides informa-
tion which H-RLE data structure houses the corresponding grid points. Figure 4.20
demonstrates the parallelization of the example given in Figure 3.6 and Figure 3.7.
There, the LS values and undefined runs are distributed over four separate H-RLE
data structures.

67

4 A Fast Level Set Framework

Figure 4.20: The parallel version of the H-RLE data structure given in Figure 3.7. An array
of index vectors defines the grid segmentation. Each CPU processes the grid points of one
segment in lexicographical order and writes the updated LS values into an own H-RLE data
structure. For all other grid points which do not belong to the current CPU, run codes are
inserted instead. They describe in which H-RLE data structure these points are stored.

68

4 A Fast Level Set Framework

4.10.2 Data Access

On shared memory machines the access to the H-RLE data structures of other threads
is not difficult. Random access is realized by first determining the H-RLE data struc-
ture which contains the information of the corresponding grid point. This requires
a search within the index vector array which defines the grid segmentation. This
increases the complexity of a random access to O(log NCPU + log ND) in the worst
case.

Similarly, sequential access does not require any major changes. The iterators de-
scribed in Section 4.2 can be reused with a small modification. If an iterator reaches
a run code annotating that the corresponding grid points can be found in another
H-RLE data structure, a random access operation is performed on that data struc-
ture. However, on average, sequential access can still be performed in constant time.
This guarantees a linear complexity of the sparse field LS method for the parallel data
structure.

The lexicographical order of defined grid points within the (non-parallel) H-RLE data
structure leads implicitly to a numbering. Each defined grid point can be unambigu-
ously identified by the array index of the corresponding LS value. This number is very
useful when assigning additional data to defined grid points. To obtain this identifica-
tion number from the parallel H-RLE data structure, an offset must be added to the
corresponding array index. For this purpose an additional array is introduced to store
the index of the first defined grid point, as shown in Figure 4.20.

4.10.3 Benchmarks

To test the parallel efficiency, the surface evolution was calculated for a sphere expand-
ing at constant speed. The calculation was performed using 1, 2, 4, 8, and 16 cores
of AMD Opteron 8435 processors clocking at 2.6 GHz. The corresponding average

d = 100 d = 1000 d = 10 000

Num. CPUs Time Efficiency Time Efficiency Time Efficiency

1 60.8ms 100.0% 6.19 s 100.0 % 636 s 100.0 %
2 32.3ms 94.2% 3.18 s 97.4 % 331 s 96.0 %
4 18.8ms 80.7% 1.78 s 87.0 % 179 s 89.0 %
8 11.6ms 65.6% 0.94 s 81.9 % 95 s 83.4 %

16 6.9ms 55.0% 0.49 s 78.2 % 51 s 78.5 %

Table 4.4: Benchmarks for a time integration step of a sphere expanding with constant speed.
The computation times as well as the parallel efficiency are given for varying sphere diameters
d and number of used CPUs.

69

4 A Fast Level Set Framework

calculation times for a single time step and for different sphere diameters d (measured
in grid spacings) are listed together with the parallel efficiency in Table 4.4.

According to Amdahl’s law [9] the parallel efficiency decreases with the number of
CPUs due to sequentially processed parts of the program. In case of 16 cores a par-
allel efficiency of approximately 78 % could be achieved except for the smallest sphere
diameter d = 100. For smaller structures the overhead due to thread synchronization
is more relevant, which results in a worse efficiency. Table 4.4 also shows the good scal-
ability with surface size. If the diameter is multiplied by 10, the surface of the sphere
is increased by a factor of 100, which is well reproduced by the listed runtimes.

70

5 Surface Rate Calculation

The simulation of surface evolution requires the calculation of the surface velocity at
every time step. For advanced models, the surface velocity depends on the particle
transport. According to the surface kinetics model described in Section 2.3, the surface
velocity V is assumed to be a function of a certain number of surface rates R1, . . . , RNR

(2.25). This chapter is devoted to the calculation of these surface rates under the
assumption of ballistic particle transport within the feature-scale region, as described
by (2.14). Particles entering the feature-scale region through the source plane P
follow the given arriving flux distribution Γsrc. Particle reemission, modelled by the
reemission probability function G (2.15), must also be incorporated. In summary the
problem states as follows:

• Given: S, Γsrc for all ~x ∈ P, and G for all ~x ∈ S.

• Required: R1, . . . , RNR
(in order to calculate V) for all ~x ∈ S.

Two completely different approaches for solving this problem are presented in the
following sections.

5.1 Conventional Approach

One way to calculate the surface rates is by direct integration. This requires an appro-
priate discretization of the domain of the flux distribution function Γ = Γ(~x; q, ~ω,E).
Hence, the flux distribution at a certain surface point ~x is approximated as a super-
position of a finite number of appropriate basis functions b1, b2, . . . , bNΓ

Γ(~x; q, ~ω,E) ≈
NΓ∑

l=1

Bl(~x)bl(~x; q, ~ω,E). (5.1)

Bl(~x) are the corresponding coefficients. If the basis functions represent an orthonor-
mal basis, thus

Q
∑

q=1

∞∫

0

∫

~ω·~n(~x)<0

bl(~x; q, ~ω,E)bk(~x; q, ~ω,E) dΩ dE = δlk, (5.2)

71

5 Surface Rate Calculation

the coefficients Bl(~x) can be calculated using

Bl(~x) =

Q
∑

q=1

∞∫

0

∫

~ω·~n(~x)<0

bl(~x; q, ~ω,E)Γ(~x; q, ~ω,E) dΩ dE. (5.3)

Insertion of the ballistic transport equation (2.14) yields

Bl(~x) = Sl(~x)+

∫

S

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)
Q
∑

q=1

∞∫

0

bl(~x; q, ~ω,E)Γre(~x
′; q, ~ω,E) dE dA′, (5.4)

where Sl denotes the source term

Sl(~x) :=

∫

P

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)
Q
∑

q=1

∞∫

0

bl(~x; q, ~ω,E)Γsrc(~x
′; q, ~ω,E) dE dA′. (5.5)

Here, vis(~x, ~x′) is the visibility function which returns 1 or 0, if the surface points
~x and ~x′ are in line or sight or not, respectively. Utilizing expression (2.15) finally
gives

Bl(~x) = Sl(~x) +

∫

S

NΓ∑

k=1

Tlk(~x, ~x′)Bk(~x
′) dA′ (5.6)

with

Tlk(~x, ~x′) :=
−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)

∞∫

0

Q
∑

q=1

bl(~x; q, ~ω,E)·

·
Q
∑

q′=1

∞∫

0

∫

~ω′·~n(~x′)<0

G(~x′; q, ~ω,E; q′, ~ω′, E′)bk(~x
′; q′, ~ω′, E′) dΩ′ dE′ dE. (5.7)

To solve the surface integral equation (5.6) numerically, a discretization of the surface is
needed. Triangle [68] or voxel elements [6] are conventionally used in three dimensions.
If NS denotes the number of discretization elements of the surface, the number of
unknowns is equal to NS · NΓ. If NΓ is large, thus if many basis functions are used
to resolve the direction and energy dependence of the flux distribution, the number of
variables, which must be kept in memory, is very large. This is especially a problem
in three dimensions, where NS is already very large by nature. Therefore, only a very
small number of basis functions is commonly used in practice. Very often, only one
basis function is used per particle type

bl(~x; q, ~ω,E) := δlq, (5.8)

72

5 Surface Rate Calculation

which reduces the number of unknowns to NS ·Q. As a consequence, the corresponding
coefficients are equal to the respective total arriving flux of particles of species q

Bl(~x) =

∞∫

0

∫

~ω·~n(~x)<0

Γ(~x; q, ~ω,E) dΩ dE = Fq(~x). (5.9)

The particle transport equation (2.14) simplifies to

Fq(~x) =

∫

P

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)

∞∫

0

Γsrc(~x
′; q, ~ω,E) dE dA′+

∫

S

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)

∞∫

0

Γre(~x
′; q, ~ω,E) dE dA′,

(5.10)

and the reemitted flux distribution (2.15) can be written as

Γre(~x
′; q, ~ω,E) =

Q
∑

q′=1

Fq′(~x
′)

∫

~ω′·~n(~x′)<0

∞∫

0

G(~x′; q, ~ω,E; q′, ~ω′, E′) dE′ dΩ′. (5.11)

Here, the incident direction and the energy do not play a role in the reemitted flux
distribution Γre. The choice of the basis according to (5.8) assumes implicitly that
the direction and the energy of reemitted particles is independent of the incident
direction and energy. Therefore, effects such as specular-like reflexions of ions (see
Section 2.2.3) cannot be accurately described, except for unidirectional and monoen-
ergetic ion sources, for which the reemission probability function is the same for all
incident ions.

Similarly, if the chosen basis is not able to reproduce the direction or the energy
dependence of the arriving flux distribution Γ, the surface rates cannot be computed
properly, given that they depend on the incident angle or energy. Hence, non-trivial
surface rates, such as sputter rates, cannot be calculated correctly using the simple
basis (5.8) and inserting (5.1) into (2.24). Only for unidirectional and monoenergetic
particle incidence the sputter rates can be calculated correctly.

At least the contribution of primary particles, which come directly from the source
plane P, to the surface rates can be calculated correctly with reasonable effort using
the simple basis (5.8). Once the coefficients Bl(~x) are calculated, the reemitted flux
distribution can be approximated by inserting (5.1) into (2.15). Then the surface rates
can be calculated using the formula

Rl(~x) =

∫

P

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)
Q
∑

q=1

∞∫

0

rl(~x; q, ~ω,E)Γsrc(~x
′; q, ~ω,E) dE dA′+

∫

S

−~ω · ~n(~x)

‖~x− ~x′‖2 vis(~x, ~x′)
Q
∑

q=1

∞∫

0

rl(~x; q, ~ω,E)Γre(~x
′; q, ~ω,E) dE dA′

(5.12)

73

5 Surface Rate Calculation

which is obtained by combining (2.14) and (2.24).

5.1.1 Algorithmic Complexity

First the computational effort is considered, which is necessary for setting up the
system matrix of (5.6). In principle, every pair of surface elements must be tested, if
reemitted particles from one element can reach the other. A reasonable lower bound
estimation for the complexity of such a visibility test is O(log NS). Hence, the total
complexity for the setup of the system matrix is at least O(NS

2 log NS).

Solving the system of linear equations also exhibits a bad scaling behavior. The ex-
pected number of non-zero entries is O(NS

2) [41]. A very efficient approach to solve
the system is an iterative technique described in [6]. In this way usually only a small
number of matrix-vector multiplications is necessary to obtain a convergent solution.
Since the complexity of a matrix-vector multiplication is O(NΓNS

2), a quadratic scal-
ing with surface size also governs the solution of the system.

5.1.2 Limitations

Due to the bad scaling behavior, the conventional approach is limited to small problem
sizes. For large three-dimensional problems, where the number of surface discretization
elements easily reaches several million, the calculation of the particle transport is very
time and memory intensive without further simplifications.

One possible way to reduce the computational effort is the choice of a coarser dis-
cretization at regions with low curvature, as proposed in [41]. However, this approach
does not only reduce the number of surface elements, it also reduces the spatial res-
olution of the flux distribution. This is a problem, since even on plane regions of
the surface the flux can change abruptly due to shadowing. Hence, the size of the
discretization elements should be in the order of the grid spacing used for the LS
method.

Another drawback is the non-trivial and error-prone calculation of the matrix elements.
Especially for more complicated basis functions, the evaluation of (5.7) is cumbersome.
In [19] a simpler technique to calculate the system matrix elements based on a MC
approach was investigated; however, this has not been proven to be very practical.

5.2 Ray Tracing

Another MC technique, which can be used to calculate the surface rates directly, is ray
tracing [10, 114]. Ray tracing is a widely applied technique in computer graphics for
rendering a scene. A large number of light rays is used to obtain a realistic picture. In

74

5 Surface Rate Calculation

recent years, this MC technique has been successfully applied to topography simulation
to calculate surface rates [8, 64, 95]. Especially if the particle trajectories are linear,
which is the case for ballistic transport, the same algorithms and techniques can be
applied in an analogous manner [A13, A16].

In order to simulate the particle transport and to obtain the surface rates, many
particles are launched from the source plane P, and their trajectories are calculated.
Whenever a particle reaches the surface S, it contributes directly to the local surface
rates introduced in (2.24). For each surface point ~x, for which the rates should be
calculated, a surrounding neighborhood is defined. If the area of that neighborhood,
denoted by Aref(~x), is small enough and the surface is smooth, the neighborhood can be
assumed to be plane and orthogonal to the surface normal ~n(~x). These neighborhoods
of known area are necessary to relate the contribution of a single particle to the rates
at point ~x. An incident particle of type qinc with direction ~ωinc and energy Einc striking
the neighborhood of point ~x adds

∆Rl(~x) =
F tot · rl(~x; qinc, ~ωinc, Einc)

NP ·Aref(~x)

with F tot :=

∫

P

Q
∑

q=1

∞∫

0

∫

~ω·~nP>0

Γsrc(~x; q, ~ω,E) dΩ dE dA (5.13)

to the corresponding rate function Rl(~x). Here NP denotes the total number of sim-
ulated particles. The particles are launched from the source plane P and must obey
the flux distribution Γsrc (2.2). F tot is the total flux of particles through P. In order
to account for reemission, new particles must be launched after striking the surface.
Reemitted particles need to obey the conditional probability given by the model de-
pendent reemission probability function G. The probability pre(q) that a particle of
type q is reemitted is given by

pre(q) =

∫∞
0

∫

~ω·~n(~x)>0 G(~x; q, ~ω,E; qinc, ~ωinc, Einc) dΩ dE
∑Q

q′=1

∫∞
0

∫

~ω·~n(~x)>0 G(~x; q′, ~ω,E; qinc, ~ωinc, Einc) dΩ dE
. (5.14)

This probability can take values larger than 1. For example, the average number of
sputtered particles is often larger than 1. Hence, to satisfy statistics, multiple particles
must be launched. However, this leads to a very large number of secondary particles
which all must be simulated.

A better strategy is to introduce a volume or weight factor w assigned to a particle
as proposed in [118] and which allows to control the number of reemitted particles.
Initially, when a particle is launched from the source, its weight factor is set to unity
(w = 1). An incident particle contributes to the local rates according to its current
weight factor winc

∆Rl(~x) =
winc · F tot · rl(~x; qinc, ~ωinc, Einc)

NP · Aref(~x)
. (5.15)

75

5 Surface Rate Calculation

Instead of reemitting several particles of type q according to the probability pre(q), it
is possible to initialize just one new particle with an adequate weight factor calculated
as

w = winc · pre(q). (5.16)

The weight factor can be used as termination criterion. If the weight factor is below
a certain critical level, so that the contribution to the surface rates is negligible, the
reemission of new particles can be avoided [A20].

The directional and energy distribution f(~ω,E) of a reemitted particle species q
obeys

f(~ω,E) =
G(~x; q, ~ω,E; qinc, ~ωinc, Einc)

∫∞
0

∫

~ω·~n(~x)>0 G(~x; q, ~ω,E; qinc, ~ωinc, Einc) dΩ dE
. (5.17)

The accuracy of the statistically calculated rates R(~x) is primarily influenced by the
average number of incident particles on a neighborhood, which is proportional to the
total number of simulated particles NP and the corresponding area Aref(~x). To improve
the accuracy, either more particles must be simulated or the areas of the neighborhoods
must be increased at the expense of the spatial resolution.

The main computational task of this ray tracing technique is to determine the first
surface intersection of rays and to test for intersections with the neighborhoods of
all surface points ~x, for which the surface rates should be calculated. The choice of
surface representation and of neighborhoods, as well as the corresponding intersection
tests are discussed in the following sections.

5.2.1 Surface Representation

The most common way to represent the surface is a line segmentation in case of two
dimensions [8], or a triangulation in case of three dimensions [64, 95]. The advantage
of such explicit representations is that ray intersection tests are relatively simple for
the surface elements (compare Appendix A). Furthermore, surface elements can be
used as neighborhoods. For example, in [95] the particle flux is calculated for each
triangle by counting the number of incident particles and dividing by the triangle
area. However, if the surface is extracted using the marching cubes algorithm [70],
the surface elements vary significantly in size. Hence, to obtain a good accuracy for
all corresponding surface points, their neighborhoods must be extended over multiple
surface elements, which requires an additional data structure and complicates the
entire algorithm [A13].

Another drawback of the explicit surface representation is that it needs to be extracted
from the implicit LS surface representation, which is needed for surface evolution using
the LS method, at every time step. Hence, calculation time and memory are wasted
due to this additional surface representation.

76

5 Surface Rate Calculation

An improved strategy is to apply ray tracing directly on the implicit LS representation
[112, A16]. To find the intersection of a ray with the surface, the LS function has to
be bi- or trilinearly interpolated, depending on the number of dimensions D. Inserting
the parameterization of the ray into the interpolation formula gives a quadratic or
cubic polynomial, respectively. Then the first real root, if it exists, corresponds to the
intersection point. It is important for a fast ray tracing algorithm, that the intersection
test requires a minimum number of numerical operations. In Appendix B a detailed
and efficient ray–isosurface intersection test is presented.

Multi-linear interpolation within a grid cell requires the LS values of all 2D grid points.
Hence, if the sparse field method is used, it must be ensured through dilation (see
Section 4.3.3), that all these grid points are defined and their LS values are available.

5.2.2 Tangential Disks

The LS method requires a surface velocity field which is commonly obtained by extrap-
olating the velocities computed on the surface (compare Section 3.2.4). If the active
grid points are very close to the surface, which is the case for the sparse field method,
it is possible to calculate the surface rates directly for those grid points [112, A13]. In
this way the extrapolation procedure can be avoided and no extra memory is needed
to store the velocities for the discretized surface.

As proposed in [A16, A20] tangential disks D(~p) can be defined for all points on the
surface, which are closest to any active grid points ~p ∈ L0. Hence, for each active grid
point ~p a disk is defined which serves as a neighborhood for its corresponding closest
surface point ~xcp(~p). The closest surface point ~xcp(~p), which is also the midpoint of
the tangential disk D(~p), is approximated using (3.23). The orientation of the disk
is given by the surface normal which is approximated by ~n(~p) as defined in (3.22).
Hence, the tangential disk D(~p) is described by

D(~p) = {~x : ‖~x− ~xcp(~p)‖ ≤ r ∧ (~x− ~xcp(~p)) · ~n(~p) = 0} (5.18)

with r denoting the radius. Disks have the advantage that intersection tests with rays
are relatively simple. A ray with parameterization ~x(t) = ~a+ t ·~ω strikes the disk D(~p)
on the front side, if the following condition is fulfilled

cos θ > 0 ∧ ‖~xrel · cos θ + ~ω · (~n(~p) · ~xrel)‖ ≤ r · cos θ (5.19)

with cos θ := −~ω · ~n(~p) and ~xrel := ~a− ~xcp(~p). In this case the corresponding particle
contributes to the rates of grid point ~p according to (5.15). To calculate the surface
rates correctly for active grid points, whose corresponding tangential disks are partially
behind the surface S due to the curvature, it is necessary to prolong the calculation of
the particle trajectory for a few grid spacings from the surface intersection point (see
Figure 5.1). However, the first intersection point with the surface is stored and used
as a starting point for reemitted particles.

77

5 Surface Rate Calculation

Figure 5.1: If a particle trajectory intersects any tangential disk (thick black) D(~p), it
contributes to the rates of the corresponding active grid point (black) ~p ∈ L0. Due to the
curvature of the surface S, the calculation of the particle trajectory must be continued for a
few grid spacings in order to obtain correct rates. However, new reemitted particles (dashed)
are always launched from the surface intersection point. To avoid multiple intersection tests
of the same disk, only those grid points which are opposite to the entry face are checked, if
they are active and if their corresponding disk is intersected. The numbers show which points
are processed in which cell.

The area of the disks is Aref = πr2 or in case of two dimensions, where the disks
correspond to tangential segments, Aref = 2r. Hence, the choice of the disk radius
influences the statistical accuracy. Larger radii give better statistics at the expense
of the spatial resolution which should be of same magnitude as the resolution of the
surface. Hence the disk radius should be in the order of the grid spacing which was
assumed to be unity.

In [A20] an upper limit for the radius was suggested. Within the sparse field method
|Φ(~p)| ≤ 1

2 holds for all active grid points. Furthermore, the approximation for the
gradient is almost always larger than 1, thus ‖∇Φ(~p)‖ ≥ 1. This gives an upper limit
for the distance to the approximated closest surface point ‖~p− ~xcp(~p)‖ ≤ 1

2 according

78

5 Surface Rate Calculation

to (3.23). If the radius is chosen in such a manner that

r ≤
√

1−
(

1
2

)2 ≈ 0.866, (5.20)

the diskD(~p) is within the 2D grid cells which are adjacent to the active grid point ~p. In
very rare cases, when ‖∇Φ(~p)‖ ≥ 1 is not fulfilled, it might be necessary to translate
the disk towards ~p, in order to fit it into the surrounding cells. Much smaller disk
radii than the given upper limit lead to worse statistics without improving the spatial
resolution. Therefore, it is recommended to use a disk radius of 0.8 grid spacings
[A20].

This way the computational effort for ray–disk intersection tests is minimized. Within
a grid cell only the 2D corner grid points have to be checked, if they are active, and
if their corresponding tangential disks D(~p) are intersected. Hence, the same data
structure can be used as the one needed for the multi-linear interpolation for the
surface intersection test, which requires links to all its corners in order to access the
corresponding LS values.

5.2.3 Particle Traversal

Particles are consecutively launched from the source plane P according to the arriving
flux distribution Γsrc. The vertical position of P can be arbitrarily chosen, however,
it must be above the surface. If the arriving flux distribution Γsrc varies spatially, it
must be adapted correspondingly when shifting the source plane. For ray tracing a
good choice is the lowest grid plane which is entirely above the surface. Hence, it is
the first grid plane, where all grid points have a positive signed LS value. This plane
limits the simulation domain on top. The simulation domain can also be limited at
the bottom by the first grid plane which is entirely below the surface. Together with
the lateral boundaries a rectangular simulation domain is obtained.

To find the first intersection of a particle trajectory with the surface all traversed grid
cells need to be tested for an intersection within their interiors. If a surface intersection
is found, new particles must be launched from the intersection point according to
the reemission law. Their reemitted direction and energy as well as their particle
species and their starting point are stored in a stack, because these particles will
be processed later. First the trajectory of the incident particle hitting the surface
is further calculated for a few grid spacings. This allows the proper calculation of
the surface rates, even if the corresponding tangential disks are behind the surface
(compare Figure 5.1). In this work the trajectories are prolonged for three grid spacings
before discarding the particle and calculating the trajectory of the next one. The new
particle is either obtained from the stack, if it is not empty, or else by generating a
new particle launched from the source plane P.

Continuous tests of all grid cell corners to check for active grid points, followed by the
corresponding tangential disk intersection tests, lead to unnecessary computational

79

5 Surface Rate Calculation

effort. The same grid point will likely be tested multiple times within different neigh-
boring grid cells. A better strategy is to test only those grid points opposite to the
face, through which the particle enters the grid cell (see Figure 5.1). In this way each
grid point is only tested once.

5.2.4 Algorithmic Complexity

The algorithmic complexity of ray tracing is primarily given by the number of sim-
ulated particles which are required to obtain suitable accurate rates, and the effort
for calculating a single particle trajectory. The number of simulated particles must
scale with the surface area (measured in grid spacings) in order to keep the number of
incidences on a disk constant. The surface area, in turn, can be said to be proportional
to the number of grid cells which are intersected by the surface. These grid cells can
be regarded as the surface discretization elements of the implicit surface representa-
tion. Let NS be the number of these elements, which allows a comparison with the
conventional approach. The number of simulated particles must be of order O(NS).

The effort of tracing a single particle is given by the number of grid cells which must be
traversed to find the first surface intersection. The expected number of traversed cells
is O(D−1

√
NS) [79]. As a consequence, the expected total computational costs scale

with O(NS

D
D−1). For three dimensions (D = 3) this is already an improved scaling

behavior than that of the conventional approach.

The following sections describe how the expected computational effort for finding the
first surface intersection point can be further reduced to O(log NS). As a consequence,
the total effort is equal to O(NS log NS). Hence, for large structures with very large
NS, ray tracing is superior to the conventional approach for the calculation of the
surface rates and does not require the simplifications of the general model.

5.2.5 Boundary Conditions

The simulation domain for ray tracing is limited in the vertical direction by the source
plane P and the surface S (see Figure 2.1). The lateral directions are limited by
boundary conditions. Periodic and reflective boundary conditions are most commonly
used. Both types can easily be incorporated using ray tracing. If a particle would leave
the feature-scale region at a periodic boundary, it reenters the simulation domain at
the opposite boundary with same direction. In case of reflective boundaries the particle
direction is reflected and the trajectory calculation is continued.

Periodic boundaries can only be applied, if the initial geometry is periodic, which
means that opposite sides of the geometry fit together. By contrast, reflective bound-
aries can be applied regardless of the initial geometry. However, the application of
reflective boundaries can be problematic for inclined particle incidence. Due to the

80

5 Surface Rate Calculation

Figure 5.2: Additional particles are started from positions, which are offset by a multiple
of the lateral domain extension, in order to account for the primary flux coming through the
open domain boundaries.

reflection at boundaries, particles obtain a different direction than given initially by
the arriving flux distribution Γsrc, which leads to an incorrect arriving flux distribution
Γ on the surface. Only if the flux distribution Γsrc is symmetric with respect to the
vertical grid direction, reflective boundaries can be applied. Hence, for all directions
~ω and ~ω′ satisfying (~ω + ~ω′) × ~nP = 0, the corresponding values of the arriving flux
distribution need to be equal, Γsrc(~x; q, ~ω,E) = Γsrc(~x; q, ~ω′, E).

Problems, for which Γsrc is not symmetric and the initial geometry is not periodic at
the same time, neither reflective nor periodic boundaries can be applied. For such
problems it is better to use open boundaries, where the geometry is thought to extend
to infinity (see Figure 5.2). A particle leaving the simulation domain is not further
treated. It is clear that this leads to wrong rates, especially for grid points close to the
boundary. Since no particles enter the simulation domain through the boundary, the
flux distribution is zero for the corresponding directions. To obtain correct results new
particles must be launched from the boundaries. The calculation of the corresponding
arriving flux distribution for points on the lateral boundaries is very difficult, because
it can be composed of direct flux from the source plane and secondary flux due to
reemission.

At least the direct flux can be fully incorporated, if the arriving flux distribution is
equally distributed over the source plane P. As usual, particles are randomly initiated
from the source plane. However, additional particles of the same species are launched
with same direction and energy from positions which are relatively offset by an integral
multiple of the domain extension. The number of particle trajectories which must be
computed can be limited from the outset, since only particles which intersect the
simulation domain have to be considered. In the example shown in Figure 5.2 only
the particles with numbers 0, 1, and 2 must be considered.

81

5 Surface Rate Calculation

The entrance point into the simulation domain can easily be calculated for all par-
ticles which are started from the outside. However, it is necessary to check whether
the simulation domain can be reached without intersecting the surface before entry.
For example, particle 2 is not able to reach the surface within the simulation domain,
because it would have to traverse the bulk region (which is extended to infinity).
Therefore, each particle, starting from the outside, is initially traced along the bound-
ary of the simulation domain, until it reaches the entrance point, in order to check, if
it encounters any surface intersection.

If the arriving flux distribution Γsrc is not equally distributed over the source plane
P, but rather locally concentrated, as is the case for focused ion beam (FIB) applica-
tions, the choice of boundary condition does not affect the result, assuming the lateral
extensions of the simulation domain are sufficiently large.

5.2.6 Spatial Subdivision

The cell-by-cell traversal to find intersections with the surface and the disks requires
the determination of the face, through which a particle leaves a grid cell, in order to
obtain the next cell. Intersections are only possible within grid cells which contain
parts of the surface or parts of any disk. All other empty grid cells do not need
to be tested for any kind of intersection. Therefore, it is possible to combine these
empty grid cells to obtain larger boxes to be traversed simultaneously. In this way,
if efficient data structures are used, which allow a fast determination of neighboring
boxes, the computation time can be reduced. The goal is to find an appropriate
decomposition of the simulation domain into a set of disjoint rectangular axis aligned
subboxes B1,B2, . . . ,BNB

:

B =

NB⋃

i=1

Bi and Bi ∩ Bj 6= ∅ for all i 6= j. (5.21)

Here B denotes the bounding box of the simulation domain. Binary space partition
is commonly used to obtain a suitable decomposition [10, 39]. Subsequent splitting of
the domain at certain grid planes, until each non-empty cell is a subbox of its own,
leads to an appropriate decomposition. Different strategies have been developed to
choose the splitting planes and will be discussed later. The decomposition is usually
stored using a kd-tree [39, 134]. For each node at least the splitting plane and links to
its two child nodes have to be stored. Each leaf corresponds to a subbox of the final
decomposition.

Once the face through which a particle leaves a box is known, the next neighbor box
can be accessed using the kd-tree. This requires an up traversal to the node which joins
the branches of the corresponding leaves representing the current and the neighboring
box. Then a down traversal is necessary, until the leaf node, which represents the
neighboring subbox, is reached [10]. However, traversing upwards is only possible, if

82

5 Surface Rate Calculation

(a) Spatial median splitting strategy. (b) Object median splitting strategy.

Figure 5.3: The computational effort for calculating a particle trajectory can be reduced
by using a subdivision of the simulation domain into boxes. Empty grid cells are combined
in larger boxes while non-empty grid cells (gray) are boxes by their own. There are various
splitting strategies to obtain a suitable decomposition.

either the history of traversed nodes has been stored during down traversal, or, if links
are available which give direct access to parent nodes.

The first approach is not very suitable for the previously presented rate calculation
algorithm. Reemitted particles, which are launched from the surface intersection point,
are buffered in a stack, while the trajectory of the incident particle is continued for
a couple of grid spacings in order to consider potential disk intersections behind the
surface. If only the initial position, which is the surface intersection, is stored with the
new particles, the corresponding subbox must be re-determined before starting the
trajectory calculation. To avoid the required costly complete top-down traversal, a
reference to the subbox can be stored together with the position coordinates. Without
parent links, the entire down traversal history would also have to be stored, which
would slow down the entire simulation.

In the worst case a neighbor access within the kd-tree is of logarithmic complexity
O(log NB). However, the neighbor box can be retrieved in constant time on aver-
age. Therefore the computational effort primarily scales with the average number of
traversed subboxes.

5.2.7 Splitting Strategies

Different splitting strategies have been proposed to reduce the average number of
traversed boxes [39, 72]. Among the simplest are the spatial median (SM) and the
object median (OM) splitting strategy. The first algorithm chooses the splitting plane
in such a way that the box is separated into two boxes of approximately equal size.
The second algorithm uses the OM instead, which attempts to create boxes containing

83

5 Surface Rate Calculation

approximately the same number of objects. The objects are in this case the non-empty
cells. Figure 5.3 shows the corresponding spatial subdivisions for both strategies.

A much better strategy was presented in [72], which explicitly attempts to reduce the
average number of traversed subboxes. The surface area heuristic (SAH) strategy uses
a cost model to decide which splitting plane is best. For the following considerations
all rays are assumed to be uniformly distributed. This corresponds to an arriving flux
distribution at P, which obeys the most frequently used directional distribution, the
cosine distribution (2.5). Furthermore, the cost for a complete traversal through B is
considered, which is not the case in reality, because particles are only tracked, until
they reach the surface.

According to geometric probability theory [102], a uniformly distributed ray which
intersects B, also intersects another axis-aligned box Bi with Bi ⊆ B with a probability
of

p(Bi | B) =
SA(Bi)

SA(B)
. (5.22)

Here SA(B) and SA(Bi) denote the surface areas of boxes B and Bi, respectively. Hence
the average number of traversed subboxes is given by

NB∑

i=1

p(Bi | B) =

∑NB
i=1 SA(Bi)

SA(B)
. (5.23)

The SAH strategy attempts to choose the splitting planes in such a way that this
expression is minimized. Finding the absolute minimum of (5.23) is usually not pos-
sible in reasonable time. Instead, before subdividing a box, the additional costs are
estimated in order to choose the best splitting plane.

Consider a box BX during setup of the spatial subdivision, which needs to be split
further. This is the case, if BX is still larger than a grid cell and contains at least one
non-empty cell. Let NX ≥ 1 be the number of non-empty grid cells in BX which is
subdivided along a certain plane into boxes BY and BZ , which then contain NY and
NZ (with NY + NZ = NX) non-empty grid cells, respectively. The additional costs
are reduced, if the expression

NY · SA(BY) + NZ · SA(BZ) (5.24)

is minimized [39, 72, 134]. Due to the restriction that boxes are only split along grid
planes, it is possible to evaluate (5.24) for all potential splitting planes and to select
the splitting plane with the minimum value. If the extent of box BX in the xi-direction
(in terms of grid spacings) is denoted by Li, the number of potential splitting planes
is
∑D

i=1 (Li − 1). Subdivisions are favorable, which result in empty subboxes, because
they do not need to be split further. For that purpose, expression (5.24) can be
multiplied by a constant weight factor χ ≤ 1, if and only if NY = 0 ∨NZ = 0 is true
for the corresponding splitting plane [134].

84

5 Surface Rate Calculation

Figure 5.4: The arrays B+
l and B−

l with l ∈ {1, 2} store the neighbor links of all subboxes for

the positive and negative xl-direction, respectively. The array indices i
(k)
1 and i

(k)
2 , which are

stored together with box Bk in array Q, give access to the corresponding links. The additional
arrays A±

l with l ∈ {1, 2} allow fast access from the outside.

For good splitting strategies, such as the SAH, a logarithmic scaling with the number
of objects can be observed for the average number of traversed boxes (5.23) [39]. Here
the objects correspond to the non-empty cells which scale linearly with the surface size.
Hence, as already stated in Section 5.2.4, the expected computational complexity of
ray tracing is in the order of O(NS log NS) where NS is a measure of the surface size.

5.2.8 Neighbor Links Arrays

To reduce the number of hierarchical traversals within a tree, direct neighbor links to
subboxes have been proposed [72]. Apart from single neighbor links between nodes
at the same level of the kd-tree, neighbor links trees can be used [39] to link leaves
which correspond to subboxes, directly. A tree is set up for each face of a subbox
to enable direct traversals to neighboring subboxes. Hence, using the exit point the
next traversed subbox can be obtained by querying the corresponding neighbor links
tree.

In the following discussion a new neighbor links data structure is presented. Using
the fact that splitting planes are always aligned with the grid, arrays can be used to
store the links to neighbor boxes, as demonstrated for a two-dimensional example in
Figure 5.4. The number of links which are required for box Bk, is equal to its surface
area SA(Bk) (measured in grid spacings). 2D different arrays B±

1 , . . . , B±
D hold the

neighbor links in a certain grid direction for all boxes. The number of links is equal

for opposite directions. Hence, for each box Bk only D array indices i
(k)
1 , . . . , i

(k)
D have

to be stored in order to obtain the corresponding neighbor links. The size of the array

85

5 Surface Rate Calculation

B±
l is given by

dim(B±
l) =

NB∑

k=1

FAl(Bk) (5.25)

where FAl(Bk) is the area of the face for which the normal points in the xl-direction:

FAl(Bk) :=

D∏

i=1
i6=l

(

b
(k)
max,i − b

(k)
min,i

)

. (5.26)

Here ~b
(k)
min ∈ Z

D and ~b
(k)
max ∈ Z

D are the minimum and maximum index vectors of
the corner grid points of box Bk. The index number of the neighboring box at point
~x ∈ R

D, where the ray leaves Bk in the positive or negative xl-direction, is given by

B±
l

[

i
(k)
l + Λ

(k)
l (⌊xl+1⌋, . . . , ⌊xl+D−1⌋)

]

. (5.27)

Here all subscripts are assumed to be cyclic modulo D plus 1 and ⌊·⌋ denotes the floor
function. The bijective function

Λ
(k)
l :

l+D−1∏

i=l+1

{b(k)
min,i, . . . , b

(k)
max,i − 1} ↔ {0, . . . ,FAl(Bk)− 1} (5.28)

is defined as

Λ
(k)
l (pl+1, . . . , pl+D−1) :=

l+D−1∑

i=l+1

(

pi − b
(k)
min,i

) i−1∏

j=l+1

(

b
(k)
max,j − b

(k)
min,j

)

. (5.29)

The inverse function of Λ
(k)
l is denoted as Λ̄

(k)
l .

Additional links from outside of B allow finding the box which must be traversed first.
They are stored in the 2D arrays A±

1 , . . . , A±
D with size

dim(A±
l) = FAl(B). (5.30)

The first subbox which is traversed by a ray entering the box B at point ~x in the
positive or negative xl-direction, is given by

A±
l [Λl(⌊xl+1⌋, . . . , ⌊xl+D−1⌋)] . (5.31)

The memory requirements of the neighbor links array data structure are primarily
given by the total surface area of all boxes

∑NB
k=1 SA(Bk). An upper bound estimation

can be derived for this sum using (5.23) and the fact that the typical ray traversal
costs are O(log NS)

NB∑

k=1

SA(Bk) ≤ O(log NS) · SA(B). (5.32)

86

5 Surface Rate Calculation

For common problems the surface area of the bounding box B scales with the surface
size. Therefore, a O(NS log NS) scaling law can be expected.

Once an appropriate spatial subdivision is found for B, the neighbor links data struc-
ture can be set up. For subdivisions which are obtained by binary splitting in depth-
first order, the neighbor links arrays data structure can be set up in optimal time
(directly proportional to the total memory requirements) using Algorithm 5.1.

The neighbor links data structure allows an easy treatment of periodic boundary
conditions. The boxes which are situated at the boundary can be directly linked to
the corresponding boxes at the opposite boundary.

Algorithm 5.1 Setup of the neighbor links array data structure.

Require: Q = {B1,B2, . . . ,BNB
} sorted in depth-first order

for l← 1,D do

determine sizes of arrays A±
l and B±

l given by (5.30) and (5.25), respectively
allocate memory for arrays A±

l and B±
l and initialize to null

n← 0 ⊲ index of current end within B±
l

for k ← 1, NB do ⊲ for all subboxes do
for m← 0,FAl(Bk)− 1 do

i
(k)
l ← n

m′ ← Λl

(

Λ̄
(k)
l (m)

)

⊲ map index from Bk to B
B−

l

[

i
(k)
l + m

]

← A−
l [m′]

if A+
l [m′] = null then

A+
l [m′]← k

else

k′ ← A−
l [m′]

m′′ ← Λ
(k′)
l

(

Λ̄
(k)
l (m)

)

⊲ map index from Bk to Bk′

B+
l

[

i
(k′)
l + m′′

]

← k

end if

A−
l [m′]← k

end for

n← n + FAl(Bk)
end for

end for

5.2.9 Parallelization

The parallelization of the rate calculation using ray tracing is very simple on shared
memory architectures. Due to the assumption of ballistic transport, particle trajec-
tories are independent of each other. The total number of particles can simply be

87

5 Surface Rate Calculation

(a) After 50 time units. (b) After 100 time units.

Figure 5.5: A deposition process simulation was used for the benchmarks.

distributed over multiple CPUs. Basically, this can be realized through parallelization
of a loop, which is straightforward when using OpenMP [23]. To avoid simultaneous
write accesses to the surface rates, individual arrays are used for each CPU, which are
finally summed up.

5.2.10 Benchmarks

To demonstrate the ray tracing technique for surface rate calculation, a deposition
process was applied to the initial structure given in Figure 4.5a. The structure was
resolved on a grid with lateral grid extensions 500×500. A total of 25 million particles
were simulated at every time step. The arrival flux distribution at the source plane was
assumed to follow (2.5) with F src

neu = 1. The sticking probability was 0.5 and diffusive
reemission was assumed (2.18). For each incident particle, a new one was reemitted
as long as the weight factor of the new particle was larger than 0.01 (w > 0.01, see
Section 5.2).

For the CFL criterion required by the LS method, CCFL = 0.1 was chosen. The results
after a process time of 50 and 100 time units are shown in Figure 5.5. The simulation
was carried out on 16 cores of AMD Opteron 8435 processors (2.6 GHz). Different ray
tracing data structures and splitting strategies were tested. Table 5.1 summarizes the
average times which are spent on setting up the data structure and on ray tracing at
each time step. The average memory consumption is also listed.

Best runtimes have been observed for the SAH with χ = 0.8. It should be noted that
the measured times also include the costs for disk and surface intersection tests and

88

5 Surface Rate Calculation

Data structure Splitting strategy Setup time Calc. time Memory costs

Full grid – 0.18 s 146.0 s 235.5 MB

Kd-tree SM 0.77 s 74.3 s 172.9 MB
OM 1.07 s 70.5 s 135.9 MB
SAH (χ = 0.6) 2.06 s 59.1 s 129.4 MB
SAH (χ = 0.7) 1.98 s 58.6 s 129.9 MB
SAH (χ = 0.8) 1.98 s 60.2 s 131.5 MB
SAH (χ = 0.9) 2.00 s 60.4 s 134.8 MB
SAH (χ = 1.0) 2.09 s 63.8 s 148.4 MB

Neighbor SM 1.79 s 67.2 s 258.9 MB
links arrays OM 1.94 s 59.8 s 214.1 MB

SAH (χ = 0.6) 2.80 s 53.6 s 188.1 MB
SAH (χ = 0.7) 2.69 s 52.5 s 181.9 MB
SAH (χ = 0.8) 2.65 s 52.3 s 181.2 MB
SAH (χ = 0.9) 2.68 s 53.6 s 184.1 MB
SAH (χ = 1.0) 2.83 s 55.3 s 197.0 MB

Table 5.1: Comparison of different data structures for ray tracing. All tests were carried out
on 16 cores of AMD Opteron 8435 processors (2.6 GHz).

for the random direction generation, which are identical for all data structures. Hence,
the computational savings due to the ray tracing data structures are manifested by
the measured values.

The results clearly show that the ray tracing data structures are superior to the full
grid which exhibits a much longer calculation time. The full grid stores a single link
for every cell. In the case of a non-empty cell, this link gives access to its data. The
bad scaling behavior, which is linear with the domain size, leads to a high memory
consumption for larger structures.

The memory requirements for trees are much lower, because they are expected to scale
linearly with the surface size. The applied ray tracing algorithm requires for each leaf
the minimum and maximum indices of its bounding box. Furthermore, links to the two
child nodes as well as the position and orientation of the splitting plane are needed.
Finally, parent links must be stored for all nodes to enable up traversals within the
tree.

The neighbor links arrays cannot compete with the kd-tree concerning memory con-
sumption. However, the former shows better runtimes for most tested geometries. A
likely reason for the good runtime performance is that the data structure clearly sep-
arates the neighbor links for positive and negative grid directions. Hence, depending
on the direction of the ray, only the corresponding positive or negative array must be
accessed. Since runtime, and not memory consumption, is the major concern for most
topography simulations using ray tracing, the neighbor links arrays using SAH with
χ = 0.8 are used for all simulations presented in Chapter 6.

89

5 Surface Rate Calculation

AMD Opteron 8435 (6× 2.6GHz) AMD Opteron 8222 SE (2× 3 GHz)

Num. CPUs Calc. Time Efficiency Calc. Time Efficiency

1 505.2 s 100.0% 624.8 s 100.0%
2 314.8 s 80.2% 332.6 s 93.9%
4 177.0 s 71.4% 182.1 s 86.0%
8 93.0 s 67.9% 101.3 s 77.1%

16 52.3 s 60.4% – –

Table 5.2: Parallel scalability of the example shown in Figure 5.5. The neighbor links arrays
data structure using the SAH with χ = 0.8 was used for these benchmarks.

The parallel efficiency of the surface rate calculation procedure was also tested on
machines with four AMD Opteron 8435 six-core processors and AMD Opteron 8222
SE dual-core processors clocking at 2.6 GHz and 3GHz, respectively. The average
calculation time for rate calculation, using different numbers of cores, are listed in
Table 5.2. The numbers refer to the neighbor links arrays data structure using SAH
with χ = 0.8.

The parallel ray tracing algorithm is essentially just a loop whose independent itera-
tions are distributed over all CPUs. Therefore, losses due to synchronization of threads
can be neglected. Furthermore, memory access is read-only except for the surface rates.
Each core has its own copy of the surface rates, which are finally summed up, in or-
der to avoid concurrent write accesses. As a consequence, the memory bandwidth is
the main crucial factor for the parallel efficiency, due to the random memory access
pattern of the ray tracing algorithm. The efficiency is worse on the machine using
six-core processors than on that using dual-core processors, because more cores must
share the common connection to the main memory. This bottleneck is a well-known
problem of today’s multi-core processors [130].

5.3 Generation of Random Vectors

The generation of random directions is essential for the Monte Carlo based calculation
of particle transport. It is difficult to find instructions for the generation of random di-
rections which obey a certain angular distribution, except for uniform spherical [92] or
cosine distributions [37]. Therefore, recipes for the generation of variate distributions
used in this work are given in the following discussion.

The arrival directions of particles at the source plane P and the directions of reemitted
particles are usually described by probability densities f(~ω), which only depend on the
polar angle θ relative to a certain direction ~v

f(~ω) = g(θ) with θ = arccos(~v · ~ω). (5.33)

90

5 Surface Rate Calculation

Using spherical coordinates with respect to ~v the probability density function can be
formulated as

f(~ω) dΩ = g(θ) sin θ dθ dφ. (5.34)

Since this expression is separable, the azimuthal angle φ and the polar angle θ are in-
dependent, which allows for the description of both variables by individual probability
densities fφ(φ) and fθ(θ)

f(~ω) dΩ = fφ(φ) dφ · fθ(θ) dθ with fφ(φ) = 1 and fθ(θ) = g(θ) sin θ. (5.35)

The probability density function fφ is constant, which is a direct consequence of the
rotational symmetry of the directional distribution. Therefore, since the azimuthal
angle is uniformly distributed on [0, 2π[, a random choice of φ is trivial. Picking a
random polar angle is more sophisticated. In the following sections algorithms are
presented for selecting a polar angle according to directional distributions which are
frequently used for the description of arrival or reemission angles.

5.3.1 Power Cosine Distribution

First the power cosine distribution as introduced in (2.6) is considered, where g(θ) =
(cos θ)ν with ν > 0. Thus the probability density function for the polar angle is given
as

fθ(θ) = (cos θ)ν sin θ. (5.36)

Calculating the cumulative distribution function results in

Fθ(θ) =

∫ θ
0 fθ(θ

′) dθ
∫ π

2
0 fθ(θ′) dθ

= 1− (cos θ)ν+1 . (5.37)

A variate obeying an arbitrary distribution can be obtained using the inversion method
[25]. A uniformly distributed variate u on [0, 1] mapped by the inverse cumulative
distribution function leads to the desired distribution [115]

θ = F−1
θ (u) = arccos

(
ν+1
√

1− u
)
. (5.38)

Since 1− u is uniformly distributed on [0, 1] as well, the random polar angle can also
be generated by [66]

θ = arccos
(

ν+1
√

u
)
. (5.39)

Algorithm 5.2 summarizes the generation of a random polar angle following the prob-
ability density function (5.36).

91

5 Surface Rate Calculation

Algorithm 5.2 Generation of a (cos θ)ν sin θ distributed variate.

function PowerCosineVariate(ν) ⊲ requires ν > −1

return arccos
(

ν+1
√

rand()
)

⊲ rand() returns uniform random number on [0, 1]

end function ⊲ Note: If just cos θ is required return ν+1
√

rand() instead.

5.3.2 Coned Cosine Distribution

Next, the distribution introduced in (2.17) is considered, for which g(θ) = cos(θ/a) for
all θ ∈ [0, θcone]. Hence, all angles are within a cone with apex angle 2θcone. This is the
reason for the name of the distribution used in this work. a and θcone are related by
π
2 a = θcone. To restrict the emission of particles to one hemisphere, θcone must satisfy
θcone ≤ π

2 , which is equivalent to a ≤ 1. The probability density of the polar angle is
given by

fθ(θ) = cos(θ/a) sin θ. (5.40)

The corresponding cumulative distribution function is

Fθ(θ) =

{
sin θ sin(θ/a)+a(cos θ cos(θ/a)−1)

sin(π
2
a)−a a < 1,

(sin θ)2 a = 1,
(5.41)

Since it is not possible to calculate an explicit expression for the inverse function
F−1

θ (θ), which is useful for the inverse method, the rejection technique is chosen instead
[25]. For the rejection method an instrumental distribution f ′

θ(θ) is necessary, which is
an upper bound approximation of fθ(θ), and which leads to an invertable cumulative
distribution function.

Using the inequalities

cos x ≤ 1−
(

2
πx
)2 ∀x ∈

[
−π

2 , π
2

]
(5.42)

and
sin x ≤ x ∀x ≥ 0 (5.43)

(see Inequality 1 and Inequality 2 in Appendix C) such an instrumental probability
density function for (5.40) is given by

f ′
θ(θ) :=

(

1− θ2

θ2
cone

)

· θ ≥ fθ(θ) ∀θ ∈ [0, θcone] . (5.44)

The corresponding cumulative distribution function is

F ′
θ(θ) = 1−

(

1−
(

θ

θcone

)2
)2

. (5.45)

92

5 Surface Rate Calculation

According to the rejection method a random polar angle following fθ can be generated
by feeding the inverse of the instrumental cumulative distribution function

θ = F ′−1
θ (u) = θcone

√

1−
√

1− u (5.46)

with uniformly distributed random variates u ∈ [0, 1] and accepting θ, if

u′f ′
θ(θ) ≤ fθ(θ), (5.47)

where u′ denotes another uniformly distributed variate on [0, 1]. Algorithm 5.3 summa-
rizes the entire procedure for determining random polar angles, which are distributed
according to the coned cosine distribution.

Algorithm 5.3 Generation of a cos(π
2 θ/θcone) sin θ distributed variate.

function ConedCosineVariate(θcone) ⊲ requires 0 ≤ θcone ≤ π
2

repeat

x←
√

rand()
y ←

√
1− x

θ ← θcone · y
until x · θ · rand() ≤ cos

(
π
2 · y

)
· sin θ

return θ ⊲ θ satisfies 0 ≤ θ ≤ θcone

end function

The efficiency γ of rejection sampling for this case, thus the fraction of successful
attempts satisfying (5.47), is given by

γ =

∫ θcone

0 fθ(θ
′) dθ

∫ θcone

0 f ′
θ(θ

′) dθ
=

8

π2
·

2(sin(π
2
a)−a)

a(1−a2)
if 0 < a < 1,

1 if a = 1.
(5.48)

The presented algorithm shows a very high efficiency, since γ ≥ 8
π2 holds for all

a ∈]0, 1] (see Inequality 3 in Appendix C), which corresponds to a success rate of
approximately 81 % in the worst case.

5.3.3 Direction Vector Calculation

Ray tracing usually requires a normalized direction vector. Therefore, once random
polar and azimuthal angles with respect to the given unit vector ~v are determined, the
direction vector ~ω can be obtained by

~ω = ~v cos θ +
(
~v′ cos φ + ~v × ~v′ sin φ

)
sin θ, (5.49)

where ~v′ is a normal vector with respect to ~v, thus satisfying ~v′ ·~v = 0. The rotational
symmetry of the random direction distribution allows an arbitrary choice of ~v′, which

93

5 Surface Rate Calculation

can be defined as follows

~v′ :=

1√
1−v2

1

· (0, v3,−v2) |v1| ≤ |v2|,
1√

1−v2
2

· (v3, 0,−v1) |v1| > |v2|.
(5.50)

The case differentiation avoids problematic cases, where ~v′ vanishes. In the following,
only the first case is considered. The second case can be converted to the first case
by exchanging the first two components of ~v, v1 and v2, before calculating ~ω. A
final exchange of the corresponding components of ~ω, ω1 and ω2, leads to the correct
direction vector.

The condition |v1| ≤ |v2| together with ‖~v‖ = 1 implies |v1| ≤ 1√
2

and |v2| ≥ 1√
3
∨

|v3| ≥ 1√
3
. Therefore, ~v′ is always well-defined. Insertion into (5.49) gives

ω1 = v1 cos θ − f
(
1− v2

1

)
sin φ

ω2 = v2 (cos θ + f v1 sin φ) + f v3 cos φ

ω3 = v3 (cos θ + f v1 sin φ)− f v2 cos φ

(5.51)

with f := sin θ√
1−v2

1

=

√

1−(cos θ)2

1−v2
1

. Using the second notation of f , ~ω can be calculated

without knowledge of sin θ at the expense of one additional multiplication. Some
distributions, such as the previously discussed power cosine distribution, enable the
direct calculation of cos θ, avoiding the costly evaluation of trigonometric functions for
the polar angle entirely (see the last note in Algorithm 5.2).

The evaluation of the other trigonometric functions in (5.51) can also be avoided. The
point (sin φ, cos φ) is uniformly distributed on the unit circle. An alternative way for
picking a point on the unit circle is to randomly choose a point (a1, a2) on a disk
and to calculate the normalized vector (a1, a2)/

√

a2
1 + a2

2 [25]. The radicand can be
combined with that for the calculation of f obviating the extra evaluation of the root.
Algorithm 5.4 describes the determination of a random unit vector ~ω around ~v with
given polar angle θ, which is equivalent to ~ω · ~v = cos θ.

5.3.4 Cosine Distribution

The most frequently used distribution is the cosine distribution, which is required to
describe the arrival angles of neutral particles (2.5) or diffusive reemission (2.18). The
cosine distribution can be seen as a special case of the power cosine distribution (2.6)
with ν = 1 or as a special case of the coned cosine distribution with θcone = π

2 . As
shown in the next section, sampling a cosine distribution using Algorithm 5.2 is faster
than using Algorithm 5.3 for the coned cosine distribution. Therefore, the power cosine
distribution with ν = 1 is the common technique for sampling a cosine distribution
[37]. However, the polar angle is usually not of interest. It is just an intermediate
result passed to Algorithm 5.4 to generate a unit vector as needed for ray tracing.

94

5 Surface Rate Calculation

Algorithm 5.4 Sampling a random vector ~ω satisfying ~ω · ~v = cos θ.

function RandomUnitVector(~v, cos θ) ⊲ requires ‖~v‖=1 and |cos θ| ≤ 1
repeat ⊲ pick uniform random point inside circle with radius 0.5

a1 ← rand()− 0.5
a2 ← rand()− 0.5
a← a2

1 + a2
2

until 0 < a ≤ 0.25
if |v1| ≤ |v2| then

v1 ↔ v2 ⊲ swap v1 and v2

set flag
end if

b← 1− v2
1

c←
√

1−(cos θ)2

a·b
a1 ← c · a1

a2 ← c · a2

d← cos θ − v1 · a1

ω1 ← v1 · cos θ − b · a1

ω2 ← v2 · d + v3 · a2

ω3 ← v3 · d− v2 · a2

if flag is set then

ω1 ↔ ω2 ⊲ swap ω1 and ω2

end if

return ~ω
end function

Algorithm 5.5 Picking a random point on unit sphere.

function RandomPointOnUnitSphere()
repeat

a1 ← 2 · rand()− 1
a2 ← 2 · rand()− 1
a← a2

1 + a2
2

until a < 1
ω1 ← 1− 2 · a
a← 2 ·

√
1− a

ω2 ← a1 · a
ω3 ← a2 · a
return ~ω ⊲ ~ω satisfies ‖~ω‖ = 1

end function

95

5 Surface Rate Calculation

Algorithm 5.6 Generation of a cos θ distributed unit vector around ~v.

function CosineDistributedRandomVector(~v) ⊲ requires ‖~v‖ = 1
repeat

~ω′ ←RandomPointOnUnitSphere()
~ω ← ~ω′ + ~v
a←

√

ω2
1 + ω2

2 + ω2
3

until a 6= 0
~ω ← ~ω/a
return ~ω

end function

In the following discussion an alternative method is proposed, which samples a unit
vector obeying the cosine distribution directly, without the need of an additional ro-
tation as described in Section 5.3.3. The method uses the fact that the sum of the
given direction vector ~v and a unit random vector ~ω′, which is uniformly distributed
over a sphere, follows a cosine distribution. As illustrated in Figure 5.6, the area dA
seen from the origin O in a direction with polar angle θ within an infinitesimal solid
angle dΩ is

dA = 4cos θ dΩ. (5.52)

As a consequence, the desired random vector ~ω can be obtained from a spherically
distributed unit vector ~ω′ by

~ω =
~v + ~ω′

‖~v + ~ω′‖ . (5.53)

For the spherical distribution numerous methods have been proposed in the past. So
far the most efficient way to pick a point on the unit sphere is described in [61, 75, 107]
and is listed in Algorithm 5.5. Standard numeric libraries such as the GNU scientific
library already provide ready implementations for that algorithm [36]. Therefore, a
very simple and short vector sampling algorithm for the cosine distribution is given
by Algorithm 5.6.

5.3.5 Direction Vector Sampling Benchmarks

All the algorithms, presented in the previous sections, were implemented using C++
and tested on an Intel Core 2 Duo E6600 processor clocking at 2.4 GHz. To compare
the algorithms for different parameters, θ1/2 was varied, which is the angle at half

maximum g(θ1/2) = 1
2 . For the power cosine distribution θ1/2 = arccos

(
1

ν
√

2

)

and for

the coned cosine distribution θ1/2 = 2
3 θcone.

The runtimes for sampling 100 million random vectors are compared for different
algorithms in Table 5.3. For θ1/2 the random direction vectors follow a simple cosine
distribution for all presented algorithms. For this specific case Algorithm 5.6 is able

96

5 Surface Rate Calculation

Figure 5.6: The sum of the given direction ~v and a random unit vector ~ω′ uniformly dis-
tributed over a sphere leads to a cosine distribution.

Angle at half max. Power cosine Coned cosine Simple cosine

θ1/2 ν t θcone t t

60◦ 1 10.8 s 90◦ 26.6 s 11.6 s
21.1◦ 10 20.8 s 31.6◦ 26.8 s –
6.74◦ 100 20.8 s 25.8◦ 25.8 s –
2.13◦ 1000 20.8 s 3.20◦ 25.8 s –

Table 5.3: Runtimes for sampling 100 million direction vectors on an Intel Core 2 Duo E6600
processor running at 2.4GHz.

to compete with Algorithm 5.2 for the power cosine distribution with ν = 1 and is
therefore, due to its simplicity, a serious alternative. For ν = 1 the compiler is able to
use the square root function instead of the power function, which explains the better
runtime. For all other cases, the runtimes for sampling the power cosine distribution
are comparable with those for sampling the coned cosine distribution.

5.4 Implementation Details

The complete topography simulation algorithm was coded in C++. Most parts were
implemented in a multi-dimensional way. Only a few functions were treated separately
for the two- and three-dimensional cases, such as testing for ray–surface intersections,
which requires bi- or trilinear interpolation in two and three dimensions, respectively.

97

5 Surface Rate Calculation

However, using the template mechanism of C++ [124], both cases are processed sep-
arately during compile time. In this way, heavy optimizations by the compiler, such
as loop unrolling for iterations over the dimensions, are possible.

5.4.1 Simulation Flow

The basic flow of the complete algorithm for topography simulation is depicted in
Figure 5.7. First, the initial geometry is given as a volume mesh, where a material
number is assigned to each volume element, which is either a triangle or a tetrahedron
for two or three dimensions, respectively. The order of these numbers defines, in
which way the structure is represented by LSs (see Section 4.6.1). The surface and the
corresponding interfaces are then extracted, which results, depending on the number
of dimensions, in triangle or line segmentations which are further transformed into LS
representations.

After initialization, the main cycle of the algorithm is started. For all active grid points
the tangential disks are set up. For each active grid point the distance to the disk and
the normal vector are calculated and stored. Afterwards, the set of all non-empty grid
cells is determined, which is then used to set up an appropriate spatial subdivision.
The subsequent ray tracing procedure calculates the surface rates which are needed to
calculate the surface velocities.

As previously discussed in Section 2.2.3, the reemission probability of particles might
depend on the arriving flux distribution, which is the case for the non-linear surface
reactions presented in Section 2.3.2. This leads to a recursive problem which can
be solved through iterations. Hence, the computation of the surface rates must be
repeated several times, until convergence is achieved. In practice, this is usually per-
formed only for the first time step. Later, the reemission probability is estimated
from the surface rates, which have been obtained in the preceding time step. This is
a reasonable approach, since subsequent geometric changes are very small due to the
CFL condition.

After the calculation of the surface rates, the surface velocity can be computed for all
active grid points. Then, the surface is advanced using the LS algorithm and the time
is incremented. If the elapsed time is still smaller than the total processing time, the
entire time evolution cycle is repeated. Otherwise, the marching squares or marching
cubes algorithm, depending on the number of dimensions, is applied in order to obtain
an explicit surface representation as final output.

5.4.2 Model Implementation

The simulator is designed in such a way that the simulator kernel is clearly separated
from the physical models. Hence, new models can be easily implemented and added.

98

5 Surface Rate Calculation

Figure 5.7: Flow chart of the simulation algorithm.

The simulator kernel requests 4 functions of specific form which all must be provided
by a new process model:

1. The first function

void pa r t i c l e g e n e r a t i o n (double time ,
double po s i t i o n [] ,
p a r t i c l e t& p a r t i c l e) ;

generates a new particle which obeys the arriving flux distribution Γsrc. It returns
a starting position and the particle properties, such as direction, energy, and
species. The particle properties are stored using the data type

struct p a r t i c l e t {
double d i r e c t i o n [3] ;
double energy ;
int s p e c i e s ;
double we i gh t f a c t o r ;

} ;

which is provided by the simulator and also includes a weight factor. The initial
value of the weight factor is usually 1. The starting position does not need to be
set by the function, if the arriving flux distribution is spatial invariant. In this

99

5 Surface Rate Calculation

case a flag can be passed to the simulator kernel which itself chooses a random
starting position on the source plane P.

2. The second function

void d i s k i n t e r s e c t i o n (const double normal [] ,
double r a t e s [] ,
const double o l d r a t e s [] ,
const p a r t i c l e t& p a r t i c l e) ;

is called, whenever a particle intersects the tangential disk of an active grid
point. If this is the case, the function is responsible to make the corresponding
contributions to the surface rates. Apart from the normal vector of the tangential
disk, the old rates from the previous iteration step are provided, which are needed
to solve recursive problems.

3. The third function

void s u r f a c e i n t e r s e c t i o n (int mater ia l ,
const double normal [] ,
const double o l d r a t e s [] ,
const p a r t i c l e t& pa r t i c l e ,
stack<p a r t i c l e t >& new pa r t i c l e s) ;

describes what needs to be done if a particle intersects the surface. The current
material on the surface and the surface normal (obtained by deriving the multi-
linear interpolation formula within the corresponding grid cell) at the intersection
point are passed to the function. Furthermore, the preceding surface rates,
as needed for recursive problems, and the material type are provided. Since
the rates are only stored at active grid points, the rates of the closest active
grid point are taken. Together with the properties of the incident particle all
information necessary in deciding whether new particles must be launched, is
available. The properties of new particles, such as the reemitted direction, the
energy, the particle species, and the weight factor, which all must obey the
reemission probability, are simply pushed to the stack. The starting position of
new particles is automatically assumed to be the surface intersection point.

4. The fourth function

double v e l o c i t y c a l c u l a t i o n (int mater ia l ,
const double normal [] ,
const double r a t e s []) ;

is called, if the surface velocity must be known for an active grid point and for
a certain material type. The normal vector is also passed to the function for the
description of transport-independent surface reactions (see Section 2.3.3).

A new process model is represented as a class which contains all these functions in the
public section. To simulate a certain process, the corresponding class is simply passed

100

5 Surface Rate Calculation

to the simulation algorithm. C++ offers dynamic and static polymorphism. How-
ever, especially the first three functions are called very often during the ray tracing
procedure. At the same time, they usually contain only a few lines of code which is
predestined for inlining. Therefore, to enable compiler optimizations, static polymor-
phism is applied, which is expressed in C++ by passing the class of a physical model
as a template parameter to the simulator kernel.

101

6 Applications

In this chapter all previously described numerical techniques are demonstrated on a
selection of different processes which are covered by the general model equations in-
troduced in Chapter 2. Due to the simple simulator interface (see Section 5.4.2) and
the simulator’s ability to solve the general transport equations without further sim-
plifications, new models can be straightforwardly implemented. The physical models
of processes, which were used for the simulations presented in the following, were all
taken from literature.

6.1 Chemical Vapor Deposition

In [21], a simple model, which is able to describe low pressure CVD and PVD processes,
was presented. It assumes ballistic particle transport at feature-scale and considers
only a single particle species. Particles remain sticking on the surface according to a
given sticking probability. Otherwise, the particles are reemitted from the surface, and
their directions follow the Knudsen cosine law (2.18). For non-linear surface reactions,
a dependence of the local sticking probability on the incident flux was derived (2.32),
leading to a recursive problem.

First, in order to compare the results and to verify the simulator, some two-dimensional
low pressure CVD simulations, initially published in [21] are reproduced. The initial
structure is a quadratic trench. The directional distribution of arriving particles is also
assumed to obey a cosine distribution (2.5). The results for various sticking coefficients
s and reaction orders η are shown in Figure 6.1. The value of s corresponds, in the case
of non-linear surface reaction (η 6= 1), to the sticking probability on a plane surface.
The results are in good agreement with those given in [21].

The well behaving scaling laws of all the numerical techniques allow the simulation
of large three-dimensional structures. In order to demonstrate the capabilities of the
simulator, a deposition process is simulated for a large initial structure as shown in
Figure 6.2. Its lateral extensions are 1400× 835 grid spacings. The final profiles after
deposition of a 15 and a 30 grid spacings thick layer are shown in Figure 6.3 and
Figure 6.4, respectively. The deposition process was modeled using the parameters
η = 1 and s = 0.05.

102

6 Applications

(a) η = 1, s = 0.001 (b) η = 1, s = 0.01 (c) η = 1, s = 0.1

(d) η = 1, s = 1 (e) η = 0.5, s = 0.1 (f) η = 2, s = 0.1

Figure 6.1: Two-dimensional simulations of a deposition process for various sticking coeffi-
cients s and reaction orders η.

For the simulation 1168 million particles are simulated at every time step in order to
calculate the local deposition rates. Every time a particle hits the surface, a new par-
ticle is launched, as long as its new weight factor is larger than 0.001. The simulation
was carried out in parallel on 24 cores of AMD Opteron 8435 processors (2.4 GHz).
The average calculation time for a time step is 10 min. In total, 600 time steps are
necessary for the entire simulation, when using CCFL = 0.1 for the CFL criterion.

6.2 Plasma Etching

In recent years various works on three-dimensional plasma etching simulation have
been presented. However, most of them are not suitable to solve complex plasma
etching models. The transport equations of more generalized models cannot be solved
in three dimensions by the conventional approach, due to computational limitations.
For simplification, specular reflections of ions or higher order reemissions of neutrals are
often neglected [43, 50]. In order to incorporate such effects, particle trajectories must
be calculated using the MC technique [64, 95]. The ray tracing techniques described

103

6 Applications

Figure 6.2: The initial geometry was resolved on a grid with lateral extensions 1400× 835.

Figure 6.3: The profile after deposition of a 15 grid spacings thick layer.

Figure 6.4: The profile after deposition of a 30 grid spacings thick layer.

104

6 Applications

in this work derive an efficient solution, even for large three-dimensional structures
[A19].

Typical plasma etching models assume ballistic transport of particles at feature-scale
and Langmuir-type adsorption [1, 14, 15, 63]. As a representative of these mathemat-
ically similar models, the SF6/O2 plasma etching model given in [14] is selected. The
surface kinetics model and its governing equations are briefly discussed. However, a
more detailed description, including full sets of model parameters, can be found in the
original publication [14].

The model assumes three different particle species: Fluorine, oxygen, and ions. The
arrival directions of neutrals are assumed to follow the cosine law (2.5), while a power
cosine distribution (2.8) is used for ions. For the description of the surface kinetics,
coverages ΘF(~x) and ΘO(~x) are introduced, which describe the fraction of surface sites
covered with fluorine and oxygen, respectively. The corresponding balance equations
can be written in analogy to (2.34) as

σSi
ΘF

dt
(~x) = sF (1−ΘF(~x)−ΘO(~x)) FF(~x)− kσSiΘF(~x)− 2ΘF(~x)Y tot

ie (~x)

σSi
ΘO

dt
(~x) = sO (1−ΘF(~x)−ΘO(~x)) FO(~x)− βσSiΘO(~x)−ΘO(~x)Y tot

O (~x)

(6.1)

Here σSi is the surface site density of silicon. The first terms describe the adsorption
of neutrals, which is proportional to the corresponding arriving fluxes, the sticking
probabilities sF/O on silicon, and the fraction of free surface sites (1−ΘF −ΘO). The
second terms describe the loss of particles caused by chemical etching with rate k or
by recombination with rate β, respectively. The third terms describe the removal due
to ion-enhanced etching or sputtering. FF and FO are the total fluxes of neutrals on
the surface. Y tot

ie is the total ion-enhanced etching rate and Y tot
O is the total oxygen

sputter rate, which are both calculated using (2.27).

The surface velocity is equal to the total etch rate which is composed of three contri-
butions, chemical etching, physical sputtering, and ion-enhanced etching (2.33)

V (~x) = − 1

ρSi

(
kσSiΘF(~x)

4
+ Y tot

ph (~x) + ΘF(~x)Y tot
ie (~x)

)

. (6.2)

Here ρSi is the bulk density of silicon (ρSi = 5× 1028 m−3).

The model fully incorporates specular reflexions of ions, which depend on the incident
energy and direction. The reemitted direction follows the distribution given in (2.17).
The functional dependence of the reemitted energy distribution on the incident energy
is described in detail in [15].

The plasma etching process is first applied to a two layer structure, a silicon substrate
covered by a 1.2 µm thick SiO2 mask layer with a circular tapered hole. The diameter of
the hole is 0.35 µm at the bottom and 0.4 µm at the top. The geometry is represented
by two LSs resolved on a regular grid with lateral extensions 100 × 100 and a grid

105

6 Applications

F src
ion=1016 s−1 cm−2

F src
F =8 · 1018 s−1 cm−2

F src
O =0

(a)

F src
ion=1016 s−1 cm−2

F src
F =5.5 · 1018 s−1 cm−2

F src
O =1.5 · 1017 s−1 cm−2

(b)

F src
ion=1016 s−1 cm−2

F src
F =4.5 · 1018 s−1 cm−2

F src
O =6 · 1017 s−1 cm−2

(c)

F src
ion=1016 s−1 cm−2

F src
F =4 · 1018 s−1 cm−2

F src
O =1018 s−1 cm−2

(d)

Figure 6.5: The final profiles after 150 s of etching in a SF6/O2 plasma for different gas
compositions. The two level sets which are used to represent the two material regions, the
mask and the substrate, are shown.

spacing of 20 nm. Reflective boundary conditions are assumed in both lateral grid
directions.

Figure 6.5 shows the LS representations of the profiles after 150 s for different fluxes
of oxygen and fluorine from the source. With increasing amount of oxygen, the etched
profile gets more directional. The oxygen covers the sidewalls and prevents them from
corrosion. Mask etching is also incorporated in these simulations. At every time step 5
million trajectories of each involved particle species are calculated. Due to the spatial
subdivision and the use of modern quad-core processors the calculation time of one
time step could be reduced to less than 15 s. About 2000 time steps are necessary to
obtain the final profiles, resulting in a total computation time of approximately 8 h.

In a further example, a more complex structure (Figure 6.6a) is exposed to the same
process parameters as listed in Figure 6.5c. The entire geometry is resolved on a grid
with lateral extensions 200 × 200. Again, reflective boundary conditions and a grid
spacing of 20 nm are used. The LS representations of the profile at different times are
shown in Figure 6.6. For this simulation, due to the larger domain size, 20 million
particle trajectories of each particle species were calculated at every time step. The
full incorporation of specular reflections leads to micro-trenching at the trench bottom

106

6 Applications

(a) The initial geometry. The mask has a thick-
ness of 1.2 µm. The trench width is 0.35 µm at
the bottom and 0.4 µm at the top.

(b) The profile after 25 s. Micro-trenching as a
result of specular ion reflections can be clearly
observed.

(c) The profile after 50 s. (d) The profile after 75 s.

Figure 6.6: Plasma etching simulation for a three-dimensional structure. The same param-
eters are used as for the simulation presented in Figure 6.5c.

edges (Figure 6.6b). For the same reason, the bend and the end of the trench are
etched deeper.

6.3 Anisotropic Wet Etching

Another application is the simulation of anisotropic wet etching. In [96], a model
for anisotropic wet etching of silicon with potassium hydroxide (KOH) is described.
The material transport to the surface can be neglected for this process. The surface
velocity only depends on the crystallographic orientation of the surface, thus on the
local surface normal ~n. It is assumed that ~n is given with respect to the crystallographic

107

6 Applications

(a) t = 0 (b) t = 0.5 min

(c) t = 1min (d) t = 1.5 min

(e) t = 2min (f) t = 4min

Figure 6.7: Anisotropic wet etching of a silicon substrate through a quadratic aperture.
The lateral extensions of the simulation domain are 8µm × 8 µm and the grid resolution is
∆x = 10nm. The simulation boundaries are aligned to 〈100〉 directions.

directions, [100], [010], and [001]. Utilizing the crystallographic symmetries of silicon,
it is possible to only consider the case 1 ≥ n3 ≥ n2 ≥ n1 ≥ 0. This allows the surface
velocity to be approximated by

V (~x) =

{−R100(n1−n2−2n3)−R110(n2−n3)−3R311n3

n1
if n1 − n2 − 2n3 > 0,

R111(n1−n2−2n3)−2R110(n2−n3)−3R311(n1−n2)
2n1

else.
(6.3)

Here the model parameters R100, R110, R111, and R311 are the etch rates for the crys-
tallographic directions 〈100〉, 〈110〉, 〈111〉, and 〈311〉, respectively. (6.3) interpolates
these rates for all other directions in between. For a KOH concentration of 30 % and a
temperature of 70 ◦C, the measured values of these rates are R100 = 0.797 µm min−1,
R110 = 1.455 µm min−1, R111 = 0.005 µm min−1, and R311 = 1.436 µm min−1 [103].

Inserting these numerical values into (6.3) leads to a non-convex Hamiltonian for the
LS equation. Hence, to obtain a stable solution, a non-convex scheme, such as the Lax-
Friedrichs scheme, must be applied (see Section 3.2.2). For the simulations, presented

108

6 Applications

(a) t = 0 (b) t = 0.5 min

(c) t = 1min (d) t = 1.5 min

(e) t = 2min (f) t = 3min

(g) t = 4min (h) t = 5min

Figure 6.8: The LS representations at different times for an anisotropic wet etching process.
The lateral domain boundaries are aligned to 〈110〉 directions. The structure size is 20µm ×
20µm.

109

6 Applications

in the following, the dissipation coefficients αi in (3.12) are all set to 2.8 µm min−1.
This value has been found through variation and selection of the value that gives the
most accurate simulation results.

Some examples presented in [96] are reproduced by the following simulations. First,
anisotropic wet etching of a silicon substrate through a mask with a quadratic hole
is simulated. Due to the optimized LS framework, it is possible to use a very fine
grid with a grid spacing of just 10 nm. Since the extensions of the structure are
8 µm × 8 µm, the lateral grid extensions are 800 × 800. Two LS functions are used
to represent the mask and the etch front. Figure 6.7 shows the LS representation at
different times. The total calculation time was about 100 min on two cores of an AMD
Opteron 8222 SE processor (3GHz). If CCFL = 0.1 is used for the CFL condition,
approximately 3900 time steps are necessary. The total memory consumption did not
exceed 360 MB.

The results of a second simulation are shown Figure 6.8. There, a more complex
mask structure is assumed with size 20 µm × 20 µm. This leads to a grid with lateral
extensions of 2000 × 2000. Thanks to the H-RLE data structure, the total memory
consumption was always below 1.2 GB. For comparison, the usage of a full grid with
dimensions 2000× 2000× 500 would require at least 30 GB for just storing the two LS
functions. Using again CCFL = 0.1, the total calculation time for the required 12 400
time steps was about 34 h on two cores of an AMD Opteron 8222 SE processor. The
final profiles of both simulations are in good agreement with those reported in [96].

6.4 Bosch Process

The Bosch process has already been mentioned in Section 4.7.2, when demonstrating
the multi-LS framework. A sequence of passivation and etching cycles can be used for
high aspect ratio etching. In each cycle a chemically inert polymer layer is uniformly
deposited using fluorocarbon gases. This passivation layer prevents the sidewalls from
being attacked in the subsequent etching step (compare Figure 4.15).

By feeding a high frequency plasma with etch gases like SF6, CF4, or NF3, a superpo-
sition of physical (directional) and chemical (isotropic) etching is obtained. This leads
to a faster removal of the passivation layer at the bottom of the trench compared to
the sidewalls due to the additional sputtering of the directional ions. After uncovering
the substrate at the bottom, chemical etching is dominant. Hence, in simple terms,
in each cycle an isotropic etching process is initiated at the bottom of the trench.
After many iterations, profiles with high aspect ratios can be obtained. For optimal
processing the passivation and etching cycle times must be balanced. If the deposited
passivation layer is too thin, the process time for the etching cycle must be smaller
to avoid the corrosion of the sidewalls, increasing the number of required iterations.
If the layer is too thick, the etching duration must be increased, resulting in a longer

110

6 Applications

total process time. The choice of the process times also has an influence on the un-
dulation of the sidewalls caused by the two-phase procedure. Computer simulations
help to study parameter variations in order to optimize the process.

A two-dimensional simulator using a cell-based method for surface evolution was pre-
sented in [137, 138]. Therein a simplified model for the particle transport is used.
Etching is modeled by an isotropic etch rate superposed by a directional term which
is proportional to the incident ion flux. For the passivation cycle a perfect conformal
deposition is assumed, which is equivalent to a constant surface velocity. However, this
model is not able to describe the lag effect [35] appropriately. Therefore, a geometric
shape factor was introduced [128] to account for different trench widths.

A simulation with a more sophisticated transport model is presented in [63], where
different sticking probabilities and higher order reemissions of neutral particles are
incorporated using a ballistic transport and reaction model [20, 21]. Since the transport
of neutrals to the surface is taken into account, the lag effect is inherently incorporated.
The surface evolution is calculated using the LS method, while the particle transport
is computed using the conventional approach [62]. The MC based calculation of the
particle transport was first applied to Bosch process simulation in combination with a
cell-based method for surface evolution in [116]. Many particle trajectories and their
surface reactions are calculated to determine the surface rates.

Three-dimensional simulations of the Bosch process were recently reported in [43]
and [125]. Both use simplified transport models and do not incorporate higher order
reemissions of neutrals. Instead, a uniform surface rate is assumed. The particle
transport is calculated using conventional integral methods. For surface evolution, a
cell-based method and the LS method are used, respectively.

The numerical methods presented in the previous chapters allow an efficient solution of
the more realistic model described in [63] even in three dimensions. The model assumes
linear surface reactions for the passivation and the etching cycle (see Section 2.3.1)

V (~x) = αFion(~x) + βFneu(~x). (6.4)

The coefficients α and β are model parameters, and in case of etching they depend
on the material on the surface. The sticking probabilities are assumed to be constant
for neutrals. The arriving directions of neutrals follow a cosine distribution (2.5). A
power cosine distribution (2.8) is used for ions. The energy distribution of ions is not
considered. The numeric values of all parameters for the passivation and the etching
cycle, which are used for all simulations, are listed in Table 6.1 and Table 6.2. Contrary
to [63], mask etching is also considered by assuming a mask/substrate etch selectivity
of 1:20. Hence, the coefficients α and β for the mask are adjusted accordingly.

111

6 Applications

Parameter Value Description

F src
neu 2× 1018 cm−2 s−1 neutral flux

F src
ion 3.125× 1015 cm−2 s−1 ion flux

ν 820 exponent for ions in (2.8)

α 10 Å
3

coefficient in (6.4)

β 0.5 Å
3

coefficient in (6.4)
s 0.1 sticking probability for neutrals

Table 6.1: The numeric values of the parameters used for the passivation cycle of the Bosch
process.

Parameter Value Description

F src
neu 1019 cm−2 s−1 neutral flux

F src
ion 4.375× 1015 cm−2 s−1 ion flux

ν 820 exponent used for ions in (2.8)

αpolymer −125 Å
3

coefficient in (6.4) for polymer

αsubstrate −270 Å
3

coefficient in (6.4) for substrate

αmask −13.5 Å
3

coefficient in (6.4) for mask

βpolymer −0.03 Å
3

coefficient in (6.4) for polymer

βsubstrate −0.9 Å
3

coefficient in (6.4) for substrate

βmask −0.045 Å
3

coefficient in (6.4) for mask
spolymer 0.1 sticking probability for neutrals on polymer
ssubstrate 0.2 sticking probability for neutrals on substrate
smask 0.2 sticking probability for neutrals on mask

Table 6.2: The numeric values of the parameters used for the etching cycle of the Bosch
process.

6.4.1 Process Time Variations

The effect of different passivation and etching cycle durations is studied on a structure
composed of a substrate and a 1µm thick mask which has a cylindrical hole with 2.5 µm
diameter. Despite the rotational symmetry, this problem cannot be straightforwardly
reduced to two dimensions. The introduction of cylindrical coordinates leads to non-
linear particle trajectories, which makes the determination of the visibilities between
two points on the surface much more difficult. For convex holes, where all points
are visible between each other, the solution of the transport equation for cylindrical
coordinates using the conventional approach was demonstrated in [62]. However, due
to the rippled, non-convex side walls of the hole, which evolve during the Bosch process,
this method cannot be applied.

In three dimensions, the simulation domain can be reduced to a quarter due to the re-
flective boundary conditions and the twofold reflection symmetry of the hole. However,
to prove the symmetry of the solution and to avoid reflections, the final visualizations

112

6 Applications

(a) 5 s/10 s (b) 6 s/10 s (c) 7 s/10 s (d) 8 s/10 s

(e) 5 s/12 s (f) 6 s/12 s (g) 7 s/12 s (h) 8 s/12 s

(i) 5 s/14 s (j) 6 s/14 s (k) 7 s/14 s (l) 8 s/14 s

Figure 6.9: The final profiles after 20 cycles for different combinations of deposition/etching
process times.

113

6 Applications

are generated with a process simulation on half of the domain, which is discretized us-
ing a grid with lateral extensions 140×70. The grid spacing is 25 nm for all simulations.
1.96 million particles are launched from the source plane at every time step.

The final profiles, after 20 cycles with different process times for deposition (5 s, 6 s,
7 s, and 8 s) and etching (10 s, 12 s, and 14 s) are given in Figure 6.9. The results
show the influence of the process time on the depths of the holes, tilt angles of the
side walls, and the resulting polymer layers. Since mask etching is also incorporated,
its final thickness can be studied. Such simulations can help find the optimal process
parameters.

6.4.2 Lag Effect

The influence of the hole diameter on the final profile is further investigated. A Bosch
process with 6 s passivation followed by 12 s etching cycles is applied on a 1 µm thick
perforated mask with cylindrical holes of varying diameters (0.5 µm, 1 µm, 1.5 µm,
2 µm, and 2.5 µm).

The simulation domain is resolved on a grid with extensions 500 × 140. 12.5 million
particles are simulated for each time step. Using 8 cores of AMD Opteron 8222 SE
processors (3 GHz) the total computation time is approximately 2 days. Approxi-
mately 6500 time steps are necessary to simulate all 20 cycles of the Bosch process.

Figure 6.10: Deep reactive ion etching of holes with varying diameters (0.5 µm, 1µm, 1.5µm,
2 µm, and 2.5µm). The lag effect is the reason for the different depths. The structure is resolved
on a grid with lateral extensions 500× 140.

114

6 Applications

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
aspect ratio x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
 /

F
sr

c

neutrals (ray tracing)
ions (analytical)
ions (ray tracing)

Figure 6.11: The characteristic dependence of the neutral and ion fluxes at the bottom center
on the aspect ratio.

The calculation time for one time step is 27 s on average. The runtimes increase con-
tinuously during the entire simulation due to the increasing depths of the holes and
the increasing surface area. Figure 6.10 shows the final profile after 20 cycles. The
different etching depths due to the lag effect can be observed. With increasing aspect
ratio, the effective etching rate decreases.

To analyze the reason behind the lag effect in more detail, the ion and neutral fluxes are
calculated at the bottom center of idealized cylindrical holes for various aspect ratios
x, which is a ratio of the depth and the hole diameter. The ion fluxes obtained by ray
tracing are in very good agreement with those calculated analytically (Figure 6.11).
The analytical expression

Fion = F src
ion ·

(

1−
(

2x√
1 + 4x2

)ν+1
)

(6.5)

can be derived from (5.10) by integrating over the open solid angle of the cylindrical
hole. For the calculation of the neutral flux, the sticking coefficient is set to 0.1, which
corresponds to the sticking probability of neutrals on the passivation layer, as used in
this model. The results show that the aspect ratio affects the neutral flux much more
than the directional ion flux. With increasing depth the hole surface area increases,
leading to a smaller fraction of particles which remain sticking at the bottom and not
at the sidewalls.

According to (6.4) and Table 6.1 the neutral flux is the main contributor to the depo-
sition rate of the passivation layer. Hence, by increasing the aspect ratio, the thickness
of the deposited passivation layer decreases due to the smaller neutral fluxes. However,
unlike the neutral flux, the ion flux is not reduced significantly. As a consequence, the
passivation layer is etched through much faster. The ion flux countervails the lag
effect, because the substrate is attacked earlier in the etching cycle for larger aspect
ratios. However, this head start is more than compensated by the larger substrate
etch rate for smaller aspect ratios, due to the larger neutral fluxes.

115

6 Applications

6.5 Focused Ion Beam Processing

Another application of the presented simulation techniques are FIB simulations. So
far, full three-dimensional simulations have been presented in [55] and [57] using cell-
and segment-based methods for surface evolution, respectively. The application of the
LS method for FIB simulations was first demonstrated in [58]; however, only for the
two-dimensional case. In this section, three-dimensional FIB simulations using the LS
method and ray tracing are presented.

(a) t = 0ms (b) t = 20ms

(c) t = 40 ms (d) t = 60ms

(e) t = 80 ms (f) t = 100 ms

Figure 6.12: Ion beam milling of a step structure for an incident angle of 45◦.

116

6 Applications

(a) t = 15 × 4ms (b) t = 45 × 4ms

(c) t = 75 × 4ms (d) t = 105 × 4ms

(e) t = 135 × 4ms (f) t = 165 × 4ms

(g) t = 180 × 4ms (h) t = 720 × 1ms

Figure 6.13: (a)-(g) Serpentine scan of 30×6 pixels with dwell time of 4ms. (h) Four passes
of a serpentine scan with dwell time of 1ms.

The same model is used as described in [57], which also considers redeposition of sput-
tered material. Sputtered particles are assumed to remain sticking with a probability
s = 1. The surface velocity is given by the difference of the sputter rate and the
deposition rate of redeposited particles. Here, the sputter rate is modeled using Ya-
mamura’s formula (2.21). There, the constants C1 and C2 are chosen in such a way
that the maximum sputter rate is 20 particles per ion for an incident angle of 82◦.
For normal incidence a sputter rate of 2.5 is assumed. The directions of sputtered
particles are described by a cosine distribution (2.19). The beam profile is modeled
using a normal distribution (2.11).

117

6 Applications

The first example (Figure 6.12) shows the effect of an ion beam with diameter 50 nm
(FWHM) and inclined incidence with angle 45◦ on a step structure. The LS method
is able to describe the appearing topographic changes without any problems. The
beam current is set to 50 pA and the bulk density is assumed to be that of silicon
(ρSi = 5× 1028 m−3). The grid spacing is set to 2 nm. One million ions are launched
at every time step in order to calculate the surface velocities.

As a second example, the time evolution of a plain surface, which is processed by
a normal incident FIB as described in [57], is calculated. The beam is moved over
30 × 6 pixels using a serpentine scan strategy. The overlap of two neighboring pixels
is assumed to be 50 %, which means that the distance between their midpoints is 50 %
of the beam diameter, thus 25 nm. Figure 6.13 shows the results for two different
processing schemes: a single pass with a dwell time of 4 ms at every pixel and four
passes with a dwell time of 1 ms.

118

7 Summary and Outlook

In this work many new numerical techniques and algorithms for topography simu-
lation, especially for large three-dimensional geometries, have been presented. The
combination of modern LS techniques, such as the sparse field method and the H-
RLE data structure, lead to a fast optimal scaling surface evolution algorithm. Novel
iterators for accessing the H-RLE data structure have been implemented. They en-
able fast serial processing of the H-RLE data structure with proper incorporation of
boundary conditions. The developed iterators are used for the implementation of the
sparse field method and for the realization of Boolean operations. Furthermore, effi-
cient algorithms for testing unidirectional visibility and connectivity, which are useful
for certain process models, have been described. In addition, a new way to handle
multiple material regions, including thin layers, using a multi-LS description has been
presented. The LS framework was further enhanced by adapting the H-RLE data
structure for parallelization on shared-memory machines.

General surface kinetics models require the calculation of the particle transport in order
to obtain surface velocities. Since ballistic particle transport can be assumed for many
processes, ray tracing techniques, such as spatial subdivision, can be applied. A new
data structure using neighbor links arrays was suggested, which appeared to be very
suitable and efficient for topography simulation. Furthermore, ray tracing was directly
applied to the implicit LS representation of the surface. Rates are directly calculated
for surface points using tangential disks. Hence, no explicit surface representation is
required, which saves memory and computation time.

Contrary to the conventional direct integration approach used for surface rate cal-
culation, ray tracing enables the incorporation of higher order reemissions as well as
effects which depend on the direction and energy of incident particles. At the same
time, a reduced computational complexity is obtained and parallelization is straight-
forward. Furthermore, ray tracing allows the definition of a simple interface, which
enables an easy implementation of new process models. Together with the LS frame-
work, a powerful and efficient topography simulator was created, which can be used
for a large variety of processes. As a demonstration, a selection of process models re-
ported in the literature has been implemented and used for various three-dimensional
applications.

For future work, it might be interesting to develop methods and algorithms, which are
able to convert back the LS representation into a volume mesh of high quality, which
can then be used for subsequent simulation of process steps requiring a volume mesh,

119

7 Summary and Outlook

e.g. diffusion. A promising approach for meshing an implicit surface is described in
[18, 82, 129]. The idea is to start from a regular tetrahedral mesh which is refined
near the surface. Tetrahedra outside of the surface are removed, and the remaining
tetrahedral mesh is adapted to the surface by a relaxation procedure.

As already mentioned in Section 2.2.2, some processes might require the incorporation
of electrostatic interactions. Ion incidence may charge the surface, which leads to
an electrostatic field that deflects ion trajectories. The effect of surface charging has
already been fully incorporated in two-dimensional MC simulations [104]. However,
the accuracy of three-dimensional simulations is still limited by the high computational
costs [94, 97]. To speed up the calculation, it might be possible to extend the presented
ray tracing techniques as follows: First, the electric field is calculated at all corners of
each subbox of the spatial subdivision. This enables a multi-linear interpolation of the
field within each subbox. Then, the ion trajectory through a subbox can be calculated
using a standard leapfrog method [92]. If necessary, the spatial subdivision needs to
be refined at regions with large field gradients.

120

Appendix A

Line–Triangle Intersection

For the initialization of the LS function, triangles must be checked for possible in-
tersections with grid lines (see Section 4.1.1). In the following, a robust line–triangle
intersection test is presented. If the line intersects the triangle, the intersection point
is also calculated. The following approach ensures that, if a line close to an edge fails
the intersection test due to numerical errors, the test will succeed for another triangle,
which is adjacent to the same edge. Hence, if a surface is given as a triangulation,
cases, where the line fails all intersection tests, although it intersects the surface, are
avoided.

A triangle with vertices ~x1, ~x2, and ~x3 is intersected by a line defined by point ~a and
unit vector ~ω, if the (signed) areas

Ai :=
1

2
((~xi+1 − ~a)× (~xi+2 − ~a)) · ~ω =

1

2
det(~xi+1 − ~a, ~xi+2 − ~a, ~ω) (A.1)

are either all non-negative or all non-positive. The sign is given by the triangle orien-
tation with respect to ~ω. All the index summations in (A.1) are modulo 3 plus 1. Ai

corresponds to the area of the triangle spanned by the vectors ~xi+1, ~xi+2, and ~a, if it
is projected onto a plane perpendicular to ~ω (see Figure A.1). If all Ai are equal to
zero, the grid line is in the same plane as the triangle, or the triangle is degenerated.
In both cases the line is considered to not intersect the triangle.

To guarantee that lines close to an edge succeed the intersection test for any of the
two adjacent triangles, the numerical evaluation of (A.1) must preserve the anticom-
mutativity with respect to ~xi+1 and ~xi+2. However, due to numerical errors this is
usually not the case. For example, the numerical result of a · b− c · d is not necessarily
the same as that of c · d − a · b with opposite sign [100]. To overcome this problem,
the two vectors ~xi+1 and ~xi+2 in (A.1) are compared using an order relation, such as
lexicographical comparison. If ~xi+1 is larger than ~xi+2, the two vectors are swapped,
and the final result of (A.1) is inverted. This technique ensures the anticommutativity
in (A.1).

121

Appendix A Line–Triangle Intersection

(a) (b)

Figure A.1: The line defined by the point ~a and the unit vector ~ω intersects the triangle
given by ~x1, ~x2, and ~x3, if the signed areas A1, A2, and A3 have the same sign. (a) A1 < 0,
A2 < 0, and A3 < 0, which implies that the line intersects the triangle. (b) No intersection,
since A1 > 0, A2 < 0, and A3 < 0.

Once the areas Ai are determined and the intersection test is positive, the intersection
point ~q can be obtained by

~q =

∑3
i=1 Ai · ~xi

A
=

3∑

i=1

Ai

A
· ~xi with A :=

3∑

i=1

Ai. (A.2)

As defined earlier, an intersection only occurs, if all Ai are non-negative or non-positive,
while not all are equal to zero. Therefore, the denominator A in (A.2) never vanishes.
To avoid potential overflows the second variant for the calculation of the intersection
point is preferable. There, the coefficients Ai

A are always in the range [0, 1] and the
calculation of the intersection point is safe.

122

Appendix B

Ray–Isosurface Intersection

It is assumed that the surface is represented as the zero LS of function Φ(~x) and a ray
with direction ~ω passes through point ~a

~x(t) = ~a + t · ~ω. (B.1)

In order to find the intersection with the surface, the following equation must be
solved

Φ(~x(t)) = 0. (B.2)

It is essential for ray tracing, that this equation can be solved with as few numerical
operations as possible. Optimized algorithms are presented in the following, which are
superior to those reported in the literature [69, 74, 88, 119].

The LS function Φ is usually multi-linearly interpolated within a grid cell. The index
vector of a grid cell is defined to be equal to the lower bound indices of all its corner
grid points. For an arbitrary number of dimensions D, the multi-linear interpolation
formula within the grid cell with index vector ~p can be expressed as

Φ(~p + ~x) ≈
∑

~α∈{0,1}D

Φ(~p + ~α)
D∏

i=1

1∑

βi=αi

(−1)αi+βixβi

i , ∀i : 0 ≤ xi ≤ 1. (B.3)

This expression can be expanded to a multi-variate polynomial

Φ(~p + ~x) ≈
∑

~β∈{0,1}D

(
D∏

i=1

xβi

i

)

ρ~β
(~p), (B.4)

where ρ~β
(~p) are its coefficients. They can be obtained by rewriting (B.3) as

Φ(~p + ~x) ≈
∑

~α∈{0,1}D

Φ(~p + ~α)
1∑

β1=α1

· · ·
1∑

βD=αD

D∏

i=1

(−1)αi+βixβi

i (B.5)

and further as

Φ(~p + ~x) ≈
∑

~β∈{0,1}D

(
D∏

i=1

xβi

i

)
1∑

α1=β1

· · ·
1∑

αD=βD

Φ(~p + ~α)

D∏

i=1

(−1)αi+βi . (B.6)

123

Appendix B Ray–Isosurface Intersection

Hence, the coefficients can be calculated as

ρ~β
(~p) =

1∑

α1=β1

· · ·
1∑

αD=βD

Φ(~p + ~α)

D∏

i=1

(−1)αi+βi . (B.7)

If the coefficients are calculated in a straightforward manner, 3D − 2D additions or
subtractions are needed [69, 119]. However, the number of numerical operations can
be reduced to 2D−1D subtractions as demonstrated in Algorithm B.1. The algorithm
is realized using template metaprogramming [2] which allows for the elimination of all
recursive function calls at compile time. An array of size 2D, which contains the LS
values of all corner grid points in lexicographical order (with reversed significance), is
passed to the static member function. After the function call the same array holds
the coefficients ρ~β

(~p) in lexicographical order (again with reversed significance) with

respect to ~β.

Algorithm B.1 Calculation of the interpolation coefficients from the LS values using
template metaprogramming in C++.

template<int D> struct transform
{

static void execute (double x [])
{

enum { t=1<<(D−1)} ; // t = 2ˆ(D−1)
transform<D−1>:: execute (x) ;
transform<D−1>:: execute (x+t) ;
for (int i =0; i<t;++ i) x [i+t]−=x [i] ;

}
} ;

template<> struct transform<0> // c l a s s t emplate s p e c i a l i z a t i o n
{

static void execute (double x []) {}
} ;

B.1 Setup of the Polynomial

Inserting the ray parameterization (B.1) into (B.4) leads to a polynomial of order D

D∑

i=0

Ckt
k. (B.8)

The calculation of the coefficients Ck described in the literature [69, 74, 88, 119]
is not optimal in terms of the number of required multiplications. Therefore, opti-
mized algorithms, Algorithm B.2 and Algorithm B.3, have been developed for the

124

Appendix B Ray–Isosurface Intersection

two- and three-dimensional cases, respectively. There, ρk denotes the k-th element of
the multi-linear polynomial coefficients ρ~β

, if they are sorted in lexicographical order.
For example, ρ3 corresponds to ρ(1,1,0) in the three-dimensional case.

Algorithm B.2 Calculation of the coefficients for the two-dimensional case.

C2 ← ω1 · ρ3

C0 ← a1 · ρ3 + ρ2

C1 ← a2 · C2 + ω2 · C0 + ω1 · ρ1

C0 ← a2 · C0 + a1 · ρ1 + ρ0

C2 ← ω2 · C2

Algorithm B.3 Calculation of the coefficients for the three-dimensional case.

C1 ← a2 · ρ7 + ρ5

C0 ← C1 · a1 + a2 · ρ6 + ρ4

C1 ← C1 · ω1 + ω2 · (a1 · ρ7 + ρ6)
C2 ← ω1 · ω2

C3 ← C2 · ω3 · ρ7

C2 ← C2 · (a3 · ρ7 + ρ3) + C1 · ω3

T ← a1 · ρ3 + ρ2 // T is a temporary variable
C1 ← C1 · a3 + C0 · ω3 + (a2 · ρ3 + ρ1) · ω1 + T · ω2

C0 ← C0 · a3 + T · a2 + a1 · ρ1 + ρ0

B.2 Root Finding

Once the polynomial is set up for a grid cell, it can be tested for any ray–surface
intersection within its interior. Let [tmin, tmax] be the set of parameter values, for
which the ray lies inside the corresponding grid cell. If there exists any real root in
this interval, the ray intersects the surface. In this case the smallest real root, which
corresponds to the first surface intersection, must be evaluated.

To check, if there is a real root in [tmin, tmax], the extrema of the polynomial are first
analyzed, as proposed in [74]. The extrema can easily be determined and evaluated
using analytical expressions for all quadratic and cubic polynomials. The signs of the
extremal values and the function values at tmin and tmax determine whether there
exists a real root in [tmin, tmax], and, if this is the case, they allow for refinement
of the potential solution set. The smallest root can then be found using standard
root finding techniques. A hybrid method, which combines bisection and the Newton-
Raphson method [92], was used in this work.

125

Appendix C

Inequalities

Inequality 1.

cos x ≤ 1−
(

2
πx
)2 ∀x ∈

[
−π

2 , π
2

]
(C.1)

Proof. According to the Weierstraß factorization theorem, the cosine function can be
written as [101]

cos x =

∞∏

n=1

(

1− 4x2

π2 (2n− 1)2

)

. (C.2)

Bearing in mind that all factors are in the range [0, 1] for x ∈
[
−π

2 , π
2

]
, the inequality

follows directly by neglecting all factors with n ≥ 2. The first factor is identical to the
right-hand side in (C.1).

Inequality 2.

sin x ≤ x ∀x ≥ 0 (C.3)

Proof. For x = 0 both sides are equal. Hence, it is sufficient to show that the function
f(x) := x− sin x is monotonically increasing. This is the case, if the first derivative is
always non-negative, f ′(x) = 1− cos x ≥ 0, which is obviously satisfied.

Inequality 3.

1 ≤ 2
(
sin
(

π
2 x
)
− x
)

x (1− x2)
∀x ∈]0, 1[(C.4)

Proof. The denominator is positive for x ∈]0, 1[. Thus, the inequality is equivalent to
the next statement which is proved in the following for all x ∈ [0, 1]:

x
(
3− x2

)

2
≤ sin

(π

2
x
)

(C.5)

⇔ x2
(
3− x2

)2

4
≤ 1−

(

cos
(π

2
x
))2

(C.6)

⇔
(

cos
(π

2
x
))2
≤
(
1− x2

)2
(

1− x2

4

)

(C.7)

126

Appendix C Inequalities

Using the product representation of the cosine function (C.2):

⇔
∞∏

n=1

(

1− x2

(2n − 1)2

)2

≤
(
1− x2

)2
(

1− x2

4

)

(C.8)

⇔
∞∏

n=2

(

1− x2

(2n − 1)2

)2

≤ 1− x2

4
(C.9)

Since all factors of this product series are in the range [0, 1], it is sufficient to show
that:

⇐
(

1− x2

9

)2

·
(

1− x2

25

)2

≤ 1− x2

4
(C.10)

⇔
(

1− x2

(
1

9
+

1

25

)

+ x4 1

9 · 25

)2

≤ 1− x2

4
(C.11)

Using x4 ≤ x2 for all x ∈ [0, 1]:

⇐
(

1− x2

(
1

9
+

1

25
− 1

9 · 25

))2

≤ 1− x2

4
(C.12)

⇔
(

1− x2 11

75

)2

≤ 1− x2

4
(C.13)

⇔ 1− x2 22

75
+ x4 112

752
≤ 1− x2

4
(C.14)

Using again x4 ≤ x2:

⇐ 1− x2

(
22

75
− 112

752

)

≤ 1− x2

4
(C.15)

⇔ 1− x2 1529

5625
≤ 1− x2

4
(C.16)

⇐ 1529

5625
>

1

4
(C.17)

127

Bibliography

[1] S. Abdollahi-Alibeik, J. P. McVittie, K. C. Saraswat, V. Sukharev, and
P. Schoenborn. Analytical modeling of silicon etch process in high density
plasma. Journal of Vacuum Science and Technology A, 17(5):2485–2491, 1999.

[2] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-
Wesley Professional, 2004.

[3] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269–277, 1995.

[4] D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for
etching, deposition, and lithography I: Algorithms and two-dimensional simula-
tions. Journal of Computational Physics, 120(1):128–144, 1995.

[5] D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for
etching, deposition, and lithography II: Three-dimensional simulations. Journal
of Computational Physics, 122(2):348–366, 1995.

[6] D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for
etching, deposition, and lithography III: Redeposition, reemission, surface diffu-
sion, and complex simulations. Journal of Computational Physics, 138(1):193–
223, 1997.

[7] D. Adalsteinsson and J. A. Sethian. The fast construction of extension velocities
in level set methods. Journal of Computational Physics, 148(1):2–22, 1999.

[8] H. A. Al-Mohssen and N. G. Hadjiconstantinou. Arbitrary-pressure chemical
vapor deposition modeling using direct simulation Monte Carlo with nonlinear
surface chemistry. Journal of Computational Physics, 198(2):617–627, 2004.

[9] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the AFIPS Spring Joint Computer
Conference, pages 483–485, 1967.

[10] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In An
Introduction to Ray Tracing, pages 201–262. Academic Press, 1989.

[11] S. P. Awate and R. T. Whitaker. An interactive parallel multiprocessor level-set
solver with dynamic load balancing. Technical Report UUCS-05-002, School of
Computing, University of Utah, 2005.

128

Bibliography

[12] E. Bär and J. Lorenz. 3-d simulation of LPCVD using segment-based topography
discretization. IEEE Transactions on Semiconductor Manufacturing, 9(1):67–73,
1996.

[13] F. H. Baumann, D. L. Chopp, T. D. de la Rubia, G. H. Gilmer, J. E. Greene,
H. Huang, S. Kodambaka, P. O’Sullivan, and I. Petrov. Multiscale modeling
of thin-film deposition: Applications to Si device processing. MRS Bulletin,
26(3):182–189, 2001.

[14] R. J. Belen, S. Gomez, D. Cooperberg, M. Kiehlbauch, and E. S. Aydil. Feature-
scale model of Si etching in SF6/O2 plasma and comparison with experiments.
Journal of Vacuum Science and Technology A, 23(5):1430–1439, 2005.

[15] R. J. Belen, S. Gomez, M. Kiehlbauch, D. Cooperberg, and E. S. Aydil. Feature-
scale model of Si etching in SF6 plasma and comparison with experiments. Jour-
nal of Vacuum Science and Technology A, 23(1):99–113, 2005.

[16] M. O. Bloomfield and T. S. Cale. Formation and evolution of grain structures
in thin films. Microelectronic Engineering, 76(1-4):195–204, 2004.

[17] M. O. Bloomfield, D. F. Richards, and T. S. Cale. A computational frame-
work for modelling grain-structure evolution in three dimensions. Philosophical
Magazine, 83(31):3549–3568, 2003.

[18] R. Bridson, J. Teran, N. Molino, and R. Fedkiw. Adaptive physics based tetrahe-
dral mesh generation using level sets. Engineering with Computers, 21(1):2–18,
2005.

[19] T. S. Cale, M. O. Bloomfield, and M. K. Gobbert. Two deterministic approaches
to topography evolution. Surface and Coatings Technology, 201(22-23):8873–
8877, 2007.

[20] T. S. Cale, T. P. Merchant, L. J. Borucki, and A. H. Labun. Topography
simulation for the virtual wafer fab. Thin Solid Films, 365(2):152–175, 2000.

[21] T. S. Cale and G. B. Raupp. A unified line-of-sight model of deposition in
rectangular trenches. Journal of Vacuum Science and Technology B, 8(6):1242–
1248, 1990.

[22] S. A. Campbell. The Science and Engineering of Microelectronic Fabrication.
Oxford University Press, 2nd edition, 2001.

[23] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP. MIT Press, 2008.

[24] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengle-
ichungen der mathematischen Physik. Mathematische Annalen, 100(1):32–74,
1928.

[25] L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[26] F. Dill, A. Neureuther, J. Tuttle, and E. Walker. Modeling projection printing
of positive photoresists. IEEE Transactions on Electron Devices, 22(7):456–464,
1975.

129

Bibliography

[27] E. A. Edelberg and E. S. Aydil. Modeling of the sheath and the energy distri-
bution of ions bombarding RF-biased substrates in high density plasma reactors
and comparison to experimental measurements. Journal of Applied Physics,
86(9):4799–4812, 1999.

[28] B. Engquist and S. Osher. Stable and entropy satisfying approximations for
transonic flow calculations. Mathematics of Computation, 34(149):45–75, 1980.

[29] M. Fujinaga and N. Kotani. 3-d topography simulator (3-D MULSS) based on
a physical description of material topography. IEEE Transactions on Electron
Devices, 44(2):226–238, 1997.

[30] K. P. Giapis, G. S. Hwang, and O. Joubert. The role of mask charging in profile
evolution and gate oxide degradation. Microelectronic Engineering, 61-62:835–
847, 2002.

[31] J. Glimm, S. R. Simanca, D. Tan, F. M. Tangerman, and G. Vanderwoude.
Front tracking simulations of ion deposition and resputtering. SIAM Journal on
Scientific Computing, 20(5):1905–1920, 1999.

[32] M. K. Gobbert, T. P. Merchant, L. J. Borucki, and T. S. Cale. A multiscale sim-
ulator for low pressure chemical vapor deposition. Journal of the Electrochemical
Society, 144(11):3945–3951, 1997.

[33] M. A. Gosalvez, Y. Xing, K. Sato, and R. M. Nieminen. Atomistic methods for
the simulation of evolving surfaces. Journal of Micromechanics and Microengi-
neering, 18(5):055029, 2008.

[34] R. A. Gottscho. Ion transport anisotropy in low pressure, high density plasmas.
Journal of Vacuum Science and Technology B, 11(5):1884–1889, 1993.

[35] R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage. Microscopic uniformity in
plasma etching. Journal of Vacuum Science and Technology B, 10(5):2133–2147,
1992.

[36] B. Gough. GNU Scientific Library Reference Manual. Network Theory Ltd., 3rd
edition, 2009.

[37] J. Greenwood. The correct and incorrect generation of a cosine distribution
of scattered particles for Monte-Carlo modelling of vacuum systems. Vacuum,
67(2):217–222, 2002.

[38] S. Hamaguchi, M. Dalvie, R. T. Farouki, and S. Sethuraman. A shock-tracking
algorithm for surface evolution under reactive-ion etching. Journal of Applied
Physics, 74(8):5172–5184, 1993.

[39] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2000.

[40] C. Heitzinger. Simulation and Inverse Modeling of Semiconductor Manufactur-
ing Processes. Dissertation, Fakultät für Elektrotechnik und Informationstech-
nik, Technische Universität Wien, 2002.

130

Bibliography

[41] C. Heitzinger, A. Sheikholeslami, F. Badrieh, H. Puchner, and S. Selberherr.
Feature-scale process simulation and accurate capacitance extraction for the
backend of a 100-nm aluminum/TEOS process. IEEE Transactions on Elec-
tron Devices, 51(7):1129–1134, 2004.

[42] Y. Hirai, S. Tomida, K. Ikeda, M. Sasago, M. Endo, S. Hayama, and N. Nomura.
Three-dimensional resist process simulator PEACE (photo and electron beam
lithography analyzing computer engineering system). IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 10(6):802–807, 1991.

[43] A. Hössinger, Z. Djurić, and A. Babayan. Modeling of deep reactive ion etching in
a three-dimensional simulation environment. In Proceedings of the International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 53–56, 2007.

[44] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical
RLE level set: A compact and versatile deformable surface representation. ACM
Transactions on Graphics, 25(1):151–175, 2006.

[45] B. Houston, M. Wiebe, and C. Batty. RLE sparse level sets. In Proceedings of
the ACM SIGGRAPH Conference on Sketches and Applications, page 137, 2004.

[46] Z.-K. Hsiau, E. Kan, J. McVittie, and R. Dutton. Robust, stable, and accu-
rate boundary movement for physical etching and deposition simulation. IEEE
Transactions on Electron Devices, 44(9):1375–1385, 1997.

[47] H. Huang, G. H. Gilmer, and T. D. de la Rubia. An atomistic simulator for thin
film deposition in three dimensions. Journal of Applied Physics, 84(7):3636–
3649, 1998.

[48] G. S. Hwang and K. P. Giapis. On the origin of the notching effect during etching
in uniform high density plasmas. Journal of Vacuum Science and Technology B,
15(1):70–87, 1997.

[49] IEEE Computer Society Standards Committee. IEEE Standard for Binary
Floating-Point Arithmetic. ANSI/IEEE Std 754-1985. IEEE Computer Society
Press, 1985.

[50] Y. H. Im, M. Bloomfield, C. Sukam, J. Tichy, T. Cale, and J. Seok. Integrated
multiscale multistep process simulation. In Proceedings of the International Con-
ference on Simulation of Semiconductor Processes and Devices (SISPAD), pages
307–310, 2003.

[51] M. M. IslamRaja, C. Chang, J. P. McVittie, M. A. Cappelli, and K. C. Saraswat.
Two precursor model for low-pressure chemical vapor deposition of silicon diox-
ide from tetraethylorthosilicate. Journal of Vacuum Science and Technology B,
11(3):720–726, 1993.

[52] R. E. Jewett, P. I. Hagouel, A. R. Neureuther, and T. van Duzer. Line-profile
resist development simulation techniques. Polymer Engineering and Science,
17(6):381–384, 1977.

131

Bibliography

[53] M. Jones, J. Baerentzen, and M. Sramek. 3d distance fields: A survey of tech-
niques and applications. IEEE Transactions on Visualization and Computer
Graphics, 12(4):581–599, 2006.

[54] I. Karafyllidis and A. Thanailakis. Simulation of two-dimensional photoresist
etching process in integrated circuit fabrication using cellular automata. Mod-
elling and Simulation in Materials Science and Engineering, 3(5):629–642, 1995.

[55] I. V. Katardjiev, G. Carter, M. J. Nobes, S. Berg, and H.-O. Blom. Three-
dimensional simulation of surface evolution during growth and erosion. Journal
of Vacuum Science and Technology A, 12(1):61–68, 1994.

[56] E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall. Ion energy
distributions in RF sheaths; review, analysis and simulation. Plasma Sources
Science and Technology, 8(3):R45–R64, 1999.

[57] H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli. Full three-
dimensional simulation of focused ion beam micro/nanofabrication. Nanotech-
nology, 18(24):245303, 2007.

[58] H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli. Level set
approach for the simulation of focused ion beam processing on the micro/nano
scale. Nanotechnology, 18(26):265307, 2007.

[59] D. Kimpton, M. Baida, V. Zhuk, M. Temkin, and I. Chakarov. Multiple type
grid approach for 3d process simulation. In Proceedings of the International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 369–372, 2006.

[60] S. Kistler, E. Bär, J. Lorenz, and H. Ryssel. Three-dimensional simulation
of ionized metal plasma vapor deposition. Microelectronic Engineering, 76(1-
4):100–105, 2004.

[61] R. E. Knop. Algorithm 381: Random vectors uniform in solid angle. Commu-
nications of the ACM, 13(5):326, 1970.

[62] G. Kokkoris, A. G. Boudouvis, and E. Gogolides. Integrated framework for
the flux calculation of neutral species inside trenches and holes during plasma
etching. Journal of Vacuum Science and Technology A, 24(6):2008–2020, 2006.

[63] G. Kokkoris, A. Tserepi, A. G. Boudouvis, and E. Gogolides. Simulation of SiO2

and Si feature etching for microelectronics and microelectromechanical systems
fabrication: A combined simulator coupling modules of surface etching, local flux
calculation, and profile evolution. Journal of Vacuum Science and Technology
A, 22(4):1896–1902, 2004.

[64] D. Kunder and E. Bär. Comparison of different methods for simulating the effect
of specular ion reflection on microtrenching during dry etching of polysilicon.
Microelectronic Engineering, 85(5-6):992–995, 2008.

[65] O. Kwon, H. Jung, Y. t. Kim, I. Yoon, and T. Won. Level-set modeling of
sputter deposition. Journal of the Korean Physical Society, 40(1):72–76, 2002.

132

Bibliography

[66] E. P. Lafortune and Y. D. Willems. Using the modified Phong reflectance model
for physically based rendering. Report CW 197, Department of Computing
Science, Katholieke Universiteit Leuven, 1994.

[67] F. Lärmer and A. Schilp. Patent numbers DE4241045 (Germany, issued 5 De-
cember 1992), US5,501,893 (U.S., issued 26 March 1996).

[68] H. Liao and T. S. Cale. Three-dimensional simulation of an isolation trench refill
process. Thin Solid Films, 236(1-2):352–358, 1993.

[69] C.-C. Lin and Y.-T. Ching. An efficient volume-rendering algorithm with an
analytic approach. The Visual Computer, 12(10):515–526, 1996.

[70] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169,
1987.

[71] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. ACM Transactions on Graphics, 23(3):457–462, 2004.

[72] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using space subdi-
vision. The Visual Computer, 6(3):153–166, 1990.

[73] R. Malladi, J. Sethian, and B. Vemuri. Shape modeling with front propagation:
A level set approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(2):158–175, 1995.

[74] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek. Fast and accurate
ray-voxel intersection techniques for iso-surface ray tracing. In Proceedings of
the International Fall Workshop on Vision, Modeling, and Visualization (VMV),
pages 429–435, 2004.

[75] G. Marsaglia. Choosing a point from the surface of a sphere. Annals of Mathe-
matical Statistics, 43(2):645–646, 1972.

[76] N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa,
K. Morita, R. Shimizu, and H. Tawara. Energy dependence of the ion-induced
sputtering yields of monatomic solids. Atomic Data and Nuclear Data Tables,
31(1):1–80, 1984.

[77] S. Mauch. A fast algorithm for computing the closest point and distance trans-
form. Caltech ASCI Technical Report 077, California Institute of Technology,
2000.

[78] G. Mazaleyrat, A. Estve, L. Jeloaica, and M. Djafari-Rouhani. A methodology
for the kinetic Monte Carlo simulation of alumina atomic layer deposition onto
silicon. Computational Materials Science, 33(1-3):74–82, 2005.

[79] S. Mazumder. Methods to accelerate ray tracing in the Monte Carlo method for
surface-to-surface radiation transport. Journal of Heat Transfer, 128(9):945–952,
2006.

133

Bibliography

[80] T. P. Merchant, M. K. Gobbert, T. S. Cale, and L. J. Borucki. Multiple scale
integrated modeling of deposition processes. Thin Solid Films, 365(2):368–375,
2000.

[81] R. Milne. An adaptive level set method. PhD thesis, Lawrence Berkeley National
Laboratory, University of California, 1995.

[82] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green strategy
for meshing highly deformable objects with tetrahedra. In Proceedings of the
International Meshing Roundtable, pages 103–114, 2003.

[83] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[84] M. Nielsen and K. Museth. Dynamic tubular grid: An efficient data structure
and algorithms for high resolution level sets. Journal of Scientific Computing,
26(3):261–299, 2006.

[85] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

[86] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics, 79(1):12–49, 1988.

[87] S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for
Hamilton–Jacobi equations. SIAM Journal on Numerical Analysis, 28(4):907–
922, 1991.

[88] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray trac-
ing for isosurface rendering. In Proceedings of the IEEE Visualization Conference
(VIS), pages 233–238, 1998.

[89] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representation
in geometric modeling: Concepts, implementation and applications. The Visual
Computer, 11(8):429–446, 1995.

[90] B. T. Phong. Illumination for computer generated pictures. Communications of
the ACM, 18(6):311–317, 1975.

[91] J. D. Plummer, M. D. Deal, and P. B. Griffin. Silicon VLSI Technology. Prentice
Hall Press, 2000.

[92] W. H. Press. Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, 3rd edition, 2007.

[93] W. Pyka. Feature Scale Modeling for Etching and Deposition Processes in Semi-
conductor Manufacturing. Dissertation, Fakultät für Elektrotechnik, Technische
Universität Wien, 2000.

[94] B. Radjenović, S. J. Kim, and J. K. Lee. 3d etching profile evolution simulation
using sparse field level set method. In Proceedings of the International Congress
on Plasma Physics (ICPP), 2004.

134

Bibliography

[95] B. Radjenović and J. K. Lee. 3d feature profile simulation for SiO2 etching in
fluorocarbon plasma. In Proceedings of the International Conference on Phe-
nomena in Ionized Gases (ICPIG), 17-142, 2005.

[96] B. Radjenović and M. Radmilović-Radjenović. 3d simulations of the profile evo-
lution during anisotropic wet etching of silicon. Thin Solid Films, 517(14):4233–
4237, 2009.

[97] B. Radjenović, M. Radmilović-Radjenović, and P. Beličev. 3d simulations with
fields and particles. WSEAS Transactions on Information Science and Applica-
tions, 3(5):869–877, 2006.

[98] B. Radjenović, M. Radmilović-Radjenović, and M. Mitric. Nonconvex Hamil-
tonians in three dimensional level set simulations of the wet etching of silicon.
Applied Physics Letters, 89(21):213102, 2006.

[99] S. Reyntjens and R. Puers. A review of focused ion beam applications in
microsystem technology. Journal of Micromechanics and Microengineering,
11(4):287–300, 2001.

[100] F. Ris, E. Barkmeyer, C. Schaffert, and P. Farkas. When floating-point addition
isn’t commutative. ACM SIGNUM Newsletter, 28(1):8–13, 1993.

[101] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1987.

[102] L. Santaló. Integral Geometry and Geoemtric Probability. Cambridge University
Press, 2nd edition, 2004.

[103] K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and
M. Yamamoto. Characterization of orientation-dependent etching properties of
single-crystal silicon: effects of KOH concentration. Sensors and Actuators A:
Physical, 64(1):87–93, 1998.

[104] J. Saussac, J. Margot, and M. Chaker. Profile evolution simulator for sputtering
and ion-enhanced chemical etching. Journal of Vacuum Science and Technology
A, 27(1):130–138, 2009.

[105] E. Scheckler and A. Neureuther. Models and algorithms for three-dimensional
topography simulation with SAMPLE-3D. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(2):219–230, 1994.

[106] E. Scheckler, N. Tam, A. Pfau, and A. Neureuther. An efficient volume-removal
algorithm for practical three-dimensional lithography simulation with experi-
mental verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 12(9):1345–1356, 1993.

[107] G. F. Schrack. Remark on algorithm 381. Communications of the ACM,
15(6):468, 1972.

[108] J. Sethian and D. Adalsteinsson. An overview of level set methods for etching,
deposition, and lithography development. IEEE Transactions on Semiconductor
Manufacturing, 10(1):167–184, 1997.

135

Bibliography

[109] J. A. Sethian. A fast marching level set method for monotonically advancing
fronts. In Proceedings of the National Academy of Sciences, pages 1591–1595,
1996.

[110] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press, 1999.

[111] A. Sheikholeslami. Topography Simulation of Deposition and Etching Processes.
Dissertation, Fakultät für Elektrotechnik und Informationstechnik, Technische
Universität Wien, 2006.

[112] T. Shimada, T. Yagisawa, and T. Makabe. Modeling of feature profile evolution
in SiO2 as functions of radial position and bias voltage under competition among
charging, deposition, and etching in two-frequency capacitively coupled plasma.
Japanese Journal of Applied Physics, 45(11):8876–8882, 2006.

[113] T. Shimada, T. Yagisawa, and T. Makabe. Self-consistent modeling of feature
profile evolution in plasma etching and deposition. Japanese Journal of Applied
Physics, 45(5):L132–L134, 2006.

[114] P. Shirley, M. Ashikhmin, M. Gleicher, S. Marschner, E. Reinhard, K. Sung,
W. Thompson, and P. Willemsen. Fundamentals of Computer Graphics. AK
Peters, Ltd., 2nd edition, 2005.

[115] P. Shirley, K. Sung, and W. Brown. A ray tracing framework for global illu-
mination systems. In Proceedings of the Graphics Interface Conference, pages
117–128, 1991.

[116] A. Shumilov and I. Amirov. Modeling of deep grooving of silicon in the process of
plasmochemical cyclic etching/passivation. Russian Microelectronics, 36(4):241–
250, 2007.

[117] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley Professional, 2002.

[118] T. Smy, S. K. Dew, and R. V. Joshi. Efficient modeling of thin film deposition
for low sticking using a three-dimensional microstructural simulator. Journal of
Vacuum Science and Technology A, 19(1):251–261, 2001.

[119] J. Sreevalsan-Nair, L. Linsen, and B. Hamann. Topologically accurate dual
isosurfacing using ray intersection. Journal of Virtual Reality and Broadcasting,
4(4), 2007.

[120] C. Steinbruchel. Universal energy dependence of physical and ion-enhanced
chemical etch yields at low ion energy. Applied Physics Letters, 55(19):1960–
1962, 1989.

[121] J. Strain. Tree methods for moving interfaces. Journal of Computational Physics,
151(2):616–648, 1999.

[122] E. Strasser. Simulation von Topographieprozessen in der Halbleiterfertigung.
Dissertation, Fakultät für Elektrotechnik, Technische Universität Wien, 1994.

136

Bibliography

[123] E. Strasser and S. Selberherr. Algorithms and models for cellular based topog-
raphy simulation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(9):1104–1114, 1995.

[124] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
2000.

[125] G. Sun, X. Zhao, H. Zhang, L. Wang, and G. Lu. 3-d simulation of Bosch process
with voxel-based method. In Proceedings of the IEEE International Conference
on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), pages 45–49,
2007.

[126] V. Suvorov, A. Hössinger, Z. Djurić, and N. Ljepojevic. A novel approach to
three-dimensional semiconductor process simulation: Application to thermal ox-
idation. Journal of Computational Electronics, 5(4):291–295, 2006.

[127] Synopsys. Sentaurus Topography (Advanced topography simulator). http://

www.synopsys.com/tools/tcad/capsulemodule/sentaurus_topo_ds.pdf,
2006.

[128] Y. Tan, R. Zhou, H. Zhang, G. Lu, and Z. Li. Modeling and simulation of the
lag effect in a deep reactive ion etching process. Journal of Micromechanics and
Microengineering, 16(12):2570–2575, 2006.

[129] J. Teran, N. Molino, R. Fedkiw, and R. Bridson. Adaptive physics based tetrahe-
dral mesh generation using level sets. Engineering with Computers, 21(1):2–18,
2005.

[130] C. Terboven, D. an Mey, and S. Sarholz. OpenMP on multicore architectures. In
A Practical Programming Model for the Multi-Core Era, pages 54–64. Springer,
2008.

[131] K. Toh, A. Neureuther, and E. Scheckler. Algorithms for simulation of three-
dimensional etching. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 13(5):616–624, 1994.

[132] A. A. Tseng. Recent developments in micromilling using focused ion beam
technology. Journal of Micromechanics and Microengineering, 14(4):R15–R34,
2004.

[133] I. Utke, P. Hoffmann, and J. Melngailis. Gas-assisted focused electron beam and
ion beam processing and fabrication. Journal of Vacuum Science and Technology
B, 26(4):1197–1276, 2008.

[134] I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing
that in O(N log N). In Proceedings of the IEEE Symposium on Interactive Ray
Tracing, pages 61–69, 2006.

[135] R. T. Whitaker. A level-set approach to 3d reconstruction from range data.
International Journal of Computer Vision, 29(3):203–231, 1998.

137

http://www.synopsys.com/tools/tcad/capsulemodule/sentaurus_topo_ds.pdf
http://www.synopsys.com/tools/tcad/capsulemodule/sentaurus_topo_ds.pdf

Bibliography

[136] Y. Yamamura, Itakawa, and N. Y., Itoh. Angular dependence of sputtering
yields of monatomic solids. Technical Report IPPJ-AM26, Institute of Plasma
Physics, Nagoya University, 1983.

[137] R. Zhou, H. Zhang, Y. Hao, and Y. Wang. Simulation of the Bosch process with
a string-cell hybrid method. Journal of Micromechanics and Microengineering,
14(7):851–858, 2004.

[138] R. Zhou, H. Zhang, Y. Hao, D. Zhang, and Y. Wang. Simulation of profile evolu-
tion in etching-polymerization alternation in DRIE of silicon with SF6/C4F8. In
Proceedings of the IEEE International Conference on Micro Electro Mechanical
Systems (MEMS), pages 161–164, 2003.

[139] Z. F. Zhou, Q. A. Huang, W. H. Li, and W. Lu. A novel 3-d dynamic cellular
automata model for photoresist-etching process simulation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 26(1):100–114,
2007.

138

List of Publications

[A20] O. Ertl and S. Selberherr. Three-dimensional level set based Bosch process
simulations using ray tracing for flux calculation. Microelectronic Engineering,
87(1):20–29, 2010.

[A19] O. Ertl and S. Selberherr. Three-dimensional plasma etching simulation using
advanced ray tracing and level set techniques. ECS Transactions, 23(1):61–68,
2009.

[A18] O. Ertl and S. Selberherr. A fast level set framework for large three-dimensional
topography simulations. Computer Physics Communications, 180(8):1242–1250,
2009.

[A17] O. Ertl and S. Selberherr. A fast void detection algorithm for three-dimensional
deposition simulation. In Proceedings of the International Conference on Simu-
lation of Semiconductor Processes and Devices (SISPAD), pages 174–177, 2009.

[A16] O. Ertl and S. Selberherr. Three-dimensional topography simulation using ad-
vanced level set and ray tracing methods. In Proceedings of the International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 325–328, 2008.

[A15] A. Goncharov, T. Schrefl, G. Hrkac, J. Dean, S. Bance, D. Suess, O. Ertl,
F. Dorfbauer, and J. Fidler. Recording simulations on graded media for area
densities of up to 1 Tbit/in2. Applied Physics Letters, 91(22):222502, 2007.

[A14] J. Cervenka, H. Ceric, O. Ertl, and S. Selberherr. Three-dimensional sacrifi-
cial etching. In Proceedings of the International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), pages 433–436, 2007.

[A13] O. Ertl, C. Heitzinger, and S. Selberherr. Efficient coupling of Monte Carlo and
level set methods for topography simulation. In Proceedings of the International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD),
pages 417–420, 2007.

[A12] T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, and J. Fidler. Numerical
methods in micromagnetics (finite element method). In H. Kronmueller and
S. Parkin, editors, Handbook of Magnetism and Advanced Magnetic Materials,
volume 2, pages 765–794. Wiley-VCH, 2007.

[A11] F. Dorfbauer, T. Schrefl, M. Kirschner, G. Hrkac, D. Suess, O. Ertl, and J. Fi-
dler. Nanostructure calculation of CoAg core-shell clusters. Journal of Applied
Physics, 99(8):08G706, 2006.

139

List of Publications

[A10] O. Ertl, G. Hrkac, D. Suess, M. Kirschner, F. Dorfbauer, J. Fidler, and
T. Schrefl. Multiscale micromagnetic simulation of giant magnetoresistance read
heads. Journal of Applied Physics, 99(8):08S303, 2006.

[A9] J. Fidler, T. Schrefl, D. Suess, O. Ertl, M. Kirschner, and G. Hrkac. Full mi-
cromagnetics of recording on patterned media. Physica B: Condensed Matter,
372(1-2):312–315, 2006.

[A8] T. Schrefl, D. Suess, G. Hrkac, M. Kirschner, O. Ertl, R. Dittrich, and J. Fidler.
Nanomagnetic simulations. In D. Sellmyer and R. Skomski, editors, Advanced
Magnetic Nanostructures, pages 91–118. Springer, 2006.

[A7] G. Hrkac, M. Kirschner, F. Dorfbauer, D. Suess, O. Ertl, J. Fidler, and T. Schrefl.
Three-dimensional micromagnetic finite element simulations including eddy cur-
rents. Journal of Applied Physics, 97(10):10E311, 2005.

[A6] O. Ertl, T. Schrefl, D. Suess, and M. E. Schabes. Influence of the Gilbert damping
constant on the flux rise time of write head fields. Journal of Magnetism and
Magnetic Materials, 290-291(1):518–521, 2005.

[A5] R. Dittrich, T. Schrefl, M. Kirschner, D. Suess, G. Hrkac, F. Dorfbauer, O. Ertl,
and J. Fidler. Thermally induced vortex nucleation in permalloy elements. IEEE
Transactions on Magnetics, 41(10):3592–3594, 2005.

[A4] G. Hrkac, T. Schrefl, O. Ertl, D. Suess, M. Kirschner, F. Dorfbauer, and J. Fidler.
Influence of eddy current on magnetization processes in submicrometer permal-
loy structures. IEEE Transactions on Magnetics, 41(10):3097–3099, 2005.

[A3] M. Schabes, T. Schrefl, D. Suess, and O. Ertl. Dynamic micromagnetic stud-
ies of anisotropy effects in perpendicular write heads. IEEE Transactions on
Magnetics, 41(10):3073–3075, 2005.

[A2] T. Schrefl, M. Schabes, D. Suess, O. Ertl, M. Kirschner, F. Dorfbauer, G. Hrkac,
and J. Fidler. Partitioning of the perpendicular write field into head and SUL
contributions. IEEE Transactions on Magnetics, 41(10):3064–3066, 2005.

[A1] D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, F. Dorfbauer, O. Ertl, and J. Fi-
dler. Optimization of exchange spring perpendicular recording media. IEEE
Transactions on Magnetics, 41(10):3166–3168, 2005.

140

Curriculum Vitae

Oct. 2000 – June 2005

Vienna University of Technology, Austria
Study of Technical Physics
Master thesis: “Read Back Signals in Magnetic Recording”
Graduation with excellence

July 2005 – Sept. 2005

Vienna University of Technology, Austria
Research Assistant at the Institute for Solid State Physics

Oct. 2005 – Sept. 2006

Compulsory social service

since Oct. 2006

Vienna University of Technology, Austria
PhD program at the Institute for Microelectronics

May 2008 – July 2008

Internship with Intel in Hillsboro, OR, USA

141

	Kurzfassung
	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Introduction
	Semiconductor Process Technology
	Technology Computer-Aided Design
	Motivation
	Outline of the Thesis

	Process Modeling
	Continuum Approach
	Transport Kinetics
	Reactor-Scale Transport
	Feature-Scale Transport
	Reemission

	Surface Kinetics
	Linear Surface Reactions
	Non-Linear Surface Reactions
	Transport-Independent Surface Reactions

	Surface Evolution
	Boundary Evolution Techniques
	Segment-Based Methods
	Cell-Based Methods
	The Level Set Method

	Solving the Level Set Equation
	Upwind Scheme
	Lax-Friedrichs Scheme
	Stability
	Surface Velocity Extension

	Approximations to Geometric Variables
	Surface Normal
	Curvature

	Acceleration Techniques
	The Narrow Band Method
	The Sparse Field Method

	Level Set Data Structures
	Trees
	Run-Length Encoding
	Dynamic Tubular Grid
	Hierarchical Run-Length Encoding

	A Fast Level Set Framework
	Initialization
	Closest Point Transformation
	H-RLE Data Structure Setup

	Sequential Data Access
	Basic Iterator
	Offset Iterator

	Sparse Field Implementation
	Time Integration
	Pruning and Consistency Check
	Dilation

	Boolean Operations
	Implementation
	Chemical-Mechanical Planarization
	Pattern Transfer

	Smoothing
	Multiple Material Regions
	Level Set Representation
	Time Evolution
	Isotropic Material Dependent Etching

	Directional Visibility Check
	Directional Etching
	Simple Bosch Process Simulation

	Void Detection
	Connected Components
	Graph Setup Algorithm
	Algorithmic Complexity
	Preservation of Voids
	Isotropic Deposition
	Isotropic Etching

	Surface Extraction
	Parallelization
	Parallelization Strategy
	Data Access
	Benchmarks

	Surface Rate Calculation
	Conventional Approach
	Algorithmic Complexity
	Limitations

	Ray Tracing
	Surface Representation
	Tangential Disks
	Particle Traversal
	Algorithmic Complexity
	Boundary Conditions
	Spatial Subdivision
	Splitting Strategies
	Neighbor Links Arrays
	Parallelization
	Benchmarks

	Generation of Random Vectors
	Power Cosine Distribution
	Coned Cosine Distribution
	Direction Vector Calculation
	Cosine Distribution
	Direction Vector Sampling Benchmarks

	Implementation Details
	Simulation Flow
	Model Implementation

	Applications
	Chemical Vapor Deposition
	Plasma Etching
	Anisotropic Wet Etching
	Bosch Process
	Process Time Variations
	Lag Effect

	Focused Ion Beam Processing

	Summary and Outlook
	Appendix A: Line-Triangle Intersection
	Appendix B: Ray-Isosurface Intersection
	Setup of the Polynomial
	Root Finding

	Appendix C: Inequalities
	Bibliography
	List of Publications
	Curriculum Vitae

