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Kurzfassung der Dissertation

Diese Dissertation behandelt Abhéngigkeitsmafie und ihre Schétzer. Von besonderem
Interesse ist dabei das asymptotische Verhalten der Schitzer, speziell die Eigenschaft
der asymptotischen Normalitit und die zugehorige asymptotische Varianz. Dafiir gibt
es hauptséchlich zwei Griinde. Zum einen erlaubt die asymptotische Normalitit die
Bildung von asymptotischen Konfidenzintervallen, welche Punktschédtzungen ergéinzen
konnen, beispielsweise bei Tests auf Unabhéngigkeit. Die zweite Anwendung besteht
darin, Schétzverfahren anhand ihrer asymptotischen Varianz zu bewerten. Dies ist vor-
allem von Bedeutung, wenn zwei Schétzmethoden existieren und diese miteinander
verglichen werden kénnen.

Die zwei Abhéngigkeitsmafle, die wir hier betrachten, sind der lineare Korrela-
tionskoeffizient und das auf Réngen basierende Mafl Kendall’s Tau. Beide Schétzer
sind asymptotisch normal und in der Literatur existieren Formeln fiir ihre asympto-
tischen Varianzen, wobei diese relativ kompliziert sind. In dieser Dissertation werden
verschiedene Methoden zur Vereinfachung entwickelt.

Kendall’s Tau und sein Schétzer basieren auf Réngen und somit hdngen beide nur
von der Abhéngigkeitsstruktur, also von der Copula, und nicht von den Randvertei-
lungen ab. Daher liefert die erste Vereinfachung der asymptotischen Varianz des Tau-
Schétzers eine Formel die eine Funktion der Copula ist. Analytische Losungen werden
prasentiert fiir verschiedene Familien von Copulas, wie beispielsweise die Clayton-, die
Farlie-Gumbel-Morgenstern- und die Marshall-Olkin-Familie.

Ein zweiter Ansatz die asymptotische Varianz des Tau-Schétzers zu vereinfachen,
beruht auf einer geometrischen Betrachtung und gilt fiir achsensymmetrische Verteilun-
gen. Eine konkrete Anwendungsmoglichkeit bietet sich dabei durch sphérische Vertei-
lungen. Diese bilden eine Unterklasse der elliptischen Verteilungen, welche wiederum
Verallgemeinerungen der Normalverteilung sind. Elliptische Verteilungen sind in der
Praxis weit verbreitet, da sie mehr Flexibilitdt bieten als die Normalverteilung, da-
bei aber einige schone Eigenschaften behalten. Eine davon ist die Beziehung zwischen
dem linearen Korrelationskoeffizienten und Kendall’s Tau, die zu zwei Schitzmethoden
des Abhéngigkeitsmafles fiihrt: direkte Verwendung des Standardschétzers des linearen
Korrelationskoeffizienten oder Schétzung von Kendall’s Tau und anschliefende Um-
wandlung. Beide Methoden fiihren zu asymptotisch normalverteilten Schétzern und
konnen daher anhand ihrer asymptotischen Varianzen verglichen werden.

Die Vereinfachungen, die fiir achsensymmetrische Verteilungen entwickelt wurden,
fithren zu expliziten Losungen der asymptotischen Varianz des Tau-Schétzers fiir ver-
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schiedene Verteilungen. Eine davon ist die unkorrelierte ¢-Verteilung. Die Berechnungen
stellten sich als schwierig heraus, aber letzendlich konnten wir analytische Losungen
der asymptotischen Varianzen beider Schétzer fiir alle unkorrelierten t¢-Verteilungen
mit ganzzahligen Freiheitsgraden entwickeln. Diese zeigen, dass besonders bei kleinen
Freiheitsgraden, wo die Verteilung endlastig (heavy-tailed) ist, der alternative Schitzer
mittels Kendall’s Tau besser funktioniert als der Standardschétzer.
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Abstract

This thesis is about dependence measures and their estimators. We are interested in
the asymptotic behaviour of the estimators, especially in asymptotic normality and
the corresponding asymptotic variance. This is mainly due to two reasons. The first
one is that asymptotic normality allows to build asymptotic confidence intervals, which
can complement point estimations, e.g. for tests of independence. The second applica-
tion is to rate estimating procedures by their asymptotic variance. This is especially
interesting if two estimation methods exist and can be compared.

The two dependence measures we consider are the classical linear correlation coef-
ficient and the rank-based measure Kendall’s tau. Both estimators are asymptotically
normal and formulas for the asymptotic variance exist within the literature, although
they are quite complicated. Different methods of simplification are developed within
this thesis.

Kendall’s tau is based on ranks and so is its estimator, thus they both only depend
on the dependence structure, i.e. on the copula, and not on the marginal distributions.
Therefore the first simplification for the asymptotic variance of the tau-estimator gives
a formula that is a function of the copula. Analytical solutions are given for several
well-known families, like e.g. the Clayton, the Farlie-Gumbel-Morgenstern and the
Marshall-Olkin family.

A second approach to simplify the asymptotic variance of the tau-estimator is based
on a geometrical consideration and is valid for axially symmetric distributions. We
especially apply it to spherical distributions. They are a subclass of elliptical distri-
butions, which generalize the normal distribution. Elliptical distributions are widely
used in practice, as they provide more freedom than the normal distribution, but keep
some nice properties. One of them is the connection between the linear correlation
coefficient and Kendall’s tau, which leads to two ways of estimating the dependence
measure: using the standard estimator of the linear correlation directly or estimating
Kendall’s tau and transforming it. Both procedures lead to asymptotically normal
estimators and can therefore be compared by their asymptotic variance.

The simplifications achieved for axially symmetric distributions lead to explicit
solutions of the asymptotic variance of the tau-estimator for several distributions. One
of them is the uncorrelated ¢-distribution. Calculations were tough, but we finally
derived an analytic solution for both estimators for every uncorrelated ¢-distribution
with integer valued degrees of freedom. It shows that especially for small degrees
of freedom, where the distribution is heavy-tailed, the alternative estimator performs
much better than the standard estimator.
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Chapter 1

Introduction

This thesis is about dependence measures and their estimators. We consider asymptotic
properties of the estimators, and are especially interested in asymptotic normality and
the corresponding asymptotic variance.

The dependence measure we are mainly concerned with is Kendall’s tau. It is a
rank-based measure and can be understood as a measure of concordance. It fulfils many
desirable properties, like it has the range [—1, 1] and attains the boarders under perfect
dependence. Further it only depends on the dependence structure, i.e. on the copula,
and is therefore invariant under strictly increasing transformations of the marginal
distributions.

The classical estimator of Kendall’s tau is a U-statistic. These statistics have been
first studied by Halmos (1946) and since then many nice properties have been dis-
covered. U-statistics provide unbiased and strongly consistent estimators. They can
be understood as extensions of sums of i.i.d. random variables and therefore similar
asymptotic results can be derived. Under appropriate moment conditions they are
asymptotically normal, which was first shown by Hoeffding (1948). Also Berry—Esseen
theorems can be proved, whereas research about sharpening the bounds goes on. Be-
sides these characteristics of U-statistics, the estimator of Kendall’s tau keeps some nice
properties of the measure, like being invariant under strictly increasing transformations
of the marginal distributions, which leads to a more robust behaviour concerning out-
liers.

Asymptotic normality of the tau-estimator is a generalization of the classical central
limit theorem and can be shown easily, using basic properties of U-statistics. Nonethe-
less, it is by far not trivial to find explicit expressions for the corresponding asymptotic
variance. So one aim of this thesis is to find such solutions for different distributions.
There are two main motivations. The first one is that asymptotic normality allows
to build asymptotic confidence intervals, using the quantiles of the standard normal
distribution, where the knowledge of the asymptotic variance is needed to determine
the correct normalization. Asymptotic confidence intervals support point estimations
of Kendall’s tau by rating the liability of the estimation. This can especially be ap-
plied for tests of independence. Point estimators will almost surely not hit the value



1. Introduction

zero, assuming a continuous distribution, but the decision can be based on whether the
asymptotic confidence interval contains this value or not.

A second motivation is using the asymptotic variance to rate the performance of
an estimator. This becomes especially interesting when there are several ways of esti-
mating a parameter. This situation is given if the underlying distribution is elliptical.
Elliptical distributions generalize the normal distribution, keep some of the nice prop-
erties but also provide more freedom like increasing weight on the tails. Within this
elliptical world, the classical linear correlation coefficient is the natural measure of de-
pendence. There is further a connection between the linear correlation coefficient p and
Kendall’s tau 7. Lindskog et al. (2003) showed that for all two-dimensional distribution
with non-degenerate marginal distributions the following equation holds true:

2a

™

r="24% arcsin(o) , (1.1)
where the constant ax only appears in a non-continuous framework and depends on
the probability of the atoms.

This connection suggests two different ways of estimating the linear correlation:
using the standard estimator directly or using the estimator for Kendall’s tau and
transforming this value into an estimator of the linear correlation via (1.1). The nice
properties of the rank-based measure and its estimator, like e.g. its robustness against
outliers in the data, might lead to a more stable estimation procedure, which could
especially be crucial for heavy-tailed distributions. Since both estimators are asymp-
totically normal, a comparison of their performances based on the asymptotic variances
is possible.

On the basis of these motivations there are three main achievements of this thesis
concerning the asymptotic variance of estimators for measures of dependence: inves-
tigating the situations when the asymptotic variance of the tau-estimator equals zero,
calculating the asymptotic variance of the tau-estimator for several families of cop-
ulas and comparing the asymptotic variances of the standard estimator and of the
transformation-estimator for elliptical distributions.

The situation, when the asymptotic variance of the tau-estimator in the central
limit theorem equals zero, is called degeneracy. Examples of distributions that lead to
degeneracy are difficult to find as they must have a very special form, but we were able
to give assumptions that induce degeneracy. On the other hand a distribution already
guarantees non-degeneracy if it possesses a density that is continuous and strictly pos-
itive in one point. This idea is generalized such that we give a criterion that can be
used to exclude degeneracy. On the assumption of ellipticity of the underlying distri-
bution we could even develop a stronger result as we give a complete characterization
of degeneracy in this case.

As Kendall’s tau itself, also its estimator only depends on the copula and not on the
marginal distributions. Therefore we were able to develop a formula of the asymptotic



variance that is a function of the copula. This led to concrete results for several well-
known families of copulas like e.g. the Clayton, the Farlie-Gumbel-Morgenstern and
the Marshall-Olkin family.

In the case of elliptical distributions we are given two ways of estimating the lin-
ear correlation, the standard estimator and the transformation-estimator, and we are
interested in rating those methods by comparing the asymptotic variance of the esti-
mators. For the standard estimator we derived a quite simple formula, depending just
on the moments of the distribution of the norm of the random vector. The formula
for the asymptotic variance of the tau-estimator is much more complicated, but we
nonetheless provide analytical solutions for several distributions. In the spherical case
we reduced the original representation with nested expectations to a double integral.
For the uncorrelated t-distribution, the most famous spherical distribution besides the
standard normal, we even got analytical results for all integer valued degrees of freedom.
The t-distribution with small degrees of freedom is heavy-tailed, and the asymptotic
variances of the two estimators show that in this case the alternative estimator can
essentially improve the estimating procedure.

The structure of the thesis is as follows.

In Chapter 2 we introduce Kendall’s tau and its estimator and show several prop-
erties. Some of them are deduced from the fact that the estimator is a U-statistic.
Therefore we also present this well-studied topic of statistics and especially mention
asymptotic statements like the central limit theorem and Berry-Esseen theorems. In
the last part of this chapter we give a first survey of degeneracy, i.e. the case that the
asymptotic variance in the central limit theorem equals zero.

Chapter 3 is concerned with elliptical distributions. We first give the basic defi-
nitions and derive the properties we will use afterwards. Since the linear correlation
coefficient is the natural measure of dependence in the elliptical world, we introduce
it here. We also explain the second way of estimating the linear correlation, which is
given by equation (1.1), and show that after the transformation we still have asymp-
totic normality. We further introduce normal variance mixture distributions, a subclass
of elliptical distributions that e.g. includes the t-distribution. In the last part of this
chapter we revisit the case of degeneracy. Given that the underlying distribution is
elliptical we present a complete characterization of degeneracy.

In Chapter 4 we introduce the different methods we developed to calculate the
asymptotic variance of the tau-estimator. The first method is based on the fact that
the asymptotic variance, like Kendall’s tau itself, only depends on the copula. We
shortly introduce the important facts about copulas and then show how to calcu-
late the asymptotic variance for a given copula. The second method is based on a
geometrical consideration. Under the assumption that the distribution is axially sym-
metric, we could find a way to come from the original representation, that consists
of nested, partly conditional expectations, to an easier analytical representation. The
third method is based on the second and works with a simplification that is possible if
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the two-dimensional, axially symmetric density is a sum of products where the factors
of each summand only contain one of the variables. Also the fourth method extends the
second one, this time in the case where the distribution is a standard normal variance
mixture distribution. The calculation of the asymptotic variance is further simplified
and an example is given where the mixing distribution is an inverse gamma distribu-
tion. This is motivated by the fact that for the right choice of parameters this gives
the t-distribution.

In Chapter 5 we give some first examples of distributions where the asymptotic
variance of the tau-estimator can be analytically calculated using the methods intro-
duced in the previous chapter. The first part of the chapter is concerned about copulas,
where we calculate the asymptotic variance in the case of several well-known copula-
families. The second part shows an example of a spherical decomposable density. The
density is a product of a polynomial in the square of the radius and of an exponential,
similar to the normal density, to get an exponential decay in the tails.

In Chapter 6 we look at elliptical distributions and compare the asymptotic vari-
ances of the two estimators introduced in Chapter 3. We start with some easy spher-
ical distributions and revisit again the example of the decomposable density from the
previous chapter. The most popular spherical distribution is the standard normal dis-
tribution and we show that we can compute both asymptotic variances here. In the
last part of this chapter we consider the t-distribution, define it as a normal variance
mixture distribution, determine the asymptotic variance of the standard estimator and
can even give analytical solutions of the asymptotic variance of the tau-estimator in
the uncorrelated case with integer valued degrees of freedom.

In Chapter 7 we present the proof of the asymptotic variance of the tau-estimator for
the uncorrelated t-distribution. Starting with the simplifications achieved for standard
normal variance mixture distributions, there is still some work to do. We first show the
main ideas of the proof. In the following section we introduce some necessary tools,
like e.g. the polylogarithm, and develop some useful solutions for sums over binomial
coefficients and definite integrals. The details of the main proof can be found in the
last part of this chapter.



Chapter 2

Kendall’s tau, its estimator,
and the theory of U-statistics

This work is concerned with measures that represent the strength of dependence be-
tween two random variables. The dependence measures are functions of the common
probability measure p. Although generalizations are possible, e.g. for Kendall’s tau,
we want u to be defined on R2. Denote the set of all probability measures on R? with
Borel o-algebra by M;(IR?). Whenever we are talking about just two random variables
we want to denote them by

(X7Y) ~ .

The dependence measure we are mainly interested in is Kendall’s tau. Within this
chapter we introduce this rank-based measure and present its estimator. We derive
several properties of the estimator, some of them provided from the theory of U-
statistics. Another well-known measure is the classical linear correlation coefficient. It
will be presented and discussed in Section 3.2.

Within this work we mostly consider the two-dimensional case. Given a multivariate
setting with more than two random variables, dependence measures can be applied
pairwise (see e.g. McNeil et al., 2005, pp. 63-65 for the linear correlation, p. 207 for
Kendall’s tau). Estimation works as in the two-dimensional case, although consistency
problems of the estimated dependence matrix can arise, but we do not want to go into
detail here.

2.1 U-statistics

As the estimator of Kendall’s tau is a U-statistic, we will use several results from this
well-studied topic of statistics within our work. Therefore we give a short introduction
of U-statistics before talking about concrete dependence measures. There are no proofs
given in this section, instead we refer e.g. to the textbooks of Lee (1990), Koroljuk and
Borovskich (1994) and Borovskikh (1996) for further details.



2. Kendall’s tau, its estimator, and the theory of U-statistics

The history of U-statistics goes back to Halmos (1946), publishing an article about
minimum-variance unbiased estimators. The name U-statistics was first introduced by
Hoeffding (1948), where he also proved the central limit theorem.

Within this section we define U-statistics, explain what its rank is, and show a very
useful representation, called Hoeffding decomposition. In Section 2.3 we will revisit
U-statistics and show some asymptotic properties.

Definition 2.1. Fix m € N. For n > m let Z,...,Z, be random variables taking
values in a measurable space (Z,3) and let k : Z™ — R be a symmetric measurable
function. The U-statistic U™ (k) belonging to the kernel k of degree m is defined as

Ug@(@::(”f SN wZa.. 2. (2.1)

1<ii < <im<n

Notation. To shorten notation we omit the index m or the argument x whenever the
degree or the kernel, respectively, are clear from the context.

Remark 2.2. We only talk about real-valued kernels as this will suffice for our work.
More generally one could define the kernel as

k:Z" — B,

where B is a real separable Banach space (see e.g. Borovskikh, 1996).

2.1.1 Basic properties

From now on we assume i.i.d. random variables. We are given the probability space
(Z,3, 1) and define the product space (2,2, P) = (ZN, 35N, 4®N) such that (Z;);en are
the coordinate projections from 2 to Z, forming an i.i.d. sequence with £(Z;) = p.
Assume that [, || du®™ < oc.

These assumptions suffice for unbiasedness of the U-statistic and for the strong law
of large numbers. In Section 2.3.2 we will further present the central limit theorem
and Berry—Esseen theorems, which hold true under appropriate moment conditions.

For i.i.d. random variables, a U-statistic with an integrable kernel x of degree m is
an unbiased estimate of

0::/ Kk dp®™ (2.2)

(see e.g. Koroljuk and Borovskich, 1994, p. 18). This observation led to the name
U-statistic.

Another desirable property that U-statistics possess is strong consistency. A series
of estimators is called weakly consistent, if it converges to the real parameter in prob-
ability. If the convergence holds almost surely, then we talk about strong consistency.
This is equivalent to fulfilling the strong law of large numbers:



2.1. U-statistics

Theorem 2.3. Let (Z;) en be i.i.d. random variables, L(Z;) = u, and let (UZL”(/{))
be U-statistics with kernel k of degree m such that [, |k|du®™ < oo. Then

n>m

Un(k) =30 a.s.

Proof. See e.g. Koroljuk and Borovskich (1994, pp. 93-95). ]

2.1.2 Canonical functions and the rank of a U-statistic

For every ¢ = 0, ..., m define the functions k., € L'(Z¢, u®¢) as
Re(Z1y 0oy 2e) = / /@d((szl ®---®0,, ®,u®(m_c)) for p®°-almost all (z1,...,2.) € Z°,

such that ky = 6 and ,, = k. For ease of notation write
k=k—60 and R.=k.—0, c=0,....,m.

We can now define the functions h, € L'(Z¢, u®¢) as

[

he(zr, oz = (=1 (=D)* > Ralz-.z,), c=1...m, (23)

d=1 1<i1<--<jq<c

called canonical functions. It can be shown (see e.g. Koroljuk and Borovskich, 1994,
pp. 21-22), that

he(z1, ..., 2.) = / /id((ézl — 1) @@ (8, — ) ®u®(m—c))

for p®%-almost all (z1,...,2.) € Z°.

Canonical functions will be used as kernels in the Hoeffding representation (see
Section 2.1.3) and are also used in the classical definition of the rank of a U-statistic.
A U-statistic U™ (k) or its kernel & are said to be of rank r € {1,...,m —1}, if he =0
for all ¢ € {1,...,7r — 1} and h, # 0, and to be of rank m, otherwise. If » = 1, then
the U-statistic is called non-degenerate. In the case r > 2 the U-statistic is called
degenerate and r is called the order of degeneracy. If r = m we talk about complete
degeneracy. The canonical functions possess the property of complete degeneracy.

In the following we will mostly be concerned with kernels of degree 2. In this case
the kernel can either be non-degenerate or completely degenerate. It is degenerate if
and only if

/ /ﬁd((SZl ® ,u) =6 for p-almost all z; € Z.
Z2



2. Kendall’s tau, its estimator, and the theory of U-statistics

2.1.3 Hoeffding representation

One of the most important properties of U-statistics is a useful decomposition first
shown by Hoeffding (1961). It is called Hoeffding representation and decomposes a U-
statistic of degree m into uncorrelated U-statistics of degree 1,2, ..., m in the following
way:
iy —o =S (") s 2.4
re—0=30 () i, (2.4)
where h, are the canonical functions as defined in (2.3).

Notation. We want to denote the U-statistics U¢(he) by HE ie.
-1
ch>:<”) S bl Zie Z), e=1,...m.
€/ icih<o<icgn

The Hoeftfding representation will be used in the next section to prove the asymp-
totic normality of the estimator of Kendall’s tau and can also be found in the proofs
of Berry—Esseen theorems for U-statistics. The following properties will be important:

e The expectation of the kernels h,. is zero,

/ hedp® =0, c=1,...,m,

such that every U-statistic HT(LC), ¢ =1,...,m, is an unbiased estimate for the
value zero.
e The U-statistics Hy(f), c=1,...,m, are pairwise uncorrelated.

For details and proofs about the Hoeffding representation see e.g. Lee (1990, pp. 25-33)
or Koroljuk and Borovskich (1994, pp. 23-24).

2.2 Kendall’s tau and its estimator

2.2.1 Definitions

The dependence measure Kendall’s tau is the expectation of the U-statistic that belongs

to the kernel

kr tR2x R? - R,
- ) ) (2.5)
KT((‘I7 y)7 ('1:7 y)) = sgn(ac - l’) Sgn(y - y) )

where the signum function is defined as

1, ifx >0,
sgn(z) =<0, ifz=0,
-1, ifx<0.



2.2. Kendall’s tau and its estimator

Notation. We want to call k, tau-kernel.

Kendall’s tau is classically defined by the difference between the probability of
concordance and the probability of discordance. Two points (z,y) and (7,7) € R?
are called concordant if (r — Z)(y — y) > 0, and they are said to be discordant if
(x —Z)(y — y) < 0. As only the ordering and not the distance of points plays a role,
Kendall’s tau is said to be a rank-based measure.

Definition 2.4. For a probability measure p on R? the dependence measure Kendall’s
tau 7 is defined as

r=7(0) = (p@ ) ({((2.). (5,9)) € R x B? | (x = @)(y — §) > 0} )
—(u®u)({((w,y),(5r,ﬂ)) eER*XR*| (z—Z)(y — 9) <0})~

Notation. For the basic definition we chose this clear notation to stress that Kendall’s
tau is a function of the common probability measure p. Within the literature one can
very often find the following notation for the definition of Kendall’s tau:

T(X,Y)=P[(X - X)(Y =Y)>0] -P[(X - X)(Y -Y) < 0],

(2.6)

with independent (X,Y),(X,Y) ~ pu. For ease of notation we will also use this short
form in the following whenever the underlying probability measure is clear from the
context.

Remark 2.5. Since Kendall’s tau is the expectation of a U-statistic, it can be equiv-
alently defined as

7(X,Y) = E[sgn(X — X) sgn(Y —Y)], (2.7)
with independent (X,Y),(X,Y) ~ p.
Remark 2.6. To define Kendall’s tau we do not necessarily need the random variables
to be real-valued, it is enough that they are defined on an ordered set. For ease

of computation we nonetheless only look at real-valued random variables within this
work.

Definition 2.7. For n > 2 pairs of real-valued random variables (X;,Y;),7=1,...,n,
the estimator for Kendall’s tau, short tau-estimator, is defined as

-1

. n

7 = (2) Z sgn(X; — X;) sgn(Y; —Yj). (2.8)
1<i<j<n

Remark 2.8. As already mentioned in the beginning of this section, the estimator
of Kendall’s tau is a U-statistic with kernel .. This tau-kernel is bounded by 1 and
therefore integrable for all probability measures on R? x R2.

Remark 2.9. From the theory of U-statistics we know that the tau-estimator is an
unbiased and strongly consistent estimator (see Section 2.1.1).

Remark 2.10. If 7 =1, then 7,, = 1 for every n > 2, and similarly for 7 = —1.



2. Kendall’s tau, its estimator, and the theory of U-statistics

2.2.2 Variance of the tau-estimator

In this section we derive the variance of the tau-estimator for a fixed sample size using
combinatorial arguments.

Lemma 2.11. Fixn € N, n > 2. For n i.i.d. pairs of real-valued random variables
(X;,Y;), 7 =1,...,n, the tau-estimator 7,,, as defined in (2.8), has the variance

02, = Var[7,] = % o1 + ﬁ o3, (2.9)
where
0% = Var[E[/ﬁT((Xl,Yl),(XQ,Yg)) ]Xl,YIH (2.10)
and
o5 = Var| k. ((X1,Y1), (X2, Y2)) | - (2.11)

Proof. The variance of the tau-estimator is
o2, = Var[#,] = E[#2] — (E[#,])’

L) (X i xmorn)]

1<i<j<n
When we expand the square we get summands of the form
E[sgn(X; — X;) sgn(Y; = Y;) sgn(X, — X;) sgn(Y, — V)]

with 1 <i < j<mand 1<k <l <n. The following constellations for 7, j, k and [
are possible:

e i=Fkandj=1I

These (Z) = % summands have the value (1 <i < j <n)

E[ (sgn(X; — X;) sgn(Yi—Yj))Q] =05+ 7. (2.12)

e All the indices are different:

Here we get (3) (";2) = n(n=D (TQ) ("=3) summands of the form

E[sgn(X; — Xj) sgn(Y; —Yj) sgn(Xy — Xi) sgn(Yy, — V)]
= E[sgn(X; — X;) sgn(¥; — Y;) °

2

T

10



2.2. Kendall’s tau and its estimator

e Exactly two of i, j, k, [ have the same value:
We get (3)2 — () = %) ("7 =n(n—1)(n—2) summands of this form. All the
cases can be simplified similarly as we show for ¢ = k and j # [:

E[sgn(X; — Xj) sgn(Y; — Y;) sgn(X; — Xi) sgn(Y; — Y1) |

= E[E[sgn(X; — X;) sgn(Y; — ;) sgn(X; — Xi) sgu(Y; — Y) | X;, Y]]
= E[E[sgn(X; - X;) sen(Y; - ) | X;, V;]?|
:U%+T2.
(2.13)
In summary we get
2 (n—2)(n—23) 4( )
2 2 2 2 2 2y 2
OT’”_—n(n—l)(02+7)+ nn—1) + ( 1)(01+T> T
_4(n—-2) , 2 9
“n(n—1) Ul+n(n—1) %2
O]

Remark 2.12. We decided to show this direct proof of the variance. Clearly we also
could have taken the result from the theory of U-statistics, e.g. from Lee (1990, p. 14).
To make the two ways comparable we chose the notation of 02 and o3 according to Lee
(1990) such that it is easy to see that the results coincide.

Remark 2.13. As the signum function is bounded by 1, equations (2.12) and (2.13)
suggest the bounds
07 <1—7% and o <1—7%.

So we know for every n > 2

3
n—3

S m(l—T)-

Remark 2.14. Using again formula (2.12) we can write the variance o3 as

i E[ (sgn(X; — Xg))2 (sgn(Ys — 5/2))2] — 72
=P[X, # X5, Y; # Y] — 72.
For continuous marginal distributions this reduces to
2

2 _
oo =1-—71

and formula (2.9) for the variance simplifies accordingly.

11



2. Kendall’s tau, its estimator, and the theory of U-statistics

2.2.3 Asymptotic normality

U-statistics that are based on i.i.d. random variables can be understood as extensions
of sums of i.i.d. random variables. Hence it is no surprise that there exists a central
limit theorem for U-statistics, too. Under the assumption of square-integrability of the
kernel the proof is quite short and we show it here for the tau-kernel, which is clearly
square-integrable. In Section 2.3.2 we will present a central limit theorem with weaker
conditions like it is proved e.g. in Koroljuk and Borovskich (1994, pp. 129-131).

The proof is based on the Hoeffding representation from the theory of U-statistics
and on the result of the variance of the tau-estimator as proved in Lemma 2.11.

Theorem 2.15. For i.i.d. pairs of real-valued random variables (X;,Y;), j € N, the

tau-estimators (Tn)n>2, as defined in (2.8), normalized with \/n, are asymptotically
normal,

\/ﬁ(f'n—T)gN(O,élJf), n — oo, (2.14)
with o} as defined in (2.10):
o7 =E[E[sgn(X; — X5) sgn(Y; — Y2) | X1, Y1 ] — 7°.
Notation. For simplicity we use a special notation for the asymptotic variance, namely

o2 =407, (2.15)

T

Proof. We first want to ensure that the asymptotic variance is correct. Knowing the
variance for fixed n from Lemma 2.11, we get

4(n—2) , 2 9

Var[\/ﬁ(%n—f)] :nain: — 01+n_102
72?40%.

To show asymptotic normality we use the Hoeffding representation (2.4). In the
case of the tau-estimator we have a kernel of degree 2 and therefore the representation

Vi (o —7) =2V HY + vn HP

2

Since hy = Ky by (2.3), the variance of the components of the first summand is the
following;:

Var| by ((X;,Y7)) | = Var[E[sgn(X; — X) sgn(Y; — Y2) | X1, Y]] =07

As the pairs (X;,Y;), ¢ € N, are assumed to be i.i.d., we know from the central limit

theorem that 9
= ;nhl((xi,m) S N(0,407), n—o0.

12



2.2. Kendall’s tau and its estimator

This asymptotic variance equals the asymptotic variance of the tau-estimator and the
components of the Hoeffding representation are uncorrelated, so we know that the
variance of the second component of the Hoeffding representation must vanish for
n — oo:

Var[vn H? "% 0.

As the U-statistics H'” are estimates of the value zero this component must converge
to zero in probability for n — oo:

\/ﬁH,(f)LO, n — oo.

Slutsky’s theorem (see e.g. Lehmann, 1999, p. 70) gives then the asymptotic behaviour
claimed in the theorem. O

Remark 2.16. For some special cases the asymptotic distribution of \/n (7, — 7) can
be degenerate, i.e. 2 = 0. We will have a closer look at these degenerate cases in
Section 2.4 and, for elliptical distributions, in Section 3.4.

Remark 2.17. We know from Remark 2.13 that the variance of the tau-estimator is
bounded for every n > 2. This leads to the following upper bound of the asymptotic
variance:

02 <4(1—1%).

2.2.4 Asymptotic confidence intervals

As we know the asymptotic distribution of the tau-estimator we can determine asymp-
totic confidence intervals.

Theorem 2.15 shows that in the non-degenerate case, i.e. if 02 > 0, the normal-
ized tau-estimator behaves asymptotically like a standard normally distributed random
variable. So we have the following convergence:

P[@(fn—r)gz}m‘ﬁ(z), 2€R.

Or

Using the theorem of Pélya as given in Witting and Miiller-Funk (1995, p. 71), we
know that this convergence holds even uniformly in z, i.e.

.

sup P[\/ﬁ

zeR Or

(%n —’7') < z] —MN(z)

So for every fixed confidence level (1 — «), o € (0, 1), we can use the a-quantile u, of
the standard normal distribution to formulate an asymptotic confidence interval as

[%n SR SR ul_g] : (2.16)

VAV

13



2. Kendall’s tau, its estimator, and the theory of U-statistics

The probability, that this method produces an interval which contains the true
parameter 7, converges to (1 — «) for a growing sample size,

Or Or n—00
n NG u—g | — 1l -«
uniformly in o € (0,1). Nonetheless, the exact confidence level for a fixed n is not

known (see Hartung et al., 2005, p. 131). For more details about asymptotic confidence
intervals see e.g. Lehmann (1999).

P[%n_ ul—%STS%n‘f’

2.2.5 Behaviour under weak convergence

We are interested in the convergence of Kendall’s tau and the asymptotic variance of
its estimator under weak convergence of the underlying probability measure. Therefore
we want to rewrite formula (2.7) of Kendall’s tau as

) = [ Rl ) (w2 (2.17)

and formula (2.15) of the asymptotic variance of its estimator as
o2(p) = 4/ kr(2,2) kp(2, 2) p®3(dz, dz,dz) — 473 (p) . (2.18)
(R2)3

Lemma 2.18. Let (i, )nen be a sequence of probability measures on R?, which converges
weakly to p. If
n({Z €R? | k(2,2)=0}) =0 (2.19)

for p-almost all z € R?, then
(i) limy, oo 7(ptn) = 7(1) and

(i) limp oo 07 (1tn) = 07 (11).
Proof. From Billingsley (1968, Thm 3.2, p. 21) we know that also the product measures
fin @ i, and p&3 converge weakly to u ® p and p®?, respectively.

(i) Define
D, ={(2,2) e R®* x R? | k,(2,%) = 0}.

K, is continuous on (R?)?\ D, since D, contains the set of discontinuities of ..
By Fubini’s theorem and the assumptions, (u® p)(D,) = 0. Since &, is bounded,
part (i) follows from Billingsley (1968, Thm 5.2(iii), p. 31).

(ii) Define s(z,z,2) = k. (z, 2) k,(2,2) for all 2,2,z € R? and the set
D, ={(2,%,2) € (R*)? | s(2,%,2) = 0},

which contains the set of discontinuities of s. As in part (i), u®3(D,) = 0. Since
s is bounded, part (ii) also follows from Billingsley (1968, Thm 5.2(iii), p. 31).

]

14



2.3. Asymptotic statements for U-statistics

2.3 Asymptotic statements for U-statistics

Additionally to showing the asymptotic normality of the tau-estimator directly, we also
give a summary of asymptotic statements for U-statistics in general. We start again
with asymptotic normality, but the main part is devoted to the rate of convergence,
showing asymptotic expansions and Berry—Esseen theorems. As the theorems for U-
statistics are based on the ones for sums of i.i.d. random variables, we start with this
classical part. Proofs are mostly omitted or just sketched, but we give references.

2.3.1 Asymptotics for sums of i.i.d. random variables

For the classical case of sums of i.i.d. random variables we follow the book of Feller
(1971, pp. 531-544). We first introduce some basic definitions and results we will need,
and show then expansions for densities, for distributions and finally the Berry—Esseen
theorem. The proof of the last one is given, for the other results we just give the main
ideas of the proofs.

Fourier transform and characteristic function

Within the following subsections we will need the Fourier transform, the characteristic
function and some of its properties.

Definition 2.19. The Fourier transform 4 of an integrable function u is defined as

u(C) == /}Rei@ u(x)de, (e€R.

The Fourier transform of an integrable function is continuous and vanishes at in-
finity. If it is further integrable, then

1 )
u(z) = oy /Re—zcw u(¢)d¢, for almost all z € R,

(see Rudin, 1987, pp. 180-185), which suggests the estimate

esssuplu(o)] < o- / a()] dc (2.20)

zeR

called Fourier norm of u.
If u is a density, then the Fourier transform equals the characteristic function.

Definition 2.20. The characteristic function of a distribution function F' is defined
as

©(C) :/Re@'@F(d;c), ¢ eR. (2.21)

15



2. Kendall’s tau, its estimator, and the theory of U-statistics

Lemma 2.21. Let o be the characteristic function of a real-valued random variable X
and let a,b € R. Then

(i) ¢ is continuous;
(i) ¢(0) =1 and |p(C)] <1 for all ( € R;

(iii) aX + b has the characteristic function { — e®p(al). In particular, the charac-
teristic function of —X 1is the complex conjugate of .

Proof. See Feller (1971, pp. 499-500). ]

Theorem 2.22 (Uniqueness and continuity, Lévy). Let G and G, n € N, be distribu-
tion functions with characteristic functions v and 7,, respectively. Then the sequence
(Gp)nen converges weakly to G if and only if v,(¢) — v(C) for every ¢ € R, and then
Y — v uniformly on every bounded set.

Proof. See Kallenberg (2002, p. 86). O
Definition 2.23. Let GG be a distribution function and h an integrable or a bounded,

measurable function. Then the convolution G % h is defined by

(G *h)(z) = / h(x —y) G(dy), for almost all z € R.
R

If G possesses a density g, this simplifies to

(gxh)(x):= /Rh(x —y)g(y)dy, for almost all z € R. (2.22)

Notation. The convolution of a function h with a distribution function G will be denoted
by G x h, the convolution with a density g will be denoted by g * h.

Lemma 2.24. If H s a distribution function so is G x H.

Proof. See Feller (1971, p. 144). O

Lemma 2.25. Let G be a distribution function with density g and with characteristic
function v and let h be an integrable function with Fourier transform n. Then the
convolution G x h has the Fourier transform ~ - 1.

Proof. As G has a density we can use representation (2.22) and get the result from
Rudin (1987, Thm 9.2(c), p. 179). O

Lemma 2.26. Let G and Gy be two distribution functions with characteristic functions
Y1 and s, respectively. Then the convolution G x G5 has the characteristic function

Y12
Proof. See Feller (1971, p. 500). O

16



2.3. Asymptotic statements for U-statistics

Theorem 2.27 (Fourier inversion). Let ¢ be the characteristic function of a distribu-
tion function F and assume that [ |p(C)]d¢ < co. Then F has a bounded continuous
density f given by

1 .
= — 714%
fa) =5 [ eel0d. aeR.
Proof. See Feller (1971, pp. 509-510). O

Lemma 2.28 (Riemann-Lebesgue). If g is integrable and

2(C) = / ¢ g(x)dr, (ER,

then v(¢) — 0 as ( — 0.

Proof. See Feller (1971, pp. 513-514). O

Notation

Throughout the next subsections we assume to be given i.i.d. random variables (X;);en,
following a distribution F' with characteristic function . If F' has a density we denote
it by f. If the kth moment exists we denote it by p, = E[XF], k € N;. We always
assume that g, = 0 and 02 = py > 0. For every n € N define the normalized sum

1 n
S, i=—3 X;. 2.23
m 2 223)

Every S, has the distribution function F,(z) = F™(xo/n) and we can conclude from
Lemma 2.21 and Lemma 2.26 that its characteristic function is { — ¢, (¢) = @”(#ﬁ)
If F}, has a density we denoted it by f,.

Like always we denote a standard normal density by n and a standard normal

distribution function by 1. The Fourier transform of n is the characteristic function
1,2
(+— e3¢,

Central limit theorem

The theorems in the following are based on the classical central limit theorem, which
we want to present here.

Theorem 2.29. Let X;, j € N, be i.i.d. random variables. Assume that p = E[X;]
and o? = Var[X,] exist. Then

\/ﬁ(%in—u> i>./\/(0,c72), n — 00.
=1

17



2. Kendall’s tau, its estimator, and the theory of U-statistics

Proof. We sketch the proof from Williams (1991, p. 189) as it gives a nice intuition
why we get exactly the normal distribution in the limit.

We start with Taylor expansion of the function g(z) = e
remainder term is

T

. For every n € N the

Rn(x):e“—z(zg , zeR.
k=0

Using induction it can be shown that (see Williams, 1991, p. 188)

2|x|n |l,|n+1

n! " (n+1)

|R,(2)| < min< !>, reR. (2.24)

Assume that Z is a random variable with zero expectation, variance s> > 0 and with
characteristic function . Then we get for § € R

E[Ry(07)] :E[eiez] —1—E[i0Z]+E[022Z2}
:7(9)—14—?-

The remainder term can be estimated using (2.24):

B Ru(62)]| < E[|Ra(02)]] < 05[] 1x2 2 LT

where the argument of the last expectation is dominated by the integrable random
variable | X|? and tends to zero for § — 0. Hence by dominated convergence
62 s* 5
7(9):1—T+0(9) as 6 — 0. (2.25)
Assume now that the variance o of our random variables X is greater than zero,
as for 02 = 0 the assertion is trivially true. We look at the random variables

o\/n &

and want to show that their distributions converge weakly to the standard normal
distribution. If we denote the characteristic function of X; — p by ¢, we know that
Z;L:l(Xj — ) has the characteristic function @", as the X; are assumed to be i.i.d.
The characteristic function ¢g, of G, becomes

0
o\vn

1 n
Gn = Z(XJ - lu)
7j=1

0. (0) :@"( ) feR.

Using (2.25) we can say for every § € R

18



2.3. Asymptotic statements for U-statistics

Now we use that (Williams, 1991, p. 188)

such that we know for every 6 € R

62 62
log g, (0) =n 10g<1 - — 4+ 0(—)>
2n

n
0? 02 02

=n ———l—o(—) — —— asn— o0.
( 2n n 2

So the characteristic functions of G, converge to the characteristic function of the
standard normal distribution and therefore, by uniqueness of the characteristic function
(Theorem 2.22), we get the result. O

Expansions for densities

We want to strengthen the central limit theorem, which is possible if higher moments
exist. With a further assumption on the integrability of the characteristic function ¢
of F' we get the following expansion for densities:

Theorem 2.30. Assume that p3 < oo and that there exists an ng € N such that

/RlsO(C)I”0 d¢ < oo. (2.26)

Then f, exists for n > ny and as n — oo

ale) = (o) = g5

(2 — 32)n(x) = 0(%) (2.27)

uniformly in x € R.

Proof. A proof can be found in Feller (1971, pp. 533-534). We just want to stress again
the importance of assumption (2.26). As characteristic functions fulfil |p({)] < 1 (see
Lemma 2.21) it implies

/|<,0”(§)|d(<oo foralln e N, n >nq.
R

So knowing that F), has the characteristic function @”(#E), we can apply the Fourier
inversion theorem 2.27 and get the existence of f,, for every n > nj. m
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2. Kendall’s tau, its estimator, and the theory of U-statistics

Smoothing

The integrability condition (2.26) is essential for Theorem 2.30. To get a result for a
more general framework we proceed indirectly.
For T' > 0 we introduce the distribution function V; with density

1 1—cos(Tx)

P DR r€R,

vp(x)

and characteristic function wr. This function will help us satisfying the integrability

condition as we have "
1—5 if[{] < T
= T ’ 2.28
vrld) {o, 1> 7. 22

We want to approximate functions by their convolutions with V. To shorten notation
we denote such a convolution of an integrable or a bounded, measurable function g by

Tg(t) = (Vrxg)(t) = /Rg(t —z)vp(z)dr, tER.

The next lemma looks at the difference of two functions, A = G — H, and tells how
the supremum of TA limits the supremum of A.

Lemma 2.31. Let G be a distribution function and H a differentiable function with
bounded derivative h such that lim,_,_ H(x) =0 and lim, . H(z) = 1. Take T > 0.
Define A(x) = G(x) — H(x) and

¢ =sup|A(z)], & =sup|"A(z)].

zeR zeR

Then
12|h]

T
Proof. See Feller (1971, p. 537). O]

<&+

g (2.29)

So we are looking for an upper bound for the supremum of “A. Our argumentation
works with the Fourier transforms. We assume that the derivative h of the function
H has a Fourier transform n with (0) = 1 and 7’(0) = 0. This is clearly true for
H = 9. We then know from Lemma 2.25 that the convolution Zh has the Fourier
transform wr - 7. We know from Lemma 2.24 that Vr x G is a distribution function
and Lemma 2.26 tells that its characteristic function is wy - v, where v denotes the
characteristic function of G. As the multiplication with wr ensures the integrability of
the characteristic function, we further get the existence of a density Zg by the Fourier
inversion theorem 2.27. So we have

Ty(x) - Thiz) = — / e (4(0) — Q) wr(¢)dC, z € R.

2 J_p
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2.3. Asymptotic statements for U-statistics

Integrating with respect to x gives the anti-derivative

TA(:L’) 1 /T e—z‘(a: V(C) — 77(0 wT(C) dCu reR.

o ), —iC

No integration constant appears because both sides tend to zero as x — +oo, the left
because A(z) = G(z) — H(z) — 0, © — oo, the right by the Riemann-Lebesgue
lemma 2.28. Using the Fourier norm and applying (2.29) we come to the following
smoothing inequality:

Lemma 2.32. Let G be a distribution function with vanishing expectation and char-
acteristic function . Let H be a function such that G — H wvanishes at £o0o. Assume
further that H has a bounded derivative h. Finally, suppose that h has a continuously
differentiable Fourier transform n such that n(0) = 1 and n’(0) = 0. Then for all T > 0

24 s

— (2.30)

wM&@—MMSl[JﬂQ?&4@+

zeR m

This inequality is called smoothing inequality and will be used in the proofs of the
expansion theorem and of the Berry—Esseen theorem in the next two subsections.

Expansions for distributions

Theorem 2.33. Let F' be a distribution function that is mot concentrated on a set
{b+zh |z € Z} withb,h € R (i.e. F is not a lattice distribution) such that the third
moment pg exists. Then as n — oo

Fu(z) — N(z) — 60@‘% (1—22)n(z) = o(%) (2.31)

uniformly in x € R.

Proof. The proof can be found in Feller (1971, p. 539). If F}, has a density, the assertion
is clear from the expansion for densities (Theorem 2.27). In the case that no densities
exist, the proof is based on the smoothing inequality (2.30), setting

H,(z) = N(x) + 60‘;% (1—2%)n(z), zeR.

Berry—Esseen theorems

Berry—Esseen theorems specify the rate of convergence to the normal distribution. A
first version was shown independently by Berry (1941) and by Esseen (1942). Our
presentation follows Feller (1971, pp. 543-544) and is slightly sharper than the original
one, in the sense of having a smaller constant. In Remark 2.35 right after the theorem
and its proof we will add a brief overview concerning the improvements of this constant.
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2. Kendall’s tau, its estimator, and the theory of U-statistics

Theorem 2.34. Forn € N let X;, i =1,...,n, be i.i.d. random variables with distri-
bution function F' and with

E[X:]=0, o*=E[X]]>0, »=E[|Xi]’]<x.
Denote the distribution of the normalized sum
1 n
I X,
o\/n ZZI

by F,,. Then

3V3
E,(z) —N(z)| < :
%gl(ﬂ (@L‘ﬁv%

Proof. We want to apply the smoothing inequality (2.30) with G = F,, and H = 9.
We choose

(2.32)

7ot et J‘ (2.33)

3 V3
where the last inequality is due to Jensen. Since we know that n(x) < \/—27 < % for all
z € R, the smoothing inequality (2.30) becomes
T
C _142 dC 48
m sup |F,(x) — N(x §/ ga"(—)—e? — 4+ —. 2.34
up (o) - M) < [ o (o= R PCED
To find a bound for the integrand, we use the inequality
o — 3" < nja — 8| max(lo|""" 8" ), a,B€C, (2.35)

2
with a = @(#ﬁ) and B = e~ 5. We now find a bound for max(|a|"L, |3["~1). We
apply the inequality
|W

—1—n+2)< teR.

(for a proof see e.g. Feller, 1971, p. 512) to get
1 242 1 242 itx . 1 2 2
\ﬂwp41—§at|gpmw—1+§at\=‘ (e —1—wx+§tx)FM@‘
R

txf® 1
g/&F(dx):—uﬂtP, teR,
G 6

(2.36)
and hence ] ] ]
w@ﬂg1—§ﬁﬁ+—%uﬁ ﬁ§£ﬂ§1.
For t = f with |¢| < T this assumption is fulfilled, since by the choice of T" in (2.33)
2
1a%@:g—<——§8<1
2 2n — 2n — 9
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2.3. Asymptotic statements for U-statistics

and so we can conclude that for all |(| < T

¢ ¢ 2 C 2 V3
O R L MR iy
o\/n 2n  6o3 2n 603
Since 02 < v3 the assertion of the theorem is trivially true for v/n < 380 we can assume
n > 10 and get

—1
T <7

)

(om)
o\v/n
Hence the value e~i¢* can be used as estimate for the maximum in (2.35). To get an

estimate for n | — 3 in (2.35) we write

2

¢
<ngp< )—1—1——‘—}—71‘1———6 | (eR.
oy/n

nle(5) - *
4 o\v/n
The first summand can be estimated using (2.36), for the second we use that
—x 1 2
e —1+x§§x forx >0

and get

1
|C|3+@ 47 QER

o(oSr) 5] < 2
7 o\/n ~ 603y/n

Using again the facts that 02 < vz, n > 10 and |[¢| < T we get for the integrand
1

n (2.34) that
n C _lCQ 1 2 9 1 3 _lCQ
— 2 ) — 2 < — (= — 1
|<\¢<0\/ﬁ> c —T(9C+18m)6

This can be integrated over ( € R. We get from (2.34)

T
woup|Fua) - a) < [ 2 (G4 I et ac o

Tz€R 7TT 9 5T

2 [*/2 1 10

< Z G 3) Cdc+ =

_T/O <9C+18|<| C+
8 10

= 1) 4+ —
9T(\/%+ )+

- AT
T

and as we chose T' = % % \/n this finishes the proof. [

Remark 2.35. In a more general way we can write inequality (2.32) as

Cl/g
F(2) —N(2)| < ,
ilelgl () (z)] < N
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2. Kendall’s tau, its estimator, and the theory of U-statistics

where C' > 0 is a constant which is independent of F' and n. The value of the smallest
possible constant Cj is not known. Esseen (1945, p. 43) stated Cy < 7.5 as a first
upper bound. In a later work (see Esseen, 1956) he showed the lower bound

- 3+10
627

There have been many improvements concerning the upper bound, including pub-
lications by van Beek (1972) showing Cy, < 0.7975 and Shiganov (1986) proving
Co < 0.7655. Up to our knowledge the best current bound is Cy < 0.7056, shown
by Shevtsova (2007).

Co ~ 0.4097 .

2.3.2 Asymptotics for U-statistics

As U-statistics are closely related to sums of i.i.d. random variables, it is possible to
state similar results also for U-statistics. We will first present the central limit theorem
and then show two Berry—Esseen theorems.

Recall that a U-statistic (A];l"(/i) with kernel k of degree m can be decomposed
into a sum over U-statistics of degree 1,2,...,m, called Hoeffding representation (see
Section 2.1.3). The kernels of the U-statistics in the Hoeffding representations, as
defined in (2.3), are called canonical functions and we denote them by ..

Central limit theorem

A central limit theorem for U-statistics was first proved by Hoeffding (1948). He showed
the asymptotic normality under the condition

E[r*(Z1,..., Zm)] < .
This assumption can be relaxed as shown in the following theorem.

Theorem 2.36. Assume that U™(k) is a non-degenerate U-statistic, based on i.i.d.
random variables, with a kernel k of degree m. Assume that the canonical functions h..,
as defined in (2.3), satisfy the moment conditions

E[|he(Z1, ..., Z)[] < o0, c=1,...,m,

where vy, = 20251' Then

Vv (U7(k) - 0) < N(0,m* o3 (k)), n— oo,

n

with
o2 (k) = E[WA(Z1)]. (2.37)

Proof. See Koroljuk and Borovskich (1994, pp. 129-131). m
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2.3. Asymptotic statements for U-statistics

Berry—Esseen theorems

The first general Berry Esseen theorem stating the convergence rate n~/? for U-
statistics of degree 2, not just for selected examples, was published by Bickel (1974),
assuming that the kernel is bounded. Over the years the assumptions have been suc-
cessively reduced. Bentkus et al. (1994) showed that the weakest possible conditions
are

E[|h(Z)P] <oo and E[[(Z1,Z5)|3 ] < oo

Berry—Esseen theorems under these conditions are e.g. stated by Friedrich (1989) (for
degree 2) and Korolyuk and Borovskikh (1985) (for general degree m € N).

As the degree of the U-statistic does not play an important role, most publications
assume m = 2. A good overview over the existing literature and an extension of the
optimal bounds to higher-degree U-statistics is given by Bentkus et al. (2009).

We want to show two examples of Berry—Esseen theorems for U-statistics. Through-
out this section assume that the asymptotic variance of the U-statistic, as defined
in (2.37), is greater than zero, o7(k) > 0. To formulate the other assumptions we will
use the notation from the Hoeffding representation (Section 2.1.3) and further denote

1
AV = ——E[|n(2))]? 2.
73 (r) [P (Z1)]7] (2.38)
and . -
A2 = E[ |ho(Zy, Z)|P <p< . 2.
P o7 (k) [[h2(Z1, Z2)["], O_p_3 (2.39)

In most of the proofs the Hoeffding representation plays an important role. As its
first term is a normalized sum of the i.i.d. random variables hi(X;), we can apply the
classical Berry—Esseen theorem 2.34, and so we expect a summand of the form \/Lﬁ oD\
with some constant C' > 0 in the right-hand side of the Berry—Esseen inequality.

We start with a theorem given in Korolyuk and Borovskikh (1985). It states a
Berry—Esseen theorem for U-statistics of general degree m and gives a concrete bound
in the case m = 2.

Theorem 2.37. Let (A];L”(/i) be a non-degenerate U-statistic with kernel k of degree m,
based on i.i.d. random variables Z;, 1 € N. Assume o%(r) > 0 and further

E[|m(Z)P] <oo and E[|k(Z1,..., Zw)|3] < 0.
Then there exists a positive constant C, such that for alln > m + 1

[ Vi Un <z

Pl v
jon ol el 15 o1(K)

z€R

In the case m = 2 we have
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2. Kendall’s tau, its estimator, and the theory of U-statistics

The second version of a Berry-Esseen theorem for U-statistics we want to present
is from Lee (1990, pp. 97-105). It gives a more refined version and is an adaption of
the proof in Friedrich (1989).

Theorem 2.38. Let Ug(m) be a non-degenerate U-statistic with kernel k of degree 2,
based on i.i.d. random variables Z;, i € N. Assume oi(r) > 0 and further

E[|h(Z)P] <o and E[|hy(Z, Zo)|3 ] < 0.

Then there exist constants Cy, Cy and C3 depending neither on n, k nor on the distri-
bution of Zy such that for alln > 2

sup P[ﬂ (Ug(/ﬁ) —0) < 3:] —‘ﬁ(:c)‘

CAD £ A2 4+ o (AL A2 )
zeR 201(k) ( ! T 02455+ 3( 3/2)

< L
i ﬁ
2.4 Degenerate tau-kernel

Within this section we have a closer look at the cases where the tau-kernel is degenerate,
as defined in Section 2.1.2. Recall that for a given probability measure 1 € M, (R?) the
tau-kernel k., as defined in (2.5), is called p-degenerate, if for independent Z, Z ~ p

E(k(Z,2) | Z] =E[r(Z,2)] =7 p-as. (2.40)

Note that in the case of degeneracy this equation is not only true for Z ~ p, but also
for all Z that are independent of Z and whose distribution is absolutely continuous
w.r.t. p, L(Z) < p.

Within our proofs we will also use an equivalent formulation to assure degeneracy.
The tau-kernel is p-degenerate if and only if the following property is fulfilled for p-
almost all (z,y) € R%:

E[#r((2,9),(X.Y)) ] =E[sgn(z — X) sgn(y - V)] =7, (2.41)

where (X,Y) ~ p.

The next lemma shows that the degeneracy of the tau-kernel is equivalent to a
degenerate asymptotic distribution, i.e. that the asymptotic variance o2, as defined
in (2.15), equals zero.

Lemma 2.39. The tau-kernel x, s p-degenerate if and only if the corresponding
asymptotic distribution is degenerate, i.e. o2 = 0.

Proof. As we have

02 =4 Var[E[nT((X,Y),(X,?)) | X,Y]}

for independent (X,Y), (X,Y) ~ y, we know that
0 « ]E[KT((X,Y),()N(,Y/)) | X,Y| = const. p-as.
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2.4. Degenerate tau-kernel

In the following we will provide some statements how the property of degeneracy
or non-degeneracy changes under transformations of the two-dimensional distribution.
Therefore we need the following lemma that enables us to change the sigma-algebra on
which we condition.

Lemma 2.40. Let (2, §,P) be a probability space and let (21, 31), (22, 32), and (23, 33)
be measurable spaces. Let g : Z1 — Z9 and h : Z9 X Z3 — R be measurable functions,
h bounded, and let X : Q — Z; and Y : Q — Z3 be independent random variables.
Then, for every sigma-algebra A C § that is independent of Y and fulfils o(X) C A,

E[h(g(X),Y) | 2] = E[h(9(X),Y) | o(9(X))].

Proof. The proof is based on the monotone-class theorem, see e.g. Williams (1991,
pp. 205-206).
Denote the class of functions

H = {h 1 Z9 X Z3 — R measurable and bounded ‘
E[A(g(X),Y) | %] = E[A(9(X),Y) | o(9(x)) ]}

Then H is a vector space due to linearity of the conditional expectation. It also contains
the constant function 1 and further contains the limit of a sequence (hy,)nen of non-
negative functions in ‘H with h, " h, h bounded, due to monotone convergence for
conditional expectations.

Now consider functions k : Z, X Z3 — R that are measurable and bounded, and
that can be written as k(z,y) = u(z) v(y) with u : Z; — R and v : Z3 — R measurable
and bounded. Note that Y is independent of X and therefore also of ¢g(X), and by
definition it is independent of 2. Further we know that u(g(X)) is 2-measurable and
o(g(X))-measurable. So we have

Elk(g(X),Y) | %] =E[u(g(X))v(Y) | A] =u(g9(X))E[v(Y) | A]
=u(g9(X))E[v(Y) | o(9(X)) ]
= E[u(g9(X)) v(Y) | o (9(X)) ]
=E[k(9(X).Y) |o(9(X))] as.,

and therefore we know that & € H. This holds especially true for v and v being
indicator functions 14, A € 35, and 1, B € 33, respectively. As the family of such
subsets A x B builds a 7m-system on the product space Z5 x Z3 which generates its
sigma-algebra, we get the result. O

Remark 2.41. We will use this lemma twice in the next subsection and also in Sec-
tion 4.1. The function h will be the tau-kernel ., which is measurable and bounded.
The random variable X will take values in R or R?, the function g will map to R2,
Y will be an independent copy of g(X), and we take 2 = o(X).
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2. Kendall’s tau, its estimator, and the theory of U-statistics

2.4.1 Conditions for degeneracy

Lemma 2.42. If |7| =1, then the tau-kernel k., is degenerate.

Proof. If T = +1, then we know from Remark 2.10 that 7,, = 1 for every n > 2. So
the variance of the estimator for every n > 2 and also the asymptotic variance equal
zero, which implies a degenerate tau-kernel by Lemma 2.39. [

As the absolute value of Kendall’s tau itself remains unchanged under strictly mono-
tone transformations of the marginal distributions so does the property of degeneracy
of the tau-kernel:

Lemma 2.43. Let the tau-kernel k. be p-degenerate and let f and g be monotone
functions such that for independent (X,Y),(X,Y) ~ p

PIF(X) = f(X), X #X]=0 and Plg(¥)=g(V),Y #V]=0.  (242)

Let i/ denote the distribution of the vector (f(X),g(Y)). Then the tau-kernel is also
1 -degenerate.

Proof. As f is monotone and fulfils (2.42), we have for independent (X,Y), (X,Y) ~ u

(f(X) = f(X)) 2 sgn(X — X),  if f is increasing,
sgn — L8 ;
" —sgn(X — X), if f is decreasing.

As this holds similarly for g we get

e (£, 900), (F(), 9(1)))

g
as. HT((X, Y), (X, }7)) , if f and g are both increasing or both decreasing,
| A Y), (XY

From Lemma 2.40 we know that we can equivalently condition on (f(X),g(Y)) or on
(X,Y), so equation (2.40) also holds for the transformed random variables. O

, )), otherwise.

Lemma 2.44. Let X be a real-valued random variable and let f and g be monotone
functions such that

PIF(X) = f(X), X #X]=0 and Pg(X)=g(X), X #X]=0,  (249)

where X is an independent copy of X. Let p denote the distribution of (f(X),g(X)).
Then the tau-kernel k, is p-degenerate if and only if one of the following properties is
satisfied:

(i) X is continuously distributed;

(il) X is uniformly distributed on a finite, non-empty set.
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2.4. Degenerate tau-kernel

Proof. As in the previous proof we know that, since f and g are monotone functions
and fulfil (2.43), we have for X and an independent copy X

sgn(f(X) — f(X)) sgn(g(X) — g(X)) = sy sgn(X — X) sgn(X — X)),

where sy, = 1if f and g are both increasing or both decreasing and sy, = —1 otherwise.
Using Lemma 2.40 we can equivalently condition on (f(X),¢g(X)) or on X, and hence

E[sen(£(X) - /(X)) sen(9(X) — 9(X)) | F(X), 9(X)]
= 57, E[sgn(X — X) sgn(X — X) | X]
=5, P[ X #X|X] as.

So the tau-kernel is p-degenerate if and only if
PIX#X|X]=c as. (2.44)
for a constant ¢ € [0, 1]. We have to distinguish between two cases:

e If ¢ = 1, then the random variable X fulfils (2.44) if and only if it is continuously
distributed.

e If ¢ €]0,1), then the distribution of X has atoms. The distribution can even not
have any continuous parts, as this would imply ¢ = 1 for the continuous areas.
Since P[X # X | X = 2] = ¢ must hold for all atoms z, we further know that
they must have the same probability, so the set of all atoms must be finite. In
total this means that the random variable X fulfils (2.44) with ¢ € [0,1) if and
only if it is uniformly distributed on a finite, non-empty set.

]

Remark 2.45. Assumptions (2.42) and (2.43) are especially fulfilled if f and g are
strictly monotone functions.

We now give two further examples of distributions that lead to a degenerate tau-
kernel. The first example tells that the tau-kernel is degenerate if one variable has a
degenerate distribution.

Example 2.46. Consider the random vector (X, ¢) where ¢ € R. Then the tau-kernel
is degenerate for every distribution of X as

E[sgn(X — X) sgn(c —¢) | X] =0 a.s.

The second example considers a distribution where the random tuple (X,Y) can
just take values on a cross, and two opposite branches have each the same probability.
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2. Kendall’s tau, its estimator, and the theory of U-statistics

Example 2.47. Consider the random vector (X,Y’) where there exist z,y € R such
that P[(X — 2) (Y —y) = 0] = 1 and additionally P[X > z] = P[X < z] and
PlY > y] =P[Y < y]. For this random vector the tau-kernel is degenerate as
E[sgn(X — X) sgn(Y —Y) | X, Y]
= E[sgn((X —a) = (X —2)) sen((Y —9) = (Y —y)) | X,V]
= E[sgn(—(X —2)) sgn((Y =9) = (¥ =9)) [ V] Lix=ayy)
+ E[sgn((X —x) — ()~( — :17)) sgn(—(}} - y)) | X} Lix sty =y}
+E[sgn(X — ) sgn(Y —¢)] Lpxmay—y)
= E[l{xﬂ} sgn(—(f( — ) sgn(Y —y) | Y] Lixcoysy
+E[sgn(X — ) Ly 2y sgn(—(f/ —9)) | X ] Lixsay=y)

=0 a.us.,

where the last equation holds as E[sgn(X — z)] = E[sgn(Y —y)] = 0.

2.4.2 Conditions for non-degeneracy

In the previous subsection we saw examples of distributions that imply a degenerate
tau-kernel. Now we look for assumptions that assure a non-degenerate tau-kernel. We
will show in Corollary 2.51 that, loosely speaking, if there exists a rectangle in R?
where the measure is strictly positive, then it is already clear that the tau-kernel is not
degenerate. There is even a more general statement, proved in Lemma 2.49. For the
proof we need the following technical lemma:
Lemma 2.48. For ug, u1, vy, v1 € R with uy < uy and vy < v; we have
1
> (=1 ke ((ug, 05), )
w3=0 (2.45)
=4 Liugun)x(wovr) T 2 Lugurbx(wo,n) T2+ Lo ,ur)xfwovn} T Luoua yx {vo,on}
2 Lugua]xvo,v1] »

with k. given by (2.5).
Proof. The tau-kernel can be written for all u,v,z,y € R as
ke ((u,0), (2,9)) = sgn(u — ) sgn(v —y)
= L(u,00)x(v,00) (T3 ¥) + (=00, x (—00) (2, Y) (2.46)
— 1 oo,u)x (0,00) (%5 Y) = Lw00)x (—00,0) (X5 Y) -
Taking the first summand in (2.46) and building the alternating sum by inserting the
different values of (u;,v;), as needed in the left-hand side of (2.45), we get

1(u0,oo)><(vo,oo) + 1(u1,oo)><(111,oo) - 1(u0,oo)><("ul,oo) - 1(u1,oo)><(vo,oo)

= Liug,u)x(wowr) T Lwosun)xfor} + Lusyx(wo,o) + Lgurkxfur} -
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2.4. Degenerate tau-kernel

If we do this for all the four summands and sum up, we get four times the interior
L (g 1) x (vo,01)» tWice the edges 1iugui)x v} and Luix(wow), ¢ € {0,1}, and once every
corner liyyx v}, 45J € {0,1}, and therefore the result. O

Lemma 2.49. Assume that k., is u-degenerate. Consider ug, uy, v, v1 € R with ug < uy
and vy < vy. If there exists a random vector (Uy, Uy, Vo, V1) such that the distribution
of (U;,Vj) is absolutely continuous w.r.t. p for alli,j € {0,1}, L(U;,V;) < p, as well
as

P[Uy < ug, Uy > uy, Vo <o, Vi >01] >0, (2.47)

then
11([uo, wi] x [vo, v1]) = 0. (2.48)
Proof. We want to denote A = {Uy < wo, Uy > uy, Vo < wo,Vi > wv1}. Since

L(U;,V;) < pfor all i,j € {0,1} we know from equation (2.40) and the comment
afterwards that

E[x, ((U;,V;),(X,Y))] =7 foralli,je€{0,1}
with (X,Y) ~ u independent of (U;, V). Using (2.45) we get

1 1

0= S (~)™E[k, (U, V)), (X, V)] :E[Z<_1y+j KT((Ui,X/j),(X,?))}
i,j=0 1,j=0

]E[ 1[U07U1]><[V07V1}(X7 Y/) ] > E[ La 1[U0,U1}><[V0,V1](X7 }7) }

]E[ 1a 1[uo,uﬂ><[vo,v1]<X7 Y)] = ]P[A] :U'([u07 ul] X [UOv Ul]) :

As we assumed P[A] > 0 we know that p([ug, u1] x [v, v1]) = 0. O

(2.45)

2.45
>
>

Example 2.50. Assume there exist wug, uq,vg, v; € R with ug < u; and vy < v; such
that p({(us,v;)}) > 0 for all 4,5 € {0,1}. Then &, is not p-degenerate, because
(Uo, U, Vo, V1) = (uo, u1, vg, v1) satisfies the assumptions of Lemma 2.49, but
1
p(luo, w] x [vo, 1)) = >~ p({(wi,v5)}) > 0.
i,j=0
Corollary 2.51. Assume there exists a closed rectangle I x J C R? with non-empty
interior and 6 > 0 such that
w(B) = \2(B)
for all Borel subsets B of I x J, where \y denotes the Lebesgque measure on R?. Then
the tau-kernel k. is not u-degenerate.

Proof. There exist ug,u; € I, vg,v; € J and € > 0 such that uy < uy, vo < vy and
I=luyg—c,us+¢|, J=[vo—e,u +¢|.

Apply Lemma 2.49 with (Uy, Uy, Vp, V1) uniformly distributed on [ug — &, ug] X [vg —
g,vp] X [u1,u1 + €] X [v1,v1 + €] to obtain the contradiction p([ug, u1] X [vg,v1]) = 0. O
Remark 2.52. The corollary applies in particular when p has a density f which is
continuous at a point z € R?* with f(z) > 0.
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2. Kendall’s tau, its estimator, and the theory of U-statistics

2.4.3 Invariance of degeneracy under linear transformations

The property of degeneracy or non-degeneracy does not necessarily stay unchanged
under linear transformation. It does, if the transformation matrix is diagonal or anti-
diagonal with non-zero diagonal or anti-diagonal entries, respectively. In the case of
degeneracy this is known from Lemma 2.43, and for non-degeneracy the arguments of
the proof can be similarly used. If the matrix does not have this special shape, then
we can find examples where degeneracy or non-degeneracy is destroyed.

Example 2.53. Assume that the transformation matrix A has a column where both
entries are non-zero and assume w.l.o.g. that it is the first one. Consider the random
vector (X,0)" where X is any real-valued random variable. We know degeneracy of
the tau-kernel in this situation from Example 2.46. The transformed random vector is
(a11X, a2 X)*, which is only degenerate if X is continuously distributed or uniformly
distributed on a finite non-empty set (see Lemma 2.44).

Example 2.54. Assume that in one row of the transformation matrix A both entries
are zero. Then the transformed random tuple has a degenerate tau kernel for every
original distribution, as one component equals zero.

A last example shows how rotation can change the property of degeneracy.

Example 2.55. Example 2.50 shows that the distribution that is uniformly distributed
on the corners of a square has no degenerate kernel. But if we rotate the square by 7,
then we get a distribution that is uniformly distributed on {(c, 0), (0, ¢), (—¢,0), (0, —c) }
for a ¢ > 0, which is a distribution as described in Example 2.47 and therefore implies
a degenerate kernel.
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Chapter 3

Measures of dependence
for elliptical distributions

Dealing with multi-dimensional distributions still holds problems. Therefore a widely
used approach is to assume to have a normal distribution. The normal distribution is
well studied and possesses a lot of nice properties, but it is very restrictive and often not
suitable. So we follow the well-known approach of generalizing the normal distribution
by introducing a class of distributions called elliptical distributions. The symmetric
form of the distribution stays, but one is free e.g. to put more weight on the tails.

We first give the basic definitions and theorems. We then introduce the linear
correlation coefficient as the natural measure of dependence in the case of elliptical
distributions. The relationship between Kendall’s tau and the linear correlation coef-
ficient, which is one of the nice properties provided by elliptical distributions, leads to
two different ways of estimating the dependence measure. We finally revisit the case
of degenerate tau-kernels on the background of elliptical distributions.

3.1 Definitions and basic properties
of elliptical distributions

We give a short introduction to elliptical distributions. The main definitions and
theorems are given. For details and proofs see e.g. Cambanis et al. (1981), Fang et al.
(1990) or McNeil et al. (2005, pp. 89-94).

Elliptical distributions are a generalization of the normal distribution. The name
comes from the fact that, in case of existing continuous densities, the level curves
of these densities are ellipses. A special class of elliptical distributions are spherical
distributions where the level curves are circles. They are defined by their invariance
under orthogonal transformations.

Notation. For d € N let O(d) denote the set of all orthogonal matrices U € R4, i.e.
UU' = U'U = 1I,, where I, denotes the (d x d)-dimensional identity matrix.

33



3. Measures of dependence for elliptical distributions

Definition 3.1. An R%valued random vector X = (X1, ..., X4)" has a spherical dis-
tribution if for all U € O(d)

Ux <Xx. (3.1)

The characteristic function px(t) = E[e*'X], t € R%, of a spherically distributed
random vector has special properties. Note that if X is spherically distributed, then

x< x , so both random vectors must have the same characteristic function. Since
we further know that the characteristic function of —X is the complex conjugate of
the characteristic function of X (see Lemma 2.21(iii) which similarly holds in higher
dimensions), the characteristic function of spherically distributed random vectors must
be real-valued. There is even a stronger property which is often used in the literature
as definition of spherical distributions:

Theorem 3.2. An R-valued random vector X = (Xi,..., Xq)* has a spherical distri-
bution if and only if its characteristic function o satisfies one of the following equivalent
conditions:

(i) p(U't) = p(t) for allU € O(d) and t € R%;
(ii) There exists a function v : [0,00) — R such that ¢(t) = ¥(t't) for all t € R
Proof. See e.g. McNeil et al. (2005, pp. 89-90). O

Notation. The function v is called the characteristic generator of the spherical distri-
bution and the resulting distribution is denoted by S4(v)).

Within some of our proofs we will need another characterization of a spherical
distribution which is given by the following theorem:

Theorem 3.3. An R¢-valued random vector X = (X1, ..., Xy)" has a spherical distri-
bution if and only if it has the stochastic representation

X L RS, (3.2)

where S is uniformly distributed on the unit sphere S¥1 = {s eR?: sts = 1} and
R >0 is a radial random variable, independent of S.

Proof. See e.g. McNeil et al. (2005, pp. 90-91). ]
Remark 3.4. For every spherically distributed X with P[X = 0] = 0 we have

X \ d
(11 %) = (7:9) (33)

(see e.g. McNeil et al. (2005, p. 91)), so the distribution of the radial random variable R
is uniquely determined.
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3.1. Definitions and basic properties of elliptical distributions

Example 3.5. Let X be a d-dimensional, standard normally distributed random vec-
tor, X ~ Ny(0,1;). Since X'X ~ x2, where x2 denotes a chi-squared distribution
with d degrees of freedom, it follows from (3.3) that R? ~ y2.

The components of spherically distributed random variables are pairwise uncorre-
lated, which implies that the dependence measures linear correlation coefficient and
Kendall’s tau equal zero, o = 0 and 7 = 0. To introduce correlation we have to gener-
alize the spherical distributions to elliptical ones. This generalization is realized by an
affine transformation:

Definition 3.6. An R%valued random vector X = (Xi,...,X,)" has an elliptical
distribution with parameters g € R? and positive semi-definite ¥ € R?*? if there exist
E€N,Y € R¥ and A € R¥* such that

X<+ Ay, (3.4)
where Y is spherically distributed and AA* = X.

Notation. We refer to p as the location vector and X as the dispersion matrix.

Again it is common to characterize the elliptical distribution by the characteristic
generator. If we assume Y ~ Si(1)) in Definition 3.6, then we get for the characteristic
function of X

@X(t) — ]E[eittX] — E[eitt(p,+AY) ] _ Gitt”]E[ei(Att)t Y]
— Myt t)
and denote the elliptical distribution by E4(u, 3, ).

Remark 3.7. The representation of an elliptical distribution by formula (3.4) or by
Ei(p, 3, 1) is not unique:

(a) As spherical distributions are invariant under orthogonal transformations we have
for every orthogonal matrix U € O(k) that

p+(AU)Y L p+ AY .

(b) If X ~ Eu4(p,X,9) and also X ~ Ey(p*, X", 9*), then there exists a constant
¢ > 0 such that p = p*, ¥ = cX* and ¢(-) = ¥*(c*) (see e.g. Cambanis et al.,
1981, Thm 3(i), pp. 372 373).

As for spherical distributions there is also another way of characterizing an elliptical
distribution:

Theorem 3.8. An Ré-valued random vector X = (X1,...,X,)" has an elliptical distri-
bution with location vector pu and dispersion matriz 3 if and only if there exist k € N,

S, R and A satisfying
X <+ RAS, (3.5)
with
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3. Measures of dependence for elliptical distributions

(i) S uniformly distributed on the unit sphere S*' = {s € R* : s's = 1},

(ii) R >0, a radial random variable, independent of S, and

(i) A € R with AAt = 5.

Proof. Tt follows directly from Definition 3.6 and Theorem 3.3. m

Remark 3.9. In the following it will be helpful to specify k& = rank(X), which is always
possible if rank(3) > 0 (see Cambanis et al., 1981, pp. 369-370). We refer to (3.5) with
this special choice of k as full rank representation. As we further required AA* = X
we always have rank(A) = rank(X) = k in this case.

Remark 3.10. In the following we are mainly interested in the two-dimensional case.
We will need the distribution and the moments of the components of S. We have to
distinguish between three cases.

(i) rank(X) = 0. In this case both components of the elliptically distributed random

vector are degenerate.

(ii) rank(X) = 1. Here we have § = S which is uniformly distributed on {—1,1}. So

it is easy to see that for all n € N

E[S*']=0 and E[S*™]=1.

(iii) rank(X) = 2. Here we have S = (S, S2)" which is uniformly distributed on the
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unit circle. So we can say that

S1\ d [cosx
Sy)  \siny )’

where y is uniformly distributed on [0, 27]. Denoting arccos : [—1,1] — [0, 7] the

principle branch of the arc cosine, the distribution of S = 5, 4 Sy becomes

P[S <z]=P[cosy < z]=Plarccosz < x < 27 — arccos z |

2m—arccos x 1
= / = dx
arccos x 27

=1——arccosz, z¢€[-1,1],
T

and its density
1
)= ———o, ze(-1,1).
fst) = = =11

Due to its symmetry and boundedness we know that for all n € N

E[S* '] =0



3.2. Measures of dependence for elliptical distributions

and can further calculate

21 2 1 2TrCOS4X 3
E$% = L Xg =2 dE4:/ dy = 2.
[57] /0 o x=g5 and E[S] .2 AT

We already know that the two components are uncorrelated:

2m :
COS Y S1n
E[S152]:/ %dxzo
0 s

Later we will further need

B[S3S,] = B[S S3] =0 and E[S2S2]=~.

3.2 Measures of dependence
for elliptical distributions

For elliptical distributions the linear correlation coefficient is the natural measure of
dependence (see e.g. Embrechts et al., 1999). So we present now the definitions of
the measure and its estimator. Under appropriate moment conditions the estimator is
asymptotically normal and the asymptotic variance can be calculated. In the case of
elliptical distributions it even gets a very simple form.

In the elliptical world, using the linear correlation coefficient is equivalent to using
Kendall’s tau as there is a unique connection between them, which was shown in
Lindskog et al. (2003). This connection leads to a second way of estimating correlation
in the case of elliptical distributions. Again we can show asymptotic normality of this
alternative estimator such that we can compare the classical and the new estimator by
their asymptotic variance.

3.2.1 Linear correlation for elliptical distributions

Definition 3.11. For two non-degenerate, real-valued random variables X and Y with
E[X?] < 0o and E[Y?] < oo the linear correlation coefficient is defined as

Cov[X,Y]
=olXY)= v/ Var[X] y/Var[Y] (3.6)
where Cov[X,Y]| = Eg( E[X]) (Y — E[Y])], Var[X] = E[(X — E[X])?] and

Var[Y] = E[(Y E[Y])?].

In the case of elliptical distributions the linear correlation coefficient gets an easy
form:
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3. Measures of dependence for elliptical distributions

Lemma 3.12. For a two-dimensional elliptical distribution with non-degenerate, square-
integrable components and with dispersion matriz

Y Yo
Y= ,
(221 Z22)
the linear correlation coefficient equals
0= Y2
V211 Yo

Proof. As the components are non-degenerate we know that rank(X) > 0 and can use

the full rank representation (3.5). Assume first rank(3) = 2 and write A = au a12)

g1  A22
X\ 4 a1151 + a1257
= R .
(Y) ot (a2131 + @257
As R and S are independent and as E[R?] < oo by the assumption of square-integrable
components, we get

such that (3.5) becomes

0= E[(a1151 4+ @1252) (a2151 + a2253) |
E[(a1151 4 a1252)? ]% E[ (a1 + 02252)2]%

which is well-defined since a;; = a;z = 0, i € {1,2}, would violate our assumption
rank(X) = 2. Using the moments of S and Sy from Remark 3.10 we can calculate

)

Q11 Q21 + @12 Q22

0= . (3.7)
\/(a%l + a%z) (agl + a%z)

Knowing that

2 2
> — AAt — ay + ajy a11 a1 + a2 A2
= = 2 2
a11 Q21 + Q12 @92 a5y + a9

we get the result.

Now consider rank(X) = 1. For representation (3.5) we have S = S, uniformly

distributed on {—1,1}, A = (a1,a2)" and (X,Y)* Lo+ RS(a1,a2)t. The linear

correlation coefficient becomes (again R and S are independent and E[R?] < 00)
Ela; ay S?] ay ag

= T T = . 3.8
¢ E[a?S52]2 E[a25%]:  \/a?d3 (3:8)

Again this is well-defined as assuming a distribution with non-degenerate components
assures that a; # 0 and as # 0. The result follows with the observation

ZIAAtI(a% a1a2).

aja; a3
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3.2. Measures of dependence for elliptical distributions

Definition 3.13. For a two-dimensional elliptical distribution with non-degenerate
components and with dispersion matrix 3 define the linear correlation coefficient as

Q: i
\/211222

Remark 3.14. This new definition is an extension of the classical one, including
also elliptical distributions with infinite variances, since for elliptical distributions with
square-integrable components the two definitions coincide, as shown in Lemma 3.12.
The extended definition leads to a uniquely defined o despite the fact that for an
elliptical distribution the dispersion matrix is not uniquely defined (see Remark 3.7),
because X can only differ by a multiplicative constant and this cancels out.

(3.9)

Lemma 3.15. A two-dimensional elliptical distribution with non-degenerate compo-
nents has perfect linear correlation, |o| = 1, if and only if rank(X) = 1.

Proof. Let |o| = 1. rank(X) = 0 is not possible as we assumed non-degeneracy of the
components. So assume rank(X) = 2. Then we know from (3.7) that

o] = 1 |an a1 + a1z az| = \/(@%1 +aty) (a3, + a3y)
& (@11 ag1 + a1z a9)? — (ai; + aly) (a3, +a3,) =0

< a11 Q2 = Q12 Q21 -

But in this case we have rank(A) = 1 and therefore also rank(3) = 1 which is a
contradiction.
Let rank(X) = 1. Then it follows from (3.8) that

a1 a2

0 = sgn(ay ap) € {—1,1}

B |Gl| |a2|

and therefore |o| = 1. O

3.2.2 Standard estimator for the linear correlation coefficient

Definition 3.16. For n i.i.d. pairs of non-degenerate, real-valued random variables
(X,,Y;), 7 =1,...,n, the standard estimator for the linear correlation coeflicient is

defined as . _ _
b = Zj:l(Xj - Xn)(y; B Yn)
VI (X = X2 S (Y - o)

where X, = 237" | Xj and Y,, = 1 37", Y; are the sample averages. (On the event
where the denominator vanishes define g, = 0.)

(3.10)

Also the standard estimator is asymptotically normal. The asymptotic variance has
a nice form in the case of elliptical distributions.
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3. Measures of dependence for elliptical distributions

Theorem 3.17. For i.i.d. pairs of mon-degenerate, real-valued random wvariables
(X;,Y;), 7 € N, with E[X}] < oo and E[Y}}] < oo the standard estimators (0,)n>2,
as defined in (3.10), normalized with \/n, are asymptotically normal,

Vi (60— 0) S N(0,02), n— oo. (3.11)
The asymptotic variance is
:<1+9—2)—022 +Q—2(@+@—4 Py T8 ) (3.12)
2/ 020002 4 Ugo 082 011020 011002/

where oy = E[ (X —E[X]))* (Y —E[Y])!], k,l € Ny with k +1 < 4.
If in addition the distribution of (X1,Y1) is elliptical, then the asymptotic variance

can be simplified to
E[RY] 2
2= —— - (1-¢? 1
%o 2 E[R2]2 (12", (3.13)
where R is the radial random variable as in representation (3.5).

Proof. The asymptotic normality is proved in Witting and Miiller-Funk (1995, pp. 108—
109).

To prove the formula for the elliptical case we use the full rank representation (3.5),
which is possible as the assumption of non-degenerate components implies rank(X) > 0.
ainl a2
Q21 G22
of R and S we get for every k,l € Ny, k+1 < 4,

o =E[(X — ux)" (Y — py)']
= E[ Rk+l ] E[ ((111 Sl + a12 Sg)k (a21 Sl + 929 Sg)l] .

To shorten notation define Gy := E[ (a1 Sy + @12 S9)* (a1 S1 + asz S2)']. Knowing the
needed moments of S; and Sy (see Remark 3.10) we can calculate

Assume first that rank(3) = 2 and denote A = . Using the independence

- 1
on =g (Cln a1 + Q12 a22) )
1
1
002—§(a1+a2),
1 2
0'22 = g (3 a1 (I21 + CLH CL22 + 4@11 12 Q21 Q22 + a12 CL21 + 3@12 CL22)
3
0'31 = — CL 11 A21 + all Q12 Q99 + a1q &12 as1 + CL12 a9
8
o §(ozaqLaaa—I—czcﬂa—f—acf’)
13 — 8 11 W9q 11 21 Uoo 12 Uogq W22 12 W99
3
2
3
004—§(a1+a2) .
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3.2. Measures of dependence for elliptical distributions

Note that L L
T Gy and 0% _ 5, (3.14)
020 002
and further
031 002 = 013 020 - (3.15)

The square of the linear correlation coefficient can be written as

2 ~2
g g
11 11
Q2 = = = = . (316)
0920 002 0920 002

So we can rewrite equation (3.12) as

212 ~ ~2 ~ ~2 ~ ~2 ~ ~ o~ ~ o~
E[R] 2 022 011022 011040 011004 011031 011013
EIRY % T 5.5 +2~2~2+4~3~ +4~ =3 T =3 ~ T = =9

[RY] 020 002 020 002 0320 002 020002 020002 020002

~2 ~ ~ ~2 ~ ~
0711040002 0711004 020

1
~ o~ o~ ~2 ~
= 3 =3 <<722020<702‘1‘5011(722+

— 11 531 Gop — 511 51 520 ) (3.17)
(314) 1 o 15 I 3. . .
= =5 =3 | 022020002 + 5011022 — + 011031002 — 7 011013020
05002 2 4 4
315 1 - 15 3. . .
= =525 | 022020002+ 5071022 — 5011031002 ) -
050 0o 2 2

Inserting the values of the remaining ¢ we can calculate that

1 3 4
~ ~ ~ ~2 ~ ~ ~ ~
022020002 + 2 011022 — B 011031002 = 3—2 (an Qg — Q12 G21) .

As we can also calculate that

_9 I 9y2 1 4
G0 0 (1 — 0%)* = (020 002 — 0%1) BT (041 (22 — 12 azl)

we get the result.
In the case of a non-degenerate elliptical distribution with rank(X¥) = 1 we have

(X,Y) 4 RS(ay,as)t. For every k,l € Ny, k+1 <4, we get
o = E[(X — px)" (Y — py)'] = E[R"']E[ (a1 S1)" (a2 52)'|
_ JE[RM!]dfdy, if k+1€2N,
B 0, otherwise .
Defining 64 = a¥al, for even k + [, equations (3.14)—(3.17) hold, and it is easy to

see that the last line in (3.17) equals zero, i.e. 02 = 0. As further o € {—1,1} (see
Lemma 3.15), it follows that also in this case equation (3.13) holds. O
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3. Measures of dependence for elliptical distributions

3.2.3 Alternative estimator
via transformation of Kendall’s tau

We want to compare this standard estimator to an alternative estimating procedure,
which is based on the following relation between the two measures of dependence in
the case of elliptical distributions.

Theorem 3.18. Let (X,Y)" be elliptically distributed with non-degenerate components
and with location vector (pux, py)* and dispersion matriz 3. Denote

ay :=1-— Z(P[X = x])2,

z€R

where the sum extends over all atoms of the distribution of X. Then
2ax .
7(X,Y) = — arcsino(X,Y). (3.18)
T

If in addition rank(X) = 2, then ax =1 — (P[X = ,uX})z.

Proof. See Lindskog et al. (2003). For elliptical distributions having a density (which
we discuss in the corollary) this has been proved by Fang et al. (2002, Thm 3.1). [

Remark 3.19. Since we can use the extended definition of ¢ (see Definition 3.13 and
the remark afterwards), we do not need to assume finite variances in this theorem and
its corollary.

Remark 3.20. Assuming non-degenerate components we always have ax > 0.

To further simplify this equation, we can either take the general case (3.18) and
additionally assume that the distribution of X has no atoms, i.e. that X is continuously
distributed, or we take the assumption rank(3) = 2 and further restrict ourselves to
distributions with P[ X = px] = 0.

Corollary 3.21. Let (X,Y)" be elliptically distributed with location vector (px, py)*
and dispersion matriz 3. If further rank(%) = 2 and P[X = pux| = 0 or if X is
continuously distributed, then ax =1 and (3.18) simplifies to

2
T = — arcsing. (3.19)
m

This relationship suggests to estimate first Kendall’s tau and to transform the
obtained value into an estimate of the linear correlation in the following way:

Definition 3.22. For elliptical distributions with non-degenerate components the
transformation-estimator for the linear correlation o is defined for every n € N, n > 2,
as -
Orp = SIN( —— 7, ), 3.20
¢ ’ (2 ax ) ( )
where 7, is the tau-estimator as defined in (2.8).
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3.2. Measures of dependence for elliptical distributions

Remark 3.23. This estimator has implicitly been used in the simulation study in
Lindskog et al. (2003) and has also been used in the case ax = 1 by Kuhn (2006,
pp. 89-90) and Kliippelberg and Kuhn (2009, pp. 745-746).

Remark 3.24. We require non-degenerate components as this is needed in the defini-
tion of the linear correlation coefficient and therefore also in Theorem 3.18, although
the tau-estimator is well-defined even if one component is degenerate.

To compare the two estimators we want to look at their asymptotic variances.
A comparison is possible because also the transformation-estimator is asymptotically
normal:

Theorem 3.25. For i.i.d. pairs of non-degenerate random variables (X;,Y;), j € N,

following an elliptical distribution, the transformation-estimators (0r.n)n>2, as defined
in (3.20), normalized with \/n, are asymptotically normal,

vn (@T,n — Q) N N(O, 03(7)), n— oo. (3.21)

The asymptotic variance is

2 2
2 ™ 2

_ 2 T _ T 2 2
Oor) = @0‘7 Ccos (2CLX 7') ~1a o:(1—0%), (3.22)

where o2 is the asymptotic variance of the tau-estimator as defined in (2.15).

Proof. If 7 = 41, then 7, = 41 for all n > 2 (see Remark 2.10) and ¢ = 0. It
further implies that the distribution can not have any atoms, so ax = 1 and therefore,
by Definition 3.22, g., = %1 for all n > 2. So the variance of the transformation-
estimator and especially its asymptotic variance equal zero and equations (3.21) and
(3.22) hold true with o2, = 0.

For |7| < 1 we use a method called delta method, as proved in Lehmann and Casella
(1998, p. 58). The transforming function is

T

h(x) = sin(ﬁ x) , v e[-1,1],

with an existing first derivative

e
B () Sax cos ras”) re[-1,1],

which is non-zero on |z| < 1. Knowing the asymptotic normality of the tau-estimators
(Tn)n>2 from Theorem 2.15, we get

Vi (h(7,) = b(r)) S N (0,02 (H())?), n— oo

Since h(7,,) = 0., by definition and h(7) = p by Theorem 3.18, we get the result. [
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3. Measures of dependence for elliptical distributions

Remark 3.26. Note that we only assume that the elliptically distributed random
vector has non-degenerate components, whereas the standard estimator additionally
requires finite fourth moments for asymptotic normality. We will notice this difference
again when we consider the t-distribution in Section 6.4.

As the tau-estimator also the transformation-estimator possesses the property of
strong consistency:

Lemma 3.27. For i.i.d. pairs of non-degenerate random variables (X;,Y;), j € N,

following an elliptical distribution, the transformation-estimators (0r.n)n>2, as defined
in (3.20), are strongly consistent,

~ n—00
Orm — 0 Q.S.

Proof. Since the tau-estimators are strongly consistent (see Remark 2.9) and & is con-
tinuous, we also know that h(7,,) = 0,, converge almost surely (see e.g. Génssler and
Stute, 1977, p. 59). ]

3.3 Normal variance mixture distributions

3.3.1 Definition and basic properties

This section gives an introduction to a subset of elliptical distributions, called normal
variance mixture distributions. There are many definitions within the literature. We
chose a definition that makes clear that a normal variance mixture distribution is
elliptical.

Definition 3.28. An R%valued random vector X = (X1,..., X,)" has a normal vari-
ance misture distribution with parameters g € R? and ¥ € R4 if it has the stochastic
representation

XLpu+VWAZ, (3.23)
with
(i) Z a k-dimensional standard normally distributed random vector,
(ii) W >0, a radial random variable, independent of Z, and
(iii) A € RO* with AAt = 3.

Notation. If p =0, k =d and ¥ = I4, then the distribution is spherical and we want
to call it standard normal variance mixture distribution.

Notation. The distribution of W is called mixing distribution function and will be
denoted by G.
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3.3. Normal variance mixture distributions

Remark 3.29. Early references on mixture distributions are Robbins (1948) and Beale
and Mallows (1959). Andrews and Mallows (1974) introduced normal variance mixture
distributions for one-dimensional spherical distributions, but they used the ratio Z/W.
Our discussion is mainly inspired by McNeil et al. (2005). The same definition can also
be found in Gupta and Varga (1993).

Remark 3.30. Like for general elliptical distributions also every random vector with
a non-degenerate normal variance mixture distribution has a representation like (3.23)
with k = rank(X).

The name normal variance mixture distribution comes from the observation that,
conditioned on W = w, w > 0, the random variable X is normally distributed with
covariance matrix w3, L(X | W = w) = Ny(p, wX). This observation helps specifying
a density, which exists if ¥ has full rank and P[WW = 0] = G(0) = 0. Since the
multivariate normal distribution has a density

1 1 )
INuus) (®) = )RS eXp(—§ (x—p) =z - ,Uu)), x € R?,

(see McNeil et al., 2005, p. 66), the normal variance mixture distribution has a density

f) = / " (e | w) G(dw)

N /0 2rw) 2 [S[1)2 eXp(_% (@~ )= (@ - ) Gldw), @R,
(3.24)
(see McNeil et al., 2005, pp. 74-75).

Remark 3.31. It is not only possible to mix normal distributions with different vari-
ances, but also with different means. The resulting distributions are called normal
mean-variance mixtures. They provide more flexibility concerning asymmetry, but in
general they are not elliptical. For details see e.g. McNeil et al. (2005, pp. 77-78).

3.3.2 Asymptotic variance of the standard estimator
for normal variance mixture distributions

Every normal variance mixture distribution can be seen as an elliptical distribution with
radial random variable v/IW Ry, where W is the mixing variable as in Definition 3.28
and Ry is the radial random variable of the normal distribution, i.e. R% ~ x? (see
Example 3.5). Since those two random variables are independent, we can simplify
formula (3.13) of the asymptotic variance of the standard estimator as

) _ E[RY] EW? E[Ry]

%= smmE 0 = smprpEmmE L0 (3.25)
_ E[W?] ( _ QQ)Q |
E[IV]2 '

The last step is due to the fact that E[R3,| = 2 and E[R}/] = Var[R%/] + E[R%/]? = 8.
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3. Measures of dependence for elliptical distributions

3.4 Characterization of elliptical distributions

with degenerate tau-kernel

We again look at distributions on R? with degenerate tau-kernel, as defined in Sec-
tion 2.1.2. We are interested in the question whether there exist elliptical distributions
with degenerate tau-kernel and if yes, how they look. The answer to the first question
is indeed yes. Depending on the rank of the dispersion matrix we can even give the
necessary and sufficient conditions for an elliptical distribution to have a degenerate
tau-kernel.

Theorem 3.32. A two-dimensional elliptical distribution with dispersion matriz 3 has
a degenerate tau-kernel if and only if one of the following properties is satisfied:

(i) rank(X) =0;

(ii) rank(X) = 1 and additionally one of the following properties is satisfied:

(a) one of the components has a degenerate distribution;
(b) the radial random variable R is continuously distributed;

(c) the random variable RS, where S is uniformly distributed on {—1,1}, is uni-
formly distributed on a finite non-empty set;

(iii) rank(X) = 2 and the radial random variable R has a degenerate distribution.

Proof. (i) If rank(X) = 0, then the distribution is degenerate which clearly leads to

a degenerate tau-kernel.

(ii)) We use the full rank representation, i.e. (3.5) with £ = 1, and assume w.l.o.g.
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p = (0,0)" (as the location vector does not influence Kendall’s tau and its esti-
mator). So we have A = (ay,a2)" € R? and S = S, uniformly distributed on

{-1,1}, and therefore (X,Y)" 2 RS (ay, as)".

If a; = 0oray = 0 (i.e. case (a)), then the situation is the same as in Example 2.46
with ¢ = 0, which means degeneracy of the tau-kernel.

If both a; # 0 and ay # 0, then we have Y = f(X) with f(z) = 2z being a
strictly increasing (if sgn(a; as) = 1) or strictly decreasing (if sgn(a; ag) = —1)
function. Then we know from Lemma 2.44 that the tau-kernel is degenerate if
and only if one of the following holds:

e X is continuously distributed: this is true if and only if R is continuously
distributed, i.e. case (b);

e X is uniformly distributed on a finite, non-empty set: as we have X < a1 RS,
a; # 0, this is exactly case (c).



3.4. Characterization of elliptical distributions with degenerate tau-kernel

(iii) “if”: see Lemma 3.33;

“only if”: see Lemma 3.36.
m

Lemma 3.33. A two-dimensional elliptical distribution with a degenerate radial vari-
able R has a degenerate tau-kernel.

Proof. If R =0, then the assertion is trivially true. So lets assume R > 0.

The cases rank(X) < 2 are already proved in Theorem 3.32.

So assume rank(3) = 2. To prove that the tau-kernel is degenerate we have to
show property (2.40), i.e. that the probability

P[(X -X)(Y -Y)>0]| X,Y] (3.26)

is almost surely constant and therefore independent of (X,Y)" (this is sufficient as
the distribution is continuous). So for a given (X,Y)" we are interested in the areas
{(Z,9) eR? | 2> X,g>Y}and {(2,9)" € R? | Z < X, § < Y}. In the elliptical
setting the areas are simple to describe, as they are separated by horizontal and vertical
lines, but the probability that a point (X,Y)" lies in these areas is not easy to see.
So we change to the spherical setting, using the full rank representation (3.5) with
A = (ZH 312 and S = (51,52)" and, w.lo.g., u = (0,0)*. Remember that the
21 (22

radial random variable is degenerate. We first look at the case a;5 > 0 and ag > 0
such that we know

X>X and Y >V
= a;151 + a125; > (11151 + CL12§2 and  ag 51 + agSy > CL21S~1 + CL22S~2
= O S~2<(ES“LS2>_E§1 and  (II) 52<(%51+S2)—%§1
ai2 a2 99

22

(3.27)

In this setting the random vector (S, S5)* is uniformly distributed on the unit circle.
The lines that border the set of points (S, S3)* where the last expression of (3.27) holds
true, are no longer horizontal and vertical, but they stay lines, they cross at (Si, S2)",
i.e. on the circle, and their gradient and therefore also the angle between them is fixed
independently of (S;,S,)". So to get the probability P[X > X, Y >V | X,Y ] we
have to integrate over all points on the unit circle that lie under these two lines. The
same argumentation tells that the probability P[ X < X, Y <Y |X, Y] corresponds
to the part of the circle which is over the two lines. So we have two lines with a
fixed enclosed angel crossing on the circle and we are interested in the part of the
circle that lies between the lines. But this is fixed independently of the crossing point
(inscribed angle theorem) and therefore independently of (Si,S3)'. This means that
the probability (3.26) is independent of (X,Y)" which is the condition of having a
degenerate tau-kernel.
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3. Measures of dependence for elliptical distributions

For a1 < 0 or ass < 0 the situation stays the same, simply unequal signs can
change and so it can change whether the areas contribute to probability (3.26) or
to the complementary probability . But as the angle still stays the same also the
probabilities are independent of (57, S3)".

In the case a;s = 0, agy # 0 the argumentation stays the same, only inequality (I)
of (3.27) changes to Sy < S;, but the angle stays fixed independently of (S, S»)*.

In the case aj2 > 0, ase # 0 inequality (II) changes to S; < Sy Again the angle
stays fixed independently of (S, S5)".

As we assumed rank(X) = 2 we know that a;2 = ass = 0 is not possible. O

Remark 3.34. If the degenerate radial variable has a value greater than zero, then
the assumptions of Theorem 3.18 are fulfilled and we can compare the two ways of
estimating the linear correlation. As the tau-kernel is degenerate, the tau-estimator
for an elliptically distributed random vector with a degenerate radial variable has an
asymptotic variance of value zero, 02 = 0 (see Lemma 2.39). The asymptotic variance
stays the same after the transformation into an estimator of linear correlation, 03(7) = 0.

In this setting also the standard estimator is asymptotically normal, but its asymp-
totic variance does not necessarily equal zero:

1
Vit (60— 0) SN (0.5 (1= ¢%?), n—oo. (3.28)
The variance is strictly greater than zero if rank(X) = 2 as this implies |o| < 1.

It still remains to prove the “only if”-part in Theorem 3.32(iii). We need it for
elliptical distributions, which is done in Lemma 3.36. Nonetheless we first prove it for
spherical distributions, as this shows better the idea of the proof.

Lemma 3.35. A two-dimensional spherical distribution can only have a degenerate
tau-kernel if the distribution of the radial variable R is degenerate.

Proof. For the spherically distributed random vector we use the notation
(X, V)" iR (cos X, sin )"

where R ~ Fr and x ~ U[0,27].

Assume that the distribution of R is non-degenerate. We will show the contradiction
by showing that Lemma 2.49 is violated. If Fj is non-degenerate, then there exists
ro € [0,00) with Fr(rg) € (0,1). By right-continuity of the distribution function we
can assume that 7o > 0. Right-continuity also ensures that there exists ry € (1, 00)
with Fr(r) € (0,1). Fix any r; € (g, 72).

Define u; = ro, v1 = /17 — 14, ug = —u1, vo = —v; and xo = arcsin(2*). So all the
points (u;,v;), 4,7 € {0,1}, are on the circle with radius r; and xo € (0,75). We have

p([uo, ur] X [vo,v1]) > P[R <o, [sin x| < xo]

4
- ity 2

> 0.
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3.4. Characterization of elliptical distributions with degenerate tau-kernel

Consider the random vector (Up, Uy, Vo, Vi) = (=R cos X, R cos X, —R sin X, R sin Y)
with R ~ Fr and x ~ U[0,27]. We need to show that assumption (2.47) is fulfilled:

P[Uoﬁum Ui > uy, Vo < vy, Vi 21}1} :IP’[COS)ZE u—él, sin y > U—é}

ZP[RZTQ,COS)%ZE,SHI)%ZE}
) )
> (1 — FR(rz))]P’[cosfg > T—O, siny > E] .
T2 T2
We chose ry such that (1 — FR(TQ)) > (. Further we have
ﬂ,cosfgz T—O}
) T2

2 7.2
:{X|Sin)~<2ﬂ,sinizx/l—cos%zg 1_’”_3:—“"27"0}
T2 7’2 T2
_ {>~<| i —rd \/7“%—7‘3}
T T2
#1{}

as 19 > 11, which is a contradiction to (2.48). O

{XIsing >
<siny <

Lemma 3.36. A two-dimensional elliptical distribution with rank(X) = 2 can only
have a degenerate tau-kernel if the distribution of the radial variable R is degenerate.

Proof. For the elliptically distributed random vector we use the notation

(X, V)" L R A (cos y,sin)"

where A = (ZH 312>, R ~ Fg and x ~ U[0,27] (w.lo.g. u = (0,0)"). We can
21 Q22

assume that p # 0 as the case p = 0 is treated in Lemma 3.35. We further know that
lo] < 1 as we assumed rank(X) = 2 (see Lemma 3.15). Lets first look at the case of
positive correlation, ¢ € (0,1), which means that aj; as; + ajg ase > 0.

Assume that the distribution of R is non-degenerate. Again we want to show
the contradiction using Lemma 2.49. With the same arguments as in the proof of
Lemma 3.35 we can find 0 < 7o < r; < 1y < 0o such that Fg(r;) € (0,1), 7 € {0,1, 2}.

For every r > 0 the points (z,y)" = r A (cos x, sin x)*, x € [0,27], have a maximal
y-value if xmax = arctan({2) as we have

0 0

e~ (r (a1 cosx + ag sin X)) =1 (—ag; siny + agy cos x)

Ox  Ox
0 a .

— (Xmax) = —7 a1 sin (arctan(£)> + 7 ag cos (arctan<£>>
Ox ag1 a91
ase 1
= —Tasz N + 7 ag

(12 -
1+ 2

-
a2 a1
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3. Measures of dependence for elliptical distributions

and the corresponding ymax(r) is positive for positive 7:

Ymax (1) = 1 (a21 COS Xmax + a22 SIN Xmax) =71/ a3, + a3y > 0.

We further get

@11 a1 + Q12 g2

. ro
Tmax(1) =7 (@11 COS Xmax + @12 SN Xmax) =T — = .
\/ Ay1 + Ao \/ 1 + Ao

Note that ymax 18 independent of the radial variable r. The coordinates of the maximal
point are both positive for r > 0 as we assumed p € (0, 1).

Define 43 = Tmax(r1); ¥1 = Ymax(r1), o = —uy and vy = —wvy. The points with
maximal y-values for different radial values lie on a line with gradient

Ymax (1) _ a3, + a3,

Tmax(T) 0
Therefore we know that (Zmax (), Ymax())" € [ug, u1] X [vg,v1] for r < ry. Asrg <1y
we even know that there exists an g > 0 such that

rA (COS Xo,SiH X(])t S [uoaul] X [U07U1] (329)

for xo € [Xmax — €05 Xmax + €0] and 7 < ryg. We can use the same arguments to show
that there exists an €3 > 0 such that

7 A (cos xa,sin x2)" € [ug,00] X [v1, 0] (3.30)
for xo € [Xmax — €2, Xmax + €2] and r > 5. From the choice of ug, uy, vy and v; we get

(3.29)
M([anul] X ['U07U1]) Z P[R S To, X € [Xmax — €0 Xmax + 50]}

= Flro) 52
> 0.
Consider the random vector (Uy, Uy, Vi, V1) with
Uy = —R (ay1, ars) (cos X, sin X)*
Uy = R (ay1, ays) (cos X, sin Y)'
Vo = —R (az1, ass) (cos X, sin Y)*,
Vi = R (az1, ass) (cos ¥, sin ¥)t,

where R ~ Fg and Y ~ U [0,27]. To observe the contradiction we need to show that
assumption (2.47) is fulfilled:

P[UOSU(MUI Zula% §U07‘/1 ZU1:|

(3.30) - ~

> P[RZTQ,XG[Xmax_€27Xmax+62]]
282

> (1—-F —_—

= ( R(TQ)) o

> 0.
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3.4. Characterization of elliptical distributions with degenerate tau-kernel

If o€ (—1,0) we take A = ( au i > and get a random vector
—Q21 —0a22

4

(X,Y)'= R A (cos,sinx)" 4 (X, -Y)"

with linear correlation p = —p € (0,1). We know from above that the distribution of
(X,Y)" has a degenerate tau-kernel. As g(y) = —y is a strictly monotone function,

we know from Lemma 2.43 that also the distribution of (X,Y)" 4 (X,-Y)! has a
degenerate tau-kernel. O
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Chapter 4

Methods to calculate
the asymptotic variance
of the tau-estimator

In the previous chapters we introduced the estimator of the dependence measure
Kendall’s tau and showed that it is asymptotically normal. This property is useful
to determine asymptotic confidence intervals and later we will also use it to compare
two estimating procedures in the case of elliptical distributions. In all these cases we
need the value of the asymptotic variance, which is defined as (see (2.15))

o’ = AE[E[sgn(X; — X>) sgn(Y; — Y2) | Xl,mz] — 472,

T

So within this chapter we develop simplifications of this formula, assuming different
properties of the two-dimensional distribution function.

4.1 Calculation of the asymptotic variance
via the copula

Copulas play an important role within the discussion of dependence as they represent
the dependence structure between two random variables. We just give the definition
and some basic properties here, for more details see e.g. Nelsen (2006).

Definition 4.1. A two-dimensional copula C'is a function C : [0,1]*> — [0, 1] with the
following properties:

(i) For every u,v € [0, 1]:
C(u,0)=C(0,v) =0

and
C(u,1)=u and C(1,v) =w.
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4. Methods to calculate the asymptotic variance of the tau-estimator

(ii) For every uq,ug, vy, vy € [0,1] such that u; < ug and vy < vs:

C('LLQ,UQ) — C('LLQ,U1> — C(Ul,vg> + C(U17U1> Z 0.

Equivalently one could simply say that a two-dimensional copula is a distribution
function on [0, 1]? with uniform marginal distributions.

Sklar’s theorem ensures that for every given marginal distributions F'x and Fy and
every two-dimensional distribution function G there exists a copula C' such that for all
r,y € R

G(z,y) = C(Fx(z), Fy(y)) -

If the marginal distributions are continuous, then the copula is unique. Note that in
this case we further know that the random variables F'y (X) and Fy(Y') are uniformly
distributed on [0, 1].

One important property of copulas are the Fréchet—Hoeffding bounds. For every
copula C' we have

max(u +v —1,0) < C(u,v) < min(u,v), wu,v € [0,1]. (4.1)

The bounds themselves are copulas, the lower bound indicates perfect negative depen-
dence, the upper bound perfect positive dependence.

As the copula describes the dependence structure entirely and is not influenced
by the marginal distributions, it is a desirable property of dependence measures to
depend only on the copula. Kendall’'s tau fulfils this property and for continuous
marginal distributions we have the following representation:

Lemma 4.2. Let X and Y be two continuous random wvariables whose copula is C'.
Kendall’s tau for X and Y 1is then given by

T=4 /[0’1]2 C(u,v)dC(u,v) — 1. (4.2)

Proof. See e.g. McNeil et al. (2005, pp. 207-208). ]

As Kendall’s tau itself is independent of the marginal distributions, also the asymp-
totic variance of its estimator can be expressed only by the copula:

Theorem 4.3. Let X and Y be two random variables with continuous marginal dis-
tributions Fx and Fy and copula C. Defining

U:=Fx(X) and V :=Fy(Y), (4.3)
we can calculate the asymptotic variance for the tau-estimator as
02 =64E[C*(U, V)] —64E[U C(U,V)] — 64E[V C(U, V)] + 32E[UV ]
20 (4.4)

487 —472,
+3~|—T T
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4.1. Calculation of the asymptotic variance via the copula

Proof. When calculating the asymptotic variance (2.15) we are not interested in the
exact values of the random variables but only in the signs of the differences X — X
and Y — Y. Strictly monotone transformations do not change the order of numbers.
Marginal distributions are monotone, but not necessarily strictly monotone functions.
But the constant areas do not matter as they are just attained on a null set. So we
have

sgn(X — X) = sgn (Fx(X) — FX(X)) a.s.

and
sgn(Y —Y) = sgn(Fy(Y) — Fy(?)) a.s.

The random variables Fx(X), Fx(X), Fy(Y) and Fy(Y) are uniformly distributed
on the unit interval. Similar to (4.3) we use the notation

U:=Fx(X) and V:=F(Y).
To calculate the asymptotic variance we are interested in the conditional expectation

E[sgn(X — X)sgn(Y —Y) | X,V |
= E[sgn(Fx(X) — FX(X')) sgn(Fy(Y) — Fy(}?)) | X,Y] as.

From Lemma 2.40 we know that we can also change the conditioning from o(X,Y") to
o(U, V), so we have

E[sgn(X — X)sgn(Y =Y) | X, Y| =E[sgn(U — U)sgn(V — V) | U, V] as.
Hence we can rewrite o2 as
0 = 4R[E[sgn(U — U)sgn(V = V) | U, V]*| — 472

Using the definition of the copula and again the continuity of the distribution, we can
further simplify this formula:

QP((U-U)(V -V)>0|U,V]-1)"] =77

2(C(UV)+1-U—V+CU,V)) —1)2} _

[

[(Q(P[I?SU,VSWU,V]+P[U>U,f/>vyU,v])_lﬂ _ 2
[

[

40U, V) =20 -2V +1)°] - 72
=16E[C*(U,V)] +4E[U?]| +4E[V?]+1-16E[UC(U,V)]
—16E[VC(U, V)] +8E[C(U, V)] +8E[UV]| —4E[U] —4E[V] —72.

Knowing the moments of random variables that are uniformly distributed on the unit
interval and using the copula-representation (4.2) of Kendall’s tau, we get the result.
O
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4. Methods to calculate the asymptotic variance of the tau-estimator

Remark 4.4. If we assume that the copula C' is symmetric, then we can further
simplify this formula:

2
02 =64E[C*(U, V)] - 128E[U C(U, V)] + 2E[U V] + EO +87—472.  (4.5)

In Section 5.1 we will use these formulas to specify the asymptotic variance of the
tau-estimator for several copulas.

4.2 Axially symmetric distributions

Another approach to simplify the calculation of the asymptotic variance of the tau-
estimator is to work with the common distribution directly, assuming it fulfils some
helpful properties. Within this section we look for simplifications under the assumption
of axial symmetry. We first show a very technical lemma:

Lemma 4.5. For every x,y > 0 we have for the tau-kernel k., as defined in (2.5),

kr((z,y), ) + ke (=2, —y), -)

— 2 L—oo—a)x(y,00) = 2 L(@,00)x(~00,—y)
+ L—aix(—o0,—9) + H—atx(—py) — H—a}x(y,00)

(4.6)
T ooy} T Lz -y} — Lwooyx{-u}
T Laxo0) T Ladx(-yp) = Ladx(-o0,-y)
T Loyt T L—am) <yt = Li—oo,—)x{y}
T oo + Ladxiuy -
Proof. From the definition of the tau-kernel we get
KT((‘Q:? y): ) + KT((_$7 _y)a )
= L—co.2)x(—o0m) T L0y x(.00) — L=00,2)x(,00) ~ L(w,00)x(~o0,9)
+ L—oo,—2)x(=o0,) T L=w,00)x(=y,00) — Li=o0,—a)x(=y.00) = L(=,00)x(=00,-) -
After decomposing the intervals in the way (z > 0)
(—OO, (L’) = (_007 —ZE) U {—(L’} U (—.T,ZL‘)
severals terms cancel out and reordering the summands gives the result. O]

With the help of this lemma we can simplify the formula of the asymptotic variance
for axially symmetric distributions:

Lemma 4.6. If a distribution pu on R? is azially symmetric, then the asymptotic vari-
ance of the tau-estimator is given by

o2 =16 /(0700)2 (u((—w,x] X (—%M))Z;ﬁ(dw,dy% (4.7)
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4.2. Axially symmetric distributions

Proof. By the axial symmetry it is easy to see that for z,y > 0 one has

E[HT(CE?y)’ (X7 Y)) } - E[/ﬂ,—((—l‘, _y>7 (Xv Y))} )

where (X,Y) ~ p. Assuming x,y > 0 we can apply Lemma 4.5. Additionally using
the symmetry we can calculate that

B[ ((r.0), (X, V) ] = 5 B[ 5 ((,), (X)) + e ((—2, ), (X,V)) ]
= p((—z,2) x (-y,7))

+ %u({—x,w} X (=y,y)) + %M((—xa@ x{=v.3)

+ %u({—x} < {—y}) + %u({x} x{y}) (48)
= p((=z,2) x (=,))

+p({z} x (=, 9) + p((—z,2) x {y})

+p({z} x {y})
= p((=z,2] x (=y,4]) .

If we take x = 0 it is easy to see that due to the symmetry we have

E[#,((0,9), (X,Y)) + . ((0, —y), (X,Y)) ] =0.
As further
1((0,0] x (=y,y]) = u(2) =0,
the result of equation (4.8) holds true for all z > 0 and y > 0 or, if we argue analogously

for y = 0, for all x,y > 0. If we change the sign of one variable, then axial symmetry
implies that the sign of the expectation changes:

E[I{T((l‘,y),(X7 Y))} :E[HT(<_'I’ _y)7(Xv Y))]
= —E[/{T((—x7y), (X, Y))} = _]E[RT((:E’ _y>a (X7 Y))} :

For the asymptotic variance this value gets squared and therefore the sign does not
matter and we have for all z,y € R

(B[ x (). (X)) = (el o] x (ol o)

But for the calculation of Kendall’s tau itself the change of sign effects that by in-
tegrating over R? the terms cancel out and we get 7 = 0. Therefore the asymptotic
variance equals

2

2

7t = [ (el bl x Iyl D)t d)
=16 /(0 i (u((—ﬂf,x] X (—y,y])>2u(d:v,dy)-
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4. Methods to calculate the asymptotic variance of the tau-estimator

If there exists a density, then this formula can be written as follows.

Corollary 4.7. If a distribution p on R? is axially symmetric and possesses a density f,
then the asymptotic variance of the tau-estimator is given by

o :4/}1{2 (4/024 /Oxf(u,v) dudv)zf(x,y) d(z,y). (4.9)

Remark 4.8. The symmetry within Lemma 4.6 and Corollary 4.7 can also be defined
with respect to the lines © = ux and y = py where the conclusions, formulated in an
analogue way, hold true.

Within the next two sections we look at special axially symmetric distributions
where we have further simplifications beyond formula (4.9). In Section 6.1 the formula
will again be used to calculate the asymptotic variance of the tau-estimator for special
spherical distributions.

4.3 Symmetric decomposable densities

Formula (4.9) for the asymptotic variance can further be simplified if the two-dimen-
sional density can be decomposed into a product where the factors only contain one of
the variables. This is e.g. true for the standard normal distribution. The simplification
still works when the density is a sum of summands that possess this decomposition
property. So we now look at densities of the form

= Z ci gi(w) hi(y) (4.10)

where 7 is a finite index set and where the constants ¢; € R and the integrable functions
gi,h; : R — [0,00) are chosen such that f is an axially symmetric density. Using
formula (4.9) and writing G;(z) := [ g;(u) du and H;(z) := [ hi(u) du we get

03:64/RQ(/Oy/Oxf(u,v)dudv)2f(:)3,y)d(:x,y)
—ot [ (S i<y>)2(2czgl<x>m<y>) d,)

i€l leT

=01 [ (3 eesaGu)Gyte) o) Hilo) Hilo) () ) e

i,5,l€T

o1 Y aa( [ Glo) Gyl alerds [ H) B0 ) dy).

1,5,l€T

(4.11)

An example of a decomposable density can be found in Section 5.2.
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4.4. Normal variance mixture distributions

4.4 Normal variance mixture distributions

4.4.1 Asymptotic variance of the tau-estimator

This section revisits normal variance mixture distributions, as defined in Section 3.3.
Since we are interested in simplifying the calculation of the asymptotic variance of
the tau-estimator, we only consider the two-dimensional case. Moreover we only look
at standard normal variance mixture distributions to ensure axial symmetry. To use
formula (4.9) we further need the existence of a density, which is given if the mixing
variable W has no point mass at zero, G(0) = 0. In this case representation (3.24) of
a density f simplifies to

ﬂwv%=AM¢AM¢AWGMO, wveR, (4.12)

where 1) denotes the continuous density of the N (0, {)-distribution, given by

L op(-L). weRr (>0

expl—=—), wu , .
J2me CP\Tg¢
Theorem 4.9. For a two-dimensional standard normal variance mizture distribution
with mizing distribution function G that fulfils G(0) = 0, the asymptotic variance of
the tau-estimator simplifies to

afzg/OOO/OOO/Oooarctanz(\/vg+ig+£§)G(dv)G(df) Ge).  (4.13)

Proof. As we are given a spherical distribution with existing density, we can start with
formula (4.9) for the asymptotic variance of the tau-estimator. Writing

Ye(u) =

:/Iwg(u)du, reR, (>0,
0

we can use representation (4.12) of the two-dimensional density and get

2 _4/RZ( / / fuvdudv) Flz,y) d(z, y)
:4342<A U, (2) oy )G(dv)) (/Ooo\lfg( ) Ue(y) (d§>)
(/W¢d@¢deMO)ﬂ%w
_4/ / /’ H(v,£,0))’ G(dv) G(de) G(d])

H(v,€,¢) = 4/R\Ilv(x) U (2) e (2) dx, 0,6,C> 0.

where

29



4. Methods to calculate the asymptotic variance of the tau-estimator

So we only have to show that
_ ¢ _.
H(v, &, () =— arCtan<\/vf+UC+fC> = G(v,&,(Q).

We first want to fix the third argument and treat G¢ and H, as functions on (0, 00)?
with fixed parameter (. We want to show that

Ge(v,€) = He(v,€) forall ( >0. (4.14)

Therefor we claim that both functions are a potential of the same gradient field, i.e.
that VG, = VH,. As both functions are symmetric in the first two arguments it is
enough to show that

0 0

— =—H :

- Go(0,€) = o H(v,6)
We first simplify the derivative 2 W, (z). Using the representation U, (z) = \Ifl(\%),
where the variable v is only in the upper bound and no longer in the integrand of the

integral, it is easy to see that

0 x x
%\I]U(‘T) = _2\/5%(%)
= —%%(m)

Hence we know that

Go . =1 [ (55 0.0) Velo) ve(o) do
2 / 20 () Ue(2) v (@) da

v Jr

To solve this integral we want to use integration by parts. Therefor we need

[ro@ = 5t [ on(-105 ) 0,

2m\/v (¢ 2v(
/¢ (v +()a?
C2m(v+Q) exp(— 2v(¢ >

For the derivative of H; we get

ai He(v,§) = Q/wav(@ Ue(2) Y () da
-+ (g o) we)

2m (v + () ¢ oo
—/v v
+2/<§x‘1’( )>2 W+ 0) Xp( ( ;2 )dx

2 1 1
e Lo Grer )
Yo (rgr) = :
CTVOE(v+ () T+ VE+u(+EC

o

§
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4.4. Normal variance mixture distributions

One can easily verify that G, has exactly the same derivative:

0 0 (2 ¢
%GC(U,@—%<; arctan(\/U£+UC+£<>)

I ¢ 2\ ! C(E+Q)
T <1+ <\/v§+UC+§(> ) <_2(\/U§+U<+£O3>

_ 2¢

(w4 VuEFuCTEC
0

= a_UHC<U7£)

As (0, 00)? is an open and connected set and therefore a domain and as the two functions
G¢ and H¢ are potentials of the same gradient field, the functions can only differ in
an additive constant (see e.g. Amann and Escher, 1999, p. 321). So it just remains to
show that they are equal in one point. For every ( > 0 we have

Hi(6.0 =1 [ (¥e)) wi(oydo =1 [ 5 (5(0@)*) da

4 : 4,1 1
= 5 ((%e(o))” = (¥e=o))") =3 (55 + )
1
~ 3
and therefore
Ge(¢.€) = 2 arctan %5;7) = = H{(G.0).

As the resulting equality
GC(U7 5) - HC(Uv 5)
is true for all ¢ € (0, 00) we also have
G(v,€,¢) = H(v,£,C)
which we wanted to prove. O

Formula (4.13) consists of three integrals. We can reduce this to two integrals,
but we loose the independence of the components. This can be seen by rewriting the
argument of the arc tangent in the following way:

¢ ¢ -3
¢v5+v<+§<:<g‘ o)

We want to define the two-dimensional distribution function H as

H(x,y) ::IP’[X

Y
ESLES?/}, $7y€[07oo)a (415>
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4. Methods to calculate the asymptotic variance of the tau-estimator

where X, Y and Z are i.i.d. random variables with distribution function G. This is
well-defined as we require that G(0) = 0. So we have

H(z,y) = /000 G(rz)G(yz) G(dz), (4.16)

and the asymptotic variance of the tau-estimator can be simplified as follows.

Corollary 4.10. For a two-dimensional standard normal variance mizture distribution
with mizing distribution function G that fulfils G(0) = 0, the asymptotic variance of
the tau-estimator simplifies to

16 1
2 2
c = t < >Hd ,dy) , 4.17
o 2/(0’ )zarc an T (dz, dy) ( )

where H is the distribution function as defined in (4.15).

4.4.2 An example
where the mixing distribution is inverse gamma

There are examples where H can be calculated explicitly, e.g. when G is the inverse
gamma distribution. We first show the definition and basic properties of this distribu-
tion before we simplify the formula for the asymptotic variance of the tau-estimator.

The inverse gamma distribution

Definition 4.11. A non-negative random variable X follows a gamma distribution
with parameters o, 3 > 0, X ~ Ga(a, (), if

P[ng]:Fﬂ(a)/ 227 e Ay, 2 >0.
0

Definition 4.12. A non-negative random variable X follows an inverse gamma dis-
tribution with parameters a, 8 > 0, X ~ Ig(a, ), if & ~ Ga(a, §).

We can calculate the distribution function for the inverse gamma distribution in
the following way:

P[X <z] :]P’[i > 1} =1- Fﬁ(Zz) /Oiza_le_ﬂzdz

e /Oo —a—-1 -8
=1- o ud
F(a) i u e Uu

= b /u_o‘_le_gdu, x>0.
I'(a) Jo

In Section 6.4.3 we will further need the first and the second moment of the inverse
gamma distribution to calculate the asymptotic variance of the standard estimator for
the t-distribution.
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4.4. Normal variance mixture distributions

Lemma 4.13. Let X ~ Ig(a, 3). Then, if a > 1,

E[X] = g
a—1
and, if a« > 2,
_ Ea
Var[X] = CESICEDR

Proof. We know that for all 0 < < «

E[X’] = 5 / w0 o8y = b / PR P
(@) Jo () Jo

The integrand is, up to a constant, a density of the gamma distribution Ga(a — 4, 3),
so we know

B T(a -0
E[X%] =
[X°] I(a)
and for § € N
5 3
E[X°] = .
[X7] (a—1)(a=2) ... (a—=9)
O]
Lemma 4.14. The sequence of inverse gamma distributions (Ig(a,a))a>0 converges
weakly to a Dirac measure in 1 as a — 0.
Proof. If X ~ Ig(a, «), then
2
(e a— 00 07 a—00
E|X] = 1 d VarlX]| = 0.
X=o=3 — 1 and VarlX]=rrma =9 —

So X converges in probability to a degenerate random variable of value 1 and therefore
its distribution converges weakly to the Dirac measure. O

Formula for the asymptotic variance of the tau-estimator

The choice, that G is inverse gamma, is motivated by the fact, that the inverse gamma
distribution with parameters a = [ as mixing distribution leads to a t-distribution, a
well-known family of elliptical distributions. In Section 6.4 we will use the derived sim-
plifications to calculate the asymptotic variance of the tau-estimator for uncorrelated
t-distributions.

Lemma 4.15. For a two-dimensional standard normal variance mixture distribution
where the mizing distribution function G is an inverse gamma distribution 1g(a, ),
a, 3 >0, the asymptotic variance of the tau-estimator simplifies to

16 '(3c) y)2et 1
2 = arctan® <—> dz dy . 4.18
77 = T2T3(a) / / :B+y~|—xy) JT Tyt ay Y (4.18)

63



4. Methods to calculate the asymptotic variance of the tau-estimator

Proof. We use representation (4.16) to determine the two-dimensional distribution
function H. As the inverse gamma distribution has a density so does H, and we
can derive such a density h(z,y), z,y € (0,00), as

h(z,y) = /OOO 22 g(xz) g(yz) g(2) dz

3o S 1 1
= fgy 0 [ e (L )

Y
o ﬁBa —a—1 * a—1 ]' 1
= T9(a) (xy) /0 u? exp(—ﬁu (1+ - §)> du
e —a—1 —3a 1 1y =3«
= Fogay (o9 TBa) 5 <1+E+§>
= ?S,?Z; (2y)**H (x +y +xy) >,

where the integral is solved by realizing that it is, up to a constant, an integral over
a density of the gamma distribution. Inserting this density in (4.17) gives the formula
claimed in the lemma. O]

Remark 4.16. Note that the scale parameter # vanishes, as was expected due to the
definition in (4.15).

64



Chapter 5

Examples of the asymptotic
variance of the tau-estimator
for several distributions

5.1 Examples for several copulas

Within this chapter we want to apply the formulas that we derived in Chapter 4. We
start with examples of different copulas where we can use the results from Section 4.1.
As those results require continuity of the random variables we also assume it within
this section.

5.1.1 Product copula

Two independent random variables possess the product copula, which is defined as
follows.

Definition 5.1. The product copula is the function
Ct(u,v) =uv, u,ve](0,1].

Lemma 5.2. For two continuous random variables linked by the product copula C*,
Kendall’s tau has the value
™ =0

and the asymptotic variance of the tau-estimator, as defined in (2.15), equals

Proof. Since U and V are independent we know that 7+ = 0. Starting with for-
mula (4.5) we can again use the independence and the moments of [0, 1]-distributed
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

random variables to get
(ai)2 =4 (16E[U2v2] —32E[U*V]+8E[UV ]+ g)

(16E[U ) B[V?] - 32E[U*] B[ V] + SE[U] B[ V] +§)

5.1.2 Archimedean copulas

Archimedean copulas are widely used due to their nice construction and the resulting
properties. They are constructed with the help of a function ¢, called generator:

Definition 5.3.

(a) A generator of an Archimedean copula is a continuous, strictly decreasing and
convex function ¢ : [0, 1] — [0, co] such that ¢(1) = 0.

(b) The pseudo-inverse of ¢ is the function ¢!~ : [0, 00] — [0,1] given by

[-1] _ 9071(15)7 ifte [07 90(0 ] )
o= {0, it ¢ € (0(0),00].

(¢) If ¢(0) = oo, then the pseudo-inverse is the normal inverse function, @!=1 = ¢~
In this case ¢ is called a strict generator.
Definition 5.4.

(a) An Archimedean copula with generator ¢ is a function
Clu,v) = o p(w) + o(v), u,ve0,1].

(b) If ¢ is a strict generator, then C'is called a strict Archimedean copula.

The proof, that the function C', as defined in Definition 5.4, is indeed a copula can
e.g. be found in Nelsen (2006, pp. 111-112).

Example 5.5. The product copula is a strict Archimedean copula with generator
p(t) = —log(t).

One of the nice properties that copulas of the Archimedean family possess is an
easy formula for Kendall’s tau:
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5.1. Examples for several copulas

Lemma 5.6. Let X andY be continuous random variables with an Archimedean copula
C generated by ¢. Then Kendall’s tau is given by

7= 1+4/0 ;p((?) dt . (5.1)

Proof. See e.g. Nelsen (2006, p. 163). O

Remark 5.7. For formula (5.1) we do not have to assume that ¢ is differentiable. As
¢ is convex on (0,1) we know that the set where ¢’ fails to exist is countable (see e.g.
Roberts and Varberg, 1973, p. 7).

Clayton copula

The Clayton copula is a one-parameter Archimedean copula with generator

S0 = 5 (0 1), 1€ (0,1],

and with parameter 6 € [—1,00) \ {0}.
Definition 5.8. A Clayton copula with parameter 6 € [—1,00) \ {0} is a function

1
CCl,e(u V) = (max(u—9 4+ f - 1,0)) o, ifuv>0, wve[0,1].
7 0, otherwise , 7 7

Remark 5.9.

(a) All the three special copulas, the product copula and the two Fréchet—Hoeffding
bounds, as introduced in Section 4.1, can be reached by a Clayton copula. We
get the product copula in the limit & — 0, the lower Fréchet—Hoeffding bound for
6 = —1 and the upper Fréchet—Hoeffding bound for § — oo.

(b) On the full range of the parameter the generator and the copula are not strict. If
we only allow 6 € (0, 00), then we get a strict Archimedean copula and can simplify
the copula to

—0 =0 _ 1\
C’Cl’e(u,v): (u + v 1) , ifu,v>0, woel0,1].
0, otherwise ,

In this case only positive dependence can be modelled.

Lemma 5.10. For two continuous random variables linked by a Clayton copula C°Y
with parameter 0 € [—1,00) \ {0}, Kendall’s tau has the value

CLo _ 4
0+2°
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

For 6 € (0,00) the asymptotic variance of the tau-estimator, as defined in (2.15), equals

T 3\ 3+60 2+ 0)?
* (2+6) 1 (5.2)
+32(1+0) / u o ? (w0 - 1)_5_2 d(u,v) .

(0,1]2

In the special cases 0 =1 and 8 = 2 we get the values
16

@SU)2:-§(6W2—59)%0387
and 337
(051%)" = T5 — 32 log(2) ~ 0.286.

Proof. We use formula (5.1) to calculate Kendall’s tau. The derivative of the generator

is
!/ —_9—
such that we get

4 (! 4, 1 1
01,9:1 _/ 9+1_ :1 - =
T T ) ot +9<9+2 )

B 0
Ch+27

To calculate the asymptotic variance of the tau-estimator we use formula (4.5). As we
set 0 € (0,00) we can use the simple form of the copula and can determine a density
for u,v > 0 as

82
CCl,é’(u7 ’U) - 2 C«Cl,9<u7 U)

We need to solve the integrals
| (€ @) 0 dlu v
(0,12
— (1+6) / T (N 1)7372 d(u, v)
(0,12

and
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5.1. Examples for several copulas

They can be treated equally. We start with the integral over v by substituting z := v~°

(for the first integral set av = 3, for the second o = 2):

1 . ~ .
/ vt (u—e +o070 — 1)7572 dv = % / (u_g +z— 1)7572 dz
0 1

_a_q|°°

u’9+z—1) 0

z=1

-1

So the whole integral equals

1
—0—a+2,—0-1(, —0 -0 —F2 _ 1 / 2 B 1
u v uw ' 4+v =1 d(u,v) = udu = ——-.
/(;HQ ( ) ( ) [0 + 0 0 3 (O{ + 0)

The third term in formula (4.5) can be written as

/ wv M (u,v) d(u,v) = (1+6) / u v (Wl o —1)7
(0,12 (0,1]2

CLe

Inserting the calculated values as well as the value of 7% we get

> 64(1+6) 128(1+6) 20 8¢ 467

CLoNZ _ _
) =3679 et T3 216 @roP
+32(1+0) / T (T 1)_%_2 d(u,v).

(0,1]2

Simplifications give the general formula claimed in the lemma. To solve the last re-
maining integral for § = 1 we use the substitution z := (1 — v) u 4+ v to get

1 2 1 2 1/, . N\2
02/ Y 3dudv:/ Y 3/ (2 31}) dz dv
o (1—v)u+v) o I=v)*J, =

where we used the substitution z := 1 — v in the last step. Expanding the sums we can
calculate the integral over several summands directly (Liy denotes the dilogarithm, see
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

. 1
0 + ng(l — Z) |z:0

Section 7.4.1 for details):
1 1 1
3 1 1 2 z 1
(%) :/0 (Z—;— (;—;) 10g(1—z)> dz—/o édz—/o 2 log(1 — 2)dz
1 1 2 3 1 221
= — — — —+ -] log(1 — - —
(22 * (222 2 i 2) o8 Z)) =0 4 l=
1 1 1 2 1 7
— o —lim( oot (5 o) log(1—2) ) = 5+ %
2 z{%(?Z * 222 2 o8 Z)> 4 * 6
The remaining limit can be determined by I’'Hopital’s rule to be
1 1 2 7
r(—- D log(l - ):ﬂ
zli% 2z * (222 z> og(1 - 2) 4
Putting everything together we get the value for the asymptotic variance in the case
6 = 1 claimed in the lemma.
We can also find a solution for § = 2. We use the substitution z := (1 —v?) u* +v?,
similar to the previous case:
s
/ u o (U v = 1) 2 d(u,v)
(0,1]2
1 1 3 1 [ 3 1, _ 2
:/1)3/ 4 5dudv:—/ 2122/2 Y dzdv
0 o (1 —=v?)u?+v?)2 2Jo (L=0*)? )2 2

ot

1t 8 v? — 32\ |1 1 v P —3u42

- = 2\2 ( 3 > dU -3 2)\2 dv
3Jo (1—02) 22 2=v? 3Jo (1—0v?) v
1 (P (24v)0? 1 1
- MU do= = ( 2 _ — 2 log(1 )
3 ), aror W\ gy et )|
1

:gu—bgmy

Again, we get the result claimed in the lemma. O

Remark 5.11. The last remaining integral in (5.2) can be solved numerically, Math-
ematica even gives analytic solutions for 6 = %, n € N.

Ali—Mikhail-Haq copula

Another famous family of Archimedean copulas is the Ali-Mikhail-Haq family, intro-
duced in Ali et al. (1978). With parameter ¢ € [—1, 1) its strict generator is

1-0(1—
wAMHﬂ(O==10g( i

Definition 5.12. An Ali-Mikhail-Haq copula, short AMH-copula, with parameter
0 € [—1,1) is a function

t>), te(0,1].

AMH, _ uv
C (u7v>_1—9(1—u)(1—v)’ u,v € [0,1].
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5.1. Examples for several copulas

Remark 5.13. For § = 0 we get the product copula. The restriction § < 1 is needed
to let @AMI0 he a generator. Having a non-negative density requires 6 > —1.

The AMH-copula leads to the following value of Kendall’s tau:

—0)2 .
g _ U5 - 2 log(1-0), if6 e [-1,1)\ {0},
0, if0=0.

Also the asymptotic variance of the tau-estimator can be calculated analytically, but
the calculations are lengthy. Nonetheless e.g. Mathematica gives the following solution
for every 0 € [—1,1) \ {0}:

(ormoy2 _ 16 (T+136(0+3)  32(0-1) (4+6(30+11))
’ 962 963
16 (6 — 1)*

log(1 —6)
32(0+1)
02
where Liy denotes the dilogarithm (see Section 7.4.1). As we get the product copula

for § = 0 we know that (anHp)Q =3

Lis(0),

5.1.3 Farlie-Gumbel-Morgenstern copula

The idea that led to the Farlie-Gumbel-Morgenstern copula was to construct a copula
with a mathematically easy representation. This explains why it is possible to calculate
the asymptotic variance for all possible values of the parameter in a very simple way.
The definition of the copula is the following:

Definition 5.14. A Farlie-Gumbel-Morgenstern copula, short FGM-copula, with pa-
rameter 6 € [—1,1] is a function

CTEMI(y vy =uv+O0uv (1 —u) (1 —v), wu,vel0,1].

This form of the copula leads to the drawback that it is impossible to model com-
plete dependence. The interval of possible values for Kendall’s tau is small, more
precisely we will see that 7FM ¢ [—%, %] Nonetheless, this copula has an easy form
and it allows analytical computations, among others of the asymptotic variance.
Lemma 5.15. For two continuous random variables linked by a FGM-copula CTEMY
with parameter 6 € [—1,1], Kendall’s tau has the value

20
FGM9 _ U
T 9

and the asymptotic variance of the tau-estimator, as defined in (2.15), equals

vz 4 18407
() =5~ 203

T
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

Proof. Knowing that a density of the copula is
MOy ) =14 6(1 —2u) (1 —2v), wu,ve0,1],

the calculation of the integrals in formula (4.2) for Kendall’s tau and in formula (4.5)
for the asymptotic variance gets lengthy but not complicated and gives the results
claimed in the lemma. O

5.1.4 Marshall-Olkin copula

Marshall and Olkin (1967) want to give a meaningful derivation of a multivariate expo-
nential distribution. One of the explanations works with a system of two components
where shocks occur that affect either one or both components. These “fatal shocks”
are modelled by three independent Poisson processes with parameters A, Ao and Aig,
such that the survival probability becomes

PIX >sY >t]= exp(—)\ls — Mot — A2 max(s,t)) ., s,1>0,

which they call bivariate exponential, BVE(A{, A2, A\12). The copula that belongs to this
survival probability is called Marshall-Olkin copula and can be derived by changing

the parameters to a = ﬁ and § = /\Q)J‘:f\m (for details see e.g. Embrechts et al.,
2003).

Definition 5.16. A Marshall-Olkin copula with parameters «, 3 € (0, 1) is a function

C’gfg(u, v) = min(u'"*v,uv'?)

{ulav, if u® > 0%, (5.3)

u,v € [0,1].
wol™P ) ifur<of, 0,1]

Remark 5.17. In the symmetric case a = (3 the copulas can be seen as a weighted
geometric mean of the product copula and the upper Fréchet—Hoeffding bound:

CY'© = (min(u,v))" (uv)l_a, 0<a<l.

Copulas of this form are called Cuadras—Augé copulas and were first introduced by
Cuadras and Augé (1981).

The Marshall-Olkin copula is absolutely continuous on
Do = {<U?U) < [O, 1]2 | u® 7£ UB}?

so on this area it has a density

0? (1—a)u™, ifu*>07,
) G )= {u g, i <ys, (V) € Do (54
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5.1. Examples for several copulas

Integration on this area is no problem. But the integral over the density does not equal
one, so the curve u® = v® has mass greater than zero:

plUe—vi - — 0 (5.5)

a+pB—af’

Lemma 5.18. For two continuous random variables linked by a Marshall-Olkin copula
C’g{g with parameters o, 5 € (0,1), Kendall’s tau has the value

MO __ o
Tag = > %
’ a+pB—af

and the asymptotic variance of the tau-estimator, as defined in (2.15), equals

(oMOwR)? — 64(a+B+af) 322a+35+a8) 32(3a+28+ap)
o T 9(@+pB-aB) 3(2a+38—2a8) 3(3a+26-2ap)
16 (Oé—l—ﬁ) % 8&6 4a2ﬁ2

@a+23-af) 3 atB-af (atB-ad?

Proof. To determine the value of Kendall’s tau we want to use formula (4.2) and have
to calculate

/[0 . C’é\fg(u, v) dCi/fﬁo(u, v) .

We first integrate over Dy;o where we can use the density and get

/ CNS (u,v) dCY'S (u, v)
Do

//% (1—a)u O‘dvdu+//a — B)v P dudv

1
(1—a)/ w25 du + - (1—5)/ V28028 dy
T2 0 2 0

Q

a—+ 0 —2a0
4(a+p—ab)
The curve u® = v” can be parametrized by a single variable. We get
OMO (u, v) dOMQ (u, v) = / u®) dCMS (u, us
oo, B9 00 = 5 o
af b sates
=—(1—a+ >/u 5 du
a+p—ap ( B/ Jo
_ ab
- 2(a+pf—af)’

Adding those two integrals gives the result for Kendall’s tau.
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

To calculate the asymptotic variance of the tau-estimator we use formula (4.4) as
the copula is not symmetric. The integrals in this formula can be solved analogously
to the integrals for Kendall’s tau. We get the following results:

o+ ﬁ — 20éﬁ aﬁ
dC’ =
/01 ( V)= 9(04+5—045)+3(a+6—a6)
_ at+f+ap

9(a+ B —ap)

20 + 3ﬁ — 50&5 aﬂ

9 dCM9 -
/W 1o e dCas ) = § 00 735~ 208) " 20+ 33 208
_ 2a+3B8+ap
~6(2a+33 —2a0)
MO MO _ 3a+28—5ap af
/[0,1]2 vCy 5 (u,v)dCy 5 (u,v) = 6 (30 + 26 — 203) +a 25 23
__Ba+26+af
63+ 268 —2a0)
- 20&5 aﬁ
dCMO _ o+ ﬁ
/[0’1]27“) a.B (u,v) 2 (20 + 26 — af) + S 1 20 — o
_ a+f
- 2(2a+ 28— ap)
Inserting these integrals in formula (4.4) gives the result. []

5.2 An example
for a spherical decomposable density

In Section 4.3 we looked at axially symmetric densities of the form

:chgl<x> hl<y>7 :EvyEIRa
i€T
and derived the formula
03:64 c,c]cl(/G z)gi(x dx/H ()dy).
1,5,l€T
As an example for a spherical density that can be decomposed in this way we now take

the product of a polynomial in (22 + ¢?) and e~ (=" +v*),

F,y) = (an@® 92" +ana @+ a4y +ag) O gy e R,
(5.6)
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5.2. An example for a spherical decomposable density

with ¢ > 0 and a9 > 0, ay,a9...,a,-1 € R and a, > 0 such that f(x,y) > 0 for all
z,y € Rand [, f(z,y)d(z,y) =1 (see Remark 5.21 if the density is not normalized).

To calculate the asymptotic variance we use the following notations (i = 0,...,n
and j =0,...,1):
i a;
ij o . Z~ ) 57
o= () @ 7
(2i)! o (2u)!
Pis= oy #he ® — 3uul UZ% 6" (u!)? (5:8)

We further denote (i, k,p =0,...,n)

i

: 2 e Diikini
b(i,k,p) = p; Dy (W ZZ(BJ“ M)

o1 =1 Pi—ji1 Pr—i+1
k
_Z(p_H_j‘M)_Z((ijk_l)!M) (5.9)
Pij+1 —1 Pr—1+1
p
Sp— T
+2p ((p—q)!&)Jr—p),
b q:Zl pp—q+1 \/g b

which is symmetric in ¢ and k.

Lemma 5.19. For two random variables with a common density of the form (5.6) the
asymptotic variance of the tau-estimator, as defined in (2.15), equals

n

o7 = 3% > ZZZ%CHCM (J:loa) b(i =4,k —1,p —q), (5.10)

i,k,p=0 j=0 [=0 ¢=0
with the notations as in (5.7)—(5.9).

Proof. We can write the density as

flz,y) = iai i (Z) (afzj 67”2) (ywﬂ') efcy2> ., T,y €R.

=0 =0

The asymptotic variance of the tau-estimator for a continuous distribution only depends
on the copula and not on the marginal distributions, see Theorem 4.3. Therefore it is
invariant under strictly monotone transformations of the marginals. We want to apply
here the following transformation:
x
r— — and y— .

Ve Ve
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

After this transformation we get the following density:

n 7

~ 1 i ‘ j — a2 i~3) o= 39
f(x,y)ZQ—c Z;(Qac)i Z_; (;) (mQ e 2 ) (?JQ( ) e~z >
= Z Cij g](l') gz—](y)
(i,9)€T

with g;(z) = 2% e2%", ¢;; as defined in (5.7) and T = {(4,) € {0,1,...,n}> | i > j}.
With this representation we can apply formula (4 11) which shows that the asymptotic
variance can be computed by (G =[5 gi(x

03:256/m/w(/y/$f(u,v)dudv) f(x,y) dzdy

= 256 Z Z Z Cij Ckl Cpq

(i.5)€T (k,1)ET (p,q)eT
< ([Tt G @) o [ 60 Goost) gt ).

So we have to show that

/ Gi(2) Gr(2) gp(2) dz = \/1627 b(i, k,p) (5.11)

with b(i, k, p) as defined in (5.9).
Most of the integrals in the following are solved by recursion. For ease of notation we
want to introduce

j—1
piy =] (2i—2n-1).
h=0
Note that for i = j we get p, as defined in (5.8). We further have
S
i

To show equation (5.11) we start by integrating the functions g; using the following

recursion:
Gi(z) = / gi(z) dr = / % e’%m2 dr = —/ 2t (e*%aﬂ)’dm
0 0 o

z
i—1 —1.2 . i_o9 _ 1.2
—%lem27 +(2@—1)/ r¥ 22" dy
0

7

z
2i—2k+1 122 —1g2
= <_pi,k—1zz e 22>+p,~/e 2" dx
k=1 0

7

i _1.,2 _
= —z¥lem2 Z(pi,k—l z 2k> +p; Go(2) -

k=1
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5.2. An example for a spherical decomposable density

Inserting this last expression for G; and Gy and expanding the sum gives

/ Gi(2) Gr(2) gp(2) dz = Z me._l pk,l—l/ 2itktp—j—141) =322 g
’ 0

j=1 1=1

- Z Pij-1 Pk / AP o2 Gy (2) dz
=1 0 (5.12)
k oo
2
- Zpi pk,l—l/ PP e Gy (2) dz
=1 0

+ 1 pk:/ e Gi(2) de.
0

To simplify the integrals we will need the following solution several times (u € N)

/ 2 ey = —1/ 221 (67322)/dz
0 3 Jo
1 00 >
— (2u — 1)/ 222 o7 dz)
z=0 0

1 3.2
:__<2,2M 1,—32
2,u—1 & _ _ 3,2 1 Oof;z
= 222 e 27 dz=—p, e 2% dz
0 0

(5.13)

3
3 3n

_ 1 o

T V3 P

This result can also be derived by knowing the moments of a normal distribution with
variance 5. Now we show the solutions for the summands in (5.12):

e The first summand in (5.12) is exactly integral (5.13) with u = i+k+p—j—1+1,
so we have

(o]
2(i+k+p—j—I+1) —322
Pij1 Pk,l—l/ 2 Vem27 dz
0

1 2
=Pij-1 Pkl 5 . gptith——i+1 \| 3 Pptitk—j—1+1

_ V6m- 30

9 . 3ithtpt2 Dij—1 Prji-1 Pptitk—j—i+1 -

e The integral for the two summands with negative sign can be solved recursively,
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

also using solution (5.13) (¢ € N)

/ 22“+16Z2Go(2)dz:—% / 22 () Go(2) da
0 0

1 o0 oo
——/ P dz+,u/ 2 e Go(2) dz

2
43m/ puti [ Gol) ds
L 2m oy ot 2w
1.3 3pss!>+4 3

AN pVor  pVET (R~ py
:Z<4.3s+1§p5)+ 12 12 <Z353').

s=1 S=

It follows that

o +iej
i)l 22 Vor(p+1—7j)! g Dy
Pij-1 pk/ PP e Gy (2) dz = ( ) Pij-1 Pk E o
0 .

12 —~ 3 sl
and
- 2(k+p—D)+1 —2° G dz — V61 (p +k — l)' P& Ds
Di Pry1 ; z € o(2) dz = 12 Pi Pri—1 Z sl )

s=0

e The calculation of the integral within the fourth summand of (5.12) is a little bit
more complicated. To get the recursion we first change the order of integration:

o0 1.2 &0 1.2 & 1.2 o 1.2
/ 2P e G2(2)dz = / e 2! / e 2° / 2 e dzdsdt.
0 0 0 max(s,t)

The inner integral can now be calculated and equals
/ 22p 67%22 dZ _ _/ Z2p71 (67%Z2)/d2
max(s,t) max(s,t)
(s:,t)
By changing the order of integration back we get
[ et e
0
- / / max(s, t)2~ ! e~z xS0 +H) g6 gy
o Jo
2

+ (2p — 1)/ 2 e G3(2)dz
0

= 2/ e 2 / 2L e dt ds + (2p — 1)/ 222 G%(2)dz.
0 s 0
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5.2. An example for a spherical decomposable density

The integration over ¢ can again be calculated recursively by

/oo 2l e gt = —%/OO 20 (") dt

= 1827’—2 6_82 + M /00 $2p—3 6_t2 dt
2 2 B

- Z( 2p—w) 6_52> .
The first step of the recursion is therefore
/ Tt
2P e 2" Gi(z) dz
0
(p — V6 oy 1.
_Z< l2 3p—ut1 Pr- u>‘|‘(2p—1)/0 P2 em Gi(2) dz.

(p—

The whole recursion is then
/ 23 G3(z2)dz
0
Pt (p—v)! V6T V23
Z ( > pp v—1 +

“u—ov+ 1) 2. gz Proumoi 6

pv+1 1
(-5 S (Gt )

VI
6

We can further simplify the sum over u by substituting z :==p —u —v + 1:

Py

e e
Il =l 3
— —

+

Py -

p—v+1 p—v

Z pp u—v+1 _ pz
Jp—u—vtl (p —y — v + 1) « 37zl

u=1 z=

Therefore we have

o] p p—v
_1,2 7T D 273
/0 2 e Gi(z) dz = §_1 ((p—v)! \/gpp,u—l( 3 3%!)) e Py

Finally we get

P B / e G2 dz
0

p p—v
s Dy, V23
_ Z((p— v)! \/g P Pk pp,vl(z 3%!)) + o P Pe Dy
v=1 0
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5. Examples of the asymptotic variance of the tau-estimator for several distributions

Putting everything together gives the result:

0o \/— 7 k
/0 Gl(Z) Gk(Z) gp(z> dz = 3z+k+p+2 ZZ<3]+l pz] 1 pkl 1pz+k+p —-j— l+1>

7j=1 [=1

\/6_7T 7 p+i—j P
- - — 1\ . s
12 p]g p (p +1 j) pz,j—l < ; 35 S')
\/— k p+k—I
i Z (p+k =D priy Z
=0

~ D
33 sl
=1

\/_ p p—v I
+sz pk ppv 1( BUU')

u=0
2w
12

VeT
= Tb(l,k,p) .

P; P pp

]

Remark 5.20. Note that the coefficients a;, i = 0,...,n, and c only enter in ¢;;. The
values of b(i, k, p) are the same for every density of the form (5.6). The degree n of the
polynomial then tells how many of the b(, k, p) are needed.

Remark 5.21. If the coefficients a;, i = 0,...,n, in (5.6) are not chosen such that
Jg> f(x,y)d(z,y) = 1, then we have to normalize the density by dividing by

— — - ) i i 2j —cx? 2(i—j5) ,—cy?
Cri= [ o) do.y) ZZ()(/ to)([ e o)

since we know

1 [ 20—1) [ o
/LL'QZ e—ca:2 dr = __/ :L,Qz—l (e_ch)/dx — ( ! ) / l’2l_2 e—ca:2 dr
R ¢Jo ¢ 0

(5.14)
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5.2. An example for a spherical decomposable density

()

J

where we used

which is shown in Lemma 7.1. To derive the formula for the asymptotic variance for the
modified density we notice that in order to normalize the density function we just have
to divide the vector (ag, ay, ..., a,) by the normalizing factor. So this factor enters the
formula of the asymptotic variance just at the coefficients ¢;;. The asymptotic variance
has then the form

SR SR 3 3) 3) SRR A SR,

=0 i,k,p=0 j=0 [=0 ¢=0
4 "L ila;\ -3 "\ aana
T 342 (Z ci ) ( Z (2C)i+kip
= i,k,p=0
LIS (0N [k P
=0 1=0 q=0 ™ q

(5.15)
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Chapter 6

Comparison of the estimators
for elliptical distributions

In the case of elliptical distributions, the two dependence measures Kendall’s tau 7 and
the linear correlation coefficient ¢ are connected by the formula

ZaX

T= arcsin g,

simply assuming that both components are non-degenerate (see Theorem 3.18). So
we are given two ways of estimating the linear correlation, either using the standard
estimator directly or estimating Kendall’s tau and transforming it. In Chapter 3 we
already showed that both methods provide estimators that are asymptotically normal
under certain conditions.

A first remark on the comparison of the two methods concerns the assumptions
that are needed to guarantee asymptotic normality. The transformation-estimator
only needs non-degeneracy of the components, whereas the standard estimator ad-
ditionally demands existing fourth moments (see Theorem 3.17), so in the case of
elliptical distributions we must have E[R*] < oo. This is not always given, e.g. not for
the t-distribution with v < 4 degrees of freedom, see Section 6.4.

One further advantage of the transformation-estimator is, that the boundedness of
the asymptotic variance of the tau-estimator (see Remark 2.17) implies that also the
asymptotic variance of the transformation-estimator is bounded,

2 m

o =g o1-0)<m(1-7) (-2,

whereas the asymptotic variance of the standard estimator can have any non-negative
value.

In the following we compare the two methods of estimation for several elliptical
distributions where we can calculate both asymptotic variances.
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6. Comparison of the estimators for elliptical distributions

6.1 Spherical distributions bounded on a disc

In a first consideration we look at spherical distributions where the densities are zero
outside a circular disc with radius r > 0. Writing the density as

f(l’7y) = f(ilf,y) 1{x2+y2§r2} N PNTAS Rv

formula (4.9) for the asymptotic variance of the tau-estimator becomes

03:4/_:/_\/\/2(4/Oy/Oxf(u,v)dudv)2f(:)s,y)d:vdy.

Here are two examples:

Example 6.1. The simplest case is to have a uniform distribution on the circle, e.g.
to have a density

1
f(xa y) = 7.(-_7,.2 1{x2+y2§r2} , X,y € R.

In this case both estimators have the same asymptotic variance,

Example 6.2. Another possible density is the following:

2

f(xay) = m (7"2 - (x2 + y2)) 1{22+y2§r2} , T,y €R.

In this case it is slightly better to use the standard estimator, as

and 116
2 —_— ~o

6.2 Example for a spherical decomposable density
revisited

In Section 5.2 we looked at a spherical decomposable density where we could calcu-
late the asymptotic variance of the tau-estimator. To determine also the asymptotic
variance of the standard estimator we need a density of its radial vector:

21

fr(r) = Ff r

<an a2 a4 ao) 6_CT2> r =0,
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6.2. Example for a spherical decomposable density revisited

with, as in (5.14),

T il a;
Cy = c Z i

i=0
and ¢ > 0, ag > 0, ay,...,a,_1 € R and a, > 0 such that fg(r) > 0 for all » > 0.
Using formula (3.13) we get

E[RY]

2
‘73 - 2E[R2]2 (Q2 - 1)

n . n ) -2
) G ) Gl e
- 0

=0

( ,
Sa

‘ -2
22;13 Z_J+2)(Z c1+2 j+1)

J=0

E)E ) @)

=0

We want to compare this variance to the variance of the transformation-estimator,

which is (see (5.15))

1 /= ila; 3 "L aiapa
2 1 i i P
To(r) = 3 (Z ci ) ( 2¢)ith+p

=0 1,k,p=0 (
% k

S5 () aasar-0)

=0 [=0 ¢=0

X

.

The values of the asymptotic variances depend in a very complex way on the choice
of the a; and of ¢ and there is no estimator which is preferable in any case. We want
to look at a special case where we choose all a; to be zero except for a,, such that the
two-dimensional density becomes

Cn+1

fz,y) = (22 + y2) e @) gy e R, (6.1)

nlrm

The asymptotic variances simplify to

@;Z) ((n +j)! an> ((n +071L)! an> -2

I'(n+2)!
((n—l—l))
_ (n+2)

S 2(n+1)

1
)
1n
2

(6.2)
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6. Comparison of the estimators for elliptical distributions

(]

2_1”!%_3 a%nnnnnn , o B
O'Q(T)_3<Cn> ((20)3” 222 I7AVIAVY b(]J»Q)b(n jn—10Ln Q)

J 9=

S (3555 () ()0 oo sm-soa)

So both asymptotic variances only depend on n and no longer on the choice of c¢. We
can calculate the values of the asymptotic variances for every n € N and also for the
limit n — oo. From equation (6.2) it can easily be seen that
1
. 2 .
lim o,(n) = .

n—oo

S

To determine the limit for the asymptotic variance of the transformation-estimator
we want to use Lemma 2.18. Instead of building the limit of the two-dimensional
distribution (6.1) we can equivalently look at the distribution of the radial variable.
As we want to show that the limit this distribution is degenerate, it is enough to show
this limit property for the distribution of R?/n. It has a density

(en)ntt

n!

n ,—cnr

r-e s

fR2/n(r) =

which is a density of the gamma distribution Ga(n + 1,cn). The moments of this
gamma distribution are

n — — and Var:i—>0.
cn c c2n?

]E:

So the random variable R?/n converges in probability to a degenerate random variable
and therefore the distribution with density (6.1) converges to a uniform distribution on
a circle. We know from Theorem 3.32 that in this case the tau-kernel is degenerate and
the asymptotic variance of the tau-estimator and also of the transformation-estimator
equals zero.

The values of the variances for different n are:

0 1 2 3 4 5 6 7 8
O'Z 1 0.75 | 0.667 | 0.625 | 0.6 0.583 | 0.571 | 0.563 | 0.556 | ... | 0.5
O'Z(T) 1.097 | 0.763 | 0.602 | 0.502 | 0.434 | 0.383 | 0.344 | 0.312 | 0.287 | ... | O

So only in the case n = 0, which equals the normal distribution for ¢ = %, the direct
estimation is clearly better than the estimation using Kendall’s tau. For n = 1 both
estimators have nearly the same behaviour. If n becomes bigger than 1, then the
transformation-estimator is clearly better, where the difference between the estima-
tors grows when n becomes bigger. In the limit, the transformation-estimator has
asymptotic variance zero, whereas the asymptotic variance of the standard estimator
converges to %
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6.3. Standard normal distribution

6.3 Standard normal distribution

When a multi-dimensional random vector is standard normally distributed, its compo-
nents are independent. So we know from Section 5.1.1 that

and therefore

6.4 Student’s t-distribution

6.4.1 Representation of the t-distribution

as normal variance mixture distribution
Definition 6.3. A d-dimensional ¢-distribution with location vector w, dispersion ma-
trix 3, and v > 0 degrees of freedom is a normal variance mixture distribution, as
deﬁned in Definition 3.28, with mixing random variable W ~ Ig(%, %).
Notation. We want to denote such a t-distribution by t4(v, p, X).

If the dispersion matrix X has full rank, then we can determine a density of the
t-distribution. Using formula (3.24) we get

1@ = [ g o0 (g (7 0 =@ - ) Glan)

(E)V/Q 0 gd 1 1
(%) (2 )d/2|2|1/2/0 w2 exp(—% (u—i—(zc—p,) by (w—u)))dw
D(23)(5)"/2 2002 -
- 1"(%) (2m) /2 |Z|1/2 (I/—I—(a:—u) 3 (CB—H»

(u—l—d) (:l: _u)t 2_1(:13 . H) _u42—d .
- ['(%) (wv)d/2 |5]1/2 (1 + y ) , xR,

(6.3)

where the integral is solved by realizing that, up to a constant, the integrand equals a
density of an inverse gamma distribution.

Lemma 6.4. The sequence of t-distributions (td(u,u,z))
normal distribution Ny(p,X) as v — oc.

oo Converges weakly to a
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6. Comparison of the estimators for elliptical distributions

Proof. From the definition we know that a random vector X, that follows a t-distri-
bution with v degrees of freedom, can be written as X 4 VW, Z, with W, ~ ~Ig(5, %),
Z is normally distributed and W, and Z are independent. As for v — oo the radial
variable W,, converges in probability to a degenerate random variable with value 1 (see
Lemma 4.14) we get the result by Slutsky’s theorem. O

6.4.2 Asymptotic variance of the tau-estimator

Lemma 6.5. For a two-dimensional uncorrelated t-distribution with v > 0 degrees of
freedom, the asymptotic variance of the tau-estimator simplifies to

320 (%) [~ '
ol = J / w1 arctan? u/ 1 (1 — t)y_l (u2 + t)_y dtdu . (64)
0 0

TR

Proof. Since the uncorrelated ¢-distribution is a standard normal variance mixture
distribution where the mixing distribution function is the inverse gamma distribution
with parameters a = 3 = %, we can use formula (4.18) and get for the asymptotic
variance

o2 = 16F37/ / . 2( 1 )d ¥
= ” 5 arctan”| —————= ) dx dy.
2 13(%) x+y+xy)32 VT +y+ay

[un

To simplify the argument of the arc tangent we use the substitution u := (Jc+y+xy)_2
and get

320(3) [ 7 Lyt
gl = ﬁ/ Pt (1 + x)*" /f w3 (—2 — x) arctan? u du dx
) Jo 0 u
)
)

1
s w2 1 v—1
- —/ u® ™3 arctan® u/ 2" (1 + 2?7 (—2 — x) drdu .
0 0 u

The substitution ¢ := «? z leads to a nicer form of the inner integral:

320 (%) [ ' ty
o2 = ﬁ/ u™""! arctan? u/ (1 =)t <1 + —2> dt du ,
0 0 u

PTG
which is equivalent to formula (6.4). O

Remark 6.6. The integral over t is, up to a constant, a hypergeometric function.
Hypergeometric functions are defined as the series

{al,...7ap;z} :i(al)n::.(ap;ni

F
b, ..., b,

P~ q
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6.4. Student’s t-distribution

where (a), =a(a+1)...(a+n—1),n € N, and (a)g = 1. We need the case p = 2
and ¢ = 1 where the function has the following integral representation:

2Fl{@’b; z} - %/{)1 =1 (1 — 1) (1 — ¢ o) dt

if |z| < 1 and Re(c) > Re(b) > 0. For details about hypergeometric functions see e.g.
Bailey (1964) or Gasper and Rahman (1990). So in our case we have

! _ 1 NV I2(v) v, v 1
=) (1 ) = R |
/0 ( ) e rv) > ' v’ w2

Anyway, this observation did not help for the solution, so we will not use it.

The formula in Lemma 6.5 holds for every v > 0. For v € N, even the last two
integrals can be solved, where the solution depends on whether v is even or odd.

Theorem 6.7. For a two-dimensional uncorrelated t-distribution with v € N degrees of
freedom, the asymptotic variance of the tau-estimator has the following representation.:

(i) If v € 2N — 1, then

16 o1 32T(3) EX (=1)F fv—1\[v+k—1
2 | 2 2 o 2
Ir = 2708 (2) +( 2 mI3(%) Ly + 2k L L
T 2 —yy v (6:5)
X ( 7 ; + log(2) —) ;
h=1 =1 h=1
(i) If v € 2N, then
o2 (L1 320(%) = (=% fv—1\[v+k—1
T mT3(Y) ~v+2k \ k& k
w0 (6.6)
s AL e T S e A ‘
4 I 3 2 — 1 2A—14<n2)"
=1 =1 =1 n=1

The proof is quite long and can be found in Chapter 7.
Although the solution looks lengthy, the values for fixed v are quite tight, like shown
in Table 6.1 for v € {1,3,...,11} and in Table 6.2 for v € {2,4,...,12}. Note that

2

we listed the asymptotic variance of the transformation-estimator, i.e. 0'3(7_) =T o2,

to simplify the representation (to avoid to have 72 in the denominator).
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6. Comparison of the estimators for elliptical distributions

v Oo(r)
1 4 log*(2)
3 30 — 44 log(2) + 4 log*(2)
20221 1618
— log(2) + 4 log?(2
5 T3 0g(2) + 4 log™(2)
342071 148066
— log(2) + 4 log?(2
7 = 5 0g(2) +4 log™(2)

1358296703 20995 691
— log(2) + 4 log?(2
os00 T 105 e +4log7(2)

285183353759 1360557907
95 256 315

log(2) + 4 log?(2)

11

Table 6.1: Asymptotic variance of the transformation-estimator for the uncorrelated
t-distribution with v degrees of freedom where v is odd.

o(7)
8 1,
2 39"
1000 35
4 T T
401312 541
0 675 9 "
42307408 10499
8 36 9 "
71980077752 220501
10 — ™
297675 9

192375504097 528 n 4870403 2
36018675 9

12

Table 6.2: Asymptotic variance of the transformation-estimator for the uncorrelated
t-distribution with v degrees of freedom where v is even.
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6.4. Student’s t-distribution

6.4.3 Asymptotic variance of the standard estimator

Lemma 6.8. For a t-distribution with v > 4 degrees of freedom and with linear corre-
lation coefficient o, the asymptotic variance of the standard estimator equals

) (1=, (6.7)

2
o,=(1+

¢ ( v—4
Proof. Since the t-distribution is a normal variance mixture distribution, we can use
formula (3.25) for the asymptotic variance of the standard estimator. Knowing that the
mixing random variable W is inverse gamma distributed with parameters a = 3 = £,
we get from Lemma 4.13 that

Epv] = v i 2
and )
E[W?] = (v—2)(r—4)’
and therefore
2 E[W2] a2 (v—2) 2\ 2
O-Q:E[W]Q (1_9) :( _4)( _Q)

6.4.4 Comparison of both estimators

With the results from the previous two subsections we can calculate the asymp-
totic variances of the two dependence estimators, the standard estimator and the
transformation-estimator, in the case of an uncorrelated ¢-distribution with v € N de-
grees of freedom. The values of the asymptotic variances are listed in Table 6.3 and
illustrated in Figure 6.1. Using the asymptotic variance to measure the performance of
the estimators leads to a choice that depends heavily on the value of the parameter v.
The results can be summarized as follows:

e For heavy-tailed t-distributions (v < 4) the transformation-estimator is asymp-
totically normal with finite asymptotic variance, whereas Theorem 3.17 for the
standard estimator is not applicable and formula (3.13) does not give a finite
variance.

e For v € {5,6,...,16} the transformation-estimator has a smaller asymptotic
variance than the standard estimator and is in this sense better. Especially for
small v the difference is remarkable, like for » = 5 the asymptotic variance of the
standard estimator is more than twice as big as the one of the transformation-
estimator.

e The two estimation methods are approximately equivalent for v &~ 17, where the
corresponding distribution is already quite similar to the normal distribution.
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6.

Comparison of the estimators for elliptical distributions

92

e For v > 17 the standard estimator performs better than the transformation-
estimator, although the difference between the asymptotic variances is small.

e In the limit ¥ — oo the asymptotic variance of the standard estimator converges
to 1 due to (6.7). Since the uncorrelated t-distributions converge weakly to
the standard normal distribution (see Lemma 6.4) we can use Lemma 2.18 to
determine the asymptotic variance of the transformation-estimator. So in the
limit v — oo, the estimators have the same asymptotic variances as for the
standard normal distribution.



6.4. Student’s t-distribution

v 1 2 3 4 5 6 7 8 9 10

Uz n.a. |n.a. |n.a. |n.a. 3 2 1.667 | 1.500 | 1.400 | 1.333

03(7_) 1.922 | 1.570 | 1.423 | 1.345 | 1.296 | 1.263 | 1.240 | 1.222 | 1.208 | 1.197
11 12 13 14 15 16 17 18 N e

ag 1.286 | 1.250 | 1.222 | 1.200 | 1.182 | 1.167 | 1.154 | 1.143 | ... |1

ai(ﬂ 1.188 | 1.180 | 1.174 | 1.168 | 1.164 | 1.159 | 1.156 | 1.152 | ... | 1.097

Table 6.3: Values of the asymptotic variances of the standard estimator and of the
transformation-estimator for the uncorrelated ¢-distribution with v degrees of freedom.

30/

2.0

15"

10"

Figure 6.1: Asymptotic variances for the uncorrelated t¢-distribution, red triangles for
the standard estimator, blue dots for the transformation-estimator. As the formula
for the standard estimator is valid for every v > 4 there is further the red curve for
the asymptotic variances of the standard estimator. The horizontal lines indicate the
asymptotic variances for the limit v — oo, i.e. for the standard normal distribution,
red for the standard estimator (with value 1), blue and dotted for the transformation-
estimator (with value 1.097).
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Chapter 7

Proof of the asymptotic variance
for the uncorrelated t-distribution

In this chapter we give the proof of Theorem 6.7, which claims the asymptotic vari-
ance of the tau-estimator for the uncorrelated t-distribution. By representing the
t-distribution as a standard normal variance mixture distribution we could already
simplify the formula to

320(3%) [ L
o —To(2) Fgéi /0 u”~! arctan® u/o A=) (uP )V dt du

(see Lemma 6.5). Some further simplifications are possible for general v € N, but soon
we have to distinguish between even and odd v.
7.1 Reduction of the exponents for general v

To simplify notation we want to introduce the abbreviation

_ I
R

;1

NN

as this factor stays unchanged throughout the whole calculations. The first steps are
similar for even and odd v, but slightly different, so we want to introduce 9 as

5— 1, if vis even,
)0, ifvisodd.

To simplify notation we define p as

y—1—|—(5: {y

F="3 §JEN’
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

such that the asymptotic variance has the form

32 . o) 1
o2 = 227 / u~% arctan® u/ 270 (1 — )20 (u? 4 )20 At du
0 0

T 7_(_2

Our goal is now to reduce u?~° to u*~% and to simplify (u? 4 ¢)~2#71%9 to (u? 4+ ¢)2
By writing
w0 = 0 (w4t — )]

and dividing by (u? +¢)%*179 (see Section 7.5.1) we come to integrals of the kind
pn—1

—1 o :
Z ( ) / u*™° arctan® u/ IO (1 — )20 (WP 4 ) TP it
0 0
i=

The integral over ¢ can be further simplified by using the rule of Leibniz (see Sec-
tion 7.5.2), which changes the inner integral for every j =0,...,u— 1 to

1
/ $2TI=O (1 — )20 (4 4 ) THTI T gy
0

—1 21 — 2 —
> ) (“ 5)( pokdt k 5)/ R (¢ + u?) 2 dt
h0u+k k w+j+1—-90,Jo

So the expression for the asymptotic variance becomes

2u—5 1
02:32%53( 1)k 2u ) “Z 2u+j+k—29
T 72 — ntk ‘ u+j+1—46

k 7=0

X / u?~° arctan® u/ R ()2 dt du.
0 0

We can further simplify the summation over j using Lemma 7.2, which states that

ul ( )<2/L+]+k 5) (_1)M_1<2/L+k—5>
— ' p+j+1—240 k '

This leads to the following representation of the asymptotic variance:

.

2u—48

32, (=DF 2u—86\2u+k—29¢
2 _ -1 p+1
o =0T kZ:o/”’f k k

oo 1
X / u?~° arctan® u/ R ()2 dt du.
0 0

With this form we can now reduce arctan®?wu to arctanu. This works differently for
even and odd v so we separate these two cases from now on.
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7.2. Solution for even v

7.2 Solution for even v

If v is even, then 6 = 1 and p = %, and with the simplifications developed so far the

formula for the asymptotic variance equals

2p—1

327, (=DF f2u—1\[2u+k—1
2 _ (_1\pt1
0'7— ( 1) 71'2 g M_'_ l{? l{? ]{}

o) 1
X / u arctan? u/ Rt u?) 2 dt du.
0 0

7.2.1 Reduction of the arctan® for even v

The next aim is to reduce arctan? u to arctan u, which is done by the following formula
(see Section 7.5.3):

/OO ! ct d /OO Y arctan® u d
arctan v du = —  arctan“udu.
o (I+u?)(t+u?) o (t+u?)?

This brings us to

327, (=DF 2u—1\ 2u+k—1
2 _ -1 p+1
o =0T kz_; prk\k k
1 0 1
x/ t“+k/ 0500 @+ ) arctan u du dt .

7.2.2 Solution of fo tHtE fo

m arctan u du dt

Split of the fraction
To solve the remaining integral we use the following formula (see Section 7.5.4)

p+k—1

gt 1 1 1 l
= +< — Z t.
(T+u?)(t+u?)  (1+u?) (t+u?) l+u? t+u?

In the complete formula for the asymptotic variance the first summand cancels out as it
is independent of k. The integrals over the summands where ¢ is just in the numerator
can be calculated and we get

2p—1
o2 = (L1 327, i (=) (20— 1\ (2u+k—1
4 2 w+k k k

2 .u-i-kl ptk—1
><<— 7 Z/ arctanu/ th(t+u?)” dtdu>
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

Solution of [~ arctanu fol tH(t +u?) "t dt du

The solution of this integral is developed in Section 7.5.5. It involves several changes
of the order of integration and again a split of the fraction. We finally get

00 1 l 2
1 1 1 T

t t(t Hhldtdu = —— [ = —+—.

/0 arcanu/o (E+) ! 21+1(2n1n2+6)

7.2.3 Solution for the asymptotic variance for even v

Using all the developed steps we get our final result for v € 2N:

02— (_pysr B2L(5) §= (D) (v— 1) <u+/<:— 1)

T 2 13(%) — v+ 2k k k
(T ERUTE B o T S B O
4 [ 3 2l -1 2l -1 n?
1=1 =1 1=1 n=1
7.3 Solution for odd v
For odd v we have § = 0 and pu = ”T_l and the asymptotic variance can be computed
by solving
327, o (=1)F /2p\ (20 +k
ol = (-1 Y )
2 w+k \ k k

k=0

00 1
X / u? arctan? u/ R ()2 dt du.
0 0

7.3.1 Reduction of the arctan? for odd v

Again the next step is reducing arctan®u to arctanw. The formula, which we develop
in Section 7.5.7, is slightly more complicated for odd v than it was for even v and looks
like (k=0,...,2u)

1 fe'e) u2
/ Htk / —— arctan®udu dt
0 o (t+u?)?
3

@ 2u+ 2k ! o0 u
- t‘”’“/ tan u du.dt
24(2,u+2k+1)+2u+2k+1/0 N ey ) arctan u du
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7.3. Solution for odd v

The asymptotic variance becomes
2
o2 = (=1)H 4T Z“: (=" <2H) <2M + k)
T 3 = (ut+k)@2p+2k+1) \ K k
2
+ (_1)#+1 64’71/ ZM (_1>k 2:“ 2p+ k
72 k:02,u—|—2k+1 k k
1 L 00 U
tt tanw du dt .
X/o /0 058 () arctan u du

7.3.2 Solution of fo thtk fo

m arctan u du dt

The main idea is to simplify the integral over w using the following result from an
integration by parts (see Section 7.5.8):

/Oo Y tan u d
arctan u au
o (T+u?)(t+u?)
T 1 > 1
— T jog(2 log(t + u?) du..
=g o8l )+2(t—1)/0 T3z sl tu)du

As we get problems with the denominator 1 — ¢ if we integrate over ¢ from 0 to 1, we
first have to use the equation

ptk—1

R =t —1) Y "1
h=0

The summands can then be simplified and we get

1 0
/ A / ar Q)U(t ) arctan u du dt
0 0 U u

- ,u—l—k /H—k
_ h—1
=3 log(2 Z/ t /

+/0 ﬁ log(1 + ) arctan u du .

log (t +u?) dudt

The solutions of the two remaining integrals can be found in the Sections 7.5.8 and
7.5.10, which finally leads to the solution

1 e’}
+k u
/0 tH /0 050 G+ ) arctan v du dt

T /2 /H—kl /H—kl 2h _1l
:§<E_log(2)_10535(2)25_252( l)>
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

Using this result the formula for the asymptotic variance becomes

ol = (1) 47;% i; ) Ez_,j): 2k + 1) (2:) (
s (a2 i; - e, (2,5 ) (M; k)

7T2 u+k 1 ptk 1 2h
2

7.3.3 Solution for the asymptotic variance for odd v

2u+k
k

)

After recombining the two summands again (see Section 7.5.9) and calculating the
coefficient of log®(2), we get the final result for the asymptotic variance for odd v as

72 = jog2(a) 1 (-1 20D i (D" (v - 1) (u k-1

T 72 k

3)

7.4 Helpful results

Before presenting the details of the proof we provide some results we will need for it.
We first introduce the polylogarithm and some of its properties, then we show some
simplifications for sums over binomial coefficients and finally develop the solutions for

two definite integrals.

7.4.1 The polylogarithm

Within our work we use several times a special function called polylogarithm. It is

defined for s € C and |z] < 1 as
k

Lig(2) = i Zs :
k=1

Observe that for all s € C we have

=%

Lis(0) =0.
For s € N the polylogarithm can be defined recursively:
z
Li =

1
0

100

(7.1)



7.4. Helpful results

So we know that
Lii(z) = —log(1 — 2)

Li2(z):—/ozwczt.

and

This integral representation also allows an extension of the range outside the unit circle.
We need the following well-known values of the dilogarithm (see e.g. Prudnikov et al.,
1992, p. 498):

. T
ng(l)—g,
1 2 1
Lo(D) =7 Lo,
Io 9 9 og()
and
2
Lig(=1) = ——.
B(-1)=-75

7.4.2 Sums over binomial coefficients

At some points of this work we apply simplifications of sums over binomial coefficients.
The proofs of these equations can be found in this subsection. We use the following
definition of a binomial coefficient:

n(n—1)..(n—k+1) k>0
<n>:{ K B2 ez neR.

k 0, if k<0,

We will need some well-known identities, like the upper negation

(Z):(—l)’“(k_z_l), keZ neR, (7.2)

the trinomial revision

(T:L) (7:) - <Z) (;__i) , mkeZreR, (7.3)

and also Vandermonde’s identity
"\ /m n n—+m
= Z R. 4
311 A Y G B

For proofs see e.g. Graham et al. (1994, p. 174).
The result of our first lemma is used in the example for a spherical decomposable
density (Remark 5.21).
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

Lemma 7.1. Let i € Ny. Then

L 9N /9 (i — i '
SO =
= \JiJ\ i

Proof. Starting with the upper negation (7.2) and using the definition of a binomial
coefficient, we get for every k € Ny

e (F) o (P8 o (Bl oD

k k k!
C(2k-1)-(2k=3)-...-3-1 _ (2k)! 75
B k! (k)2 (7.5)
(2K
=1 )
Using this equation and Vandermonde’s identity (7.4) we get
7 97 2 (i — i ‘ ‘ A 1 1
» () ) - e (G)()
i=0 \J t=J NI\t
: 1 .
(7:4) (_1)z 222 ( ‘ ) — 41’
1
which we wanted to prove. O

The next four lemmata prove equations that are applied in the proofs for the asymp-
totic variance of the uncorrelated t-distribution. The first one is used in Section 7.1.

Lemma 7.2. Let p € N, v € {0,...,2u} and k € Ny. Then

(7)) e (). o

<

Proof. By replacing j by i —1—j on the left-hand side of (7.6), i.e. changing the order
of summation, we get

e (7))

J=0

= (—1)! ::(—1)]' (M : 1) <3M _Qitji”ly_ 7) '

Now we us the upper negation (7.2) to rewrite

(1) <3u—j+kz—1—v) :(_1)%_7( —p—k )

2—j—7 2—jg—n

e
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7.4. Helpful results

and

() = () e ()

Newton’s binomial formula gives for |z| < 1

o0

> <_kh_ 1) 2" = (14 x)7!

h=0
(1—|—x)“ V(14 x) ™k
1

CECIE)
S

r= J=

All the coefficients have to coincide, especially the one of 22#~7. So we have
(5 B o] (i [Pt
2u—v) Z\J J\m—i-n

ST

where the last equation holds as the summands equal zero for ¢ > 2pu—vyor¢ > p—1. O

The next two lemmata belong together, as the proof of the second one is based on
the first one. The result of Lemma 7.3 is used in the proof for even v in Section 7.5.4,
the result of Lemma 7.4 is applied in the end of the proof for odd v in Section 7.5.9.

Lemma 7.3. Let pn €N, j€{0,...,u—1} and v € {0,...,u}. Then
2p—y .
21 — 2 k—
Zko k w+k

Proof. Using the upper negation (7.2), the second binomial coefficient can be written
in the following way:

(2u+j+k'—v) _ (1) (—u—j+7—1>
w4k w+k '

We now change the order of summation by replacing k by 2 — v — k and get

QZZ_:(_W (2uk— 7) (—u —Mj:kv - 1) _ Qf(_l)u (Qllk— 7) (—/;)M—_J ;rj . 1) .

k=0
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

Similar to the previous proof we apply Newton’s binomial formula for |z| < 1:

p—j—1 i1 '
Z (,u f]L ) o = (14 )71

h=0
=(1+a)* 7 (1 +a) 7!

2u—y [e'¢) .
_ 20—\ —pn—Jj+r—1\ 4
-7 T
=0 h=0
::fzjifm—v —p—j =1 .
k r—k '
r=0 “k=0
So for all » > p — j we need to have a coefficient equal to zero,
2u— —p—j+y—1
Z e podty =0 forallr>pu—j,
k r—k
k=0
especially for r = 3u — v > pu — 7, such that we get
3p— .
if(th0<_M_j+7_l>:0
— k 3u—vy—k
Since the summands with k& > 2 — v equal zero, we get the result. O]

Lemma 7.4. Let p € N and v € {0,...,u}. Then

L) o

Proof. We first rewrite the second binomial coefficient by using Lemma 7.2 and then
we interchange the summations:

e () S () ()

k=0 7=0
1 . 2u— .
= (—1)r? N (-1) (N - 1) . ﬂ{(_l)k <2N - 7) (2N +Jj+k— 7)
j:0“+j+1_7 J prd k w+k
= 0’
where we used Lemma 7.3 in the last step. O]
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7.4. Helpful results

The last lemma we show simplifies the coefficient of log®(2) in the final solution for
odd v (see Section 7.5.10).

Lemma 7.5. Let v € 2N — 1. Then
1) 2T(%) &K (—1)F (v—1\(v+k-1\ 16
T3 (5) =v+2k\ k k o2

Proof. We show that

= (y_ 1) (u+k— 1) ey DB (7.9

kzol/+2k k

For v = 1 the assertion is true, so assume v > 3 in the following. We want to use a
solution in Graham et al. (1994, pp. 184-185). We first use the trinomial revision (7.3)
with m = 2k and r = v — 1 + k to rewrite our product of binomial coefficients:

v—1\(v—1+k\ [(v—1+k)\/[(2k
k k B 2k k)
So the left-hand side of (7.9) can be rewritten, using S,, as defined in Graham et al.
(1994, p. 184) withn =v —1and m = § — 1:

2 (—1)k (V_1) (V+k—1) _1”21(—1)’“ (V—1+k) (%)
—~2k+v\ k k 24~k +3 2k k
1
:§S%,1<I/—1)

This choice of parameters is possible due to the last comment on page 185, although
m ¢ N. Using the result

m(m-—1)...(m—n+1)
(m+n+1)(m+n)...(m+1)

Sm(n) = (=1)"
from Graham et al. (1994, p. 185) and the property of the gamma distribution

F<£>:<£—1>-(§—2)-...~§-1-ﬁ, if oz € 2N+ 1,

2 2 2 2 2
we get
1 ) GE-D-(5-2-...-5-5-(=3) (=3) (=5+1D
5 SZ*l(y B 1) - 3v 3v v v
2 2 (-1 (5%-2)...-(5+1)-3
(D= TG
27 INESN
which is the right-hand side of (7.9). O
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

7.4.3 A special series

In Section 7.4.4 we will need the values of two special series which are stated in the
following two lemmata.

Lemma 7.6.

Proof. Starting with Newton’s binomial formula we get for every ¢t € (—1,1)

(1= Sy (‘j) Yy (2:) |

n=0

where we used (7.5). Subtracting 1 and dividing by ¢ gives
1—1—t _it"‘l 2n
tv1—t —n=1 220 \'p )

If we integrate both sides with respect to ¢, we get

—21og(2 (1 +vT—1)) + 2log(4) = i n“;n <2:> forall z €[0,1).  (7.10)

From Abel’s theorem we know that the series on the right-hand side converges for
xz /" 1. As it is further bounded for all = € [0,1), the limit must be finite and equals
the value for x = 1 on the left-hand side, which gives the result. O]

Lemma 7.7.

> 1 omn 72 1

I — = — — ~log%(2).
;n222”+2(n> 21 3 le @

Proof. We start with equation (7.10) and divide again by z, such that we get for all
z € [0,1]

n

1 1 = gl /2
~Llog(3 (14 VI~ 7)) :ZHZT(”)

If we integrate both sides with respect to z, we get

1. /1 /1 VI—u T 2n
—§lOg(§(1+\/1—U))+L12<§— 2 )IZW(TL) foralluE[O,l].

n=

Setting u = 1 and knowing that Lis(3) = 7{—; — 1 log?(2) (see Section 7.4.1), we get the
solution. ]
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7.4. Helpful results

7.4.4 Some integrals

Within our proof of the asymptotic variance there are two definite integrals that are a
little more complicated. Both solutions are based on an integral that can be solved by
complex integration, which is done in the first part. The two definite integrals can be
found subsequently.

Solution of [;*(1+4 u?)™""'du
Lemma 7.8. Let n € N. Then

o 1 T 2n
/0 T = g (n ) . (7.11)

Proof. We want to solve the integral using complex integration (for details see e.g.
Freitag and Busam, 1993). The integrand can be written as

1 1
(w4 @)t (u—g)ntt’

flu) = uweC\ {—i,i}.

So we work on the complex plane but have to exclude the points —: and . We define
the curves

ag: [-K,K]—C
U u

Brk: [0,71] = C
u— K e™

with K € (1,00) a large positive real number. The winding number of this curve
around the pole at i is 1. The order of the pole is n + 1, such that the residue can be
calculated in the following way (see Freitag and Busam, 1993, p. 165):

Res(f0) = <0 ((u— i)™ f(w)

~ nl Qun

u=1

an
a % oun ((u —1—12')”“) u=i

_ :
— (n+ D) +2) . ) |

n!

() e

B 7 2n
—omt1 \ )

The residue theorem tells then that

| e+ ﬁ f<<>d<:2mRes<f;z'>=2%(2”).
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

For the first integral we have

/aKf<<>d<=/_I;ﬂu)du:z/fﬁdu,

so in the limit K — oo it is twice the one we are looking for. So it is just left to show
that the limit of the second integral equals zero. Since |1+ z| > |z| — 1 for all z € C
and since K > 1, we have

1
(14 K2 ¢2it)n+l

1
< .
= (K2 — 1)+

sup
tel0,m]

Knowing further that the length of Sk equals [(8x) = 7K, the estimation lemma (see
Freitag and Busam, 1993, p. 65) tells

K
d ‘ <
and since n > 1, the limit is

lim (/ﬁ f(g)dc‘ _0.

K—oo

Solution of [* m log(1 + u?) du

In Section 7.5.8 we need the following solution:
Lemma 7.9.

) 1 )

Proof. We use the Taylor expansion of the logarithm, as for every u € R

2

1
2y _ _
log(1+u”) = —log(1 —|—u2> = —log<1 - 1+u2)
B “—~n\1+u’
Rewriting u?" as
2n 2 n __ - n 2\n—k k
v =(14u—1)"= (k)(1+u) (—1)
k=0

we get
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7.4. Helpful results

Monotone convergence allows to interchange the integral and the sum such that we get

[ty = S5 () ot [
SRRSO

where we used solution (7.11) with n = k. We can simplify the inner sum by applying
a result from Graham et al. (1994, (5.23), p. 169):

> SO PO - e () 2= ()

Using Lemma 7.6 we get the result. O]

N |

Solution of [~ log(1 + =) arctanu du

1+ (+u?)

The solution of the next integral is used in the end of Section 7.5.8.

Lemma 7.10.

2

< 1 T T
/0 m 10g<1 + @> arctan u du = 5 (E — log (2))

Proof. We apply again the Taylor expansion of the logarithm, where for every u € R

2

1 U 1
log(l%—E):—10g<1+u2):—10g<1—1+u2)
=l 1y
_Zﬁ<1+u2) '

Interchanging the integral and the sum is again possible due to monotone convergence,
such that we get

+ L[ ! d
— —————du
-0 2n ), (1+wu?)r+!
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

Using solution (7.11) this simplifies to

< u 1 2n
A m10g<1+¥> arctanudu—ﬂzm(n).

Lemma 7.7 gives the result. O

7.5 Details of the proof of the asymptotic variance

7.5.1 Reduction of the power of u?*?

To divide u?*~% by (u? + )2#+179 as far as possible we use the representation

w0 = w0 (w4t — )]
pn—1
1 : , 7.12
— u2—6 Z (:uj ) (U2 + t)u—]—l (_t)] ‘ ( )

=0

We get
u2H—0 §2p—0 (1 )2,1, 6( +t) 2p—1+6
pn—1
2 é ( ' ) t2,u+j—5 (1 o t)2,u—6 (u2 + t)—u—j—2+6_

J=0

Like this we come to integrals of the kind

p—1 ) 1
. —1 . )
Z(—l)J (,u , > / u*™° arctan? u/ IO (1 — )20 (0 4 )T it du
0 0

=0 J

7.5.2 Rule of Leibniz for fol IO (1 — #)2170 (2 4 ¢) R I 20 gt

We use the rule of Leibniz to simplify the integral (7 =0,...,u—1)
1
/ PFT=0 (1 — )20 (2 4 t) TR IO gt
0

For every j take f(t) 214379 (1—¢)%=9 where we know for everyn = 1,..., u+j—0—1
that f™(0) = f™(1) = 0. Further we know

w? 21— 6
f(t) _ Z(_l)k ( :uk_ ) t2,u+j+k76
k=0
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7.5. Details of the proof of the asymptotic variance

and therefore

2u—35 )
ﬂ”””%ﬂ==§:@4ﬁ<?”_5)(mkzi:£r5ﬂ#ﬁ%

We further take
g(u+j—6) (t) = (t+ u2)—u—j—2+5

where we get

(_1)y+j—6

2\—2
TESES T T

g(t) =

So in total we have

1
/ FFI=0 (1 — 4)2170 (2 ) TR0 gy
0

o [ (S (4 ) g e

k=0
(=D 2\ -2
t dt
Gt iyt
2p— . 1
— 2u—0\ 1 2u+j+k—9) / o s
—E: ( )“+k(ﬂ+k—UNu+j+1—&!ot (t+u*)~* dt

N
°qO

C (=1 (20— 8\ (2 i+ k—08\ [!
h0u+k k w+73+1-=90) J

Our formula of the asymptotic variance becomes

—1
( ) / u?~% arctan® u
0
1 . .
X / 20N (1 — )20 (u? 4 ) I 0 dt du
0
@4y(#_1)%f(_nkCm_a)cm+j+k—5>
J k:O;H—k: k pw+j+1-9
oo 1
X / u?~° arctan u/ R ()2 dt du
0
2u—48 pn—1
o2 u+k < ' u+j+1—5

X / u?*™° arctan® u/ R (t+u?) 2 dt du.
0 0

2 3271/

T 7_(_2

Mt

g

327,

|
'ﬂw
M =

J=0
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

7.5.3 Reduction of the arctan® for even v

To derive the formula to reduce arctan® u to arctanu for even v we integrate

°° 1
arctan u du ,
/0 (1+u?) (t +u?)

using integration by parts with f(u) = #, g (u) = ﬁ arctanu, f'(u) = _(tﬁ#)?
and g(u) = 1 arctan® u. We get
/ N ! fanwd
rctan
S Ty ey arctan u du
1 2 [e.e] > U 2
= m arctan® u ‘u:O —i—/o m arctan” u du
o U
= ——— arctan®udu.
/0 e arctan® u du
7.5.4 Split of the fraction
For further calculations we need to split the fraction. We know that
ptk—1
=14 (t-1) >
1=0
and that
t—1) 1 1
(T4+u?) (t+u?)  1+u? t+u?
and therefore get
gt 1 1 '
= - th 7.13
1) (t+22) (1—|—u2)(t—|—u2)+<1+u2 t+u2> Z (7.13)

The first summand is independent of k£ so we can take it out of the sum. Using
Lemma 7.3 with v = 1 we know that

S (o))

and so within the complete formula of the asymptotic variance the first summand
in (7.13) cancels out. The integrals over the summands where ¢ is only in the numerator
can be solved as they can be split into a product where each factor just contains one
of the variables:

ptk—1

> 1 ! 2 M
l _
E (/0 Y arctanudu/o tdt>——8 517

=0
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7.5. Details of the proof of the asymptotic variance

So our formula for the asymptotic variance becomes

327, (=" 2p—1\2u+k—1
2:_1,[1,+1
o= =T Zquk:( k k

2u+k1 ptk—1
x(— 77 Z/ arctanu/ th(t+u?)” dtdu).

7.5.5 Solution of [;*arctanu fol t(t 4+ u?) " dt du

(7.14)

Integration by parts for fol th(t +u?)"tdt

As a first simplification we use integration by parts for the integral over t. With
f) = (t+u)™ g (t) =1, f'(t) = —(t+v*)7 and g(t) = 77 """ we get

1 tl 1 tl—‘rl 1 1 1 tl—f—l
dt = + dt
o t+u? I+1t+u?li=0 [+1J, (t+u?)?

1 1 S Y R T
= + dt — dt .
[+11+u? 1+1)) t+ u? I+1 )y (t+u?)?

So we can use the representation

Lo 11 1 [t ta?
dt =~ —— | ——=dt
o t+u? L 1+uw? 1)y (t+u?)?

and our integral becomes

[e%) 1 tl
/ arctan u / dt du
0 o t+u?

1 />~ 1 1 [ Loghg?
= - ——— arctanudu — - arctan u ——dtdu
l 0 1+ u? L Jo o (t+u?)?

= — — —/ / arctanudu dt .

ﬁ arctan u du

Integration by parts for fo

To simplify fo (raze Arctanu du we use again 1ntegrat10n by parts, here with f(u) =

(t+
w arctanu, ¢'(u) = oy, f'(u) = arctanu + 45 and g(u) = —3

/oo U2 . d
——— arctanu au
o (t+u?)?
L t }"" 1/ t d +1/OO ¢ d
= —— arctan u — arctan u au u
2t 4 u? u=0 " 2 2 )0 (1+u?)(t+u?)

1 /M~ 1 1
= — arctan u du + = du .
2 ), t+u? 2 1—|—u2 ) (t + u?)

113



7. Proof of the asymptotic variance for the uncorrelated t-distribution

Back to the whole integral

If we insert this solution we get

[e’s) 1 tl

/ arctan u / dt du

0 o t+u?
I S S B | 1 [ u
R = —_— t d — du | dt
Y z/o (2/0 f g2 Aretant “+2/0 0t (L +22) “)

™ u

2 1 o0 1 tl
— - t — dtdu— — tl du dt
EETREET A an“/o Fra2 / A+wd)(t+uw) "

and therefore

/Oo i /1 Y ga L (™ /175’/00 a du dt
T 1 - | — — )
e > AEE T (R AL Y GIIR-) N P

du dt

Solution of the integral fol t! fo —1+u2 Tz

To solve this last integral we first make the substitution z := u%. Then we use again
the following representation of the fraction, similar to (7.13):

1 1 1 1 k
(t+2)(1+2) - (t+z)(1+z)+(1+z_t—l—z) gt ’

We get the following:

ll (e’ U
t du dt
IR A Gk
dz dt
/ / 1+z t—l—z) :
L | 1
== dtd tF dz dt
2/0 1+z/0 t+z S Z/ / 1+z z) ‘
1 1 1+ 2 1
S 1 (—)d - /tkl #) dt
2/0 ~ log(— z+2§0 og(t)

where we used

1
1 1 142
dt = log(t :1( )
[t =
and
& 1 1 14+ 2\ |o©
/0(1+z t—l—z> T8 t+2z/ lz=0 og(!)
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7.5. Details of the proof of the asymptotic variance

The first remaining integral can be solved using the substitution ¢ :=

© q 1 L |
/ tog( + Y= —/ log(t) dt

z
14z

the second has the solution

1 1
1 1 1
t* log(t) dt = —— t**1 log(t ——/ t* dt
/0 og(t) Tl og(t) |,_, s
1

(k+1)2°

This gives the value

1 o0 u 2 1
¢ dudt = — — =
/0 /0 A+ (t+u2) " 12 2

Using all the developed steps we get the solution

[e’s) 1 l 2 -1
t 1 s 1
¢ dtdy=— [ - 4 =
/0 arca’n“/o a2 T 21+1< +2§ k+1 )
2 11
21+1<_+§;E>'

7.5.6 Solution for the asymptotic variance for even v

k=0

From (7.14) we know that

2pu—1

327, (=D 2p—1\ (2u+k—1
2 _ _1p,+1
o =0T ;;Hk k k

7_[_2 M'Hcl ut+k—1
X <§ 2_:7— / arctanu/o th(t +u?)” dtdu).

We can now insert

2

o] 1 !
1 1 1 T
! 2\ —1 -
et [t = g > )
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

and get our final result for v € 2N:

2p—1
o2 = (1) 320 ”Z (=" (2p =1\ (2p+ k=1
! m = ptk \ k k
) utk pt+k—1

- S S (T ()

—~

7.5.7 Reduction of the arctan® for odd v

This step is a little more complicated for odd v than it was for even v. To derive the
formula to reduce arctan® u to arctanu we first integrate

/oo u2 )
——— arctan® u du ,
o (t+u?)?

using integration by parts with f(u) = u arctan®u, ¢'(u) = e f'(u) = arctan® u +
1_2;2 arctanu and g(u) = —3 t+1u2. We get
o) 2
u
/ ———— arctan® u du
o (t+u?)?
S arctan® u ’OO
2 (t + u?) u=0
41 / e tan® u du + / N - tanud
= —— arctan® u du arctan u du
2 ), t+u? o (T+u?)(t+u?)

1/°° 1 o d +/°° u ; J
- ——— arctan® u du arctan u du .
2o t+u? o (L+u?)(t+wu?)

For the whole double-integral we come to

1 [e’e] u2
/ Al / — arctan®udu dt
0 o (t+u?)?
1 /[t * 1
= - / A / arctan® u du dt
2 Jo o t+u?

1 e’}
+k u
—i—/o t /o 052 (i +12) arctan v du dt .
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7.5. Details of the proof of the asymptotic variance

To further simplify the first of the two remaining integrals we change the order of
integration and modify the integral

Lyptk
[
o tt+u
1

with integration by parts, using f(t) = ==, ¢/'(t) = t***, f'(t) = — ey and g(t) =
—L_¢prk+l and get

ptk+1
1 itk 1 tHtE+L 1 1 1 kA1
——dt = dt
/0 t+ u? p+k+11t+u? t—o+M+k+1/0 (t 4+ u?)?

1 1 otk bRy
= + dt — | ——=dt
p+k+1\14+u®  Jy t+u? o (t+u?)?

or, equivalently,

Lotk I I TS
gt = —— - —— 5 dt .
o tt+u pt+kl4+u? p+k Jo (t4u?)

If we insert this above we have

1 (o] u2

/ A / m arctan® u du dt
0 0 U
1 (o)

2ud L arctanu [ g
= arctan“ v du — ——— arctan® u ———dtdu
2(u+k)/o L+ u? 2(u+k)/o /O(HuQ)2
1 0
+k U
+/O tH /0 052 (i 1 12) arctan v du dt

1 3 1 1 [e’e} 2
= T _ / t”+k/ v arctan® u du dt
2(u+k)24 2(p+k)Jo o (t+u?)?

1 0
+k u
+/0 tH /0 052 (i 1) arctan u du dt

and finally get

1 o0 u2
/ A / —— arctan®ududt
0 o (t+u?)?
3

2p + 2k ! o0 U
- t“““/ tan u du.dt
24(2M+2k+1)+2ﬂ+2]€+1/0 S e arctan u du
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

The asymptotic variance becomes

329 N (1R (20 [2u+ K
2: _1#1_
o= (D)5 Z,u+k:<k k

k=0

3 1 e’}
n + 2p + 2k / etk / Y arctan u du dt
24 2u+2k+1)  2u+2k+1 ), o (T4u?)(t+u?)

= 47;% i (1 + k) 52_/?: 2+ 1) (2:) (QM’: k>

2
(! 64, Z“ (—1)k 21\ [2u+ k
w2 =2+ 2k + 1\ k k

1 o)
+k u
/0 tH /0 AT @+ ) arctan u du dt .

(7.15)

7.5.8 Solution of fol thtk fooo m arctan u du dt

Simplification for the integral over u

To solve the remaining integral we first want to look at the integration over u and
use integration by parts with f(u) = arctanu, ¢'(u) = m, fl(u) = H# and
9(u) = 5 (log(1 + u?) — log(t + u?)):

/ i

1 s
=3 =1 arctanu (log(1 + ) — log(t + u*)) ‘u:O
1 © 1 S
- — log(l+u)du+—— | — log(t+u?)d
2(t—1)/0 T3 sl ) “+2(t—1)/0 T3z osll Fu)du
T log(2) 4+ —— /OO L log(t + u?) du
= 0
21—t BT 1))y 1w ® :

(7.16)

where we know

<1
/0 T log(1 + u?) du = 7 log(2)

from Lemma 7.9.
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7.5. Details of the proof of the asymptotic variance

Rewriting t#**

If we look at the simplification for the integral over u we see that we get problems with
the denominator 1 — ¢ if we integrate over t. We therefore use the formula
ptk—1

=t —-1) > "1
h=0

and can write by using the result (7.16)

1 0
u
e / arctan u du dt
/ (1 + u?) (t + u?)
ptk—1

h u
Z/t t—l/o 05 (15 D) arctan u du dt

+ / / Y arctan u du dt
(14 u?) (t +u?)

;H—k 1 ,u—i—k 1

:—glog Z/thdt+ Z/ /

—I—/OoL rtn/ dtd
i (1+u2)acau (t—|— ) U

- u+k 1 bk
—__ h—1
=3 log(2 Z/ t /

—I—/O ﬁ log(l—l— )arctanudu

log (t +u?) dudt

log (t +u?) dudt

log(t +u?) dudt

Solution of fol =t e
To solve the integral (h =1,.

/t“/

we do once integration by parts for the mtegral over t

o 2 1 N
t" " log(t + dt = — log(1 - —
/0 og(t + u”) hog( + u®) h/ot ”

before we try again to solve the integral over u:

A
:E/ 1+ 5 log(1+v?) du — /th/ 1+u2)1<t+ )dudt

1 _ dudt,
0g(2 / / 1+ u?) t+u2)u

1+2

log (t +u?) dudt

log (t +u?) dudt
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

where we used again

< 1
/0 = log(1 + u?) du = 7 log(2)
from Lemma 7.9. To solve - .

o () (t+ ) du

we write the fraction as
1 1 (4wt - (14u?)
(14+u?) (t+u2)  t—1 (1+u2)(t+u?)

B 1 ( 1 1 >
St —1\14u  t+u?

e 1 1 * 1 1
/0 (1+u2>(t+u2>d“:m(/o 1+u2du_/0 t+u2du)
1 1 U
= m (arctanu — % arctan(%>>
:LE@_L)
t—12 \/z_f
T

T2V t)

and get

[e.9]

u=0

So it only remains to solve

¢
dt
Vi+t

Using the substitution z := v/t we get

1 4h 1 2k 2h (_1>l
viei" /o T e

The whole integral becomes
IS 1/
7 log(2 h/oo 1
=—=—— |t du dt
h / A+ra?)(t+u?) "
o log /
Viii!

T
:_EZ z '
=1

log (t +u?) dudt
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7.5. Details of the proof of the asymptotic variance

Total solution
With the value

2

o U 1 T T
/D m 10g<1 —+ E) arctan u du = § <E — log (2))

as shown in Lemma 7.10, the solution of the whole integral is

k
/t“*/ 1—|—u2) t+u2) arctan u du dt
ptk 2h
IS RN D U
S YD D e T
20g<) DI D b 20g()
h=1 h=1 " =1
2 putk p+k 2h l
(T eg22) - Loyl =l
—2(12 log*(2) —log(2) D 7= > 7 > ).

h=1 h=1 =1

7.5.9 Further simplifications

The two summands can be recombined by rewriting the sum over binomial coefficients
and using Lemma 7.4. We have

éwm o (0 ()
- &‘if)(fﬁfﬁ?) ")

S () ()
S (D) a0 0)

S (0

k=

where we used Lemma 7.4 with v = 0 for the last step.
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7. Proof of the asymptotic variance for the uncorrelated t-distribution

7.5.10 Solution for the asymptotic variance for odd v

If we insert the solution developed in Section 7.5.8 into formula (7.15) we get
4 2 (—1)* 20\ (20 + k
02 = (—1)pt 21 S < u)( I )
T 3 = (p+k)2u+2k+1) \ K k
2
+ (_1)N—1 32 Tv ZM: (_1)k 2” QN + k
o= 242k + 1\ k k
2 ko etk 20
JEREERTLD 3 W S )
By Section 7.5.9 we can recombine the two summands and get
o2 = (—1) L 327 Z (-1) <2/~0) <2M + k)
o= 2u+2k+ 1\ k k
2 2 u+k u+k 2h
ST | —1 i
(v 2535 3 )
_ (_1)p—1 32 T i (_1)k 2” QN + k
a T =2u+2k+ 1\ k k

putk 2h Y ptk
% (-Z% 3o ll) ~log(2) %—logQ(Z)).

h=1 =1 h=1

We can now insert the definition pu =

2 () ?f;(é)) i 1511;’; (V ) 1) (V + Z - 1)

Y4k - 2h 1\ Ltk
X (— Z ! Z%_l (2) Z E—10g2(2)>
h=1 =1 h=1

B gt IS O )04

k=0
l/21+k, o Vgl-‘rk’
L (D
(X 2T X 5)
h=1 =1 h=1
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