
Fixed Parameter Algorithms for
Answer Set Programming

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

im Rahmen des Studiums

Dr.-Studium der technischen Wissenschaften

eingereicht von

Michael Jakl
Matrikelnummer 0226072

Fasangasse 10/10; A-1030 Wien

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer: Prof. Dr. Reinhard Pichler
Betreuer: Priv.-Doz. Dr. Stefan Woltran

Wien, Mai 2010

(Unterschrift Verfasser) (Unterschrift Betreuer) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

F I X E D PA R A M E T E R A L G O R I T H M S F O R A N S W E R S E T
P R O G R A M M I N G

michael jakl

Database and Artificial Intelligence Group, 184/2

Faculty of Informatics
Vienna Technical University

Mai 2010

Fixed Parameter Algorithms for Answer Set Programming,
Michael Jakl, Wien, Mai 2010

supervisors:
Prof. Dr. Reinhard Pichler
Priv.-Doz. Dr. Stefan Woltran

A B S T R A C T

Answer Set Programming (asp) has gained much interest in the
last decade and is an increasingly acknowledged paradigm for
solving combinatorial problems. In general, determining whether
an asp program has at least one solution, that is, the asp consis-
tency problem, is already on the second level of the polynomial
hierarchy, ΣP2 .

Parameterized complexity is a promising approach to deal with
such intractable problems. It considers the problem-complexity
not only as a function of the problem size, but also an additional
problem-parameter. Hard problems may become tractable, if this
problem-parameter is bounded by a fixed constant, they are then
called fixed parameter tractable.

One such parameter is treewidth, it measures how close a graph
resembles a tree. asp programs can be encoded as graphs and
have a treewidth. Using this approach, asp consistency has been
shown to be fixed parameter tractable via monadic second order
logic and Courcelle’s Theorem. Since the evaluation of monadic
second order logic formulae (via tree automata) proved unpracti-
cal, this result was only of theoretical value.

In this thesis, we propose practical algorithms to efficiently
solve the asp consistency problem. Additionally two more al-
gorithms for problems of asp, namely the counting problem
(compute the number of solutions) and enumeration problem
(compute each solution) are shown.

For programs of bounded treewidth, our dynamic program-
ming algorithms solve the asp consistency problem in linear time.
Further, assuming unit cost for arithmetic and set operations, the
number of solutions can be computed in linear time, and the
enumeration problem is shown to have linear delay. That is, the
time between two solutions is linearly bounded by the size of the
problem instance.

Finally, our experiments with a prototype implementation show
unprecedented performance for the counting problem. For the
enumeration problem, our implementation is comparable to state
of the art asp solvers for a treewidth up to six; only for the asp

consistency problem, we lie behind standard solvers.

5

K U R Z FA S S U N G D E R D I S S E RTAT I O N

Answer Set Programming (asp) hat sich in den letzten Jahren als
geeignete Methode etabliert, um kombinatorische Probleme zu lö-
sen. asp Programme lassen sich jedoch nur mit großem Aufwand
berechnen. Zu ermitteln ob ein asp Programm widerspruchsfrei
ist, ist auf der zweiten Stufe der polynomiellen Hierarchie, ΣP2 .

Die parameterisierte Komplexitätstheorie ist ein vielverspre-
chender Ansatz, allgemein schwer berechenbare Probleme zu
behandeln. Hierbei wird nicht nur die Größe des Problems, son-
dern auch ein weiterer Wert, der Problemparameter, betrachtet.
Einige Probleme sind leicht berechenbar wenn man den Problem-
parameter beschränkt, diese werden parametrisierbar genannt.

Ein solcher Parameter ist die Baumbreite. Sie gibt an wie stark
ein Graph einem Baum entspricht. asp Programme können als
Graphen dargestellt werden und besitzen daher eine Baumbreite.
Mit Hilfe von monadischer Logik zweiter Ordnung und Courcel-
le’s Theorem wurde bewiesen, dass der Test auf Widerspruchsfrei-
heit eines asp Programms parametrisierbar ist. Die Auswertung
von monadischer Logik zweiter Ordnung (via Baumautomaten)
ist jedoch nicht praktikabel, daher war dieses Ergebnis bisher nur
von theoretischem Interesse.

Wir stellen einen praktischen Algorithmus vor, der effizient
ermittelt ob ein parametrisierbares asp Programm widerspruchs-
frei ist. Weiters geben wir Algorithmen an, die die Anzahl der
Lösungen eines asp Programms berechnen und alle Lösungen
aufzählen.

Mit Hilfe dynamischer Programmierung stellen wir in linearer
Zeit fest, ob ein parametrisierbares asp Programm widerspruchs-
frei ist. Unter der Annahme, dass arithmetische Operationen
und Mengenoperationen jeweils nur eine Zeiteinheit benötigen,
berechnen wir in linearer Zeit wieviele Lösungen es gibt, und,
dass beim Aufzählen aller Lösungen die Wartezeit zwischen zwei
Lösungen linear in der Größe der Probleminstanz beschränkt ist.

Anhand einer prototypischen Implementierung können wir
experimentell bestätigen, dass wir für Baumbreiten bis zu sechs,
sehr gute Laufzeiten beim Zählen der Lösungen haben. Der
direkte Vergleich mit einem aktuellen asp System zeigt, dass die
Laufzeit beim Aufzählen aller Lösungen kompetitiv ist. Lediglich
der Test auf Widerspruchsfreiheit liegt hinter aktuellen Systemen.

6

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

• Fast Counting with Bounded Treewidth; Jakl, Pichler, Rüm-
mele, and Woltran; 2008; LPAR (International Conference
on Logic for Programming, Artificial Intelligence and Rea-
soning) [47]

• Answer-Set Programming with Bounded Treewidth; Jakl,
Pichler, and Woltran; 2009; IJCAI (International Joint Con-
ference on Artificial Intelligence) [48]

7

A C K N O W L E D G M E N T S

I would like to thank to my supervisors, Reinhard Pichler and Ste-
fan Woltran, for fruitful discussions, challenging tasks, guidance,
and valuable lessons. Thank you!

This work was supported by the Austrian Science Fund (FWF),
project P20704-N18.

9

C O N T E N T S

1 introduction 17

2 preliminaries 21

2.1 Graph Structures 21

2.2 Propositional Logic 22

2.2.1 Syntax 23

2.2.2 Semantics 23

2.2.3 Conjunctive Normal Form 24

2.2.4 Partial Interpretation and Model 24

2.2.5 Satisfiability 25

2.3 Answer Set Programming 26

2.3.1 Stable Model Semantics 29

2.3.2 Architecture of asp solvers 30

2.4 Finite Structures 31

2.5 Monadic Second Order Logic 33

2.5.1 Syntax 33

2.5.2 Semantics 34

2.6 Finite (Tree) Automata 35

3 treewidth and courcelle’s theorem 37

3.1 Tree Decompositions 37

3.1.1 Tree Decompositions of Finite Structures 38

3.1.2 Special Tree Decompositions 40

3.2 Normalization Procedure 41

3.3 Path Decompositions 45

3.4 Algorithms for Finding Tree Decompositions 46

3.5 Parameterized Complexity 50

3.6 Courcelle’s Theorem 51

4 basic structure of fixed-parameter algorithms

on tree decompositions 55

4.1 Overview 55

4.2 Graph Encoding 56

4.3 Node-Types 57

4.4 Tree Traversals 58

4.4.1 General Structure 59

4.4.2 Counting and Enumerating Models for Propo-
sitional Logic 61

5 answer set programming with bounded tree-
width 65

5.1 Tree Decompositions of asp Programs. 65

5.2 The Dynamic Programming Approach for asp 68

11

12 contents

5.2.1 Tree Interpretations 68

5.2.2 Tree Models 71

5.2.3 asp Consistency 105

5.2.4 Counting Answer Sets 107

5.2.5 Enumerating Answer Sets 110

6 implementation and experimental results 115

6.1 Answer Set Programming System in Haskell 116

6.1.1 Data Structures 117

6.2 Performance Tests and Benchmarks 122

7 conclusion 129

bibliography 133

L I S T O F F I G U R E S

Figure 2.1 Example graph G defined in Table 1. 22

Figure 2.2 Example graph G with a vertex cover VC
and a minimal vertex cover V ′C. 22

Figure 3.1 Example graph G for decomposition pur-
poses. 37

Figure 3.2 Tree decomposition T1 with width 3 of graph
G. 38

Figure 3.3 Optimal tree decomposition T4 with width
2 of graph G with treewidth 2. 39

Figure 3.4 Primal graph GA of τ-structure A shown in
Example 3.1.9. 40

Figure 3.5 Normalized tree decomposition T2 with
width 3 of graph G. 43

Figure 3.6 Normalized tree decomposition T3 with
width 3 of graph G. 45

Figure 3.7 Optimal path decomposition P with path-
width 2 of graphGwith pathwidth 2. 46

Figure 3.8 Graph after the first step of the vertex elim-
ination algorithm. 49

Figure 3.9 Resulting tree decomposition of the vertex
elimination algorithm. 49

Figure 4.1 General structure of algorithms on tree de-
compositions. 55

Figure 4.2 Incidence graph G of formula ϕ. 56

Figure 4.3 Tree decomposition T with a width of 2 of
graph G. 57

Figure 4.4 Annotated tree decomposition T with ex-
plicit node types. 59

Figure 4.5 Conditions for (n ′,M ′) ≺T (n,M) for the
various node-types of n. 62

Figure 5.1 Incidence graph GP of example program
P. 66

Figure 5.2 The extended normalized tree decomposition T

of GP (Figure 5.1). 67

Figure 5.3 Conditions for (n ′,M ′,C ′) ≺T (n,M,C) for
the various node-types of n. 70

13

Figure 5.4 The tree decomposition with all T-models
and their relations, see Figure 5.5 and Fig-
ure 5.6 for the left and right branches of
node n7. 112

Figure 5.5 Left branch of branch node n7. 113

Figure 5.6 Right branch of branch node n7. 114

Figure 6.1 Compilation of a disjunctive logic program
into an executable, as performed by laps. 116

Figure 6.2 Plot showing the number of models against
the treewidth (1628 instances). 124

Figure 6.3 Time required by laps (upper graph) and
dlv (lower graph) for counting of all answer
sets (305 instances). 126

Figure 6.4 Time required by laps (upper graph) and
dlv (lower graph) for enumeration of all
answer sets—normalized to time per 100

answer sets (305 instances). 127

Figure 6.5 Comparison of the runtime behavior for
counting (upper graph) and enumeration
of 100 answer sets (lower graph) plotted
against the treewidth (1628 instances). 128

L I S T O F TA B L E S

Table 1 Table showing the set V(G) and E(G) of the
graph G in Figure 2.1. 21

L I S T I N G S

Listing 2.1 asp program encoding the coin tossing game. 26

Listing 2.2 Ground asp program R. 26

Listing 2.3 Reduct RI1 of program R in Listing 2.2. 29

Listing 2.4 Reduct RI2 of program R in Listing 2.2. 30

14

Listings 15

Listing 2.5 Program P. 32

Listing 3.1 Normalization of a binary tree decomposi-
tion in pseudo code. 44

Listing 3.2 Vertex Elimination Algorithm [68] 48

Listing 5.1 Program P. 65

Listing 6.1 Example of lazy evaluation. 115

Listing 6.2 Rules in Haskell. 117

Listing 6.3 Basic types used in the program. 117

Listing 6.4 Data structure for the tree decomposition. 118

Listing 6.5 Some nodes of tree decomposition TI en-
coded as Haskell program. 119

Listing 6.6 Haskell lists. 120

Listing 6.7 Declarative structure of the algorithm in
Haskell. 120

Listing 6.8 Call of the asp algorithm with the root node
as parameter. 121

Listing 6.9 Example for a leaf node in Haskell. 121

Listing 6.10 Example for a rule removal node in Haskell. 122

1
I N T R O D U C T I O N

In this work, we propose practical algorithms to efficiently solve
important problems of Answer Set Programming (asp) with the
help of parameterized complexity.

asp [56, 63], also known as A-Prolog [4], has gained much
interest in the last decade and is an increasingly acknowledged
paradigm for solving combinatorial problems. Due to its high
expressiveness it enjoys a large collection of successful applica-
tions in the areas of artificial intelligence (ai) and knowledge
representation and reasoning (kr).

In complexity theory, only problems lying in the class p are
considered to be tractable. Many practically relevant problems
are np complete and thus considered intractable. The decision
problem of disjunctive logic programs, the underlying concept of
asp, has been shown to be on the second level of the polynomial
hierarchy, ΣP2 , and is thus highly intractable in general, see Eiter
and Gottlob (1995) [19].

A promising approach to deal with such intractable problems
is parameterized complexity proposed by Downey and Fellows
(1999) [17]. Hard problems can become tractable, if some problem
parameter is bounded by a fixed constant. These problems are
then called fixed parameter tractable, or “in fpt”.

One important parameter is treewidth, it measures the “tree-
likeness” of a graph. Courcelle (1990) [12] proposed a general
method to prove fpt results with treewidth as parameter using
a restricted form of second order logic, monadic second order
logic, or mso logic for short. Courcelle’s Theorem, as it is called,
was extended by Arnborg, Lagergren, and Seese (1991) [3] and
later by Flum, Frick, and Grohe (2002) [30], to capture not only
decision problems but also counting and enumeration problems.

By using these results, Gottlob, Pichler, and Wei (2006) [40] have
shown that the decision problem for asp, that is asp consistency,
is indeed fixed parameter tractable when the treewidth of the asp

program is bounded by a fixed constant.
However, an fpt result itself does not immediately lead to an

efficient algorithm. The mso logic used by Courcelle et al. is
an elegant way for proving fpt results, but the evaluation of
a sentence in mso logic (via tree automata) suffers from very

17

18 introduction

high multiplicative constants, rendering the whole approach
unpractical even for smallest formulae, see Grohe (1999) [42] and
Frick and Grohe (2004) [31].

The goal of this work is, to turn the theoretical tractability
results into a practical way of deciding the asp consistency prob-
lem, to identify possible obstacles by doing experiments with a
prototype implementation, and to compare our performance to a
state of the art asp solver.

In addition to determining whether a disjunctive logic program
has a solution (at least one answer set) or not, we propose two
additional algorithms. One to count all answer sets, which is #np

complete in general, and one to enumerate all answer sets.
We generalize the dynamic programming approach for #SAT

due to Samer and Szeider (2007) [70] to the world of asp in order
to count and enumerate all answer sets of a given program. In
doing so, we provide a novel approach for computing answer
sets, which significantly differs from standard asp systems. These
currently do not exploit fixed parameter properties, see Gebser
et al. (2007) [33] for an overview of current asp systems.

main results To summarize, we provide the following main
contributions.

• An fpt algorithm for asp consistency. The most basic prob-
lems are the decision problems, that is, to determine if there
is at least one possible solution or none at all. In the world
of asp, this is called asp consistency checking.

• An fpt algorithm for counting the number of answer sets.
To solve the problems at hand, we sometimes need to know
how many solutions we can expect. Our algorithms give a
precise count of the solutions in linear time (assuming unit
cost for arithmetic operations).

• A new method for enumerating all answer sets with linear
delay. Knowing whether there is an answer or not, is often
not enough. Our algorithm computes one solution after the
other with a guaranteed time bound between two solutions.
The time between two solutions is only linear in the size of
the problem instance.

• A presentation of our prototype implementation and exper-
imental results. For our experiments we built a prototype
in Haskell, a pure functional programming language. The

introduction 19

existence of a working solver using our algorithms ensures
the feasibility of our approach.

• A comparison with a state of the art asp solver. Even though
our implementation has only prototype character, the re-
sults on problems with low treewidth are very good. We
thus provide a head to head comparison with a leading asp

solver, dlv, and identify the limits of our implementation.

structure of this work In Chapter 2 we introduce the
basic notions used throughout the thesis, including Answer Set
Programming. In Chapter 3 we show how to transform graphs
into tree-structures with an associated treewidth, here we also
recall Courcelle’s Theorem and why many algorithms based on
this approach are not feasible in practice. The basic structure
of the dynamic programming algorithms with an example us-
ing propositional logic is discussed in Chapter 4. Chapter 5 is
the central chapter and presents the algorithms for the three
problems mentioned above together with formal proofs of the
correctness and a complexity analysis. Chapter 6 gives details
on the prototype and benchmarks against a leading asp system.
Finally Chapter 7 gives an outlook and a discussion of related
and future work.

2
P R E L I M I N A R I E S

In this chapter, we present the basic definitions used throughout
the text. We introduce basic undirected graphs, propositional
logic and monadic second order logic, Answer Set Programming,
and finite structures.

2.1 graph structures

We start with the most basic definition of a graph, and introduce
some further concepts on top of it.

Definition 2.1.1. A graph is a pair of sets G = (V ,E) such that
E ⊆ V × V . The set V is the set of vertices, and the set E is the set of
edges.

The set of vertices of a graph G can be accessed by V(G), and
likewise, the set of edges by E(G).

Definition 2.1.2. A graphG is called undirected if (a,b) ∈ E(G) ⇐⇒
(b,a) ∈ E(G) holds for any two vertices a,b ∈ V(G).

If not specified, we assume undirected graphs throughout the
text.

Example 2.1.3. The graph G in Figure 2.1 is defined by the set V(G),
and E(G) shown in Table 1.

V(G) E(G)

a (a, c), (c,a)

b (a,b), (b,a)

c (b, c), (c,b)

d (c,d), (d, c)

Table 1: Table showing the set V(G) and E(G) of the graph G in Fig-
ure 2.1.

For tree decompositions, cliques are important.

21

22 preliminaries

a b

c d

Figure 2.1: Example graph G defined in Table 1.

Definition 2.1.4. A clique in a graph G is a set of vertices Vc ⊆ V(G)
such that for every two vertices u, v ∈ Vc an edge, (u, v) ∈ E(G),
exists.

Example 2.1.5. In the graph G in Figure 2.2, the vertices a, b, and c
form a clique. The set of vertices {b, c,d} does not form a clique because
there exists no edge between the vertices b and d.

The Vertex Cover problem is well studied, especially in pa-
rameterized complexity, and we will occasionally refer to it.

Definition 2.1.6. A set of vertices VC ⊆ V(G) is called vertex cover
if each edge in E(G) has at least one endpoint in VC.

Definition 2.1.7. A vertex cover VC is called minimal if there exists
no vertex cover V ′C ⊂ VC.

In general, it is np complete to find a minimal vertex cover for
a given graph G, see Garey and Johnson (1979) [32].

Example 2.1.8. In our example graph G, the set VC = {a,b,d} forms
a vertex cover, but it is not minimal. The set V ′C = {b, c} (also shown
in Figure 2.2) is a minimal vertex cover.

a b

c d

a b

c d

Figure 2.2: Example graph G with a vertex cover VC and a minimal
vertex cover V ′C.

2.2 propositional logic

Propositional logic is the fundamental formal system used through-
out this work. To have a common understanding of the terms
and concepts, we introduce the most important definitions here.

2.2 propositional logic 23

2.2.1 Syntax

Formulae of propositional logic are constructed from propo-
sitional atoms and operators. We consider only well-formed
formulae, which can be constructed by the following rules.

atom Every propositional atom is a well-formed formula. Atoms
are written as lower case letters a, . . . , z or with a subscript
a1, . . . ,an.

negation If ϕ is a well-formed formula, then (¬ϕ) is also a well-
formed formula.

conjunction If ϕ and ψ are well-formed formulae, then (ϕ∧ψ) is also a
well-formed formula.

disjunction If ϕ and ψ are well-formed formulae, then (ϕ∨ψ) is also a
well-formed formula.

implication If ϕ and ψ are well-formed formulae, then (ϕ→ ψ) is also
a well-formed formula.

The above connectives are ordered by their associativity, for
example the negation (¬) binds “tighter” than the non exclusive
or (∨). It is convenient to omit the unnecessary parentheses, thus
the formula ¬a∨ b is a shorthand for ((¬a)∨ b).

We assume only well-formed formulae from now on.

2.2.2 Semantics

Until now, we have only established how propositional formulae
look like, but we have not fixed a notion of truth values for the
formulae.

An interpretation I assigns truth values to propositional atoms.
If a formula consists of a single atom, ϕ = a, the formula ϕ

evaluates to the same truth value as the atom a.
The truth values of formulae with connectives are defined in a

similar fashion as before.

negation The formula (¬ϕ) evaluates to true if ϕ evaluates to false,
or (¬ϕ) evaluates to false if ϕ evaluates to true.

conjunction The formula (ϕ∧ψ) evaluates to true if ϕ and ψ evaluate
to true, otherwise (ϕ∧ψ) evaluates to false.

24 preliminaries

disjunction The formula (ϕ∨ψ) evaluates to true if ϕ or ψ, or both
evaluate to true, otherwise (ϕ∨ψ) evaluates to false.

implication The formula (ϕ → ψ) evaluates to false if ϕ evaluates to
true and ψ evaluates to false, otherwise (ϕ→ ψ) evaluates
to true.

Note that the formula (ϕ → ψ) has the same truth values as
the formula (¬ϕ∨ψ) for any truth values of ϕ and ψ, that is,
they are semantically equivalent.

2.2.3 Conjunctive Normal Form

Throughout this work, we consider propositional formulae in a
special form, the so called conjunctive normal form, cnf for short.

Definition 2.2.1. A literal l is either an atom a or the negation of an
atom, ¬a. A clause c is a disjunction of literals. A formula ϕ is in
conjunctive normal form if it is a conjunction of clauses.

Example 2.2.2. The formula ϕ = (a∨¬b)∧ c is in cnf, whereas the
formula ϕ ′ = a∨¬b∧ c is not. The case becomes clear if we make the
associativity explicit, i.e., ϕ ′ = a∨ (¬b∧ c).

Any formula ϕ can be transformed into an equivalent formula
ϕ ′ in cnf but with an exponential blowup in the worst case, see
for example Huth and Ryan (2004) [46].

2.2.4 Partial Interpretation and Model

It is convenient to use a set-representation of formulae in the
following. When we use a set notation, we will refer to negated
atoms as a instead of ¬a. In formulae ¬a will be used as de-
scribed above.

Throughout this work, we assume a universeU of propositional
atoms. For a set A of atoms, A = {a | a ∈ A} denotes the set of
negated atoms.

A formula is represented as a set of clauses, and clauses are
represented as sets of literals. Implicitly we know, that the literals
in a set representing a clause are connected with disjunctions,
and the clauses in the set of a formula are connected with con-
junctions. See Example 2.2.5 for a formula written using standard
connectives and a set representation of it.

An interpretation I is a set of atoms.

2.2 propositional logic 25

Definition 2.2.3. A (partial) interpretation I satisfies the clause c
under the set O ⊆ U, written as I |=O c, if the clause c evaluates to
true under the following conditions.

• All atoms in I are considered to be true.

• All atoms a in O \ I are considered to be false (or the negation, a,
is considered to be true).

That is,

I |=O c ⇐⇒ ((I∩O)∪ (O \ I))∩ c 6= ∅

holds.

For a set C of clauses, I |=O C holds iff I |=O c, for each c ∈ C.
If we consider all atoms in the universe U, that is O = U, we
usually write |= instead of |=O.

Definition 2.2.4. An interpretation I is called model for ϕ if the
formula ϕ evaluates to true under I.

Example 2.2.5. Consider the following formula ϕ.

ϕ = a∧ (b∨ c)∧¬d

Let us rewrite ϕ in set notation. The corresponding clause set Cϕ thus
looks like this:

Cϕ = {{a}, {b, c}, {d}}.

Let O = U = {a,b, c,d}. Now consider the interpretation I1 =

{a,b, c}. The interpretation is a model for ϕ (that is, I1 |= ϕ holds)
because all clauses evaluate to true. The clauses a and b∨ c are true
(I1 ∩ {a} and I1 ∩ {b, c} are nonempty). Since d 6∈ I1, the atom d

is considered to be false (U \ I1 ∩ {d} is nonempty), thus ¬d is also
satisfied.

The interpretation I2 = {a,b, c,d} is not a model of ϕ since d is
considered to be true, and thus U \ I2 ∩ {d} is empty.

2.2.5 Satisfiability

Satisfiability checking is the problem of determining if a given
propositional formula ϕ evaluates to true for at least one truth
assignment, that is, to check if there is at least one model for ϕ.

To determine whether a given formula ϕ has a model is np

complete for formulae in conjunctive normal form (cnf), shown
by Cook (1971) [11] and Levin (1973) [52].

The satisfiability problem is also called consistency checking.

26 preliminaries

2.3 answer set programming

asp [56, 63] is a declarative approach for solving combinatorial
problems. The basic idea is to encode models of a problem
into the solutions of a (non-monotonic) disjunctive logic pro-
gram. These models are written as rules and constraints. asp

came up in the nineties, and has its roots in logic programming
[78], knowledge representation, and non-monotonic reasoning
[59]. Since asp has common concepts with more classical logic
programming, that is Prolog, it is also known as AnsProlog or
A-Prolog, see Baral (2003) [4].

Example 2.3.1. Consider a very simple game: coin tossing. Listing 2.1
shows a program encoding the game rules. The program is read as
follows. euro1 and euro2 are coins, you win if the coin’s face is up,
and you lose if the coin’s face is down. The last rule is a disjunction, it
encodes that a coin’s face is either up or down, but only if we have no
evidence that the coin has been forged.

Uppercase letters, or words starting with an uppercase letter, are
considered to be variables, lower case letters, or words starting with
lower case letters, are considered to be constants.

Listing 2.1: asp program encoding the coin tossing game.

1 coin (euro1) .
2 coin (euro2) .
3 win (X) :− coin (X) , up (X) .
4 l o s e (X) :− coin (X) , down(X) .
5 up (X) v down(X) :− coin (X) , not forged (X) .

In this work, we consider propositional disjunctive logic pro-
grams, or ground programs with a disjunction in its head, see
Minker (1994) [60]. asp in general allows variables to be used
in the programs, which requires the program to be “grounded”
before the models can be computed. The result of the grounding
is a propositional (disjunctive) logic program.

Example 2.3.2. Listing 2.1 is a simple non-ground program, with
Listing 2.2 as the grounded version.

Listing 2.2: Ground asp program R.

1 coin (euro1) .
2 win (euro1) :− coin (euro1) , up (euro1) .
3 l o s e (euro1) :− coin (euro1) , down(euro1) .

2.3 answer set programming 27

4 up (euro1) v down(euro1) :− coin (euro1) ,
5 not forged (euro1) .
6 coin (euro2) .
7 win (euro2) :− coin (euro2) , up (euro2) .
8 l o s e (euro2) :− coin (euro2) , down(euro2) .
9 up (euro2) v down(euro2) :− coin (euro2) ,

10 not forged (euro2) .

There are many variants and extensions to asp programs. We
will review the basic ones before we dive into the disjunctive case.
For an extensive treatment of possible extensions, see Niemelä
(2005) [64]. Each of these extensions has its own expressiveness
and time or space complexity to compute an answer, see Eiter
and Gottlob (1995) [19] for some complexity results.

The most basic logic program has neither negation nor a dis-
junction in its head, and is called Horn.

Definition 2.3.3. A Horn logic program is a set of rules of the form

h← a1, . . . ,am

where h and a1, . . . ,am are propositional atoms from a universe U.
The atom h is called head, and the set of atoms a1, . . . ,am is called
body.

The consistency problem for Horn logic programs is p complete,
see Dantsin et al. (2001) [15].

Definition 2.3.4. A normal program is a set of rules of the form

h← a1, . . . ,am, not am+1, . . . , not am+n

where h and a1, . . . ,am+n are propositional atoms from a universe U.
The atom h is called head, the set of atoms a1, . . . ,am is called positive
body, and the set of atoms am+1, . . . ,am+n is called negative body.

A normal program may have no solution since the negation
may invalidate all solutions. The program

p← not p

is such an example. To deal with negation, we need additional
concepts like stratification [1], well-founded semantics [35], or—
the one we will use—stable models semantics [37] defined below.
The asp consistency problem for normal programs is np complete,
see Dantsin et al. (2001) [15].

28 preliminaries

Definition 2.3.5. A disjunctive program is a set of rules of the form

h1 ∨ . . .∨ hj ← a1, . . . ,am, not am+1, . . . , not am+n

where h1, . . . ,hj and a1, . . . ,am+n are propositional atoms from
a universe U. The set of atoms h1, . . . ,hj is called head, the set
of atoms a1, . . . ,am is called positive body, and the set of atoms
am+1, . . . ,am+n is called negative body.

Adding disjunction to normal programs increases its expres-
siveness (and complexity) so that it is able to express problems on
the second level of the polynomial hierarchy, ΣP2 . Again, to deal
with negation we have various semantics at our disposal. We will
use disjunctive stable model semantics, which is an adapted form
of the stable model semantics [20].

A program with no negation is called positive. Since there can
be no contradictions, a positive program has always a solution. In
the following, we will use positive programs to define the notion
of a “reduct”.

We define shortcuts for the head and the body of a rule r as
given in Definition 2.3.5, such that the set of atoms in the head
h(r) = {h1, . . . ,hj}, the set of atoms in the positive body b

+(r) =

{a1, . . . ,am}, and the negative body b
−(r) = {am+1, . . . ,am+n}.

By At(R) we denote the set of atoms occurring in program R.
We identify a program R with the clause set {h(r) ∪ b

−(r) ∪
b
+(r) | r ∈ R}.

Example 2.3.6. The rule in line 9 of Listing 2.2 is thus represented by
the set

{up(euro2),down(euro2), forged(euro2), coin(euro2)},

and the whole program Listing 2.2 by the set

{

{coin(euro1)},

{coin(euro2)},

{win(euro1),up(euro1), coin(euro1)},

{lose(euro1),down(euro1), coin(euro1)},

{up(euro1),down(euro1), forged(euro1), coin(euro1)},

{win(euro2),up(euro2), coin(euro2)},

{lose(euro2),down(euro2), coin(euro2)},

{up(euro2),down(euro2), forged(euro2), coin(euro2)}

}.

2.3 answer set programming 29

Listing 2.3: Reduct RI1 of program R in Listing 2.2.

1 coin (euro1) .
2 coin (euro2) .
3 win (euro1) :− coin (euro1) , up (euro1) .
4 l o s e (euro1) :− coin (euro1) , down(euro1) .
5 up (euro1) v down(euro1) :− coin (euro1) .
6 win (euro2) :− coin (euro2) , up (euro2) .
7 l o s e (euro2) :− coin (euro2) , down(euro2) .
8 up (euro2) v down(euro2) :− coin (euro2) .

2.3.1 Stable Model Semantics

There are several possible semantics, see Minker (1996) [61], the
most prominent being the stable model semantics introduced by
Gelfond and Lifschitz (1988) [36] and covered by many others
[56, 63, 75], which we will concentrate on. The solutions of asp

programs are thus called stable models, we will occasionally refer
to them simply as answer sets.

Answer sets are defined around the so called reduct, which was
introduced to deal with negation in logic programs. The reduct
is a positive program constructed from the disjunctive program
R and an interpretation I, or more formally:

Definition 2.3.7. We define the reduct RI of a program R with respect
to an interpretation I as {h(r)∪ b

+(r) | r ∈ R, b
−(r)∩ I = ∅}.

The program RI1 shown in Listing 2.3 is the reduct of the
program R shown in Listing 2.2 together with the interpretation

I1 ={coin(euro1), coin(euro2), lose(euro1),

down(euro1), lose(euro2),down(euro2)}.

In this case, only the atoms of the negative body are removed
from R. In the case of the following interpretation,

I2 ={coin(euro1), coin(euro2), lose(euro1),

down(euro1), lose(euro2),down(euro2), forged(euro1)},

the whole rule containing forged(euro1) in its negative body is
removed, see Listing 2.4.

We are now ready to define the stable models, or answer sets,
of a program.

30 preliminaries

Listing 2.4: Reduct RI2 of program R in Listing 2.2.

1 coin (euro1) .
2 coin (euro2) .
3 win (euro1) :− coin (euro1) , up (euro1) .
4 l o s e (euro1) :− coin (euro1) , down(euro1) .
5 win (euro2) :− coin (euro2) , up (euro2) .
6 l o s e (euro2) :− coin (euro2) , down(euro2) .
7 up (euro2) v down(euro2) :− coin (euro2) .

Definition 2.3.8. An interpretation I is an answer set of a program
R iff I |= R and there exists no J ⊂ I such that J |= RI. The set of all
answer sets of a program R is denoted by AS(R).

Example 2.3.9. Let us now inspect the two interpretations I1 |= R and
I2 |= R we have shown above.

For the interpretation I1, there is no J ⊂ I1 such that J |= RI1 , thus
I1 is indeed an answer set of R.

For the interpretation I2 and the reduct RI2 shown in Listing 2.4, we
have two J ⊂ I2 such that J |= RI2 holds. For example the set

J ={coin(euro1), coin(euro2), lose(euro2),down(euro2)}.

Thus, we conclude that I2 is not a stable model (or answer set) for R,
and hence not included in AS(R).

Our program R shown in Listing 2.1 (or equivalently Listing 2.2) has
four answer sets (we omit the coin, up, and down atoms for clarity):

AS(R) = {

{lose(euro1), lose(euro2)},

{win(euro1), lose(euro2)},

{lose(euro1),win(euro2)},

{win(euro1),win(euro2)}

}.

2.3.2 Architecture of asp solvers

A typical asp solver follows a two phase architecture, first the non-
ground program is grounded, then the answer sets are computed
for the propositional (or ground) program.

1. Grounding step: the grounding step could lead to an ex-
ponential blowup of the program, thus several grounding

2.4 finite structures 31

procedures have been developed to optimize the ground
program, see for example Eiter et al. (2007) [23].

2. Model search: for the grounded program a solver com-
putes the stable models, which are also stable models for
the non-ground programs. For this model search, many
different algorithms have been proposed, see Eiter, Ianni,
and Krennwallner (2009) [24] for a survey.

Recently, some research into a more interwoven asp solver
has been conducted. For example, techniques for lazy or partial
grounding have been shown (see [14, 34]).

Our algorithms presented in Chapter 5 are a new way for
solving step 2, the model search, which has been shown to be
ΣP2 complete for disjunctive logic programs by Eiter and Gottlob
(1995) [19].

2.4 finite structures

Definition 2.4.1. Let τ be a set of predicate symbols τ = {R1, . . . ,Rn}.
A finite structure A over τ (a τ-structure for short) is given by a finite
domain, that is, a set of constants A, and relations RAi ⊆ Ari , where ri
is the arity of Ri ∈ τ.

We will show how to encode propositional formulae as finite
structures in Example 2.4.2, and how to encode asp programs in
Example 2.4.3.

Example 2.4.2. To encode propositional formulae as a finite structure,
we introduce several predicate symbols τ = {var, cl, pos, neg} with the
following intended meaning.

• var(a) denotes that a is a variable.

• cl(C) denotes that C is a clause.

• pos(C,a) denotes that a occurs positively in C.

• neg(C,a) denotes that a occurs negatively in C.

The propositional formula given in Example 2.2.5,

ϕ = a∧ (b∨ c)∧¬d

can now be encoded using finite structures (we refer to the clauses as
C1 = a, C2 = a∨ c, and C3 = ¬d respectively).

A = (A, varA, clA, posA, negA)

32 preliminaries

The finite domain is defined as A = {a,b, c,d,C1,C2,C3}, and the
relations are defined as

varA ={var(a), var(b), var(c), var(d)}

clA ={cl(C1), cl(C2), cl(C3)}

posA ={pos(C1,a), pos(C2,b), pos(C2, c)}

negA ={neg(C3,d)}

Example 2.4.3. To encode an asp program as a finite structure, we
introduce several predicate symbols τ = {at, rl, pB, nB, H} with the
following intended meaning.

• at(a) denotes that a is an atom.

• rl(R) denotes that R is a rule.

• pB(R,a) denotes that a occurs positively in the body of R.

• nB(R,a) denotes that a occurs negatively in the body of R.

• H(R,a) denotes that a occurs in the head of R.

Consider the following program (Listing 2.5).

Listing 2.5: Program P.

1 a .
2 b :− a , c .
3 e :− a , d .
4 c ∨ d :− a , not f .

Program P shown in Listing 2.5 can now be encoded using finite
structures (we refer to the rules by their line number, that is the rule in
line 1 is R1)

A = (A, atA, rlA, pBA, nBA, HA)

The finite domain is defined as A = {a,b, c,d, e, f,R1,R2,R3,R4},
and the relations are defined as

atA ={at(a), at(b), at(c), at(d), at(e), at(f)}

rlA ={rl(R1), rl(R2), rl(R3), rl(R4)}

pBA ={pB(R2,a), pB(R2, c), pB(R3,a), pB(R3,d), pB(R4,a)}

nBA ={nB(R4, f)}

HA ={H(R1,a), H(R2,b), H(R3, e), H(R4, c), H(R4,d)}.

2.5 monadic second order logic 33

2.5 monadic second order logic

Monadic Second Order logic (mso logic for short), see Ebbing-
hause and Flum (1999) [18], is a very expressive language. It can
be shown that for every level of the polynomial hierarchy there
exists a problem expressible in mso logic. But it is not possible
to capture the polynomial hierarchy itself, see Matz and Thomas
(1997) [58] and Libkin (2004) [53].

2.5.1 Syntax

mso logic is defined over τ-structures A with domain A, that is,
we have constants a standing for objects from the domain a ∈ A.
Additionally, we have

• an infinite supply of individual variables (written as lower
case letters) ranging over the domain A, and

• an infinite supply of set variables (written as upper case
letters) ranging over subsets of the domain A.

Further, an mso logic formula is defined inductively over the
variables and constants and the set of predicate symbols, τ.

• If P is a predicate symbol, P ∈ τ, with arity r, and t1, . . . , tr
are constants or variables, then P(t1, . . . , tr) is a formula.

• If X is a set variable and t is a constant, then X(t) is a
formula. This may also be written as t ∈ X.

• If t1 and t2 are constants, then t1 = t2 is a formula.

• If ϕ is a formula, then (¬ϕ) is a formula.

• If ϕ is a formula and x is a variable, then ((∀x)ϕ) and
((∃x)ϕ) are formulae.

• If ϕ is a formula and X is a set variable, then ((∀X)ϕ) and
((∃X)ϕ) are formulae.

• If ϕ and ψ are formulae, then (ϕ∧ψ), (ϕ∨ψ), and (ϕ→
ψ) are formulae.

A (set-)variable is called bound in ϕ if it is quantified, that is,
ϕ = (∀x)ψ or ϕ = (∃x)ψ, otherwise, x is called free. If ϕ has free
variables x and X, we write ϕ(x,X). If ϕ has no free variables, it
is called a sentence.

34 preliminaries

2.5.2 Semantics

The truth value of a formula is defined be the following rules
(ϕ[x/a] is used as a shortcut of the formula ϕ where each free
occurrence of x is replaced with a).

• A formula ϕ = (∀x)ψ evaluates to true if, for all constants
a ∈ A the formula ψ[x/a] evaluates to true, otherwise it
evaluates to false.

• A formula ϕ = (∀X)ψ evaluates to true if, for all subsets
B ⊆ A the formula ψ[X/B] evaluates to true, otherwise it
evaluates to false.

• A formula ϕ = (∃x)ψ evaluates to true if there exists an
atom a ∈ A such that the formula ψ[x/a] evaluates to true,
otherwise it evaluates to false.

• A formula ϕ = (∃X)ψ evaluates to true if there exists a
subset B ⊆ A such that ψ[X/B] evaluates to true, otherwise
it evaluates to false.

• A formula ϕ = ψ∧ ξ evaluates to true if the formulae ψ
and ξ evaluate to true, otherwise it evaluates to false.

• A formula ϕ = ψ∨ ξ evaluates to true if at least one of the
formulae ψ or ξ evaluate to true, otherwise it evaluates to
false.

• A formula ϕ = ψ → ξ evaluates to false if the formula
ξ evaluates to false and the formulae ψ evaluates to true,
otherwise it evaluates to true

• If ϕ = X(t), respectively ϕ = (t ∈ X), is a sentence, t is a
constant, and X ⊆ A is a set, then ϕ evaluates to true if the
t is contained in X.

• Ifϕ = P(t1, . . . , tr) is a sentence and P is a predicate symbol,
P ∈ τ, with arity r, and t1, . . . , tr are constants, then ϕ
evaluates to true if there exists a tuple (t1, . . . , tr) ∈ PA,
otherwise it evaluates to false.

A formula with free variables has no truth value.

Definition 2.5.1. Any property of a finite structure expressible in mso

logic is called mso logic definable.

2.6 finite (tree) automata 35

Example 2.5.2. We encode the well-known 3-colorability problem
in mso logic defined over a τ-structure A.

Consider the τ-structure A, encoding a graph G where the domain V
are vertices of the graph G, and the only predicate symbol, E, represents
edges in the graph G, τ = {E}. That is, the tuple (a,b) where a,b ∈ V
is in E if there is an edge between the vertices a and b.

First we define a formula encoding a partition of the universe into
three non-overlapping subsets.

partition(X1,X2,X3) =(∀x)((x ∈ X1 ∧ x 6∈ X2 ∧ x 6∈ X3)∨
(x 6∈ X1 ∧ x ∈ X2 ∧ x 6∈ X3)∨
(x 6∈ X1 ∧ x 6∈ X2 ∧ x ∈ X3))

Finally, we define the formula ϕ encoding the 3-colorability problem.

ϕ =(∃R,G,B)partition(R,G,B)→
((∀v1, v2)(v1, v2) ∈ E→
(v1 ∈ R∧ v2 ∈ G)∨ (v1 ∈ R∧ v2 ∈ B)∨ (v1 ∈ B∧ v2 ∈ G)∨
(v1 ∈ G∧ v2 ∈ R)∨ (v1 ∈ B∧ v2 ∈ R)∨ (v1 ∈ G∧ v2 ∈ B))

That is, if ϕ evaluates to true over the τ-structure A, then there exists
a valid partition of the vertices (domain) into three disjunct sets, such
that no two adjacent vertices are in the same set.

2.6 finite (tree) automata

Definition 2.6.1. Let Σ be a finite nonempty set of symbols, the set
of finite strings over Σ is denoted as Σ∗. A subset L ⊆ Σ∗ is called
language.

Definition 2.6.2. A finite automaton is a tuple

A = (Q,Σ,q0, F, δ)

where Q is a finite set of states, Σ is a finite set of symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and δ is a function
from Q× Σ to 2Q called transition function. An automaton is called
deterministic if |δ(q,a)| = 1 for every q ∈ Q and a ∈ Σ, otherwise it
is called nondeterministic.

Every nondeterministic finite automaton can be transformed
into a deterministic finite automaton, see Glabbeek and Ploeger
(2008) [38] for an overview of determinisation algorithms. We
will hence assume deterministic finite automata if not noted
otherwise.

36 preliminaries

A run of a finite automaton A on l ∈ L, where l = a1, . . . ,an,
is a mapping r : {1, . . . ,n}→ Q where

r(1) =δ(q0,a1)

r(i+ 1) =δ(r(i),ai)

Such a run is called accepting if r(n) ∈ F.
We say, an automaton A recognizes a language L if for every

l ∈ L, a run of the automaton A accepts l, and for every l 6∈ L
there is no accepting run of the automaton A for l.

There is a well-known correspondence between formulae in
mso logic and finite automata, see Büchi (1960) [9] and Elgot
(1961) [25]. That is, a language is recognizable by a finite state
automaton if and only if it is mso logic definable.

Definition 2.6.3. A Σ-tree is a pair (T ,β) where T is a tree and β is a
function from T to Σ called labelling function.

The set tree(Σ) is the set of all Σ-trees, a subset LT ⊆ tree(Σ) is
called tree language.

Definition 2.6.4. A finite tree automaton is a tuple

A = (Q,Σ,q0, F, δ)

where Q is a finite set of states, Σ is a finite set of symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and δ is a function from
Q×Q× Σ to 2Q called transition function. An automaton is called
deterministic if |δ(q1,q2,a)| = 1 for every q1,q2 ∈ Q and a ∈ Σ,
otherwise it is called nondeterministic.

Similarly to finite automata, nondeterministic finite tree au-
tomata can be transformed into deterministic finite tree automata,
hence we will assume only deterministic finite tree automata.

A run of a finite tree automaton A on a Σ-tree (T ,β) is a
mapping r : T → Q where

r(s) = δ(q0,q0,β(s))

if s ∈ T is a leaf node, and

r(p) = δ(r(s1), r(s2),β(b))

where s1, s2,p ∈ T and s1 and s2 are the children of p.
Such a run is called accepting if r(n) ∈ F, where n ∈ T is the

root node of T .
Thatcher and Wright (1968) [76] have shown that a tree lan-

guage is recognizable by a finite tree automaton if and only if it
is mso logic definable. Furthermore, they show how to construct
a finite tree automaton from an mso logic formula.

3
T R E E W I D T H A N D C O U R C E L L E ’ S T H E O R E M

A tree decomposition is a way of transforming a graph into a tree
structure. This new structure has certain properties, and with
them, it preserves certain properties of the original graph.

Many algorithms run considerably faster on these structures
than on the original graph. In general, it is np complete to decide
if there exists a tree decomposition or a path decomposition of
a graph with width k, see Arnborg, Corneil, and Proskurowski
(1987) [2] for details. Fortunately, there exist fpt algorithms and
heuristics to speed up the decomposition process.

Example 3.0.5. We will use the following graph to illustrate the various
definitions.

a b

c d

e f

Figure 3.1: Example graph G for decomposition purposes.

3.1 tree decompositions

The notion of tree decompositions was coined by Robertson and
Seymour in 1984 [67]. Since then, tree decompositions have been
widely studied, and successfully applied to solve otherwise hard
problems, see Bodlaender (1993) [5] for a survey of successful
applications within 10 years of the original publication.

The treewidth of a graph is a measure how close the graph
resembles a tree.

Definition 3.1.1. A tree decomposition T of a graph G = (V ,E) is
a pair T = (T ,β), where T is a rooted tree and β maps each node n ∈ T
to a bag β(n) ⊆ 2V , such that the following conditions are met.

• For each v ∈ V , there exists an n ∈ T such that v ∈ β(n).

37

38 treewidth and courcelle’s theorem

• For each (v,w) ∈ E, there exists an n ∈ T , such that v,w ∈
β(n).

• For any three nodes n1,n2,n3 ∈ T , if n2 lies on the path from
n1 to n3, then β(n1)∩β(n3) ⊆ β(n2) holds (this is often called
connectedness condition).

Definition 3.1.2. The width of a tree decomposition is defined as
the cardinality of its largest bag |β(n)| minus 1.

Example 3.1.3. One possible tree decomposition of the graph G is
shown in Figure 3.2.

d, e

d, f c,d

a,b, c,d

Figure 3.2: Tree decomposition T1 with width 3 of graph G.

Definition 3.1.4. The treewidth of a graph G, denoted as tw(G), is
the minimum width over all tree decompositions of G.

There exists a tree decomposition of a tree with two elements
per bag, and thus trees have treewidth of 1.

Definition 3.1.5. A tree decomposition is called optimal if the width
of the tree decomposition equals the treewidth of the graph.

Example 3.1.6. Note that the tree decomposition in Figure 3.2 is not
optimal. It has width 3, but the graph has a treewidth of 2 (the element
d in the node a,b, c,d is redundant). See Figure 3.3 for an optimal tree
decomposition.

The treewidth of the example graph is 2. All vertices that form a
clique, have to occur at least once together in a bag. The vertices a,b,
and c form a clique, hence we have a node containing a,b, and c
leading to a treewidth of at least 2. Our tree decomposition T4 (shown
in Figure 3.3) has width 2, so we can conclude that we have found an
optimal tree decomposition.

3.1.1 Tree Decompositions of Finite Structures

In this section we will generalize the notion of tree decomposi-
tions of graphs to tree decompositions of arbitrary finite struc-
tures.

3.1 tree decompositions 39

d, e

d, f c,d

a,b, c

Figure 3.3: Optimal tree decomposition T4 with width 2 of graph G
with treewidth 2.

Definition 3.1.7. A tree decomposition T of a τ-structure A with
domain A is a pair T = (T ,β), where T is a rooted tree and β maps
each node n ∈ T to a bag β(n) ⊆ A, such that the following conditions
are met.

• For each a ∈ A, there exists an n ∈ T such that a ∈ β(n).

• For every Ri ∈ τ and every tuple (a1, . . . ,ar) ∈ RAi , there exists
an n ∈ T such that {a1, . . . ,ar} ⊆ β(n).

• For any three nodes n1,n2,n3 ∈ T , if n2 lies on the path from
n1 to n3, then β(n1)∩β(n3) ⊆ β(n2) holds (this is often called
connectedness condition).

We can use the definition of tree decompositions of arbitrary
τ-structures to define tree decompositions of graphs by encoding
graphs as τ-structures.

Suppose the graph G has vertices V and edges E, that is, G =

(V ,E). To encode this graph as a τ-structure A, we define the set
of predicate symbols as τ = {Edge}, and the domain of A as V .
EdgeA contains all edges, that is, for each (v1, v2) ∈ E there

exists a (v1, v2) ∈ EdgeA.
It is also possible to encode an arbitrary τ-structure A as a

graph GA (more specifically, a primal graph, see Definition 3.1.8)
and build equivalent tree decompositions from the graph GA. It
can be shown that the tree decompositions of the τ-structure A are
exactly the same as the tree decompositions of the corresponding
primal graph G of A.

Definition 3.1.8. A primal graph (also known as Gaifman graph)
GA = (V ,E) of a τ-structure A with domain A is defined as follows.
The domain elements of A are the vertices of the graph V , that is V = A.
Two vertices v1 and v2 are adjacent in GA, that is (v1, v2) ∈ E, if
there exists an Ri ∈ τ such that (a1, . . . ,ar) ∈ RAi and v1, v2 ∈
{a1, . . . ,ar}.

40 treewidth and courcelle’s theorem

Example 3.1.9. In this example, we will illustrate the equivalence
of the tree decompositions of the graph G in Figure 3.1, and the tree
decompositions of the corresponding τ-structure A.

The domain elements A of A are the vertices of G, that is, A =

{a,b, c,d, e, f}. The EdgeA-relation is defined as

EdgeA = {(a,b), (a, c), (b, c), (c,d), (d, e), (d, f)}.

The primal graph GA of A is shown in Figure 3.4.

a b

c d

e f

Figure 3.4: Primal graph GA of τ-structure A shown in Example 3.1.9.

Since the graph G and the primal graph GA of the corresponding τ-
structure A are identical, G and GA have the same tree decompositions.

3.1.2 Special Tree Decompositions

In this section, we introduce the notion of normalized tree decom-
position and extended normalized tree decompositions. Arbitrary
tree decompositions can be transformed into (extended) normal-
ized tree decompositions in linear time. (Extended) normalized
tree decompositions are convenient to work with.

Definition 3.1.10. A tree decomposition T = (T ,β) is called normal-
ized if the following conditions hold.

• Each node in T has at most two children.

• For each node n with two children n1 and n2 the bags are equal,
i.e., β(n) = β(n1) = β(n2).

• For each node n with one child n ′, the corresponding bags, β(n)
and β(n ′), differ in exactly one element, i.e.,

|β(n ′) \β(n)|+ |β(n) \β(n ′)| = 1.

A normalized tree decomposition is called nice tree decompo-
sition by Kloks (1994) [50].

3.2 normalization procedure 41

3.2 normalization procedure

In the following, we will explain the normalization procedure in
detail. The algorithm takes a node of a tree decomposition as
input and transforms the tree rooted at that node into a normal-
ized tree decomposition. That is, if we apply the algorithm to the
root node of a tree decomposition, the result is a normalized tree
decomposition. Listing 3.1 contains the normalization algorithm
explained below in pseudo code.

Let n be the node the algorithm is called with.

step 1: binary tree decomposition The tree decompo-
sition is first transformed into a binary tree decomposition. This
is done by a recursive approach.

Let c1, · · · , cj be the children of n.

• If j > 2:

– Remove the children c1, . . . , cj−1 from n.

– Insert a new node n ′ where β(n ′) = β(n) as the first
child of n, and set c1, . . . , cj−1 as the children of n ′.

• Transform n ′ and cj recursively.

n

c1, . . . , cj−1 cj

n

n ′

c1, . . . , cj−1

cj

step 2: ensuring conditions After the transformation
into a binary tree decomposition, we ensure the remaining condi-
tions given in Definition 3.1.10. That is, the following exposition
assumes a binary tree decomposition as input.

We have three cases: the node n is either a leaf node, branch
node, or a node with exactly one child.

• Leaf Node: If n is a leaf node, we are done.

n : {a,b, c} n : {a,b, c}

• Branch Node: For a branch node, we duplicate the node n
two times, n1 and n2, and insert the new nodes as children
of n. For the original children c1 and c2 of n, we set c1 as
the only child of n1 and c2 as the only child of n2.

42 treewidth and courcelle’s theorem

Finally, we call the normalization algorithm once with
n1 and n2 as parameter to normalize the left and right
branches of the branch node.

n : {d, e}

c1 : {d, f} c2 : {c,d}

n : {d, e}

n1 : {d, e}

c1 : {d, f}

n2 : {d, e}

c2 : {c,d}

• For all other nodes, that is, nodes n with exactly one child
c, we compute the difference of the bags, S1 = β(n) \β(c)
and S2 = β(c) \β(n).

It is necessary to leave out exactly one element of either
S1 or S2, otherwise we would create a node identical to c.
Identical bags are only permitted for branch nodes, so we
have to be careful not to introduce duplicate bags.

The set S1 contains those elements that are only in the bag
of n, and hence have to be removed one by one. The set S2
contains those elements that are only in the bag of c and
have hence to be added one by one.

It is crucial to start with the elimination step, otherwise we
would increase the width of the tree decomposition.

For each element in s ∈ S1 we copy the node n to t, remove
the element s from β(t) and set t as the child of n. Finally
t is the new n for the next iteration.

After all elements of S1 have been processed, we add the
elements of S2 one by one.

For each element in s ∈ S2 we copy the node n to t, add
the element s to β(t) and set t as the child of n. Finally t is
the new n for the next iteration.

Finally, we set c as the new child of n, and call the normal-
ization algorithm with c as parameter.

In our example tree decomposition shown below, the sets
for eliminating and adding elements look like S1 = {e, f}
and S2 = {b, c}, leaving out one element of S2, we have
S ′2 = {b}.

3.2 normalization procedure 43

n : {d, e, f}

c : {b, c,d}

n : {d, e, f}

t1 : {d, e}

t2 : {d}

t3 : {b,d}

c : {b, c,d}

Example 3.2.1. In Figure 3.5, we normalize the tree decomposition T1
of the graph G (Figure 3.2). The nodes inserted by the normalization
step are highlighted.

d, e

d, e

d

d, f

d, e

d

c,d

b, c,d

a,b, c,d

Figure 3.5: Normalized tree decomposition T2 with width 3 of graph
G.

We further extend the notion of a normalized tree decomposi-
tion to allow only empty leaf nodes and an empty root node.

Definition 3.2.2. A tree decomposition is called extended normal-
ized, if it is a normalized tree decomposition, and the bag β(n) of a
node n is empty for all leaf nodes and the root node.

The normalization algorithm shown in Listing 3.1 runs in time
O(k2 · n), where k is the width and n the number of nodes in
the tree decomposition. By adding empty nodes as root and
leaf nodes, it can immediately be used to generate extended nor-
malized tree decompositions. Hence we can conclude that the
size of the (extended) normalized tree decomposition is linearly
bounded in the number of nodes of an arbitrary tree decomposi-
tion.

44 treewidth and courcelle’s theorem

Listing 3.1: Normalization of a binary tree decomposition in pseudo
code.

1 normalize (Node n) :
2 i f n i s a l e a f node :
3 // do nothing
4 i f n i s a branch node
5 // save the c h i l d nodes
6 c1 = n . c h i l d 1

7 c2 = n . c h i l d 2

8 n . c h i l d 1 = copy of n
9 n . c h i l d 2 = copy of n

10 // s e t c1 and c2 as s o l e ch i ldren
11 n . c h i l d 1 . c h i l d 1 = c1

12 remove n . c h i l d 1 . c h i l d 2

13 n . c h i l d 2 . c h i l d 1 = c2

14 remove n . c h i l d 2 . c h i l d 2

15 // recurs ion
16 normalize (n . ch i l d 1)
17 normalize (n . ch i l d 2)
18 e l s e :
19 c = n . c h i l d 1

20 // compute the d i f f e r e n c e s
21 s1 = β(n) \β(c)

22 s2 = β(c) \β(n)

23 i f s2 i s not empty :
24 remove an a r b i t r a r y element of s2

25 e l s e :
26 remove an a r b i t r a r y element of s1

27 // remove elements
28 foreach s in s1 :
29 t = copy of n
30 β(t) = β(t) \ {s}

31 n . c h i l d 1 = t
32 n = t
33 // add elements
34 foreach s in s2 :
35 t = copy of n
36 β(t) = β(t)∪ {s}
37 n . c h i l d 1 = t
38 n = t
39 // s e t the new c h i l d
40 n . c h i l d = c
41 // recurs ion
42 normalize (c)

3.3 path decompositions 45

Example 3.2.3. In the example shown in Figure 3.6, we extend the
normalized tree decomposition T2 of the graph G. The nodes inserted
by the extension step are highlighted (compared to the normalized tree
decomposition T2).

∅

d

d, e

d, e

d

d, f

d

∅

d, e

d

c,d

b, c,d

a,b, c,d

a,b, c

a,b

a

∅

Figure 3.6: Normalized tree decomposition T3 with width 3 of graph
G.

Bodlaender (1996) published an fpt algorithm to compute the
tree decomposition of a graph with width k if it exists. That is,
for arbitrary but fixed k > 1, it is feasible in linear time to decide
if a graph has a treewidth of at most k and, if so, to compute a
tree decomposition of width k [6]. From this follows that the size
of a tree decomposition is linear in the size of the graph.

3.3 path decompositions

A path decomposition is similar to the notion of tree decompo-
sitions. Instead of transforming the graph into a tree, the graph
is transformed into a path, that is, a sequence of nodes without
branches.

Naturally, the pathwidth is closely related to the treewidth, but
cannot be smaller than the treewidth of the same graph.

46 treewidth and courcelle’s theorem

Since path decompositions have no branches like tree decompo-
sitions, algorithms using path decompositions are much simpler
to design. A branch-node is often the most complex node to deal
with, as we will see in our fpt algorithms in Chapter 5.

A path decomposition has all characteristics of a tree decompo-
sition, it only lacks branch nodes. Hence, a path decomposition
is a special case of a tree decomposition: any path decomposition
is also a tree decomposition. Thus, algorithms written for tree
decompositions work directly on path decompositions but suffer
from the potentially larger pathwidth. We make no distinction
between tree decompositions and path decompositions in the
following.

Example 3.3.1. The extended normalized pathwidth of the example
graph is 2, and the corresponding path decomposition is shown in P

(Figure 3.7).

∅

d d, f d d, e d c,d c b, c a,b, c a,b a

∅

Figure 3.7: Optimal path decomposition P with pathwidth 2 of graph
G with pathwidth 2.

3.4 algorithms for finding tree decompositions

Algorithms to decompose a graph into a tree or a path have been
found over the last decades, we will explain the principles of the
important algorithms here.

Exact algorithms like branch and bound algorithms are unprac-
tical for almost all instances. We have to rely on other methods
to build the tree decomposition of a graph. In the following we
will mention some important algorithms for theoretical consider-
ations (fixed parameter algorithms) and practical considerations
(heuristics).

fpt algorithms have good theoretical time bounds, unfortu-
nately the multiplicative constants are very high. So high, that
they are currently not considered practical. Heuristics on the
other hand may not produce optimal tree decompositions, but
compute “good enough” decompositions in a very short time.

3.4 algorithms for finding tree decompositions 47

fixed parameter algorithms Many fpt algorithms are
known for several years, their runtime ranges from O(f(k) · n ·
logn) (Reed 1992 [66]) to linear runtime for treewidths of 1

to 4 [57, 71]. Bodlaender (1996) [6] improved on an algorithm
proposed by Bodlaender and Kloks (1991) [7] and proposed a
general linear time fpt algorithm. Yet many of these algorithms
are considered unpractical for graphs with a treewidth higher
than 2. The algorithm proposed by Bodlaender, for example, has
an upper time bound of O(235k

3 ·n) [26] where k is the treewidth
and n the size of the graph.

heuristics Even though there exists a linear time fpt al-
gorithm, the algorithm has very high multiplicative constants
rendering it unpractical for now.

Our fpt algorithms do not rely on the optimal tree decomposi-
tion to give the correct answer, so it is natural to use heuristics.

vertex elimination The basic principle behind many tree
decomposition heuristics is vertex elimination.

The vertex elimination algorithm takes the graph G and an
elimination ordering O as input. The elimination ordering is a
sequence of nodes of the graph G and determines the tree decom-
position. Since there are many possible elimination orderings, it
is hard to find the best elimination ordering which then yields the
optimal tree decomposition with width of the tree decomposition
equal to the treewidth of the graph. This method is an adaption
of the vertex elimination algorithm for sparse matrix factorization
by Rose and Tarjan (1975) [68]. Vertex elimination for approxi-
mating tree decompositions was introduced by Bodlaender et al.
(1991) [8].

The algorithm takes a graph G = (V ,E) and an elimination
ordering O = (v1, . . . , vn) of all vertices in V as input, and returns
a tree decomposition T = (T ,β) of G where T = (VT ,ET).

The vertex elimination algorithm creates a bag for each node
of the graph G = (V ,E), that is, the resulting tree decomposition
has exactly |V | bags. These bags are initialized in the first step
and for each vertex v ∈ V , a set N(v) containing all neighbors
(vertices connected with an edge) of v is computed.

After the initialization, the vertices v ∈ V are considered in the
ordering determined by the elimination ordering O. For each
vertex v, the vertex itself and all neighbors are added to the bag
β(v) for the vertex v. Here we see that all vertices in a clique are
contained together in at least one bag. Then the vertex v and all

48 treewidth and courcelle’s theorem

Listing 3.2: Vertex Elimination Algorithm [68]

1 ET = ∅
2 f o r each v ∈ V :
3 // i n i t i a l i z e the bags
4 β(v) = ∅
5 // compute the neighbors of v

6 N(v) =
⋃

(v,x)∈E{x}

7

8 f o r each v ∈ O :
9 // compute the bag of v

10 β(v) = {v}∪N(v)

11 // introduce edges between a l l ad jacent nodes of v

12 E = E∪ (N(v)×N(v))

13 Let w be the next ver tex in O such t h a t w ∈ N(v) .
14 // connect the nodes
15 ET = ET ∪ {(v,w)}
16 // remove v from the graph G

17 G = G \ {v}

18

19 // Choose root node in (V, E_T)
20 re turn ((V ,ET),β)

edges adjacent to v are removed from the graph. All neighbors
are then connected with edges in the graph G. The new bag
for the vertex v is now connected to the bag of the vertex in its
neighborhood which is to be eliminated next. Note that this is
not necessarily the next node in the elimination ordering.

After all vertices have been processed, a root node is arbitrarily
chosen and the tree decomposition T is returned.

We will show how the pseudo-code algorithm shown in List-
ing 3.2 works using an example shown in Example 3.4.1.

Example 3.4.1. Assume as input the graph G of Figure 3.1, and the
elimination ordering O = (d, e, f, c,b,a).

We begin by initializing the bags β(a), . . . ,β(f) = ∅, and by setting
the edge relation for the tree ET = ∅.

The first vertex to be eliminated is d, thus after the first iteration
of the main loop, our new graphs is shown in Figure 3.8, note that
some edges have been introduced! The bag of d is thus defined as
β(d) = {c,d, e, f} and an edge between the nodes d and e in T of T is
inserted because e is the next vertex in the elimination ordering which
also occurs in the neighborhood of d, that is ET = {(d, e)}.

3.4 algorithms for finding tree decompositions 49

The next vertex to be eliminated is e. The bag is now fixed β(e) =
{c, e, f}, and an edge between e and f is inserted because f is the next
vertex in the elimination ordering which also occurs in the neighborhood
of e, thus ET = {(d, e), (e, f)}.

After six iterations the algorithm is done and outputs the tree decom-
position shown in Figure 3.9, note that the root of the tree decompo-
sition can be arbitrarily chosen. Further, modern tree decomposition
algorithms also collapse, or prune, redundant nodes.

a b

c

e f

Figure 3.8: Graph after the first step of the vertex elimination algorithm.

c,d, e, f

c, e, f

c, f

a,b, c

a,b

a

Figure 3.9: Resulting tree decomposition of the vertex elimination algo-
rithm.

To find an elimination ordering that produces (near) optimal
tree decompositions is thus the goal of various heuristics, see
Schafhauser (2006), Dermaku et al. (2008), and Hammerl (2009)
for surveys, new algorithms, and benchmarks [72, 16, 43].

For our implementation (see Chapter 6), we used a tree decom-
position library based on a combination of various heuristics, see
Dermaku et al. (2008) [16].

50 treewidth and courcelle’s theorem

3.5 parameterized complexity

Parameterized complexity is a branch of classical complexity the-
ory. Classical complexity theory considers the time and space
behavior of problems under growing problem sizes. Parameter-
ized complexity theory on the other hand determines the time
and space requirements for problems with growing problem size
but explicitly taking additional parameters into account.

Classical complexity theory is often called “one-dimensional”
in the context of parameterized complexity theory, which is then
referred to as “two-dimensional”.

Example 3.5.1. Consider the Vertex Cover problem discussed in
Chapter 2. In general it is np complete, but if we restrict the size of
the cover, that is, the number of vertices in the vertex cover, it becomes
(fixed parameter) tractable. Thus, the problem is transformed from “find
a minimal vertex cover in graph G” to “find a minimal vertex cover in
graph G, but consider at most k vertices”.

There are many possible parameters to choose from. Some
popular parameters when dealing with graphs are branch-width,
clique-width, and pathwidth (see Hlineny et al. (2007) [45] for a
discussion), but treewidth is referred to as “universal parameter”
by Fellows (2003) [26] due to its wide applicability.

There is no need for parameters to be single values, they can
capture more values at once. A notable example combining three
values into one compound parameter is described by Fellows,
Gramm, and Niedermeier (2006) [27] for motif search problems.

For a broader overview of the field of parameterized com-
plexity, we refer to the two special issue of “Computer Journal”
(Volume 51, Issue 1 and 3) published in 2008, covering survey
articles on the various fields where parameterized complexity is
used.

Even though the term “fixed parameter algorithm” was coined
in the late eighties, fixed parameter algorithms were quite com-
mon before that, for example the Integer Linear Programming of
Lenstra (1983) uses the number of variables as parameter [51] es-
sentially solving an np complete problem with an fpt algorithm.

Another example for an fpt algorithm presented before the
dawn of parameterized complexity theory is type-checking in
ML, which is exptime complete [44], but practically solvable
with an fpt algorithm by restricting the nesting depth of type
declarations, as shown by Lichtenstein and Pnueli (1985) [54].

3.6 courcelle’s theorem 51

Parameterized complexity theory came up in the late eighties
and provides the foundations and mathematical tools to analyze
and “talk about” such algorithms.

Let us now recast the definitions of parameterized problems
and some important complexity classes in the context of parame-
terized complexity [26, 17].

Definition 3.5.2. A parameterized language L is a subset L ⊆
Σ∗×Σ∗. If L is a parameterized language, and (x,k) ∈ L, then we refer
to x as the main part, and k as the parameter.

Based on the definition of a parameterized language, we can
now introduce two important complexity classes.

Definition 3.5.3. A parameterized language is called fixed parameter
tractable, or in fpt, if it can be decided in timeO(f(k) ·nO(1)) whether
(x,k) ∈ L, where f is an arbitrary function.

Definition 3.5.4. A parameterized language is in xp, if it can be
decided in time O(f(k) ·ng(k)) whether (x,k) ∈ L, where f and g are
arbitrary functions.

Problems in fpt are considered to be tractable, even though the
function f(k) could be exceedingly large. Similarly, problems in
xp are considered to be intractable. There are many more classes
between fpt and xp, see Niedermeier (2006) [62] and Flum and
Grohe (2003) [29]. For many of these classes the relationship
between each other is not fully known, but we do know that
there are strictly fewer problems in the class fpt than in the class
xp, that is, fpt ⊂ xp, see Downey and Fellows (1999) [17].

3.6 courcelle’s theorem

An important result in the context of parameterized complexity
is known as Courcelle’s Theorem [12].

Theorem 3.6.1. Let the treewidth k > 1 and let ϕ be an mso sentence.
Then there is a linear-time algorithm, given a graph G = (V ,E) with a
tree decomposition of width at most k that decides whether G |= ϕ.

The theorem was later extended to capture counting problems
by Arnborg, Lagergren, and Seese (1991) [3] and finally to capture
enumeration problems by Flum, Frick, and Grohe (2002) [30].

Example 3.6.2. From the results shown by Courcelle, Makowsky, and
Rotics (2001) [13] the following encoding of the satisfaction check X |= F,

52 treewidth and courcelle’s theorem

where F is a propositional formula in cnf can be derived (as shown by
Gottlob, Pichler, and Wei (2006) [40]). Let the formula F be encoded
as a finite τ-structure A shown in Section 2.4, then we can derive a
formula F ′ in mso logic over A.

F ′ = (∀c)cl(c)→ (∃z)[(pos(z, c)∧ z ∈ X)∨ (neg(z, c)∧ z 6∈ X)]

Thus, we have a finite structure, A, from which we can derive a tree
decomposition with some width k, and an encoding of the formula F in
an mso sentence. We can now conclude, using Courcelle’s Theorem,
that it is possible to check whether there exists an X such that X |= F by
evaluating the formula F ′ (via tree automata) in linear time.

The proof that there exists an algorithm to solve the asp consis-
tency problem in linear time on structures of bounded treewidth
is also given by Gottlob, Pichler, and Wei (2006) [40]. They give
an encoding (reproduced in Example 3.6.2) of the asp consis-
tency problem in mso logic, and hence we can conclude, using
Courcelle’s Theorem, that asp consistency is indeed a problem in
fpt.

Example 3.6.3. Let P be the asp program encoded as a finite τ-
structure A (as shown in Section 2.4). Then we can derive a formula
Con in mso logic over A solving the asp consistency problem for P. The
formula Con is defined over a tree decomposition TA of the τ-structure A,
the formula Red is an encoding of the reduct as given in Definition 2.3.7
(see Gottlob, Pichler, and Wei (2007) [41] for the details).

Red(X, Y) =(∀r)(rl(r)→ (∃z)[(H(r, z)∧ z ∈ X)
∨ (pB(r, z)∧ z 6∈ X)∨ (nB(r, z)∧ z ∈ Y)]

Con =(∃X)(Red(X,X)∧ ((∀Z)[Z ⊂ X→ ¬Red(Z,X)]))

Unfortunately, the space requirements to transform an mso

logic formula into a tree automaton are non-elementary in the
number of alternations of quantifier blocks of the mso logic
formula, see Libkin (2004) [53]. We call the number of alternations
of quantifier blocks rank of an formula, that is, the formula F of
Example 3.6.2 has rank two.

To evaluate an mso logic formula F over τ-structure A using
tree decompositions, we need to transform F into an tree automa-
ton, and TA into a Σ-tree. Following Flum, Frick, and Grohe
(2002) [30], the tree decomposition TA has to be transformed
into a Σ-tree, T∗A, called binary colored tree. The formula F is then
transformed into an mso logic formula FT over the Σ-tree T∗A.
Finally, FT can be transformed into an tree automaton.

3.6 courcelle’s theorem 53

In their work, even atomic formulae, when rewritten into mso

logic formulae over binary colored trees, already have some
quantifier block alternations. A predicate with two variables has
rank four (for example, pos(·, ·) in Example 3.6.2). Taken together,
the transformation of the formula in Example 3.6.2 has rank
six (the rank of the predicate and the two additional quantifier
alternations). Thus the worst-case space requirement of the tree
automaton representing the transformed formula, FT , is in the
order of

O(22
22
2f(k)

).

The function f(k) is the size of the automaton without quantifiers,
which only depends on the width k of the tree decomposition TA.
See Frick and Grohe (2004) [31] for a thorough analysis.

The transformation of the formula in Example 3.6.3 is even
more memory intensive, Con has rank seven.

The size of the tree automata easily exceeds current memory
limits. We have to admit that Courcelle’s Theorem is an easy
way to proof the existence of an fpt algorithm, but it is not
practical—even for a treewidth of 1.

4
B A S I C S T R U C T U R E O F F I X E D - PA R A M E T E R
A L G O R I T H M S O N T R E E D E C O M P O S I T I O N S

Many fpt algorithms on tree decompositions work on a similar
basic concept. In this chapter we will explain these basic concepts
underlying this work and some approaches previously shown
[47, 40].

This basic structure is also the guiding principle behind our
framework for implementing algorithms for structures of bounded
treewidth in Chapter 6.

4.1 overview

The computation is split into several parts.

1. Encode the problem P in a graph G.

2. Build the tree decomposition T of G.

3. Solve the problem on the tree decomposition.

4. Optionally transform the solution of the tree decomposition
T to a solution of the original problem P.

The solution of the problem on T is often also a direct solution
of the original problem P. There are cases where we need an
additional translation step from a solution of the problem on T

to a solution of the original problem. For example, the algorithm
proposed by Flum, Frick, and Grohe (2002) [30] requires such a
translation.

∀∃∨∧

a b

c

d

c,d

d a,b, c
Solver

P G T Solution

Figure 4.1: General structure of algorithms on tree decompositions.

55

56 basic structure of fixed-parameter algorithms on tree decompositions

4.2 graph encoding

There are various ways to encode some problem as a graph. In
the context of rules or formulae, there is one dominant method,
namely by using Incidence Graphs. There are other ways, for
example using Primal Graphs shown in Chapter 3. See Samer and
Szeider (2007) [70] for a discussion of various graph types in a
#SAT setting.

To illustrate the graph encoding, we will use the following
formula,

ϕ = (a∨ b∨ c)∧ (¬b∨ c∨ d)∧ (¬c∨ e) (4.1)

and refer to the clauses as

• C1 = (a∨ b∨ c),

• C2 = (¬b∨ c∨ d), and

• C3 = (¬c∨ e).

Definition 4.2.1. An incidence graph G = (V ,E) of a formula, is
a bipartite graph with atoms and clauses as vertices V , and an edge
between the vertex of an atom, va ∈ V , and the vertex of a clause,
vc ∈ V , if the atom occurs in the clause (va, vc) ∈ E.

Example 4.2.2. The example formula ϕ is encoded as incidence graph
in Figure 4.2.

a

b

c

d

e

C1

C2

C3

Figure 4.2: Incidence graph G of formula ϕ.

Note that the information, whether an atom occurs positively
or negatively in a clause, is not present in the graph encoding.

4.3 node-types 57

decomposition After the problem has been encoded as a
graph, we decompose it into a tree decomposition of some width.
It is preferable to find the optimal tree decomposition of width
equal to the treewidth of the graph, but for the correctness of the
algorithms, any tree decomposition will do. Methods for finding
a tree decomposition have been shown in Chapter 3.

normalization Our algorithms work on extended normal-
ized tree decompositions, so an additional normalization step is
required. Transforming a tree decomposition into an (extended)
normalized tree decomposition can be done in linear time, see
Chapter 3.

Example 4.2.3. To continue our example, we decompose and normalize
the graph G into a extended normalized tree decomposition T shown in
Figure 4.3.

∅

C2

C2,d

C2,d

C2

C2, c

C1,C2, c

C1,C2, c

C1, c

C1

C1,a

C1

∅

C1,C2, c

C1,C2

C1,C2,b

C1,C2

C1

∅

C2,d

d

C3,d

C3

C3, e

C3

∅

Figure 4.3: Tree decomposition T with a width of 2 of graph G.

4.3 node-types

In the following we describe the possible node-types that may
occur in our tree decomposition.

58 basic structure of fixed-parameter algorithms on tree decompositions

• A leaf node (LN) is an empty node with no children.

• A root node is an empty node with no parent.

• An atom introduction node (AI) has exactly one child and
contains exactly one atom more than its child node.

• A clause introduction node (CI) has exactly one child and
contains exactly one clause more than its child node.

• An atom removal node (AR) has exactly one child and con-
tains exactly one atom less than its child node.

• A clause removal node (CR) has exactly one child and contains
exactly one clause less than its child node.

• A branch node (BN) is a node with exactly two children
where the bags of the children equal the bag of the branch
node.

Being a “root node” is an additional property of one of the
removal nodes, since we consider only empty root nodes.

The atom removal and introduction nodes respectively the
clause removal and introduction nodes are often augmented with
the element that was added or removed. For example, an (a-AI)
node introduces the atom a.

Example 4.3.1. In our example tree decomposition T of G, we have all
node types. See Figure 4.4 for an annotated version.

4.4 tree traversals

The logic of the algorithms is very problem specific and differs
largely from problem to problem. Yet, the basic structure of these
algorithms is very similar.

In a dynamic programming fashion, the tree decomposition is
traversed from the leaf nodes to the root node (bottom-up), and
each node maintains a table of local context information.

Each row of these tables is linked to one or more rows in the
child node (except, of course, for leaf nodes).

Depending on the node-type, the table is created in a different
way. Thus, the algorithms usually have a large case distinction
over the node-type.

For decision problems, there is often no need for a second pass.
It is sufficient to check whether there exists a row in the root
node that satisfies certain problem specific conditions.

4.4 tree traversals 59

∅

C2

C2,d

C2,d

C2

C2, c

C1,C2, c

C1,C2, c

C1, c

C1

C1,a

C1

∅

C1,C2, c

C1,C2

C1,C2,b

C1,C2

C1

∅

C2,d

d

C3,d

C3

C3, e

C3

∅

root node, clause removal node

branch node

leaf node

atom intro. node

atom removal node

clause intro. node

Figure 4.4: Annotated tree decomposition T with explicit node types.

For counting and enumeration problems, a second pass is
needed. The second pass starts at the root node, and computes
the number of solutions respectively the solutions itself from the
rows of the child nodes. That is, the second pass is a combined
top-down and bottom-up pass. Sometimes more than one row of
the child node “contributes” to a row in the parent node, we have
to compute the solutions of each contributing row, and combine
the solutions.

4.4.1 General Structure

We will now formalize the tree traversals. We assume the use of
an extended normalized tree decomposition T = (T ,β).

First, we define T-interpretations, these are the objects we store
at each node in T . T-interpretations will then be used to compute
the answers for the original problem.

60 basic structure of fixed-parameter algorithms on tree decompositions

Definition 4.4.1. A T-interpretation, is a tuple (n, ξ) where n ∈ T
is a node, and ξ some problem specific context information bounded in
size by the treewidth.

Next, we need a function to transform the T-interpretation into
a solution of the original problem. For this purpose, we define
the function E(θ).

Definition 4.4.2. A function E(θ) is called T-interpretation-mapping
if it maps a T-interpretation θ = (n, ξ) to solutions of the encoded
problem, and for each two distinct T-interpretations θ1 and θ2, the
condition

E(θ1)∩ E(θ2) = ∅

holds.

Definition 4.4.3. A T-interpretation θ = (n, ξ) is called T-model iff
E(θ) 6= ∅. If n is the root node of T , the T-model is called T-root-model.

For the counting problem we define the function #(θ) to be the
cardinality of the set E(θ).

#(θ) = |E(θ)|

To compute the E(·), or #(·) efficiently, we introduce the so
called contributes-relation, ≺T , between T-interpretations. These
T-interpretations can then be used to compute the E(·) or #(·) in
a bottom-up manner.

Definition 4.4.4. A T-relation, ≺T , is a relation between two (respec-
tively three) T-interpretations θ ′ ≺T θ (respectively (θ1, θ2) ≺T θ)
if θ = (n, ξ) and θ ′ = (n ′, ξ ′) (respectively θ1 = (n1, ξ1) and
θ2 = (n2, ξ2)) and n ′ is a child of n (respectively n1 and n2 are
children of n) in T of T.

Definition 4.4.5. A T-relation, ≺T , is called contributes-relation, if
the following conditions hold.

Let θ and θ ′ (respectively θ1 and θ2) be T-interpretations, such that
θ ′ ≺T θ (respectively (θ1, θ2) ≺T θ). Then, θ is a T-model iff θ ′ is
T-model (respectively both θ ′ and θ ′′ are T-models).

The main part of each algorithm following this structure is to
define the contributes-relation and to find a way to compute E(·)
respectively #(·) using ≺T in an efficient manner.

The computation of the mapping #(θ) where θ = (n, ξ) should
follow a similar form.

4.4 tree traversals 61

4.4.2 Counting and Enumerating Models for Propositional Logic

Before we dive into asp, we will informally apply the general
algorithm structure to the problems discussed by Samer and
Szeider (2007) [70], namely #SAT and extend it through our
algorithm to the enumeration of all models.

We assume the use of an extended normalized tree decomposi-
tion T = (T ,β), hence we deal with the node types described in
Section 4.3.

We will use Aϕ to refer to the atoms in a propositional formula
ϕ, and Cϕ to refer to the clauses of ϕ.

Definition 4.4.6. The T-interpretation is a tuple (n,M) where n ∈ T
is a node and M ⊆ β(n) is called assignment.

Let M be a set of clauses and atoms, M ⊆ Cϕ ∪ Aϕ. We
introduce some shortcuts:

Aβ(n) = Aϕ ∩β(n) set of atoms of the bag β(n)

Cβ(n) = Cϕ ∩β(n) set of clauses of the bag β(n)

AM = Aϕ ∩M set of atoms in M

CM = Cϕ ∩M set of clauses in M

To refer to certain (sub-)sets of the tree T , we define the follow-
ing abbreviations, let n be a node in T :

A(n) = Aϕ ∩
⋃
m∈Tn

β(m) set of atoms in the subtree Tn

C(n) = Cϕ ∩
⋃
m∈Tn

β(m) set of clauses in the subtree Tn

A[n] = A(n) \β(n) set of atoms below the node n in Tn
C[n] = C(n) \β(n) set clauses below the node n in Tn

For the enumeration problem of propositional logic, we have
the following mapping between an T-interpretation and the set
interpretations.

Definition 4.4.7. For a T-interpretation θ = (n,M), let the set of
interpretations E(θ) be defined as

E(θ) = {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = CM ∪C[n]}

where

SATn(I) = {c | c ∈ C(n), I |=A(n)
c}

62 basic structure of fixed-parameter algorithms on tree decompositions

(a-AR) :M =M ′ \ {a}

(c-CR) : c ∈M ′,M =M ′ \ {c}

(a-AI) :M =M ′ ∪ {c ∈ Cβ(n) | a ∈ c}
or

M =M ′ ∪ {a}∪ {c ∈ Cβ(n) | a ∈ c}

(c-CI) :M =

N∪ {c} if c∩ (AN ∪ (Aβ(n) \AN)) 6= ∅

N otherwise

Figure 4.5: Conditions for (n ′,M ′) ≺T (n,M) for the various node-
types of n.

Theorem 4.4.8. For the root-model θ of T, the following holds.

I |= ϕ ⇐⇒ I ∈ E(θ)

We define the contributes-relation ≺T on T-interpretations.

Definition 4.4.9. For T-interpretations θ = (n,M) and θ ′ = (n ′,M ′),
we have θ ′ ≺T θ iff n has a single child n ′, and (depending on the
node type of n) the conditions as depicted in the table of Figure 4.5 are
fulfilled.

Note that in case n is an (AI)-node, there are two ways how θ ′

and θ can be related to each other.
For branch nodes, we partially extend (with a slight abuse of

notation) ≺T to a ternary relation as follows.

Definition 4.4.10. For T-interpretations of the parent θ = (n,M), and
its children θ1 = (n1,M1), θ2 = (n2,M2) we have (θ1, θ2) ≺T θ iff
the following conditions hold:

1. n1 and n2 are the two children of n;

2. AM1
= AM2

and M =M1 ∪M2;

We will now show how to compute the T-interpretation-mapping
E(·) following the contributes-relation.

The following theorems are now immediate, Theorem 4.4.12

has already been shown in Samer and Szeider (2007) [70], Theo-
rem 4.4.11 is an easy extension to it. Note however, that Samer
and Szeider carry the clauses not satisfied whereas we carry the
satisfied clauses up the tree.

4.4 tree traversals 63

Theorem 4.4.11. Let θ be a T-interpretation for node n. The T-
interpretation-mapping E(θ) is equivalent to the following bottom-up
definition.

For leaf nodes n ∈ T , tree models can be determined trivially. Since
we have no objects to talk about, the only valid T-model is M = ∅, and
hence E(θ) = {∅}.

E(θ) =



{∅} (1)⋃
θ ′≺Tθ

E(θ ′) (2)⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)} (3)⋃
(θ1,θ2)≺Tθ

{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)} (4)

1. n is an (L) node.

2. n is a (CR), (CI), (AR) node, or an (a-AI) node and a /∈M.

3. n is an (a-AI) node and a ∈M.

4. n is a (B) node.

We can establish a similar equivalence for #(·).

Theorem 4.4.12. Let θ be a T-interpretation for node n. Given that
E(θ1) ∩ E(θ2) = ∅ for two distinct T-interpretations θ1 and θ2, the
following holds. If θ is not a T-model, let #(θ) = 0, otherwise

#(θ) =


1 if n is leaf node,∑
θ ′≺Tθ

#(θ ′) if n has one child,∑
(θ ′,θ ′′)≺Tθ

#(θ ′) · #(θ ′′) if n is branch node.

5
A N S W E R S E T P R O G R A M M I N G W I T H
B O U N D E D T R E E W I D T H

This chapter presents the new algorithms for asp consistency,
enumeration and counting. We will use a running example,
shown in Listing 5.1 (an abstract version of lines 1-5 of Listing 2.2).
We refer to the rules by their line number, that is, to the rule in
line 1 of Listing 5.1 as rule 1 (or r1 for short).

Listing 5.1: Program P.

1 a .
2 b :− a , c .
3 e :− a , d .
4 c v d :− a , not f .

The program P in Listing 5.1 has two answer sets {a,d, e} and
{a,b, c}.

We proceed as sketched in Chapter 4. First, we show how to
build a tree decomposition, T, from a given asp program R. Next,
we define the mathematical objects (T-interpretations) which will
underly our algorithms.

We construct a mapping E(·) from T-interpretations to (stan-
dard) interpretations and observe that a certain subset S of the
T-interpretations characterizes the answer sets of the program R.
However, we never compute E(·) explicitly. Instead, we define
a relation, the contributes relation (≺T) in Definitions 5.2.8 and
5.2.10, along the structure of T, in order to efficiently compute S
in a bottom-up manner via so-called T-models, a subset of the T

interpretations, which is shown in Lemma 5.2.12.
Finally, we show how to use this method to decide asp consis-

tency (Section 5.2.3), and to count (Section 5.2.4) and enumerate
(Section 5.2.5) the answer sets of program R from the tree decom-
position T of R.

5.1 tree decompositions of asp programs.

We use an adapted version of the incidence graphs shown in
Chapter 3 to represent the programs. Given a program R, such
a graph has R ∪ At(R) as vertices, and as edges all pairs (a, r)
where atom a appears in a rule r of R.

65

66 answer set programming with bounded treewidth

a b c d e f

r1 r2 r3 r4

Figure 5.1: Incidence graph GP of example program P.

From the incidence graph G we build the extended normalized
tree decomposition T. The node-types also have to be adapted
for the context of asp programming. That is, we distinguish the
following six types of nodes.

• Atom introduction (a-AI)

• Rule introduction (r-RI)

• Atom removal (a-AR)

• Rule removal (r-RR)

• Branch node (B)

• Leaf nodes (L)

The “atom” and “rule” types are augmented with the element
(either an atom a or a rule r) which is removed or added com-
pared to the bag of the child node. For example, (a-AI) refers to
the node that introduces the atom a compared to its child.

Example 5.1.1. Figure 5.1 shows the incidence graph GP of program
P and Figure 5.2 shows the extended normalized tree decomposition
T of GP having width 3. Indeed, we have tw(GP) = 3, so the tree
decomposition T is optimal.

Examples for node types are n18 as (L) node, n15 as (b-AR) node,
n17 as (b-AI) node, n2 as (r2-RR) node, n16 as (r2-RI) node, and n7
as (B) node.

5.1 tree decompositions of asp programs. 67

n1: ∅

n2: {r4}

n3: {f,r4}

n4: {r4}

n5: {r1,r4}

n6: {a,r1,r4}

n7: {a,d,r1,r4}

n8: {a,d,r1,r4}

n9: {a,d,r4}

n10: {a,r4}

n11: {a,c,r4}

n12: {a,c}

n13: {a,c,r2}

n14: {a,r2}

n15: {r2}

n16: {b,r2}

n17: {b}

n18: ∅

n19: {a,d,r1,r4}

n20: {a,d,r4}

n21: {a,d}

n22: {a,d,r3}

n23: {d,r3}

n24: {r3}

n25: {e,r3}

n26: {e}

n27: ∅

Figure 5.2: The extended normalized tree decomposition T of GP (Fig-
ure 5.1).

68 answer set programming with bounded treewidth

5.2 the dynamic programming approach for asp

Let n be a node in T of T and M be a set of rules and atoms,
M ⊆ R∪At(R). We introduce some shortcuts:

Aβ(n) = At(R)∩β(n) set of atoms of the bag β(n)

Rβ(n) = R∩β(n) set of rules of the bag β(n)

AM = At(R)∩M set of atoms in M

RM = R∩M set of rules in M

We refer to the root node of T as rt. For a node n ∈ T , we
denote the subtree rooted at n as Tn.

To refer to certain (sub-)sets of the tree T , we define the follow-
ing abbreviations, let n be a node in T :

A(n) = At(R)∩
⋃
m∈Tn

β(m) set of atoms in the subtree Tn

R(n) = R∩
⋃
m∈Tn

β(m) set of rules in the subtree Tn

A[n] = A(n) \β(n) set of atoms no more visible

R[n] = R(n) \β(n) set of rules no more visible

5.2.1 Tree Interpretations

Definition 5.2.1. A T-interpretation is a tuple (n,M,C) where n ∈
T is a node, M ⊆ β(n) is called assignment, and C ⊆ 2β(n) is a set
of certificates.

The basic intuition behind T-interpretations is that the assign-
ment M of a T-interpretation (n,M,C) contains an interpretation
AM over Aβ(n), that implicitly refers to interpretations I over
A(n), together with rules r ∈ Rβ(n) satisfied by I, i.e., I |=A(n)

r.
A set of certificates C can be understood as a set of assign-

ments and it carries interpretations (together with satisfied rules
in (Rβ(n))

I) which are in a certain subset-relation to M. The
following definitions make this more precise.

Definition 5.2.2. Given a node n ∈ T and two sets I, J ⊆ A(n), define

SATn(I) = {r | r ∈ R(n), I |=A(n)
r}

RSATn(J, I) = {r | r ∈ R(n), J |=A(n)
r or b

−(r)∩ I 6= ∅}.

Intuitively, SATn(I) yields those rules of R which occur in bags
of the subtree Tn and are satisfied by I. Analogously, RSATn(J, I)

5.2 the dynamic programming approach for asp 69

yields such rules which are either satisfied by J or not contained
in the reduct RI, thus we can view them as satisfied by J in a
trivial way.

Definition 5.2.3. Let θ = (n,M,C) be a T-interpretation, and I ⊆
A(n) a set of atoms. We define

en(M) = {AM ∪K | K ⊆ A[n],

SATn(AM ∪K) = RM ∪ R[n]}
ren(M, I) = {AM ∪K | K ⊆ A[n],

RSATn(AM ∪K, I) = RM ∪ R[n]}.

The rationale behind en(M) is to yield those extensions of the
interpretation AM stored in M of a T-interpretation θ = (n,M,C)
(i.e., over all atoms occurring in bags of Tn), such that the rules
RM plus all rules in R[n] (i.e., all rules occurring in bags of Tn,
but below n) are satisfied by I. A similar idea is followed by
ren(M, I) which additionally takes the concept of reduct into
account.

We are now ready to define the mapping E(·) and shall see that
for certain T-interpretations θ the relation E(θ) ⊆ AS(R) holds.

Definition 5.2.4. For a T-interpretation θ = (n,M,C), let the set of
interpretations E(·) be defined as

E(θ) ={I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}.

In the following we will refer to I ∈ en(M) as the assignment
condition, Condition A , and to ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂
I s.t. J ∈ ren(C, I)] as the certificate condition wrt. I, Condition C ,
for a T-interpretation θ = (n,M,C).

Definition 5.2.5. A T-interpretation (n,M,C) is called root model
for T iff n = rt, M = ∅, and C = ∅.

Note that, since the root node has no elements in its bag, we can
only have at most one root model, but a second T-interpretation.
This second T-interpretation, θ = (rt, ∅, {∅}), does not satisfy the
definition of an answer set given in Definition 2.3.8 since there
exists a C ∈ C, there exists a J ⊂ I such that J |= RI, hence I is no
answer set for R.

Theorem 5.2.6. For the root model θ = (rt, ∅, ∅) of T, the equivalence
AS(R) = E(θ) holds.

70 answer set programming with bounded treewidth

(a-AR) :M =M ′ \ {a}

C = {C \ {a} | C ∈ C ′}

(r-RR) : r ∈M ′,M =M ′ \ {r}

C = {C \ {r} | C ∈ C ′, r ∈ C}
(a-AI) :M =M ′ ×n a

C = {C×n a | C ∈ C ′},

or

M =M ′ +n a

C = {(M ′ ×n a)∪ RB
−

a,n} ∪

{(C+n a)∪ RB
−

a,n, (C×n a)∪ RB
−

a,n | C ∈ C ′}

(r-RI) :M =M ′]n r

C =

{C∪ {r} | C ∈ C ′} if b
−(r)∩AM 6= ∅

{C]n r | C ∈ C ′} otherwise

where

N+n a = N∪ {a}∪ R+a,n

N]n r =

N∪ {r} if r∩ (AN ∪ (Aβ(n) \AN)) 6= ∅

N otherwise

N×n a = N∪ R+a,n

RB
−

a,n = {r ∈ Rβ(n) | a ∈ b
−(r)}

R+a,n = {r ∈ Rβ(n) | a ∈ r}

Figure 5.3: Conditions for (n ′,M ′,C ′) ≺T (n,M,C) for the various
node-types of n.

5.2 the dynamic programming approach for asp 71

Proof. Suppose θ = (rt, ∅, ∅) is the root model of T. Then, by
substituting the definitions we have the following equivalence.

E(θ) = {I | I ∈ ert(∅),∀C ⊆ ∅(C ∈ ∅ ⇐⇒
∃J ⊂ I s.t. J ∈ ren(∅, I))}

= {I | I ∈ {K | K ⊆ At(R), SATrt(K) = R},

∀J ∈ {K | K ⊆ At(R), RSATrt(K, I) = R} =⇒ J 6⊂ I}
= {I | I ⊆ At(R), SATrt(I) = R,

∀J ⊆ At(R)[RSATrt(J, I) = R =⇒ J 6⊂ I]}
= {I | I ⊆ At(R), I |= R,

∀J ⊆ At(R)({r | r ∈ R,

J |= r∨ b
−(r)∩ I 6= ∅} = R =⇒ J 6⊂ I)}

= {I | I ⊆ At(R), I |= R,

∀J ⊆ At(R)(J |= RI =⇒ J 6⊂ I)}
= AS(R)

5.2.2 Tree Models

Definition 5.2.7. A T-interpretation θ is called T-model iff E(θ) 6= ∅.

For leaf nodes n, tree models can be determined trivially. Since
we have no objects to talk about, the only valid T-model is M = ∅
and C = ∅, resulting in E(θ) = {∅}. For the T-interpretation
θ ′ = (n, ∅, {∅}), Condition C wrt. I, where I = ∅, does not hold
since there exists no J ⊂ I, but a certificate.

Next, we define the relation ≺T between T-interpretations. The
concrete definition depends on the node type.

Definition 5.2.8. For T-interpretations θ = (n,M,C) and θ ′ =

(n ′,M ′,C ′), we have θ ′ ≺T θ iff n has a single child n ′, and (de-
pending on the node type of n) the conditions as depicted in the table of
Figure 5.3 are fulfilled.

Note that, if n is an (a-AI)-node, there are two ways how θ ′

and θ can be related to each other, once a is true, and once where
a is false.

Example 5.2.9. We will show how to construct one T-model for each
node type. The full tree decomposition with the dynamic tables is shown
in Figure 5.4.

72 answer set programming with bounded treewidth

(l) node The only viable T-model for the node n18 is

θn18 = (n18, ∅, ∅).

(b-ai) node For the node n17, a (b-AI) node, we have two ways
to construct a T-model. The atom b can either be added positively or
negatively.

θn17a = (n17, ∅, ∅)
θn17b = (n17, {b}, {∅})

The relation θn18 ≺T θn17a holds since ∅ ×n17 b = ∅ and there is
no certificate in θn18 .

The relation θn18 ≺T θn17b holds since ∅+n17 b = {b} and the only
certificate to be added is ∅ ×n17 b = ∅.

(r2 -ri) node Node n16 introduces the rule r2. Since r2 is satisfied
by b, we add it to the assignment of θn16b , the rule r2 is not satisfied by
∅, so it is not added to the assignment of θn16a . Further the rule r2 is
added to those assignments and certificates that satisfy it in some way.

θn16a = (n16, ∅, ∅)
θn16b = (n16, {b, r2}, {∅})

The relation θn17a ≺T θn16a holds since ∅]n16 r2 = ∅ and there is
no certificate in θn17a .

The relation θn17b ≺T θn16b holds since {b} +n16 r2 = {b, r2}
because b ∈ r2. The certificate ∅ does not satisfy r2, so ∅]n16 r2 = ∅.

(b-ar) node The next node is n15, a b-AR node. The atom is
simply removed from all assignments and certificates.

θn15a = (n15, ∅, ∅)
θn15b = (n15, {r2}, {∅})

An atom removal node is very simple and drops all occurrences of
the removed atom. Thus, it is easy to see that θn16a ≺T θn15a and
θn16b ≺T θn15b hold.

(r2 -rr) node We jump up to node n12, an (r2-RR) node. Let
θn13 = (n13, {a, r2}, {{r2}}) be a T-model of n13. The rule is simply
removed from the assignment and certificates.

θn12 = (n12, {a}, {∅})

5.2 the dynamic programming approach for asp 73

Only the T-models that include r2 in the assignment are contained
in the relation ≺T . Let

θn13b = (n13, {a, c}, {{r2}, {a, r2}, {c, r2}}),

since the assignment {a, c} does not include r2, the T-model θn13b is
not in relation with any T-model of n12.

If a certificate does not include the rule r2, only the certificate is
removed, not the whole T-model. Let

θn13c = (n13, {a, c, r2}, {{r2}, {a, r2}, {a, c}, {c, r2}}),

we remove r2 from all assignments and certificates that include r2, and
drop those which do not include r2. In this case the certificate {a, c} is
dropped.

θn12b = (n12, {a, c}, {∅, {a}, {c}})

Thus θn13c ≺T θn12b holds.

For branch nodes, we partially extend (with a slight abuse of
notation) ≺T to a ternary relation as follows.

Definition 5.2.10. For T-interpretations of the θ = (n,M,C), θ1 =

(n1,M1,C1), and θ2 = (n2,M2,C2) we have (θ1, θ2) ≺T θ iff the
following conditions hold:

1. n1 and n2 are the two children of n;

2. AM1
= AM2

and M =M1 ∪M2;

3. C is given by the set (C1 on C2)∪ ({M1} on C2)∪ (C1 on {M2});
where C on C ′ is defined as

{C∪C ′ | C ∈ C,C ′ ∈ C ′,AC = AC ′}.

Example 5.2.11. We will show the construction of a T-model for the
branch node n7.

Consider two T-models, one from n8 and one from n19, both nodes
are children of n7.

θn8 = (n8, {a, r1, r4}, {{r4}, {a, r1}})

θn19 = (n19, {a, r1}, {{r4}})

We construct now the combined T-model θn7 = (n7,M,C) for n7.
Note that the atom a is the only atom involved, and it is true in the
assignment of both T-models, thus condition 2 of Definition 5.2.10 is
fulfilled. The new assignment is thus M = {a, r1, r4}.

74 answer set programming with bounded treewidth

For the certificates, we first join the certificates of θn8 with the
certificates of θn19 . The only certificates for which the atoms match, are
{r4} from θn8 and {r4} from θn19 , thus the combined certificate looks
like this:

Cn8 on Cn19 = {r4}

The assignment Mn8 of θn8 has no matching atoms in a certificate
of n19:

{Mn8} on Cn19 = ∅.

The assignment Mn19 = {a, r1} of θn8 has a matching certificate in
the set of certificates Cn19 of θn19 , namely {a, r1}:

Cn8 on {Mn19} = {a, r1}.

Thus, the combined certificate for the branch node n8 has the follow-
ing form:

C = (Cn8 on Cn19)∪ ({Mn8} on Cn19)∪ (Cn8 on {Mn19})

= {{r4}, {a, r1}}

That is, a T-model for θn7 has the following form:

θn7 = (n7, {a, r1, r4}, {{r4}, {a, r1}}).

We are now ready to establish the bottom-up construction for
E(·). This construction depends only on the T-interpretations of
the current node and its child nodes.

Lemma 5.2.12. Let θ = (n,M,C) be a T-interpretation, then the
following recursive construction is equivalent with Definition 5.2.4.

E(θ) =



{∅} (1)⋃
θ ′≺Tθ

E(θ ′) (2)⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)} (3)⋃
(θ1,θ2)≺Tθ

{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)} (4)

1. n is an (L) node.

2. n is an (RR), (RI), (AR) node, or an (a-AI) node and a /∈M.

3. n is an (a-AI) node and a ∈M.

4. n is a (B) node.

5.2 the dynamic programming approach for asp 75

Proof. We show by induction that the above construction is equiv-
alent to E(θ).

Base case: Let θ = (n,M,C) where n is a leaf node, it is easy
to see that E(θ) = {∅} holds for leaf nodes.

Induction step: Let θ = (n,M,C) where n is a node in T. We
assume that the equivalence holds for all θ ′ = (n ′,M ′,C ′) where
n ′ is a node below n in T. We will now look at each possible
node type in detail.

case 1 , n is of type (r-RR). Let the T-interpretations be defined
as θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T θ holds.

From the definition of the (r-RR) node, we know that r 6∈ M
and

M∪ {r} =M ′ C = {C \ {r} | C ∈ C ′, r ∈ C},

and thus

AM ′ = AM RM ′ = RM ∪ {r}
A(n ′) = A(n) R(n ′) = R(n)

A[n ′] = A[n] R[n ′] ∪ {r} = R[n]

holds.
Let us now establish some equivalences based on these obser-

vations. For the following, let I = AM ∪K where K ⊆ A[n]. Since
the rules and atoms in the subtree of n and n ′ are identical, that
is R(n ′) = R(n) as well as A(n ′) = A(n), we can conclude

SATn ′(I)

= {p | p ∈ R(n ′), I |=A(n ′) p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I).

(5.1)

The set of satisfied rules for θ ′ equals the set of satisfied rules
for θ, thus RM ′ ∪ R[n ′] = RM ∪ R[n]. The set of atoms A[n ′] and
A[n], as well as AM ′ and AM are identical. Together with the
already established equivalence (5.1) the following holds.

en ′(M
′)

= {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
= en(M).

(5.2)

76 answer set programming with bounded treewidth

Let J ⊆ A(n), then a similar argumentation holds for the sets
RSATn ′(J, I) and RSATn(J, I).

RSATn ′(J, I)

= {p | p ∈ R(n ′), J |=A(n ′) p or b
−(p)∩ I 6= ∅}

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ I 6= ∅}

= RSATn(J, I).

(5.3)

Let C ⊆ β(n) and C ′ = C ∪ {r}, that is AC = AC ′ , then RC ′ ∪
R[n ′] = RC ∪ R[n] holds and thus

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I) = RC ∪ R[n]}
= ren(C, I)

(5.4)

holds.

We show now that E(θ) =
⋃
θ ′≺Tθ

E(θ ′) for a given θ =

(n,M,C).
Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ ′) for some θ ′ ≺T θ with θ ′ = (n ′,M ′,C ′).
We show that Condition C holds for θ wrt. I.
Suppose that C ∈ C, then there exists a C ′ ∈ C ′ where C ′ =

C∪ {r} by definition of ≺T . Condition C holds for θ ′ wrt. I, thus
we know that there exists a J ⊂ I s.t. J ∈ ren ′(C

′, I) and from
(5.4) we know that J ∈ ren(C, I).

Now, let C be an arbitrary subset of β(n) such that J ∈ ren(C, I)
where J ⊂ I. Let C ′ be defined as C ′ = C ∪ {r}. From (5.4) we
know that J ∈ ren ′(C

′, I). Since Condition C holds for θ ′ wrt. I,
we know that C ′ ∈ C ′, and we can conclude C ∈ C.

Hence, Condition C holds for θ wrt. I, and together with (5.2),
we know that Condition A holds for θ. Thus, by definition of
E(θ), we have the desired I ∈ E(θ).

5.2 the dynamic programming approach for asp 77

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ). We show that there exists a θ ′ such

that I ∈ E(θ ′) and θ ′ ≺T θ holds. Let θ ′ = (n ′,M ′,C ′) where
M ′ = M ∪ {r}, and the corresponding set C ′ of certificates is
defined as follows.

C ′ = C1 ∪ C2 where

C1 = {C∪ {r} | C ∈ C} and

C2 = {C ⊆ β(n ′) | r /∈ C, ∃J ⊂ I s.t. J ∈ ren ′(C, I)}

Thus, θ ′ ≺T θ holds.
We show that Condition C holds for θ ′ wrt. I.
Let C ′ ∈ C1, then there exists a C ∈ C where C = C ′ \ {r}.

Since Condition C holds for θ wrt. I, we know that there exists
a J ⊂ I s.t. J ∈ ren(C, I). From (5.4) we can now conclude J ∈
ren ′(C

′, I).
Let C ′ ∈ C2, then, per definition of C2, there exists a J ⊂

I s.t. J ∈ ren ′(C
′, I).

Let C ′ be an arbitrary subset of β(n ′) such that J ∈ ren ′(C
′, I)

where J ⊂ I.
First suppose r ∈ C ′, then from (5.4) we know that J ∈ ren(C

′ \

{r}, I). Since Condition C holds for θ wrt. I, we can now conclude
C ′ ∈ C1.

Now suppose r 6∈ C ′, then, per definition of C2, it holds that
C ′ ∈ C2.

Hence, Condition C holds for θ ′ wrt. I, and together with (5.2),
we know that Condition A of θ ′ holds. By the definition of E(θ ′),
we have the desired I ∈ E(θ ′).

Thus, we have shown for a given θ that

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I ∈ E(θ)

holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

case 2 , n is of type (r-RI). We distinguish between three cases:

• r is satisfied by atoms in the negative body,

• r is satisfied by atoms in the positive body or the head, or

78 answer set programming with bounded treewidth

• r is not satisfied.

Note since we only add a rule, the sets of atoms are not changed
in either case, that is for all θ = (n,M,C) and θ ′ = (n ′,M ′,C ′)
with θ ′ ≺T θ the following equivalences hold.

AM = A ′M

A(n ′) = A(n)

A[n ′] = A[n]

·

case 2a . Let θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T

θ holds.
Suppose that r is satisfied by AM, and b

−(r)∩AM 6= ∅ holds,
thus r∩ (AM ∪ (Aβ(n) \AM)) 6= ∅ holds implicitly.

From the definition of the (r-RI) node, we know that

M =M ′ ∪ {r} C = {C∪ {r} | C ∈ C ′},

and thus

RM ′ ∪ {r} = RM
R(n ′) ∪ {r} = R(n)

R[n ′] = R[n]

holds.
Let us now establish some equivalences based on these obser-

vations. For the following, let I = AM ∪K where K ⊆ A[n].
By assumption, we know that AM |=A(n)

r and AM ′ |=A(n ′) r,
and since R(n ′) ∪ {r} = R(n), we can conclude

SATn ′(I)∪ {r}
= {p | p ∈ R(n ′), I |=A(n ′) p}∪ {r}

= {p | p ∈ R(n ′) ∪ {r}, I |=A(n ′) p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I).

(5.5)

5.2 the dynamic programming approach for asp 79

Further, since the rule r is included in the new assignment M,
we have RM ′ ∪ {r} = RM, and from (5.5) we can conclude the
following equivalence.

en ′(M
′)

= {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ′ ∪K | K ⊆ A[n ′],

SATn ′(AM ′ ∪K)∪ {r} = RM ′ ∪ {r}∪ R[n ′]}
= {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
= en(M)

(5.6)

Let J ⊆ A(n).
Since b

−(r)∩AM 6= ∅ holds by assumption, b
−(r)∩ I 6= ∅ holds

by the connectedness condition and the definition of I. Thus we
conclude

RSATn ′(J, I)∪ {r}
= {p | p ∈ R(n ′), J |=A(n ′) p or b

−(p)∩ I 6= ∅}∪ {r}

= {p | p ∈ R(n ′) ∪ {r}, J |=A(n ′) p or b
−(p)∩ I 6= ∅}

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ I 6= ∅}

= RSATn(J, I).

(5.7)

Let C ′ ⊆ β(n ′) and C = C ′ ∪ {r}, then

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I)∪ {r} = RC ′ ∪ {r}∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I) = RC ∪ R[n]}
= ren(C, I)

(5.8)

holds.

We show now that E(θ) =
⋃
θ ′≺Tθ

E(θ ′) for a given θ =

(n,M,C) with b
−(r)∩ I 6= ∅.

Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

80 answer set programming with bounded treewidth

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ ′) for some θ ′ ≺T θ. Let θ ′ = (n ′,M ′,C ′).
We show that Condition C holds for θ wrt. I.
Suppose that C ∈ C. We know from the definition of ≺T

that r ∈ C holds, thus we know C \ {r} ∈ C ′. Further, since
Condition C holds for θ ′ wrt. I, we know that there exists a
J ⊂ I s.t. J ∈ ren ′(C \ {r}, I), and from (5.8) we can conclude that
J ∈ ren(C, I).

Let C be an arbitrary subset of β(n).
First suppose that r ∈ C.
Suppose that J ∈ ren(C, I) where J ⊂ I. From (5.8) we know

that J ∈ ren ′(C \ {r}, I), and since Condition C holds for θ ′ wrt. I,
we know that C \ {r} ∈ C ′. From the definition of ≺T we can now
conclude that C ∈ C.

Now suppose that r 6∈ C and towards a contradiction that
C ∈ C. Suppose that J ∈ ren(C, I) where J ⊂ I, thus RSAT(J, I) =
RC ∪R[n] holds. We know by assumption of b

−(r)∩ I 6= ∅ that r ∈
RSAT(J, I), but since r 6∈ RC by assumption, and r 6∈ R[n] because
of the connectedness condition, we have reached a contradiction.
Thus, we conclude if C 6∈ C then there exists no J ⊂ I such that
J ∈ ren(C, I).

Hence, Condition C holds for θ wrt. I, and together with (5.6),
we know that Condition A holds for θ. Thus, by definition of
E(θ), we have the desired I ∈ E(θ).

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ). We show that there exists a θ ′ with

θ ′ ≺T θ such that I ∈ E(θ ′). Let θ ′ be defined as θ ′ = (n ′,M \

{r},C ′) where C ′ = {C \ {r} | C ∈ C}.
We show that Condition C holds for θ ′ wrt. I.
Suppose that C ′ ∈ C ′. From the definition of ≺T , we know that

then C ′ ∪ {r} ∈ C, and since Condition C holds for θ wrt. I, we
know that there exists a J ⊂ I s.t. J ∈ ren(C

′ ∪ {r}, I). From (5.8)
we can now conclude J ∈ ren ′(C

′, I).
Let C ′ be an arbitrary subset of β(n ′).
Suppose that J ∈ ren ′(C

′, I) where J ⊂ I, from (5.8) we know
that then J ∈ ren(C

′ ∪ {r}, I) holds. Since Condition C holds for θ
wrt. I, we know that C ′ ∪ {r} ∈ C, and hence C ′ ∈ C ′.

Hence, Condition C holds for θ ′ wrt. I, and together with (5.6),
we know that Condition A of θ ′ holds. By the definition of E(θ ′),
we have the desired I ∈ E(θ ′).

Thus, we have shown for a given θ that

5.2 the dynamic programming approach for asp 81

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I ∈ E(θ)

holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

case 2b. Let θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T

θ holds. Moreover, suppose that b
−(r)∩AM = ∅, but r∩ (AM ∪

(Aβ(n) \AM)) 6= ∅.
From the definition of the (r-RI) node, we know that

M =M ′ ∪ {r} C = {C]n {r} | C ∈ C ′},

where

C]n r =

C∪ {r} if r∩ (AC ∪ (Aβ(n) \AC)) 6= ∅

C otherwise

and thus

RM ′ ∪ {r} = RM
R(n ′) ∪ {r} = R(n)

R[n ′] = R[n]

holds.
Let us now establish some equivalences based on these obser-

vations. For the following, let I = AM ∪K where K ⊆ A[n].
By assumption, we know that AM |=A(n)

r and AM ′ |=A(n ′)
r, and hence I |=A(n ′) r and I |=A(n)

r by the connectedness
condition. Further since R(n ′) ∪ {r} = R(n), we can conclude

SATn ′(I)∪ {r}
= {p | p ∈ R(n ′), I |=A(n ′) p}∪ {r}

= {p | p ∈ R(n ′) ∪ {r}, I |=A(n ′) p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I).

(5.9)

82 answer set programming with bounded treewidth

Further, since the rule r is included in the new assignment M,
we have RM ′ ∪ {r} = RM, and from (5.9) we can conclude the
following equivalence.

en ′(M
′)

= {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ′ ∪K | K ⊆ A[n ′],

SATn ′(AM ′ ∪K)∪ {r} = RM ′ ∪ {r}∪ R[n ′]}
= {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
= en(M)

(5.10)

Let J ⊆ A(n).
Suppose that J |=A(n)

r, then the following equality holds.

RSATn ′(J, I)∪ {r}
= {p | p ∈ R(n ′), J |=A(n ′) p or b

−(p)∩ I 6= ∅}∪ {r}

= {p | p ∈ R(n ′) ∪ {r}, J |=A(n ′) p or b
−(p)∩ I 6= ∅}

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ I 6= ∅}

= RSATn(J, I)

(5.11)

Suppose that J 6|=A(n)
r. From the connectedness condition of a

tree decomposition and the definition of I, we can conclude that
if b

−(r)∩AM = ∅ holds, then b
−(r)∩ I = ∅ holds as well. Thus,

r 6∈ RSATn(J, I) and we obtain

RSATn ′(J, I) = RSATn(J, I). (5.12)

Let C ′ ⊆ β(n ′).
First suppose that C ′ |=A(n ′) r holds, and let C = C ′ ∪ {r}, thus

together with (5.11) the following equivalence holds.

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I)∪ {r} = RC ′ ∪ {r}∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I) = RC ∪ R[n]}
= ren(C, I)

(5.13)

5.2 the dynamic programming approach for asp 83

Now suppose that C ′ 6|=A(n ′) r holds, then let C = C ′, thus
together with (5.12) the following equivalence holds.

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I) = RC ∪ R[n]}
= ren(C, I)

(5.14)

We show now that E(θ) =
⋃
θ ′≺Tθ

E(θ ′) for a given θ =

(n,M,C).
Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

The condition I ∈ en(M) is called Condition A of θ, and ∀C ⊆
β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called Condition C
of θ with respect to I.

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ ′) for some θ ′ ≺T θ. Let θ ′ = (n ′,M ′,C ′).
We show that Condition C holds for θ wrt. I.
Let C ∈ C.
First suppose that AC |=A(n)

r. We know from the definition of
≺T that r ∈ C and that there exists a C ′ ∈ C ′ where C ′ = C \ {r}.
Since Condition C holds for θ ′ wrt. I, we know that there exists
a J ⊂ I s.t. J ∈ ren ′(C

′, I), and from (5.13) we can conclude that
J ∈ ren(C, I).

Now suppose that AC 6|=A(n)
r. We know from the definition

of ≺T that r 6∈ C and that C ∈ C ′ holds. Since Condition C holds
for θ ′ wrt. I, we know that there exists a J ⊂ I s.t. J ∈ ren ′(C, I),
and from (5.14) we can conclude that J ∈ ren(C, I).

Let C be an arbitrary subset of β(n). Suppose that J ∈ ren(C, I)
where J ⊂ I.

First suppose that AC |=A(n)
r, then from (5.13) we know that

J ∈ ren ′(C \ {r}, I). Since Condition C holds for θ ′ wrt. I, we
know that C \ {r} ∈ C ′. From the definition of C we can now
conclude that C ∈ C.

Now suppose that AC 6|=A(n)
r, then from (5.14) we know that

J ∈ ren ′(C, I) holds, and since Condition C holds for θ ′ wrt. I,
we know that C ∈ C ′ holds. From the definition of C we can now
conclude that C ∈ C.

84 answer set programming with bounded treewidth

Hence, Condition C holds for θ wrt. I, and together with (5.10),
we know that Condition A holds for θ. Thus, by definition of
E(θ), we have the desired I ∈ E(θ).

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

E(θ ′).
Suppose that I ∈ E(θ), we show that there exists a θ ′ with

θ ′ ≺T θ such that I ∈ E(θ ′), where θ = (n,M,C).
Let θ ′ be defined as θ ′ = (n ′,M \ {r},C ′) where C ′ = {C \ {r} |

C ∈ C}. Thus θ ′ ≺T θ holds.
We show that Condition C holds for θ ′ wrt. I.
Let C ′ ∈ C ′.
First suppose that AC ′ |=A(n ′) r. From the definition of ≺T ,

we know that there exists a C ∈ C where C = C ′ ∪ {r}, and
since Condition C holds for θ wrt. I, there exists a J ⊂ I s.t. J ∈
ren(C, I). From (5.13) we can now conclude J ∈ ren ′(C

′, I).
Now suppose that AC ′ 6|=A(n ′) r. From the definition of ≺T , we

know that C ′ ∈ C holds. Since Condition C holds for θ wrt. I, we
know that there exists a J ⊂ I s.t. J ∈ ren(C

′, I). From (5.14) we
can now conclude J ∈ ren ′(C

′, I).
Let C ′ be an arbitrary subset of β(n ′). Suppose that J ∈

ren ′(C
′, I) where J ⊂ I.

First suppose that AC ′ |=A(n ′) r. From (5.13) we know that
J ∈ ren(C, I) holds for C = C ′ ∪ {r}. Since Condition C holds for
θ wrt. I, we know that C ∈ C, and hence, from the definition of
≺T , that C ′ ∈ C ′ holds.

Now suppose that AC ′ 6|=A(n ′) r. From (5.14) we know that
J ∈ ren(C

′, I) holds. Since Condition C holds for θ wrt. I, we
know that C ′ ∈ C, and hence C ′ ∈ C ′.

Hence, Condition C holds for θ ′ wrt. I, and together with
(5.10), we know that Condition A for θ ′ holds. By the definition
of E(θ ′), we have the desired I ∈ E(θ ′).

Thus, we have shown for a given θ that

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I ∈ E(θ)

holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

5.2 the dynamic programming approach for asp 85

case 2c . Let θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T

θ holds.
Suppose that r∩ (AM ∪ (Aβ(n) \AM)) = ∅, thus b

−(r)∩AM =

∅ holds implicitly.
From the definition of the (r-RI) node, we know that

M =M ′ C = {C]n {r} | C ∈ C ′},

where

C]n r =

C∪ {r} if r∩ (AC ∪ (Aβ(n) \AC)) 6= ∅

C otherwise

and thus

RM ′ = RM

R[n ′] = R[n]

R(n ′) ∪ {r} = R(n)

holds.
Let us now establish some equivalences based on these obser-

vations. For the following, let I = AM ∪K where K ⊆ A[n].
By assumption, we know that AM 6|=A(n)

r and AM ′ 6|=A(n ′)
r, and hence I 6|=A(n ′) r and I 6|=A(n)

r by the connectedness
condition. Further since R(n ′) ∪ {r} = R(n), we can conclude

SATn ′(I)

= {p | p ∈ R(n ′), I |=A(n ′) p}

= {p | p ∈ R(n ′) ∪ {r}, I |=A(n ′) p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I).

(5.15)

Further, since the rule r is not included in M, we have RM ′ =

RM, and from (5.15) we can conclude the following equivalence.

en ′(M
′)

= {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
= en(M)

(5.16)

86 answer set programming with bounded treewidth

We show now that I ∈ E(θ) ⇐⇒ I ∈
⋃
θ ′≺Tθ

E(θ ′) for a given
θ = (n,M,C).

The proof that Condition C holds for θ wrt. I, resp. that
Condition C holds for all θ ′ with θ ′ ≺T θ wrt. I is analogous to
Case 2b. From (5.16) we can conclude Condition A for θ resp. for
all θ ′ with θ ′ ≺T θ.

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

case 3, n is of type (a-AR). Let θ = (n,M,C) and θ ′ =

(n ′,M ′,C ′) where θ ′ ≺T θ. From the definition of the (a-AR)
node, we know that

M =M ′ \ {a} C = {C \ {a} | C ∈ C ′},

thus

AM ′ \ {a} = AM RM ′ = RM

A(n ′) = A(n) R(n ′) = R(n)

A[n ′] ∪ {a} = A[n] R[n ′] = R[n].

Let us now establish some equivalences based on these obser-
vations. We first show for a M ⊆ β(n) that

en(M) = en ′(M∪ {a})∪ en ′(M) (5.17)

holds.
Let us first recall the definition of en(M).

en(M) = {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}

For the following, let I ⊆ A(n). Since A(n ′) = A(n) and R(n ′) =
R(n), the following equivalence is immediate.

SATn ′(I)

= {p | p ∈ R(n ′), I |=A(n ′) p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I)

(5.18)

We show en(M) ⊆ en ′(M∪ {a})∪ en ′(M). Let I ∈ en(M).
First suppose a ∈ I. By definition of en(M), we know that there

exists a K ⊆ A[n] such that I = AM ∪K and SATn(I) = RM ∪ R[n].
Since a 6∈ AM by definition, a ∈ K holds, and since A[n ′] =

A[n] \ {a} holds, K ′ ⊆ A[n ′] where K ′ = K \ {a}. Hence that

5.2 the dynamic programming approach for asp 87

I = AM ∪ {a} ∪ K ′. Together with (5.18) and since R[n ′] = R[n]
and RM = RM∪{a}, we can conclude SATn ′(AM ∪ {a} ∪ K ′) =

RM∪{a} ∪ R[n ′], and thus that I ∈ en ′(M∪ {a}).
Now suppose a 6∈ I. By definition of en(M), we know that

there exists a K ⊆ A[n] such that I = AM ∪K and SATn(I) = RM ∪
R[n]. Further we know that K ⊆ A[n ′] since A[n] \ {a} = A[n ′].
Together with (5.18) and since R[n ′] = R[n], we can conclude that
SATn ′(AM ∪K) = RM ∪ R[n ′], and thus that I ∈ en ′(M).

Next we show en(M) ⊇ en ′(M∪ {a})∪ en ′(M).
Let I ∈ en ′(M). From the definition of en ′(M) we know that

I = AM ∪ K where K ⊆ A[n ′] and SATn ′(I) = RM ∪ R[n ′] holds.
Since A[n] = A[n ′] ∪ {a}, we know that K ⊆ A[n]. Together with
(5.18) and since R[n ′] = R[n] we can conclude that SATn(AM ∪
K) = RM ∪ R[n], and thus that I ∈ en(M).

Let I ∈ en ′(M ∪ {a}). From the definition of en ′(M ∪ {a}) we
know that I = AM ∪ {a} ∪ K where K ⊆ A[n ′] and SATn ′(I) =

RM ∪ R[n ′] holds. Since A[n] = A[n ′] ∪ {a} holds, we know that
there exists a K ′ such that K ′ ⊆ A[n] where K ′ = K ∪ {a} holds.
Together with (5.18) and since R[n ′] = R[n] we can conclude that
SATn(AM ∪K ′) = RM ∪ R[n], and thus that I ∈ en(M).

Thus, we have shown that (5.17) holds.
We will now show the following equivalence. Let C ⊆ β(n)

and I ⊆ A(n), then

ren(C, I) = ren ′(C∪ {a}, I)∪ ren ′(C, I) (5.19)

holds.
Let us first recall the definition of ren(M).

ren(C, I) = {AC ∪K | K ⊆ A[n],

RSATn(AC ∪K, I) = RC ∪ R[n]}

Let J an arbitrary subset ofA(n), then the following equivalence
is immediate, since A(n ′) = A(n) and R(n ′) = R(n).

RSATn ′(J, I)

= {p | p ∈ R(n ′), J |=A(n ′) p or b
−(p)∩ I 6= ∅}

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ I 6= ∅}

= RSATn(J, I)

(5.20)

We first show that ren(C, I) ⊆ ren ′(C ∪ {a}, I) ∪ ren ′(C, I)
holds.

Let J ∈ ren(C, I).

88 answer set programming with bounded treewidth

First suppose a ∈ J. By definition of ren(C, I), we know that
there exists a K ⊆ A[n] such that J = AC ∪ K and RSATn(AC ∪
K, I) = RC ∪ R[n]. Since a 6∈ AC by definition, a ∈ K holds.
Since A[n ′] = A[n] \ {a} we know that there exists a K ′ ⊆ A[n ′]

where K ′ = K \ {a} and hence that J = AC ∪ {a} ∪ K ′. Together
with (5.20) and since RC ∪R[n] = RC∪{a} ∪R[n ′], we can conclude
that RSATn ′(AC ∪ {a} ∪ K ′, I) = RC∪{a} ∪ R[n ′], and thus that J ∈
ren ′(C∪ {a}, I).

Now suppose a 6∈ J. By definition of ren(C, I), we know that
there exists a K ⊆ A[n] such that J = AC ∪ K and RSATn(AC ∪
K, I) = RC ∪ R[n]. Further we know that K ⊆ A[n ′] since A[n] \

{a} = A[n ′] and a 6∈ K. Together with (5.20) and since RC ∪
R[n] = RC ∪ R[n ′], we can conclude that K ⊆ A[n ′] such that
RSATn ′(AC ∪K, I) = RC ∪ R[n ′], and thus that J ∈ ren ′(C, I).

Now we show that ren(C, I) ⊇ ren ′(C ∪ {a}, I) ∪ ren ′(C, I)
holds.

Let J ∈ ren ′(C, I). Since J = AC ∪K where K ⊆ A[n ′] we know
that RSATn ′(AC ∪ K, I) = RC ∪ R[n ′]. Since A[n] = A[n ′] ∪ {a}

holds, we know that K ⊆ A[n]. Together with (5.20) and since
RC ∪ R[n] = RC ∪ R[n ′] we can conclude that RSATn(AC ∪K, I) =
RC ∪ R[n], and thus that J ∈ ren(C, I).

Let J ∈ ren ′(C ∪ {a}, I). Since J = AC ∪ {a} ∪ K where K ⊆
A[n ′] we know that RSATn ′(AC∪ {a}∪K, I) = RC∪{a}∪R[n ′] holds.
Since A[n] = A[n ′]∪ {a} holds, we know that there exists a K ′ such
that K ′ ⊆ A[n] where K ′ = K∪ {a}. Together with (5.20) and since
RC ∪ R[n] = RC ∪ R[n ′] we can conclude that RSATn(AC ∪K ′, I) =
RC ∪ R[n], and thus that J ∈ ren(C, I).

Thus, we have shown that (5.19) holds.

We show now that E(θ) =
⋃
θ ′≺Tθ

E(θ ′) for a given θ =

(n,M,C).
Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

E(θ ′). Let I ∈ E(θ ′) for
some θ ′ ≺T θ with θ ′ = (n ′,M ′,C ′).

We show that Condition C holds for θ wrt. I.

5.2 the dynamic programming approach for asp 89

Suppose that C ∈ C. From the definition of ≺T , we know
that there exists a C ′ ∈ C ′ where C = C ′ \ {a} holds. Since
Condition C holds for θ ′ wrt. I, we know that there exists a J ⊂ I
such that J ∈ ren ′(C

′, I). From (5.19) we can conclude that then
J ∈ ren(C, I).

Suppose that J ∈ ren(C, I) where J ⊂ I. From (5.19) we know
that J ∈ ren ′(C

′, I) where C = C ′ \ {a} holds. Since Condition C
holds for θ ′ wrt. I, we know that C ′ ∈ C ′. Now we can conclude,
from the definition of ≺T , that C ∈ C.

Hence, Condition C holds for θ wrt. I, and together with (5.17),
we know that Condition A holds for θ. Thus, by definition of
E(θ), we have the desired I ∈ E(θ).

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

E(θ ′). Let I ∈ E(θ), we show
that there exists a θ ′ with θ ′ ≺T θ such that I ∈ E(θ ′).

Suppose that a ∈ I. Let θ ′ = (n ′,M ′,C ′) where M ′ =M∪ {a}
and

C ′ = C1 ∪ C2 with

C1 = {C∪ {a} | C ∈ C,∃J ⊂ I s.t. J ∈ ren ′(C∪ {a}, I)}
C2 = {C | C ∈ C, ∃J ⊂ I s.t. J ∈ ren ′(C, I)}.

Thus θ ′ ≺T θ holds.
We show that Condition C holds for θ ′ wrt. I.
Suppose that C ′ ∈ C ′, then by definition of C ′ it holds that

J ∈ ren ′(C
′, I).

Now let C ′ be an arbitrary subset of β(n ′) and suppose that J ∈
ren ′(C

′, I) where J ⊂ I. From (5.19) we know that J ∈ ren(C, I)
where C = C ′ \ {a}. Since Condition C holds for θ wrt. I, we
know that C ∈ C, and thus we know, from the definition of ≺T ,
that

• C ′ ∈ C1 if C ′ = C∪ {a}, and

• C ′ ∈ C2 if C ′ = C.

Hence, Condition C holds for θ ′ wrt. I, and together with
(5.17), we know that Condition A for θ ′ holds. By the definition
of E(θ ′), we have the desired I ∈ E(θ ′).

Suppose that a 6∈ I, and let θ ′ = (n ′,M,C), thus θ ′ ≺T θ holds.
Condition C holds for θ wrt. I, and for each C ∈ C there exists

a J ⊂ I such that J ∈ ren(C, I). From (5.19) we thus can conclude
that J ∈ ren ′(C, I).

Now let C be an arbitrary subset of β(n ′) and suppose that J ∈
ren ′(C, I) where J ⊂ I. From (5.19) we know that J ∈ ren(C, I).
Since Condition C holds for θ wrt. I, we know that C ∈ C.

90 answer set programming with bounded treewidth

Hence, Condition C holds for θ ′ wrt. I, and together with
(5.17), we know that Condition A for θ ′ holds. By the definition
of E(θ ′), we have the desired I ∈ E(θ ′).

Thus, we have shown for a given θ that

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I ∈ E(θ)

holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

case 4, n is of type (a-AI). Recall that in the case of an atom
introduction, we have two ways how a θ ′ and a θ can relate to
each other. One is by adding a negatively to the assignment of
θ (covered in Case 4a), and one by adding a positively to the
assignment of θ (covered in Case 4b).

case 4a . Let θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T

θ. From the definition of the (a-AI) node (part 1, the atom a is
set to false), we know that

M =M ′ ∪ R+a,n C = {C∪ R+a,n | C ∈ C ′}.

Recall that

R+a,n = {r ∈ Rβ(n) | a ∈ r}.

That is, we add all rules to the assignment that are true if the
atom a is set to false. Since

AM ′ = AM RM ′ ∪ R+a,n = RM

A(n ′) ∪ {a} = A(n) R(n ′) = R(n)

A[n ′] = A[n] R[n ′] = R[n],

and by assumption, we know that AM |=A(n) R
+
a,n, thus I |=A(n)

R+a,n for all I = AM ∪K where K ⊆ A[n].

5.2 the dynamic programming approach for asp 91

Let us now establish some equivalences based on these ob-
servations. For the following, let I = AM ∪ K where K ⊆ A[n].

SATn ′(I)∪ R+a,n

= {p | p ∈ R(n ′), I |=A(n ′) p}∪ R
+
a,n

= {p | p ∈ R(n), I |=A(n ′)∪{a} p}

= {p | p ∈ R(n), I |=A(n)
p}

= SATn(I)

(5.21)

Let M ′ ⊆ β(n ′) and M = M ′ ∪ R+a,n. Since we consider the
atom a, but AM does not include the atom a, we add the set
of rules satisfied by a to RM. Thus we can conclude that the
following equivalence holds.

en ′(M
′)

= {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ′ ∪K | K ⊆ A[n ′],

SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
= {AM ∪K | K ⊆ A[n],

SATn ′(AM ∪K)∪ R+a,n = (RM ′ ∪ R+a,n)∪ R[n ′]}
= {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
= en(M)

(5.22)

Let J ⊆ A(n ′), then we have

RSATn ′(J, I)∪ R+a,n

= {p | p ∈ R(n ′), J |=A(n ′) p or b
−(p)∩ I 6= ∅}∪ R+a,n

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ I 6= ∅}

= RSATn(J, I).

(5.23)

Let C ′ ⊆ β(n ′) and C = C ′ ∪ R+a,n, then

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I)∪ R+a,n = (RC ′ ∪ R+a,n)∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I) = RC ∪ R[n]}
= ren(C, I)

(5.24)

holds.

92 answer set programming with bounded treewidth

We show now that E(θ) =
⋃
θ ′≺Tθ

E(θ ′) for a given θ =

(n,M,C).
Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

E(θ ′). Let I ∈ E(θ ′) for
some θ ′ ≺T θ with θ ′ = (n ′,M ′,C ′).

We show that Condition C holds for θ wrt. I.
Let C ∈ C. From the definition of ≺T , we know that there exists

a C ′ ∈ C ′ where C = C ′ ∪ R+a,n. Since Condition C holds for θ ′

wrt. I, we know that there exists a J ⊂ I s.t. J ∈ ren ′(C
′, I). Now

we can conclude from (5.24) that J ∈ ren(C, I).
Let C be an arbitrary subset of β(n), and suppose that J ∈

ren(C, I) where J ⊂ I. From (5.24) we know that there exists a
C ′ where C ′ ∪ R+a,n = C such that J ∈ ren ′(C

′, I) holds. Since
Condition C holds for θ ′ wrt. I, we know that C ′ ∈ C ′. From the
definition of ≺T we can now conclude C ∈ C.

Thus, Condition C holds for θ wrt. I and together with (5.22),
that is Condition A holds for θ, we can conclude I ∈ E(θ).

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

E(θ ′). Let I ∈ E(θ), we show
that there exists a θ ′ with θ ′ ≺T θ such that I ∈ E(θ ′).

Let θ ′ be defined as θ ′ = (n ′,M ′,C ′) where the following
holds.

M ′ = AM ∪ (SATn ′(I)∩ RM)

C ′ = {AC ∪H | C ∈ C,

H ⊆ R+a,n,∃J ⊂ I s.t. J ∈ ren ′(C \H, I)}.

Thus, θ ′ ≺T θ holds.
We show that Condition C holds for θ ′ wrt. I.
Let C ′ ∈ C ′, then we know that there exists a C ∈ C where

C = C ′ ∪R+a,n, and since Condition C holds for θ wrt. I, we know
that there exists a J ⊂ I s.t. J ∈ ren(C, I). From (5.24) we can now
conclude J ∈ ren ′(C

′, I).
Let C ′ be an arbitrary subset of β(n ′), and suppose that

J ∈ ren ′(C
′, I) where J ⊂ I, from (5.24) we know that then

5.2 the dynamic programming approach for asp 93

J ∈ ren(C, I) where C = C ′ ∪ R+a,n. Since Condition C holds for θ
wrt. I, we also know that C ∈ C, and hence C ′ ∈ C ′.

Thus, Condition C holds for θ ′ wrt. I and together with (5.22),
that is Condition A holds for θ ′, we can conclude I ∈ E(θ ′).

Thus, we have shown for a given θ that

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I ∈ E(θ)

holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

E(θ ′) holds.

·

case 4b. Let θ = (n,M,C) and θ ′ = (n ′,M ′,C ′) where θ ′ ≺T

θ. From the definition of the (a-AI) node (part 2, the atom a is
set to true), we know that

M =M ′ ∪ {a}∪ R+a,n C = {(M ′ ∪ R+a,n)∪ R
B−

a,n}∪

{(C∪ {a}∪ R+a,n)∪ RB
−

a,n,

(C∪ R+a,n)∪ R
B−

a,n | C ∈ C ′}.

Recall that

RB
−

a,n = {r ∈ Rβ(n) | a ∈ b
−(r)}

R+a,n = {r ∈ Rβ(n) | a ∈ r},
R+a,n = {r ∈ Rβ(n) | a ∈ r}.

thus

AM ′ ∪ {a} = AM RM ′ ∪ R+a,n = RM

A(n ′) ∪ {a} = A(n) R(n ′) = R(n)

A[n ′] = A[n] R[n ′] = R[n]

By assumption, we know that AM |=A(n) R
+
a,n.

Let us now establish some equivalences based on these obser-
vations. For the following, let I = AM ′ ∪K where K ⊆ A[n ′], then

SATn ′(I)∪ R+a,n

= {p | p ∈ R(n ′), I |=A(n ′) p}∪ R
+
a,n

= {p | p ∈ R(n), I∪ {a} |=A(n)
p}

= SATn(I∪ {a})

(5.25)

94 answer set programming with bounded treewidth

holds.
Let M ′ ⊆ β(n ′) and M =M ′ ∪ {a}∪ R+a,n, then

I ∈ en ′(M
′)

⇐⇒ I ∈ {AM ′ ∪K | K ⊆ A[n ′], SATn ′(AM ′ ∪K) = RM ′ ∪ R[n ′]}
⇐⇒ I∪ {a} ∈ {AM ′ ∪ {a}∪K | K ⊆ A[n],

SATn ′(AM ′ ∪K)∪ R+a,n = (RM ′ ∪ R+a,n)∪ R[n ′]}
⇐⇒ I∪ {a} ∈ {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}
⇐⇒ I∪ {a} ∈ en(M)

(5.26)

holds.
Let J ⊆ A(n).
Suppose a ∈ J, then

RSATn ′(J \ {a}, I)∪ R+a,n ∪ RB
−

a,n

= {p | p ∈ R(n ′), J \ {a} |=A(n ′) p or b
−(p)∩ I 6= ∅}∪ R+a,n ∪ RB

−

a,n

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ (I∪ {a}) 6= ∅}

= RSATn(J, I∪ {a})
(5.27)

holds.
Suppose a 6∈ J, then

RSATn ′(J, I)∪ R+a,n ∪ R
B−

a,n

= {p | p ∈ R(n ′), J |=A(n ′) p or b
−(p)∩ I 6= ∅}∪ R+a,n ∪ R

B−

a,n

= {p | p ∈ R(n), J |=A(n)
p or b

−(p)∩ (I∪ {a}) 6= ∅}

= RSATn(J, I∪ {a})
(5.28)

holds.
Let C ′ ⊆ β(n ′). We distinguish between two cases: Either atom

a is contained in the certificate, or not.

5.2 the dynamic programming approach for asp 95

Let C = C ′ ∪ R+a,n ∪ RB
−

a,n ∪ {a}, then

J \ {a} ∈ ren ′(C
′, I)

⇐⇒ J \ {a} ∈ {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
⇐⇒ J \ {a} ∈ {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I)∪ R+a,n ∪ RB
−

a,n =

(RC ′ ∪ R+a,n ∪ RB
−

a,n)∪ R[n ′]}
⇐⇒ J ∈ {AC ∪K | K ⊆ A[n],

RSATn(AC ∪K, I∪ {a}) = RC ∪ R[n]}
⇐⇒ J ∈ ren(C, I∪ {a})

(5.29)

holds.
Let C = C ′ ∪ R+a,n ∪ RB

−

a,n, then

ren ′(C
′, I)

= {AC ′ ∪K | K ⊆ A[n ′], RSATn ′(AC ′ ∪K, I) = RC ′ ∪ R[n ′]}
= {AC ′ ∪K | K ⊆ A[n ′],

RSATn ′(AC ′ ∪K, I)∪ R+a,n ∪ R
B−

a,n = (RC ′ ∪ R+a,n ∪ R
B−

a,n)∪ R[n ′]}
= {AC ∪K | K ⊆ A[n], RSATn(AC ∪K, I∪ {a}) = RC ∪ R[n]}
= ren(C, I∪ {a})

(5.30)

holds.

We show now that E(θ) =
⋃
θ ′≺Tθ

{I ∪ {a} | I ∈ E(θ ′)} for a
given θ = (n,M,C).

Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

We start by showing E(θ) ⊇
⋃
θ ′≺Tθ

{I ∪ {a} | I ∈ E(θ ′)}. Let
I ∈ E(θ ′) for some θ ′ ≺T θ with θ ′ = (n ′,M ′,C ′).

We show that Condition C holds for θ wrt. I.
Let C be an arbitrary subset of β(n).
Suppose that C 6=M ′ ∪ R+a,n ∪ RB

−

a,n.

96 answer set programming with bounded treewidth

Suppose that C ∈ C where a ∈ C. From the definition of ≺T ,
we know that there exists a C ′ ∈ C ′ such that C = C ′ ∪ R+a,n ∪
{a}∪ RB−

a,n. Since Condition C holds for θ ′ wrt. I, we know that
there exists a J ⊂ I s.t. J ∈ ren ′(C

′, I). Now we can conclude
from (5.29) that J∪ {a} ∈ ren(C, I∪ {a}).

Suppose that C ∈ C where a 6∈ C. From the definition of ≺T ,
we know that there exists a C ′ ∈ C ′ where C = C ′ ∪ R+a,n ∪ RB

−

a,n.
Since Condition C holds for θ ′ wrt. I, we know that there exists a
J ⊂ I s.t. J ∈ ren ′(C

′, I). Now we can conclude from (5.30) that
J ∈ ren(C, I∪ {a}).

Suppose that J ∪ {a} ∈ ren(C, I ∪ {a}) where J ⊂ I and a ∈ C.
From (5.29) we know that there exists a J ⊂ I s.t. J ∈ ren ′(C

′, I)
for some C ′ where C ′ ∪R+a,n ∪RB

−

a,n = C holds. Since Condition C
holds for θ ′ wrt. I, we know C ′ ∈ C ′. From the definition of ≺T

we can now conclude C ∈ C.
Suppose that J ∈ ren(C, I∪ {a}) where J ⊂ (I∪ {a}) and a 6∈ C.

From (5.30) we know that J ∈ ren ′(C
′, I) for some C ′ where

C ′ ∪ R+a,n ∪ RB
−

a,n = C holds. Since Condition C holds for θ ′ wrt.
I, we know that C ′ ∈ C ′. From the definition of ≺T we can now
conclude C ∈ C.

Suppose that C =M ′ ∪ R+a,n ∪ RB
−

a,n and thus C ∈ C by defini-
tion. It remains to show that there exists a J ⊂ (I ∪ {a}) s.t. J ∈
ren(C, I∪ {a}). Since

• I |=A(n)
R[n] all rules no longer visible are satisfied,

• I |=A(n)
RM ′ only satisfied rules are in the assignment,

• I |=A(n)
R+a,n per definition of R+a,n since a is not included

in I, and

• I |=A(n)
RB

−

a,n per definition of RB
−

a,n,

we can conclude that I ∈ ren(C, I∪ {a}). Thus, since I ⊂ (I∪ {a})
holds trivially, we conclude that there exists a J ⊂ (I∪ {a}) s.t. J ∈
ren(C, I∪ {a}).

Thus, Condition C holds for θ wrt. I and together with (5.26),
that is Condition A holds for θ, we can conclude I∪ {a} ∈ E(θ.

Next we show E(θ) ⊆
⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)}. Let I ∈ E(θ),
we show that there exists a θ ′ with θ ′ ≺T θ such that I \ {a} ∈
E(θ ′).

5.2 the dynamic programming approach for asp 97

Let θ ′ be defined as θ ′ = (n ′,M ′,C ′) where the following
holds.

M ′ = (AM \ {a})∪ (SATn ′(I \ {a})∩ RM)

C ′ = {(AC \ {a})∪H | C ∈ C,

H ⊆ RC,∃J ⊂ I s.t. J ∈ ren ′(AC \ {a}∪H, I \ {a})}.

Thus, θ ′ ≺T θ holds.
We show that Condition C holds for θ ′ wrt. I.
Let C ′ ∈ C ′, then we know that there exists a C ∈ C where

C = C ′ ∪ {a} ∪ R+a,n ∪ RB
−

a,n (resp. C = C ′ ∪ R+a,n ∪ RB
−

a,n) holds.
Since Condition C holds for θ wrt. I, we know that there exists
a J ⊂ I s.t. J ∈ ren(C, I). From (5.29) (resp. (5.30)) we can now
conclude J ∈ ren ′(C

′, I \ {a}).
Let C ′ be an arbitrary subset of β(n ′), i.e., C ′ ⊆ β(n ′). Suppose

that J ∈ ren ′(C
′, I \ {a}) where J ⊂ I \ {a}, from (5.29) (resp. (5.30))

we know that then J∪ {a} ∈ ren(C, I) (resp. J ∈ ren(C, I)) where
C = C ′ ∪ {a} ∪ R+a,n ∪ RB

−

a,n (resp. C = C ′ ∪ R+a,n ∪ RB
−

a,n) holds.
Since Condition C holds for θ wrt. I, we also know that C ∈ C,
and hence C ′ ∈ C ′.

Thus, Condition C holds for θ ′ wrt. I \ {a} and together with
(5.26), that is Condition A holds for θ ′, we can conclude I \ {a} ∈
E(θ ′).

Thus, we have shown for a given θ that

• for each θ ′ with θ ′ ≺T θ, and each I ∈ E(θ ′) also I∪ {a} ∈
E(θ) holds, and

• for all I ∈ E(θ) there exists a θ ′ with θ ′ ≺T θ such that
I \ {a} ∈ E(θ ′).

Hence E(θ) =
⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)} holds.

·

case 5, n is a branch node. Let θ = (n,M,C), further let
θ1 = (n1,M1,C1) and θ2 = (n2,M2,C2) where (θ1, θ2) ≺T θ.
Hence AM1

= AM2
holds. From the definition of the branch

node, we know that

M = AM1
∪ RM1

∪ RM2

C = {C1 ∪C2 | C1 ∈ C1,C2 ∈ C2,AC1 = AC2}

∪ {M1 ∪C2 | C2 ∈ C2,AM1
= AC2}

∪ {C1 ∪M2 | C1 ∈ C1,AC1 = AM2
}.

98 answer set programming with bounded treewidth

That is, in M are all rules combined that are true under the
current assignment of the atoms.

Further, we know that the following equivalences hold.

AM1
= AM2

= AM RM1
∪ RM2

= RM

A(n1) ∪A(n2) = A(n) R(n1) ∪ R(n2) = R(n)
A(n1) ∩A(n2) = Aβ(n) R(n1) ∩ R(n2) = Rβ(n)
A[n1] ∪A[n2] = A[n] R[n1] ∪ R[n2] = R[n]
A[n1] ∩A[n2] = ∅ R[n1] ∩ R[n2] = ∅

Let us now establish some equivalences based on these obser-
vations.

We first show for M,M1,M2 ⊆ β(n) where AM = AM1
=

AM2
and RM = RM1

∪ RM2
that the following holds.

en(M) = {I1 ∪ I2 | I1 ∈ en1(M1), I2 ∈ en2(M2)} (5.31)

Let us recall the definition of en(M).

en(M) = {AM ∪K | K ⊆ A[n], SATn(AM ∪K) = RM ∪ R[n]}

For the following, let I = AM ∪K1 ∪K2 where K1 ⊆ A[n1] and
K2 ⊆ A[n2], further let I1 = AM ∪K1 and I2 = AM ∪K2.

We start by establishing that

SATn(I) = SATn1(I1)∪ SATn2(I2) (5.32)

holds. Recall the definition

SATn(I) = {p | p ∈ R(n), I |=A(n)
p}.

We first show that SATn(I) ⊆ SATn1(I1)∪ SATn2(I2) holds. Let
r ∈ SATn(I). From the definition of SATn(I), it holds that r ∈ R(n)
and since R(n) = Rβ(n) ∪ R[n1] ∪ R[n2], it holds that r ∈ Rβ(n) ∪
R[n1] ∪ R[n2].

Suppose that r ∈ R[n1]. From the shape of the tree decom-
position we know that only atoms in A(n1) occur in r. Since
I1 = I ∩ A(n1), we can conclude that I1 |=A(n1)

r, and thus
r ∈ SATn1(I1) holds. The case for r ∈ R[n2] is symmetric.

Suppose that r ∈ Rβ(n). Since I = AM ∪K1 ∪K2 where K1 ⊆
A[n1] and K2 ⊆ A[n2], we know that at least one of the following
holds.

• AM |=AM r

5.2 the dynamic programming approach for asp 99

• K1 |=A[n1]
r

• K2 |=A[n2]
r

Suppose that AM |=AM r, then I1 |=A(n1)
r and I2 |=A(n2)

r

since AM ⊆ I1 and AM ⊆ A(n1) respectively AM ⊆ I2 and
AM ⊆ A(n2). Thus r ∈ SATn1(I1) and r ∈ SATn2(I2) holds.

Suppose that K1 |=A[n1]
r, then I1 |=A(n1)

r holds since K1 ⊆ I1
and A[n1] ⊆ A(n1). Thus r ∈ SATn1(I1). The case for K2 |=A[n2]

r

is symmetric.
Next, we show that SATn(I) ⊇ SATn1(I1)∪ SATn2(I2) holds. Let

r ∈ SATn1(I1). From the definition of SATn1(I1), it holds that
r ∈ R(n1), and since R(n) = R(n1) ∪ R(n2), we know that r ∈ R(n).
Since A(n1) ⊆ A(n) and I1 ⊆ I we can conclude that I |=A(n)

r,
and hence that r ∈ SATn(I).

The case for r ∈ SATn2(I2) is symmetric.
Thus, (5.32) holds.
Next we show that

en(M) ⊆ {I1 ∪ I2 | I1 ∈ en1(M1), I2 ∈ en2(M2)}.

Suppose that I ∈ en(M), we show that I1 ∈ en1(M1) and I2 ∈
en2(M2) where I = I1 ∪ I2. By definition, I = AM ∪ K where
K ⊆ A[n]. Since A[n] = A[n1] ∪A[n2] we know that there exists
a K1 ⊆ A[n1] and a K2 ⊆ A[n2] such that I = AM ∪ K1 ∪ K2.
Let I1 = AM ∪ K1 and I2 = AM ∪ K2. By definition SATn(I) =

RM ∪ R[n], further RM = RM1
∪ RM2

where RM1
= RM ∩ R(n1)

and RM2
= RM∩R(n2). Since R[n] = R[n1]∪R[n2] and from (5.32),

we can conclude that SATn1(I1) = RM1
∪ R[n1] and SATn2(I2) =

RM2
∪ R[n2]. Thus, we can conclude that I1 ∈ en1(M1) and

I2 ∈ en2(M2).
Now we show that

en(M) ⊇ {I1 ∪ I2 | I1 ∈ en1(M1), I2 ∈ en2(M2)}.

Suppose that I1 ∈ en1(M1) and I2 ∈ en2(M2). By definition
I1 = AM1

∪ K1 where K1 ⊆ A[n1] and I2 = AM2
∪ K2 where

K2 ⊆ A[n2]. Let I = AM ∪ K1 ∪ K2, and since AM = AM1
=

AM2
it holds that I = I1 ∪ I2. Further SATn1(I1) = RM1

∪ R[n1]
and SATn2(I2) = RM2

∪ R[n2], by (5.32) we know that SATn(I) =
RM1

∪ RM2
∪ R[n1] ∪ R[n2]. Since RM = RM1

∪ RM2
and R[n] =

R[n1] ∪R[n2] we can conclude that SATn(I) = RM ∪R[n], and since
A[n] = A[n1] ∪A[n2], we have I ∈ en(M).

Thus, we have shown that (5.31) holds.
Next, we show that for a given I1 = AM ∪ K1 where K1 ⊆

A[n1] and I2 = AM ∪ K2 where K2 ⊆ A[n2] and I = I1 ∪ I2,

100 answer set programming with bounded treewidth

and given C,C1,C2 ⊆ β(n) such that AC = AC1 = AC2 and
RC = RC1 ∪ RC2 that

ren(C, I) = {J1 ∪ J2 | J1 ∈ ren1(C1, I1),

J2 ∈ ren2(C2, I2)}
(5.33)

holds.
Let us first recall the definition of ren(C, I).

ren(C, I) = {AC ∪K | K ⊆ A[n],

RSATn(AC ∪K, I) = RC ∪ R[n]}

We first establish that for J1 = AM ∪K1 where K1 ⊆ A[n1] and
J2 = AM ∪ K2 where K2 ⊆ A[n2] and J = J1 ∪ J2 the following
holds.

RSATn(J, I) = RSATn1(J1, I1)∪ RSATn2(J2, I2) (5.34)

Let us recall the definition of RSATn(J, I).

RSATn(J, I) = {r | r ∈ R(n), J |=A(n)
r or b

−(r)∩ I 6= ∅}

We show that RSATn(J, I) ⊆ RSATn1(J1, I1)∪ RSATn2(J2, I2). Let
r ∈ RSATn(J, I). From the definition of RSATn(J, I), it holds that
J |=A(n)

r, that b
−(r)∩ I 6= ∅, or both.

Suppose that J |=A(n)
r. From the definition of RSATn(J, I), it

holds that r ∈ R(n) and since R(n) = Rβ(n) ∪ R[n1] ∪ R[n2], it
holds that r ∈ Rβ(n) ∪ R[n1] ∪ R[n2].

Suppose that r ∈ R[n1]. From the shape of the tree decom-
position we know that only atoms in A(n1) occur in r. Since
J1 = J ∩ A(n1), we can conclude that J1 |=A(n1)

r, and thus
r ∈ RSATn1(J1, I1) holds. The case for r ∈ R[n2] is symmetric.

Suppose that r ∈ Rβ(n). Since J = AM ∪K1 ∪K2 where K1 ⊆
A[n1] and K2 ⊆ A[n2], we know that at least one of the following
holds.

• AM |=AM r

• K1 |=A[n1]
r

• K2 |=A[n2]
r

Suppose that AM |=AM r, then J1 |=A(n1)
r and J2 |=A(n2)

r

since AM ⊆ J1 and AM ⊆ A(n1) respectively AM ⊆ J2 and
AM ⊆ A(n2). Thus r ∈ RSATn1(J1, I1) and r ∈ RSATn2(J2, I2)
holds.

5.2 the dynamic programming approach for asp 101

Suppose that K1 |=A[n1]
r, then J1 |=A(n1)

r holds since K1 ⊆
J1 and A[n1] ⊆ A(n1). Thus r ∈ RSATn1(J1, I1). The case for
K2 |=A[n2]

r is symmetric.
Suppose that b

−(r) ∩ I 6= ∅. Since I = I1 ∪ I2, it holds that
b
−(r)∩ I1 6= ∅ or b

−(r)∩ I2 6= ∅, and hence r ∈ RSATn1(J1, I1) or
r ∈ SATn2(J2, I2).

Next, we show that RSATn(J, I) ⊇ RSATn1(J1, I1)∪RSATn2(J2, I2)
holds. Let r ∈ RSATn1(J1, I1). From the definition of RSATn1(J1, I1),
it holds that J1 |=A(n1)

r or b
−(r) ∩ I1 6= ∅. Further, it holds

that r ∈ R(n1), and since R(n) = R(n1) ∪ R(n2), we know that
r ∈ R(n). Since A(n1) ⊆ A(n) and J1 ⊆ J we can conclude that
J |=A(n)

r if J1 |=A(n1)
r or since I1 ⊆ I it holds that b

−(r)∩ I 6= ∅
if b

−(r)∩ I1 6= ∅. In either case r ∈ RSATn(J, I) holds. The case for
r ∈ RSATn2(J2, I2) is symmetric.

Thus, (5.34) holds.
Next we show that

ren(C, I) ⊆ {J1 ∪ J2 | J1 ∈ ren1(C1, I1),

J2 ∈ en2(C2, I2)}.

Suppose that J ∈ ren(C, I), we show that J1 ∈ ren1(C1, I1) and
J2 ∈ ren2(C2, I2) where J = J1 ∪ J2. By definition, J = AC ∪
K where K ⊆ A[n]. Since A[n] = A[n1] ∪A[n2] we know that
there exists a K1 ⊆ A[n1] and a K2 ⊆ A[n2] such that J = AC ∪
K1 ∪ K2. Let J1 = AM ∪ K1 and J2 = AC ∪ K2. By definition
RSATn(J, I) = RC ∪ R[n], further RC = RC1 ∪ RC2 where RC1 =

RC ∩ R(n1) and RC2 = RC ∩ R(n2). Since R[n] = R[n1] ∪ R[n2] and
from (5.34), we can conclude that RSATn1(J1, I1) = RC1 ∪ R[n1]
and RSATn2(J2, I2) = RC2 ∪ R[n2]. Thus, we can conclude that
J1 ∈ ren1(C1, I1) and J2 ∈ ren2(C2, I2).

Now we show that

ren(C, I) ⊇ {J1 ∪ J2 | J1 ∈ ren1(C1, I1),

J2 ∈ en2(C2, I2)}.

Suppose that J1 ∈ ren1(C1, I1) and J2 ∈ ren2(C2, I2). By defini-
tion J1 = AC1 ∪K1 where K1 ⊆ A[n1] and J2 = AC2 ∪K2 where
K2 ⊆ A[n2]. Let J = AC ∪K1 ∪K2, and since AC = AC1 = AC2 it
holds that J = J1 ∪ J2. Further RSATn1(J1, I1) = RC1 ∪ R[n1] and
RSATn2(J2, I2) = RC2 ∪R[n2], by (5.34) we know that RSATn(J, I) =
RC1 ∪ RC2 ∪ R[n1] ∪ R[n2]. Since RC = RC1 ∪ RC2 and R[n] =

R[n1] ∪ R[n2] we can conclude that RSATn(J, I) = RC ∪ R[n], and
since A[n] = A[n1] ∪A[n2], we have J ∈ ren(C, I).

Thus, we have shown that (5.33) holds.

102 answer set programming with bounded treewidth

We show now that E(θ) =
⋃

(θ1,θ2)≺Tθ
{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈

E(θ2)} for a given θ = (n,M,C).
Let us first recall the definition of E(θ).

E(θ) = {I | I ∈ en(M) and

∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)]}

Also recall that the condition I ∈ en(M) is called Condition A of
θ, and ∀C ⊆ β(n)[C ∈ C ⇐⇒ ∃J ⊂ I s.t. J ∈ ren(C, I)] is called
Condition C of θ with respect to I.

We start by showing

E(θ) ⊇
⋃

(θ1,θ2)≺Tθ

{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}.

Let I1 ∈ E(θ1) and I2 ∈ E(θ2), for some (θ1, θ2) ≺T θ where
θ1 = (n1,M1,C1), θ2 = (n2,M2,C2). We show that then I ∈ E(θ)

where I = I1 ∪ I2.
We show that Condition C holds for θ wrt. I.
Suppose that C ∈ C, we show that there exists a J ⊂ I such

that J ∈ ren(C, I). From the definition of ≺T , we know that C is
either

1. C = C1 ∪C2 where C1 ∈ C1 and C2 ∈ C2,

2. C =M1 ∪C2 where C2 ∈ C2, or

3. C = C1 ∪M2 where C1 ∈ C1.

Further we know that in Case 1 AC1 = AC2 and AM1
= AC2

in Case 2 (resp. AC1 = AM2
in Case 3) holds. In the following

paragraphs, we will look at these cases in detail.
Suppose that C = C1 ∪ C2. Since Condition C holds for θ1

wrt. I and θ2 wrt. I, we know that there exists a J1 ⊂ I1 s.t. J1 ∈
ren1(C1, I1) and that there exists a J2 ⊂ I2 s.t. J2 ∈ ren2(C2, I2).
From (5.33) we can now conclude J1 ∪ J2 ∈ ren(C, I1 ∪ I2) where
J1 ∪ J2 ⊂ I1 ∪ I2.

Suppose that C = C1 ∪M2. We know that Condition C holds
for θ1 wrt. I, and thus there exists a J1 ⊂ I1 such that J1 ∈
ren1(C1, I1). Further, we know that I2 ∈ ren2(M2, I2) since I2 ∈
en2(M2). From (5.33) we can now conclude J1 ∪ I2 ∈ ren(C, I1 ∪
I2) where J1 ∪ I2 ⊂ I1 ∪ I2.

The case for C =M1 ∪C2 is symmetric.
Suppose that J ∈ ren(C, I1 ∪ I2) where J ⊂ I1 ∪ I2 holds, we

show that C ∈ C. Again, we have three cases,

5.2 the dynamic programming approach for asp 103

• J = J1 ∪ J2 where J1 ⊂ I1 and J2 ⊂ I2,

• J = J1 ∪ I2 where J1 ⊂ I1, or

• J = I1 ∪ J2 where J2 ⊂ I2.

Suppose that J1 ∪ J2 ∈ ren(C, I1 ∪ I2) where J1 ⊂ I1 and J2 ⊂
I2. Suppose that C = C1 ∪C2 where C1 ∈ C1 and C2 ∈ C2 such
that AC1 = AC2 . From (5.33) we know that J1 ∈ ren1(C1, I1) and
J2 ∈ ren2(C2, I2). Since Condition C holds for θ1 wrt. I and θ2
wrt. I, we know that C1 ∈ C1 and C2 ∈ C2. From the definition
of ≺T we can now conclude C ∈ C.

Suppose that J1 ∪ I2 ∈ ren(C, I1 ∪ I2) where J1 ⊂ I1. Suppose
that C = C1 ∪M2 where C1 ∈ C1 such that AC1 = AM2

. From
(5.33) we know that J1 ∈ ren1(C1, I1) and I2 ∈ ren2(M2, I2).
Since Condition C holds for θ1 wrt. I, we know that C1 ∈ C1.
From the definition of ≺T we can now conclude C ∈ C.

The case for J = I1 ∪ J2 is symmetric.
Thus, Condition C holds for θ wrt. I and together with (5.31)

we can conclude that Condition A for θ holds as well, thus
I1 ∪ I2 ∈ E(θ).

Next we show

E(θ) ⊆
⋃

(θ1,θ2)≺Tθ

{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}.

Let I ∈ E(θ), further let I1 ⊆ I ∩ A(n1) and I2 ⊆ I ∩ A(n2),
hence I = I1 ∪ I2 holds. We show that there exist a θ1 and a
θ2 such that (θ1, θ2) ≺T θ where I1 ∈ E(θ1) and I2 ∈ E(θ2). Let
the T-interpretations be defined as follows: θ1 = (n1,M1,C1),
θ2 = (n2,M2,C2), where

M1 = AM ∪ (RM ∩ R(n1))
C1 = {AC ∪ (RC ∩ R(n1)) | C ∈ C}

∪ {C ⊆ β(n1) | @C ′ ∈ C s.t. AC ′ = AC,

∃J ⊂ I1 s.t. J ∈ ren1(C, I1)}

M2 = AM ∪ (RM ∩ R(n2))
C2 = {AC ∪ (RC ∩ R(n2)) | C ∈ C}

∪ {C ⊆ β(n2) | @C ′ ∈ C s.t. AC ′ = AC,

∃J ⊂ I2 s.t. J ∈ ren2(C, I2)}.

We show that Condition C holds for θ1 and θ2 wrt. I.
Suppose that C1 ∈ C1 and C2 ∈ C2 where AC1 = AC2 , we

show that Condition C holds for θ1 wrt. I and θ2 wrt. I. From

104 answer set programming with bounded treewidth

the definition of ≺T we know that there exists a C ∈ C where
C = C1 ∪C2. Since Condition C holds for θ wrt. I, we also know
that there exists a J ⊂ (I1 ∪ I2) s.t. J ∈ ren(C, I1 ∪ I2). From (5.33)
we can now conclude that J1 ∈ ren1(C1, I1) and J2 ∈ ren2(C2, I2)
where J = J1 ∪ J2.

Suppose that C1 ∈ C1 and AM2
= AC1 we show that Con-

dition C holds for θ1 wrt. I. From the definition of ≺T we
know that there exists a C ∈ C where C = C1 ∪M2. Since Con-
dition C holds for θ wrt. I, we also know that there exists a
J ⊂ (I1 ∪ I2) s.t. J ∈ ren(C, I1 ∪ I2). From (5.33) we can now con-
clude that J1 ∈ ren1(C1, I1) where J = J1 ∪ I2, and thus J1 ⊂ I1.

The case for C2 ∈ C2 and AM1
= AC2 is symmetric.

For all other cases of C1 ∈ C1 respectively C2 ∈ C2, there exists
a J1 ⊂ I1 such that J1 ∈ ren1(C1, I1) respectively a J2 ⊂ I2 such
that J2 ∈ ren2(C2, I2) per definition of C1 respectively C2.

Suppose that J1 ∈ ren1(C1, I1) where J1 ⊂ I1 holds and J2 ∈
ren2(C2, I2) where J2 ⊂ I2 holds. From (5.33) we know that
J1 ∪ J2 ∈ ren(C, I1 ∪ I2) where J1 ∪ J2 ⊂ I1 ∪ I2 and C = C1 ∪C2.
Since Condition C holds for θ wrt. I, we also know that C ∈ C.
From the definition of ≺T we can now conclude C1 ∈ C1 and
C2 ∈ C2.

Suppose that J1 ∈ ren1(C1, I1) where J1 ⊂ I1 and AM2
=

AC1 . From (5.33) we know that J1 ∪ I2 ∈ ren(C, I1 ∪ I2) where
J1 ∪ I2 ⊂ I1 ∪ I2 and C = C1 ∪M2. Since Condition C holds for
θ wrt. I, we also know that C ∈ C. From the definition of ≺T we
can now conclude C1 ∈ C1.

The case for J2 ∈ ren2(C2, I2) where J2 ⊂ I2 and AM1
= AC2

is symmetric.
For all other cases of J1 ∈ ren1(C1, I1) where J1 ⊂ I1 respec-

tively J2 ∈ ren2(C2, I2) where J2 ⊂ I2 we know that C1 ∈ C1
respectively C2 ∈ C2 per definition of C1 respectively C2.

Thus, Condition C holds for θ1 wrt. I and θ2 wrt. I. Together
with (5.31), that is Condition A of θ1 and θ2, we can conclude
I1 ∈ E(θ1) and I2 ∈ E(θ2).

Thus, we have shown for a given θ that

• for each θ1 and θ2 with (θ1, θ2) ≺T θ, and each I1 ∈ E(θ1)

and I2 ∈ E(θ2) also I1 ∪ I2 ∈ E(θ) holds, and

• for all I ∈ E(θ) there exists a θ1 and a θ2 with (θ1, θ2) ≺T θ

such that I1 ∈ E(θ1) and I2 ∈ E(θ2) where I = I1 ∪ I2.

Hence E(θ) =
⋃

(θ1,θ2)≺Tθ
{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)} holds.

·

5.2 the dynamic programming approach for asp 105

Thus, the recursive production of E(θ) is correct and equivalent
to Definition 5.2.4.

The following corollary follows directly from Lemma 5.2.12.

Corollary 5.2.13. Let θ, θ ′, θ ′′ be T-interpretations, such that θ ′ ≺T θ

(resp. (θ ′, θ ′′) ≺T θ). Then, θ is a T-model iff θ ′ is T-model (resp. both
θ ′ and θ ′′ are T-models).

5.2.3 asp Consistency

In this section we provide the algorithm for asp consistency
together with a runtime analysis.

Corollary 5.2.13 suggests the following algorithm. First, we
establish the T-models of leaf nodes, then we compute all remain-
ing T-models via ≺T in a bottom-up manner. As soon as we have
the T-models for the root node, we check whether they include
also a root model for T.

Theorem 5.2.14. Deciding AS(R) 6= ∅ can be done in time O(f(k) ·
|R|), where k denotes the treewidth of R and f is a function that only
depends on k but not on |R|.

Proof. Computing the T-models of a leaf node: since we have
no objects to talk about, there exists exactly one T-model (θ =

(n, ∅, ∅)) which can be computed in constant time, i.e., O(1).
Computing the T-models for the inner nodes: in the following

let g(k) = 22
k+1

and h(k) = 2k+1.
We first establish the time required by the helper functions and

each node-type per T-model (see Figure 5.3). Let the function
Γnode−type(M

′,C ′) (resp. Γb(M
′,C ′,M ′′,C ′′) for a branch node)

be the function to compute a new θ from the given assignments
M ′ and M ′′ as well as the given certificates C ′ and C ′′. We use
‖ ◦ (·)‖ to denote the number of steps required to compute the

106 answer set programming with bounded treewidth

result of ◦(·). We assume the use of a hash set with a perfect
hashing function leading to O(1) runtime for lookups and inserts.

‖α∩β‖ = O(|β|)
‖α∪β‖ = O(|α|+ |β|)

‖α \β‖ = O(|α|)
‖e ∈ β‖ = O(1)
‖α = β‖ = O(|α|+ |β|)

‖M+n a‖ = O(k)
‖M×n a‖ = O(k)
‖M]n r‖ = O(k)

‖RB−

a,n‖ = O(k)

Note that α∩β is defined to traverse through the elements of β
and check if they are contained in α.

From these runtimes, we can now establish the time required
to compute a new T-model from a given assignment a set of
certificates.

‖Γa−ar(M
′,C ′)‖ = O(g(k))

‖Γr−rr(M
′,C ′)‖ = O(g(k))

‖Γa−ai(M
′,C ′)‖ = O(g(k))

‖Γa−ai(M
′,C ′)‖ = O(g(k))

‖Γr−ri(M
′,C ′)‖ = O(g(k))

‖Γb(M
′,C ′,M ′′,C ′′)‖ = O(g(k)2)

A node has at most O(g(k) · h(k)) T-models. Thus, computing
all T-models for a node takes time O(g(k)4 · h(k)2) in the case of
a branch-node since we have to consider the left and right child
of the branch node, and O(g(k)2 · h(k)) for any other inner node.

To check if the root node contains a root-model, we have to
check if the model θ = (rt, ∅, ∅) is present. This can be done in
time O(1).

The size of T is linearly bounded by the size of R, which follows
from Bodlaender (1996) [6]. Since no operation depends on |R|,
this algorithm has the desired time bound

O(f(k) · |R|)

where f(k) = g(k)4 · h(k)2, and hence only depends on k.

5.2 the dynamic programming approach for asp 107

The correctness of this algorithm immediately follows from
Theorem 5.2.6, i.e., AS(R) 6= ∅ holds iff there exists a root-model.

Theorem 5.2.14 is the desired fpt result for the asp consistency
problem. Indeed, if the treewidth k is bounded by a constant,
then AS(R) 6= ∅ can be decided in linear time.

Example 5.2.15. Using the algorithm given above and the tree de-
composition with the dynamic tables of Figure 5.4 we solve the asp

consistency problem.
A solution to the asp consistency problem is immediately recognizable

at the root node. According to Theorem 5.2.14, we have to find a T-model
of this form: θ = (n1, ∅, ∅), which is present. That is, the program P of
Listing 5.1 is consistent and has at least one solution.

5.2.4 Counting Answer Sets

The following observation is important and with Lemma 5.2.12 it
lays the foundation for our counting algorithm.

Lemma 5.2.16. For two distinct T-interpretations θ1 = (n,M1,C1)
and θ2 = (n,M2,C2), the following holds.

E(θ1)∩ E(θ2) = ∅

Proof. Suppose to the contrary that there exists an interpretation
I ∈ E(θ1)∩ E(θ2), we show that θ1 = θ2.

By Lemma 5.2.12 I ∩ β(n) = AM1
= AM2

holds. Moreover,
by the definition of en(M1), there exists a K ⊆ A[n] such that
SATn(AM1

∪ K) = RM1
∪ R[n], and by the definition of en(M2),

there exists a K ⊆ A[n] such that SATn(AM2
∪ K) = RM2

∪ R[n].
Since RM1

∩ R[n] = ∅ respectively RM2
∩ R[n] = ∅ and RM1

∪
R[n] = RM2

∪ R[n] we conclude RM1
= RM2

, and thus M1 =M2.
Finally,

C1 = {C ⊆ β(n) | ∃J ∈ ren(C, I), s.t. J ⊆ I} = C2

follows by definition.

Next, we recursively define a mapping from T-interpretations
to numbers.

108 answer set programming with bounded treewidth

Definition 5.2.17. Let θ be a T-interpretation for node n. If θ is not a
T-model, let #(θ) = 0, otherwise let

#(θ) =


1 if n is leaf node,∑
θ ′≺Tθ

#(θ ′) if n has one child,∑
(θ ′,θ ′′)≺Tθ

#(θ ′) · #(θ ′′) if n is branch node.

Using Theorem 5.2.6 and Lemma 5.2.12 and 5.2.16, we obtain
the following Theorem.

Theorem 5.2.18. Let θ be the root model of T. Then, |AS(R)| = #(θ).

Proof. We first prove |E(θ)| = #(θ) for every model θ by induction.
Base case: It is easy to see that |E(θ)| = #(θ) for leaf nodes,

i.e., |{∅}| = 1.
Induction step: Let n be a node in T and assume the claim

holds for all nodes below n in T.

case 1, n is of type (RR), (RI), (AR) or (a-AI) with a /∈ M
where θ = (n,M,C). Let n ′ be the child node of n. By Lemma
5.2.12, we know that

|E(θ)| = |
⋃
θ ′≺Tθ

E(θ ′)|.

Furthermore, from Lemma 5.2.16 we know that

|
⋃
θ ′≺Tθ

E(θ ′)| =
∑
θ ′≺Tθ

|E(θ ′)|.

By induction hypothesis, we have |E(θ ′)| = #(θ ′), and thus we
have the desired

#(θ) =
∑
θ ′≺Tθ

#(θ ′).

case 2, n is of type (a-AI) with a ∈ M where θ = (n,M,C).
Let n ′ be the child node of n. By Lemma 5.2.12, we know that

|E(θ)| = |
⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)}|.

Due to the connectedness condition, this is the first time we see
the atom a, i.e., there exists no I s.t. I ∪ {a} ∈ E(θ ′). Together
with Lemma 5.2.16 we know that

|
⋃
θ ′≺Tθ

{I∪ {a} | I ∈ E(θ ′)}| = |
⋃
θ ′≺Tθ

E(θ ′)| =
∑
θ ′≺Tθ

|E(θ ′)|.

5.2 the dynamic programming approach for asp 109

By induction hypothesis, we have |E(θ ′)| = #(θ ′), and thus we
have the desired

#(θ) =
∑
θ ′≺Tθ

#(θ ′).

case 3 , n is a branch node. Let n1 and n2 be the child nodes
of n and let θ be the T-model of n. By Lemma 5.2.12, we know
that

|E(θ)| = |
⋃

(θ1,θ2)≺Tθ

{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}|.

Due to the connectedness condition of a tree decomposition, we
know that A[n1] ∩A[n2] = ∅, thus for each I1 ∈ E(θ1) and I2 ∈
E(θ2), I1 ∩ I2 = AM ⊆ Aβ(n). Further, we know that E(θ1) and
E(θ2) share either exactly one model (I1 = I2 = AM ⊆ Aβ(n)),
or they do not share anything at all. Together with Lemma 5.2.16,
the following equation holds in both cases

|E(θ)| =
∑

(θ1,θ2)≺Tθ

|{I1 ∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}|.

By induction hypothesis we have |E(θ1)| = #(θ1) and |E(θ2)| =

#(θ2). Hence, the following equation holds:

|{I1∪ I2 | I1 ∈ E(θ1), I2 ∈ E(θ2)}| = |E(θ1)| · |E(θ2)| = #(θ1) ·#(θ2).

Now we have the desired

#(θ) =
∑

(θ1,θ2)≺Tθ

#(θ1) · #(θ2).

Thus, |E(θ)| = #(θ) for all models θ, so the equation |AS(R)| =

|E(θ)| = #(θ) holds in particular for the root model θ.

Using the same algorithm as sketched in the proof of Theo-
rem 5.2.14, plus keeping track of the # values for T-models, we
immediately obtain the following result.

Theorem 5.2.19. |AS(R)| can be computed in time O(f(k) · |R|2 ·
log |R|), where k = tw(R) and f is a function depending on k but
not on |R|. Unit cost for arithmetic leads to time O(f(k) · |R|).

Proof. We deal with numbers as high as O(2|R|), and thus need
O(|R|) bits to represent them. The time required for integer
multiplication is conjectured to be optimal with Θ(b · log b),
where b is the number of bits required to represent the number.

110 answer set programming with bounded treewidth

The most prominent practical integer multiplication algorithm
is due to Schönhage and Strassen (1971) [73] and runs in time
O(b · logb · log logb). We take integer multiplication as the most
expensive operation, thus we need O(|R| · log |R|) time for each
T-model. Together with the algorithm presented in proof of
Theorem 5.2.14 we have a total runtime of O(f(k) · |R|2 · log |R|).

Example 5.2.20. We will now apply this algorithm to our example
in Figure 5.4. That is, after we created the dynamic programming
tables, we follow the contributes relation of the T-model of the root node
(marked with + and ×, the different marks are used for the enumeration
example below).

When we reach the leaf nodes, we start with a count of 1. This count
is propagated from the leafs up since no T-models are combined. At the
branch node n7, the count of the left and right branches is multiplied,
resulting in a count of 1 for both T-models (line 5 and 9 of node n7). In
node n6 these two T-models collapse into one, thus the count is added.
From node n6 up until the root node n1 does not change, so the final
count is 2, and thus we can conclude that our program of Listing 5.1
has two answer sets.

5.2.5 Enumerating Answer Sets

Theorem 5.2.21. Computing AS(R) works in space O(f(k) · |R|) and
outputs all elements of AS(R) with delayO(f(k) · |R|2), where k denotes
the treewidth of R and f is a function that only depends on k but not on
|R|. Unit cost for set-operations leads to time O(f(k) · |R|).

Proof. After the computation of the T-models (takes O(f(k) · |R|)
time and space by Theorem 5.2.14), the algorithm proceeds by
traversing the tree top-down. Starting at the root-model, we
follow the contributes relation (≺T) until we reach the leaf-nodes.
A T-model can have more than one contributor, so the algorithm
has to choose one for each iteration and node. The combination
of all choices uniquely defines one interpretation. Choosing a
combination of T-models to consider can be done in time O(|R|).

From the leaf-nodes upward, we collect all atoms set to true in
an (a-AI) node of the currently selected T-models. We consider
a linked-list as data-structure for collecting the elements of the
interpretation, so inserting an element can be done in O(1).

At a branch-node, we build the union and connect the left and
right list, taking time O(1). Since both lists potentially contain

5.2 the dynamic programming approach for asp 111

the atoms of the branch-node, we have to remove them first from
one of the lists, taking time O(k · |R|).

When we reach the root node, we print all elements of the list,
taking time O(|R|).

Thus, traversing the tree to compute one interpretation requires
O(k · |R|2) steps, but only O(|R|) space.

Example 5.2.22. Similarly to Example 5.2.20, we follow the contributes
relation (shown in the second column in Figure 5.4) from the T-model
of the root node down to the leafs. Whenever we reach a T-model with
more than one “contributor”, we choose one.

Suppose that we chose the path marked with + to reach the leaf nodes,
for the upward direction, we collect the atoms of the (AI) nodes. That
is, at the node n6, we have {a,b, c}, at the node n19, we have {a}. At
the branch node, we build the union of the two, resulting in {a,b, c}.
From the branch node upwards, we have no more (AI) nodes, so the first
answer set is {a,b, c}.

Suppose that we chose the path marked with× for the second traversal.
At the node n6, we have {a,d} and at the node n19 we have {a,d, e}.
Again, at the branch node the sets are combined resulting in {a,d, e}.
Since there are no more (AI) nodes until we reach the root node n1, this
is indeed our second answer set.

112 answer set programming with bounded treewidth

n1: ∅
ID Contr. Ass. Cert.

+,× 1 3 ∅ ∅
2 4,5 ∅ {∅}

n2: {r4}

ID Contr. Ass. Cert.

1 1 ∅ ∅
2 2 ∅ {∅}
+,× 3 3 {r4} {∅}
4 4 {r4} {∅,{r4}}

5 5,6 {r4} {{r4}}

n3: {f,r4}

ID Contr. Ass. Cert.

1 1 ∅ ∅
2 2 ∅ {∅}
+,× 3 3 {r4} {∅}
4 4 {r4} {∅,{r4}}

5 1 {f,r4} {{r4}}

6 2,3,4 {f,r4} {{r4},{f,r4}}

n4: {r4}

ID Contr. Ass. Cert.

1 2 ∅ ∅
2 1 ∅ {∅}
+,× 3 4 {r4} {∅}
4 3 {r4} {∅,{r4}}

n5: {r1,r4}

ID Contr. Ass. Cert.

1 4 {r1} {{r1},{r4}}

2 3 {r1} {{r4}}

3 6 {r1,r4} {{r1},{r1,r4},{r4}}

+,× 4 5 {r1,r4} {{r1},{r4}}

5 1 {r4} ∅
6 2 {r4} {{r4}}

n6: {a,r1,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2,10,11 {r4} {{r4}}

3 3 {a,r1} {{r4}}

4 4 {a,r1} {{r4},{a,r1}}

+,× 5 5,9 {a,r1,r4} {{r4},{a,r1}}

6 6,7,8 {a,r1,r4} {{r4},{a,r1},{a,r1,r4}}

n7: {a,d,r1,r4}

ID Contr. Ass. Cert.

1 1+1 {r4} ∅
2 1+2,2+1,2+2 {r4} {{r4}}

3 3+3 {a,r1} {{r4}}

4 3+4,4+3,4+4 {a,r1} {{r4},{a,r1}}

+ 5 5+3 {a,r1,r4} {{r4},{a,r1}}

6 5+4 {a,r1,r4} {{r4},{a,r1},{a,r1,r4}}

7 6+5 {a,d,r1,r4} {{r4},{a,r1},{a,r1,r4},{a,d,r1,r4},{d,r4}}

8 7+5 {a,d,r1,r4} {{r4},{a,r1},{a,d,r1,r4},{d,r4}}

× 9 8+5 {a,d,r1,r4} {{r4},{a,r1},{d,r4}}

10 9+6 {d,r4} {{r4}}

11 9+7,10+6,10+7 {d,r4} {{r4},{d,r4}}

Figure 5.4: The tree decomposition with all T-models and their rela-
tions, see Figure 5.5 and Figure 5.6 for the left and right
branches of node n7.

5.2 the dynamic programming approach for asp 113

n8: {a,d,r1,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2 {r4} {{r4}}

3 3 {a,r1} {{r4}}

4 4 {a,r1} {{r4},{a,r1}}

+ 5 5 {a,r1,r4} {{r4},{a,r1}}

6 6 {a,d,r1,r4} {{r4},{a,r1},{a,r1,r4},{a,d,r1,r4},{d,r4}}

7 7 {a,d,r1,r4} {{r4},{a,r1},{a,d,r1,r4},{d,r4}}

× 8 8 {a,d,r1,r4} {{r4},{a,r1},{d,r4}}

9 9 {d,r4} {{r4}}

10 10 {d,r4} {{r4},{d,r4}}

n9: {a,d,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2 {r4} {{r4}}

3 3 {a} {{r4}}

4 4 {a} {{r4},{a}}

+ 5 5 {a,r4} {{r4},{a}}

6 5 {a,d,r4} {{r4},{a},{a,r4},{a,d,r4},{d,r4}}

7 4 {a,d,r4} {{r4},{a},{a,d,r4},{d,r4}}

× 8 3 {a,d,r4} {{r4},{a},{d,r4}}

9 1 {d,r4} {{r4}}

10 2 {d,r4} {{r4},{d,r4}}

n10: {a,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2,6,7 {r4} {{r4}}

× 3 3 {a} {{r4}}

4 4 {a} {{r4},{a}}

+ 5 5 {a,r4} {{r4},{a}}

n11: {a,c,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2 {r4} {{r4}}

× 3 3 {a} {{r4}}

4 4 {a} {{r4},{a}}

+ 5 5 {a,c,r4} {{r4},{a},{c,r4}}

6 6 {c,r4} {{r4}}

7 7 {c,r4} {{r4},{c,r4}}

n12: {a,c}

ID Contr. Ass. Cert.

1 1 ∅ ∅
2 2 ∅ {∅}
× 3 3 {a} {∅}
4 4 {a} {∅,{a}}

+ 5 6 {a,c} {∅,{a},{c}}

6 7 {c} {∅}
7 8 {c} {∅,{c}}

n13: {a,c,r2}

ID Contr. Ass. Cert.

1 1 {r2} ∅
2 2 {r2} {{r2}}

× 3 3 {a,r2} {{r2}}

4 4 {a,r2} {{r2},{a,r2}}

5 3 {a,c} {{r2},{a,r2},{c,r2}}

+ 6 4 {a,c,r2} {{r2},{a,r2},{a,c},{c,r2}}

7 1 {c,r2} {{r2}}

8 2 {c,r2} {{r2},{c,r2}}

n14: {a,r2}

ID Contr. Ass. Cert.

1 1 {r2} ∅
2 2 {r2} {{r2}}

× 3 1 {a} {{r2}}

+ 4 2 {a,r2} {{r2},{a}}

n15: {r2}

ID Contr. Ass. Cert.

× 1 1 ∅ ∅
+ 2 2 {r2} {∅}

n16: {b,r2}

ID Contr. Ass. Cert.

× 1 1 ∅ ∅
+ 2 2 {b,r2} {∅}

n17: {b}

ID Contr. Ass. Cert.

× 1 1 ∅ ∅
+ 2 1 {b} {∅}

n18: ∅
ID Contr. Ass. Cert.

+,× 1 ∅ ∅

Figure 5.5: Left branch of branch node n7.

114 answer set programming with bounded treewidth

n19: {a,d,r1,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2 {r4} {{r4}}

+ 3 3 {a,r1} {{r4}}

4 4 {a,r1} {{r4},{a,r1}}

× 5 5 {a,d,r1,r4} {{r4},{a,r1},{d,r4}}

6 6 {d,r4} {{r4}}

7 7 {d,r4} {{r4},{d,r4}}

n20: {a,d,r4}

ID Contr. Ass. Cert.

1 1 {r4} ∅
2 2 {r4} {{r4}}

+ 3 3 {a} {{r4}}

4 4 {a} {{r4},{a}}

× 5 5 {a,d,r4} {{r4},{a},{d,r4}}

6 6 {d,r4} {{r4}}

7 7 {d,r4} {{r4},{d,r4}}

n21: {a,d}

ID Contr. Ass. Cert.

1 1 ∅ ∅
2 2 ∅ {∅}
+ 3 3 {a} {∅}
4 4 {a} {∅,{a}}

× 5 6 {a,d} {∅,{a},{d}}

6 7 {d} {∅}
7 8 {d} {∅,{d}}

n22: {a,d,r3}

ID Contr. Ass. Cert.

1 1 {r3} ∅
2 2 {r3} {{r3}}

+ 3 1 {a,r3} {{r3}}

4 2 {a,r3} {{r3},{a,r3}}

5 3 {a,d} {{r3},{a,r3},{d,r3}}

× 6 4 {a,d,r3} {{r3},{a,r3},{a,d},{d,r3}}

7 3 {d,r3} {{r3}}

8 4 {d,r3} {{r3},{d,r3}}

n23: {d,r3}

ID Contr. Ass. Cert.

+ 1 1 {r3} ∅
2 2 {r3} {{r3}}

3 1 {d} {{r3}}

× 4 2 {d,r3} {{r3},{d}}

n24: {r3}

ID Contr. Ass. Cert.

+ 1 1 ∅ ∅
× 2 2 {r3} {∅}

n25: {e,r3}

ID Contr. Ass. Cert.

+ 1 1 ∅ ∅
× 2 2 {e,r3} {∅}

n26: {e}

ID Contr. Ass. Cert.

+ 1 1 ∅ ∅
× 2 1 {e} {∅}

n27: ∅
ID Contr. Ass. Cert.

+,× 1 ∅ ∅

Figure 5.6: Right branch of branch node n7.

6
I M P L E M E N TAT I O N A N D E X P E R I M E N TA L
R E S U LT S

In this chapter we will discuss the implementation of the asp

algorithm presented in Chapter 5. We also provide experimental
results for performance measurements and benchmarks against
a leading answer-set solver.

Instead of using pseudo code, we will use Haskell1, a compiled,
functional language with lazy semantics [49].

A programming language is “lazy” if it executes statements
only when absolutely necessary to perform an action (print the
result, for example). For the following exposition, it is critical to
understand the concept of lazy evaluation. The concepts needed
to follow the examples will be introduced where necessary.

Example 6.0.23. Listing 6.1 shows a minimal Haskell program. The
function main is called when starting a program from the command
line, a do block is a set of sequential statements. In line 2, we set a to
refer to an array of three elements, in line 3, we print the third element
of that array. The operator (!!) is used to access a certain element of an
array, starting at 0. Lazy evaluation ensures that the more expensive op-
erations 10001000 and 223232 are not executed. Computations are only
executed if we need the result of them, for example if line 3 would read
print (a!!1), the result of 223232 would be calculated and printed.

This holds also if we nest the computations. For example, if we insert
let b = a!!1 * a!!2

between line 2 and 3, the program does not execute any of the expensive
operations, it registers only how to compute the value of b, for the
case that it needs the result.

Listing 6.1: Example of lazy evaluation.

1 main = do
2 l e t a = [1000^1000 ,2^23232 ,3]
3 print (a ! ! 2)

For a thorough treatment of Haskell, see “The Haskell Report”
[65].

1 http://www.haskell.org

115

http://www.haskell.org

116 implementation and experimental results

6.1 answer set programming system in haskell

We call our prototype laps (lazy answer-set programming sys-
tem).

The evaluation of a disjunctive logic program is split into four
steps (Figure 6.1).

1. Parse a disjunctive logic program and generate lookup
tables for the formulae in our target language.

2. Build the incidence graph of the program and decompose
the graph using heuristic methods [16]. The decomposition
is then provided as a data structure for the target language.

3. All parts are merged with the algorithm and compiled.

4. The result is a compiled and executable version of the
disjunctive logic program.

a : −b, c,d.
a b

c

d

c,d

d a,b, c
Source

Executable

incidence graph

decomposition

data structure

lookup tables

compilation

Figure 6.1: Compilation of a disjunctive logic program into an exe-
cutable, as performed by laps.

6.1 answer set programming system in haskell 117

6.1.1 Data Structures

We have two essential data structures within our program. There
are the lookup tables for the rules, and the data structure for the
tree decomposition.

Rules are stored as triples of sets: head, positive body, and
negative body. Rules and atoms are encoded as simple integers,
we will refer to the rule R1 as rule 1, and the atom a1 as atom 1.

Example 6.1.1. The code shown in Listing 6.2 shows the definition of
two rules. Rule 1 is to be read as R1 : a1 ∨ a2 ← a3,a4,¬a5,¬a6,
similarly, rule 2 reads as R2 : a2 ← a4,a5.

Listing 6.2: Rules in Haskell.

1 r u l e 1 = ([1 , 2] , [3 , 4] , [5 , 6])
2 r u l e 2 = ([2] , [4 , 5] , [])

The tree decomposition is a recursive data structure. Listing 6.4
shows the complete definition of it. For a better understanding,
we first skim over the basic data types used throughout the
program.

Listing 6.3: Basic types used in the program.

1 type Atom = Int
2 type Rule = Int
3 type Atoms = [Atom]
4 type Rules = [Rules]
5 type Bag = (Atoms , Rules)
6 data Theta = { assignment : : Atoms
7 , c e r t i f i c a t e s : : [Atoms]
8 , s o l u t i o n : : [Atoms]
9 , count : : Integer

10 }

In Listing 6.3 we define the basic types, they are mere names
for the data types defined by Haskell, hence the keyword type.
For example, a type named Atom is just another name for Int (as
mentioned before, we encode atoms and rules as integers).

A bag (data type Bag, shown in line 5) is a tuple consisting of
a set of atoms and a set of rules. We do not care for the exact
position of an atom or rule within a bag, all we need to know is
which atoms and which rules are present in a given bag. Since
both, atoms and rules, are stored as simple integers, we keep
them in separate sets to prevent mix-ups.

118 implementation and experimental results

Finally, the data type Theta is an encoding of the θ used
throughout Chapter 5 plus a set of solutions (answer sets) and
a count. It is a named tuple consisting of a set of atoms, the
assignment. Second, it has a set of sets of atoms, the certificates.
The third and fourth positions are for the solutions (a set of sets
of atoms) and the count of solutions. The solutions represent the
function E(·) of Chapter 5, that is, a set of sets of atoms. Remem-
ber that we do not compute the set E(·) explicitly in Chapter 5,
we do not do it here either! Due to the lazy semantics of Haskell,
the contributes relation (≺) is implicitly stored in the solutions
(remember Example 6.1). A solution is only computed if we re-
quest one, thereby implicitly traversing the tree. The same holds
for the count, represented as an Integer2.

The TreeDecomposition data type definition in Listing 6.4 is
to be read as “A tree decomposition is either a branch node, or
an atom introduction node, or an atom removal node etc.”. Each
node defines whether it has children (of type TreeDecomposition),
and if so, how many.

Let us start with the simplest node type for the recursive
definition of the data structure of the tree decomposition, the
leaf. The definition for a LeafNode, which is shown in line 27 of
Listing 6.4, is empty since leaf nodes do not contain any children,
atoms or rules.

The definitions for a rule removal, rule introduction, atom
removal, and atom introduction nodes are very similar, they
consist of a Bag, exactly one child which is again the root of
a tree decomposition (note the recursion of the data type) and
a field called delta whose data type varies between rule and
atom nodes. The delta contains the element that is introduced
or removed for faster lookup (it could be computed from the set
difference between the bag of the child and the bag of the current
node).

The BranchNode is defined to consist of a Bag and exactly two
children, child1 and child2 of the tree decomposition type.

Listing 6.4: Data structure for the tree decomposition.

1 data TreeDecomposition =
2 BranchNode
3 { bag : : Bag
4 , ch i l d 1 : : TreeDecomposition
5 , ch i l d 2 : : TreeDecomposition

2 The difference between Int and Integer is, that Integer is unbounded. Int is
a machine specific type (currently 32 or 64 bit in size).

6.1 answer set programming system in haskell 119

6 }
7 | AtomIntroductionNode
8 { bag : : Bag
9 , c h i l d : : TreeDecomposition

10 , d e l t a : : Atom
11 }
12 | AtomRemovalNode
13 { bag : : Bag
14 , c h i l d : : TreeDecomposition
15 , d e l t a : : Atom
16 }
17 | RuleIntroductionNode
18 { bag : : Bag
19 , c h i l d : : TreeDecomposition
20 , d e l t a : : Rule
21 }
22 | RuleRemovalNode
23 { bag : : Bag
24 , c h i l d : : TreeDecomposition
25 , d e l t a : : Rule
26 }
27 | LeafNode
28 {
29 }

Example 6.1.2. In Listing 6.5, we have a sample encoding of the tree
decomposition shown in Figure 4.3. The definition of the root node is
to be read as follows. The node root is a rule removal node and has no
rules, and no atoms in its bag. The child of root is node n1 and rule 2
was removed.

Listing 6.5: Some nodes of tree decomposition TI encoded as Haskell
program.

1 root = RuleRemovalNode ([] , []) n1 2

2 n1 = AtomRemovalNode ([2] , []) n2 4

3 n2 = BranchNode ([2] , [4]) n3 n4

4 n3 = AtomIntroductionNode ([2] , [4]) n5 4

The general structure for our fpt algorithms, as described in
Chapter 5 is prevalent in the structure of the Haskell program.
Listing 6.7 can be read like a function definition in mathematics.

To fully understand the structure shown in Listing 6.7, we have
to introduce lists as they are provided by Haskell. The data type

120 implementation and experimental results

[Theta] stands for a list of objects of the type Theta. Lists offer
similar convenient notations as their mathematical counterpart:
sets. For example, the following set

{a · b | a ∈ {1..10},b ∈ {1..10},a+ b < 10}

can be written as a Haskell function like this
f = [a * b | a <- [1..10], b <- [1..10], (a+b) < 10].
We have to note that the Haskell list is ordered and allows the
same value multiple times, that is, it has not exactly set semantics,
but it is sufficient for our purposes. This is only a shortcut for
the long form shown in Listing 6.6.

Listing 6.6: Haskell lists.

1 f = do
2 a <− [1 . . 1 0]
3 b <− [1 . . 1 0]
4 guard ((a+b) <10)
5 return (a * b)

The short version is convenient if only a simple list manipulation
is required, for longer variants with complex operations involved,
the second form is preferred. The guard (line 4) deserves special
attention, it ensures that only instances of a and b are considered
that conform to the constraint a+ b < 10, other combinations
are not considered. The result of the function f is thus a list of
values, but note that the ordering is not fixed in advance. Haskell
lists are the representation of mathematical sets. This is the form
of list processing used in Listing 6.7, and throughout the other
examples.

The function asp is a mapping from a TreeDecomposition to a
list of Thetas. We have a function definition for each node type,
thus line 4 of Listing 6.7, defines the steps required for a branch
node. Since each node type is dependent on the child nodes, the
recursion is implicit (except for leaf nodes).

Listing 6.7: Declarative structure of the algorithm in Haskell.

1 asp : : TreeDecomposition −> [Theta]
2 asp (LeafNode) = do
3 . . .
4 asp (BranchNode bag c h i l d 1 c h i ld 2) = do
5 s o l u t i o n _ c h i l d 1 <− asp c h i l d 1

6 s o l u t i o n _ c h i l d 2 <− asp c h i l d 2

7 . . .

6.1 answer set programming system in haskell 121

8 asp (AtomRemovalNode bag c h i l d a) = do
9 s o l u t i o n _ c h i l d <− asp c h i l d

10 . . .
11 asp (RuleRemovalNode bag c h i l d c) = do
12 s o l u t i o n _ c h i l d <− asp c h i l d
13 . . .
14 asp (AtomIntroductionNode bag c h i l d a) = do
15 s o l u t i o n _ c h i l d <− asp c h i l d
16 . . .
17 asp (RuleIntroductionNode bag c h i l d c) = do
18 s o l u t i o n _ c h i l d <− asp c h i l d
19 . . .

The root node is the entry point for the algorithm, shown in
Listing 6.8. Remember that the execution is triggered when we
request the answer, in our case the print statements in lines 3

and 4.

Listing 6.8: Call of the asp algorithm with the root node as parameter.

1 main = do
2 l e t (asgn , c e r t , so lu t ions , count) = asp root
3 print count
4 print s o l u t i o n s

Example 6.1.3. In Listing 6.9 we give the definition of the function asp

for a leaf node in laps. As defined by the conditions for the enumeration
problem in Lemma 5.2.12, a leaf node has an empty assignment, ∅, no
certificates, ∅, and a single model {∅}.

For the counting problem, we have only one solution at the leaf node,
so the count is 1.

Listing 6.9: Example for a leaf node in Haskell.

1 asp (LeafNode) = do
2 return (Theta [] [] [[]] 1)

Example 6.1.4. In Listing 6.10 we give the definition of the function
asp for a rule removal node in laps.

The removed rule is stored in delta, and for each Theta from the
child, we discard those tuples whose assignment, asgn, does not contain
the removed rule (line 6). The remaining Thetas are transformed, so that
the removed rule is deleted from the assignment (line 5). All certificates,
cert, that do not contain the removed rule are also dismissed. From the

122 implementation and experimental results

remaining certificates the removed rule is deleted (line 3 and 4). The
models and the count are not altered according to Figure 5.3.

Note that in some cases, two Thetas have to be joined if their assign-
ments and certificates are equal, this is not shown here. The models have
to be joined for the enumeration problem. For the counting problem,
the counts have to be summed. For the consistency problem this is not
required since it carries only Thetas containing an assignment and
certificates.

Listing 6.10: Example for a rule removal node in Haskell.

1 asp (RuleRemovalNode bag c h i l d d e l t a) = do
2 (Theta asgn c e r t models count) <− asp c h i l d
3 l e t temp = f i l t e r ruleMember c e r t
4 l e t c e r t ’ = map removeRule temp
5 l e t asgn ’ = removeRule asgn
6 guard (ruleMember asgn)
7 return (Theta asgn ’ c e r t ’ models count)
8 where
9 removeRule (Atoms var r l)

10 = Atoms var (delete d e l t a r l)
11 ruleMember (Atoms var r l)
12 = d e l t a ‘member ‘ r l

We omit the remaining mappings for the asp function, since
they are straightforward translations of the conditions shown in
Figure 5.3.

6.2 performance tests and benchmarks

This section discusses our tests using the prototype introduced in
the previous section. Readily available benchmarks, for instance
from the asp system competition Gebser et al. (2007) [33] or Zhao
and Lin (2003) [79], could not be used since those have a very
large treewidth in general.

For a treewidth higher than six, our algorithms are not practical
if we consider the worst-case scenario, but for many cases, pro-
grams with a higher treewidth were successfully solved. There is
some evidence that many real world problems do have low tree-
width. Thorup (1998) [77], for instance, shows that the treewidth
of the control-flow graph of structured programs (more precisely,
goto-free C programs) is at most six.

6.2 performance tests and benchmarks 123

test setup For our tests, we generated random problem in-
stances, and filtered those with treewidth smaller than eight.
Instances with treewidth one and two were not generated. The
test setup was as follows. A cnf formula with exactly three
atoms was generated, this formula was then transformed into an
asp program. The number of atoms to the number of rules-ratio
was fixed at three, that is, we had three times more atoms than
rules, to keep the treewidth within our range. Only larger in-
stances with hundreds of rules tended to have a treewidth higher
than eight. We generated programs with increasing numbers of
rules (1 to 150 rules). For each number of rules, we generated
15 instances. For each instance, we built the tree decomposition,
and dismissed those with a treewidth larger than 7. The remain-
ing instances were compiled with ghc 6.10.13 according to the
structure shown in Figure 6.1 and executed.

The execution step was timed with Unix’ time command. Only
the cpu time was taken into account (leaving out time used for
i/o and time used by other threads interrupting the execution).
The programs ran on an Intel Xeon e5345 multiprocessor machine
(2 cpus, each with 4 cores) at 2.33 GHz with 4 MB cache and 48

GB of shared main-memory. Note that our implementation does
not use more than one core.

Instances with a high treewidth also tend to have a higher
number of models, see Figure 6.2. The plot is a standard boxplot
with removed outliers. As we can see, the randomly generated
programs cover a wide spectrum of possible models — from zero,
that is inconsistent (or unsatisfiable) instances, to instances with
more than 2.5 million models.

In the following, we analyze the runtime used by laps for
counting and enumeration problems and draw a comparison to
dlv

4 [21, 22], a state of the art asp solver.
Figure 6.3 summarizes the runtime behavior of laps and dlv

for counting, assuming the tree decomposition is already given,
Figure 6.4 shows the data of the enumeration problem. Each
graph shows the same 305 instances.

counting The upper graph of Figure 6.3 shows the time
required to count the number of answer sets with increasing
number of answer sets for a fixed treewidth of five. laps’ runtime
is very stable, it stays within a range of half a second. It includes
some variance between the individual instances. This “jitter” is

3 http://www.haskell.org/ghc

4 http://www.dlvsystem.com

http://www.haskell.org/ghc
http://www.dlvsystem.com

124 implementation and experimental results

1 2 3 4 5 6 7

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

treewidth

nu
m

be
r

of
 m

od
el

s

Figure 6.2: Plot showing the number of models against the treewidth
(1628 instances).

caused by different shapes of the tree decompositions. It turns
out, that the fewer branch nodes a tree decomposition has, the
faster the algorithm can compute the answer. This is in line with
the theoretical results given in Chapter 5. The time to handle
very large integers is not visible for these instances. Since dlv,
shown in the lower graph, has no special support for counting,
its runtime depends directly on the number of answer sets. Note
that the scales of the graphs are different.

enumeration The graphs in Figure 6.4 show the time re-
quired to enumerate the number of answer sets with increasing
number of answer sets for a fixed treewidth of five. The time is
normalized to the time per 100 answer sets. The enumeration
time quickly approaches almost zero for larger instances. For the
very first instances, the cost for producing the dynamic tables
can be seen (up to four seconds for 100 answer sets in laps’ case),
yet this “setup cost” is quickly amortized by the easy model
generation. dlv does not require a noteworthy preprocessing
time.

6.2 performance tests and benchmarks 125

influence of the treewidth The last set of graphs shown
in Figure 6.5 shows the runtime for counting, respectively enu-
merating, answer sets by laps plotted against the treewidth (1628

instances). We can see the exponential increase in runtime with
the treewidth. This phenomenon is best seen in the counting
case (upper graph). The increasing number of possible models
reduces the effect at a higher treewidth in the graph that shows
the timings for enumeration of 100 answer sets. For a lower
treewidth, that is, three or four, the setup cost is still visible.

dlv is not affected by the treewidth, so the graph is omitted.
Tests using smodels5 ([74]) instead of dlv resulted in a very

similar runtime behavior as dlv.
Depending on the requirements, we conclude that for our pro-

totype implementation a treewidth of six is currently the highest
practical treewidth to work with. For the counting problem, there
may be cases where a higher treewidth is still manageable. For
the enumeration problem, if only some answer sets are required,
laps is still a good choice, especially with the proved linear delay
between two solutions. If all, or most, answer sets are needed,
other approaches are preferable if the treewidth is larger than six.

5 http://www.tcs.hut.fi/Software/smodels/index.html

http://www.tcs.hut.fi/Software/smodels/index.html

126 implementation and experimental results

Counting

●

●

●

●

●

●
●
●

●

●

●

●●●

●●

●●

●

●
●●
●

●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●
●●

●

●

●
●●

●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●
●

●

●

●●

● ●

●

●

●●

●

●

●

●

● ●●

●●

●

●● ●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
● ●

●
●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

0 500000 1000000 1500000 2000000 2500000 3000000

0.
1

0.
2

0.
3

0.
4

0.
5

#AnswerSets

co
un

t t
im

e
in

 s
ec

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●
●

●●●

●

●●●

●●

●

●●●●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●

●

●●●●

●

●●●

●
●

●●
●●

●●●
●

●

●
●●

●

●

●

●●

●

●

●●●

●

●

●

●●●●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●●●●●

●
●

●

●●●
●

●

●

●●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

0 500000 1000000 1500000 2000000 2500000 3000000

0
10

20
30

40
50

#AnswerSets

co
un

t t
im

e
in

 s
ec

s

Figure 6.3: Time required by laps (upper graph) and dlv (lower graph)
for counting of all answer sets (305 instances).

6.2 performance tests and benchmarks 127

Enumeration

●●

●

●
●●●●

●

●●●●

●

●●●●●●●●●●●●
●

●

●

●

●

●
●● ●

●
●●●

●

●●●● ●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●

●

●●●●● ●●● ●●●●● ●●●● ●●●●●●●
●●● ●●●● ● ● ●●● ●●●

●

● ●● ●●●●
●

● ● ●●

●

● ●● ●●●● ● ● ●

●

● ●

●

●●●● ● ●●●●● ●● ●●●● ●●●●● ●● ●● ●●● ●● ●● ●●●● ●●●●●●

●

●●● ●● ●●● ●● ●● ●●● ● ● ●● ●●● ● ● ● ●●●● ●● ●●●● ●● ● ●● ●●●●● ●●● ●● ●● ● ●●●● ●● ● ● ●● ● ●●

●

● ● ●● ●●● ● ●●● ● ●●●● ●●● ● ●●● ● ●● ●● ●●● ●●●● ● ● ●● ● ● ●●
●

●

●

●
●

●●

●

●●

●

●
●

0 500000 1000000 1500000 2000000 2500000 3000000

0
1

2
3

4

#AnswerSets

tim
e

in
 s

ec
s

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●●
●
●
●

●●
●

●

●●●●●

●

●
●

●

●●●

●

●

●●●
●

●

●

●● ●●●●●●●●
●●●
●●

●

●●

● ● ●●●●●

●

●●●●● ●●

●

●●
●●● ●
●

●

● ●●●●●●●

●

●
● ●●●● ● ● ●●● ●●●

●

● ●● ●●●

●●

● ● ●●

●

● ●● ●●●● ● ● ●

●

● ●

●

●●●● ● ●●●●● ●● ●●●●
●●●●● ●● ●● ●●● ●● ●● ●●

●● ●●●●●●

●

●●
●

●● ●●● ●● ●● ●●● ● ● ●● ●●● ● ● ● ●●●

●

●● ●●●●
●● ● ●● ●●●●● ●●● ●● ●● ● ●●●

●
●● ● ● ●● ● ●●

●

● ● ●● ●●● ● ●●● ● ●●●● ●●● ● ●●● ● ●● ●● ●●● ●●●● ● ● ●● ● ● ●●

●●●

●

●●

●

●

●

●●●●

0 500000 1000000 1500000 2000000 2500000 3000000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

#AnswerSets

tim
e

in
 s

ec
s

Figure 6.4: Time required by laps (upper graph) and dlv (lower graph)
for enumeration of all answer sets—normalized to time per
100 answer sets (305 instances).

128 implementation and experimental results

laps

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

treewidth

co
un

t t
im

e
in

 s
ec

s

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

treewidth

tim
e

in
 s

ec
s

Figure 6.5: Comparison of the runtime behavior for counting (upper
graph) and enumeration of 100 answer sets (lower graph)
plotted against the treewidth (1628 instances).

7
C O N C L U S I O N

To summarize, we introduced novel algorithms for the decision
problem of asp as well as for counting and enumerating answer
sets. We have shown a general framework for fixed parame-
ter tractable problems using treewidth as parameter, and have
reported on a prototype implementation.

Our experiments show unprecedented performance on the
counting problem, and very competitive performance on the enu-
meration problem for a low treewidth (up to six). For the asp

consistency problem, the preprocessing required by our algo-
rithms is too high compared to state of the art solvers.

On the theoretical side we proved the correctness of our algo-
rithms and several time bounds. The decision and the counting
problems are proved to be fixed parameter linear, and the enu-
meration problem has been show to have linear delay.

Taking the time required to build the tree decomposition into
account, our approach is not yet “production ready”. The asp

algorithms run sufficiently fast on a given tree decomposition,
but the time required to build a tree decomposition is currently
the main obstacle in our approach.

related work The work most closely related to ours is by
Samer and Szeider (2007) [70], where the #SAT problem in case
of bounded treewidth was solved by dynamic programming.
Compared to the asp problems, #SAT is #p complete, compared
to the harder #np problems of asp. The difference becomes visible
by comparing the data being propagated up the tree structure as
shown in Chapter 4.

Two related problems are constraint satisfaction problems (csp)
and conjunctive query (cq) evaluation, for which, apart from
treewidth, further methods based on structural decomposition
have been used to construct efficient algorithms by Gottlob et
al. (1999) and Chekuri and Rajaraman (1998) [39, 10]. These
methods also work with a bottom-up traversal of a tree structure.
As with #SAT , the data propagated up the tree structure is much
simpler than in case of asp solving. The idea of post-processing
by a top-down traversal in order to compute all solutions is also
present in the context of cq evaluation.

129

130 conclusion

Another fpt result for asp is due to Lin and Zhao (2004) [55],
who use the number of cycles in the (directed) dependency graph
as parameter. An interesting parameter in this context is the
number of loops of a program, as proposed by Ferraris, Lee, and
Lifschitz (2006) [28].

Recently, dynamic programming has also been applied to logic
programming in the context of query answering over Semantic-
Web data by Ruckhaus et al. (2008) [69]. In their work, dynamic
programming is applied to the computation of an optimal join
order for cq evaluation over deductive databases.

future work Our prototype implementation has its limit at
treewidth six, a fine tuned implementation using specially crafted
data structures could increase that bound. The data stored at
each node of the tree decomposition, for example, differs only
slightly to that of the child node, this could be exploited.

Another possible way to improve the presented prototype, is
to distribute the computation to many processors, or even many
computers connected by a high speed network. The branch nodes
split the computation into two independent sub-trees, a parallel
implementation could use that fact and speed the computation
up by computing each branch on its own processor. Another
way of exploiting parallelism is at the tree traversal step, instead
of computing one solution after the other, several processors
could compute the solutions with a small coordination overhead
simultaneously.

Propositional disjunctive logic programs are the foundation of
asp, but there are many more aspects to be explored in the context
of asp and bounded treewidth. The grounding step, described in
Section 2.3, could be extended towards the use of structures of
bounded treewidth. For example by building the tree decompo-
sition for small treewidth and if successful solve the grounded
program using our new algorithm, if not successful, solve it by
the standard algorithms. Another interesting approach would be
to build the tree decomposition of the ungrounded program to
see if this early grounding leads to faster decomposition times.

Since the performance of our algorithms depends on finding a
tree decomposition of the smallest possible width, our approach
will directly benefit from future progress in the research for
more efficient tree decomposition algorithms. Especially further
research in fast and optimal tree decomposition methods for
small treewidth would greatly enhance the usefulness of the
presented fpt algorithms.

conclusion 131

Finally, as the SAT competitions lead to comparability between
SAT solvers and in effect to high performance SAT solvers, we
would like to see similar competitions in the context of treewidth,
or general fixed parameter algorithms. Current platforms, like
Asparagus1 aim at general solvers, but more competition for
special case solvers could be a catalyst for new ideas and further
improvements in this highly promising approach.

1 http://asparagus.cs.uni-potsdam.de

http://asparagus.cs.uni-potsdam.de

B I B L I O G R A P H Y

[1] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker.
Towards a theory of declarative knowledge. In Foundations
of Deductive Databases and Logic Programming, pages 89–148.
Morgan Kaufmann Publishers, 1988. (Cited on page 27.)

[2] Stefan Arnborg, Derek G. Corneil, and Andrzej
Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
ISSN 0196-5212. doi: http://dx.doi.org/10.1137/0608024.
(Cited on page 37.)

[3] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy prob-
lems for tree-decomposable graphs. Journal of Algorithms, 12

(2):308–340, 1991. (Cited on pages 17 and 51.)

[4] Chitta Baral. Knowledge Representation, Reasoning, and Declar-
ative Problem Solving. Cambridge University Press, New
York, NY, USA, 2003. ISBN 0521818028. (Cited on pages 17

and 26.)

[5] Hans L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11(1-2):1–22, 1993. (Cited on page 37.)

[6] Hans L. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM Journal on
Computing, 25(6):1305–1317, 1996. (Cited on pages 45, 47,
and 106.)

[7] Hans L. Bodlaender and Ton Kloks. Better algorithms for
the pathwidth and treewidth of graphs. In Proceedings of
the 18th International Colloquium on Automata, Languages and
Programming, pages 544–555, New York, NY, USA, 1991.
Springer-Verlag New York, Inc. ISBN 0-387-54233-7. (Cited
on page 47.)

[8] Hans L. Bodlaender, John R. Gilbert, Hjlmtr Hafsteinsson,
and Ton Kloks. Approximating treewidth, pathwidth, and
minimum elimination tree height. Journal of Algorithms, 18:
238–255, 1991. (Cited on page 47.)

133

134 bibliography

[9] Julius Richard Büchi. Weak second order logic and finite
automata. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 5:66–92, 1960. (Cited on page 36.)

[10] Chandra Chekuri and Anand Rajaraman. Conjunctive query
containment revisited. Theoretical Computer Science, 239(2):
211–229, 1998. (Cited on page 129.)

[11] Stephen A. Cook. The complexity of theorem-proving pro-
cedures. In STOC ’71: Proceedings of the Third Annual ACM
Symposium on Theory of Computing, pages 151–158, New York,
NY, USA, 1971. ACM. doi: http://doi.acm.org/10.1145/
800157.805047. (Cited on page 25.)

[12] Bruno Courcelle. Graph rewriting: An algebraic and logic
approach. In Handbook of Theoretical Computer Science, Volume
B, pages 193–242. Elsevier Science Publishers, 1990. (Cited
on pages 17 and 51.)

[13] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics.
On the fixed parameter complexity of graph enumeration
problems definable in monadic second order logic. Discrete
Applied Mathematics, 108:23–52, 2002. (Cited on page 51.)

[14] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and
Gianfranco Rossi. GASP: Answer set programming with
lazy grounding. Fundamenta Informaticae, 96(3):297–322, 2009.
ISSN 0169-2968. (Cited on page 31.)

[15] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic pro-
gramming. ACM Computing Surveys, 33(3):374–425, 2001.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/502807.
502810. (Cited on page 27.)

[16] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben Mcma-
han, Nysret Musliu, and Marko Samer. Heuristic methods
for hypertree decomposition. In MICAI ’08: Proceedings of
the 7th Mexican International Conference on Artificial Intelli-
gence, pages 1–11, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 978-3-540-88635-8. doi: http://dx.doi.org/10.1007/
978-3-540-88636-5_1. (Cited on pages 49 and 116.)

[17] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, New York, 1999. (Cited on pages 17

and 51.)

bibliography 135

[18] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory,
2nd edition. Springer Monographs in Mathematics. Springer,
1999. (Cited on page 33.)

[19] Thomas Eiter and Georg Gottlob. On the computational cost
of disjunctive logic programming: Propositional case. Annals
of Mathematics and Artificial Intelligence, 15(3/4):289–323, 1995.
(Cited on pages 17, 27, and 31.)

[20] Thomas Eiter and Georg Gottlob. Expressiveness of stable
model semantics for disjunctive logic programs with func-
tions. The Journal of Logic Programming, 33(2):167 – 178, 1997.
ISSN 0743-1066. doi: DOI:10.1016/S0743-1066(97)00027-7.
URL http://www.sciencedirect.com/science/article/

B6V0J-3SP2DBV-6/2/655191b4c2f666d9007415eed4cc0948.
(Cited on page 28.)

[21] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer,
and Francesco Scarcello. The architecture of a disjunctive
deductive database system. In Proceedings of the Fourth Inter-
national Conference on Declarative Programming (APPIA-GULP-
PRODE 1997), pages 141–152, 1997. (Cited on page 123.)

[22] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer,
and Francesco Scarcello. The KR system dlv: Progress re-
port, comparisons and benchmarks. In Proceedings of the
Sixth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-98), pages 406–417, 1998. (Cited
on page 123.)

[23] Thomas Eiter, Wolfgang Faber, Michael Fink, and Ste-
fan Woltran. Complexity results for answer set program-
ming with bounded predicate arities and implications. An-
nals of Mathematics and Artificial Intelligence, 51(2-4):123–165,
2007. ISSN 1012-2443. doi: http://dx.doi.org/10.1007/
s10472-008-9086-5. (Cited on page 31.)

[24] Thomas Eiter, Giovambattista Ianni, and Thomas Kren-
nwallner. Answer set programming: A primer. In Sergio
Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutier-
rez, Siegfried Handschuh, Marie-Christine Rousset, and
Renate A. Schmidt, editors, 5th International Reasoning Web
Summer School (RW 2009), Brixen/Bressanone, Italy, August
30–September 4, 2009, volume 5689 of LNCS, pages 40–110.
Springer, September 2009. ISBN 978-3-642-03753-5. doi:

http://www.sciencedirect.com/science/article/B6V0J-3SP2DBV-6/2/655191b4c2f666d9007415eed4cc0948
http://www.sciencedirect.com/science/article/B6V0J-3SP2DBV-6/2/655191b4c2f666d9007415eed4cc0948

136 bibliography

10.1007/978-3-642-03754-2_2. URL http://www.kr.tuwien.

ac.at/staff/tkren/pub/2009/rw2009-asp.pdf. (Cited on
page 31.)

[25] Calvin C. Elgot. Decision problems of finite automata de-
sign and related arithmetics. Transactions of the American
Mathematical Society, 98(1):21–51, 1961. (Cited on page 36.)

[26] Michael R. Fellows. New directions and new challenges in
algorithm design and complexity, parameterized. Lecture
Notes in Computer Science, 12:505–520, 2003. URL http://www.

springerlink.com/index/Y0MCD383U8J2JF7K.pdf. (Cited
on pages 47, 50, and 51.)

[27] Michael R. Fellows, Jens Gramm, and Rolf Niedermeier. On
the parameterized intractability of motif search problems.
Combinatorica, 26(2):141–167, 2006. ISSN 0209-9683. doi:
http://dx.doi.org/10.1007/s00493-006-0011-4. (Cited on
page 50.)

[28] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
generalization of the lin-zhao theorem. Annals of Mathematics
and Artificial Intelligence, 47(1-2):79–101, 2006. (Cited on
page 130.)

[29] Jörg Flum and Martin Grohe. Describing parameterized
complexity classes. Information and Computation, 187(2):291–
319, 2003. ISSN 0890-5401. doi: http://dx.doi.org/10.1016/
S0890-5401(03)00161-5. (Cited on page 51.)

[30] Jörg Flum, Markus Frick, and Martin Grohe. Query eval-
uation via tree decompositions. Journal of the ACM, 49(6):
716–752, 2002. (Cited on pages 17, 51, 52, and 55.)

[31] Markus Frick and Martin Grohe. The complexity
of first-order and monadic second-order logic revis-
ited. Annals of Pure and Applied Logic, 130(1-3):3–31,
2004. URL http://linkinghub.elsevier.com/retrieve/

pii/S0168007204000612. (Cited on pages 18 and 53.)

[32] Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, NY, USA, 1979. ISBN 0716710447.
(Cited on page 22.)

[33] Martin Gebser, Lengning Liu, Gayathri Namasivayam, An-
dre Neumann, Torsten Schaub, and Mirosław Truszczyński.

http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.springerlink.com/index/Y0MCD383U8J2JF7K.pdf
http://www.springerlink.com/index/Y0MCD383U8J2JF7K.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0168007204000612
http://linkinghub.elsevier.com/retrieve/pii/S0168007204000612

bibliography 137

The first answer set programming system competition. In
C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of
the 9th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2007), volume 4483 of LNCS,
pages 3–17. Springer, 2007. (Cited on pages 18 and 122.)

[34] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Sven Thiele. Engineering an
incremental ASP solver. In ICLP ’08: Proceedings of the 24th
International Conference on Logic Programming, pages 190–205,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-
89981-5. doi: http://dx.doi.org/10.1007/978-3-540-89982-2_
23. (Cited on page 31.)

[35] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The
well-founded semantics for general logic programs. Journal
of the ACM, (38), 1991. (Cited on page 27.)

[36] Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Logic Programming: Pro-
ceedings Fifth International Conference and Symposium, pages
1070–1080, Cambridge, Mass., 1988. MIT Press. (Cited on
page 29.)

[37] Michael Gelfond and Vladimir Lifschitz. Classical negation
in logic programs and disjunctive databases. New Generation
Computing, 9(3/4):365–386, 1991. (Cited on page 27.)

[38] Rob Glabbeek and Bas Ploeger. Five determinisation al-
gorithms. In CIAA ’08: Proceedings of the 13th International
Conference on Implementation and Applications of Automata,
pages 161–170, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 978-3-540-70843-8. doi: http://dx.doi.org/10.1007/
978-3-540-70844-5_17. (Cited on page 35.)

[39] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A
comparison of structural CSP decomposition methods. Arti-
ficial Intelligence, 124(2):243–282, 1999. (Cited on page 129.)

[40] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded
treewidth as a key to tractability of knowledge represen-
tation and reasoning. In Proceedings of the 21st National
Conference on Artificial Intelligence and the 18th Conference on
Innovative Applications of Artificial Intelligence, pages 250–256.
AAAI Press, 2006. (Cited on pages 17, 52, and 55.)

138 bibliography

[41] Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic
datalog over finite structures with bounded treewidth. In
PODS ’07: Proceedings of the 26th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of database systems, pages
165–174, 2007. (Cited on page 52.)

[42] Martin Grohe. Descriptive and parameterized complexity.
In CSL ’99: Proceedings of the 13th International Workshop and
Eighth Annual Conference of the EACSL on Computer Science
Logic, pages 14–31, London, UK, 1999. Springer-Verlag. ISBN
3-540-66536-6. (Cited on page 18.)

[43] Thomas Hammerl. Ant Colony Optimization for Tree and Hy-
pertree Decompositions. Master’s thesis, TU Wien, 2009. (Cited
on page 49.)

[44] Fritz Henglein and Harry G. Mairson. The complexity of
type inference for higher-order lambda calculi. In POPL ’91:
Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 119–130, New
York, NY, USA, 1991. ACM. ISBN 0-89791-419-8. doi: http:
//doi.acm.org/10.1145/99583.99602. (Cited on page 50.)

[45] Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg
Gottlob. Width parameters beyond tree-width and
their applications. The Computer Journal, 51(3):326–
362, 2007. ISSN 0010-4620. doi: 10.1093/comjnl/
bxm052. URL http://comjnl.oxfordjournals.org/cgi/

doi/10.1093/comjnl/bxm052. (Cited on page 50.)

[46] Michael Huth and Mark Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge University
Press, New York, NY, USA, 2004. ISBN 052154310X. (Cited
on page 24.)

[47] Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan
Woltran. Fast counting with bounded treewidth. In Iliano
Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Proceedings of the 15th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, volume
5330 of LNCS, pages 436–450. Springer, 2008. ISBN 978-3-
540-89438-4. (Cited on pages 7 and 55.)

[48] Michael Jakl, Reinhard Pichler, and Stefan Woltran. Answer-
set programming with bounded treewidth. In IJCAI’09:

http://comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxm052
http://comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxm052

bibliography 139

Proceedings of the 21st International Joint Conference on Artifical
Intelligence, pages 816–822, 2009. (Cited on page 7.)

[49] Mark B. Josephs. The semantics of lazy functional languages.
Theoretical Computer Science, 68(1):105–111, 1989. ISSN 0304-
3975. doi: http://dx.doi.org/10.1016/0304-3975(89)90122-9.
(Cited on page 115.)

[50] Ton Kloks. Treewidth, Computations and Approximations, vol-
ume 842 of Lecture Notes in Computer Science. Springer, 1994.
ISBN 3-540-58356-4. (Cited on page 40.)

[51] Hendrik W. Lenstra Jr. Integer programming with a fixed
number of variables. Mathematics of Operations Research, 8:
538–548, 1983. (Cited on page 50.)

[52] Leonid Levin. Universal search problems. In Problems of In-
formation Transmission, volume 9, pages 115–116, 1973. (Cited
on page 25.)

[53] Leonid Libkin. Elements Of Finite Model Theory (Texts in
Theoretical Computer Science. An Eatcs Series). SpringerVerlag,
2004. ISBN 3540212027. (Cited on pages 33 and 52.)

[54] Orna Lichtenstein and Amir Pnueli. Checking that finite
state concurrent programs satisfy their linear specification.
In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 97–
107, New York, NY, USA, 1985. ACM. ISBN 0-89791-147-4.
doi: http://doi.acm.org/10.1145/318593.318622. (Cited on
page 50.)

[55] Fangzhen Lin and Xishun Zhao. On odd and even cycles
in normal logic programs. In Deborah L. McGuinness and
George Ferguson, editors, Proceedings of the 19th National
Conference on Artificial Intelligence and the 17th Conference on
Innovative Applications of Artificial Intelligence, pages 80–85.
AAAI Press / The MIT Press, 2004. ISBN 0-262-51183-5.
(Cited on page 130.)

[56] Victor W. Marek and Mirosław Truszczyński. Stable models
and an alternative logic programming paradigm. In K. R.
Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, editors,
The Logic Programming Paradigm – A 25-Year Perspective, pages
375–398. Springer Verlag, 1999. (Cited on pages 17, 26,
and 29.)

140 bibliography

[57] Jirí Matousek and Robin Thomas. Algorithms finding tree-
decompositions of graphs. Journal of Algorithms, 12(1):1–22,
1991. (Cited on page 47.)

[58] Oliver Matz and Wolfgang Thomas. The monadic quantifier
alternation hierarchy over graphs is infinite. In Proceedings of
the 12th Annual IEEE Symposium on Logic in Computer Science,
pages 236–244. IEEE, 1997. (Cited on page 33.)

[59] John McCarthy. Circumscription - a form of non-monotonic
reasoning. Artificial Intelligence, 13(1-2):27–39, 1980. (Cited
on page 26.)

[60] Jack Minker. Overview of disjunctive logic programming.
Annals of Mathematics and Artificial Intelligence, 12:1–24, 1994.
(Cited on page 26.)

[61] Jack Minker. Logic and databases: A 20 year retrospective. In
Proceedings of the International Workshop on Logic in Databases
(LID’96), volume 1154 of LNCS, pages 3–57. Springer, 1996.
(Cited on page 29.)

[62] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms
(Oxford Lecture Series in Mathematics and Its Applications). Ox-
ford University Press, USA, March 2006. ISBN 0198566077.
(Cited on page 51.)

[63] Ilkka Niemelä. Logic programming with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.
(Cited on pages 17, 26, and 29.)

[64] Ilkka Niemelä. Language extensions and software en-
gineering for ASP. Technical Report WP3, Working
Group on Answer Set Programming (WASP), IST-FET-2001-
37004, September 2005. Available at http://www.tcs.hut.
fi/Research/Logic/wasp/wp3/wasp-wp3-web/. (Cited on
page 27.)

[65] Simon Peyton Jones et al. The Haskell 98 language and
libraries: The revised report. Journal of Functional Pro-
gramming, 13(1):0–255, Jan 2003. http://www.haskell.org/
definition/. (Cited on page 115.)

[66] Bruce A. Reed. Finding approximate separators and comput-
ing tree width quickly. In STOC ’92: Proceedings of the 24th

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/
http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/
http://www.haskell.org/definition/
http://www.haskell.org/definition/

bibliography 141

Annual ACM Symposium on Theory of Computing, pages 221–
228, New York, NY, USA, 1992. ACM. ISBN 0-89791-511-9.
doi: http://doi.acm.org/10.1145/129712.129734. (Cited on
page 47.)

[67] Neil Robertson and Paul D. Seymour. Graph minors. iii.
planar tree-width. Journal of Combinatorial Theory, Series B, 36

(1):49–64, 1984. (Cited on page 37.)

[68] Donald J. Rose and Robert E. Tarjan. Algorithmic as-
pects of vertex elimination. In Proceedings of Seventh An-
nual ACM Symposium on Theory of Computing, page 254.
ACM, 1975. URL http://portal.acm.org/citation.cfm?

id=803775. (Cited on pages 15, 47, and 48.)

[69] Edna Ruckhaus, Eduardo Ruiz, and Maria-Esther Vidal.
Query evaluation and optimization in the semantic web.
Theory and Practice of Logic Programming, 8(3):393–409, 2008.
(Cited on page 130.)

[70] Marko Samer and Stefan Szeider. Algorithms for propo-
sitional model counting. Journal of Discrete Algorithms, 8

(1):50–64, 2010. ISSN 1570-8667. doi: http://dx.doi.org/
10.1016/j.jda.2009.06.002. (Cited on pages 18, 56, 61, 62,
and 129.)

[71] Daniel P. Sanders. On linear recognition of tree-width at
most four. SIAM Journal on Discrete Mathematics, 9(1):101–
117, 1996. ISSN 0895-4801. doi: http://dx.doi.org/10.1137/
S0895480193243043. (Cited on page 47.)

[72] Werner Schafhauser. New Heuristic Methods for Tree Decompo-
sitions and Generalized Hypertree. Master’s thesis, TU Wien,
2006. (Cited on page 49.)

[73] Arnold Schönhage and Volker Strassen. Schnelle Multiplika-
tion großer Zahlen. (German) [Fast multiplication of large
numbers]. Computing, 7(3–4):281–292, 1971. ISSN 0010-485X
(printed version), 1436-5057 (electronic version). (Cited on
page 110.)

[74] Patrik Simons. Extending and implementing the stable
model semantics. Research Report A58, Helsinki Univer-
sity of Technology, Department of Computer Science and
Engineering, Laboratory for Theoretical Computer Science,
Espoo, Finland, April 2000. Doctoral dissertation. (Cited on
page 125.)

http://portal.acm.org/citation.cfm?id=803775
http://portal.acm.org/citation.cfm?id=803775

142 bibliography

[75] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending
and implementing the stable model semantics. Artificial
Intelligence, 138:181–234, June 2002. (Cited on page 29.)

[76] James W. Thatcher and Jesse B. Wright. Generalized finite
automata theory with an application to a decision problem
of second-order logic. Mathematical Systems Theory, 2(1):
57–81, 1968. (Cited on page 36.)

[77] Mikkel Thorup. All structured programs have small tree-
width and good register allocation. Information and Computa-
tion, 142(2):159–181, 1998. (Cited on page 122.)

[78] Maarten H. van Emden and Robert A. Kowalski. The seman-
tics of predicate logic as a programming language. Journal
of the ACM, 23(4):733–742, 1976. (Cited on page 26.)

[79] Yuting Zhao and Fangzhen Lin. Answer set programming
phase transition: A study on randomly generated programs.
In ICLP 2003: Proceedings of the 19th International Conference on
Logic Programming, pages 239–253, Berlin, Heidelberg, 2003.
Springer-Verlag. ISBN 3-540-20642-6. (Cited on page 122.)

E I D E S S TAT T L I C H E E R K L Ä R U N G

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig
und ohne fremde Hilfe verfasst, andere als die angegebenen
Quellen nicht benützt und die den benutzten Quellen wörtlich
oder inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe.

Wien, Mai 2010

Michael Jakl

M i c h a e l J a k l
Fasangasse 10/10
A-1030 Wien

P E R S Ö N L I C H E D A T E N

Geburtsdatum 02. Mai 1981

Staatsbürgerschaft Österreich

Wehrdienst abgeleistet

Sprachen Deutsch (Muttersprache),
Englisch (fließend)

A U S B I L D U N G

TU Wien Okt. 2002 – Juni 2010

Doktoratsstudium 7 Semester Doktoratsstudium der technischen
Wissenschaften. Voraussichtlicher Abschluss: Juni 2010.
Titel der Doktorarbeit: Answer Set Programming with
Bounded Treewidth. Feb. 2007 – Juni 2010

Magisterstudium 3 Semester Magisterstudium Software Engineering &
Internet Computing am 09. Jänner 2007 mit
Auszeichnung abgeschlossen.
Titel der Diplomarbeit: Efficient Algorithms through
Bounded Treewidth. Sept. 2005 – Jan 2007

Bakkalaureat 6 Semester Bakkalaureat Software & Information
Engineering am 07. Juli 2005 abgeschlossen.
Titel der Bakkalaureatsarbeit: Representational State
Transfer. Okt. 2002 – Juli 2005

HTL Villach 5 Jahre Höhere Technische Bundeslehr- und
Versuchsanstalt für elektronische Datenverarbeitung und
Organisation in Villach. Reifeprüfung am 04. Juni 2000
mit Auszeichnung bestanden. Sept. 1995 – Juni 2000

B E R U F S E R F A H R U N G

TU Wien Universitäts-Assistent am Institut für
Informationssysteme, Arbeitsgruppe für Datenbanken und
Artificial Intelligence. Neben Lehrtätigkeiten für 400-500
Studenten pro Semester in den Themenbereichen
- Datenbanken (SQL3, PL/SQL, JDBC) und
- Semistrukturierte Daten (XML, XSLT, Java+XML),
war das Entwickeln und Umsetzen diverser Algorithmen
in Java, Haskell und Datalog ein zentrales Thema.
Verwendete Datenbanken: Oracle, PostgreSQL

März 2007 – Juni 2010

Knallgrau Freier Mitarbeiter als Entwickler. Ziel war die Umsetzung
eines um semantische Aspekte erweitertes Dokumenten-
und Informationsmanagement Systemes.
Verwendete Technologien: Java, JavaScript (Helma),
MySQL Juli 2005 – Sept. 2006

ho.bit Ltd. Freier Mitarbeiter als Consultant und Entwickler. Ziel war
die Umsetzung einer sicheren Netzwerkinfrastruktur
basierend auf einer Public-Key Infrastuktur und Browser-
Zertifikaten.
Verwendete Technologien: Java, LDAP, RSA/DSA

März 2004 – Nov. 2004

AppCom Freier Mitarbeiter als Entwickler. Entwicklung von eines
Frameworks zur vereinfachten Erstellung von
Webapplikationen in Java.
Weitere verwendete Technologien: PostgreSQL,
Hibernate, StrutsCX Okt. 2002 – Okt. 2003

Net4You Angestellter als Entwickler. Projektverantwortlicher
(Konzeption und Umsetzung) für ein Bestellsystem der
hogast-Betriebe sowie ein Planungssystem für das Casino
Velden. Weitere Aufgabengebiete war die Wartung
diverser Linux Systeme und Tooling der Software-
Entwicklung.
Verwendete Technologien: Java, CVS, Firebird Datenbank

Mai 2001 – Sept. 2002

Gewerbeschein Erwerb eines Gewerbescheines für Dienstleistungen in der
EDV und IT neben dem Studium.

Jan. 2001 – Sept. 2007

	Abstract
	Kurzfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Preliminaries
	2.1 Graph Structures
	2.2 Propositional Logic
	2.2.1 Syntax
	2.2.2 Semantics
	2.2.3 Conjunctive Normal Form
	2.2.4 Partial Interpretation and Model
	2.2.5 Satisfiability

	2.3 Answer Set Programming
	2.3.1 Stable Model Semantics
	2.3.2 Architecture of asp solvers

	2.4 Finite Structures
	2.5 Monadic Second Order Logic
	2.5.1 Syntax
	2.5.2 Semantics

	2.6 Finite (Tree) Automata

	3 Treewidth and Courcelle's Theorem
	3.1 Tree Decompositions
	3.1.1 Tree Decompositions of Finite Structures
	3.1.2 Special Tree Decompositions

	3.2 Normalization Procedure
	3.3 Path Decompositions
	3.4 Algorithms for Finding Tree Decompositions
	3.5 Parameterized Complexity
	3.6 Courcelle's Theorem

	4 Basic Structure of Fixed-Parameter Algorithms on Tree Decompositions
	4.1 Overview
	4.2 Graph Encoding
	4.3 Node-Types
	4.4 Tree Traversals
	4.4.1 General Structure
	4.4.2 Counting and Enumerating Models for Propositional Logic

	5 Answer Set Programming with Bounded Treewidth
	5.1 Tree Decompositions of asp Programs.
	5.2 The Dynamic Programming Approach for asp
	5.2.1 Tree Interpretations
	5.2.2 Tree Models
	5.2.3 asp Consistency
	5.2.4 Counting Answer Sets
	5.2.5 Enumerating Answer Sets

	6 Implementation and Experimental Results
	6.1 Answer Set Programming System in Haskell
	6.1.1 Data Structures

	6.2 Performance Tests and Benchmarks

	7 Conclusion
	Bibliography
	Declaration

