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Deutsche Kurzfassung

Das Hauptthema dieser Dissertation ist die Beschreibung und Modellierung
korrelierter Elektronensysteme mittels moderner theoretischer Methoden. Die
korrelierten Systeme sind in den letzten Jahrzehnten zunehmend in den Fokus
der Aufmerksam gerückt. Der Grund dafür ist einerseits die Vielfalt faszinieren-
der physikalischer Eigenschaften, die diese Systeme aufweisen, welche sich in
reichhaltigen Phasendiagrammen und ungewöhnlichen Grundzuständen wider-
spiegelt. Andererseits gibt es auch eine klare Motivation ebendiese Eigen-
schaften, die leicht durch äußere Parameter beeinflusst werden können, für
eine technologische Anwendung nutzbar zu machen.

Zur theoretischen Beschreibung korrelierter Systeme hat sich seit Beginn der
1990er Jahre die sogenannte Dynamische Molekularfeld Theorie, oder kurz
DMFT, etabliert. Die DMFT – exakt im mathematischen Grenzfall unendlicher
Dimensionen (unendlicher Koordination) – stellte einen Durchbruch dar, da
nun Modell Hamiltonoperatoren für korrelierte Systeme, wie zum Beispiel das
Hubbard Modell, in einer kontrollierten, nicht störungstheoretischen Weise,
gelöst werden konnten. Als besonders erfolgreich stellte sich auch die Kom-
bination der DMFT mit den Dichte Funktional Methoden (DFT) für realistis-
che Rechnungen heraus. Die Bandstrukturrechnungen der DFT sind nicht
zuverlässig für die erwähnten korrelierte Systeme, da die inter–elektronische
Coulomb Wechselwirkung nur marginal berücksichtigt wird. In Verbindung
mit der DMFT ist jedoch eine ab initio Berechnung auch für korrelierte Sys-
teme möglich.

Im ersten Kapitel geben wir eine pädagogische Einführung der theoretischen
Methoden. Wir Beginnen mit der separaten Beschreibung der DFT und ihrer
lokalen Dichtenäherung (LDA) und der DMFT. Schließlich erläutern wir die
Kombination zur LDA+DMFT und geben einen Überblick wie die theoretischen
Ergebnisse mit experimentellen Spektren verglichen werden können.

Im zweiten Kapitel wenden wir uns den Metall–Isolator Übergängen in dem
stark korrelierten Vanadiumsesquioxid V2O3 und dem Nickeldisulfid NiS2 zu.
Anders als bei Bandisolatoren ist der Grund für die isolierende Eigenschaft die
starke Wechselwirkung der Elektronen – dieser Zustand wird auch als Mott–
Isolator bezeichnet. In der Nähe eines Metall–nach–Mott–Isolator Übergangs
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Deutsche Kurzfassung

findet man oft starke Fluktuationen in den Freiheitsgraden von Spin, Ladung
und Orbitalen. Eine der herausragenden Stärken der DMFT ist die theoretis-
che Beschreibung des Systems vor, während und nach dem Phasenübergang
in einem einheitlichen theoretischen Rahmen.
V2O3 ist unter normalen Bedingungen ein korreliertes Metall und wird bei
Dotierung mit Chrom isolierend. Unter einem externen Druck kann das dotierte
System wieder in einen metallischen Zustand gebracht werden. Daraus ist die
Idee hervorgegangen, man könne den Dotierungseffekt mit externem Druck
“invertieren”. Kürzlich durchgeführte Experimente zeigen jedoch, dass dieses
Bild nicht haltbar ist, da die metallischen Zustände des nicht dotierten Sys-
tems und des dotierten Systems unter Druck sehr verschiedene Spektren vor-
weisen. In unserer theoretischen Analyse quantifizieren wir den Unterschied
der metallischen Grundzustände mittels einer neuartigen Interpretation von
Vandium K-Kanten Röntgenabsorbtionsspektroskopie. Dafür kombinieren wir
LDA+DMFT mit Parameter basierten Multiplett–Rechnungen. Unser neuer In-
terpretationsansatz erlaubt es uns, auch aus den unter Druck aufgezeichneten
Spektren Informationen über den Grundzustand zu gewinnen, was mit bis jetzt
verfügbared Techniken nicht möglich war.
Der zweite Metall–Isolator Übergang, den wir betrachten ist der des Nickeld-
isulfid. Ähnlich wie im V2O3 wurde auch hier eine Druck – Dotierungs Equiv-
alenz vorgeschlagen die jedoch, ebenfalls analog zu V2O3, durch neue exper-
imentelle Messungen widerlegt wird. Wir zeigen Ergebnisse von LDA Rech-
nungen und diskutieren detailliert die Unterschiede in den mikroskopischen
Mechanismen des jeweiligen Übergangs.

In Kapitel drei diskutieren wir die Möglichkeit Hochtemperatur Supraleiter in
der Familie der Nickelate (Nickeloxid basierte Verbindungen) zu finden. Die Mo-
tivation unserer Analyse stammt aus einer Arbeit über die Kuprat–Supraleiter
von Pavarini et al. [154], in welcher die Autoren eine empirische Relation zwis-
chen der maximalen Sprungtemperatur (d.h. TC bei optimaler Dotierung) und
einem dimensionslosen Parameter r beschreiben. Der Parameter r beschreibt
die Interaktion des planaren Kupfer 3d x2 − y2 Leitungsbandes an der Fermi
Energie und einem axialen Kupfer 4s Band bei höherer Energie. Eine ähnliche
Situation kann in Nickelat Systemen erreicht werden, wobei die Rolle des ax-
ialen Bandes nun von den Nickel 3d 3z2 − r2 Zuständen übernommen wird.
Wir beginnen die Analyse mit der LnSrNiO4 Familie, wobei Ln=La, Nd, oder
Eu. Unsere LDA+DMFT Ergebnisse zeigen, dass diese Stoffklasse mehr Poten-
tial für supraleitendes Verhalten vorweist als bisher angenommen. Die zweite
Nickelat–Klasse, die wir betrachten ist die Klasse neuartiger Heterostrukturen
die mit modernsten experimentellen Methoden synthetisiert werden. Die Het-
erostrukturen versprechen, durch die Möglichkeit der Manipulation bei der
Synthese, die Realisierung von maßgeschneiderten Stoffen die speziell für die
Hochtemperatursupraleitung entworfen werden können.
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Das letzte Kapitel beschreibt konzeptionelle Erweiterungen, die im Zuge dieser
Dissertation implementiert wurden. Die erste dieser Erweiterungen, die soge-
nannte HartreeDMFT, erlaubt es, zusätzliche Freiheitsgrade in den selbst kon-
sistenten Algorithmus einer DMFT Rechnung aufzunehmen, die jedoch nicht
explizit mit der DMFT Methode (d.h. der Abbildung auf ein Anderson Impu-
rity Model) behandelt werden. Die Philosophie hinter diesem Ansatz ist eine
Separation des Hilbertraumes in Unterräume in denen wir, je nach Bedarf,
entweder die rechenintensive DMFT, oder weniger “teure” Verfahren, wie zum
Beispiel eine einfache Hartree Näherung, verwenden um Korrelationseffekte zu
beschreiben.
Die zweite besprochene Erweiterung ist ein selbst konsistentes DMFT Schema
für stark korrelierte Schichtstrukturen. Auch in diesem Schema wird der
Hilbertraum unterteilt: dieses mal in die Unterräume der einzelnen Schichten.
Auf jedem dieser Unterräume werden DMFT Iterationen durchgeführt, die Selb-
stkonsistenz umfasst jedoch das Gesamtsystem.
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Introduction & Scope

Correlations of various types are present in everyday life: Stock quotations,
traffic jams, or a soccer match are examples for correlated systems. In a math-
ematical way we can define the concept of correlation as the causal relation
between two (comparable) entities.
In the case of solid state physics, such entities could be for example electronic
densities and we refer to an electron system as being correlated when

〈ρ̂(r)ρ̂(r′)〉 6= 〈ρ̂(r)〉〈ρ̂(r′)〉

where ρ̂(r) is the electron density operator and the outer brackets express the
expectation value of the operator. The inequality means, that the expectation
value of the density at a certain coordinate r is not independent from the den-
sity at another coordinate r′ – they are correlated.
This thesis is devoted to current forefront research in the field of theoretical
modeling for correlated solids. The correlated compounds have become the
focus of an ever–growing community in the last decades. The reason for the
great popularity of such systems can be found, on the one hand, in the highly
bundled variety of fascinating physics, which manifests itself in rich phase
diagrams and highly non–trivial ground states. On the other hand the corre-
lated systems bear interesting technological applicability which is concomitant
with their sensitivity to external parameters. The unusual sensitivity to small
perturbations, such as the addition/subtraction of a few electrons, the appli-
cation of external fields, etc., is also reflected in the terminology of the observed
effects which is packed with intensifying adjectives: large resistivity changes,
huge volume changes i.e. collapses, high TC superconductivity, strong thermo-
electric response, colossal magnetoresistance, and gigantic non–linear optical
effects are examples for the huge susceptibilities, i.e. response functions, of
the correlated materials.

Since John Hubbard introduced his famous Hamiltonian for the description of
correlation effects in d– and f–bands in 1963 [87] we have witnessed an amaz-
ing development, theoretically as well as experimentally. Modern spectroscopy
techniques like angular resolved photoemission spectroscopy, measurements
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Introduction & Scope

of the optical conductivity or more advanced ellipsometry, x–ray absorption
spectroscopy, neutron scattering experiments, various microscopy techniques,
and many more related approaches or combinations of them yield data which
have to be interpreted and understood by means of reliable theoretical calcu-
lations. To provide such theoretical tools for realistic calculations is, however,
an extremely challenging task. Correlated materials often exhibit non–Fermi
liquid behavior and many–body effects are not negligible anymore. In that re-
spect, the merger of the density functional theory (DFT) within its local density
approximation (LDA), probably the most successful technique in materials cal-
culations of the last century, and the dynamical mean field theory (DMFT), a
non–perturbative many–body quantum field approach, has turned out to be
extremely successful and became popular as LDA+DMFT approach.
Moreover, a constant improvement of understanding and the increasing knowl-
edge about correlated systems gives us the possibility to engineer materials
according to our needs – thanks to the progress in synthezising technology the
term material design developed from a catchphrase to reality. In turn, this
progress also calls for the constant development and extension of theoretical
methods in order to capture the vast amount of new experimental data.

In the first chapter of this thesis we will give a pedagogical overview
of the methods that were employed starting with a brief sketch of
density functional theory and LDA. In the following, we will derive
the DMFT equations in a diagrammatic way and explain the self
consistent mapping on auxiliary Anderson impurity models. Fi-
nally we discuss the combination of both approaches to a “state of
the art” LDA+DMFT scheme. As a last section of the first chapter
we give a brief summary of experimentally accessible observables
which we can also calculate within the LDA+DMFT scheme. This

last section is intended as a reference for the experiment – theory comparisons
we will encounter in the following chapters.

Chapter two is devoted to the metal–to–insulator transition (MIT)
of strongly correlated systems. The insulating phase caused by
electronic correlation is categorized as a Mott Insulator. Close to
the transition point the metallic state often shows fluctuations and
sometimes orderings in the spin, charge, and orbital degrees of
freedom. The properties of these metals are frequently quite dif-
ferent from those of ordinary metals, as measured by transport,
optical, and magnetic probes. The DMFT approach turned out to
be extremely well suited in order to describe the Mott metal–to–

insulator transition. Specifically, we will provide new insight in the MITs of
two very well known correlated compounds: Vanadium sesquioxide V2O3 and
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nickel disulfide NiS2 which are, in the undoped form a correlated metal and a
charge transfer insulator, respectively.
V2O3 undergoes a transition to a Mott insulator upon doping with Cr. A com-
bined analysis of experimental data for the optical conductivity and LDA+DMFT
results is employed to clarify details of the MIT. We will show experimental and
theoretical evidence that the metallic phase in the vicinity of the MIT cannot
be described by a homogeneous phase but has to be accounted for as a mixed
phase state. Furthermore, the experimental measurements have shown that
the long established “common wisdom” that for V2O3 the doping effect could
be reversed with the application of an external pressure has to be abandoned.
The metallic state of the undoped compound and that of the Cr doped com-
pound under pressure display very different spectra. In the following theoret-
ical analysis we also quantify the difference of the underlying ground states
with the help of vanadium K–edge hard x–ray absorption spectra: For the in-
terpretation of the spectrum we introduce a novel combination of LDA+DMFT
calculations with parameter–based full–multiplet configuration interaction cal-
culations. This new approach allows us to exploit excitonic features in the
pre–edge region of the vanadium K–edge as a ground state probe even for the
system under pressure – this was not possible before, since the soft x–rays of
vanadium L–edge measurements (previously used as a ground state probe) are
strongly absorbed by the diamond pressure cells.
The second transition we discuss is the insulator to metal transition of the
charge transfer insulator nickel disulfide NiS2 upon Selenium doping or ap-
plication of external pressure. Similar to the case of V2O3, the idea of a dop-
ing/pressure equivalence was suggested. Yet, also in the case of NiS2, careful
analysis shows that this concept is not consistent with experimental and the-
oretical results. In particular we will discuss results of band structure calcu-
lations and show that the different microscopic mechanisms which drive the
transition upon doping or pressure application can be understood to some ex-
tent on the LDA level.

The focus of chapter three is the possibility of finding cuprate–
analogous high temperature superconductivity in novel nickel–
based bulk– or heterostructures. While in the second chapter we
presented new physics of known systems, in chapter three we try
to exploit known mechanisms of the superconducting cuprates in
order to suggest new systems as candidates for high TC supercon-
ductivity.
In the first section of the chapter we review results by Pavarini et
al. [154]. In this work the authors describe the empirical obser-
vation that the critical temperature of cuprate superconductors is correlated
to the interplay of the planar (Cu x2 − y2) conduction band around the Fermi
energy εF and an axial (mainly Cu 4s) band at higher energies. In the following
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Introduction & Scope

sections we discuss the potential of nickel based compounds to display a sim-
ilar planar band axial band scenario.
We will start with the “bulk” LnSrNiO4 (Ln=La, Nd, Eu) series. Band struc-
ture calculations for these systems show indeed the presence of a planar and
an axial band. However, both bands are residing at εF. The basic idea is,
that correlation effects will push the axial band up in energy, thus leaving the
planar band alone around the Fermi energy which is precisely the situation
realized in the cuprates. Our LDA+DMFT study shows that the correlation
effect indeed enhances the splitting of the bands, but in the wrong direction.
We remain with the axial band at εF. Yet, we also observe that the LnSrNiO4

systems are somewhat on the edge, and it depends sensitively on the details of
the structure which of the two bands is pushed up by correlation effects.
This leads us to nickel based heterostructures which are synthezied with the
help of cutting–edge technology. In these compounds the structural parame-
ters are more controllable from the “outside” and details of the synthesis proce-
dure, like the choice of substrates or chemical substitution, allow for an actual
material design. Specifically with our LDA+DMFT calculations we will focus on
the 1/1 layered system LaAlO3/LaNiO3 for which we find the desired planar
band to remain at the Fermi energy generating a cuprate like Fermi surface
structure. Together with antiferromagnetic fluctuations, which we observe in
a small toy model for the system at low temperatures, we conclude that with
these features, the nickel based heterostructures incorporate the basic ingre-
dients for high TC superconductivity.

The last chapter of this thesis focuses on methodological advances
which were developed in the context of this work. Our exten-
sions of the standard DMFT are based on the expansion of the
DMFT basis set. The first extension we discuss is the so called
HartreeDMFT. Sometimes the correlated states around the Fermi
energy are entangled with less correlated ones – we find a typi-
cal example in transition metal oxides, where correlated 3d states
strongly hybridize with the Oxygen 2p degrees of freedom. Often
this hybridization can be taken into account by analyzing effective

d–bands which incorporate the hybridization effects implicitly. However, in
some cases this hybridization is too strong and the p–states are too important
to be taken into account by effective d–state models. Charge–transfer insula-
tors are also a good example where d–only models cannot capture the physics
correctly, since their spectral gap is formed between d– and p–states. In the
HartreeDMFT approach we divide the full Hamiltonian into a subspace for
which we perform the self consistent DMFT scheme (i.e. for the d–states) and
another subspace, where less correlated, but nonetheless important, states
(i.e. the p–states) are treated with a less expensive Hartree mean field scheme.
As a pedagogical introduction we will discuss a dp–model for the nickel based
heterostructures from chapter three. Next we will turn to the parent compound
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of the high TC cuprates LaCuO4 which is a charge transfer insulator. In this
context we will discuss the LDA+HartreeDMFT analysis of Emery–like three
band models and elaborate on inconsistencies of some assumptions done in
recent studies.
The second extension we will discuss is connected to heterostructure systems:
A new DMFT self consistent scheme for multilayer systems. Also this step can
be understood as an extension of the DMFT basis set. This time, in order
to capture features of heterostructures which are beyond the standard DMFT
scheme. The multilayer scheme can be seen as the simultaneous computation
of several DMFT problems, one for each subsystem, i.e. for each layer, while the
subsystems hybridize through the self consistent iterations of the layerDMFT
scheme. Besides discussing the implementation pedagogically, we show the
result for a periodic . . . ABABA . . . system of two insulators (a Mott and a band
insulator) which, upon bringing them together, start to show metallic behavior.

Throughout the text the reader will find some boxes labeled with “Info”. These
boxes contain details of technical information not necessary for the under-
standing of the main discussion.
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1 Combining DFT and many-body
approaches

For condensed matter physics it is in principle easy to write down the elec-
tronic Hamiltonian for the ’Theory of Everything’:

Ĥ =
∑
σ

∫
d3rΨ̂†(r, σ)

[
−~2∆i

2me
+
∑
l

−e2

4πε0

Zl
|ri −Rl|

]
Ψ̂(r, σ)+

1
2

∑
σ,σ′

∫
d3rd3r′Ψ̂†(r, σ)Ψ̂†(r′, σ′)

−e2

4πε0

1
|ri − rj |

Ψ̂(r′, σ′)Ψ̂(r, σ) (1.1)

where ri and Rl denote the position of electron i and ion l with charge −e and
Zle respectively; ∆i is the Laplace operator for the kinetic energy of electrons
with mass me; ε0 and ~ are the vacuum dielectric and Planck constant; further
relativistic corrections were neglected.

However, even a numerical solution of this full Hamiltonian is far from being
possible if the particles considered exceed a very small number also after the
electronic degrees of freedom have been decoupled from the lattice part of the
Hamiltonian with the so called Born–Oppenheimer approximation [12]. The
main problems arise from the two-particle-operator for the Coulomb interac-
tion between the electrons involved (last term in Hamiltonian (1.1)).
The starting point for understanding the electronic structure and excitation
spectra of solids in a standard textbook is usually the treatment of noninter-
acting independent (i.e. uncorrelated) electrons. At a first glance this may seem
completely unjustified, since the energy scale for their Coulomb interaction is
of the order of eVs and thus far from being negligible compared to the other
energy scales. It is only the Landau Fermi Liquid theory [1], which explains
the very remarkable fact that in many cases the tough problem of correlated
particles can be mapped onto an independent particle problem with effective
single particle potentials. Hence, it must always be kept in mind, that these
single particle potentials are not simply the ones from the ionic background
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1 Combining DFT and many-body approaches

but, in fact, effective potentials which are supposed to include the correlation
part of the problem. In this way also the particles must no longer be viewed as
independent but as “effective” or “particle–like” entities: the quasiparticles.
Within the so called Density Functional Theory (DFT) [86] and its Local Den-
sity (LDA) or related approximations, the mapping onto effective single particle
potentials has proven to be extremely successful for a huge variety of com-
pounds. As well as this approach works for many compounds, if considerable
correlations are at present - like in the transition metals or rare–earths and
their oxides or actinides – LDA may yield wrong results. As long as the Fermi
liquid picture remains valid, a renormalization of LDA results can still give
reasonable insight to the excitations of the system. If, however, at a certain
point the entire concept of “effective” single particle states of the Fermi liquid
theory breaks down the LDA is not applicable anymore. Examples for such
systems are the vanadium oxides VO2 and V2O3, NiO, and the parent com-
pound of the high TC cuprates La2CuO4 which are predicted to be metallic
above their Neél temperature by LDA when they are, in fact, Mott insulators
[112, 219, 156, 121, 121]. But not only oxides are challenging compounds as
we will see in section 2.2 where we discuss the interesting case of the MIT in
nickel disulfide NiS2.
From the DFT community one of the first successful attempts to expand the
LDA formalism in order to treat strong electronic correlations ab initio was the
introduction of the so called LDA+U method by Anisimov et al. [9] where an
orbital dependent potential, calculated in the Hartree approximation, is em-
ployed to include the correlation effects.
The LDA+U approach will lead to insulating spectra in the presence of orbital
or magnetic ordering which look similar to those observed for a paramagnetic
Mott–insulator. However, the insulating spectra of LDA+U have some delicate
shortcomings: For a paramagnetic Mott–insulator the LDA+U solution has a
too low entropy since it has to be a symmetry broken ordered solution. But
even for an ordered system the LDA+U spectra are not accurate, since the
excited states (e.g. spin polarons) [19, 20, 211, 120, 24] and the resulting ad-
ditional spectral features are not captured [181]. Further, strongly correlated
metallic phases, which are realized in many transition metal compounds (e.g.
also via doping or appliance of pressure) are also beyond the LDA+U scheme
since its solutions almost automatically yields localized electrons with a gapped
spectrum.

The problem of strongly correlated systems was, on the other hand, attacked
from a different side: the many body model Hamiltonian community. Instead
of approximately solving Hamiltonian (1.1) like in DFT, a simpler, parameter–
based model Hamiltonian is constructed and solved with the aim of under-
standing the underlying physical mechanisms of the systems characteristics.
The results of these calculations, however, are often far from a fully realistic de-
scription and their parameters have to be obtained e.g. by a fit to experimental

2



results. One of the most prominent starting points for the model Hamiltonians
is the so called Hubbard model. Derived from the continuum formulation (1.1)
and translated to the basis of e.g. Wannier functions on a lattice with the as-
sumption that the Coulomb interaction is purely local we can formulate it like:

Ĥ =
∑
iljmσ

til,jmĉ
†
ilσ ĉjmσ +

∑
ilmnoσσ′

Ulmnoĉ
†
ilσ ĉ
†
imσ′ ĉinσ′ ĉioσ (1.2)

here ĉ†ilσ(ĉilσ) creates (annihilates) an electron with spin σ and orbital index l
at lattice site i; til,jm is a hopping amplitude between lattice sites i and j and
(Wannier–)orbitals l and m; finally, Ulmno denotes a general local Coulomb in-
teraction. Let us remark that the original Hubbard model [87] is a single band
model, whereas Eq.(1.2) is already a multiband extension and often referred to
as multiband–Hubbard- or Kanamori Hamiltonian. However, throughout this
work, the reference to a “Hubbard Hamiltonian” is meant to include the multi-
band extensions unless specifically stated otherwise. Actually, Hamiltonian
(1.2) gives a very intuitive picture, since the two relevant energy scales – that
is the kinetic (til,jm) and the Coulomb (Ulmno) part – are included explicitely:
Electrons hop around on the lattice and each time they occupy the same site it
costs a “Coulomb” energy U. However, it is easy to realize that also this Hamil-
tonian is far from being easy solvable, (apart from the one dimensional case
with the Bethe Ansatz) since its kinetic part is diagonal in momentum space,
whereas the interaction part is diagonal in real space. If not one of the energy
scales is dominating the other – like in the case of the correlated materials –
there is no obvious small paramter for a perturbation expansion or other sim-
plifications: the two terms have to be treated on equal footing. Nonetheless,
it is also easy to guess that a solution of such a case will be rewarded by rich
phasediagrams and fascinating physics.
The method which has proven to be capable of solving Hamiltonians like (1.2)
within a controlled, and non–perturbative, approximation is the dynamical
mean–field theory (DMFT) [128, 136]. The DMFT can be seen as the quantum
extension of a classical mean field theory and, just like its classical counter-
part, it becomes exact in the limit of infinite dimensions (infinite coordination
number) where the self energy only depends on the frequency. The DMFT is
“dynamic” as opposed to “static” (Hartree Fock type) mean field theories with
a constant, i.e. not time/frequency dependent, self energy. The success of the
DMFT is also due to the possibility, in the limit of inifinite dimensions, of map-
ping the Hubbard model, and other many body models, self consistently on
an auxiliary Anderson impurity model (AIM) as it was shown by Georges and
Kotliar [67]. This mapping allows for the use of well established AIM solvers
within the DMFT calculation.

On the one hand there is the LDA approach from the DFT community, which
will fail for the strongly correlated systems, and on the other hand, from the
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1 Combining DFT and many-body approaches

many body community, the DMFT solver of parameter based (i.e. non–ab initio)
Hamiltonians like (1.2). Hence, there is a very natural motivation to combine
the strenghts of both methods and join forces. In the following sections first the
LDA, then the DMFT, and finally their combination to LDA+DMFT are described
seperately in more detail.

1.1 Density Functional Theory and its Local Density
Approximation

As long as only ground state properties are considered there exists an effective
one–particle potential V eff.[ρ(r)], which is a functional of the ground state den-
sity, such that the complete many body problem (including also the non–mean–
field–like interactions) becomes an effective single particle problem solvable by
single particle Schrödinger equations. This claim (for the ground–state proper-
ties) is exact and known as the Hohenberg–Kohn theorem [86]. Moreover, the
theorem states that for any observable O, the ground state expectation value
〈O〉gs = FO[ρgs] is a functional of the ground state density only, and that there
exists a Ritz–variational scheme for the ground state energy, i.e., E[ρgs] < E[ρ]
for all ρ.
However, in physics, the complexity of a problem is often a conserved quan-
tity and one soon realizes that the Hohenberg–Kohn theorem is not the final
solution of everything. Although the theorem proofs its existence, the effective
potential we seek is unknown. Yet, the theorem opens up the following strat-
egy: First of all, separate the functional for the ground state energy into known
and unknown parts:

E[ρ] = Ekin.[ρ] + Eion[ρ] + Ehartree[ρ] + Exc[ρ] (1.3)

where Eion[ρ] =
∫
d3rVion(r)ρ(r) is the energy of the electrons in the potential of

the ions,i.e., the external potential, Ehartree[ρ] =
∫ ∫

d3r′d3rVee(r − r′)ρ(r′)ρ(r) is
the Hartree mean field part of the inter–electronic Coulomb interaction, and
Exc[ρ] represents the unknown quantity of the DFT which remains1. Now,
in principle, the exchange term could be approximated, and the variational
scheme for the ground state could be performed. But one would still have
to face the problem of expressing the kinetic energy Ekin. through the density
ρ(r). In order to avoid this complication Kohn and Sham [86] suggested to

1An interesting fact to remark here is, that the quantity E[ρ] − Eion[ρ] is material independent
(see [98] for a proof), so that, if we would know the DFT functional for one material we could
calculate all materials by simply adding Eion[ρ]
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ρ(r)

εiφi(r) ρnew(r) =
∑N
i |φi(r)|2 ||ρ(r)− ρnew(r)|| < εthres.

done

initialization

solve Eq. (1.5) test

no E

yes X

Fig. 1.1: Density functional self consistency cycle

implement a fictitious non–interacting system, whose external potential is de-
termined in such a way that the real and the fictitious systems have the same
density. This density is then:

ρ(r) =
N∑
i=1

|φi(r)|2 (1.4)

where the φi represent a set of auxiliary one-particle wave functions. Then
the variational minimization is performed with respect to the φi instead of ρ(r).
Hence, we minimize δ{E[ρ]− εi[

∫
d3r|φi(r)|2]− 1}/δφi(r) where the Lagrange pa-

rameters εi take care of the normalization of the φi. This minimization leads
us to the well known Kohn–Sham equations:[

− ~2

2me
∆ + Vion(r) +

∫
d3rVee(r − r′)ρ(r′) +

δExc[ρ]
δρ(r)

]
φi(r) = εiφi(r) (1.5)

We realize, that these equations are, in fact, single particle Schrödinger equa-
tions with a time–averaged potential

Veff. = Vion(r) +
∫
d3rVee(r − r′)ρ(r′) +

δExc[ρ]
δρ(r)

(1.6)

These Kohn–Sham equations are still exact since we have not yet made any
approximation for the interaction part which is encoded in the exchange enegry
functional. That leaves us with the solution of equations (1.5) which is done in
a self–consistent way sketched in Fig. 1.1

1. Choose a starting density ρ(r)

2. Calculate the effective single particle potential Veff.(r)

5



1 Combining DFT and many-body approaches

3. Solve the Schrödinger equations (1.5) to obtain the φi – since in solids the
effective potential will be periodic in the lattice we employ the standard
band theory methods (see e.g. chapter 4 of [43]) for this step.

4. Evaluate the new density from the φi with (1.4)

5. Compare old and new density and close the self consistency (see Fig. 1.1)

It should be stressed at this point that, strictly speaking, the single particle
wave–functions φi have no right to be seen as physical quantities. Basically,
they represent a reference system of decreased sophistication constructed to
retain the ground state density. Neither the spectrum nor the eigenfunctions of
the Kohn–Sham equations should have in principle any relation with the cor-
responding quantities of the true system2. Nonetheless these identifications
give very often surprisingly good results and one of the main applications of
DFT is, in fact, the calculation of band–structures, i.e., the interpretation of
the Langrange parameters εi in Eq. (1.5) as the actual real excitations of the
system.
What is missing, in order to perform an actual calculation, is a reasonable
approximation for the exchange–correlation potential. This task in itself is a
major subject to ongoing research where, more or less empirical functionals
are introduced to capture the specific features of a given system – it is, how-
ever, not subject of this thesis.
One of the best known and commonly adapted approximation is the one of the
local density approximation (LDA):

ELDA
xc =

∫
d3rρ(r)εLDA

xc (ρ(r)) (1.7)

where εLDA
xc (ρ(r)) is the exchange–correlation energy density of the homoge-

neous electron gas (taken as a reference system) evaluated at the same density
as the true system under consideration, locally evaluated at the position r. As
a consequence the exchange energy Exc[ρ(r)] which is generally a functional of
the density ρ reduces to (1.7). Thus the LDA Hamiltonian can be written as:

ĤLDA =∑
σ

∫
d3rΨ̂σ†(r)

[
− ~2

2me
∆ + Vion(r) +

∫
d3r′Vee(r − r′)ρ(r′) +

∂ELDA
xc (ρ)
∂ρ(r)

]
Ψ̂σ(r)

(1.8)

2For example it is easy to see that two–particle operators like the Coulomb interaction in Hamil-
tonian (1.1) or (1.2) will yield eigenstates that are not expressible as single Slater–determinants
and thus outside such a single electron basis–set.
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1.2 Dynamical Mean Field Theory

(note that the functional derivative of the Kohn–Sham equations (1.5) became
a partial derivative in the LDA). In practice, εLDA

xc (ρ(r)) is calculated from the
perturbative solution [79, 210] or the numerical simulation [32] of the jellium
model, which is defined by Vion(r) = const. and thus will yield a constant den-
sity ρ(r) = ρ0 (which justifies LDA for the jellium). In real materials, especially
for the correlated transition metal- or rare–earth compounds this assumption
no longer holds and the LDA is bound to fail.
Today, there exist a large number of DFT implementations. Beside the men-
tioned alternative exchange–correlation potentials, the actual implementations
of a given approach (e.g. LDA) differ in their choice of a particular basis–set.
And the choice of the basis–set is, in fact, crucial when keeping in mind the
motivation to combine the DFT and the many body approaches: Correlation
effects beyond the LDA involve in particular local Coulomb interactions which
we want to describe by means of the Hubbard Hamiltonians (1.2). This means,
that we will have to choose a suitable basis to define the interaction parameter
Ulmno on. The concept of the Wannier functions (see e.g. [12]) offers a valid
option for such a basis-set. Generally, either a transformation (projection) of
plane–waves to the localized Wannier functions has to be performed, or a DFT
implementation which already works itself on a localized basis should be em-
ployed like the muffin–tin orbitals (MTO) either in the linear version (LMTO) [2]
or the N–th order one (NMTO) [3].

1.2 Dynamical Mean Field Theory

As already mentioned, the conventional approach to treat correlated system
expressed in terms of, e.g., a Hubbard model (1.2) is the perturbative expan-
sion around a small parameter. This can be done either starting from the limit
of zero Coulomb interaction U = 0 (weak coupling) or from the opposite limit
of zero kinetic energy thopping = 0, i.e., bandwidth W = 0 (strong coupling).
However, the most interesting physics happens in the case when both energy
scales, interacting and kinetic, are of the same order of magnitude. Yet, in
these cases there is no obvious small parameter. In 1989 Metzner and Voll-
hardt [128] introduced a new limit to improve the description of correlated
electron systems: the limit of infinite dimensions d → ∞ (in a sense, the small
parameter here is d−1) or equivalently the limit of infinite coordination num-
ber in the lattice. In this limit, the competition between kinetic energy W and
Coulomb interaction U is maintained, but the self–energy of the problem be-
comes entirely local Σ(k, ω) → Σ(ω), i.e., momentum–independent. It has then
been shown by Müller–Hartmann [136, 137, 138] that only the local Coulomb
interaction yields dynamic, i.e., ω–dependent, correlations whereas the non–
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1 Combining DFT and many-body approaches

↑

↑
↓

↑
↑

↑

J·〈si〉MFT

(classical) Fig. 1.2: Weiss Mean Field Theory: Instead of
coupling to all spins the spin si is coupled
to a spatially and temporally averaged spin
S

U

U
U

U
U

U

Σ(ω)DMFT

(quantum)

Fig. 1.3: Dynamical Mean Field Theory: The
lattice problem is mapped onto a local prob-
lem coupled to an effective self energy which
still carries the frequency, i.e., temporal in-
formation

local density–density interactions are reduced to the non–ω–dependent Hartree
contribution. Beside the exact solution of the Falikov-Kimball model [57] and
the Kondo lattice model for classical spins, the most important step was done
in the work by Georges and Kotliar [67] (see also [92, 143, 142]) who showed
that a many–body model like the Hubbard model (1.2) could be mapped self
consistently on an auxiliary Anderson impurity model (AIM) for the limit of
d → ∞. This step was insofar crucial as there are many well established
solvers for the AIM which could now be used as solver for the many–body
lattice problem within the DMFT approach. Solvers that could be employed
are for example iterated perturbation theory [67], self-consistent perturbation
theory [138, 184], and the non-crossing approximation [95, 96, 161, 162], nu-
merically exact solvers like quantum Monte Carlo simulations [93, 173, 69],
exact diagonalisation (or Lanczos at T = 0) [23] and the numerical renormal-
ization group [180, 22].
For reviews on DMFT see e.g. [67, 81, 68, 105].

The general concept underlying a mean–field theory is the mapping of a lattice
problem onto a single site problem by casting all non–local degrees of freedom,
i.e., intersite couplings, into an effective mean field (compare Fig. 1.2 & 1.3).
This mean field is then calculated with the request, that the single site problem
reproduces the expectation values of the initial lattice problem. The identifica-
tion of the single site observable with the local component of the corresponding
lattice quantity is the actual approximation of a mean field approach. This pro-
cedure becomes exact in the limit of infinite coordination number (i.e. infinite
dimensions) as a result of the central limit theorem (see below). For example,
in the case of the “classical” Ising model (Fig. 1.2) the coupling constant J has
to be scaled with the inverse spatial dimension 1/d in order that the energy of
the system remains finite and, hence, the deviation of the mean field from the
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1.2 Dynamical Mean Field Theory

true local field scales as 1/
√
d, i.e., vanishes in the limit d→∞.

But let us rather turn to the scaling of Hamiltonians which we then want to
combine with the ab initio methods in the limit of d → ∞. Better yet, for
more intuitive arguments this limit should be understood as the limit of infi-
nite neighboring sites Z‖i−j‖ → ∞ (where ‖i − j‖ is the distance between the
sites). Turning to the Hubbard Hamiltonian (1.2) we can consider the proper
scaling of the kinetic, and of the interaction part separately. In fact, the scaling
of the latter one in the case of the Hubbard Hamiltonian is trivial: Since the
interaction parameter Ulmno is defined as purely local this part of Hamiltonian
(1.2) stays at a finite constant:〈 ∑

lmnoσσ′

Ulmnoĉ
†
ilσ ĉ
†
imσ′ ĉinσ′ ĉioσ

〉
Z‖i−j‖→∞−−−−−−−→ const. (1.9)

where 〈O〉 denotes the thermal average of O.
For the first term of (1.2) the situation is obviously more involved and we have
to take care that the kinetic energy per site, namely

∑
ljmσ til,jmĉ

†
ilσ ĉjmσ scales

properly, i.e remains finite in d → ∞. In this sum we have Z‖i−j‖ equivalent j
terms. Hence, the kinetic energy per site i diverges unless we rescale til,jm in
the limit Z‖i−j‖ →∞. To avoid this divergence, the following renormalization is
considered:

til,jm =
t̃il,jm√
Z‖i−j‖

(1.10)

with t̃il,jm staying constant upon increasing Z‖i−j‖. It can be easily shown,
that the non–interacting Green function G0

il,jm(ω) also scales just like t̃il,jm
since they are directly connected:

G0
il,jm(ω) =

[
(ω1− t)−1

]
il,jm

∝ 1√
Z‖i−j‖

(1.11)

where the double underlines denote matrices in the basis of orbital and site
indices (we will keep this notation throughout the manuscript). Now, in order
to see how the kinetic energy term scales, we need to know how the full Green
function scales, since the scaling of 〈ĉ†ilσ ĉjmσ〉 is obviously directly connected
to the scaling of the propagator 〈ĉjmσ ĉ†ilσ〉, i.e., the Green function Gil,jm(ω).
Actually, we can show that it scales just like G0

il,jm(ω). The way to do so, is to
employ the Dyson equation and then show that the self energy is purely local
in the limit of infinite coordination number.
In Feynman diagram notation we can write the Dyson equation for the Green
functions as

9



1 Combining DFT and many-body approaches

∝
√
Z‖i−j‖

−3

∝
p
Z‖i−j‖

−1

Uloc.
∝

p
Z‖i−j‖

−1

∝
p
Z‖i−j‖

−1

i j

i j

Fig. 1.4: Example for a second order diagram for the self energy (amputated legs). If we
consider the scaling of the three Green functions connecting i and j shows that the
contribution of this diagram vanishes in the DMFT limit of d → ∞ and only the local
contribution with i = j survives.

= + Σ
(1.12)

where denotes the full Green function, the non–interacting one, and
Σ = Σ(k, ω) the full self energy, which is generally a function of momentum and
frequencies. Rewriting the equation in k–space gives for the full Green func-
tion:

G(k, ω) =
(
G0(k, ω)−1 − Σ(ω,k)

)−1
(1.13)

Now consider the diagrams, that define the self energy. For instance, let us
consider the case of the diagram shown in Fig. 1.4. Each in this diagram
connecting i and j with i 6= j scales like

√
Z‖i−j‖

−1
, which means that the total

contribution of this diagram is
√
Z‖i−j‖

−3
. But there is only a factor Z‖i−j‖ for

the sum over the different j thus, the contribution scales like
√
Z‖i−j‖

−1
and

becomes irrelevant in the limit Z‖i−j‖ → ∞. Moreover, this holds for any other
diagram in which two sites i 6= j are connected by three or more independent

.
Yet, there are also diagrams, in which sites i 6= j are connected by only two

(see Fig. 1.5 left hand side). These diagrams will contribute, since they
scale like Z−1

‖i−j‖: Taking into account the factor Z‖i−j‖ for the sum over j the
total contribution of these diagrams scales like 1. However, these diagrams are
already taken into account if we substitute the non–interacting Green function
by the full Green function like in Fig. 1.5 right hand side. In summary this
means, that all diagrams contributing to the self energy are purely local, and
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Uloc.

i i

i i

j j

Uloc.

i i

i i

Fig. 1.5: Left hand side: Example of second order diagrams for the self energy (ampu-
tated legs) that will contribute in the d→∞ limit. Here i and j are connected only by
two Green functions (straight lines). These kind of diagrams are contained in the full
local diagram which is shown on the right hand side. a

that we can conclude from Eq. (1.12) eventually that:

Gil,jm(ω) ∝ 1√
Z‖i−j‖

(1.14)

so that: 〈∑
iljmσ

til,jmĉ
†
ilσ ĉjmσ

〉
Z‖i−j‖→∞−−−−−−−→ const. (1.15)

Note, the two factors
√
Z‖i−j‖ from the hopping and the Green function will

just cancel the factor Z‖i−j‖ from the sum over j. This shows, that our initial
ansatz (1.10) was correct. On the way, we also obtained the important result
that the self energy becomes purely local in d→∞:

Σij(ω)
Z‖i−j‖→∞−−−−−−−→ δijΣ(ω) (1.16)

or after a Fourier transform of the spatial variables:

Σ(k, ω)
Z‖i−j‖→∞−−−−−−−→ Σ(ω) (1.17)

Looking back, we have found a mean field theory in which the lattice problem
is self consistently mapped onto a local problem (compare Fig. 1.3) just like in
the mean field theory of Weiss for the Ising spins. And just like the Weiss mean
field theory it becomes exact in the well defined limit of infinite coordination.
Nonetheless, there is a significant difference to the classical mean field theory
mentioned earlier: Σ(ω) and hence the local observable which depends on Σ(ω)
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1 Combining DFT and many-body approaches

are frequency dependent. Speaking in a pictorial way this means that we allow
for the electrons on the local site to leave the site and travel around returning
after some time, often denoted as “quantum fluctuations”. This time depen-
dence, in turn, yields the frequency dependence of our mean field Σ which
makes it dynamic.

The final step missing, is the actual solution of the problem which means the
determination of the local self energy. And just like in many other cases, this
step is performed by mapping the new problem onto something which is well
known and already solvable: the Anderson impurity model (AIM). There are
several solvers available for the AIM ranging from analytical approximations
like iterated perturbation theory (IPT) to numerically exact solvers like Lanzcos
diagonalisation or Quantum Monte Carlo (QMC) integration. The (self consis-
tent) mapping of the DMFT problem to the AIM can be done since, diagrammat-
ically, the DMFT self energy corresponds to the contribution of all topologically
distinct local Feynman diagrams. Exactly the same diagrams can be obtained
via the Anderson impurity model if its on-site interaction has the same form as
the original Hamiltonian:

ĤAIM =
∑
klσ

εl(k)â†k,l,σâk,l,σ +
∑
klσ

[
Vlm(k)â†k,l,σ ĉm,σ + h.c.

]
+∑

ilmnoσσ′

Ulmnoĉ
†
ilσ ĉ
†
imσ′ ĉinσ′ ĉioσ (1.18)

Here the â†k,l,σ, âk,l,σ are creators and annihilators of the non–interacting con-

duction band with dispersion relation εl(k), the ĉ†ilσ, ĉilσ are the creators and
annihilators of the interacting impurity–site, and Vlm(k) presents the hybridiza-
tion between itinerant and localized electrons. If we now reformulate the prob-
lem in terms of a field–integral over Grassmann variables ψ and ψ†, we will see,
that the conduction electrons can be integrated out. The propagator of the AIM
reads:

Gσlm(iων) = − 1
Z

∫
DψDψ†

(
ψσνlψ

σ†
νme

A[ψ,ψ†,(G0)−1]
)

(1.19)

where ων = π(2ν + 1)/β are the Matsubara frequencies defined with the inverse
temperature β = 1/kBT , the partition function:

Z =
∫
DψDψ†

(
eA[ψ,ψ†,(G0)−1]

)
(1.20)

and the single–site action:
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1.2 Dynamical Mean Field Theory

A
[
ψ,ψ†, (G0)−1

]
=
∑
νσlm

ψσ†νm
[
Gσ0
lm(iων)

]−1
ψσνl−

∑
lmnoσσ′

Ulmno

∫ β

0

dτψσ†l (τ)ψσ
′

n (τ)ψσ
′†
m (τ)ψσo (τ) (1.21)

where the integral is performed over the imaginary time τ . The non–interacting
Green function (Weiss field) of the AIM is given by:

[
Gσ0
lm(iων)

]−1
= iων + tikim + µ−

∑
kn

V †nl(k)Vnm(k)
iων + µ− εn(k)

(1.22)

As already mentioned, the topology of the irreducible diagrams of this effective
Anderson impurity model is exactly the same as the DMFT single site prob-
lem: simply the local contribution of all Feynman diagrams. Now we only
have to identify the interacting Green function of the AIM with the local DMFT
Green function in order to get identical self energies. This means, that we have
to find the appropriate AIM, for which this equality holds. From the request
GAIM(ω) ≡ GDMFT

loc. (ω) it follows directly, that the non–interacting AIM Green func-
tion: [

G0(iων)
]−1

=
[
G(ω)

]−1 + Σ(ω) (1.23)

With Eq. (1.23), which is basically a Dyson equation (compare to Eq. (1.13)) for
the AIM, we have everything we need to build up a self–consistency scheme for
the calculation of the local self energy:

1. Choose a starting self energy and calculate the local Green function by a
k–integration of Eq. (1.13):

Gloc.(ω) =
1
VBZ

∫
BZ
d3k

1
(ω + µ)1− ε(k)− Σ(ω)

(1.24)

2. Then calculate the AIM Weiss field G0 via Eq. (1.23)

3. Solve the Anderson impurity model to obtain a new local Green function
and self energy

4. compare new and old self energy and close the self consistency loop
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1 Combining DFT and many-body approaches

This procedure is also sketched in Fig. 1.6. The DMFT method turned out to
be a huge step forward for the understanding of many body systems by means
of e.g. the Hubbard model or the periodic Anderson model and in particular
improved the insight on the Mott–Hubbard metal–to–insulator transition [67].
Moreover, it also yielded new insights to the “dynamical features” of the Mott
insulating phase by means of (spin)–polaronic side bands [181].
We shall now see, how the DMFT and its self consistent solution can be imple-
mented in combination with the LDA in order to perform ab initio calculations
of strongly correlated systems.

1.3 LDA+DMFT

In section 1.1 and 1.2 both the DFT(LDA) and the DMFT approaches were dis-
cussed with the motivation of merging the two methods into a single scheme,
with which the ab initio treatment of strongly correlated electron systems be-
comes feasible.

The connection between LDA (or similar DFT schemes) and DMFT is most intu-
itive and straightforward on the Hamiltonian level. Therefore, the first step is to
transform the LDA Hamiltonian (1.8) into a basis where we want to define the
interaction part of the full Hamiltonian. We have to integrate out subspaces of
the full LDA Hamiltonian that are irrelevant for the excitations which we want
to analyze, since the full LDA basis (i.e. of the order of O(100) orbitals) would
be impossible to handle by means of any impurity solver. As already men-
tioned briefly at the end of section 1.1, maximally localized Wannier functions
φ(r) [134] or wave functions of NMTO downfolding calculations [3] present an
adequate choice for such a basis. In this basis we rewrite the wave functions:

Ψ̂σ†(r) =
∑
il

ĉ†ilσφ
∗
il(r) (1.25)

and the Hamiltonian (1.8) reads:

Ĥ∗LDA =
∑
ljmσ

til,jmĉ
†
ilσ ĉjmσ (1.26)

Here the asterix denotes the projection/downfolding character of the basis
φil(r) and the “tight binding” hopping terms read
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1.3 LDA+DMFT

INFO: AIM solver

The most difficult step in the DMFT self consistency is the solution of the
impurity model in each iteration step for a new dynamic Weiss field G0(iωn).
Fortunately, there exist many well–established solvers for the quantum impu-
rity model which have been developed over the last forty years. These solvers
can be divided into analytical and numerical ones.
Analytical solvers are the iterated perturbation scheme (IPT) [67] and the non-
crossing approximation method [95, 96, 161, 162]. However, when it comes
to quantitative material calculations, in which we are interested here, the nu-
merically exact solvers are preferable:
A straightforward way to solve the impurity–problem is the exact diagonali-
sation method [23, 132]. Here the AIM is solved with an approximated pa-
rameterized effective bath consisting of a few orbitals. The drawback of this
technique is, however, that the number of orbitals one can effectively treat is
severely limited by the size of an exponentially growing Hilbert space.
Another “numerically” exact method is the quantum Monte Carlo (QMC)
method. One of the most common QMC impurity solvers for the DMFT is
based on the Hirsch–Fye [85] algorithm (HF-QMC), which considers the single–
impurity problem in discretized imaginary time. Within the HF–QMC the AIM is
mapped onto a sum of noninteracting problems where a single particle moves
in a fluctuating time dependent field. The effective bath only enters through
the Weiss–field G0, and there is no need to discretize the conduction band.
With the QMC a much larger number of orbitals can be treated compared to
the exact diagonalisation. Yet, there are also limitations to the QMC approach,
although of a different nature: the computational effort grows as T−3, so that
this method is limited to high temperatures. In this sense the Lanczos diago-
nalisation and the QMC are somewhat complementary techniques. (there are
however, schemes like the so called ’projective QMC’ [216, 58] which overcome
the high temperature restriction accessing the T= 0 regime).
By now there are other approaches, namely the so called continuous time QMC
(CT-QMC) in its weak–coupling [175] and strong–coupling [215] versions which
overcome the error of the Trotter discretization of the HF-algorithm. However,
Blümer has very recently shown [18] that a state-of-the-art implementation of
the HF-QMC is still competitive with the CT-QMC.
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1.3 LDA+DMFT

til,jm =∫
d3rφ∗il(r)

[
− ~2

2me
∆ + Vion(r) +

∫
d3r′Vee(r − r′)ρ(r′) +

∂ELDA
xc (ρ)
∂ρ(r)

]
φ∗jm(r) (1.27)

Now, if we compare the Hubbard Hamiltonian (1.2) with the LDA Hamiltonian
in the basis of localized Wannier functions (1.26) it is straightforward to iden-
tify the kinetic part of the Hubbard Hamiltonian with the LDA Hamiltonian on
the Wannier basis (for which we know the solution til,jm). Hence, after finding
an appropriate expression for the U matrix of the interacting part of the Hub-
bard Hamiltonian, the problem (1.28) can be directly solved by the DMFT self
consistency (Fig. 1.6).

Ĥeff. = Ĥ∗LDA + Ĥint.(U) (1.28)

Specifically, the projected/downfolded LDA Hamiltonian enters in its Fourier–
transformed form as ε(k) = εLDA(k) in Eq. (1.24)
An important remark should be made at this point: It must not be forgotten,
that the LDA scheme already treated a part of the electronic Coulomb interac-
tion, e.g. the static Hartree part of it:

∫
d3r′Vee(r−r′)ρ(r′)- These terms must not

be double counted! To avoid this, we have to introduce the so called “double
counting correction” (DC) in our scheme. Throughout this work the DC was
performed along the lines of Anisimov [9, 81].

∆ε = Ū

(
nL −

1
2

)
(1.29)

where nL denotes the LDA density of the orbital subspace L (e.g. either 3d, 2p,
etc.) and Ū is the average of the interaction matrix which, in a cubic symmetry
(including also a Hund’s coupling J ), can be written for M interacting orbitals
as

Ū =
U + (M − 1)(U − 2J) + (M − 1)(U − 3J)

2M − 1
(1.30)

Still, the question of the most appropriate choice for the DC term is an ongo-
ing debate. It should be noted, that the Anisimov style DC only becomes rele-
vant, when Ĥ∗LDA includes subspaces of different angular–momentum quantum
number from the full LDA Hamiltonian. If we only take into account “effective”
d–states only, the DC just corresponds to a shift of the total energy which can
be absorbed by the chemical potential. We refer to chapter 4 where we formu-
late models on extended basis sets on which the corresponding DC has to be
taken into account explicitly.
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1 Combining DFT and many-body approaches

Before closing this methodological chapter with an overview of the observables
that can be calculated within LDA+DMFT for comparison with experiment, a
brief comment concerning the choice of the appropriate subspace to formulate
Ĥ∗LDA and Ĥint.(U) is due.
In summary, we have seen how ab initio methods could be used in order to
construct an interacting Hamiltonian (1.28) which, in turn, is solved by the
procedure sketched in Fig. 1.6. In a way, we introduce the many–body corre-
lation effects “on top” of the LDA results. With this approach comes a certain
risk: What if degrees of freedom, that were projected out in the first place
would have become important if they would have been included. In other
words: What is the true minimal basis–set in order to capture all features cor-
rectly?3

Today, much effort is put into finding a closed LDA+DMFT self consistency on
a full basis–set. The first step towards such implementations is to expand the
basis–set of the self–consistency but treat only certain subspaces (i.e. the ones
where correlations become essential) with DMFT and others with less sophis-
ticated methods. For further discussions concerning this important topic, we
refer to chapter 4.

1.3.1 Obtaining the local self energy on the real axis

Employed as DMFT impurity solver, the most quantum Monte Carlo simula-
tions produce Green functions G(τ) of imaginary time τ = it. However, real–
frequency results are crucial since most experiments probe dynamical quan-
tities like spectral functions, etc. Thus, the inability to extract real–frequency
or real–time results from Matsubara (imaginary) time QMC simulations poses
the necessity of an additional postprocessor to perform the analytical continu-
ation.
The relation between G(τ) and A(ω) = − 1

π=(G(ω)) is, in fact, linear and surpris-
ingly simple:

G(τ) =
∫
dωK(τ, ω)A(ω) (1.31)

Nevertheless, inversion is complicated by the exponential nature of the kernel.
For example, for a fermionic single particle Green function the kernel reads
[182]

K(τ, ω) =
e−τω

1 + e−βω
(1.32)

3For example it is easy to realize that the physics of a d/p charge–transfer insulator cannot be
captured entirely by a model that only includes d degrees of freedom - see sections 2.2 and
4.1.2
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1.3 LDA+DMFT

For finite τ and large ω the kernel is exponentially small, so that G(τ) is insen-
sitive to the high frequency features of A(ω). Equivalently, if we approximate
both G and A by equal–length vectors and K by a square matrix, then we find
that the determinant of K is exponentially small, so that K−1 is ill–defined. This
means, that there are an infinite number of A with very different characters (it
might be even not causal) that yield the same G.
In cases where G is extremely precise the so called Padé method [209] can be
employed, where G is fit to a functional form, usually the ratio of two polynomi-
als. This can then be easilly analytically continued by replacing iωn → ω + i0+.
However, QMC data of G is usually far from being suitable for this kind of
technique. Here the most appropriate approaches turned out to be entropy–
based methods of Bayesian data analysis known as Maximum Entropy Method
or short MEM. In the MEM we do not ask “What is the spectrum to the G we
measured?”, but rather “Which A maximizes the a posteriori probability given
the data of G?”. In order to do so, A(ω) is interpreted as a Probability density
on an interval [−ω0/2, ω0/2]. The corresponding entropy then reads:

S =
∫ ω0/2

−ω0/2

dωA(ω) ln(A(ω)ω0) (1.33)

The prior probability for A is then [187] proportional to P (A) ∝ exp(αS) where
α is a parameter which should maximize P (A). Moreover, A(ω) has to yield the
correct G(τ). The likelihood function for this is

P (G|A) = exp(−1
2
χ2) (1.34)

where χ2 is the square deviation of the G(τ) calculated from A(ω) compared to
the measured G(τ). Now the a posteriori probability of A(ω) yielding G(τ) is

P (A|G) = P (G|A)P (A)/P (G) ∝ exp(αS − 1
2
χ2) (1.35)

which is maximized in the procedure. (During the procedure we work with one
set of QMC data at a time so that P (G) is constant and may be dropped.)
For further reading and (many) details we refer to the exhaustive review by
Jarrell and Goubernatis [94].
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1 Combining DFT and many-body approaches

1.4 Observables from LDA+DMFT

Up to this point the merger of ab initio DFT methods (and specifically the LDA)
with the many–body DMFT approximation have been introduced. The moti-
vation, from the DFT perspective, was the inclusion of electronic correlations
which are out of reach for simple LDA (or even LDA+U) calculations. On the
other hand, the motivation from the many–body perspective was to leave the
territory of idealized model Hamiltonians and construct realistic, yet solvable,
Hamiltonians. These motivations are aimed at a direct comparison between
theory and experiment. Hence, a discussion of the observables which allow for
such comparison is due.

A thorough understanding of what is actually measured in an experiment and
how it is related to the calculated quantities is extremely important. Usu-
ally the processes in an experimental measurement are quite complicated and
when the data should be compared to the calculations, certain approximations
have to be made. However, it is essential to know what approximations are
justified at each step of the way.

In the following sections three of the most common spectroscopic techniques
and their comparison to LDA+DMFT calculations will be discussed shortly: the
angular resolved photoemission spectroscopy ARPES, optical conductivity IR
measurements, and finally the X–ray absorption spectroscopy XAS. We shall
meet all of these techniques again in the following chapters when we refer to
experimental results.

1.4.1 Angular Resolved Photoemission Spectroscopy (ARPES)

One of the most popular spectroscopic tools is the
angular resolved photoemission (ARPES). In a PES
experiment, the probe light induces an emission of
electrons from the sample. The emitted electrons are
then analyzed by means of their energy.
We will see that, in a many body context, PES should
be seen as the measurement of a “quasihole” prop-
agation. One reason for the great popularity of this

approach is the fact that its spectra can be related to single particle propa-
gators, i.e., Green functions of the system, which are a direct result of many
theoretical calculations. Also the LDA+DMFT self consistent scheme, as it was
discussed in the previous section, yields the (local) Green function directly:
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1.4 Observables from LDA+DMFT

Let |j〉 and |i〉 be eigenstates of a general (specifically also interacting) Hamilto-
nian with Ĥ|j〉 = Ej |j〉. Then the Green function on the imaginary Matsubara
axis iων and the definition of the so called spectral function A(k, ω) reads

Gm,n(k, iων) = − 1
Z

∫ β

0

dτeiων Tr
[
e−βĤeĤτ ĉnke

−Ĥτ ĉ†mk

]
= − 1
Z

∫ β

0

dτeiων
∑
i,j

e−βEie(Ei−Ej)τ 〈i|ĉnk|j〉〈j|ĉ†mk|i〉

= − 1
Z
∑
i,j

e−βEi
e(iων+Ei−Ej)β − 1
iων + Ei − Ej

〈i|ĉmk|j〉〈j|ĉ†nk|i〉

≡
∫
dω′

Am,n(k, ω′)
iων − ω′

(1.36)

where m and n denote the spin and orbital quantum numbers, Z is the grand
canonical partition function, and β = 1/kBT . So that

Am,n(k, ω) =
1
Z
(
1± e−βω

)∑
i,j

e−βEi〈i|ĉmk|j〉〈j|ĉ†nk|i〉δ(ω + Ei − Ej) (1.37)

For the orbital diagonal part (m = n), we can relate An,n(k, ω) directly to the
retarded single particle Green function:

An,n(k, ω) = − 1
π
=Gret.

n,n(k, ω) (1.38)

Further, it can be shown (see e.g. [214]), that the ARPES intensity in the sud-
den approximation can be related to A(k, ω) by

IARPES(k, ω) =
2π
~

∆(k) f(T, ω)A(k, ω) (1.39)

where f(T, ω) is the Fermi distribution and ∆(k) the so called transition matrix
element which, generally a function of k, is very often approximated to be
constant. To sum it up in a nutshell, ARPES probes the propagation of an
electron–hole created by absorption of a photon. Hence, in the Fermi liquid
regime the ARPES spectra around the Fermi energy can be understood as the
renormalized free–particle spectrum4, i.e., the propagation of a “quasi hole”.

4It is common slang to say that ARPES measures the “bandstructure” or the “occupied DOS” –
strictly speaking this statement is incorrect. A spectrum is never a DOS, although it can be
interpreted in this way in a Fermi liquid context. The fact that the integral over the spectrum
is related to the number of electrons just reflects a sum–rule
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1 Combining DFT and many-body approaches

1.4.2 Optical Conductivity (IR)

The next technique to be discussed is the response
of the system to electromagnetic radiation in the vis-
ible/infrared part of the spectrum – the so called op-
tical conductivity. The experiment is often set up in
a geometry that allows for the measurement of the
reflectivity. From the reflectivity one computes, via
Kramers Kronig (KK) transformation, the optical con-
ductivity which is more transparent in its physical

interpretation5. While in ARPES the photon energy was large enough to actu-
ally “kick out” an electron, the excitations of IR measurements are true two–
particle (electron/hole) excitations at a constant particle number.
Technically this means, that we have to calculate two–particle Green functions
in order to capture the IR spectra. In fact, we will see later that in the specific
case of the DMFT approximation the IR spectra can be obtained from the one–
particle spectral functions. Nonetheless, this is a good point to introduce the
concept of calculating of response functions within quantum field approaches
such as DMFT generally.
The conductivity tensor σ is defined as the response function relating the “per-
turbation” of an electric field E with the systems response, the current J , in
Ohm’s law

Jα(r, t) =
∫
d3r

∫ t

−∞
dt′σαβ(r, r′, t− t′)Eβ(r′, t′) (1.40)

with α and β being the Cartesian coordinates (x, y, z) and J the expectation
value of the current density operator ̂

J(r, t) = 〈̂(r, t)〉 (1.41)

which we will derive by means of the linear response theory in the following,
and the electric field

E(r, t) = E0 e
i(qr−ωt) (1.42)

which we assume, for simplicity, to consist of just one single mode (q, ω). Fur-
ther we can argue that for IR experiments the wavelength of the radiation in
the optical spectrum is quite large compared to the typical length scales (i.e.
atomic distances and penetration depth) of the solid. Hence we neglect spatial
variations of the field and, accordingly, conclude that the response at position

5In order to perform the KK transformation the experimental data has to be extrapolated to zero
and infinite frequency – for details see for example [217, 51]
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1.4 Observables from LDA+DMFT

r to the field r′ only depends on the distance r − r′. Then we can write, after
Fourier transform to momentum and frequency space

J(q, ω) = σ(q, ω)E(q, ω) (1.43)

and take the limit of zero momentum transfer q → 0, which, in fact, cor-
responds to the dipole approximation. In these terms the optical conductivity
refers to the real part of the conductivity tensor in the q = 0 limit6: <σ(q = 0, ω).
The limit ω → 0 will result in the direct current (dc) conductivity.
Let us now turn to the actual calculation of the optical conductivity. The first
quantity to derive is the current density operator ̂ which is defined from the
coupling with the electromagnetic vector potentials. It is convenient here to di-
vide the electronic Hamiltonian into a non–interacting and an interacting part

Ĥ = Ĥ0 + Ĥint. (1.44)

where Ĥint. consists of the two–particle operators of the Coulomb interaction or
the coupling to bosonic modes, and Ĥ0 can be formulated with the generalized
momentum (minimal substitution) in an electromagnetic field as

Ĥ0 =
∑
σ

∫
d3rΨ̂σ†(r, t)

[
1

2me

(
−i~∆− e

c
A(r, t)

)2

+ V (r, t)
]

Ψ̂σ(r, t) (1.45)

Here, A(r, t) is the vector potential and c is the speed of light. We work in the
Coulomb gauge assuming charge neutrality of the system so that V (r, t) = 0.
We derive the current density operator to be

̂(r, t) = − i~
2me

∑
σ

(
Ψ̂σ†(r, t)∆Ψ̂σ(r, t)− (∆Ψ̂σ†(r, t))Ψ̂σ(r, t)

)
+

e2

mec
A(r, t)ρ(r, t)

(1.46)

With (1.46) we can rewrite (1.45) as

Ĥ0 = −1
c

∫
d3r ̂(r, t)A(r, t) +

∫
d3r ρ(r, t)V (r, t) (1.47)

and identify, in turn, the current density as

̂(r, t) = −c δĤ0

δA(r, t)
(1.48)

6at this point it is easy to realize that the gap of an optical spectrum, which corresponds to the
smallest ∆ω of a direct transfer, can differ severely from e.g. a PES gap
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1 Combining DFT and many-body approaches

Note that the minimal substitution (−i~∆ → (−i~∆ − e
cA(r, t)) has no effect on

the interacting part of Hamiltonian (1.44) as long as it consists of density–
density type of interactions. Now, turning back to the expression (1.46) for the
current density, we can identify the two summands

̂(r, t) = ̂P(r, t) + ̂D(r, t) (1.49)

as the paramagnetic

̂P(r, t) = − i~
2me

∑
σ

(
Ψ̂σ†(r, t)∆Ψ̂σ(r, t)− (∆Ψ̂σ†(r, t))Ψ̂σ(r, t)

)
(1.50)

and diamagnetic term

̂D(r, t) =
e2

mec
A(r, t)ρ̂(r, t) (1.51)

With this separation, the expectation value of ̂ becomes

J(r, t) = 〈̂P(r, t)〉+
ne2

mec
A(r, t) (1.52)

since, in linear response theory, 〈ρ(r, t)〉 = n for the system without the pertur-
bation A.
Looking at at equation (1.52), we define the kernel K(r − r′, t− t′)

K(r − r′, t− t′) ≡ e2

c
χ(r − r′, t− t′)︸ ︷︷ ︸
paramag. kern.

− e2n

cme
1︸ ︷︷ ︸

diagmag. kern.

(1.53)

in order to write

J(r, t) =
∫
d3r

∫ ∞
−∞

dt′ K(r − r′, t− t′)A(r′, t′) (1.54)

Yet, we started with the motivation to calculate the response to an electric field
E, like in equation (1.40), and not the vector potential A. But, in fact we can
relate those two quantities in the chosen gauge by

E = −1
c
∂tA A(q, r) =

c

iω
E(q, ω) (1.55)

Now, we can revisit equation (1.43) and, with the help of (1.55), (1.53), and
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1.4 Observables from LDA+DMFT

(1.54) identify the conductivity tensor

σ(q, ω) =
1
iω
K(q, ω) (1.56)

In order to express the optical conductivity <σ(q, ω), we rewrite (1.56) remem-
bering that in the linear response theory the kernel, as a consequence of
causality, is analytic in the upper half plane ω + iδ and hence

σ(q, ω) =
1

i(ω + iδ)
K(q, ω) = P

[
1
iω
K(q, ω)

]
− πδ(ω)K(q, ω) (1.57)

So we can separate the real and imaginary part into

=σ(q, ω) = −P
[

1
ω
<K(q, ω)

]
(1.58)

<σ(q, ω) = P
[

1
ω
=K(q, ω)

]
− πδ(ω)<K(q, ω) (1.59)

and substitute (1.53)

<σ(q, ω) =
e2

c ω
=χ(q, ω)︸ ︷︷ ︸

regular part

−πδ(ω)
[
<χ(q, ω)− ne2

mc
1
]

︸ ︷︷ ︸
singular part

(1.60)

Usually the singular part, whose presence would imply zero resistivity, is zero
for normal materials. This is equivalent to the statement that the diamagnetic
part of the current density will not contribute to the optical conductivity (ex-
ceptions are e.g. the superconductors where the singular part is not zero).
Hence, let us neglect the second summand in (1.60) and calculate the regular
part. Instead of giving a rigorous derivation of the final formula, we state it
here giving some arguments and refer to [201, 1] for details. First of all the
Kubo formula of the linear response theory will relate χ to the current–current
correlation function which we write in k−space and on the imaginary time τ
axis as

χαβ(q, τ) ∝ 〈T jα(−q, τ)jβ(q, 0)〉 (1.61)

Here implicitly the homogeneity of the system and continuity of time is as-
sumed. In the dipole approximation we are also only interested in the limit
q→ 0 in which the current operator can be written on a Wannier–like localized
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1 Combining DFT and many-body approaches

basis set (denoted by the set of quantum numbers “L”) as

jα(q = 0, τ) = e
∑

k,LL′,σ

vLL
′

k,α ĉ
†
kL′σ(τ)ĉkL′σ(τ) (1.62)

The vLL
′

k,α are the elements of the Fermi velocity matrix at q = 0. Thus,

χαβ(q = 0, τ) ∝ i 〈T jα(−q = 0, τ)jβ(q = 0, 0)〉

∝
∑

kk̄,LL′,L̄L̄′,σσ̄

vLL
′,σ

k,α vL̄L̄
′,σ̄

k̄,β

〈
T ĉ†kL′σ(τ)ĉkLσ(τ)ĉ†

k̄L̄′σ̄
(0)ĉk̄L̄σ̄(0)

〉
∝

∑
k,LL′,L̄L̄′,σ

vLL
′,σ

k,α GLL̄
′,σ

k (τ)vL̄L̄
′,σ

k,β GL̄L
′,σ

k (−τ)

(1.63)

where in the last step we made several assumptions: First of all we contracted
the four fermionic operators according to the Wick theorem and to one–particle
Green functions. Next, we assumed the Green functions to be diagonal in the
spin index (i.e. paramagnetic case). And finally we neglected so called “vertex
corrections” which will now be discussed a little more detailed.
Diagrammatically the last expression in (1.63) corresponds to the bubble
shown on the left hand side of Fig. 1.7. Turning to the neglected two parti-
cle vertex Γ we would have to sum up more terms including summands of the
form shown in the middle of Fig. 1.7 which means excitonic particle–hole in-
teractions. These terms could be written in frequency space (dropping orbital
indices for simplicity)

∑
k,ων ,σ

∑
k′,ω′ν ,σ

′

vσkG
σ(k, iων)Gσ(k, iων + iΩν)

Γσσ
′

k,k′(iων , iω
′
ν , iΩν)Gσ

′
(k′, iω′ν)Gσ

′
(k′, iω′ν + iΩν)vσ

′

k′ (1.64)

The approximation we make by neglecting such terms can interestingly be un-
derstood in the DMFT limit of infinite coordination. It can be shown that in
this limit the vertex can be replaced by a purely local quantity [223] so that the
momentum sums in (1.64) can be performed individually for k and k′ respec-
tively. However, in the single–band case, the Fermi velocities are odd functions
with respect to momentum, while the Green function is even so that eventually
the sums become zero. Hence, in the DMFT limit the excitonic vertex correc-
tions vanish for the single orbital case. In multi–orbital systems it is generally
a question of symmetry if the same arguments hold – if not, it should be real-
ized that the neglect of vertex corrections is approximative even in the limit of
infinite coordination.
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vk,α

τ

vk,β
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τ

vk,β
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Γ G
k
(τ)

G
k
(−τ)

Fig. 1.7: Feynman diagrams for the optical conductivity (double underlines denote the
matrix character in orbital and spin space). Left hand side: example of a bubble in
the sum of Eq. (1.63). Center: Neglected excitonic diagrams with two particle vertex
Γ. Right hand side: Bubble taking into account the full Green function

Finally, we exchange the non–interacting Green functions in the bubble by
the fully interacting ones which is depicted in Fig. 1.7 on the right hand side.
Eventually, after Fourier transformation to frequencies and analytical contin-
uation to the real axis, we obtain for the optical conductivity

<σαβ(Ω) =
2πe2~
V

∑
k

∫
dω′

f(ω′)− f(ω′ + Ω)
Ω

Tr
[
vα(k)A(k, ω′)vβ(k)A(k, ω′ + Ω)

]
(1.65)

where f is the Fermi distribution, A is the spectral function (not to be confused
with the vetor potential) as defined in (1.39), and the double lines denote the
matrix character in spin and orbital space. Equation (1.65) shows the remark-
able fact, that the interaction part of the Hamiltonian (1.44) only enters in the
evaluation of the spectral function A(k, ω). The Fermi velocity vα(k), on the
other hand, is independent of the interactions.

1.4.3 X–ray Absorption Spectroscopy (XAS)

The last spectroscopic technique important for this
work is the X–ray absorption spectroscopy. The pro-
cess of XAS is the excitation of a core–shell electron
with associated selection rules. Sometimes the XAS
is said to measure the “unoccupied density of states”
or in the case of correlated systems the “propagation
of an additional electron” with the picture in mind
that the core–electron plays the role of the added elec-
tron in the system. This picture would correspond to a kind of “inverse PES”.
However, in general this claim is not quite correct. For many XAS spectra the
most prominent features can only be identified by excitations from the ground
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state to a very localized electron–core hole pair, a so called exciton. This fi-
nal state has to be understood as a generic many–body excitation. The XAS
excitation is, from a technical point of view, more related to the optical con-
ductivity discussed in the previous section than to single particle spectroscopy
like ARPES. In fact, it can be seen as complementary with respect to the IR
spectroscopy . In our approximation (which becomes, for a single band case,
even exact in the DMFT limit of infinite coordination) for the optical conductiv-
ity, we calculated the bubble on the right hand side of Fig. 1.7 which means
the simultaneous propagation of an electron and a hole and neglected the ex-
citonic electron–hole interactions between both. In XAS, on the other hand,
these excitonic electron–(core)hole interactions are the most important energy
scale since the core hole potential localizes the electron–hole pair so strongly
that k is not a good quantum number anymore (i.e. there is no “propagation”).
Hence, the most valuable information in XAS is best understandable in a local
picture. For the transition metals the most informative excitations are the 2p
to 3d transitions, the so called L–edges (at energies around ∼ 350 eV to ∼ 950
eV – i.e. soft x–ray range). These transitions are dipole allowed and therefore
have large cross-sections. Yet, complementary valuable information can also
be extracted from other core electron excitations like 1s to 3d (pre–edge region
of the K–edge ∼ 5 keV to ∼ 9.5 keV – i.e. hard x–ray range). One of the remark-
able advantages of XAS is the possibility of an element selective measurement,
since the absorption edges have distinct energies due to the fact that the core
shell electrons have element–specific bonding energies.

Further, more advanced techniques are available which make use of the po-
larization dependence of the absorption. Measuring the dependency of the
absorption for circular polarized light, called circular dichroism (CD), is a spec-
troscopic way of measuring the susceptibility of a compound [76]. The depen-
dency of the absorption for linear polarized light, called linear dichroism (LD),
on the other hand has been proven to be a valuable tool for detection of orbital
occupation [73, 76] as will be seen in chapter 2.
Important for the application of X–ray absorption as a spectroscopic technique
is the development of models to simulate accurately the observed spectra: a
quantitative analysis allows for the determination of various (near) ground
state properties, including the valence, spin and orbital state of the atoms
under investigation [60]. These models are based on cluster models (for an
overview see e.g. [73, 76]) and have been successfully extended [198, 48, 195]
as to include the influence of the core–hole using the full atomic multiplet
theory. The scheme relies on the localized nature of the exciton and consists
basically in diagonalizing a configuration interaction (CI) Hamiltonian. The
calculations are parameter–based and, hence, not ab initio. Mostly, the pa-
rameters are fitted to experimental data in order to extract information. The
“cluster calculations”, as they are often called, became quite popular (espe-
cially for the L– and M–edges) due to their – sometimes outstanding – ability

28



1.4 Observables from LDA+DMFT

to reproduce experimental data. Ab initio methods like LDA often reproduce
well the continuum part of the spectra or the main edge region of K–edges.
However these methods fail if excitonic features become important (like in the
L–edges of the pre–edge region of the K–edges), where for example non–single
slater determinant states, i.e., states which no longer have the single particle
nature, become important.
Nonetheless, recently DFT ground state results have been used successfully in
order to calculate parameters needed in the CI calculations [78]. In this work
we extend this philosophy to the application of a combination of LDA+DMFT
with the CI calculations. Details will be discussed in the respective sections
of chapter2. A nice review concerning which theoretical scheme is suited for
which absorption edges can be found in [165]. For more general informations
on XAS and CI calculations see [73, 76] and references therein.
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2 Bulk 3d–transition metal
compounds: Theory vs. Experiment

In the previous chapter the combination of ab initio DFT(LDA) calculations with
the DMFT many body approach was discussed. Deriving low energy Hamilto-
nians from LDA bandstructure results and solving them by means of DMFT
turned out to be an extremely successful method in order to perform realistic
calculations for strongly correlated materials. Whereas the parameter model
Hamiltonian calculations allowed only for a qualitative understanding of cer-
tain physical processes in these compounds, the results of LDA+DMFT calcula-
tions can be directly compared to experimental measurements. Spectroscopic
measurements contain a huge amount of information. As we have seen in the
discussion at the end of the previous chapter many of the different techniques
are complementary and often only a combined analysis can yield a conclusive
picture of the system of interest.
This chapter is devoted to the actual application of the LDA+DMFT formalism
for the comparison between calculations and experiment for real compounds.
More precisely, most of the systems which will be discussed in this work be-
long to the family of the transition–metal oxides – maybe the most prominent
class of strongly correlated electron systems.
The first one to be presented is the well known vanadium sesquioxide V2O3

for which photoemission, optical conductivity, X–ray absorption data, and its
implications for the doping-, pressure-, temperature phase diagram will be dis-
cussed in detail. In this respect the X–ray absorption data are special since we
employ a combination of the LDA+DMFT and the briefly mentioned CI calcu-
lations in order to interpret experimental results. This interpretation, together
with new measurements (performed by L. Baldassare et al.) and calculations
of optical conductivity sheds new light on the still controversial issue of the
metal–to–insulator transition in the V2O3 compound. The second system is
the transition–metal chalkogenide NiSexS2−x. We will discuss calculations of
the photoemission spectra and it will become clear, that simple models with
d–states only are not really applicable which motivates the extension of the
LDA+DMFT basis–set.
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2.1 Optics and X–ray absorption of V2O3

Some materials present metal–to–insulator transitions without any changes in
crystal structure or long-range magnetic order. These phenomena, known as
Mott–Hubbard transitions, constitute a hallmark of strong electronic correla-
tions. The physics emerging in the vicinity of these transitions is highly non–
trivial and the properties of such materials depend crucially on small changes
in the electronic structure induced by external parameters [89, 44].
The isostructural MIT in Cr-doped V2O3 is considered as the textbook example
of a Mott transition, which occurs between a paramagnetic insulator (PI) and
a paramagnetic metallic (PM) phase by changing doping level (x), temperature
(T) or pressure (P) [124]. Several features of the MIT have been successfully
clarified by resorting to realistic many–body calculations [68]. Yet, contrary to
common assumptions, a growing number of experimental facts are revealing
that the MIT and the resulting phases are also strongly dependent on the route
followed through the transition. Specifically, a “common wisdom” was estab-
lished, as we sketch it in Fig. 2.1, that the appliance of pressure on insulating
Cr–doped V2O3 could recover the undoped metallic phase (even an empirical
relation of external pressure and doping has been proposed [124]). However,
as a result of our work we will see, that the metallic phases of the undoped
sample and the one of the doped compound under pressure are actually quite
different concerning their electronic structure.

2.1.1 The story so far

At first, let us summarize the basic facts and review some of the theoretical
work that has been put forward, thereby also defining the necessary terms
for our own analysis. Starting from the phase diagram and the crystal struc-
ture, we will briefly recall the work that has been done, including previous
LDA+DMFT studies.

phase diagram and crystal structure In Fig. 2.1 we show the phase diagram
of V2O3 spanned in the temperature–doping space displaying the above men-
tioned three phases (PM,PI,AF) of the compound. At ambient conditions V2O3 is
a metal and crystallizes in the corundum structure with four vanadium atoms
in the primitive unit cell. The conventional and the primitive unit cells are
sketched in Fig. 2.2 and it can be seen, that respectively two vanadium atoms
form “pairs” which are oriented along the crystallographic c–axis. Upon cooling
below 150K, a peculiar antiferromagnetic order sets in and the system becomes
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2.1 Optics and X–ray absorption of V2O3

Fig. 2.1: Phasediagramm of V2O3 in
the temperature vs. doping plot
displaying three phases: para-
magnetic metallic (PM), param-
agnetic insulating (PI), and anti-
ferromagnetic insulating (AF). In
the PM and PI phase the com-
pound crystallizes in the corun-
dum structure, whereas the low
temperature AF phase shows a
monoclinic lattice structure. The
monoclinic and corundum struc-
ture unit cells are shown as small
insets.

insulating, accompanied by a monoclinic structural distortion. On the other
hand, the system can be tuned by doping with chromium or titanium or the
application of external pressure. Usually it is assumed, that doping and pres-
sure can be seen as equivalent routes through the phase diagram. Within this
chapter, however, the pressure/doping equivalence scheme will be shown to be
inconsistent with recent experimental measurements of the optical conductiv-
ity and x–ray absorption. Above the Néel, temperature, the corundum crystal
structure does not change as a function of pressure or doping. However, upon
Cr doping a first order isostructural metal–to–insulator (PM–to–PI) transition
takes place (see Fig. 2.1) which evoked several theoretical attempts to describe
this MIT as a genuine Mott–Hubbard transition. While the MIT is associated to
changes in the lattice structure and the atomic positions [126, 167], it is im-
portant to notice that x–ray diffraction showed that for a given temperature the
structure within one phase does not change upon doping [167]. It was later also
observed by Park et al. with vanadium L–edge x–ray absorption spectroscopy
that this holds also for the electronic ground state of the system (see Table 1 of
[153]). Therefore we shall adapt the nomenclature of Robinson [167] and refer
to the lattice structure of the metallic and insulating phase at ambient pressure
as α– and β–phase respectively.

The electronic configuration of atomic vanadium is [Ar]3d34s2, which means,
that in the three–valent oxidation state we find a 3d2 configuration realized. In
the corundum type structure the vanadium atoms are coordinated by oxygen
ligands in a trigonally distorted octahedral fashion (left hand side of Fig. 2.2).
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Fig. 2.2: Conventional (left hand side) and primitive (right hand side) unit cell of V2O3 in
the corundum structure. The coordination polyhedron of the vanadium atom is an
octahedron of oxygen ligands distorted along the C3 axis (i.e. two opposing planes of
the octahedron are “squeezed” together). The point group of a vanadium site is D3d.
Moreover, inversion symmetry along the closest V–V bond is broken which leads to
an onsite mixing of V 3d and V 4p states.

≃0.3eV

cubic trigonal

Fig. 2.3: Level splitting of the vanadium t2g–states: due to the trigonal distortion the t2g–
states split up in an eπg doublet and an a1g singlet. From LDA results we estimate
approximately 0.3 eV (in the plotted direction) for this splitting. The plotted orbitals
are spherical harmonic functions which display the symmetry of the states. These
plots can be nicely compared to the NMTO Wannier function plots of Saha–Dasgupta
et al. [178]
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Hence, the cubic part of the crystal field splits the d–states into the lower lying
t2g and the higher lying eg states. The trigonal distortion1 acts like a com-
pression along one of the three–fold axes of the octahedron (i.e. squeezing
two opposite sides together). As a result the degeneracy of the lower lying t2g
states is lifted and they are split into a single a1g and the twofold degenerate eπg
states. This level splitting, together with a plot of the respective angular part of
the (atomic) wave function, is sketched in Fig. 2.3. To indicate the difference
to the t2g states, the higher lying cubic eg states (which are not split by the
trigonal distortion) get an additional index eσg in order to distinguish them from
the eπg . The σ accounts for their orientation towards the ligands, with which
they form σ bonds.
Since the eσg are pushed up in energy by the crystal field, the two vanadium
d–electrons populate the t2g levels. One of the crucial aspects concerning the
understanding of the MIT is the specific occupation of these t2g states. In an
early work, Castellani et al. [28, 27, 29] assumed a strong hybridization of
the V–V pairs oriented parallel to the rombohedral c–axis resulting in a strong
bonding and antibonding splitting of the a1g states. In this case, with the
bonding states filled there would be one electron remaining in the twofold de-
generate eπg states and the compound could be described by a quarter filled
S = 1/2 Hubbard model. However, later experimental evidence demonstrated
[133, 152, 50, 153] that the ground state of the system is more complicated
and should rather be described as a S = 1 state consisting of a mixture of a1g

and eπg .
Moreover, it is precisely the coefficients in the linear combination of a1g and
eπg for the ground state which allow for a quantitative distinction of the PM,
PI, and AF phases. The XAS vanadium L–edge study of Park et al. explored
the phase diagram by means of temperature and doping and summarized the
respective ratios of a1g and eπg in table 1 of [153]. As we mentioned earlier, their
results turned out to be consistent with the x–ray diffraction data for the lat-
tice of Robinson [167], and showed that, within the PM α– and the PI β– phase,
there is no change in the ground state composition for different doping. One of
our main results, which will be discussed later in this chapter, is, that this is
not true for the pressurized metallic phase.

ab initio LDA calculations First ab initio LDA band structure calculations for
V2O3 were performed by Mattheiss [122]. Not surprisingly the results neither
captured the insulating character of the Cr doped PI phase nor the signatures
of the strongly correlated character of the undoped PM phase (for example the

1Let us, already in this introduction, remark that the actual crystal field breaks one significant
point symmetry on the vanadium sites, namely inversion in the c–direction. This is related to
the different distances of the neighboring vanadium atoms along the c–axis. While this effect is
negligible for most of the discussion, it will be of great importance for the selection rules of the
polarization dependent XAS results later on.
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

Fig. 2.4: V2O3 bandstructure from LDA
with “fat bands” indicating the or-
bital character (plot taken from Saha–
Dasgupta et al.[178])

photoemission spectral weight identified with the lower Hubbard band). Yet,
even on the LDA level, representing the starting point also for the analysis dis-
cussed in this work, some valuable information can be obtained. In Fig. 2.4
a plot of the LDA band structure is shown in the rombohedral representation
taken from Saha–Dasgupta et al.[178] with εF = 0. In the two panels the re-
spective a1g and eπg character is indicated by the width of the lines by means of
the so called “fat band” representation.
First of all it can be seen that the t2g part is nicely separated from the rest of
the bands: Genuine oxygen p–bands are lower lying than the displayed energy
range and the eσg can be identified as the bands at ≈ 2 eV to 4 eV. In principle it
is allowed by symmetry in the trigonal environment that the eπg states mix with
the eσg states. Yet, from the fat bands we find this mixing to be rather small.
Let us now turn to the a1g bands (left panel Fig. 2.4). The previously mentioned
bonding–antibonding splitting due to the V–V pair can be seen at the Γ–point
to be > 2 eV, where the a1g–character is pure. The strongest dispersion we
observe along Γ–Z where the main contribution stems from a1g–a1g hopping.
However, the dispersion of the a1g–bands along the other directions is clearly
not small which is a consequence of a1g–eπg hybridization. While the a1g and
eπg states are orthogonal eigenstates locally in a trigonal crystal field they still
hybridize in a non–local way, i.e., intersite a1g–eπg hopping also in the ab–plane.
As it was remarked by Elfimof et al. [52] these kinds of hopping are important
for the shape of the a1g states. With the help of the fat bands in Fig. 2.4, we
compare the a1g and eπg –character: We clearly see that only at the high sym-
metry points in the Brillouin zone the non–local a1g–eπg hybridization is zero.
In fact, this result contradicts also theoretically the validity of quarter filled eπg
states and the S = 1/2 scenario.
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previous LDA+DMFT studies Starting from the LDA results, first LDA+DMFT
calculations were performed and compared to photoemission and XAS exper-
iments by Held et al. [82] and Keller et al. [102]. However, these first studies
were approximative in the sense that they used the local projected density of
states instead of a t2g Wannier functions Hamiltonian2. In 2007 Poteryaev
et al. [157] performed new LDA+DMFT calculations employing such a down-
folded NMTO t2g Wannier functions Hamiltonian provided by Saha–Dasgupta
et al. [178]. In this work the authors discuss in detail the changes in the ef-
fective quasiparticle band structure caused by the correlations and the corre-
sponding self-energies. Further, they also give a comparison of the LDA+DMFT
spectral functions to experimental photoemission data. The Wannier Hamilto-
nian approach (as opposed to the projected DOS method) yielded an improved
agreement with experiment compared to earlier works and the analysis of the
self–energy showed a strong orbital dependence of the coherence on the or-
bital character. Following the work of Poteryaev et al. [157], Tomczak [201]
and Tomczak and Biermann [202] discussed the optical conductivity of the
compound introducing corrections for the calculation of the Fermi–velocities
associated with the non–monoatomic basis of V2O3 – an important issue also
for this work which will be discussed in the next section. The last work that
should be mentioned is the joint experimental/theory paper by Baldassare et
al. [14] in which the authors show that the slight change of the lattice parame-
ters due to temperature, drive the system towards the paramagnetic–insulating
(PI) state. Their results underline, how sensitive strongly correlated systems
are with respect to the change of external parameter – even more so in the
vicinity of a correlation driven Mott transition.

The key interest of our work, which will be discussed in the following, is to
shed new light on the actual ground state of V2O3 at different points in the
phase diagram Fig. 2.1. Special attention is paid to the insulating and metallic
phase of the 1.1% Cr–doped sample in the vicinity of the MIT as well as to
the comparison between the metallic phase of the undoped sample at ambient
conditions and the Cr–doped sample under external pressure.

2.1.2 The low energy t2g NMTO model

The first step of the LDA+DMFT calculations is the derivation of Hamiltonian
(1.26) after the bandstructure calculation via NMTO downfolding or Wannier
projections. The Hamiltonian is constructed to capture the relevant degrees
of freedom of the system for low energy scales on a reduced basis set. In the

2this approximation becomes exact in the case of degenerate bands and does not capture corre-
lation mediated level shifts, i.e., “crystal field enhancement”
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case of V2O3 we used a model obtained by the NMTO method and the full LDA
Hamiltonian was downfolded on the t2g sub–space around the Fermi energy.
As described above (see Fig. 2.3), the t2g states are decomposed into a single
a1g and two degenerate eπg states. However, if we look closely at the bandstruc-
ture in Fig. 2.4 we find twelve t2g bands instead of three. The reason for this
is simply that there are four vanadium atoms in the primitive unit cell which
means, that we obtain a 12 by 12 Hamiltonian as a function of k for V2O3 from
the downfolding. (For a detailed discussion of the downfolding procedure of
the V2O3 model see Saha–Dasgupta et al. [178]). Yet, although the LDA Hamil-
tonian is a twelve–band dispersion matrix, the actual DMFT calculation can
be performed with no more effort than a three band calculation. The reason
for this is simply that all four vanadium atoms in the unit cell are located on
equivalent sites which means that they are related to one another by symmetry
transformations. In other words, each of the four vanadium atoms experiences
the same environment and, hence, has the same local eigenstates. As a con-
sequence, the k–integrated local Green function in (1.24) can be written in a
basis in which we obtain four equal diagonal blocks with respect to the site
index. As a consequence, the orbital labels a1g and eπg are good quantum num-
bers locally. Such a local basis set is a necessary condition for the formulation
of the local interaction parameter U and a correct definition of the local DMFT
self energy.
We explicitly write the local Green function as:

Gloc.(ω) =
1
VBZ

∫
BZ
d3k

1
(ω + µ)1− εLDA(k)− Σ(ω)

=

 GI Ghyb. 6= 0
. . .

Ghyb. 6= 0 GIV


(2.1)

where the roman numerals serve as a site index, and, as mentioned

Gi =

G
loc.
a1g

0 0
0 Gloc.

eπg
0

0 0 Gloc.
eπg

 ; i = I, · · · , IV (2.2)

the diagonal blocks are equal for each site i. Hence, in order to calculate the
local DMFT self energy, which clearly has to be the same for all four (locally
equivalent) sites, we have to “cut out” (i.e. project out) only the first diagonal
block after the k–integration, and proceed with the calculation of the DMFT self
energy in the normal way. The resulting self energy is a diagonal 3 by 3 matrix
ΣI(ω) and is used in the next iteration to construct the full 12 by 12 diagonal
matrix Σ(ω) taking the equality of the four vanadium sites into account
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Σ(ω) =


ΣI(ω) 0 0 0

0 ΣI(ω) 0 0
0 0 ΣI(ω) 0
0 0 0 ΣI(ω)

 (2.3)

This full self energy then enters equation (2.1) for the calculation of the next
local Green function. In this respect V2O3 is by no means an exceptional case.
In all compounds studied in this thesis with more than one (correlated) d–
or f– atom in the unit cell this situation occurs. Further, it is important to
strongly stress at this point that we do not make additional approximations
with the procedure described above. From the DMFT point of view, i.e., the
local perspective, the V2O3 calculation is just a three orbital problem. However,
the situation will of course change dramatically if the sites of the atoms differ
locally. Such cases will be discussed later in chapter 4 where we present
conceptual extensions of the standard single site DMFT calculations.
Besides the additional step of projecting out the local part of the full Green
function the LDA+DMFT calculation of V2O3 is straight forward as we discussed
in chapter 1. Let us therefore turn to the spectroscopic data and our theoretical
interpretation.

2.1.3 Optical conductivity: Phase separation around the MIT

The first work we will discuss, are measurements of infra red optical conduc-
tivity carried out in the group of Prof. S. Lupi in the University “La Sapienza”
in Rome (Italy). This work has a twofold goal: on the one hand, to clarify the
behavior of the 1.1% Cr–doped compound around the metal to insulator transi-
tion, and on the other hand, to perform an experimental check of the pressure
doping equivalence. The motivation of the former analysis is the following: In
the past much effort has been put into the understanding of the transition
between the PM and the PI phase Fig. 2.1. However, somehow less, or at least
less concrete, attention was paid to the local strain that occurs in the lattice
in the Cr–doped compounds [126, 65], even though, for (V0.989Cr0.011)2O3, the
presence of a structural phase separation, between the PM α– and PI β–phase,
by the Cr–doping has been clearly stated [126, 65, 167]. Other experimental
studies also support the idea that the Cr– atoms in (V0.989Cr0.011)2O3 could play
the role of β–phase “condensation nuclei”:
Resistivity measurements, for example, show that the conducting phase of
weakly Cr–doped samples shows a bad metallic behavior, differently from the
undoped compound [108]. Moreover, so called extended x–ray absorption fine–
structure spectroscopy (EXAFS) measurements showed that the presence of
Cr contracts the Cr–V bonds, inducing a concomitant elongation of V–V pair
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bonds [65]. Such “long” V–V pair bond is associated to the β PI phase [125], as
shown also by theoretical calculation using LDA+DMFT [82]. Therefore it may
be hypothesized that, within an insulating matrix host, metallic–like “islands”
are formed around the Cr impurities [42, 166]. On this basis, the PM–PI MIT
has been suggested to have also a percollative nature [65]. Pressure–dependent
transport studies by Limelette et al. [114] were also used to show that across
the PI–PM first order transition a large hysteresis occurs. This points to a non–
trivial role of the lattice and its distortions due to the Cr doping, which has
however been almost disregarded, or drastically simplified when defining the
“standard” phase diagram. This has been established by means of resistivity
data only and suggests the equivalence of doping and pressure.

The relation between such hysteresis and the above mentioned coexistence of
α and β–phases has not been hitherto clarified. It is these unknowns at which
our investigation aims.

Experimental results We report the experimental results of the Rome group
in Fig. 2.5: In the upper panel the positions in the phase diagram where the
spectra were taken are marked. The spectra are plotted in the lower panel
in the corresponding color: on the left hand side several spectra for different
temperatures are shown together with their values for the DC conductivity σDC

at ω → 0, whereas on the right hand side the T=200K spectra for the undoped
and the 1.1% Cr–doped samples are compared.
Let us start with the discussion of the temperature dependent data. Shown in
Fig. 2.5 (lower panel left hand side) are (V0.989Cr0.011)2O3–spectra in the temper-
ature range between 500K and 200K (the sharp peaks around 500cm−1 cor-
respond to phonon resonances and are of no further interest for the present
discussion). Our starting point is in the cross–over region of the transition
at 500K (red). Cooling down we obtain the spectrum at 400K (yellow) and at
300K (green). At 300K, however, we are in the direct vicinity of the transition
line. Hence, we can, in fact, find a qualitatively different (PM–phase) spectrum
at 300K (light blue) if we approach the same point by heating up from lower
temperatures. That is, we observe hysteresis. The last spectrum we show
in the plot was taken in the PM phase at 200K (blue). The first three spec-
tra, from 500K down to 300K (upon cooling) display the gapped shape which
we expected as the hallmark of the insulating nature of the PI β–phase. The
spectra show no Drude peak and, only at elevated temperatures, gain minimal
spectral wait at ω → 0. The remarkable, and far from trivial, spectra are the
ones in the PM phase at 300K (upon heating, light blue) and at 200K (blue). We
recall that already resistivity measurements have shown a bad metallic behav-
ior for the Cr–doped sample as opposed to the undoped compound. Yet, how
dramatic the difference to the undoped sample really is, can be seen clearly
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Fig. 2.5: IR optical conductivity for V2O3. Upper panel: phase diagram with marks at
the positions where the spectra were taken. Lower panel left hand side: spectra for
the 1.1% Cr–doped (V0.989Cr0.011)2O3 sample at different temperatures ranging from
500K down to 200K. At 300K, hysteresis can be found and the spectra differ severely
depending from which phase the point is approached. Lower panel right hand side:
comparison between the (V0.989Cr0.011)2O3 spectrum and the spectrum of undoped
V2O3 at 200K.
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in Fig. 2.5 (lower panel right hand side) where we show a direct comparison
of the (V0.989Cr0.011)2O3–spectrum at 200K (blue) and the spectrum of the un-
doped sample at the same temperature (pink). Whereas the spectrum of the
undoped sample shows the behavior that is expected from a metallic phase,
including a well pronounced Drude peak, the shape of the spectrum of the
Cr–doped compound is rather unexpected: It does not show a Drude peak, but
neither has it a gap like in the insulating regime as the spectral weight around
ω → 0 is non–negligible. This fact is a clear support for a scenario of an inho-
mogeneous (i.e. α–β mixed) metallic phase. On the contrary, when comparing
the behavior of (V0.989Cr0.011)2O3 and (V0.972Cr0.028)2O3 within the PI phase, only
small differences appear (not shown here).

The new interesting experimental facts are motivation enough for us to revisit
the compound again with the help of LDA+DMFT in order to understand the
features that are displayed more fundamentally. Performing this analysis we
want to test the hypothesis of the mixed α–β phase scenario.

LDA+DMFT analysis The starting point for our theoretical LDA+DMFT analysis
is the downfolded NMTO Hamiltonian described in the previous section for the
α– and the β–phase respectively. In our DMFT code, we employ the Hirsch
Fye quantum Monte Carlo method. The calculations were carried out at an
inverse temperature of β = 20 eV−1 ≈ 580K and with interaction parameters
U = 4.0 eV and J = 0.7 eV. After convergence of the DMFT self consistent
loop the single particle Green function on the imaginary time τ axis has been
analytically continued by means of the Maximum Entropy Method (see chapter
1). Next, we extracted the local self energy on the real axis in order to calculate
the optical conductivity measured in the experiment. In the following we will
first discuss the direct results, i.e., spectral functions and local self energy
thereby also comparing them to the previous data from Poteryaev et al. [157].
Afterwards we present the calculation of the optical conductivity.

LDA+DMFT results for (V0.989Cr0.011)2O3 In Fig. 2.6 we report the orbital–resolved
spectral function (upper panel) as well as the according self energies (lower
panels). In the plots we set the Fermi energy to εF = 0 and plot the sum
of the two degenerate eπg spectra in green, the a1g spectrum in blue, and the
total spectrum, i.e., the sum over all, in red color. We summarize the quan-
tities for the α– and the β–phase on the left hand and right hand side of the
panels respectively. Overall our results agree with the results of the previous
LDA+DMFT analysis by Poteryaev et al. [157], although we performed the cal-
culations at slightly lower U = 4.0 eV values (in [157] U = 4.2 eV)3. The self
3The reason for our choice is the sensitive dependence of the optical gap on this parameter.
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INFO: Interaction parameters for V2O3

From the technical perspective, we need to elaborate more detailed on the im-
portant issue of choosing the appropriate values for interaction parameters of
a specific compound and the theoretical method that is employed.
V2O3 presents a good example in that respect, since in the literature several
different values for U and J can be found. The confusion about these pa-
rameters partly stems from the improvement in the estimates of their values
over the time and partly from the differences in the numerical techniques. A
constrained LDA calculation (for the monoclinic antiferromagnetic phase) by I.
Solovyev et al. [189] yields the values of U = 2.8 eV and J = 0.93 eV – parame-
ters that later on were employed in some works [56, 83, 82]. Yet, constrained
LDA gives unfortunately only very rough estimates of the values for U, which
not only crucially depend on the electronic structures, but also on the basis set
of the model at hand because it is highly sensitive to screening. For example,
U has to be chosen much lower in the case of a LDA+U calculation (for V2O3

U = 2.8 eV) in comparison to DMFT values (U ≈ 4 eV) in order to overcome
the deficiency of the static mean field nature of LDA+U which overestimates
ordering and gaps (see e.g. Sangiovanni et al. [181]). We choose the parameter
U = 4.0 eV following the philosophy of Held et al. [83] and Poteryaev et al.[157]
that the value of U should be consistent with the correct physics of V2O3, i.e.,
the MIT is reproduced within LDA+DMFT. Therefore, it is not surprising that
our choice of U agrees well with the LDA+DMFT study of Poteryaev et al. since
they employ the same up to date LDA+DMFT scheme as we do. Let us also
remark here that we have already studied separately this specific issue [205].
The result of our analysis clearly demonstrates that the appropriate U for the
LDA+DMFT calculation should be chosen in the range 4.0 eV < U < 4.2 eV,
as we did in the present calculations. Considerably smaller and larger values
of U would either lead to the disappearance or a huge overestimation of the
spectral, and as to be seen also optical, gap in the PI phase.
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

Fig. 2.6: LDA+DMFT results for (V0.989Cr0.011)2O3 in the α phase (left hand side) and the
β phase (right hand side) for U = 4.0 eV. In the upper panels we show the LDA+DMFT
spectral functions resolved in orbital labels and coded by their color (see legend). The
spectra show metallic behavior (coherent excitations around the Fermi energy) for the
α phase and gapped insulating behavior for the β phase. In the lower panels we show
the self energies for the eπg (middle) and a1g (bottom) states.
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2.1 Optics and X–ray absorption of V2O3

energies, both real and imaginary parts, display a strongly orbital dependent
character. The real part acts like an orbital dependent renormalization of the
chemical potential or, in other words, as it is called in [157] as an “effective
crystal field”4 whereas the imaginary part is a measure of lifetime/coherency
of the excitations in the associated band. However, the self energy depends
also on the filling of the respective orbitals and in a hybridized system like the
t2g states of V2O3 it is a very involved quantity: Although the self energy is
diagonal we see from equation (2.1) that its connection to the Green function,
and hence the spectrum, involves an inversion so that the orbitally resolved
information is, in a way, convoluted.
The spectral functions for the α and β–phase are quite similar, except for
the strongly renormalized coherent quasiparticle excitations of the correlated
metallic α–phase around the Fermi energy. Of course, the differences are ex-
pected to be sharpened up at lower temperatures. From the orbital–resolved
spectra we can obtain valuable insight. Let us have a closer look at the inco-
herent part of the spectrum, i.e., the Hubbard bands. The basic features can
be understood as follows: As it was discussed in previous works (e.g. [83]) and
also will be confirmed later by our XAS study the predominant local configu-
ration on the V atoms has two spin–aligned electrons in the eπg orbitals, i.e., a
|eπg eπg 〉 spin–1 configuration, with some admixture of |a1ge

π
g 〉 spin–1 configura-

tions. For a simple picture let us first consider the lower Hubbard band (LHB),
that is, the electron removal part of the spectrum. We recall the relevant onsite
interaction parameters to be the intra–orbital interaction U , the inter–orbital
interaction V , and the spin–coupling constant J . Furthermore, in cubic (or
close to cubic) symmetry the relation V = U − 2J holds. Starting either from
the |eπg eπg 〉 or the |a1ge

π
g 〉 configuration, the removal of an electron will result in

an energy gain of V −J (≈ 1.9 eV in our case) which is in agreement with the po-
sition of the LHB. The only structure, i.e. splitting, which occurs is the crystal
field potential differences of the eπg and a1g states. This energy scale, however,
is below the resolution of our spectra at high |ω|. For the upper Hubbard band,
i.e., the electron addition part, the situation turns out to be a little bit differ-
ent. The additional electron can either populate an eπg or an a1g state. Then the
process |eπg eπg 〉 → |eπg eπg eπg 〉 or |a1ge

π
g 〉 → |a1ga1ge

π
g 〉 will cost an energy of U+V . The

additional electron interacts via U with one of the other two electrons, and via
V with the other one. Transitions |eπg eπg 〉 → |eπg eπga1g〉 or |a1ge

π
g 〉 → |eπg eπga1g〉 only

cost 2V or 2V − 2J depending on the respective spin alignment. Consequently,
the UHB is split into two main features which we can find around 1 eV and
4− 5 eV. We conclude that i) the split of the UHB depends apparently strongly
on the choice of J and ii) this split is and responsible for the small width of the

4This expression should be used with care since the term “crystal–field” as it was originally intro-
duced (and as it also will be used later) in the section about the CI calculations for the XAS has
a different origin, namely the electrostatic and covalent interaction with the ligands
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

Fig. 2.7: Phase mixing: Comparison of experimentally observed (left hand side) and
LDA+DMFT calculated (right hand side) optical conductivity. In red we plot the spec-
trum for the α phase, for which we take the experimental spectrum of the undoped
sample. The β phase, for which we take the experimental spectrum of the 2.8% Cr
doped sample is shown in blue. The measured spectrum of the 1.1% Cr doped sample
(green) can be fitted by a mixture of α and β phase spectra (gray) within the effective
medium approximation

gap compared to the interaction parameters5.

Let us, finally, turn to the optical conductivity. The calculation of the optical
conductivity has been performed according to section 1.4. It should be re-
marked, that the non–monoatomic basis of the crystal leads to corrections in
the calculation of the Fermi velocities even in the Peierls approximation as it is
discussed by Tomczak [201] and Tomczak and Biermann [202].
In Fig. 2.7 we show a comparison of experimental data (left hand side) and
LDA+DMFT data (right hand side). We calculated the optical conductivity also
for both α and β–phase. The LDA+DMFT optical conductivity of the β–phase
(right hand side: blue) shows a gapped behavior, as it is expected for the PI
phase. The fact that it does not extrapolate to zero at energies lower than
1000cm−1 is due to the temperature of β−1 = 0.2eV ≈ 500 K assumed for the
DMFT(QMC) calculations. Further, when we compare it to the experimental
data of the 2.8% Cr–doped sample, deep in the PI phase, we see that the gap
of our calculated σβ is a little bit too large. The reason for this overestimation
is an extreme sensitivity of the calculation on the choice of U and J as it was
already mentioned before6. The calculated α–phase optical conductivity (right

5This observation explains also why the attempt to handle the gap (actually the optical gap) with
a one band Hubbard model [172] led to unphysically small values for the interaction parameter.

6A slightly larger U , like it was used, e.g., in [157] would result in an even larger gap.
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2.1 Optics and X–ray absorption of V2O3

hand side: red) shows an overall good agreement with the experimental data
taken for the undoped compound (left hand side: red). At ω → 0 we can distin-
guish the typical Drude peak contribution of the PM phase.
The most interesting spectrum, however, corresponds to the experimental data
taken for the 1.1%Cr–doped sample at 200K (left hand side: green): As men-
tioned above this spectrum is strange in its shape (with neither Drude peak
nor gap) and belongs to a state that is, according to the resistivity measure-
ments, a bad metal. The discrepancy between the idea that the PM phase can
be seen as a uniform metallic phase and the experimental evidence is further
enhanced by our LDA+DMFT calculations. Specifically, as the lattice param-
eters practically do not change within the α–phase the LDA+DMFT spectrum
of the 1.1%Cr–doped sample at 200K and of the undoped compound are ba-
sically indistinguishable. Hence, our calculations support the hypothesis of
an α–β phase mixture in the bad metal region. To test this hypothesis further
we resort to a semi–empirical formula of the effective medium theory (EMT)
[42, 25] which provides a simple way of approximating the dielectric constants
ε̄(ω) = (1 − σ(ω)) for mixtures of insulating and metallic phases. Within the
EMT the effective constant ε̄(ω)eff. satisfies the condition

f
ε̄met.(ω)− ε̄eff.(ω)

ε̄met.(ω) + 1−q
q ε̄eff.(ω)

+ (1− f)
ε̄ins.(ω)− ε̄eff.(ω)

ε̄ins.(ω) + 1−q
q ε̄eff.(ω)

= 0 (2.4)

Where f and q are free fitting parameters which are phenomenologically re-
lated to the size and relative densities of the “islands” of the two constituent
phases. For further information about this approach we also refer to [164].
Now we take the optical conductivity spectra measured in the undoped sample
and the 2.8% Cr–doped sample as the α– and β–phase spectra respectively and
use Eq. (2.4) to fit the experimental spectra of the 1.1% Cr–doped sample. For
the values f = 0.42 and q = 0.35 an excellent agreement can be found which is
plotted in Fig. 2.7 (left hand side: compare green and gray). From a theoretical
point of view, it is even possible to directly use the LDA+DMFT spectra for the
α– and β–phase of (V0.989Cr0.011)2O3 as an input for the EMT. Also in this case,
with the same values of f and q we obtain a satisfying agreement with the ex-
perimental data.
To sum up, the experimental measurements of the optical conductivity together
with the theoretical interpretation by means of LDA+DMFT strongly support
the scenario of a mixed phase state for the 1.1% Cr–doped compound at 200K.
It will be seen in the next section that the complementary x–ray absorption
spectroscopy also speaks for this result. Recently, also spatially resolved pho-
toemission microscopy data was obtained for the 1.1% Cr–doped compound
in the group of Prof. M. Marsi Université Paris–Sud. The measured spectra
spectacularly enforces our interpretation: In Fig. 2.8 we show the microscopic
images together with the PES for the labeled positions. At 200K one clearly ob-
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2.1 Optics and X–ray absorption of V2O3

Fig. 2.9: Experimental measurements of the optical conductivity for the undoped sample
(red) and the 1.1% Cr doped sample at 6 kPa. For this pressure the “common wisdom”
assumed a full recovered PM phase equivalent to the undoped compound PM phase.
The experimental data clearly proofs this assumption to be incorrect and suggests to
abandon the concept of pressure equals inverse doping.

serves a mixture of areas with coherent excitations (with finite spectral weight
at the Fermi energy) and insulating regions (gapped spectra) as we would ex-
pect in our scenario. Upon heating the system becomes completely insulating
(compare image at 320K). Note, after cooling down to 200K again the same
“map” as before is recovered suggesting a correlation between the sites where
the Cr–impurities sit and the insulating regions. This, however, is just a con-
jecture and has to be further clarified also theoretically.
The last part of our discussion about the optical conductivity is devoted to the
data of the 1.1%Cr doped sample under pressure far in the metallic region
at 6kPa. As it was stated in the beginning, and motivated by the results we
already discussed, the second question we want to address is whether the dop-
ing with Cr can really be “reversed” by applying an external pressure. In short:
Can the pressure be drawn on the same axis in the phase diagram as the
doping? Experimental results from optical spectroscopy give a clear negative
answer to that question. In Fig. 2.9 we report on the left hand side the com-
parison of the experimentally measured spectra for the undoped and the 1.1%
Cr–doped sample. The spectra are, obviously, not even qualitatively similar.
This indicates the existence of different PM states obtained by tuning temper-
ature/doping or applying pressure.
It remains, however, to formulate and quantify this difference in a rigorous
manner. This will be the subject of the next section, in which we discuss the
hard x–ray absorption spectra on the vanadium K–edge.
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

2.1.4 X–ray absorption on the V–K–edge: Pressure vs. doping

The main part of the following discussion, despite the part about the linear
dichroism, is published in the APS Journal “Physical Review Letters” [169]: PRL
104, 047401, (2010)

Among the different experimental methods recently employed to study the elec-
tronic properties of the Mott transition in Cr–doped V2O3 [114, 130, 131, 169,
168], X-ray absorption spectroscopy (XAS) has played a crucial role. For in-
stance, it was the detailed investigation of the V L2,3 absorption edges [153]
that demonstrated the necessity of abandoning the simple one band, S = 1/2,
model to obtain a realistic description of the changes in the electronic struc-
ture at the phase transition. Further, Park et al. obtained valuable quantitative
information about the vanadium ground state for different amounts of doping
and temperatures [153] and formulated it as a linear combination of the |eπg eπg 〉
and the |a1ge

π
g 〉 states which were mentioned earlier. This kind of tool would

be perfect to also clarify the question which remains from the discussion of
the previous section: What is the character of the metallic ground state of the
Cr–doped sample under pressure? However, unfortunately the V L2,3 absorp-
tion falls in the region of soft x–ray radiation, and thus, due to the specific
absorption characteristic of the diamond anvil cell used for the pressure mea-
surements, it cannot be employed in our case. But fortunately XAS can also
be performed at the V K–edge in the hard x–ray range, i.e., in a spectral re-
gion without particular absorption of the diamond anvil cell. In this case, the
pre–edge will carry most of the physical information we are interested in, as it
is predominantly due to 1s → 3d transitions. The excitations in this pre–edge
region are influenced by the core hole and should be considered to be of an
excitonic nature. Beside the possibility of measuring the V K-edge under pres-
sure condition we obtain also a more straightforward interpretation. Namely,
due to the simple spherical symmetry of the s-core hole, the multiplet structure
reveals a more direct view on the d-states.
Motivated by the above considerations, we used V K-edge XAS to explore ex-
tensively the MIT in V2O3 by changing temperature, doping and applying an
external pressure. The onsets of the K-edges were analyzed by a novel compu-
tational scheme combining the LDA+DMFT method with configuration interac-
tion (CI) full multiplet ligand field calculations (see last section in chapter 1)
to interpret subtle differences at the PM–PI transition. This allowed us to: (i)
observe in detail the changes in the electronic excitations, providing also a di-
rect estimate of the Hund’s coupling J (recall the discussion of the LDA+DMFT
spectral functions in the previous chapter) (ii) analyze the physical properties
of the PI and PM phase on both sides of the MIT, leading to the main result of
our work: (iii) understand the difference between P, T or doping-induced tran-
sitions. This difference is mainly related to the occupancy of the a1g orbitals,
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2.1 Optics and X–ray absorption of V2O3

Fig. 2.10: Vanadium K-edge x-ray absorption spectra in (V1−xCrx)2O3 for a powder sam-
ple with x = 0.011 measured as a function of temperature (T) in the PM (200 K, red
line) and PI (300 K, blue line) phases by partial fluorescence yield XAS. In the region
above 5475eV the main edge starts where dipole transitions from the core electron to
the vanadium 4p states give the main contribution. Below 5470eV we find the pre–
edge – here, besides others, the transitions to the vanadium 3d states are located.
From these we extract the information about the ground state of the system. On the
right hand side we show a zoom of the pre–edge region and compare the structure to
theoretical full multiplet CI spectra. As explained in the text, these transitions would
be pure quadrupole if it would not be for the inversion symmetry breaking on the
vanadium site that makes the transitions “slightly dipole allowed”.

suggesting the existence of a new “pressure” pathway between PI and PM in
the phase diagram. The XAS is in that respect complementary to the optical
conductivity measurements. In chapter 1 we saw that the optical conductivity
is connected to somewhat non–local excitations (therefore it was a great tool to
confirm the mixed phase scenario). In contrast the XAS, or more specifically
the excitonic features of XAS offers us information about the ground state
from a completely localized perspective which is needed in order to formulate
the ground state in the language of localized Wannier orbitals – this in turn is
information which could not be extracted from the optical conductivity.
For the experiments we used high quality samples of (V1−xCrx)2O3 with vari-
ous doping in the PM (x = 0) and PI phases (x = 0.011 and 0.028) at ambient
conditions. The MIT was also crossed for the 0.011 doping by changing tem-
perature and for the 0.028 doping by pressure. To obtain the best resolution,
the XAS spectra were acquired in the so-called partial fluorescence yield (PFY)
mode [47], monitoring the intensity of the V-Kα (2p → 1s) line as the incident
energy is swept across the absorption edge. Further experimental details can
be found in the published article [169]
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

powder data and isotropic calculations The T–dependent absorption spectra
are displayed in Fig. 2.10 left hand side for both PM (200 K) and PI (300 K)
phases for the x = 0.011 powder sample. The spectra have been normalized to
an edge jump of unity. We will focus on the pre–edge region, where information
about the V d-states can be extracted as it is indicated in the plot. It can be
decomposed into three spectral features (A,B,C) which all vary in intensity as
the system is driven through the MIT whereas C is considerably broader then
A and B. Notice that no feature is observed below peak A contrary to the early
results of Ref. [17] but in agreement with the more recent data of Ref. [72].
Within a simplified atomic like picture, one could directly relate the intensity
of features A,B and C to the unoccupied states: The V–t22g states are split into
one a1g and two eπg states under trigonal distortion of the V sites [178] as shown
in Fig. 2.3. Starting from a V–t22g, S = 1 configuration, one can either add an
electron to the t2g subshell yielding peaks A and B, or add an electron to the eσg
sub–shell which gives rise to the broader peak C. In this picture, Hund’s rule
exchange splits peaks A and B into a quartet (S = 3/2) and doublet (S = 1/2)
states.
This point of view is, however, oversimplified as the V d electrons are strongly
correlated and, in the pre–edge region, the spectra are still largely influenced
by the 1s core hole potential. Keeping that in mind, we have simulated the pre–
edge by combining CI with LDA+DMFT calculations for which the one particle
part (LDA) input corresponds to the level diagram in Fig. 2.3. We concentrate
our analysis to peaks A and B, since peak C relates mainly to the unoccupied eσg
orbitals. These hybridize much stronger with the ligands and thus lack direct
information on the Mott transition; peak C may also be related to non–local ex-
citations (not included here) [71] which sensitively depend on the metal–ligand
distance. Let us also note that the V sites in V2O3 are non centro–symmetric
which leads to an on–site mixing of V-3d and V-4p-orbitals and interference
between dipole and quadrupole transitions [53]. This interference has been
included in our scheme and will be discussed later in details in this section
together with the linear dichroism measurements.
Our CI calculations confirm that for the ground state the occupancy ratio
between the (eπg ,a1g) and (eπg ,eπg ) states is smaller in the PI than in the PM
phase [102, 153]: The isotropic CI–based calculated XAS spectra in the pre-
edge region reported in Fig. 2.10 right hand side agree well with the experi-
mental data for both the energy splitting of features A and B and the ratio of
their spectral weight (SW) which increases in the PM phase.

Considerable insight can be gained by comparing CI and LDA+DMFT calcula-
tions. Our LDA+DMFT calculations, performed using the same NMTO Hamil-
tonian as discussed in section 2.1.2 with the 1.1% Cr–doped V2O3 and Hirsch–
Fye Quantum Monte Carlo as impurity solver, confirm the above mentioned
tendency. Specifically we obtain a mixing of 50:50 and 35:65 for the (eπg ,a1g):(eπg ,eπg )
occupation in the PM and PI phases respectively. Remarkably the simple struc-
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2.1 Optics and X–ray absorption of V2O3

Fig. 2.11: Incoherent LDA+DMFT and CI calculations in the pre-edge region; εF is the
Fermi energy. Note the similarity in the main spectral features when crossing the MIT.
Also shown are the different contributions of the CI spectrum labeled accordingly to
their initial state: the contribution of the (eπg ,a1g) → (eπg ,eπg ,a1g) transitions to the peak
A(B) is approximately 60%(55%) in the PM phase and 20%(15%) in the PI phase.

ture of the core hole potential in the K-edge spectroscopy (L = 0 i.e. spherical
potential) allows us to associate the pre–edge spectrum with the k−integrated
spectral function above the Fermi energy calculated by LDA+DMFT in which
we do not take into account the core hole effects. The electron–addition part
of the spectral function shows three main features in PM phase: a coherent
excitation at the Fermi level and a much broader double peak associated to
the incoherent electronic excitations, i.e., the upper Hubbard band (UHB), al-
most identically to the undoped compound. In the PI phase obviously, only
the latter survives. Comparison with the experimental spectra clearly shows
that the pre–edge features have to be related to the “incoherent” part of the
spectral function only. The physical reason is that the core hole potential lo-
calizes the electrons destroying the (already strongly renormalized) coherent
quasiparticle excitations and making the XAS spectrum atomic–like (see also
discussion on XAS at the end of chapter 1). All the “incoherent” LDA+DMFT, CI,
and experimental spectra shown in Fig. 2.11 agree in many aspects, especially
as for the splitting of the first two peaks by ≈2.0 eV (≈1.8 eV in experiment)
which originates in LDA+DMFT from the Hund’s exchange J in the Kanamori
Hamiltonian (see discussion of the LDA+DMFT spectral functions on page 45).
This further validates the choice of J = 0.7 eV used in our calculations in con-
trast to larger values assumed in previous studies [102, 110], and also clarifies
the mismatch between XAS and LDA+DMFT spectra reported in the undoped
V2O3 compound [102] where incoherent excitonic features were identified by
coherent quasiparticle excitations. Moreover, the ratio between A and B peak
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Fig. 2.12: V–K edge XAS spectra for powder samples
of (V1−xCrx)2O3, starting from the top, as a func-
tion of pressure (P) (�) [x = 0.028; 5 and 11 kbar
(topmost set of curves); 5 and 7 kbar (second high-
est set of curves)], temperature (4) [x = 0.011;
200,300 K (second lowest set of curves)] (T), and
doping (◦) [x = 0, 0.011 (bottom curves)] (x) (cf.
points in the phase diagram; the pressure scale
refers to the x = 0.028 doping). The spectral dif-
ferences demonstrate the nonequivalence between
P and temperature-doping. The x-T equivalence is
confirmed by the photoemission spectra [170].

displays the same trend in the PM-PI transition as the CI (or experimental)
data. The quantitative difference between the two calculations is attributed to
the lack of matrix elements in LDA+DMFT.
The intensity ratio of the first two incoherent excitations peaks A and B (as-
sociated to the quartet and doublet states in the oversimplified picture) thus
appears as the key spectral parameter to understand the differences between
PM and PI. Even in a powder sample, this ratio is still sensitive to the a1g orbital
occupation of the initial state (in the last paragraphs of this section we will see
that polarization dependent measurements give an even clearer picture). In-
deed, due to the trigonal distortion a considerable spectral weight transfer from
the peak B to higher energies (corresponding to final states with two a1g elec-
trons in the limit of large ∆trig) can take place for the (eπg , a1g) but not for the
(eπg , e

π
g ) initial state. Therefore, the K pre–edge XAS can serve as a direct probe

of the a1g orbital occupation in the ground-state. As a rule of thumb, the larger
the ratio between the SW of A and B, the larger the a1g orbital occupation.

under pressure Now, after we established an interpretation scheme of the
vanadium XAS K–edge which allows us to use it as a ground state probe it
is time to come back to the original task of inquiring the metallic phase of Cr–
doped V2O3. Fig. 2.12 shows the XAS powder spectra of the pressure–induced
MIT with the corresponding spectra for the temperature– and doping–driven
transition (the markers in the phase diagram, Fig. 2.12). We remark at this
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point that the spectra taken under pressure display a relative shift between
main–edge (not shown) and pre–edge, which is in any case irrelevant for our
discussion of the ground state for which we only need the intrinsic structure
of the pre–edge. Hence, this shift is compensated for the pressure spectra
in Fig. 2.12. Fig. 2.12 clearly evidences that (besides the shift) contrary to
the doping- or T-driven transition, very small changes in spectral shapes and
weights are observed in the pressure driven MIT. In the light of the arguments
discussed above, our finding proves that the metallic state reached by applying
pressure is characterized by a much lower occupation of the a1g orbitals com-
pared to the metallic state reached just by changing temperature or doping.
Importantly, the spectra measured through the doping induced MIT are iden-
tical within the experimental uncertainty to those measured through the tem-
perature driven transition. The temperature–doping equivalence is confirmed
by photoemission data [170] and is consistent with the very similar lattice pa-
rameter changes across the transition [125]. The x and T equivalence is also
borne out by the observation from XAS at the L-edges in doped V2O3 [153] that
the a1g occupation within both the PM or PI phases is mostly independent of
the doping level. Hence, the local incoherent excitations probed by XAS at the
V L edge or K pre-edge are not directly affected by disorder [65]. The reason for
this is that XAS is a local probe in the sense that we can expect the changes in
the XAS spectrum to be of the order of the percentage of the atoms which have
a different ground state: upon disturbing 1% of the atoms due to Cr doping we
expect changes in the spectrum of the order of 1% (while a perturbation of 1%
can lead to the total breakdown of a picture in momentum space).
Our finding clearly shows the limits of the common assumption that tempera-
ture, doping, and pressure–driven MITs in V2O3 can be equivalently described
within the same phase diagram [125]7. Indeed, the two different PM elec-
tronic structures that we observed reflect different mechanisms driving the
MIT along different pathways. In the doping–driven MIT, the metallic phase
is characterized by an increased occupation of the a1g electrons indicating a
reduced “effective crystal-field-splitting” as the main driving mechanism to-
wards metallicity [102, 157], related to the jump of the lattice parameter c/a
(1.4%) at the MIT [125]. In contrast, when pressure is applied, the a1g oc-
cupation remains basically unchanged, so that this metallic phase seems to
originate rather from an increased bandwidth, without any relevant changes
of the orbital splitting. The smaller c/a jump observed under pressure (0.7 %)
corroborates our analysis.

In conclusion, doping, temperature and pressure are shown to act differently
on the interplay between electron correlations and crystal field, so that states
previously considered to be equivalent metals are actually different.

7An early version of the phase diagram (Fig.15 in [125]) was actually drawn with a third pressure
axis, but due to the idea of p–x equivalence, this was later abandoned.
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

linear dichroism: an introduction In the previous discussion we concluded,
that the ratio between the first two peaks A and B of the V K–pre–edge can be
utilized as a robust ground state probe. As we have mentioned before, the sen-
sitivity of this probe can be strongly enhanced by using polarized x–ray light
with single crystals instead of powder samples. In this case the absorption
spectrum depends also on the specific polarization of the x–ray light and, con-
sequently, carries more information. Polarization dependent absorption is a
well known effect and can even be observed in everyday life, e.g., in the glasses
for 3D cinema or polfilters for photography. In general this effect is called
dichroism and can be further subcategorized in circular (CD) and linear (LD)
dichroism, depending on the polarization of the probe light. In the last fifteen
years dichroism measurements in XAS have proven to be a powerful tool:

Circular dichroism of spectra at the L–edge of transition metals were mea-
sured for the first time in the nineties[35, 36, 199, 200] and calculated after-
wards by van der Laan and Thole [208]. Exploiting sum–rules, which con-
nect the spin– and orbital–magnetic moments with the integrated intensity
[197, 26], the CD XAS has evolved to a widely used tool for“spectroscopic sus-
ceptibility measurements”.

Linear dichroism, on the other hand, is caused by non–cubic orbital occu-
pation and has been utilized with great success as crystal field ground state
probe [153, 37, 141, 77, 73, 74]. Hence, it presents a possible additional re-
source of information for our V2O3 analysis. The reason for linear dichroism
and its relation to the occupancy of crystal field eigenstates can be understood
intuitively even in a one–electron picture. Consider the following example: We
want to promote a core s–electron via a dipole transition to a valence state of
pz–symmetry. Following Fermi’s golden rule in the sudden approximation, the
spectrum of such a process is proportional to the square of the integral 〈s|D̂|pz〉
with 〈s| ∝ 1 and |pz〉 ∝ z in Cartesian coordinates. If the integrand is an odd
function the integral vanishes. Hence, the only dipole transition operator for
which the integral remains finite is the D̂z ∝ z. The same holds, of course, also
for the corresponding transitions to px– or py–states, i.e., with x and y polarized
light one can excite into the px– or py–states respectively. Now, let the ground
state of our hypothetical system be a single occupied pz–orbital and empty px
and py orbitals. Hence, adding an electron to the pz–orbital will cost additional
coulombic energy, so that the peak of the z–polarized spectrum (corresponding
to the D̂z transition operator) lies at higher energies compared to the D̂x/y spec-
tra showing also only half the intensity due to its occupancy. Consequently,
we find valuable information about the ground state of the system encoded in
the LD spectra. In other words: The polarization of the x–ray light adds more
selection rules to the absorption process which we can use for a more detailed
study of the ground state properties.
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2.1 Optics and X–ray absorption of V2O3

Let us recall the most important transitions for the V K–edge: As also indi-
cated in Fig. 2.10 on the left hand side, the main edge consists mostly of dipole
transitions of the s–core electron into the unbound V 4p–states, whereas tran-
sitions to the localized and correlated 3d–states via higher order processes
contribute to the pre–edge. We formally write the absorption process employ-
ing Fermi’s golden rule as:∣∣∣∣∣∣

∑
Ψfinal

〈Ψfinal|P̂ |Ψinitial〉

∣∣∣∣∣∣
2

δ(ω − Einitial + Efinal) (2.5)

This quantity is directly related to the spectral intensity. The transition opera-
tor P̂ describes the coupling of the probe light to our system and can generally
be written as [115, 127]:

P̂ = eik·rp · ê (2.6)

where k and ê are the light propagation and polarization vectors and r and p
are the electron position and momentum operators.
We expand (2.6) around the limit of long wavelengths (i.e. 2π/λ << 1) and ob-
tain (also using p = im/~[Ĥ, r]) as first element the dipole operator D̂ = ê · r,
which can be expressed in terms of spherical harmonics Y mk :

D̂x =
r√
2

(Y −1
1 + Y 1

1 )

D̂y =
ir√

2
(Y −1

1 − Y 1
1 ) (2.7)

D̂z =rY 0
1

The second element in the expansion of (2.6) is the quadrupole transition op-
erator Q̂ = (ê · r)(k · r), or in terms of the Y mk

Q̂xy =
ir2

√
2

(Y 2
2 − Y −2

2 ) Q̂x2−y2 =
r2

√
2

(Y 2
2 + Y −2

2 )

Q̂xz =
r2

√
2

(Y 1
2 − Y −1

2 ) Q̂3z2−r2 =r2Y 0
2 (2.8)

Q̂yz =
ir2

√
2

(Y −1
2 + Y 1

2 )
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

The transitions (2.5) and, thus, also the absorption cross–section are propor-
tional to Clebsch–Gordan like integrals as they were shortly discussed in the
small s–core to pz–state example above. They will provide all the LD selection
rules encoding the ground state information we seek. Let us now turn to the
linear dichroism of the vanadium K–edge.

linear dichroism in the vanadium K–edge In Fig. 2.13 we show the experi-
mental spectra (dots) of the V K–edge for three different polarizations of the
x–ray light. On the right hand side, we sketch the polarization of each spec-
trum in terms of the trigonal (local vanadium) reference frame (a, b, c) 8. Since
we want to formulate the transition operators for each polarization in terms
of the dipole and quadrupole operators (2.7) & (2.8), we translate to Cartesian
coordinates:

a =x x =a

b =
√

3
2
y − 1

2
x y =

1√
3

(a+ 2b)

c =z z =c

Now we can formulate the dipole and quadrupole operators for each orienta-
tion in terms of (2.7) & (2.8)

D̂b =D̂x Q̂b =Q̂yz

D̂g =
√

3
2
D̂y +

1
2
D̂x = D̂b Q̂g ≡Q̂x2−y2

D̂r =D̂z Q̂r =
√

3
2
Q̂xz +

1
2
Q̂yz ≡ Q̂b

(Here we used the symmetry a↔ b of the crystal).
Evidently, there are symmetry relations between the transition operators for
the three different polarizations. While for dipole transitions we find the blue
and green polarization to be equivalent, in quadrupole transitions blue and red
polarization should be indistinguishable.
However, we find the symmetries obviously violated when we inspect the spec-
tra closely: Inset (I) shows a zoom of the pre–edge region where clearly all three
spectra are different. Moreover, even in the main edge we find the “blue/green”

8where â and b̂ form an angle of 120 degree and are both perpendicular to ĉ (compare Fig. 2.13)
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2.1 Optics and X–ray absorption of V2O3

Fig. 2.13: Polarization dependent experimental data for the vanadium K–edge (points)
compared to calculated LDA data. The color of the respective plot codes the geometry
of the measurement, i.e., the transition operator, explained in the sketch on the right
hand side. We can see the effects of the inversion symmetry breaking along the V–
V bonds nicely in insets I and II, where we observe the splitting of spectra which
should be equivalent by definition in a system without the symmetry breaking. The
differences in the intensities of the largest peaks can be attributed to self absorption
effects, which are not included in the calculation.

dipole symmetry violated. The reason for this violation is, in fact, quite sim-
ple and can be understood intuitively with the sketch of the primitive unit cell
(Fig. 2.2 right hand side). Along the connection line of two vanadium atoms
in the primitive unit cell, i.e., parallel to the crystallographic c–axis the vana-
dium site lacks inversion symmetry, since the distances to the “upper” and
“lower” V–neighbors is different9. The consequence of breaking such a funda-
mental symmetry is quite dramatic, namely the V 3d–states are no longer pure
eigenstates of the system and start to mix with V 4p–states onsite. In other
words this means, that the formerly pure d–states get a tiny dipole moment
and the quadrupole/dipole selection rule no longer holds strictly. This mixing
will explain why the pre–edge is not entirely quadrupole in character and the
main–edge not entirely dipole.

Let us write down what consequences the onsite d–p mixing will have for the
transitions (2.5) in a simplified fashion. The final state is now of a mixed V 3d

9A beautiful visualization of this situation can be found in the Wannier function plots in Fig. 15
of the work by Saha–Dasgupta et al. [178]
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and V 4p nature, which we express as a linear combination of a part with V 4p
and one with V 3d character α|Ψ4p〉+ β|Ψ3d〉. Hence we write Eq. (2.5) as:

∑
Ψf

∣∣∣〈Ψi|P̂ |Ψf〉
∣∣∣2 δ(ω −∆E) =

∑
Ψf

∣∣∣〈Ψcore
1s |(D̂ + Q̂)(α|Ψ4p〉+ β|Ψ3d〉)

∣∣∣2 δ(ω −∆E)

=
∑
Ψf

∣∣∣〈Ψcore
1s |(αD̂|Ψ4p〉+ βQ̂|Ψ3d〉)

∣∣∣2 δ(ω −∆E)

(2.9)

where we set ∆E = Ef − Ei. Now the spectral intensity for the absorption is
proportional to the square of (2.9). However, due to the mixed character of
the final state |Ψ4p〉 + |Ψ3d〉, we cannot write the total spectrum as a sum of
a dipole spectrum and a quadrupole spectrum. Both parts are entangled by
interference terms of the form

αβ〈Ψcore
1s |Q̂|Ψ3d〉 · 〈Ψcore

1s |D̂|Ψ4p〉 (2.10)

which have to be taken into account explicitly.
For the main edge, i.e., where excitonic features and the many–body coupling
to the core hole are negligible, this is feasible within the LDA. Since the ab
initio LDA calculation incorporates the symmetry breaking in the structural in-
put, the information about the resulting d–p mixing is already included in the
eigenstates of the LDA Hamiltonian.
In order to calculate the XAS spectrum we have to consider only the muffin tin
sphere around the vanadium atom RMT since the V 1s core hole wave function
is zero for r > RMT. We calculate projections of the LDA wave functions on the
V 3d and V 4p subspace within the sphere:

ΨLDA
l,m = Dl,m(ω)Rlm(r)Y ml (2.11)

where we neglected the energy dependence of the radial part of the wave func-
tions, and the energy dependent Dl,m(ω) stems from the projection. The square
of Dl,m(ω) is in fact the so called partial density of states.
In terms of (2.11) the integrals of (2.9) separate into three parts: i) partial DOS
D2

3d(4p)(ω) and “interference terms”D3d(ω) · D4p(ω) ii) Radial transition probabil-
ities of the form ∫ RMT

0

r2dr · rR∗1s(r)R4p(r) (2.12)

for the dipole part, and
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∫ RMT

0

r2dr · r2R∗1s(r)R3d(r) (2.13)

for the quadrupole part. And last iii) angular integrals like∫
dΩ Y ml Om

′

l′ Y
m′′

l′′ (2.14)

where Om
′

l′ is the angular part of the specific transition operator. The angular
integrals yield the selection rules for the transition.

The solid (blue dashed) lines in Fig. 2.13 represent the LDA spectra for the
respective (color coded) transition symmetry. The overall agreement for the
main edge is very satisfying. Especially the interference terms between 3d and
4p states, which are captured by the calculation yield interesting features. As
a signature of this mixing we find a splitting of the three spectra (see insets I
and II) in the experimental and calculated data which would not be present in
pure dipole/quadrupole transitions.
In the pre–edge region the LDA calculation misses, of course, the excitonic
features (the first two peaks) which simply involve many–body states beyond
LDA. Nonetheless, the LDA captures well the correct trends in the pre–edge
region around 5470eV where transitions to the eσg , the least correlated and
most itinerant among d–states, are located. In order to utilize the ratio of the
first two excitonic peaks to probe the α|eπg , eπg 〉 + β|eπg , a1g〉 (α2 + β2 = 1) ground
state, however, we have to include the 3d–4p mixing in our cluster calculation.
This can be done by taking this mixing, i.e. the overlap integrals of V 3d
and V4p, as a fitting parameter10 and calculate also the interference terms
(2.10). As a technicality we remark that the t2g and eσg spectra were calculated
separately and summed up later. This was done in order to account for the
big differences we expect for the broadening of the excitations due to the much
stronger non–local hybridization with the eσg ligands11. Moreover, we calculated
the spectra for all four vanadium atoms in the unit cell and averaged them12.

In Fig. 2.14 we report the results of our CI together with experimental data for
the PM and PI phase. On the left hand side of the figure we show a map of
simulated spectra for different values of α2. Overall we observe that we can
capture the trend of the spectrum hierarchy also in the cluster calculation
quite well. This time, however, the itinerant states are beyond the basis set of

10The proper symmetry of the potential we take from a Madelung calculation
11Further, as it was stated also before, the mixing of the t2g and the eσg are neglected.
12Locally the vanadium atoms are equivalent, but not with respect to an external frame of reference

like the propagation and polarization vector of the x–ray light.
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

Fig. 2.14: Linear dichroism in the pre–edge region of the vanadium K–edge. In the panel
on the left hand side we show a “map” of theoretically calculated full multiplet spec-
tra for different compositions of the ground state α|eπg 〉 + β|a1g〉 (with α2 + β2 = 1).
Employing this map we find the best agreement with the experimental data (middle
panel) for values of α2 = 0.5 for the PM phase (200K) and α2 = 0.8 for the PI phase
(300K). Hence, also here we find that the LDA+DMFT densities are a good starting
point for the CI calculation.
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2.1 Optics and X–ray absorption of V2O3

our CI calculation of a small cluster and we cannot expect quantitative agree-
ment for energies in the region of the eσg . On the other hand, we now capture
the excitonic peaks A and B correctly which we need as a ground state probe.
Let us remark at this point, that the eσg–states can be captured from both sides,
LDA and CI, only qualitatively. In fact, they can be understood to be placed in
a kind of intermediate state – neither truly localized nor totally itinerant.

In the middle panel and in the panel on the right hand side of Fig. 2.14 we
show the experimental spectra compared to the theoretical CI results which we
obtained with the same mixing parameters we used for the isotropic spectra,
i.e., very close to the DMFT results. The agreement between experiment and
CI calculations is quite satisfying. Moreover, we observe that the change of the
ratio between peak A and B, i.e., our most important probe, going from PM to PI
is much more pronounced in the selected LD spectra compared to the powder
spectra: In the isotropic case the spectral weight transfer only took place for
peak B to higher energies, yet, in the LD data additional selection rules affect
peak A directly, which has spectral weight almost proportional to the amount
of |eπg , a1g〉 character in the ground state. This remarkable effect is, of course,
due to LD selection rules and in a way just the same as the toy–example of
the pz ground state discussed at the beginning of the LD paragraph. It can
be understood easiest in the limit of a pure quadrupole transition, where we
neglect the mixing of the V 3d–states with the V 4p–states. In this limit the first
peak is for our transition operators, in fact, displayed exclusively in the |eπg , a1g〉
part of the spectrum and completely absent in the |eπg , eπg 〉 part. The transitions
associated with this peak is the |1score〉 → |eπg , eπg , a1g〉. If the ground state is
|eπg , a1g〉 the 1s–core electron has to be placed in the free eπg level which can be
done. If, however, the ground state is |eπg , eπg 〉 the 1s–core electron has to be
placed in the free a1g level – but this is impossible with the specific transition
operators of the displayed spectra, since all the associated matrix elements
are integrals over odd functions and thus zero. Hence, we are sensitive to
the a1g occupation of the ground state. Let us stress that this argument holds
strictly only in the abovementioned assumption of no 3d–4p mixing. In the real
situation, and also our full calculation, this mixing weakens this effect slightly
(the first peak is displayed also in the |eπg , eπg 〉 part of the spectrum due to the
d–p–hybridization ) but nonetheless it is still observable. In conclusion, the
experimental LD data of Fig. 2.14 presents further evidence for the robustness
of our ground state probe and their theoretical simulation is consistent with
the ground state parameters we found for the isotropic case.
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2.2 Optics of NiSexS1−x

The main part of the following discussion is published in the APS Journal “Phys-
ical Review B” [155]: PRB 80, 073101 (2009)

In the first section of this chapter we discussed one of the prototypes of cor-
related systems: Vanadium sesquioxide V2O3. The transition metal oxides
present, as stated before, one of the largest families in the area of correlated
solid state physics. Moreover, oxygen has a high electronegativity which causes
its transition metal compounds often to be of a rather ionic nature. This ion-
icity, in turn, leads to a separation of oxygen and transition metal degrees of
freedom so that the 3d–bands around the Fermi energy are hybridized only
very little with the oxygen 2p–bands. This situation is a good starting point
for downfolding/projecting to a low energy model. In the following discussion
we leave the ground of the oxides and take a step down in the periodic table
to sulfur and selenium, where we find a different situation. The experimental
data we show in this section was obtained by the group of Prof. S. Lupi in the
University “La Sapienza” in Rome.

The cubic Vaesite NiS2 (pyrite structure), which is a charge transfer (CT) insu-
lator following the Zaanen-Sawatsky-Allen classification scheme [220], is also
considered a text–book example of a strongly correlated material. NiS2 attracts
particular interest since it easily forms a solid solution with NiSe2 (NiS2−xSex),
which, while being iso–electronic and iso–structural to NiS2, is nevertheless a
good metal. A metal to insulator transition, induced by Se alloying, is observed
at room temperature for x ≈ 0.6. Further, a magnetic phase boundary between
an antiferromagnetic–metal to a paramagnetic–metal is found at low tempera-
ture at about x = 1 (see the inset of Fig.2.16a) [89].
An alternative way to induce a metallic state in NiS2 is by application of a
hydrostatic pressure. Following Mott’s original idea [135], this procedure, al-
though often technically challenging, the unique opportunity to continuously
and homogeneously tune the band–width W , without introducing impurities
or disorder. High pressure techniques have indeed been used in the past few
years to investigate the dc transport properties of NiS2−xSex [129, 140], and a
pressure induced MIT has been observed in pure NiS2 for P > 4 GPa.

As we have seen in the previous section, optical reflectivity/conductivity is a
very suitable tool for probing the electronic structure of strongly correlated
systems. However, with few relevant exceptions [150, 41], infrared investiga-
tions of the metal to insulator transition in strongly correlated charge transfer
insulators are still rare. In this section we discuss room temperature optical
reflectivity measurements over a broad spectral range on 4 compounds (x = 0,
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Fig. 2.15: Conventional unit cell for the crys-
tal structure of nickel disulfide NiS2. In
the so called pyrite structure nickel is
coordinated by undistorted octahedra of
Sulfur ligands. The two Sulfur atoms
in the center of the conventional unit
cell form strong σ– bonding/antibonding
states, of which the antibonding are im-
portant degrees of freedom at the Fermi
energy.

0.55, 0.6, 1.2) of the NiS2−xSex series together with optical measurements as a
function of pressure on pure NiS2. The experimental data, compared with LDA
calculations, shows that the two MITs observed as a function of pressure and
Se alloying actually rely on different microscopic mechanisms.
For details on the measurement we refer to the published article as well as
[13, 10, 155].

experimental data: MIT for Se doping (x) & pressure (P) Let us start with the
presentation of the experimental data. In the upper panel of Fig.2.16 we show
the ambient pressure reflectivity R(ω) of NiS2. We observe a nearly flat behav-
ior from 50 to 10000 cm−1 except for small phonon modes at about 260 and
290 cm−1. On increasing the Se–content, the reflectance is progressively en-
hanced at low frequencies, with a R(ω)→ 1 for ω → 0 which is characteristic of
the metallic behavior. Let us, however, perform a Kramers–Kronig transforma-
tion13 and analyze the MIT by means of the optical conductivity. In Fig. 2.16
we plot the real part of the optical conductivity σ1(ω). For NiS2 (x = 0, black
curve) we observe a clear insulating shape of σ1(ω)x=0: it is strongly depleted
at low frequency, showing the (CT) gap of about 4000 cm−1 which is consistent
with previous optical measurements [101, 129]. Upon increasing the doping
with Selenium (x > 0) we observe the appearance of a large amount of spectral
weight at low frequency. Further, we find an indication that electronic cor-
relations are playing an important role in the MIT of NiS2−xSex observing an
isosbestic point around 8000 cm−1, through which the SW is transferred from
higher to lower frequency. Such a large energy scale arises from the large–

13for the KK transformation we adopted standard extrapolation procedures both at high and low
frequency [217, 51].
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2 Bulk 3d–transition metal compounds: Theory vs. Experiment

Fig. 2.16: Left hand side: Experimentally measured optical reflectivity of NiS2−xSex for
x = 0, 0.55, 0.6, 1.2 at ambient conditions. Inset: Phase diagram of NiS2−xSex
[89] with black dots corresponding to the samples measured in the present work.
Right hand side: Optical conductivities from KK transformations. Inset: Difference
∆σ1 = σ1(x)− σ1(x = 0) spectra.

energy quantities that govern the opening and closing of the CT gap, namely,
3d electron correlation and the p–d transfer interaction.

As it is better highlighted by the ∆σ1 = σ1(x) − σ1(x = 0) difference spectra,
shown in the inset of the lower panel of Fig.2.16, the low energy contribution
is made up of two well distinct terms: one broad mid–infra red feature peaked
around 2000 cm−1 and extending up to nearly ≈ 8000 cm−1 and a sharp term
below 500 cm−1. The narrow peak can be attributed to coherent transport of
quasi–particles around the Fermi energy, while the mid–infra red term is asso-
ciated to optical transitions between the quasi–particle peak at εF to the upper
and lower Hubbard bands.
We now turn to the high–P measurement of NiS2. We show the reflectivity
at the sample–diamond interface Rsd(ω) in Fig.2.17. The strong two–phonon
diamond absorption allows to obtain reliable Rsd(ω) only above 2000 cm−1.
On increasing the pressure Rsd(ω) is progressively enhanced at low frequency
showing an overdamped behavior , as a signature for a correlated bad metallic
state. At high frequencies, all Rsd(ω) converge above 10000 cm−1. In order to
evaluate the accuracy of our high–P measurements, we calculate the expected
reflectivity at a sample–diamond interface, Rcalsd (ω), by using a procedure pre-
viously introduced in [13, 10]. The calculated Rcalsd (ω, x = 0) for NiS2 (Fig.2.17
is in good agreement with Rsd(ω) measured in the diamond anvil cell at the
lowest pressure (1.1 GPa) being both nearly flat and with a value ≈ 20% over
the whole frequency range. The same calculation has been carried out for
NiS2−xSex (x = 0.55, 0.6, and 1.2) compounds and the resulting Rcalsd (ω) are
shown in Fig.2.17 for comparison. Evidently that the Rsd(ω) of NiS2 measured
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Fig. 2.17: Left hand side: Experimentally measured high pressure Rsd(ω) (thick solid
lines) for NiS2 and calculated Rcalsd (ω) (dashed lines) at sample–diamond interface for
NiS2−xSex at selected x. Right hand side: the QP low frequency spectral weight versus
the lattice parameter a for pure NiS2 under pressure and for NiS2−xSex. Dashed lines
are a guide to the eye. The dashed–dotted vertical line marks the lattice parameter
value for NiS2 at ambient conditions. Inset: Lattice parameter a as a function of
P: experimental data from Ref.[196] (solid circles), calculated values using the B-M
equation (open circles) and LDA (solid triangles).

on increasing P resemble the Rcalsd (ω) obtained on varying x.

The microscopic mechanisms inducing the P and Se MITs are further investi-
gated by studying the quasiparticle spectral weight as a function of the cubic
lattice parameter a. The lattice is expanded by Se alloying [66, 109] whereas it
is compressed by pressure [196]. The x and the P dependence (up to ∼ 5 GPa)
of a have been obtained from Refs. [109] and [196], respectively. Data at higher
P have been extrapolated [177]: Through the specific heat results of Ref.[218]
we obtain a sound velocity vs ≈ 4300 m/s. Since the density of NiS2 is ρ = 4455
kg/m3, the Bulk modulus results B0 = ρ · v2

s ≈ 83 GPa. One usually assumes
a linear dependence of the bulk modulus B(P ) = B0 + B′P , and a(P ) is finally
given by the Birch–Murnagham (BM) equation [139]

a(P ) = a(0) ∗
[
1 +

B′

B0
∗ P
]−1/3B′

(2.15)

where B′ normally ranges between 4 and 8 [97]. Measured a(P ) data to-
gether with values obtained from equation (2.15) are presented in the inset
of Fig. 2.17. We remark that experimental data from Ref. [196] well agree
with those obtained from equation (2.15). The overall decreasing behavior of
a is consistent with that suggested by LDA lattice parameter calculations (see
below) also shown in the same inset. The pressure vs. lattice constant was
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calculated using the TB–LMTO–LDA method and the co–called force theorem14,
which is based on the change of the total energy with uniform compression,
see e.g. [116]. We show the low frequency quasiparticle spectral weight as a
function of the lattice parameter a in Fig.2.17 for pure NiS2 at working pres-
sures and in Fig.2.17 for NiS2−xSex at different Se–concentrations.
A close inspection of the Figure reveals a striking non–monotonic behavior of
the spectral weight. For a < 5.56 Å (i.e. at the highest values of P), a nearly
complete metalization has been reached. In this lattice region, the slow contin-
uous gain of SW reducing a reflects the progressive enhancement of the kinetic
energy (i.e. of the bandwidth W ) due to the applied P. For a > 5.56 Å up to
aeq ≈ 5.68 Å (namely the value corresponding to NiS2 at ambient conditions),
electronic correlation gets larger and the SW drops abruptly to zero as a conse-
quence of the Mott transition. On further increasing a above aeq by Se-alloying,
the spectral weight (Fig. 2.17 starts to increase again, owing to the onset of the
Se-MIT.

Despite the opposite behavior of the lattice parameter involved in the two MITs,
a linear scaling relation (x ≈ 0.14/GPa ) has been formerly established from
low temperature DC static resistivity measurements. This scaling is based on
the assumption of an equivalence between Se–alloying and P–application[129,
140]. However, the same scaling does not apply for the dynamic quantity,
i.e., the optical SW, for which x ≈ 0.3/GPa seems to be more appropriated.
Consequently there is no universal scaling and, hence, the concept of pressure
doping equivalence appears inconsistent with the experimental data, just as in
the case of V2O3.

ab initio LDA calculations The non–monotonic dependence of the SW on the
lattice parameter as well as the difference in the SW transfer at low–energy sug-
gest that the P and Se–MITs rely on two different microscopic mechanisms. To
clarify these mechanisms, we performed self consistent TB–LMTO–LDA calcu-
lations [4], Nth order muffin-tin orbital (NMTO) downfolding [3, 6, 224], and
the augmented plane waves plus local orbitals (APW+lo) technique within the
framework of the Wien2K code [183]. Let us remark that recently other authors
studied the NiS2−xSex compound with similar results [107].

Although the system belongs to the category of strongly correlated electron
systems, and the LDA calculations cannot reproduce the charge transfer insu-
lating behavior, we can gain valuable insight by analyzing the changes in the
whole LDA spectrum (resolved in Ni and S/Se contributions) due to applied
pressure and alloying.
In Fig. 2.18 we show in the upper part a sketch of the LDA DOS giving an

14Calculations performed by Ove Jepsen (MPI–Stuttgart)
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2.2 Optics of NiSexS1−x

Fig. 2.18: Summary of Wien2k LDA calculations: In the top panel we show on the left
hand side a sketch of the overall density of states for the NiS2−xSex system. For
the framed region we show the actual LDA results in the four panels below with
the Ni partial DOS plotted in blue and the S/Se partial DOS plotted in red. In the
central panels we show the DOS for the undoped compound (left hand side) and
the results for the structure at 10 GPa (right hand side). The bottom panels show
the results for NiSe2 calculated with the experimental structure (left hand side) and
with the structure that was relaxed within a Wien2k LDA calculation (right hand
side). From these results we can conclude that pressure and Se–doping modify the
two fundamental parameters for the MIT, Weg/U and Weg/∆LDA in an orthogonal
manner.
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overview of the general features and a definition of important quantities for
the following discussion. In the lower four panels we show the actual LDA
(Wien2k) results in an energy range (εF ≡ 0eV) from −6 to 3 eV corresponding
to the dashed frame in the sketch. We show the partial DOS for the undoped
NiS2 at ambient pressure in the top left panel and the top right shows the cal-
culated DOS for the NiS2 structure at P = 10 GPa. In the lower panels we show
the NiSe2 DOS calculated with the experimental structure as input on the left
hand side and the LDA relaxed structure15 on the right hand side16. In all four
plots we find the following main features: At energies below −2.5 eV we find
broad hybridized bands of Ni and S/Se p–states above which the very narrow
Ni 3d t2g states are located at ∼ −2 eV. Around the Fermi energy we find the Ni
3d eg states with a bandwidth of the order of Weg ∼ 2 eV. The highest states we
observe are antibonding S/Se ppσ∗ states associated to S–S or Se–Se pairs.
From the LDA spectra alone we can conclude that, on one hand the eg band-
width Weg , and on the other hand, the size of the gap between the eg and the an-
tibonding S/Se ppσ∗ states, ∆LDA, are the significant quantities upon pressure
application and Se doping respectively: For the NiS2 pressure DOS (top right
panel) we observe an increase in the bandwidth W of ≈ 0.5 eV for P = 10 GPa
(i.e. a factor of W 10GPa

eg = 1.13Weg ), while the the antibonding S–S/Se–Se ppσ∗

states are even pushed up in energy by ≈ 0.5 eV, i.e. the bandwidth–gap ra-
tio Weg/∆LDA remains more or less constant. In strong contrast to this, the
lattice expands in NiSe2 (DOS in bottom left) due to the larger atomic radius
of selenium. However, while we find changes of the eg–bandwidth Weg to be
negligible, the most striking effect is the reduction of ∆LDA by ≈ 0.5 eV.
The pressure effect has a clear cut and intuitive understanding with a picture
of increased overlaps of wave functions and a concomitant enhancement of the
kinetic energy. The doping effect of the ∆LDA reduction, however, has a less
obvious reason. We can find the explanation for the smaller ∆LDA actually
in the distance of the S–S or Se–Se (see top right panel in figure 2.18) pair
which is associated with the bonding antibonding ppσ–splitting. In NiS2 the
S–S pair distance is experimentally determined [62, 151] to be of the order of
∼ 2.0 Å (the pressurized sample shows actually the same distance for the pair),
while for NiSe2 the Se–Se pair distance is ∼ 2.4 Å. Hence, in NiSe2 the pair
hybridization and the associated splitting of bonding or antibonding states is
less pronounced which, as a consequence, brings the ppσ∗ states closer to the
eg states. In this situation the Ni eg – Se p hybridization is stronger than the
Ni eg – S p hybridization which explains why the former compound is metallic.
Hence, pressure and doping both enhance the kinetic energy of the system,
but in very different ways.
Assuming now that the local interaction, expressed by a Hubbard U, does not

15Structural input was kindly provided by Jan Kunes (Academy of Sciences – Prague)
16The evident discrepancy between experimental and LDA calculated structure are discussed in

the next paragraph
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depend much on pressure or doping conditions, theory and experiment allow us
to conclude that applying pressure and Se–doping modify the two fundamental
parameters for the MIT, Weg/U and Weg/∆LDA in an orthogonal manner: un-
der pressure, Weg/∆LDA = const. and Weg/U increases, triggering the MIT. For
Se–alloying on the other hand, Weg remains constant whereas the pronounced
increase of Weg/∆LDA due to a closure of the ∆LDA gap is responsible for the
MIT. Hence, just like we observed for V2O3, the pressure–doping equivalence
does not hold also in the case of the charge transfer insulator NiS2.

effects of electronic correlations Let us close this section with the discussion
of the effects caused by electronic correlations. The LDA results shown in
Fig. 2.18 do not reproduce the insulating character of NiS2. Further, the LDA
DOS for NiSe2 is not consistent with a correlated metallic state. In order to cap-
ture the correlation effects we derive a low energy model by means of NMTO
downfolding and solve the resulting model with DMFT.
For the model we choose just the eg–states around the Fermi energy so that
the resulting Hamiltonian is a 2 × 2 matrix. The DMFT solution of this model
is, in fact, able to capture the insulating nature of the NiS2 ground state. How-
ever, the results for the eg–only model are problematic concerning two aspects:
i) First of all it is by definition not capable of capturing the charge transfer
nature of the system and ii) the resulting ground state is “too insulating” in
the sense that the MIT upon Se doping or pressure application cannot be com-
prehended. More specifically, the same model for the NiS210GPa or the NiSe2

remains insulating and bears no metallic solution in a physically reasonable
parameter range. In Fig. 2.19 we show the calculated optical conductivity σ
(main panel) and the corresponding spectral function A(ω) (inset) for the pa-
rameter set U = 2.1 eV, V = 0.7 eV, and J = 0.7 eV17. As we observe the spectra
are clearly insulating with a very large gap (∼ 1 eV for A(ω)) although the values
for U , V , and J are way below the lower threshold of the expected (see footnote
17).
The reason for both of the mentioned inconsistencies is the entanglement and
interplay of the Ni 3d eg–states and the S/Se 3p/4p states which is simply
beyond a 2 × 2 eg–only basis. Especially for the NiSe2, where the gap ∆LDA

closes up completely we can intuitively understand, that the p–degrees of free-
dom should be taken into account explicitly. Moreover, the entanglement of
the Se 4p states with the strongly correlated Ni 3d electrons might also explain
the discrepancy between the experimentally measured structure: Comparing
the two NiSe2 cases in the bottom panels of Fig. 2.18 we find that the relaxed
structure has an even smaller distance between the eg– and the antibonding

17The value for J is already 0.2 eV below the (constrained LDA)estimated value, and a smaller
choice of U would lead to an unphysical attractive(!) interaction V − J between two eg electrons
with equal spin
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Fig. 2.19: LDA+DMFT result for the
optical conductivity (main plot)
and the spectral function (inset)
of NiS2. The spectra are clearly
insulating with a very large gap
(∼ 1 eV for A(ω)) although the
values for U , V , and J are far
below the lower threshold of the
expected values. This discrep-
ancy can be attributed to the
disregard of the details of the p–
degrees of freedom.

ppσ∗–states. This is a consequence of a smaller bonding antibonding Se ppσ–
splitting, which corresponds to a larger Se–Se pair distance of ∼ 2.53 Å for the
relaxed structure compared to ∼ 2.41 Å for the experimental one. Such discrep-
ancy between an experimentally measured and a LDA calculated structure can
indicate an important coupling between the correlated electronic structure and
the crystal structure, which would need a full self–consistent ab initio+DMFT
analysis as those we discuss in chapter 4.

conclusion In summary the NiS2−xSex system has turned to be more complex
than previously assumed – similarly to the case of the Mott transition in V2O3.
Experimental data, together with results of ab initio LDA calculations have
shown that the MIT upon pressure application and doping is driven by different
microscopic mechanism. While the pressure induced MIT can be understood
by a scenario of simple bandwidth broadening, the MIT induced by Se doping
can only be described including a more involved d–p interplay which is tuned
by the bonding antibonding splitting of the S–S / Se–Se pair states. A LDA
+DMFT study showed that a simple 2 × 2 model only including the Ni 3d eg–
states is not sufficient to comprehend the MIT due to the disregard of the d–p
interplay. Hence, similar to the case of V2O3, this archetype of a correlated
CT insulator seems to display an even richer phase diagram and previously
assumed equivalence of two pathways across a phase transition turned out to
be a too simple picture.
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In the previous chapter we have shown the application of the LDA+DMFT ap-
proach for correlated 3d–transition metal compounds including calculations
for experimental observables like photoemission– , optical conductivity–, and
x–ray absorption spectroscopy. Now, as promised by the title of this work,
we leave the class of the “simple bulk” materials and turn to materials which
incorporate a superstructure. These also include compounds that have been
synthesized with the help of fast evolving experimental techniques. In such
materials often the “effective dimensionality” is reduced and the interplay be-
tween low dimensionality and strong correlations often results in spectacular
new physics. Quasi two–dimensional layer systems present indeed a variety of
fascinating phenomena among which the most remarkable, without question,
is the high temperature superconductivity. In this chapter we discuss the pos-
sibility of finding analogies between the high TC cuprate superconductors and
nickel oxide based compounds:
In the first section we review the cuprates and, specifically, introduce the key
features which were the motivation for the search of cuprate physics in nick-
elates. In the second section we will present the results of our LDA+DMFT
study on the LnSrNiO4 (Ln=La,Nd,Eu) perovskites series with quite promis-
ing results. Finally, in the third section we will present a study on nickelate
heterostructures which are synthesized with the help of extremely advanced
experimental techniques like, e.g, molecular beam epitaxy and actually turn
out to bear an even higher potential for cuprate analogies.

The band structure calculations and the NMTO downfolding for the low en-
ergy models of the nickelate compounds were performed by Xiaoping Yang in
the group of Prof. O.K. Andersen at the Max–Planck–Institute für Festkörper-
forschung Stuttgart, Germany.

3.1 Starting from the high TC cuprates

The motivation for our work starts, as mentioned above, with the cuprates.
The discovery of high temperature superconductivity (HTSC) in hole doped

73



3 Nickel oxide superstructures

cuprates [15] initiated the quest for finding related transition metal oxides
with comparable or even higher transition temperatures. In some systems
such as ruthenates [118] and cobaltates [193] superconductivity has actually
been found. However, in these t2g systems superconductivity is very differ-
ent from that in cuprates and transition temperatures (Tc’s) are considerably
lower. But which oxides, besides cuprates, are most promising for getting high
Tc’s? The basic band structure of the hole–doped cuprates is that of a single
two–dimensional Cu 3dx2−y2–like band which is less than half–filled (configura-
tion d9−h). In this situation, antiferromagnetic fluctuations prevail and play a
crucial role in many suggested scenarios for the superconductivity. The Fermi
surface (FS) of this x2−y2 band has been observed in many overdoped cuprates
and found to agree with the predictions of density–functional (LDA) band the-
ory. Yet, a thorough understanding of the mechanism of high TC is still missing
or, at least, the matter of an extremely controversial debate.

In the last twenty years many compounds with CuO2 layers have been synthe-
sized. All exhibit a phase diagram with TC going through a maximum as a func-
tion of doping. A widely accepted explanation is, that at low doping supercon-
ductivity is destroyed with rising temperature by the loss of phase coherence,
and at high doping by pair breaking [55]. For the materials dependence of TC

at optimal doping, i.e., Tmax.
C , the only known, but not understood, systematics

is that for materials with multiple CuO2 layers, such as HgBa2Can−1CunO2n+2,
Tmax.

C increases with the number of layers, n, until n = 3.
There is also little clue as to why for n fixed, Tmax.

C depends strongly on the
family, e.g., why for n = 1, Tmax.

C is 40K for La2CuO4 and 85K for Tl2Ba2CuO6,
although the Néel temperatures are fairly similar. A wealth of structural data
has been obtained, and correlations between structure and Tmax.

C have often
been looked for as functions of doping, pressure, uniaxial strain, and family.
However, the large number of structural and compositional parameters makes
it difficult to find what besides doping controls the superconductivity.
In 2001 Pavarini et al. [154] suggested, that the material dependence enters the
Hamiltonian of these compounds already in the one–electron part and should,
hence, be captured by means of LDA. In fact, a careful analysis of the the band
structure of the hole–doped cuprates by means of muffin tin orbitals (MTOs)
uncovered a dimensionless material dependent parameter which is correlated
to Tmax.

C . Our work, which will be discussed in the subsequent sections, is
motivated by this observation.

Two–orbital model and the range parameter Let us start by revisiting the work
of Pavarini et al. [154] to set the stage for our analysis. The main conclusion
drawn in this work is, that the basic model for understanding the materials
trend in the cuprates is a two band model consisting of a planar x2 − y2 band
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3.1 Starting from the high TC cuprates

Fig. 3.1: Correlation between calcu-
lated range parameter r and
observed critical temperature at
optimal doping Tmax.

C . Filled
squares: single–layer materials
or, for multi–layers r for the
most bonding subband. Empty
squares: most antibonding sub-
band. Half–filled squares: non-
bonding subband. Dotted lines
connect subband values. Bars
give kz dispersion of r in primitive
tetragonal materials.

around the Fermi energy and spread within the CuO plane and an axial band
perpendicular to it at higher energies1. The material dependent parameter is,
in principle, the energy distance of the axial band to the planar band around
the Fermi energy. This energy difference can be rewritten in a dimensionless
range parameter r which becomes larger for a smaller energy difference (r−1 ∝
|εaxial − εplanar|, see [154] for details). In multilayer systems the same trend
is found by taking the lowest lying, i.e. most bonding, axial subband. In
turn, this indicates that Tmax.

C increases with the number of layers because,
as a consequence of the bonding/antibonding splitting due to the stacking,
the axial band is lowered in energy. In Fig. 3.1 we show the plot of Tmax.

C for
several compounds as a function of the range parameter (References for the
compounds from “a” to “m” are [5, 221, 203, 30, 70, 39, 192, 191, 163, 16,
190, 204, 88, 31]). The filled squares in this plot correspond to the single–layer
materials or the most bonding subband for multilayers. The empty and half
filled squares denote the most antibonding subband and nonbonding subband,
respectively.

To understand this remarkable observation better, let us take a look at the
details of the planar / axial band scenario. LDA calculations for a large num-
ber of cuprate families have revealed that whereas the dispersion along the
nodal direction (Z–A) in the Brillouin zone is always the same, the energy of
the saddlepoints at

(
π
a , 0
)

and
(
0, πa

)
depends on the material and is lower for

materials with higher Tmax
C . The reason for this correlation is not understood,

but the reason for the change of band shape is clearly that the planar x2 − y2

1Let us remark, that this two band model for the cuprates is one possibility of downfolding the
full cuprate Hamiltonian. In chapter 4 we will elaborate more on this point, making also a
connection to Emery–like models
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orbital is hybridizing with a higher lying, material–dependent axial (m = 0) or-
bital. The energy of the axial orbital is of the order of 10eV and decreases for
cuprates with increasing Tmax

C . This axial orbital is essentially the antibonding
linear combination of Cu 4s and apical O 2pz, so that its energy decreases if
their interaction decreases, e.g., by increasing zCu-O. The composition of the
axial orbital of the cuprates with respect to the Fermi energy is visualized in
the energy level diagram shown in the upper right panel of Fig. 3.2. Also, as an
example, we show a projected contour plot in the x/z plane of the hybridization
between the planar and axial orbitals for the La2CuO4 system. As mentioned
above we do not take the energy of the axial orbital as the specific parameter
but instead use the dimensionless range parameter, r: The lower the energy of
the axial orbital is, the higher Tmax.

C and the higher r. Let us remark, that we
can account for this materials trend also if we still downfold further to a single
band model which captures only the planar band around εF and, hence, the
structure of the Fermi surface. Restricted to nearest and next nearest neighbor
hoppings, such model can be written as:

ε(k) = −2t (cos(kx) + cos(ky)) + 4t′ (cos(kx) · cos(ky)) (3.1)

where t and t′ are the nearest and next nearest neighbor hopping respectively.
The effect of the axial band is encoded in the next nearest neighbor hopping
t′. Hence, for the single band model (3.1) the materials trend can be expressed
as the ratio of t′ to t. In fact, for materials with low Tmax.

C (< 50K), which
corresponds to a “small” value of r, the range parameter can be approximated
directly as the ratio r ≈ t′/t. The cuprates with the highest Tmax.

C (∼ 140 K) have
r ∼ 0.4. If one could lower the energy of the axial orbital right down to the Fermi
level, r would have the value 1/2. In Fig. 3.3 we show the Fermi surfaces, at
half filling, calculated with Eq. (3.1) for different values of t′/t

In order to give an actual example of the planar/axial band interplay we plot in
Fig. 3.4 the corresponding bands for La2CuO4 (left hand side), with a range pa-
rameter of r = 0.15, and HgBa2CuO4 (right hand side), with a range parameter
of r > 0.3. The color in the plots code the orbital character – from now on and
throughout this entire chapter: red = axial, black = planar. Those two cases
show, that the r–parameter can be understood, in a way, as a measure for the
energy distance of the two (planar & axial) bands, i.e. r−1 ∝ |εaxial− εplanar|. The
observation of this empirical trend suggests the idea of a more general mech-
anism underlying the cuprates behavior. On one side this provides important
hints for a better theoretical understanding of the cuprates superconductivity.
In addition this trend also suggests the idea to find compounds other than
the cuprates with similar characteristics in their electronic structure and as a
consequence, hopefully, new routes for high TC superconductivity.
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3.1 Starting from the high TC cuprates

Fig. 3.2: Left hand side: Crystal structure of LaCuO4. Center: Muffin Tin Orbital show-
ing the interplay of the planar (black) and axial (red) states in La2CuO4. The plane
is perpendicular to the layers. Right: schematic composition of the planar and axial
states in terms of their coupling constituents.

Fig. 3.3: Cross–section of the FS for the two dimensional single band model (3.1) includ-
ing nearest t and next nearest t′ neighbor hopping. From left to right we show the
Fermi surface for t′/t = 0.2, 0.3, 0.4.
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Fig. 3.4: Band structures of the planar (black)/ axial (red) – two band model for La2CuO4

(left) and HgBa2CuO4 (right). The closer the axial band is to the Fermi level, the higher
Tmax.

C for the doped compound. Plots by O.K. Andersen et al.

Cu2+ vs. Ni3+/2+ in tetragonal environments Our search for compounds of sim-
ilar characteristics as the cuprates leads us one step to the left in the periodic
table: Nickel. In order to understand how the planar/axial scenario could be
“mapped” on nickel–based compounds, we should at first understand the elec-
tronic configuration of nickel compared to Copper.
In the cuprates, copper is found to be in a 2+ state with nine d–electrons in a
tetragonal crystal field environment. Considering the analogous nickel–based
compounds, i.e. the nickelates, we find stable Ni2+ (eight d–electrons) and Ni3+

(seven d–electrons) systems. The best way to understand a possible analogy
between the two material classes is to draw a simple picture of crystal field one–
electron states like we find it in a chemistry or solid state physics textbook. In
Fig. 3.5 on the left hand side we draw the levels of Cu2+, Ni3+, and Ni2+ in a
cubic environment with a perfect octahedral coordination of ligands. The cubic
eigenstates of the d–electrons are the lower lying t2g states and the higher lying
eg states. In all three cases the t2g states are completely filled and we will ne-
glect them since we are interested only in the states around the Fermi energy.
For Cu2+ there are three electrons in the eg states, for Ni3+ and Ni2+ there
are only one and two electrons respectively. Starting from the cubic case, the
tetragonal situation can now be understood as a distortion of the octahedron
along the four–fold axis, e.g., in the z–direction. This distortion can be done

78



3.1 Starting from the high TC cuprates

Fi
g

.3
.5

:S
im

p
le

si
n

gl
e

el
ec

tr
on

en
er

gy
le

ve
l

d
ia

gr
am

s
fo

r
C

u
2
+

,
N

i3
+

,
an

d
N

i2
+

.
S

ta
rt

in
g

fr
om

th
e

cu
b
ic

st
at

e
(l
ef

t
h

an
d

si
d
e)

w
e

sh
ow

th
e

sp
li
tt

in
g

of
th

e
e g

m
an

if
ol

d
d
u

e
to

tr
ig

on
al

d
is

to
rt

io
n

(a
lo

n
g

th
e

fo
u

rf
ol

d
ax

is
)
of

th
e

li
ga

n
d

fi
el

d
.

F
or

N
i3

+
w

e
ob

se
rv

e
a

h
al

f
fi
ll
ed

st
at

e
at

th
e

F
er

m
i
en

er
gy

ε F
of
x

2
−
y
2

or
3
z
2
−
r2

sy
m

m
et

ry
d
ep

en
d
in

g
on

th
e

si
gn

of
th

e
d
is

to
rt

io
n

.
N

i2
+

sh
ow

s
ei

th
er

tw
o

h
al

f
fi
ll
ed

st
at

es
at
ε F

or
a

fu
ll

an
d

an
em

p
ty

st
at

e.
H

en
ce

,
on

ly
th

e
N

i3
+

co
m

p
ou

n
d

is
a

su
it

ab
le

ca
n

d
id

at
e

fo
r

th
e

cu
p
ra

te
an

al
ou

ge
sc

en
ar

io
.

79
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by either “pulling” on the top and bottom, which creates the so called “cigar”–
shaped tetragonal distortion, or we can “compress” the octahedron creating a
“pizza box”. Both distortions lead to a lifting of degeneracy of the eg states,
but in opposite direction. The “cigar” distortion pushes the x2 − y2 states up in
energy since now the ligands in the xy–plane towards which the x2 − y2 lobes
point are closer compared to the ligands on the z–axis. On the other hand, the
“pizza box” distortion increases the energy of the 3z2 − r2 states since now the
ligands on the z–axis are closer. If we now consider the filling again, we see
that for the Cu2+ there remains only one electron in the higher lying eg state
while the lower one is completely filled. In the cuprates we find precisely this
situation where the relevant, i.e., half–filled higher lying, orbital is the x2 − y2

which means we find the “cigar”–distorted case (framed red). The nickelates
on the other hands have less electrons and, hence the lower one of the two eg
states is occupied. In the case of Ni2+ we either find completely full or empty
bands when the crystal field splitting is larger compared to the Coulomb inter-
action or we find two bands at half filling. Neither of these situations is eligible
to resemble the half filled cuprate situation. On the other hand, we find in the
Ni3+ case always the lower eg orbital filled with one electron. Hence, the x2−y2

is at half–filling in the “pizza box”–distorted case (framed blue) with the 3z2− r2

at higher energies (and not full and low as in the cuprates).
Now we can easily formulate the planar/axial orbital idea as we also sketch it
in Fig. 3.5 on the right hand side: In the cuprates the half filled planar x2 − y2

states hybridize with the axial states consisting mainly of Cu 4s – In the nick-
elates this role of the axial states could be played by the 3z2 − r2 states which
are split of to higher energies. Depending on the size of the splitting we, i.e the
energy of the axial 3z2 − r2 we expect very large range parameters like for the
cuprates with the highest Tmax.

C .

The first nickel oxides considered for the above described scenario were the
LnSrNiO4 perovskites (Ln=lanthanide element). However, as a consequence of
negative results from from band structure calculations with LDA and LDA+U
[8] they were quickly discarded as good candidates for superconductivity.
According to recent experimental findings though [207], the possibilities of
this class of materials may have been underestimated. The new experimen-
tal insights were motivation enough to revisit the perovskites and perform
LDA+DMFT calculations for a series of three compounds (R=La,Nd,Eu) in order
to compare the results to the experiments. Our findings show, that the physics
of these compounds have a much higher potential than thought in the past.
Moreover, besides the search for compounds that are “already on the mar-
ket”, new technologies and experimental techniques offer the possibility to en-
counter the quest of finding a high TC nickelate a little bit more “active”: Grow-
ing heterostructures with molecular beam epitaxy on specific substrates and
selected chemical constituents and similar synthesis techniques have evolved
to maturity and bear great possibilities to control the “parameters” of a com-
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3.2 LnSrNiO4 perovskites

pound, not longer only in theoretical calculations, but in the real world. In the
section after next we discuss as an example the LaAlO3/LaNiO3 1/1 layered
structure and conclude that the proposed idea of synthesizing nickel oxide
heterostructures looks quite promising in order to find cuprate analogue sys-
tems.

3.2 LnSrNiO4 perovskites

Even before the discovery of superconductivity in the La2−xBaxCuO4, other
oxides crystallizing in the K2NiF4 structure were widely studied for the rich
variety of their structural and physical properties. Among them, special atten-
tion has been paid to rare earth nickelates, Ln2Ni4O4 (“Ln” = lanthanide ele-
ment). In Fig. 3.6 on the lower left hand side we show a sketch of the LnSrNiO4

structure. The main motive in the structure are tetragonally distorted NiO6

octahedron which share their four in–plane corners. The hopping of the axial
3z2 − r2–orbital is suppressed and, so the hope, it will play the role of the axial
orbital higher in energy than the planar x2−y2–orbital as sketched on the right
hand side in Fig. 3.5.
In LDA+U calculations [8] the nickel eg states open a symmetry broken gap in a
S=1 state and the lower Hubbard band shifts below the oxygen p–states which
remained at the Fermi energy. The conclusion was that mobile O–holes at the
Fermi level will be strongly antiferromagnetically coupled to the localized Ni
spins and thus LaSrNiO4 should be regarded as a heavy electron metal with a
large Kondo temperature. However, recent experimental results [207] of ARPES
suggest a d–like Fermi surface in these compounds. The discrepancy between
the experimental data and the LDA+U calculations could be originated from
the roughness of the static mean field assumption of LDA+U [181]. Hence, en-
couraged by the experimental findings, we performed LDA+DMFT calculations
in the same fashion as they were done in the case of V2O3 (see chapter 1).
We will start by describing the LDA results and the NMTO downfolding to the
relevant (low energy) degrees of freedom to compare the La;Nd;Eu series. In
the following paragraph we discuss the LDA+DMFT results and show spectral
functions and the results for the local self energy as well as Fermi surfaces for
the correlated cases.

LDA and NMTO downfolding for the LnSrNiO4 series On the right hand side of
Fig. 3.6 we show the NMTO (black/red) bands downfolded to the planar (x2−y2:
black) and axial (3z2−r2: red) degrees of freedom plotted on top of the light gray
LDA bands. These two bands are the antibonding Ni–O pdσ eg–bands. They lie
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3 Nickel oxide superstructures

Fig. 3.6: Left hand side: Conventional unit cell of the LnSrNiO4 series and above the
NdSrNiO4 Fermi surface plotted for kz = 0, π/2, and π. The coloring gives the x2 − y2

vs 3z2 − 1 eg Wannier-function character. Right hand side: LDA band structure plots
for three compounds of the series with Ln=La, Nd, Eu. The Bloch vector is along the
lines Γ (0, 0, 0) − Z
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3.2 LnSrNiO4 perovskites

well above the Ni–O pdπ t2g–bands (the thin gray lines) and other p–degrees of
freedom. Also above the eg–bands we find a rather good separation from other
(Note, for ESNO the f–bands have a too large hybridization with states around
the Fermi energy so that a calculation which treats them simply as core states
turned out to be unstable). Due to the separation of the eg–bands, our down-
folded NMTO two–band model should be able to capture well the low energy
excitations of the system.
In the LDA plots we can also observe a fundamental characteristic of the eg
orbitals. Namely, although locally the eg orbitals are orthogonal eigenstates
of the tetragonal crystal field they generally hybridize with one another in k–
space. In real space this simply means, that the eg–orbitals show non–local
interorbital hopping. This k–dependent hopping has certain symmetry direc-
tions where the hybridization is zero. For example in the kx = ky–plane, i.e.,
the nodal direction, whereas in other directions it is maximal, as in the kx = π
or ky–plane. In this respect, eg electrons behave very differently than t2g elec-
trons, which have no inter–orbital hopping on a square lattice. Turning back
to the band structures within the series Ln=La,Nd,Eu they appear to be quite
similar: the 3z2 − r2–band is narrower than the x2 − y2–band as a consequence
of the already mentioned suppression of the hopping along the z–axis. In all
three cases the centers of gravity (COG) of the bands are quite close. The exact
values of the energy differences of the COG difference are given in the plots.
The εx2−y2 − ε3z2−r2 splitting increases when going from Eu to Nd to La due to
the differnt crystal field potentials. As we will see the small changes of the
splitting will be extremely important in the later LDA+DMFT calculation. As we
can see, the 3z2−r2 band still crosses the Fermi energy and contributes signifi-
cantly to the Fermi surface: On the upper left hand side of Fig. 3.6 we show the
LDA Fermi surface for the NdSrNiO4 compound in three different kz = 0;π/2;π
slices. Also this plot is color coded and shows the hybridized character of the
LDA result. It can be seen nicely that the red 3z2− r2 part of the Fermi surface
is much more dispersive in the z–direction as opposed to the black part which
reflects the two–dimensionality of the x2 − y2–band.

LDA+DMFT results Now we turn to the correlation effects. In metallic multi-
band systems it is expected that the correlation effects enhance level splittings.
Actually, we encountered this effect ourselves in the results for V2O3 (see chap-
ter 1). In the case of the nickelate compounds, the correlation mediated “effec-
tive crystal field splitting”2 controls the size of the splitting between the planar

2Let us clarify two important issues concerning the terminology, in order to avoid confusion.
i) First of all, the term crystal–field is historically connected to the electrostatic potential of
the neighboring ligands. However, also in this work the expression does not only refer to the
electrostatic part of the potential, but includes as well the hybridization with the ligands, i.e.,
charge exchange (hopping). Strictly speaking our crystal field is really a ligand field. ii) Second,
the effective crystal field splitting is not related to the crystal/ligand field in its original meaning

83
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and axial states (see Fig. 3.5 blue framed levels) and hence the resulting range
parameter r.
After carefull analysis of the LDA band structures, where we found that the
conduction bands in the paramagnetic phase are well separated from all other
bands, we can study the effects of Coulomb correlations in the nickelate het-
erostructures using the two–band Hubbard Hamiltonian analogous to the three–
band Hamiltonian of V2O3 from chapter 1:

Ĥ =
∑

k,mm′,σ

Hk
mm′ ĉ

k †
mσ ĉ

k
m′σ + U

∑
i,m

n̂im↑ n̂
i
m↓

+
∑

i,mm′,σσ′

(V − δσσ′J) n̂imσ n̂
i
m′ 6=mσ′ (3.2)

Here, the on–site Coulomb terms, namely the intra and inter–orbital Coulomb
repulsions, U and V = U − 2J, as well as the Hund’s exchange, J, have been
added to the NMTO eg Wannier–function Hamiltonian, Hk

mm′ . As usual in a
LDA+DMFT analysis, neither the pair hopping term-corresponding to highly
excited states - nor the spin-flip term - which poses a severe sign problem
in the QMC simulation [80] - have been included3. We solve this Hubbard
Hamiltonian for 1/4 (i.e. one electron on each Ni site) filling in the single–
site DMFT approximation for the paramagnetic phase and at a high enough
temperature (1160 K = 0.1 eV/kB) to use the Hirsch–Fye Quantum Monte Carlo
method.

Summary of results The calculations have been performed for various values
of the interaction parameter U and the results can be summarized in three
statements:

1. Our DMFT calculations confirm that for a metallic multiband system, one
effect of the Coulomb correlations is to enhance the splitting between the
subbands while, on the other hand, the coherent excitations are quasi-
particle renormalized.

2. Within the accuracy of our calculations the level splitting just enhances
splittings that are already present on the LDA level but never reverses
them. This means the enhanced splitting is in opposite direction as de-
sired and we remain with a 3z2 − r2 band and Fermi surface (like in the

– it is a way to express the level splittings due to local correlation effects in terms of the one
electron crystal field quantum numbers, i.e., the orbital labels – therefore “effective” CF.

3In our case this is partly justified by the fact that we have only one eg per site on average.
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3.2 LnSrNiO4 perovskites

“cigar”–distorted case for Ni3+ shown in Fig. 3.5).

3. Due to the previous point, the DMFT results for these compounds are
extremely sensitive to the starting LDA input and we find that especially
the EuSrNiO4 is in a way “on the edge”. Specifically, for EuSrNiO4 a small
shift of 100 or 200meV of the starting LDA Hamiltonian leads to the cuprate
like scenario which was described in the beginning, as we will see shortly.

Detailed discussion In Fig. 3.7 on the left hand side we show the real part of
the LDA+DMFT self energy for all three compounds. On the right hand side
we show the corresponding k–integrated spectral functions A(ω). The results
shown were obtained with U = 5.5eV and J = 0.7eV. From the real part of the
self energy we clearly see that the correlation mediated level splitting always
lowers the 3z2−r2 states (red), while the x2−y2 (black) states are shifted higher
in energy and, hence, deplete their charge. In the spectral functions this can
be seen as the transfer of the x2 − y2 states above the Fermi energy. The
consequences for the Fermi surface are visualized in Fig. 3.8 where we plot the
Fermi surface for the NdSrNiO4 case corresponding to the U = 5.5eV spectrum
and for an even more correlated, but still metallic, case U = 5.8eV. Hence,
our system made a transition from a state with two FS sheets to a single, in
this case 3z2 − r2, FS sheet before reaching the insulating state. In the band–
picture this means, that the bottom of the x2 − y2–band is pushed above the
Fermi energy. This “sheet selective” transition can, in a way, be compared to
the orbital selective Mott transition [11]. However, it should be stressed that,
due to the strong inter orbital hybridization the eg–systems in cubic, or close to
cubic symmetry, are not expected to display true orbital selective transitions.
For more detailed discussions concerning the evolution with the value of U we
refer to the last subsection of this chapter, where we discuss model calculations
of a hybridized two–band system at quarter filling.
Coming back to the main results and, specifically to Fig. 3.8 we can conclude
that we do not find the cuprate analogous scenario but rather the “upside
down”–version: An x2 − y2–band pushed above the Fermi energy becoming a
kind of band–insulator at large U , whereas the 3z2 − r2 resides as a strongly
correlated conduction band before becoming a Mott insulator at large U .

Although the general trend is qualitatively the same for all three compounds,
there is an important quantitative difference. We specifically choose to plot the
spectra for U = 5.5eV, since it represents not only a value which might be a
realistic choice, but more importantly, it is a choice of spectra which help to
illustrate this difference: While LaSrNiO4 is already an insulator for this value

85



3 Nickel oxide superstructures

Fig. 3.7: LDA+DMFT results for the LnSrNiO4 for Ln=La(top), Nd(center), and
Eu(bottom). On the left hand side we show the spectral function (in arbitrary units)
and on the right hand side the corresponding real part of the self energy as a function
of imaginary Matsubara frequencies. The extrapolation of <Σ(iωn → 0) leads to the
crystal field enhancement caused by correlation effects. Note, for ESNO the high fre-
quency part (i.e. the Hartree part of the DMFT self energy) <Σ(iωn → ∞) the energy
splitting has opposite sign compared to <Σ(iωn → 0) . See text for further discussion.
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3.2 LnSrNiO4 perovskites

Fig. 3.8: LDA+DMFT Fermi surface of NdSrNiO4 for U = 5.5eV (left hand side) and U =
5.8eV (right hand side). We can see that the “effective crystal field splitting” leads to
a single sheet Fermi surface of mostly 3z2 − r2 (red) character. The axial character
manifests itself in the large kz–dispersion of the Fermi surface.

of U, NdSrNiO4 still shows coherent quasi particle excitation around the Fermi
energy as well as the Eu system which is even less correlated due to the fact
that still both bands provide hopping channels (compare also the correspond-
ing self energies). An important observation is, that these differences seem
related to the LDA starting point of the onsite energies. Namely, if we compare
the differences of the onsite energies in the LDA (shown in the band structure
plots of Fig. 3.6) to the final level split in the LDA+DMFT spectral functions due
to the real part of the self energy (Fig. 3.7), we assert that the DMFT always
amplifies an effect which is visible in the LDA data already. We can conclude
that the correlation effects taken into account on the DMFT level simply am-
plify the effects already present in the LDA band structure.
Moreover, for the ESNO system at U = 5.5 eV, we can observe an interrest-
ing detail. The onsite energy of the z2 − r2 states is in all compounds for the
LnSrNiO4 series lower than the onsite energy of the x2−y2 states (for ESNO the
difference is 100 meV). However, due to the very different bandwidths the filling
of the 3z2 − r2 band is lower that the filling of the x2 − y2 band. Nonetheless,
the x2 − y2 states are pushed higher in energy by the correlation effects. This
tells us, in turn, that the shift effect is beyond a static density density type of
interaction. For ESNO at U = 5.5 eV, the static part has, in fact, the opposite
sign compared to the effective crystal field enhancement, which is reflected in
the high frequency behaviour of the real part of the self energy in Fig. 3.7.
For the other compounds we find the same behaviour at smaller values of the
interaction parameter.

After realizing the relation between initial LDA splitting and final LDA+DMFT
slitting, let us have a closer look at the LDA numbers again. While in LaSrNiO4
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3 Nickel oxide superstructures

Fig. 3.9: LDA+DMFT results for a modified EuSrNiO4 LDA Hamiltonian. The onsite en-
ergies of the 3z2 − r2 states were “artificially” shifted by 200meV up in energy. The
resulting correlation induced crystal field enhancement has reversed its sign com-
pared to the calculation for the original LDA Hamiltonian

the 3z2 − r2 lies ≈ 0.4eV above the x2 − y2, we find ≈ 0.25eV in NdSrNiO4 and
even less ≈ 0.1eV in EuSrNiO4. While a 1meV accuracy might be usual for band
structure calculations in non–correlated systems, an accuracy of 100meV in a
correlated systems is usually already smaller than our error bars. A shift of
100meV might change the situation dramatically, if the hypothesis holds that
DMFT correlation effects amplify LDA level splittings. In order to test this idea
we performed additional calculations for the EuSrNiO4 compound, in which we
introduced an artificial shift of 100meV and 200meV of the axial z2 − r2 states
in the LDA Hamiltonian which was used in the k–integrated Dyson equation of
the DMFT self consistency. The result of these calculations clearly confirmed
our idea. Even for the calculation with just 100meV shift the trend is reversed
and the z2− r2–states are pushed up in energy now leaving the x2− y2–band at
the Fermi energy. In Fig. 3.9 we show the spectral function and the self energy
of the calculation with 200meV at a rather large U value of U = 7.0eV. This
result indicates that the LnSrNiO4 compounds – at least the EuSrNiO4 is on the
edge concerning the FS sheet selective transition. In fact, experimental ARPES
results [207] indicate a x2 − y2–FS for the EuSrNiO4 whereas the NdSrNiO4

compound displays an ARPES spectrum which might be better described by a
3z2 − r2 FS.

Let us close this section with a summary of the shifts between the two bands.
In table 3.1 we show the comparison between the initial LDA onsite energy dif-
ference, and the respective difference in the real part of the DMFT self–energies
for all three compounds as well as for the artificially shifted EuSrNiO4 case
indicated by the asterix. For the values of ∆<ΣDMFT we did not take the ex-
trapolated values <ΣDMFT(iω → 0) but the difference of the self energies at the

88



3.3 LaAlO3/LaNiO3

Tab. 3.1: Summary of shifts

∆εLDA ∆<ΣDMFT

LaSrNiO4 0.40 eV −5.10 eV

NdSrNiO4 0.26 eV −0.80 eV

EuSrNiO4 0.11 eV −0.14 eV

EuSrNiO∗4 −0.09 eV +0.48 eV at U = 7.0 eV

smallest Matsubara frequency, i.e. ∆<ΣDMFT = <Σ3z2−r2
DMFT (iω1) − <Σx

2−y2

DMFT (iω1).
When we inspect the plots in Fig. 3.8 closely we realize that the value of our
<ΣDMFT presents, in fact, a lower boundary for the real shift.
It should be stressed, that the artificial shift we introduced in this last case was
not meant to be a realistic shift. It was performed to (in the end successfully)
proof the hypothesis of the instability of these systems4. Such a shift, which
corresponds to the shift of the local on site energy of the states seemed the
most natural parameter for a single site DMFT. Non–local corrections which
are beyond the single site DMFT might be sensitive to k–dependent details of
the band structure and, hence, yield different results in the vicinity of the in-
stability, i.e., a x2 − y2–FS sheet, directly from the LDA Hamiltonian. In order
to capture also non–local effects, extensions of the DMFT have been proposed.
For short range correlations the cellular DMFT or the Dynamical Cluster Ap-
proximation (DCA) are employed which are based on solving small clusters
in real and k–space respectively, whereas the diagrammatic approaches such
as the DΓA [206, 100] or the Dual Fermion [174] scheme are capable also to
include the effect of long range spatial correlations.

3.3 LaAlO3/LaNiO3

The main part of the following discussion is published in the APS Journal “Phys-
ical Review Letters” [75]: PRL 103, 016401, (2009)

Let us review the “story so far”. In the previous section the LnSrNiO4 com-

4Such instability is not unusual for strongly correlated systems: the MIT in V2O3 can be repro-
duced within LDA+DMFT taking into account a change of the lattice parameters of less than
4% [14]
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pounds were discussed with the motivation of finding nickelate systems which
may display cuprate analog physics including, most importantly, supercon-
ductivity at a high critical temperatures. Following the planar/axial orbital
scenario of the work of Pavarini et al. [154], the part of the axial orbital in the
Ni3+ nickelates should be played by the 3z2−r2 band. Further, we saw that cor-
relation effects, treated within the LDA+DMFT approach, split the Ni eg states
resulting in an “effective crystal field splitting”. The class of the LnSrNiO4 (es-
pecially the EuSrNiO4) turned out to be “on the edge” and, from the calculation
perspective, we found a delicate relation between the LDA+DMFT results and
the spectrum of the one electron, i.e., LDA part of the Hamiltonian. The sen-
sitivity of the system to these details allows for the question wether we can
influence the system from the “outside” by means of changing external param-
eters like, e.g., pressure. These thoughts can be taken even one step further:
As sophisticated experimental techniques to grow transition–metal oxides het-
erostructures are nowadays available and mature, our quest got a new direc-
tion: Novel effectively two–dimensional systems could be engineered to suit our
needs.

Recently the following idea to get to a cuprate–like situation in nickelates was
presented [34]: Sandwiching a LaNiO3 layer between layers of an insulating
oxide such as LaAlO3 will confine the 3z2 − 1 orbital in the z-direction and may
remove this band from the Fermi level, thus leaving the one Ni 3d electron in
the x2 − y2 band. The difference to the “bulk” nickelates we described in the
previous section is that, in the case of an “artificial” heterostructure, we have
the choice of many parameters in our own hands, such as the possibility of
using different substrates for growing the structure and performing chemical
substitution of the specific chemical constituents. Indeed, a major reconstruc-
tion of orbital states at oxide interfaces recently has been observed [33], and
this kind of phenomenon could lead to novel phases not present in the bulk.
Extensive theoretical studies of mechanisms for orbital selection in correlated
systems (see e.g. [11]) have revealed the complexity of this problem, where de-
tails of the electronic structure and lattice distortions play decisive roles. It is
therefore crucial to examine nickelate heterostructures by means of state–of–
the–art theoretical methods and find the optimal conditions for x2 − y2 orbital
selection. In this section we present results of electronic–structure calculations
using LDA+DMFT.

Summary of results The results can be understood in complete analogy to the
previous section. We find that the comparably large value of the hopping be-
tween the x2−y2 and 3z2−r2 orbitals substantially reduces the effects of corre-
lations in the 3z2− r2 orbital. Nevertheless, we do find that the correlations are
able to shift the bottom of the hybridizing eg bands sufficiently relative to each
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3.3 LaAlO3/LaNiO3

Fig. 3.10: The 1/1 LaNiO3/LaAlO3 heterostructure (left hand side) and its LDA (NMTO)
bandstructures without (center) and with (right hand side) strain. The Bloch vector
is along the lines Γ (0, 0, 0) − Z
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shading gives the x2 − y2 vs 3z2 − 1 eg Wannier-function character.

other, i.e., the effective crystal field splitting, to yield a FS with only one sheet.
In the case of the heterostructure which we will focus on, this remaining sheet
has predominantly x2 − y2 character and a shape like in the cuprates with the
highest Tc max [154], even showing a more extreme curvature. Moreover we will
extend the discussion analyzing how the above mentioned FS–transition can
be practically driven in the growth process. As we will see, this is possible
by stretching the in–plane lattice constants by suitable choice of substrate in
order to reduce the correlation–strength needed to produce a single–sheet FS.
Finally, a toy model tailored for this compound revealed its tendency towards
strong antiferromagnetic fluctuations, even larger than in the cuprates. Our
conclusion is, that nickelate heterostructures hold the basic ingredients for
high-temperature superconductivity.

LDA and NMTO downfolding for LaNiO3/LaAlO3 Here we give results for the
simplest, 1/1 superlattice LaNiO3/LaAlO3 = LaO-NiO2-LaO-AlO2 shown in the
left hand side of Fig. 3.10. For the in–plane lattice constant a we first took
that of SrTiO3 often used as substrate, whereby the Ni–O and Al–O distance
in the x– and y–directions became: xNi-O = 1.95 Å, not far from the value in
pseudo–cubic LaNiO3. The lattice constant c we took as the sum of those of
pseudo–cubic LaNiO3 and LaAlO3; afterwards the position of apical O was re-
laxed within the LDA [106] to yield zNi-O = 1.91 Å, i.e., a 2% smaller value than
xNi-O. Next, we expanded the LaNiO3/LaAlO3 heterostructure in the x-and y-
directions by 3%, as might be achieved by growing LaNiO3/LaAlO3 on a PrScO3

substrate, to yield xNi-O = 2.01 Å. With the concomitant 6% contraction in the
z-direction, relaxation of the apical-oxygen position within the LDA finally lead
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to zNi-O = 1.81 Å.
Fig. 3.10 shows the LDA energy bands for the two differently strained het-
erostructures in a 5-eV region around the Fermi level (≡0). The two solid
bands are, as in the previous section, the 1/4-full Ni-O pdσ antibonding eg
bands, which are pushed up above the less antibonding Ni-O pdπ t2g bands
(thin bands). The later are lying below -1 eV and well above the Ni–O, Al–O,
and La–O bonding bands below the frame of the figure. The antibonding Al–O
and La–O bands (thin bands above 1-2 eV) lie respectively 9 and ∼ 5 eV above
their bonding counterparts, and as a result there is a comfortable 2–3 eV gap
above the top of the antibonding t2g bands in which the two antibonding eg
bands reside.
Let us compare the situation to the LnSrNiO4 compounds which we discussed
in the previous section. The coloring of the eg bands again gives the relative
x2 − y2 and 3z2 − 1 characters in the NMTO (N = 2) Wannier–function repre-
sentation. Concerning the symmetry of the k–dependent inter eg–hoppings we
find the same situation as before. Also the kz– dispersion of the heterostruc-
tures is comparably low as in the LnSrNiO4 series. However, we observe even
with the naked eye, that now the 3z2 − r2–states are higher in energy with re-
spect to the x2 − y2–states. In fact, even for the unstrained compound (left
band structure plot in Fig. 3.10) the COG of the 3z2 − r2–band lies 150 meV
above the x2 − y2–bands COG. The reason for this difference to the LnSrNiO4

series is the stronger apical pdσ hybridization along zNi–O in the LaAlO3/LaNiO3

compound which, besides the energy shift, also enlarges the bandwidth of the
3z2 − r2–band as can be seen comparing the band structure plots in Fig. 3.6
and Fig. 3.10. Thus, we can reasonably expect that in our DMFT calculations
the axial 3z2−r2–states this time will be pushed higher in energy, leaving a cor-
related x2−y2–conduction band and Fermi surface. As we by now understand,
the COG energy difference of the bands gives the direction of the splitting. The
details of the FS sheet selective transition depend, of course, on the specific
band structure features:
The bottoms of both bands are along ΓZ,, i.e., for kx=ky=0. That of the x2 − y2

band is at −1.5 eV and does not disperse with kz, while that of the 3z2 − r2

band is at −0.5 eV at Γ and disperses upwards to −0.1 eV at Z. The bottom
of the 3z2 − r2 band is thus 1 eV ≈ 1/4 eg bandwidth above that of the x2 − y2

band. Straining by 3% is seen to shift the bottom of the 3z2 − r2 band up by
further 0.2 eV. The LDA FS thus has two sheets, and reducing it to one would
require moving the 3z2 − r2 band above the x2 − y2 band at Γ by an additional
0.5 eV for the unstrained and by an additional 0.3 eV for the strained super-
lattice. That the x2 − y2 Wannier orbital is more populated than 3z2 − r2 (in
LDA the ratio is 70/30 for the unstrained superlattice) is mainly due to the
confinement in the z-direction. Consider for simplicity the dispersions in the
kx= ± ky≡k planes where the 3z2 − r2 and x2 − y2 orbitals do not hybridize:
In cubic bulk LaNiO3, ε3z2−r2 (k, kz) ≈ − cos ak − 2 cos akz, with respect to the
center of the eg band and in units of the kz–hopping amplitude |tddσ| of the
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axial 3z2 − r2, while εx2−y2 (k, kz) ≈ −3 cos ak independently of kz because the
kz–hopping amplitude tddδ of the planar x2 − y2 is negligible. This means that
both bands extend from −3 |tddσ| at (0, 0, 0) to +3 |tddσ| at

(
π
a ,

π
a ,

π
a

)
in the bulk.

Substituting now every second LaNiO3 layer by an “insulating” LaAlO3 layer,
forces the Bloch waves to have nodes approximately at the AlO2 planes, so that
only waves with kz <

π
c ∼

π
2a are allowed. Together with the dispersion relation

ε3z2−r2 (k, kz) ≈ − cos ak − 2 cos akz, we can see that this restriction causes the
bottom of the 3z2 − r2 band to be pushed up by ∼2 |tddσ| , i.e., by ∼1/3 of the eg
bandwidth. The exact position of the nodes, and hence the upwards shift of
the 3z2 − r2 band, depends on the scattering properties of the insulating layer.
This suggests that the band structure can be tuned by choice of the insulating
layer.
Turning back and comparing the present case to the undoped

(
d9
)

cuprates,
the LDA bandstructures are roughly similar to this. But, in the case of the
cuprates, the 3z2 − r2 band does not play the role of the axial orbital. It is
full and lies in the region of the t2g bands (compare Fig. 3.5 red framed levels).
Filling this cuprate 3z2− r2 band has annihilated the pdσ bond to apical oxygen
and thereby caused the distance between Cu and the apical oxygen zCu-O to
increase well beyond the Cu in–plane oxygen distance xCu-O (i.e. the “cigar”–
distorted case depicted in Fig. 3.5), whereby the antibonding push–up of the
3z2−r2 band has been lost. The half–full pdσ antibonding x2−y2 band lies a bit
lower with respect to the O and cation bands than in the nickelates because
the position of the 3d–level in Cu is lower than in Ni.

Now, if we compare the shape of the conduction band of our nickelate het-
erostructures to the cuprate conduction band we find a resembalance in par-
ticular to the conduction band of the cuprates with the highest Tc max. Hence,
the idea described earlier of applying the planar/axial scenario seems feasible
for the nickelates if the axial (i.e. the 3z2 − r2 for the nickelates) states can
be removed completely from the Fermi energy and pushed up in energy. Since
the bands of the nickelate 3z2 − r2 states cross εF for the LDA bands shown
in Fig. 3.10, they have r > 1/2. Therefore, engineering these heterostructures
should presumably first aim at reducing r towards that of the cuprates with
the highest Tc max (r∼0.4), by moving the energy of the 3z2 − r2 band at Γ, i.e.,
the bottom of the band, well above εF . This requires increasing the interaction
(the ligand field) between Ni 3d3z2−r2 and apical O 2pz, e.g., by reducing zNi-O,
or in other words making a “pizzabox”–distortion. As we shall see, electronic
correlations help a lot in that respect. However this does not necessarily lead
to HTSC, because although the same value of r gives the same band shape
for nickelates and cuprates, their conduction–band Wannier orbitals are not
completely identical.
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LDA+DMFT results In order to perform the DMFT calculations we employ the
same Hamiltonian (3.2) as for the LnSrNiO4 series with the NMTO eg Hamilto-
nian, Hk

mm′ . We solve this Hubbard Hamiltonian for the same condition as in
the LnSrNiO4 series, i.e., 1 electron per Ni site and β = 0.1eV−1.
The results of our DMFT calculations can be understood straightforwardly in
the light of the discussion of the previous section. Besides the reduction of
the spectral weight of the coherent excitations around the Fermi energy, i.e.,
the renormalization of the quasi particle mass, we again find that electronic
correlations determins an enhancement of the “effective crystal field splitting”.
Specifically, for the undoped superlattice with J=0.7 eV and U increasing, we
find that the bottom of the 3z2 − r2 band is driven up and passes the Fermi
level when U exceeds 6.4 eV for the unstrained and 5.7 eV for the strained
structure. Hereafter the FS has only one sheet, a large

(
π
a ,

π
a

)
-centered hole

cylinder whose shape can be seen from Fig. 3.11 to be similar to that found
in the cuprates with the highest Tc max. It is of course possible that the strong
nesting of this FS makes it unstable with respect to spin or/and charge-density
waves with qx∼ π

2a and qy∼ π
2a , similar to what has been found in cuprates. At

the point where the second FS sheet disappears, r=1/2 and the ratio between
the x2 − y2 and 3z2 − r2 populations has increased to 80/20 for the unstrained
– and even beyond that for the strained – superlattice. For slightly larger U, the
upper quasiparticle band still exists above the Fermi level. This may be seen
from the 3z2−r2 projected k-integrated spectral function on the right-hand side
of Fig. 3.11. Reasonable changes of J slightly influence details of the Hubbard
subbands, but not the physics of the transition.
Only when U reaches 7.4 eV for the unstrained and 6.5 eV for the strained su-
perlattice, the lower quasiparticle band undergoes a Mott-transition, at which
point the peak seen at the Fermi level in the right-hand side of Fig. 3.11 finally
disappears (compare spectra for different U values in Fig. 3.13). For compar-
ison, a half–filled cuprate band undergoes a Mott transition in DMFT for a
critical value of U which increases with r and takes the value 4.5eV for r=0.4
[46]. This behavior for the cuprates is thus in line with what we find for the
nickelate heterostructures where rLDA (unstrained) > rLDA (strained) ∼ 1/2. This
supports our hope that the nickelates can be engineered such that, like in the
cuprates, hole–doping in the proximity of the Mott transition can produce su-
perconductivity. For nickelates there is even the possibility of engineering the
eg bands such that the real value of U falls between the one needed to reduce
the FS to a single sheet and the one needed to eliminate this sheet by a Mott
transition. If this can be achieved, superconductivity in the nickelates may
occur even without doping. This is a remarkable result.

Toy model and magnetic ordering Finally, we need to estimate the strength
of antiferromagnetic correlations, which are an important ingredient in sev-
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Fig. 3.11: Cross-section of the FS with the kz=0 plane for the unstrained 1/1 het-
erostructure; left: LDA, middle: LDA+DMFT (U=6.7 eV). Right: LDA+DMFT
k−integrated spectral functions (in arbitrary units) projected onto the x2 − y2 (full)
and 3z2 − r2 (dashed) Wannier functions.

eral suggested scenarios for the high temperature cuprate superconductivity.
Since our LDA+DMFT calculations would be prohibitively expensive for the
study of low temperature magnetic properties, we extract essential informa-
tion by merely diagonalizing the two–site version of the Hubbard Hamiltonian
(3.2) obtained by Fourier transformation of Hk

mm′ and a truncation to a di-
atomic molecule directed along x. The complete results, as well as a detailed
discussion can be found in the last paragraph of the next section. Let us at
this point just shortly comment that the ground state is always a spin singlet
(see the energy level diagram in Fig. 3.19). Increasing the “effective crystal field
splitting” ∆ from 0 to∞ leads to a demixing such that the orbital configuration
changes from a mixture to pure x2−y2. For the LDA value, the orbital character
is already predominantly x2−y2. From the distance between the singlet ground
state and the triplet first excited state, we estimate the magnitude of the anti-
ferromagnetic coupling constant to be JAF ∼ 0.2 eV, i.e., somewhat higher than
in cuprates.

In summary, our analysis of the 1/1 LaNiO3/LaAlO3 system shows that het-
erostructuring of d7 nickelates is very promising since their physics contains
the main ingredients of high–temperature superconductivity. In particular, we
find that electronic correlations reduce the FS to a single sheet whose shape
is similar to the one in the hole–doped cuprates with the highest Tcmax. This
sheet has a predominant planar x2−y2 character but also mixed in axial 3z2−r2

character. Beside the substrate–induced strain, which we have discussed here,
LDA calculations of similar nickelate based heterostructures have shown, that
the choice of the other chemical constituents can sensitively influence the low
energy physics of the system. In comparison to the LnSrNiO4 structures of
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the preceeding section the nickelate heterostructures offer a larger spectrum
of options to experimentally turn the parameters of the compound in order to
find the high TC–behaviour analogue to the cuprates.

3.3.1 MIT in a quarter–filled two–band system

In the preceeding sections we discussed two classes of nickel oxide systems in
order to find cuprate analogous physics. Along the lines of the work of Pavarini
et el. [154] we used the hybridizing planar–orbital / axial–orbital scenario
performing LDA+DMFT calculations with the promising result that correlated
nickel oxide superstructures bear the basic ingredients for high temperature
superconductivity analogous to that of the cuprates.

Introduction Let us now shift the focus to a more general analysis of the model
and the DMFT results for different kinds of interaction and hopping parame-
ters. As it was described, for our DMFT we employ a two–band model obtained
from NMTO downfolding on the eg degrees of freedom, and performed the cal-
culations assuming quarter filling, i.e., one electron in the two Ni eg orbitals.
In soldids the cubic environment, or an environment easily derivable from the
cubic one is extremely common. Examples are the tetragonal like environ-
ment in the cuprates (see Fig. 3.5), or the trigonal one in V2O3 (distortion along
the C3–axis of the octahedra). Depending on the specific crystal field split-
ting filling, either t2g states (as in V2O3) or eg states (as in the nickelates and
cuprates) play the most important role in determining the low energy excita-
tions of the system. Hence, a general study of models which include the basic
features of such systems is desiarable. Within model calculations, half filled
single band systems have been studied extensively by means of DMFT (see re-
views [67, 81, 68, 105] and references therein). Besides that, also multi–band
models were studied [11, 132, 21, 171, 104, 59, 49] and features like orbital
selective transitions [7] were analysed. Yet, very often these multi–band studies
assumed approximations, such as neglecting hybridization, which prohibited
to fully capture the rich physics driven by the orbital degrees of freedom in the
correlated transition metal compounds.
Hence, we take the opportunity and discuss the features of our two–band sys-
tems at qurter filling in more detail. We will start with a brief review of the
model we employ after deriving it from the LDA results. The first results we
discuss are the spetral functions and the self energies for different values of the
interaction parameters, followed by the double occupancy. Clearly the double
occupancy is a more complicated quantity in the case of a multiband system
compared to the single band case.
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Next, we turn to the comparison of the model derived from the LDA calcula-
tions for a confined quasi two–dimensional system and a more homogeneous
3D model. Finally we discuss in more detail the issue of a magnetic order at
low temperatures like we mentioned very briefly in the last part of the previous
section. Further we remark that, parallel to ours, a work by Poteryaev et al.,
in which similar models are discussed, was published [157]. Our work can
be understood as complementary since we extend the study to the comparison
between confined and homogeneous systems motivated by the specific role of
the crystal geometry in the heterostructures.

Effective two-band model For our model study we start from the LMTO band
structure for LaAlO3/LaNiO3 heterostructures grown on SrTiO3. However, in-
stead of employing NMTO to get a numerical Hamiltonian in k–space, we take
the hopping elements in real space and truncate all hopping elements which
are longer in range than the next nearest neighbour hopping. For our purposes
of model calculations we prefer this simpler picture of the systems kinetics in
real space and pay the price of a slightly less accurate fit of the LMTO bands.
In the basis |x2 − y2〉 = (1, 0) and |3z2 − r2〉 = (0, 1) the dispersion relation in
k–space reads:

ε2D
k = −2(cos(kx) + cos(ky)) ·

(
0.45 0

0 0.17

)

+ 2(cos(kx)− cos(ky)) ·
(

0 0.28
0.28 0

)

− 4(cos(kx) · cos(ky)) ·
(

0.09 0
0 0.03

)
+
(

0 0
0 0.15

)
(3.3)

here the first and second summand account for the diagonal hopping and
the off–diagonal hopping, i.e., the hybridization respectively, while the third
summand presents the hopping to next nearest neighbours. The last term
takes into account the onsite level splitting, that means a crystal field term. In
real space, the Hamiltonian of our effective model reads:

Ĥmod. =
∑
iljm,σ

tiljmc
†
ilσcjmσ + Ĥint., (3.4)

where l = (1, 2) labels the two different orbitals, i.e., the planar x2 − y2 orbital
and the axial 3z2 − r2 orbital respectively. The hopping amplitudes tiljm are
the matrices in Eq. (3.3) with l,m as the orbital index and i, j as site index of
nearest or next nearest neighbors on the cubic lattice.
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Fig. 3.12: Noninteracting DOS of the two eg bands with (thick line) and without (thin
line) x2−y2-to-3z2−r2 hybridization. The hybridization strongly enhances the 3z2−r2
bandwidth, leading to a remarkable itinerancy for this band despite the quasi two-
dimensional nature of the LaNiO3/LaAlO3 heterostructure.

The effects of the hybridization terms are clearly visible in the non–interacting
density of states resulting from the noninteracting part of Hamiltonian (3.4)
which is shown in Fig. 3.12. A comparison to the case without hybridization
(t12 = 0) plotted as a thin line shows a big difference especially for the 3z2 − r2-
band. Its bandwidth is strongly enhanced if the hopping to the more mobile
x2 − y2-orbitals is properly taken into account. This effect is important since
otherwise the reduced hopping in the z-direction would more severely reduce
the itinerancy of electrons in the 3z2 − r2 orbital5. The Coulomb interaction
terms are the same as in Hamiltonian (3.2) and for the solution of the impurity
problem in the DMFT self consistency we use, as before, the quantum Monte
Carlo simulations of Hirsch and Fye [85]. Afterwards the maximum entropy
method (MEM: see chapter 1) is employed to perform the analytic continuation
of the Green function to the real axis. Concerning the choice of the interaction
parameter we perform a systematic analysis where U is varied in a regime of
physically meaningful values in order to investigate the Mott–transition and
its specific features. The Hund’s exchange term, on the other hand, has been
fixed to J = 0.7eV, a reasonable value close to that of atomic Ni. Assuming

5In the case of our LaAlO3/LaNiO4 heterostructures the 3z2 − r2 orbital points towards the insu-
lating AlO layers. Since these are insulating the hopping in z–direction is strongly reduced and
can approximately be neglected.
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the deviation from cubic symmetry to be negligible for the Coulomb interaction
parameters, we employ V = U − 2J .

Spectral Function and Self Energy Fig. 3.13 shows the evolution of the k–
integrated spectral functions Al(ω) with increasing U. Let us first focus on the
x2 − y2 band (black curve). Already at U = 4.4 eV (V = 3.0 eV; first panel), the
spectrum is strongly renormalized with respect to the non–interacting case: A
narrow quasiparticle peak at εF and Hubbard bands which are separated by
an energy of the order of U are visible. As the value of the interaction pa-
rameter is increased to U = 5.4 eV and U = 6.4 eV (second and third panels),
one observes a stronger renormalization of the quasiparticle peak and more
pronounced Hubbard bands. A qualitative change is occurring for U = 7.4
eV (fourth panel) where the spectral weight at the Fermi level has vanished.
That is, a Mott-Hubbard gap has formed, indicating the occurrence of the Mott
metal–insulator transition between U = 6.4 and 7.4 eV.
The metal insulator transition of the 3z2 − r2-band (grey curve) occurs for the
same critical interaction of U & 6.4 eV. It is, however, qualitatively different.
When the interaction is increased one still observes a progressive reduction
of the spectral weight at the Fermi level which has entirely disappeared for
U = 7.4 eV. However, in this case this is due to a shift of the whole 3z2−r2 band
above the Fermi level, highlighting the different nature of the metal–insulator
transition. The shift with U is clearly seen for the quasiparticle peak. The
remaining spectral weight below the Fermi energy, corresponding to the lower
Hubbard band, is entirely due to the hybridization effect with the lower x2 − y2

Hubbard band.

The different nature of the metal–insulator transition in the x2 − y2- and the
3z2 − r2–band emerges even more clearly from the analysis of the self energy.
In Fig. 3.14, we show the evolution of the imaginary part of the self energy
ImΣx2−y2(ωn) with increasing interaction. Again, for the x2 − y2 band, the ex-
pected behavior of a standard Mott transition is found: The appearance of the
insulating gap results from the divergence of ImΣx2−y2(ω) in the limit of zero
frequency and zero temperature. In this limit the quasiparticle renormaliza-
tion factor Z = (1 − ∂ImΣ(0)

∂ωn
)−1 goes to zero as a further hallmark of the Mott

character of the transition in the x2 − y2-band (see black circles in the left
panel of Fig.3.15). At the same time, however, the insulating transition of the
3z2 − r2–band is not associated to any qualitative change in ImΣ3z2−r2(ω). For
all interactions a “metallic”–like bending can be observed in ImΣ3z2−r2(ω) at
low frequencies. As a consequence of this, the renormalization factor Z stays
always finite (red crosses in the left panel of Fig.3.15). The disappearance of
spectral weight at the Fermi energy in this case is determined by a large relative
shift of the orbitals induced by interaction. This shift ∆eff

CF , is a consequence of
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Fig. 3.13: Evolution of the LDA+DMFT spectrum with increasing Coulomb interaction
U = V − 2J. The black curve shows the x2 − y2 spectrum and the red one the 3z2 − r2
spectrum.
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Fig. 3.14: Evolution of the LDA+DMFT self energy (vs. Matsubara frequencies) with in-
creasing U . The black curves show the x2 − y2 and the red one the 3z2 − r2 self
energy. Via extrapolation of the imaginary and real part of the self energy to ωn → 0
we can obtain the quasiparticle renormalization Z and the “crystal field” enhancment,
respectively
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Fig. 3.15: Left hand side: Effective chemical potential µ−ReΣ(0) relative to the noninter-
acting chemical potential for the x2 − y2 (black) and 3z2 − r2 (red) orbital. At the Mott
transition, the low frequency effective chemical potential of the d 3z2 − r2 is strongly
reduced so that this orbital is shifted above the Fermi energy, i.e., the 3z2− r2 orbital
becomes “band”–insulating. Right hand side: Quasiparticle weight Z for the x2 − y2

(black) and 3z2−r2 (red) orbital. For the x2−y2 orbital, we find Z → 0, i.e., the (central)
quasiparticle peak disappears and the x2 − y2 orbital becomes Mott–insulating.

the strong variation of the real part of the self energies at zero frequency shown
in the left panel of Fig. 3.15. More specifically, while the effective chemical po-
tential of the x2− y2-band (defined as µ−ReΣx2−y2(0)) stays always close to the
noninteracting value up to the Mott transition, its value for the 3z2− r2-band is
clearly decreasing with increasing V. As a result, the metal insulator transition
of the 3z2 − r2-band occurs for a value of U & 6.5 eV, when the overall weight of
this band is shifted above the Fermi energy.
A key feature in the physics we have observed here is the interplay between
the two orbitals stemming from the fairly large hybridization terms in equa-
tion (3.3). An evident sign of such interplay is the concomitance of the metal
insulator transition in both orbitals. To understand the underlying physics it
is instructive to consider the different possible scenarios as well as the case
without hybridization between the two bands.
The effects of increasing the interaction in partially filled bands is twofold:
Firstly the on site double occupancy becomes more expensive and secondly
the two bands are shifted with respect to each other. This gives rise to three
possible transition scenarios. (i) If the shift between the bands is increasing
slowly with interaction at a certain point the on–site double occupation be-
comes practically forbidden while both bands are still partially filled. As a re-
sult a simultaneous Mott transition would occur with Z → 0 for both bands. If
instead the shift is more rapidly increasing with interaction at a certain point
one of the two bands will become empty leaving the other one at half filling.
The nature of the transition would then depend on the value of the interaction
at which the shifted band becomes empty. There are two possibilities: (ii) If

102



3.3 LaAlO3/LaNiO3

the interaction is strong enough to forbid double occupancy in the filled band,
this band will become abruptly insulating. Such a situation is reflected in a
simultaneous – though qualitatively different – metal–insulator transition for
both bands as we observe in Fig. 3.14. (iii) The other possibility is that the
interaction is not yet strong enough to hinder the double occupations in the
half filled band. The Mott transition in this band – differently from our case –
would then not take place simultaneously with the depletion of the other band.
This would be the only situation in which the metal–insulator–transition could
be described in terms of an effective single band model.
The initial lifting of degeneracy (i.e., the crystal field splitting of the LDA calcu-
lation) is expected to push the system in the direction of situation (ii), which we
observed for our model with an initial crystal field splitting of ε3z2−r2 − εx2−y2 =
150 meV. In section 3.2, in the discussion of the LnSrNiO4 series we saw that, to
a first approximation, the sign of this splitting determines which of the bands
will be pushed higher in energy.
Finally, we will discuss the role played by the hybridization, which has mainly
two effects. The first one, which can be understood intuitively, is an effective
broadening of the bandwidth principally for the 3z2 − r2-band (see Fig. 3.12 for
the noninteracting case) which leads to a more metallic behavior. The second
effect is more intrinsic in the sense that the hybridization makes the bands
more similar, obviously pushing the system towards situation (i). It is im-
portant to notice that both effects work against the crystal field splitting. As
mentioned above the fingerprints of the hybridization can clearly be seen also
in Fig. 3.13: Although the 3z2−r2–band is shifted above the Fermi energy at the
metal insulator transition some residual spectral weight remains in the region
of the lower x2 − y2-Hubbard band.

Double occupancy As in the case of the half-filled Hubbard model, comple-
mentary information about the metal insulator transition can be extracted from
the analysis of the double occupancy d, which is the derivative of the Helmholtz
free energy H with respect to the interaction parameter U and can be inter-
preted as a sort of order parameter of the Mott metal–insulator transition6.
However, such an analysis for a two-band model is more complicated since it
involves not only the orbital-diagonal double occupations (dmm = 〈nm↑nm↓〉) but
also the orbital-offdiagonal parts with parallel (d↑↑12 = 〈n1↑n2↑〉) and antiparallel
spin orientations (d↑σ̄12 = 〈n1↑n2↓〉 ).

The evolution of these four quantities is shown in Fig. 3.16 for two different
temperatures. In both cases we observe the same trend for all double occupa-
tions which are decreasing with increasing interaction. Starting the analysis

6However, since there is no symmetry breaking involved in the transition it is no real order
parameter.
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Fig. 3.16: Double occupancy vs. Coulomb interaction V . Shown are the double occu-
pation in the x2 − y2 orbital (d11), in the 3z2 − r2 orbital (d22) as well as the double
occupation of both orbitals with parallel (d↑↑12 ) and antiparallel spin (d↑↓12 ). Inset: dou-
ble occupancies normalized by the respective density.

with the x2 − y2-orbital, which undergoes the Mott-Hubbard transition we ob-
serve that its double occupation displays a rapid decrease around V = 5 eV, i.e.,
close to the critical values of the interaction we can estimate form the spectral
function in Fig. 3.13. At β = 10 (Fig. 3.16 left panel), however, the double
occupancy behavior is thermally smeared out so that it is very difficult to ob-
tain a quantitative estimate of the critical interaction value. The Mott-Hubbard
transition occurs in form of a very smooth crossover. A better estimate can be
made when going down in temperature to β = 25 (Fig. 3.16 right panel), where
we can see a very steep drop of d11 marking the transition point at V ≈ 5.5 eV
where we also found Z → 0 for the x2 − y2 band.
At a first glance the behavior of the other three double occupancies d22,d

↑↓
12,

and d↑↑12 appear to be more difficult to interpret: One could have expected that
d↑↑12 and d↑↓12 should be the largest ones because they are energetically less ex-
pensive (V,V’) in comparison with the dmm (U). What we observe, however, is a
crossing of d↑↑12 with d11 at around V ≈ 4 eV and V ≈ 2.8 eV for β = 10 and β = 25
respectively. Moreover, d↑↓12 is lower than d11 for all interaction values. This situ-
ation can be properly understood considering also the depletion of the 3z2− r2-
band: The low values of d22, d

↑↓
12, and d↑↑12 reflect the low electron density in the

3z2 − r2-band. In order to disentangle these effects we have plotted the double
occupancies normalized by the respective density in the inset of the left panel
of Fig. 3.16 (δmm = dmm/〈nm〉2, δ↑↓12 = d↑↓12/(〈n1↑〉〈n2↓〉), and δ↑↑12 = d↑↑12/(〈n1↑〉〈n2↑〉).
In this way the hierarchy of the energetic consideration is restored and also a
more similar behavior of all renormalized double occupancies occurs. On the
other hand, the crossing we observe in the unrenormalized data can be inter-
preted as a clear signal that we are far from the situation (i) described above,
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Fig. 3.17: Noninteracting DOS of the x2 − y2 band (left) and the 3z2 − r2 band with (thick
line) and without (thin line) x2−y2-to-3z2−r2 hybridization for the homogeneous sys-
tem. The 3z2 − r2 band is even broader than in the layered case due to the additional
mobility in the z direction.

that is a simultaneous Mott-Hubbard transition in both bands.

From the layered- 2D to the homogeneous 3D model Having discussed in de-
tail the results for the quasi two–dimensional model, which was derived from
LDA calculations for the LaAlO3/LaNiO3, we devote this paragraph to the com-
parison of our 2D–model to a more homogeneous, i.e., isotropic one. Specifi-
cally that means, we no longer restrict the axial 3z2−r2–orbital in the xy–plane,
but allow for hopping along the z–axis adding the term

−2 · (tz = 0.6) cos(kz) ·
(

0 0
0 1

)
to the kinetic part of our Hamiltonian (3.3). Such a situation could be realized
for example in the non–layered structure LaNiO3. The value for tz = 0.6 in
our calculation has been estimated using the table of Slater and Koster [188]
for overlap integrals assuming a cubic symmetry. It is thus not to be seen as
a true LDA+DMFT analysis of LaNiO3 – the link to this compound is solely a
motivation for the analysis of the modified model.

The noninteracting density of states for the homogeneous model is shown in
Fig. 3.17. The main difference to the model of the layered system (see Fig.
3.12) is obviously, due to the additional mobility along the z direction, a much
broader 3z2 − r2-band. As a result of this broadening the two different bands
are much more similar in the homogeneous case. They are still not identical
because the in–plane hopping matrix has been kept constant, i.e., equal to the
LDA results for the heterostructure which is not cubic.
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Fig. 3.18: Evolution of the spectrum and the LDA+DMFT self energy (vs. Matsubara fre-
quencies) with increasing Coulomb interaction U = V −2J for the homogeneous case.
The black curve shows the x2 − y2 spectrum and the red one the 3z2 − r2 spectrum.
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In Fig. 3.18 we show the spectral functions and self energies of the homo-
geneous system. On the left hand (right hand) side the data for a metallic
(insulating) solution are plotted. They refer to V = 6.0 and V = 8.0 respectively.
This indicates that the metal insulator transition occurs for larger values of
the interaction than in the layered system as could have been expected. An-
other difference to the previous 2D case is the enhanced spectral weight of
the 3z2 − r2-band below the Fermi energy. However, there is no qualitative dif-
ference between the two bands in the transitions as is clearly demonstrated
by the behavior of the imaginary part of the selfenergy shown in the bottom
panels of Fig. 3.18: The evolution of the self energies qualitatively resemble
the one shown in Fig. 3.14 displaying the same “metallic” down–bending. The
only (quantitative) difference to be noticed w.r.t. the layered case is a larger
imaginary part of the 3z2−r2-selfenergy at low-frequencies. This can be under-
stood as a natural consequence of the closer resemblance of the bands in the
noninteracting density of states. In terms of our precedent discussion we thus
observe a situation slightly less far from the case (i) of a simultaneous double
Mott transition for both bands than for the layered model.

Predominating spin fluctuations The model calculations discussed in the pre-
vious sections were performed for the paramagnetic phase. However, one ex-
pects the system to display magnetic and/or orbital order at sufficiently low
temperatures. The treatment of such complex ordered phases is particularly
difficult in LDA+DMFT. An insight into the physics can be obtained however
by diagonalizing a “two-site version” of Hamiltonian 3.4 (with open bound-
ary conditions). The analysis of the energy levels allows to infer the relevant
fluctuations which dominate the low temperature physics of the system. On
the left-hand side of Fig. 3.19 we are showing the calculated energy level dia-
grams as a function of U for the same set of parameters we have used for the
LDA+DMFT calculation discussed in the previous section.
For the values of U considered, the mixing of the lowest energy levels with the
energy costly double occupied states is very small, i.e., these states are already
above the energy window which we plot in Fig. 3.19. More interestingly our
results show that the ground state of the two site system is always a spin sin-
glet with the two electrons residing predominantly in the same orbital (x2 − y2

) on each site. This indicates an instability of the system at low temperatures
towards a spin antiferro- and orbital ferro-ordered state. We have also studied
the effect of varying the initial level splitting for a reasonable value of U = 4.5eV
(right-hand side of Fig.3.19). The main effect of an enhancement of the crystal
field splitting is to strengthen the tendency towards orbital ordering (of the x2-
y2 and the 3z2-r2 states) eventually leading to purely one-band physics, with
only the x2-y2 orbital involved.
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Fig. 3.19: Left hand side: Energy level diagram of the two site model as a function of
the Coulomb repulsion U for ∆CF = 0.15eV (dashed line in the plot on the right-hand
side). Right hand side: Same diagram as a function of ∆CF for U = 4.5eV (dashed line
in the plot on the left-hand side). The color of the points indicates the character of
orbital ordering (oF : orbital ferro; oAF : orbital antiferro)
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A first analysis of the magnetic and orbital ordered phases in the La2NiAlO6 was
carried out in Ref. [34] considering the following superexchange Hamiltonian,
defined for a bond ij ‖ γ in the NiO2 plane:

H
(γ)
ij = (Rσ,±,± +RCTσ,±,±)(

1
2
± τ̂ (γ)

i )(
1
2
± τ̂ (γ)

j )P̂σ,ij (3.5)

with an implied sum over σ = 0, 1 and all combinations of ±,±. P̂σ,ij repre-
sents the projector to a singlet and a triplet state of two Ni3+ S = 1

2 spins while
1
2 ± τ̂

(γ)
j selects the planar orbital in the plane perpendicular to the γ axis and

the directional orbital along this axis.
Neglecting the charge transfer part of Hamiltonian (3.5) allows for a compari-
son with our two site calculation, albeit only for ∆CF = 0eV. In this way we can
perform the first numerical estimate of the Rσ,±,± coefficients of the superex-
change Hamiltonian (3.5) as a function of the parameter of the microscopic
Hamiltonian. The result of this comparison are shown in the left panel of
Fig.3.20, where for simplicity we assumed a perfectly cubic symmetry for the
overlap integrals. It is important to note here, that the orbital projectors in
Eq. (3.5) do not refer to the x2 − y2 and 3z2 − r2 basis we have used so far since
the γ axis is lying in the NiO2 plane. This is also reflected in the mixed color of
the R0

−− coefficient which corresponds to the singlet ground state.
Finally, in the right panel we show the effect of turning on the crystal field
splitting ∆CF . The changes in the color clearly indicates a rapid demixing of
the eigenstates, since the x2 − y2 and 3z2 − r2 orbitals are eigenfunctions of the
crystal field operator. This limits the applicability of Hamiltonian (3.5) to the
cases of small crystal field splittings.

As for the magnetic fluctuations, the Kugel–Khomskii–type Hamiltonian (3.5)
clearly favors an antiferromagnetic spin–alignment along each pair. Depending
on the crystal–field splitting, the preferred orbital orientation is along the bond
or –for larger crystal field– a ferro–orbital occupation of the x2 − y2 orbital.
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3 Nickel oxide superstructures

Fig. 3.20: Left hand side: Evaluation of the R-coefficients of Hamiltonian (3.5) as a func-
tion of the interaction parameter U calculated with the two site model in the x2 − y2

and 3z2 − r2 basis for ∆CF = 0eV . Right hand side: Evolution with increasing crystal
field splitting starting from the largest U value of the left panel (U = 7.5eV). The color
of the points indicates the character of orbital ordering with the same scale as in Fig.
3.19.
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4 Expanding the basis set

Differently from the previous chapters, this last one focuses more on the con-
ceptual part of the LDA+DMFT calculations.
As we will see within this chapter, the treatment of some correlated systems by
means of LDA+DMFT cannot be done satisfyingly by employing a simple DMFT
scheme we have described in chapter 1 and used in chapters 2 and 3. Hence,
it became necessary to implement extensions of the standard procedures for
the self consistent calculation. Here we present both the technical aspects as
well as the results for realistic material calculations.
Specifically we will discuss extensions of the standard DMFT basis set for the
low energy models and the connected definition of the interaction parameters.
In the first section we present the so called LDA+HartreeDMFT approach.
The basis set of a model Hamiltonian is extended to include ligands of the lo-
cal DMFT “impurity” site. Within this section we will present the new scheme
pedagogically by taking the Ni based heterostructures from chapter 3 as an
example of an application. Afterwards we turn to the high TC cuprates and
analyze Emery–like models, which incorporate one d–band and two p–bands.
It will be shown that for these models both the extension of the basis set as
well as the definition of the interaction matrix U on this extended basis set are
essential to get results which can be interpreted straightforwardly.
In the second section we will discuss another conceptual extension: A new
DMFT self consistent scheme for multilayer systems. Also this step can be un-
derstood as the extension of the DMFT basis set. This time, in order to capture
features of heterostructures which are beyond the standard DMFT scheme.
The main motivation for this implementation are heterostructures similar to
those we discussed in chapter 3. However, unlike these heterostructures of
chapter, where we encountered the situation of a quasi 2d single layer, we will
consider stacks of layers which show non–negligible inter layer hybridization
and, as a combined system, display features which are not present in the bulk
of the heterostructure constituents.
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4 Expanding the basis set

4.1 LDA+HartreeDMFT

In order to derive the low energy Hamiltonians on a localized basis set from
LDA we usually employ methods like NMTO downfolding or Wannier function
projections. To capture the essential excitations on the smallest possible basis
set these methods are the essential connection between LDA and DMFT as we
have seen in the previous chapters. One of the most frequent situations we
encounter in transition metal compounds is the incorporation of ligand (e.g.
oxygen p) degrees of freedom in effective transition metal d–state models. As
powerful a tool such downfolding method is, since it gives all the information
relevant for the low energy excitations in a very compact form, it turns out to be
necessary sometimes to “take a step back” and accept to handle more degrees
of freedom on a less entangled basis. One of the main reasons for this is the
problematic definition of the interaction matrix U on basis sets which are too
compact. The specific problems that arise can be understood intuitively with
the help of an example of onsite d– and ligand p– states: If the hybridization
of the d– and p– states is small the effective d–state Wannier functions will
resemble more or less the atomic wave functions which are quite localized.
These atomic like wave functions present a good local basis to define the matrix
of the local interaction U. Such definition of U is, however, extremely delicate in
a situation where the effective d–states carry a lot of itinerant p–character. In
these cases the Wannier functions are spread widely in space and, hence, they
are not a good basis to define the U matrix. Moreover, besides the definition of
U, there is a very simple example where a “too effective” model cannot capture
well all the important physics: The physics of charge transfer systems are
obviously beyond any single site d–states–only model.

4.1.1 Implementation of HartreeDMFT for the nickelates

The best way to introduce our first conceptual extension of the LDA+DMFT
approach is probably to discuss an example where we can compare “new”
vs. “old” results. In order to do so we will turn back to the nickel–based
LaNiO3/LaAlO3– heterostructure of the previous chapter. We recall that the
question arose, whether an effective two band model would be sufficient for a
thorough treatment of the compound, or if the oxygen p–states could become
important when the d–states are split due to Udd interaction effects and the
lower Hubbard band is lowered in energy, i.e., shifted towards the p–states.
As we stated in the introduction of chapter 3 the final answer for this ques-
tion is that for physically reasonable values of the interaction parameters the
two–band model should be sufficient for a precise description of our nickel–
based compounds. In this first part we will proof this conclusion with the
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4.1 LDA+HartreeDMFT

HartreeDMFT implementation. In a pedagogical way we can take the following
steps:

1. Set up of a suitable dp–model.

2. Solve of the full dp–problem by a static mean field Hartree calculation.

3. Finally exchange the Hartree self energies for the most important d–orbitals
by a dynamical mean field self energy.

Let us remark at this point that a combination of DMFT with a Hartree scheme
is a very natural step. In fact, it was shown by Müller Hartmann [136] that
for the Hubbard model in the DMFT limit of infinite dimensions “the Hubbard
onsite interaction is the only interaction which remains dynamical [...]. All other
interactions reduce to their Hartree approximation.” This means, we retain the
d → ∞ limit, in which our approximation becomes exact. Furthermore, the
p–states are often almost filled and, hence, not strongly correlated. Conse-
quently, this justifies a more approximative treatment of p–related interac-
tions.

Step 1: The dp–model Before directly turning to the model for the nickelates
we should consider some general aspects of model Hamiltonains which explic-
itly take into account ligand p–states. A first obvious feature is an additional
site index due to the fact that the Wannier functions of the p–states reside
on the ligand atoms. Moreover, if we look at the k–integrated local H(R = 0)
Hamiltonian, i.e., the basis in which we write our interaction matrix U, it is no
longer diagonal since the dp–basis we choose is not an eigenbasis. Rather we
have the following structure:

Hfull(R = 0) =
∫
dk

(
Hdd Hdp

Hdp Hpp

)
(4.1)

However, if the local symmetry allows, the basis can be chosen in a way that at
least the Hdd and Hpp blocks are diagonal after k–integration so that the states
can be labeled by a good local quantum number in the respective subspaces,
such as the crystal field labels. This fact is essential for a good definition of the
U matrix in the interacting part of the Hamiltonian. This interacting part, again
of the multi–orbital Hubbard kind, can capture, besides onsite d– and onsite
p–interactions, also possible dp–interactions. Further, we have to realize that,
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4 Expanding the basis set

with such definition of the U matrix on a dp–basis the double counting correc-
tion (DC) of the Hamiltonian derived from LDA becomes more complicated. In
the dp–models it does no longer correspond to a simple total energy shift and,
hence, cannot be “absorbed” by the chemical potential. We recall the DC in the
Anisimov formulation extended to the dp–basis

∆εd(p)
DC = Ūdd(pp)

(
nd(p) −

1
2

)
+ Ūdpnp(d) (4.2)

nd/p being the LDA density of the d– or p– orbital subspace and Ūml the average
interaction value for the respective subspace – see chapter 1. Hence, on the
extended basis set the DC generally corresponds to a relative shift of the d–
and p–states involved. In the self consistent loop the DC is taken into account
at the very beginning since it does not change from iteration to iteration. Let us
remark here that, when nd(d) remains unchanged compared to the LDA value
the DC term cancels the effect of Upd exactly.

After these general considerations let us now turn to the specific case of the dp–
model for the nickelate heterostructure. The dp–model was obtained by NMTO
downfolding and consists, besides the two eg–orbitals, of three additional bands
reflecting the p–degrees of freedom (px; py; pb.

z where pb.
z –denotes a bonding lin-

ear combination of the two apical ligands). In order to write down also an
analytical expression, the hopping was truncated in real space to nearest and
next nearest neighbor d–p hoppings taking also p–p hopping into account. In
the upper panel of Fig. 4.1 we show a cartoon of our model (red and blue code
the sign of the phase of the wave function) together with the corresponding
non–interacting band structure and density of states (d–states in black/red;
sum of the three p–states: gray). From the band structure and DOS plot in
the lower panels we see that there is significant hybridization between the p–
and d–states. As can be understood intuitively from our sketch the 3z2 − r2

states (red) hybridize strongest with the bonding pb.
z orbital corresponding to

the peaks around 1.8 eV and −3.4 eV, whereas the x2 − y2 states (black) in our
model hybridize only with the planar ligands corresponding to the peaks at
−0.8 eV and −4.0 eV: the overlap of the pb.

z and the x2 − y2 states is zero (no
black peak at −3.4 eV). Further, we observe a hybridization between the two eg
states similarly to the two band model; this time, however, the eg–hybridization
is explicitly mediated via d–p–d hopping processes. The Hamiltonian for this
model and its hopping amplitudes (up to next nearest neighbor) are summa-
rized in Tab. 4.1 and 4.2.
The next step is to obtain a self consistent but static mean field solution of the
problem.
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4.1 LDA+HartreeDMFT

Fig. 4.1: Upper panel: Cartoon of the five–band model for the nickelate heterostructures
including two eg orbitals and three p orbitals explicitly. Lower panels: Tight binding
band structure (right hand side) with truncated hopping (compare tables 4.1 and
4.2). The shading encodes the orbital character for x2 − y2 (black), 3z2 − r2 (red), and
p–states (gray). On the left hand side we plot the corresponding partial DOS.
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4.1 LDA+HartreeDMFT
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4 Expanding the basis set

Step 2: Hartree solution of the full problem The solution of the dp–problem by
means of “LDA+Hartree” is, in the end, almost identical with a (ferromagnetic)
LDA+U calculation with the difference that we perform the calculation already
on the downfolded/projected dp–basis. In order to perform a self consistent
Hartree solution we recall that we could employ the same self consistent way
as the DMFT depicted in Fig. 1.6 in chapter 1. However, instead of the DMFT,
we use here the very simple Hartree approach to solve the AIM in the larger
basis set. The static mean field self energy consists only of the Hartree–balloon
diagram and is, hence, only a function of the densities of the interacting or-
bitals1:

ΣH
mm =

∑
l

Ulm· < nl > (4.3)

or diagrammatically

ΣH =
(4.4)

This method is computationally not very expensive and sometimes can yield, a
good first glimpse on the relevant excitations. However, because the opening of
a gap in such static mean field theory always needs breaking of symmetry the
tendencies towards spin or orbital ordering are strongly overestimated. There-
fore the Hartree results should be handled cautiously.
For the definition of the U matrix of our nickelate dp–model we choose param-
eters describing a strongly correlated situation and estimate the values to be
in a physically reasonable range: Udd = 8.0eV, Upp = 4.0eV and we consider
different values of Upd. Let us briefly remark that the values for the U matrix in
a dp–model have to be chosen larger in comparison to effective d–only models,
since screening effects, i.e., the rearrangement of p– and d–states with respect
to one another are now taken into account explicitly. Of the above mentioned
parameters the Upd is the least obvious parameter to estimate, since it de-
pends in a very involved way on the spread of the d– and p– wave functions
and their respective overlap. One could speculate, that the less localized p–
wave functions “swallow” the d– wave functions (compare the Wannier func-
tion plots in Fig. 4.6) so that a reasonable choice may be Upd . Upp. Further,
we stress that the effect of Upd corresponds directly to a “rigid” potential shift
of d– and p–states in the limit of small hybridization. Within a full self con-
sistent calculation, however, it has more subtle effects since the value of the

1In fact there is no need to employ the DMFT–style mapping to the AIM at all since the Hartree
decoupling can directly be carried out on the LDA–constructed Hamiltonian. Nonetheless, since
we want to combine the Hartree and the DMFT approach later, the formulation of the Hartree
scheme in terms of the self consistent solution of the AIM turns out to be the most useful one.

118



4.1 LDA+HartreeDMFT

Fig. 4.2: Static mean field Hartree spectral functions for the five–band model 4.1 calcu-
lated for Udd = 8.0eV, Upp = 4.0eV and four different values of Upd. The Fermi energy
εF = 0 has been set to zero (dashed line) in these plots and the coloring encodes the
orbital character. In order to get non–trivial convergence the symmetry had to be
broken – all solutions are ferromagnetic.

self energy originating from Upd depends also on the correlation induced charge
rearrangement. Hence, we understand that these effects are not included in
the LDA results and should be taken into account explicitly. In conclusion we
state, that the part of the self energy originating from Upd corresponds to a self
consistently calculated d–p splitting.
In order to keep also the interaction parameterization simple for the present
case we do not take into account a dp–spin coupling Jdp but only an onsite
Hund’s coupling Jdd. After the self consistent calculation of the Hartree self
energy we obtain the local spectral function by calculating for each diagonal
element

A(ω)m,m = =
[
Gloc.
m,m(ω)

]
= =

[
1
VBZ

∫
BZ
d3k

1
ω + µ− ε(k)− ΣH + δi

]
m,m

(4.5)

where we directly employed the analytical continuation explicitely substituting
iων → ω + iδ with small δ.
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4 Expanding the basis set

In Fig. 4.2 we show the resulting local spectral functions (Udd = 8.0eV, Upp =
4.0eV) for four different values of the Upd. The Fermi energy εF = 0 has been
set to zero (dashed line) in these plots. We show partial spectral functions
for which the color indicates the respective character: For the x2 − y2 and the
3z2 − r2 spectra we choose the same colors, i.e. black and red, as in chapter 3,
whereas the three p–spectra have been summed up and are plotted in a gray
tone. As the spectra show, the solutions for our set of parameters are all in-
sulating, i.e., have a gap at the Fermi energy. In the static Hartree mean field
spectra this gap is an artificial spin gap. A symmetry breaking with respect
to the spin is, besides orbital ordering, the only way to obtain a non trivial2

convergence in the self consistent equations.
Leaving the problem of the “fake ordering” aside, we start our discussion with
the spectrum for the smallest value, i.e. zero, for Upd in the top left panel.
We observe that the d–spectrum is gapped and forms “Hubbard bands” sepa-
rated roughly by an energy of the order of Udd at around -7 eV and 2 eV. The
lower Hubbard band is strongly hybridizing with the p–states which reside,
very broad, in the region of -8 eV to -1 eV. Also realize, that the d–spectrum
below εF mainly consists of x2−y2 character (black), while the 3z2−r2 contribu-
tion (red) is almost entirely located at around 2 eV above εF – this observation
is in perfect agreement with the LDA+DMFT results of the previous chapter,
although the present dp–model, due to its truncated hopping, is obviously less
accurate in reproducing specific details of the band structure. However, the
pure Hartree treatment shall be considered just as a first approximation. On
the one hand, as mentioned before, it can describe spectral gaps only by or-
dering, and on the other hand the “static” nature of this approximation does
not allow for a correct description of excited states leading to systematic errors
in the spectral function even in broken symmetry phases with large U [181].
Nonetheless, in the light of the discussions of chapter 3 we can interpret the
Hartree result as an indication that the LDA+DMFT results are quite robust.
Turning back to the spectrum for Upd = 0.0 eV we find that the actual gap
in the total spectrum is a charge transfer gap of the order of 2 eV. Yet, we
should include a finite value of Upd. In the remaining three panels we show
the evolution of the spectra upon increasing Upd. The main effect of the Upd
that we can observe is a suppression of the hybridization. Already at a value of
Upd = 2.0eV = 1/2Upp = 1/4Udd and even more so for Upd = 3.0 eV we find that the
d– and p–states become almost completely separated and the gap is a generic
d–states Mott gap. This result is the first indication that the two band model
should be sufficient in order to treat the system in the vicinity of εF for rea-
sonable interaction parameters. In order to find further support for this claim
we now turn to step 3 of our pedagogical discussion: The actual HartreeDMFT
implementation.

2i.e. different from the LDA solution
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4.1 LDA+HartreeDMFT

Step3: HartreeDMFT The third and last step is very much straightforward. In
this step we are going to replace the crude Hartree approximation by the much
more accurate DMFT scheme for the most important correlations in the sys-
tem, i.e., the onsite d–correlations. In other words we treat all correlations Udd,
Upp, and Upd but assume that the smaller effects of Upp and Upd can be captured
only by the static Hartree approach, while the Udd is treated with the DMFT self
consistent solution of AIM problems. With this separation we achieve a great
improvement of our results: We incorporate completely the advantages of the
DMFT albeit keeping the p–degrees of freedom. This means we can abolish the
artificial aspect of spin or orbital orderings and, moreover, we can now describe
the entire range from weak to strong correlations. With the DMFT we obtain a
much better description of the excited states and, further, the extended basis
set now allows us not only to capture the physics of Mott–Hubbard–, but also
charge–transfer insulators and the concomitant d–p interplay.
The HartreeDMFT implementation can also be seen as an embedding of a
DMFT calculation on a larger basis allowing for a coupling between the strongly
correlated (d–states) and less correlated degrees of freedom (p–states). Let us
stress that this kind of embedding is also the first step towards a fully self con-
sistent LDA+DMFT scheme in which a DMFT self energy is calculated within
each LDA iteration.

In order to fully comprehend the implementation of the algorithm, we will
rewrite the equations of the self consistency as an extension of the equations
in chapter 1. Before the self consistency loop we have to perform an initial-
ization which consists of performing the double counting correction (4.2) and
choosing a starting self energy. Let us remark here that it is necessary to sep-
arate the self energy into two components: The full self energy is the sum of a
part ΣH associated to the Upp and Upd, which will be calculated with the static
Hartree scheme, and a part ΣDMFT associated to the Udd, which is calculated
with DMFT. Since we will employ the Hirsch Fye QMC as the impurity solver
for the calculation of ΣDMFT we have an additional correction to perform: The
Hubbard–Stratonovic shift (see Info box below)

After the initialization we write the self consistent loop:

1. The first step is, also for the HartreeDMFT, the calculation of the k–
integrated Green function – this time on the full d–p basis set:

Gloc.
full (ω) =

1
VBZ

∫
BZ
d3k

[
(ω + µ)1− ε(k)− Σdp(ω)

]−1
(4.10)

where the double underlines denote matrices on the dp–basis.
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4 Expanding the basis set

INFO: The Hubbard–Stratonovic shift in Hirsch Fye QMC

The Hirsch Fye QMC algorithm decouples the two–particle operator of the
Coulomb interaction by a Hubbard–Stratonovic transformation (HST). For the
simplification of the decoupling we have to pay with an additional summation
over an auxiliary field of “spins” which is done by Monte Carlo sampling. The
crucial point is that for the HST we decouple a term which reads for the one
band case:

U

2

∑
σ,σ′,σ 6=σ′

(nσ + nσ′)2 =
U

2

∑
σ,σ′,σ 6=σ′

(
−2nσnσ′ + n2

σ + n2
σ′
)

(4.6)

where n2
σ = nσ. The first summand corresponds to the interaction part of

the Hubbard Hamiltonian which means that we have to compensate for an
additional term:

U

2

∑
σ,σ′,σ 6=σ′

(nσ + nσ′) =
U

2
·N (4.7)

N being the total number of interacting electrons. The associated energy
change can then be calculated as the derivative of (4.7) with respect to the
number of electrons N , yielding

∆εHS
1band =

∂

∂N

U

2
·N =

U

2
(4.8)

In a general multiband case with orbital dependent U the expression has to be
extended correspondingly:

∆εHS
m,σ =

1
2

′∑
m′,σ′

Uσ,σ
′

m,m′ (4.9)

where the prime above the sum denotes mσ 6= m′σ′ and Uσ,σ
′

m,m′ is the interaction
parameter of the m,σ electrons with m′, σ′ electrons. As mentioned before ∆εHS
can be neglected in a d–states only DMFT when the interaction parameter U
is the same for all orbitals, since it can be absorbed by the chemical potential.
However, as soon as we treat the d–d interaction differently compared to d–p or
p–p, like in the HartreeDMFT we must take this shift (of the d–potential) into
account explicitly.
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4.1 LDA+HartreeDMFT

2. Next, we separate the local Green function for the d–subspace:

Gloc.
d (ω) = Pd Gloc.

full (ω) (4.11)

where Pd is the Projector on the d–subspace. We stress here, that due to
the d–p hybridization, encoded in the Hamitonian ε(k) and the inversion
of Eq. 4.10 the information about the p–ligands is not lost but captured
by Gloc.

d (ω).

3. Now, in complete analogy to d–states only DMFT, we calculate the Weiss
field for the impurity model (only on the d–subspace):[

G0(iων)
]−1

=
[
Gd(ω)

]−1 + ΣDMFT
d (ω) (4.12)

where ΣDMFT
d (ω) denotes only the DMFT part of the full self energy Σdp(ω).

This means that the static part of the self energy ΣH, which is not explic-
itly taken into account, enters the AIM nonetheless. Its information, the
respective Hartree potentials for each orbital, is contained in the Weiss
field.

4. With Gσ0
lm(iων) we, exactly as before, calculate a new Gloc.

d and with the
inverse of Eq. (4.12) we obtain a new ΣDMFT

d (ω).

5. This leaves us with the calculation of the static ΣH for which we simply
have to calculate the orbital dependent density and apply Eq. (4.3).

6. Now we have to assemble the new Σnew
dp (ω) = ΣDMFT

d (ω) + ΣH − εHS where
we also take into account the HS shift (see Info). Finally we close the
self consistent loop by comparing Σnew

dp (ω) and Σold
dp (ω) and iterating until

convergency is reached.

In Fig. 4.3 we show a compact sketch of our HartreeDMFT scheme. We start
on the top left with the choice of a starting self energy which enters the self
consistent loop to obtain a converged solution after a sufficient number of
iterations.

Let us now discuss the results of the HartreeDMFT for the nickelate model. In

123



4 Expanding the basis set

Σ
start (ω

)
0

0
Σ

start

G
d (ω

)
G

h
yb

. (ω
)

G
h

yb
. (ω

)
G

p (ω
)

E
q.

(4
.3

):
Σ

h
ar.

d
/
p

=
V

Σ
n

ew (ω
)

0

0
Σ

n
ew

E
q.

(4
.1

2
):

A
IM

for
th

e
d
–su

b
sp

ace

p
ostp

rocessin
g

E
q.

(4
.1

0
)

S
elf

con
sisten

cy:
E

q.
(4

.1
1
)

co
n
verged

X

Fig
.4.3:S

ch
em

e
of

th
e

H
artreeD

M
F

T
im

p
lem

en
tation

.
T
h

e
d
ifferen

ces
to

stan
d
ard

D
M

F
T

are
th

e
p
rojection

b
efore

th
e

calcu
lation

of
th

e
im

p
u

rity
p
rob

lem
W

eiss
fi
eld

for
th

e
d
–su

b
sp

ace
(b

lu
e

b
ox)

an
d

th
e

H
artree

treatm
en

t
of

less
corre-

lated
d
egrees

of
freed

om
(w

h
ite

b
ox)

124



4.1 LDA+HartreeDMFT

Fig. 4.4: LDA+HartreeDMFT spectral functions for the five band model calculated for
Udd = 10 eV, Upp = 5 eV, and Upd = 0 eV (left hand side) or Upd = Upp (right hand side).
The interaction parameters for the HartreeDMFT were chosen slightly larger than in
the Hartree calculation due to the differences of the static and dynamical mean field
theories [181].

Fig. 4.4 we show the spectral functions for the dp–model. The interaction pa-
rameters for the HartreeDMFT were chosen slightly larger than in the Hartree
calculation due to the above mentioned differences of the static and dynamical
mean field theories [181]. In this case we choose the parameters Udd = 10 eV,
Upp = 5 eV, and again four different values for Upd. The most striking observa-
tion is that we now obtain a metal to insulator transition (MIT) upon increasing
the value of Upd. Moreover, our results are fully paramagnetic without order-
ing. Such analysis of the MIT from a correlated metal to an insulating state is
impossible by means of the static Hartree calculation. The HartreeDMFT spec-
tral function for Upd = 0 eV shows strong dp–hybridization at εF and as a result
a not so strongly correlated, metallic, spectrum for the d–states with coherent
quasi particle excitations. However, if we restrict the charge transfer between
d– and p–states by means of a (reasonably chosen) Upd, assuming that it is not
for free to move the electrons around, we obtain very strongly correlated and
even insulating solutions. The features of the insulating solution is in qual-
itative agreement with the Hartree results shown in Fig. 4.2 (apart from the
artificial ordering in Hartree, of course), and thus, the results for the two–band
model of the previous chapter. The 3z2 − r2 band is pushed above the Fermi
energy due to the enhancement of the “effective crystal field splitting” and the
conclusions discussed in chapter 3 remain valid.

In this section we presented the implementation of the so called HartreeDMFT
scheme using the example of a dp–model for the nickelates. We have learned
how a full self consistent loop is set up and how certain interactions can be
treated separately with more (DMFT) or less (Hartree) expensive calculations
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4 Expanding the basis set

Fig. 4.5: Cartoon of the “historic” Emery model
(1987 [54]) including only d–p hopping

depending on their importance for the actual low energy excitations of the
system.

4.1.2 The cuprate “(extended) Emery” model: a revision

Let us now turn to a system, where we expect the dp–model can really yield
different results from an effective d–model: the high TC cuprates.
A popular tight–binding Hamiltonian for the high TC cuprates is a 3–band
model suggested by Emery in 1987 [54]. Let us review the history of this
model and also point out the connection to the planar/axial–orbital model for
the cuprates which we discussed in the first section of chapter 3. The Emery
model consists of one planar Cu x2 − y2 band, two oxygen px and py bands and
takes into account a d–p hopping. It is thus the minimal model in order to
describe the charge transfer insulating state and, moreover, the physics of a
Zhang Rice singlet [222]. These features are obviously beyond a description
of the cuprates within an effective single band model. However, Andersen et
al. [5] concluded from downfolding ab initio LDA bandstructure that the orig-
inal model as described in [54] should be extended. The extensions that are
proposed in [5] originate basically from the inclusion of the axial degree of
freedom which was shown to be the material–dependent quantity by Pavarini
et al. [154]. Specifically, the work of Andersen et al. starts by constructing
an eight band Hamiltonian from which all high energy degrees of freedom have
been integrated out. The eight orbitals of this Hamiltonian are separated into
a 4 × 4 σ–bonding block of Cu 3dx2−y2 , 01 2px, 02 2py, as well as Cu 4s (with
some Cu 3d3z2−r2 character), and another 4×4 π–bonding block of Cu 3dxz, Cu
3dyz, 01 2pz, and 02 2pz. The generic Hamiltonian for the CuO2 planes is the
4×4 σ–block, since it contains the conduction band. Further, due to symmetry
reasons the σ– and the π–block do not hybridize in the limit of flat planes [5].
Within the four band σ–Hamiltonian the Cu 4s plays the special role of the axial
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4.1 LDA+HartreeDMFT

ĤLDA
pd =

∑
klmσ

hLDA
lm (k)c†lσ(k)cmσ(k)

hLDA(k)


hd(k) hd,p1(k) hd,p2(k)

hp1,d(k) hp1(k) hp1,p2(k)

hp2,d(k) hp2,p1(k) hp2(k)



hd(k) = εd + 2tdd(Cos(kx) + Cos(ky)) + 4t′ddCos(kx)Cos(ky)

hp1(k) = εp + 2.0(t′ppCos(kx) + t′′ppCos(ky) + 2t′′′ppCos(kx)Cos(ky))

hp2(k) = εp + 2.0(t′ppCos(ky) + t′′ppCos(kx) + 2t′′′ppCos(ky)Cos(kx))

hd,p1(k) = 2((tpd + 2t′pdCos(ky))Sin(kx/2) + (t′′pd + 2t′′′pdCos(ky))Sin(3kx/2))

hd,p2(k) = −2.0((tpd + 2t′pdCos(kx))Sin(ky/2) + (t′′pd + 2t′′′pdCos(kx))Sin(3ky/2))

hp1,p2(k) = −4.0(tppSin(kx/2)Sin(ky/2) + t′′′′pp (Sin(3kx/2)Sin(ky/2)

+Sin(3ky/2)Sin(kx/2)))

Tab. 4.3: Extended Emery model [5] including p–p hopping mediated by the material
dependent axial degree of freedom.

state reflecting the material–dependence as we know from our previous studies
(see chapter 3). In the two band planar/axial model the degrees of freedom of
the σ–Oxygen states were folded into the planar x2 − y2 conduction band. The
three band Emery–like model is, instead, obtained by folding the Cu 4s axial
degrees of freedom down to the oxygen bands, resulting in an additional p–p
hopping and a renormalization of the onsite p–energy. This means that the
material dependence we described in chapter 3 is now encoded in the tails of
the oxygen bands, i.e., the renormalized hopping parameters and specifically
the tpp. The resulting Hamiltonian can be written analytically and we give its
elements in Tab. 4.3.

Motivation We performed HartreeDMFT calculations for the undoped La2CuO4

(LSCO) compound3. The analysis was mainly motivated by inconsistencies of

3Recall that LSCO is a strongly correlated insulator for which the LDA yields a metallic ground
state
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4 Expanding the basis set

the results and the parameter choices of other recent studies.
Let us start by reporting the NMTO downfolding results and the corresponding
hopping parameters of Hamiltonian in Tab. 4.3. In Figs. 4.6 & 4.7 we show the
NMTO bands from Saha–Dasgupta et al. [179] plotted on top of the LDA bands
(light blue) for N=0 (Fig. 4.6) and N=1 (Fig. 4.7) as well as the correspond-
ing hopping parameters. The color codes the orbital character: 3d x2 − y2 is
black, whereas the p–states are summarized and plotted in red – color mixing
corresponds to orbital hybridization. The difference of the N=0 and N=1 both
models is the energy range in which they reproduce the cuprate LDA band-
structure (light blue lines): While the N=0 model only has one fixed energy,
namely the Fermi energy εF, the N=1 model was fixed to εF and to the energy of
the bottom of the oxygen p–bands at around −8 eV. By having to span a wider
energy range, the N=1 orbitals are somewhat less localized, and consequently
have longer–ranged hoppings, than the N=0 orbitals. A thorough discussion
on the relations and trends of the hopping parameters can be found in [103]
and [179]. In our study we will consider first the N=0 and then the N=1 model
in order to address an issue of central interest:
The most problematic parameter in recent studies [49, 213] was the choice of
the d–p splitting εd − εp = ∆dp. While the NMTO downfolding yields a value
of ∆dp = 0.45 eV (N=0) or ∆dp = 0.96 eV (N=1) it turns out that the many–body
treatments which include correlation effects fail to reproduce the insulating be-
havior of the undoped LSCO so that, in order to fix this problem, the ∆dp was
increased “by hand” to values of the order of ∆dp ≈ 3 eV [103, 213] or it was
chosen as a variable parameter [49]. Further, Kent et al. [103] pointed out that
previous justifications of such enhancement of ∆dp by means of constrained
LDA calculations for La2CuO4 are problematic due to a misleading assumption
of the electron count (for details see the discussion in [103] page 3 left column).
Our HartreeDMFT results for both (N=0 and N=1)MTO models can be summa-
rized in two conclusions:

1. The d–p interaction Upd which leads to a self consistently determined level
shift can drive the system insulating within the HartreeDMFT approach
and open the charge transfer gap (including the Zhang Rice singlet states).

2. The critical values of the interaction parameters Uml for the MIT are quite
large for the original NMTO set ([103] and [179]) of parameters. With this
observation we can actually speculate that the insulating antiferromag-
netic ground state of La2CuO4 is, in fact, somewhat less strongly corre-
lated and non–local correlations, which are beyond the single site DMFT,
have to be taken into account for a thorough description.
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4.1 LDA+HartreeDMFT

εd − εp =0.43eV tdd =− 0.10eV tpd =0.96eV t′pd =− 0.1eV

tpp =0.15eV t′pp =− 0.24eV t′′pp =0.02eV t′′′pp =0.11eV

Fig. 4.6: (N=0)MTO model for La2CuO4. Top panel: (N=0)MTO orbitals for the Cu 3d
x2−y2 states (left hand side) and the O 2p x, y states (right hand side). The oxygen p–
states “swallow” the copper sites calling for the consideration of a dp interaction Upd.
Lower panel: (N=0)MTO band structure (left hand side) on top of the LMTO bands
(light blue) and the corresponding density of states (right hand side). The shading
encodes the band character. Bottom table: all considered hoppings taken from Kent
et al. [103]
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4 Expanding the basis set

εd − εp =0.95eV tdd =0.15eV tpd =1.48eV t′pd =0.08eV

tpp =0.91eV t′pp =0.03eV t′′pp =0.15eV t′′′pp =0.03eV

Fig. 4.7: (N=1)MTO model for La2CuO4. Top panel: (N=1)MTO band structure (left hand
side) on top of the LMTO bands (light blue) and the corresponding density of states
(right hand side). The shading encodes the band character. Bottom table: all consid-
ered hoppings taken from Kent et al. [103]
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4.1 LDA+HartreeDMFT

La2CuO4: HartreeDMFT results Let us start with the results for the (N=0)MTO
model (see bands in Fig. 4.6 left hand side). In order to illustrate the model
we show the Wannier functions related to the (N=0)model in Fig. 4.6 upper
panel: Centered on the (green) Cu sites we find the 3d Cu x2 − y2 orbital and
the O 2p–functions centered on the (violet) oxygen sites. From this picture
we intuitively understand that a rearrangement of the d–charge should couple
back to the oxygen p–states without neglecting their respective repulsion: The
oxygen 2p–function “swallows” the d–site almost entirely; p and d states are
hence close by and their mutual repulsion, i.e. Upd, becomes relevant. In the
lower panel we show the Wannier functions for HgBa2CuO4 which present an
even stronger overlap. As a side remark we recall that the difference between
La2CuO4 and HgBa2CuO4 is the position of the axial Cu 4s band, which in the
three band model is reflected in the tails of the p–states which we can observe
in Fig. 4.6.

We performed the HartreeDMFT calculations in the same way as described
in the previous section. For the interaction parameters we choose Udd = 10
eV, Upp = 5 eV, and take different values of Upd ranging from Upd = 0 eV to
Upd = Upp = 5 eV. The resulting spectral functions are shown in Fig. 4.8. As
in the bandstructure plots, the color of the spectral function codes the orbital
character. Let us start from the spectrum for Upd = 0 eV which is plotted in
the top left panel. Although the parameters Udd = 10 eV and Upp = 5 eV are
by no means small compared to the bandwidth, we observe a rather uncor-
related spectral function which resembles the non–interacting DOS (Fig. 4.6).
The main reason for this is that, due to the d–p hybridization, the filling of
each band and, above all of the d–band, is far from an integer value. Upon in-
creasing the value for Upd this hybridization decreases, as it can be seen in the
spectra, since the charge transfer from d–states to p–states is now connected
with a potential shift of the respective states of the order of Upd. Eventually,
for values Upd ≈ Upp, we observe a rather sudden metal to insulator transition
between Upd = 3 eV and Upd = 4 eV. The last two spectra in the bottom panels
of Fig. 4.8 show a gap between an d–states “upper Hubbard band” with some
p–hybridization above the Fermi energy εF and a mixed d–p peak around −1
eV (for Upd = 4 eV) or −2 eV (for Upd = 4 eV). This mixed peak can, in fact, be
associated with the Zhang Rice states (Cu d–hole, O p–hole pair4) and have
been also observed also in the previous studies [49, 213] ∆dp was taken as
a “free” parameter. The “lower Hubbard band” is quite broad and centered
around ∼ −7 eV, whereas most of the p–spectral weight is located in a large
peak around −4 eV (Upd = 4 eV) and −5 eV (Upd = 5 eV).
In summary, HartreeDMFT yields an insulating state for the original (N=0)MTO
parameters without the artificial enhancement of the d–p splitting. Instead, we
assumed a finite value of Upd which, in a self consistent way, leads to a sup-

4However, in the paramagnetic calculations these states are not a singlet.
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Fig. 4.8: LDA+HartreeDMFT spectral functions for the La2CuO4 (N=0)MTO model for
Udd = 10 eV, Upp = 5 eV and six different values of Upd 5 Upp. For Upd ' 4 eV
HartreeDMFT yields an insulating state for the original (N=0)MTO parameters with-
out the need to artificially enhance the d–p splitting [103].

pression of d–p hybridization driving the metal to insulator transition. Yet,
we should remark two issues: First of all the transition occurs at rather large
values for the interaction parameters and, secondly, we have to realize that
the (N=0)MTO was designed to reproduce the cuprate bands only around the
Fermi energy [103]. Hence, it is questionable if the (N=0)MTO really yields a
good basis for a study of excitations on an energy scale of some eV above and
below the Fermi energy such as the d–p interplay. Therefore, let us turn to the
HartreeDMFT results of the (N=1)MTO model.
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4.1 LDA+HartreeDMFT

Fig. 4.9: LDA+HartreeDMFT spectral functions for the La2CuO4 (N=1)MTO model for
Udd = 10 eV, Upp = 5 eV, and Upd = 5 eV (left hand side) and Udd = 13 eV, Upp = 7 eV,
and Upd = 7 eV. For the La2CuO4 (N=1)MTO model only unrealistically large values of
the interaction parameters yield an insulating solution.

We recall that the N=1 model has been fixed to the Fermi energy εF and,
moreover, to an energy at the bottom of the oxygen p–bands at around −8
eV (Fig. 4.7). As mentioned above, the N=1 orbitals are less localized, and con-
sequently have somewhat longer–ranged hoppings, than the N=0 orbitals in
order to reproduce the band structure on a larger energy range. Hence, the
values for the interaction parameters should be correspondingly reduced as a
consequence of the less localized character of the orbitals. Yet, it turned out,
that for the (N=1)MTO we obtain much more metallic solutions. The system
remains metallic even for the same interaction parameters as we used for the
N=0 model. In Fig. 4.9 we show the HartreeDMFT spectral functions for the
N=1 model: In the left panel, we plotted the spectrum for the parameter set
Udd = 10 eV, Upp = 5 eV, and Upd = 5 eV, i.e., the parameter set where the N=0
model already showed a gap of ≈ 1 eV. In order to obtain an insulating solution
(see right panel of Fig. 4.9), we had to increase the interaction parameters to
values of Udd = 13 eV, Upp = 7 eV, and Upd = 7 eV, which are physically no longer
justifiable. Moreover, the insulating spectrum no longer displays the physics of
a charge transfer insulator, since the Cu d–“lower Hubbard band” is above the
O p–spectrum! Conclusively we state that the results for the N=1 model within
the HartreeDMFT approach are not in agreement with experimental evidence
of a spectral gap in undoped cuprates in a physically reasonable parameter
range.
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Conclusion Let us stress again that our main goal was to perform calculations
based on the original NMTO parameters without artificially changing them. We
have seen that, if orbital overlaps are strong, the assumption of an interorbital
interaction Upd can be extremely important, since it yields a self consistently
determined level splitting.
Nonetheless, the results for the N=1 model showed that for realistic parameters
the half filled antiferromagnetic insulating phase cannot be comprehended by
a single site DMFT or even HartreeDMFT approach. Based on this observation
we speculate that it might well be, that non–local correlation effects beyond
the reach of DMFT or HartreeDMFT play an important role in the cuprates due
to their strong anisotropy. The idea that the insulating phase of the undoped
cuprates cannot be described completely in terms of a strong coupling system
was recently also put forward by Comanac et al. [40] who analyzed experimen-
tal data for the optical conductivity of La2CuO4.

4.2 Multilayer DMFT

The final project we will address in this work leads us to an extension of the
single site DMFT intended for calculations of strongly correlated multi–layered
heterostructures.

heterostructures in experiment and theory As we already mentioned in chap-
ter 3, in recent years there has been a growing interest in the electronic prop-
erties of surfaces and interfaces of strongly correlated materials[45]. For many
compounds experimentally obtained photoemission spectra no longer agree
with theoretically derived bulk spectra of a number of transition–metal oxides.
This discrepancy has been attributed to changes in the electronic structure at
the surface of these materials [123, 119, 185, 186]. It was suggested to exploit
such effects and to use the interfaces of heterostructures as novel correlated
devices [146, 194, 61, 117, 212, 111]. Also within this work (chapter 3) we
have seen that material engineering of transition metal oxides bears promising
opportunities. For instance, the probably best–known example for remarkable
heterostructure physics is the interface between LaTiO3 and SrTiO3, which
exhibits metallic behavior in spite of the fact that the two constituent bulk
materials are insulators [146].

Also on the theoretical side, inhomogeneous strongly correlated layered sys-
tems have been subject to studies within the DMFT approach. Potthoff and
Nolting [158, 160, 159] investigated a surface metal–insulator transition of the
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single-band Hubbard model, i.e. an interface to vacuum. Within a three–
band model for t2g valence bands of cubic transition metal oxides Liebsch
[113] and Ishida [91] showed that surface electrons experience stronger corre-
lation effects due to a delicate interplay of level–splittings, hopping amplitudes,
and coulombic interactions. Further single–band Hubbard model studies by
Helmes et al. [84] and Okamoto and Millis [147, 148, 149] considered strongly
correlated Mott insulators “sandwiched” by either metallic or band–insulating
layers. Analogous calculations for heterostructures consisting of correlated
model systems were also carried out by Kancharla and Dagotto [99] and Rüegg
et al. [176].
Assuming inhomogeneities or semi–infinite (e.g. surfaces or interfaces) sys-
tems breaks the symmetry in the direction normal to the layer planes and
presents an additional challenge solving such systems, which is frequently
done by employing finite size5 models: Freericks [63, 38, 64] solved the DMFT
equation using the Falikov–Kimball Hamiltonian for a doped Mott insulator
sandwiched between two semi–infinite metals, considering 30 layers in each of
the metallic leads and up to 80 layers in the barrier region explicitly. Ishida and
Liebsch [90] recently suggested a so called tight binding embedding approach
to handle a finite number of correlated layers between substrates which, them-
selves can be correlated.

the layer DMFT scheme In our work we will, however, as a first step assume
periodic stacks of layers so that the symmetry of the system is not broken if we
simply enlarge our unit cell. In this case we can still define k⊥ perpendicular
to the layer planes as a good quantum number. Such a situation is for exam-
ple realized in the case of the nickelate–based 1/1 stacks LaAlO3/LaNiO3 we
discussed in chapter 3.
In the case of these nickelates though, the insulating LaAlO3 layers were de-
signed in order to confine the LaNiO3 eg bands and yield a quasi two di-
mensional system. Hence, we were able to perform LDA+DMFT calculations
without taking into account the LaAlO3 layers explicitly, since excitations con-
nected to these degrees of freedom were far above the energy scale that we are
interested in.
This, however, does not always have to be the case. It depends on the com-
position of the “sandwiched” materials. In order to also account for a more
general situation of interplay between different layers, the following self con-
sistent solution for periodic stacks could be performed: The onsite interaction
of each layer should be treated with the DMFT style mapping on an impurity
model, but all layers should be solved simultaneously and, most importantly,
they should be allowed to “communicate” via hopping or interactions within
the self consistent iterations.

5i.e. finite number of layers along the z–direction
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Like in the previous section, we follow again the philosophy of embedding a
single site DMFT iteration in a self consistent loop to solve a problem on a
large basis set. Hence, also for the layer DMFT we employ projections on local
subspaces (first the layers and then the impurity sites within the layers) of the
Green function and perform DMFT calculations within these subspaces. Let
us line out the procedure in the same schematic way used before:

1. As initialization we have to take care of the double counting corrections
and choose a starting self energy. Since, in general, we would like to
perform a full HartreeDMFT for each layer, we again separate the self
energy into its components: The full self energy is the sum of a static
ΣH and a dynamic part ΣDMFT. Additionally the self energy and also the
Green function get a layer index since we want to define a different ki-
netic energy and interaction strength on each layer (roman numerals in
the following discussion). In order to calculate the full Green function we
integrate over k:

Gloc.
full (ω) =

1
VBZ

∫
BZ
d3k

[
(ω + µ)1− ε(k)− Σfull(ω)

]−1
(4.13)

where the double lines now denote not only spin and orbital degrees of
freedom, but also incorporate the layer index `. Hence, the dispersion
has the form 

ε1(k) . . . εN,1(k)
...

. . .
...

ε1,`(k) ε`(k) εN,`(k)
...

. . .
...

ε1,N (k) . . . εN (k)

 (4.14)

and we assume the chemical potential µ to be the same for all layers.

2. Next, we separate the local Green function for the layers:

Gloc.
` (ω) = P` Gloc.

full(ω) (4.15)

where P` is the Projector on the subspace of layer “`”. As we described
already in the HartreeDMFT the information about the other layers (or
“Hartree only” orbitals) is encoded, also in this case, in the local Green
function due to the inversion in (4.13)
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3. Once we have separated the layer Green functions, we construct the Weiss
field for each layer dependent impurity model whereby the information of
the other layers (possibly even interlayer interaction) is included through
the Weiss field [

G0
`,d(iων)

]−1

=
[
Gloc.
`,d (ω)

]−1
+ ΣDMFT

`,d (ω) (4.16)

where Gloc.
`,d (ω) = Pd Gloc.

` (ω), i.e., the projection onto the subspace that
should be treated with DMFT. We have to subtract only the DMFT part
of the self energy on the d–subspace of layer ` (not the Hartree part). In
other words we must only subtract what the corresponding solution of the
impurity problem gives back to us: ΣDMFT

`,d (ω)

4. The rest of the loop is straight forward: after the calculation of a possible
Hartree self energy accounting for d–p or even interlayer interaction we
assemble the total self energy and start over until we are converged.

In Fig. 4.10 we show a visualization of the layer DMFT scheme flow in a dia-
grammatic way.

4.2.1 periodic stacks

Let us now take an example in order to illustrate how the layer DMFT scheme
works in our implementation. A good and simple toy model is a periodic stack
of layers in a “...ABABAB...” fashion. In Fig. 4.11 on the left hand side we show
a sketch of this situation. Moreover let us assume that the compound A (light
blue) would be a strongly correlated Mott insulator (UA > Ucrit.) in the bulk as
it is sketched on the right hand side of the figure. Compound B, on the other
hand, we assume to be a band insulator as a bulk compound. Further, for the
layers we assume a two–dimensional cubic dispersion relations with intralayer
hoppings of tAintra = tBintra = 0.25 eV which leads to a bandwidth of 2 eV for each
(isolated) layer. As interaction parameters we assume for both layers UA/B = 5
eV, which is chosen to be larger than the critical U value for the Mott transition
in the bulk compound A.
Now we bring the two compounds together in a 1/1 layer stack (see Fig. 4.11)
and allow for an inter–layer hybridization εinterl. = 2tintercos(kz) (as in Eq. (4.14))
with tinter = 0.1 eV. The chemical potential of such heterostructure is fixed by
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4.2 Multilayer DMFT

Fig. 4.11: Left hand side: Cartoon of a periodic . . . ABABA . . . stack of layers. Each
layer may have different intralayer hoppings (bright blue and dark blue color) and
local interaction parameters UA 6= UB. Moreover, we consider the interlayer hopping
tinter. Right hand side: schematic sketch of the layer spectral functions. As bulk
materials the compound A and B may have different chemical potentials, i.e., different
filling. We consider compound A to be half–filled while compound B should have a
full band below its Fermi energy, i.e., it is a band insulator (first row). Furthermore,
we consider compound A to be a strongly correlated Mott insulator (second row).
Stacking those two insulators in a layered structure turns out to yield a metallic
solution due to interlayer doping as we sketch it in the bottom row
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4 Expanding the basis set

Fig. 4.12: Layer DMFT spectral functions. Left hand side: DMFT results for the bulk
systems of the Mott insulating compound A and the band insulating compound B
(compare sketch in Fig. 4.11)

the filling of the total system which yields three electrons per unit cell. More-
over, we include a difference in the onsite energy of layer B with respect to layer
A of εA − εB = ∆E = 1.5 eV. Let us remark that in a realistic case the value of
∆E which will depend on the details of the structure, as well as the hopping
parameters should be extracted, from an ab initio LDA calculation. In Fig. 4.12
we show on the left hand side the DMFT spectral functions of compound A
and compound B in the bulk which we find to be Mott– and band– insulating
respectively. On the right hand side we show the result of our layer DMFT cal-
culations for the spectrum of the periodic stack of layers . . . ABABA . . . which
shows instead clear metallic behavior. Note that the coherent quasiparticle ex-
citations around the Fermi energy εF have a mixed character, i.e., both layers
become metallic in the stacked configuration. This insulator to metal transition
from bulk to heterostructure can be understood as a doping due to “inter–layer
charge exchange”: In the stacked structure the charge is arranged differently
compared to the bulk compounds mainly due to the differences between the
bulk and heterostructure onsite energy. This charge rearrangement can be in-
terpreted as the electron doping of the Mott–insulating A layers or, vice versa,
as the hole doping of the band–insulating B layers – in both cases we effec-
tively have a “doping” driven MIT. In spite of the simplicity of this toy model we
can comprehend physics which is experimentally observed: The interfaces of
LaTiO3 and SrTiO3 [146] as well as LaAlO3 and SrTiO3 [144, 145] show metal-
lic conductivity, although the respective bulk materials are Mott– (LTO) and
band–insulating (STO, LAO).

Our new layer DMFT implementation, hence, is capable of treating models
which incorporate complex interplay of the constituents in a strongly corre-
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4.2 Multilayer DMFT

lated heterostructure. By means of the projections we capture a large number
of important degrees of freedom in the full self consistent solution of the prob-
lem similarly to the steps we took in the implementation of the HartreeDMFT.
Compared to the HartreeDMFT the layer DMFT implementation is yet “one level
higher”, since we can now compute a HartreeDMFT for each layer which cou-
ples to all the other HartreeDMFT layers in the full self consistency of the layer
DMFT. Expanding the DMFT basis set even further along these lines would
eventually lead us to a self consistency loop as large as the LDA itself, i.e to a
full self consistent LDA+DMFT scheme. The implementation of such a scheme
is subject to forefront research in the field of ab initio calculations for strongly
correlated systems allowing finally for a complete treatment of electronic cor-
relations an their feedback effects on the crystal structure. The extensions of
the standard DMFT which we presented in this final chapter of the thesis show
the path along which we can achive this important goal.
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5 Summary & Outlook

The main topic of this work was i) the improvement of understanding correlated
electron systems, ii) the study of how new knowledge can be exploited in order
to design solids to suit our needs, and iii) the development of new methods in
order to provide a sound theoretical fundament. These aspects are reflected in
the three chapters following the pedagogical introduction.

In chapter 2 we encountered two well known correlated materials, vanadium
sesquioxide V2O3 and nickel disulfide NiS2. In order to better understand the
non–trivial ground states of these systems, we analyzed carefully the metal to
insulator transitions driven by external parameters like pressure and doping.
For both systems we were able to theoretically interpret experimental data,
proving previous simplifying assumptions concerning the microscopic mecha-
nisms (pressure ↔ doping equivalence) to be incorrect.
For pure and Cr doped V2O3 we performed a novel combined theoretical anal-
ysis of state–of–the–art LDA+DMFT together with full–multiplet configuration–
interaction cluster calculations for the interpretation of x–ray absorption spec-
tra on the vanadium K–edge. In this way, we were able to find a robust probe
for the ground state which could be employed also for high pressure exper-
iments. Previous probe techniques (on the V–L edge) were not applicable in
the high pressure regime, so that our results filled an important piece in the
ground state puzzle of V2O3. Furthermore, we analyzed the region in the phase
diagram close to the Mott transition and confirmed a phase mixture scenario
which was previously only speculative. In future projects, we plan to study the
modeling of mixed state phases by means of DMFT schemes which are capable
of including disorder potentials.

Chapter 3 was devoted to exploiting the knowledge the cuprate supercon-
ductors in order to find candidates for non–cuprate high temperature su-
perconductivity. In that respect we investigated nickel–based “bulk” and ar-
tificial “heterostructures”. For the bulk systems we have shown that previ-
ously discarded compounds, namely the LnSrNiO4 series, have a potential for
cuprate–like superconductivity which may have been underestimated. In the
heterostructure compound LaAlO3/LaNiO3, we find beside antiferromagnetic
fluctuations, a Fermi surface structure very similar to the one of the cuprates.
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5 Summary & Outlook

Hence, the basic ingredients of high TC superconductivity according to many
suggested scenarios. This work triggered several experimental efforts to realize
nickel–based high TC superconductors. Collaboration with the experimental
groups yields a large spectrum of possible studies.

The last chapter focused on the methodological advances of this work. We
implemented the HartreeDMFT scheme in order to efficiently treat systems
where the minimal low energy models allow for a separation into a correlated
subspace, treated with DMFT, and the remaining degrees of freedom which
can be treated more approximative by static Hartree mean field theory. With
this novel scheme we revisited the Emery–like three band models for La2CuO4,
and carefully analyzed two different NMTO ab initio models. From our study
we concluded that artificially introduced parameter changes relative to the ab
initio derived NMTO models of previous studies could be avoided by taking
into account an additional interaction between oxygen p– and copper d–states.
Moreover, our study yields indication, that the antiferromagnetic insulating
ground state of La2CuO4 is not a simple local U Mott–insulating state but
possibly connected to longer range correlations beyond the single site DMFT
approach.
In the second part of the last chapter we introduced a DMFT scheme for the
calculation of layered heterostructures. The implementation was motivated by
fast developing synthesis technology. With the calculation of a toy model for
a periodically stacked compound we showed, how dramatic the interplay of
strongly correlated materials in a heterostructure changes the physics with re-
spect to the bulk compounds of its constituents.
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4r Physik B
Condensed Matter, 104(2), 265 (1997)

[159] M. Potthoff and W. Nolting, Metallic surface of a Mott insulator–Mott insu-
lating surface of a metal, Phys. Rev. B, 60(11), 7834 (1999)

[160] M. Potthoff and W. Nolting, Surface metal-insulator transition in the Hub-
bard model, Phys. Rev. B, 59, 2549 (1999)

[161] T. Pruschke, D. L. Cox, and M. Jarrell, Hubbard model at infinite di-
mensions: Thermodynamic and transport properties, Phys. Rev. B, 47(7),
3553 (1993)

[162] T. Pruschke, D. L. Cox, and M. Jarrell, Transport Properties of the
Infinite-Dimensional Hubbard Model, EPL (Europhysics Letters), 21(5),
593 (1993)

[163] S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezio, Supercon-
ductivity at 94 K in HgBa2Cu04+δ, Nature, 362(6417), 226 (1993)

[164] M. M. Qazilbash, M. Brehm, B. G. Chae, P.-C. Ho, G. O. Andreev, B. J.
Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and
D. N. Basov, Mott Transition in VO2 Revealed by Infrared Spectroscopy
and Nano-Imaging, Science, 318, 1750 (2007)

[165] J. Rehr, Theory and calculations of X-ray spectra: XAS, XES, XRS, and
NRIXS, Radiation Physics and Chemistry, 75, 1547 (2006), Proceedings
of the 20th International Conference on X-ray and Inner-Shell Processes

157



Bibliography

- 4-8 July 2005, Melbourne, Australia, Proceedings of the 20th Interna-
tional Conference on X-ray and Inner-Shell Processes

[166] T. M. Rice and W. F. Brinkman, Effects of Impurities on the Metal-Insulator
Transition, Phys. Rev. B, 5, 4350 (1972)

[167] W. R. Robinson, High–temperature crystal chemistry of V2O3 and 1%
chromium-doped V2O3, Acta Crystallographica Section B, 31, 1153 (1975)

[168] F. Rodolakis, P. Hansmann, J.-P. Rueff, A. Toschi, M. Haverkort, G. San-
giovanni, K. Held, M. Sikora, A. Congeduti, J.-P. Itie, F. Baudelet, P. Met-
calf, and M. Marsi, Electronic correlations in V2O3 studied with K-edge
X-ray absorption spectroscopy, Journal of Physics: Conference Series,
190, 012092 (2009), 14th International Conference on X-Ray Absorp-
tion Fine Structure (XAFS14), 26-31 July 2009, Camerino, Italy

[169] F. Rodolakis, P. Hansmann, J.-P. Rueff, A. Toschi, M. Haverkort, G. San-
giovanni, A. Tanaka, T. Saha-Dasgupta, O. Andersen, K. Held, M. Sikora,
I. Alliot, J.-P. Iti, F. Baudelet, P. Wzietek, P. Metcalf, and M. Marsi, In-
equivalent routes across the Mott transition in V2O3 explored by X-ray
absorption, Phys. Rev. Lett., 104, 047401 (2010)

[170] F. Rodolakis, B. Mansart, E. Papalazarou, S. Gorovikov, P. Vilmercati,
L. Petaccia, A. Goldoni, J. P. Rueff, S. Lupi, P. Metcalf, and M. Marsi,
Quasiparticles at the Mott Transition in V2O3: Wave Vector Dependence
and Surface Attenuation, Phys. Rev. Lett., 102(6), 066805 (2009)

[171] M. J. Rozenberg, R. Chitra, and G. Kotliar, Finite Temperature Mott
Transition in the Hubbard Model in Infinite Dimensions, Phys. Rev. Lett.,
83(17), 3498 (1999)

[172] M. J. Rozenberg, G. Kotliar, H. Kajueter, G. A. Thomas, D. H. Rapkine,
J. M. Honig, and P. Metcalf, Optical Conductivity in Mott-Hubbard Sys-
tems, Phys. Rev. Lett., 75, 105 (1995)

[173] M. J. Rozenberg, X. Y. Zhang, and G. Kotliar, Mott-Hubbard transition in
infinite dimensions, Phys. Rev. Lett., 69(8), 1236 (1992)

[174] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Dual fermion
approach to nonlocal correlations in the Hubbard model, Phys. Rev. B, 77,
033101 (2008)

[175] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-time
quantum Monte Carlo method for fermions, Phys. Rev. B, 72, 035122
(2005)

158



Bibliography
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