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Abstract

This diploma thesis deals with the research and implementation of digital audio effects, es-
pecially for electric guitars. On the one hand the signal processing aspects are of interest on
the other hand a software development platform is created. Thus new audio effects can be
added and existing ones can be improved easily. The aim is a software tool to demonstrate and
experiment with audio signal processing algorithms. High value is set on a good user interface
so that different audio effects can be changed and combined fast. In this thesis three groups
of guitar effects have been studied: Delay based effects like the chorus or the flanger effect,
spatial based effects like the reverb effect and nonlinear effects like distortion. In a first step
all algorithms have been implemented with Matlab [TM10].
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Chapter 1.

Introduction

1.1. Motivation

Effect units to alter the sound of electric guitars have been used since the sixties by guitar
heroes like Jimmy Hendrix. They help musicians to create many different sounds from one
source which will enrich their music. In the past guitar effect units were analog devices which
were put between the electric guitar and the guitar amplifier. Today we have powerful digital
processors which more and more replace the old analog effect units. For example one digital
multi effect unit can replace several analog effects. So the musician just has to handle one
device to use many effects like flanger, distortion and reverb at the same time. In the early
days they had to plug several single effect units together to get the same result. So at least
in the hobby area digital multi effect units have become quite common. In the professional
area analog effect units are still popular. This is because certain kinds of effects like distortion
based effects just sound better or are at least more familiar with analog devices. For example
guitarists swear on valve amplifiers because of their high fidelity and their ability to drive the
full frequency range of a loudspeaker. It’s perhaps not so much the exact reproduction of the
sound but rather harmonics produced by nonlinearities in valve amplifiers. Many algorithms
for guitar effects are not very complicated but have to be implemented efficiently to achieve
real time capabilities. Thats the reason why they are perfectly suited to demonstrate signal
processing basics. It’s obviously much easier for students to understand what it means to add
a signal to a delayed copy of itself, if they hear the audio effect. By the way this is more or
less what all delay based effects do. This master thesis shall provide the basics for an overall
project with the aim to create a development environment for signal processing algorithms.
The main scope lies on a good user interface and documentation. This allows other students
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Chapter 1. Introduction

to expand the multi effects unit project with new effects easily. It’s planned to realize the first
implementation with Matlab [TM10]. Matlab shall be used to improve, explore and understand
the audio effects in the time and in the frequency domain. Another important aspect is the
portability on different operating systems. The multi effect unit software has to work on every
operating system which is supported by Matlab. In this first version of the guitar effects unit
platform, no real time operation is supported. Because it is hardly possible to process the
whole effect line which consists of many different effects that have to be processed one after
the other in real time on a general purpose computer today. Also the standard Matlab functions
which read in audio samples from the sound card do not support real time operation. Instead
wave files with guitar samples are used to demonstrate the audio effects. Maybe the effect
can be implemented in the C programming language (C) on a digital signal processor (DSP)
or in very high speed integrated circuit hardware description language (VHDL) on a field
programmable gate array (FPGA) in later projects. These devices usually support very fast
audio input and output sampling and have real time capabilities, but this task is well beyond
this project.

1.2. Outline of the document

In Chapter 2 delay based effects are dealt with. First in Section 2.1 a general introduction about
delay based effects in the time and in the frequency domain is given. Then in Section 2.2 the
delay effect is described in detail. In Section 2.3 the chorus effect is covered. Finally in
Section 2.4 the flanger effect and its relation to the chorus and the delay effect is explained.
Chapter 2 also deals with linear interpolation and the low frequency oscillator (LFO), since
these are important to implement delay based effects. In Chapter 3 spatial based effects are
dealt with. Again in Section 3.1 a short introduction into many kinds of spatial based effects is
given. In fact only one spatial based effect, namely the reverb effect is illustrated in detail. In
Section 3.2 the convolution-based approach is explained in detail which is also implemented
with Matlab later. A second approach using comb filters to implement a reverb effect is cov-
ered in Section 3.3. Furthermore the overlap add method is explained in Subsection 3.2.1 since
it plays a main role for the convolution based approach. In Chapter 4 nonlinear effects are ex-
amined. Section 4.1 explains the effect of nonlinear operations on input sine waves, to make
clear what nonlinear effects are about. Then in Section 4.2 two different methods to achieve a
digital distortion effect namely hard clipping and soft clipping are explained. Since all these
effects play an important role in electric guitar music their purpose and effect on electric guitar
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Chapter 1. Introduction

music is presented too. These abstract chapters are mainly based on existing literature but also
include personal experience gathered from designing the different audio effects. Chapter 5 is
more practical and describes the implementation of the particular effects. In this chapter all
implemented audio effects are illustrated with pieces of Matlab code. Section 5.2 is organized
in subsections which describe the single object classes. In Section 5.3 the implementation of
the graphic user interface (GUI) with it’s most important functions is introduced. Section 5.3.3
gives a simple use case how to use the multi effects unit software. The thesis is concluded with
Chapter 6 which gives a short summary of the project and points out how future work could
look like.

4



Chapter 2.

Delay based effects

2.1. Introduction

All delay based effects covered in this thesis have in common that the output signal y[n] is
generated by adding the input signal x[n] to a delayed copy x[n-k] of itself. Lets have a look
at the difference equation (2.1) for the discrete input signal x[n]:

y[n] = x[n]+β · x[n− k], k > 0 (2.1)

The copy of the input signal has a delay of k samples, respectively δ = k
fs

seconds, where fs is
the sampling frequency. The scale factor β augments the delayed samples of the input signal.
The corresponding transfer function is given by

H(z) = 1+β · z−k, k > 0. (2.2)

The transfer function is a finite impulse response (FIR) [Dob07b] filter since it has no feedback
but only a feed forward path. The magnitude response has comb filter characteristics as illus-
trated in Figure 2.1 for two different delays k. This kind of filter is called a comb filter since
it’s magnitude response has many notches similar to a comb. Frequencies that are multiplies
of 1/k are amplified with the factor β and all other frequencies are attenuated [Zö05]. The
highest magnitude equals 1+β and the lowest magnitude equals 1−β [Zö05]. In Figure 2.1
magnitude response one originates from a comb filter with delay k = 9 samples and magnitude
response two originates from a comb filter with delay k = 3.

5



Chapter 2. Delay based effects

Figure 2.1.: Magnitude Response with two different delays

Because the delay of the first filter is three times bigger than the delay of the second filter, the
first one has three times as many spikes as the second one. Our ear can distinguish between
the input signal and its delayed copy for large values of k. But for small values the ear can no
longer separate the time events.

If the delayed output signal y[n-k] is feedback to the input we get an infinite impulse response
(IIR) [Dob07b] comb filter. The corresponding difference equation is given by

y[n] = x[n]+β · y[n− k], k > 0, |β |< 1. (2.3)

In every iteration after the time delay δ = k
fs

seconds the output is fed back to the input, scaled
by feedback factor β . This factor β has to be restricted to values |β | ≤ 1 now. For values
|β |> 1 the output signal would keep growing and for values |β |= 1 never become zero again,
regardless of the input signal. This behavior is typical for an unstable respectively critically
stable system. The transfer function of the system in equation (2.3) is given by

H(z) =
1

1−β · z−k , k > 0, |β |< 1. (2.4)

The magnitude response of the infinite impulse response (IIR) filter looks similar to the mag-
nitude response of the finite impulse response (FIR) comb filter. But the highest magnitude
now equals 1

1+β
and the lowest magnitude equals 1

1−β
[Zö05].

With FIR and infinite impulse response (IIR) comb filters, and of course with combinations
of finite impulse response (FIR) and infinite impulse response (IIR) filters, all kinds of delay

6



Chapter 2. Delay based effects

based signals can be created.

2.2. Delay

The delay effect can be implemented by a finite impulse response (FIR) or an infinite impulse
response (IIR) filter 2.1. Using a mixture with a feedback and a feed forward loop is the more
interesting version as it allows higher design flexibility. In Figure 2.2 the block diagram of the
delay effect is given.

Figure 2.2.: Block diagram of delay effect

There is one feedback loop which scales the fed back samples with the feedback gain factor
β . We also have a delay element which delays the input samples by time δ = k

fs
. And we have

one feed forward path. The mix gain factor α scales the delayed output signal y’[n], so we get
a weighting of the modified output signal y’[n] compared to the unmodified input signal x[n].
If α is zero for example, the output signal y[n] equals the input signal x[n].

2.2.1. Time Domain

In time domain the delay effect can be described with difference equation

y[n] = x[n]+α · (x[n− k]+β · y′[n− k]), k > 0, |β |< 1. (2.5)

This equation can be best described with a temporary signal y’[n-k]. After each time delay δ ,
y’[n] is multiplied with the feedback gain factor β and added to the unmodified input signal.
This temporary signal y’[n-k] is then multiplied with the mix gain factor α and added to the
unmodified input signal. The delay time δ , states how long y’[n] is delayed before it is added
to the unmodified input signal again. In a typical delay effect for an electric guitar δ can be

7



Chapter 2. Delay based effects

in the range from 1 millisecond up to 300 milliseconds. The delay effect can enrich a sound
for short delay times up to 25 milliseconds. If the delay time is greater than 50 milliseconds
the human ear can distinguish the unmodified input signal and its copy and we will hear an
echo [Zö05]. As seen in Section 2.1 the feedback factor β must be smaller than one, otherwise
we would get critically stable respectively unstable behavior. The mix factor α controls the
amount of mixing the original signal x[n] with the delayed signal y’[n]. If α is bigger one, the
delayed signal will sound louder as the unmodified input signal. Of course the samples of the
output signal y[n] have to be in the same range as the input signal samples. For audio wave
files these samples lie in the range from negative one to positive one. Thus the output samples
have to be normalized with their maximum absolute value.

2.2.2. Frequency Domain

In the frequency domain the delay effect can be described with transfer function

H(z) = 1+
α · z−k

1−β · z−k , k ≥ 0, |β |< 1. (2.6)

In Figure 2.3(a) and Figure 2.3(b) the magnitude responses of transfer function (2.6) are de-
picted with two different feedback factors β , but the same delay k and the same mix factor α .
It’s obvious that the spikes become narrower as β comes closer to one. Also the magnitude
changes in the second case, as we get much less attenuation than with the smaller feedback
factor. The magnitude response behaves in a similar way for different values of the mix factor
α [Zö05]. We have already seen in Section 2.1, what happens for different delay times.

2.3. Chorus

The chorus effect has no feedback loop and thus can be implemented as a FIR comb filter. In
Figure 2.4 the block diagram of the chorus effect is given.

8
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(a) α = 1.5,β = 0.4

(b) α = 1.5,β = 0.8

Figure 2.3.: Magnitude Response of delay effect

Figure 2.4.: Block diagram of chorus effect

We have a feed forward path which adds the input signal to the delayed signal. And we have
a delay element which has variable delay time. The low frequency oscillator (LFO) which is
described in Subsection 2.3.2 in detail, defines the current delay k, which changes over time
with a certain frequency τ .

2.3.1. Time Domain

The corresponding difference equation of the chorus effect for the current delay k is given in
(2.7). Since k changes over time also the different equation respectively the transfer function
change too.

y[n] = x[n]+α · x[n− k], k ≥ 0. (2.7)

9



Chapter 2. Delay based effects

The input signal is delayed with the current delay k in samples, multiplied with the mix gain
factor α and added to the unmodified input signal once more. This effect shall create the
illusion of several instruments played concurrently to get a brighter and richer sound. Like
in a chorus of a group of singers, it makes a single instruments sound like actually several
instruments being played. To make the illusion a bit more realistic the total delay is slightly
altered over time with a LFO. The total delay ∆ = k

fs
in seconds is the sum of the constant

delay δ and the variable delay ε , which is created with the LFO.

∆ = δ + ε

The total delay time typically lies in the range of 10 milliseconds up to 25 milliseconds. The
mix factor α controls the amount of mixing the delayed signal with the unmodified input
signal.

2.3.2. LFO

A low frequency oscillator (LFO) creates a periodic signal with frequency τ . In general one
can choose the amplitude resp. the maximum value of the curve, the shape of the waveform
and the frequency. Common wave forms for guitar effects are a sine curve, a triangle curve or
an exponential curve. Common values for the frequency lie between 0.1 Hertz and 5 Hertz.
Then the function value of the curve at a certain time equals the variable delay ε in seconds.

ε = LFO[n],0≤ n < N

for the cycle duration N = fs
τ

. In Figures 2.5(a), 2.5(b) and 2.5(c) the total delay ∆ is given
for three different wave forms. The constant delay δ is chosen to be 100 milliseconds and the
maximum variable delay ε is 20 milliseconds. So the sine function has an amplitude of 10 mil-
liseconds respectively it’s function values are in the range from 0 up to 20milliseconds.

10
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(a) Sinus Wave (b) Triangle Wave

(c) Logarithmic Wave

Figure 2.5.: Total Delays with different LFO wave forms

2.3.3. Linear Interpolation

To get a delay ∆ = k
fs

we just have to save the last k samples from the input signal in a memory
buffer and read out the oldest one. Since ∆ changes over time continuously linear interpolation
between the discrete samples is needed [Dat97].

In Figure 2.6 a short example why linear interpolation is needed is given for a total
delay ∆ = 5.12milliseconds resp. k = 1024 samples( fs = 20000). The constant
delay δ is chosen to be 3 milliseconds and the maximum variable delay ε is 2.12

11



Chapter 2. Delay based effects

milliseconds. Thus ∆ changes between 3 milliseconds and 5.12 milliseconds over
time with frequency τ = 1 Hertz. If the instantaneous delay is 4.696 milliseconds
for example we would have to read out the 939.2th sample. But we only have
samples of discrete times so we have to interpolate between sample k = 939 and
sample k+1 = 940, which we do as suggested in [Dat97]:

v[k] = bu f f er[k+1] · f rac+bu f f er[k] · (1− f rac)

with v[k] the interpolated sample at index k and factor f rac = 0.2, the fractional
part of the sample.

Figure 2.6.: Linear interpolation

2.3.4. Frequency Domain

In the frequency domain the chorus effect can be described by the following transfer func-
tion

H(z) = 1+α · z−k, k ≥ 0. (2.8)

Since the total delay ∆ = k
fs

is variable the transfer function changes over time. The variable
delay together with linear interpolation produces small undulating changes in pitch [Dat97].
In Figure 2.7 six different magnitude responses are given. The delay k is changed from five
up to ten samples without linear interpolation. However one can clearly see the notches are
at different places, therefore attenuating and amplifying different frequencies. This causes a
sweeping pitch change as time passes by.

12



Chapter 2. Delay based effects

Figure 2.7.: Change of Magnitude Response for different delays ∆

2.4. Flanger

The flanger effect is a mixture of the delay effect from Section 2.2 and the chorus effect from
Section 2.3. The block diagram of the flanger effect is given in Figure 2.8

Figure 2.8.: Block diagram of flanger effect

It has both a feedback and a feed forward path. The feedback factor β was already described
in Section 2.2, and the mix factor α was already described in Section 2.3. The IIR comb
filter causes constructive and destructive interference. This effect can be simple described
by looking at a sine wave for example. Imagine a perfect sine wave and add it to a delayed
copy of the same sine wave. In one extreme if the phase shift is 0◦, the amplitude of the
output will be twice as high as that of the original sine wave. But on the other extreme if the

13



Chapter 2. Delay based effects

phase shift is 180◦, the two waves will cancel each other and the output disappears. The total
delay ∆ is determined by a low frequency oscillator (LFO) as for the chorus effect. Since the
delay changes over time, the interference changes too. This causes a jet plane-like whooshing
sound.

2.4.1. Time Domain

The flanger effect has the same difference equation (2.5) as the delay effect 2.2. The only
difference is the variable delay ε created with the LFO similar to the chorus effect in the
previous Section 2.3. The total delay time ∆ is usually short and lies in the range from 1
milliseconds up to 10 milliseconds. Of course the feedback factor β should be smaller than
one again to avoid an unstable or critically stable system as described in Section 2.1. A large
amount of feedback leads to a “metallic” sound.

2.4.2. Frequency Domain

Since the difference equation is the same as for the delay effect in Section 2.2, also the transfer
function equals equation (2.6), except for the variable delay ε . The effects of the variable delay
on the frequency spectrum has already been described in Section 2.3.

14



Chapter 3.

Spatial based effects

3.1. Introduction

Spatial effects shall create the illusion of a certain physical environment. One type of spa-
tial effects is the panorama effect, which works by adjusting the relative amplitude of stereo
loudspeakers. The listener gets the impression that the lower loudspeaker is farer away. This
leads to a different perception of the own position with respect to the speakers. Another ef-
fect is the doppler effect as known from basal physics. It can be implemented by a simple
pitch shifter [Zö05]. The position in space is simulated by intensity panning, delay lines and
with special filters according to [VZA06]. A method to get interesting reverberation effects is
described in Section 3.2. The reverb effect can enrich a dry studio record with an ambiance.
There are many implementations using tapped delay lines for this effect. It usually takes very
long and many parameter changes are necessary to get a realistic sound. But the easiest way
is the convolution of the original signal with a room impulse response.

3.2. Reverb using Convolution

This section describes a simple method to get a reverberation effect from convolving the input
signal with an artificial room impulse response. The convolution method leads to a very rich
and realistic sound. One possible approach is to record many impulse responses from different
places to get different sounding reverb. For example a big cathedral, a storehouse, a cave and
so on. But it is very costly to take all this sound samples and it takes much memory to store
all of them. This is a big disadvantage since usually a digital signal processor (DSP) does not
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have enough memory to use this method. Therefore it makes sense to use an artificial impulse
response as described in [Dob07a]. White gaussian noise with a decaying exponential function
as envelope as shown in Figure 3.1 is very well suited to simulate a room impulse response.

Figure 3.1.: Decaying white gaussian noise

Equation (3.1) describes the reverb effect in the time domain:

y[n] = x[n]∗h[n] (3.1)

The input signal x[n] is convolved with the Gaussian distributed white noise h[n] which has
an exponentially decaying envelope. The term “white noise” refers to the fact that the random
signal has a constant energy spectrum [Pre04]. The term Gaussian states that the signal is
normal distributed with respect to the value. H[n] can be created as follows

h[n] = r[n] · e−α·n,n≥ 0. (3.2)

In equation (3.2) r[n] is the Gaussian distributed white noise and the exponential function
provides the exponential envelope. The factor α can be calculated by

α =
3 · ln10

τ · fs
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in which the factor τ in seconds controls the length of the impulse response, fs is the sampling
frequency and ln is the natural logarithm. The time until the impulse response is zero again
can be modified with the factor τ . A bigger τ leads to a longer room impulse response, this
creates the illusion of a bigger room. In Chapter 5 an implementation using this approach is
discussed.

3.2.1. Overlap-Add method

The overlap add method [Dob07b] is used in combination with the discrete fourier
transformation (DFT). The DFT is used on discrete signals which have a finite number of
points only and leads to a discrete line spectrum. The main application area of the DFT is the
implementation on a DSP or a personal computer. The overlap-add method comes into play
then block processing is needed. The input signal x[n] can be composed from a sum of input
blocks. In general we have an infinite input signal which is processed block sequentially in
non-overlapping blocks of signal samples. So the input signal can be composed in k blocks
xm[n] with fixed size Nx, where k is infinite.

x[n] =
k·Nx

∑
m=0

xm[n]

Now one input block xm[n] with size Nx is convolved with the room impulse response h[n] with
size Nh to get the corresponding output block ym[n].

ym[n] =
Nh−1

∑
k=0

h[k] · xm[n− k]

Because of the linearity of the convolution, the whole output signal can be described as the
sum of the single output blocks.

y[n] =
k·Nx

∑
m=0

ym[n]

The resulting output signal ym[n] of one block operation is N f = Nx+Nh−1 samples long. Of
course the block size of the input blocks must equal the block size of the output blocks. Since
the result of the convolution with two finite signals leads to a signal which is longer than each
of the signals itself we have to overlap add the resulting output blocks ym[n]. We also have
to consider that with the DFT circular convolution [Dob07b] comes into play 1. To achieve a

1Remember the shift theorem of the DFT
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result which has the same length N f as with linear convolution, we have to zero pad xm[n] and
h[n]. In Figure 3.2 the overlap add method is illustrated.

Figure 3.2.: Block processing with overlap add method

3.3. Reverb using comb filters

The oldest method for creating reverberation, which was already used in the seventies, is
the use of combinations of comb filters as described in [Zö05]. This approach simulates the
dispersion of acoustic waves in a room. In general there is a direct path from the sound source
to the listener. But since the sound wave propagates in all directions, it is also reflected from
the walls. So the listener will not only hear the sound from the direct path but also the early
reflections a little later. Depending on the surface of the walls the reflected sound will be
weaker as the direct sound. Of course a sound wave can be reflected several times before it
finally reaches the listener. These reflections are called late reflections or diffuse reverberation.
As we already know from Chapter 2 the ear can only distinguish between two sounds if the
delay time is greater than 50 milliseconds. So echoes can be only perceived in big rooms
where the reflections have to travel a far distance from the speaker to the listener. Figure 3.3
provides a graphical explanation.
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Figure 3.3.: Reverb model for classical approach

The early reflections can be simulated with tapped delay lines, since there is a fixed delay time
from the speaker to the listener. But it’s difficult to simulate the diffused reverberation, since
the delay time changes dynamically according to the shape and the size of the room. The
late reverberations decay exponentially until they reach a sound level the listener can’t hear
anymore. The time until the diffused reverberation is too low to be perceived by the human
ear depends also on the surface of the walls.
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Nonlinear effects

4.1. Introduction

This class of audio effects creates new harmonics or non harmonics in the frequency spectrum.
Effects like distortion, overdrive or fuzz belong to this class. First we have to consider what the
difference between linear and nonlinear systems is. Linear systems as introduced in [Pre04]
must satisfy the superposition and scaling property. If we have a linear system S and two
inputs x1[n] and x2[n]. Then the outputs y1[n] = S(x1[n]) and y2[n] = S(x2[n]) results from
inputting signals x1 and x2 separately to S. Now following relation must hold:

c1 · y1[n]+ c2 · y2[n] = S(c1 · x1[n]+ c2 · x2[n])

with coefficients c1 and c2 ∈ R. For nonlinear system the superposition property in general
doesn’t hold [Pre04]. As an example we consider the nonlinear system with the input-output
relationship

y[n] = u[n]2

with y[n] the output signal and u[n] the input signal. Consider an input signal u[n] = cos(2·π· f1
fs
·

n)+ cos(2·π· f3
fs
· n). Thus a periodic discrete input signal with fundamental frequency Θ0 =

2·π· f1
fs

= 2·π
N , third harmonic Θ3 =

2·π· f3
fs

and cycle duration N.

The corresponding output signal y[n] 1 results in:

1This can be shown with cos( 2·π· f
fs
·n) = 1

2 · (e
j· 2·π· ffs ·n + e− j· 2·π· ffs ·n)
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y[n] =
1
2
·cos(2 ·Θ0 ·n)+cos((Θ0+Θ3) ·n)+cos((Θ0−Θ3) ·n)+

1
2
·cos(2 ·Θ3 ·n)+1 (4.1)

The output signal consists of a constant component, a new harmonic with twice the funda-
mental frequency, a new harmonic with twice the frequency of the third harmonic, and two
components that are the sum and difference of the fundamental frequency and the frequency
of the third harmonic of the input signal. It follows that with a nonlinear function with power
ϑ we can create new harmonics. If the input signal has multiple frequency components as in
our example sum and differences of these frequency components occur in the spectrum which
sounds very disharmonious. In Figure 4.1 the input signal u[n] = cos(2·π· f1

fs
·n)+cos(2·π· f2

fs
·n)

is illustrated in time domain.

Figure 4.1.: Input signal u[n]

In Figure 4.2(a) and Figure 4.2(b) the output y[n] for a linear system with input u[n] is given in
the time and in the frequency domain. In a linear system the shape of a sine wave and through
superposition also the shape of a sum of sine waves is not changed but only the amplitude may
be changed.
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(a) Output signal (b) Spectrum

Figure 4.2.: Linear System

On the opposite the output for the nonlinear system y[n] = u[n]2 is given in Figure 4.3(a)
and Figure 4.3(b). Now additional spectral lines at frequencies calculated in equation (4.1)
occur. This kind of test for nonlinear distortion is also introduced in [Jon03]. If we feed
a sine wave into a nonlinear system we can take the output and measure the total harmonic
distortion (THD), which is defined as the square root of the ratio of the sum of powers of
all harmonic frequencies to the power of all harmonic frequencies including the fundamental
frequency. The higher the THD value, the higher is the nonlinear distortion. Of course for a
linear system it is zero.

(a) Output signal (b) Spectrum

Figure 4.3.: Nonlinear System
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A guitar tone can be composed in its fourier components[DGKP08]. It consists of the funda-
mental frequency and all odd or even harmonics.Thus it shows the same characteristics as the
sum of sine waves in a nonlinear system. This is remarkable since in basic physics stroking a
single string don’t generate sine waves.

4.2. Distortion

The distortion effect plays a central role in rock music. It creates a “dirty” distorted sound
that is typical for rock bands. A good example for physical distortion is overdriving a valve
amplifier. Imagine the range of the amplifier goes up to 100mV 1 and it amplifies an input
signal by a factor of two. If the maximum value of an input signal is 10mV, for example, the
maximum value of the output signal will be 20mV. But if the maximum value of the input
signal is bigger than 50mV the output signal will be clipped. That means that all parts of
the input signal bigger 50mV are exactly 100mV in the output signal. This is a nonlinear
operation which creates new harmonics in the spectrum. A valve amplifier has a very smooth
transition from amplifying to clipping the signal. It distorts all audio frequencies the same
because of its transfer characteristics [Jon03]. This smooth transition function creates a very
“warm and creamy sound”. In Figure 4.4, taken from [Zö05], the curve of a pentode output
current Ia over the pentode input voltage Ug is given. One can clearly see the soft transition
from the attenuation to the clipping zone. Digital distortion effects try to copy this transfer
characteristics. But in hight-quality music production valve amplifiers are still used. Either
because of tradition or because of individual preference. A fact is that valve amplifiers deliver
the best sound when they work at operating temperature. So it takes a while until they are
ready for use. This characteristic of valve amplifiers is described in [Jon03]. Of course a
digital distortion effect doesn’t have this disadvantage. On the other hand digital distortion
sometimes produces a metallic and artificial sounding result that is bad either.

1mV stands for millivolts
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Figure 4.4.: Characteristics of a pentode

4.2.1. Hard Clipping

A digital signal can be clipped using threshold values. The easiest way to clip a signal is hard
clipping. A mathematical description is given by

y[n] =


−th x[n]< th

x[n] −th≤ x[n]≤ th

th x[n]> th

(4.2)

where th is called threshold value and x[n] is the normalized input signal, which are both in
the range from negative one to positive one. In Figure 4.5(a) and Figure 4.5(b) the intended
effect is illustrated in the time domain with a 1Hz sine wave as an input signal and th = 0.2.
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(a) Hard Clipping (b) Soft Clipping

Figure 4.5.: Comparison: Hard and Soft Clipping in time domain

As shown in Section 4.1 nonlinear functions create additional harmonics. The smaller the
threshold value th is, the more of the input signal is clipped. This leads to a sharp distorted
sound caused by the sharp transition from clipping the input signal to passing it to the output
unchanged.

4.2.2. Soft Clipping

In [Zö05] a possible approach for soft clipping with the following input output relation is
given:

y[n] =



−1 −1 < x[n]<−2
3

3−(2+3·x[n])2

3 −2
3 ≤ x[n]≤−1

3

2 · x[n] −1
3 ≤ x[n]< 1

3
3−(2−3·x[n])2

3
1
3 ≤ x[n]≤ 2

3

1 2
3 < |x[n]| ≤ 1

. (4.3)

The normalized input signal x[n] is separated into five intervals. In Figure 4.5(b) the effect is
illustrated with the sine wave from Figure 4.1 as input signal. This effect creates a “warmer
smoother” sound since the transition from clipping the input signal to passing it to the output
unchanged is rounded now. This causes a much slower decrease and increase of harmonics
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as with hard clipping 4.2.1. In fact with hard clipping harmonics appear with a much higher
level [Zö05]. In Figure 4.6(a) and Figure 4.6(b) hard and soft clipping in the frequency domain
is illustrated with a 200Hz sine wave as input signal and th = 0.1.

(a) Hard Clipping

(b) Soft Clipping

Figure 4.6.: Comparison: Hard and Soft Clipping in frequency domain
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Implementation

5.1. Introduction

Implementing digital effects with Matlab is rather comfortable as it provides good debugging
abilities. In the current Matlab version 7.8.0.347 object-oriented programming is also sup-
ported. The only problem is the real-time capability since the object oriented approach causes
a huge overhead. It takes Matlab much longer to handle objects instead of simply scripting the
Matlab commands one after another. Since it was not the intention to add real-time capability
to this first version of the project, not much effort was put in optimizing the code. Instead, the
object oriented approach was chosen to provide reusable and readable code. In the following
sections the implementation of the effects with Matlab is explained. Also a short introduction
to the graphic user interface (GUI) and it’s functions is given in Section 5.3.

5.2. Matlab Objects

In this section an overview of the Matlab class files, their implementation and their use in the
project is given. All effects are implemented with block processing, since Matlab is optimized
for Matrix operations and to leave the possibility to optimize for real-time operation later. This
is also the best option for porting to a digital signal processor (DSP), since a DSP is optimized
for block processing too.
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5.2.1. AnalogIO Class

The AnalogIO.m class consists of the Matlab functions to provide read and write access to a
hardware sound device. With the following code 5.1 an AnalogIO object with an input and an
output handle is created and initialized with the block size in samples and the sample rate in
hertz.

Listing 5.1: AnalogIO.m constructor

1 function obj=AnalogIO(sampleRate, blockSize)

2 %create soundcard io handles

3 obj.input_handle = analoginput(’winsound’);

4 obj.output_handle = analogoutput(’winsound’);

5

6 %initialize Blocksize and Samplerate

7 obj.blockSize=blockSize;

8 obj.sampleRate=sampleRate;

9

10 %configure for stereo io

11 ch = addchannel(obj.input_handle,[1 2]);

12 addchannel(obj.output_handle,[1 2]);

13

14 %set trigger channel

15 set(obj.input_handle,’TriggerChannel’,ch(1))

16

17 %trigger samples continually

18 set (obj.input_handle, ’SamplesPerTrigger’, obj.blockSize);

19 set(obj.input_handle, ’TriggerType’, ’immediate’);

20 set(obj.output_handle, ’TriggerType’, ’immediate’);

21

22 %set sample rate

23 set (obj.input_handle, ’SampleRate’, obj.sampleRate);

24 set (obj.output_handle, ’SampleRate’, obj.sampleRate);

25 end

The methods getSamples(obj) and putSamples(obj, samples), can be used to get a block of
samples from the sound device, respectively send a processed block of samples back to the
sound device. In fact this class has not been used for the multi effects unit GUI yet, since the
Matlab functions do not support real time operation. Maybe this problem can be solved using
custom Matlab executable (MEX) files. That allow the execution of C, C++ or the formula
translation programming language (Fortran) code with Matlab. Since these programming lan-
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guages provide better low level hardware support, a custom driver for the sound device with
real time capabilities could be written. But this is not the intention of the overall project since
a maximum portability of the multi effects unit shall be ensured. In fact the multi effects unit
platform will work on all operation systems that are supported by Matlab.

5.2.2. Delay Class

The delay effect from Section 2.2 can be implemented with the Matlab filter function 1. This
function takes a discrete filter transfer function with nominator and denominator like in equa-
tion (2.6). Then it applies the filter to an input vector. For block processing also an internal
state is needed. The Matlab help function provides further information on the filter function.

In Listing 5.2 the main routine of DelayFilter.m is given. This class has an attribute transfer-

Function.num to save the nominator and an attribute transferFunction.den to save the denom-
inator of the filter transfer function. In Listing 5.3 the initialization of the transfer function of
the DelayFilter object, with descending powers of z is given. Every time the start method is
called with a DelayFilter object and an input signal with size block size, it returns the filtered
output signal.

Listing 5.2: Start method( DelayFilter.m)

1 function outputSignal = start(obj,inputSignal)

2 %state of last block

3 persistent internalState;

4 [outputSignal, internalState] = filter(obj.transferFunction.num, obj.

transferFunction.den, inputSignal, initialCondition);

5 end

Listing 5.3: Initialize transfer function method( DelayFilter.m)

1 function transferFunction = setTranferFunction(obj)

2 % initialize transfer function

3 transferFunction.num = [obj.dry zeros(1,obj.delaySamples-1) (obj.wet -

obj.dry * obj.feedback)];

4 transferFunction.den = [1 zeros(1,obj.delaySamples-1) -obj.feedback

];

5 end

1Y = FILTER(B,A,X)
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A second order transfer function with a short delay of two samples and the corresponding
declaration of the nominator and the denominator vector would look as follows:

H[z] =
dry∗ z2 +(wet− f eedback ∗dry)

z2− f eedback

num = [dry 0 (wet− f eedback ∗dry)]

den = [dry 0 − f eedback]

This version of the delay effect has not been used for the multi effects unit GUI because the
filter function is very slow for transfer functions of high degrees. Since the degree of the
transfer function equals the delay in samples, usually transfer functions with very high degree
have to be processed. Hence an implementation in the time domain with a cyclic buffer is
preferable. So the Delay.m class was used instead. The constructor of the delay class takes
following input arguments:

function obj=Delay(sampleRate, blockSize, mix, delayMs, feedback)

Table 5.1.: Delay.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
blockSize block size samples
mix mix factor α %
delayMs delay ∆ ms
feedback feedback factor β %

This class implements the delay using a cyclic buffer in time domain. This approach is also
chosen for the chorus 2.3 and the flanger 2.4 effect. There was an attempt to implement a
generic cyclic buffer class, and to use it for all effects. But receiving the samples from the
memory scope of another object was very slow because Matlab only supports call by value.
The size of the cyclic delay buffer is a multiple of the block size. It depends on the delay, the
sample rate and of course of the block size.

Listing 5.4: Initialization of cyclic buffer

1 %Buffer for delay must be multiple of blockSize, we need one additional

block for ring buffer

2 obj.totalBuffer = zeros((ceil((obj.delayMs)/1000 * obj.sampleRate / obj.

blockSize)+1)*obj.blockSize,1);
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In Listing 5.4 the initialization of the totalBuffer is given. First ∆(in milliseconds) is converted
to delay in samples with ∆ = k

fs
. Next we have to look how many blocks are needed. Finally

we need one additional block to implement a ring buffer. This is because we have to be able to
refresh the buffer before reading out the delayed samples. If we wouldn’t have an additional
block we would overwrite the oldest stored samples with the newest input samples all the
time.

Listing 5.5: Refresh method for cyclic buffer( Delay.m)

1 function obj = refreshTotalBuffer(obj, inputBlock)

2 %increment pointer modulo bufferlength

3 obj.nextBlockPointer = mod(obj.nextBlockPointer, length(obj.

totalBuffer)/obj.blockSize)+1;

4

5 %get delay in samples

6 delaySamples = floor(obj.delayMs /1000 * obj.sampleRate);

7

8 %get length of buffer

9 totalBufLength = length(obj.totalBuffer);

10

11 %fill next buffer slot with lenght blockSize

12 for k = 1:obj.blockSize

13

14 %get index with delay

15 index = (obj.blockSize*(obj.nextBlockPointer-1)+ k);

16 indexDelay = index - delaySamples;

17

18 %correct negativ index

19 if (indexDelay <= 0)

20 indexDelay = totalBufLength + indexDelay;

21 end

22

23 %before delay: mix input with delayed sample and refresh buffer

24 obj.totalBuffer(index) = inputBlock(k) + obj.feedback * obj.

totalBuffer(indexDelay);

25 end

26 end

In Listing 5.5 the refreshTotalBuffer(obj, inputBlock) method to save the next block of samples
to the buffer is given. The nextBlockPointer points to the first index of the totalBuffer where
the next block of input samples should be written. It has to be updated every time the method
is executed. Since it’s a cyclic buffer it has to be updated modulo the buffer length. The
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constant delay in milliseconds is converted to delay in samples. In the for loop the current
input block is processed sample by sample. The newest input sample is taken and added to the
delayed sample at index indexDelay which is augmented with the feedback factor β . This is
how the feedback loop is implemented. Since the buffer length is a multiple of block size, no
modulo operation is needed to iterate through the buffer. But if delaySamples subtracted from
index is smaller than zero we have to wrap around to the end of the buffer and get the fitting
samples from the last block of the buffer. This isn’t done with a modulo operation because it
happens quite often and would slow down the execution speed.

Listing 5.6: Get method for cyclic buffer( Delay.m)

1

2 %returns next blockSize delayed samples

3 function samples = getTotalBuffer(obj)

4 %get delay in samples

5 delaySamples = floor(obj.delayMs /1000 * obj.sampleRate);

6

7 %get length of buffer

8 totalBufLength = length(obj.totalBuffer);

9

10 %initialize

11 samples = zeros(obj.blockSize,1);

12

13 %fill next buffer slot with lenght blockSize

14 for k = 1:obj.blockSize

15

16 %get index with delay

17 index = (obj.blockSize*(obj.nextBlockPointer-1) + k);

18 indexDelay = index - delaySamples ;

19

20 %correct negativ index

21 if (indexDelay <= 0)

22 indexDelay = totalBufLength + indexDelay ;

23 end

24

25 samples(k) = obj.totalBuffer(indexDelay);

26 end

27 end

In Listing 5.6 the getTotalBuffer(obj) method to receive a block of samples from the buffer is
illustrated. The nextBlockPointer points to the same index as in the refresh method since it
is only updated there. The constant delay is converted to delaySamples again. The for loop
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iterates through the buffer from index nextBlockPointer up to index nextBlockPointer plus
block size. The constant delay delaySamples is subtracted from the index. Negative indexes
are corrected, without a modulo operation again. The output sample at index k just equals the
buffer sample at index indexDelay. Finally a block of processed samples is returned.

Listing 5.7: Start method (Delay)

1 function [obj, outputBlock] = start(obj,inputBlock)

2 %save next input block

3 obj = refreshTotalBuffer(obj, inputBlock);

4

5 %mix block after delay with original signal

6 outputBlock = inputBlock + obj.mix * getTotalBuffer(obj);

7 end

Now the input output relation can be implemented in the start(obj,inputBlock) method given
in Listing 5.7. The start method is executed for every new block of new input samples. It
calls the refreshTotalBuffer method with the input samples. As stated out before this method
implements the feed back path. Afterwards the output samples are created adding the input
samples to the samples from the getTotalBuffer method which are augmented with the mix
factor α . This is how the feed forward path is implemented.

5.2.3. Chorus Class

The chorus effect from Section 2.3 is implemented in the Chorus.m class. Since the block
diagram of the chorus effect 2.4 is quite similar to the block diagram of the delay effect 2.2 the
chorus.m class is a modification of the delay class 5.2.2. So for a more accurate description of
the Matlab code the reader is referred to Section 5.2.2. The constructor of the chorus class 5.2
takes following input arguments:

function obj=Chorus(sampleRate, blockSize, mix, delayMs, depthMs, rateHz,
lfoShape)
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Table 5.2.: Chorus.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
blockSize block size samples
mix mix factor α %
delayMs constant delay δ ms
depthMs variable delay ε ms
rateHz frequency τ of the LFO Hz
lfoShape shape of the LFO curve integer

The main difference between the delay and the chorus class is the variable delay, which has to
be implemented. For this purpose a LFO object 5.2.5 belongs to the chorus class attribute’s.
Again a buffer which is a multiple of block size is used to implement the delay. Since the
delay consists of the variable delay ε and the constant delay δ , the buffer must be big enough
to capture the total delay ∆. Another difference to the delay effect is that this time there is
no feedback loop. That’s why we don’t have to save the new input block sample by sample
to the buffer like in the delay class. Instead we can just save the whole input block in one
turn in the refreshTotalBuffer method. This is an effort since Matlab is optimized for block
processing [TM10].

Listing 5.8: Refresh method for cyclic buffer( Chorus.m)

1 function obj = refreshTotalBuffer(obj, inputBlock)

2 %increment pointer modulo bufferlength

3 obj.nextBlockPointer = mod(obj.nextBlockPointer, length(obj.

totalBuffer)/obj.blockSize)+1;

4

5 %fill next buffer slot of length blockSize

6 obj.totalBuffer(1+obj.blockSize*(obj.nextBlockPointer-1):obj.blockSize

*obj.nextBlockPointer) = inputBlock;

7 end

In Listing 5.8 the refreshTotalBuffer(obj, inputBlock) method is illustrated. The nextBlock-

Pointer has to be updated modulo the buffer length before the new block of samples can be
saved to the buffer.

Listing 5.9: Get methods for cyclic buffer( Chorus.m)

1 %returns next blockSize delayed samples

2 function [obj samples] = getTotalBuffer(obj)

3 %get next blockSize of variable delays
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4 [obj.lfoObject, lfo] = obj.lfoObject.getLookup(obj.blockSize);

5

6 %get one block of Delays

7 totalDelaySamples = (obj.delayMs + obj.depthMs * lfo)/1000 * obj.

sampleRate;

8

9 %get length of buffer

10 totalBufLength = length(obj.totalBuffer);

11

12 %initialize

13 samples = zeros(obj.blockSize,1);

14

15 %fill next buffer slot with lenght blockSize

16 for k = 1:obj.blockSize

17 %get index with delay

18 index = (obj.blockSize*(obj.nextBlockPointer-1)+ k) -

totalDelaySamples(k);

19

20 %correct negativ index

21 if (index < 0)

22 index = totalBufLength + index;

23 end

24

25 %linear interpolation

26 fixedIndex = floor(index);

27 frac = index - fixedIndex;

28

29 if(fixedIndex == totalBufLength || fixedIndex == 0)

30 samples(k) = (1-frac) * obj.totalBuffer(totalBufLength) +

frac * obj.totalBuffer(1);

31 elseif (fixedIndex > totalBufLength)

32 samples(k) = (1-frac) * obj.totalBuffer(fixedIndex -

totalBufLength) + frac * obj.totalBuffer(fixedIndex + 1 -

totalBufLength);

33 else

34 samples(k) = (1-frac) * obj.totalBuffer(fixedIndex) + frac *

obj.totalBuffer(fixedIndex + 1);

35 end

36 end

37 end
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In Listing 5.9 the getTotalBuffer(obj) method of the chorus class is given. The getTotalBuffer

method of the chorus class is a bit more complex than the according method of the delay
class. This is because the variable delay described in Section 2.3 has to be implemented with
the low frequency oscillator (LFO) from Subsection 2.3.2. The implementation of the Lfo.m

class is illustrated in Section 5.2.5. First a block of variable delays ε in milliseconds for every
discrete sample k is retrieved from the Lfo.m class. Then it is added to the constant delay δ

and converted to total delays ∆ in samples. These total delays in samples in general have a
fractional part depending on the sample rate and the frequency. Hence linear interpolation as
described in Subsection 2.3.3 is needed. For this purpose the fractional part frac of the total
delay at index k is separated from the integer part fixedIndex. The resulting delayed sample
at index k is a mixture of the sample at fixedIndex multiplied with (1-frac) and the sample at
fixeIndex plus one multiplied with frac. A negative index has to be corrected first, to replace
the modulo operation.

Listing 5.10: Start method( Chorus.m)

1 function [obj,outputBlock] = start(obj,inputBlock)

2 %save next input block to buffer

3 obj = refreshTotalBuffer(obj,inputBlock);

4

5 [obj, samples] = getTotalBuffer(obj);

6

7 %process next output block

8 outputBlock = inputBlock + samples;

9 end

The input output relation is implemented in the start(obj,inputBlock) method given in List-
ing 5.10. It equals the start method from the delay class 5.7. But this time the getTotalBuffer

implements no feedback path. Another difference is that the getTotalBuffer method refreshes
the LFO. That’s why a temporary variable samples is needed, to retrieve both the refreshed
chorus object and the output samples.

5.2.4. Flanger Class

As stated in Section 2.4 the flanger effect is a mixture of the delay and the chorus effect.
Hence the Flanger.m class uses source code from Subsection 5.2.2 and Subsection 5.2.3. As
discussed above in Section 2.4 the flanger effect has a feed back and a feed forward path. It
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also has a variable delay ε like the chorus effect. The constructor of the flanger class 5.3 takes
following input arguments:

function obj=Flanger(sampleRate, blockSize, mix, delayMs, depthMs, feedback,
rateHz, lfoShape)

Table 5.3.: Flanger.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
blockSize block size samples
mix mix factor α %
delayMs constant delay δ ms
depthMs variable delay ε ms
feedback feedback factor β %
rateHz frequency τ of the LFO Hz
lfoShape shape of the LFO curve integer

The refreshTotalBuffer(obj, inputBlock) and the start(obj,inputBlock) methods are more or
less the same as the according methods in Listing 5.5 and Listing 5.7 of the delay class in
Section 5.2.2. The getTotalBuffer(obj) method equals the according method in Listing 5.9 of
the chorus class in Section 5.2.3.

5.2.5. LFO Class

The Lfo.m class implements the LFO from Subsection 2.3.2. It is used for the chorus and
the flanger effect from the previous subsections. The constructor of the Lfo.m class 5.4 takes
following input arguments:

function obj=Lfo(sampleRate, rateOfChange, waveShape, amplitude)

Table 5.4.: Lfo.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
rateofChange frequency of the periodic wave fs Hz
waveShape shape of the periodic wave fs integer
amplitude amplitude of the periodic wave fs integer
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The lookup tables for the math functions are created on object creation. The length of the
tables depends on the required sample rate and the desired frequency of the periodic wave.
Of course only one period of the math function has to be sampled. If the wave frequency is
changed later the refreshLookup(obj) method has to be called again, to sample a new lookup
table.

Listing 5.11: Lookup method( Lfo.m)

1 function obj = refreshLookup(obj)

2 %constant?

3 if (obj.rateOfChange == 0)

4 obj.lookup = obj.amplitude;

5 else

6 switch obj.waveShape

7 %lookup for sin wave

8 case 1

9 %calculate sin values

10 lut = sin(2*pi*obj.rateOfChange/obj.sampleRate*(0:(obj.

sampleRate/obj.rateOfChange)-1));

11 %do scaling

12 obj.lookup = (lut + 1)*obj.amplitude;

13

14 %lookup for triangle wave

15 case 2

16 lut = 0:(1/4)*obj.sampleRate/obj.rateOfChange-1;

17 lut = [lut (1/4)*obj.sampleRate/obj.rateOfChange:-1:(-1/4)*obj

.sampleRate/obj.rateOfChange+1];

18 lut = [lut (-1/4)*obj.sampleRate/obj.rateOfChange:obj.

amplitude-obj.rateOfChange/obj.sampleRate];

19

20 %do scaling

21 obj.lookup = (lut / max(lut) * obj.amplitude) + obj.amplitude;

22 %lookup for log wave

23 case 3

24 %calculate exp values

25 lut = exp(2*pi*obj.rateOfChange/obj.sampleRate*(1:(obj.

sampleRate/obj.rateOfChange)));

26

27 %do scaling

28 lut = (lut - min(lut));

29 obj.lookup = lut * 2*obj.amplitude / max(lut);

30 case 4

31 %calculate log values
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32 lut = log(2*pi*obj.rateOfChange/obj.sampleRate*(1:(obj.

sampleRate/obj.rateOfChange)));

33

34 %do scaling

35 lut = (lut - min(lut));

36 obj.lookup = lut * 2 * obj.amplitude / max(lut);

37

38 %constant

39 otherwise

40 obj.lookup = obj.amplitude;

41 end

42 end

43 end

The refreshLookup(obj) method can create lookup tables for several different wave forms. De-
pending on the waveShape attribute, a lookup for a sine wave, a triangle wave an exponential
wave or a logarithmic wave form can be created. For the triangle wave, three linear functions
which rise resp. fall with 45◦ are used to build the course of the function. All other lookups
can be created with standard Matlab functions 1. Since the logarithmic and the exponential
wave are no periodic functions they just rise for the duration of one sine period before they
are set to zero again. After sampling all functions have to be scaled to the amplitude attribute.
This attribute gives the maximum deflection of the wave in one direction.

5.2.6. Reverb Class

There are several versions of the reverb class. ReverbV1.m implements the simple convolution
approach without early and late reflections. The following code samples are taken from the
ReverbV3.m class, which uses both, on the one hand the convolution method described in
Section 3.2 on the other hand the delay based approach described in Section 3.3.

function obj=ReverbV3(sampleRate, blockSize, reverbTimeMs, earlyPreDe-
layMs, latePreDelayMs, damping)

1See the Matlab Help for further information. SIN(X), LOG(X), EXP(X)
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Table 5.5.: ReverbV3.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
blockSize block size samples
reverbTimeMs reverb time τ determines

length of artificial pulse re-
sponse

ms

earlyPreDelayMs time before first reflection
reaches listener

ms

latePreDelayMs time before diffuse reflections
start

ms

damping attenuation factor for early
and late reflections

%

Listing 5.12: Method to get artificial room impulse response

1 %returns a artificial pulse response

2 function obj = setPulseResponse(obj)

3 %get length in samples

4 responseLength = ceil(obj.reverbTimeMs/1000*obj.sampleRate);

5 preDelayLength = ceil(obj.latePreDelayMs/1000*obj.sampleRate);

6

7 alpha = 3*log(30)/(responseLength);

8

9 %decay is zero till late reflections

10 decay = [zeros(1,preDelayLength) exp(-alpha*(preDelayLength:

responseLength-1))]’;

11

12 %Nf = L+Nh-1;

13 fftSize = obj.blockSize + responseLength - 1; %in samples

14

15 obj.pulseResponse = fft(ReverbV3.getGauss(responseLength) .* decay,

fftSize);

16 end

17

18 %returns blockSize gaussian distributed random numbers with zero mean

19 function gauss = getGauss(length)

20 randNums=rand(length,2); %generate 2 * blockSize random numbers [0,1]

21 gauss = cos(2*pi*randNums(:,1)) .* sqrt(-2 * log(randNums(:,2))); %box

-muller transformation

22

23 end
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In the getPulseResponse(reverbTime, sampleRate) method first the responseLength and the
preDelayLength in samples are calculated. Then the impulse response is composed from a
zero part, to simulate the pre delay, and an exponential decaying part. The exponential decay
with length in samples is created with the Matlab exponential function 1 . The white Gaussian
noise is created with the Matlab random function 2. This function creates uniform distributed
random numbers in the range from zero to one. The Box Muller Transformation [Dut05]
is needed to convert the uniform distributed numbers to Gaussian distributed numbers. The
FFT size N f is determined by the blocksize Nx and the responseLength Nh. Finally the pulse
response in the frequency domain can be created multiplying the decay with the white noise
and applying the discrete fourier transformation (DFT) to the result.

Listing 5.13: Convolves input with white noise( ReverbV3.m)

1 %creates diffuse reverberation resp. late reflections

2 function [obj, diffuseBlock] = getDiffuseReverberation(obj,inputBlock)

3 %calculate pulse length

4 pulseSize = ceil(obj.reverbTimeMs/1000*obj.sampleRate);

5

6 %Nf = L+Nh-1;

7 fftSize = obj.blockSize + pulseSize - 1; %in samples

8

9 %initialize

10 if (length(obj.diffuseBlockOld) == 1)

11 obj.diffuseBlockOld = zeros(fftSize,1);

12 end

13

14 diffuseBlockNew = ifft(fft(inputBlock,fftSize).*obj.pulseResponse);

15

16 %do overlap add

17 diffuseBlock = diffuseBlockNew(1:obj.blockSize) + obj.diffuseBlockOld

(1:obj.blockSize);

18

19 obj.diffuseBlockOld(1:fftSize-obj.blockSize) = diffuseBlockNew(obj.

blockSize+1:fftSize) + obj.diffuseBlockOld(obj.blockSize+1:fftSize

);

20 end

The getDiffuseReverberation(obj,inputBlock) method convolves the input block with the arti-
ficial pulse response to get diffuse reverberation. Here the overlap add method described in

1EXP(X)
2RAND(N)
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Subsection 3.2.1 is implemented. First the input block has to be transformed to frequency
domain with the DFT. Then the input block can be multiplied with the pulseResponse in the
frequency domain 1. The result then is transformed to time domain with the inverse discrete
fourier transformation (IDFT) again. A temporary state variable diffuseBlockOld is needed to
save the last result of the convolution. It is initialized with zeros at the first call of the func-
tion. At subsequent calls of the getDiffuseReverberation(obj,inputBlock) method the over-
lapping Nh− 1 samples of the diffuseBlockOld variable are added to the result of the current
convolution.

Listing 5.14: Start method(ReverbV3)

1 function [obj,outputBlock] = start(obj,inputBlock)

2 %save next input block for early reflections

3 obj = refreshTotalBuffer(obj, inputBlock);

4

5 [obj, diffuse] = getDiffuseReverberation(obj,inputBlock);

6

7 %direct sound + early reflections + diffuse reverberation

8 outputBlock = inputBlock + getTotalBuffer(obj) * obj.damping + diffuse

* obj.damping/2;

9 end

In Listing 5.14 the start method of the Reverb3.m class is given. The early reflections are
created with a simple circular buffer as described in Subsection 5.2.2. The diffuse reflections
are created with the getDiffuseReverberation(obj,inputBlock) method, as described above. So
finally the output block can be created using the unmodified input block plus the delayed input
block from the getTotalBuffer(obj) plus the diffuse reverberation. The damping variable is a
scale factor simulation the attenuation of the reflected waves at the walls.

5.2.7. Distortion Class

The Distortion.m class implements the distortion effect from Section 4.2. One can chose
between soft clipping 4.2.2 and hard clipping 4.2.1.

function obj=Distortion(sampleRate, blockSize, distortion, level)

1Remember the convolution theorem of the DFT
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Table 5.6.: Distortion.m constructor arguments

argument description unit
sampleRate sample rate fs Hz
blockSize block size samples
distortion chose between hard and soft

clipping
integer

level amount of distortion %

Listing 5.15: Start method( Distortion.m)

1 %length of input signal equals blocksize!

2 function outputBlock = start(obj,inputBlock)

3

4 %initialize output vector

5 outputBlock = zeros(obj.blockSize,1);

6

7 switch obj.distortion

8 %hard clipping

9 case 1

10 outputBlock = inputBlock;

11

12 %set threshold according percentage

13 threshold = 1-obj.level;

14

15 %cut of input signal

16 topIndex = abs(inputBlock) > threshold;

17

18 %distinguish between positiv and negativ range!

19 negIndex = inputBlock < 0;

20 posIndex = inputBlock > 0;

21

22 %replace top values

23 outputBlock(topIndex & negIndex) = -threshold ; %input = -1

24 outputBlock(topIndex & posIndex) = threshold ; %input = 1

25

26 %symmetrical soft clipping

27 case 2

28 %set threshold according percentage

29 threshold = 1-obj.level;

30

31 %get index for 3 threshold steps

32 botIndex = abs(inputBlock) < 1/3; %-1/3<input<1/3
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33 topIndex = abs(inputBlock) > 2/3; %input<-2/3 and input>2/3

34 midIndex = ~logical(botIndex + topIndex);%-2/3<=input<=-1/3 &

1/3<=input<=2/3

35

36 %distinguish between positiv and negativ range!

37 negIndex = inputBlock < 0;

38 posIndex = inputBlock > 0;

39

40 %replace bottom values

41 outputBlock(botIndex) = 2 * inputBlock(botIndex); %input * 2

42

43 %replace mid values

44 outputBlock(midIndex & negIndex) = -1 * (3 - (2 + 3 *

inputBlock(midIndex & negIndex)).^2)/3; %(3 - (2 - 3 *

input).^2)/3

45 outputBlock(midIndex & posIndex) = (3 - (2 - 3 * inputBlock(

midIndex & posIndex)).^2)/3; %(3 - (2 - 3 * input).^2)/3

46

47 %replace top values

48 outputBlock(topIndex & negIndex) = -1; %input = -1

49 outputBlock(topIndex & posIndex) = 1; %input = 1

50 %constant

51 otherwise

52 end

53 end

54 end

The Distortion.m class more or less implements only one important method. First the start(obj,

inputBlock) method selects the kind of distortion depending on the distortion attribute. If hard
clipping as described in Section 4.2.1 is selected all absolute input values bigger than threshold

are set to threshold. The threshold variable is set according to the level attribute. Matlab is able
to use relational operators on a whole block of input values. It returns an index vector with
boolean values zero and one. First it has to be checked if the absolute values of the input block
are smaller than the threshold. Then the positive values have to be separated from the negative
ones. Finally these two information can be logical combined to generate the output block. If
soft clipping as described in Section 4.2.2 is selected it’s a bit more complicated. Because we
have to find the indexes for three intervals plus the indexes for positive and negative values
now. The first interval A contains the indexes of all absolute values of the input block smaller
than one-third. The third interval C contains the indexes of all absolute values to the input
block that are bigger than two-third. Finally the indexes of the second interval B are a logical
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combination of the first and the second interval namely B equals not A and C. All input values
with indexes that lie in interval A are just multiplied with two. All input values with indexes
that lie in interval C are set to one. All values with indexes that lie in interval B are manipulated
to make a smooth transition from the first interval A to the third interval C. Of course positive
and negative values have to be distinguished again.

5.2.8. Equalizer Class

The Equalizer.m class implements a three band equalizer. It uses the Matlab Butterworth
digital and analog filter design function 1 and the filter function already mentioned in Subsec-
tion 5.2.2. A three band equalizer divides the frequency spectrum in three bands with fixed
size. We have a bass band for the low frequencies. A mid band for the mid frequencies. And a
treble band for the high frequencies. Figure 5.1 illustrates the magnitude response for all three
bands.

Figure 5.1.: Frequency spectrum of 3 band eualizer

The constructor in Listing 5.16 required the sample rate in hertz and the gain in decibel for
all three bands. The gain in decibel has to be converted to a gain factor α so it can be used to
scale the output later.

1[B,A] = BUTTER(N,Wn,’high’)
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Listing 5.16: Constructor ( Equalizer.m)

1 function obj=Equalizer(sampleRate,bassGain,midGain,trebleGain)

2

3 %initialize properties

4 obj.sampleRate = sampleRate;

5

6 %convert from dB to factor

7 if(bassGain == 0)

8 obj.bassGain = 1;

9 elseif(bassGain > 0)

10 obj.bassGain = bassGain/3;

11 else

12 obj.bassGain = (-1) * 3/bassGain;

13 end

14

15 %convert from dB to factor

16 if(midGain == 0)

17 obj.midGain = 1;

18 elseif(midGain > 0)

19 obj.midGain = midGain/3;

20 else

21 obj.midGain = (-1) * 3/midGain;

22 end

23

24 %convert from dB to factor

25 if(trebleGain == 0)

26 obj.trebleGain = 1;

27 elseif(trebleGain > 0)

28 obj.trebleGain =trebleGain/3;

29 else

30 obj.trebleGain = (-1) * 3/trebleGain;

31 end

32

33 %calculate filters

34 obj = refreshFilter(obj);

35

36 end

The refreshFilter(obj) method in Listing 5.17 calculates the filter coefficients for the three
bands using Butterworth filters. The bass band uses a lowpass filter with stop frequency at
eighty hertz. The mid band goes from eighty one up to six hundred hertz and uses a bandpass
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filter. The treble band uses a highpass filter with a stop frequency at six hundred and one hertz.
It is very important to use a even order for the bandpass filter since it has to be multiplied by
two. So butter(6/2,[81 600]/(obj.sampleRate/2),’bandpass’) creates a butterworth bandpass
filter, normalized with the Nyquist frequency( sampleRate/2), pass-band from eighty one up
to six hundred hertz of order six.

Listing 5.17: Refresh filter coefficients( Equalizer.m)

1 function obj = refreshFilter(obj)

2 %bass band goes from 0 up to 80Hz

3 %create butterworth filter with order 6

4 [obj.bassCoeffs.num,obj.bassCoeffs.den] = butter(6, 80/(obj.sampleRate

/2),’low’);

5

6 %mid band goes from 81 up to 600Hz

7 %create butterworth filter with EVEN order 6

8 [obj.midCoeffs.num,obj.midCoeffs.den] = butter(6/2,[81 600]/(obj.

sampleRate/2),’bandpass’);

9

10 %treble band > 600Hz

11 %create butterworth filter with order 6

12 [obj.trebleCoeffs.num,obj.trebleCoeffs.den] =butter(6,601/(obj.

sampleRate/2),’high’);

13 end

The start(obj, inputBlock) method in Listing 5.18 gets a block of input samples. Like in
Subsection 5.2.2 the Matlab filter function is used to apply the filter to the input block. Again
a state variable is needed to safe the inner state of the filter for the block processing. Finally
the output block can be assembled multiplying all three bands with the specific gain factor α

and adding them to each other. This accords to a parallel connection.

Listing 5.18: Start method( Equalizer.m)

1 %returns next blocksize samples and filter state

2 function [obj, outputBlock] = start(obj, inputBlock)

3 %apply filter to input

4 [bassOutput, obj.bassState]= filter(obj.bassCoeffs.num, obj.bassCoeffs

.den, inputBlock, obj.bassState);

5

6 %apply filter to input

7 [midOutput, obj.midState]= filter(obj.midCoeffs.num, obj.midCoeffs.den

, inputBlock, obj.midState);

8
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9 %apply filter to input

10 [trebleOutput, obj.trebleState]= filter(obj.trebleCoeffs.num, obj.

trebleCoeffs.den, inputBlock, obj.trebleState);

11

12 %parallel combination

13 outputBlock = bassOutput * obj.bassGain + midOutput * obj.midGain +

trebleOutput * obj.trebleGain;

14 end

5.3. GUI

The graphic user interface (GUI) was created with the Matlab open GUI layout editor 1. Since
all effects are written with Matlab code they can be easily integrated. Another advantage
is the easy integration of new effects, as planned for later versions. This section provides
a documentation of the GUI, especially how the user interface for the existing effects was
created and how to use it. Guide provides a mixture of drag and drop and programming
operational controls manually. In Figure 5.2 possible operational controls and the multi effects
unit GUI are given. The toolbar provides push buttons, sliders, checkboxes, tables and so on.
Figures can be applied to the GUI using the axes control.

Figure 5.2.: Guide toolbar and multi effects unit GUI

1GUIDE
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The effects are arranged in effect groups. On the left all delay based effects with their partic-
ular parameters are given. In the middle all spatial based effects are positioned. And on the
right all distortion based effects are placed. The three band equalizer from Subsection 5.2.8
is positioned on the bottom of the GUI. In fact the effects are applied to the input signal in
exactly this order. First one delay based effect can be applied. Then one spatial based effect
can be applied. Then one distortion based effect can be applied. Finally the equalizer can
be used to attenuate or amplify the specific wave bands of the output signal. To start pro-
cessing the Start button has to be pressed. Of course it makes a difference if the effects are
executed in a another order because of nonlinearity. But the current GUI only provides execu-
tion of the effects in the order given above. The specific parameters of the effects have been
already explained in the previous sections. The GUI provides the facility to easily change and
experiment with different parameter configurations.

5.3.1. Menu items

The menu item File has only one entry Open. It is used to load a input wave file using the Mat-
lab standard dialog box for opening files 1, given in Figure 5.3, and the wave read function 2.
After opening a file it is displayed in a separate window 5.4. Furthermore the input wave file is
played using the Matlab sound function 3. The sample rate and the mono stereo selection are
changed according to the input signal. If a stereo signal is loaded, the left and the right channel
are displayed separately. This view can be changed from the time to the frequency domain
in the Settings menu with menu item Time/Frequency. Of course the several effects have to
be applied to both channels separately for a stereo signal. A stereo signal can be treated as a
mono signal with the Mono/Stereo entry in the Settings menu. If Mono is selected for a stereo
signal the sum of the left and the right channel is taken and divided by two to get the average
of both channels. If Stereo is selected for a mono signal, the signal is just duplicated to the
left and to the right channel. Of course the processing time reduces for a mono signal. In the
Settings menu the sample rate and the block size for block processing can be changed too.
In general a larger block size leads to a smaller processing time. If a sampling rate different
from the input signal is selected, undersampling resp. oversampling of the output signal can
be achieved. In Figure 5.4 the input signal and the output signal are displayed for a stereo
input signal on which several effects were applied. The Presets menu has two entries Save and

1[FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE(FILTERSPEC, TITLE)
2Y=WAVREAD(FILE)
3SOUND(Y,FS)
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Load. Here the current configuration of the selected effects can be saved as comma separated
values (CSV) file with the Matlab standard dialog box for saving files 4 and the CSV write
function 5. Thus good sounding effects can be loaded again later easily with the Matlab CSV
read function 5.

Figure 5.3.: Open dialog box

Figure 5.4.: Signal before and after processing window

4[FILENAME, PATHNAME, FILTERINDEX] = UIPUTFILE(FILTERSPEC, TITLE)
5CSVWRITE(FILENAME,M)
5M = CSVREAD(’FILENAME’)
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5.3.2. GUI functions overview

In this section a short description of the most important GUI functions is given. This includes
the callback functions but also the create function and opening functions for the user controls.
Error handling is done for most functions using try and catch statements:

TRY

statement, ..., statement,

CATCH ME

statement, ..., statement

END

Like in other object oriented programming languages like the Java programming language
(Java) or the C++ programming language (C++), errors respectively exceptions that occur
between the try and catch statement can be handled between the catch and the end statement.
Matlab does not distinguish between different error types but simply catches all types of errors.
The specific error message ME can be used to give the user feedback what caused the error.

multiEffectsUnit_OpeningFcn(hObject, eventdata, handles, varargin) This function is
executed after the operational controls are created and initialized. The sample
rate,Mono/Stereo selection and Time/Frequency selection initialization is made here.
Further the handles for the shape and the clipping parameters are set here.

startProcessing_Callback(hObject, eventdata, handles) This callback is executed when
pressing the Start button. Here the selected effect with the appropriate parameters is
applied to the input signal one after the other. After that the refreshed output signal is
displayed using the refreshIOPlot(handles) function. Also a wave file ’effectsUnitOut-
put.wav’ is created in the working directory with the Matlab wave write function 1

sampleRateSelection_Callback(hObject, eventdata, handles) This function belongs to
the sample rate selection menu item described in Subsection 5.3.1.

blockSizeSelection_Callback(hObject, eventdata, handles) This function is belongs to
the block size selection menu item described in Subsection 5.3.1. If the input signal
is already loaded it is made a multiple of the new block size with zero padding.

1WAVWRITE(Y,FS,NBITS,WAVEFILE)
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monoStereoSelection_Callback(hObject, eventdata, handles) This function belongs to
the Mono/Stereo selection menu item described in Subsection 5.3.1.

timeFrequencySelection_Callback(hObject, eventdata, handles) This function belongs
to the Time/Frequency selection menu item described in Subsection 5.3.1.

saveCsv_Callback(hObject, eventdata, handles) This function belongs to the Save CSV
menu item described in Subsection 5.3.1. First the selection for all effects and values
for all parameters are read out. Then they are put into a settings matrix and saved as
CSV file.

loadCsv_Callback(hObject, eventdata, handles) This function belongs to the Load CSV
menu item described in Subsection 5.3.1. First the settings matrix is read from a CSV
file. Then the selected effects and parameters are set according to the settings matrix.

openFile_Callback(hObject, eventdata, handles) This function belongs to the Open menu
item described in Subsection 5.3.1. After the input file is loaded it is made a multiple of
block size using zero padding.

blockSizeSelection_CreateFcn(hObject, eventdata, handles) This function is called on
creation of the blockSize menu entry. Here the possible default values for the block size
are initialized.

sampleRateSelection_CreateFcn(hObject, eventdata, handles) This function is called
on creation of the sampleRate menu entry. Here the possible default values for the
sample rate are initialized.

shape_Callback(hObject, eventdata, handles) This callback function uses the Matlab im-
age show function 2 to display the right image for the shape selection parameter. An
active selection has a blue background color. An inactive selection has a white back-
ground color.

popupDelay_Callback(hObject, eventdata, handles) This callback function changes the
active parameters and sets the default values according to the delay based effects se-
lection.

popupSpatial_Callback(hObject, eventdata, handles) This callback function changes the
active parameters and sets the default values according to the spatial based effects se-
lection.

2IMSHOW(I,[LOW HIGH])
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popupNonlinear_Callback(hObject, eventdata, handles) This callback function changes
the active parameters and sets the default values according to the nonlinear effects se-
lection.

clipping_Callback(hObject, eventdata, handles) This callback function uses the Matlab
image show function to display the right image for the clipping selection parameter.
An active selection has a blue background color. An inactive selection has a white
background color.

refreshIOPlot(handles) This function opens the Signal before and after processing win-
dow 5.4, if an input signal has been loaded, using the Matlab figure function 3. Depend-
ing whether the mono or stereo parameter is selected and whether the time or frequency
parameter is selected in the Settings menu, a different plot is created. Following Matlab
code is used to plot a mono signal in the time domain.

plot(handles.inputSignal, ’b’);

xlabel(’Samples’);

ylabel(’Amplitude’);

And following Matlab code is used to plot a mono signal in the frequency domain.

NFFT = 2^nextpow2(inputSignalN);

%fft input signal

U = fft(handles.inputSignal,NFFT)/inputSignalN;

%get frequency axes

f = sampleRate/2*linspace(0,1,NFFT/2+1);

plot(f,2*abs(U(1:NFFT/2+1)), ’b’);

xlabel(’Frequency (Hz)’);

ylabel(’|X(f)|’);

grid on;

5.3.3. Simple Use Case

Figure 5.5 illustrates a simple use case for the multi effects unit GUI. The list’s num-
bers give a short explanation to the according numbers in Figure 5.5. For a detailed

3FIGURE(H)
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Chapter 5. Implementation

explanation of the GUI menu items go back to Subsection 5.3.1.

1. In a first step an audio wave file has to be loaded. The loaded audio file is displayed
in a separate window and played once.

2. With this popup window one delay based effect can be chosen. Next the according
parameters can be changed to alter the delay based effects behavior.

3. With this popup window spatial based effect can be chosen. Next the according
parameters can be changed to alter the spatial based effects behavior.

4. With this popup window one nonlinear effect can be chosen. Next the according
parameters can be changed to alter the nonlinear effects behavior.

5. Using this button all chosen effects are applied to the input signal one after the
other. The output file is displayed in a separate window, played once and saved as
’effectsUnitOutput.wav’ in the working directory.

Figure 5.5.: Simple use case
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Chapter 6.

Conclusion and Outlook

This work provides an introduction to several well known audio effects. They are grouped in
delay based, spatial based and nonlinear effects according to their implementation details and
the way humans perceive them. All effects are described both in the time and in the frequency
domain. To make understanding easier the delay based effects are represented using block
diagrams. Also the similarities of all delay based effects are figured out. Since low frequency
oscillator (LFO) and linear interpolation play an important role for the implementation of
delay based effects, they are mentioned too. For the reverb effect, which belongs to the spatial
based effects, two different approaches are introduced. The first approach uses convolution
and works in the frequency domain. The second approach uses comb filters and works in the
time domain. In Chapter 4 higher harmonics are created using nonlinear operations on a sum
of sine wave. This gives a better understanding how nonlinear effects work and why they
create such rich sounds. Later the distortion effect with hard and soft clipping is explained as
an important representative. Matlab provides an easy and fast way to implement the covered
effects. But since sound design has much to do with human perception, it takes very long to
create a well sounding result. For example it usually makes a big difference in which order
nonlinear effects are applied to a sound sample. Future work will focus on implementing new
effects and improving the existing effects. Adding real time capabilities will be an important
topic for future students.
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Appendix A.

Acronyms

ADC analog to digital converter

C the C programming language

C++ the C++ programming language

CSV comma separated values

DSP digital signal processor

DFT discrete fourier transformation

FFT fast fourier transformation

FIR finite impulse response

Fortran the formula translation programming language

FPGA field programmable gate array

GUI graphic user interface

IDFT inverse discrete fourier transformation

IIR infinite impulse response

Java the Java programming language

LFO low frequency oscillator

MEX Matlab executable

THD total harmonic distortion
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Appendix A. Acronyms

VHDL very high speed integrated circuit hardware description language
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