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Abstract

This thesis deals with the numerical solution of the Boltzmann transport equation using an
expansion of the distribution function in spherical harmonics for the purpose of electronic
device simulation. Both the mathematical and physical backgrounds are discussed, then
the Boltzmann transport equation is projected onto spherical harmonics without posing
unnecessary restrictions on the energy band structure. From entropy principles a stabilisa-
tion is found which serves as a Scharfetter-Gummel-like stabilisation for the discretisation.
The finite volume method using a full Galerkin scheme is proposed for the discretisation of
the projected equations, which has the advantage of ensuring current continuity by virtue
of construction. To reduce computational costs and speed up the assembly of the system
matrix, analytical formulae for the integral terms in the discretised equations are derived.

Complexity analysis shows that higher order spherical harmonics expansions suffer from
huge memory requirements, especially for two and three dimensional devices. A compressed
matrix storage scheme is therefore introduced, which reduces the memory requirements for
the storage of the system matrix especially for higher order spherical expansions by up to
several orders of magnitude.

Finally, simulation results for a n+nn+-diode prove the applicability of the full Galerkin
method. Self-consistent solutions are obtained by coupling the system of projected equa-
tions with the Poisson equation. The resulting systems of linear equations turn out to be
poorly conditioned, thus preconditioners are proposed and compared.
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Many thanks go to Prof. Ansgar Jüngel for his cooperativeness with the interdisciplinary
topic of this thesis. He has always been eager to hear about the latest progress of my work
and provided me with the highly appreciated freedom that allowed me – driven by my own
curiosity – to find the analytical and numerical results.

I am also indebted to Prof. Klaus-Tibor Grasser from the Institute for Microelectronics.
I remember when he suggested my investigation of the spherical harmonics expansion within
this thesis, then raised his eyebrows and jokingly said that a scientific hybrid like me would
definitely enjoy this topic. Yes, he was right.

A hearty thanks to Philipp Dörsek, who provided the cover page of this thesis, and
Zlatan Stanojevic, who helped me with the interpretation of the simulation results from
the physics point of view.

During my study I have learnt to know many course mates that are now good friends.
Many thanks for making my studies even more pleasurable and for spending a lot of spare-
time together.

I also wish to thank my parents, grandparents and sisters for the support during my
study, even though I have hardly found the time to travel back home to Southern Styria
and stay there for longer than a few days.

Last but not least I thank my girlfriend Doris for all the understanding every time I
went to university earlier than planned just to come back later than expected.

v



Notation

Different notations in the mathematics and the physics community often leads to headache
if a publication from the ’other’ community is read. The notation used in this thesis is a
compromise and tries to fit into both worlds.

Symbol Meaning
R set of real numbers
‖ · ‖ norm of the argument
| · | modulus of the argument
O(·) Landau symbol
Ω unit sphere
θ colatitude (polar angle)
ϕ longitude (azimuth)
dΩ unit sphere surface element, sin θdθdϕ
eθ, eϕ unit vectors w.r.t. θ and ϕ
∇ Nabla operator
∇ · u = div(u) divergence of u
∆ Laplace operator
∆∗ Beltrami operator
A,B matrices (captial letters, bold)
v,w vectors (lower case)
Pl Legendre polynomial of degree l
Pml associated Legendre function of major index l and minor

index m
Yl,m real valued spherical harmonic of major index l and minor

index m
Xl,m spherical harmonics expansion coefficient to Yl,m of the

quantity X
FΩ{f} spherical Fourier transform
δi,j Kronecker delta
δ(·) delta distribution
T triangulation of the simulation domain
B dual box grid of T
B a box from the dual box grid B
Ps space of (piecewise) polynomials of degree s
Bern

(
x
)

Bernoulli function
N number of degrees of freedom in (x, ε)-space
L spherical harmonics expansion order

vi



NOTATION vii

Symbol Meaning
~ Planck constant divided by 2π
ε permittivity (not to be confused with energy ε)
ρ space charge
|q| elementary charge
m∗ effective mass
ε energy (not to be confused with permittivity ε)
x spatial coordinate within the device
k wave vector
p momentum vector
v(k) (group) velocity
F force
E electric field
Q{·} scattering operator
Qin{·} in-scattering operator
Qout{·} out-scattering operator
QVR{·} velocity-randomising scattering operator
η index of the scattering process
s(x,k,k′) scattering rate
n(x, t) particle density
g(ε, θ, ϕ) generalised density of states
j(x, t) current density
〈·〉 moment with respect to the argument
f(x,k, t) distribution function
f̃(x,k, t) generalised energy distribution function
H(f,x,k) entropy
Hl(f,x,k) entropy factor
vl,m(ε) projection of the (group) velocity
Γl,m(ε) spherical harmonics coupling term
VT thermal voltage



Introduction

Semiconductor devices have experienced a tremendous progress in the past decades, follow-
ing Moore’s Law which states that the number of components on a chip doubles approxi-
mately every two years. Since the chip sizes are held more or less constant, Moore’s Law
also states that feature sizes shrink exponentially. At present, MOSFETs with a channel
length of only 20nm are in production.

Due to the high level of miniaturisation, computer aided design of semiconductor devices
is widely used to optimise device layouts. While in the early years of the semiconductor
industry macroscopic models such as the drift diffusion model or the hydrodynamic model
have been sufficient for device simulation, this is not the case anymore for the small feature
sizes used today. As long as quantum mechanical effects can be neglected, the microscopic
behaviour of electrons is in accordance to the Boltzmann Transport Equation (BTE), which
is considered to be the best classical description of electrons.

A direct solution of the BTE has been pursued for several decades and many ingenious
techniques have been developed for this purpose. The most commonly used is the Monte
Carlo method, primarily because the method is very flexible and allows details such as
complicated band structures to be easily incorporated. The main disadvantage of the
Monte Carlo method is its computational expense, especially when attempting to reduce
the statistical noise in the low density tails of the distribution function.

As an alternative to the Monte Carlo method, the spherical harmonics expansion (SHE)
method is considered in this thesis. In contrast to the former, the latter yields determin-
istic solutions of the BTE and is computationally less expensive. The spherical harmonics
expansion method for the simulation of one-dimensional semiconductors was pioneered in
the early 1990’s [15, 17] and since then several scientists around the world have improved
the method in several ways. We mention extensions to higher expansion orders [20, 21],
higher spatial domains [16, 49] and more recently a stabilisation scheme [24]. The spheri-
cal harmonics expansion has also been encountered by mathematicians who have applied
several limits to the BTE and the spherical harmonics expansion in order to derive simpler
models [1, 4, 10,12].

This thesis is organised as follows: In the first chapter the mathematical background of
spherical harmonics is presented. Most results are known for more than a century, except
for the modern approach of the spherical Fourier transform given in Section 1.5. The proof
of Thm. 13 is contributed by the author of this thesis, mainly because it was not given in
the referenced text-book.

In Chapter 2 the BTE is derived and the individual terms such as the scattering operator
introduced. In contrast to the first chapter, where the emphasis is the introduction of a
solid mathematical foundation, the second chapter aims at the introduction of the necessary
topics from physics. There are no additional contributions by the author in this chapter.

1



INTRODUCTION 2

The BTE is projected onto spherical harmonics in Chapter 3. Additionally, several
intrinsic properties of the BTE are shown to be conserved after the projection onto spherical
harmonics. Finally, the concept of entropies for the continuous SHE equations is introduced,
which later serves as a stabilisation scheme for the discretised equations. The projection
onto spherical harmonics follows the calculations from Jungemann et. al. [24], where several
details of the calculation are filled in. Section 3.3 is compiled from several publications by
Ringhofer [34–37].

Chapter 4 deals with the discretisation of the spherical harmonics expansion equations.
At first a short introduction to the finite volume method is given, then the Scharfetter-
Gummel scheme is briefly discussed to show the necessity of stabilisation schemes for semi-
conductor device modelling. The full Galerkin scheme for the discretisation of the spherical
harmonics expansion equation in the simulation domain as well as the analytical formulae
for simulations in two dimensions are contributed by the author of this thesis.

Based on the Galerkin scheme introduced in Chapter 4, complexity analysis is given
in Chapter 5, which is the author’s own work. On the one hand the coupling terms for
coefficients of spherical harmonics of different order are shown to be sparse for spherical
energy bands, while on the other hand it is shown that the memory requirements can be
reduced considerably if the resulting system matrix is stored in a factored form. Matrix-
vector multiplication is still possible with similar computational costs, which enables the
use of iterative solvers for the solution of the system of linear equations.

In Chapter 6 some numerical results are given. It turned out that the SHE equations
are much harder to implement than for example the drift-diffusion model, from which the
initial guess for the potential is obtained. Moreover, preconditioners are observed to be
necessary to keep the condition number of the resulting system sufficiently low.

Chapter 7 gives an outlook on further ideas for future work on this topic. This thesis
then closes with a conclusion.



Chapter 1

Spherical Harmonics

Many physical quantities such as the potential induced by a charged particle show a radial
symmetry, so that it is often convenient to use a spherical coordinate system. Thus, the
Laplace equation in spherical coordinates was investigated in the 18th century, which has
lead to so-called spherical harmonics. Conversely, spherical harmonics can be used for
the approximation of functions on the sphere, thus they can be seen as three-dimensional
extensions of sines and cosines used in Fourier analysis.

This chapter is devoted to the mathematical background of spherical harmonics and
collects all important mathematical results for later use on the numerical solution of Boltz-
mann’s transport equation using an expansion method. Most of the derivations and results
have been known for more than a century, except for the last section, where newer results
are collected. The reader is referred several times throughout this chapter to the literature
for some of the more technical or lengthy proofs.

1.1 The Laplace Equation in Polar Coordinates

Gauss’ Law states that the electric flux density D is related to the space charge density ρ
by

∇ ·D = ρ (1.1)

Using the material equation D = εE, where ε is the permittivity and E is the electric field,
one finds with E = −∇ψ the governing equation for the electric potential ϕ:

−∇ · (ε∇ψ) = ρ , (1.2)

which is commonly termed Poisson equation. If the permittivity ε is a scalar, the homoge-
neous form is known as Laplace’s equation

∆ψ = 0 . (1.3)

In the following we write u instead of ψ, following mathematical conventions. The explicit
form of the Laplace operator ∆ := ∇ · ∇ depends on the underlying coordinate system, in
Cartesian coordinates (x, y, z) the operator is given as

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.4)

3



1.1. THE LAPLACE EQUATION IN POLAR COORDINATES 4

As mentioned at the beginning of this chapter, for a large class of problems it is of advantage
to use spherical coordinates (r, ϕ, θ) of the form

x = r sin θ cosϕ , (1.5)
y = r sin θ sinϕ , (1.6)
z = r cos θ (1.7)

with r ∈ [0,∞), θ ∈ [0, π) and ϕ ∈ [0, 2π). In spherical coordinates, Laplace’s equation
then reads

∆u =
1

r2 sin θ

{
∂

∂r

(
r2 sin θ

∂u

∂r

)
+

∂

∂θ

(
sin θ

∂u

∂θ

)
+

∂

∂ϕ

(
1

sin θ
∂u

∂ϕ

)}
= 0 . (1.8)

We split the Laplacian into radial and angular parts by

∆ =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

∆∗ , (1.9)

where the Beltrami operator ∆∗ is given as

∆∗ :=
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2
. (1.10)

Note that for fixed r, e.g. r = 1, the Beltrami operator is the trace of the Laplace operator
on the surface of a sphere with radius r.

An ansatz u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) leads after substitution into (1.8) and division by
R(r)Θ(θ)Φ(ϕ) to the equation

1
R

d
dr

(
r2 dR

dr

)
+

1
Θ sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
Φ sin2 θ

d2Φ
dϕ2

= 0 . (1.11)

The first term is the only one which depends on r, thus it must be a constant, say k:

1
R

d
dr

(
r2 dR

dr

)
= k . (1.12)

The solution of this equation can be found as

R(r) = Arl +Br−l−1 , (1.13)

where A and B are arbitrary constants and k = l(l+ 1). With this we can rewrite (1.11) as

l(l + 1) sin2 θ +
sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+

1
Φ

d2Φ
dϕ2

= 0 . (1.14)

This time the last term on the left hand side is the only that shows a dependence on ϕ,
thus

1
Φ

d2Φ
dϕ2

= −m2 . (1.15)
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for a (possibly complex valued) constant m. The general solution of Φ for real valued m is
thus

Φ(ϕ) = C cos(mϕ) +D sin(mϕ) . (1.16)

Note that a right hand side m2 instead of −m2 in (1.15) would lead to hyperbolic functions
in (1.16), so that Φ(ϕ) were globally bounded only in the case C = D = 0.

With the general solution for Φ(ϕ), (1.14) becomes

1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+
(
n(n+ 1)− m2

sin2 θ

)
= 0 , (1.17)

which can be recast by setting µ = cos θ, Θ = u into the form

d
dµ

[
(1− µ2)

du
dµ

]
+
[
l(l + 1)− m2

1− µ2

]
u = 0 . (1.18)

Provided that for a particular (entirely unrestricted) choice of m and l a solution uml of
(1.18) is found, the normal forms satisfying Laplace’s equation are then given as

rluml cos(mϕ), rluml sin(mϕ),

r−l−1uml cos(mϕ), r−l−1uml sin(mϕ).

In the following we will confine ourselves to the case in which m and l are positive integers.

1.2 Legendre Polynomials

In this section we consider the case m = 0 and nonnegative integers l in (1.18), thus

d
dµ

[
(1− µ2)

du
dµ

]
+ l(l + 1)u = 0 , (1.19)

which is known as Legendre’s equation. This equation is often written equivalently in the
form

(1− µ2)
d2u

dµ2
− 2µ

du
dµ

+ l(l + 1)u = 0 . (1.20)

By an ansatz u = a0 + a1µ + a2µ
2 + . . . and an ansatz u = µm + α2µ

m−2 + α4µ
m−4 + . . .

the following theorem can be shown [22]:

Theorem 1. The complete solution of Legendre’s equation with positive integers l is

u = APl(µ) +BQl(µ) , (1.21)

where A and B denote arbitrary constants. The expression Pl(µ) is an algebraic function
of µ, of degree l, and is given by

Pl(µ) =
(2l)!
2ll!l!

µlF

(
− l

2
,
1− l

2
;
1
2
− l; 1

µ2

)
, (1.22)

where F (·, ·; ·; ·) denotes the hypergeometrical series. The second solution Ql(µ) is singular
at |µ| = 1
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Pl(µ) is called Legendre polynomial of degree l, Ql is called Legendre function of the
second kind ; explicit formulae for Ql for the cases |µ| < 1 and |µ| > 1 can be given [22,44].

From (1.22) it is hard to see that Pl(µ) is indeed a polynomial, while it can be readily
seen from the following result:

Theorem 2 (Rodrigues’ Theorem). For Legendre polynomials Pl(µ) with l = {0, 1, 2, . . .}
as given in (1.22) there holds

Pl(µ) =
1

2ll!
dl

dµl
(µ2 − 1)l µ ∈ [−1, 1] . (1.23)

Proof. We refer to the literature [22,44] for a proof of Rodrigues’ Theorem.

Rodrigues’ Theorem is an important analytical result which allows to show many other
important properties of Legendre polynomials, such as orthogonality:

Theorem 3 (Orthogonality of Legendre Polynomials). For positive integer l there holds∫ 1

−1
µkPl(µ)dµ = 0 , ∀k = 0, 1, . . . , l − 1 . (1.24)

Consequently, Legendre polynomials are orthogonal with respect to the inner product of
L2([−1, 1]): ∫ 1

−1
Pk(µ)Pl(µ)dµ =

{
0, k 6= l,
2/(2k + 1), k = l,

∀k, l ∈ {0, 1, 2, . . .} . (1.25)

Proof. We substitute Rodrigues’ expression for Pl(µ) into (1.24) and obtain for 0 ≤ k < l
using integration by parts and the fact that all derivatives of (µ2− 1)l of lower degree than
l vanish at µ = ±1, that∫ 1

−1
µkPl(µ)dµ =

1
2ll!

∫ 1

−1
µk

dl

dµl
(µ2 − 1)ldµ

=
1

2ll!

[
µk

dl−1

dµl−1
(µ2 − 1)l

]∣∣∣∣1
−1

− k

2ll!

∫ 1

−1
µk−1 dl−1

dµl−1
(µ2 − 1)ldµ

=
(−1)k

2ll!

∫ 1

−1
µk−1 dl−1

dµl−1
(µ2 − 1)ldµ

...

=
(−1)kk!

2ll!

∫ 1

−1

dl−k

dµl−k
(µ2 − 1)ldµ

=
(−1)kk!

2ll!

[
dl−k−1

dµl−k−1
(µ2 − 1)l

]∣∣∣∣1
−1

= 0 .

This shows (1.24). The orthogonality of Legendre polynomials follows immediately from
the linearity of the integral, since Pk(µ) is the sum of a number of terms of monomials
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in µ with order smaller or equal to k each. Finally, we use again Rodrigues’ formula and
integration by parts to find∫ 1

−1

[
Pl(µ)

]2dµ =
1

22ll!l!

∫ 1

−1

dl

dµl
(µ2 − 1)l

dl

dµl
(µ2 − 1)ldµ

=
(−1)l

22ll!l!

∫ 1

−1
(µ2 − 1)l

d2l

dµ2l
(µ2 − 1)ldµ

=
(2l)!
22ll!l!

∫ 1

−1
(1− µ2)ldµ.

Setting t = (1 + µ)/2, we obtain∫ 1

−1

[
Pl(µ)

]2dµ = 2
(2l)!
l!l!

∫ 1

0
tl(1− t)ldt

= 2
(2l)!
l!l!
B(l + 1, l + 1) =

2
2l + 1

,

by the use of the beta function B(·, ·).

Even though Rodrigues’ formula is a valuable analytical tool, it is not suited for numer-
ical evaluations. However, since Legendre polynomials are a set of orthogonal polynomials
with respect to the inner product of the Hilbert space L2([−1, 1]), there exists a three-term
recurrence relation [14], which is highly attractive for efficient numerical evaluations:

Theorem 4. The following relation between three consecutive Legendre polynomials holds:

(i)

lPl(µ)− (2l − 1)µPl−1(µ) + (l − 1)Pl−2 = 0 . (1.26)

(ii)

dPl(µ)
dµ

− dPl−2

dµ
= (2l − 1)Pl−1(µ) . (1.27)

Proof. The first recursion is proved in a more general context in Thm. 6. The second
recursion is obtained either by the use of Rodrigues’ Theorem or by clever manipulation of
Legendre’s equation [14,22].

We note that P0(µ) = 1, P1(µ) = µ, so all Legendre polynomials of higher order can
now be obtained with (1.26).

1.3 Associated Legendre Functions

In Section 1.1 we have found from separation of variables that Laplace’s equation is satisfied
by functions of the form

rluml cos(mϕ), rluml sin(mϕ),

r−l−1uml cos(mϕ), r−l−1uml sin(mϕ),
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where uml satisfies

d
dµ

[
(1− µ2)

du
dµ

]
+
[
l(l + 1)− m2

1− µ2

]
u = 0 . (1.28)

While Legendre polynomials are obtained as solutions in the case m = 0, we will now
consider the case that both l and m are nonnegative integers with l ≥ m.

Setting u = v(µ2 − 1)m/2, a brief calculation shows that v satisfies the equation

(1− µ2)
d2v

dµ2
− 2(m+ 1)µ

dv
dµ

+ (l −m)(l +m+ 1)v = 0 . (1.29)

On the other hand, if we differentiate Legendre’s equation (1.19) m times, we find that

(1− µ2)
dm+2u

dµm+2
− 2(m+ 1)µ

dm+1u

dµm+1
+ (l −m)(n+m+ 1)

dmu
dµm

= 0 , (1.30)

thus dmu/dmµ2 satisfies (1.29) and we have

v = A
dmPl
dµm

+B
dmQl
dµm

, (1.31)

where A and B are free parameters. The complete solution of (1.28) is therefore

u = A(µ2 − 1)m/2
dmPl
dµm

+B(µ2 − 1)m/2
dmQl
dµm

, (1.32)

which motivates the following definition for real valued arguments −1 ≤ µ ≤ 1

Definition 1. We denote with

Pml (µ) := (−1)m(1− µ2)m/2
dmPl
dµm

=
(−1)m

2ll!
(1− µ2)m/2

dl+m

dµl+m
(µ2 − 1)l (1.33)

the associated Legendre function of first kind and with

Qml (µ) := (−1)m(1− µ2)m/2
dmQl
dµm

(1.34)

the associated Legendre function of second kind. We call the lower index l major index
and the upper index m minor index.

The term (−1)m results from extensions to the complex plane and is – motivated from
quantum physics – called Condon-Shortley phase.

Definition (1.33) makes sense for integers m ≤ l only. So far we have considered the case
m ≥ 0 only, but changing the sign of m does not alter (1.28). Thus, with similar arguments
for (µ2 − 1)−m/2v, we find the most general form of v as

dmv
dµm

= APl(µ) +BQl(µ) . (1.35)
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Consequently, we define for m > 0

P−ml := (1− µ2)−m/2
∫ µ

1
· · ·
∫ µ

1
Pl(µ)dµ . . .dµ (1.36)

m≤l=
(−1)−m

2ll!
(1− µ2)−m/2

dl−m

dµl−m
(µ2 − 1)l, (1.37)

where the integrals are m-fold. The second equality has to be taken with a grain of salt:
While the integral expression on the left hand side can be extended to the case m > l
directly, the notation used on the right hand side does not. Nevertheless, we observe that
(1.33) is thus valid for all integers m with |m| ≤ l.

From the explicit form (1.33) it is not clear whether or how Pml (µ) is related to P−ml (µ),
0 ≤ m ≤ l. We can observe in a first step that for m > 0 both (1 − µ2)m/2Pml (µ) and
(1− µ2)m/2P−ml (µ) are polynomials of degree l +m, but we can say more:

Theorem 5. Let 0 ≤ m ≤ l with nonnegative integers m and l. Then

P−ml (µ) = (−1)m
(l −m)!
(l +m)!

Pml (µ) . (1.38)

Proof. The proportionality constant can be checked easily for the coefficients of µl+m after
multiplication of (1.38) with (1−µ2)m/2. For a proof of the proportionality of the remaining
coefficients, the reader is referred to the textbook of Hobson [22].

As for Legendre polynomials, numerical evaluation of associated Legendre functions is
carried out by the use of recursion formulae:

Theorem 6. For three consecutive Legendre polynomials the recurrence relation

(l −m+ 2)Pml+2(µ) = (2l + 3)µPml+1(µ)− (l +m+ 1)Pml (µ) , 0 ≤ m ≤ l (1.39)

holds. The recursion terminates with the explicit expressions

Pmm (µ) = (−1)m
(2m)!
2mm!

(1− µ)m/2 , (1.40)

Pmm+1(µ) = (2m+ 1)µPmm (µ) . (1.41)

Proof. The expression for Pmm (µ) follows immediately from the 2m-th derivative of (µ2−1)m.
Similarly, we find after differentiation

Pmm+1(µ) = (−1)m
(2m+ 2)!

2m+1(m+ 1)!
µ(1− µ)m/2 = (2m+ 1)µPmm (µ) .

To prove the recurrence relation, we differentiate (1.26) m times to obtain

l
dmPl(µ)

dµm
− (2l − 1)µ

dmPl−1(µ)
dµm

− (2l − 1)m
dm−1Pl−1(µ)

dµm−1
+ (l − 1)

dmPl−2(µ)
dµm

= 0 .

Differentiating (1.27) m− 1 times, we find

dmPl(µ)
dµm

− dmPl−2(µ)
dµm

= (2l − 1)
dm−1Pl−1(µ)

dµm−1
,
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so that elimination of dm−1Pl−1(µ)/dµm−1 yields

(l −m)
dmPl(µ)

dµm
− (2l − 1)µ

dmPl−1(µ)
dµm

+ (l +m− 1)
dmPl−2(µ)

dµm
= 0 .

Multiplication with (−1)m(1− µ2)m/2 together with a shift of indices gives (1.39).

We have already seen in Thm. 3 that the set {P 0
k }lk=0 (recall that for the case m = 0

the associated Legendre functions coincide with the Legendre polynomials) is orthogonal
with respect to L2([−1, 1]). In fact, this is true for all 0 ≤ m ≤ l:

Theorem 7 (Orthogonality of associated Legendre functions). For fixed m, l, with 0 ≤
m ≤ l, and integers 0 ≤ r, s ≤ n, the associated Legendre functions are orthogonal with
respect to the inner product on L2([−1, 1]):∫ 1

−1
Pmr (µ)Pms (µ)dµ =

{
0, r 6= s,
(r+m)!
(r−m)!

2
2r+1 , r = s,

∀r, s ∈ {0, 1, 2, . . .} . (1.42)

Proof. All Pms (µ) with 0 ≤ m ≤ s fulfil (1.28), thus:

d
dµ

[
(1− µ2)

dPms (µ)
dµ

]
+
[
s(s+ 1)− m2

1− µ2

]
Pms (µ) = 0 . (1.43)

Multiplication with Pmr (µ) and integration over [−1, 1] leads to∫ 1

−1
Pmr (µ)

d
dµ

[
(1− µ2)

dPms (µ)
dµ

]
+ Pmr (µ)

[
s(s+ 1)− m2

1− µ2

]
Pms (µ)dµ = 0 . (1.44)

Integration by parts of the first summand in the integrand yields∫ 1

−1

dPmr (µ)
dµ

(µ2 − 1)
dPms (µ)

dµ
+ Pmr (µ)

[
s(s+ 1)− m2

1− µ2

]
Pms (µ)dµ = 0 . (1.45)

Interchanging r and s we find∫ 1

−1

dPmr (µ)
dµ

(µ2 − 1)
dPms (µ)

dµ
+ Pmr (µ)

[
r(r + 1)− m2

1− µ2

]
Pms (µ)dµ = 0 , (1.46)

so that a subtraction of the two equations yields

[s(r + 1)− r(r + 1)]
∫ 1

−1
Pmr (µ)Pms (µ)dµ = 0 , (1.47)

and we immediately deduce∫ 1

−1
Pmr (µ)Pms (µ)dµ = 0 , r 6= s . (1.48)

To find the value of the integral in case r = s, we first replace m by m− 1 as well as u
by the Legendre polynomial Ps(µ) in (1.30):

(1− µ2)
dm+1Ps(µ)

dµm+1
− 2mµ

dmPs(µ)
dµm

+ (l −m+ 1)(l +m)
dm−1Ps(µ)

dµm−1
= 0 . (1.49)
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Multiplication with (1− µ2)m−1 leads to

(1− µ2)m
dm+1Ps(µ)

dµm+1
− 2mµ(1− µ2)m−1 dmPs(µ)

dµm

+ (l −m+ 1)(l +m)(1− µ2)m−1 dm−1Ps(µ)
dµm−1

= 0 ,
(1.50)

which can be rewritten in the form

d
dµ

[
(1− µ2)m

dmPs(µ)
dµm

]
= −(l −m+ 1)(l +m)(1− µ2)m−1 dm−1Ps(µ)

dµm−1
. (1.51)

With this we can manipulate using integration per parts∫ 1

−1
Pmr (µ)Pmr (µ)dµ =

∫ 1

−1

dmPr(µ)
dµm

(1− µ)m
dmPr(µ)

dµm
dµ

= −
∫ 1

−1

dm−1Pr(µ)
dµm−1

d
dµ

[
(1− µ)m

dmPr(µ)
dµm

]
dµ

= (r −m+ 1)(r +m)
∫ 1

−1

dm−1Pr(µ)
dµm−1

(1− µ)m−1 dm−1Pr(µ)
dµm−1

dµ

...

=
(r +m)!
(r −m)!

∫ 1

−1
Pr(µ)Pr(µ)dµ

=
(r +m)!
(r −m)!

2
2r + 1

.

We note that by the use of the results from Thm. 5, Thm. 7 can be shown to hold
unaltered in the more general case −l ≤ m ≤ l [3].

Instead of keeping the minor index m of Pml (µ) fixed and derive recursions with respect
to l, recursions with varying minor index m can also be derived and will be used in Chapter
5:

Lemma 1. The following recurrence relations for associated Legendre functions with 0 ≤
m ≤ l hold:

(i)

µPml (µ) = (l −m+ 1)(1− µ2)1/2Pm−1
l (µ) + Pml−1(µ) (1.52)

(ii)

Pml+1(µ) = µPml (µ) + (l +m)(1− µ2)1/2Pm−1
l (µ) (1.53)

(iii)

(l +m+ 1)µPml (µ) = (l −m+ 1)Pml+1(µ) + (1− µ2)1/2Pm+1
l (µ) (1.54)
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(iv)

(l +m)Pml−1(µ) = (1− µ2)1/2Pm+1
l (µ) + (l −m)µPml (µ) (1.55)

(v)

(1− µ2)
dPml (µ)

dµ
= (l +m)Pml−1(µ)− lµPml (µ) , (1.56)

In case that the minor index s is larger than the major index r, we set P sr ≡ 0, cf. (1.33).

Proof. These recurrence relations can be verified directly by substitution of the explicit
representation (1.33) into (1.52) - (1.56) and application of suitable rules for differentiation.

1.4 Orthogonal Functions on the Sphere

Legendre polynomials and associated Legendre functions have been introduced to cover
the angular dependence of harmonic functions on the colatitude (or polar angle) θ. The
dependence of a harmonic function on the sphere on the longitude (or azimuth) ϕ is resolved
by sines and cosines, so that in accordance with the ansatz u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) we
define

Definition 2 (Real valued spherical harmonics). The real valued spherical harmonics are
defined as the space induced by the set

Yl,m(θ, ϕ) =


√

1
π

(l−m)!
(l+m)!

2l+1
2 Pml (cos θ) cos(mϕ), m > 0 ,√

1
2π

2l+1
2 Pl(cos θ), m = 0 ,√

1
π

(l+m)!
(l−m)!

2l+1
2 P−ml (cos θ) sin(mϕ), m < 0 ,

(1.57)

for l = 0, 1, . . . and −l ≤ m ≤ l.
Using the orthogonality results from the preceding sections, we obtain

Theorem 8 (Orthonormality of Spherical Harmonics). The spherical harmonics as defined
in (1.57) are orthonormal with respect to the inner product of L2(Ω).

Proof. Writing Nl,m for the normalisation constants in (1.57) and putting

gm(ϕ) =


cos(mϕ), m > 0,
1, m = 0,
sin(mϕ), m < 0,

(1.58)

we can directly show∫ π

0

∫ 2π

0
Yl,m(θ, ϕ)Yl′,m′(θ, ϕ) sin θ dϕ dθ =

= Nl,mNl′,m′

∫ π

0
P
|m|
l (cos θ)P |m

′|
l′ (cos θ) sin θ dθ ×

∫ 2π

0
gm(ϕ)gm′(ϕ) dϕ

= Nl,mNl′,m′

∫ 1

−1
P
|m|
l (µ)P |m

′|
l′ (µ) dµ×

∫ 2π

0
gm(ϕ)gm′(ϕ) dϕ

= δl,l′δm,m′ ,
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(a) l = 2,m = 0 (b) l = 2,m = 0 (c) l = 2,m = 0

(d) l = 3,m = 1 (e) l = 3,m = 1 (f) l = 3,m = 1

(g) l = 4,m = −4 (h) l = 4,m = −4 (i) l = 4,m = −4

(j) l = 4,m = 0 (k) l = 4,m = 0 (l) l = 4,m = 0

(m) l = 4,m = 2 (n) l = 4,m = 2 (o) l = 4,m = 2

Figure 1.1: Selected real valued spherical harmonics Yl,m for small values of l and m.
Evaluation is carried out over the sphere, in polar coordinates and as three-
dimensional plot over the ϕ-θ-plane.
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where δk,k′ denotes the Kronecker delta, µ = cos θ and we have used the well known orthog-
onality of the set {gm} (cf. Fourier series).

It is also possible to define complex-valued spherical harmonics. In fact, the more
natural way even is to allow complex valued values for the associated Legendre functions
and define complex-valued spherical harmonics. The real-valued spherical harmonics can
then be obtained as restriction of the complex plane to the real axis.

Typically, spherical harmonics are divided into three groups (cf. Fig. 1.1):

• Zonal harmonics: Spherical harmonics with m = 0

• Sectoral harmonics: Spherical harmonics with |m| = l > 0

• Tesseral harmonics: All spherical harmonics which are neither zonal nor sectorial.

If a spherical harmonic Yl,m is evaluated at a point p with angular coordinates (θ, ϕ),
it is possible to deduce the value of the spherical harmonic at the opposing point p′ with
coordinates (π − θ, π + ϕ):

Lemma 2 (Evaluation at the opposing point). There holds

Yl,m(θ, ϕ) = (−1)lYl,m(π − θ, π + ϕ) . (1.59)

In other words: The parity of spherical harmonics with respect to points in (x, y, z)-co-
ordinates is given by the parity of the major index l.

Proof. First we note that there holds

Yl,m(π − θ, π + ϕ) = Nl,mP
|m|
l (cos(π − θ))gm(ϕ) = Nl,mP

|m|
l (− cos(θ))gm(ϕ) , (1.60)

where Nl,m denotes the normalisation constant and gm(ϕ) is a shorthand notation as defined
in (1.58). From the definition of the associated Legendre functions (1.33) it can easily be
seen that the parity is even whenever l −m is even, thus

Yl,m(π − θ, π + ϕ) = (−1)l−mYl,m(θ, π + ϕ) . (1.61)

Since

cos(m(π + ϕ)) = cos(mπ +mϕ) = (−1)m cos(mϕ)
sin(m(π + ϕ)) = sin(mπ +mϕ) = (−1)m sin(mϕ) ,

we see that g(π + ϕ) = (−1)mg(ϕ) and thus obtain

Yl,m(π − θ, π + ϕ) = (−1)l−mYl,m(θ, π + ϕ) = (−1)lYl,m(θ, ϕ) . (1.62)

Similar results can be given for the partial derivatives:

Lemma 3. There holds

∂Yl,m(θ, ϕ)
∂θ

= (−1)l+1∂Yl,m(π − θ, π + ϕ)
∂θ

, (1.63)

∂Yl,m(θ, ϕ)
∂ϕ

= (−1)l
∂Yl,m(π − θ, π + ϕ)

∂ϕ
. (1.64)
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Proof. The second statement is clear since derivatives of trigonometric functions are again
trigonometric functions and hence the same reasoning as for Lemma 2 applies.

To show (1.63), we have to consider the parity of the derivative of associated Legendre
functions:

dPml (µ)
dµ

=
d

dµ

[
(−1)m

2ll!
(1− µ2)m/2

dl+m

dµl+m
(µ2 − 1)l

]
=
m(−1)m

2l+1l!
µ(1− µ2)m/2−1 dl+m

dµl+m
(µ2 − 1)l

+
(−1)m

2ll!
(1− µ2)m/2

dl+m+1

dµl+m+1
(µ2 − 1)l.

The parity of the addends is even whenever l +m is odd and vice versa, thus

∂Yl,m(θ, ϕ)
∂θ

= (−1)l−m+1∂Yl,m(π − θ, ϕ)
∂θ

. (1.65)

As in the proof of the previous Lemma, changing the second argument from ϕ to π + ϕ
leads to an additional factor (−1)m, thus we arrive at (1.63).

Apart from orthogonality of spherical harmonics in L2(Ω), we additionally obtain from
the preceding sections the following

Theorem 9 (Eigenfunctions of the Beltrami operator). Any spherical harmonic Yl,m, l =
0, 1, . . ., m = −l, . . . , l is an eigenfunction of the Beltrami operator ∆∗ corresponding to the
eigenvalue −l(l + 1).

Proof. We substitute an harmonic function of the form H(r, θ, ϕ) = rlYn,m(θ, ϕ) into the
Laplace equation and obtain using (1.9)

0 = ∆H = rl−2l(l + 1)Yl,m(θ, ϕ) + rl−2∆∗Yl,m(θ, ϕ) ,
⇐⇒ ∆∗Yl,m(θ, ϕ) = −l(l + 1)Yl,m(θ, ϕ) ,

hence Yl,m is an eigenfunction of the Beltrami operator ∆∗ with eigenvalue −l(l + 1).

Several recursion formulas for spherical harmonics can directly be derived in a straight-
forward manner from those of associated Legendre functions. A more involved result is the
following:

Theorem 10 (Addition Theorem). For two points on the unit sphere with polar angles
(θ, ϕ) and (θ′, ϕ′), there holds for nonnegative l:

Pl(cosα) =
4π

2l + 1

l∑
m=−l

Yl,m(θ, ϕ)Yl,m(θ′, ϕ′) , (1.66)

where

cosα = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) (1.67)

is the angle between these two points.
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Proof. For a proof we refer to the literature [22,44].

For later use we note that in the special case (θ, ϕ) = (θ′, ϕ′), we have

1 = Pl(1) =
4π

2l + 1

l∑
m=−l

(Yl,m(θ, ϕ))2 , (1.68)

where the first equality can be seen from the recurrence (1.26).
In the second half of the twentieth century a different approach to the (formal) construc-

tion of spherical harmonics became popular among mathematicians: Let Homl(R3) denote
the space of all homogeneous1 polynomials of degree l. Next, we consider all harmonic
homogeneous polynomials:

Definition 3. We denote

Harml(Rk) =
{
pl ∈ Homl(R3) : ∆pl(x) = 0, ∀x ∈ Rk

}
, (1.69)

where k = 1, 2, 3, . . ., the space of all polynomials of degree l that are harmonic and homo-
geneous.

Any pl ∈ Harml(R3) can be written in the form

pl(x) = pl(x1, x2, x3) =
l∑

j=0

ql−j(x1, x2)xj3 , (1.70)

where ql−j ∈ Homl−j(R2). By using that all polynomials of degree zero or one are homoge-
neous, we find

0 = ∆pl(x) =
l∑

j=0

(
∂2

∂x2
1

+
∂2

∂x2
2

)
ql−j(x1, x2)xj (1.71)

+
l−2∑
j=0

ql−j−2(x1, x2)(j + 2)(j + 1)xj . (1.72)

Hence by comparison of coefficients of xj3, we find the recursion relation(
∂2

∂x2
1

+
∂2

∂x2
2

)
ql−j(x1, x2) + (j + 2)(j + 1)ql−j−2(x1, x2) = 0 , j = 0, . . . l − 2 . (1.73)

Thus, all ql−j for j = 2, . . . , n are determined for given ql and ql−1. This recursion formula
actually allows us to find the dimension of Harml(R3):

Lemma 4. The dimension of Harml(R3) is 2l + 1.

Proof. As we have just seen, every homogeneous, harmonic polynomial p(x) is determined
by homogeneous ql ∈ Homl(R2) and ql−1 ∈ Homl−1(R2), thus

dim
(
Harml(R3)

)
= dim

(
Homl(R2)

)
+ dim

(
Homl−1(R2)

)
(1.74)

Since the dimension of Homl(R2) and Homl−1(R2) can easily be directly found as l+ 1 and
l respectively, we immediately obtain the dimension of Harml(R3) to be 2l + 1.

1A polynomial pl of degree l is called homogeneous if pl(λx) = λlpl(x) for all λ ∈ R and all x ∈ R3.
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An alternative definition to Def. 2 consequently is

Definition 4 (Alternative definition of real valued spherical harmonics). Spherical har-
monics are obtained as a restriction of Harml(R3) to the sphere Ω.

With the use of the trigonometric identities

1 = sin2 θ + cos2 θ (1.75)

cos(mϕ) =
[m/2]∑
k=0

(
m

2k

)
(−1)k cosm−2k(ϕ) sin2k(ϕ) (1.76)

sin(mϕ) =
[m/2]∑
k=0

(
m

2k + 1

)
(−1)k cosm−2k−1(ϕ) sin2k+1(ϕ) , (1.77)

where [x] denotes the largest integer smaller or equal to x, in Def. 2 and transformation
of spherical coordinates back to Cartesian coordinates, cf. (1.5)-(1.7), it can be shown [19]
that each Yl,m corresponds to a homogeneous polynomial of degree l. Additionally, for
fixed l, we have exactly 2l + 1 spherical harmonics Yl,m of degree l, because m = −l, . . . , l.
Since the set {Yl,m} is linearly independent and orthonormal, it is an orthonormal basis of
Harml(Ω).

1.5 The Spherical Fourier Transform

Since spherical harmonics form a set of orthonormal functions on the unit sphere Ω, we
may ask whether and in which sense this set is complete. A completeness property will
then allow us to represent arbitrary functions as a (usually infinite) series of spherical
harmonics. For numerical simulations we consider best approximations over a finite set of
spherical harmonics, thus the question of approximation estimations arise.

Theorem 11. The following statements are equivalent:

(i) {Yl,m}l=0,1,..., m=−l,...l is closed in L2(Ω).

(ii) The orthogonal expansion of any element f ∈ L2(Ω) converges in norm to f , i.e.

lim
k→∞

∥∥∥∥∥f −
k∑
l=0

l∑
m=−l

(f, Yl,m)L2(Ω)Yl,m

∥∥∥∥∥
L2(Ω)

= 0 . (1.78)

(iii) For any f ∈ L2(Ω), Parseval’s identity

‖f‖2L2(Ω) = (f, f)L2(Ω) =
∞∑
l=0

l∑
m=−l

|(f, Yl,m)L2(Ω)|2 (1.79)

holds.

(iv) There is no strictly larger orthonormal system containing the orthonormal system
{Yl,m}l=0,1,..., m=−l,...l.
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(v) The system {Yl,m}l=0,1,..., m=−l,...l has the completeness property. That is, f ∈ L2(Ω)
and (f, Yl,m)L2(Ω) = 0 for all l = 0, 1, . . . , m = −l, . . . , l implies f = 0.

(vi) An element f ∈ L2(Ω) is determined uniquely by its orthogonal coefficients.

Proof. We refer to the literature (e.g. [11]) for a proof.

If we replace spherical harmonics Yl,m in Thm. 11 by circular harmonics cos(mϕ) and
sin(mϕ) and readjust the sums appropriately, the well known results for Fourier series are
obtained. Thus, Fourier series can be seen as a projection onto circular harmonics, so that
it is natural to define the spherical Fourier transform as follows:

Definition 5 (Spherical Fourier Transform). The spherical Fourier transform FΩ : f 7→
FΩ{f} for f ∈ L1(Ω) is defined by

(FΩ{f})(l,m) = (f, Yl,m)L2(Ω) =
∫ π

0

∫ 2π

0
f(θ, ϕ)Yl,m(θ, ϕ) sin θdϕdθ . (1.80)

For numerical applications, one is limited to approximations over a space of finite di-
mension, where asymptotic results as in Thm. 11 are insufficient for the choice of such a
space. Additionally, one is interested in good error estimations so that in adaptive schemes
the approximation space can be extended appropriately. Since the exact solution is usually
unknown, information about the local smoothness of the true solution should be extractable
from the approximate solution.

Theorem 12. Let f ∈ C2k(Ω) with nonnegative integer k and its expansion into spherical
harmonics be given as

f ∼
∞∑
l=0

l∑
m=−l

fl,mYl,m =:
∞∑
l=0

Ql , (1.81)

where Ql is a spherical harmonic of degree l and
∑∞

l=0Ql is called the condensed spherical
harmonics expansion. Then for all l > 0 and u ∈ Ω there holds

|Ql(u)| ≤ η‖(∆∗)kf‖L2(Ω)l
1/2−2k , (1.82)

where (∆∗)k denotes the k times iterated Beltrami operator and η is a constant.

Proof. A proof of this result can be found for example in [19].

In particular, if we put k = 1 in (1.82), uniform convergence of the series (1.81) to f
follows. Additionally, the rate of decay of |Ql| allows us to deduce the smoothness of the
(for our purposes unknown) function f . The drawback of Thm. 12 is that only nonnegative
integer values of k can be used. This can be resolved either by the use of interpolation
theory, or by the use of a more abstract setting. In the following, we consider the latter
and follow the exposition of Freeden et. al. [13].

We consider the linear space

A = {{Al,m} : Al,m ∈ R, l = 0, 1, . . . ,m = −l, . . . , l} (1.83)

consisting of all sequences {Al,m} of real numbers Al,m. Now, let {Al,m} ∈ A be a sequence
with Al,m 6= 0 for all l and m.
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Definition 6. The set E = E({Al,m}; Ω) is the set of all infinitely differentiable functions
f ∈ C∞(Ω) such that

∞∑
n=0

l∑
m=−l

|Al,m|2(f, Yl,m)2
L2(Ω) <∞ . (1.84)

We can define an inner product (·, ·)H({Al,m};Ω) on E by

(f, g)H({Al,m};Ω) =
∞∑
l=0

l∑
m=−l

|Al,m|2(f, Yl,m)L2(Ω)(g, Yl,m)L2(Ω) , f, g ∈ E . (1.85)

The associated norm is then given by

‖f‖H({Al,m};Ω) =
√

(f, f)H({Al,m};Ω) . (1.86)

A Hilbert space can now be obtained by completion:

Definition 7. The Sobolev space H({Al,m}; Ω) is the completion of E({Al,m}; Ω) under the
norm ‖·‖H({Al,m};Ω). H({Al,m}; Ω) equipped with the inner product (1.85) is a Hilbert space.

The next step is to use the fact that the spherical harmonics Yn,m are eigenfunctions of
the Beltrami operator, cf. Thm. 9:(

−∆∗ +
1
4

)
Yl,m =

(
l(l + 1) +

1
4

)
Yl,m =

(
l +

1
2

)2
Yl,m . (1.87)

Thus, we formally have

FΩ

{(
−∆∗ +

1
4

)s/2
f

}
(l,m) =

(
l +

1
2

)s
FΩ{f}(l,m) (1.88)

for s ∈ R. This allows us to formally handle derivatives of functions by means of convergence
properties of their spherical Fourier series. Thus, (−∆∗ + 1/4)s/2 is also referred to as
pseudodifferential operator of order s.

Definition 8. We write

Hs(Ω) := H
({(

l +
1
2

)s}
; Ω
)

(1.89)

for the spherical Sobolev space of order s.

Using Parseval’s identity, we (formally) have

‖f‖Hs(Ω) = ‖(−∆∗ + 1/4)s/2f‖L2(Ω) , (1.90)

and in particular, H0(Ω) = L2(Ω).
Similar as for Sobolev spaces defined over the whole space, the order parameter s is

tightly connected to the smoothness of functions in Hs(Ω):

Lemma 5. If f ∈ Hs(Ω), where s > k+1, then f corresponds to a function of class Ck(Ω).
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Proof. A proof can be found in the textbook of Freeden et. al. [13].

With the formal apparatus at hand, we are now ready to estimate the error induced by
truncated spherical Fourier series.

Theorem 13. For f ∈ Hs(Ω), s > 1 there holds

sup
(θ,ϕ)∈[0,π]×[0,2π]

∣∣∣∣∣f(θ, ϕ)−
N∑
l=0

l∑
m=−l

fl,mYl,m(θ, ϕ)

∣∣∣∣∣ ≤ C

N s−1
‖f‖Hs(Ω) , (1.91)

where

fl,m := FΩ{f}(l,m) . (1.92)

Proof. Using the Cauchy-Schwarz inequality, we obtain (function arguments omitted)∣∣∣∣∣f −
N∑
l=0

l∑
m=−l

fl,mYl,m

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

l=N+1

l∑
m=−l

fl,mYl,m

∣∣∣∣∣
≤

( ∞∑
l=N+1

l∑
m=−l

(fl,m)2(l +
1
2

)2s

)1/2

×

( ∞∑
l=N+1

l∑
m=−l

(Yl,m)2(l +
1
2

)−2s

)1/2

=

( ∞∑
l=N+1

l∑
m=−l

(Yl,m)2(l +
1
2

)−2s

)1/2

‖f‖Hs(Ω) .

The remaining double sum can be reduced to a single sum by the use of the addition
theorem (cf. (1.68)):

∞∑
l=N+1

l∑
m=−l

(Yl,m)2(l +
1
2

)−2s =
1

2π

∞∑
l=N+1

(l +
1
2

)−2s+1 . (1.93)

The p-series can be estimated as follows:

∞∑
l=N+1

(l +
1
2

)−2s+1 ≤
∞∑

l=N+1

1
l2s−1

≤ 1
N2s−1

∞∑
l=N+1

1
(l/N)2s−1

≤ 1
N2s−1

∞∑
l=1

N

l2s−1

=
1

N2s−2

∞∑
l=1

1
l2s−1

=
ζ(2s− 1)
N2s−2
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where ζ(·) denotes the Riemann zeta function. Thus, altogether we have just shown

sup
(θ,ϕ)∈[0,π]×[0,2π]

∣∣∣∣∣f(θ, ϕ)−
N∑
l=0

l∑
m=−l

fl,mYl,m(θ, ϕ)

∣∣∣∣∣ ≤
√
ζ(2s− 1)

2π
1

N s−1
‖f‖Hs(Ω) ,

hence the theorem holds with C =
√
ζ(2s− 1)/2π.

An estimate for |Ql| as in (1.82) can now be derived

Corollary 1. Let f ∈ Hs(Ω), s > 1, then for all N > 1 and u ∈ Ω there holds

|QN (u)| ≤ ηN1−s‖f‖Hs(Ω) , (1.94)

where η is a constant.

Proof. We find

|QN (u)| =

∣∣∣∣∣
N∑
l=0

Ql −
N−1∑
l=0

Ql

∣∣∣∣∣ =

∣∣∣∣∣
(

N∑
l=0

Ql − f

)
+

(
f −

N−1∑
l=0

Ql

)∣∣∣∣∣
≤

∣∣∣∣∣f −
N∑
l=0

Ql

∣∣∣∣∣+

∣∣∣∣∣f −
N−1∑
l=0

Ql

∣∣∣∣∣
≤
(

C

N s−1
+

C

(N − 1)s−1

)
‖f‖Hs(Ω)

=
C + C(N/(N − 1))s−1

N s−1
‖f‖Hs(Ω)

≤ C
(
1 + 2s−1

)
N1−s‖f‖Hs(Ω) .

Especially we find by setting s = k + 1 for continuously differentiable functions:

Corollary 2. For f ∈ Ck(Ω) and N > 1, there holds

|QN (u)| ≤ ηN−k‖f‖Hk+1(Ω) . (1.95)



Chapter 2

The Boltzmann Transport
Equation

In this chapter we deal with the mathematical and physical properties of the Boltzmann
transport equation (BTE), which treats electrons as particles with a particular position
x(t) and momentum p(t) at time t. In this equation, particle (electrons) are described
by a distribution function f(x,p, t), i.e. a probability density in the (x,p)-space. This
is a classical kinetic model, since it defines both position and momentum of the particle.
However, this contradicts Heisenberg’s uncertainty principle

∆x∆p ≥ ~
2
, (2.1)

so in principle it is impossible to determine both position and momentum with arbitrary
precision. Despite its limitations for the accurate description of quantum mechanical effects,
the semiclassical Boltzmann transport equation is seen as the best mathematical description
of carrier transport and carrier distributions in semiconductor device modelling provided
that the aforementioned quantum mechanical effects are negligible.

2.1 Derivation of the Transport Equation

Consider a single electron interpreted as a particle at position x(t) ∈ R3 and momentum
p ∈ R3. These functions are a solution of Newton’s laws of motion

dx
dt

= v ,
dp
dt

= F , t > 0 (2.2)

supplemented with initial conditions x(0) = x0, p(0) = p0. The force F is given by
F = qE, where the charge q is negative for electrons and positive for holes. E denotes the
effective electric field acting on the particle and is typically a superposition of externally
applied fields and internal fields due to interactions among charges.

Instead of tracking a large number of electrons by Newton’s laws, we describe the state
of an electron by means of the distribution function f(x,p, t). Then,∫

B
f(x,p, t) dxdp (2.3)

22
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gives the probability to find the particle at time t in the volume B in the position-
momentum-space.

It is reasonable1 to assume that f(x,p, t) does not change along an trajectory given by
w(t;x0,p0), so that with the initial probability distribution f0(x,p) we have

f(w(t;x0,p0), t) = f0(x,p) ∀t ≥ 0 . (2.4)

Differentiation with respect to t and writing ẋ and ṗ for the time derivatives respectively
yields

∂f

∂t
+ ẋ · ∇xf + ṗ · ∇pf = 0 . (2.5)

Using the relation p = mv = mẋ, we arrive with (2.2) at Liouville’s equation

∂f

∂t
+
p

m
· ∇xf + F · ∇pf = 0 . (2.6)

Liouville’s equation considers only a single particle, whereas in semiconductors many
particles interact simultaneously. Hence, we consider a generalisation to an ensemble of,
say M , particles. The position and momentum vectors are then 3M -dimensional each.
Additionally, the force field F = (F 1, . . .FM ) is a 3M -dimensional vector and in general
each entry depends on the 6M position and momentum coordinates and on time t. The
classical (ensemble) Liouville equation then reads

∂f

∂t
+
p

m
· ∇xf + F · ∇pf = 0 , (2.7)

but is now posed for x ∈ R3M , p ∈ R3M . The joint particle density f(x,p, t) can be
interpreted similarly as in (2.3).

Up to now we described to motion of particles in vacuum. In semiconductors, however,
there are interactions with the crystal lattice potential, which influences the motion of holes
and electrons considerably. A classical description of such interactions cannot be used due
to the small lattice constants, thus quantum mechanics has to be used to model the influence
of the lattice potential. In the following we use the term ’electrons’ instead of ’particles’,
even though the equations are valid for holes as well.

We will not go into all the details of quantum mechanics in semiconductors and refer
to the literature [7, 29] for further information. One of the main results is that electrons
occupy states within the energy bands. The energy of an electron in the l-th band is related
with the wave vector k ∈ R3 of the electron by ε = εl(k) and the corresponding electron
velocity is given by

vl(k) =
1
~
∇kεl(k) . (2.8)

The energy bands are a material property and can only be obtained from experiments or
sophisticated numerical simulations. Sufficiently accurate approximations can be found in
the literature and are discussed for silicon in more detail in Sec. 2.3.

1This can also be justified from the mathematics point of view, cf. Liouville’s Theorem. [25]
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After taking quantum mechanics into account, the equations of motion for the i-th
electron are given by

dxi

dt
= v(ki) ,

dp
dt

= ~
dk
dt

= F i , t > 0 . (2.9)

In the following it is more convenient to use the wave vector k instead of the momentum p as
argument of the distribution function, thus we formally set f̃(x,k, t) := f(x, ~k, t), but keep
writing f instead of f̃ . Writing v(k) := (v(k1), . . . ,v(kM )), we obtain the semiclassical
electron ensemble Liouville equation for the electron distribution function f(x,k, t) as

∂f

∂t
+ v(k) · ∇xf +

1
~
F · ∇kf = 0 , (2.10)

where again x ∈ R3M , but ki ∈ B for i = 1, . . . ,M , where B denotes the Brillouin zone of
the semiconductor. It is interesting to note that in the case of parabolic energy bands

ε(k) =
~2|k|2

2m
, (2.11)

we obtain v = p/m = ~k/m and the semiclassical Liouville equation reduces to its classical
counterpart (2.7). Due to symmetry considerations at the construction of the Brillouin zone
B it is natural to supplement (2.10) with periodic boundary conditions in ki, i = 1, . . . ,M
on the boundary ∂B:

f(x,k1, . . . ,ki, . . . ,kM , t) = f(x,k1, . . . ,−ki, . . . ,kM , t) . (2.12)

For numerical simulations, Liouville’s equation cannot be solved for problems considered
in practise due to its high dimensionality. In the following, we will consider the formal limit
of the particle number M tending to infinity. Thus, we obtain a distribution function
that describes an ensemble of many electrons while preserving the simpler mathematical
structure (i.e. one space variable in R3, one momentum variable in R3 and one time variable
in R) of the single-particle distribution function. Since there are several technical steps
involved, only the cornerstones in the derivation will be given in the following. More details
on the derivations can again be found in the literature (e.g. [30]).

We assume that the force acting on electron j can by superposition be written as

F j(x, t) = qEext(xj , t) + q
M∑

l=1,l 6=j
Eint(xj ,xl) , (2.13)

where Eext denotes an externally applied field and Eint is due to (long-range) two-particle
interactions. The second main assumption is that the initial sub-ensemble particle density
f

(d)
I for d electrons can be factorised:

f
(d)
I =

d∏
j=1

PI(xj ,kj) , d = 1, . . . ,M − 1 . (2.14)

Thus, along with some further technical assumptions and symmetry considerations, it turns
out that the sub-ensemble particle density can be factorised at all times t > 0, thus the
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electron distribution for a large number of electrons can be reduced to the distribution
function of a single electron, which fulfils the Vlasov equation

∂f

∂t
+ v(k) · ∇xf +

q
~
Eeff · ∇kf = 0 , (2.15)

where the effective electric field is given by

Eeff(x, t) = Eext(x, t) +
∫

R3×B
f(y,k, t)Eint(x,y)dydk

= Eext(x, t) +
∫

R3

n(y, t)Eint(x,y)dy
(2.16)

with electron density n(·, ·), cf. Sec. 2.4. The macroscopic electric field (2.16) can readily
be seen as the continuous extension of (2.13) taking the probability of finding electrons at a
particular location into account. As for Liouville’s equation, periodic boundary conditions
as in (2.12) at the Brillouin zone boundaries are assumed.

For the common case that the interior electric field Eint results from Coulomb forces in
the form

Eint(x,y) = − q
4πε

x− y
|x− y|3

, (2.17)

with permittivity ε, it can be shown [30] that the Vlasov-Poisson system is obtained:

∂f

∂t
+ v(k) · ∇xf −

q
~
∇xψeff · ∇kf = 0 , (2.18)

ε∆xψeff = q(n− C) , x ∈ R3, k ∈ B, t > 0 , (2.19)

where ψeff is the (effective) electrostatic potential and C refers to the doping concentration.
So far we have only considered particle interactions through their induced (long-range)

forces. However, if we consider electrons as (classical) particles, collisions among these
particles occur, especially if the particle density is very high. At each collision event, the
involved particles change their momentum, but not their location in space for a given point
in time. We present a phenomenological derivation here, for more stringent derivations the
reader is referred to the literature, e.g. [30].

In the derivation of Liouville’s equation the only driving force for the electron was given
by the externally applied electric field. The resulting trajectories are due to convection and
we have assumed that there is no change of the probability density along trajectories, hence(

df
dt

)
conv

= 0 . (2.20)

For reasons of symmetry of collision events it is postulated that the rate of change of f due
to convection equals the rate of change due to collisions(

df
dt

)
coll

=
(

df
dt

)
conv

. (2.21)

By convention, scattering is described by an operator Q{f}, so that we have finally arrived
at the semiclassical Boltzmann transport equation (BTE)

∂f

∂t
+ v(k) · ∇xf +

1
~
F · ∇kf = Q{f} , (2.22)
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where the force is given as F = qEeff . The collision operator Q{f} is discussed in the
next section and is in the most general form a nonlinear integral operator. Additionally,
using Coulomb forces for long-range particle interactions, one obtains in analogy to the
Vlasov-Poisson system the Boltzmann-Poisson system:

∂f

∂t
+ v(k) · ∇xf −

q
~
∇xψeff · ∇kf = Q{f} , (2.23)

ε∆xψeff = q(n− C) , x ∈ R3, k ∈ B, t > 0 . (2.24)

A solution of the Boltzmann-Poisson system is often referred to as self consistent solution of
the BTE. In addition to the nonlinearity of the scattering operator, this system is coupled in
the position variable due to the self-consistent field Eeff = −∇xψeff . The initial conditions
are given as for the Vlasov equation and the single-electron Liouville equation by

f(x,k, t) = f(x,−k, t) , x ∈ R3 ,k ∈ ∂B , t > 0 , (2.25)

f(x,k, 0) = f0(x,k) , x ∈ R3 ,k ∈ B . (2.26)

2.2 Collision Events

Even though it is not apparent at first sight, several physical effects strongly depend on
how the collision operator Q{f} in the BTE (2.22) is modelled. In this section we consider
different models for Q{f}, starting from the most general one. Clearly, only the most im-
portant scattering mechanisms can be discussed, so that we advise to consult the literature
for more detailed information [29].

The first assumption on scattering events is that they occur instantaneously and only
change the crystal momentum of the particles involved (cf. Fig. 2.1). The rate S(x,k →
k′, t) at which a particle at (x, t) changes its wave vector (and hence its momentum) from
k to k′ is proportional to two quantities:

(i) The rate is proportional to the occupation probability f(x,k, t). In terms of prob-
abilities this means that a scattering event is more likely the higher the occupation
probability for the initial state given by k is.

(ii) Electrons consider the Pauli principle: The final state k′ has to be vacant, thus the
scattering rate is assumed to be proportional to 1− f(x,k′, t).

Altogether the rate of transition events from state k to state k′ thus is

S(x,k→ k′, t) = s(x,k,k′)f(x,k, t)(1− f(x,k′, t)) , (2.27)

where s(x,k,k′) denotes the scattering rate. The rate of change of the distribution function
f for a particular wave vector k is then the sum over all differences of in-scattering and
out-scattering rates, taken over all possible wave vectors (Bloch states):

(Q{f})(x,k, t) =
∫
B
S(x,k′ → k, t)− S(x,k→ k′, t)dk′

=
∫
B
s(x,k′,k)f(x,k′, t)(1− f(x,k, t))dk′

−
∫
B
s(x,k,k′)f(x,k, t)(1− f(x,k′, t))dk′ .

(2.28)
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In-scattering

Out-scattering
A

A′

1
2

3

4

p

x

Figure 2.1: Illustration of trajectories in position-momentum space. Carriers move along
a trajectory according to Newton’s Laws. Occasionally they scatter to an-
other trajectory. Scatting instantly changes the carrier’s momentum, but
does not affect its position.

The first integral is often referred to as in-scattering term, while the second is called out-
scattering term, cf. Fig. 2.1. This general form of the collision operator induces a nonlocal
quadratic nonlinearity into the BTE (2.22).

At first sight one might be tempted to assume symmetry of the scattering rates with
respect to the wave vectors: s(x,k′,k) ?= s(x,k,k′). However, this is not true in general,
but a different statement holds in thermal equilibrium: By the principle of detailed balance,
the local scattering probabilities vanish, hence

s(x,k′,k)feq(x,k′, t)(1− feq(x,k, t))− s(x,k,k′)feq(x,k, t)(1− feq(x,k′, t)) = 0 .
(2.29)

Since the equilibrium occupation number density is given by the Fermi-Dirac distribution

feq(x,k) =
1

1 + exp( ε(k)−εF

kBT
)
, (2.30)

we have

1− feq(x,k) =
exp( ε(k)−εF

kBT
)

1 + exp( ε(k)−εF

kBT
)
. (2.31)

Substitution of (2.30) and (2.31) into (2.29) and cancelling the common denominator leads
to

s(x,k′,k) exp
(ε(k)− εF

kBT

)
= s(x,k,k′) exp

(ε(k′)− εF
kBT

)
⇐⇒ s(x,k,k′)

s(x,k′,k)
= exp

(ε(k)− ε(k′)
kBT

)
.

(2.32)

The scattering rate s(·, ·, ·) is determined from the type of the scattering mechanism.
We briefly discuss the most important ones:
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• Phonon scattering : The atoms in the crystal lattice vibrate at nonzero tempera-
ture about their fixed equilibrium locations. These vibrations are quantised and the
quantum of lattice vibrations is called phonon, carrying the energy ~ωphon. Thus an
electron that collides with a phonon either increases or decreases its energy by ~ωphon.
With the phonon occupation number Nphon given by the Bose-Einstein statistics

Nphon =
1

exp
(~ωphon

kBT

)
− 1

, (2.33)

the scattering rate for initial state k and final state k′ can be written as

sphon(x,k,k′) = σphon(x,k,k′)
[
Nphon δ(ε(k)− ε(k′) + ~ωphon)

+(1 +Nphon)δ(ε(k)− ε(k′)− ~ωphon)
]
,

(2.34)

where σphon(x,k,k′) is symmetric in k and k′ and δ(·) denotes the delta distribution.
From the physics point of view one can additionally distinguish between acoustic
phonons and optical phonons, but in both cases the scattering rate is given by (2.34).
From the mathematics point of view it has to be emphasised that (2.34) is highly
non-smooth, which further complicates numerical solutions of the BTE.

• Ionised impurity scattering : Dopants in a semiconductor are incorporated into the
lattice as fixed charges. Since electrons also carry a charge, their trajectories are
influenced by these fixed charges due to dopants, changing their momentum. This
scattering process is elastic, i.e. the electron energy ε(k′) after the collision equals
the electron energy ε(k) before interaction. Thus, the scattering rate simp is given
similarly to (2.34) by

simp(x,k,k′) = σimp(x,k,k′)δ(ε(x)− ε(x′)) , (2.35)

where σimp(x,k,k′) is symmetric in k and k′. Due to the symmetry of σimp there
holds

simp(x,k′,k)f(x,k′, t)f(x,k, t)− s(x,k,k′)f(x,k, t)f(x,k′, t) =
= σimp(x,k,k′)δ(ε(x)− ε(x′))

[
f(x,k′, t)f(x,k, t)− f(x,k, t)f(x,k′, t)

]
= 0 ,

hence the collision operator (2.28) can be simplified to

(Qimp{f})(x,k, t) =
∫
B
σimp(x,k,k′)δ(ε(x)− ε(x′))[

f(x,k′, t)− f(x,k, t)
]

dk′ .
(2.36)

• Carrier-carrier scattering : Apart from electron-phonon and electron-impurity inter-
action, electron-electron interaction is one of the most important scattering mecha-
nisms. Since both electrons and holes are carriers, also electron-hole scattering can be
considered, but only electron-electron scattering is considered here. For two electrons
in Bloch states k and k̃, energy has to be conserved, hence

ε(k) + ε(k̃) = ε(k′) + ε(k̃
′
) , (2.37)



2.2. COLLISION EVENTS 29

where k′ and k̃
′

denote the Bloch states after the scattering event. The scattering
rate can now be written as

see(x,k,k′, k̃, k̃
′
) = σee(x,k,k′, k̃, k̃

′
)δ(ε(k) + ε(k̃)− ε(k′)− ε(k̃′)) , (2.38)

with parameter σee(x,k,k′, k̃, k̃
′
). We obtain the collision operator by taking into

account that both initial states have to be occupied and that both final states have
to be vacant:

(Qee{f})(x,k, t) =
∫
B
see(x,k,k′, k̃, k̃

′
)[

f(x,k′, t)f(x, k̃
′
, t)(1− f(x,k, t))(1− f(x, k̃, t))−

f(x,k, t)f(x, k̃, t)(1− f(x,k′, t))(1− f(x, k̃
′
, t))
]

dk′dk̃dk̃
′
.

(2.39)

We observe that this collision operator has a nonlocal nonlinearity of fourth order.

Typically the scattering mechanisms are assumed to be independent from each other.
The full collision operator is then taken as the sum of all individual scattering mechanisms:

Q{f} = Qphon{f}+Qimp{f}+Qee{f} . (2.40)

Such a combination of individual scattering effects is often computationally too complicated
or too expensive, thus simplifications are desired. We will discuss two of the most commonly
used approximations:

• Low density approximation: Assuming that 0 ≤ f(x,k, t) � 1 and hence 1 −
f(x,k, t) ≈ 1 almost everywhere, the collision operator as given in (2.28) simplifies
using (2.32) to

Q0(f)(x,k, t) '
∫
B
σ(x,k,k′)

[
exp
(ε(k′)
kBT

)
f(x,k′, t)− exp

(ε(k)
kBT

)
f(x,k, t)

]
dk′ ,

(2.41)

where σ(x,k,k′) = s(x,k′,k) exp
(
−ε(k′)/(kBT )

)
is called collision cross-section. It

is important to note that the collision cross-section is symmetric in k and k′ because
of (2.32). With this approximation the collision operator becomes linear, but the
unknown distribution function f(x,k, t) still appears in the integrand, so that the
Boltzmann transport equation is still an integro-differential equation.

• Relaxation time approximation: In the case that the initial distribution is close to a
Maxwell distribution, one can approximate

f(x,k′, t) ≈ n(x) exp
(ε(k′)
kBT

)
(2.42)

in (2.41) and obtain

Qτ{f}(x,k, t) = − 1
τ(x,k)

[
f(x,k, t)− exp

(ε(k′)
kBT

)
n(x))

]
, (2.43)
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where

τ(x,k) =
(∫

B
s(x,k,k′)dk′

)−1

(2.44)

is called relaxation time and

n(x) =
∫
B
f0(x,k′)dk′ (2.45)

is some given density. While the low density approximation removes the nonlinearity
of the collision operator, the relaxation time approximation additionally transforms
the integro-differential Boltzmann equation into a (hyperbolic) partial differential
equation.

Although these simplifications of the collision operator ease numerical simulations con-
siderably, an accurate simulation of several physical effects requires the full nonlinearity of
the collision operator. In particular, the relaxation time approximation cannot be used if
the equilibrium distribution is unknown. The low density approximation cannot be used in
highly doped or degenerate semiconductors, where many electrons populate the conduction
band and thus 1− f(x,k, t) 6≈ 1.

2.3 Multi-Band Structures

So far we have considered the BTE for a single energy band only. For predictive device
simulation, the band structure of the semiconductor has to be closely approximated, thus
more complicated energy band structures than the simplistic parabolic single-band structure
have to be considered. In this section we first discuss the parabolic band approximation,
then cover non-parabolicity and finally extended the scheme to cover multiple (spherical)
bands. Ultimately, the most commonly used analytical multi-band structure is discussed
and we hint at the necessary extensions to the BTE to cover multi-band effects.

In an idealised setting such as the infinitely deep quantum well, the solution of Schrö-
dinger’s equation yields a parabolic dependence of the energy on the wave vector:

ε(k) =
~2|k|2

2m∗
, (2.46)

where ~ is the scaled Planck constant and m∗ is the effective mass. Such a quadratic
relationship is termed parabolic band approximation.

In a crystal lattice, the potential distribution deviates from such ideal quantum wells,
hence the parabolic band approximation is indeed only an approximation of the real band
structure. Nevertheless, the band structures observed in practise show only small deviations
from the ideal parabolic shape. Empirical models suggest an analytic band model of the
form

γ(ε) =
~2k2

2m∗
, (2.47)

where typically

γ(ε) = ε(1 + αε) (2.48)
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Figure 2.2: Multi-band structure of silicon. Bands 1 and 3 are electron like (increasing
density of states), bands 2 and 4 are hole-like (decreasing density of states).

is used. The parameter α is called non-parabolicity factor ; in case α = 0 we readily fall
back to (2.46). One can think of more complicated dependencies of the energy on the wave
vector, but (2.48) already provides very good results in the low-energy regime.

For silicon, four energy bands have been proposed by Brunetti et. al. [8] given by

ε+ αε2 =
~2k2

2m∗(1)
, (Band 1) (2.49)

ε = ε(2)
max −

~2k2

2m∗(2)
, (Band 2) (2.50)

ε = ε
(3)
min +

~2k2

2m∗(3)
, (Band 3) (2.51)

ε = ε(4)
max −

~2k2

2m∗(4)
, (Band 4) (2.52)

with energy limits ε(2)
max, ε(3)

min and ε
(4)
max of the respective bands. The specific form of each

band is

γ(1)(ε) = ε+ αε2 , (Band 1) (2.53)

γ(2)(ε) = ε(2)
max − ε , (Band 2) (2.54)

γ(3)(ε) = ε− ε(3)
min , (Band 3) (2.55)

γ(4)(ε) = ε(4)
max − ε , (Band 4) (2.56)

and we obtain the relationships between the energy and the wave vector in a compact form
known as dispersion relation as

γ(ν)(ε) =
~2k2

2m∗(ν)
, ν = 1, 2, 3, 4 , (2.57)
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Band m∗/m0 εmin εmax Z α

1 0.320 0 1.75 6 0.35
2 0.712 1.75 3.02 6 0
3 0.750 2.60 3.00 12 0
4 0.750 3.00 3.40 12 0

Table 2.1: Parameters for the analytical band structure proposed by Brunetti et. al. [8].
m0 denotes the electron mass. Each band extends from εmin to εmax.

shown in Fig. 2.2.
For later use in the next section we briefly mention that the total density of states g(ε),

that is the number of states per unit volume in energy space for a particular energy, is
computed from the individual density of states for each energy band by a weighted sum:

g(ε) = Z(1)g(1)(ε) + Z(2)g(2)(ε) + Z(3)g(3)(ε) + Z(4)g(4)(ε) , (2.58)

where the band multiplicities Z(ν), ν = 1, 2, 3, 4 account for the number of equivalent
symmetrical bands of the ν-th band. These band multiplicities and other band structure
parameters can be found in Tab. 2.1.

For a multi-band structure, the BTE has in principle to be solved in each band for
the band distribution function f (ν) separately and the scattering operator has to consider
scattering events between these bands. For the analytical band structure presented here,
this would result in 6 + 6 + 12 + 12 = 36 coupled equations. However, since electrons in
equivalent valleys of the same band behave identically, one equation per band is sufficient,
thus four equations remain. Additionally, it is possible to treat the first and the second
band as a single band by

γ(1,2)(ε) =

{
ε(1 + αε) , 0 eV ≤ ε ≤ 1.75 eV ,

ε
(2)
max − ε , 1.75 eV < ε ≤ 3.02 eV .

(2.59)

Similarly, the third and forth band can be collected to obtain γ(3,4). If only small fields
occur, it is typically sufficient to consider the first and second band only, so that only a
single distribution function has to be computed [16, 48]. We note that γ(1,2)(ε) is neither
differentiable nor even continuous at ε = 1.75 eV in a classical sense, thus in the following
derivatives of γ(1,2)(ε) have to be understood in a weak sense.

For the remainder of this thesis we omit the band index ν in all expressions to avoid no-
tational clutter. Hence, whenever band-specific quantities such as the distribution function
occur, the band index ν is implicitly included but not written explicitly.

2.4 Average Quantities and Moments

A solution of the BTE yields the distribution function f(x,k, t). For engineering purposes,
macroscopic quantities such as the carrier density and the current density in the device are
of interest. The computation of these macroscopic quantities from the distribution function
is described in this section.
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We start with the calculation of the carrier concentration N(V, t) in a small volume V .
On average, N(V, t) is proportional (for brevity we assume the proportionality factor to be
unity) to the sum over all occupation probabilities of the energy states in that volume:

N(V, t) =
∫
V

∑
all states at x

f(x,k, t)dx . (2.60)

An evaluation of this sum is avoided by taking the formal limit of a continuous distribution
of states:

N(V, t) =
2

(2π)3

∫
V

∫
R3

f(x,k, t)dkdx , (2.61)

where the prefactor 1/(2π)3 arises due to different metrics in the k-space and the x-space
and the additional factor of two is due to the fact that each state can be occupied by two
electrons with different spin. The carrier density n(x, t) is then obtained in the limit

n(x, t) = lim
|V |→0

N(V, t)
|V |

=
2

(2π)3

∫
R3

f(x,k, t)dk . (2.62)

In case that spherical coordinates (ε, θ, ϕ) are used in k-space, integrals over the whole
k-space have to be transformed appropriately. For the carrier density as given in (2.62), a
change of coordinates using k = |k| yields

2
(2π)3

∫
R3

f(x,k, t)dk =
2

(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0
f(x,k(ε, θ, ϕ), t)k2 sin θ

∂k

∂ε
dϕ dθ dε

=
2

(2π)3

∫ ∞
0

∫
Ω
f(x,k(ε, θ, ϕ), t)k2∂k

∂ε
dΩ dε,

(2.63)

where Ω denotes the unit sphere and dΩ = sin θ dϕ dθ. We define the generalised density
of states as

g(ε) :=
k2

(2π)3

∂k

∂ε
, (2.64)

so that we can now write

2
(2π)3

∫
R3

f(x,k, t)dk = 2
∫ ∞

0

∫
Ω
f(x,k(ε, θ, ϕ), t)g(ε, θ, ϕ) dΩ dε . (2.65)

If a spherical relation (2.57) between energy and wave vector holds, the triple integral
can be further simplified to a single integral over energy: Let f(x,k, t) depend on the
modulus k = |k| only (or in this case equivalently depend on ε only, but not on the angles
θ and ϕ), then we immediately obtain from (2.57)

k = k(ε) =

√
2m∗γ(ε)

~2
(2.66)

=⇒ dk
dε

=

√
~2

2m∗γ(ε)
γ′(ε)

m∗

~2
, (2.67)
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where γ′(ε) denotes the derivative of γ(ε) with respect to ε. Consequently, g(ε, θ, ϕ) = g(ε)
and we obtain

2
∫ ∞

0

∫
Ω
f(x,k(ε, θ, ϕ), t)g(ε, θ, ϕ) dΩ dε = 8π

∫ ∞
0

f(x,k(ε), t)g(ε)dε (2.68)

The physical density of states is then be found as

gphys(ε) = 8πg(ε) =
√

2(m∗)3/2

π2~3

√
γ(ε)γ′(ε) (2.69)

and we thus have for spherical bands the relationship

2
(2π)3

∫
R3

F (k)dk =
∫ ∞

0
F (k(ε))gphys(ε)dε (2.70)

for any function F that depends on the modulus k of the wave vector k only. The carrier
density (2.62) for spherical bands can then be written in compact form as

n(x, t) =
∫ ∞

0
f(x,k(ε), t)gphys(ε)dε . (2.71)

Macroscopic quantities depend on the location and time, thus the additional wave vector
information in the distribution function has to be interpreted appropriately. The concept
used for the calculation of the carrier density in (2.62) can be generalised for a small volume
V and a weight function W as

〈NW 〉 :=
∫
V

∑
all states at x

W (x,k, t)f(x,k, t)dx (2.72)

→ 2
(2π)3

∫
V

∫
R3

W (x,k, t)f(x,k, t)dkdx , (2.73)

where N denotes the number of electrons in V and we have taken the limit of a continuous
distribution of states. Again, an average quantity in the limit |V | → 0 can be obtained as

〈nW 〉 := lim
|V |→0

〈NQ〉
|V |

. (2.74)

Since 〈nW 〉 still depends on the carrier density, a normalised quantity for each particle is
obtained as

〈W 〉 =
〈nW 〉
〈n〉

. (2.75)

Typically, the weight function is chosen such that it depends on the wave vector only
(W = W (k)). In case Wr(k) := kr, where powers of k are defined by means of the vector
scalar product, the quantities 〈nWr〉 and 〈Wr〉 are called r-th moment and r-th normalised
moment of f(x,k, t) respectively. Note that for even values of r the resulting moments are
scalar valued, while they are vector valued for odd r; the integrals then have to be taken
component-wise.

With this new notation, the mean electron velocity is 〈ug〉, where

ug(k) =
1
~
∇kε(k) (2.76)
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is the group velocity. For spherical bands as in (2.57) it can be expressed by means of the
chain rule:

dγ
dki

=
dγ
dε

dε
dki

, i = 1, 2, 3 ,

with k = (k1, k2, k3) to find

ug(k) =
~

m∗γ′(ε)
k

⇒ ug(ε) =
~

m∗γ′(ε)

√
2m∗γ(ε)

~2
eε =

1
γ′(ε)

√
2γ(ε)
m∗

eε ,

where γ′(ε) denotes the derivative with respect to ε and eε the radial unit vector. With
the average group velocity at hand, the current density j can be directly obtained from

j = 〈nu〉 . (2.77)

Another important quantity of interest is the average energy, which is in our notation given
by 〈ε〉. If we assume parabolic bands, then we immediately obtain from (2.46) that the
average energy is proportional to the second moment. More precisely,

〈ε〉 =
~2

2m∗
〈W2〉 . (2.78)



Chapter 3

Spherical Projection of the
Boltzmann Transport Equation

In Chapter 1 it has been shown that spherical harmonics are orthonormal and complete
on the sphere (Thm. 8 and Thm. 11). In Chapter 2, a distribution function for electrons
was introduced, whose arguments are the spatial location, the wave vector and time. Thus,
governing equation for the distribution function, the Boltzmann transport equation (BTE),
is seven-dimensional. However, since the electron energy depends in good approximation
on the modulus of the wave vector only, this spherical symmetry can be exploited to reduce
the three-dimensional momentum space to a one-dimensional energy space. This idea has
led to an expansion of the wave vector dependence in spherical harmonics for the purpose of
numerical simulation in the early 1990s [15,17]. For analytical investigations, first spherical
harmonics expansions (SHE) of the distribution function already date back to the 1950s.

3.1 The Spherical Harmonics Expansion Equations

In this section we aim to express the distribution function as a series of spherical harmonics
in the form

f(x,k, t) =
∞∑
l=0

l∑
m=−l

fl,m(x, ε, t)Yl,m(θ, ϕ) , (3.1)

Only a finite number of terms can be considered in a numerical simulation, thus

f(x,k, t) ≈
L∑
l=0

l∑
m=−l

fl,m(x, ε, t)Yl,m(θ, ϕ) , (3.2)

which is for smooth f fully justified when looking at Thm. 13 and taking the finite precision
of computers into account. In first publications only expansions up to first order have been
considered. In spite of the low order expansion, satisfactory results from the physics point
of view have been obtained in the low field regime [15,16,28,43,45–47,49].

Before any numerical simulation can be carried out, equations for the unknown coeffi-
cients fl,m(x, ε, t) need to be derived from the BTE. There are two ways to proceed: One
is to substitute (3.2) into the BTE and balance terms of similar order of magnitude. Such

36
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an approach was used for example by Ventura, Gnudi and Baccarani [15, 16, 48, 49], which
suffers from a lot of book-keeping and requires good reasoning on the balancing of terms.
Additionally, this approach is limited to low-order expansions. We follow the second ap-
proach, where the BTE is projected onto each spherical harmonic and from this conditions
for the expansion coefficients are deduced [20,21,24,27,33]

Before we proceed with a projection of the full BTE, we recall (2.65) for an integration
over surfaces of constant energy ε:

2
(2π)3

∫
R3

δ(ε− ε(k))Yl,m(θ(k), ϕ(k))f(x,k, t)dk =

= 2
∫

Ω
Yl,m(θ, ϕ)f(x,k(ε, θ, ϕ), t)g(ε, θ, ϕ)dΩ .

(3.3)

Here, δ(·) denotes the delta distribution. Note that since Y0,0 is constant, the carrier density
(2.71) can be obtained from an expansion of f into spherical harmonics in case of spherical
bands as

n(x, t) =
2
Y0,0

∫ ∞
0

f0,0(x, ε, t)g(ε)dε . (3.4)

Consequently, a projection of the distribution function onto Yl,m(θ, ϕ) reads

fl,m(x, ε, t) = 2
∫

Ω
Yl,m(θ, ϕ)f(x,k(ε, θ, ϕ), t)g(ε, θ, ϕ)dΩ (3.5)

=:
∫

Ω
Yl,m(θ, ϕ)f̃(x,k(ε, θ, ϕ), t)dΩ , (3.6)

where we introduced the generalised energy distribution function f̃(x,k(ε, θ, ϕ), t). Thus,
in the framework of spherical projections presented in Chapter 1, the expansion coefficients
fl,m(x, ε, t) correspond in fact to the expansion coefficients of the generalised energy distri-
bution function f̃ . In the following the dependence of k on (ε, θ, ϕ) is implicitly assumed
as well as the dependence of Yl,m on (θ, ϕ) to keep the expressions clear.

For reference, we repeat the BTE (2.22)

∂f

∂t
+ v(k) · ∇xf +

1
~
F · ∇kf = Q{f} . (3.7)

and proceed with a projection onto spherical harmonics term by term.

• Term ∂f/∂t: The time derivative is the simplest term to handle, since interchanging
integration and differentiation immediately yields∫

Ω
Yl,m

∂f(x,k, t)
∂t

g(ε, θ, ϕ)dΩ =
∂

∂t

∫
Ω
Yl,mf(x,k, t)g(ε, θ, ϕ)dΩ

=
∂fl,m(x, ε, t)

∂t
.

(3.8)

• Term v · ∇xf : Since the velocity v does not show a spatial dependence, v∇xf =
∇x · (vf) holds and the derivative can be pulled in front of the integral again:∫

Ω
Yl,mv(k) · ∇xf(x,k, t)g̃(ε)dΩ = ∇x ·

∫
Ω
Yl,mv(k)f(x,k, t)g(ε, θ, ϕ)dΩ . (3.9)
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Since v(k) = v(k(ε, θ, ϕ)), the group velocity cannot be pulled out of the integrand,
thus we cannot find a direct relation with fl,m(x, ε, t). Instead, the definition (2.77)
suggests to define the generalised current density

jl,m(x, ε, t) =
∫

Ω
Yl,mv(k)f(x,k, t)g(ε, θ, ϕ)dΩ . (3.10)

The particle current density j can then by definition directly be obtained from the
zeroth order term in the expansion of the generalised current density as

j(x, t) :=
1
Y0,0

∫ ∞
0
j0,0(x, ε, t)dε . (3.11)

Thus, we arrive at∫
Ω
Yl,mv(k) · ∇xf(x,k, t)g(ε, θ, ϕ)dΩ = ∇x · jl,m(x, ε, t) . (3.12)

• Term F /~ · ∇kf : The transformation of the integral over the whole k-space to an
integral over energy requires an additional transformation of the gradient with re-
spect to k. Before the integral is transformed to equi-energy-surfaces, an integration
by parts is carried out. To avoid formal difficulties with the delta distribution, we
multiply the projection integral with a test function ψ(ε) and integrate over energy:∫ ∞

0
ψ(ε)

2
(2π)3

∫
R3

δ(ε− ε(k))Yl,m

(
1
~
F · ∇kf(x,k, t)

)
dkdε

=
2

(2π)3~
F ·
∫

R3

ψ(ε(k))Yl,m∇kf(x,k, t)dk

= − 2
(2π)3~

F ·
∫

R3

∇k

(
ψ(ε(k))Yl,m

)
f(x,k, t)dk

= − 2
(2π)3~

F ·
∫

R3

[
ψ′(ε(k))∇kε(k)Yl,m + ψ(ε(k))∇kYl,m

]
f(x,k, t)dk

(3.13)

Recalling the expression for the gradient in spherical coordinates (k, θ, ϕ) in k-space,

∇kYl,m(θ, φ) =
∂Yl,m
∂k

ek +
1
k

∂Yl,m
∂θ

eθ +
1

k sin θ
∂Yl,m
∂ϕ

eϕ , (3.14)

where ek, eθ, eϕ denote the unit vectors in k, θ and ϕ-direction respectively, we use
the invariance of spherical harmonics in radial direction to obtain with v = ∇kε/~∫ ∞

0
ψ(ε)

2
(2π)3

∫
R3

δ(ε− ε(k))Yl,m

(
1
~
F · ∇kf(x,k, t)

)
dkdε

= − 2
(2π)3

F ·
∫ ∞

0
ψ′(ε)

∫
R3

δ(ε− ε(k))Yl,mvf(x,k, t)dkdε

− 2F ·
∫ ∞

0
ψ(ε)

∫
Ω

1
~k

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
f(x,k, t)g(ε, θ, ϕ)dΩdε

= −F ·
∫ ∞

0
ψ′(ε)jl,m(x, ε, t) + ψ(ε)Γl,m dε

= F ·
∫ ∞

0
ψ(ε)

(
jl,m(x, ε, t)

∂ε
− Γl,m

)
dε ,
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where we have used the definition of the generalised current density (3.10) and set

Γl,m :=
1
~k

∫
Ω

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
f̃(x,k, t)dΩ . (3.15)

Since the test function ψ was arbitrary, we obtain

2
(2π)3

∫
R3

δ(ε− ε(k))Yl,m

(
1
~
F · ∇kf(x,k, t)

)
dk = F ·

(
∂jl,m
∂ε

− Γl,m

)
. (3.16)

• Term Q{f}: We consider the scattering operator in low density approximation:

Q{f} =
∫
B
s(x,k′,k)f(x,k′, t)− s(x,k,k′)f(x,k, t) dk′ . (3.17)

To allow for several different scattering processes like acoustic and optical phonon
scattering, the index η is used and the scattering rate for a small volume V is written
as

s(x,k,k′) =
1
V

∑
η

ση(x,k,k′)δ(ε(k)− ε(k′)± ~ωη) , (3.18)

where k is the initial state and k′ is the final state. The minus sign stands for
emission of energy and the plus sign for absorption. In case of multiple energy bands,
summation over all energy bands has to be added to (3.18) (cf. [24]). In the following
we consider a single band only, a generalisation to multiple bands mainly consists of
summation over all energy bands.

The scattering integral is split into an in-scattering term

Qin{f} =
V

(2π)3

∫
R3

s(x,k′,k)f(x,k′, t) dk′ (3.19)

and an out-scattering term

Qout{f} =
V

(2π)3
f(x,k, t)

∫
R3

s(x,k,k′) dk′ , (3.20)

which we project onto spherical harmonics one after another. Projection of the in-
scattering term (3.19) yields

Qin
l,m{f} =

2
(2π)3

∫
R3

δ(ε− ε(k))Yl,m(θ(k), ϕ(k))Qin{f} dk

=
∑
η

N∑
l′=0

l′∑
m′=−l′

Qin
η,n,m,l′,m′(x, ε)fl′,m′(x, ε± ~ωη, t) ,

(3.21)

where

Qin
η,n,m,l′,m′(x, ε) =

∫
Ω
Yl,m(θ, ϕ)g(ε, θ, ϕ)

×
∫

Ω
ση(x,k(ε± ~ωη, θ′, ϕ′),k(ε, θ, ϕ))Yl′,m′(θ′, ϕ′) dΩ′dΩ .

(3.22)
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Similarly, the out-scattering term is evaluated as

Qout
l,m{f} =

N∑
l′=0

l′∑
m′=−l′

Qout
l,m,l′,m′(x, ε)fl′,m′(x, ε, t) , (3.23)

where

Qout
l,m,l′,m′(x, ε) =

∫
Ω
Yl,m(θ, ϕ)Yl′,m′(θ, ϕ)

[∑
η

∫
Ω
g(ε∓ ~ωη, θ′, ϕ′)

× ση(x,k(ε, θ, ϕ),k(ε∓ ~ωη, θ′, ϕ′)) dΩ′
]

dΩ .

(3.24)

A considerable simplification can be achieved if the transition rate is assumed to be
velocity randomising , i.e. the coefficient ση in (3.18) depends only on the initial and
final energy, but no longer on the angles. This allows us to rewrite (3.22) as follows:

Qin
η,n,m,l′,m′(x, ε) = ση(x, ε± ~ωη, ε)×

∫
Ω
Yl,mg(ε, θ, ϕ)dΩ×

∫
Ω
Yl′,m′ dΩ′

=
1
Y0,0

ση(x, ε± ~ωη, ε)gl,m(ε)δ0,l′δ0,m′ ,
(3.25)

where gl,m(ε) denotes the projection of the generalised density of states onto the
spherical harmonic Yl,m. In case of spherical bands, only f0,0 is coupled into the
balance equation for l = m = 0 since then gl,m(ε) = 0 for (l,m) 6= (0, 0). The
out-scattering term can under the assumption of velocity-randomisation be simplified
to

Qout
l,m,l′,m′(x, ε) =

∑
η

ση(x, ε, ε∓ ~ωη)
∫

Ω
Yl,mYl′,m′ dΩ×

∫
Ω
g̃(ε∓ ~ωη) dΩ′

=
1
Y0,0

∑
η

ση(x, ε, ε∓ ~ωη)g0,0(ε∓ ~ωη)δl,l′δm,m′ .

(3.26)

Thus, the out-scattering term is proportional to fl,m.

Summing up, the full projected scattering operator using velocity randomisation (VR)
is thus given by

QVR
l,m{f} =

1
Y0,0

[
gl,m(ε)

∑
η

ση(x, ε± ~ωη, ε)f0,0(x, ε± ~ωη, t)

− fl,m(x, ε, t)
∑
η

ση(x, ε, ε∓ ~ωη)g0,0(ε∓ ~ωη)
]
.

(3.27)

Even though the scattering operator after projection is not an integral operator any-
more, deviated arguments on the right hand side show up whenever inelastic collisions
with ~ωη 6= 0 are considered. This complicates analytical investigations even more,
but as we will see in the next chapter, a discretisation can still be obtained in a rather
straight-forward fashion.
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Collecting all individual terms, we obtain for the SHE of the BTE the system of coupled
balance equations under the assumption of velocity randomisation

∂fl,m
∂t

+∇x · jl,m(x, ε, t) + F ·
(∂jl,m

∂ε
− Γl,m

)
=

=
1
Y0,0

[
gl,m(ε)

∑
η

ση(x, ε± ~ωη, ε)f0,0(x, ε± ~ωη, t)

− fl,m(x, ε, t)
∑
η

ση(x, ε, ε∓ ~ωη)g0,0(ε∓ ~ωη)
]
.

(3.28)

Finally, we can collect the derivatives on the left hand side to obtain a single divergence in
the (x, ε)-space:

∇̃ =
(
∇x
∂
∂ε

)
, j̃l,m =

(
jl,m

F · jl,m

)
(3.29)

and rewrite (3.28) as

∂fl,m
∂t

+ ∇̃ · j̃l,m(x, ε, t)− F · Γl,m = QVR
l,m{f} . (3.30)

In this divergence form, the derivation of a discretisation scheme is simplified. However,
it has been observed that a direct discretisation of (3.30) suffers from similar numerical
instabilities similar to those observed at the drift-diffusion model [43]. The remainder of
this chapter is thus devoted to the construction of a suitable (continuous) stabilisation.

3.2 Parity Splitting

Average quantities defined as moments of the distribution function as described in Section
2.4 suggest to consider even and odd parts of the distribution function with respect to the
wave vector k:

f even(x,k, t) =
f(x,k, t) + f(x,−k, t)

2
, (3.31)

fodd(x,k, t) =
f(x,k, t)− f(x,−k, t)

2
. (3.32)

The even part f even then carries information about scalar valued macroscopic quantities
such as the carrier density or average energy1 (the zeroth and second moment respectively),
while the odd part determines vector valued macroscopic quantities such as the current
density.

With the shorthand notation

L{f} := v · ∇xf +
1
~
F∇kf (3.33)

for the free streaming operator and the assumption that the velocity v is an even function
of the wave vector k (which can always be assumed for reasons of symmetry of the physical
processes), we observe the following:

1under the assumption of spherical bands
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Lemma 6. Let f(x,k, t) ∈ C∞ := C∞(R3 ×R3 ×R) and Ceven and Codd be the subspaces
of even and odd functions of C∞ with respect to k. Then

f ∈ Ceven =⇒ L{f} ∈ Codd , (3.34)

f ∈ Codd =⇒ L{f} ∈ Ceven . (3.35)

Proof. First we note that the gradient of an even function is an odd function and vice versa.
Now, let f even ∈ Ceven, then

L{f even} = v︸︷︷︸
odd in k

· ∇xf
even︸ ︷︷ ︸

even in k

+
1
~
F · ∇kf

even︸ ︷︷ ︸
odd in k

∈ Codd . (3.36)

Similarly, for fodd ∈ Ceven we obtain

L{fo} = v︸︷︷︸
odd in k

· ∇xf
odd︸ ︷︷ ︸

odd in k

+
1
~
F · ∇kf

odd︸ ︷︷ ︸
even in k

∈ Ceven . (3.37)

Similar considerations for the collision operator Q{f} in the low density approximation
(2.41) need assumptions for the parity of the scattering cross section σ(x,k,k′). Again, we
may assume from symmetry of the physical processes that σ is even in its wave vectors,
which allows to extract parity information from the collision operator:

Lemma 7. For even scattering cross sections σ(x,k,k′) with respect to the wave vectors
in the low density approximation (2.41) of the collision operator Q, parity with respect to
the wave vector k is conserved, i.e.

f ∈ Ceven =⇒ Q{f} ∈ Ceven , (3.38)

f ∈ Codd =⇒ Q{f} ∈ Codd . (3.39)

Proof. This statement follows immediately from the low density approximation (2.41).

Due to the parity properties of the free streaming operator, the BTE for the distribution
function f = f even + fodd can be written for the even and odd part separately:

∂f even

∂t
+ L{fodd} = Qeven{f} , (3.40)

∂fodd

∂t
+ L{f even} = Qodd{f} , (3.41)

where Qeven and Qodd denote the even and odd part of a general collision operator Q{f}.
If we additionally assume a low density approximation with even collision cross sections as
in Lemma 7, we can write

∂f even

∂t
+ L{fodd} = Q{f even} , (3.42)

∂fodd

∂t
+ L{f even} = Q{fodd} . (3.43)
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Thus, a natural requirement on expansion methods for the solution of the BTE is that the
parity coupling due to the free streaming operator is preserved. More precisely, we expect
that the drift term couples even spherical harmonics Yl,m to odd ones, but does not couple
harmonics of the same parity.

Since the (generalised) density of states g is an even function of the wave vector, the
distribution function f is of the same parity as the generalised energy distribution function
f̃ . Moreover, from Lemma 2 we deduce that the even and the odd part (with respect to
the wave vector) of f̃ are given as

f̃ even(x, ε, θ, ϕ, t) =
∞∑
l=0

2i∑
m=−2i

f2l,m(x, ε, t)Y2l,m(θ, ϕ) , (3.44)

f̃odd(x, ε, θ, ϕ, t) =
∞∑
l=0

2i+1∑
m=−2i−1

f2l+1,m(x, ε, t)Y2l+1,m(θ, ϕ) . (3.45)

The drift operator in the SHE equation (3.30) consists of the the two terms jl,m and Γl,m,
which should consequently couple spherical harmonics of different parity only. Inserting
the expansion of f̃ into jl,m yields

jl,m(x, ε, t) =
∫

Ω
Yl,mv(k)f̃(x, ε, θ, ϕ, t)dΩ

=
∞∑
l′=0

l′∑
m′=−l′

fl′,m′(x, ε, t)
∫

Ω
Yl,mv(k)Yl′,m′dΩ︸ ︷︷ ︸

:=vl,m,l′,m′

.
(3.46)

Since the velocity v(k) = ∇kε(k)/~ is an odd function of k, we obtain for reasons of parity
with Lemma 2 that

v2l,m,2l′,m′ = 0 and v2l+1,m,2l′+1,m′ = 0 . (3.47)

On the other hand, for the term Γl,m we obtain

Γl,m =
∫

Ω

1
~k

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
f̃(x,k, t)dΩ

=
∞∑
l′=0

l′∑
m′=−l′

fl′,m′(x, ε, t)
∫

Ω

1
~k

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
Yl′,m′dΩ︸ ︷︷ ︸

=:Γl,m,l′,m′

.
(3.48)

For parity considerations, the unit vectors must not be left unconsidered:

eθ(π − θ, π + ϕ) =

 cos(π − θ) cos(π + ϕ)
cos(π − θ) sin(π + ϕ)
− sin(π − θ)

 =

 cos(θ) cos(ϕ)
cos(θ) sin(ϕ)
− sin(θ)

 = eθ(θ, ϕ) , (3.49)

eϕ(π − θ, π + ϕ) =

 − sin(π + ϕ)
cos(π + ϕ)

0

 = −eϕ(θ, ϕ) . (3.50)
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Since k = |k| is an even function, it does not enter into further parity considerations for
(3.48). From Lemma 3 together with the parity of the unit vectors (3.49) and (3.50) we see
that the term

∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

is of opposite parity than Yl,m, thus

Γ2l,m,2l′,m′ = 0 and Γ2l+1,m,2l′+1,m′ = 0 . (3.51)

We therefore conclude that the odd/even coupling of the free streaming operator is preserved
under SHE.

3.3 Entropy Considerations

The hyperbolic nature of the BTE leads to numerical difficulties that have been reported and
investigated in several publications [9,34–37,43]. In this section a stabilisation scheme based
on entropies pioneered by Ringhofer [34, 35, 37] is discussed. For the sake of conciseness,
the opposite sign of the collision operator in the works of Ringhofer has been adjusted to
meet the notational conventions used in this thesis.

Even though entropy is a concept tightly related with physics, we start with a mathe-
matical definition:

Definition 9. An entropy is a function H(f,x,k) satisfying the following properties:

(i) The entropy is dissipated by the collision operator:∫
R3

∫
R3

∂H(f,x,k)
∂f

Q{f} dkdx ≤ 0 . (3.52)

(ii) The entropy is preserved by the free streaming operator, so∫
R3

∫
R3

∂H(f,x,k)
∂f

[
v · ∇xf +

1
~
F (x) · ∇kf

]
dkdx = 0 (3.53)

holds.

(iii) For fixed x and k the function H(f,x,k) is a strictly convex function of the variable
f , i.e.

H(tf + (1− t)g,x,k) < tH(f,x,k) + (1− t)H(g,x,k) ∀t ∈ (0, 1), f 6= g , (3.54)

and the entropy functional

η(f) =
∫

R3

∫
R3

H(f,x,k) dxdk (3.55)

is a convex functional of f .

We can directly deduce the following property of the entropy functional:
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Lemma 8. The functional η is non-increasing in time.

Proof. We multiply the BTE (2.22) with ∂H(f,x,k)/∂f and integrate:∫
R3

∫
R3

∂H(f,x,k)
∂f

∂f

∂t
dk dx

+
∫

R3

∫
R3

v(k) · ∇xf +
1
~
F · ∇kf dk dx︸ ︷︷ ︸

=0

=
∫

R3

∫
R3

∂H(f,x,k)
∂f

Q{f} dk dx︸ ︷︷ ︸
≤0

.
(3.56)

Consequently, we obtain

0 ≥
∫

R3

∫
R3

∂H(f,x,k)
∂f

∂f

∂t
dk dx =

d
dt

∫
R3

∫
R3

H(f,x,k) dk dx =
d
dt
η(f) , (3.57)

hence the functional η is non-increasing in time.

An entropy based Galerkin method can now be constructed as follows: We first introduce
the inverse of ∂H(f,x,k)/∂f with respect to the variable f by

f̃ :=
∂H(f,x,k)

∂f
⇐⇒ f = µ(f̃ ,x,k) , (3.58)

which exists since ∂H(f,x,k)/∂f is a strictly monotone function in f . The Galerkin proce-
dure is now applied to the entropy variable f̃ , which is expanded in a set of basis functions
{ϕm(k),m = 0, 1, . . .M} as

f̃(x,k, t) ∼=
M∑
m=0

f̃m(x, t)ϕm(k) , (3.59)

and the distribution function f can be obtained from this expansion of f̃ as

f(x,k, t) = µ
( M∑
m=0

f̃m(x, t)ϕm(k),x, t
)
. (3.60)

Writing the BTE in the entropy variable f̃(x,k, t), a projection onto each of the basis
functions yields a system of partial differential equations of first order (this system is given
explicitly e.g. in [37]). By virtue of construction, such a system automatically satisfies

d
dt
η̃(F ) ≤ 0 (3.61)

where F is the coefficient vector of the system and η̃ is the discrete analogue of the entropy
functional (3.55). The actual form of the resulting system depends on two choices:

• The set of basis functions.

• The entropy function H(f,x,k).
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The basis used in this thesis was a-priori already chosen to be the set of spherical harmonics
to account for certain symmetries of the dispersion relation. Thus, we will further investigate
possible entropy functions.

In classical physics the entropy is given as the natural logarithm:

∂H(f,x,k)
∂f

= ln f ⇐⇒ H(f,x,k) = f(ln f − 1) . (3.62)

However, since the collision operator is often simplified in one way or another and we are
additionally considering particles driven by an external field, there is a much larger degree
of freedom in the choice of the entropy.

In the following formal derivation, we assume a low density approximation (2.41) of the
collision operator Q{f} with symmetric collision cross-sections. This assumption allows the
following statement [18]:

Lemma 9. A sufficient condition on the entropy H(f,x,k) is that its derivative is a non-
decreasing function of f(x,k, t) exp(ε(k)/(kBT )), i.e.

∂H(f,x,k)
∂f

= h1

(
f exp

(ε(k)
kBT

)
,x
)

with
∂h1(u,x)

∂u
≥ 0 , (3.63)

the dissipation property (3.52) is fulfilled.

Proof. We consider the dissipation property (3.52). For brevity, we omit function arguments
and write H, f if evaluated at k and H ′, f ′ if evaluated at k′. With shorthand notation
E := exp(ε(k)/(kBT )) and E ′ := exp(ε(k′)/(kBT )) we find∫

R3

∂H

∂f
Q{f}dk =

∫
R3

∫
R3

σ
∂H

∂f

[
Ef − E ′f ′

]
dk′dk

=
1
2

∫
R3

∫
R3

σ
∂H

∂f

[
Ef − E ′f ′

]
dk′dk

+
1
2

∫
R3

∫
R3

σ
∂H

∂f

[
Ef − E ′f ′

]
dk′dk

=
1
2

∫
R3

∫
R3

σ
∂H

∂f

[
Ef − E ′f ′

]
dk′dk

− 1
2

∫
R3

∫
R3

σ
∂H ′

∂f

[
Ef − E ′f ′

]
dk′dk

=
1
2

∫
R3

∫
R3

σ

[
∂H

∂f
− ∂H ′

∂f

] [
Ef − E ′f ′

]
dk′dk ,

where we used that the collision cross-section is symmetric with respect to k and k′ and
that interchanging the roles of k and k′ in the double integral changes the sign.

Since the collision cross-section σ is nonnegative, any entropy H whose derivative is a
non-decreasing function of Ef , i.e.

∂H(f,x,k)
∂f

= h1

(
f exp

(ε(k)
kBT

)
,x
)

with
∂h1(u,x)

∂u
≥ 0 , (3.64)

satisfies the dissipation property, because the term [∂H/∂f − ∂H ′/∂f ] [Ef − E ′f ′] in the
integrand is then always nonnegative.
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Before we proceed with a closer look at the entropy conservation (3.53), some prepara-
tory work is required:

Lemma 10. Let H(f,x,k) be an entropy, where f satisfies the BTE (2.22). Provided that
H(f,x,k) goes sufficiently fast to zero as |x|, |k| → ∞, there holds∫

R3

∫
R3

∇x · (vH) +
1
~
∇k · (FH) dk dx = 0 . (3.65)

Proof. We select a cube Cl in R3×R3 with edge length l centered at the origin and consider
the limit l→∞. With Gauss’ Law we obtain∫

Cl

∇x · (vH) +∇k · (FH)dV =
∫
∂Cl

(
v

1
~F

)
HdA , (3.66)

where A is the area element perpendicular to the surface of the cube. In the limit l → ∞
we see that (3.66) reduces to (3.65), since by assumption H(f,x,k) decays sufficiently fast
to zero.

Note that because of the definition of the entropy functional η(f) in (3.55), H(f,x,k) is
required to go to zero as x and k grow in magnitude, otherwise the entropy functional would
be infinity and thus be useless. However, H(f,x,k) is additionally required to dominate v
and F in (3.66), where at least the former is known to be unbounded as |k| goes to infinity.

In order to obtain entropy conservation by the free streaming operator given in (3.53),
the integrand is written as

∂H

∂f

[
v(k) · ∇xf +

1
~
F (x) · ∇kf

]
=
[
v(k) · ∇xH +

1
~
F (x) · ∇kH

]
−
[
v(k) · ∇2H +

1
~
F (x) · ∇3H

]
,

(3.67)

where ∇2 and ∇3 denote partial derivatives with respect to the second and third argument
of H(f,x,k) respectively. The integral over the phase space over the term in the first
bracket on the right hand side vanishes due to Lemma 10. Thus, if

v(k) · ∇2H +
1
~
F · ∇3H =

1
~
∇kε(k) · ∇2H −

q
~
∇xψ(x) · ∇3H = 0 , (3.68)

entropy conservation is fulfilled. The general solution of this first order partial differential
equation is given by all functions of the total energy ε(k) + qψ(x). Together with the first
requirement in Lemma 9 we therefore conclude that

∂H(f,x,k)
∂f

= h
(
f exp

(ε(k) + qψ(x)
kBT

))
with h′(u) > 0 . (3.69)

The physical entropy, the logarithm, now corresponds to the choice

h(u) = lnu , H(f,x,k) = f(ln f − 1 + ε(k) + qψ(x)) (3.70)

and the connection between f and its entropy variable f̃ is given as

f = µ(g,x,k) = exp
(ε(k) + qψ(x)

kBT

)
. (3.71)
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However, the exponential dependence of f on f̃ causes problems both from the numerical
point of view and the analytic point of view [26,37]. For numerical applications, the simplest
possible entropy is chosen:

h(u) = u , H(f,x,k) =
f2

2
exp
(ε(k) + qψ(x)

kBT

)
, (3.72)

so that the connection between f and its entropy variable f̃ is now of the form

f = µ(g,x,k) = f̃ exp
(
−ε(k) + qψ(x)

kBT

)
. (3.73)

The crucial point is that f is now linearly related to f̃ , which means that a Galerkin scheme
for the entropy variable leads to a system of linear equations for a given external potential
and a linear scattering operator. Additionally, the entropy functional η(f) collapses to an
L2 estimate with weight function exp

(
(ε(k) + qψ(x))/(kBT )

)
.



Chapter 4

Discretisation

Up to now we have dealt with the continuous form of the Boltzmann transport equation
(BTE) and derived a spherical harmonics expansion (SHE) in an analytic way. For an
implementation in a computer, the continuous formulation has to be transferred to a dis-
crete representation, which is often more complicated than the formulation of a suitable
mathematical representation. In this chapter the transition from the continuous formula-
tion as given in the preceding chapter to a full discretisation is described, where we start
with a rather wide-spread numerical method, the finite volume method. After that, the
Scharfetter-Gummel discretisation is introduced as a stabilisation technique to circumvent
instabilities that otherwise arise in the drift-diffusion model. After that, we turn towards a
suitable and stable discretisation of the SHE of the BTE.

4.1 The Finite Volume Method

Besides differencing schemes and the finite element method (FEM), the finite volume method
(FVM, often also referred to as box integration method or spectral volume method) has be-
come a wide-spread discretisation scheme, especially in the fields of semiconductor device
simulation and fluid dynamics. The main advantage of the FVM is its local conservation
property, thus the method is particularly suited for the discretisation of conservation equa-
tions such as the drift-diffusion equations. In this section we briefly give the basic concepts
and summarise the main results. Several remarks on the differences to the typically more
familiar FEM are given. More details on the mathematical background can for example be
found in the textbook of Bey [5].

We consider the problem

∇ · (−D∇u+ bu) = f in Ξ ⊂ Rn , (4.1)
u = 0 on ∂Ξ (4.2)

which we will refer to as strong formulation. We assume that the diffusion matrix D is
symmetric and positive definite and that each entry of D and the vector b lies in L∞(Ξ)
as well as ∇ · b ∈ L∞(Ξ). The right hand side f is assumed to lie in H−1(Ξ) to guarantee
well-posedness of the problem. The weak formulation of this problem is found in the typical
way by multiplication with a test function v ∈ H1

0 (Ξ), integration over the whole domain

49
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and integration by parts: We then seek u ∈ H1
0 (Ξ) such that∫

Ξ
∇v ·D∇u dx−

∫
Ξ
∇v · bu dx =

∫
Ξ
fv dx (4.3)

for all v ∈ H1
0 (Ξ).

While the FEM directly applies a Galerkin method to the weak formulation (4.3), the
FVM includes a decomposition of the problem domain by a tessellation B = {B1, . . . Bm}
before partial integration is carried out, hence the left hand side of the strong formulation
(4.1) can be cast into a weak form as follows:∫

Ξ
v∇ · (−D∇u+ bu) dx =

∑
B∈B

∫
B
v∇ · (−D∇u+ bu) dx

=
∑
B∈B

[∫
B
∇v · (D∇u− bu) dx−

∫
∂B
v(D∇u− bu) · dn

]
,

(4.4)

where n denotes the unit, outward-pointing normal vector. We thus arrive at a generalised
weak formulation: Find u in a suitable solution space such that∑

B∈B

[∫
B
∇v · (D∇u− bu) dx−

∫
∂B
v(D∇u− bu) · dn

]
=
∫

Ξ
fv dx (4.5)

for all v ∈ H1
0 (B), where H1

0 (B) is the space of all functions of L2(Ξ) that are piecewise
H1-regular with respect to the tessellation B and vanish on ∂Ξ in the sense of a trace.
For a discussion of solution spaces we refer to the literature [5], for simplicity we assume
u ∈ H2(Ξ) ∩ H1

0 (Ξ). For the discretisation we choose v to be piecewise constant, so that
we obtain the weak form

a(u, v) := −
∑
B∈B

∫
∂B
v(D∇u− bu) · dn =

∫
Ξ
fv dx =: L(v) . (4.6)

The tessellation B of the problem domain Ξ is typically based on a triangulation T of
Ξ. We mention two wide-spread methods (cf. Fig. 4.1):

• A commonly used technique in two dimensions is to use so-called Voronoi diagrams
(aka. circumcenter method) [31], where the boxes are convex sets associated with a
given set of disjoint points P = {p1, . . . ,pm}. Each box Bi ∈ B is then given as the
set of points that are closer to pi than to any other point of P , i.e.

Bi =
{
x ∈ Ξ

∣∣ ‖x− pi‖ ≤ ‖x− pj‖ ∀j 6= i, j ∈ {1, . . . ,m}
}

(4.7)

An interesting fact is that each Voronoi diagram in two dimensions is the dual of a
triangulation where the vertices are exactly the points of P . The converse is not true,
since if any of the triangular angles exceeds π/2, the circumcenter is located outside
the triangle (and hence may also be located outside the problem domain), so the
resulting Voronoi diagram is not the dual of the triangulation anymore. Conversely,
triangulations that are duals of Voronoi diagrams have inner angles smaller or equal
to π/2 and are called Delaunay triangulations. The advantage of Voronoi diagrams
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(a) Circumcenter method (Voronoi dia-
gram).

(b) Barycenter method.

Figure 4.1: Two methods for the construction of a dual box tessellation from a triangu-
lation.

is that the interfaces between boxes are perpendicular to the connections between
the vertices centered in the boxes. However, the requirement of underlying Delaunay
triangulations results in additional effort needed for mesh generation and adaptive
refinement. Additionally, generalisations to higher dimensions become rather hard
especially from the programmer’s point of view.

• In the barycenter method [5] the barycenters of the triangles are connected with the
midpoint of the edges to obtain the dual box tessellation (cf. Fig. 4.1(b)). An advan-
tage is that the method can be, unlike others, algorithmically generalised to higher
dimensions with reasonable effort and without further requirements on the mesh.
However, in comparison to the circumcenter method the number of facets of each box
is larger and the boxes are not necessarily convex.

Let us assume that the problem space Ξ is triangulated by a set T and that the tessel-
lation B is a dual grid of T constructed by one of the two methods described above. To
proceed with a discretisation, we introduce appropriate nomenclature:

Ps(B) := {v ∈ L2(B)
∣∣ v is a polynomial of degree s on B} (4.8)

Ps(B) := {v ∈ L2(Ξ)
∣∣ v|B ∈ Ps(B) ∀B ∈ B} (4.9)

Analogous definitions apply for a triangulation T .
In the following we consider the cases s = 0 and s = 1 only. A basis X(B) of P0(B) is

given by the characteristic functions for each box:

χj ∈ P0(B) , χj |Bi = δij 1 ≤ i, j ≤ m . (4.10)

In a similar manner a basis for piecewise linear functions on T with the set of vertices
P = {p1, . . . ,pm} is given by

ϕj ∈ P1(T ) , ϕj(pi) = δij 1 ≤ i, j ≤ m . (4.11)

Note that this basis is the most commonly used basis in FEM.
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The finite volume discretisation then is to apply a non-conforming ansatz for u and v
in (4.6):

uh =
m∑
i=1

uiϕi , ϕi ∈ Φ(T ) ∀i = {1, . . . ,m} , (4.12)

vh =
m∑
i=1

viχi , χ ∈ X(B) ∀i = {1, . . . ,m} . (4.13)

The discrete formulation thus is to find uh ∈ P1(T ) such that

a(uh, vh) = L(vh) ∀vh ∈ P0(B) , (4.14)

which can – by the use of linearity of the weak formulation and linear independence of the
basis functions – be written in matrix-vector form as

Ahuh = lh , (4.15)

where the (i, j)-th entry of the system matrix Ah is given by a(ϕj , χi) and the i-th entry
of the load vector lh by L(χi).

It can be shown (see e.g. [5]) that similar convergence estimates as for FEM with piece-
wise linear basis functions hold. In particular, if the solution u is in H2(Ξ), one obtains
linear convergence in the H1-norm and quadratic convergence in the L2-norm with re-
spect to the mesh parameter h. However, due to the non-conformity of the test and trial
spaces the FVM cannot be generalised to higher polynomial degrees of the ansatz spaces
on unstructured grids in a straightforward manner as it is the case for FEM.

4.2 The Scharfetter-Gummel Discretisation

In problems of the form (4.1), where convection is dominant, stabilisation schemes are
necessary to avoid spurious oscillations of the numerical solution. In the area of device
simulation by means of the FVM, the most prominent technique is the Scharfetter-Gummel
scheme [41]. It is an upwind-scheme, which means that it takes the direction of convective
transport into account. In this section the Scharfetter-Gummel scheme is derived and we
will see in the next section that the entropy considerations for the SHE of the BTE leads
to a stabilisation scheme that can be seen as a generalisation of the Scharfetter-Gummel
scheme.

We consider

∇ · (∇u+ u∇ψ) = 0 , (4.16)

equipped with homogeneous Neumann boundary conditions for a given scalar quantity ψ.
The standard FVM transforms this equation into∑

B∈B

∫
∂B
v(∇u+ u∇ψ) · n ds = 0 ∀v ∈ P0(B) . (4.17)

The assembly of the system of discretised equation requires the value of the integrand at
the interface ∂B. However, typically both ψ and u are discretised using a triangulation T ,
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Bi

Bj

xi

xj

Aij dij

Figure 4.2: The length between vertices xi and xj is labelled dij , while the area of the
interface between boxes Bi and Bj is Aij .

hence the values at the interfaces have to be interpolated from values known at the vertices
of the triangulation T . To be more precise, let us introduce the following notation for a
dual grid constructed using the barycenter method (cf. Fig. 4.2):

Aij := vol(∂Bi ∩ ∂Bj) , (4.18)
dij := |xi − xj | . (4.19)

Hence, if we consider (4.16) along the edge connecting xi and xj with arc length pa-
rameter ξ along the edge, we have

du(ξ)
dξ

+ u(ξ)
dψ(ξ)

dξ
= cij (4.20)

with boundary conditions u(0) = u(xi) =: ui and u(dij) = u(xj) =: uj . The constant
cij arises from integration of the (now one-dimensional) divergence. Note that since cij
provides an additional degree of freedom, it is not contradictory to specify two boundary
conditions for the first-order ordinary differential equation (4.20). If we assume ψ′ := dψ/dξ
to be constant along the edge with value ψ′ij 6= 0, the solution of (4.20) is given as

u(ξ) =
cij
ψ′ij

+A exp(−ψ′ijξ) , (4.21)

where A and cij have to be chosen such that the boundary conditions are fulfilled. Some
calculations lead to the simple form

u(ξ) = (1− gij(ξ))ui + gij(ξ)uj , (4.22)

with growth function

gij(ξ) =
1− exp(−ψ′ij ξ)

1− exp(−ψ′ij dij)
. (4.23)
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Since we assumed that the interface between Bi and Bj lies on the perpendicular bisector
of the edge connecting xi and xj , we need to evaluate (4.22) and its derivative at ξ = dij/2
for an evaluation of (4.17):

u(dij/2) =
ui

1 + exp(ψ′ijdij/2)
+

uj
1 + exp(−ψ′ijdij/2)

, (4.24)

du(dij/2)
dξ

=
ψ′ij
2

uj − ui
sinh(ψ′ijdij/2)

. (4.25)

Thus, the contribution of the interface ∂Bi ∩ ∂Bj to (4.17) using the midpoint rule for
integration can be written as∫

∂Bi∩∂Bj

v(∇u+ u∇ψ) · n ds ≈ Aijv
(xi + xj

2

)[
∇u
(xi + xj

2

)
+ u
(xi + xj

2

)
∇ψ
]

= Aij

[
ψ′ij
2

uj − ui
sinh(ψ′ijdij/2)

+
( ui

1 + exp(ψ′ijdij/2)
+

uj
1 + exp(−ψ′ijdij/2)

)
ψ′ij

]
=
Aij
dij

[
ujBern(−ψ′ijdij)− uiBern(ψ′ijdij)

]
, (4.26)

where

Bern(x) =
x

exp(x)− 1
(4.27)

is the Bernoulli function depicted in Fig. 4.3. The term ψ′ij , which has been assumed
constant along the edge, is approximated by a simple discrete derivative of the form

ψ′ij ≈
ψ(xj)− ψ(xi)

dij
. (4.28)

The appealing property of the Scharfetter-Gummel scheme is the following: Depending
on the sign and magnitude of the term ψ′ijdij , either uj or ui is primarily used for the
approximation of the convective flux through the interface between the two boxes Bi and
Bj in (4.26). In case that ψ′ijdij ≈ 0, equal weight is assigned to ui and uj , thus we obtain
the usual central difference scheme for (4.16) with negligible convection term. Thus, the
Scharfetter-Gummel scheme is an upwind scheme that takes the hyperbolic nature of the
convective term in (4.16) into account.

4.3 Discretisation of the SHE of the BTE

In this section a discretisation scheme for the SHE equation (3.30) is derived. A natural
requirement on a discretisation scheme is that it reflects mathematical and physical prop-
erties included in the continuous model. For the purpose of predictive device simulation,
local charge conservation is such a major requirement. Additionally, entropy considerations
in Section 3.3 have lead to the requirement that entropy is preserved by the free streaming
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Figure 4.3: The Bernoulli function Bern(x).

operator. Unfortunately, these two requirements are somewhat contradictory: Building the
zero order moment of the steady-state BTE with respect to the wave vector yields∫

R3

∂f

∂t
+∇x · (v(k)f) +

1
~
∇k · (F f) dk =

∫
R3

Q{f} dk . (4.29)

We assume that the collision operator is charge-conserving, thus the integral on the right
hand side vanishes. The third term on the left hand side can be cast into an integral over the
boundary of the k-space due to Gauss’ theorem and thus vanishes since the distribution
function f decays to zero as |k| goes to infinity. Therefore we arrive at the continuity
equation

∂

∂t

∫
R3

f(x,k, t) dk︸ ︷︷ ︸
∼n(x,t)

+ ∇x ·
∫

R3

v(k)f(x,k, t) dk︸ ︷︷ ︸
∼j(x,t)

= 0 . (4.30)

This equation should hold locally such that we are able to apply a discrete version of Gauss’
theorem locally over every sub-mesh. However, if we apply a finite element discretisation
in spatial direction, entropy considerations suggest a discretisation using a weighted scalar
product, which would automatically not be locally conservative. Similar problems arise
with difference schemes.

As a compromise between entropy preservation and charge conservation, the following
strategy was suggested by Ringhofer [37]: The BTE is formally split into even and odd parts
as in Section 3.2. Discretisation schemes for the even part are designed in such a way that
even momenta are locally conserved. The scheme for the odd part is then chosen such that
the whole scheme possesses entropy properties as derived in Section 3.3. Such a compromise
is acceptable, since odd order moments are not conserved anyway. Consequently, they have
to be viewed rather as constitutive relations [37].
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We now turn to the SHE equations (3.30) and show that charge is conserved: Integration
of (3.30) over energy leads to∫ ∞

0

∂fl,m
∂t

+∇x · jl,m + F ·
(
∂jl,m
∂ε

− Γl,m

)
dε = 0 , (4.31)

where we have used that the collision operator is charge conserving. Since according to
(3.4) the current density is obtained from j0,0, it is sufficient to consider the case l = m = 0
only. Since Y0,0 is constant, Γ0,0,l′,m′ (cf. (3.48)) vanishes. Moreover, the integral over
F · ∂j0,0/∂ε is zero, because j0,0 vanishes at zero and infinite energy [33]. Thus, with the
charge density (3.4) and the particle current density (3.11) we obtain

∂n

∂t
+∇x · j = 0 (4.32)

and therefore the discrete system of equations will conserve the particle density exactly if
a discretisation is carried out using FVM for even values of l.

For the discretisation of the SHE equations for odd l, we multiply the BTE with

H(x, ε) = exp
(ε(k) + qψ(x)

kBT

)
, (4.33)

to obtain

H(x, ε)
∂f

∂t
+H(x, ε)v(k)∇xf +H(x, ε)

1
~
F∇kf = H(x, ε)Q{f} . (4.34)

For notational convenience, we write H instead of H(x, ε) in the following. Since

v(k)∇x

(
Hf
)

+
1
~
F∇k

(
Hf
)

= Hv(k)∇xf +H
1
~
F∇kf , (4.35)

and H depends on k only over the energy ε, one obtains the SHE equation

H
∂fl,m
∂t

+∇x ·
(
Hjl,m

)
+ F ·

(
∂Hjl,m
∂ε

−HΓl,m

)
= HQl,m{f} , (4.36)

which can now be discretised using finite volumes or finite differences.
To unify the treatment of even and odd parts of the distribution function, we define

Hl(x, ε) =

{
1 for even l ,

exp
( ε(k)+qψ(x)

kBT

)
for odd l ,

(4.37)

so that we arrive at the system of equations

Hl
∂fl,m
∂t

+∇x ·
(
Hljl,m

)
+ F ·

(
Hl

∂jl,m
∂ε

−HlΓl,m

)
= HlQl,m{f} , (4.38)

for l = 0, 1, . . . and m = −l, . . . , l, or in divergence form

Hl
∂fl,m
∂t

+ ∇̃ ·
(
Hlj̃l,m

)
−HlF · Γl,m = HlQl,m{f} . (4.39)
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A finite volume scheme can now be obtained as outlined in Section 4.1: Multiplication with
a test function v ∈ P0(B) (which is not be confused with the velocity v(k)), integration over
the problem domain G and application of Gauss’ theorem locally for each box Bi yields∫

Bi

Hl
∂fl,m
∂t

v dξ +
∫
∂Bi

Hlj̃l,mv dA−
∫
Bi

FHlΓl,mv dξ =
∫
Bi

HlQl,m{f̃}v dξ , (4.40)

for all v ∈ P0(B), where ξ = (x, ε) is the position vector in the four-dimensional spatial/en-
ergy space. The expansion of the generalised current continuity jl,m in (3.46) and the
expansion of Γl,m in (3.48) can now be inserted into (4.40) to obtain a system of equations
in the unknown variables fl,m. For a triangulation T of the problem domain, a discretisation
of fl,m is carried out in the form

fl,m =
N∑
i=1

fl,m;i(t)ϕi(ξ) , (4.41)

where N denotes the number of vertices of the triangulation and the basis ϕi was introduced
in (4.11). The coefficients fl,m;i(t) are the unknowns of the resulting system of equations
without discretisation of the time variable. Time discretisation is not further considered in
this thesis, however a straight-forward backward Euler scheme can be derived in the usual
way. Substitution of the expressions for jl,m and Γl,m, use of the velocity randomising
scattering operator (3.27) and a substitution of (4.41) on the left hand side of (4.40) yields
for a box Bi∫

Bi

Hl

N∑
i′=1

∂fl,m;i′

∂t
ϕi′(ξ) dξ

+
∫
∂Bi

Hl

N∑
i′=1

L∑
l′=0

l′∑
m′=−l′

(
vl,m,l′,m′

F · vl,m,l′,m′

)
fl′,m′;i′ϕi′(ξ) dA

−
∫
Bi

FHl

N∑
i′=1

L∑
l′=0

l′∑
m′=−l′

Γl,m,l′,m′fl′,m′;i′ϕi′(ξ) dξ

=
1
Y0,0

∑
η

∫
Bi

Hl

[
gl,m(ε)ση(x, ε± ~ωη, ε)

N∑
i′=1

f0,0;i′ϕi′(ξ ± ~ωη)

−
N∑
i′=1

fl,m;i′ϕi′(ξ)ση(x, ε, ε∓ ~ωη)g0,0(ε∓ ~ωη)
]

dξ ,

(4.42)

where

ξ =
(
x
ε

)
, ωη =

(
0
ωη

)
and we have dropped the test function v, since by the use of linear independence of the
basis X in (4.10) it suffices to consider the single basis function which evaluates to one in
the box Bi. The coefficients

vl,m,l′,m′ = vl,m,l′,m′(ε) =
∫

Ω
Yl,mv

(
k(ε, θ, ϕ)

)
Yl′,m′ dΩ , (4.43)

Γl,m,l′,m′ = Γl,m,l′,m′(ε) =
∫

Ω

1
~|k(ε, θ, ϕ)|

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
Yl′,m′ dΩ (4.44)
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depend on energy, thus either numerical quadrature or a projection onto lower order poly-
nomials is necessary for the assembly of the system (4.42). This energy dependence stems
from the band structure under consideration. In the case of spherical bands such as the
multi-band structure presented in Section 2.3, the energy depends on the modulus of the
wave vector only, thus we can write

vl,m,l′,m′(ε) = ṽ(ε)
∫

Ω
Yl,meεYl′,m′ dΩ︸ ︷︷ ︸

:=al,m,l′,m′

, (4.45)

Γl,m,l′,m′(ε) =
1

~k̃(ε)

∫
Ω

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yn,m
∂ϕ

eϕ

)
Yl′,m′ dΩ︸ ︷︷ ︸

:=bl,m,l′,m′

(4.46)

and the energy dependence is fully decoupled from the dependence on the spherical har-
monics. Moreover, the coefficients al,m,l′,m′ and bl,m,l′,m′ can be evaluated algebraically,
which is done in the next chapter. For the inclusion of full-band effects, a numerical inte-
gration is necessary to obtain vl,m,l′,m′ and Γl,m,l′,m′ . Since these quantities do not depend
on the selected triangulation of the problem domain of (4.42), they can again be evaluated
in a preprocessing step, leading to no additional effort during the assembly of the sys-
tem. Jungemann et. al. [24] suggested a projection of the dependence on the wave vector
onto spherical harmonics; as we will see later on, such a projection is an attractive way to
approximate the integrals in (4.43) and (4.44).

4.4 Rectangular Grids in Two Dimensions

Coming back to (4.42), we notice that the integrands of the discretised system carry an
exponential in case that the major index l is odd. This complicates the numerical integration
of the integrals, especially in the presence of a large electric field. It is therefore appealing
to consider structured grids, especially rectangular grids, where the dual grid is again a
rectangular grid, and derive analytical expressions for the integral terms. A similar approach
was used by Jungemann et. al. [24], which additionally incorporates some simplifications
of the integrands in (4.42). In the following we derive such analytical expressions for the
Galerkin method that has lead to the system (4.42).

In one spatial dimension and one energy dimension, a Cartesian product grid (xi, εj)
with Nx and Nε grid points in x- and ε-direction respectively can be used. The dual grid
of this rectangular grid is again a rectangular grid with nodes located at(

xi+1/2

εj+1/2

)
:=

(
xi+xi+1

2
εi+εi+1

2

)
, i = 1, . . . , Nx − 1 , j = 1, . . . , Nε − 1 . (4.47)

The electrostatic potential ψ is linearly interpolated between the grid nodes:

ψi+1/2 =
ψi + ψi+1

2
, i = 1, . . . , Nx − 1 . (4.48)
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Figure 4.4: Labels associated with a rectangular box Bi,j centered at (xi, εj).

A nodal basis on the reference rectangle with opposite corners at (0, 0) and (1, 1) is

ϕ1(x, ε) = (1− x)(1− ε) , (4.49)
ϕ2(x, ε) = x(1− ε) , (4.50)
ϕ3(x, ε) = (1− x)ε , (4.51)
ϕ4(x, ε) = xε . (4.52)

By affine transformations these functions can be mapped to the rectangle of interest. Even
though these nodal basis functions are not linear functions per se, they are linear along
parameter lines. On structured grids, this means that each basis function is linear along
interfaces between rectangles.

To investigate the discretisation on rectangular grids further, let us introduce the fol-
lowing notations (cf. Fig. 4.4):

• Bi,j : Box centered at (xi, εj)

• B++
i,j , B+−

i,j , B−+
i,j , B−−i,j : Decomposition of Bi,j into boxes spanned by (xi, εj) and

points (xi±1/2, εj±1/2) respectively.

• Γi2,j2i1,j1
: Arc between (xi1 , εj1) and (xi2 , εj2).

• ϕi,j : Nodal basis function associated with (xi, εj).

• fl,m;i,j : Spherical harmonics expansion term of Yl,m and ϕi,j .
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Before we derive analytical formulas for the integrals in (4.42) one after another, we first
consider the integral ∫ b

a
exp(γx) dx (4.53)

for arbitrary values of a, b and γ 6= 0. With integration per parts one finds∫ b

a
exp(γx) dx =

1
γ

[exp(γb)− exp(γa)] . (4.54)

While the integral on the left hand side also allows for an evaluation in case γ = 0, the right
hand side does not. A numerical evaluation of the right hand side is also dangerous for
|γ| � 1, because numerical noise enters due to the subtraction of the two exponential terms
of similar magnitude, which is then amplified by a factor of 1/γ. By use of the Bernoulli
function (4.27) we rewrite

1
γ

[exp(γb)− exp(γa)] = (b− a) exp(a)
exp(γ(b− a))− 1

γ(b− a)
= (b− a) exp(a)Bern(γ(b− a))

(4.55)

and have now obtained a numerically stable expression, because the continuous extension
of the Bernoulli function Bern(·) at x = 0 can be included in the program code. Similar
numerical stabilisations have been applied to the formulae given in the following. The full
calculations are often tedious but follow a common pattern similar to (4.55) and are thus
omitted.

•
∫
Bi,j

Hl
∑Nx

i′=1

∑Nε
j′=1

∂fl,m;i′,j′
∂t ϕi′,j′(ξ) dξ: In case that l is even, the integrand is piece-

wise quadratic with respect to the integration variables and the integral can be eval-
uated easily for each box. For B++

i,j and a factorisation of the basis function of the
form ϕ(x, ε) = ϕx(x)ϕε(ε) (c.f. (4.49)-(4.52)) we find∫

B++
i,j

ϕ dξ =
∫ xi+1/2

xi

ϕx(x) dx×
∫ εi+1/2

εi

ϕε(ε) dε

= vol(B++
i,j )

[
ϕx(xi) + ϕx(xi+1/2)

][
ϕε(εj) + ϕε(εj+1/2)

]
/4 ,

(4.56)

where vol(B++
i,j ) = (xi+1/2 − xi)(εj+1/2 − εj). For the boxes B+−

i,j , B−+
i,j and B−−i,j

similar expressions are obtained.

For odd l the integrand is made up from a polynomial times an exponential due to the
stabilisation term Hl. A standard technique is now to rely on numerical quadrature
rules, but one can also evaluate the resulting integrals analytically: Integration over
the box B++

i,j with the shorthand notations x+ := xi+1/2, x− := xi, ε+ := εi+1/2 and
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ε− := εi yields∫
B++

i,j

Hlϕ dξ =
∫ x

i+1
2

xi

∫ ε
j+1

2

εj

exp
(ε+ qψ(x)

kBT

)
ϕ(x, ε) dξ

=
∫ x

i+1
2

xi

exp
(qψ(x)
kBT

)
ϕx(x) dx×

∫ ε
j+1

2

εj

exp
( ε

kBT

)
ϕε(ε) dε

= exp
(ψ(xi)
VT

)
(x+ − x−)

[ϕx(x+) + (ϕx(x+)− ϕx(x−))C(∆ψ)
Bern(∆ψ)

]
× exp

( εj
kBT

)
(ε+ − ε−)

[ϕε(ε+) + (ϕε(ε+)− ϕε(ε−))C(∆ε)
Bern(∆ε)

]
(4.57)

where

C(x) =
Bern(x)− 1

x
=
x− exp(x) + 1
x(exp(x)− 1)

(4.58)

and the labels

VT =
kBT

q
, ∆ψ =

ψi+1/2 − ψi
VT

, ∆ε =
εj+1/2 − εj

kBT

were used. Let us have a closer look at the stabilisation function C(x):

C(x) =
x− exp(x) + 1
x(exp(x)− 1)

= −
∑∞

k=2 x
k/k!∑∞

k=2 x
k/(k − 1)!

.

(4.59)

Thus, we deduce the following asymptotic behaviour:

C(x) ∼


−1/x , x � 1
−1/2 + x/12 , |x| � 1
−1 , x � −1

. (4.60)

If we use these asymptotics for the numerator of the x-dependent part of (4.57), we
obtain

ϕx(x+) + (ϕx(xx+)− ϕx(x−))C(∆ψ) ∼


ϕx(xx+) , ∆ψ � 1
(ϕx(x+) + ϕx(x−))/2 , |∆ψ| � 1
ϕx(x−) , ∆ψ � −1

,

which can be interpreted as a selection of an appropriate integration weight for ϕx
depending on the variation of ψ.

•
∫
∂Bi,j

Hl

(
F · vl,m,l′,m′

vl,m,l′,m′

)
fl′,m′;i′,j′ϕi′,j′(ξ) dA (summed over i′, j′, l′ and m′): The

first observation is that test functions are linear along each edge of the rectangular
grid. Moreover, since the rectangular grid has edges aligned to the coordinate direc-
tions, the ε- and x-component of the result can be obtained by integration along x
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and ε respectively. Let us consider the ε component on one boundary segment, say
Γi+1/2,j+1/2
i,j+1/2 , first, where we keep only those terms that depend on the integration

variable. In case that l is even, we have∫ x
i+1

2

xi

HlFϕ dx = −q∇ψ
∫ x

i+1
2

xi

ϕ dx = −q
(
ψi+ 1

2
− ψi

)(
ϕi+ 1

2
− ϕi

)
/2 , (4.61)

with ϕi+ 1
2

and ϕi being the values of the test function evaluated at xi+ 1
2

and xi and
similarly for the electrostatic potential ψ. Note that, since the electrostatic potential
is interpolated linearly, the gradient is constant along the integration interval.

For odd l a calculation similar to (4.57) using the shorthand notation ψ′i′,i′′ := (ψi′ −
ψi′′)/VT yields∫ x

i+1
2

xi

HlFϕ dx = −q∇ψ exp
( ε

kBT

)∫ x
i+1

2

xi

exp
(ψ(x)
VT

)
ϕ dx

= −qψ′
i+ 1

2
,i

exp
(ε+ qψi

kBT

)ϕi+ 1
2

+ (ϕi+ 1
2
− ϕi)C(ψ′i+ 1

2
,i
)

Bern
(
ψ′
i+ 1

2
,i

)
 , (4.62)

where we have used the notation ϕi′ := ϕ(xi′) as well as the Bernoulli function and
(4.58) to avoid numerical instabilities. The contribution of other edges can be obtained
by replacing the indices i and i+ 1/2 appropriately.

Integration along edges in energy direction is carried out similarly: We interpolate
the energy-dependence of the velocity v piecewise linearly1. For even l the integrand
then is a product of two linear functions and can be conveniently evaluated using
Simpson’s rule:∫ ε

j+1
2

εj

vϕ dε =
εj+ 1

2
− εj

6

(
vjϕj + (vj + vj+ 1

2
)(ϕj + ϕj+ 1

2
) + vj+ 1

2
ϕj+ 1

2

)
, (4.63)

where we have set vj′ := v(εj′).

In case that l is odd, the integrand consists of a product of an exponential and two
linear functions. Another lengthy calculation gives∫ ε

j+1
2

εj

exp
(ε+ qψ
kBT

)
vϕ dε = exp

(εj + qψi
kBT

) kBT

Bern
(
ε′
j+ 1

2
,j

){
[
exp
(
ε′
j+ 1

2
,j

)
vj+ 1

2
ϕj+ 1

2
− vjϕj

]
Bern

(
ε′
j+ 1

2
,j

)
− 2(vj+ 1

2
− vj)(ϕj+ 1

2
− ϕj)C(ε′j+ 1

2
,j

)

− (vj+ 1
2
− vj)ϕj+ 1

2
− (ϕj+ 1

2
− ϕj)vj+ 1

2

}
,

(4.64)

with ε′j′,j′′ := (εj′ − εj′′)/(kBT ). Similar expressions for the remaining edge segments
are again obtained by replacing the indices appropriately.

1Note that in case of parabolic bands we have v ∼
√
ε, thus a linear interpolation can only be justified

away from ε = 0.
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The integral over the full boundary of the box can now be assembled by summing the
individual contributions appropriately. Some care has to be taken because some edges
have a surface normal pointing into negative x- or ε-direction, thus these contributions
have to be taken with a minus sign.

•
∫
Bi,j

HlF · Γl,m,l′,m′fl′,m′;i′,j′ϕi′,j′ dξ (summed over i′, j′, l′ and m′): We decompose
the box into four sub-boxes B++

i,j , B+−
i,j , B−+

i,j and B−−i,j . Since F is a function of the
spatial variable x, Γ is a function of the energy variable and ϕ can be written as a
product of a function that depends on x and a function that depends on ε (cf. (4.49)-
(4.52)), the double-integral over the box can be rewritten as a product of two single
integrals. More explicitly, writing ϕ(x, ε) = ϕx(x)ϕε(ε), then∫

B++
i,j

F (x) · Γ(ε)ϕ dξ = −
∫ x

i+1
2

xi

q∇ψϕx dx×
∫ ε

i+1
2

εi

Γϕε dε (4.65)

for even l. We interpolate Γ linearly2, hence the first integral on the right hand side
was evaluated in (4.61) and the second in (4.63) where one has to replace v with Γ.

In case that l is odd,∫
B++

i,j

exp
(ε+ qψ
kBT

)
F · Γϕ dξ = −

∫ x
i+1

2

xi

q∇ψ exp
( qψ
kBT

)
ϕx dx

×
∫ ε

i+1
2

εi

exp
( ε

kBT

)
Γϕε dε .

(4.66)

Again, the first term on the right hand side was already given by (4.62) and the
second by (4.64) after relabelling v with Γ. Expressions for integration over B+−

i,j ,
B−+
i,j and B−−i,j are obtained in the same way and finally the integral over the full box

is obtained by summation.

•
∫
Bi
HlQ

VR
l,m{f} dξ: First we assume that the energies ~ωη are multiples of the grid

spacing ∆ε so that final scattering states are located at grid nodes. We additionally
assume constant collision cross sections ση, hence we have to evaluate integrals of the
form ∫

Bi,j

Hlg(ε)ϕ(ξ) dξ and
∫
Bi,j

Hlg(ε± ~ω)ϕ(ξ) dξ .

Again, we approximate the generalised density of states g piecewise linearly3, so that
the shift by ~ω does not need to be considered separately. With a factorisation of the
basis function ϕ the integral over the box B++

i,j becomes∫
B++

i,j

Hlg(ε)ϕ(ξ) dξ =
∫ xi+1/2

xi

Hlϕx(x) dx×
∫ εj+1/2

εj

Hlg(ε)ϕε(ε) dε . (4.67)

We can use again (4.61) and (4.63) in case of even l and (4.62) and (4.64) for odd l,
where appropriate relabelling of v with g is required.

2In case of parabolic bands, Γ ∼ 1/
√
ε, thus a linear interpolation can only be justified away from ε = 0

3In case of parabolic bands, g ∼
p

(ε) and the piecewise linear approximation is poor near zero energy
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The piecewise linear interpolation of the quantities v, Γ and g is not a good approx-
imation near zero energy, because the derivatives of all three quantities is singular there.
Moreover, Γ is unbounded near zero energy, but integrable. Thus, a hybrid strategy should
be chosen: Near zero energy a computationally demanding numerical quadrature is carried
out, while away from the singularities the piecewise linear interpolation is quite accurate
and thus analytic formulae can be used to speed up the assembly process.

4.5 Boundary Conditions

Now that we are able to compute all integral terms by explicit formulae, the system of
linear equations with unknowns coefficients fl,m;i (or fl,m;i,j in the case of rectangular grids
in two dimensions) can be set up. The system matrix consists of all terms evaluated in the
previous section, while the right hand side vector appears - at least at first sight - to be
zero, since there are no terms in (4.42) that do not depend on the unknowns. However,
nonzero entries on the right hand side vector show up due to boundary conditions:

• At cells near the boundary of the energy domain, out-scattering coefficients with
final energies and in-scattering coefficients with initial energies outside the discretised
energy interval are set to zero (cf. for example (3.25) and (3.26)). At the energy
boundary ε = εmax, homogeneous Neumann boundary conditions are applied in the
sense that in parts of a cell energies larger than εmax are ignored.

At zero energy, there are in fact two possible boundary conditions: If the generalised
energy distribution function f̃ is discretised, then all coefficients fl,m are zero at
zero energy provided that the density of states is zero at zero energy. Even if the
distribution function is discretised directly, the coefficients of the odd harmonics are
zero at zero energy, provided that the wave vector vanishes there. This can be reasoned
at follows: Consider the SHE of the distribution function at zero energy. Since k at
zero energy is the same as −k, there holds (arguments x and t omitted)

∞∑
l=0

l∑
m=−l

fl,m(0)Yl,m(θ, ϕ) =
∞∑
l=0

l∑
m=−l

fl,m(0)Yl,m(π − θ, π + ϕ) . (4.68)

The even terms cancel, while for the odd terms we get

2
∞∑
l=0

2l+1∑
m=−2l−1

f2l+1,m(0)Y2l+1,m(θ, ϕ) = 0 . (4.69)

Since the spherical harmonics are linearly independent and the angles θ and ϕ are
arbitrary, we deduce f2l+1,m(0) = 0 for all integers l ≥ 0 and m = −l, . . . , l.

• At the device boundary, one can either model ohmic contacts with a generation term
[24], or prescribe a certain electron concentration ncontact in the form of Dirichlet
boundary conditions and assume a Maxwell distribution with respect to energy. Since
the zeroth order harmonic carries the charge, we thus have

f0,0(ε)
∣∣∣
contact

= ncontactkBT exp
(
− ε

kBT

)
. (4.70)
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In case that the generalised energy distribution function is discretised, the above
expression has to be multiplied with the density of states. The other coefficients of
even order harmonics are set to zero at the contact, while the coefficients of the odd
order harmonics are left floating at the contact. For low-order spherical harmonics
there boundary conditions have a physical interpretation: The zeroth- and second-
order harmonics specify the electron concentration and the electron temperature,
while the first and third order are equivalent to the electron current and the heat
flux [33].

Note that the specification of two boundary conditions for the zeroth order coefficient
is at first sight contradictory, since the equations for the coefficients fl,m(x, ε) are
partial differential equations of first order. However, this is resolved due to the fact
that we are dealing with a system of partial differential equations where coefficients
of odd order harmonics are unspecified everywhere along the device.



Chapter 5

Reduction of Memory
Requirements

In the previous chapter we have dealt with the discretisation of the spherical harmonics
expansion (SHE) equations of the Boltzmann transport equation (BTE). Implementation
details have not been addressed in order to have a clear view on the calculations and
manipulations which have lead to the system of linear equations (4.42). The rather com-
plicated structure of this system makes an implementation difficult and as we shall see in
this chapter, a naive programming approach can lead to memory requirements that are up
to several orders of magnitude larger than actually necessary. Consequently, in this chap-
ter the computational complexity of the discretised system (4.42) is analysed and methods
are developed that reduce the overall computational complexity and memory requirements.
The huge memory requirements for higher order expansions have been mentioned in a few
publications [23,24], but to the knowledge of the author of this thesis only one publication
includes a short discussion on how memory requirements can be lowered [23].

5.1 The Naive Approach

When it comes to the setup of the discrete linear system (4.42) in a computer, a straight-
forward method is to (arbitrarily) enumerate the coefficients fl,m;i in the expansion (4.41),
whose total number depends on the number of degrees freedom in the (x, ε)-space and the
number of spherical harmonics. Then, the system matrix can be assembled as described in
the previous section.

In the following, L denotes the maximum degree of the SHE and N denotes the number
of degrees of freedom in the (x, ε)-space. We recall that there are (L + 1)2 spherical
harmonics of degree smaller or equal to L. It has to be emphasised that the balance
equations (4.42) lead at first sight to a dense coupling of the harmonics at a given point in
the (x, ε)-space, i.e. in the balance equation for fl,m;i the coefficient of fl′,m′;i is expected
to be nonzero if l and l′ are of different parity (cf. (3.47) and (3.51)).

In case that we do not distinguish between a coupling of unknowns due to spherical
harmonics and a coupling due to the discretisation in the (x, ε)-space (to which we will
refer to as the naive method), the complexity of the problem can be estimated rather easily.
Since we are especially interested in the asymptotic complexity for large SHE order L and
number of grid nodes N , the Landau symbol O(·) will be used repeatedly. We also assume

66
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that a sparse matrix format is used and that the coupling coefficients vl,m,l′,m′ and Γl,m,l′,m′

are evaluated numerically. Thus, we assume that the coupling coefficients are nonzero for
different parities of l and l′, which is justified by taking numerical noise during the numerical
integration into account.

To cover the general case of unstructured grids in (x, ε) space, we introduce the following
sparsity indicators for the use in complexity estimates later on:

Definition 10. Given a triangulation T and its dual grid B with basis P1(T ) and P0(B)
as introduced in (4.10) and (4.11), we define the sparsity indicator by

Csparse := max
χ∈P0(B)

∣∣{ϕ ∈ P1(T ) | ∃ξ ∈ G :
[
ϕ(ξ)χ(ξ) 6= 0 ∨ (5.1)

∃η : ϕ(ξ ± ~ωη)χ(ξ) 6= 0
] }∣∣ , (5.2)

where the notation |A| denotes the number of elements of the set A and G is the simulation
domain in (x, ε)-space. The terms ~ωη are due to the collision processes with index η that
show up in the balance equations (4.42).

We note that in the case of a structured rectangular grid in the two-dimensional (x, ε)
plane and ~ωη = 0, we find Csparse = 9, since the box around node (i, j) couples with nodes
(i, j), (i ± 1, j), (i, j ± 1) and (i ± 1, j ± 1). We note that in case of inelastic scattering,
various energy displacements ~ωη can lead to much larger values of Csparse = 9 even for
rectangular grids.

Backed up from observations in practise, it is commonly assumed that Csparse does not
depend on the number of mesh elements, consequently we also assume Csparse = O(1). With
the sparsity indicator we immediately obtain:

Theorem 14. The following statements for the resulting system matrix S of (4.42) using
spherical harmonics up to degree L in the naive method hold:

(i) S is a sparse matrix of size N(L+ 1)2 ×N(L+ 1)2.

(ii) The number of nonzero entries in each row of S is at most Csparse(L+ 1)2 = O(L2).

(iii) The storage requirements for S are O(NL4).

(iv) Matrix-vector multiplication can be realised with at most (Csparse(L+1)2−1)N(L+1)2

additions and CsparseN(L+ 1)4 multiplications.

Proof. (i) On each of the N grid points (L+ 1)2 unknowns are associated, hence it follows
immediately that S is of size N(L+ 1)2 ×N(L+ 1)2. The sparsity follows from (ii).

(ii) Consider the rows in S associated with the basis function χi with support only on
box Bi. A nonzero entry in the columns associated with ϕj requires that ϕj and χi have
common support. There are by definition at most Csparse such basis functions from P1(T )
and since there are (L + 1)2 unknowns per basis function in the (x, ε)-space with dense
coupling, there are at most Csparse(L+ 1)2 = O(L2) nonzero entries per row.

(iii) According to (i) and (ii), S consists of N(L + 1)2 rows with O(L2) entries each.
Therefore, O(NL4) memory is needed to store S.

(iv) From (ii) we know that there are at most Csparse(L+1)2 nonzero entries per row of S.
Thus, each entry of the result vector requires Csparse(L+1)2−1 additions and Csparse(L+1)2

multiplications. This effort is required for each of the N(L+1)2 rows, thus we have in total
(Csparse(L+ 1)2 − 1)N(L+ 1)2 additions and CsparseN(L+ 1)4 multiplications.
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Remark 1. Note that due to the parity splitting properties discussed in Section 3.2 the
estimates (ii) and (iv) in Thm. 14 can be further improved by a factor of almost two,
depending on L. However, since we are interested in the asymptotic behaviour as a function
of L and N only, there is no need to consider this factor.

Let us briefly estimate the memory requirements for S in the case of a rectangular grid
and elastic scattering only (hence Csparse = 9) with N = 10.000 nodes, i.e. 100 grid points
along each coordinate axis. If we choose L = 9, about 5× 100 nonzero entries in each row
have to be stored (where we already accounted for additional zeros due to parity splitting
by the reduction of the sparsity indicator 9 to 5 in (ii)) for each of the 1.000.000 unknowns.
We therefore have to store 500.000.000 entries, which results in 5 GB of memory assuming
ten bytes per entry. However, if we select L = 4, only 310 MB are required. We conclude
that the naive approach has huge memory requirements which more or less prohibits higher
order expansions (say, L ≥ 20) and/or extensions to higher spatial dimensions on computers
available today.

Remark 2. In one spatial dimension it is for reasons of symmetry of the k-space in the
absence of magnetic fields sufficient to expand the distribution function into Legendre poly-
nomials, i. e. consider only Yl,0 with 0 ≤ l ≤ L . This results in reduced storage requirements
of O(NL2) for the system matrix S. However, as soon as a two-dimensional spatial domain
is considered, the full set of spherical harmonics is required [29], falling back to O(NL4)
memory requirements for S.

5.2 Sparsity of Coupling Matrices

Up to now we have assumed that the coupling among coefficients of different spherical
harmonics at a given location in the (x, ε)-space is dense. From parity considerations in
Sec. 3.2 we deduced that in fact only coefficients of spherical harmonics with different parity
couple (cf. (3.47) and (3.51)). In this section we consider spherical bands and show that in
this case only a sparse coupling among coefficients of different spherical harmonics occurs.

For spherical bands, the coupling is determined by the terms al,m,l′,m′ and bl,m,l′,m′ as
defined in (4.45) and (4.46). Before we proceed, some preparatory results are needed:

Lemma 11. There holds

(i)

∫ 2π

0
cos(ϕ)


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ =

= π ×


(δm,m′−1 + δm,m′+1)/2, m > 0,m′ > 0 ,
δm′,1, m = 0,m′ > 0 ,
δm,1, m > 0,m′ = 0 ,
(δm,m′−1 + δm,m′+1)/2, m < 0,m′ < 0 ,
0, else .

(5.3)
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(ii)

∫ 2π

0
m sin(ϕ)


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ =

= |m|π ×


(δ|m|,|m′|−1 − δ|m|,|m′|+1)/2, m > 0,m′ > 0 ,
−δm,1, m > 0,m′ = 0 ,
(δ|m|,|m′|−1 − δ|m|,|m′|+1)/2, m < 0,m′ < 0 ,
0, else.

(5.4)

Proof. We start with the evaluation of∫ 2π

0
cos(ϕ) cos(mϕ) cos(m′ϕ) dϕ, m > 0, m′ > 0 .

Using the second of the trigonometric identities

sin θ sinϕ =
cos(θ − ϕ)− cos(θ + ϕ)

2
, cos θ cosϕ =

cos(θ − ϕ) + cos(θ + ϕ)
2

,

sin θ cosϕ =
sin(θ + ϕ) + sin(θ − ϕ)

2
, cos θ sinϕ =

sin(θ + ϕ)− sin(θ − ϕ)
2

,

(5.5)

we obtain

1
2

∫ 2π

0
cos(ϕ)[cos((m−m′)ϕ) + cos((m+m′)ϕ)] dϕ .

The Fourier orthogonalities (k > 0, l ≥ 0)∫ 2π

0
sin(kϕ) cos(lϕ)dϕ = 0 ,∫ 2π

0
sin(kϕ) sin(lϕ)dϕ = πδk,l ,∫ 2π

0
cos(kϕ) cos(lϕ)dϕ = πδk,l

thus yield ∫ 2π

0
cos(ϕ) cos(mϕ) cos(m′ϕ) dϕ =

π

2
(δm−m′,1 + δm−m′,−1) .

Note that the symmetries

cos(θ) = cos(−θ) , sin(θ) = − sin(−θ) .

have to be taken into account, since m−m′ may have arbitrary sign.
In exactly the same way the remaining expressions can be evaluated using one of the

identities (5.5), the Fourier orthogonalities and taking parity into account. We skip these
repetitive calculations, since they do not provide any further insight.
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Note that the negative sign in (ii) occurs whenever |m′| = |m| − 1, while the positive
sign appears whenever |m′| = |m|+ 1.

Similarly, a second preparatory Lemma is necessary:

Lemma 12. There holds

(i)

∫ 2π

0
sin(ϕ)


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ =

= π ×


(−δ|m|,|m′|−1 + δ|m|,|m′|+1)/2, m > 0,m′ < 0 ,
−δm′,−1, m = 0,m′ < 0 ,
−δm,−1, m < 0,m′ = 0 ,
(δ|m|,|m′|−1 − δ|m|,|m′|+1)/2, m < 0,m′ > 0 ,
0, else .

(5.6)

(ii)

∫ 2π

0
m cos(ϕ)


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ =

= |m|π ×


(δ|m|,|m′|−1 + δ|m|,|m′|+1)/2, m > 0,m′ < 0 ,
−δm,−1, m < 0,m′ = 0 ,
(−δ|m|,|m′|−1 − δ|m|,|m′|+1)/2, m < 0,m′ > 0 ,
0, else.

(5.7)

Proof. This Lemma is proved in exactly the same was as the previous one, using one of the
identities (5.5), the Fourier orthogonalities and taking parity into account.

We are now ready to prove the sparsity of the coupling term al,m,l′,m′ :

Theorem 15. For

al,m,l′,m′ =

 a1
l,m,l′,m′

a2
l,m,l′,m′

a3
l,m,l′,m′

 =
∫

Ω
Yl,meεYl′,m′ dΩ ,

as introduced in (4.45), the following statements hold:

(i)

a1
l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ ∈ {m− 1, m+ 1} . (5.8)

(ii)

a2
l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ ∈ {−m− 1, −m+ 1} . (5.9)

(iii)

a3
l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ = m . (5.10)
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Proof. (i) Substitution of the definition of spherical harmonics (cf. (1.57)) into (4.45) and
splitting the integral leads to

a1
l,m,l′,m′ = Nl,mNl′,m′

∫ π

0
P
|m|
l sin θP |m

′|
l′ dθ

×
∫ 2π

0
cos(ϕ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dϕ .

From Lemma 11 we deduce that m′ = m± 1 is required in order to have a1
l,m,l′,m′ unequal

to zero.

• |m′| = |m| − 1: In this case we have to consider

a1
l,m,l′,m′ = C−l,m,l′

∫ π

0
P
|m|
l sin θP |m|−1

l′ dθ

= C−l,m,l′
∫ 1

−1
P
|m|
l (1− µ2)1/2P

|m|−1
l′ dµ,

where

C−l,m,l′ = πNl,|m|Nl′,|m|−1 ×
{

1, m = 0 ∨m = 1,
1
2 , else ,

(5.11)

and Nr,s is the normalisation constant of the spherical harmonic Yr,s (cf. (1.57)). With
(1.55) we find

a1
l,m,l′,m′ = C−l,m,l′

∫ 1

−1

[
(l + |m| − 1)P |m|−1

l−1 (µ)

− (l − |m|+ 1)µP |m|−1
l (µ)

]
P
|m|−1
l′ dµ .

Using (1.39) for the second term, we thus obtain

a1
l,m,l′,m′ = C−l,m,l′

∫ 1

−1

[
(l + |m| − 1)P |m|−1

l−1 (µ)− (l − |m|+ 1)
2l + 1

×(
(l − |m|+ 2)P |m|−1

l+1 (µ) + (l + |m| − 1)P |m|−1
l−1 (µ)

)]
P
|m|−1
l′ dµ

= C−l,m,l′
[
(l + |m| − 1)δl−1,l′

− (l − |m|+ 1)
2l + 1

(
(l − |m|+ 2)δl+1,l′ + (l + |m| − 1)δl−1,l′

) ]
,

Therefore, l′ = l ± 1 is required for nonzero a1
l,m,l′,m′ .

• |m′| = |m|+ 1: In this case we have to consider

a1
l,m,l′,m′ = C+

l,m,l′

∫ π

0
P
|m|
l sin θP |m|+1

l′ dθ

= C+
l,m,l′

∫ 1

−1
P
|m|
l (1− µ2)1/2P

|m|+1
l′ dµ,
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where

C−l,m,l′ = πNl,|m|Nl′,|m|+1

{
1, m = 0 ∨m = 1,
1
2 , else .

(5.12)

Setting k := |m|+ 1, we have

a1
l,m,l′,m′ = C+

l,m,l′

∫ π

0
P
|m|
l sin θP |m|+1

l′ dθ

= C+
l,m,l′

∫ 1

−1
P kl (1− µ2)1/2P k−1

l′ dµ,

thus we can conclude just as in the case |m′| = |m| − 1 that l′ = l ± 1 is required for
nonzero a1

l,m,l′,m′ .

(ii) Substitution of the definition of spherical harmonics (cf. (1.57)) into (4.46) and
splitting the integral leads to

a2
l,m,l′,m′ = Nl,mNl′,m′

∫ π

0
P
|m|
l sin θP |m

′|
l′ dθ

×
∫ 2π

0
sin(ϕ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dϕ .

From Lemma 11 we deduce that m′ = −m±1 is required in order to have a2
l,m,l′,m′ unequal

to zero. Similar as in the proof of (i) we conclude that additionally l′ ∈ {l − 1, l + 1} is
needed for nonzero a2

l,m,l′,m′ .

(iii) Substitution of the definition of spherical harmonics (cf. (1.57)) into (4.46) and
splitting the integral leads to

a3
l,m,l′,m′ = Nl,mNl′,m′

∫ π

0
P
|m|
l cos θP |m

′|
l′ dθ

×
∫ 2π

0


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dϕ .

The Fourier orthogonalities enforce m′ = m, hence

a3
l,m,l′,m′ = Cl,m,l′

∫ π

0
P
|m|
l cos θP |m

′|
l′ dθ (5.13)

with

Cl,m,l′ = πNl,|m|Nl′,|m|

{
2, m = 0
1, else .

(5.14)

Using (1.39), we arrive at

a1
l,m,l′,m′ = Cl,m,l′

∫ π

0

l − |m|+ 1
2l + 1

P
|m|
l+1P

|m′|
l′ +

l + |m|
2l + 1

P
|m′|
l−1 P

|m′|
l′ dθ

= Cl,m,l′

[
l − |m|+ 1

2l + 1
δl+1,l′ +

l + |m|
2l + 1

δl−1,l′

]
.
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Thus, l′ ∈ {l − 1, l + 1} and m′ = m is necessary to have nonzero a3
l,m,l′,m′ .

It would be of no big use if only al,m,l′,m′ were sparse, but bl,m,l′,m′ were dense. Even
though the explicit expression (4.46) does not suggest sparsity, it is nevertheless the case:

Theorem 16. For

bl,m,l′,m′ =

 b1l,m,l′,m′

b2l,m,l′,m′

b3l,m,l′,m′

 =
∫

Ω

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yn,m
∂ϕ

eϕ

)
Yl′,m′ dΩ

as introduced in (4.46), the following statements for each component of bl,m,l′,m′ hold:

(i)

b1l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ ∈ {m− 1, m+ 1} . (5.15)

(ii)

b2l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ ∈ {−m− 1, −m+ 1} . (5.16)

(iii)

b3l,m,l′,m′ 6= 0⇒ l′ ∈ {l − 1, l + 1} , m′ = m . (5.17)

Proof. (i) As in the proof of the previous theorem, the first step is to substitute the definition
of spherical harmonics (cf. (1.57)) into (4.46):

b1l,m,l′,m′ = Nl,mNl′,m′

∫
Ω

[
dP |m|l (cos θ)

dθ
cos θ cosϕ×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0


− m

sin θ
P
|m|
l (cos θ) sin(ϕ)×


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0


]

× P |m
′|

l′ (cos θ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dΩ

Next, we rewrite the integral over the sphere Ω into integrals over the angles and separate
the two integrals:

b1l,m,l′,m′ =Nl,mNl′,m′

[∫ π

0

dP |m|l (cos θ)
dθ

cos θ sin θP |m
′|

l′ (cos θ) dθ

×
∫ 2π

0
cos(ϕ)


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ

−
∫ π

0
P
|m|
l (cos θ)P |m

′|
l′ (cos θ) dθ

×
∫ 2π

0
m sin(ϕ)


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

 dϕ
]
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The integrals over the angle ϕ have already been evaluated in Lemma 11. It follows that
for b1l,m,l′,m′ to be nonzero, m′ ∈ {m+ 1,m− 1} is required.

• |m′| = |m| − 1: We have

b1l,m,l′,m′ = C−l,m,l′
∫ π

0

[
dP |m|l (cos θ)

dθ
cos θ sin θ + |m|P |m|l (cos θ)

]
P
|m|−1
l′ (cos θ) dθ

= C−l,m,l′
∫ 1

−1

[
−

dP |m|l (µ)
dµ

µ(1− µ2)1/2

+ |m|P |m|l (µ)(1− µ2)−1/2

]
P
|m|−1
l′ (µ) dµ

(5.18)

Using (1.56) to resolve the derivative yields

b1l,m,l′,m′ = C−l,m,l′
∫ 1

−1

[
lµ2P

|m|
l (µ)− (l + |m|)µP |m|l−1(µ)

+ |m|P |m|l (µ)
]
P
|m|−1
l′ (µ)(1− µ2)−1/2 dµ

To use the orthogonality of associated Legendre functions, the term (1− µ2)−1/2 has
to be eliminated and the upper index of associated Legendre functions has to be equal.
With (1.52) we obtain

b1l,m,l′,m′ = C−l,m,l′
∫ 1

−1

[
l(l − |m|+ 1)µP |m|−1

l (µ)(1− µ2)1/2 − |m|µP |m|l−1(µ)

+ |m|P |m|l (µ)
]
P
|m|−1
l′ (µ)(1− µ2)−1/2 dµ

Applying the recursions (1.39) to the first term and (1.53) to the remaining terms,
we find

b1l,m,l′,m′ = C−l,m,l′
∫ 1

−1

[
l(l − |m|+ 1)2

2l + 1
P
|m|−1
l+1 (µ)

+
l(l − |m|+ 1)(l + |m|)

2l + 1
P
|m|−1
l−1 (µ)

+ |m|(l + |m| − 1)P |m|−1
l−1 (µ)

]
P
|m|−1
l′ (µ) dµ

= C−l,m,l′
[
l(l − |m|+ 1)2

2l + 1
δl+1,l′

+
l(l − |m|+ 1)(l + |m|) + (2l + 1)|m|(l + |m| − 1)

2l + 1
δl−1,l′

]
with

C−l,m,l′ = πNl,|m|Nl′,|m|−1

{
1, m = 0 ∨m = 1,
1
2 , else ,

(5.19)

where Nr,s is the normalisation constant of the spherical harmonic Yr,s (cf. (1.57)).
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• |m′| = |m|+ 1: Starting from

b1l,m,l′,m′ = C−l,m,l′
∫ π

0

[
dP |m|l (cos θ)

dθ
cos θ sin θ − |m|P |m|l (cos θ)

]
P
|m|+1
l′ (cos θ) dθ

= C−l,m,l′
∫ 1

−1

[
−

dP |m|l (µ)
dµ

µ(1− µ2)1/2

− |m|P |m|l (µ)(1− µ2)−1/2

]
P
|m|+1
l′ (µ) dµ ,

(5.20)

we arrive in analogy to the first steps in the previous case at

b1l,m,l′,m′ = C+
l,m,l′

∫ 1

−1

[
lµ2P

|m|
l (µ)− (l + |m|)µP |m|l−1(µ)

− |m|P |m|l (µ)
]
P
|m|+1
l′ (µ)(1− µ2)−1/2 dµ

With the recursion (1.54) applied to the first and the second term we find

b1l,m,l′,m′ = C+
l,m,l′

∫ 1

−1

[
l

l + |m|+ 1
(1− µ2)1/2µP

|m|+1
l (µ)

+ l
l − |m|+ 1
l + |m|+ 1

µP
|m|
l+1(µ)− (1− µ2)1/2P

|m|+1
l−1 (µ)

− (l − |m|)P |m|l (µ)− |m|P |m|l (µ)
]
P
|m|+1
l′ (µ)(1− µ2)−1/2 dµ

= C+
l,m,l′

∫ 1

−1

[
l

l + |m|+ 1
(1− µ2)1/2µP

|m|+1
l (µ)

− (1− µ2)1/2P
|m|+1
l−1 (µ) + l

l − |m|+ 1
l + |m|+ 1

µP
|m|
l+1(µ)

− lP |m|l (µ)
]
P
|m|+1
l′ (µ)(1− µ2)−1/2 dµ

The recurrence (1.39) applied to the first term and (1.55) applied to the last two
terms yields

b1l,m,l′,m′ = C+
l,m,l′

∫ 1

−1

[
l

l + |m|+ 1
l − |m|+ 1

2l + 1
(1− µ2)1/2P

|m|+1
l+1 (µ)

+
l

l + |m|+ 1
l + |m|
2l + 1

(1− µ2)1/2P
|m|+1
l−1 (µ)

− (1− µ2)1/2P
|m|+1
l−1 (µ)

+
l

l + |m|+ 1
(1− µ2)1/2P

|m|+1
l+1 (µ)

]
P
|m|+1
l′ (µ)(1− µ2)−1/2 dµ

= C+
l,m,l′

[
l

l + |m|+ 1

(
l − |m|+ 1

2l + 1
+ 1
)
δl+1,l′

+
(

l

l + |m|+ 1
l + |m|
2l + 1

− 1
)
δl−1,l′

]
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with

C+
l,m,l′ = πNl,mNl′,m+1

{
1, m = 0 ∨m = −1,
1
2 , else ,

where Nr,s is the normalisation constant of the spherical harmonic Yr,s (cf. (1.57)).

Summing up, l′ ∈ {l − 1, l + 1} and m′ ∈ {m+ 1,m− 1} is required for nonzero b1l,m,l′,m′ .

(ii) Similar to (i), the first step is to substitute the definition of spherical harmonics
(cf. (1.57)) into (4.46):

b2l,m,l′,m′ = Nl,mNl′,m′

∫
Ω

[
dP |m|l (cos θ)

dθ
cos θ sinϕ×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0


+

m

sin θ
P
|m|
l (cos θ) cos(ϕ)×


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0


]

× P |m
′|

l′ (cos θ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dΩ

Next, we rewrite the integral over the sphere Ω into integrals over the angles and separate
the two integrals:

b2l,m,l′,m′ =Nl,mNl′,m′

[∫ π

0

dP |m|l (cos θ)
dθ

cos θ sin θ dθ

×
∫ 2π

0
sin(ϕ)


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ

+
∫ π

0
P
|m|
l (cos θ) dθ

×
∫ 2π

0
m cos(ϕ)


− sin(mϕ), m > 0
0, m = 0
cos(mϕ), m < 0

×


cos(m′ϕ), m′ > 0
1, m′ = 0
sin(m′ϕ), m′ < 0

dϕ

The integrals in ϕ have already been evaluated in Lemma 12. It follows that nonzero values
of b2l,m,l′,m′ require m′ ∈ {−m+ 1,−m− 1}.

Unlike in the proof of (i), four instead of two cases have to be considered separately:

• m > 0, |m′| = |m| − 1: We obtain

b2l,m,l′,m′ = C−l,m,l′δ|m|,|m′|−1

∫ π

0

[
dP |m|l (cos θ)

dθ
cos θ sin θ

+ |m|P |m|l (cos θ)
]
P
|m|−1
l′ (cos θ) dθ ,

which is just (5.18). Thus, nonnegative values of b2l,m,l′,m′ require l′ ∈ {l − 1, l + 1}.
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• m > 0, |m′| = |m|+ 1: We obtain

b2l,m,l′,m′ = C+
l,m,l′δ|m|,|m′|−1

∫ π

0

[
−

dP |m|l (cos θ)
dθ

cos θ sin θ

+ |m|P |m|l (cos θ)
]
P
|m|+1
l′ (cos θ) dθ ,

which is (5.20) up to a factor (−1). Thus, nonnegative values of b2l,m,l′,m′ require
l′ ∈ {l − 1, l + 1}.

• m < 0, |m′| = |m| − 1: We obtain

b2l,m,l′,m′ = C−l,m,l′δ|m|,|m′|−1

∫ π

0

[
−

dP |m|l (cos θ)
dθ

cos θ sin θ

− |m|P |m|l (cos θ)
]
P
|m|−1
l′ (cos θ) dθ ,

which is (5.18) up to a factor (−1). Thus, nonnegative values of b2l,m,l′,m′ require
l′ ∈ {l − 1, l + 1}.

• m < 0, |m′| = |m|+ 1: We obtain

b2l,m,l′,m′ = C+
l,m,l′δ|m|,|m′|−1

∫ π

0

[
dP |m|l (cos θ)

dθ
cos θ sin θ

− |m|P |m|l (cos θ)
]
P
|m|+1
l′ (cos θ) dθ ,

which is exactly (5.20). Thus, nonnegative values of b2l,m,l′,m′ require l′ ∈ {l−1, l+1}.

Summing up, l′ ∈ {l − 1, l + 1} and m′ ∈ {−m + 1,−m − 1} is required for nonzero
b2l,m,l′,m′ .

(iii) Substitution of the definition of spherical harmonics (cf. (1.57)) into the third
component of (4.46) yields

b3l,m,l′,m′ = Nl,mNl′,m′

∫
Ω

[
dP |m|l (cos θ)

dθ
(− sin θ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0


× P |m

′|
l′ (cos θ)×


cos(mϕ), m > 0
1, m = 0
sin(mϕ), m < 0

dΩ .

From the orthogonality of trigonometric functions in ϕ it follows that nonzero values of
b3l,m,l′,m′ induce m = m′. Hence, proceeding as in (i) without ϕ-derivative we obtain

b3l,m,l′,m′ = Cl,m,l′δm,m′

∫ 1

−1

[
(l + |m|)P |m|l−1(µ)− lµP |m|l (µ)

]
P
|m|
l′ (µ) dµ .
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The recurrence relation (1.39) applied to the second term of the integrand leads to

b3l,m,l′,m′ = Cl,m,l′δm,m′

∫ 1

−1

[
(l + |m|)P |m|l−1(µ)− l l − |m|+ 1

2l + 1
P
|m|
l+1(µ)

− l l + |m|
2l + 1

P
|m|
l−1(µ)

]
P
|m|
l′ (µ) dµ

= Cl,m,l′δm,m′

[
(l + |m|)

(
1− l

2l + 1

)
δl−1,l′ − l

l − |m|+ 1
2l + 1

δl+1,l′

]
.

The numerical constant is given by

Cl,m,l′ = πNl,mNl′,m

{
2, m = 0 ,
1, else ,

Thus, nonzero values of b3l,m,l′,m′ induce l′ = l ± 1 and m′ = m.

Due to the sparsity of al,m,l′,m′ and bl,m,l′,m′ , Thm. 14 can be improved as follows:

Theorem 17. In case of spherical energy bands, the following improved statements for the
resulting system matrix S of (4.42) using spherical harmonics up to degree L hold:

(i) The number of nonzero entries in each row of S is at most 9Csparse = O(1).

(ii) The storage requirements for S are O(NL2).

(iii) Matrix-vector multiplication can be realised with at most O(9CsparseNL
2) = O(NL2)

additions and multiplications.

Proof. (i) Each unknown fl,m;i is coupled for fixed l and m with Csparse other unknowns in
(x, ε)-space. Additionally, from Thm. 15 and 16 we deduce that for each spatial coupling,
coupling of the SHE coefficients with index (l± 1,±m± 1) and (l,m) occurs, leading to at
most 9Csparse entries in each row.

(ii) Since each row of S consists of at most 9Csparse entries, S consists of at most
9CsparseN(L+ 1)2 = O(NL2) entries.

(iii) Since there are at most CsparseN(L+ 1)2 = O(NL2) nonzero entries in the system
matrix S, O(9CsparseNL

2) additions and multiplications are needed for a matrix-vector
multiplication.

We note again that one has to be careful with an implementation in software: In most
sparse matrix implementations, an entry is allocated even if only the value zero is assigned
to it. Thus, careless iteration over al,m,l′,m′ and bl,m,l′,m′ for all l, m, l′ and m′ during matrix
assembly may still lead to a sparse matrix object S with memory requirements O(NL4).

5.3 Matrix Factorisation

SHE can be seen as a Galerkin method in k-space, whereas the discretisation (4.41) can be
seen as a Galerkin method in (x, ε)-space for each of the coefficients of the Galerkin method
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in the k-space. In this section we investigate how these two Galerkin methods are linked.
Consider (4.42) and assume spherical bands, thus the coefficients vl,m,l′,m′ and Γl,m,l′,m′

are given by (4.45) and (4.46). Pulling all terms that do not depend on the integration
variables out of the integral, we obtain with

al,m,l′,m′ =

 a
(1)
l,m,l′,m′

a
(2)
l,m,l′,m′

a
(3)
l,m,l′,m′

 , bl,m,l′,m′ =

 b
(1)
l,m,l′,m′

b
(2)
l,m,l′,m′

b
(3)
l,m,l′,m′

 , F = F (x) =

 F (1)(x)
F (2)(x)
F (3)(x)


(5.21)

the balance equations (function arguments omitted whenever appropriate)

∂fl,m;i′

∂t

∫
Bi

Hlϕi′(ξ) dξ

+
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′

∫
∂Bi

Hl

( ∑3
p=1 F

(p)a
(p)
l,m,l′,m′

al,m,l′,m′

)
ṽ(ε)ϕi′(ξ) dA

−
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′bl,m,l′,m′ ·
∫
Bi

HlF
ϕi′(ξ)
~k̃(ε)

dξ

=
1
Y0,0

N∑
i′=1

f0,0;i′
∑
η

ση

∫
Bi

Hlgl,m(ε)ϕi′(ξ ± ~ωη) dξ

− 1
Y0,0

N∑
i′=1

fl,m;i′
∑
η

ση

∫
Bi

Hlϕi′(ξ)g0,0(ε∓ ~ωη) dξ

(5.22)

where we have additionally assumed that ση is constant1. Note that due to the assumption
of spherical bands, the generalised density of states coefficients gl,m are identically zero for
(l,m) 6= (0, 0). Furthermore, we rearrange the second term as

V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′

∫
∂Bi

Hl

( ∑3
p=1 F

(p)a
(p)
l,m,l′,m′

al,m,l′,m′

)
ṽ(ε)ϕi′(ξ) dA

=
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

3∑
p=1

fl′,m′;i′a
p
l,m,l′,m′

∫
∂Bi

Hl

(
F (p)

0

)
ṽ(ε)ϕi′(ξ) dA

+
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′

(
0

al,m,l′,m′

)∫
∂Bi

Hlṽ(ε)ϕi′(ξ) dA

(5.23)

1This assumption can be relaxed considerably as we shall see later on.
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Thus, substituting (5.23) into (5.22) yields the balance equations

V∑
i′=1

∂fl,m;i′

∂t

∫
Bi

Hlϕi′(ξ) dξ

+
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

3∑
p=1

fl′,m′;i′a
(p)
l,m,l′,m′

∫
∂Bi

Hl

(
F (p)

0

)
ṽ(ε)ϕi′(ξ) dA

+
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′

(
0

al,m,l′,m′

)∫
∂Bi

Hlṽ(ε)ϕi′(ξ) dA

−
V∑
i′=1

N∑
l′=0

l′∑
m′=−l′

fl′,m′;i′bl,m,l′,m′ ·
∫
Bi

HlF
ϕi′(ξ)
~k̃(ε)

dξ

=
δ0,lδ0,m

Y0,0

N∑
i′=1

f0,0;i′
∑
η

ση

∫
Bi

Hlg0,0(ε)ϕi′(ξ ± ~ωη) dξ

− 1
Y0,0

N∑
i′=1

fl,m;i′
∑
η

ση

∫
Bi

Hlϕi′(ξ)g0,0(ε∓ ~ωη) dξ

(5.24)

The crucial observation now is that there are no more terms in the integrals that depend
on either l, m, l′ or m′, except for Hl. However, there are only two possibilities for Hl

independent of the order L of SHE: It is either unity or an exponential independent of the
spherical harmonics indices. Hence, the Galerkin method in (x, ε)-space is fully decoupled
from the Galerkin method in k-space.

To account for the decoupled Galerkin methods, we propose the following enumeration
strategy for the unknowns: Given a numbering of the boxes Bi with i = 1, . . . , N , and
spherical harmonics up to degree L, we number all unknowns fl,m;i for fixed i within the
range [(i − 1)(L + 1)2 + 1, . . . , i(L + 1)2]. The index pair (l,m) with l = 0, . . . , L and
m = −l, . . . , l is mapped one-to-one onto the interval [1, (L+ 1)2] by a function r = r(l,m).
There are no further restrictions to r, but typically one will choose r as simple as possible.
With this enumeration of unknowns, fl,m;i carries the index (i− 1)(L+ 1)2 + r(l,m).

The proposed numbering scheme induces a block structure of the system matrix S. Let
us introduce the matrix-valued bilinear form for the steady-state (i.e. set the time derivative
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in (5.24) to zero):

a : P1(T )× P0(B)→ R(L+1)2×(L+1)2 (5.25)

(a(ϕ, χ))r(l,m),r(l′,m′) =
N∑
i=1

[ 3∑
p=1

a
(p)
l,m,l′,m′

∫
∂Bi

Hl

(
F (p)

0

)
ṽ(ε)ϕ(ξ)χ(ξ) dA

+
(

0
al,m,l′,m′

)∫
∂Bi

Hlṽ(ε)ϕ(ξ)χ(ξ) dA

− bl,m,l′,m′ ·
∫
Bi

HlF
ϕ(ξ)
~k̃(ε)

χ(ξ) dξ

−
δl,l′δm,m′δ0,lδ0,m

Y0,0

∑
η

ση

∫
Bi

Hlg0,0(ε)ϕ(ξ ± ~ωη)χ(ξ) dξ

+
δl,l′δm,m′

Y0,0

∑
η

ση

∫
Bi

Hlϕ(ξ)g0,0(ε∓ ~ωη)χ(ξ) dξ
]
.

(5.26)

With this bilinear form the system matrix S can be written compactly in block structure
as

S =


a(ϕ1, χ1) a(ϕ2, χ1) . . . a(ϕN , χ1)
a(ϕ1, χ2) a(ϕ2, χ2) . . . a(ϕN , χ2)

...
...

. . .
...

a(ϕ1, χN ) a(ϕ2, χN ) . . . a(ϕN , χN )

 , (5.27)

which is the common matrix structure for Galerkin methods such as the finite element
method. Moreover, the sparsity of S can now clearly be seen: If the intersection of the
support of ϕi and χj (taking shifts due to the scattering operator by ±~ωη along the energy
axis into account) is empty, a(ϕi, χj) is zero. Note that, in general, a(ϕi, χj) 6= a(ϕj , χi)
and therefore S is not symmetric.

To eliminate the weak dependence on l of the integrands via Hl, we rewrite (5.25) as

a(ϕ, χ) = aeven(ϕ, χ) + aodd(ϕ, χ) , (5.28)

where

(
aeven(ϕ, χ)

)
r(l,m),r(l′,m′)

=

{ (
ãeven(ϕ, χ)

)
r(l,m),r(l′,m′)

, l even ,

0 , l odd ,
(5.29)
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and(
ãeven(ϕ, χ)

)
r(l,m),r(l′,m′)

=
N∑
i=1

[ 3∑
p=1

a
(p)
l,m,l′,m′

∫
∂Bi

(
F (p)

0

)
ṽ(ε)ϕ(ξ)χ(ξ) dA

+
(

0
al,m,l′,m′

)∫
∂Bi

ṽ(ε)ϕ(ξ)χ(ξ) dA

− bl,m,l′,m′ ·
∫
Bi

F
ϕ(ξ)
~k̃(ε)

χ(ξ) dξ

−
δl,l′δm,m′δ0,lδ0,m

Y0,0

∑
η

ση

∫
Bi

g0,0(ε)ϕ(ξ ± ~ωη)χ(ξ) dξ

+
δl,l′δm,m′

Y0,0

∑
η

ση

∫
Bi

ϕ(ξ)g0,0(ε∓ ~ωη)χ(ξ) dξ
]

(5.30)

as well as (
aodd(ϕ, χ)

)
r(l,m),r(l′,m′)

=

{
0 , l even ,(
ãodd(ϕ, χ)

)
r(l,m),r(l′,m′)

, l odd ,
(5.31)

with(
ãodd(ϕ, χ)

)
r(l,m),r(l′,m′)

=
N∑
i=1

[
3∑
p=1

a
(p)
l,m,l′,m′

∫
∂Bi

exp
(ε(k) + qψ(x)

kBT

)(
F (p)

0

)
ṽ(ε)ϕ(ξ)χ(ξ) dA

+
(

0
al,m,l′,m′

)∫
∂Bi

exp
(ε(k) + qψ(x)

kBT

)
ṽ(ε)ϕ(ξ)χ(ξ) dA

− bl,m,l′,m′ ·
∫
Bi

exp
(ε(k) + qψ(x)

kBT

)
F
ϕ(ξ)
~k̃(ε)

χ(ξ) dξ

−
δl,l′δm,m′δ0,lδ0,m

Y0,0

∑
η

ση

∫
Bi

exp
(ε(k) + qψ(x)

kBT

)
g0,0(ε)ϕ(ξ ± ~ωη)χ(ξ) dξ

+
δl,l′δm,m′

Y0,0

∑
η

ση

∫
Bi

exp
(ε(k) + qψ(x)

kBT

)
ϕ(ξ)g0,0(ε∓ ~ωη)χ(ξ) dξ

]
.

(5.32)

On closer inspection it can now be seen that both aeven and aodd are a linear combination
of matrices with row and column indices r(l,m) and r(l′,m′) respectively. There are eight
matrices for aeven and eight matrices for aodd. Note that the matrices in aeven have empty
rows identified by odd l, while aodd has empty rows identified by even l. More explicitly,
there holds

aeven(ϕ, χ) =
8∑
p=1

αeven
p (ϕ, χ)Aeven

p , aodd(ϕ, χ) =
8∑
p=1

αodd
p (ϕ, χ)Aodd

p , (5.33)
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with scalar valued functions αodd
p (ϕ, χ) and αeven

p (ϕ, χ), p = 1, . . . , 8, the latter given by

αeven
p′ (ϕ, χ) =

N∑
i=1

∫
∂Bi

(
F (p′)

0

)
ṽ(ε)ϕ(ξ) dA

+
N∑
i=1

(∫
∂Bi

ṽ(ε)ϕ(ξ) dA
)(p′)

p′ = 1, 2, 3 ,

(5.34)

αeven
p′ (ϕ, χ) = −

N∑
i=1

∫
Bi

F (p′−3) ϕ(ξ)
~k̃(ε)

dξ , p′ = 4, 5, 6 , (5.35)

αeven
7 (ϕ, χ) = − 1

Y0,0

N∑
i=1

∑
η

ση

∫
Bi

g0,0(ε)ϕ(ξ ± ~ωη)χ(ξ) dξ , (5.36)

αeven
8 (ϕ, χ) = − 1

Y0,0

N∑
i=1

∑
η

ση

∫
Bi

g0,0(ε∓ ~ωη)ϕ(ξ)χ(ξ) dξ , (5.37)

where the vector decomposition (5.21) was used and the notation (·)(p′) in the first expres-
sion denotes the p′-th component of the vector. The expressions for αodd

p (ϕ, χ) carry only
the additional exponential due to the entropy term (4.37) in the integrand and thus will
not be repeated here. The matrices are given by

(
A

[even/odd]
p′

)
r(l,m),r(l′,m′)

=

{
ap

′

l,m,l′,l′ , l [even/odd]
0 , otherwise

, p′ = 1, 2, 3 , (5.38)

(
A

[even/odd]
p′

)
r(l,m),r(l′,m′)

=

{
bp

′−3
l,m,l′,l′ , l [even/odd]

0 , otherwise
, p′ = 4, 5, 6 , (5.39)

(
A

[even/odd]
7

)
r(l,m),r(l′,m′)

=
{
δl,l′δm,m′ , l [even/odd]
0 , otherwise

. (5.40)

(
A

[even/odd]
8

)
r(l,m),r(l′,m′)

=
{
δl,l′δm,m′δl,0δm,0 , l [even/odd]
0 , otherwise

. (5.41)

Here, the notation [a/b] means that either a or b can be substituted consistently within the
whole expression. We note that in an implementation, Aeven

p′ and Aodd
p′ are stored in the

same matrix, since their nonzero entries are located at disjoint locations.
Summing up, the block structure (5.27) allows to write S as a sum of Kronecker products

in the form

S =
8∑
p=1

[
αeven
p ⊗Aeven

p +αodd
p ⊗Aodd

p

]
, (5.42)

where ⊗ denotes the Kronecker product and the coefficient matrices α[even/odd]
p are given

by (
α[even/odd]
p

)
ij

= α[even/odd]
p (ϕj , χi) . (5.43)

This decoupling allows another reduction of memory requirements for the matrix S
compared to Thm. 17:
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Theorem 18. Assume spherical energy bands such that the coupling coefficients vl,m,l′,m′

and Γl,m,l′,m′ are given by (4.45) and (4.46). Then

(i) The system matrix S can be stored with memory requirements O(N + L2).

(ii) Matrix-vector multiplication (still) requires O(NL2) additions and multiplications.

Proof. (i) From (5.27) and the sparsity of the block pattern, we conclude that at most
O(CsparseN) = O(N) blocks have to be stored. From (5.28) and (5.33) we see that each
block a(ϕ, χ) requires the storage of 16 = O(1) coefficients. Additionally, the sparse ma-
trices Aeven

p′ and Aodd
p′ have to be stored for p′ = 1, . . . , 8 independent of the degrees of

freedom in (x, ε)-space, thus an additional memory of O(L2) is required. Thus, the total
memory requirements are O(N + L2).

(ii) Due to the block structure (5.27), we consider a matrix-vector multiplication locally
on a block first. If we decompose the vector x into blocks of length (L+ 1)2 as

x =


x1

x2
...

xN−1

xN

 , (5.44)

we obtain with (5.33)

Sx =



∑N
s=1

∑8
p=1 α

even
p (ϕs, χ1)Aeven

p xs + αodd
p (ϕs, χ1)Aodd

p xs∑N
s=1

∑8
p=1 α

even
p (ϕs, χ2)Aeven

p xs + αodd
p (ϕs, χ2)Aodd

p xs
...∑N

s=1

∑8
p=1 α

even
p (ϕs, χN−1)Aeven

p xs + αodd
p (ϕs, χN−1)Aodd

p xs∑N
s=1

∑8
p=1 α

even
p (ϕs, χN )Aeven

p xs + αodd
p (ϕs, χN )Aodd

p xs

 . (5.45)

Each of the 16N different matrix vector products A[even/odd]
p xs has to be computed only

once. Since Aeven
p′ and Aodd

p′ can be stored together in a single matrix for each p′, only 8N
matrix-vector products are needed, each requiring at most O(4L2) additions and O(4L2)
multiplications. The factor of four is due to the number of nonzero entries per row, which
is according to Thm. 15 and Thm. 16 at most four. These 8N intermediate result vectors
are then linearly combined. Since S is sparse, only up O(8Csparse) additions of vectors are
required per row. Before addition, 8Csparse multiplications with either αeven or αodd (with
appropriate arguments) are required in each of the N(L+ 1)2 rows.

Collecting all numbers, we have in total

O(32NL2 + 8CsparseNL
2) = O(NL2)

additions and multiplications.

Some words from the implementation point of view have to be spent on the 8N matrix-
vector products mentioned in the proof of (ii): It is in no way necessary to store all 8N
result vectors of size (L + 1)2. Instead, in an iteration over s = 1, . . . , N and p = 1, . . . , 8,
each entry of the result of the matrix vector product (Aeven

p + Aodd
p )xs can directly be
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multiplied with appropriate coefficients and written to the result vector of Sx. Hence, even
though we have compressed the global system matrix S, there is no additional memory
required for a matrix vector multiplication.

Let us discuss some of the implications of Thm. 18:

• Even though the matrix can now be stored with memory requirements O(N + L2),
there are still N(L + 1)2 = O(NL2) unknowns in the linear system. Thus, the total
memory requirements are still O(NL2). However, these N(L + 1)2 entries for each
vector can be stored without extra overhead in a linear memory sequence, thus the
proportionality constant is 1.

• Due to the block structure of S, the matrix-vector multiplication can be fully paral-
lelised, both on shared and distributed memory computers. However, further details
on parallelisation are beyond the scope of this thesis.

• Even though the system matrix is stored in a compressed form, there is no extra
computational effort during the assembly required. Consequently, the numerical effort
for the assembly of S is again O(N + L2).

• It is interesting to compare the effort for matrix-vector multiplication in the com-
pressed (Thm. 18) and in the uncompressed (Thm. 17) case: First, the coefficient of
N(L + 1)2 is 9Csparse in the uncompressed case and 32 + 8Csparse in the compressed
case. For rectangles, Csparse ≥ 9, hence the compressed matrix-vector multiplication is
only slightly slower then the uncompressed one. In higher spatial dimensions and/or
on unstructured grids, Csparse can be much larger such that the theoretical limit for
the computational effort of the compressed matrix-vector multiplication is actually
lower, because the prefactor of Csparse is smaller. In our estimations we have not
considered matrix access times for the uncompressed matrix, which further influence
the resulting performance.

• For spatial dimensions smaller than three, some of the coefficients α[even/odd]
p in (5.33)

are zero due to symmetry considerations. This allows to reduce the number of matrices
A

[even/odd]
p to four in one spatial dimension and six in two spatial dimensions. The

constants in the complexity estimates for matrix-vector multiplication can then be
improved appropriately.

To handle full-band structures, the functions vl,m,l′,m′(ε) and Γl,m,l′,m′(ε) cannot be
factorised as in (4.45) and (4.46), because they generally depend on the energy and on the
angles θ, ϕ. As already suggested by Jungemann et. al. [24], a projection onto spherical
harmonics of up to degree L′ is convenient:

v(ε, θ, ϕ) ≈
L′∑
l=0

n∑
m=−n

vl,m(ε)Yl,m(θ, ϕ) , (5.46)

Γ(ε, θ, ϕ) ≈
L′∑
l=0

n∑
m=−n

{
1

~|k|

}
l,m

(ε)Yl,m(θ, ϕ) , (5.47)
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where

vl,m(ε) =
∫

Ω
v(ε, θ, ϕ)Yl,m(θ, ϕ) dΩ , (5.48){

1
~|k|

}
l,m

(ε) =
∫

Ω

Yl,m(θ, ϕ)
~|k(ε, θ, ϕ)|

dΩ . (5.49)

Inserting these expansions into the expressions for vl,m,l′,m′ (c.f. (4.43)) and Γl,m,l′,m′

(c.f. (4.44)), we obtain

vl,m,l′,m′(ε) =
L′∑
l′′=0

l′′∑
m′′=−l′′

vl′′,m′′(ε)al,m,l′,m′,l′′,m′′ , (5.50)

Γl,m,l′,m′(ε) =
L′∑
l′′=0

l′′∑
m′′=−l′′

{
1

~|k|

}
l′′,m′′

(ε)bl,m,l′,m′,l′′,m′′ (5.51)

where

al,m,l′,m′,l′′,m′′ =
∫

Ω
Yl,mYl′,m′Yl′′,m′′ dΩ (5.52)

bl,m,l′,m′,l′′,m′′ =
∫

Ω

(
∂Yl,m
∂θ

eθ +
1

sin θ
∂Yl,m
∂ϕ

eϕ

)
Yl′,m′Yl′′,m′′ dΩ . (5.53)

Note that in case that L′ = 0 is sufficient to describe the velocity vector v(ε, θ, ϕ) and the
wave vector k(ε, θ, ϕ), i.e. |v(ε, θ, ϕ)| = ṽ(ε) and |k(ε, θ, ϕ)| = k̃(ε), we fall back to (4.45)
and (4.46) as expected.

Theorem 19. With an approximation of v(ε, θ, ϕ) and Γ(ε, θ, ϕ) by a SHE up to degree L′

as given in (5.46) and (5.47), there holds

(i) The memory required for the storage of the system matrix S is at most O(N(L′)2 +
(L′)2L4).

(ii) The matrix-vector product then requires O(N(L′)2L4) operations.

Thus, it is possible to achieve a memory reduction by a factor O(L4/(L′)2) (typically
N(L′)2) � (L′)2L4 holds) even in the case of fullband structures compared to the naive
scheme of storing each nonzero entry separately. However, in contrast to Thm. 18 for
spherical bands, this reduction comes at the expense of increased computational effort for
matrix-vector multiplication compared to the naive scheme analysed in Thm. 14.

Proof. A rigorous proof of Thm. 19 requires the generalisation of the steps that have lead
to Thm. 18. These generalisations mainly consist of an additional summation over l′′ and
m′′, so that we only outline the necessary steps here:

(i) Substitution of (5.50) and (5.51) into (4.42) and repeating the steps that have lead
to the bilinear form a(·, ·) in (5.26), then splitting into contributions from even and odd
spherical harmonics as in (5.28), one obtains that aeven(ϕ, χ) and aodd(ϕ, χ) can be written
as a sum of 6(L′ + 1)2 + 2 matrices A[even/odd]

p each. These matrices require at most
(6(L′ + 1)2 + 2)(L+ 1)4 = O((L′)2L4) memory in total. Presumably it is possible to prove
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a sparsity pattern for each of these A[even/odd]
p , but for the moment we assume that at each

of them is densely populated.
Additionally, the storage are 12(L′ + 1)2 + 2 coefficients αeven

p (ϕ, χ) and αodd
p (ϕ, χ)

needed, resulting in the need for O(N(L′)2) memory. Therefore, in total O(N(L′)2 +
(L′)2L4) memory is needed.

(ii) The costs of matrix-vector multiplication are obtained as in Thm. 18, taking into
account that there are now 6(L′ + 1)2 + 2 block matrices A[even/odd]

p instead of eight: One
entry of the result vector of the matrix-vector product now requires 6(L′ + 1)2 + 2 vector
products with O(L2) operations each, hence the computation of all N(L + 1)2 entries of
the result vector require O(N(L′)2L4) operations. Again, if there is a sparsity pattern for
each of the matrices A[even/odd]

p , the estimate improves to O(N(L′)2L2) operations.



Chapter 6

Implementation and Results

In this chapter we discuss the results obtained from the numerical solution of the spheri-
cal harmonics expansion (SHE) equations derived from the Boltzmann transport equation
(BTE) in the preceding chapters. However, due to the hyperbolic nature of the underlying
continuous system of first-order partial differential equations, several numerical challenges
have to passed. We first discuss the main problems that inherently show up due to the
mathematical structure of the equations. After that we give all the parameters used for
the simulations and point at pitfalls that have shown up during the development of the
program code. Finally, the results for a n+nn+ diode are discussed.

6.1 Problem Setup

In this thesis a n+nn+ diode as shown in Fig. 6.1 is simulated. Even though such a device is
of no use in practise, it serves as model for a MOSFET in inversion: The highly doped source
and drain contacts are then identified with the n+-regions in the diode, while the channel in
inversion corresponds to the n-region with lower doping. This simplification, however, does
not allow for a full characterisation of the MOSFET, but provides a qualitative analysis of
quantities such as carrier velocities in the channel.

The diode is divided into three parts of equal size. The left and the right parts are the
n+ regions, while the lower doped n region is located in the centre. The length of the diode
is 200nm. The voltage at the right contact was set to 0.3, 1.0 and 3.0 Volt, while the left
contact is grounded. The band structure was assumed to be parabolic, thus the following
relationships hold:

ε =
~2|k|2

2m∗
(6.1)

v =
1
~
∇kε =

~k
m∗

=
√

2ε/m∗ (6.2)

~|k| =
√

2m∗ε (6.3)

The scattering operator is assumed to consist of acoustic and optical phonon scattering
[27, 33]. The former is assumed to be isotropic and completely elastic, thus the scattering
term is given by

sac(x,k,k′) = σacδ(ε(k′)− ε(k)) , where σac =
2πkBT

~V u2
l ρ
D2

l . (6.4)

88
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(a) Schematics of a MOSFET. The n+nn+-diode is indicated with a dashed line.
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(b) The n+nn+-diode.

Figure 6.1: The investigation of an n+nn+-diode is motivated from the channel of a MOS-
FET in inversion, where the p-region close the the gate oxide accumulates
electrons and thus becomes a thin n-channel.

The quantity V is the volume, which cancels after appropriate scaling. The other quantities
are explained in Tab. 6.1. Optical phonon scattering is modelled by the inelastic term

sop(x,k,k′) =
π(DtK)2

ρωop
×
{
Nopδ(ε(k′)− ε(k)− ~ωop), (absorption),
(Nop + 1)δ(ε(k′)− ε(k) + ~ωop), (emission),

(6.5)

where the number of optical phonons Nop is given by Bose-Einstein statistics

Nop =
1

exp
(~ωop

kBT

)
− 1

. (6.6)

Note that the above scattering terms have to be transformed from momentum-space (k-
space) to energy space, which adds a multiplication with the density of states to the scat-
tering rates (cf. (2.65)). We use these two scattering mechanisms only, others are described
in the literature and can be included in the context of SHE similarly [24,27,29,33,48].

6.2 Pitfalls

During implementation and testing of the simulator, several issues had to be dealt with.
Such pitfalls are often mentioned – if at all – only in a single sentence in publications, even
though a lot of time was spent on dealing with them. In this section we discuss the pitfalls
observed.

6.2.1 Initial Guess for the Potential

A glimpse on the SHE equation (3.30) reveals that the force term F and thus the potential
within the device must be given. Since it is very hard or even impossible to write the
potential even in a simple one-dimensional n+nn+-diode in closed form, we compute the
potential ψ in the device by numerical solution of the drift-diffusion model in its simplest
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Parameter Symbol Value

Elementary charge |q| 1.6022× 10−19 C
Planck constant ~ 6.626× 10−34 Js
Boltzmann constant kB 1.381× 10−23 J/K
Lattice temperature T 300 K
Sound speed ul 9000 m/s
Mass density ρ 2330 kg m−3

Effective mass m∗ 0.26×m0

Electron rest mass m0 9.1094× 10−31 kg
Lattice deformation potential Dl 9.00 eV
Optical phonon coupling constant DtK 500 eV/m
Optical phonon energy ~ωop 0.05 eV

Table 6.1: Input parameters for the simulation of an n+nn+ diode. Note that 1 eV equals
1.6022× 10−19 Joules.

form:

−∆ψ =
|q|
ε

(p− n−ND) , (6.7)

∇ · (∇n− VTn∇ψ) = 0 , (6.8)
∇ · (∇p+ VTp∇ψ) = 0 , (6.9)

where the thermal voltage VT = kBT/|q| is approximately 26mV at room temperature,
ND is the net doping concentration and n and p are the unknown electron and hole con-
centrations respectively. The dielectric constant ε is not to be confused with the energy
ε. This minimalistic set of equations neglects many additional physical effects, but pro-
vides a sufficiently accurate initial guess for the potential. For numerical stabilisation the
Scharfetter-Gummel scheme as described in Sec. 4.2 was used. Due to the exponential de-
pendence of the carrier concentrations on the potential, a direct linearisation of the system
typically fails to converge. Thus, we rely on the so-called Gummel scheme (see e.g. [42]),
where we successively solve the three equations, but use the relations

n = ni exp
(ψ − ϕn

VT

)
, p = ni exp

(ϕp − ψ
VT

)
(6.10)

in the Poisson equation (6.7). The linearised equation for the update δψk at the k-th
iteration step with λ := |q|/ε then is

−∆(δψk) + λ
nk + pk

VT
(δψk) = ∆ψk + λ(pk − nk −ND) . (6.11)

For further details on the numerical solution of the drift diffusion model we refer to the
literature, e.g. [42].
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6.2.2 Degenerate or Decoupled System

Let us consider a first-order SHE of the BTE for spherical bands in one spatial dimension
aligned along the z-direction. Due to the symmetry of the problem we can conclude that
the coefficient of Yl,m is zero in case that m 6= 0. The coupling matrices (4.45) and (4.46)
can then be computed as

al,m,l′,m′ =
(

0 1/
√

3
1/
√

3 0

)
, (6.12)

bl,m,l′,m′ =
(

0 0
2/
√

3 0

)
, (6.13)

so that the resulting system of equations in steady state becomes

ṽ(ε)/
√

3
(
∂f1

∂z
+ F

∂f1

∂ε

)
= Q0{f} ,

ṽ(ε)/
√

3
(
∂f0

∂z
+ F

∂f0

∂ε

)
− 2F√

3~k̃(ε)
∂f0

∂ε
= Q1{f} ,

(6.14)

where ṽ(ε) and 1/(~k̃) stem from (4.45) and (4.46). We observe the following:

• In a parabolic band approximation, |k| ∼
√
ε, thus the coefficient 2F/(

√
3~k̃(ε))

is singular at zero energy. Consequently, extra care has to taken there: Since the
singularity is integrable, a higher order numerical quadrature should be sufficient.
Additionally, there are boundary-conditions at zero energy which allow to circumvent
these problems.

• If the force F is zero at some point, then all energy derivatives vanish. Conversely,
if the force is very large, the prefactor of the z-derivative can become very small
compared to the prefactor of the energy derivatives.

• The equations are coupled via the collision operator Q only. Thus, if Q ≡ 0, the
system decouples into two separate equations. Such a decoupling is not desired:
Since boundary conditions are defined for the even harmonics only (cf. Sec. 4.5), the
decoupled equation for the odd harmonics would then be underdetermined, while
the equation for the even harmonics were overdetermined due to the presence of two
boundary conditions for a first order partial differential equation. Thus, it is not
possible to investigate the numerical behaviour of the left hand side of (6.14) by
setting Q ≡ 0, which complicates any analysis considerably.

6.2.3 Linear Solver and Preconditioner

Let us consider a uniformly doped semiconductor in equilibrium. The distribution function
is then given by a Maxwellian:

f(x, ε) = ndopingkBT exp
(
− ε

kBT

)
, (6.15)

where ndoping is the concentration of dopands. We denote with M(ε) := exp(−ε/(kBT ))
the exponential term. Choosing the simulation domain to range from zero to one electron
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volt, evaluation of M at the extremal values yields

M(0 eV) = 1 , M(1 eV) ≈ 6.2× 10−16 . (6.16)

While such a large variation in magnitude does not pose any analytical problems, it cer-
tainly does in computer with finite precision floating point units. For example, the IEEE
Standard for Floating-Point Arithmetic (IEEE 754) specifies a double precision format of
64 bit with a mantissa length of 53 bits, thus a relative accuracy of about 16 decimal digits
can be obtained. However, since the spherical harmonics coefficients have values of simi-
lar magnitude when evaluated at neighbouring grid points, the finite precision arithmetic
is sufficient to perform a matrix-vector multiplication of good accuracy with the system
matrix.

Consider now the linear system Ax = b with initial guess x0 and initial residual r0 =
b−Ax0. If this system is solved using a Krylov subspace method, a solution is sought in
the m-dimensional subspace

Km = span
{
r0,Ar0,A

2r0, . . . ,A
m−1r0

}
. (6.17)

The next iterate xm is then chosen from the affine subspace x0 +Km, where different Krylov
methods lead to different choices of xm. For demonstration purposes, let us continue with
the Generalised Minimum Residual Method (GMRES) [40], where xm is chosen to be the
vector that minimises the residual among all vectors from x0 + Km. However, since small
relative deviations of the approximate solution fh near zero energy lead to variations in the
residual of, say, δ, the same relative variations at energies of 1eV lead to variations in the
residual of size δ × 10−16 only. Thus, the numerical solution fh will suffer from increased
numerical noise at higher energies, because deviations from the true solution at zero energy
have a much higher weight than deviations at high energies.

A method to reduce these oscillations is the following: Given an unknown fn,m;i located
at location (xi, εi), we expect due to reasons of physics at equilibrium that fn,m;i is by a
factor of approximately exp(εi/(kBT )) smaller than the unknown fn,m;i′ located at (xi, 0).
Thus, we replace

fn,m;i 7→ f exp
n,m;i = fn,m;i exp

( εi
kBT

)
(6.18)

and repeat this procedure for all unknowns. In case that the true distribution function is
close the equilibrium given by (6.15), the discrete solution is then given by

f exp
n,m;i ≈ αn,m ∀i , (6.19)

where αn,m depends only on the indices n and m of the respective spherical harmonic. In
a purely mathematical view, the rescaling of unknowns corresponds to an application of a
left- and a right-preconditioner P : If we write the unscaled system as Ax = b, denote the
scaled vector of unknowns with x′ and the identity matrix with I, then the substitution
(6.18) is equivalent to

Ax = b 7→ AIx = b (6.20)

⇔ AP−1Px = b (6.21)

⇔ AP−1x′ = b , (6.22)
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where

P =


exp(ε0/(kBT )) 0 . . . . . . 0

0 exp(ε1/(kBT )) 0 . . . 0
...

...
. . . . . .

...
0 . . . . . . 0 exp(εN−1/(kBT ))

 ∈ RN×N . (6.23)

Since the boundary conditions at the device contacts are of Dirichlet type and given by
a Maxwellian, the right hand side vector b also consists of entries of different orders of
magnitude. Additionally, since A has entries varying by a few orders of magnitude only,
the rescaled matrix AP−1 consists of entries with a much larger variation in magnitude.
This issue can be resolved by a left-multiplication with P , which reverses the scaling induced
by P−1 and additionally leads to right hand side entries of similar magnitude:

Ax = b ⇔ AP−1x′ = b ⇔ PAP−1x′ = Pb . (6.24)

This combined left- and right-preconditioner, which we refer to as exponential precon-
ditioner , was tested and compared with two other basic preconditioners:

(i) A diagonal left-preconditioner D, which scales the diagonal of A to consist of ones
only, thus

D =


a−1

0,0 0 . . . . . . 0
0 a−1

1,1 0 . . . 0
...

...
. . . . . .

...
0 . . . . . . 0 a−1

N−1,N−1

 ∈ RN×N . (6.25)

Here, δi,j denotes the Kronecker delta. We will refer to this preconditioner as diagonal
preconditioner .

(ii) A diagonal left-preconditioner R, which scales the largest element in modulus of each
row to one, thus

R =


(maxj |a0,j |)−1 0 . . . . . . 0

0 (maxj |a1,j |)−1 0 . . . 0
...

...
. . . . . .

...
0 . . . . . . 0 (maxj |aN−1,j |)−1

 ∈ RN×N .

(6.26)

Again, δi,j denotes the Kronecker delta. We will refer to this preconditioner as row
scaling preconditioner .

The comparison of preconditioners shown in Tab. 6.2 shows some interesting results:
Most notably, the condition number of the system matrix without preconditioner is too
large for double precision arithmetic, thus it is required to use either high-precision arith-
metic or to use a preconditioner. Surprisingly, the diagonal preconditioner leads to an even
higher condition number of about 1019. However, it has been observed that the diagonal
preconditioner performs better if lower scattering rates are chosen. In contrast, the row scal-
ing preconditioner reduces the condition number by several order of magnitude to 107 and
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DOF/axis No precond. Diagonal Row scaling Exponential

30 2.1914× 1017 1.8352× 1019 9.9286× 106 1.9107× 1011

Table 6.2: Comparison of condition numbers with different preconditioners for the system
matrix resulting from the simulation of a n+nn+-diode on a uniform grid with
a SHE of first order.

performed best even at lower scattering rates. Interestingly, the exponential preconditioner
does not perform as well and leads to condition numbers in the range 1011, even though
the unknowns are scaled such that they are of similar order of magnitude. Nevertheless,
the exponential preconditioner yields better results than the diagonal preconditioner.

The action of the preconditioners on the eigenvalue spectrum of the system matrix
is shown in Fig. 6.2. The row scaling and the exponential preconditioners transform the
eigenvalues of the original matrix A to a cluster of eigenvalues with both real and imaginary
part between −1 and 1. The diagonal preconditioner also clusters most eigenvalues in that
interval except for a few large eigenvalues that lead to high condition numbers. These few
large eigenvalues most likely stem from the discretisation near zero energy, where diagonal
entries are smaller than the off-diagonal entries. Interestingly, even though the exponential
preconditioner possesses an eigenvalue spectrum similar to the row scaling preconditioner,
the matrix condition numbers differ by several orders of magnitude. Hence, we can conclude
that the antisymmetric part of the system matrix is not just a small perturbation of the
system matrix.

Another important thing to note in Fig. 6.2 is that eigenvalues with both positive
and negative sign occur. The unpleasant consequence is that many iterative solvers like
the conjugate gradient method cannot be used and more general variants like GMRES
have to be used. The alternative is to rely on direct solvers, which do not allow for very
large numbers of unknowns. The solver package PETSc [2] was used to benchmark several
different iterative solvers. The result for low scattering rates is disappointing: None of
the iterative solver was able to solve the system matrix arising from 25 grid points in
each coordinate direction, no matter which preconditioner was chosen. This is especially
surprising since the matrix condition number is moderate if row scaling is used. For this
reason, a direct Gauss solver with pivoting was used in the following. Since simulations
with higher scattering rates have been carried out only after this change of the linear solver,
iterative solvers have not been tested with higher scattering rates.

Another improvement used by Jungemann et. al. [24] is to eliminate all unknown ex-
pansion coefficients of odd order in a preprocessing step. Such an elimination is numerically
cheap due to the results from Chapter 5, since odd order coefficients couple with even order
coefficients only. Such a reduction reduces the number of unknowns by a factor of two in
the case of one-dimensional devices, while the benefit is even higher in higher dimensions.
Consequently, the resulting system matrix is smaller and a direct solver is by a factor of
eight faster1. In Fig. 6.3 the action of the elimination process on the eigenvalues of the sys-
tem matrix is depicted. Eigenvalues larger than 0.5 do not appear anymore (apart from the
eigenvalues 1 due to boundary conditions) and the remaining eigenvalue spectrum remains

1Under the assumption that for a matrix of size N ×N the computational effort for the solution process
is O(N3)
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(a) No preconditioner. (b) Diagonal preconditioner.

(c) Row scaling preconditioner. (d) Exponential preconditioner.

Figure 6.2: Eigenvalues of the system matrix resulting from the simulation of an n+nn+-
diode with different preconditioners. Note that due to the inclusion of bound-
ary conditions in the matrix there is an eigenvalue 1 in all four cases.
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(a) Row scaling preconditioner. (b) Odd order unknowns eliminated.

Figure 6.3: Comparison of eigenvalues of the system matrix before and after elimina-
tion of odd order unknowns. Prior to the elimination step, a row scaling
preconditioner has been applied.

almost unchanged. The condition number decreases by another factor of approximately
five. However, there are still several negative eigenvalues present, thus excluding many
iterative solvers that require a positive definite matrix.

6.3 Results for a n+nn+ Diode

Even though physical quantities have been written explicitly throughout this thesis, one
must not expect highly accurate results in terms of physics at this point, because the
simulation results are not fitted to measurement data from a real device. In particular, since
a thorough investigation and quantitative comparison with existing models was beyond the
scope of this thesis, one simply cannot expect that the obtained simulation results provide
an accurate description of a real device. In particular, a consideration of acoustical and
optical phonon scattering only turned out to yield unphysical small scattering rates in total.
Therefore, the acoustical phonon scattering rate (6.4) was increased by a factor of 100 in
order to obtain physically more meaningful results. Nevertheless, one has to bear in mind
that a lot more parameter tweaking is needed for reliable and predictive simulation results.

The expansion coefficients f0,0, f1,0 of the generalised energy distribution function f̃ as
well as the computed electron densities and the resulting potential for a n+nn+ diode of
200nm length and SHE up to first order are shown and compared with the results obtained
from a simplistic drift-diffusion model (DDM) in Fig. 6.4. As can be seen from the grid, the
mesh was refined near the transition regions where the electric field is large, whereas the
grid spacing in energy direction is uniform. Both the electron concentration as well as the
potential inside the device computed by DDM and SHE are very similar. In fact, this is not
surprising, since only a low external field is applied and the internal fields due to differences
in doping concentrations are small. The distribution function does not have any spurious
oscillations and one can see that at x ≈ 130nm a local maximum of the distribution function
coefficients with respect to the spatial variable x develops. In a physical interpretation this
means that the electrons are accelerated in the lower doped centre region and thus gain
energy. As soon as they hit the higher doped n+-region on the right, scattering dominates
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(a) f̃0,0, not normalised (b) f̃1,0, not normalised

(c) Electron density. (d) Potential.

Figure 6.4: Self-consistent solution of SHE equations at an applied voltage of 0.3 V.

such that electrons lose energy. Near the contact the distribution function with respect to
energy is already close to a Maxwell-distribution again.

At higher applied fields the situation the so-called high energy tail of the distribution
function can readily be seen around x ≈ 130nm in Fig. 6.5. Moreover, the plot for the
zeroth-order coefficient f0,0 shows that the choice of Dirichlet boundary data is not the
best: At higher energies the distribution function near the contact at x = 200nm is too far
away from the equilibrium Maxwell distribution, thus there are jumps in the solution. Thus,
a generation/recombination term at the contact as discussed in Sec. 4.5 is of advantage.
Moreover, the numerical solution tends to produce spurious oscillations near the contact in
such cases. The oscillations in the coefficients of the distribution function near x = 60nm
in Fig. 6.5 are due to artefacts from the energy boundary at ε = εmax and do not influence
the computed macroscopic quantities.

The norm of the potential update vector at step s, ‖∆ψs‖, of the Gummel iteration
scheme for the solution of the coupled Boltzmann-Poisson system is shown in Fig. 6.6.
While convergence is fast for small voltages and a small number of iteration steps suffice,
convergence is very slow for higher voltages of several Volts. The same is true for the
Gummel iteration used in the drift-diffusion model which severs as a first initial guess for
the potential.
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(a) f̃0,0, not normalised (b) f̃1,0, not normalised

(c) Electron density. (d) Potential.

Figure 6.5: Self-consistent solution of SHE equations at an applied voltage of 1.0 V.
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Figure 6.6: Norm of the potential update vector ‖∆ψs‖ after each Gummel iteration step
for different externally applied voltages.

The high number of Gummel iterations required for large externally applied voltages
typically come with the need for a larger number of degrees of freedom due to the higher
forces in the device. Thus, not only is the number of iterations higher, but also the time
required for each iteration step. Faster convergence can be obtained by the use of the
Newton method on the full coupled system as was observed recently [32]. In Fig. 6.7 the
potential update ∆ψs according to the correction

ψs+1 = ψs + d∆ψs (6.27)

with damping factor d set to 0.8 is shown. One can see that another gain in convergence
speed could be obtained by the use of multigrid methods for the nonlinear iteration: High
frequency errors in the potential are eliminated through the Gummel iteration much faster
than it is the case for low frequency errors. In particular, the potential updates are smooth
functions, thus it is of advantage to start with a coarse mesh, perform several (fast) Gummel
iterations to resolve low frequency updates of the potential and then interpolate the coarse
numerical approximation to a finer mesh. Clearly, this requires stable discretisations in
order to be able to obtain meaningful results on coarse meshes. For such a coarse mesh
with only 30 grid points in each coordinate direction, the obtained simulation results are
shown in Fig. 6.8. While the solution obtained from a 40 × 40 grid shows some numerical
oscillations at higher energies only, the solution obtained from the 30×30 grid oscillates even
at low energies and thus does not provide reliable numbers for the electron concentration.

To close this chapter, the importance of self consistent simulations, i.e. a full solution
of the Boltzmann-Poisson system, is depicted in Fig. 6.9. The applied potential is 1 Volt,
hence the associated potential can be found in Fig. 6.5. One can clearly see that small
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(a) The potential ψs. (b) The potential correction d∆ψs.

Figure 6.7: The potential and its correction at different Gummel iteration steps.

(a) f̃0,0 on a 30× 30 grid (b) f̃0,0 on a 30× 40 grid

Figure 6.8: Coarse grid solutions for a n+nn+ diode at an applied voltage of 1.0 V.
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Figure 6.9: Comparison between electron concentrations obtained from self consistent,
non self consistent and drift-diffusion simulations.

deviations of the potential in the order of a few percent lead to electron concentrations that
differ by a factor of two in the case of a simple n+nn+ diode. For more complex devices such
as bipolar transistors or MOSFETs, the difference is even higher. Consequently, one cannot
rely on simpler (macroscopic) models for the computation of the potential and abandon the
nonlinear iterations.



Chapter 7

Outlook and Conclusion

Several hints have already been dropped throughout this thesis on future investigations
and possible extensions. Within this final chapter we sketch possible future work on the
spherical harmonics expansion (SHE) of the Boltzmann transport equation (BTE) in a little
more detail. The following sections give a brief overview of current ideas and hint at certain
challenges which have to be met. However, one must not expect to find any fully developed
theory or even results on the next pages. A conclusion is finally drawn in the closing section
of this work.

7.1 Unstructured and Adaptive Grids

The simulation of the n+nn+ diode from Chapter 6 was carried out using a non-equidistant
Cartesian tensor product grid with the different number of grid points in x and ε direction.
The results show that there is only a minor deviation from the Maxwellian shape of the
solution near the contacts, thus it would be sufficient to have a lower grid point density
there. On the other hand, in the transition region between the highly doped n+ region and
the lightly doped n regions, a much higher density of grid points is desirable to obtain a
good accuracy of the numerical solution.

A good indication of strong variations in the solution is given by the force term F : In
regions where the force is relatively small, electrons hardly respond to the force, whereas
in areas of large forces electrons are accelerated and gain a considerable amount of energy.
Such large forces typically show up at the border of regions with different doping levels,
hence we expect to see a strong variation of the distribution function in x-direction, while
there the variation in energy is typically lower than for the Maxwellian shape at the contacts.
The reason is that electrons do not gain energy instantly, they rather gain energy while they
travel across the regions with high forces. This energy is then lost in the regions with lower
forces due to scattering.

For a cell T with characteristic length hT and centre at (xT , εT ) one may set

hT ∼
ε0 + εT

F0 + |F (xT )|
, (7.1)

where ε0 and F0 are positive parameters that have to be chosen appropriately. With this
choice of cell sizes, the cells are smallest near zero energy in regions where the force is
largest, which coincides with the observations from the simulation results of an n+nn+

diode.

102



7.2. ADAPTIVE CONTROL OF THE EXPANSION ORDER 103

It is possible to choose cell sizes according to (7.1) on both structured and unstructured
grids. This allows the construction of a sufficiently fine initial mesh, where each cell T
can then be adaptively refined according to an error estimator η(T, fh) based on the initial
numerical solution fh. However, due to the typically exponential decay of fh with energy,
the use of simple standard error estimators based on the gradient of fh are not expected
to yield good results. Thus, using standard error estimators on fh, the mesh is likely
to be refined near zero energy only. Better results can be expected when standard error
estimators are applied to ln(fh), fh exp((ε+ qψ)/(kBT )) or ln(fh) + (ε+ qψ)/(kBT ). Such
an adaptive mesh refinement leads to unstructured grids in a natural way, which comes at
the cost of additional memory needed for mesh data structures. However, since for a SHE
of order L, (L+ 1)2 unknowns are associated with each mesh node, the amount of memory
needed for mesh handling is small compared to the memory needed for the unknowns as
soon as L exceeds, say, five.

Another reduction of unknowns can be achieved by a clever selection of the energy
boundary. We recall that macroscopic quantities such as electron concentration, average
electron velocity or current density within the device are obtained from an integration over
energy. For example, the macroscopic density u is computed by

u(x, t) =
∫ ∞

0

∫
Ω
U(ε, θ, ϕ)f̃(x, ε, θ, ϕ, t)dΩdε . (7.2)

In case U ≡ Y0,0 one obtains the electron concentration, whereas the average energy can be
obtained from the choice U ≡ εY0,0. Since the integral along energy can only be evaluated
numerically between zero and εmax due to the finite simulation domain, one can choose
εmax = εmax(x) in such a way that the resulting error is below a prescribed error. This
is always possible, because the distribution function decays exponentially (at least for suf-
ficiently large energies), while the function U is of polynomial growth for all microscopic
quantities of interest. A potential pitfall is the specification of appropriate boundary con-
ditions at ε = εmax(x), because then the normal vectors of the boundary of the simulation
domain do not point into energy direction only.

7.2 Adaptive Control of the Expansion Order

In Chapter 1 we have seen that the magnitude of the coefficients of the SHE decreases
with increasing order. According to (1.94) the rate of decay is the larger the smoother the
distribution function is. In terms of physics, a faster decay of the coefficients can be expected
if only small voltages are applied to the device. This corresponds to results reported in the
literature, where higher order expansions up to about degree nine are required to obtain
good agreement with reference solutions computed using the Monte-Carlo method [24].

The decay of the coefficients of higher order harmonics can also be seen in results for
a n+nn+ diode reported by Rahmat et. al. [33]. The crucial observation is that the higher
order coefficients are largest in high-field regions, thus it may be sufficient to include these
higher order coefficients only there and set them to zero in the low-field regions, where the
distribution function is close to a Maxwellian. More explicitly, for

f(x,k, t) =
L∑
l=0

n∑
m=−n

fn,m(x, ε)Yl,m , (7.3)



7.3. HIGHER SPATIAL DIMENSIONS 104
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Figure 7.1: A three-dimensional prismatic mesh can be obtained from a two-
dimensional mesh by appropriate translations. The two-dimensional
cells are then facets of the three-dimensional prism. Here, the remain-
ing facets are obtained by joining corresponding vertices.

and a given force F , we set a-priori

fn,m(x, ε) ≡ 0, ∀x ∈ Ξlow := {y ∈ Ξ : |F (y)| < Fmin
l,m } , (7.4)

where Ξ denotes the simulation domain. It is to be expected that the threshold Fmin
l,m has to

be chosen for each l and m independently and that abrupt changes of the expansion order
have to be avoided. At present it is not clear in what way the quality of the numerical
solution will suffer from forcing coefficients to zero in the low-field region. Additionally,
extra care has to be taken in order to preserve current continuity.

7.3 Higher Spatial Dimensions

The simulation of one-dimensional devices is certainly unsatisfactory considering the state
of the art in device manufacture. A natural requirement thus is to simulate full three-
dimensional devices, which actually requires the solution in a four-dimensional coordinate
system, namely three spatial coordinates and one energy coordinate. In such a four-
dimensional space, several obstacles pop up:

• Meshing : While a lot is known about meshing in two and three dimensions, hardly
any concepts or software exist for meshing in four dimensions. Nevertheless it is still
possible to obtain a full four-dimensional mesh by embedding a three-dimensional
mesh of the the device into the four-dimensional space. In particular, every mesh node
located at x in the three-dimensional mesh is embedded in the four-dimensional space
at location (x, 0). A four-dimensional mesh of prismatic cells can then be obtained
by repeatedly shifting the three-dimensional mesh along the energy axis to obtain
the points (x,∆ε), (x, 2∆ε), (x, 3∆ε), . . ., (x, εmax). This procedure is illustrated in
Fig. 7.1 for the case of a transition from two to three dimensions.

• Visualisation: The visualisation of scalar quantities within a three-dimensional de-
vice often requires the use of iso-surfaces and other tools because of visibility prob-
lems. The visualisation of a four-dimensional energy distribution function is already
a problem for the human perception, thus it will only be possible to visualise aver-
aged quantities such as the particle concentration or the average energy of electrons
at a certain point in the device. However, since the characteristic relationship of an
electronic device is the current at various applied voltages, the inability to visualise
the full four-dimensional energy distribution function should be a minor concern.
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• Computational Complexity : The numerical example of a simplistic one-dimensional
n+nn+ diode already showed that the system matrix carries some unpleasant prop-
erties such as a very high condition number. It is not clear whether the situation gets
even worse in higher dimensions. Some authors already reported successful simula-
tions of two-dimensional devices [16,20,23], but there have not been any publications
on the simulation of full three-dimensional devices using SHE. Moreover, computa-
tional resources might (at present) be insufficient to use expansions of higher order.
In a four-dimensional simulation domain, a uniform mesh refinement increases the
number of unknowns by a factor of 16, therefore unstructured, adaptive grids as well
as an adaptive control of the expansion order appear to be necessary to keep the
number of unknowns to the absolute minimum.

7.4 Mathematical Modelling

The numerical simulation of an electronic device by SHE of different order has been the
topic of this thesis. Early publications covered first order expansions only, which have
then found their way into the world of mathematical modelling. There, the mathematical
SHE model has been derived from scaling arguments and an Hilbert expansion of the
distribution function [4]: The scattering operator Q is split into an elastic part Q0 and a
small perturbation Q1 as

Q{fα} = Q0{fα}+ α2Q1{fα} , (7.5)

where fα denotes the scaled distribution function with respect to the substitutions x′ = αx
and t′ = αt. With this scaling, the BTE becomes

∂fα

∂t
+

1
α

(v · ∇xf
α + F∇kf

α) =
1
α2
Q0{fα}+Q1{fα} . (7.6)

Substitution of a Hilbert expansion of the form

fα = f0 + αf1 + α2f2 + . . . (7.7)

and balancing terms of the same order in α leads to

Q0{f0} = 0 , (7.8)
Q0{f1} = v · ∇xf0 + F∇kf0 , (7.9)

Q0{f2} =
∂fα

∂t
+ v · ∇xf1 + F∇kf1 −Q1{f0} . (7.10)

Without going into the details, under suitable assumptions one can show that the above
system is solvable if f0 fulfils

∂f0

∂t
g(ε) +∇x · j + F · ∂j

∂ε
= S{f} , (7.11)

where

j =
∫ ∞

0
vf1g dε = −D(x, ε)

(
∇xf0 + F∇kf0

)
, (7.12)

S{f} =
∫ ∞

0
Q1{f}g dε , (7.13)



7.5. APPROPRIATE LINEAR SOLVER 106

with the density of states g(ε) and the diffusion matrix D(x, ε). A comparison of (7.11)
with (3.28) shows that the latter carries an extra term F ·Γ. The reason for this difference
can be traced back to the partial integration with respect to k in (3.13): While the spherical
harmonic Yl,m is a function of the angles, the scaling parameter α was assumed to be a
scalar.

From the numerical point of view, (7.11) is easier to handle than (3.13), because after
substitution of (7.12) into (7.11) one obtains a (parabolic) second-order partial differential
equation, where the drift and diffusion terms can be clearly identified. We note that it
is also possible to recast (6.14) into a second order PDE under some assumptions on the
scattering operator: If we assume in (6.14) that Q0{f} = c0f0 and Q1{f} = c1f1, then
elimination of f1 leads to a PDE of second order for f0.

In contrast to the SHE model derived by scaling arguments, the set of equations (3.30)
for the coefficients fl,n(x, ε) still represent the full series expansion of the solution of the
BTE. From the mathematical point of view it is interesting to ask in which sense the
series expansion converges to the true solution f . For the diffusion matrix D(x, ε) used in
(7.12) the non-negativity has already been shown [4], thus one can check whether similar
statements for the arbitrary-order equation (3.30) can be derived.

By different scaling arguments it is possible to derive the energy transport model, the
hydrodynamic model and the drift-diffusion model from the BTE [4]. If we suppose that
the set of equations (3.30) is only a recast BTE, then it might also be possible to derive
macroscopic models from it. In particular, a closer investigation of the third-order model
might lead to a new macroscopic model superior to for example the energy transport model.

7.5 Appropriate Linear Solver

Due to the additional energy coordinate, the discretisation of the SHE equations leads to
a high number of unknowns. The resulting system matrix, however, is extremely sparse,
hence iterative solvers should be chosen. Unfortunately, iterative solvers failed to converge
for SHE in the low-scattering regime as reported in Chapter 6, thus a direct Gauss solver
was used to obtain the results shown in the preceding chapter. However, direct solvers are
inferior to iterative methods (provided that they converge) for sparse matrices with large
numbers of unknowns, say, more than a million, thus it is absolutely mandatory to find a
suitable iterative solver for SHE.

Tightly connected with the choice of an iterative solver is the choice of an appropriate
preconditioner. Jungemann et. al. [24] reported the successful use of GMRES with a rather
advanced incomplete LU-preconditioner, but also mentioned failure of convergence if the
preconditioner was too rough.

An open question is the use of the block structure (5.33) for preconditioners. If the full
system matrix S ∈ Ruv×uv had a (Kronecker) block structure in the form

S = U ⊗ V (7.14)

with U ∈ Ru×u, V ∈ Rv×v, then a preconditioner could be obtained from approximate
inverses Ũ

−1 ∈ Ru×u and Ṽ
−1 ∈ Rv×v as

S̃
−1

= Ũ
−1 ⊗ Ṽ −1

(7.15)
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because of

S̃
−1
S = (Ũ

−1 ⊗ Ṽ −1
)(U ⊗ V ) = (Ũ

−1
U)⊗ (Ṽ

−1
V ) ≈ Iu ⊗ Iv ≈ I . (7.16)

Unfortunately, S is according to (5.42) only a linear combination of matrices that are
Kronecker products:

S =
1∑
i=1

6U i ⊗ V i , (7.17)

thus it is insufficient to compute the approximate inverses Ũ
−1
i and Ṽ

−1
i . One possibility

to design a preconditioner is to select S∗ ∈ Ruv×uv with S∗ = U∗ ⊗ V ∗, U∗ ∈ Ru×u,
V ∗ ∈ Rv×v such that

S∗ = argmin‖S − S′‖ for S′ ∈ Ru×u ⊗ Rv×v . (7.18)

Then, the approximate inverse of S∗ can be assembled from the approximate inverses of
U∗ and V ∗. However, it is not clear whether on the one hand a suitable S∗ exists at
all, i.e. whether the error ‖S − S′‖ can be made sufficiently small, and on the other hand
whether S∗ can be computed in an inexpensive way.

7.6 Finite Element Methods

In order to ensure current continuity, the Finite Volume Method was chosen for the discreti-
sation. However, current continuity came at the price of dropping the maximum entropy
dissipation scheme (MEDS) for the even order equations. Hence, if current continuity is
not of utmost importance, MEDS can also be applied to even order equations and dif-
ferent discretisation methods such as the Finite Element Method (FEM) [6, 50] can be
applied. Moreover, a previously created finite element programming framework of the au-
thor [38, 39] can immediately provide features like higher order discretisations, multigrid
methods or adaptivity.

One has to keep in mind that FEM works typically well for second-order elliptic or
parabolic partial differential equations, while hyperbolic problems cause several additional
problems. Some have been addressed and solved over the past decades, but remedies have
often been tailored to a particular set of equations. Since the SHE equations are a system of
(degenerate) first order hyperbolic partial differential equations, spurious oscillations may
occur if the mesh is too coarse.

7.7 Conclusion

The numerical solution of the BTE using SHE was considered and extensively documented
within this thesis. Both the mathematical and physical background was presented and the
projection onto spherical harmonics was carried out in a general form. A Galerkin scheme
was used for the discretisation and analytical formulae for the resulting integrals have been
derived. Additionally, it was shown that higher order expansions suffer from high memory
requirements unless the system matrix is stored in a compressed form proposed in this
thesis.
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Both the assembly and the solution of the resulting linear system turned out to be
challenging: While the former required the evaluation of complicated integrals, the correct
handling of several unknowns per mesh point and preprocessing steps such as the solution
of the drift-diffusion model, the latter requires an advanced preconditioner. Standard pre-
conditioners shipped with general purpose solver libraries did not converge. As a remedy,
a direct Gauss solver was used in one spatial dimension to obtain the simulation results for
a n+nn+-diode. Unlike the Monte Carlo method, a solution of the SHE equations provides
a deterministic way to compute the electron distribution function in a device but comes at
the price of higher algorithmic and implementation complexity.

Even though the SHE of the BTE is mathematically much harder to handle than for ex-
ample elliptic partial differential equations of second order, it offers many links for advanced
numerical techniques such as adaptive or automatic mesh refinement and an adaptive con-
trol of the expansion order. With such advanced numerical methods and the ever-increasing
computational resources, the SHE method can complement or even replace other macro-
scopic models such as the energy transport model or the hydrodynamic model for device
simulation in the future.
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