
DIPLOMARBEIT

Development of a Plug and Play Concept for
Industrial Automation

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

unter der Leitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Markus Vincze
Dipl.-Ing. Ingo Hegny

E376
Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien
Fakultat für Elektrotechnik und Informationstechnik

von

Pengzhou Xie
Matr.-Nr.: 0327510

Obermüllnerstraße 2C/6/105, 1020 Wien

Wien, im März 2010

Pengzhou Xie

 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Abstract

Nowadays the industrial automation is facing a rising pressure from the pro-
gressing globalization of the market, which is demanding for a higher efficiency
and flexible reconfiguration ability in manufacturing systems. The require-
ments of increasing integration and interoperability for a dynamic network
and communication configuration are becoming the key to ensure the config-
urability in distributed control and large complex systems.

From the aspect of device governance among autonomous sub-systems, the
overall process of exchanging data among the systems based on different engi-
neering tools requires established channels among the devices. The process of
discovering new devices and managing communication configurations requires
a concept, which makes assigning and managing channels automatically for
the industrial automation domain possible.

The technology of Plug and Play provides a basic approach from the aspect of
discovering communications among the devices. Currently, the Plug and Play
standards available are developed mainly focusing on the consumer market
and are based on Internet based protocols. Such an orientation makes them
complicated to be directly integrated into the domain of industrial automation.

The focus of this work is to develop a Plug and Play concept for the industrial
automation domain. Such a concept is able to distribute and manage channels
automatically based on the communication medium and network protocols of
the field devices. The framework introduced in this work for assigning and
managing channels supports current and possible future industrial automation
environments (e.g., IEC 61131-3, IEC 61499, Multi-Agent Systems).

By applying such a framework with its components, it is possible to dis-
tribute and administrate request-based channels automatically. The integra-
tion into different devices from various vendors is feasible. This concept is
designed as an open and flexible structure that can be easily applied for in-
dustrial automation systems.



Kurzfassung

Die fortschreitende Globalisierung verstärkt den Leistungsdruck auf die In-
dustrielle Automation, indem sie unter anderem höhere Effizienz und flexible
Rekonfiguration in Fertigungssystemen fordert.

Steigende Integrität und Interoperabilität sind Voraussetzungen in dynamis-
chen Netzwerken sowie für die Konfiguration der Kommunikation. Diese Er-
fordernisse bilden den Kernpunkt, um Konfiguration in verteilten und kom-
plexen Systemen zu gewährleisten.

Für die Gerätesteuerung in autonomen Subsystemen werden Kommunika-
tionskanäle zwischen den einzelnen Geräten benötigt, welche einen Datenaus-
tausch zwischen den verschiedensten Entwicklungswerkzeugen ermöglichen.

Der Prozess, welcher neue Geräte entdeckt und die Konfiguration der Kom-
munikation organisiert, verlangt nach einem Konzept, welches die automatis-
che Zuordnung und Organisation von Kanälen ermöglicht.

Die Technik von "Plug and Play" bietet einen Ansatz in Hinsicht auf die
Errichtung von Kommunikation zwischen Geräten. Die gegenwärtigen "Plug
and Play" Standards sind hauptsächlich auf den Massenmarkt ausgerichtet
und basieren auf Internetprotokollen. Dieser Umstand macht es schwierig, sie
direkt in das Gebiet der Industriellen Automation zu übernehmen.

Der Fokus dieser Arbeit liegt darin, ein "Plug and Play" Konzept für die In-
dustrielle Automation zu entwickeln. Dieses Konzept kann Kanäle automatisch
zuteilen und verwalten unabhängig davon, welches Kommunikationsmedium
eingesetzt wird und welche Netzwerkprotokolle verwendet werden. Die Grund-
struktur, die in dieser Arbeit vorgestellt wird, unterstützt aktuelle und zukün-
ftige Standards der Industriellen Automation (z. B. IEC 61131-3, IEC 61499,
Multi-Agenten Systeme).

Die Anwendungen eines solchen Grundstruktur mit seinen Komponenten
ermöglicht die Verwaltung und die automatische Verteilung von Kommunika-
tionskanälen. Die Integration in Geräte unterschiedlicher Hersteller erscheint
praktikabel, weil die offene und flexible Struktur einfach für industrielle Au-
tomatisierungssystem angewandt werden kann.

ii



Acknowledgment

Firstly I would like to give my sincere thanks to Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Markus Vincze for supervising my diploma-thesis. I would also like
to thank Dipl.-Ing. Ingo Hegny for his great support and suggestions during
the whole time of this work. His patience and ongoing support meant a lot
to me. I also learned so much from him about how to achieve a higher level
in the scientific research, which is much more than what a diploma-thesis can
cover. Such an experience is a lifetime benefit for me.

Furthermore, I would also like to thank Dipl.-Ing. Martin Melik-Merkumians,
all colleagues at the Odo Strugger Laboratory, and Yuzhang Han for their help
and suggestions.

I would like to give my special thanks to my girlfriend Hanhui for always
being there for these years. It is such a beautiful thing that I have her support
in all kinds of ways.

My thanks also go to my friends Thomas Robatscher and Dipl. -Ing. Rupert
Langegger. Without their heart-warming friendship, the life while studying in
a foreign country wouldn’t be such a joyful experience for me at all.

Above all, I want to give the most important thanks to my parents Donggang
Xie and Min Zhao. Without them, I wouldn’t have been able to come this far
to the place where I am today. Their dedication, support and encouragement
along the whole way are the most valuable things I could ever get in my entire
life.

I dedicate my diploma-thesis to my grandfather Hongkui Xie, who passed
away during the time that I work on this paper. It was such a hard thing that
I never had the chance to say goodbye to him, but he stays forever deep inside
my heart.

Pengzhou Xie



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Guideline Through the Work . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3
2.1 Industrial Automation Systems . . . . . . . . . . . . . . . . . . 3

2.1.1 Decentralized and Distributed Systems . . . . . . . . . . 3
2.1.2 IEC 61499 . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Multi Agent System . . . . . . . . . . . . . . . . . . . . 9

2.2 Industrial Network and Communication Systems . . . . . . . . . 11
2.2.1 OSI Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Fieldbus . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Transmission Patterns . . . . . . . . . . . . . . . . . . . 16
2.2.4 DHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Quality of Service . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Concept 26
3.1 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Communication Characteristics . . . . . . . . . . . . . . 29
3.1.2 General Framework . . . . . . . . . . . . . . . . . . . . . 31

3.2 Conceptual Structure . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 A Three Layer Structure . . . . . . . . . . . . . . . . . . 33
3.2.2 Channel Manager . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Communication Manager and Generic Communication

Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Typification . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Implementation 53
4.1 Channel Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Communication Manager and Generic Communication Module . 58
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Outlook 65

6 Conclusion 66

v



List of Figures

2.1 Levels of Automation [TQ08] . . . . . . . . . . . . . . . . . . . 4
2.2 IEC 61499 Model Overview [Zoi07] . . . . . . . . . . . . . . . . 6
2.3 Basic Function Block based on [Chr04] . . . . . . . . . . . . . . 8
2.4 Composite Function Block . . . . . . . . . . . . . . . . . . . . . 8
2.5 Requester and Responder [Chr04] . . . . . . . . . . . . . . . . . 9
2.6 Typical Network Topologies [LN07] . . . . . . . . . . . . . . . . 11
2.7 Repeater, Bridge, Router and Gateway in OSI model [Fur00] . . 13
2.8 Unicast, Broadcast, Multicast, and Anycast . . . . . . . . . . . 16
2.9 DHCP Diagram [Dro97] . . . . . . . . . . . . . . . . . . . . . . 19
2.10 QoS Categories [OMG08] . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Devices in Industrial Automation System . . . . . . . . . . . . . 28
3.2 Overview of Major Components in the 3-Layer Structure . . . . 35
3.3 Channel Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Device View: Communication Manager and Generic Communi-

cation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Flow of Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 General Overview of Mechanism . . . . . . . . . . . . . . . . . . 43
3.7 Initialization when A. Initialization Successful; B. Initialization

Unsuccessful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Identifier Management . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 Protocol Management of Channel Manager . . . . . . . . . . . . 49

4.1 Request Data Packet . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Response Data Packet . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Approach of Implementing Communication Manager and Generic

Communication Module . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Communication Manager Kernel in 4DIAC-IDE . . . . . . . . . 61
4.5 Communication Manager in 4DIAC-IDE . . . . . . . . . . . . . 62
4.6 Generic Communication Module Function Block . . . . . . . . . 63

vi



List of Tables

2.1 Branches and Areas of Fieldbuses [Die09] . . . . . . . . . . . . . 15
2.2 Comparision of Zeroconf and UPnP based on [Che09] . . . . . . 23

vii



1 Introduction

1.1 Motivation

The trend of the automation systems is developing from the decentralized
control to the distributed control based on intelligent devices. The reconfig-
uration ability is one of the most important characteristics required for the
industrial automation environment. Based on the requirements of a better re-
configuration ability for the manufacturing process, Multi-Agent Systems are
introduced. Considering the requirements of real time execution in large com-
plex systems, an approach that splits the Multi-Agent System into the High
Level Control and Low Level Control is applied. The High Level Control is
controlled by an agent for coordinating the manufacturing resources and over-
all execution, and the Low Level Control governs the actions from the physical
system with field devices. The information from the field devices is collected
and processed by the Low Level Control. From the overall aspect, process data
are exchanged via the established channels among the communication inter-
faces at the Low Level Control and the High Level Control. The channels must
be previously defined, which brings a few facts that need to be concerned.

When new devices are attached into the system, extra effort has to be made
on configuring channels for the devices, which brings complexity for reconfig-
uration. Especially for the sub-systems developed with different engineering
tools, the channel configuration developed with one engineering tool must be
able to be recognized and integrated by other engineering tools. As for devices
distributed into autonomous sub-systems, the channels must be administrated
so that the field devices can coordinate with each other not only inside one
system, but also among different systems. In order to exchange process data
among devices, the devices should be aware of the presence of other devices
without causing conflicts, in other words, make them ready for plug and play.
From the aspect of various network and communication systems, different net-
work protocols and parameter configurations can be available, which also leads
to the need of the ability of an automatic and dynamic channel configuration.

Based on such facts, there is a need to develop a Plug and Play concept,
which can assign and manage channels automatically. The channels among

1



1.2 Guideline Through the Work

the field devices should be automatically configured based on various system
and communication specifications. The architecture should be able to be in-
tegrated into the industrial automation systems. By applying such a concept,
the discovery of field devices, automated configuration and management of the
communication among devices should be realized.

1.2 Guideline Through the Work

This work comes with following chapters after this brief introduction:
Chapter 2: The introduction of the current technologies in industrial au-

tomation covers the areas of the industrial automation systems and their im-
portant characteristics. The network and communication systems in the in-
dustrial automation domain are also discussed, in order to give a conceptual
understanding for the communication systems and technologies. As for Plug
and Play standards, a few current implementations are introduced. Their lim-
itations are also analyzed.

Chapter 3: As the main focus of this work, which is the Plug and Play
concept itself, the development of such a concept shows the general framework
that this concept based on. The requirements of the concept will be discussed.
The three-layer framework with its components will be introduced. Each com-
ponent will be analyzed and a mechanism of distributing channels for such a
framework is provided.

Chapter 4: A prototypical implementation of the framework within IEC
61499 according to the concept is discussed. The configuration of each module
will be analyzed. The results of the implementation are discussed.

Chapter 5: An outlook for future steps of the development of this concept
is described.

Chapter 6: A conclusion is presented as a summary of this work.

2



2 State of the Art

This chapter provides a summarized overview of the current systems and ar-
chitectures in the field of industrial automation. It will provide some principles
and background knowledge, which are related to this work. Most of the terms
and definitions used in this work will be clarified.

As for the detailed content of this chapter, two parts will be introduced,
which are the overview of industrial automation systems, and industrial net-
work and communication systems. The first part will start with an introduc-
tion of development in industrial automation, followed by introducing IEC
61499 and Multi-Agent Systems. Industrial network and communication sys-
tems will be taken as the focal point of this chapter. Some available network
structures and implementations are explained. The emphasized points will be
on the Dynamic Host Configuration Protocol and the Plug and Play concept.

2.1 Industrial Automation Systems

The development of industrial automation system has a goal of chasing a better
capability, which is more self-automated, reconfigurable, and flexible. In order
to achieve this goal, the automation system is evolved from a components-
based, centralized system to a systems-based, distributed system.

2.1.1 Decentralized and Distributed Systems

The more intelligent the system is, the more intelligent the components are.
But this standard has not come since the very beginning of industrial automa-
tion. As for the "classic" automation system, it is typical to find that a central
process computer is surrounded by all the sensors and drivers, etc. The con-
ventional architecture is built on all these components, which are controlled
by using big software blocks. But as the automation system develops, such
a centralized automation architecture with huge software modules no longer
meets the growing needs of a more adaptive system. Factors such as cost and
complexity are becoming issues that customers would not ignore. The trend
is going from a monolithic software module with field devices to distributed

3



2.1 Industrial Automation Systems

Figure 2.1: Levels of Automation [TQ08]

intelligent components. The different paradigms of automation are shown in
Figure 2.1.

Between 1960s and 1970s, automation architecture based on a central com-
mon control processor was the heart of intelligence. Any change of main func-
tion has to be made on this part for such automation architecture. In the
following 20 years there were more intelligent components developed, but they
are only physically and spatially distributed, which means they are still con-
trolled by monolithic software blocks. Such architecture is not able to run over
more distributed equipments. Only since 2000, there are distributed systems
implemented and used [FB04].

From the aspect of decentralized control and distributed control, the devel-
opment between different generations can be also seen. The main part of the
decentralized control is PLC (Programmable Logic Controller). The execution
of tasks is carried out by a very powerful CPU, and all field devices are con-
nected via fieldbuses. In such a structure, all input values would be first stored
in order, then instructions are calculated one-by-one in a fixed order and the
results are written to the outputs, afterwards the cycle starts again. There is
however no cooperating or interactive communications among devices them-
selves. And there is no application crossing over several devices and carried
out via integration at the system level.

There might be more than one PLC available in the whole automation sys-
tem, and it is possible that there is various communication interfaces for each
specified application. The whole system for decentralized control is divided
into different fieldbus systems. But each PLC works on its own without much

4



2.1 Industrial Automation Systems

interaction to other PLCs. As for the modern trend of automation system,
with the appearance of more intelligent devices, the distributed control re-
quires no more PLCs; the whole control program and tasks are split up into
small parts and executed by those "smart" devices, which have more control
intelligence and are connected over standardized software interfaces to the sys-
tem. For example, now a pressure sensor can directly cooperate with a valve
and controller module then executes the task of pressure control and further-
more to adjust the speed of pump’s motor. Distributed automation system
is the system that is based on autonomous intelligent units, which are con-
nected with each other using a common communication system. In order to
execute a global task in the whole system, the units coordinate their activities
by exchanging information over the communication system [Sün04] [FB04].

At this point, it is clear that the control task is modularly unitized in dis-
tributed control. A distributed automation system provides better possibilities
for construction, maintaining, configuration and installation. Above all, a cost
reducing over the whole product cycle is also noticeable [Fur00].

In order to make the data and information exchange possible, the network
and communication mechanism is playing an important role in the distributed
automation system. The definition of distributed automation system also
brings us the goal of the communication system: data (measured values, vari-
ables, status information) and signals exchange. A successful data transfer
depends on in which kind and way to exchange the data.

2.1.2 IEC 61499

IEC 61499 is an IEC standard for the use of function blocks in distributed
Industrial-Process Measurement and Control Systems (IPMCSs). IEC 61499
is seen as a successor of IEC 61311, which is used for PLCs based process
control systems. IEC 61499 is developed as a function block (FB) oriented
programming model for distributed automation systems. As a new standard
from IEC (International Electrotechnical Commission), IEC 61499 defines how
function blocks can be used in distributed industrial process, measurement and
control systems [Lew01].

The IEC 61499 standard family consists three parts [Chr07]:
IEC 61499-1: Part 1, Architecture. This part describes all general

models of IEC 61499, and introduces different types of function blocks in the
paradigm of application centered engineering, as well as their configuration
specifications [IEC05a].

IEC 61499-2: Part 2, Software Tool Requirements. IEC Standard,
January 2005 This part describes the exchange of library elements in IEC

5



2.1 Industrial Automation Systems

Figure 2.2: IEC 61499 Model Overview [Zoi07]

61499, along with display, modification, validation and implementation of dec-
larations. It points out the main requirements in development of software
libraries [IEC05b].

IEC 61499-4: Part 4, Rules for Compliance Profiles. IEC Standard,
May 2005 This part defines rules for the development of compliance profiles
which specify the feature of IEC 61499-1 and 61499-2 to be implemented in
order to achieve the requirements from interoperability of devices, portability
of software, and configurability of devices [IEC05c].

The IEC 61499 standard provides a set of models for describing distributed
systems that are programmed using function blocks. As the architecture for a
function block oriented distributed system, there are several reference models
(see Figure 2.2)[Lew01] [IEC05a]:

System Model: It defines the relationship between communicating devices
and applications. It describes the connection between devices and applications.
An application can exist on one device or functionally distributed over many
devices. A distributed application is designed for a network of function blocks,
when the application is loaded, it can be loaded as series of function blocks
fragments into different devices.

6



2.1 Industrial Automation Systems

Device Model: A device contains at least one interface for process or
communication; it also contains zero or more resources and function block
networks. The interfaces for the process provides a possibility that informa-
tion can be exchanged between the physical process (analog or digital In-
put/Output) and resources (as data or events).

Resource Model: A resource can be seen as a functional unit with in-
dependent control. The operation within itself such as being loaded, created,
configured, parameterized, started up, deleted. must not affect other resources
in the same device.

Application Model: In IEC 61499, application is defined as a network of
interconnected function blocks, connected with each other via event connec-
tions and data connections. As described in System Model, an application can
be distributed over many resources. Within each application, there can be also
subapplications available. The behaviors of function blocks in subapplications
are the same as they are in applications; therefore the subapplications can be
equally encapsulated and identified in a system.

Distribution Model: When applications or subapplications distributed
over different devices and resources, the Distribution Model defines two re-
quirements for functionality and communication. The first one is requirements
for where the applications or subapplications are distributed among multiple
resources and devices, that is, to make sure that all elements contained in
a given function block instance must be contained within the same resource.
Secondly is that it describes requirements for communication services to sup-
port distribution of applications or subapplications among multiple devices to
assure that the functionality among the function blocks of an application or a
subapplication should remain the same.

Management Model: IEC 61499 defines a special form of application for
creating and managing application fragments, the Management Application. It
is used when a resource has many function block networks distributed among
applications and subapplications. The Management Application has higher
privileged functionality than normal applications that it can construct parts
of other applications by creating function blocks and connections.

Function Block Model: Function block is the basic unit in IEC 61499.
It is a functional unit of software specified by a function block type for its
data structure. It can encapsulate its individual algorithms and operations,
and it is connected with other function blocks via data connections and event
connections.

Based on different kinds of function block specifications of its behaviors and
interface instances, the functionality of function blocks can be categorized as
follows [IEC05a] [Ham08]:

7



2.1 Industrial Automation Systems

Figure 2.3: Basic Function Block based on [Chr04]

Figure 2.4: Composite Function Block

• Basic Function Block: This type of function block operates on the
values of input variables, output variables, internal variables, and algo-
rithms. The execution control chart (ECC) expresses the associations
between the internal algorithms and the behaviors of event outputs (see
Figure 2.3).

• Composite Function Block: Composite FBs encapsulate FB networks
by using data connections and event connections among FBs. More
FBs are connected with each other via event and data connections as
component blocks. All the encapsulated FBs are connected to the outer
FB Network via the event/data inputs and outputs (see Figure 2.4).

• Service Interface Function Block: A Service Interface Function Block

8



2.1 Industrial Automation Systems

(SIFB) is used to provide functionality of controlling the device hardware
and the services needed by the control system (e.g., QoS, I/O interface,
communication interface). The inputs and outputs of service interface
function block types have specialized semantics, and the behavior of in-
stances are defined through sequences of service primitives. In this work,
the SIFB will be only focused on its communication function. There
are two types of generic service interface function blocks used to acquire
communication between remote resources. The Requester SIFB is used
to provide communication service to send requests, in order to obtain
data. On the other hand, the Responder SIFB provides the communica-
tion service at the other end, which is to respond the request and send
data back to requester. Together these two SIFBs can exchange data be-
tween two resources linked by communication functionality or network
(see Figure 2.5).

Figure 2.5: Requester and Responder [Chr04]

2.1.3 Multi Agent System

In order to achieve better reconfiguration ability in manufacturing systems,
the Multi-Agent System (MAS) is introduced to the dynamic environments of
industrial automation. From the previous work by Merdan [Mer09] at Automa-
tion and Control Institute, Vienna University of Technology, it is recognized
as a system, which consists of a structure with High Level Control and Low

9



2.1 Industrial Automation Systems

Level Control. Such a system is based on multi-agent structure and using
distributed control to cope with dynamics in large complex systems.

By applying agents into the manufacturing control system, the MAS inte-
grate the High Level Control (HLC) applications and Low Level Control (LLC)
physical components. Such a system minimized the production time of jobs
and costs, while increasing the resource utilization. Multi-agent system can
be defined as a network of autonomous, intelligent entities/agents that coop-
erate and communicate together in order to achieve aims, which are beyond
the individual capabilities and knowledge possessed by each agent. The agents
are intelligent components that offer a decentralized control for modeling pro-
cess and systems. Two main multi-agent architectures for dynamic scheduling
that introduced in the literature are autonomous architectures and mediator
architectures [MLHK08].

The HLC and LLC can be seen as hierarchical levels in the MAS. The HLC
is controlled by an agent that coordinates and manages the manufacturing
resources. The LLC governs the actions of the underlined physical system.
The LLC collects the information and data from the physical components like
sensors, conveyors, intersections, index stations, RFID readers and writers.
The information collected by the LLC will be processed. Furthermore the
results are performed as particular actions to inform the HLC about an event
[MLHK08] [MKHFB08].

The IEC 61499 provides the event-driven function blocks and offering the
framework for the integration of run-time control in the LLC. The implemen-
tation of the communication framework for agents, such as the Contact Agent
and Order and Supply Agents, are built based on the Java Agent Development
Environment (JADE) framework [JAD].

Here the focus is the communication between the HLC and the LLC. The
aspects of such an interface can be interpreted as the principle of "Separation
of concerns" [MLHK08]:

• Channel: Both partners have to use the same means for communication
meaning that the communication channel has to be known by all involved
participants.

• Message: Communication between the HLC and LLC is provided in an
asynchronous message-based way, as this fits best for both parties.

• Message Content: The data transmitted within a message has to be
understood by all communication partners and interpreted in the same
way.

10



2.2 Industrial Network and Communication Systems

Figure 2.6: Typical Network Topologies [LN07]

As for the interface on the LLC side, the implementation is done with Ser-
vice Interface Function Blocks. A generic interface for the HLC-LLC interface
encapsulates the information and can be transferred via previously established
communication channels. The status updates and commands are seen as mes-
sages to keep HLC and LLC synchronized [MVKZ08].

2.2 Industrial Network and Communication

Systems

Networks and communication systems make the data exchange possible in in-
dustrial automation systems. The network is a broad idea that has many
characteristics, such as dimension, protocols, interface, network address, ad-
dress table, medium, operation kind, basic technology, topology [Fur00]. There
are a few among them should be paid attention to, in order to understand how
the data transmission works in a network.

From the physical structure of the network, the first thing to be seen is topol-
ogy. Topology describes how the type and logic configuration of connections
are. There are two parts that topology consists of, a geometric alignment of the
members in the network and a logical configuration of the participants. The
geometric configuration and the logical configuration are independent from
one another [Sch00]. Some common and well known geometric topologies are
shown in Figure 2.6.

Between the devices in the network (as shown in the physical topologies),
there are certain rules available for the connections and routing paths in be-
tween, such rules are set by protocols.

11



2.2 Industrial Network and Communication Systems

Protocols are used to set rules and formats for communication between pro-
cesses. As the definition of a protocol indicates, there are two important parts
[CDK94]:

• A specification of the sequence of messages that must be exchanged;

• A specification of the format of the data in the messages.

In this way, the protocols can set a standard of connection, communication,
and the way of data transfer between communication endpoints. In the field
of industrial automation, there are a few commonly used protocols such as
Ethernet-TCP/IP, Profibus, Bitbus, Interbus. For each protocol that is imple-
mented, there is a regular defined format of the data packet to be transferred
over the network. Protocols can be different depending on networks, which are
based on different configuration, implementation, or physical medium.

With topology to set up the physical configuration of a network, and proto-
cols to set up the rules of the data packet formats for transmitting, networks
can now be differentiated amongst others by different topology, protocol, and
physical medium.

2.2.1 OSI Model

The OSI model (Open Systems Interconnection) was developed by the ISO
(International Standards Organization) as a model to illustrate functions in
communication systems and as a basic model for standardization. It was con-
ceived to provide a unified solution to interconnection of and interoperability
between systems and networks developed by different parties [Fur00] [SJM90].

The OSI reference model is a 7-layer model, which is separated into two
classes [Bor92]:

1. From layer 1 to layer 4 are net-orientated layers; the task is to bring data
from one place to another.

2. From layer 5 to layer 7 are application-orientated layers; the task is to
make the network in appropriate form available for the users.

The construction of the layer model that consists of seven layers is shown in
Figure 2.7. From top to bottom the layers are: the application, presentation,
session, transport, network, data link, and physical layer These seven layers
offer interfaces, which are so called service access points to the upper and lower
layers [Klo08].

12



2.2 Industrial Network and Communication Systems

Figure 2.7: Repeater, Bridge, Router and Gateway in OSI model [Fur00]

There are service initial functions as Request, Indication, Response, and
Confirmation for a task of the communication [Sch00]. For a confirmed ser-
vice, there are all four initial functions available. For unconfirmed services,
there are only Request and Indication available. The OSI model is used as a
reference model. From this model, not every layer is always needed by differ-
ent derivatives. For example, in TCP/IP model, the session layer (layer 5),
presentation layer (layer 6) and application layer (layer 7) of the OSI 7-layer
model are not implemented and are included in the application layer, which
refers to the higher-level protocols. The reason is that OSI model is only an
abstract model of network-based layer concept; it is not strictly constrained to
every specified protocol or application [ZK09].

There are four important components of TCP/IP communication system:
Repeater, Bridge, Router, and Gateway. These components improve flexibility
in the installation and transmission between different transport networks, as
well as for communication between partners with different protocols. The
corresponding position of these components in OSI model can be seen in Figure
2.7.

The functions of these four components are introduced as follows [Sch00]:

• Repeater: it has no header information, can be seen either as a pure
converter for electrical or optical signals of transmission system which
allows the structure of topological nets further expanded, or a swap of
the communication mediums.

• Bridge: it connects two networks and exchanges packets in between.

13



2.2 Industrial Network and Communication Systems

• Router: the ability for a router is routing between different commu-
nication systems, it decides the destination where the IP-datagram is
supposed to be sent. There are two kinds of delivery in the routing path:
direct and indirect delivery. Direct delivery is applied if the sender and
the receiver are in the same network, or multiple networks, which are
coupled by Bridges. Indirect delivery is applied if the sender and the
receiver are in different networks.

• Gateway: the Gateway is applied when there are network interfaces with
different protocols. It works as a protocol translator and converter to
provide system interoperability.

2.2.2 Fieldbus

Fieldbus was introduced to industrial automation in the 1980s. The common
meaning of fieldbus is a network for connecting field devices (such as sensors,
actuators), field controllers (such as PLC’s, regulators, drive controllers), and
man-machine interfaces [Tho05].

Before fieldbus came into practice, as for conventional communications, there
are a few properties bringing the considerations that needed to be solved
[Bon95]:

• Information transmission only in one direction.

• Signal transmission cable from central control or process control system
connected to field devices, with 2 or more connections to every device.

• Analogue signals have little information content.

• High amount of cabling to solve permanent power supplies for sensors
and actuators.

• Converting many analogue signals to digital process control system is
complex.

• Analogue signals transmission at increasing modern devices costs much.

The appearance and development of fieldbus provide possibilities that can
solve the issues mentioned above and meet the requirements with increasing
kind and quantity of devices, which also requires more configurable connection
structures. The idea of the fieldbus is to replace point-to-point links from each

14



2.2 Industrial Network and Communication Systems

Table 2.1: Branches and Areas of Fieldbuses [Die09]
Aircraft and aviation: MIL 1553, LON
Automation and Control: PROFIBUS DP, CAN, INTERBUS, WFIP(USA,

South Africa), Devicenet, P-Net (DK, Portugal),
LON

Building Automation: LON, EIB, BacNet, Ethernet
Process Control: PROFIBUS PA
Vehicle: CAN, TTP
Railway: LON, CAN
Shipbuilding: CAN

sensor or actuator to its controlling equipment to a single link on which all
information is transmitted serially and multiplexed in time [PD98].

There are a few requirements from the end-user as the fieldbus is developing,
which also become the goal of fieldbus [Tho99]:

• Safety, availability and, more generally, dependability.

• Better maintainability.

• Better modularity, and capacity for evolution.

• Openness, interoperability, interchangeability, long lifetimes.

• Better performances, and low cost.

Fieldbus works as a shared medium and a fundamental system component
for the devices in industrial automation [Tho99]. The fieldbus has the ability
that will complete the reading and writing variables to devices. Data ex-
change in fieldbus within automation systems supports the integrated system
into environments with sensors, actuators and control devices. During normal
operation of data exchanging, measured variables, control variables, and status
information are communicated [Ebe07]. In other words, fieldbus enables the
communication in industrial automation network.

Ever since the introduction of fieldbus, there are many standards and imple-
mentations from different manufactures. These different implementations can
be also categorized into different applied fields or branches [Die09] (see Table
2.1).

Each of the fieldbus implementations mentioned in Table 2.1 supports its
own standard, protocol, topology, limits to quantity of participants, access

15



2.2 Industrial Network and Communication Systems

Figure 2.8: Unicast, Broadcast, Multicast, and Anycast

method, transfer rate, telegram format, data storage format, physical medium,
etc. The configurations of the fieldbus can vary from these factors, which
determines also the transmission characteristic of data.

2.2.3 Transmission Patterns

In a communication network, in order to transmit a packet from sender to
receiver, there is more than one transmitting pattern available. A transmitting
pattern is usually referring to the methods how the routing topology works
when the sender, receiver, and data (message) are available. In a transmitting
process, depending on the network addresses of different receivers and the
number of receivers, there are four commonly used casting patterns (see Figure
2.8):

• Unicast: Unicast is a one-to-one connection between the sender and
receiver, which means that there are only two communication partners
available: one sender and one receiver. The bandwidth cost might be
really high, because of unique resource is requested in Unicast [Mic03].

• Broadcast: Broadcast transmits the data packet sent from a host to a
large set of hosts within the given address range without knowing what
the other hosts can supply it. It is a one-to-many transmitting pattern.
Broadcasting depends on the specific data link layer [Mog84][Mic03].

16



2.2 Industrial Network and Communication Systems

• Multicast: Multicast is a transmission pattern that delivers packet from
the sender to a specific group of receivers (one-to-many). Sender sends
out the same packet to each receiver, which has joined the same mul-
ticasting address group. The multicasting is useful when a group of
receivers are about to receive the same packets from a specific sender
over the network at the same time, which will save significant bandwidth
[Dee89][APGD07].

• Anycast: Anycast is also a one-to-many transmitting pattern, each des-
tination address identifies a set of receiver endpoints, but the data packet
is routed to only one of them, which is either topologically the nearest
or best [Abl06] [Woo02].

There are actually more casting terms used nowadays, but many of them
are invented based on web-oriented applications being developed by different
vendors focusing on consumer market.

2.2.4 DHCP

The Dynamic Host Configuration Protocol (DHCP) provides configuration pa-
rameters to hosts, which have the requirements of assigned parameter for com-
munication addressing (e.g., IP address, Gateway, DNS-Server). It consists of
two components [Dro97]: A protocol for delivering host-specific configuration
parameters from a DHCP server to a host; and a mechanism for allocation of
network addresses to hosts.

DHCP is built on a client-server model, the term "server" refers to a host
providing initialization parameters through DHCP, and the term "client" refers
to a host requesting initialization parameters from a DHCP server. There are
three mechanisms for IP address allocation [Dro97]:

• Automatic allocation: which means the DHCP server assigns a perma-
nent IP address to a client.

• Dynamic allocation: DHCP server assigns an IP address to a client for
a limited period of time (or until the client explicitly relinquishes the
address).

• Manual allocation: a client’s IP address is assigned by the network ad-
ministrator, and DHCP is used simply to convey the assigned address to
the client.

17



2.2 Industrial Network and Communication Systems

During the process of configuring parameters between a client and a server,
one or more of these mechanisms could be used, depending on the policies of
the network administrator.

A typical process of DHCP configuration can be seen as several steps in
Figure 2.9 [Dro97]. A general process of DHCP is focused on discovery, offer,
request, and acknowledge. At each step, messages from Client and Server
are exchanged. Each message contains their DHCP message format to give
specifications of the content as data fields.

At first, Client broadcasts a DHCPDISCOVER message on its local physical
subnet. In this DHCPDISCOVER message, a data field of options of preferred
values for network address and leasing can be included. The data field of
options can be used by the server as requirements of the requests to check if
the request is a specified request with its configurations. The DHCPDISCOVER
message is sent from the client to all available servers in its range. After
the Servers receive the DHCPDISCOVER message, the client is discovered by the
servers. Each server may respond with a DHCPOFFER message that includes
an available network address. As for the network addresses, the server should
check if the network address, which is going to be offered, is already in use
when the server is allocating new network addresses.

When the server receives the DHCPDISCOVER message and sends its DHCPOFFER
message, the client will receive one or more DHCPOFFER messages from one or
more servers. Client will choose the server that matches the request config-
uration parameters based on offered parameters in DHCPOFFER message. If
the DHCPOFFER is approved by the client, the client broadcasts a DHCPREQUEST
with ’server identifier’ option to indicate which server it has selected. The
DHCPREQUEST message is sent along with the data field of options for spec-
ifying preferred configuration values. The DHCPREQUEST message is also used
as notification for the rejected servers. A timer is set for the process between
DHCPOFFER and DHCPREQUEST for the client. If the client waits too long and
is still not receiving DHCPOFFER message, the timer times out and retransmits
DHCPDISCOVER message to the servers.

When the server receives the DHCPREQUEST broadcast from the client, a con-
nection between the selected server and the client is established. The server
should assign the client with the network address. By responding with a
DHCPACK message, the server uses this message to contain all the configuration
parameters for the requesting client. This DCPACK message is used as unique
identifier for the client’s lease and for both the client and server to identify a
lease referred to in any DHCP messages. Configuration parameters in DHCPACK
message should not be conflicted with the parameters in DHCPOFFER message.
Therefore there is no need for the server to check the offered network address

18



2.2 Industrial Network and Communication Systems

Figure 2.9: DHCP Diagram [Dro97]

19



2.2 Industrial Network and Communication Systems

at this point. The selected network address is already filled in the data field
of the DHCPACK message.

If the server is no longer capable of sending configuration parameters that
meet the request from the client (e.g., all addresses are already allocated), the
server should send a DHCPNAK message to the client. If the client receives a
DHCPNAK message, the client will restart the process of configuration.

When the client receives the DHCPACK message with configuration param-
eters, the client will recheck configuration parameters. Here the duration of
leasing time in DHCPACK message should be noticed by the client. At this point,
the client is configured.

If the client detects that the assigned address is being used, in order to avoid
the confliction, the client must sends a DHCPDECLINE message to the server and
restart process. As a design option, the client should wait 10 seconds before
restarting in order to avoid excessive network traffic in case of looping.

If neither a DHCPACK message nor a DHCPNAK message is received, the timer
of waiting times out at the client, the client will retransmit its DHCPDISCOVER
message. The client should be set with a time period for retransmitting and
waiting in order to coordinate a good timing balance. After repeating the
transmission of DHCPREQUEST message, if there is still no DHCPACK or DHCPNAK
response, the client reverts to INIT state and restarts the initialization pro-
cess. A notification that the initialization process has failed and the process is
restarting will be given by the client.

The client may also choose to relinquish its lease on a network address by
sending a DHCPRELEASE message to the server. For the DHCPRELEASE message,
the same client identifier should be given in this message.

DHCP also supports mechanisms that it can be used by hosts to renew
their lease of parameter configuration [Eve02], or to reuse the allocated ad-
dress. From the process of distributing the network addresses, DHCP is using
the server to manage all network addresses and distributing them according
to the requirements of the client. For such a structure, client is the one which
provides the requests, and the server will use the parameters in the requests to
select the correct configurations as response. The messages like DHCPDISCOVER,
DHCPREQUEST, and DHCPACK are filled with the contents as data fields to meet
the requirements. The DHCP mechanism also provides the possibility for ad-
ditional requirements, such as options as data field, or DHCPNAK, DHCPRELEASE
messages as additional message types.

20



2.2 Industrial Network and Communication Systems

2.2.5 Plug and Play

Plug and Play (PnP) is a general term widely used in computing and electronic
products. The main focus of the Plug and Play is zero configuration, which
means installing a peripheral in a computer or connecting a computer or device
to a network without requiring any technical configuration by the user.

At the beginning of computing technology, the configuration of hardware is
applied generally in two ways: either through redesign to accommodate dif-
ferent operations, or by manual reconfiguration to connect or disconnect the
devices. Such methodology is also applied to solve the problem when there
is a conflict between devices. Such a conventional way would no longer meet
the requirements from the increasing number of devices. And the manual con-
figuration is not an optimized option if considering its cost and complexity.
In order to make automated configuration possible, Plug and Play defines the
ability to add a new component to a system and to finish the configuration
automatically without having to do any technical analysis or manual configu-
ration. Plug and Play is aimed to solve not only the problems from configuring
the system, but also to deal with resource conflicts caused by different devices.

The most widely used Plug and Play specification and term was developed
by Microsoft with cooperation from Intel and many other hardware manufac-
turers. The goal is to create a computer whose hardware and software work
together and to automatically configure devices and assign resources. Such a
goal can allow hardware changes and additions possible without the need for
large-scale resource assignment tweaking. The new devices will be able to be
attached into the system and immediately usable. In other words, Plug and
Play makes peripheral devices "out of box" functional without complications
of setup.

A form of Plug and Play was actually first made available on the EISA
(Extended Industry Standard Architecture Bus) and MCA (Micro Channel
Architecture Bus) buses many years ago. For several reasons, however, neither
of these buses caught on and became popular [Koz01] [Enc09].

In a general Plug and Play process, when a device is attached to the network,
it broadcasts its services, other devices, hosts, or applications are notified by
its appearance, a typical protocol stack provides certain service elements as
follows [Neu06]:

• Resource allocation: certain identifiers from the available name space are
assigned to the newly attached device.

• Self-description: the device must be able to provide information about
the configuration parameters it requires.

21



2.2 Industrial Network and Communication Systems

• Discovery: it must be possible to discover the presence of devices along
with their capabilities. The attachment and detachment of devices needs
to be detected and announced. The discovery element can be split in
device and service discovery.

There are many evolving standards based on the concept of the original idea
of Plug and Play: Zero Configuration, such as Zeroconf, Jini, and UPnP. Most
of the applications or protocols are developed for computer operating systems
or electronic products in the consumer market. Here a brief introduction to
UPnP and Zeroconf will be given.

UPnP (Universal Plug and Play) is a family of protocols from the UPnP Fo-
rum introduced in 1999 for automatically configuring devices, discovering ser-
vices and providing peer-to-peer data transfer over an IP network. The UPnP
is only related to Plug and Play by the original zero configuration concept: in-
stallation without manual configuration. UPnP covers many application areas
including lighting, heating and air conditioning, quality of service (QoS), and
consumer electronics [UPn09] [Hel02] [Mic00] [SL03].

A UPnP network is composed of: Control Devices, which provide services;
and Control Points, which use the devices. There are six phases to UPnP
networking [UPn00][SL03]:

• Addressing: Control point and device get addresses

• Discovery: Control Devices sends messages via multicast over UDP to
advertise its services to Control Points

• Description: Control Points request device description from the Control
Devices using URLs contained in the advertisement message. Control
Points also retrieves service descriptions using the URLs in the device
Descriptions.

• Control: Control Points asks Control Devices to invoke a service action
by sending an HTTP request as specified in the device and service de-
scriptions.

• Eventing: Control Point listens to state changes of device, and may
subscribe to receive the descriptions from device.

• Presentation: Control Point controls and monitors device status using
HTML-based user interfaces.

22



2.2 Industrial Network and Communication Systems

Table 2.2: Comparision of Zeroconf and UPnP based on [Che09]
Zeroconf UPnP

Addressing IPv4 Link-Local
Addressing

IPv4 Link-Local Addressing

Naming Multicast DNS UPnP has no equivalent to mDNS
Discovery DNS Service

Discovery
UPnP has no dependable Service
Discovery protocol

Application not defined defines the particular application-
layer protocol based on available
devices

Zeroconf is an IETF (The Internet Engineering Task Force) specification
that enables devices on an IP network to automatically configure them and
to be discovered without manual intervention. Zeroconf can also assign an IP
address and alternate host name to a device [Org09][Gut01].

There are three phases of Zeroconf configuration functions [LSKD07]:

• Addressing: automatic IP address assignment that Zeroconf can employ
even without a DHCP server. This requirement is solved by Self-assigned
Link-Local Addressing Standard (IPv4LL, RFC 3927).

• Naming: Zeroconf uses Multicast DNS to translate host names to ad-
dresses in the absence of a conventional Unicast DNS server.

• Discovery: Zeroconf adds DNS Service Discovery (mDNS) to discover
what services are available on the network; Multicast DNS is employed
by DNS Service Discovery (DNS-SD) to send packets to every node on
the network for resolving duplicate host names and to query the network
for services.

The comparison and description of differences between this three-layer struc-
ture (IPv4LL + mDNS + DNS-SD) from Zeroconf and UPnP can be seen in
Table 2.2.

2.2.6 Quality of Service

Quality of Service (QoS) is defined by ITU (International Telecommunication
Union) as a set of qualities related to the collective behavior of one or more
objects [ITU95]. It sets prioritized network traffic, by using different prede-
fined priorities. QoS can be seen as a control mechanism. It provides priority

23



2.2 Industrial Network and Communication Systems

Figure 2.10: QoS Categories [OMG08]

levels based on different data streams and users according to the requirements
of the applications. QoS guarantees a certain level of performance of the data
transfer. It is especially useful for the network with limited capacity. As for
the network and communication in industrial automation system, it is nec-
essary to consider the QoS for the situation with a massive number of field
devices available. As for the Plug and Play concept, the processes of address-
ing, distribution, and reconfiguration can be time critical depending on the
communication patterns and the requirement of the devices. For some scenar-
ios, it is necessary to ensure certain user data must not be dropped during
the transmission. By applying QoS as service in industrial automation sys-
tem, it can be used in network protocol filtering, channel selection, or requests
configuration.

Depending on the different protocols applied in the industrial automation
system, QoS can be used to control the certain sequence order for different
communication patterns. Figure 2.10 provides an overview to different QoS
categories.

Based on these categories of QoS, it is necessary to sort QoS parameters into
different scenarios for industrial automation system. For each scenario, differ-
ent kinds of QoS should be set to meet the requirements of the communication.
Several cases can be taken as examples: as for initializing sequence for a client-
server communication model, the clients can send their requests successfully
only after the server is initialized; to ensure important data can be successfully
sent before the demanding response times out; measuring if received response

24



2.3 Conclusion

arrives before it reaches the deadline of time limit; acknowledgment of data
packets are dropped for some protocols with no reliable connection-oriented
data transmission; synchronizing the sending and receiving rate of data packets
between sender and receiver; validity of the data packets; consistent receiving
time period for certain data packets [Vog07]. More scenarios could be available
according to the types of data packets and the communication patterns.

2.3 Conclusion

This chapter gives a brief introduction and discussion focusing on the current
technologies for industrial automation. A description covering the areas of
the industrial automation systems from decentralized control to distributed
control and Multi-Agent System is discussed.

Based on the development of the industrial automation system, the trend
of this field is heading to a distributed system with more intelligent devices
attached. The management and reconfiguration of these devices becomes a
focus in order to reduce the complexity of the reconfiguration for the devices.
The Multi-Agent System shows a framework consisting of the HLC and the
LLC, and the agents can be applied as the "brain" of such a framework. But
the interface between the HLC and the LLC are depending on the pre-defined
or established channels. Such a communication interface still requires an ar-
chitecture that can automatically configure communication interface based on
the physical environment on the side of the LLC. The solution to such a re-
quirement can reduce the costs and complexity of the reconfiguration during
the process of attaching new devices into the system. The newly attached
devices need to be discovered by the HLC agents and its presence should be
acknowledged by other devices via channels among them. From the analysis
of the industrial network and communication system, the approach of devel-
oping such a concept can be seen as developing a Plug and Play concept for
industrial automation system.

25



3 Concept

The standards available now for a Plug and Play concept such as UPnP and
Zeroconf are designed mainly for electronic products in consumer market; for
each standard available there is a large alliance behind, which is formed with
many manufacturers who wish to win larger market share. Besides them, there
are also many new independent implementations and the number is increasing.
Standards like UPnP and Zeroconf are developed for Internet based protocols
such as HTTP, TCP, IP, or UDP, they are described as IP-based architecture
and most of the applications are designed for web technologies. Such an ori-
entation makes the available standards for Plug and Play quite unable to be
directly integrated into the environment of industrial automation.

There are also some other limitations for the available standards, e.g., Zero-
conf and UPnP. Zeroconf is aimed to handle the communication in a horizontal
direction and the main task is IP-based networking oriented. UPnP is facing
to a more vertical, device specific direction, which lead it to more compli-
cated configurations as more applications are being developed. Another factor
is that, because of the complexity of various applications from different ven-
dors, it is not easy to implement a new application for a device based on such
standards, not mentioning some of the standards are not even open to other
development environments (e.g., Bonjour from Apple Inc.).

Based on such considerations and facts, there is a demand of developing a
Plug and Play concept for industrial automation. This concept should support
more network protocols and industrial automation standards.

The reason that this work is developing a new concept with its own mecha-
nism instead of using directly the software developing tools to apply a commu-
nication channels distribution framework for devices, is that such an approach
can lead to complications. The configurations of channel distribution from
different engineering tools can be varied and can lead to a structure that is
not open. If such configurations are applied to other development environ-
ments, the cost and complexity of reconfiguration can be an issue. Therefore,
a concept with its prototypic and generic modules is necessary based on such
a fact.

The essential part of a Plug and Play concept for industrial automation is to
establish communications automatically among devices. In this chapter, the

26



3.1 Requirements Analysis

requirements of such a concept will be brought forward, and a concept analysis
will be discussed. Afterwards there will be an analysis about the main modules
developed in this concept: Channel Manager, Communication Manager
and Generic Communication Module. Based on such main modules as
functional components for the system, a mechanism of configuring channels as
well as possibilities for different scenarios that the main modules have to handle
for communication partners will be discussed. At the end of this chapter, there
will be a brief summary about the concept and its mechanism.

3.1 Requirements Analysis

In order to avoid complexity in modification and raise the configurability of
industrial automation in manufacturing process, as described in the previous
chapter, the requirements of industrial automation system have been much ele-
vated to satisfy the need of increasing number of intelligent devices and a more
flexible system. A flexible system should offer two characteristics: portability
and interoperability. Portability is the ability to effectively move programs or
services from one type of system or machine to another. Interoperability is the
ability for existing programs and services to communicate effectively with new
peers [vGH04]. Such definitions lead the communication system in industrial
automation system to a new goal, which is to let the devices already existing
in the industrial automation system communicate with each other. When a
new device is attached, it should also obtain such a configuration of commu-
nication. To achieve this goal, there are two processes that the configuration
of devices should be able to cover.

Firstly, the devices attached to the system should be easily discovered, as
well as they should be configured correctly to make them fully functional. Sec-
ondly, it is possible that the devices are attached into the system from various
network mediums using different network protocols, and some devices support
more than one network protocol. Such a fact leads to an approach to find
and to select an appropriate protocol based on the communication mediums
between two devices. Only after the network protocol for transportation is cor-
rectly found and assigned, it is then possible for the devices to exchange data
packets via a certain channel. Finally, the devices should be easily detached
when their presence is no longer required.

An example can be seen from the Figure 3.1. Devices are connected into
the industrial automation system via communication mediums, and there can
be various network protocols supported by the communication medium. In
Figure 3.1, there are Device 1 and Device 2 connected with Ethernet, while

27



3.1 Requirements Analysis

Figure 3.1: Devices in Industrial Automation System

Device 4 and Device 5 are connected into the network via CAN, and there is
also Device 3 connected to both Ethernet and CAN. As Ethernet or CAN is
providing technology and standard for network protocols, it is possible to have
multiple protocols for the channel to choose from when the communication is
about to be established among these devices. When the communication among
devices is required, the communication has to choose one appropriate network
protocol for the channel. Other than communication between two devices, e.g.,
Device 3 and Device 1, or Device 3 and Device 4, the communication among
devices could also be one-to-many if the selected protocol is using broadcast
or multicast as communication pattern. When Device 3 is trying to communi-
cate with Device 1 and Device 2, the data packet transmission should be only
applied with a network protocol based on Ethernet: TCP, UDP, EtherNet/IP,
Powerlink, or ProfiNet. Even though Device 3 is also supporting other pro-
tocols based on CAN (e.g., CANopen, DeviceNet, ProfiBus, CANaerospace),
the communication among Device 3, Device1 and Device2 in Ethernet has to
filter out the protocols from CAN and only choose one protocol for Ethernet
transmission. So there is a need for a Plug and Play concept that to develop
mechanisms that can select appropriate network protocols in order to establish
communications for devices.

Another complexity that in industrial automation can occur is that in one
integrated system with multiple technologies applied. For a system with many
field devices, there can be sub-systems or sub-applications run by different
engineering environments using standards from IEC 61131-3, IEC 61499, and
Multi Agent System (MAS), etc. Therefore, a Plug and Play concept for in-
dustrial automation has to provide a generic possibility that has compatibility
among all different technologies without complicated reconfigurations.

28



3.1 Requirements Analysis

3.1.1 Communication Characteristics

In order to meet such requirements described above, the focus now is to analyze
the communication among devices and to discover what characteristics are
necessarily needed and must be considered for the communication in industrial
automation.

Participants: For the different cases of communication patterns, there have
to be at least two partners standing at both ends of the communication. If the
communication pattern is set to be broadcast or multicast, then it is possible
that more than one communication participant is available at one end. There
is a few definitions need to be declared: Requester and Responder, Sender and
Receiver.

Requester and Responder can be seen as the role of the device, while Sender
and Receiver can be seen as the character of the communication modules in
device. Requester describes the communication participant who sends its
requests of the communication. In this work, requesting communication means
that the communication participant acts as a Requester and requires a channel
to be assigned. The communication participant who responses the requests is
the Responder, with whom the Requester will communicate via the assigned
channel. Requester and Responder are all clients, and they represent the roles
in the process of establishing the channels. After that, each Requester and
Responder will exchange its data via its communication modules. The task of
exchanging user data is carried out by Sender and Receiver. Sender is the
communication module that sends the data, and Receiver is the one that
receives the data.

The roles of these communication participants are not fixed, which means for
either side of the communication, the role as a Requester or as a Responder is
interchangeable, a Requester could be a Responder in another communication
session and vice versa. It is all depending on the configuration of the network
and the communication.

On the other hand, this rule of setting Requester and Responder, and fur-
thermore setting Sender and Receiver has to be applied in correspondence to
the communication direction. At the process of assigning the channel, the
channel is established between a Requester and a Responder. When the com-
munication direction is predefined for this channel, the transmitting of data
packets must be realized with appropriate communication modules. When the
transmitting of data packets between two devices is based on a unicast channel,
the transmitting direction is bidirectional. For such a case, Requester and its
Responder should consist of both Sender and Receiver so that the data can be
exchanged from both ways. If the communication pattern among communica-

29



3.1 Requirements Analysis

tion participants is multicast or broadcast, then one end of the communication
will be set with communication modules of Receivers receiving data while the
Sender sending data packets. For such a case, the transmission of data pack-
ets requires one Sender while the other communication participants consist of
more Receivers.

The tasks of the sender are to send user data to the receiving terminal. In
industrial automation, such a process of sending data and messages means
normally to collect and send the user data from the device. Before the data
is to be sent via Sender, the message or sequence of messages will be packed
as one encapsulated data packet. The content of the data packet has to be
operated appropriately for the transmission. The data can be converted, en-
coded, compressed, or sampled into the form of a packet that can be finally
interpreted by the Receiver.

The tasks of the Receiver are to receive this data packet from the Sender
and to decode the data packet so that the Receiver can process the data. As
the inverse terminal to the Sender, the Receiver is the destination where the
data packet should be sent, which means the Sender has to be aware of the
destination address of the Receiver. The addressing method can be varied from
the communication pattern in between. As for some possible communication
patterns as broadcast, the destination address (Receiver) is not crucial. As for
multicast, the Receiver should be assigned with a group address to make sure
the data packages will be delivered to multiple destinations.

Transmission medium: After the Requester and Responder are assigned
as participants for the service of communicating, there will be communications
among their Senders and Receivers. Transmission medium is the carrier, which
can be used to transfer the data between the Sender and the Receiver. In this
work, the term Channel will be used to describe such a Transmission medium.
As described in classical works such as [Sha48] and [SI98], the focus is about
interpreting analog and digital signals. A channel is left merely as a physical
medium such as a pair of wires, a coaxial cable, or a band of radio frequencies,
etc. As for the concept of this work, a channel is not a physical medium but
rather an abstract term that is used to describe a virtual transport medium.
The difference between a data packet and a channel is that a data packet
is used to encapsulate all the data, and channels encapsulate not only the
data, but also the whole transmitting mechanism between the sender and the
receiver. A channel can be seen as a container or a "pipeline" which consists
of the configuration results, transport mechanism, addressing, and protocols.

A channel can be varied from one another based on three attributes:

• Channel Identifier: the name of a channel is the unique identifier that

30



3.1 Requirements Analysis

indicates the basic attribute of a channel. It can be a description of the
task of the channel, e.g., Motion, Temperature, etc., it can also be a
description for the communication partners who use this channel, e.g.,
Conveyor1_Conveyor2, or Divertor16_Lightsensor9, etc.

• Communication Pattern: a channel is a medium that can indicate
the communication patterns with its transmitting direction based on
the communication pattern. For example, unidirectional channel is the
channel that consists of single direction transmitting, and bidirectional
channel is the one that supports bidirectional transmission. Different
directions of channels are determined by different assigned network pro-
tocols.

• Content: the message content is the actual messages or data to be
transferred between the sender and the receiver in communication. The
content can be parameters from devices, status update, variables, or
parameters for the communication specifications and requirements (e.g.,
QoS).

Transmission protocol: the transmission protocol for a communication
can be seen as the tool of transporting used by a channel. When the trans-
mitting medium, which is a channel, is established, a network protocol should
be assigned to this channel in order to inform the Sender and the Receiver
which transport protocol to use for sending and receiving the data packet. For
the devices, there can be many network protocols supported based on their
communication medium and protocol standards. The network protocols of
the channels will be chosen from the supported protocols and must meet the
requirements of the channels.

As can be seen from the Figure 3.1, it is possible for the devices that they
are connected with multiple network protocols. If both of the communication
partners can provide multiple supported protocols, then the channel has to be
established with only one matched protocol that can be used by both of the
Requester and Responder.

3.1.2 General Framework

At this point, a systematic overview can be concluded according to the primary
analysis of the concept: each device is connected into the industrial automation
using different network protocols, and they will exchange data via channels.
When Plug and Play functionality for each device in such a network structure is
required, every device should be seen as a Client. These clients will send their

31



3.1 Requirements Analysis

requests to a central component where they can be assigned with channels for
communication. This server-like component provides the configuration of the
channel in corresponding to the requests of a channel from devices (clients).
In this work, the term Device is used to describe the physical component as
a field device in the industrial system. The term Client and Server is used
for the description of the device in a abstracted way.

When the device is requesting communication with other devices, the role of
the device is Requester. There the server provides the service of communication
with configuring channels for devices and assign the channels for devices.

When the devices are connected via various network protocols, they are sup-
posed to be connected via routers in order to make sure they can be connected
with other networks. When a routing method is applied in the network sys-
tem, it is possible that all communications among devices can be managed by
a centralized server. But in this work, such architecture will not be discussed
because of two considerations. At first, a system architectural structure with
routing methods applied for devices is not the focus point of this work. There
are many earlier available technical works based on such methods, therefore
there is no need to include the part of analyzing possible routing methods in
this concept. Secondly, for an industrial automation system, it is not opti-
mized to leave only one centralized server to manage all the communications
for transmitting data packages. Complexity of such a structure will have to
use a monolithic module that is hard to gain the balance between functionality
and simplicity. If a system failure occurs at the centralized server, it will cause
a systematic failure upon all devices and the communications among them,
which also raises the complexity and cost of maintenance and diagnosis.

Based on such considerations, a system structure with network protocols ori-
ented framework that consists of one server in every individual communication
medium is recommended (see Figure 3.1). By attaching a server component
into the system, it will not only lower the risk of systematic communication fail-
ure, but will also make it easy to diagnose by splitting up a centralized server
into individual servers based on different network protocols and medium when
an error occurs. For each communication scope, a server will establish channels
only for the clients available in its range.

In this case, the system can just focus on that single prototypic server and
configure it. It will be also easy to establish communication among devices
when new devices are connected into the system by simply duplicating the
server module into the new network once the server is correctly configured.

32



3.2 Conceptual Structure

3.2 Conceptual Structure

3.2.1 A Three Layer Structure

By introducing a client-server framework, it is clear to see there is a need to
develop a system with a client-side module and a server-side module. Such a
structure must consist of Requester, Responder, Sender and Receiver, whose
tasks must be fulfilled by applying this structure. Therefore, a three-layer
consisting of a server-side module, a client-side module, and generic module is
introduced (see Figure 3.2).

Server-side Module: the module at the server side should be able to
receive requests from clients, and configure channel assignments according to
the requirements of the channel, which are included in the request message.
Such a task brings certain requirements for this server-side module:

• This server-side module must be a fully functional server, which means
it has to include a communication interface to receive requests and send
responses.

• This module should have algorithms within that can be automatically
operated to make functions such as selection, filtering, matching, reser-
vation, and addressing possible.

• This module should have the ability to control the communication traffic
when a massive amount of requests from clients reaches the server (there
could be over thousands of field components and devices in an indus-
trial automation system). This function has to be also extended when it
deals with channel distribution, if the priority of assigning certain net-
work protocols is crucial. Such a consideration requires the server-side
module to use Quality of Service (QoS) to filter the incoming requests
on registering and channel distribution.

Client-side Module: the client-side module should be able to act as Re-
quester and Responder. It carries out the task of sending requests for chan-
nels to the server-side module, and receiving the response from the server-side
module afterwards. At the step of initialization when the system starts, all
client-side modules should be able to acquire device-oriented parameters for
their requests.

Generic Module: the client-side module needs sub-modules, which work
as Sender and Receiver, to exchange user data among other clients. In order
to apply such a function, the client-side module should consist of communi-
cation modules. These communication modules are generic modules that are

33



3.2 Conceptual Structure

initialized in devices when the system initializes. By giving messages of typi-
fication, these communication modules will be typified accordingly as Sender
and Receiver based on the assigned network protocol.

In order to meet these requirements and descriptions above for the server-
side module and the client-side module, a system with a three-layer structure
is introduced. Two management modules and device-oriented communication
modules are applied for this work: Channel Manager as a server-side mod-
ule, Communication Manager as a client-side module, along with Generic
Communication Module as generic module at client-side for communica-
tion.

3.2.2 Channel Manager

The Channel Manager is a server whose main function is to manage channels
and eventually distribute the channels on communication mediums according
to the requests from the clients. It can carry out the tasks of managing pro-
tocols and channel requests. From the description of transmitting the data
packet between the server-side module and the client-side module indicates
that the Channel Manager should at least include the following blocks with
management function:

• Identifier Management: this function should be able to manage re-
quests of clients based on various identifiers such as their Client Names
and Channel ID.

• Protocol Management: a function that can select and assign the net-
work protocols according to the requests from the clients.

• Parameter Management: this function should be able to configure
the parameters for the channels from the Parameter Supported in re-
quests. This management function could be extended to many more
sub-functions rather than only collecting the available parameters from
clients according to the requirements of devices. The parameters will be
assigned with new values if necessary. There should be also a function
for QoS parameter management in Channel Manager, that the Channel
Manager can manage QoS priority level on the incoming requests and for
channel distribution. The result of the assigned parameters for channels
will be put in the response as the Assigned Parameters.

This structure with management functions is a general overview to describe
which management functions should consist of for the Channel Manager (Fig-

34



3.2 Conceptual Structure

Figure 3.2: Overview of Major Components in the 3-Layer Structure

35



3.2 Conceptual Structure

Figure 3.3: Channel Manager

ure 3.3). They should not be operated as individual processes, each manage-
ment function could be available through the whole mechanism of distributing
channels and are able to work with other functions cooperatively.

The data exchanged between the Channel Manager and clients (Requester
and Responder) are message-oriented. The main concerns of such messages is
their usability, which means that the content of a message needs to be specified
so that it can be used by the Channel Manager, Requester and Responder for
interpreting.

The messages between Channel Manager and device can be divided into
two kinds, Request and Response, based on its original operator. Request
is the message from all clients to the server asking for a channel (a request
for communication service). Response is the message, which includes the
information of assigned channel from server to clients (a response to a service
request).

The content of request message and response message will determine what
information the device should acquire for a channel. According to the descrip-
tion about the characteristics of a channel in previous section, such attributes

36



3.2 Conceptual Structure

are needed for configuring a channel: Channel Identifier, Client Identi-
fier, Addressing, Protocols, and Parameters. All these attributes can be
seen as data fields in the message, each of the attributes can include its own
specifications.

• Channel Identifier: when the Channel Manager starts its process of
distributing channels, the first attribute it needs is the identifier of a
channel. It can be named such as Channel ’Motion’, Channel ’RFID’ to
show the attribute based on the functionality of the channel.

• Client Identifier: Client Identifier is the identifier of the device. For a
process of channel distribution, the Channel Manager must always know
the relationship between the channels and their corresponding clients.
Therefore a device needs a unique name for the communication to show
the server and other devices its presence. A client will indicate the Chan-
nel Manager and other clients by using its client identifier, for example,
Device ’Dev3’, ’Conveyor1’, or ’Valve9’.

• Addressing: the attribute of addressing of a channel means that the
Channel Manager needs to assign channels with a method to tell the
communication participants where to locate their partners. The require-
ment of addressing is based on the network protocol of a channel. If
the assigned network protocol for a channel requires network addresses
for the communication participants, the Channel Manager will assign an
address to the client. The network address is useful only for the network
protocols that support the Internet Protocol Suite. For such a case, the
Channel Manager needs to distribute communication interface addresses
for the Sender and Receiver. For the network protocols that do not re-
quire a network address for addressing, other possible methods should
be specified according to the requirement of the network protocol.

• Protocols: in the request message between Channel Manager and Re-
quester, the field of Protocols are a field that shows all supported pro-
tocols from a client. As can be seen from Figure 3.1, it is likely that
an individual device can support more than one network protocols based
on different communication mediums and network standards. In this
case, the Channel Manager has to find a match for supported proto-
cols among all the requests from clients that ask for a common channel.
Channel Manager will sort these protocols and use its protocol manage-
ment function to assign one network protocol for the assigned channel.

37



3.2 Conceptual Structure

This assigned network protocol will be sent from the Channel Manager
to the communication partners.

• Parameters: the Parameters field is included in the request message and
the response message. Channel Manager will use the supported parame-
ters from the Requester to configure the distribution process of channels,
and the Channel Manager will put assigned parameters in the response
message. Each parameter in the parameters field is an entry with its own
semantics. In the request messages, some necessary parameters will be
given by the clients after its initialization. As for the response message,
the Channel Manager will also send necessary parameters as configu-
ration of assigned channels to the Requester and Responder, so that
the Communication Manager can use them to give typification messages
for Generic Communication Modules. There are important parameters
need to focus: QoS indicator and Lease_Time. QoS indicator con-
tains QoS parameter as QoS priority, so that the Channel Manager can
manage the traffic control by sorting their QoS priority levels when a
massive number of requests are coming at the same time to the Chan-
nel Manager. Such a parameter for QoS can also be applied when the
Channel Manager needs to sort network protocols in its own protocol
management. Another extended QoS indicator is QoS_Kind, as devel-
oped in the work of B. Voglmayr [Vog07]. There are different kinds of
QoS that should be handled in industrial automation systems according
to different communication structures. These scenarios are protocol de-
pended. For example, some QoS_Kind parameters are only necessary to
be paid attention to when the communication is based on a client-server
structure, some are necessary to be handled when the communication is
based on a publisher-subscriber structure. The QoS_Kind parameter will
be returned by Channel Manager according to the requirement of the
assigned protocol. As for Lease_Time, it can be filled with a parameter
of leasing time for the channel. Channel Manager can put this parameter
in the Response Message. When the leasing time is out, the channel will
no longer used by the devices and will be distributed again as available
channel in the selection list of the Channel Manager.

Based on the analysis of attributes of channels that the Channel Manager
manages, the Channel Manager needs to be designed with an algorithm that
contains lists for selection, comparison, management and filtering. The Chan-
nel Manager will use these functions during the whole channel distribution
process as a Plug and Play mechanism.

38



3.2 Conceptual Structure

3.2.3 Communication Manager and Generic

Communication Module

Communication Manager (see Figure 3.4) is the client-side module, which pro-
vides the ability for devices to support the Plug and Play concept. Each device
has exactly one Communication Manager. It carries out the management func-
tion of handling established channels for the Generic Communication Modules.

Generic Communication Module is the communication module in the device,
which carries out the task of exchanging user data with other communication
participants. There can be many channels for a device to communicate with
other devices. Therefore, each device will contain more Generic Communica-
tion Modules to handle all the channels (see Figure 3.2).

Just like Channel Manager, the Communication Manager has its own com-
munication interface to send and receive messages. But the communication
interface that Communication Manager needs is more than just one interface
between Communication Manager and Channel Manager.

The Communication Manager obtains the parameters for the request of
channels from the device itself. The initialization of the Communication Man-
ager is applied by registering all necessary parameters for requests at the Com-
munication Manager. After this initialization, the Communication Manager is
able to send requests to Channel Manager.

From this aspect, the communication interface of Communication Manager
must be divided with two different orientations: One communication inter-
face is the interface between the Communication Manager and the Channel
Manager, which is in charge of sending request and receiving response with
established channel information from the Channel Manager. Another commu-
nication interface is the interface between the Generic Communication Module
and the Communication Manager.

At the step of initialization, the Generic Communication Modules will regis-
ter themselves at Communication Manager with the attributes as parameters
from the device, this process is Registration.

All necessary attributes of the device such as Channel Identifier, Client
Identifier, Protocols and Parameters should be saved in Communication
Manager after the initialization of the device before it sends a request for a
channel to the Channel Manager.

Such a requirement makes it necessary that the Communication Manager
needs a Generic Communication Module to build a connection between it and
the device.

Generic Communication Module should be working as a generic module in
each device, so that the device can use it to communicate with other communi-

39



3.2 Conceptual Structure

Figure 3.4: Device View: Communication Manager and Generic Communica-
tion Module

40



3.2 Conceptual Structure

cation modules in all communication partners. The reason that these modules
are called "generic" is because at the initialization step, they are not typified
into the correct form of communication module according to the communi-
cation patterns at the registration. Such information can only be acquired
according to the established channel data packet from the Channel Manager.

According to configurations provided for the established channel, Commu-
nication Manager should configure appropriate communication patterns along
with its protocols for the Generic Communication Modules. Only after being
correctly configured, the Generic Communication Modules can exchange data
with other Generic Communication Modules from other devices.

For example, if the established channel requires a communication module
with Client-Server structure, the Sender and Receiver should be given config-
urations that they will construct a relationship of Client and Server. Before
this configuration is given, the Requester and Responder contain only Generic
Sender and Generic Receiver. After the channel is established, the Requester
and Responder should contain Generic Communication Modules as Client and
Server.

From the aspects of Communication Manager and Generic Communication
Modules, this process of configuring the Generic Sender and Generic Receiver
is that Communication Manager gives messages of configurations to Generic
Communication Modules. The Generic Communication Modules will be typi-
fied into the correct communication modules (Client and Server for this exam-
ple) so that the user data can be exchanged. This process is called Typifica-
tion.

The management function of the Communication Manager is applied after
receiving the response from Channel Manager. The Communication Manager
must determine which information should be used by Communication Manager
itself and which information should be used for the Generic Communication
Modules to configure the channels.

Based on the whole process of analyzing the Channel Manager, Commu-
nication Manager and Generic Communication Module, there is more types
of messages available. Other than Request Message and Response Message
for Channel Manager, there are other messages for Communication Manager
and Generic Communication Module: Registration Message and Typification
Message (see Figure 3.5).

For each of these messages, certain data and configurations are contained
within. Generic Communication Module will use the data in Registration
Message to initialize the Communication Manager. By using the Registration
Message, the Communication Manager will send the parameters as Request
Message to the Channel Manager. The Channel Manager will assign the chan-

41



3.3 Mechanism

Figure 3.5: Flow of Messages

nels back to Communication Manager by sending a Response Message. Af-
ter receiving the Response Message, the Communication Manager can send a
Typification Message back to Generic Communication Module and typify the
Generic Communication Module into required forms of Sender and Receiver.
Therefore, there should be a complete mechanism developed for distributing
the channels and configuring the Generic Communication Modules, which can
support the Plug and Play concept.

3.3 Mechanism

A general overview of distributing a channel can be seen in Figure 3.6, it
shows that after Initialization, the whole mechanism can be described as
Registration, Assignment, and Typification. In this chapter, a detailed
analysis of each step will be discussed.

3.3.1 Initialization

At the step of initialization, the device will register its Generic Communica-
tion Modules at Communication Manager. The device will register its data
via Generic Communication Modules at the Communication Manager, e.g.,
Channel ID, Client Name, Protocols Supported, and Parameter Supported.
The initialized Communication Manager will hold a list of these data to be sent
and also a list for the data to be received. The list for received data will be used
by the Communication Manager to interpret the Response Message from the
Channel Manager for typification. As a Plug and Play concept for industrial
automation, the Communication Manager can be designed with the function
of holding its own data types for the system, i.e., Datatype_Send(CIEC_INT,
CIEC_BOOL, etc.), Datatype_Receive(CIEC_INT, CIEC_BOOL, etc.). The

42



3.3 Mechanism

Figure 3.6: General Overview of Mechanism

43



3.3 Mechanism

Figure 3.7: Initialization when A. Initialization Successful; B. Initialization
Unsuccessful

data types are depending on the data that are necessary for the initialization.
The Datatype_Send and Datatype_Receive will be used between the Channel
Manager and the Communication Manager at initialization and typification.

During the initialization process, the Communication Manager should have
a return message of STATUS to tell the Generic Communication Module if
it has successfully initialized. A successful initialization should be finished
with all parameters above registered at the Communication Manager. If the
initialization is not successful, the whole procedure should start again. Here at
the step of retrying, a Retry_Time should be set, this Retry_Time can be set
as retry times or a time limit that should not be too many times or too long to
hold the device in initializing status. If the value of the Retry_Time is reached,
the STATUS should be returned with a ERROR message back to the Generic
Communication Module so that the user would know the initialization of a
Communication Manager is unsuccessful because of a defect function within
the device (see Figure 3.7).

3.3.2 Registration

Once the initialization step is finished, which means that now the Communica-
tion Manager holds all the attributes for a channel request, the Communication
Manager will start to send requests for channels via its communication inter-
face to the Channel Manager. At this step, the client should be discovered
and registered at the server. A general sequence of this process can be seen in
Figure 3.8.

When the Channel Manager receives a request for a channel, it means that
it receives a data packet with fields of Channel ID, Client Name, Protocols

44



3.3 Mechanism

Figure 3.8: Registration

45



3.3 Mechanism

Supported, and Parameter Supported. The Channel Manager will interpret
the data with its data types and data content. Here the client is registered at
the Channel Manager. The Channel Manager will send an acceptance notice
back to the Communication Manager with a confirmation of STATUS_OK.

After the request is registered at the Channel Manager, the Channel Man-
ager will put the data it receives into a data set for received data. This set of
data will be used for saving the incoming data for further channel distribution.

3.3.3 Assignment

The first task for the Channel Manager at the step of channel assignment and
distribution is to sort the requests. The Channel Manager will apply QoS
parameters of the request to decide if it is necessary to handle this incoming
request at once or there is another request with a higher priority. After that,
the Channel Manager will decide whether to set this request as a Requester
or a Responder. In order to do that, the Channel Manager will use its iden-
tifier management function to sort the requests. In this concept, the Channel
Manager uses Channel ID as the sorting criterium.

By using Channel ID as the data for identifier management, the Channel
Manager can differentiate the requests. The roles of the clients will be set
as the Generic Interface Type of Requester or Responder. If a request is
set as a Requester, there is no match with another client asking for the same
channel can be found. This request should be put into a list for new requests,
waiting for the Responder. When Channel Manager finds a match between the
saved request and a new request, the Channel Manager will set the new request
as the Responder for the saved request. The Channel Manager will assign a
channel between this Requester and Responder since they are requiring the
same Channel ID. The reason that the Channel Manager should use Channel
ID as the evidence for sorting the requests is that an identical ID is the criteria
for requests to determine which communication participants are willing to have
the communication with the same type and content. Therefore the Channel
ID is the primary key for the Channel Manager to sort requests that have the
same requirements for communication (see Figure 3.9).

Based on the communication medium and requirements of the devices, it
is possible that waiting time for channel distribution should be considered.
For such a case, it is necessary to consider that until the saved request is
matched with a new coming request, the client which sends the saved request
will hold the status as Waiting. During this period, the device is held as
Registered_Request instead of being configured. The Waiting status can be
set with a Timer_Waiting. If Timer_Waiting times out, the device will simply

46



3.3 Mechanism

Figure 3.9: Identifier Management

47



3.3 Mechanism

quit the process of requesting a channel and send a new request for channel.
Assignment of a configured channel for the request must include functions

of comparing and matching. Comparing is using the parameters in the data
packet from requests for sorting the requests, matching is the result of search
and the result can be used by the Channel Manager for further procedures.

Assignment of a configured channel for corresponding request requires the
Channel Manager to apply the protocol management and parameter manage-
ment after the requests are sorted based on identifier management. As for
protocol management function, the Channel Manager will check if there is a
matched protocol can be found among the supported protocols from requests.
All supported protocols from requests can been seen as a collection protocol
IDs and they can be put into a Protocol ID List. The Channel Manager
can use this list and pick out the ID of the protocol for the protocol selection.
There are three possibilities after the comparison:

• No protocols matched: in this case, the Channel Manager cannot find
any match for the request in its Protocol ID List. This case means
that even there are other requests which are also requesting the channel
with the same Channel ID, but none of them supports the same protocols
as this request does. Now the Channel Manager must put this request
with its supported protocol ID into the Protocol ID List and wait
for the next coming request. Here the Channel Manager should return
an ERROR message to the Generic Communication Modules of registered
Client so that the status of no matched protocol can be informed.

• One protocol match found: if only one protocol among the supported
protocols for requests can found in the Protocol ID List, then this pro-
tocol will be used directly as Protocol Assigned if the QoS parameter
of the protocol is also fulfilled.

• More than one protocol match found: the Channel Manager must
determine only one protocol as Protocol Assigned for the response.
Here the parameter management of the Channel Manager should be ap-
plied. If more than one matched protocol are found in the Protocol
ID List, the Channel Manager can use QoS from each protocol as a
selection criteria. Each protocol will set with a QoS parameter in cor-
respondence with the request. If the request contains a higher priority
level for its QoS parameter, then the Channel Manager must assign a
corresponding protocol according to the QoS parameter of the request
(see Figure 3.10).

48



3.3 Mechanism

Figure 3.10: Protocol Management of Channel Manager
49



3.3 Mechanism

After getting the result of Protocol Assigned,the Channel Manager will
use the corresponding protocol and choose channels to distribute. Here for each
protocol, there should be a Protocol Pool defined. It is a pool for channels
according to their corresponding protocols. The channels that are going to be
distributed are saved in each Protocol Pool. Each channel is saved along with
their Channel ID so that the Channel Manager can simply choose the correct
channel to distribute along with this assigned protocol. Other parameters,
e.g., Lease_Time, will be configured according to the corresponding Protocol
Pool. The Channel Manager defines the methods of parameter configurations
based on the result of the selected protocol and its Protocol Pool.

The Protocol Pool can be used more than just a pool of storing channels.
There can be additional selecting criterion defined in each Protocol Pool.
Other parameters and implementation methods as requirements of channel
selection can be also defined in the Protocol Pool for channel distribution,
e.g., Lease_Time.

When all the configuration is complete according to the corresponding Protocol
Pool, Channel Manager can send the assigned Channel ID, Client Identifier,
Generic Interface Type, Assigned Protocol and Assigned Parameters
as a Response Message back to the clients. At the side of the clients, their
Communication Managers will receive the Response Message and start the
process of typification on the affected Generic Communication Modules.

After sending the response packet back to all the clients, the Channel Man-
ager can add this packet as a configuration record of the assigned channel to a
Assigned Channel List and keep it as a history record. Correspondingly, there
will be only free channels available in the Protocol Pool. At this point, the
clients who sent the requests will no longer need the presence of the Channel
Manager as long as they have already a successfully configured channel. The
Channel Manager will step out of the channel distribution process among these
devices until the leasing time of the channel is over and the devices require
new channels.

3.3.4 Typification

When the Channel Manager finishes the configuration of the channel and sends
the Response Message to the Communication Manager of each client, the Com-
munication Manager will start to process the Response Message it receives.
The Communication Manager will now decide how to use the data within the
Typification Message and establish communication with other communication
modules that present the other communication partners.

When the Channel Manager sends the Typification Message to the Commu-

50



3.4 Summary

nication Manager, it sends the message to all clients since the communication
structure between the Channel Manager and Communication Managers are
client-server. Thus the Communication Manager needs an identifier to iden-
tify if the Typification Message is sent for itself. The Communication Manager
uses the Client Identifier as a to check if the Typification Message is valid for
this client.

The other data in Response Message from the Channel Manager will be used
by Communication Manager as data for Typification Message:
Channel ID: Communication Manager will pass on this data directly to the

Generic Communication Module as identifier of the channel.
Assigned Protocol: Communication Manager will use this protocol as

transport protocol and decide which type of Generic Sender and Generic Re-
ceiver it should typify for the Generic Communication Module.
Generic Interface Type: by using the assigned Generic Interface Type,

Communication Manager will decide the role of its Generic Communication
Module. The role is protocol and communication pattern related.
Assigned Parameters: the assigned parameters will be used as configura-

tions of the channel by Generic Communication Module, e.g., Lease_Time,
QoS_Kind. If the Assigned Protocol is a protocol that requires communica-
tion interface addresses for the configured channel, the assigned communication
interface addresses will be given from the Communication Manager to Generic
Communication Modules as well.

When the whole process is finished, the configuration of the Generic Commu-
nication Modules is complete. From this point on, devices can communicate
with each other through their Generic Communication Modules and estab-
lished channels.

3.4 Summary

After analyzing the system structure and the mechanism, a systematic ap-
proach that can distribute channels for a device is complete. Such an approach
includes Channel Manager, Communication Manager, and Generic Communi-
cation Module as components, and can establish communication among devices
via steps of Registration, Assignment, and Typification.

As an overview of the whole structure, there are different types of messages
applied:

• Message_Registration

• Message_Request

51



3.4 Summary

• Message_Response

• Message_Typification

Within these messages exchanged among Channel Manager, Communication
Manager and Generic Communication Module, various kinds of data are being
transferred. The data that discussed in this work can be seen as follows:

• Channel Identifier

• Client Identifier

• Generic Interface Type

• Supported Protocols

• Assigned Protocol

• Supported Parameter (e.g., QoS_Priority)

• Assigned Parameters (e.g., Communication Interface Addresses, QoS_Kind,
Lease_Time)

This structure develops of a Plug and Play concept that devices can be
communication function enabled with fully functional discovery and automatic
channel assignment. Such a structure for the concept is open and flexible. It
does not only support the new standard IEC 61499 for distributed industrial
automation, but also supports the previous standards (e.g., IEC 61131 with
central software module). Because the Channel Manager can run individually
as an application crossing different devices, and the modularization concep-
tual structure can be easily configured based on various requirements from
the user and the field devices. Unlike the available standards of Plug and
Play technology, the structure with a Communication Manager and a Generic
Communication Module can support multiple industrial network and commu-
nication systems.

52



4 Implementation

Based on the concept, the focus of the implementation is on the key com-
ponents of Channel Manager, Communication Manager and Generic Com-
munication Module. By implementing these components, a process covering
initialization, registration, assignment and typification can be prototypically
shown. In this chapter, an implementation approach for the concept will be
discussed, and more details of development for each component will be given to
provide possibilities of how the concept can be implemented for the industrial
automation domain.

The implementation of the client-side modules of Communication Manager
and Generic Communication Module is facing the requirements from low-level
control (LLC) devices that are physically connected. The Generic Communica-
tion Module has to be able integrated into the device and register the message
types and message contents to Communication Manager. The standard IEC
61499 provides the most logical system for defining the programming and offers
the possibility of linking the devices with agents in high-level control (HLC)
for a multi-agent system (MAS). By using such a framework, the integration
of a run-time control and communication mechanism can be applied for the
LLC devices in cooperating with the Channel Manager. When a new device
is attached into the physical system governed by LLC, the Generic Communi-
cation Module can give registration message to Communication Manager, and
further communication between Communication Manager and Channel Man-
ager can be realized. However, based on the Plug and Play concept analysis,
the implementation of such a concept should be designed for the industrial
automation domain in general. Hence there is a need to design the interface of
each module from the concept to be able to work with not only an IEC 61499
based distributed automation framework, but also with standard IEC 61131-
3. The considerations of implementing consistent data types and interfaces
have to be noticed so that the approach will be compatible with standard IEC
61131-3. By applying such a conceptual guideline, it is possible to implement
the modules by using IEC 61499 development tools and still can make the
implementation suitable for IEC 61131-3.

The implementation of Channel Manager is considered as an individual Java
application, which simulates the process that different requests with different

53



4.1 Channel Manager

configurations sent from clients with their data packets.
As for Communication Manager and Generic Communication Module, there

is an IEC 61499 runtime environment FORTE has been developed at the Au-
tomation Control Institute, Vienna University of Technology (ACIN). FORTE
(Framework for Distributed Industrial Automation and Control-Run-Time En-
vironment) provides its own data types for IEC 61499, and it inherits the defi-
nition of data types from IEC 61131-3. The data over communication channel
is defined according to IEC 61499 Compliance Profile. The ASN.1 encoding
standard is applied so that the datatype is included in encoded data.

This runtime environment is implemented in C++ and enables several IEC
devices within one control platform. Based on such a platform, 4DIAC-IDE
(Framework for Distributed Industrial Automation and Control) and FBDK
(Function Block Development Kit) are used as engineering tools to provide
the environment of developing Function Blocks. The implementation of Com-
munication Manager and Generic Communication Module can be applied by
constructing a composite network function block that can be developed by
using 4DIAC-IDE and then exported to FORTE for programming and config-
urations. As for FBDK, it can be used for building a set of different human-
machine interface (HMI) function blocks to illustrate the Request/Response
message exchange process with Channel Manager. Each of the modules can
be implemented and tested separately while remaining consistent definitions
of the data types and the interface.

4.1 Channel Manager

The general implementation process of Channel Manager is to develop a server
with its own functionalities of automatically distributing channels, consisting
of its own algorithm for management functions. In order to implement the
Channel Manager as a component that can be adaptable for industrial au-
tomation, there are certain considerations that the implementation needs to
focus.

Messages: according to the concept analysis, the messages for Channel Man-
ager can be concluded as a Request Message and a Response Message. The
data that need to be transferred are encapsulated in data packets, the data
packets are differentiated based on their transferring directions via the inter-
face, and the data in messages have certain data types. Additional messages
such as STATUS_OK are considered as messages with status indicators as data.

Interface: the interface between Channel Manager and Communication Man-
ager is considered as an interface that can exchange messages of the Request

54



4.1 Channel Manager

and Response. The data types of these messages need to be configured as
adaptable for FORTE. Since the concept of a plug and play is developed focus-
ing the industrial automation field, the data types are defined also compatible
with IEC 61311-3 data types. From such an interface, Channel Manager is can
recognize the messages from either IEC 61131-3 or IEC 61499 environment.

For the Channel Manager, there are two data packets that need to be con-
figured for the interface. A data packet of the Request Message from the
Communication Manager requesting a channel, and a data packet of the Re-
sponse Message to the Communication Manager after Channel Manager con-
figured a channel. The Response data packet will be used by Communication
Manager for typification, thus this Response data packet must consist of all
the necessary parameters for the Generic Communication Module so that the
Communication Manager will be able to use the data and to typify Generic
Communication Modules.

The first task to implement the Channel Manager is to configure the sending
and receiving interfaces. There are two kinds of data packets for Channel Man-
ager to handle: receive Request data packet and send Respond data packet.
The sending and receiving interface can be seen as two different parameter sets.
The Receive Parameter Set consists of the data of the Request, and each entry
of the parameter set represents an individual parameter that needs to be han-
dled by Channel Manager for establishing a channel. After the configuration,
the Channel Manager will use the configured parameters and put them into
the Send Parameter Set. As for the receiving and sending interfaces, which
transfer the Receive Parameter Set and Send Parameter Set, the communi-
cation pattern for the implementation is considered to use the Multicast. By
applying the Multicast along with Publisher and Subscriber Service Interface
Function Block (SIFB), the number of communication partners does not need
to be fixed, which makes it better to show the message distributing ability of
the Channel Manager.

The tasks of Channel Manager is to receive the Request data packet, then
configure the channel according to the requirement of the Request, and finally
return a Response data packet and sent it back to the Communication Man-
ager. There are certain parameters must be fixed for the Request and Response
data packets (Figure 4.1 and Figure 4.2).

Among the configurations of the channel from the Channel Manager for
the Response data packet, the process of using Generic_Interface_Type and
Service_Interface_IDs should be specified. Channel Manager will firstly
compare the Channel_ID and check if a matched result can be found. The
Generic_Interface_Type will be appointed at the same step. After setting
the corresponding Communication Manager is either a Requester or Respon-

55



4.1 Channel Manager

Figure 4.1: Request Data Packet

Figure 4.2: Response Data Packet

56



4.1 Channel Manager

der, Channel Manager will put this data into the Response data packet so that
the Communication Manager can use the data of assigned Service_Interface_IDs
correctly. Each protocol is defined with a pool, cooperating with its con-
figurations at the Channel Manager. The configurations include the chan-
nel reservation, channel QoS parameters, Service Interface ID list, and pre-
defined Parameters. The Service Interface List is a pre-defined list filled with
Service_Interface_IDs, or a list with available Client_IDs from other Re-
quests. Depending on the different communication patterns that the channel
supports, Channel Manager will assign appropriate Service_Interface_IDs
and write them into the data output for Response data packet.

The value of Client_Name in the Request data packet will be returned by
Channel Manager without changing its original value, but the corresponding
data field for Client_Name will be identified as Requester/Responder_Name.
The reason that Channel Manager needs to rearrange is that, as for Response
data packet, the using of the data is not exactly the same for the Generic
Communication Module as Requester and the Generic Communication Module
as Responder. Thus it is necessary to differentiate the Response data packet
into two categories: one for Requester and one for Responder.
Assigned_Protocol_ID represents the protocol that is to be used for the

channel. Each Assigned_Protocol_ID can be distributed by Channel Man-
ager after the comparison of the Supported_Protocol_IDs from Request data
packets. A QoS sorting mechanism is defined in order to sort Protocol_IDs
if multiple protocols are matched among Request data packets.

Just as the Service_Interface_IDs, the Assigned_Parameters are dis-
tributed by Channel Manager according to the pool of the Assigned_Protocol.
For different scenarios and usages there can be various pre-defined configura-
tions for Assigned_Parameters of channels based on the Assigned_Protocol_ID
in Request data packet.
Generic_Communication_Module_ID (GCM_ID) is a special instance of the

Generic Communication Module. In an IEC 61499 based structure, the Generic
Communication Module will use the GCM_ID directing the Response Message
to the correct function block. The Channel Manager only needs to receive this
data and then return it with its original value in the Response data packet
back to the Communication Manager.

57



4.2 Communication Manager and Generic Communication Module

4.2 Communication Manager and Generic

Communication Module

The functionality of a client for industrial automation is applied as a client
Function Block that has device-oriented management functions. As client-side
components, the Communication Manager and the Generic Communication
Module will be discussed together.

The interface and data types of Communication Manager are configured as
the way of Channel Manager in order to meet the definition of data types in
IEC 61499. Since IEC 61499 inherits the data type definitions from IEC 61311-
3, there is no problem for integrating the Communication Manager into the
general industrial automation system that is developed under these standards.

As a client-side component, the Communication Manager is implemented
as a module with the ability of exchanging messages at initialization and typ-
ification. The communication at these two steps is a chain communication
process among the function blocks as components from initialization to typ-
ification: Generic Communication Module-Communication Manager-Channel
Manager-Communication Manager-Generic Communication Module (see Fig-
ure 4.3). The message exchange at initialization is the Registration Message,
and the message at the typification is the Typification Message. In this pro-
cess of exchanging messages, the Communication Manager is implemented as
a functions block that is conducting the messages. But the Communication
Manager is not capable of using the established channel from the Channel
Manager directly. The communications among the devices are carried out by
the Generic Communication Modules from the device. The Communication
Manager must cooperate with the Generic Communication Module together so
that the whole process of message exchange can be complete, and furthermore
the communication among devices can be applied.

The structure consisting of the Communication Manager and Generic Com-
munication Modules in device represents a framework of device management
and communication. In order to communicate with the Channel Manager,
the Communication Manager is implemented as a Service Interface Function
Block in a Function Block Kernel. The data inputs and outputs of the Com-
munication Manager are connected with a Subscriber and a Publisher for the
Multicast in consistence with the Channel Manager. By using consistent data
types as Channel Manager does, the Communication Manager can exchange
messages for communicating with Channel Manager and for conducting typi-
fication messages with Generic Communication Module.

As a device management module, Communication Manager can be imple-

58



4.2 Communication Manager and Generic Communication Module

mented following the Singleton pattern that directs more than one Generic
Communication Module (see Figure 4.3).

At the step of initialization, the Generic Communication Modules will reg-
ister themselves at Communication Manager. The registration of the Generic
Communication Modules will register the data_send and data_receive as
parameter sets for requests and responses. When the Channel Manager sends
its Response message back to the Communication Manager, the Communica-
tion Manager will use this data_receive parameter set to store the data of
configurations.

At the step of typification, the Communication Manager module will send
the data as typification messages back to the Generic Communication Mod-
ules to give them corresponding configurations of communication. Inside the
Generic Communication Module, it holds SIFBs, whose types can be appointed
by the Communication Manager. The typification of appointing the correct
SIFBs depends on the Assigned_Protocol_ID and the Generic_Interface_Type.

By implementing the client-side module, it should be noticed that only one
Communication Manager Kernel consisting of one Communication Manager
is required. As for Generic Communication Module, there should be more
prototypic Generic Communication Modules included for the communication
with more channels.

As for an implementation using 4DIAC-IDE, the Communication Manager
can be developed as a Communication Manager Kernel, which is a composite
network FB with Communication Manager FB integrated. The Communi-
cation Manager FB is connected with SIFBs of Publisher and Subscriber as
communication interface. Filtering messages with respect to the Client_Name)
is implemented inside the Communication Manager Kernel. An illustration of
the Communication Manager Kernel in 4DIAC-IDE can be seen in Figure 4.4,
and the interface of the Communication Manager can be seen in Figure 4.5.

Within the illustration of the Communication Manager, each data from the
Response data packet is appointed to the data inputs of the Communication
Manager. Among these data, GCM_ID_in is used as indicator of directing the
typification message to the correct function block, the other data will be used
as configurations of the channel for the Generic Communication Modules.

The Generic Communication Module is also implemented as a composite
FB. Inside this Generic Communication Module FB, SIFBs such as Publisher,
Subscriber, Client and Server are included that can be used after the Generic
Communication Module receives the message for typification. The SIFBs will
be used to establish communication via several channels with other Generic
Communication Modules in the same device or other devices (see Generic
Communication Module in Figure 4.6).

59



4.2 Communication Manager and Generic Communication Module

Figure 4.3: Approach of Implementing Communication Manager and Generic
Communication Module

60



4.2 Communication Manager and Generic Communication Module

Figure 4.4: Communication Manager Kernel in 4DIAC-IDE

61



4.2 Communication Manager and Generic Communication Module

Figure 4.5: Communication Manager in 4DIAC-IDE

62



4.3 Discussion

Figure 4.6: Generic Communication Module Function Block

4.3 Discussion

Based on the conceptual framework of the Plug and Play concept, the Channel
Manager is implemented as an individual server that can distribute channels
along with their configurations according to the requests from the Communi-
cation Manager. The Communication Manager is now able to use the data in
the Response message and typify the Generic Communication Modules.

The Channel Manager uses its Identifier Management function for the com-
parison of requests. The parameters for Identifier Management and Protocol
Management can be applied with other data provided by the requests. The
Channel Manager is now able send a Response Data Packet after the selection
and assignment process. By using FBDK to simulate the process of sending
Request and receiving Response, the Channel Manager can sort the requests
and assign correct channel data. By applying Channel_ID, Client_Name,
Protocols_Supported, Protocols_Supported, Parameters Supported, and
GCM_ID as parameters from the Request, the Channel Manager distributes
automatically configured data as a Response data packet back to the Commu-
nication Manager.

As for the modeling tool of the process of sending request from the Publisher
and receiving the results by the Subscriber, FBDK is used to develop the

63



4.3 Discussion

interface of input and output. The data inputs and data outputs can be easily
applied from the test windows of the Publisher and the Subscriber. Another
possible application can be developed by the FBDK is to apply the application
model with remote resources in the FBDK as a test system. Each data input
for the Publisher can be predefined and the test windows of Subscribers can
be developed as a HMI application that shows all the result in the preferred
way from the user.

After the Registration and Assignment, the Communication Manager uses
the content of the Response data packet for typification of Generic Communica-
tion Modules. The 4DIAC-IDE illustrates the interface of the Communication
Manager Function Block and the Communication Manager Kernel.

From the aspect of exchanging data among devices, the Generic Communi-
cation Modules is pre-defined as a composite FB that includes Client, Server,
Publisher and Subscriber SIFBs. The data inputs and outputs of this compos-
ite FB are defined for exchanging user data. By implementing the Communi-
cation Manager following the Singleton pattern, the Communication Manager
conducts channel configurations to more Generic Communication Modules in
the same device. The Generic Communication Modules are configured with
fixed data inputs and outputs according to the interface of the composite FB of
each Generic Communication Module. The event and data connections among
the SIFB are not connected from the interface in 4DIAC-IDE, they are defined
in FORTE according to the conductions of the Communication Manager. The
structure of such a composite FB can be defined as a consistent interface of
data inputs and outputs for all Generic Communication Modules.

64



5 Outlook

The three-layered framework in this concept specifies an open and flexible ar-
chitecture for the industrial automation domain, which also provides further
possibilities for the future development. Many potential functions can be ap-
plied based on this concept.

This concept provides the process of distributing and managing channels
automatically based on specifications of the requests. The parameters of con-
figuring channels are specified with a complete mechanism from discovering
new devices to assigning channels. As for the next step, more parameters for
channel configurations can be applied based on the mechanism in this con-
cept. By applying different parameters, it is possible to develop various device
based channel configuring approaches for more network and communication
systems. The whole framework consisting of the Channel Manager, Commu-
nication Manager and Generic Communication Modules provides a solution
of channel configuration and management to dynamic and complex network
and communication systems. In the future, more implementations based on
different runtime systems can be applied on this framework. More tests can be
done for various industrial automation systems. For now, this work presents
a prototypical implementation based on IEC 61499. The architecture from
this work is able to be integrated into different platforms. Not only the whole
framework is flexible to be adopted by other systems, each component is also
easy to be applied and extended. The implementation can be applied in the
test bed at the Odo Strugger Laboratory, Vienna University of Technology.

65



6 Conclusion

With more and more intelligent devices introduced into the industrial au-
tomation domain, exchanging process data via established channels must be
ensured for the industrial automation systems. In order to bring automatic
communication configurations among devices, and to avoid the complexity of
integrating with different engineering tools, a Plug and Play concept for the
industrial automation domain is required. Such a concept should support au-
tomatic channel configurations along with management functions.

At the beginning of this work, the current technologies in the areas of in-
dustrial automation and network communication systems were discussed. The
available Plug and Play standards were briefly analyzed.

This work provided a development of the Plug and Play concept, which can
make the automatically configured communication among the devices possi-
ble for the dynamic network and communication systems in the industrial
automation environment. The concept in this work presented a three-layer
framework that consists of the Channel Manager, Communication Manager
and Generic Communication Module. The modular design of each component
and the whole architecture based on this framework provided an open and
flexible structure. This concept presented a complete mechanism consisting
of Initialization, Registration, Assignment and Typification for discovering de-
vices and eventually distributing channels. By given functions such as Identifier
Management, Protocol Management and Protocol Management, the channel
distribution process from Registration of devices to Assignment of channels
was achieved by the Channel Manager. The development of the Communica-
tion Manager made it possible for the device to use the channel configuration
data for typifying Generic Communication Modules.

The prototypical implementation showed that the process of establishing
communication and managing channels for attached devices in the industrial
automation domain is feasible.

66



Bibliography

[Abl06] J. Abley. RFC4786 - Operation of Anycast Services, December
2006. http://tools.ietf.org/html/rfc4786.

[APGD07] Fotis Andritsopoulos, Serafeim Papastefanos, George Geor-
gakarakos, and Gregory Doumenis. Reliable multicast H.264
video streaming for surveillance applications. The 18th Annual
IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC’07), 2007.

[Bon95] Karl Walter Bonfig. Feldbus-Systeme. Expert Verlag, 1995.

[Bor92] Walter Borst. Der Feldbus in der Maschinen- und Anlagentech-
nik: die Anwendung der Feldbusnormen bei Entwicklung und Ein-
satz von Meß- und Stellgeräten. München:Franzis, 1992.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg. Dis-
tributed Systems: concepts and design. Addison-Wesley, 1994.

[Che09] Stuart Cheshire. How does Zeroconf compare with
Viiv/DLNA/DHWG/UPnP. www.zeroconf.org, 2009.
http://www.zeroconf.org/ZeroconfAndUPnP.html.

[Chr04] James H. Christensen. Presentation: Automation Modeling, De-
sign and Programming with the IEC 61499 Function Block Stan-
dard. 2004.

[Chr07] James H. Christensen. IEC 61499: A Standardized Architecture
For Adding Value In Industrial Automation. 2007.

[Dee89] S. Deering. RFC1112 - Host extensions for IP multicasting, 1989.
http://tools.ietf.org/html/rfc1112.

[Die09] Dietmar Dietrich. Feldbussysteme Lecture Script, 2009.

[Dro97] R. Droms. RFC2131 - Dynamic Host Configura-
tion Protocol. Bucknell University, March 1997.
http://tools.ietf.org/html/rfc2131.

67



Bibliography

[Ebe07] Stephan Eberle. Adaptive internet integration of field bus sys-
tems. IEEE Transactions On Industrial Informatics, Vol. 3, No.
1, 2007.

[Enc09] PC Magazine Encyclopedia. Plug and Play. PC Magazine, 2009.
http://www.pcmag.com/.

[Eve02] EventStudio. DHCP - Dynamic Host Configuration
Protocol (Normal Operation). EventHelix.com, 2002.
http://www.eventhelix.com/RealtimeMantra/Networking/DHCP.pdf.

[FB04] Bernard Favre-Bulle. Automatisierung Komplexer Indus-
trieprozesse. Springer-Verlag/Wien, 2004.

[Fur00] Frank J. Furrer. Ethernet-TCP/IP für die Industrieautomation:
Grundlagen und Praxis. Heidelberg Hüthig, 2000.

[Gut01] Erik Guttman. Autoconfiguration for IP networking: Enabling
local communication. 2001.

[Ham08] Reinhard Hametner. Modellierung von Regelungsstrategien in
einer event-basierten Echtzeitsteuerungsumgebung. Master’s the-
sis, Vienna University of Technology, 2008.

[Hel02] Sumi Helal. Standards for Service: Discovery and Delivery. 2002.

[IEC05a] IEC. IEC 61499-1 Function blocks - Part 1: Architecture. IEC,
January 2005.

[IEC05b] IEC. IEC 61499-1 Function blocks - Part 2: Software Tool Re-
quirements. IEC, January 2005.

[IEC05c] IEC. IEC 61499-1 Function blocks - Part 4: Rules for Compli-
ance Profiles. IEC, May 2005.

[ITU95] ITU. Data Networks and Open System Communications - Open
Distributed Processing. Telecommunication Standardization Sec-
tor Of ITU, November 1995.

[JAD] JADE. JADE - Java Agent Development Framework.
http://jade.tilab.com/.

[Klo08] Maria Klonner. A concept for IEC 61131-3 programmable com-
munication protocols. Master’s thesis, Vienna University of Tech-
nology, 2008.

68



Bibliography

[Koz01] Charles M. Kozierok. Plug and Play. The PC Guide, 2001.
http://www.pcguide.com/ref/mbsys/res/pnp.htm.

[Lew01] Robert Lewis. Modelling control systems using IEC 61499, Ap-
plying function blocks to distributed systems. IEE - The institu-
tion of Electrical Engineers, London, United Kingdom, 2001.

[LN07] Learn-Networking. A guide to network topology. 2007.
http://learn-networking.com/network-design/a-guide-to-
network-topology.

[LSKD07] Jae Woo Lee, Henning Schulzrinne, Wolfgang Kellerer, and Zo-
ran Despotovic. Discovering zeroconf services beyond local link.
Globecom Workshops, 2007 IEEE, 2007.

[Mer09] Munir Merdan. Knowledge-based multi-agent architecture ap-
plied in the assembly domain. PhD thesis, Technische Universität
Wien, 2009.

[Mic00] Microsoft. Understanding Universal
Plug and Play: White Paper, 2000.
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc.

[Mic03] Microsoft. Differences between multicast and uni-
cast. Technical report, Microsoft Support, 2003.
http://support.microsoft.com/default.aspx/kb/291786.

[MKHFB08] Munir Merdan, Gottfried Koppensteiner, Ingo Hegny, and
Bernard Favre-Bulle. Application of an ontology in a transport
domain. 2008.

[MLHK08] Munir Merdan, Wilfried Lepuschitz, Ingo Hegny, and Gottfried
Koppensteiner. Application of a communication interface be-
tween agents and the low level control. 2008.

[Mog84] Jeffrey Mogul. RFC919 - Broadcasting Internet Datagrams. Net-
work Working Group, Computer Science Department, Stanford
University, October 1984. http://tools.ietf.org/html/rfc919.

[MVKZ08] Munir Merdan, Pavel Vrba, Gottfried Koppensteiner, and Alois
Zoitl. Knowledge-based multi-agent architecture for dynamic
scheduling in manufacturing systems. 2008.

69



Bibliography

[Neu06] Georg Neugschwandtner. Towards plug and play in home and
building automation networks. 2006.

[OMG08] OMG. UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification. OMG -
Object Management Group, April 2008.

[Org09] Zeroconf Organization. Zeroconf, 2009.

[PD98] P. Pleinevaux and J.-D. Decotigde. Time critical communication
networks: Field buses. May 1988-Vo1.2, No. 3 IEEE Network,
1998.

[Sch00] Gerhard Schnell. Bussysteme in der Automatisierungs- und
Prozesstechnik. Friedr. Vieweg & Sohn, 2000.

[Sha48] Claude E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379423, 623656, 1948.

[SI98] Claude E. Shannon and IRE. Communication in the presence of
noise. THE IEEE, 86, 1998.

[SJM90] Liba Svobodova, Philippe A. Janson, and Eduard Mumprecht.
Heterogeneity and OSI. 1990.

[SL03] Minyoung Sung and Gui-young Lee. A QoS-enabled Service
Discovery and Delivery Scheme for Home Networks. 28th An-
nual IEEE International Conference on Local Computer Net-
works (LCN03), 2003.

[Sün04] Christoph Sünder. Integration of motion control in distributed
automation systems according to iec 61499. Master’s thesis, Vi-
enna University of Technology, 2004.

[Tho99] Jean Pierre Thomesse. Fieldbuses and interoperability. Control
Engineering Practice 7, pages 81–94, 1999.

[Tho05] Jean Pierre Thomesse. Fieldbus technology in industrial automa-
tion. THE IEEE, 93, NO. 6„ 2005.

[TQ08] Huaglory Tianfield and Feng Qian. Re-configurable Industrial
Automation. Proceedings of the 7th World Congress on Intelligent
Control and Automation,June 25 - 27, 2008, Chongqing, China,
2008.

70



Bibliography

[UPn00] UPnP. UPnP Device Architecture, 2000.
http://www.upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.0-20080424.pdf.

[UPn09] UPnP. UPnP Forum. UPnP Forum, 2009.

[vGH04] Albie F.J. von Gordon and Gerhard P. Hancke. Protocol con-
version for real-time energy management systems. 2004 IEEE,
2004.

[Vog07] Bernard Voglmayr. Middelware-Konzepte für verteilte Automa-
tisierungssysteme basierend auf IEC 61499. Master’s thesis, Vi-
enna University of Technology, 2007.

[Woo02] Bill Woodcock. Best practices in ipv4 anycast routing. Technical
report, Packet Clearing House, 2002.

[ZK09] Safaa Zaman and Fakhri Karray. TCP/IP model and intrusion
detection systems. 2009 International Conference on Advanced
Information Networking and Applications Workshops, 2009.

[Zoi07] Alois Zoitl. Basic Real-Time Reconfiguration Services for Zero
Down-Time Automation Systems. PhD thesis, Vienna University
of Technology, Vienna, 2007.

71


