

 A Domain-Specific Language for
 QoS-Aware Service Composition

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Information Computing

eingereicht von

Predrag Celikovic
Matrikelnummer 0227192

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Dr. Florian Rosenberg

Wien, 12.01.2010 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 Hhttp://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Declaration

Predrag Celikovic
Linzer Straße 46
1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift)

3

Abstract

Software as a Service is a software deployment and distribution model that has grown
in the last few years. It has become a valid business model to expose and license
a specialized Web service on demand to customers. Companies can build software
systems out of internal services or software components and use external services
offered by third-party companies. Composition of these services is an important
topic because of the rapid increase of involved Web services in enterprise software
systems. Composition languages such as BPEL and others have been developed in
the last few years.
This masters thesis presents a CaaS (Composition as a Service) approach for Web
service compositions. The VCL (Vienna Composition Language) domain-specific
language is introduced. The main focus of VCL and this thesis lies on microflows.
Microflows are simple service compositions without support of user interaction at
execution time. The VCL is used to specify microflows.
A composition services takes the VCL composition and transforms it to a Microsoft
Windows Workflow which will be hosted as a own Web service in the IIS (Internet
Information Server). In VCL, dependencies between services are defined implicitly
based on the input and output parameter of those. However, by adding control struc-
tures it is possible to override the dataflow dependencies and modify the resulting
composition.
To fulfill the SOA “Publish-Find-Bind” principal, VRESCo is used as a service reg-
istry. in addition, to a classical service registry like UDDI, VRESCo supports an
abstraction layer for Web services that is used to map different service implemen-
tation from the same domain to a common interface definition. VCL specifies the
composition on this abstract layer and allows to add, unlike other composition lan-
guages, QoS constraints. Therefore, a constraint hierarchy system with optional
and mandatory constraints support is implemented to avoid over-constraint com-
positions. The composition service takes the given VCL composition description,
resolve the functional requirements (e.g., input, output requirements) and choose
the best solution based on the given QoS constraints.

4

Zusammenfassung

Software as a Service ist ein Software-Distributions-Modell welches in den letzten
Jahren an Bedeutung gewonnen hat. Es wurde zu einem erfolgreichen Geschäftsmodell
indem man Software als Dienstleistung in Form von standardisierten Web Ser-
vices anbietet. Unternehmen können dadurch in komplexen Softwaresystem für be-
stimmte Aufgaben auf Web Services von externen, spezialisierten Unternehmen
zurückgreifen. Durch die immer größer werdende Anzahl an verwendeten Web Ser-
vices in großen Unternehmensanwendungen wurde auch die Komposition von diesen
zu einem wichtigen Thema. Um dies zu ermöglichen entstanden spezielle Komposi-
tionssprachen.
Diese Diplomarbeit stellt ein CaaS (Composition as a Service) Ansatz für Web Ser-
vice Kompositionen vor. Um Kompositionen zu definieren wurde die Sprache VCL
(Vienna Composition Language) entwickelt. Der Hauptaugenmerk der Arbeit liegt
auf einfachen Microflows. Ein Microflow ist eine einfache, atomare Web Service Kom-
position die es den Benutzer, anders als BPEL, nicht ermöglicht die Komposition
zur Ausführungszeit noch zu beeinflussen.
Ein Kompositionsservice transformiert die spezifizierte VCL Komposition zu ei-
nem Microsoft Windows Workflow und stellt ihn auf dem IIS (Internet Informa-
tion Server) als ein eigenständiges Web Service zur Verfügung. In VCL werden
Abhängigkeiten zwischen Web Services basierend auf den Eingabe- und Ausgabe-
parameter implizit definiert. Jedoch ist es möglich durch die Verwendung von Kon-
trollstrukturen die resultierende Komposition zu verändern.
Um das “Publish-Find-Bind” SOA Prinzip zu erfüllen wird VRESCo als ein Service
Register verwendet. Anders als UDDI, abstrahiert VRESCo verschiedene Service
Implementierungen derselben Domäne auf eine gemeinsame Darstellung. VCL un-
terstützt, anders als andere Kompositionssprachen, auch die Angabe von gewünschten
QoS Werten. Hierfür wird ein so genanntes Constraint Hierarchy System verwendet
das es dem Benutzer ermöglichen Kriterien zu spezifizieren die erforderlich oder nur
optional sind. Das Composition Service evaluiert eine in VCL angegebene Komposi-
tion nach funktionalen Anforderungen (Eingabe- und Ausgabeparameter) und wählt
anhand der QoS Kriterien die beste Komposition aus.

5

Danksagung

Ich möchte diese Diplomarbeit meinen Eltern Marica und Stojan widmen, die mich
während des ganzen Studiums in jeder Hinsicht unterstützt haben. Sie haben mir das
Studium ermöglicht und alle meine Entscheidungen unterstützt und mitgetragen.
Bedanken möchte ich mich bei meiner Verlobten Gordana die soviel Verständnis für
meine Arbeit aufbrachte und oft auf mich verzichten musste.
Ein ganz besonderer Dank gilt meinem Betreuer Florian Rosenberg für die hervorra-
gende Betreuung und Zusammenarbeit. Es hat Spaß gemacht an den verschiedenen
Konzepten und Implementierungen zu arbeiten. Die Betreuung während der ganzen
Diplomarbeit war mehr als hervorragend.
Desweiteren möchte ich mich bei meinem Professor Schahram Dustdar bedanken der
es ermöglichte diese Arbeit am Institut für Informationssysteme über einen längeren
Zeitraum und neben der Berufstätigkeit zu machen.

Ovaj diplomski rad posvećujem svojim roditeljima Marici i Stojanu, koji su mi
omogućili studiranje i podržavali me u svakom pogledu tokom cijelog mog školovanja.
Zahvaliti želim i svojoj zaručnici Gordani, koja je imala puno razumijevanja i str-
pljenja za mene i moj rad.
Posebno želim zahvaliti svome mentoru Florianu Rosenbergu na izvanrednom sav-
jetovanju i saradnji. Bilo je interesantno raditi na različitim konceptima i imple-
mentacijama. Podrška tokom izrade ovog rada bila je vǐse nego odlična.
Želim još da zahvalim profesoru Schahramu Dustdaru, koji je omogućio izradu ovog
diplomskog rada na Institutu za informacione sisteme.

6

Contents

1 Introduction 10
1.1 Motivation . 12
1.2 Microflow Example . 15
1.3 Organization of this Thesis . 16

2 State of the Art and Related Work 18
2.1 VRESCo . 18

2.1.1 VRESCo Metadata . 20
2.1.2 Mapping VRESCo Metamodel to Service Layer 23
2.1.3 DAIOS (Dynamic, Asynchronous and Message-oriented Invo-

cation of Web Services) . 26
2.1.4 VRESCo Querying Service 26

2.2 Composition Languages . 27
2.3 Domain Specific Languages . 29

3 Composition as a Service 31
3.1 Overview . 31
3.2 Vienna Composition Language . 33

3.2.1 Evaluating VCL’s Workflow Pattern Support 41
3.3 Abstract Dependency Graph and Structured Composition 45

3.3.1 Abstract Dependency Graph 47
3.3.2 Structured Composition . 51

3.4 VRESCO Querying for Service Candidates 56
3.5 QoS Constraint Hierarchies and their Optimization 57

3.5.1 Constraint Optimization Problem 60
3.5.2 Integer Programming Approach 62

3.6 Composition Publishing . 63

4 Implementation 65
4.1 VLC Implementation . 65
4.2 Creating a Structured Composition 67

4.2.1 Abstract Dependency Graph 68
4.2.2 Structured Composition . 68

4.3 Quality of Service Optimization . 69
4.3.1 Windows Workflow Implementation 77

5 Conclusion and Future Work 80
5.1 Future Work . 81

A Acronyms 82

B VCL Specification for the TELCO Example 84

7

C MGrammar Definition of VCL 86

References 96

8

List of Figures

1 Service Call . 11
2 Service Composition . 11
3 Publish Find Bind . 13
4 Telco Example . 15
5 VRESCo Overview (from [59]) . 19
6 VRESCo Metadata Overview (from [62]) 22
7 VRESCo Metadata Mapping (from [62]) 24
8 Composition as a Service (from [61]) 32
9 VCL Overview . 34
10 VCL Sync . 39
11 ADG Dependency Length . 48
12 Remove ADG Violation Dependency 48
13 Add Dummy Node to Map a XOR Statement 49
14 ADG for TELCO Example . 49
15 ADG Loop Example . 50
16 ADG Sync Example . 51
17 Strucutred Composition for the TELCO Example 52
18 Service Grouping with Mutual Influence 54
19 Telco Structured Composition with AND and XOR Annotations . . 55
20 Simple Composition Example . 58
21 MGrammar Example . 65
22 MGrammar Example with modified Output Tree 66
23 VCL Domain Model . 67
24 Structured Composition Domain Model 69
25 WF Workflow for TELCO Example 79

LISTINGS 9

Listings

1 SMS Services . 21
2 Create a VRESCo Publisher and MetaDataPublisher 24
3 Register Feature and DataConcept in VRESCo 25
4 Register a Service VRESCo . 25
5 Add a Mapping . 26
6 VQL Query . 27
7 Composition Name Definition . 33
8 Used Feature List . 34
9 Global Constraints . 35
10 Local Constraints . 36
11 Service Name Constraints . 37
12 Used Data Concepts by the PortCheck Feature 37
13 While Statement . 39
14 Conditional Statement . 40
15 Throw Statement . 40
16 Return Statement . 40
17 WP1 Sequence . 41
18 WP2 Parallel Split . 41
19 WP3 Synchronization . 42
20 WP4 Exclusive Choice . 42
21 WP5 Simple Merge . 42
22 WP6 Multi-choice . 43
23 WP7 Synchronizing Merge . 43
24 WP8 Multi-merge . 44
25 WP10 Arbitrary Cycles . 44
26 WP11 Implicit Termination . 45
27 Structured Composition for Telco Example 53
28 Structured Composition Algorithm 53
29 VQL Query for CustomerLookup Example 56
30 List of Global and Local Constraints 58
31 ResolveConstraintHierarchie Method 71
32 SetGlobalConstraintFlags Method 71
33 AddFeatureParameters Method . 72
34 AddFeatureParameters Method Continued 73
35 AddMinimiumFeatureConstraint Method 74
36 AddGlobalConstraints Method . 75
37 AddOverallScore Method . 76
38 Solve Method . 77
39 CRM Feature Call Implementation 78
40 VCL Specification for the TELCO Example 84
41 MGrammar Definition of VCL . 86

10

1 Introduction

In the past 30 years we have been faced with a rapid development in computer
technology. Computer networks grow with incredible speed. In the mid nineties
the Internet began to influence our daily life. Today, the Internet is a common
communication media that is used for many different activities. To buy a book it is
no longer necessary to go to the library. Online Shops like Amazon allow the buyer
to order books and other goods easily from home and available 24 hours per day,
365 days per year. E-Governance portals provide us with the possibility to file a tax
return or change our living address online.

To make such services possible, highly sophisticated distributed software systems
are necessary. Information and resources are needed to be shared between many
computers. Starting with simple file and printer sharing, the goal to save resources
was achieved. But in typical complex software solution many computers, software
parts and sources are involved. It was necessary to establish a way of communication
between those different parts.

In today’s complex economy, business models require huge information exchange. In
the whole chain of building a car there are often more than 100 different suppliers
involved, leading to big enterprise software solutions. The software architecture
moved from classic standalone software to distributed software systems. Different
standalone software parts now require to communicate with each other. Moving
away from simple file exchange over a network the idea of RPC (Remote Procedure
Call) [72] was born. RPC is used for an inter-process communication between two
different computer programs. It allows calling a procedure on another computer over
a connected network. For many programming languages a RPC Implementation
like CORBA (Common Object Request Broker Architecture) [30], Microsoft .NET
Remoting [58], RMI (Java Remote Method Invocation) [28] or ONC RPC [64] is
available.

One of the drawbacks of RPC is the architecture of the software that is using it.
It looked like the old standalone solution with the attempt to hide the network be-
tween two computers and processes. A huge enterprise solutions wasn’t maintainable
with RPC. The idea of SOA (Service-oriented architecture) appeared. It introduces
the word “Service”, which stands for an independent, interoperable, loosely coupled
software unit. A service is offering a defined functionality over a standardize proto-
col. It has strict boundaries, which simplifies coding, maintaining and deployment
responsibilities.

A service consumer can bind to a service and consume it. Inspired by object-oriented
programming the service is offered as an interface to the consumer. The clear ad-
vantage is the hiding of the implementation details. The service can be developed

11

Figure 1: Service Call

by a second development team within the organization or generally provided by a
third-party company.

To increase the interoperability between different operating systems, programming
language and processor architectures a standardized way of communication is de-
fined. The service is offering metadata information about the exposed interface,
in the majority of cases it is WSDL (Web Service Description Language). Today,
WSDL is “de facto” academic and industry standard. WSDL is a XML-based lan-
guage that is used to describe the service interfaces with all details that are necessary
to bind to a service. For the communication itself SOAP (Simple Object Access Pro-
tocol) is used. It is also XML-based and it is responsible for a correct exchange of
the transported data. SOAP is mostly used in conjunction with HTTP (Hypertext
Transfer Protocol) as transport layer.

Based on these standards it is possible to consume a service implemented in .NET
and hosted on a Windows operating system within the IIS server from a Java appli-
cation. This essentially simplifies the communication between different companies
and completely new business models emerge. Third-party companies are now offer-
ing services that can be integrated in individual applications without big effort. The
cost of in-house developing, testing and maintenance disappear. The requirements
of experts in a specialized area can be easily outsourced.

Figure 2: Service Composition

By combining services with each other a whole system can be created. Figure 2 show
a small application example that is using services. Every service can be maintained

1.1 Motivation 12

by different employees, teams or even companies. The frontend developer only needs
to know about the authentication and order service. The SMS service can also be
a service provided by a third-party company. Internal changes of a service, like bug
fixing or changing of business logic, will not affect the application. If a new frontend
is required, a mobile client for example, all backend services can be reused. Only a
new frontend needs to be developed. This increases the whole development process.

Service-oriented Architecture simplifies today’s software development and raises it
to a higher level. But SOA also has it difficulties, managing such complex systems
is not a trivial task. As soon as a network between two or more parts (e.g., web
services) is involved, topics like reliability, availability, security, bandwidth or scala-
bility get more important. Web services can be hosted on different environments. A
Web service can be load-balanced in a server farm on many servers. This increases
the availability. Different authentication methods like classical Username-Password
or Token Based Authentication can be supported by web services. All these charac-
teristics are commonly grouped as Quality of Service characteristics. Having many
services in a distributed system the right way of orchestration by considering QoS
is crucial.

1.1 Motivation

SOA has a big influence on today’s software development. But not all principles
are widely accepted. One of SOAs fundamental principles is “Publish-Find-Bind”.
The idea behind it is to support loosely coupled services. In Figure 1 a hard-wired
service is shown. The service consumer knows about the endpoint and the interface
of the service. Moreover the service endpoint address is hard-coded on the service
side. This leads to maintainability problems when a service endpoint changes. If a
service consumer is for example a Windows client application consuming a service
that is hosted on a public accessible server and the client is used by many users, an
endpoint change will lead to broken clients.

A solution for that is to use a service registry that is acting as a broker. An example is
the standardized UDDI (Universal Description, Discovery and Integration) registry.
Figure 3 depicts such an infrastructure. A service provider registers a service at
the service registry. A consumer contacts the service registry with an appropriate
query for a service. The services registry provides, if a match is found, all necessary
service information that is required to use the service to the consumer. The above
mentioned Windows client will benefit from a service registry. The used service is
decoupled, and can change his location. The only part that needs to be notified is
the service registry. For the Windows client a location change will be completely
transparent.

1.1 Motivation 13

Figure 3: Publish Find Bind

Nevertheless, UDDI never reached high acceptance by the industry. Microsoft, SAP
and IBM closed their public UDDI service registers in January 2006. A flat ser-
vice structure without support for versioning, an expressive query language and the
absence of support for non-functional characteristics of hosted services are some of
main reasons for low acceptance.

The VRESCo (Vienna Runtime Enviroment for Service-oriented Computing) project
has the goal to provide an infrastructure to application developers that enables ef-
ficient and flexible development of service-oriented applications without bothering
the developer with all the details of numerous Web service specifications such as
UDDI [46]. It include services offered as public APIs for publishing, searching, reg-
ister for notifications, service compositions and invocation of services. The VRESCo
infrastructure will be explained in detail in Chapter 2.

The subject of this thesis is the composition component of VRESCo. The goal is
to offer composition as a service functionality. That means that a composition of
services can be created as an individual service within VRESCo. The focus lies
on microflows. Microflows are simple workflows composed of several Web services
without support of customer interaction at execution time.

To be able to offer this functionality three steps are required to be fulfilled:

• A way to define a microflow needs to be provided. Beside of functional de-
pendencies and logical sequence in the service execution path the definition
of QoS (Quality of Service) constraints should be supported. Moreover, the
QoS constraints needs to support priority levels (e.g. required, hard, medium,
weak).

• A service needs to resolve the modeled microflow by transforming it to a com-
mon workflow that can be executed on a common workflow engine and to
choose the correct and best service implementations. QoS constraint hierar-

1.1 Motivation 14

chies needs to be respected in this step.

• The finally transformed and composed workflow needs to be hosted as a service.

A DSL (Domain Specific Language) is a programming language for solving problems
in a particular domain by providing built-in abstractions and notations for that
domain. DSLs are usually small, more declarative than imperative, less expressive
and more attractive than general-purpose languages because of easier programming,
systematic reuse, better productivity, reliability, maintainability, and flexibility [42].

In this thesis a DSL named VCL (Vienna Composition Language) is introduced
for microflow modeling. In this language, developers can specify what functional
(e.g., inputs, outputs) and non-functional constraints (e.g., QoS) each service in a
composition has to fulfill. QoS can be specified for the overall composition as well as
for single services by using constraint hierarchies to express a fine-grained distinction
of the importance of a constraint [59].

The modeled microflow within VCL needs to be interpreted. This process is not
trivial. By using a data-flow driven way of expressing service links among each other
a dependency tree needs to be constructed. Therefore the algorithm published in
[19] can be used and extended. These extensions include support to alter the default
data-flow behavior by adding control structures like while, if-then-else or wait to the
mentioned algorithm. The modification on the dependency graph with the control
structures will result in a composition graph. The composition graph represents
the final composition that needs to be transformed into the target workflow engine.
Windows Workflow Foundation [11] is used as the target workflow engine in our
case.

Before processing the final composition graph, the QoS constraint hierarchy needs
to be solved. By relying on the VRESCo as a service register it is required to find
a service implementation for every service involved in the microflow. VRESCo can
offer more than one candidate for a service. The functional constraints are fulfilled
by each of them, they differ only by their QoS values. For every feature a service
candidate is chosen based on the result of the solved constraint hierarchy. Thereby
all required local and global QoS constraints needs to be satisfied. The number of
satisfied optional constraint is maximized to optimize the quality of the composition.

Having finally a composition graph with selected service candidates the transforma-
tion into a Windows Workflow Foundation can be done. The difference to classical
way of using WF is the fact that the WF workflow is created dynamically at com-
position runtime and not by a user at design time.

The last step is to publish the Web service to a Web server. As WF is used as a
workflow engine the service will be hosted in the IIS (Internet Information Server).

1.2 Microflow Example 15

1.2 Microflow Example

Microflows are fine-grained short-running composite services that do not allow user
interactions at runtime. That means when a microflow is triggered, the caller waits
for the result without the possibility to have any influence on the result. To illustrate
a microflow an example will be introduced. The thesis will also reference to this
microflow in the following chapters.

Figure 4: Telco Example

Figure 4 depicts a service composition for number porting. A mobile phone customer
can port his phone number when changing the mobile operator. Therefore, one of
the biggest disadvantage of changing the mobile provider for customers is gone.

To implement the Composition as a Service idea, the whole composition needs to
be encapsulated into a standalone service. The composition has an entry point with
two receiving parameters: customerID and the number that should be ported. After
the service is called the caller can wait for the return value without the possibility to
influence the execution. Therefore, this composition can be classified as a microflow.

By calling the microflow with the two parameters, the services Lookup Partner and
Customer Lookup are invoked in parallel. Parallel execution is possible whenever a
direct or indirect dependency is not present. The Lookup Partner service returns
the name of the current mobile operator who owns the number that should be
ported. The Customer Lookup service provides the typical customer data with name,
address, email and so on.

1.3 Organization of this Thesis 16

The Portability Check service is used to test if the number can be ported at all. A
number can, for example, be blocked by the owning mobile operator. Depending on
the return value an error message will be returned or the microflow will continue with
the Port Number service. On a success number porting the number will be activated
on the new mobile operator by calling the Activate Ported Number service. This is
the first place where a customer information from the Customer Lookup service is
required. That means that the Activate Ported Number service will not be started
until the Customer Lookup service returns a response and the previous port number
check is positive.

After a successful number porting, the customer needs to be notified by an e-mail.
As input the Notify User service requests customers e-mail and a status from the
Activate Ported Number service. This is also a great point to show a direct and in-
direct dataflow dependency. The e-mail address from the Customer Lookup service
is a direct dependency for the Notify User service. Nevertheless, the dependency
is not defined by a straight line between those two services. Because of the exist-
ing dependency between the Customer Lookup and Activate Ported Number service
that appears before the Notify User is executed the dependency is in an in-direct
way satisfied. Direct, in-direct and other service dependencies will be discussed in
Chapter 3.

Additionally, non-functional constraints can be defined for the microflow, for exam-
ple the response time can be constraint to a maximum of 1000ms or the availability
must be higher than 95.5%. It is also possible to add optional or weighted con-
straints, where a non-fulfillment will not fail the microflow creation. Considering
the fact that all services from the example can have more than one candidate with
satisfied functional constraints. Therefore, a selection based on QoS values needs to
be performed. Constraint hierarchies will be a topic in Chapter 3.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows:

Chapter 2 will present the current state of the art and related work. An overview of
the VRESCo Framework and its components will be given followed by a BPEL in-
troduction. The chapter ends with an introduction into Domain-Specific Languages.

Chapter 3 is the main part of this thesis and will deal with all design decision of
the proposed approach. It starts with design and syntax of the VCL DSL. The
semantic interpretation and transformation of VLC to a structured composition
will be covered. An important part is the QoS based optimization and service
candidate selection. The chapter will be concluded with a description of the final
transformation of the composition to a workflow runtime, in our case the Microsoft

1.3 Organization of this Thesis 17

Windows Workflow Foundation.

Chapter 4 depicts some implementation details. It follows the same order as Chap-
ter 3 starting with the VCL implementation in MGrammar and ending with the
publishing process of the generated WF workflows to the IIS.

Finally Chapter 5 will conclude the thesis with some final remarks and an overview
of future work.

18

2 State of the Art and Related Work

This chapter will give an overview of related academic research and industrial stan-
dards to this thesis. Considering the fact that the implementation of this thesis
is one of the core parts of the VRESCo framework it is natural to start with an
overview of it. All core parts of VRESCo will be shortly introduced and the most
important details will be explained. In the second part, an overview of current
service composition languages will be given. The de-facto standard language BPEL
will be introduced. The last part in this chapter will deal with DSLs, their definition
and usage.

2.1 VRESCo

VRESCo (Vienna Runtime Environment for Service-Oriented Computing) aims at
addressing some of the current challenges in Service-Oriented Computing research
and practice. This includes topics related to service discovery and metadata, dy-
namic binding and invocation, service monitoring, QoS-aware service composition,
service management and service notifications [44]. The VRESCo environment en-
ables efficient and flexible development of service-oriented applications without forc-
ing the developer to deal with all the details of numerous Web service specifications
such as UDDI.

Unlike UDDI, the VRESCo runtime, acting as a service register, introduces an ab-
straction layer between the technical and business characteristics of a service. Two
services with the same business intention can have different technical implemen-
tation. In case of two SOAP Web services this will lead to different WSDL files.
Having different WSDL descriptions will lead to a problem for the software develop-
ment. To exchange the service the whole consumer application needs to be modified
and recompiled. The flexibility to change the service at runtime is far away. This is
unfortunately the common situation in today’s service-oriented solutions. To solve
this limitation VRESCo introduced a feature-driven approach for service registra-
tion. A feature is a higher level abstraction of a service implementation. It defines
common features of a service like their input and output parameters. A concrete
service can be mapped to a feature. The detailed metamodel for this abstraction
layer will be explained later in this chapter. By focusing the service consumer on
features and not on service implementations, a decoupling effect can be reached.
The Daios framework adds the required possibility to bind to a VRESCo feature.
The binding is done on runtime, that means dynamic binding and invocation. Daios
is also performing the required mediation from the feature level abstraction to the
chosen service implementation. Having touched the basics of the VRESCo ideal an
overview of the core parts will be given.

2.1 VRESCo 19

Figure 5: VRESCo Overview (from [59])

Figure 5 depicts the VRESCo system. All services within the VRESCo infrastruc-
ture are offered as SOAP Web services. The most important VRESCo services for
application developers are:

• Metadata Service: The Metadata service offers all required functionality to
manage the metadata of a service. Most important is the possibility to specify
the mediation rules for the mapping between a service and a VRESCo feature.
The feature itself is also manageable (i.e., create, modify, delete) over this
service. Moreover, categories, data-concepts as well as QoS properties can be
defined over the metadata service.

• Publishing Service: Unlike the metadata service the publishing service is used
to manage concrete service implementations and not the related metadata.
The main purpose of the service is to publish Web services to the VRESCo in-
frastructure. Two types are supported: static and dynamic publishing. Static
publishing is done over a web frontend and dynamic publishing is done at
runtime and makes a service immediately available for others within the in-
frastructure. There is also a versioning support (i.e., branching and merging
revisions, tagging revisions) included that helps to avoid the classical draw-
backs related to a service lifecycle. The versioning details will not be covered
in this thesis, but they are very well described in [44].

• Searching and Querying Service: It allows to query and search for available
services published within the infrastructure. Querying enables to find exact
matches of the query string in service descriptions and its non-functional at-
tributes (e.g., QoS), whereas searching allows to find services using full text
queries with fuzzy matches. The query-language is similar to HQL (Hibernate
Query Language) and easy to use. The composition service – the main focus of
this thesis – will use the querying service heavily to get all service candidates

2.1 VRESCo 20

for a requested feature in a given composition.

• Daios: Daios stands for Dynamic, Asynchronous and Message-oriented Invo-
cation of Web Services and was developed by Philipp Leitner in his master’s
thesis [38]. Daios is a client-side Web service framework used to bind to fea-
tures provided by VRESCo. Its important to mention that the binding is
done dynamically and provides also the ability to rebind to different feature
implementations (i.e., Web services) on runtime. The required mediation be-
tween feature and Web service is also performed in Daios. More details will
be presented below.

• Notification Service: Notifications play a central role in SOAs, although there
are not very explicit. This service allows the developer to register for receiving
different events: i) when new services in specific categories are available, ii)
when the QoS of a service changes below or above a given threshold, iii) when
the service interface has changed. The use of notifications is transparent in the
sense that the client library handles the creation of local endpoints to receive
notifications from VRESCo if an event occurs.

• Composition Service: The Composition Service is the main focus of this the-
sis. The VRESCo infrastructure is used to achieve a composition of services by
letting the user to specify composition requests in a domain specific language
(DSL). A composition request consists of functional requirements for every fea-
ture like input and output parameters as well as non-functional requirements
(e.g. QoS Values) and finally the composition of features. The information
encoded in the DSL is used and matched with the services available within
VRESCo. All concepts and details will be covered in later chapters. It is
mentioned here just for the classification of the service within the VRESCo
infrastructure.

• VRESCo Client Library: The VRESCo Client Library is a .NET Component
to help developers to access the VRESCo core services. The component can
be seen as a wrapper to the core components with a simple interface. It will
be used to address the publishing, metadata and querying services within the
compositions service.

2.1.1 VRESCo Metadata

By following the SOA idea in a large-scale enterprise environment a particular service
can be offered by more than one service provider. By referring to the example
presented in the first chapter the Notify Service is a great candidate for this. By
assuming that the Notify Service is sending a SMS to the customer, a so called SMS
Gateway is required. Only a short query on the Internet gives a huge amount of SMS
Gateways like Clicktell or T-Mobile. Besides the different QoS values like response

2.1 VRESCo 21

time, availability or price, also the technical interface is not equal. By generating
service stubs from provided WSDL the calling method will look different for every
service. This is shown in Listing 1.

� �
1 // F i r s t SMS s e r v i c e proxy

2 SMS1Client sms1Serv ice = new SMS1Client () ;

3

4 // F i r s t SMS s e r v i c e proxy

5 SMS2Client sms2Serv ice = new SMS2Client () ;

6

7 // requ i red parameter

8 s t r i n g smsText = ”” ;

9 s t r i n g sendTo = ”+4369912915301” ;

10 s t r i n g sendFrom = ”+4369912915302” ;

11

12 // response

13 bool s t a tu s ;

14

15 // send sms by us ing the f i r s t prov ider

16 s t a tu s = sms1Serv ice . SendSMS(smsText , sendTo , sendFrom) ;

17

18 // crea t e r eque s t o b j e c t f o r second prov ider

19 SmsRequest r eque s t = new SmsRequest () {Message = smsText , To = sendTo , From

= sendFrom } ;
20 SmsResponse re sponse = SMS2Client . Send (r eque s t) ;

21 s t a tu s = response . Status ;� �
Listing 1: SMS Services

SMS1Client and SMS2Client are created from the WSDL of two given SMS ser-
vices. The offered functionality is the same, both services are sending a SMS to a
destination number with a given message. But from a technical point of view they
are different. The first SMS service has a method called SendSMS and three string
parameters. The second service is using simply the word Send for the method and
takes one complex parameter that consists of all three strings that are provided in
the first sample. The response types are also different, the first service is dealing
with a Boolean value where the second service encapsulates the Boolean value in a
complex type. Both approaches for dealing with parameters are widely spread. By
using a complex type for input and output parameters a change can be made to
them by adding new encapsulated properties without having a breaking change in
the service. For a developer it is not possible to create a generic client application
that talk with SMS1Service and SMS2Service, and is able to use a third service in
the future. The application is so called hard-wired. The decision for a service needs
to be made in the design time of an application. This is of course a big disadvantage.
It can be easily possible that a new provider with a cheaper price per SMS will ap-
pear. The software needs to be modified for the new service because of the different
endpoint address and WSDL. In most cases the modifications on the software is not
the only problem, depending on the type of the software and the deployment sce-
nario, a huge number of software clients needs to be updated with the new version.

2.1 VRESCo 22

This is a common scenario in today SOA development. The main reason for this
problem is located on a technical and not on business level. To avoid this limitation
an abstraction layer is introduced to hide the technical details. The client software is
build and bind against an abstract Service, and not a concrete service. The concrete
service can be exchanged transparently to the client. A redeployment and update
of the client software is no longer needed.

Figure 6: VRESCo Metadata Overview (from [62])

Figure 6 depicts the metadata model included in VRESCo that facilitate the ab-
straction layer. The following description of the metadata model is taken partially
from Rosenberg et al.[62]. The main building blocks of the VRESCo metadata model
are Concepts. A Concept has a specific meaning in a given domain. There are three
different types of concepts (inherits from Concept):

• Features represent activities in the domain (e.g. send SMS)

• State Concepts represent states in the domain (e.g. user notified)

• Data Concepts represent concrete entities in the domain (e.g. User or SMS
text)

A Data Concept can contains other Data Concepts. For example an address Data
Concept can consists of a street, zip, city, state and country. Therefore we dis-
tinguish between simple and complex Data Concepts. A simple Data Concept is
based on a predefined type like String or Integer. On the contrary a complex Data
Concept contains at least one simple or complex Data Concept. Therefore, a simple
Data Concept would be the string based country Data Concept and the address

2.1 VRESCo 23

Data Concept containing all the simple Data Concepts mentioned above would be
complex.

Feature Concepts are associated with one Category to be easily classified. A Cat-
egory can contain also subcategories. The behavior of a sub-category is similar to
object oriented inheritance, all Features defined for the parent category are also
available for the sub-category. Each Feature can have a Precondition and a Post-
condition. They consists of logical statements that needs to be fulfilled before,
respectively after the service execution. Both conditions are composed of multiple
Predicates that can have a number of Arguments. A Predicate can be divided into
one of this:

• Flow Predicate: Is related to the data flow of a concept. By using the keywords
requires(X) and produces(X) where X is a concept a data flow dependency
can be created. In our Notify User scenario we would have a Feature Send

and the Data Concepts SMSMessage and SMSResult. The precondition would
have the predicate requires(SMSMessage) and the postcondition the predicate
produces(SMSResult).

• State Predicate: Are used to specify a global condition that is valid before
(Precondition) or after (Postcondition) a feature is executed.

2.1.2 Mapping VRESCo Metamodel to Service Layer

A service that is registered into the VRESCo Infrastructure needs to be mapped to
the explained metamodel in the last section. Figure 7 depicts the mapping rules
between the domain metamodel and a concrete service.

A concrete service is grouped into Categories. A Category on the other hand can
have more than one Service. Service operations are mapped to Features and a
service parameters to Data Concepts. Features and Data Concepts can be mapped
to more than one operation respectively parameter. This leads to the possibility to
have more than one service abstracted to a specific domain metamodel. A service
grouped into a specific Category needs to provide at least a set of operations that
can be mapped to all existing Features within the Category. If a service is assigned
to more than one Category, all included Features need to have their counterpart on
the operation side. The Post and Pre State constrains for a service can be mapped
to the Pre and Postcoditions on the domain metadata layer. It is important to
mention that operation and parameters of a service are well defined in the provided
WSDL file. On the other hand Post and Pre States are not covered and supported
within WSDL. The following listings will show the code for mapping a service to
the domain model by using the provided VRESCo Client Library. The code is used

2.1 VRESCo 24

Figure 7: VRESCo Metadata Mapping (from [62])

within the example composition explained in the first chapter to register a simple
SMSService into VRESCo.

� �
1 private stat ic IVReSCOPublisher pub l i s h e r =

2 VReSCOClientFactory . CreatePubl i sher (” guest ”) ;

3

4 private stat ic IVReSCOMetadataPublisher metadatapubl i sher =

5 VReSCOClientFactory . CreateMetaDataPublisher (” guest ”) ;� �
Listing 2: Create a VRESCo Publisher and MetaDataPublisher

To create a domain within the metamodel , register and map a service in VRESCo
a proxy for the publisher and metadata service is required. The proxy can be easily
created with the Client Library (Listing 2).

The first step is to create a new domain model with a category and the appropriate
features and data concepts. Listing 3 shows how to use the metadata service to cre-
ate a NotificationService category with a NotifyUser feature and the corresponding
data concept for the input parameter. The output parameter and data concept are
hidden in the listing because the implementation is similar to the input parameter
respectively data concept. Listing 4 is the registration itself done with the publishing
service.

A service revision is required for the concrete service. The publisher service offers
the CreateNewService and AddOperation methods to register a service revision
respectively an operation. There is also a SetOperationQoS method that is used to

2.1 VRESCo 25

� �
1 Serv iceCategory not i fyCategory = new Serv iceCategory (” No t i f i c a t i o n S e r v i c e ”)

;

2 not i fyCategory = metadatapubl i sher . CreateCategory (not i fyCategory) ;

3

4 Feature no t i f yFea tu r e = new Feature () ;

5 not i f yFea tur e .Name = ”Not i fyUser ” ;

6

7 DataConcept no t i f y Input = new DataConcept () ;

8 not i f y Input .Name = ”Noti fyRequest ” ;

9 not i f y Input = metadatapubl i sher . CreateDataConcept (no t i f y Input) ;

10 not i f y Input = metadatapubl i sher . AddSubElement (not i fy Input ,

11 DataConcepts . Str ing , ”Number” , 1 , 1) ;

12 not i f y Input = metadatapubl i sher . AddSubElement (not i fy Input ,

13 DataConcepts . Str ing , ”Message” , 1 , 1) ;

14

15 Parameter paramNotifyIn = new Parameter () ;

16 paramNotifyIn . DataConcept = not i f y Input ;

17 paramNotifyIn .Name = ” reques t ” ;

18 paramNotifyIn . MaxOccurs = 1 ;

19 paramNotifyIn . MinOccurs = 1 ;

20 paramNotifyIn . IsOutParameter = fa l se ;

21

22 Parameter paramNotifyOut = new Parameter () ;

23 // s im i l a r to paramNotifyOut in

24

25 not i fyCategory = metadatapubl i sher . AddFeature (not i fyCategory , not i fyFeature

,

26 new Parameter [2] { paramNotifyIn , paramNotifyOut } , null)

;� �
Listing 3: Register Feature and DataConcept in VRESCo

� �
1 Se rv i c e n o t i f i c a t i o nS e r v i c eC1 = new Se rv i c e () ;

2 no t i f i c a t i o nS e r v i c eC1 .Name = ” No t i f i c a t i o n S e r v i c e ” ;

3 Se rv i c eRev i s i on no t i f i c a t i onSe rv i c eC1Rev = new Se rv i c eRev i s i on () ;

4 not i f i c a t i onSe rv i c eC1Rev . S e rv i c e = no t i f i c a t i o nS e r v i c eC1 ;

5 not i f i c a t i onSe rv i c eC1Rev . Wsdl = ”http :// l o c a l h o s t :12011/ No t i f i c a t i o n S e r v i c e

?wsdl ” ;

6 not i f i c a t i onSe rv i c eC1Rev . Contract = ” INo t i f i c a t i o n S e r v i c e ” ;

7 not i f i c a t i onSe rv i c eC1Rev = pub l i s h e r . CreateNewService (no t i f i c a t i onSe rv i c eC1

,

8 not i fyCategory , user , no t i f i c a t i onSe rv i c eC1Rev) ;

9 Operation not i f i cat ionC1Op = new Operation () ;

10 not i f i cat ionC1Op .Name = ”Not i fyUser ” ;

11 Parameter no t i f i c a t i onC1Reques t = new Parameter () ;

12 not i f i c a t i onC1Reques t .Name = ” reques t ” ;

13 not i f i c a t i onC1Reques t . DataConcept = not i f y Input ;

14 not i f i c a t i onC1Reques t . MaxOccurs = 1 ;

15 not i f i c a t i onC1Reques t . MinOccurs = 1 ;

16 not i f i c a t i onC1Reques t . IsOutParameter = fa l se ;

17 not i f i c a t i onSe rv i c eC1Rev = pub l i s h e r . AddOperation (no t i f i c a t i onSe rv i c eC1Rev .

Id ,

18 not i f i cat ionC1Op , new Parameter [2] { not i f i ca t ionC1Reques t ,

not i f i ca t i onC1Response } , null , not i fyCategory . Features [0]) ;� �
Listing 4: Register a Service VRESCo

2.1 VRESCo 26

set QoS values for a particular service revision. The last part is the mapping of a
service revision to operation. This is shown in the Listing 5.

� �
1 Mapper noti fyc1Mapper = metadatapubl i sher . CreateMapper (not i fyCategory .

Features [0] ,

2 not i f i c a t i onSe rv i c eC1Rev . Operat ions [0]) ;

3

4 Assign not i fyc1Reques tAss ign = new Assign (noti fyc1Mapper .

FeatureInputParameters [0] ,

5 noti fyc1Mapper . OperationInputParameters [0]) ;

6 noti fyc1Mapper . AddFeatureToOperationFunction (not i fyc1RequestAss ign) ;

7

8 metadatapubl i sher . AddMapping(noti fyc1Mapper . GetMapping ()) ;� �
Listing 5: Add a Mapping

The Mapper object can be obtained from the metadata service by providing the fea-
ture and the operation that should be mapped. An Assign object expresses a direct
mapping between the parameter in the domain model and the service parameter. In
this sample it is an easy mapping because the structure of the both parameters are
equal. A complex mapping is also possible within VRESCo but will not be discussed
in this thesis. The details are explained in the [62] paper. The last statement calls
the AddMapping method and adds the created mapping.

2.1.3 DAIOS (Dynamic, Asynchronous and Message-oriented Invoca-
tion of Web Services)

DAIOS is a .NET Client Component that is used to consume features published
in the VRESCo environment. The general idea of DAIOS is to provide a stubless
way to use services and hide a much as possible of the technical implementation.
The whole communication is done with DAIOS messages that are transformed into
a format which is used natively by the service. Currently it supports WSDL and
REST typed services. Additionally, there is also a VRESCo mediator included,
which is used to transform features calls to service operations, and data concepts
to parameter and vice versa. Thereby, a mechanism is offered to dynamically bind
and invoke service. It is important to mentioned the core functionality at this point
because it will be used in later chapters for dynamic invocation of services composed
into a composition. For more details the published paper [37] is a good reference.

2.1.4 VRESCo Querying Service

The last topic in the VRESCo overview part is the provided querying service. By
using the metadata and publishing service a domain model and appropriate services

2.2 Composition Languages 27

can be added to VRESCo. The second element in the “Publish-Find-Bind” principal
is the ability to get a service with specific characteristics from a service registry
instance. VRESCo has the VQL (VRESCo Query Language) for this purpose. It
provides the functionality to query for all information stored in the VRESCo registry
database. The syntax is similar to HQL, a query language that is used in the widely
spread OR mapper Hibernate. Listing 6 shows a typical VQL query.

� �
1 var query = new VQuery(typeo f (VReSCO. Contracts . Core . S e rv i c eRev i s i on)) ;

2

3 query .Add(Express ion .Eq(” I sAct i v e ” , true)) ;

4 query .Add(Express ion .Eq(” Se rv i c e . Category .Name ” , ” No t i f i c a t i o n S e r v i c e ”)) ;

5 query .Add(Express ion .Eq(”Operat ions . Feature .Name” , ”Not i fyUser ”)) ;

6 query . Match (Express ion .And(

7 Express ion .Eq(”Operat ions .QoS . Property .Name” , Constants .

QOS PRICE) ,

8 Express ion . Le (”Operat ions .QoS . DoubleValue” , maxPrice))) ;

9

10 var s t r a t e gy = new ExactQuerying (maxResults) ;

11 return s t r a t e gy . Query<VReSCO. Contracts . Core . Se rv i c eRev i s i on >(query ,

NHibernateContext . Se s s i on) ;� �
Listing 6: VQL Query

The constructor of the VQuery takes the wanted result type as parameter. The
query is defined by adding criteria to the query object. A criteria contains one or
more expressions. An expression supports logical(e.g., AND,OR,...) and equivalent
operators(e.g., greater than, less or equal, ...). There is also a support for querying
strategies. For this thesis only the exact strategy is relevant, which is used to
get only results that fulfill all defined criteria. There are also priority and relaxed
querying strategies where all criteria’s does not have to be satisfied. The Query
method returns finally a collection of result elements, in this case a collection of
ServiceRevisions.

2.2 Composition Languages

Web services facilitate complete new business-to-business and enterprise integration
models. Built on defined standards like WSDL and SOAP an integration and com-
munication over the company boundaries is easily possible. It is no more required
to have all IT and Domain know-how in one company. A good example is the SMS
Getaway service. Today, a software with SMS notifications can be easily developed.
Architects and developers can focus on the domain and core part of the application
without dealing with SMS notifications details like contracts with and between in-
dividual mobile network providers. Small companies, on the other side, can offer a
specialized Web service as a product. The know-how is only for the SMS system
required, the cost structure and the service quality is much better because of the

2.2 Composition Languages 28

specialization level.

On the other hand, big companies have a huge amount of Web services in their own
infrastructure. There is also a tendency to offer legacy systems over a Web service
interface inside the company to increase software reusability, commonly known as
EAI(Enterprise Application Integration)[25]. In case of simple business cases where
just a small number of Web services are involved often an own software part is
developed that is using the services. But having huge business workflows that need
to be mapped to the service level is a big challenge. Often the root business workflow
can change, and the change itself needs to be implemented on the service level
as soon as possible. Composition languages have been introduced to deal with
these problems. A composition language is used map a business workflow to a
service composition. The composition is based on classical control structures and
the invocation of the services. It specifies the execution path of particular Web
services as well as their input and output parameters. Decisions constructs are
included to support handling of different workflows states and error scenarios within
the composition. The goal is to specify a service composition model that is compiled
and executed on a composition engine.

BPEL (Business Process Execution Language) [34] is the most used composition
language for Web service composition. It was introduced in 2002 by Microsoft and
IBM by borrowing language features from Microsoft’s XLANG [66] and IBM’s WSFL
[39]. BPEL built on top of Web service standards WSDL and SOAP. Like both of
them, BPEL compositions are written in XML. The language itself is complex and
unreadable. Often designers with a GUI are used to create a BPEL composition.
A good overview of the XML syntax and the collaboration with WSDL is given in
[68].

A BPEL composition, or to use the correct wording, a BPEL process specification
is similar to a flow-chart. It is composed of activities. Activities are divided into
primitive or structured. Primitive activities are:

• invoke: invokes a specific Web service operation described in WSDL

• receive: waits for a message from an external source

• reply: replies with a message to an external source

• wait: go into an idle state for a given period

• assign: copy data object called data containers from one to another

• throw: notifies that an error occurs within the execution

• terminate: terminate the whole service instance

2.3 Domain Specific Languages 29

• empty: empty block, do nothing

Structured activities are:

• sequence: defines an execution order

• switch: conditional statement to select an execution path based on a condition

• while: offers looping

• pick: is used for race conditions based on timing or external triggers

• flow: is used to support parallel execution

• scope: is used to group activities

In the paper [74] an evaluation of supported workflow patterns is done. There is
also a comparison table of supported patterns within other composition languages
like XLANG, WSFL, BPML and WSCI.

The general problems of BPEL are covered within the two mention papers, [68] and
[74]. Nevertheless, there are some other problems that we identified within BPEL.
First of all it is impossible to abstract the service layer from the business layer
because of a strict binding to WSDL. Two alternative services need to implement
exactly the same interface. This is of course a problem, especially if the service is
located outside of company boundaries. The language itself is XML based and tends
to grow disproportionate with the complexity of the composition. Another topic is
QoS-awareness, it is generally not supported. Most of this topics will be addressed
within the composition approach presented in this thesis.

2.3 Domain Specific Languages

A typical programming language like C or Java is used to solve many different
problems. A developer needs to have the know-how to program in this language
and understand the problem domain. Therefore, this languages can be classified as
general purpose or generic languages because of their widely spread usage. Alter-
natively, there are also domain-specific languages that are limited to solve a specific
problem within a defined domain. Good examples are HTML and CSS, or BPEL
mentioned in the last section. Such a language can be classified as a specific language
in a domain. In some cases it is hard to decide if a language is generic or specific.
This is a the case with Cobol and Fortran. Cobol is used for business processing and
Fortran for scientific numeric computations. A typical domain is specified in both
cases. But both languages are not restricted to these domains, and can be used

2.3 Domain Specific Languages 30

to solve other problems. Therefore, Cobol as well as Fortran are typical generic
languages with an influence of a specific domain. In general there are three different
approaches to split the domain from the general language presented in [70]:

• Subroutine libraries contain subroutines that perform related tasks in well-
defined domains like, for instance, differential equations, graphics, user-interfaces
and databases. The subroutine library is the classical method for packaging
reusable domain-knowledge.

• Object-oriented frameworks and component frameworks continue the idea of
subroutine libraries. Classical libraries have a flat structure, and the applica-
tion invokes the library. In object-oriented frameworks it is often the case that
the framework is in control, and invokes methods provided by the application-
specific code.

• A domain-specific language is a small, usually declarative, language that offers
expressive power focused on a particular problem domain. In many cases, DSL
programs are translated to calls to a common subroutine library and the DSL
can be viewed as a means to hide the details of that library.

Van Deursen et al. proposed also the following definition for a DSL:

A domain-specifc language (DSL) is a programming language or
executable specification language that offers, through appropriate

notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.

DSLs allow us to map a domain and it boundaries to the language. Domain ex-
perts can use the DSL without the problem to work with a complex programming
language. The abstraction layer can be defined on a level that fits perfectly to the
given domain. The domain related code, workflow or problem definition and solution
is located on one location without the drawback to have it distributed over thou-
sands of lines of code. Therefore, DSLs are enhancing the productivity, reliability,
maintainability and portability.

But there are of course disadvantages related to DSLs. To design a DSL is not
an easy task and requires a lot of domain and implementation knowledge. To find
the right scope for the DSL and to balance between domain-specific and general-
purpose language constructs can be a challenging task. Additionally, there are costs
for designing, implementation and maintenance. DSL users have to be educated to
work with the DSL.

31

3 Composition as a Service

This chapter presents our proposed Composition as a Service (CaaS) approach. It
starts with a short overview of the whole system. The second section will introduce
the Vienna Composition Language (VCL) for composition modeling. The transfor-
mation from a semantic model to a structured composition is the topic of the third
section. The fourth section will deal with QoS constraint hierarchies and the their
resolution. The last section will describe the transformation of the structured com-
position to a workflow instance for a common workflow engine and their deployment.

3.1 Overview

The Software as a Service approach has become an important and powerful SOA
fundamental in the last few years. Software reusability and maintainability has
grown within and over company boundaries. One of the main benefits of the SaaS
approach is the ability to compose new functionality out of existing services into
so-called “composite services”, thus significantly increasing reusability of existing
services. But the composition or orchestration task is not a trivial. The higher the
number of involved services within a composition ,the harder it is to manage and
hold the overview over the composition.

Currently, there are two approaches to create a service composition. The classical
way is to create an application or service in a common programming language that is
referencing and using all included services. This, even though it is the most common
way, has a lot of disadvantages. Besides the change management problems, there is
the whole overhead of hosting the application within the infrastructure which needs
to be done manually.

BPEL process descriptions follows the second approach to deal with service compo-
sitions. A service composition, or so-called process description in BPEL, is described
in a XML format and deployed to a composition engine for execution. In contrast
to the first approach, the hosting task is completely covered by the composition
engine. Nevertheless, both approaches are hard-wired to WSDL and make it not
possible to replace services with other similar services. BPEL offers at least UDDI
support to cover the “Publish-Find-Bind” SOA principal. But having the included
services hard-wired to WSDL descriptions, which is also the case if UDDI is used,
lowers the flexibility to change service providers dynamically if a better service be-
comes available. The reason can be a better QoS value for the offered response time
or a better pricing offer. At least there are diverse modeling tools with a graphic
interface which are helping to hide the XML complex for the user.

This thesis introduces a Composition as a Service (CaaS) approach to deal with the

3.1 Overview 32

problems described above. Relying on the VRESCO infrastructure and using it as
a service register the problem with the “Publish-Find-Bind” principal is solved by
building a composition against VRESCO features and not concrete service interface.
To offer a simple and expressive way to design compositions the domain specific lan-
guage VCL is introduced. VCL is able to define constraint hierarchies on QoS values
like response time, availability or security. To avoid over-constraint compositions,
constraint hierarchies offer optional constraints with a strength level that makes it
possible to publish a composition even if not all constraints are fulfilled. The core
component, the composition service within VRESCO, is used to interpret the de-
fined composition in VCL, create the composition, deploy it automatically and offer
it immediately as a Web service.

Figure 8: Composition as a Service (from [61])

Figure 8 depicts an overview of the developed composition infrastructure. The VCL
specification is a written service composition in VCL. The service client is a .NET
DLL that is used to interpret the VCL specification, check if syntax errors are
included and transform it to a semantic model. The semantic model is passed to
the composition service within the VRESCO infrastructure.

At first, the VRESCO service registry will be queried for required features and
service candidates. If a feature without a service candidate is found the composition
can’t be created and the client will get an error. The next step is to create a
structured composition. This is done by analyising the given VCL semantic model
with a transfomation alorithm which creates an execution graph for the composition.
Other than BPEL, the exact execution order has not to be complete within the
VCL specification. By using a mix of defined control structures within the VCL
specification and an implicit data-flow dependency model a concrete execution order
is derived.

3.2 Vienna Composition Language 33

VCL supports mandatory and optional constraints on feature and composition level.
That means an optional response time constraint can be defied on the whole com-
position, so-called global constraints, and a required availability constraint on a
particular feature within the composition, so-called local constraints. This leads
to a complex constraint hierarchy problem that is transformed to an optimization
problem and solved with an optimization solver. At this point a VCL specification
can be over-constrained and the user needs to relax some constraints to be able to
deploy the composition successfully.

The next step is to transform the structured composition, with selected service
candidates as a result from the constraint hierarchy, into a workflow for a common
workflow engine. Windows Workflow Foundation is used as a target workflow engine
because of the ability to deploy and host is easily achieved within the Internet
Information Server. The last step is the deployment itself, where the WF workflow
is deployed as a Web service. The user gets a status message with the WSDL location
for the new deployed service.

3.2 Vienna Composition Language

The Vienna Composition Language is a domain specific language with the goal to
provide an intuitive and simple DSL for the purpose of service composition within
the VRESCO infrastructure. Because of the VRESCO abstraction layer, the user
is modeling a composition out of features and not concrete services. This design
decision provides the ability to select dynamically the best service candidate based
on functional and non-functional characteristics [61].

A typical VCL composition consists of three sections a) a list of all involved features
within the composition b) a section with functional and non-functional constraints
and c) a description of the execution order or workflow.

A VCL composition starts with the keyword composition followed by the name of
the composition and the a semicolon. In general, the VCL syntax has borrowed a
lot from the C language. We decide to take this syntax style because of the wide
spread languages like C#, C++ or Java which are familiar to many developers. For
our Telco sample the first line is shown in Listing 7.

� �
1 compos i t ion TelcoCasestudyComposit ion ;� �

Listing 7: Composition Name Definition

In the feature definition section all used features need to be specified that are involved
in the composition. Listing 8 shows the definition for the Telco sample. The keyword
feature is used to indicate a beginning feature definition statement followed by the

3.2 Vienna Composition Language 34

Figure 9: VCL Overview

feature name and category and finished again with a semicolon. It is important
to note that the feature name is not the name of a concrete service but the name
a feature within the VRESCO service registry. A feature can be constraint to a
specific service candidate within the constraint definition section. There is also a
support for prefix and suffix wildcards within the category name to simplify the
support of sub-categories.

The constraint section can be divided into global constraint section and local con-
straint sections for individual features. The order within the VCL composition is
not important.

� �
1 f e a t u r e Crm, ∗ . CustomerService . CustomerLookup ;

2 f e a t u r e LookupPartner , ∗ . PhoneManagementService . LookupPartner ;

3 f e a t u r e PortCheck , ∗ . Po r t i ngSe rv i c e . Por tab i l i tyCheck ;

4 f e a t u r e PortNumber , ∗ . Po r t i ngSe rv i c e . PortNumber ;

5 f e a t u r e ActivatePort , ∗ . PhoneManagementService . ActivatePortedNumber ;

6 f e a t u r e Noti fy , ∗ . N o t i f i c a t i o n S e r v i c e . Not i fyUser ;� �
Listing 8: Used Feature List

3.2 Vienna Composition Language 35

� �
1 c on s t r a i n t g l oba l

2 {
3 input = {
4 int customerId ;

5 s t r i n g numberToPort ;

6 }
7 output = {
8 s t r i n g s t a tu s ;

9 }
10 qos = {
11 responseTime = 7000 ;

12 a v a i l a b i l i t y = 0 . 6 6 ;

13 }
14 }� �

Listing 9: Global Constraints

A constraint definition element always starts with the constraint keyword followed
by the name of the constraint. For global constraints, always the word global is
used and for local constraints the name or the feature. Within a constraint element
functional and non-functional constraints can be specified. Functional constraints
are inputs and outputs. They will start with input = respectively output = and
have their content surrounded with curly brackets. The content itself is a repre-
sentation of a VRESCO Data Concept. That means for a local constraint that the
given feature has also to have the specific input and output data concept registered
within VRESCO. In case of global constraint, an input and output constraint is
used to specify the interface and in the end the WSDL of the resulting composition.
The global constraint given in Listing 9 will result in a composed Web service with
a method that is taking a customerId and a numberToPort as input parameter and
returning a status. It is important to note that all input and output constraints
are strongly typed. That means for the global constraint that the customerId is an
integer and the parameters numberToPort and status are simple string. VCL also
supports complex types. This is shown in the following listing.

In this sample the local constraint for the Crm feature is using complex types as
input and output constraints. The CustomerLookupRequest is in this case a complex
type that consists of the integer CustomerId. The CustomerLookupResponse is more
complicated and contains the typical customer data set.

The non-functional constraints are located behind the qos keyword. For this thesis
and the first version of VCL only a subset of common quality of service values are
supported. But the language can be easily extended to support every other quality
of service attribute that is included within the VRESCO environment. All qos

elements fits into the qosName = value; pattern. It is important to know that the
equal character does not mean that the response time needs to be exactly a given
value but rather depending on the context need to be greater, equal or lower that

3.2 Vienna Composition Language 36

� �
1 c on s t r a i n t Crm

2 {
3 input = {
4 CustomerLookupRequest [

5 int CustomerId ;

6]

7 }
8

9 output = {
10 CustomerLookupResponse [

11 s t r i n g Firstname ;

12 s t r i n g Lastname ;

13 s t r i n g PhoneNumber ;

14 s t r i n g Mail ;

15 s t r i n g S t r e e t ;

16 s t r i n g Zip ;

17 s t r i n g City ;

18]

19 }
20

21 qos = {
22 responseTime = 1000 ;

23 a v a i l a b i l i t y = 0 . 6 6 ;

24 }
25 }� �

Listing 10: Local Constraints

the given value. The value itself is also not strong type because of typical values
types that are used for different quality of service types. For example the response
time is always given as an integer, whereas the availability is declared as a double.
Response time and the availability are also a good sample for values with different
meaning of the equals symbol. The constraint value on response time means that
the concrete service value needs to be lower that the constraint value on the other
hand an availability has to be higher that the given value. The following list will
give an overview of supported QoS attributes by VCL:

• Response Time is given in msec. A constraint of max. 5 seconds will be
responseTime = 5000

• Availability is constraint by the percentage. The value is given as a decimal
value. availiability = 99,95 means an availability of 99,95 or higher is
required

• Reliable Message is a typical Boolean typed constraint. The only two possible
values are true or false.

• Security is enumeration typed constraint. VCL supports X509, None, User-
namePassword and IntegratedSecurity.

3.2 Vienna Composition Language 37

• Accuracy is like availability constraint with a percentage value. The value is
also a decimal value and means that the feature require at least the constraint
value.

• Throughput is given as an integer that stands for invocations per second. To
satisfy the constraint the feature needs to provide the constraint number of
invocations per second or more.

• Price is expressed with an integer and defines the maximum cost for a single
invocation.

There is also a special constraint type named service. It is used to select a service
candidate for a feature directly. This means also that this feature has a fixed service
candidate and the feature itself is not a target of the constraint hierarchy optimiza-
tion. To be more precise, the QoS values are of course included in the calculation
of global QoS values, but there is not a service candidate selection done within the
optimization process even if there is a service candidate with better QoS values.
Listing 11 shows such a constraint.

� �
1 c on s t r a i n t FeatureName

2 {
3 s e r i v c e = {
4 serviceName= MasterCardWebService ;

5 }
6 }� �

Listing 11: Service Name Constraints

The last part of a VCL specification is the workflow definition section. The VCL user
needs to specify relationships between features and their input respectively output
values. With additional control structures and implicit data-flow rules the target
composition is specified.

VCL supports an amount of control structure statements that will be listed and
explained in this section. First of all it is necessary to explain the data-flow principle.
To do this, the control structure invoke needs to be introduced.

� �
1 invoke PortCheck {
2 Portab i l i tyCheckRequest [

3 NumberToPort = numberToPort ;

4 NewProvider = LookupPartner . LookupPartnerResponse . ProviderName ;

5]

6 }� �
Listing 12: Used Data Concepts by the PortCheck Feature

3.2 Vienna Composition Language 38

The invoke statement is used to call a feature. Therefore, the feature name is
placed after invoke followed by a section for input parameter specification. In
the constraint definition section the PortCheck feature is defined with an input
constraint which contains a complex type ProtabilityCheckRequest containing a
NumberToPort and NewProvider member. In the invoke statement, values needs
to be assigned to the input parameter. In this case, this is done in Line 3 and 4
in Listing 12. The important part is located on the right side of the equal opera-
tor. numberToPort was defined within the global constraint as an input parameter.
Therefore, the parameter can be used as an input value within features input con-
straints. The LookupPartnerResponse type is defined as an output constraint for
the LookupPartner feature. After a feature is called, the output parameter can be
used within an input for other features.

To use an output parameter from Feature A as an input parameter for Feature

B, Feature A needs to be executed before Feature B, because there is an existing
data dependency.

� �
1 invoke Feature A . . .

2 invoke Feature B . . .� �
The workflow definition segment can have two meaning a) invoke first Feature A

and afterwards Feature B b) invoke Feature A and Feature B in parallel. VCL
will interpret this example as sequence of (Feature A, Feature B) if Feature B

has a data dependency to Feature A, otherwise both features will be executed in
parallel.

In general, all invoke statements are invoked in parallel if there is no data-flow
dependency or an explicit control structure. This has the advantage to optimize
the composition automatically and take this task from the developer. On the other
hand, the developer needs to be aware that the features will be executed in parallel.

A control structure that can break the data-flow rule to execute in parallel is the
sync statement. It is used for synchronization within a composition.

3.2 Vienna Composition Language 39

Figure 10: VCL Sync

In Figure 10 Feature B is explicitly executed after Feature A independently from
data-flow dependencies between them. It is necessary to note that there is a floating
root node. All invoked features have an implicit dependency to the current root-
node. The current root node is at the beginning of a composition the entry point
itself. By using control structures like sync it is moved to the sync node. This
behavior is also included within the figure 10. Feature A has the entry point as a
root node. The sync statement is above the Feature B invoke statement. Therefore,
the root node is changed to the sync node and derived to the Feature B.

The next important control structure is the while statement. It used to support
loops in VCL.

� �
1 while [4] (payment . PaymentResponse . s t a tu s != OK) {
2 invoke p1 ;

3 }� �
Listing 13: While Statement

The while is defined with an expression. As long as the expression is true the
body of the while statement is looped. A while statement is, similar to the sync
statement, also becoming a root-node. But different to sync, it is only valid within
the while body and note outside. This is required to hold all invocations within a
while and not to move them out. Without the root node an invoked feature that
has no data dependencies to other features within the while would be outside of the
root node. Another optional information that can be added to a while statement is
the estimated number of loops (e.g., [4]). This is used within the QoS optimization
algorithm for a better approximation. This value is entered as an integer enclosed
by square brackets after the keyword while.

Conditional statements are fundamental constructs in nearly every language. This is

3.2 Vienna Composition Language 40

also valid for VCL (Listing 14). The conditional statement is implemented with the
check and optional else statement in VCL. The check statement has a mandatory
expression that needs to be fulfilled to execute the content block. Nested check
statements are supported. The else statement is optional and has also optional
probability value that is included in front of the content body enclosed by square
brackets. The probability value is used later in the QoS optimization and is expressed
with an interval from 0.0 to 1.0.

� �
1 check (PortCheck . Portabi l i tyCheckResponse . I sPo r tab l e = 1)

2 {
3 invoke PortNumber {
4 PortNumberRequest [

5 NumberToPort = numberToPort ;

6]

7 }
8 }
9 else [0 . 1]

10 {
11 throw ”Number can ’ t be ported by ex t e rna l prov ide r ” ;

12 }� �
Listing 14: Conditional Statement

Error handling is implemented by the keyword throw and an error message (Listing
15). The throw statement returns immediately the error message to the composition
caller. In general, it is used in a combination with a conditional statement to check
return values of particular features and identify if the composition can continue with
the execution or a state is reached where the composition has to stop.

� �
1 throw ”Number can ’ t be ported by ex t e rna l prov ide r ” ;� �

Listing 15: Throw Statement

The keyword supported by VCL is return. It is used to confirm a successful com-
position call and to set the returning data object (Listing 16).

� �
1 return {
2 s t a tu s = ”Job done” ;

3 }� �
Listing 16: Return Statement

3.2 Vienna Composition Language 41

3.2.1 Evaluating VCL’s Workflow Pattern Support

Van der Aalst presents in [67] a set of 20 workflow patterns that can be used to
classify a composition or workflow language based on their expression power. He
also evaluates the most widely spread composition languages in [74] and gives an
overview in a table with supported patterns for each language. This section will
describe shortly all supported patterns and show if and how they are supported by
VCL. At the end, the table provided by [74] will be extended with a VCL column.
The short description of each patter are cited directly from [67].

WP1 Sequence: An activity in a workflow process is enabled after the completion
of another activity in the same process.

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . . // only i f f ea tu re2 i s us ing re turn va lue s as parameters

from fea ture1

3

4 //OR e x p l i c i t wi th sync

5

6 invoke f e a tu r e 1 . . .

7 sync f e a tu r e1 ;

8 invoke f e a tu r e 2 . . .� �
Listing 17: WP1 Sequence

As mentioned in previous section, a sequence can be realized with a data-flow de-
pendency or an explicit sync statement.

WP2 Parallel Split: A point in the workflow process where a single thread of
control splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order.

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . . // only i f f ea tu re2 has no data−f l ow dependency to

f ea tu re1� �
Listing 18: WP2 Parallel Split

A parallel split is the standard behavior if two or more features are invoked in a row
and no data-flow dependency exists.

WP3 Synchronization: A point in the workflow process where multiple parallel
subprocesses/activities converge into one single thread of control, thus synchronizing
multiple threads. It is an assumption of this pattern that each incoming branch of
a synchronizer is executed only once.

3.2 Vienna Composition Language 42

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . . // only i f f ea tu re2 has no data−f l ow dependency to

f ea tu re1

3 invoke f e a tu r e 3 . . .

4 sync f eature1 , f e a tu r e2 ;� �
Listing 19: WP3 Synchronization

The sync statement is used to synchronize two or more features. The composition
will continue to execute when both features calls are done. In the given example
feature1 and feature2 are synchronized, feature3 will run in parallel to the sync.

WP4 Exclusive Choice: A point in the workflow process where, based on a
decision or workflow control data, one of several branches is chosen.

� �
1 check (exp r e s s i on) {
2 invoke f e a tu r e 1

3 . . .

4 }
5 else {
6 invoke f e a tu r e 2

7 . . .

8 }� �
Listing 20: WP4 Exclusive Choice

The exclusive choice pattern is implemented with the check statement. Based on
the expression value the check or eelse branch is chosen.

WP5 Simple Merge: A point in the workflow process where two or more alter-
native branches come together without synchronization. It is an assumption of this
pattern that none of the alternative branches is ever executed in parallel.

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . .

3 check (f e a tu r e1 . s t a tu s=ok | | f e a tu r e 2 . s t a tu s=ok)

4 {
5 invoke f e a tu r e 3 . . .

6 }� �
Listing 21: WP5 Simple Merge

A simple merge pattern can be realized by using check statement that verifies status
values from both called features. This works because a check statement is implicitly
also a sync statement for all involved features within the expression.

WP6 Multi-choice: A point in the workflow process where, based on a decision

3.2 Vienna Composition Language 43

or workflow control data, a number of branches are chosen.

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . .

3 check (f e a tu r e1 . s t a tu s=ok) {
4 invoke f e a tu r e 3

5 . . .

6 }
7 check (f e a tu r e2 . s t a tu s=ok) {
8 invoke f e a tu r e 3

9 . . .

10 }� �
Listing 22: WP6 Multi-choice

The Multi-choice pattern is not supported natively by VCL . But it can be achieved
by using a check statement for every branch individually.

WP7 Synchronizing Merge: A point in the workflow process where multiple
paths converge into one single thread. If more than one path is taken, synchro-
nization of the active threads needs to take place. If only one path is taken, the
alternative branches should reconverge without synchronization. It is an assumption
of this pattern that a branch that has already been activated, cannot be activated
again while the merge is still waiting for other branches to complete.

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . . // only i f f ea tu re2 has no data−f l ow dependency to

f ea tu re1

3 invoke f e a tu r e 3 . . . // no data−f l ow dependency to f ea tu re1 or f ea tu re2

4 sync f eature1 , f ea ture2 , f e a tu r e3 ;� �
Listing 23: WP7 Synchronizing Merge

This pattern is similar to the Synchronization pattern. The difference is that more
than two features or branches are synchronized.

WP8 Multi-merge: A point in a workflow process where two or more branches re-
converge without synchronization. If more than one branch gets activated, possibly
concurrently, the activity following the merge is started for every activation of every
incoming branch.

Multi-merge is not supported natively. The only way to call the same feature after
one or more branches executed is to check the state of every branch or feature and
call the required feature directly. It the example above the invoke feature3 and
invoke4 are not synchronized. feature3 is synchronized only with feature1 and
feature4 with feature2.

3.2 Vienna Composition Language 44

� �
1 invoke f e a tu r e 1 . . .

2 invoke f e a tu r e 2 . . . // only i f f ea tu re2 has no data−f l ow dependency to

f ea tu re1

3 check (f e a tu r e1 . s t a tu s=OK) {
4 invoke f e a tu r e3

5 . . . ;

6 }
7 check (f e a tu r e2 . s t a tu s=OK) {
8 invoke f e a tu r e4

9 . . . ;

10 }� �
Listing 24: WP8 Multi-merge

WP9 Discriminator: The discriminator is a point in a workflow process that
waits for one of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to complete and
ignores them. Once all incoming branches have been triggered, it resets itself so that
it can be triggered again (which is important otherwise it could not really be used
in the context of a loop).

The Discriminator pattern is not supported in VCL. There are two reasons for not
being able to have a “first-come, first-served” behavior a) VCL doesn’t support any
state variables beside the response values of called features and b) an expression that
needs to be evaluate within a while or check statement always requires all features
involved in the expression to be synchronized.

WP10 Arbitrary Cycles: A point in a workflow process where one or more
activities can be done repeatedly.

� �
1 while (exp r e s s i on) {
2 invoke f e a tu r e 1 . . . ;

3 invoke f e a tu r e 1 . . . ;

4 }� �
Listing 25: WP10 Arbitrary Cycles

Loops are natively supported by VCL with the while statement.

WP11 Implicit Termination: A given sub-process should be terminated when
there is nothing else to be done. In other words, there are no active activities in
the workflow and no other activity can be made active (and at the same time the
workflow is not in deadlock).

An explicit return statement is not required in VCL. But this is only meaningful if
the composition has no return object.

3.3 Abstract Dependency Graph and Structured Composition 45

� �
1 invoke f e a tu r e 1 ;

2 invoke f e a tu r e 1 ;� �
Listing 26: WP11 Implicit Termination

Patterns 12 to 15 are patterns that involves multiple instances of a feature. Multiple
instances have only limited support in VCL. A feature can only be called multiple
time within a loop. For this reason none of these patterns is supported.

Also patterns from 15 to 20 are not supported because there are related to state
values within a composition and external inputs. A triggered VCL composition
cannot be changed by an external input. In general, VCL composition are microflows
as described in the introduction chapter. They are, opposite to BPEL, short running
without external interfaces that can influence their execution. VCL also doesn’t
support variables to hold interim values. Therefore these patterns are also not
supported.

Table 1 extents the table from [67] and gives an overview and comparison to other
composition languages.

Pattern name VCL BPEL XLANG WSFL BPML WSCI

Sequence + + + + + +

Parallel Split + + + + + +

Synchronization + + + + + +

Exclusive Choice + + + + + +

Simple Merge + + + + + +

Multi Choice + + - + - -

Synchronizing Merge + + - + - -

Multi-Merge + - - - +/- +/-

Discriminator - - - - - -

Arbitrary Cycles + - - - - -

Implicit Termination + + - + + +

MI without Synchronization - + + + + +

MI with a Priori Design Time Knowledge - + + + + +

MI with a Priori Runtime Knowledge - - - - - -

MI without a Priori Runtime Knowledge - - - - - -

Deferred Choice - + + - + +

Interleaved Parallel Routing - +/- - - - -

Milestone - - - - - -

Cancel Activity - + + + + +

Cancel Case - + + + + +

Table 1: Supported Workflow Patterns

3.3 Abstract Dependency Graph and Structured Composition

A VCL composition is transformed by the client library to a semantic model, and
forwarded to VRESCOs composition service. The first task in the composition

3.3 Abstract Dependency Graph and Structured Composition 46

service is to analyze the model and create a structured composition that can be
used for further operations and optimizations.

BPEL describes a composition with a strict and explicit language. An alternative ap-
proach is to use a graph-based composition by analyzing input/output dependencies
between services or features. In a graph-based composition services are coordinated
through control elements like AND-splits, AND-joins, XOR-splits and XOR-joins.
A disadvantage of this approach is that such a graph can contain flaws, for example
deadlocks or cycles [19].

This problem with graph-based models disappears if the models are structured,
i.e., if each split has a corresponding join and if the split-join pairs are properly
nested. Models violating this constraint are similar to programs containing GOTO
statements. A BPEL composition is mainly structured [19].

Our approach is a mix of pure data-flow dependencies enriched with a small set
of control structures within VCL to support an automatic annotation of XOR and
AND splits and joins. Furthermore, there is also a simple control structure for loops.
The concrete syntax of the VCL is described in the previous section.

The provided semantic model from the VCL parser contains only a set of features
and control statements. A validation is also not done at this moment. To solve this
the semantic model is transformed in a structured composition. A structured model
is desired and necessary for our approach also based on the following reasons[59]:

• it enables enactment of a structured composition on existing composition or
workflow engines, thus, removing need to implement an execution engine for
VCL

• it allows to detect flaws in the unstructured composition such as deadlocks
which may lead to runtime errors at a later stage

• it facilitates an efficient QoS aggregation based on well-know workflow and
composition patterns

To get a structured composition we use an algorithm introduced in [19] by Eshuis
and modified it to fulfill our requirements. This algorithm creates a composition
structure based on data-flow dependencies. It consists of three steps:

• Create an Abstract Dependency Graph: An abstract graph is an adjacent list
of features and their dependencies to each other.

• Create a Structured Composition: The structured composition is created by
applying the provided algorithm on the abstract graph.

3.3 Abstract Dependency Graph and Structured Composition 47

• Annotate Nodes: Annotation of control flow decisions in the structured compo-
sition with either AND (executed in parallel) or XOR (conditional execution).

Eshuis et al. introduced the algorithm as a semi-automated approach. The first
two steps can be automated, but the third step needs additional user input. This
is covered in our approach with the additional control structure supported by the
VCL. The original algorithm is designed to create a structured composition only
based on a set of services and its input and output types.

In our approach, the user specifies within the VCL explicit the workflow and uses
data flow dependencies implicitly. Therefore, the original algorithm is slightly mod-
ify. The main modifications are done in the first step by adding additional nodes
to the abstract dependency graph. The second step is implemented without any
modification on the original algorithm. The last step, annotations of the nodes, is
done partially within the ADG creation and partially after the structured composi-
tion algorithm is done. The concrete modifications will be explained in detail in the
following subsections.

3.3.1 Abstract Dependency Graph

Features communicate, like services, through instances of data concepts or messages
in the service terminology. A data concept can be primitive or consists of a set of
child data concepts. Given a data concept m, we denote by type(m) the set of child
data concepts of the data concept m and m itself. For each Feature f , input(f)
denotes its input data concept and output(f) its output data concept.

Based on the input/output data types of each feature, we can define dependencies
between features. If a feature A outputs a data concept and feature B needs as
input this data concept, than B depends on A.

Dependencies between a set S of services are captured in a graph. An abstract
dependency graph is a tuple (SE) with [19]:

S
df= {s1, s2, · · · , sn} a set of services

E
df= {(s, s′) ∈ S × S | type (data (output (s))) ∩ type (data (output (s′))) 6= ∅}

The following two helper functions are defined on the abstract dependency graph
and will be used later for the structured composition algorithm. Given a feature
s, its set of pre-condition features, written pre(s) are those features on which s

depends. Symmetrically, the set of post condition features of s, written post(s), are
those features that depend on s [19]:

3.3 Abstract Dependency Graph and Structured Composition 48

pre (s) df= {x | (x, y) ∈ E ∧ y = s}

pre (s) df= {y | (x, y) ∈ E ∧ x = s}

There are two constraints that needs to be satisfied by the abstract dependency
graph:

• The dependency graph is acyclic.

• If there is an edge from s1 to s2, then there is no path with length greater
than 1 from s1 to s2.

The first constraint is required to forbid loops. Eshuis et al. left the relaxation of
this constraint for future work. Our approach adds support for loops by adding a
dummy node in the ADG with a LOOP annotation. This will be explained later.

The second constraint is a requirement for the structured composition algorithm.
Figure 11 depicts a sample for this problem.

Figure 11: ADG Dependency Length

Feature C depends on A and B. This can be easily repaired by either removing the
violating dependency since it is redundant, or by putting an dummy feature. The
last solution is used to implement if-then-else structures with an empty else branch.

In the depicted problem the first solution would be to remove the edge between A
and C. This is show on Figure 12.

Figure 12: Remove ADG Violation Dependency

The second solution is to include a dummy node that maps a xor statement. Image
13 shows this solution.

In the original algorithm, provided by Eshuis et al., this is one of the points where
the user needs to decide. In our solution this is not required because we get this
information’s already from the VCL specification. If there is a XOR relation, covered
by the check VCL keyword, the second case is used otherwise the additional relation

3.3 Abstract Dependency Graph and Structured Composition 49

Figure 13: Add Dummy Node to Map a XOR Statement

is added to the adjacent list. At the end of the ADG creation an iteration is done
on the ADG that removes all violating dependencies by removing the direct nodes
as proposed in the first solution.

Figure 14: ADG for TELCO Example

Image 14 depicts a graphical representation of the ADG for the TELCO Example
presented in the introduction section. This will be used to explain all required
changes on the original algorithm to fit to our VCL solution.

The first modification is the root element on Figure 15. The goal of our Composition

3.3 Abstract Dependency Graph and Structured Composition 50

as Service approach is to have a standalone Web service that contains the whole
composition. Therefore VCL contains the global feature, that is used as an entry
point to the composition. At the beginning of the composition the entry node is
also the current root node. But, mentioned already in the previous section, the
current root node is floating. All invoked features have an implicit dependency to
the current root-node. By using control structures like sync or check it is moved
to this node. This behavior can be seen on the PortNumber feature. Until the first
IF-T-E statement the current root node is the entry point itself. After IF-T-E the
root node is change to the closing dummy node ENDIF.

An IF-T-E statement is implemented by four dummy features. This is used to
implement later a simple annotation of the structured composition with XOR and
AND attributes. The first feature is IF-T-E, followed by ELSE and THEN features and
ending with the ENDIF feature. The ELSE and THEN Feature have a direct dependency
to the IF-T-E feature. The ENDIF feature on the other side has a dependency to
all features included in the ELSE and THEN features and the features itself. This is
required to hold the IF-T-E construct in balance, otherwise some features without
a data dependency, but a specified control structure within the VCL script would
be outside of the construct.

Within the THEN and ELSE futures an internal root node is used. In general, a THEN

feature should not be seen as a feature, it is more a block construct similar to classic
programming languages. Therefore an own root node is used for the content (e.g.,
included features). The initial value of the internal root node is the THEN dummy
feature itself respectively ELSE. The reason for this requirement is again the merge of
a pure data-flow composition approach and strict control structures. Of course, the
internal root node behavior is recursive. A THEN feature can contain again IF-T-E

constructs.

The global or most outer root node is, as explained, at the beginning of the ADG
creations set to the entry point feature. By using the control structures (e.g., check,
sync and while) the root node will be moved. This is small disadvantage for our
approach. A feature without any data-dependencies that is called in the VCL after a
control structure will have a dependency to the this control structure and not to the
entry point. This behavior can be easily avoided by moving the call of the feature
in front of the control structure.

Loops are supported by the while control structure. An abstract dependency graph
is shown on Figure 15.

Figure 15: ADG Loop Example

3.3 Abstract Dependency Graph and Structured Composition 51

The while statement is similar to the check statement. It consists of three dummy
features. The WHILE feature is the outer feature that denote a loop, the WHILEIN is
the inner feature like the THEN feature. It is also the initial value for the internal root
node. The ENDWHILE feature is the enclosing dummy feature for the while statement
and acts as a new global root node value. Like ENDIF, all internal features have a
dependency to them.

The sync statement is implemented by a single dummy feature that has a direct
dependency to features that are specified to be synchronized and is used as the
current value of the root node. Picture 16 depicts an example.

Figure 16: ADG Sync Example

Feature B, C are synchronized in the sync feature. This is done by adding a direct
dependency between sync and B respectively sync and C. The feature A is not
synchronized because it is called before the sync statement and is not part of it.
The change of the current root node to the sync feature is also not affecting the A

feature, whereas feature D has now a direct dependency to sync.

3.3.2 Structured Composition

A well-defined ADG is the input for the structured composition algorithm. A struc-
tured composition can be formalized to a hierarchical view, where leaf nodes are
services (e.g., features) and non-leaf nodes are blocks. In the graphical syntax, the
beginning and end of a block is demarcated by a split and join node respective [19].

There are two types of blocks, composite blocks of type COMP and sequential blocks
of type SEQ. In the original algorithm a COMP block is annotated as AND or XOR. This
list extended by the WHILE annotation that behaves exactly like AND but is used as
an additional information in the constraint resolving and publishing task.

The children of blocks are specified as parameters, a set in case of COMP and a list
in case of SEQ blocks. For example COMPSEQ[X,Y],SEQ[Z] is a process in which X is
done before Y and both are done in parallel with or exclusive to Z [19]. The following

3.3 Abstract Dependency Graph and Structured Composition 52

definition is given by Eshuis:

Given a set of S of services, the following inductive definition formalizes the set of
structured compositions on S:

• Each service s ∈ S is a structured composition.

• If X1, X2,...,Xn are structured compositions, then so are SEQ[X1, X2,...,Xn]
and COMPX1,X2,...,Xn.

Figure 17 depicts the graphical syntax of TELCOs structured composition. Every
block has its corresponding closing block node. Figure 17 shows also the added
control structures to the ADG very well. An If-Then-Else statement is transformed
to IF-T-E, ThenBlock, ElseBlock and Sync nodes. A feature is always nested within
a SEQ block. This is not mandatory, an example is the SEQ-CR-SEQ block. Seq is
redundant in this case, but having it there is not a performance issue but simplifies
the algorithm implementation.

Figure 17: Strucutred Composition for the TELCO Example

The same structured composition is show with in a different representation in Listing
27.

The algorithm introduced by Eshuis et al. is shown as pseudo-code in Listing 28. It
takes a dependency graph as input and returns a valid structured composition. The
algorithm starts with an initial composition and extends its iteratively. the initial
composition is created in Line 2. The Initial(S,E) procedure returns a list of features
without dependencies to other features. Considering the modifications of the ADG
performed in the previous step, this list contains always the Root feature because all
other features depend directly or indirectly on it. Nevertheless, the Initial procedure
can be specified as:

Initial (S, E) = {s1 ∈ S | @s2 ∈ S : (s1, s2) ∈ E}

3.3 Abstract Dependency Graph and Structured Composition 53

� �
1 {
2 COMP {
3 SEQ [ROOT,

4 COMP{
5 SEQ [Crm] , SEQ[LookupPartner , PortCheck , IfThenBlock ,

6 COMP{
7 SEQ[ThenBlock , PortNumber] , SEQ [ElseBlock , Throw]

8 }
9 , Sync]

10 }
11 , IfThenBlock ,

12 COMP{
13 SEQ[ThenBlock , Act ivatePort , Not i fy] , SEQ[ElseBlock , Throw]

14 }
15 , Sync , Return]

16 }
17 }� �

Listing 27: Structured Composition for Telco Example

� �
1 procedure STRUCTUREDCOMPOSITION((S ,E))

2 C:=SEQ[const ructBlock (I n i t i a l (S ,E))]

3 proces sed := I n i t i a l (S ,E)

4 while proces sed 6= S do do

5 t op ro c e s s := next (proce s s ed)

6 for each maximal i n f l u e n c i n g subset I o f t op ro c e s s do

7 BlockI := const ructBlock (I)

8 InputI := { s ∈ proces sed | post (s) ∈ I }
9 N:= the most nested block in C conta in ing a l l s e r v i c e s in InputI .

10 i f N i s composit then

11 NotPreI := {c ∈ ch i l d r en (N) | InputI ∩ s e r v i c e s (c) = ∅}
12 i f NotPreI 6= ∅ then

13 PreI := COMP{c ∈ ch i l d r en (N) | InputI ∩ s e r v i c e s (c) 6= ∅}
14 N’ := COMP({SEQ[PreI , BlockI]} ∪ NotPreI)

15 r ep l a c e N by N ’ in C

16 else

17 parent (N) . append (BlockI)

18 end i f

19 else

20 parent (N) . append (BlockI)

21 end i f

22 proces sed := proce s sed ∪ I .

23 end for

24 end while

25 return C

26 end procedure� �
Listing 28: Structured Composition Algorithm

The constructBlock(X) function is a helper function that creates from a given set of
features a single service or a composite block consisting of a set of sequential blocks,
each containing one service from X [19]. The function is defined as:

3.3 Abstract Dependency Graph and Structured Composition 54

constructBlock (X) =

{
x , if X = {x}
COMP {SEQ[x] | x ∈ X} , otherwise

Line 3 adds the set of the initial features (e.g. Root feature in our implementation)
to the processed set. The main part of the algorithm is done in the while loop that
runs until all features are included in the final composition.

On every loop the next function (Line 5) is called to decide which features should
be performed in this iteration. This is the case for all unprocessed features whose
pre-conditional features have been processed:

next (processed, S) df= {s ∈ S | pre (s) ⊆ processed} \ processed.

The complexity of the algorithm is added in the lines 6-23. The reason is that the set
of features from toprocess set cannot be easily attached to the composition. Eshuis
et al. depicts this problem on the Figure 18.

Figure 18: Service Grouping with Mutual Influence

Suppose features A,B and C have been processed, then next returns D, E, and F.
Now, D depends on both B and C. To translate this into control flow, the blocks
encompassing both B and C has to end before D. But this implies that the block
also ends before E and F. To achieve this, D, E, and F need to be processed as a
group [19].

To define precisely which services need to be processed in a group, we introduce
the notion of influence. Two services are directly influenced by each other if they
depend on the same feature, i.e., their pre-conditions overlap. In Figure 4, features
B and C both depend on A, and therefore directly influence each other. Two services
s1, s2 influence each other if they either directly influence each other or if another
service s that directly influences s1 and influences s2 (e.g. the relation is transitive).
For example, in Figure 4 features E and F influence each other even though their
pre-conditions are disjoint, since D directly influences both E and F [19].

3.3 Abstract Dependency Graph and Structured Composition 55

Therefore, the composition produced in one iteration needs, depending on the influ-
enced features sets for this iteration, to be completely refactored. This is performed
in lines 6-23. The source code of the implementation can be found in the appendix.
Table 2 shows the iterations with the toprocess set and the interim composition for
the Telco example.

To process Composition

ROOT COMP{SEQ[ROOT]}
LookupPartner COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner]}]}
PortCheck COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck]}]}
IfThenBlock COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,

IfThenBlock]}]}
ElseBlock COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,

IfThenBlock,COMP{SEQ[ThenBlock],SEQ[ElseBlock]}]}]}
Throw COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,

IfThenBlock,COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]}]}]}
Sync COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,

IfThenBlock,COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]}]}
IfThenBlock COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,

IfThenBlock,COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},
IfThenBlock]}

ElseBlock COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,IfThenBlock,

COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},IfThenBlock,COMP{
SEQ[ThenBlock],SEQ[ElseBlock]}]}

Throw COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,IfThenBlock

,COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},IfThenBlock,COMP{
SEQ[ThenBlock,ActivatePort],SEQ[ElseBlock,Throw]}]}

Notify COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,IfThenBlock,

COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},IfThenBlock,

COMP{SEQ[ThenBlock,ActivatePort,Notify],SEQ[ElseBlock,Throw]}]}
Sync COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,IfThenBlock,

COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},IfThenBlock,

COMP{SEQ[ThenBlock,ActivatePort,Notify],SEQ[ElseBlock,Throw]},Sync]}
Return COMP{SEQ[ROOT,COMP{SEQ[Crm],SEQ[LookupPartner,PortCheck,IfThenBlock,

COMP{SEQ[ThenBlock,PortNumber],SEQ[ElseBlock,Throw]},Sync]},IfThenBlock,

COMP{SEQ[ThenBlock,ActivatePort,Notify],SEQ[ElseBlock,Throw]},Sync,Return]}

Table 2: Composition Steps

The last step that need to be done to get the final structured composition is to
perform the annotation of the COMP nodes with AND or XOR . Looking at the
Figure 17 the general rule can be applied. If a COMP node depends on an If-Then-
Else feature and a Then and Else feature depends on this COMP node than the
COMP node is annotated with XOR, otherwise AND. The Figure 19 shows the
same composition just with the final COMP annotations.

Figure 19: Telco Structured Composition with AND and XOR Annotations

3.4 VRESCO Querying for Service Candidates 56

3.4 VRESCO Querying for Service Candidates

Having a valid structured composition for a given VCL Script the composition service
calls the VRESCO Query service, introduced in Chapter 2, to get for each feature
a list of their service candidates. An example VQL query for the CustomerLookup
feature given in Listing 29.

� �
1 var query = new VQuery(typeo f (VReSCO. Contracts . Core . S e rv i c eRev i s i on)) ;

2

3 query .Add(Express ion .Eq(” I sAct i v e ” , true)) ;

4 query .Add(Express ion .Eq(” Se rv i c e . Category .Name ” , ”CustomerService ”)) ;

5 query .Add(Express ion .Eq(”Operat ions . Feature .Name” , ”CustromerLookup”)) ;

6

7 query . Match (Express ion .And(

8 Express ion .Eq(”Operat ions . Feature . Parameters .

DataConcept .Name” , ”CustomerLookupRequest”) ,

9 Express ion .Eq(”Operat ions . Feature . Parameters .

IsOutParameter ” , fa l se))) ;

10

11 query . Match (Express ion .And(

12 Express ion .Eq(”Operat ions . Feature . Parameters .

DataConcept .Name” , ”CustomerLookupResponse”) ,

13 Express ion .Eq(”Operat ions . Feature . Parameters .

IsOutParameter ” , true))) ;

14

15 query . Match (Express ion .And(

16 Express ion .Eq(”Operat ions .QoS . Property .Name” , Constants .

QOS RESPONSE TIME) ,

17 Express ion . Le (”Operat ions .QoS . DoubleValue” , 1000 .00))) ;

18

19 query . Match (Express ion .And(

20 Express ion .Eq(”Operat ions .QoS . Property .Name” , Constants .

QOS AVAILABILITY) ,

21 Express ion . Le (”Operat ions .QoS . DoubleValue” , 0 . 66))) ;

22

23 var s t r a t e gy = new ExactQuerying (maxResults) ;

24 var queryResu l t s = s t r a t e gy . Query<VReSCO. Contracts . Core . Se rv i c eRev i s i on >(

query , NHibernateContext . Se s s i on) ;� �
Listing 29: VQL Query for CustomerLookup Example

The VRESCO category is constraint to CustomerService in Line 4. The feature
name is set to CustomerLookup. It is also important to get only active service
candidates, this is done in Line 3. The input and output data concepts are given
in Lines 7-14. Lines 15-21 set a filter on the response time respectively availabil-
ity of the service candidate. A QoS filter is only applied if the given VCL QOS
constraint is local (e.g. feature constraint) and mandatory. Thereby the number
of service candidates can be reduced and give a performance boost in the following
QoS optimization step. Non-mandatory constraint cannot be pre-filtered because
they are optional and the decision if a certain service candidate is selected is done
in the QoS-hierarchy optimization. This is also the case for global constraints, both

3.5 QoS Constraint Hierarchies and their Optimization 57

optional and mandatory.

3.5 QoS Constraint Hierarchies and their Optimization

When the structured composition is created for a given VCL script and every spec-
ified feature has at least one service candidate the QoS constraint problem need to
be solved to select the best service candidate for each feature respecting global and
local constraints.

In general, VCL supports global and local constraints. A local constraint can also
be called feature constraint and is valid only for the given feature on which it is
specified. A global constraint on the other side is valid for the whole composition.
Therefore a global constraint is affected by every single service candidate selection.

Moreover, VCL allows the user to give a strength value to a constraint. This is known
as a constraint hierarchy. VCL supports required, strong, medium and weak strength
values. This list can be easily extended. The idea behind constraint hierarchies is
avoid over-constraint system and to give the user the flexibility to express nice to
have QoS values.

The four mentioned strength values can be divided in two groups, optional and
required. Constraints that are required must be full field by the selected service
candidates. If a required constraint can’t be satisfied the composition service re-
turns a message that indicated that the composition is over-constraint and stops the
execution.

The composition service, to be more precise the constraint solver, tries to satisfy,
besides the required constraints, as much as possible optional constraints. We in-
troduced a scoring system to support the different strength values of optional con-
straints. A satisfied weak constraints gets 5 points, a medium 10 and a strong
constraint 20 points. Therefore the constraint solver tries to maximize the total
score for the whole composition to get the best service candidates selection. We
choose a simple static scoring system. An improvement would be to have different
scores for global and local constraints or to have a dynamic scoring systems that
depends on the total number of features involved in the composition.

Figure 20 depicts a simple composition example that will be used to demonstrate
the influence of QoS values and their constraints on the selected service candidates.
Listing 30 gives a number of constraints that should be satisfied for within the
composition. Finally, Table 3 contains a list of service candidates for each feature.

The composition consists of three features. F1 is executed first. When F1 returns a
value a XOR split follows by calling exclusively F2 or F3. To simplify the example

3.5 QoS Constraint Hierarchies and their Optimization 58

Figure 20: Simple Composition Example

we will ignore at this point the probability of each branch. This will be covered later
in this section.

� �
1 Global Const ra in t s :

2 Response Time (r t) <= 170ms , r equ i r ed ;

3 Ava i l a b i l i t y (av) >= 85%, st rong ;

4

5 F1 Const ra in t s :

6 Response Time (r t) <= 100 ms , r equ i r ed ;

7 Ava i l a b i l i t y (av) >= 95%, weak ;

8

9 F2 Const ra in t s :

10 Ava i l a b i l i t y (av) >= 97%, weak ;� �
Listing 30: List of Global and Local Constraints

A global required constraint is specified on response time and an optional on avail-
ability. Feature F1 contains also a required response time and an optional availability
constraint. Feature F2 has only an optional availability constraint and F3 has no
constraints. The following service candidates are given:

Feature name F1 F2 F3
Service Name S1 S2 S3 S4 S5 S6 S7
Response Time 100ms 80ms 150ms 70ms 30ms 60ms 75ms
Availability 90% 97% 96% 96% 99% 93% 95%

Table 3: Service Candidates

Feature F1 has three service candidates, F2 and F3 have three service candidates
each. The first and trivial task is to solve local (e.g., feature) required constraints.
This is already done in the VRESCO query. When a list of service candidates are
queried from VRESCO also all required local constraints are specified within to
reduce and filter the number of results. This can be done because an unsatisfied
local required constraint is equal to an over-constraint VCL composition that can’t
be created. In this example S3 is excluded already in this step.

At this time the following solutions are possible: (S1,S4,S6), (S1, S4, S7), (S1, S5,
S6), (S1, S5, S7), (S2, S4, S6), (S2, S4, S7), (S2, S5, S6) ,(S2, S5, S7)

3.5 QoS Constraint Hierarchies and their Optimization 59

For global constraints an aggregation function needs to be specified for each QoS
attribute. A set of features called in a sequence will sum their response times and
multiply their availability. On a Xor split the maximum response time respectively
the minimum availability of the two branches will be taken. A complete list of
aggregation formulas for all QoS attributes will be given later in this section. The
resulting aggregation formulas for this example will be:

global (rt) = SF1 + Max (SF2, SF3) , SF1 ∈ F1, SF2 ∈ F2, SF3 ∈ F3

global (av) = SF1 ∗MIN (SF2, SF3) , SF1 ∈ F1, SF2 ∈ F2, SF3 ∈ F3

Having both aggregation formulas, Table 4 gives an overview of the score and validity
of each of the eight possible solutions.

Solution Global(rt) Global(av) F1(av) F2(av) Valid Score
(S1,S4,S6) 170 83,70% 90% 96% YES 0
(S1,S4,S7) 170 85,50% 90% 96% YES 10
(S1,S5,S6) 160 83,70% 90% 99% YES 5
(S1,S5,S7) 175 85,50% 90% 99% NO 15
(S2,S4,S6) 150 90,21% 97% 96% YES 15
(S2,S4,S7) 155 92,15% 97% 96% YES 15
(S2,S5,S6) 140 90,21% 97% 99% YES 20
(S2,S5,S7) 155 92,15% 97% 99% YES 20

Table 4: Optimization Result Table

The solution (S1,S5,S7) is the only invalid solution. All other solutions satisfied all
required constraints. But considering optional constraints, global and local, there is
a score from 0 to 20. The two best solutions are (S2,S5,S6) and (S2,S5,S6). Both
solutions scores the maximum amount of points. (S2,S5,S6) has a slightly better
global availability value. But this fact is ignored by the solver and it is possible to
get the second solution as a result. The reason is that the solver tries to satisfies the
constraints and not to take care of the QoS values itself. The decision that the first
solution is better was easy in this case. But a composition can contain constraints
for many different QoS values. In this case we can get two solution, one with a
better response time, a second with a better availability and a third with a better
cost value. The solver cannot make a decision which one to choose. They are all
equal and the first one in the list will be returned. Having a large number of equal
solutions is an indicator for under-constraint compositions. In this case, the user
can specify stronger constraints.

After this simple example we can define the goal as an optimal selection of one
service candidate sij ∈ Sj for each feature fj where all the required global and local
constraints are satisfied and a number of optional constraints from the constraint
hierarchy H are satisfied. We use two different approaches for modeling the QoS-

3.5 QoS Constraint Hierarchies and their Optimization 60

aware optimization, a constraint optimization problem and an integer programming
problem. The reason for devising an IP solution as an alternative is based on the fact
that most constraint-based approaches have scalability problems when applied to
medium and large-scale practical optimization problems, however, the COP solution
provides a simpler way of handling constraint hierarchies. The definition of our CPS
and IP problem was published in [59] and will be used unmodiefied to describe the
COP and the IP approach more detailed. The following table shows all supported
QoS attributes and their aggregation formulas.

Attribute Unit Sequence Conditional (XOR) Parallel (AND) Loop

Response Time (qrt) msec
∑n

i=1 qrt (fi)
∑n

i=1 pi ∗ qrt (fi) max {f1, . . . , fn} qrt (f)× c

Latency (ql) msec
∑n

i=1 ql (fi)
∑n

i=1 pi ∗ ql (fi) max {f1, . . . , fn} ql (f)× c

Price
(
qp
)

per invocation
∑n

i=1 qp (fi)
∑n

i=1 pi ∗ qp (fi)
∑n

i=1 qp (fi) qp (f)× c

Availability (qav) percent
∏n

i=1 qav (fi)
∑n

i=1 pi ∗ qav (fi)
∏n

i=1 qav (fi) qav (f)c

Accuracy (qac) percent
∏n

i=1 qac (fi)
∑n

i=1 pi ∗ qac (fi)
∏n

i=1 qac (fi) qac (f)c

Throughput
(
qtp
)

percent min {f1, . . . , fn}
∑n

i=1 pi ∗ qtp (fi) min {f1, . . . , fn} qtp (f)

Reliable Messaging {true, false} q′rm =

true ∀

1<i≤n
qrm (fi) = true

false ∃
fi∈F

qrm (fi) = false

Security {None, X.509, . . . } q′sec =

X.509 ∀
1<i≤n

qseq (fi) = X.509

None otherwise

Table 5: QoS Attributes and Aggregation Formulas (from [59])

3.5.1 Constraint Optimization Problem

A COP is a constraint satisfaction problem (CSP) in which constraints are weighted
and the goal is to find a solution maximizing a function of weighted constraints.
A CSP is defined as a Tuple 〈X, D, C〉 where X represents a set of variables, Di

represents the domain of each variable Xi and C represents a set of constraints over
the variable X. A solution is an assignment of values from the variable’s domain D to
each variable Xi ∈ X satisfying all the constraints C. Both constraint types can have
required and optional QoS constraints. Each required constraint has to be fulfilled,
otherwise no solution can be found. All optional constraints (global and local) will
be added to the objective function that has to be maximized. As aforementioned,
all required feature constraint have already been pre-filtered, therefore, it is ensured
that only service candidates have to be considered that fulfill all required feature
constraints. This may reduce the number of constraints in the problem space.

a) Feature Constraints: Modeling feature constraints requires to add all service
candidates Sj for each feature fj as variables to the problem space. As we only want
to select one service candidate from all available services Sj to execute a feature, we
have to add the following selection constraint given that yij denotes the selection
of a service candidate sij to execute a feature (yij is modeled as a boolean decision
variable):

∑
i∈Sj

yij = 1, ∀j ∈ F

3.5 QoS Constraint Hierarchies and their Optimization 61

Each feature fj can be subject to feature constraints, therefore, we need to add the
following constraint for each feature constraint Qfc to determine the selected QoS
value qjk of feature (local selection). qjk represents the selected QoS value for a
given feature fj .

qjk =
∑
i∈Sj

Qik × yij ,∀k ∈ Qfc

Depending on the QoS attribute dimension(ascending, descending, exact) we need
to add the corresponding constraints for each QoS attribute to capture whether an
optional QoS constraint cjk is satisfied (cjk is represented as a Boolean decision
variable). The value qjk is the value from constraint given in the last formula. For
descending dimension, cjk = (qjk ≤ Qfck

) is added, for ascending dimension cjk =
(qjk ≥ Qfck

), and for exact dimension the resultim constraint is cjk = (qjk = Qfck
).

Additionally, we use the following function to map the constraint hierarchy levels to
strength values that is then used to in the objective function. Please note that these
values are flexible and can be changed to reflect a different mapping as discussed in
previous section.

strength (c) =

20 if c ∈ H1

10 if c ∈ H2

5 if c ∈ H3

0 if c ∈ otherwise

All the aforementioned constraints describe the selection of an optional feature QoS
value. These constraints are added for each feature fj and maximized as part of the
objective function:

max
∑
j∈F

∑
k∈Qfc

cjk × strength(Qfck
)

b) Global Constraints : In order to add global constraints (required or optional
ones), we first need to create an aggregation formula depending on the structured
composition as shown in the example composition and the aggregation formulas
shown in table 1. We use a recursive algorithm to traverse the structured composition
from the previous step and generate an aggregation formula for each feature fj . For
example, when aggregation the response time for the composite block in Figure 1
(containing the F1 and F2 feature), the following aggregation constraint applies (k
is the index for the QoS constraint, in this example it would be 0 for the response
time):

3.5 QoS Constraint Hierarchies and their Optimization 62

ak = max
j∈{F2,F3}

{qjk}

In the following, we use ak to represent the aggregation constraint of the k-th QoS
attribute which is added for every global constraint that is specified by the user
in the VCL script. In case the global QoS constraint is required, we add another
constraint depending on the QoS attribute dimension. For QoS with descending
dimension, ak ≤ Qgck

is added, for ascending dimension ak ≥ Qgck
, and for exact

dimension the resulting constraint is ak = Qgck
represents the global QoS constraint

where k is the QoS attribute index.

In case that global QoS constraint is optional, we have to add a decision constraint to
check whether an optional constraint has been fulfilled. Again depending on the QoS
attribute dimension, we add the following constraints: For descending dimension:
ck = (ak ≤ Qgck

) is added, for ascending dimension ck = (ak ≥ Qgck
), and for exact

dimension the resulting constraint is ck = (ak = Qgck
). Finally, we have to add these

decision constraints multiplied with their strength value to the objective function to
get the overall objective function:

max

∑
j∈F

∑
k∈Qfc

cjk × strength(Qfck
) +

∑
k∈Qgc

ck × strength(Qgck
)

The objective funtion is then maximized by the solver to find an optimal solution
within the constraint boundaries set by the user in teh VCL script. All the values
in our COP are scaled to integers by multiplying them with 100. Due to the fact
that we only allow two decimal places in VCL we do not have any precision loss.

3.5.2 Integer Programming Approach

An IP optimizes a liner objective function that is subject to linear equality an linear
inequality constraints. Compared to the CSP approach, there are a few changes that
are needed when modeling the QoS-aware composition problem as IP. We have to
define a new objective function calculating an overall utility value for each feature
fj considering the user’s QoS constraints and their strength. Additionally, we need
to linearize the aggregation rules for qac and aav because they use the product to
aggregate the QoS for a sequence and parallel execution of features.

a) Feature Constraints: Feature constraints are handled by using an utility function
that is calculated for each service candidate. The selection constraint presented
for the COP is still valid in the IP formulation. For calculating the QoS utility
function for each service, we first need to scale all the QoS values to an uniform

3.6 Composition Publishing 63

representation. Contrary to other approaches in this area, we do net use simple-
additive weighting scaling the values, however, we scale all values between [0, 100]
depending on the percentage to which a QoS attribute of service candidate fulfills
the optional constraint imposed by the user. For example if the user specifies an
optional availability constraint on a feature fj with the value 0.95 and the QoS
value if the service candidate is 0.99, we set the scaled value to 100 because the
optional feature constraint is 100 percent satisfied (in fact is over-satisfied). The
overall objective function is:

max

∑
j∈F

∑
i∈Sj

yij ×
∑

k∈Qfc

scale (Qik, Qfck
)× strength (Qfck

)

The function scale scales the k-th QoS value Qik of a service candidate si between
[0,100] depending on the actual QoS feature constraint value Qfck

specified by the
user in VCL and the QoS dimension (ascending, descending, exact). The COP
strength formula is used.

b)Global Constraints: For adding the global constraint, we follow a similar approach
as in the CSP solution. We first aggregate the QoS attribute using a similar function
as in the CSP approach, with the exception that we linearize the product aggregation
rules using the ln. Whenever a global QoS constraint is required, we add a linear
equality or inequality to the problem space. If a global constraint is optional, we
add it to the overall objective function that has to be maximized.

3.6 Composition Publishing

The last task in our approach is to publish the composition as a Web service. To
simplify this task we use an existing composition framework and transform our
structured composition to it. We choose Microsoft’s Windows Workflow Foundation
for this purpose. It is a workflow engine that is part of the .NET 3.0. Furthermore,
WF has the ability to expose a workflow as a Web service within the Internet
Information Server.

The first step is to transform the structured composition items to appropriate WF
ActivityWorkflow items. Therefore, Table 1 shows the mapping between them.

Some items are natively supported and others are implemented within a code activ-
ity. WF comes with an InvokeWebService activity which can be used to call Web
services. This is not used because we call VRESCO features and not native Web
services. Therefore we use the DAIOS Framework, presented in the second chapter,
in a code activity to call the selected service candidate. Furthermore, the global

3.6 Composition Publishing 64

Structured Item WF Activity Type

Sequence SequenceActivity

And Branch ParallelActivity

Xor Branch (Check) IfElseActivity

Whiel WhileeActivity

Invoke CodeActivity

Throw CodeActivity

Return CodeActivity

Table 6: WF Activity Mapping

feature, which is used as an entry point to the composition by having input and
output parameters specified, is covered by a ReceiveActivity that is used to expose
the composition with correct parameters and return values.

All code activities and the contract types for the used ReceiveActivity are defined
in C# source code with CodeDom. Together with the generated XAML code it gets
compiled to a dll that is published on the IIS and immediately available. The new
WSDL endpoint address is returned to the user and the composition service call is
finished.

65

4 Implementation

This chapter will depict a number of implementation details of our approach. In
the first section the MGrammar definition of VCL and the resulting semantic model
will be shown. Section 2 covers the transformation from the semantic model to a
structured composition. The required QoS optimization and solver implementation
is part of section 3. The last section, section 4, deals with the transformation to
a WF workflow and publishing to the IIS. We choose in this chapter only the core
parts of the implementation to keep the size of this thesis in a reasonable range.

4.1 VLC Implementation

There are many ways to design and create a domain specific language. A lot of tools
are offered for this purpose. At the beginning of this thesis we try to implement
VCL by extending Ruby. This was, at that time, a popular way to create DSLs.
Ruby offers a lot of possibilities to extend the language but we reach also the limits
and have been forced to try a different way. At this time Microsoft announced the
Oslo framework. Oslo give us the possibility to implement easily our desired syntax.
We switch to MGrammar, a Oslo language for dsl syntax definition, and implement
the VCL language. One of our goals was also not to create a lex/yacc solution and
stay at the .NET platform, which is the case with MGrammar.

MGrammar specifications are purely declarative. They act like a rule set for a
transformation engine. The resulting transformation is always a labeled tree and
can be only slightly modified. Figure 21 is showing a simple transformation.

Figure 21: MGrammar Example

4.1 VLC Implementation 66

A MGrammar definition consists of one or more named rules, each of them describes
a part of the language. The specified language is named ExampleDSL. A language
is built out of set of rules. The name Main is used as an initial rule that all input
documents must match in order to be considered valid with respect to the language.

Rules use patterns to describe the set of input values that the rule applies to [47]. If
we type Person Joe 21; the language processor will report that the input is valid.
In Listing 21 the syntax and token rules are used. Syntax rules can be seen as higher
level rules, and tokens more as a low level textual constructs in a language.

MGrammar transforms the DSL script to a tree structured. The shape and content
of that tree is determined by syntax rules of the DSL definition. Each syntax rule
consists of the rule definition itself and an optional projection. A projection describes
how to transform the output. Figure 22 shows the same sample from above with a
projection that is used to make the tree output more familiar for further processing
and remove unnecessary elements like the semicolons.

Figure 22: MGrammar Example with modified Output Tree

The MGrammar in Listing 22 removes all semicolons and provides a more common
tree structure. Projections are used for the Main and Person rule. MGrammar has
a lot more to offer that the described functionality. For more details the MGrammar
Language Specification [47] published by Microsoft is a good reference. The VCL
language is defined by using exactly the described basic principles. Appendix C
contains the whole VCL MGrammar file.

A valid transformed DSL script to a tree structure needs to be forwarded in the
composition chain. To make the tree useful it needs to be parsed to an object
structure that can be used in C#. The MGrammar compiler provides a XAML
output format that is used in in our approach. The resulting XAML code can be

4.2 Creating a Structured Composition 67

de-serialized to a given object mode. The target model for a VCL specification is
depicted in Figure 23.

Figure 23: VCL Domain Model

The instance of the given model is used for further processing. The tranformation
of the DSL script to the object model can be done on the client side with the client
library or within the composition service that accepts both, a VCL specification or
directly the object model over SOAP. Both approaches are supported to be able to
create VCL clients without the usage of the client library. This allows an implemen-
tation in other languages and platforms than .NET.

The resulting object model is forwarded to dataflow resolving.

4.2 Creating a Structured Composition

With the provided object model from the previous step a structured composition
can be created for further processing steps. In general the algorithm provided by

4.2 Creating a Structured Composition 68

Eshuis et al. with the presented changes in the CaaS chapter is implemented.

4.2.1 Abstract Dependency Graph

The first step is to create an abstract dependency graph. Therefore, we extract for
every feature its input and output values. An example is given in Table 7:

VCL Implementation

feature ActivatePort ,
*. PhoneManagementService.ActivatePortedNumber;

constraint ActivatePort
{

output = {
ActivatePortedNumberResponse[

string Status;
]

}

List FeatureOutputs = new List();

FeatureOutputs.Add(
ActivatePort.ActivatePortedNumberResponse);

FeatureOutputs.Add(
ActivatePort.ActivatePortedNumberResponse.Status);

Table 7: Extract Output Values for ADG

For every feature all nested data concepts are added to a global output list. The
name of the feature is used as a prefix. The reason is to know when a matching
is found to which feature it belongs. This means, an instance of a feature and not
to the feature type is used because of the possibility to have more than one feature
instances of the same underlying feature type in the VCL script.

The feature output list is filled iteratively. To be exact, the statements from the
workflow list are iterated through. Every statement is interpreted by following this
rules:

• If the statement is a simple invoke statement than the feature is extracted,
a dependency to the current root node is added, the output data concept is
extracted and the feature output list is searched for a match. If a depen-
dency match is found a dependency between the features is added. Finally the
features output data concepts are added to the feature list.

• If a complex statement is found (e.g. If-Then-Else) all dummy features are
added and nested statements are interpreted recursively.

At the end the created ADG is iterated through to eliminate all violating depen-
dencies. The final ADG as a list of features and a dictionary of dependencies is
forwarded to the structured composition algorithm.

4.2.2 Structured Composition

The algorithm is an exact implementation of Eshuis proposed solution with an ad-
ditional annotation of the XOR and AND blocks. Figure 24 depicts the resulting

4.3 Quality of Service Optimization 69

class hierarchy of the structured composition which allows a QoS optimization and
the final transformation to a workflow engine program.

Figure 24: Structured Composition Domain Model

StructureItem is the base interface for all classes involved in the structured com-
position model. A COMP block is mapped to the StructuredCompItem class. An
internal Enum is used to define the annotation types And, Xor or While. The base
VCLStatement is also included to have internal details, like approximated while
loops count or branching probabilities of an if-then-else statement, later available.
For Seq blocks the StructuredSeqItem class is used. Both classes, StructuredSeqItem
and StructuredCompItem, are derived from the abstract class StructuredItemBase.
A basic feature is assigned to the StructuredFeatureItem.

The return value defined in the signature of the exposed algorithm method is Struc-
turedItem. The interface includes also a set of methods which are necessary to access
the inner data of the structured composition in later steps.

4.3 Quality of Service Optimization

Having a structured composition for the provided VCL script, the composition ser-
vice performs a service candidate selection for each feature. The user specifies re-
quired and optional QoS constraints for the whole composition and single features

4.3 Quality of Service Optimization 70

that need to be considered in the selection process. The problem model was in-
troduced in the CaaS chapter. In this section the implementation details will be
covered. Therefore, source code parts will be used to explain our solution.

At the beginning of this thesis we started to model our problem for the Cassowary.net
constraint solver. Cassowary.net is a port of the University of Washington’s Cas-
sowary constraint solving toolkit to the .NET platform. The definition of the solver
provided on the Cassowary website is:

Cassowary is an incremental constraint solving toolkit that efficiently
solves systems of linear equalities and inequalities. Constraints may be
either requirements or preferences. Client code specifies the constraints
to be maintained, and the solver updates the constrained variables to

have values that satisfy the constraints.

Starting to model our problem with Cassowary we get problems to express it in
the syntax provided by Cassowary. In general, it supports only basic equalities and
inequalities. Every logical constraint requires a set of Cassowary constraints to be
mapped correctly. In the end we decide to look for a different solver.

The next promising solver was NSolver developed and provided by Dr. Andy Chun
from the Department on Computer Science at the City University of Hong Kong.
The solver is constraint based and allows the user to specify a huge number of
different operator within a constraint. With an easy to use syntax, we model our
optimization problem without any troubles. After our first performance tests we
were disappointed. It turns out that the solver has a great performance on a “flat”
structured optimization problem, but has a performance issue with our model. We
model our optional constraint with nested conditional statement provided by the
NSolver. This has a huge impact on the performance.

At this time Microsoft announced their Microsoft Solver Foundation Framework
for .NET. The framework itself is a container for different solver. A solver can be
provided by Microsoft or a third-party company as an extension by implementing
a set of predefined interfaces. Microsoft delivers the MSF Framework with a set of
included solvers, among other a CSP and an IP solver.

We started to model our problem for the provided CSP solver in the Constraint-
SolverCSP class. To have the possibility to support more than one implementation
we define the IConstraintSolver interface that is implemented by the Constraint-
SolverCSP class as well as the IP and the NSolver implementation.

The ResolveConstraintHierarchie method from Listing 31 shows the entry method
for the Solver. It takes a Workflow instance as input which contains the structured

4.3 Quality of Service Optimization 71

� �
1 public void Reso lveCons t ra in tH i e ra r ch i e (Core . Workflow wf)

2 {
3 SetGloba lConst ra intF lags (wf) ;

4 AddFeatureParameters (wf . GraphItems) ;

5 AddGlobalConstraints (wf) ;

6 AddOveral lScore () ;

7 Solve () ;

8

9 // cleanup s t u f f

10 contex t . ClearModel () ;

11 }� �
Listing 31: ResolveConstraintHierarchie Method

composition . In Line 3 the SetGlobalConstraintFlags method is called to set a flag
for each included global constraint that is used later in the implementation. All
local constraints, required and optional, are handled in the AddFeatureParameters
method (Line 4). Global constraints are covered with the AddGlobalConstraints call
(Line 5). The utility function that needs to be maximized to get the best score
on the optional constraints is generated in the AddOverallScore method (Line 6).
Finally, having a setup for all constraints the Solve method is called to find a valid
solution (Line 7). Line 10 cleans some MSF internal states to setup the solver ready
for new calls.

� �
1 private void SetGloba lConst ra intF lags (VRESCo. Composition . Core . Workflow wf)

2 {
3 i f (wf . VclModel . Globa lConst ra int s != null)

4 {
5 var cons = wf . VclModel . Globa lConst ra int s . QoSConstraints ;

6 i f (cons != null)

7 {
8 i f (cons . AccuracyConstraint != null)

9 hasGlobalAccuracyConstra int = true ;

10 i f (cons . Ava i l a b i l i t yCon s t r a i n t != null)

11 ha sG loba lAva i l ab i l i t yCons t r a i n t = true ;

12 i f (cons . Pr i c eCons t ra in t != null)

13 hasGloba lPr i ceConst ra int = true ;

14 i f (cons . Re l iab l eMessageConst ra int != null)

15 hasGloba lRe l iab leMessageConstra int = true ;

16 i f (cons . ResponseTimeConstraint != null)

17 hasGlobalResponseTimeConstraint = true ;

18 i f (cons . Secur i tyCons t ra in t != null)

19 hasGloba lSecur i tyConst ra in t = true ;

20 i f (cons . ThroughputConstraint != null)

21 hasGlobalThroughputConstraint = true ;

22 }
23 }
24 }� �

Listing 32: SetGlobalConstraintFlags Method

4.3 Quality of Service Optimization 72

The SetGlobalConstraintFlags(Listing 32) method extracts the global QoS constraints
from the VCLModel (Line 5). It sets a global flag for each constraint that is given
in the VCL file (Line 8-21). This is important for further processing and will be
reused in other methods.

� �
1 private void AddFeatureParameters (IL i s t <AbstractDependencyGraphItem> i tems)

2 {
3 candidateCount = 0 ;

4 f o r each (var item in items)

5 {
6 i f (item . Feature != null)

7 {
8 var featureName = item . Feature .Name ;

9 i f (item . Serv i ceCandidates . Count == 0)

10 {
11 throw new Constra intReso lut ionExcept ion (s t r i n g . Format (”Cannot f i nd

a s e r v i c e cand ia t e s f o r f e a t u r e s ’{0} ’ . ” , featureName)) ;

12 }
13

14 // crea t e the g l o b a l d e s c i s i on s t o r e f o r each f e a t u r e

15 f e a t u r eDe c i s i o n s [featureName] = new Dict ionary<s t r i ng , Dec is ion >() ;

16

17 var cand idates = item . Serv i ceCandidates ;

18 candidateCount += cand idate s . Count ;

19

20 var s e r v i c e s = new Set (Domain .Any , featureName) ;

21 var s e l e c t e d = new Dec i s i on (Domain . Boolean , featureName + ” S e l e c t i o n

” , s e r v i c e s) ;

22 model . AddDecision (s e l e c t e d) ;

23

24 // add s e l e c t i o n cons t r a in t (only one s e r v i c e can be s e l e c t e d f o r

each f ea t u r e)

25 model . AddConstraint (” S ing l eFea tu r eSe l e c t i onCons t r a i n t ” , Model .Sum(

Model . ForEach (s e r v i c e s , i => s e l e c t e d [i])) == 1) ;� �
Listing 33: AddFeatureParameters Method

AddFeatureParameter(Listing 33) is one of the main methods of the solver imple-
mentation. It adds the features and their local constraints to the solver model.
In Line 2 it starts to iterate over the provided ADG Item list. The processing is
started if the item is a feature (Line 4). This is an important check because the List
contains also dummy nodes like Then or Throw items. The name of the feature is
stored in the variable featureName (Line 5). If no service candidates are available
for the feature an exception is thrown and the execution of the composition service
is stopped. MSF provides Decision and Constraint objects that can be added to the
solver to define a CSP Problem. The first sub-problem is to constraint that one and
only one service candidate is selected for each feature. Therefore a set is defined
and used in a Decision (Line 17-18). A Decision represents a value that needs to
be assigned by the solver. Every Decision has a type, name and optionally a set.
We use the defined set to indicate that we have an array of Boolean Decision, one
for each service candidate. We add the Selection string to the features name and

4.3 Quality of Service Optimization 73

� �
1 QoSConstraints qos = item . Constra int . QoSConstraints ;

2 //////////

3 // ResponseTime l o c a l c on s t r a in t

4 //////////

5 i f ((qos != null && qos . ResponseTimeConstraint != null) | |
hasGlobalResponseTimeConstraint)

6 {
7 var domain = Domain . IntegerNonnegat ive ;

8 var responseTime = new Parameter (domain , Constants .QOS RESPONSE TIME,

s e r v i c e s) ;

9 model . AddParameter (responseTime) ;

10 responseTime . SetBinding (cand idate s . AsEnumerable () , ”QoSResponseTime” , ”

Index”) ;

11

12 i f (qos != null && qos . ResponseTimeConstraint != null)

13 {
14 ResponseTimeConstraint r t = qos . ResponseTimeConstraint ;

15 AddMinimiumFeatureConstraint (s e r v i c e s , s e l e c t ed , responseTime , domain ,

r t . Value , r t . Strength , featureName , SELECTED RESPONSE TIME) ;

16 }
17 else

18 {
19 i f (hasGlobalResponseTimeConstraint)

20 AddMinimiumFeatureConstraint (s e r v i c e s , s e l e c t ed , responseTime , domain ,

0 , Strength . None , featureName , SELECTED RESPONSE TIME) ;

21 }
22 }� �

Listing 34: AddFeatureParameters Method Continued

use it as a decision name. Line 19 adds finally the constraint by applying a Sum

and ForEach operation on the decision to limit the sum to be 1. Considering that
the MSF Boolean type has the value one for true and zero for false we express a
constraint that only one Boolean within the array is true. The decision itself is
added to the model(Line 20) and used later in the local and global constraints.

Listing 34 depicts the handling of the response time local constraint. Line 3 checks if
an local or global response time constraint exists. In this case a new MSF Parameter
is defined that holds the response time values for all service candidates (Line 5). The
binding to response time values for service candidates is done by calling the SetBind-
ing method (Line 6) and providing the list of service candidates as an enumerable,
QoSResponseTime field for the response time value and Index filed for internal MSF
indexing. The helper method AddMinimumFeatureConstraint is called to set the lo-
cal constraint (Line 7 and Line 10). If an local constraint exist, the method will take
the constraint value (e.g. rt.Value) as a parameter and constraint strength (e.g.
rt.Strength), otherwise in case of a global constraint zero and Strength.None will
be past as a parameters. All other QoS attributes are handled similar. The main
difference is the helper method that is used. Therefore, we will not cover other QoS
attributes here and will continue with the AddMinimumFeatureConstraint method
in Listing 35.

4.3 Quality of Service Optimization 74

� �
1 private void AddMinimiumFeatureConstraint (Set s e r v i c e s , Dec i s i on s e l e c t ed ,

Parameter parameter , Domain domain ,

2 int qosValue , Strength strength , s t r i n g featureName , s t r i n g

se lectedDec is ionName)

3 {
4 var s e l e c t edVa lue = new Dec i s i on (domain , se lectedDec is ionName) ;

5 model . AddDecision (s e l e c t edVa lue) ;

6 f e a t u r eDe c i s i o n s [featureName] [se lectedDecis ionName] = se l e c t edVa lue ;

7 model . AddConstraint (se lectedDecis ionName + ” Cons t ra in t ” + featureName ,

s e l e c t edVa lue == Model .Sum(Model . ForEach (s e r v i c e s , i => s e l e c t e d [i] ∗
parameter [i]))) ;

8

9 i f (s t r ength != Strength . Required && st r ength != Strength . None)

10 {
11 var c on s t r a i n t S e l e c t e d = new Dec i s i on (Domain . Boolean , featureName +

se lectedDec is ionName + ”Optional ”) ;

12 model . AddDecision (c on s t r a i n t S e l e c t e d) ;

13

14 // add op t i ona l c on s t r a in t and g i v e a score according to i t s s t r eng t h .

15 model . AddConstraint (”Optional ” + se lectedDec is ionName + ” ” +

featureName , c on s t r a i n t S e l e c t e d == (se l e c t edVa lue <= qosValue)) ;

16

17 op t i ona lCon s t r a i n t s .Add(c on s t r a i n t S e l e c t e d ∗ (int) s t r ength) ;

18 }
19 }� �

Listing 35: AddMinimiumFeatureConstraint Method

In Line 3 a MSF Decision is created that will store the response time value of the se-
lected service candidate. It is added to the model (Line 4) and to the featureDecisions

internal dictionary. The featureDecisions directory holds for every feature and
its QoS values a MSF Decision. This is used later for global constraint that are build
out of them. Line 5 defines the decision value as a sum of selected and parameter set
multiplications. This is exactly the defined formula introduced in the CaaS Chapter.
The selected set is already constraint to have only one boolean variable with value
true. Therefore, the decision variable will always have the response time value of
the selected constraint.

In case of an optional constraint a decision variable, constraint to the value of the
constraint strength if satisfied, will be added to the optionalConstraints List.
This is used later to define the score function that needs to me maximized.

The next step is to create global constraints. This is done in the AddGlobalCon-
straints method (Listing 36). Line 1 check if global QoS constraints are defined in
the VCL specification. A MSF Decision is again created to hold the response time
value of the whole composition(Line 5). The constraint used to define the value of
the decision variable calls the AggregateQosParameter method. This method will
not be covered in detail here because of its length. In general, it transverse the com-
position and concatenate the decisions from the featureDecisions dictionary to a

4.3 Quality of Service Optimization 75

� �
1 private void AddGlobalConstraints (Core . Workflow wf)

2 {
3 // g l o b a l c on s t r a i n t s de f ined in VCL?

4 i f (wf . VclModel . Globa lConst ra int s == null | | wf . VclModel .

Globa lConst ra int s . QoSConstraints == null)

5 return ;

6

7 QoSConstraints g l oba l = wf . VclModel . Globa lConst ra int s . QoSConstraints ;

8 i f (g l oba l != null && g loba l . ResponseTimeConstraint != null)

9 {
10 // ResponseTime requ i red

11 var r t = g l oba l . ResponseTimeConstraint ;

12

13 globalResponseTime = new Dec i s i on (Domain . IntegerNonnegat ive , ”

GlobalResponseTime”) ;

14 model . AddDecision (globalResponseTime) ;

15

16 model . AddConstraint (”GlobalResponseTimeAggregationConstraint ” ,

globalResponseTime == AggregateQoSParameter (wf .

StructuredComposit ion , SELECTED RESPONSE TIME, AggregationType .Max,

AggregationType .Max, AggregationType .Sum)) ;

17

18 i f (r t . Strength == Strength . Required)

19 {
20 model . AddConstraint (”GlobalResponseTimeConstraint ” ,

globalResponseTime <= rt . Value) ;

21 //we don ’ t need to maximize t h i s because we are maximizing the score

va lue .

22 // model . AddGoal (”MinimizeGlobalResponseTime ” , GoalKind . Minimize ,

g lobalResponseTime) ;

23 }
24 else // op t i ona l c on s t r a i n t s

25 {
26 // s t o r e d e s c i s i on s g l o b a l l y

27 var globalResponseTimeConstra int = new Dec i s i on (Domain . Boolean , ”

OptionalGlobalResponseTimeSelect ion ”) ;

28 model . AddDecision (globalResponseTimeConstra int) ;

29

30 // add op t i ona l c on s t r a in t and g i v e a score according to i t s s t r eng t h

.

31 model . AddConstraint (” Opt iona lGloba lResponseTimeSe lect ionConstra int ” ,

g lobalResponseTimeConstra int == (globalResponseTime <= rt . Value

)) ;

32

33 op t i ona lCon s t r a i n t s .Add(globalResponseTimeConstra int ∗ (int) r t .

Strength) ;

34 }
35 }� �

Listing 36: AddGlobalConstraints Method

4.3 Quality of Service Optimization 76

� �
1 private void AddOveral lScore ()

2 {
3 // check i f a t l e a s t one op t i ona l c on s t r a in t e x i s t s

4 i f (op t i ona lCon s t r a i n t s . Count > 0)

5 {
6 var t o t a l s c o r e = new Dec i s i on (Domain . IntegerNonnegat ive , ”Tota lScore ”) ;

7 model . AddDecision (t o t a l s c o r e) ;

8 model . AddConstraint (” Tota lScoreConst ra int ” , t o t a l s c o r e == Model .Sum(

op t i ona lCon s t r a i n t s . ToArray ())) ;

9 model . AddGoal (”Tota lScore ” , GoalKind . Maximize , t o t a l s c o r e) ;

10 }
11 }� �

Listing 37: AddOverallScore Method

global constraint (Line 5). Thereby, the provider AggregationType parameters for
XOR, AND and SEQ are used to perform the right aggregation operation. For response
time the max function is used for both branch types and a sum for a sequence.

If the global constraint is required than a simple constraint is added to the model
(Line 10), otherwise a decision variable is created and constraint to have the given
strength value if satisfied. Line 15 adds the decision to the optionalConstraints

list to use it for the scoring function. All other QoS Attributes are handled in same
way with other AggregationTypes. Listing 37 shows the AddOverallScore method.
With all global and local constraints created in the previous methods the global
scoring function can be created. This is done by summing up all optional constraint
from the optionalConstraints list. Line 5 adds a maximization goal for the
model. The solver tries to maximize the given decision, which is equal to the goal
to satisfied the maximum number of optional constraints weighted by constraints
strength.

The Solve method will trigger the MSF solver (Listing 38). In this case we use
MSFs CSP solver(Line 3). Line 4 start the solver. All found solutions are added
to the solutions list. When at least one solution is found the AssignBestSolution
method will be called to assign the best service candidate, extracted from the first
solution in the solutions list, to each feature in the structured composition.

We cover in this section the CSP implementation. In our approach we used also an
IP model. Both solutions are similar. Therefore, we will not cover the IP model
here. The main difference was already explained in the previous chapter.

4.3 Quality of Service Optimization 77

� �
1 i n t e r n a l void Solve ()

2 {
3 var c spD i r e c t i v e = new ConstraintProgrammingDirect ive ()

4 {
5 TimeLimit = 60000 ∗ 5 } ;
6

7 MSSolution s o l = contex t . So lve (c spD i r e c t i v e) ;

8 w. Stop () ;

9 so lv ingTime = w. E lapsedMi l l i s e conds ;

10

11 Report r epor t = null ;

12

13 i f (s o l != null && so l . Qual i ty != So lve rQua l i ty . I n f e a s i b l e && s o l u t i o n s .

Count < 1)

14 {
15 //add s o l u t i on to g l o b a l s o l u t i o n s l i s t

16 s o l u t i o n s .Add(s o l) ;

17 }� �
Listing 38: Solve Method

4.3.1 Windows Workflow Implementation

The created structured composition needs to be published on the IIS to finish the
composition request. Following the rules presented in the mapping table in chapter
3 all items are mapped to appropriate WF items. Therefore, we transverse the
structured composition and create the correct WF activity for each node. The
resulting workflow is stored in a XAML file.

Unfortunately, the contend of the code activity can’t be stored in a XAML file.
Therefore, we use .NETs CodeDom to create the required source code on the fly.
This is also the case for conditions within a while or if-then nodes and the root
ReceiveActivity item. Listing 39 shows the generated source code for CRM request
from the TELCO example.

We use the DAIOS framework to call the selected service candidate for a feature.
The DAIOS framework is also used because of the possibility to implement dy-
namic rebinding to another service. The reason for a rebinding can be a QoS
value change or a fallback if the service gets unavailable. A rebinding implemen-
tation is out of scope and left for further work. Line 3-12 set the Web service
source for the DAIOS client and calls the service. CRM CustomerLookupRequest

and CRM CustomerLookupResponse are generated from the VCL specification and
used within the WF workflow to share the result from each call to the following
feature calls. In the TELCO sample, the output data from the CRM feature is
used as an input for the NotifyUser feature. The DAIOS Framework uses an own
datastructure for input and output parameters that needs to be mapped. This is
done in Line 5-8 for the input parameter and Line 12-20 for output parameters.

4.3 Quality of Service Optimization 78

� �
1 public v i r t u a l void Crm ExecuteCode (ob j e c t sender , EventArgs args)

2 {
3 Serv iceFrontendFactory f a c t o r y = Serv iceFrontendFactory . GetFactory (”

VReSCO. NDaios . Nat iveInvoker . Nat iveInvokerFactory ”) ;

4 s t r i n g u r l = ”http :// l o c a l h o s t :12000/ CustomerService ?wsdl ” ;

5 DaiosMessage message = new DaiosMessage () ;

6 DaiosMessage va l = new DaiosMessage () ;

7 va l . Se t In t (”CustomerId” , this . customerId) ;

8 message . SetComplex (” r eque s t ” , va l) ;

9 Serv iceFrontend f rontend = fa c t o ry . CreateFrontend (u r l) ;

10 f rontend . SetWSDLOperationName(new QName(”CustomerLookup” , null)) ;

11 f rontend . SetEndpointAddress (u r l) ;

12 DaiosMessage message3 = frontend . RequestResponse (message) ;

13 this . Crm CustomerLookupResponse = new CustomerLookupResponse () ;

14 this . Crm CustomerLookupResponse . Firstname = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”Firstname”) ;

15 this . Crm CustomerLookupResponse . Lastname = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”Lastname”) ;

16 this . Crm CustomerLookupResponse . PhoneNumber = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”PhoneNumber”) ;

17 this . Crm CustomerLookupResponse . Mail = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”Mail ”) ;

18 this . Crm CustomerLookupResponse . S t r e e t = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (” S t r e e t ”) ;

19 this . Crm CustomerLookupResponse . Zip = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”Zip”) ;

20 this . Crm CustomerLookupResponse . City = message3 . GetComplex (”

CustomerLookupResult”) . GetStr ing (”City ”) ;

21 }� �
Listing 39: CRM Feature Call Implementation

The two generated parts, Workflow XAML and the source code, are compiled to-
gether with the C# compiler into a dll file. This dll is moved to a newly created
virtual directory on the IIS. The last step is to change the web.config template to
fit to the new workflow and to return the new WSDL endpoint. The service is auto-
matically available to the customer. Figure 25 depicts the final WF workflow of the
TELCO example. A counter value is used for some WF activities to simplified the
code generation and avoid conflicts. But there are no side effects to the produced
WSDL file, which contains a clean interface description.

4.3 Quality of Service Optimization 79

Figure 25: WF Workflow for TELCO Example

80

5 Conclusion and Future Work

Software as a Service is a software deployment and distribution model that grows in
last year’s. It becomes a valid business model to expose and license a specialized Web
service on demand to customers. On the other side, companies can build software
systems out of internal services or software components and use external services
offers by third companies. Thereby, the development and maintaining cost can be
highly reduced. Also the time to market can be decreased because the required
services are already implemented and have a good quality.

Building complex software systems and using the SaaS approach creates the require-
ment for composition languages for Web services. BPEL is one of the wide spread
languages that is used today.

This thesis introduces the service abstraction and QoS-aware composition language
VCL (Vienna Composition Language). Services are abstracted to features within
the VRESCO framework. This is used to map services with the same purpose but
a different interface to an abstract domain service respectively feature in VRESCO
terminology.

VCL defines the composition on a feature level. The workflow definition is not
strictly defined like in BPEL. A combination of data-flow dependencies and control
structures defined by the user are implemented. This allows rapid development of
compositions in VCL.

Two services that maps to the same feature can differ in their QoS (e.g., Response
time, Availability, Cost,...) values. Therefore, the best service candidate needs to
be chosen. VCL supports local and global QoS constraints for this purpose. A
list of implemented QoS values is given in Chapter 3. To avoid over-constraint
compositions, each constraint can be enriched with a strength (e.g. required, hard,
medium, weak). All non-required constraint are added to a scoring function that
is maximized by the solver. Therefore, we model the optimization problem with
a CSP and IP solver. CSP is easier to use and supports all constraint natively,
whereas the IP implementation needs to use some approximations to implement the
multiplication of QoS attributes exposed as percent values.

The resulting composition is transformed to WF and exposed as a Web service. We
call this approach “Composition as a Service”.

5.1 Future Work 81

5.1 Future Work

However, there are some open points left for future work. In the current implemen-
tation the QoS constraint evaluation is done at the composition time. Typically, a
QoS attribute like response time is permanently changing and needs to be measured.
Therefore, the QoS evaluation needs to be moved to the composition runtime. The
QoS optimization can be performed periodically and force the composition to rebind
to new service candidates. Because of the fact, that the service call is done with the
DAIOS client, which supports rebinding, this task should not be hard to implement.
Another solution would be, instead of the periodically update, to monitor the QoS
values of the deployed composition itself, an trigger a new QoS evaluation if the
constraint are not satisfied.

The second topic is the QoS optimization itself. We implemented two solutions with
the MSF framework. The resulting performance, at least for the IP model, was
good enough for our approach. But if the VCL specification is big and the QoS
optimization is moved to compositions runtime a better solver may be required. We
think that there is enough space to optimize our current MSF models to get a better
performance.

The VCL is closely coupled with the VRESCO framework. In our TELCO example
we had to manually specify the data concepts used in each feature. This task should
be automated by having a VCL Editor that can browse through VRESCOs registry
and add features to the VCL per drag and drop. It is also possible to write a GUI
editor or extend an existing developer IDE to model the complete composition. A
good example is the WF editor in Visual Studio that offers an easy to use GUI for
workflows and creates a XAML file as an output.

82

A Acronyms

BPEL Business Process Execution Language

BPML Business Process Modeling Language

CaaS Composition as a Service

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

CSP Constraint satisfaction problem

CSS Cascading Style Sheets

DSL Domain-specific Language

GUI Graphical user interface

HQL Hibernate Query Language

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IIS Microsoft Internet Information Services

QoS Quality of Service

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SaaS Software as a Service

SMS Short Message Service

SOA Service-oriented architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

VCL Vienna Composition Language

VQL Vienna Querying Language

VRESCo Vienna Runtime Environment for Service-oriented Computing

WF Microsoft Windows Workflow Foundation

83

WSDL Web Services Description Language

WSFL Web Services Flow Language

XAML Extensible Application Markup Language

XLANG XML Language

XML Extensible Markup Language

84

B VCL Specification for the TELCO Example

� �
1 #compos i t ions name

2 composit ion TelcoCasestudyComposition ;

3

4 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 #∗∗ Def ine r equ i r ed f e a t u r e s ∗∗∗
6 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 f e a tu r e Crm, ∗ . CustomerService . CustomerLookup ;

8 f e a tu r e LookupPartner , ∗ . PhoneManagementService . LookupPartner ;

9 f e a tu r e PortCheck , ∗ . Po r t ingSe rv i c e . Portab i l i tyCheck ;

10 f e a tu r e PortNumber , ∗ . Po r t ingSe rv i c e . PortNumber ;

11 f e a tu r e ActivatePort , ∗ . PhoneManagementService . ActivatePortedNumber ;

12 f e a tu r e Noti fy , ∗ . N o t i f i c a t i o nS e r v i c e . Not i fyUser ;

13

14 #∗∗ Def ine f e a tu r e c on s t r a i n t s ∗∗
15

16 con s t r a i n t g l oba l

17 {
18

19 input = {
20 int customerId ;

21 s t r i n g numberToPort ;

22 }
23

24 output = {
25 s t r i n g s t a tu s ;

26 }
27 qos = {
28 responseTime = 7000;

29 a v a i l a b i l i t y = 0 . 6 6 ;

30 }
31

32 }
33

34 con s t r a i n t Crm

35 {
36 input = {
37 CustomerLookupRequest [

38 int CustomerId ;

39]

40 }
41

42 output = {
43 CustomerLookupResponse [

44 s t r i n g Firstname ;

45 s t r i n g Lastname ;

46 s t r i n g PhoneNumber ;

47 s t r i n g Mail ;

48 s t r i n g S t r e e t ;

49 s t r i n g Zip ;

50 s t r i n g City ;

51]

52 }
53

54 qos = {
55 responseTime = 1000;

56 a v a i l a b i l i t y = 0 . 6 6 ;

57 }
58 }
59

60 con s t r a i n t LookupPartner

61 {
62 input = {
63 LookupPartnerRequest [

64 s t r i n g NumberToPort ;

65]

66 }
67

68 output = {
69 LookupPartnerResponse [

70 s t r i n g ProviderName ;

71]

72 }
73

74 qos = {
75 responseTime = 1000;

76 a v a i l a b i l i t y = 0 . 6 6 ;

77 }
78 }
79

85

80 con s t r a i n t PortCheck

81 {
82 input = {
83 Portabi l i tyCheckRequest [

84 s t r i n g NumberToPort ;

85 s t r i n g NewProvider ;

86]

87 }
88

89 output = {
90 Portabi l i tyCheckResponse [

91 int I sPor tab l e ;

92]

93 }
94

95 qos = {
96 responseTime = 1000;

97 a v a i l a b i l i t y = 0 .66 , weak ;

98 }
99 }

100

101 con s t r a i n t PortNumber

102 {
103 input = {
104 PortNumberRequest [

105 s t r i n g NumberToPort ;

106]

107 }
108

109 output = {
110 PortNumberResponse [

111 int I sPorted ;

112]

113 }
114

115 qos = {
116 responseTime = 1000;

117 a v a i l a b i l i t y = 0 . 6 6 ;

118 }
119 }
120

121 con s t r a i n t Act ivatePort

122 {
123 input = {
124 ActivatePortedNumberRequest [

125 int CustomerId ;

126 s t r i n g PortedNumber ;

127]

128 }
129

130 output = {
131 ActivatePortedNumberResponse [

132 s t r i n g Status ;

133]

134 }
135

136 qos = {
137 responseTime = 1000;

138 a v a i l a b i l i t y = 0 . 6 6 ;

139 }
140 }
141

142 con s t r a i n t Not i fy

143 {
144 input = {
145 Noti fyRequest [

146 s t r i n g Mail ;

147 s t r i n g Message ;

148 s t r i n g Act ivat ionStatus ;

149]

150 }
151

152 output = {
153 Noti fyResponse [

154 s t r i n g Status ;

155]

156 }
157

158 qos = {
159 responseTime = 1000;

160 a v a i l a b i l i t y = 0 . 6 6 ;

161 }
162 }

86

163

164

165 #∗∗ Def ine a c t i v i t y orde r ing c on s t r a i n t s (bus ine s s p ro toco l s p e c i f i c a t i o n) ∗
166 # feature , array o f parents

167

168 invoke Crm {
169 CustomerLookupRequest [

170 CustomerId = customerId ;

171]

172 }
173

174 invoke LookupPartner{
175 LookupPartnerRequest [

176 NumberToPort = numberToPort ;

177]

178 }
179

180 invoke PortCheck {
181 Portabi l i tyCheckRequest [

182 NumberToPort = numberToPort ;

183 NewProvider = LookupPartner . LookupPartnerResponse . ProviderName ;

184]

185 }
186

187 check (PortCheck . Portabi l i tyCheckResponse . I sPor tab l e = 1)

188 {
189 invoke PortNumber {
190 PortNumberRequest [

191 NumberToPort = numberToPort ;

192]

193 }
194 }
195 else [0 . 1]

196 {
197 throw ”Number can ’ t be ported by ex t e rna l prov ider ” ;

198 }
199

200 check (PortNumber . PortNumberResponse . I sPorted = 1)

201 {
202 invoke Act ivatePort {
203 ActivatePortedNumberRequest [

204 CustomerId = customerId ;

205 PortedNumber = Crm. CustomerLookupResponse . PhoneNumber ;

206]

207 }
208

209 invoke Not i fy {
210 Noti fyRequest [

211 Mail = Crm. CustomerLookupResponse . PhoneNumber ;

212 Message = ”Phone number ported ” ;

213 Act ivat ionStatus = Act ivatePort . ActivatePortedNumberResponse . Status ;

214]

215 }
216 }
217 else [0 . 2]

218 {
219 throw ”Problem occurred on ex t e rna l partner s i d e ” ;

220 }
221

222 return {
223 s ta tu s = ”Job done” ;

224 }� �
Listing 40: VCL Specification for the TELCO Example

87

C MGrammar Definition of VCL

� �
1 module VRESCo

2 {
3 language VCL

4 {
5

6 // I n i t i a l r u l e

7 syntax Main = c : Composition

8 f : Fea tu r eDe f i n i t i on+

9 con : Cons t r a i n tDe f i n i t i on ∗
10 wf : (id : I nvo ca t i onDe f i n i t i on =>id |
11 wd : Jo i nDe f i n i t i on =>wd |
12 cd : CheckDef in i t ion =>cd |
13 rd : ReturnDe f in i t i on =>rd |
14 td : ThrowDef init ion =>td |
15 jd : JumpDefinit ion =>jd |
16 ld : Labe lDe f i n i t i on =>ld |
17 wd : Whi l eDe f in i t i on =>wd)∗ => Composition {c , Features{ f } , Cons t r a in tCo l l e c t i on {con } ,

Workflow{wf }} ;
18

19 // main r u l e s

20 syntax Composition = CompositionToken name : I d e n t i f i e r ” ; ” => Name{name} ;
21 syntax Fea tu r eDe f i n i t i on = FeatureToken locname : I d e n t i f i e r cat : (Ful lyQual i f iedName) invT

: (InvocationType) ? ” ; ” => Feature{Name{ locname } , v a l u e s o f (cat) , v a l u e s o f (invT) } ;
22 syntax FullyQual i f iedName = ” , ” cp : FullyQualif iedNameToken => FullyQual i f iedName{cp } ;
23 syntax InvocationType = ” , ” ” type” inv : (Sync | Async) => InvocationType { va lu e s o f (inv) } ;
24 syntax Sync = SyncToken => ” sync” ;

25 syntax Async = AsyncToken => ”async” ;

26

27 syntax Cons t r a i n tDe f i n i t i on = ConstraintToken id : I d e n t i f i e r ”{”
28 body : (i t : QoSConstraint => i t |
29 i t : InputConstra int => i t |
30 i t : OutputConstraint => i t |
31 i t : Precond i t ion => i t |
32 i t : Postcond i t ion => i t |
33 i t : Se rv i c eCons t ra in t =>i t)∗ ”}” => Const ra int s {FeatureName{ id } , v a l u e s o f (body) } ;
34

35 syntax QoSConstraint = QoSToken ”=” ”{” qc : (

36 i t : QoSResponseTimeConstraint => i t |
37 i t : QoSAva i lab i l i tyConst ra int => i t |
38 i t : QoSRel iableMessageConstraint => i t |
39 i t : QoSSecur ityConstra int => i t |
40 i t : QoSAccuracyConstraint => i t |
41 i t : QoSThroughputConstraint => i t |
42 i t : QoSPriceConstraint => i t)∗ ”}” => QoSConstraints{QoSConstraints{ va lu e s o f (qc) }} ;
43

44 syntax QoSResponseTimeConstraint = ResponseTimeToken ”=” s t : (im : (qv : D i g i t s ” ; ” => [

Value{qv }]) => im | i z : (qv : D i g i t s ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{ l i }])
=>i z) => ResponseTimeConstraint{ResponseTimeConstraint{ va lu e s o f (s t) }} ;

45 syntax QoSAva i lab i l i tyConst ra int = Ava i lab i l i tyToken ”=” s t : (im : (qv : DoubleDigit ” ; ” =>

[Value{qv }]) => im | i z : (qv : DoubleDigit ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{
l i }]) =>i z) => Ava i l ab i l i t yCon s t r a i n t {Ava i l ab i l i t yCon s t r a i n t { va lu e s o f (s t) }} ;

46 syntax QoSAccuracyConstraint = AccuracyToken ”=” s t : (im : (qv : DoubleDigit ” ; ” => [Value{
qv }]) => im | i z : (qv : DoubleDigit ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{ l i }])
=>i z) => AccuracyConstraint{AccuracyConstraint{ va lu e s o f (s t) }} ;

47 syntax QoSThroughputConstraint = ThroughputToken ”=” s t : (im : (qv : DoubleDigit ” ; ” => [

Value{qv }]) => im | i z : (qv : DoubleDigit ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{
l i }]) =>i z) => ThroughputConstraint{ThroughputConstraint{ va lu e s o f (s t) }} ;

48 syntax QoSPriceConstraint = PriceToken ”=” s t : (im : (qv : DoubleDigit ” ; ” => [Value{qv }])
=> im | i z : (qv : DoubleDigit ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{ l i }]) =>i z)

=> Pr i ceConst ra in t {Pr i ceConst ra in t { va lu e s o f (s t) }} ;
49 syntax QoSRel iableMessageConstraint = Rel iableToken ”=” s t : (im : (qv : Bool ” ; ” => [Value{

qv }]) => im | i z : (qv : Bool ” , ” l i : Strength ” ; ” => [Value{qv} , Strength{ l i }]) =>i z)

=> Rel iab leMessageConstra int {Rel iab leMessageConstra int { va lu e s o f (s t) }} ;
50 syntax QoSSecur ityConstra int = SecurityToken ”=” s t : (im : (qv : (”X509” | ”None” | ”

In t eg ra t edSecu r i t y ” | ”UsernamePassword”) ” ; ” => [Value{ va lu e s o f (qv) }]) => im |
51 i z : (qv : (”X509” | ”None” | ” In t eg ra t edSecu r i t y ” | ”UsernamePassword”) ” , ” l i : Strength ” ;

” => [Value{ va lu e s o f (qv) } , Strength{ l i }]) =>i z) => Secur i tyCons t ra in t {
Secur i tyCons t ra in t { va lu e s o f (s t) }} ;

52

53 syntax InputConstra int = InputToken ”=” ”{” i t : ParameterDef in i t ion ”}”=> InputConstra int

{ InputConstra int { i t }} ;
54 syntax OutputConstraint = OutputToken ”=” ”{” i t : ParameterDef in i t ion ”}” =>

OutputConstraint{OutputConstraint{ i t }} ;
55 syntax Precond i t ion = PrecondToken ”=” ”{” i t : Parameter ”}” => Precond i t ion {Precond i t ion

{ i t }} ;
56 syntax Postcond i t ion = PostcondToken ”=” ”{” i t : Parameter ”}” => Postcond i t ion {

Postcond i t ion { i t }} ;
57 syntax Se rv i c eCons t ra in t = ServiceToken ”=” ”{” ”name” ”=” i t : I d e n t i f i e r ” ; ” ”}” =>

Serv i c eCons t ra in t { Serv i c eCons t ra in t {Name{ i t }}} ;

88

58

59 syntax ParameterDef in i t ion = i t : ParameterDef in it ionElement => ParameterDef in i t ion {
ParameterDef in i t ion {Type{”Complex”} ,Members{ i t }}} | id : I d e n t i f i e r ” [” i t :

ParameterDef in it ionElement ”] ” => ParameterDef in i t ion {ParameterDef in i t ion {Name{ id } ,

Type{”Complex”} ,Members{ i t }}} ;

60 syntax ParameterDef in it ionElement = s i : S impleParameterDef in i t ion => s i | c i :

ComplexParameterDefinit ion => c i ;

61 syntax SimpleParameterDef in i t ion = t : Types name : I d e n t i f i e r ” ; ” r e s t :

ParameterDef in it ionElement ? => [ParameterDef in i t ion {Type{ t } , Name{name}} , v a l u e s o f (

r e s t)] ;

62 syntax ComplexParameterDefinit ion = id : I d e n t i f i e r ” [” i t : ParameterDef in it ionElement ”] ”

” ; ” r e s t : ParameterDef in it ionElement ? => [ParameterDef in i t ion {Name{ id } ,Type{”
Complex”} ,Members{ i t }} , v a l u e s o f (r e s t)] ;

63

64 syntax Parameter = i t : ParameterElement => Parameter{Parameter{Type{”Complex”} ,Members{
i t }}} | id : I d e n t i f i e r ” [” i t : ParameterElement ”] ” => Parameter{Parameter{Name{ id } ,

Type{”Complex”} ,Members{ i t }}} ;

65 syntax ParameterElement = s i : SimpleParameter => s i | c i : ComplexParameter => c i ;

66 syntax SimpleParameter = name : I d e n t i f i e r ”=” t : (I d e n t i f i e r | Ident i f i e rWithDot | Text) ”

; ” r e s t : ParameterElement ? => [Parameter{Type{”Simple ”} , Value{ va lu e s o f (t) } , Name{
name}} , v a l u e s o f (r e s t)] ;

67 syntax ComplexParameter = id : I d e n t i f i e r ”=” ” [” i t : ParameterElement ”] ” ” ; ” r e s t :

ParameterElement ? => [Parameter{Name{ id } ,Type{”Complex”} ,Members{ i t }} , v a l u e s o f (

r e s t)] ;

68

69 syntax Invo ca t i onDe f i n i t i on = InvokeToken name : I d e n t i f i e r ”{” p : Parameter ”}” =>

Statement{Type{” Invocat ion ”} , Feature{name} ,p} ;
70

71 syntax Jo i nDe f i n i t i o n = JoinToken id : I d e n t i f i e r r e s t : (” , ” id : I d e n t i f i e r => Feature{Name

{ id }})∗ => Statement{Type{” Join ”} , Features { [Feature{Name{ id }} , v a l u e s o f (r e s t)]}} ;

72

73 syntax CheckDef in i t ion = CheckToken ” (” ex : Express ion ”) ” ”{” s t : Statement ”}” e s t : (

ElseToken prob : (” [” probinn : Probab i l i tyVa lue ”] ” => El seB lockProbab i l i t y {probinn }) ?

”{” s t : Statement ”}” => {prob , StatementBlockElse{ va lu e s o f (s t) }}) ? => Statement{
Type{”Check”} , Express ion{ va lu e s o f (ex) } , st , v a l u e s o f (e s t) } ;

74

75 syntax Whi l eDe f in i t i on = WhileToken times : (” [” t imes inner : D i g i t s ”] ”=>WhileTimes{
t imes inner }) ? ” (” ex : Express ion ”) ” ”{” s t : Statement ”}” => Statement{ times , Type{”
While”} , Express ion{ va lu e s o f (ex) } , s t } ;

76

77 syntax Statement = st : (wd : J o i nDe f i n i t i on =>wd | cd : CheckDef in i t ion => cd | id :

I nvo ca t i onDe f i n i t i on => id | td : ThrowDef init ion =>td | rd : ReturnDe f in i t i on => rd | jd

: JumpDefinit ion=>jd | ld : Labe lDe f i n i t i on => ld |wd: Whi l eDe f in i t i on => wd)∗ =>

StatementBlock { [v a l u e s o f (s t)] } ;

78

79 syntax Express ion = exout : (” (” ex : Express ion ”) ”=> ex) =>exout | g : (lv : (I d e n t i f i e r |
Dig i t ∗ | Text | Ident i f i e rWithDot) op : (”=” | ”!=” | ”<” | ”>”) rv : (

Ident i f i e rWithDot | Dig i t ∗ | Text | I d e n t i f i e r) => {LeftValue{ va lu e s o f (lv) } ,

Operator{ va lu e s o f (op) } , RightValue{ va lu e s o f (rv) }}) =>{Express ion{Type{”Simple ”} ,

v a l u e s o f (g)}} | (ex l : Express ion l e f t (1) ”&” exr : Express ion => Express ion{Type{”
And”} , Le f t { va lu e s o f (ex l)} , Right{ va lu e s o f (exr) }}) | (ex l : Express ion l e f t (2) ” | ”
exr : Express ion => Express ion{Type{”Or”} , Le f t { va lu e s o f (ex l)} , Right{ va lu e s o f (exr)

}}) ;

80

81 syntax ThrowDef init ion = ThrowToken tx : Text ” ; ” =>Statement{Type{”Throw”} , Message{ tx }} ;
82 syntax ReturnDef in i t i on = ReturnToken ”{” p : Parameter ”}” => Statement{Type{”Return”} ,p

} ;
83 syntax JumpDefinit ion = JumpToken id : I d e n t i f i e r ” ; ” =>Statement{Type{”Jump”} , Label{ id }} ;
84 syntax Labe lDe f i n i t i on = LabelToken id : I d e n t i f i e r ” ; ” =>Statement{Type{”Label ”} ,Name{ id

}} ;
85

86 // t o k en s

87 token Probab i l i tyVa lue = ” 0 . ” (”1” . . ”9”) ;

88 token Dig i t = (”0” . . ”9”) ;

89 token D ig i t s = Dig i t +;

90 token DoubleDigit = Dig i t s (” . ” D ig i t s) ? ;

91 token Bool = (” true ” | ” f a l s e ”) ;

92 token Character = ”a” . . ”z” | ”A” . . ”Z” | ” ” | ”−” ;

93 token Types = (” s t r i n g ” | ” in t ” | ” long ” | ”double ” | ”boolean ”) ;

94 token Text = ”\”” (ˆ ”\””)∗ ”\”” ;

95 token I d e n t i f i e r = Character (Character | Dig i t) ∗ ;
96 token Ident i f i e rWithDot = I d e n t i f i e r (” . ” I d e n t i f i e r)+;

97 token FullyQualif iedNameToken = (” ∗ . ”) ? (I d e n t i f i e r | Ident i f i e rWithDot) ;

98

99 @{C l a s s i f i c a t i o n [”Keyword”]}
100 token Strength = ” requ i r ed ” | ” st rong ” | ”medium” | ”weak” ;

101

102 @{C l a s s i f i c a t i o n [”Comment”]}
103 token Comment = ”#” ˆ(”\ r ” | ”\n”)+;

104

105 // Whitespace

106 syntax LF = ”\u000A” ;

107 syntax CR = ”\u000D” ;

89

108 syntax Space = ”\u0020” ;

109 syntax Tab = ”\u0009” ;

110 i n t e r l e a v e Whitespace = LF | CR | Space | Tab |Comment ;

111

112 @{C l a s s i f i c a t i o n [”Keyword”]}
113 token AccuracyToken = ”accuracy ” ;

114 @{C l a s s i f i c a t i o n [”Keyword”]}
115 token ThroughputToken = ” throughput ” ;

116 @{C l a s s i f i c a t i o n [”Keyword”]}
117 token PriceToken = ” p r i c e ” ;

118 @{C l a s s i f i c a t i o n [”Keyword”]}
119 token FeatureToken = ” f e a tu r e ” ;

120 @{C l a s s i f i c a t i o n [”Keyword”]}
121 token AsyncToken = ”async” ;

122 @{C l a s s i f i c a t i o n [”Keyword”]}
123 token SyncToken = ”sync” ;

124 @{C l a s s i f i c a t i o n [”Keyword”]}
125 token ThrowToken = ”throw” ;

126 @{C l a s s i f i c a t i o n [”Keyword”]}
127 token InvokeToken = ” invoke ” ;

128 @{C l a s s i f i c a t i o n [”Keyword”]}
129 token LabelToken = ” l a b e l ” ;

130 @{C l a s s i f i c a t i o n [”Keyword”]}
131 token ReturnToken = ” return ” ;

132 @{C l a s s i f i c a t i o n [”Keyword”]}
133 token JumpToken = ”jump” ;

134 @{C l a s s i f i c a t i o n [”Keyword”]}
135 token CompositionToken = ” composit ion ” ;

136 @{C l a s s i f i c a t i o n [”Keyword”]}
137 token CheckToken = ”check” ;

138 @{C l a s s i f i c a t i o n [”Keyword”]}
139 token ElseToken = ” e l s e ” ;

140 @{C l a s s i f i c a t i o n [”Keyword”]}
141 token JoinToken = ” j o i n ” ;

142 @{C l a s s i f i c a t i o n [”Keyword”]}
143 token ConstraintToken = ” con s t r a i n t ” ;

144 @{C l a s s i f i c a t i o n [”Keyword”]}
145 token QoSToken = ”qos” ;

146 @{C l a s s i f i c a t i o n [”Keyword”]}
147 token ResponseTimeToken = ” responseTime” ;

148 @{C l a s s i f i c a t i o n [”Keyword”]}
149 token Ava i l ab i l i tyToken = ” a v a i l a b i l i t y ” ;

150 @{C l a s s i f i c a t i o n [”Keyword”]}
151 token Rel iableToken = ” re l i ab l eMes sage ” ;

152 @{C l a s s i f i c a t i o n [”Keyword”]}
153 token SecurityToken = ” s e cu r i t y ” ;

154 @{C l a s s i f i c a t i o n [”Keyword”]}
155 token InputToken = ” input ” ;

156 @{C l a s s i f i c a t i o n [”Keyword”]}
157 token ServiceToken = ” s e r v i c e ” ;

158 @{C l a s s i f i c a t i o n [”Keyword”]}
159 token OutputToken = ”output” ;

160 @{C l a s s i f i c a t i o n [”Keyword”]}
161 token PrecondToken = ”precond” ;

162 @{C l a s s i f i c a t i o n [”Keyword”]}
163 token PostcondToken = ”postcond” ;

164 @{C l a s s i f i c a t i o n [”Keyword”]}
165 token WhileToken = ”whi le ” ;

166 }
167 }� �

Listing 41: MGrammar Definition of VCL

REFERENCES 90

References

[1] Greg J. Badros, Alan Borning, and Peter Stuckey. The Cassowary Linear Arith-
metic Constraint Solving Algorithm. Technical report, ACM Transactions on
Computer Human Interaction, 1998.

[2] Amit Bahree, Shawn Cicoria, Dennis Mulder, Nishith Pathak, and Chris Peiris.
Pro WCF: Practical Microsoft SOA Implementation. Apress, 2007.

[3] Roman Barták. Algorithms for Solving Constraint Hierarchies. http://ktiml.
mff.cuni.cz/~bartak/constraints/ch_solvers.html, 1998. [Online; ac-
cessed 01-November-2009].

[4] Jeremy Bolie, Michael Cardella, Stany Blanvalet, Matjaz Juric, Sean Carey,
Praveen Chandran, Yves Coene, and Kevin Geminiuc. BPEL Cookbook: Best
Practices for SOA-based integration and composite applications development:
Ten practical real-world case studies combining business ... management and
web services orchestration. Packt Publishing, 2006.

[5] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture. http://www.w3.
org/TR/ws-arch/, 2004. [Online; accessed 01-November-2009].

[6] David Booth and Canyang Kevin Liu. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 0: Primer. http://www.w3.org/TR/2007/

REC-wsdl20-primer-20070626, 2007. [Online; accessed 01-November-2009].

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
and John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition).
http://www.w3.org/TR/2006/REC-xml11-20060816/, 2006. [Online; accessed
01-November-2009].

[8] Bruce Bukovics. Pro WF: Windows Workflow in .NET 3.5. Apress, 2008.

[9] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani. A Framework for QoS-Aware Binding and Re-Binding of Composite
Web Services. J. Syst. Softw., 81(10):1754–1769, 2008.

[10] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In Data and
Knowledge Engineering, pages 438–455. Springer Verlag, 1996.

[11] David Chappell. Introducing Windows Workflow Foundation. http://msdn.

microsoft.com/de-de/library/ee210343\%28en-us\%29.aspx, 2009. [On-
line; accessed 01-November-2009].

[12] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau, David
Orchard, and Sanjiva Weerawarana. Web Services Description Language

REFERENCES 91

(WSDL) Version 2.0 Part 2: Adjuncts. http://www.w3.org/TR/2007/

REC-wsdl20-adjuncts-20070626/, 2007. [Online; accessed 01-November-
2009].

[13] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. http://www.w3.org/TR/2007/REC-wsdl20-20070626/, 2007.
[Online; accessed 01-November-2009].

[14] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers.
Universal Description, Discovery and Integration v3.0.2 (UDDI).
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/

uddi-v3.0.2-20041019.htm, 2005. [Online; accessed 01-November-2009].

[15] Paul Dourish, Jim Holmes, Allan Maclean, Pernille Marqvardsen, and Alex
Zbyslaw. Freeflow: Mediating Between Representation and Action in Workflow
Systems. pages 190–198. ACM Press, 1996.

[16] Schahram Dustdar, Harald Gall, and Manfred Hauswirth. Software-
Architekturen für Verteilte Systeme: Prinzipien, Bausteine und Standardar-
chitekturen für moderne Software (Xpert.press) (German Edition). Springer,
2003.

[17] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services Com-
position. Int. J. Web Grid Serv., 1(1):1–30, 2005.

[18] ECMA. Standard ECMA- 334 C# Language Specification. http://www.

ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf,
2006. [Online; accessed 01-December-2009].

[19] Rik Eshuis, Paul W. P. J. Grefen, and Sven Till. Structured Service Compo-
sition. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors,
Business Process Management, volume 4102 of Lecture Notes in Computer Sci-
ence, pages 97–112. Springer, 2006.

[20] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. Dissertation for the doctor of philosophy in information
and computer science, University of Califonia, Irvine, 2000. http://www.ics.

uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

[21] Martin Fowler. Domain Specific Language. http://www.martinfowler.com/

bliki/DomainSpecificLanguage.html. [Online; accessed 01-November-2009].

[22] Martin Fowler. A Language Workbench in Action - MPS. http://

martinfowler.com/articles/mpsAgree.html, 2005. [Online; accessed 01-
November-2009].

REFERENCES 92

[23] Martin Fowler. Generating Code for DSLs. http://martinfowler.com/

articles/codeGenDsl.html, 2005. [Online; accessed 01-November-2009].

[24] Martin Fowler. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? http://martinfowler.com/articles/languageWorkbench.

html, 2005. [Online; accessed 01-November-2009].

[25] Gartner. Enterprise Applications-Adoption of E-Business and Document Tech-
nologies. http://www.aiim.org, 2000. [Online; accessed 01-December-2009].

[26] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An Overview of
Workflow Management: From Process Modeling to Workflow Automation In-
frastructure. In DISTRIBUTED AND PARALLEL DATABASES, pages 119–
153, 1995.

[27] Danny M. Groenewegen, Zef Hemel, Lennart C.L. Kats, and Eelco Visser.
WebDSL: A Domain-Specific Language for Dynamic Web Applications. In
OOPSLA Companion ’08: Companion to the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications, pages 779–
780, New York, NY, USA, 2008. ACM.

[28] William Grosso. Java RMI. O’Reilly Media, 2001.

[29] Network Working Group. Hypertext Transfer Protocol – HTTP/1.1. http://

www.ietf.org/rfc/rfc2616.txt, 1999. [Online; accessed 01-November-2009].

[30] Object Managemet Group. CORBA Component Model Specification. http:

//www.omg.org/spec/CCM/4.0/PDF/, 2006. [Online; accessed 01-December-
2009].

[31] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version 1.2 Part
1: Messaging Framework (Second Edition). http://www.w3.org/TR/2007/

REC-soap12-part1-20070427/, 2007. [Online; accessed 01-November-2009].

[32] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version
1.2 Part 2: Adjuncts (Second Edition). http://www.w3.org/TR/2007/

REC-soap12-part2-20070427/, 2007. [Online; accessed 01-November-2009].

[33] Martin Gudgin, Marc Hadley, Tony Rogers, and Ümit Yalçinalp. Web
Services Addressing 1.0 - Metadata. http://www.w3.org/TR/2007/

REC-ws-addr-metadata-20070904/, 2007. [Online; accessed 01-November-
2009].

[34] Diane Jordan and John Evdemon. Web Services Business Process Execution
Language v2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.pdf, 2007. [Online; accessed 01-November-2009].

REFERENCES 93

[35] Aaron Junod, Robert Bazinet, and Dan Bernier. Professional IronRuby. Wrox,
2009.

[36] David Langworthy, Brad Lovering, and Don Box. The Oslo Modeling Language:
Draft Specification - October 2008. Addison-Wesley Professional, 2008.

[37] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios: Efficient
Dynamic Web Service Invocation. IEEE Internet Computing, 13(3):72–80, 2009.

[38] Phillip Leitner. The Daios Framework - Dynamic, Asynchronous and Message-
oriented Invocation of Web Services, 2008.

[39] Frank Leymann. Web Service Flow Language. http://xml.coverpages.org/
WSFL-Guide-200110.pdf, 2001. [Online; accessed 01-December-2009].

[40] C. Matthew, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah
Metz. Reference Model for Service Oriented Architecture v1.0. http://

docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf, 2006. [Online; accessed 01-
November-2009].

[41] Marjan Mernik, Uros Novak, Enis Avdicausevic, Mitja Lenic, Viljern Zurner,
and Viljem Zumer. Design and Implementation of Simple Object Description
Language. In In ACM Symposium on Applied Computing, SAC’2001, pages
590–594, 2001.

[42] Marjan Mernik and Viljem Zumer. Domain-Specific Languages for Software
Engineering - Minitrack Introduction. In HICSS, 2001.

[43] Marjan Mernik, Viljem Zumer, and Marjan Mernik Viljem. Reusability of
Formal Specifications in Programming Language Description, 1997.

[44] Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. End-to-End
Versioning Support for Web Services. In In Proceedings of the International
Conference on Services Computing (SCC 2008). IEEE Computer Society. IEEE
Computer Society, 2008.

[45] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dust-
dar. Advanced Event Processing and Notifications in Service Runtime Envi-
ronments. In DEBS ’08: Proceedings of the second international conference
on Distributed event-based systems, pages 115–125, New York, NY, USA, 2008.
ACM.

[46] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards Recovering the Broken SOA Triangle: A Software
Engineering Perspective. In IW-SOSWE ’07: 2nd international workshop on
Service oriented software engineering, pages 22–28, New York, NY, USA, 2007.
ACM.

REFERENCES 94

[47] Microsoft. The ”Oslo” Modeling Language Specifica-
tion. http://download.microsoft.com/download/D/A/B/

DAB9E2D8-3A27-4BA7-BE66-8600EE4E33B0/M_Language_Specification.

pdf, 2006. [Online; accessed 01-November-2009].

[48] Microsoft. Microsoft Solver Foundation - Overview, 2009. Version 1.2.

[49] Microsoft. Microsoft Solver Foundation - SFS Parameter Binding Overview,
2009. Version 1.2.

[50] Microsoft. Microsoft Solver Foundation - Solver Foundation Services, 2009.
Version 1.2.

[51] Microsoft. Microsoft Solver Foundation - Solver Programming Primer, 2009.
Version 1.2.

[52] Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, and Karli Watson.
Professional C# 2008 (Wrox Professional Guides). Wrox, 2008.

[53] Ericsson Nilo Mitra. SOAP Version 1.2 Part 0: Primer (Second Edition).
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, 2007. [Online;
accessed 01-November-2009].

[54] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar. Domain-Specific Lan-
guages for Service-Oriented Architectures: An Explorative Study. In Service-
Wave ’08: Proceedings of the 1st European Conference on Towards a Service-
Based Internet, pages 159–170, Berlin, Heidelberg, 2008. Springer-Verlag.

[55] Cesare Pautasso and Gustavo Alonso. JOpera: A Toolkit for Efficient Visual
Composition of Web Services. Int. J. Electron. Commerce, 9(2):107–141, 04-5.

[56] M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow Language.
pages 1–23. Springer, 2006.

[57] M. Pesic, M. H. Schonenberg, and N. Sidorova. Constraint-Based Workflow
Models: Change Made Easy. In In CoopIS, 2007.

[58] Ingo Rammer and Mario Szpuszta. Advanced .NET Remoting, Second Edition.
Apress, 2005.

[59] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and
Schahram Dustdar. An End-to-End Approach for QoS-Aware Service Composi-
tion. Enterprise Distributed Object Computing Conference, IEEE International,
0:151–160, 2009.

[60] Florian Rosenberg, Philipp Leitner, and Anton Michlmayr. A Metamodel for
Enriching the Semantics of Service-centric Applications.

REFERENCES 95

[61] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, and
Schahram Dustdar. Towards Composition as a Service - A Quality of Service
Driven Approach. Data Engineering, International Conference on, 0:1733–1740,
2009.

[62] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, and Schahram Dustdar.
Integrated Metadata Support for Web Service Runtimes. Enterprise Distributed
Object Computing Workshops, International Conference on, 0:361–368, 2008.

[63] Poornachandra Sarang, Matjaz Juric, and Benny Mathew. Business Process
Execution Language for Web Services BPEL and BPEL4WS 2nd Edition. Packt
Publishing, 2006.

[64] R. Srinivasan. RFC 1831: RPC: Remote Procedure Call Protocol Specification
Version 2, August 1995. Status: PROPOSED STANDARD.

[65] Biplav Srivastava and Jana Koehler. Web Service Composition - Current Solu-
tions and Open Problems. In In: ICAPS 2003 Workshop on Planning for Web
Services, pages 28–35, 2003.

[66] Satish Thatte. XLANG Web Services for Business Process Design. http:

//xml.coverpages.org/XLANG-C-200106.html, 2006. [Online; accessed 01-
December-2009].

[67] W. M. P. van der Aalst, Ter A. H. M. Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

[68] Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter Hofstede. Web
Service Composition Languages: Old Wine in New Bottles? EUROMICRO
Conference, 0:298, 2003.

[69] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, B. Kiepuszewski, and
B. Advanced Workflow Patterns, 2000.

[70] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages:
An Annotated Bibliography. SIGPLAN Not., 35(6):26–36, 2000.

[71] Eelco Visser. WebDSL: A Case Study in Domain-Specific Language Engineer-
ing. pages 291–373, 2008.

[72] J. E. White. RFC 707: High-Level Framework for Network-Based Resource
Sharing, December 1975. Status: UNKNOWN. Not online.

[73] Wolfram Wiesemann, Ronald Hochreiter, and Daniel Kuhn. A Stochastic Pro-
gramming Approach for QoS-Aware Service Composition. In CCGRID ’08:
Proceedings of the 2008 Eighth IEEE International Symposium on Cluster Com-
puting and the Grid, pages 226–233, Washington, DC, USA, 2008. IEEE Com-
puter Society.

REFERENCES 96

[74] Petia Wohed, Wil M.P. van der Aalst, Wil M. P, Marlon Dumas, and
Arthur H.M. ter Hofstede. Analysis of Web Services Composition Languages:
The Case of BPEL4WS. In Proc. of ER’03, LNCS 2813, pages 200–215.
Springer Verlag, 2003.

[75] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

