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“The major difference between a thing that might go wrong and a thing that

cannot possibly go wrong is that when a thing that cannot possibly go wrong

goes wrong it usually turns out to be impossible to get at or repair.”

Douglas Adams



Abstract

An approach is presented to simulate energy filtered inelastic images of crys-

talline materials with atomic resolution. To this purpose the multislice method

(used to calculate multiple elastic scattering events) was adopted in such a way

that it includes inelastic scattering events. The approach is described with a

density matrix formalism. The implementation into the software program is ex-

plained and simulation results for SrTiO3 and Si are presented. The program

shows a simple way to parallelize the calculations and proves that it is possible

to run simulations on home computers in affordable time.
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Chapter 1

Transmission Electron

Microscopy

1.1 Introduction

The electron energy-loss spectrometry (EELS) in the electron microscope has

evolved to a routine method for materials characterisation. Fast electrons, after

having interacted with the specimen, are analysed with respect to the energy

lost during interaction. Quite similar to X-ray absorption spectroscopy (XAS)

ionisation edges in the spectra serve as fingerprints for particular chemical el-

ements. In combination with the high spatial resolution of the electron micro-

scope, this method has been used for chemical microanalysis, usually allowing

a spatial resolution in the nm range and a detection sensitivity of a few at% of

foreign elements in a matrix. With the last generation of instruments equipped

with lens correctors and high brightness electron sources the detection of chem-

ical signal from single atoms and with atomic resolution has been reported [3].

The actual rapid evolution of instruments for electron microscopy will with-

out doubt allow the direct visualisation of the ionisation event in real space

in the next years. Many new and unexpected structures will be seen, such as

anisotropy in bonding, or single spin polarized electronic transitions. The in-

terpretation of such spatially resolved signal is not straightforward, the reason

1



Chapter 1. Transmission Electron Microscopy 2

being the coupling of (elastic) Bragg scattering with the (inelastic) ionisation

interaction. Whereas the former is coherent, the later leads to a collapse of

the probe electron’s wave function at the ionized site, and as such is at least

partially incoherent. It has been shown in detail that the intricate combina-

tion of both types of scattering may lead to rich and unexpected structure in

energy filtered or energy spectroscopic images [4]. The simulation of the image

formation process is indispensable for the interpretation of experiments. The

respective theory has been developed in detail by several groups and is well un-

derstood [5, 6]. What is still missing is an easy to handle numerical treatment

in order to simulate energy-filtered transmission electron microscopy (EFTEM)

images of crystalline material. The aim of the present diploma thesis is the

development of a simulation program. It is based on the use of the density

matrix for the probe electron, and its propagation through the lattice. For the

propagation part, a program package written by Earl J. Kirkland [7] for the

simulation of high resolution lattice images is used as template and adapted

to the inelastic case. Inelastic scattering factors are taken from atomic models

described by Clementi and Raimondi[8], but can in principle be replaced by

more sophisticated ones. The program was tested for Si and SrTiO3.

1.2 EELS in the TEM

The transmission electron microscope (TEM) operates with a beam of fast

(100 - 300 keV) electrons. The beam can be manipulated with magnetic lenses,

forming either a highly collimated spot on the specimen or illuminating a larger

area with variable convergence angle. The microscope column consists of a beam

forming part (the equivalent to the condenser system in light optics), a specimen

stage where the beam traverses a thinned (5 - 100 nm) specimen and an image

forming part consisting of several lenses which allow to project both the image

plane and the diffraction plane onto the detecting device (a fluorescent screen,

photographic film, or CCD camera). The spectrometer is mounted either in

the column or (when used as an add-on device) after the final image plane.

Modern spectrometers can also be operated as energy filters. This last mode
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Figure 1.1: Block diagram of typical TEM with STEM capability.[1]

allows the imaging of the specimen with the signal corresponding to a particular

energy loss, in the present context this is a particular ionisation event, with high

spatial resolution. The principal scheme of the instrument is sketched in Fig.

1.1. Details can be found in textbooks [1, 9, 10].

1.3 Structure of this Thesis

After this short introduction, the thesis at hand starts with a short repetition

of elastic and inelastic scattering theory. The chapter includes the most funda-

mental facts and equations. The third chapter contains the main theory that

leads to the design of the program. First the solution of the double channeling

problem using a density matrix approach[11] is explained. A revision of the

multislice method follows. Finally the elementary way of coherent image for-

mation is described. The fourth chapter describes the structure of the designed

software package and the way calculations are done. The usage of the programs
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is explained and the alterable parameters are listed. An estimation of the cal-

culation effort of simulations ends this chapter. The fifth chapter presents some

simulation results, namely focal series for SrTiO3 and Si. In the last chapter

the results of the work are discussed.



Chapter 2

Scattering Theory

2.1 Elastic Scattering

2.1.1 Coherent and Incoherent Scattering

Coherent scattering demands the summation of individual wavelets under con-

sideration of their relative phases. This leads to constructive or destructive

interference of the complete wavefunction.

Ψcoh =
∑
i

ψi (2.1)

Icoh = Ψ∗cohΨcoh =

∣∣∣∣∣∑
i

ψi

∣∣∣∣∣
2

(2.2)

In other words: terms containing different wavefunctions in the form of ψ∗iψj

account to the sum. In contrary incoherent scattering demands a summation

over the intensities of every wavefunction.

Iinc =
∑
i

Ii =
∑
i

|ψi|2 (2.3)

5



Chapter 2. Scattering Theory 6

When we look at the threatment of inelastic scattering below we will see, that

the system we are looking at demands both, coherent and incoherent summation

of wavelets. To employ a stringent approach a density matrix approach is used.

2.1.2 Scattering Amplitude and Cross-Section

We treat scattering as a wave phenomenon that obeys the Schrödinger wave

equation. We assume an incoming plane wave of the form

Ψin = ei(kr−ωt) (2.4)

and separate into a spatial and a time depending part. Now we focus on the

spatial part. When the wave scatters at a small charge distribution, spherical

waves will evolve from the centre in the form:

Ψscatt = f(k0,k)
eik|r−r′|

|r− r′|
(2.5)

where f(k0,k) is the scattering amplitude, k0 and k are the incident and the

outgoing wave vector and |r− r′| is the distance from the scattering centre. To

obtain the scattering amplitude we have to solve the Schrödinger equation for

the assumed scattering potential. Starting with(
− ~2

2m
∇2 + V (r′)

)
Ψ(r′) = EΨ(r′) (2.6)

and the following two definitions:

k2
0 =

2mE

~2
(2.7)

U(r′) =
2mV (r′)

~2
(2.8)

the equation is transformed to the following form:

(
∇2 + k2

0

)
Ψ(r′) = U(r′)Ψ(r′) (2.9)
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The next step to find a solution is to find the Green’s function for the case of

a point scatterer at the origin:

(
∇2 + k2

0

)
G(r, r′) = δ(r′) (2.10)

The Green’s function for this case is known:

G (r, r′) = − 1

4π

eik|r−r′|

|r− r′|
(2.11)

and by integration we get:

Ψscatt(r) =

∫
U(r′)Ψ(r′)G(r, r′)dr′ (2.12)

Finally by adding the unscattered component,

Ψ(r) = eik0r +
2m

~2

∫
V (r′)Ψ(r′)G(r, r′)dr′ (2.13)

it leads to the Lippmann-Schwinger equation.

If we are interested in the scattered current dIscatt that passes through the area

dS = r2dΩ we get

dIscatt = jscattr
2dΩ = jindσ (2.14)

Which means the part of a parallel incidenting beam passing through dσ that

is scattered into a cone of solid angle dΩ. With jscatt = jin|f(k0,k)|2/r2 the

ratio known as differential cross section is calculated.

dσ

dΩ
= |f(k0,k)|2 (2.15)

2.1.2.1 Born Approximation

For weak scattering events a useful approximation for 2.13 is to insert the

incoming plane wave

Ψin = eik0r′
(2.16)
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on the right side. This is known as the born approximation. Further we assume

that the detector is far from the scattering centre so that |r− r′| is equal to |r|.
After some transformations and substitution with:

∆k = k− k0 (2.17)

we obtain the approximate form:

Ψ(r) = eikr − m

2π~2

eikr

|r|

∫
V (r′)e−i∆kr′

dr′ (2.18)

If we compare the second term with Eq. 2.5 it leads to an equation for the

scattering amplitude.

f(∆k) = − m

2π~2

∫
V (r′)e−i∆kr′

dr′ (2.19)

It is noteworthy, that the scattering amplitude is proportional to the Fourier

transform of the scattering potential. If V (r) is the potential of a single atom,

f(∆k) is called the atomic form factor.

2.1.3 Scattering in a Crystal

Like the atomic form factor describes the interference between the beam and

the electrons in an atom, the structure factor describes the interference between

the beam and the atoms in one unit cell. The whole interaction of all unit cells

in a crystal is further described by the crystal shape factor.

2.1.4 Potential

Traditionally the electron scattering factor fe(q) of the first Born approxima-

tion is tabulated. With q = 1
2π

(k − k0).Although the Born approximation is

too inaccurate to calculate the electron scattering, it is useful to calculate the

scatterer potential. Like we saw in Eq. 2.19 the scattering factor is the Fourier

transform of the potential times some constants. The bonding effects in the
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solid produce an error of magnitude 5% to 10% compared to an isolated single

atom[7]. The electron scattering factors were calculated using a Dirac-Fock cal-

culation. The values of fe(q) are tabulated in a file and are provided with the

Kirkland TEMSIM source code. An elegant way to avoid the handling of the

large amount of data is to parametrize the function. To do this two functions

are used. First a function of Lorentzian form which fits well at high scattering

angles. Second a function of Gaussian form for low scattering angles:

fe(q) =

NL∑
i=1

ai
q2 + bi

+

NG∑
i=1

ci exp
(
−diq2

)
(2.20)

To fit the parameters best a least square fit was performed. The parameters

are listed in the following form:

Z= 14, chisq= 0.094315

a1 b1 a2 b2

a3 b3 c1 d1

c2 d2 c3 d3

Rewriting Eq. 2.19 leads to:

fe(q) =
1

2πea0

∫
V (r) exp(2πiq · r)dr (2.21)

where a0 = ~2

m0e2
is the first Bohr radius. Now we take the Fourier transform:

V (r) = 2πa0e

∫
fe(q) exp(−2πq · r)dq (2.22)

We now insert the parametric form of fe(q) and get:

V (r) = 2π2a0e
∑
i

ai
r

exp
(
−2πr

√
bi

)
+

+2π5/2a0e
∑
i

cid
−3/2
i exp

(
−π

2r2

di

)
(2.23)
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Figure 2.1: Energy loss with oxygen K-edges from various manganese
oxides[1]

With further calculation we get the projected atomic potential

Vz(x) =

∫ ∞
−∞

V (r)dz =

= 4π2a0e
∑
i

aiK0

(
2πr
√
bi

)
+ 2π2a0e

∑
i

ci
di

exp

(
−π

2r2

di

)
(2.24)

where K0(x) is the modified Bessel function.

2.2 Inelastic Scattering

When a electron scatters inelastically it transfers energy to the sample. The

most important processes in order of increasing energy loss are phonon creation,

plasmon excitation and core electron excitation. In the last case the energy loss

is transfered to a core electron. The core electron either jumps from one core

state to another or simply leaves the atom. In the latter case an ionized atom

remains. Figure 2.1 shows at the left the zero loss peak from electrons that

pass through the specimen without interaction, the plasmon peak and the M-

and L-edges.

Compared to plasmon excitations, the cross-sections are relatively small for

inner shell ionizations. They become even smaller as the energy loss increases.

To obtain strong intensities lower energy losses are therefore preferable.
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Figure 2.2: Inelastic scattering geometry.

2.2.1 Mixed Dynamic Form Factor

The inelastic scattering cross section is the extension of the elastic cross section

in Eq. 2.15 to changing energies. In the first Born approximation, and for an

incident plane wave, the double differential scattering cross section is [11]

∂2σ

∂E∂Ω
=

γ2

q4a2
0

k

k0

S(q,q, E), (2.25)

where a0 is the Bohr radius, and γ is a relativistic factor. S(q,q, E) is the

dynamic form factor. In our case we are interested in its more general form

S(q,q’, E) called the mixed dynamic form factor (MDFF). For a n-electron

system the MDFF reads[11]

S(q,q’, E) = δ(Ei − Ef + E)
∑
i

pi
∑
f

(1− pf ).

.

〈
i

∣∣∣∣∣
n∑
j

eiqRj

∣∣∣∣∣ f
〉〈

f

∣∣∣∣∣
n∑
j

e−iq’Rj

∣∣∣∣∣ i
〉

(2.26)

Ei and Ef are the energies of the initial and the final state. pi and pf are the

occupation probabilities of the initial and final state. Rj are the atom positions.



Chapter 3

Calculation Methods - Wave

Solutions

3.1 Multislice Solution with Inelastic Scatter-

ing

The crystal can end up in different final states. This leads to an entanglement

between final crystal states and electron states. To describe this event it is

necessary to apply a density matrix approach. This can be viewed as a sum

over many amplitudes of different events that can happen in the crystal in a

path integral point of view[11, 12]. For an inelastic scattering event of a single

atom at depth d the projection approximation is adopted like this:

ρim(r, r’) = TmicTel,t−dTinel,dTel,dρin(r,r’) (3.1)

while the intensity in one plane is given by:

Iim = ρim(x,x) (3.2)

All the operators act from right to left on the incoming density matrix of the

probe ρin. x are the coordinates in the respective planes of the microscope.

12
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The first operator acting on the incoming density matrix is Tel,d. It describes the

elastic interaction between the crystal and the electron until it reaches depth d.

In this depth the inelastic interaction occurs described by Tinel,d. Tel,t−d finally

propagates the density matrix elastically to the exit plane of the crystal. The

last acting operator Tmic considers the optical effects of the microscope on the

density matrix.

Under the assumption of a perfectly coherent probe function ρin is written as

the product state:

ρin(x,x’) = φin(x)φ∗in(x’) (3.3)

Then we calculate the elastic scattered wave function at depth d. In our case

this is done by multislice calculation.

ρd(x,x’) = φd(x)φ∗d(x’) = Tel,dρin(x,x’) (3.4)

Since we treat only elastic scattering this is still a pure state with

φd(x) = Td[φin] (3.5)

while T is the operator that propagates a wave function from the entrance plan

to depth d.

Now we reach the plane in which the inelastic scattering occurs. The next

operator acts as a multiplicative kernel in real space:

ρd,inel(x,x’) = Tinel(x,x’)ρd(x,x’) (3.6)

For a single inelastic scattering event Schattschneider derived the mixed dy-

namic object spectrum (MDOS) [6] as the first term in the Rayleigh expansion:

MDOS(q,q’) = f(Q)f(Q′)
q · q’ + q2

E

Q3Q′3
(3.7)

where q2 = q2
x + q2

y,, q
′2 = q′2x + q′2y, Q =

√
q2
x + q2

y + q2
E, Q′ =

√
q′2x + q′2y + q2

E.
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Figure 3.1: Angular part f(Q) for Si L23 calculated with Clementi-
Raimondi wave functions

qE = k−k0 is the negative difference of radii of the Ewald spheres before and af-

ter inelastic scattering. For small energy lossesE � E0 we have approximately[6]:

qE ≈ −k0E/2E (3.8)

The function f(Q) is shown in Figure 3.1. For small q this function is linear in

q. This is called the dipole approximation:

MDOSdip(q,q’) =
q · q’ + q2

E

Q2Q′2
(3.9)

and we assume that the inelastic scattering is independent on the incoming

direction of the wave vector, and it only depends on the momentum transfer q.

This approximation is realistic for a single atom. For a crystal there might be

directional bonding effects in the final states which can be calculated with an

electronic structure code.

Fourier transforming this according to the rules described in [6] gives the in-

elastic scattering kernel Tinel

Tinel(x,x’) = FTq,-q’[MDOSinel(q,q’)] (3.10)
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Calculating component by component results in:

Wx(x) =

∫
qx

q2 + q2
E

e2πiq·xdq2 (3.11)

Wy(x) =

∫
qy

q2 + q2
E

e2πiq·xdq2 (3.12)

Wz(x) = qE

∫
1

q2 + q2
E

e2πiq·xdq2 (3.13)

So we can write

Tinel(x,x’) = Wx(x)W ∗
x (x’) +Wy(x)W ∗

y (x’) +Wz(x)W ∗
z (x’) (3.14)

The integrals can be simplified as shown in [6]:

FTq

[
Q
f(Q)

Q3

]
= ivex + wez (3.15)

with

v = v(|x|) = 2π

∫ ∞
0

q2J1(q|x|)f(Q)

Q3
dq (3.16)

and

w = w(|x|) = 2πqE

∫ ∞
0

qJ0(q|x|)f(Q)

Q3
dq (3.17)

where ex is the unit vector in direction of th real space vector x in the plane,

and J are Bessel functions. Making reference to a fixed coordinate system (ξ, η)

in the plane at depth d, we put

ex = eξ cosα + eη sinα (3.18)

so that

FTq

[
Q
f(Q)

Q3

]
= iv cosαeξ + iv sinαeη + wez

= iv
ξ

|x|
eξ + iv

η

|x|
eη + wez (3.19)
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Figure 3.2: Plot of Wx, Wy and Wz calculated for oxygen

By comparison with Eq. 3.10 and 3.14 we see that:

Wx(x) = iv(x)
ξ

|x|
Wy(x) = iv(x)

η

|x|
Wz(x) = w(x) (3.20)

Applying this propagator on the density matrix at depth d for atom i at xi

gives

ρd,inel = φWx,i,d
(x)φ∗Wx,i,d

(x′) + φWy,i,d
(x)φ∗Wy,i,d

(x′) + φWz,i,d
(x)φ∗Wz,i,d

(x′)(3.21)
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Figure 3.3: Inelastic scattering event at slice 24 elastically propagated to
the exit plane (slice 160). From left to right: Wx, Wy, Wz. 4x4 UC

with

φWx,i,d
(x) = Wx(x− xi)φd(x) (3.22)

φWy,i,d
(x) = Wy(x− xi)φd(x) (3.23)

φWz,i,d
(x) = Wz(x− xi)φd(x) (3.24)

Now we propagate expression 3.21 to the exit plane t with another elastic

propagator. Since the density matrix is nicely split into an incoherent sum (Wx,

Wy and Wz) we can apply the elastic propagator separately on each coherent

term of the sum

φWx,i,t
(r) = Tt−d[φWx,i,t

(r)] (3.25)

and equal for the others. Then the density matrix at the exit surface is:
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ρexit(x,x
′) = φWx,i,t

(x)φ∗Wx,i,t
(x′) + φWy,i,t

(x)φ∗Wy,i,t
(x′) + φWz,i,t

(x)φ∗Wz,i,t
(x′)

(3.26)

Next the action of the objective lens must be applied to each of the 2 wave

functions separately.

φWx,im
= Tmic[φWx,i,t

] (3.27)

And similar for the other two. The intensity in the image plane is the diagonal

element of the density matrix ρim(x,x), it is obtained as the sum over the 3

squared wave functions

Iim(x) = ρim(x,x) = |φWx,im
(x)|2 + |φWy,im

(x)|2 + |φWz,im
(x)|2 (3.28)

Finally the intensities of all atom positions in all intermediate planes from 0 to

t are added to obtain the overall intensity measured in the detector plane.

3.2 Conventional Multislice Solution

In the paragraph above we looked in detail at the scattering event in depth

d. What is missing is the multislice approach. We will apply it to gain the

wavefunction φd at depth d in the first step, and to calculate the wavefunctions

evolving at depth d propagated to the exit plane at depth t in the next step.

The method was developed in 1957 by Cowley and Moodie[13]. In the following

we will outline the approximations that lead to basically only two operations

that allow to calculate the wavefunction at a specific depth1.

3.2.1 Simplified Wave Equation for Fast Electrons

The microscope works in an energy domain which is high enough to demand

a relativistic treatment of the electron. Namely the usage of the Dirac wave

equation which contains the spin of an electron in its description. In a simpli-

fied way we keep the non-relativistic Schrödinger wave equation and take into

1The rest of this chapter is a summary of [1, 7]
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account the relativistic mass and wavelength effects. This approach provides

reasonable exact solutions for lower energies and introduces small errors at en-

ergies of order 1000 keV or higher [7]. To simplify the calculation even more

we start again with the time independent form of the Schrödinger equation.

Presuming, that we look at a stationary system.(
− ~2

2m
∇2 + V (r)

)
Ψ(r) = EΨ(r) (3.29)

Like explained above we substitute the mass by the relativistic mass.

m =
1√

1− v2

c2

m0 (3.30)

The electron wave function in the specimen in a high energy approximation is

further expressed as2:

Ψ(r) = φ(r) exp(2πikz) (3.31)

This splits the wave function into a fast traveling plane wave in z-direction

and a small specimen perturbation that varies slowly with position z. Since

k2 = k2
x + k2

y + k2
z is only exact for the unscattered case where kx and ky are

small. The total energy of the electron is

E =
h2k2

2m
(3.32)

For the following calculations we define the Laplacian to act only in the x-y

plane:

∆ =
∂2

∂x2
+

∂2

∂y2
(3.33)

We rewrite the derivative on the left side of Eq. 3.29 and insert Eq. 3.31(
∆ +

∂2

∂z2

)
Ψ(r) = exp(2πikz)∆φ(r) +

∂2

∂z2

(
φ(r) exp(2πikz)

)
(3.34)

2It is usual in literature on optics to define k = 1
λ and this is the way it is used in this

context
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We are now interested in the derivative with respect to z. The first derivative

is:
∂

∂z

(
φ(r) exp(2πikz)

)
= exp(2πikz)

(
∂

∂z
φ(r) + 2πikφ(r)

)
(3.35)

The second derivative is:

∂2

∂z2

(
φ(r) exp(2πikz)

)
=

= exp(2πikz)

(
∂2

∂z2
φ(r) + 4πik

∂

∂z
φ(r) + (2πik)2φ(r)

)
= exp(2πikz)

(
∂2

∂z2
φ(r) + 4πik

∂

∂z
φ(r)

)
− 4π2k2Ψ(r) (3.36)

The result is now substituted back into Eq. 3.29 and the factor exp(2πizk) is

droped. So we get:

− ~2

2m

(
∆ +

∂2

∂z2
+ 4πik

∂

∂z
+

2mV (r)

~2

)
φ(r) = 0 (3.37)

Since φ is changing only slowly in respect of z and since k is huge the following

approximation is used: ∣∣∣∣ ∂2

∂z2
φ

∣∣∣∣ << ∣∣∣∣k ∂∂zφ
∣∣∣∣ (3.38)

therefore is (
∆ + 4πik

∂

∂z
+

2mV (r)

~2

)
φ(r) = 0 (3.39)

This approximation is sometimes referred to as ignoring the backscattered elec-

trons. Probably it is more accurate to refer it as paraxial approximation to the

Schrödinger equation[7]. It is now possible to rewrite the Schrödinger equation

for fast electrons as first order differential equation in z:

∂

∂z
φ(r) =

(
i

4πk
∆ + iσV (r)

)
φ(r) (3.40)

where

σ =
2πm

h2k
(3.41)
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is denoted as interaction parameter.

3.2.2 The Multislice Method

For the numerical calculations we split the crystal into a series of thin slices3.

For this reason we use x as coordinates in the slice plane and z as slice depth.

This makes sense if we look at the formal operator solution of Eq. 3.40:

φ(x, z) = exp

(∫ z

0

(
i

4πk
∆ + iσV (r)

)
dz

)
φ(x, 0) (3.42)

Starting the calculation from a depth z we get:

φ(x, z + δz) = exp

(∫ z+δz

z

(
i

4πk
∆ + iσV (r)

)
dz

)
φ(x, z) (3.43)

And after integration we simplify to

φ(x, z + δz) = exp

(
δz

i

4πk
∆ + iσVz(x)

)
φ(x, z) (3.44)

where Vz(x) is similar to Eq. 2.24 the projected potential of the crystal between

z and z + δz.

Vz(x) =

∫ z+δz

z

V (x, z)dz (3.45)

In the next step we have to bear in mind the formal treatment of exponentials

containing operators. Taking the exponential definition of an operator and

inserting two operators A and B multiplied by a small real number ε gives the

following series:

exp

(
ε(A+B)

)
=

∞∑
ν=0

1

ν!

(
ε(A+B)

)ν
(3.46)

= E + ε(A+B) +
1

2!
ε2(A2 + AB +BA+B2) + · · ·

3This chapter is discussed in more details at[7, 13]
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Figure 3.4: Multislice scheme

Only for sufficiently small ε the approximation

exp

(
ε(A+B)

)
∼= exp(εA) exp(εB) (3.47)

is exact enough. Using this approximation we write Eq. 3.42 in the form:

φ(x; z) =

n[z]∏
j=1

exp

(
iδzj
4πk

∆ + iσVz(x)

)
φ(x, 0) (3.48)

The next approximation step aims at obtaining two separate operators.

φ(x, z + δz) = exp

(
δz

i

4πk
∆

)
exp(iσVz(x))φ(x, z)

= exp

(
δz

i

4πk
∆

)
t(x, z)φ(x, z) (3.49)

For further simplification we calculate the 2D Fourier transformation:

FT

[
exp

(
δz

i

4πk
∆

)
t(x, z)φ(x, z)

]
=

=

∫ (
exp

(
δz

i

4πk
∆

)
t(x, z)φ(x, z) exp(2πi(kxx+ kyy)

)
dx (3.50)
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Manipulating the terms and differentiation (details can be found in the ap-

pendix) leads to:

FT

[
exp

(
δz

i

4πk
∆

)
t(x, y)φ(x, z)

]
=

= exp

(
−iπδz
k

(k2
x + k2

y)

)
FT [t(x, z)φ(x, z)] (3.51)

= FT [p(x, z)]FT [t(x, z)φ(x, z)] (3.52)

Now we explicitly calculate p(x, z) by inverse Fourier transformation:

FT [p(x, z)] = exp

(
−iπδz
k

(k2
x + k2

y)

)
(3.53)

p(x, z) = FT−1

[
exp

(
−iπδz
k

(k2
x + k2

y)

)]
=

k

iδz
exp

(
iπk

δz
(x2 + y2)

)
(3.54)

Since a multiplication in Fourier space converts to a convolution in real space

Eq. 3.49 becomes:

φ(x, z + δz) = p(x, δz)⊗ [t(x, δz)φ(x, z)] +O(δz2) (3.55)

Ordering all the appearing operators by numbers (corresponding to slices in-

stead of depth):

φn+1(x) = pn(x)⊗ [tn(x)φn(x)] +O(δz2) (3.56)

with

pn(x) =
k

iδzn
exp

(
iπk

δzn
(x2 + y2)

)
(3.57)

tn(x) = exp(iσVzn(x)) (3.58)

We will see in the further progress that it is useful for our numerical approach

to separate Eq. 3.53 concerning its variables kx and ky:

Pn(kx) = exp(−iπλk2
xδzn), Pn(ky) = exp(−iπλk2

yδzn) (3.59)
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If we like to combine our results in one operator it has the form

TPT,j = F−1P̂jF t̂j, (3.60)

were t̂j represents the entrywise product with function 3.58, F the two di-

mensional Fourier transform and P̂j the entrywise product of term 3.57 in its

Fourier transformed form. Tel,d in Eq. 3.1 can now be written as the application

of operators over all slices j in the distance d:

Tel,d = TPT,nTPT,n−1 · · ·TPT,2TPT,1 (3.61)

3.3 Image Formation

3.3.1 Spherical Aberration

In a TEM the objective lens is a coil with large current flow to produce a

magnetic field. Symmetry and shape of the magnetic field are determined by

Maxwells equations. In practice lenses are afflicted with errors. The effect of

the aberration is to shift the phase of each frequency component by a different

amount. Since only a small portion of the specimen is imaged, off-axis aberra-

tions can be neglected. So only low order effects like spherical aberration Cs

are important. The net phase error due to spherical aberration and defocus is

[7]:

χ(α) =
2π

λ

(
1

4
Csα

4 − 1

2
∆fα2

)
(3.62)

Cs produces an error proportional to the fourth power of the focus angle α.

Like shown in Fig. 3.5 defocusing the lens moves the ray crossing (circle of

least confusion) to the right. Although the spherical aberration Cs is fixed by

the microscope it is possible to increase the resolution with smaller wavelength λ

which is given by the acceleration voltage. The main problem in high-resolution

imaging is to optimize the defocus to provide the best resolution for an image.
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Figure 3.5: Lens with positive spherical aberration, showing a closer focus
for off-axis rays[1]

To obtain the sharpest image of a point object we look at the following equation:

ψ(x) =

∫ ∞
−∞

ei∆kxeiχ(∆k)d∆k (3.63)

The equation shows the Fourier representation of a wave amplitude. To achieve

the best point resolution, namely to obtain the Dirac δ-function we would have

to set χ(∆k) = 0. An analogous consideration tells us that the Fourier rep-

resentation of a point function consists of a wide range of frequencies ∆k. So

the problem of picking an optimum defocus value is equal to choosing χ(∆k) in

such a way that it has a constant value over a wide range in ∆k. The standard

criterion for point-to-point resolution uses the range −3π/4 < χ(∆k) < 0. This

range is obtained with the so called Scherzer defocus:

∆f =

√
3Csλ

2
(3.64)

The maximum ∆k for which the coherency is preserved is the second root. Its

inverse is called the Scherzer resolution:

rSch =
4

√
Csλ3

6
(3.65)

For weak phase objects the most important part of the transfer function eiχ(∆k)

is its imaginary component sin (χ(∆k)). This is called the contrast transfer

function (CTF). The CTF in Fig. 3.6 is strongly alternating for increasing

∆k. This grounds on the dominance of the quadratic term in Eq. 3.62 for large

∆k. However, errors in microscopes limit the coherency for higher values of

∆k. This is known as information limit and leads to a damping of the CTF
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Figure 3.6: Contrast transfer function for the lens conditions (Cs = 2.3mm,
λ = 0.001968nm, 300 keV) for various values of defocus. [2]

with increasing ∆k. The lateral coherence length perpendicular to the optical

axis of the illumination electron wave function is approximately given by [7]

∆xcoh ≈
0.16λ

βmax
(3.66)

while βmax is the maximum condenser angle. A criteria to classify the image

coherency evolves from the comparison of βmax with the maximum objective

angle αmax:

βmax � 0.16αmax · · · coherent image

βmax � 0.16αmax · · · incoherent image

In between these ranges the image is called partial coherent[7]. We will dis-

tinguish between coherent and the partial coherent image calculation in the

image formation process. In the extend of this work we will concentrate on the

coherent image calculation4.

4Details about partial coherent image calculation can be found in [7, 14]
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3.3.2 Coherent Image Calculation

In the case that coherent image calculation is sufficient we calculate a more

general form of the aberration function Eq. 3.62 [7].

χ(k) =
π

2
Csλ

3k4 − π∆fλk2

+πfa2λk
2sin(2(φ− φa2)) +

2π

3
fa3λ

2k3sin(3(φ− φa3)) (3.67)

The additional parameters are the two and three fold astigmatisms fa2 and fa3

and their azimuthal orientations φa2 and φa3. By calculation of

H0(k) = exp(−iχ(k)) (3.68)

and Fourier back transformation into real space we obtain the complex point

spread function (PSF) h0(x). By convolution of the respective wavefunction

with the point spread function we obtain the wavefunction at the detector plane.

Therefore the effect of the operator Tlens in Eq. 3.27 equates the convolution

with the PSF.
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Programming

All the programs are written in the C programming language1. The main

reasons for this choice are its low runtime demand of system resources and its

flexible way to allocate memory.

4.1 Outline

The program consists of three main calculations like the mathematical treat-

ment in the previous chapter (Eq. 3.1) indicates. These calculations are further

split into smaller parts in the following way:

1For compilation the GNU C compiler Ver. 3.4 was used.

28
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The calculation of the evolving wave functions in the scattering event.

1. Reading respectively calculation of f(Q).

2. Calculation of the integrals v(|x|) and w(|x|) Eq. 3.16.

3. Calculation of the 2D arrays for Wx(x), Wy(x) and Wz(x) Eq. 3.20

4. Shifting the centres of the previous arrays to match the scattering

centre in the wave function.

5. Obtain the wave function at the current depth.

6. Calculation of three new wave functions by multiplication of the

wave function with the previous arrays.

The multislice propagation of a wavefunction through a number of slices.

1. Calculation of a 2D array representing the reduced potential Vz(x)

Eq. 3.45 for each used layer.

2. Symmetrically bandwidth limit the potentials like described in [7]

3. Calculation of an 2D array representing the transmission function

t(x) Eq. 3.58 for each used layer.

4. Calculation of two 1D arrays representing the propagation functions

Eq. 3.59 P (kx) and P (ky)

5. Entry wise multiplication of the wave function with the transmis-

sion function that represents the layer.

6. Forward FFT into k-space of the previous result.

7. Entry wise multiplication of the wave function with the propagation

functions P (kx, 0) and P (0, ky).

8. Backward FFT into x-space.

9. Repetition of steps 5 to 8 until the wave function reaches the desired

depth.
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The calculation of the intensity distribution at the detector plane.

1. Calculation of a 2D array representing the transfer function of the

objective lens Eq. 3.68.

2. Forward FFT into k-space of the wave function at the exit plane.

3. Entry wise multiplication of the wave function with the transmis-

sion function.

4. Limitation of the wave function in k-space to account the objective

aperture size.

5. Backward FFT into x-space.

6. Calculate the intensity of the wave function.

7. Sum the previous intensity to the overall image intensity.

8. Repetition of the steps 2 to 7 for every wave function at the exit

plane.

The listed calculation steps are separated into three programs. The purpose of

this split-up is to allow to vary as many parameters as possible without having

to redo all the calculations from the beginning. Of course this approach is

limited since usability has to be maintained, calculations have to be grouped and

the need of slow memory access minimized. Each program reads the required

parameters from the configuration files and stores its results to a file that is

read by the next program.

4.2 ixchel atompot Program

The ixchel atompot program calculates and stores the reduced potential for

every given layer into a file . The reduced potential only depends on the set up of

atoms in the specific layer and the pixel dimension of its array representation2.

2Basically the pixel dimension of the reduced potential could differ from the dimension of
the wave function. This was not implemented so that the pixel dimensions match.
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Figure 4.1: Figure shows how the crystal is separated into slices. The black
dots mark the atoms where inelastic scattering occurs

4.3 ixchel Program

In the ixchel program a lot of bookkeeping is going on. It propagates the in-

coming wave function elastically with the multislice method to the crystal exit

plane. After each slice a snapshot of the wave function is stored. In slices that

contain the defined scattering atom the three evolving wave functions are cal-

culated and propagated to the crystal exit plane by using the multislice method

again. Since the multislice calculation of one wave function is independent from

other multislice calculations it is quite simple to parallelize these calculations.

4.3.1 Parsing the Crystal Structure

In the crystal structure file the crystal structure is defined. The character of

multi slice calculation is to sequence through a set of layers. Each layer holds

a specific constellation of atom positions in one crystal plain. Layers can be

combined to a sequence of layers. Sequences of layers can be combined with

other sequences and other layers and so on. A simple example to combine two

layers a and b is 12(ab). This means to repeat the sequence ab twelve times

resulting in a crystal containing 24 slices. The stacking sequence is defined

in the crystal structure file. The first step in the calculation is to parse the

stacking sequence. This results in a direct mapping between a slice number

and a layer.
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4.3.2 Creating and Managing Jobs; Parallel Computing

Unlike forking where the whole program memory is cloned pthread uses the

same memory the parent program uses. The library allows the main program

to keep track which threads are still running and which are finished.

After having calculated all initially required arrays the program starts to create

a list of jobs. This queue (Fig. 4.3) is build in form of an array which contains

pointers to structures. For each individual job namely the multislice calculation

in Eq. 3.25 a structure is created. The structure in Listing 4.1 contains all the

specific informations for this job. A second structure Listing 4.2 exists to pass

information that is relevant for every job. While the main program creates

new jobs it checks if free cores are available(Fig. 4.2). If so, a new thread is

started and the pointer to a free job is provided. When a thread finishes it

automatically checks for free jobs and restarts if it finds one. When all jobs are

created, the main program waits for the threads to finish. When all jobs are

done the threads will finish. The main program waits for the last thread and

finishes itself.

Since the calculations run in parallel some care has to be taken to avoid prob-

lems. One problem is the freeing of memory. Memory that is needed only by a

limited number of jobs has to be freed after all of these jobs are finished. This

is implemented with a counter representing the number of jobs still linking to

the memory. The second problem is known as race condition.To avoid that two

or more threads simultaneously manipulate the same memory addresses mutex

locks are used.

1 struct ineljob

2 {

3 struct commjob *ptr_masterjob;

4 int islice; // # of slice

5 int delta_nx; // disposition of winel

6 int delta_ny; // disposition of winel

7 float ** ptr_wfr; // points to beginning wave function for this depth

8 float ** ptr_winel; // points to inelastic winel

9 int atom; // # of atom

10 int pos; // index of atom of this sort

11 int *layer; // array containing layer # of islice

12 int comp; // {0, 1, 2 } => {x, y, z }- component

13 clock_t cput; // required calculation time

14 int state; // 0 ... free , 1 ... in work , >1 ... finished w. success
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Figure 4.2: Parallelization for multi core processors with pthread

Figure 4.3: Figure shows the queue which holds the available jobs
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15 };

Listing 4.1: struct ineljob

1 struct commjob

2 {

3 // Do not change order of this lines //

4 pthread_mutex_t job_mutex;

5 int next_job;

6 int last_job;

7 // Do not change order of this lines //

8 pthread_t thread_id[NUM_CPU ];

9 float *** wfqueue;

10 int *wfcount;

11 int nx; // size of wave function in pixel

12 int ny;

13 unsigned int *cksums;

14 float ** ptr_propxr;

15 float ** ptr_propxi;

16 float ** ptr_propyr;

17 float ** ptr_propyi;

18 float *** ptr_transr;

19 float *** ptr_transi;

20 float *kx2;

21 float *ky2;

22 float k2max;

23 int nout; // quantity of output slices

24 int outslices[NOUTMAX ]; // contains the slice numbers for output

25 clock_t cput; // required calculation time

26 int state; // 0 ... free , 1 ... in work , >1 ... finished w. success

27 };

Listing 4.2: struct commonjob

4.4 ixchel image Program

The job of the program is to calculate the intensity distribution from the exit

plane wavefunctions and sum them up. In the simplest case the convolution of

wavefunction and PSF. With little changes it is possible to implement more

advanced optics calculations. Like done with the partial coherent mode imple-

mented from the Kirkland package[7]. In difference to the ixchel program the

calculations were not parallelized. However, it is favourable to run simulations
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with different configuration files simultaneously. This can be done with the help

of simple scripts (eg. in BASH).

4.5 Crystal Structure Configuration File

The crystal structure configuration file (like seen in Listings 5.1 and 5.3) con-

tains the following information:

• stack_seq, The stacking sequence of layers contains the number of repeti-

tions and the layer sequence (represented through their associated letters)

• NCELL, defines the replication factors of the layer unit cell. The replication

factor gives the number of repetitions of a unit cell along an axis to form

a super cell. The repetition of the unit cell generates a ”zoom-in” in

momentum space.

• dim, The real space dimensions in pixels of the supercell. The employed

FFT algorithm demands dimension 2 to the power of an integer.

• layers, contains a list of layer definitions. The defined layers are mapped

to the sequence abc...XYZ according to their appearance. Each layer

requires the following information:

– filename, the output file name to which the reduced potential should

be saved.

– size uc, the size of the unit cell is defined by the list of dimensions

{ x= ...; y= ...; z= ...;} in the unit [Å].

– atoms, contains lists. Each list specifies the atomic number and the

atom positions:

∗ Z, the atomic number.

∗ positions, holds a number of arrays. Each array has two el-

ements, the first is the x-position, the second the y-position in

proportion to the unit cell length.
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Table 4.1: Parameters defined in the configuration files

Parameter Used by Data Type
ixchel atompot

ixchel

ixchel image

stack seq X X X string
dim X X X integer array with 2 elements

NCELL X X X integer array with 3 elements
layers X X X group containing an arbitrary number of groups
size uc X X X group of 3 float values
filename X X string
atoms X X X list of groups

Z X X X integer
positions X X X list of float arrays with 2 elements
filescatt X string

Eloss X float
ctilt X float array with 2 elements
btilt X float array with 2 elements
v0 X X float

Zinel X X integer
outslices X X integer array of arbitrary size
transopt X boolean
transwf X boolean

Cs X float
df0 X float

sigmaf X float
dfdelt X float
aobj X float
cmode X boolean
dfa2 X float

dfa2phi X float
dfa3 X float

dfa3phi X float
objlx X float
objly X float
alpha0 X float
ddf X float
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The simulation configuration file contains the following information:

• filescatt, the file name from where the inelastic scattering amplitude

should be read. The file should contain two rows. The first representing

q the second f(q). q has to be calculated like 1/λ rather than 2π/λ and

must have the unit [1/Å].

• Eloss, the energy transfered to the core electron in [eV].

• ctilt, the tilt of the crystal in x- an y-direction in [mrad].

• btilt. the tilt of the electron beam [mrad].

• v0, the energy of the incident electron beam in [keV].

• Zinel, the atomic number of the atoms specific for the energy loss.

• outslices, an array of arbitrary size holds the slice numbers where in-

termediate results are stored to a file. In contrast to the elastically prop-

agated wavefunction which is saved after each slice, the wavefunctions

evolving from the inelastic scattering centres are only saved on given posi-

tions. This given positions allow image calculations for the corresponding

crystal thickness.

• transopt, if this switch is true, the simulation in the ixchel image is

simplified. Optical effects are only calculated for atoms in the first unit

cell. This switch makes only sense if transwf is also true.

• transwf, if this switch is true, the simulation in ixchel and ixchel image

are simplified. Only wavefunctions originating from the first unit cell are

taken for the simulation but are replicated, so that the image simulation

is done for each unit cell.

• Cs, the spherical aberration of the lenses in [mm].

• df0, the defocus value in [Å]. Have a look at Eq. 3.64 to calculate the

best value.
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• sigmaf, dfdelt the standard deviation and the sampling size of df0 in

[Å].

• aobj, the object aperture size in [mrad].

• dfa2, dfa2phi, magnitude [Å] and angle [mrad] of 2-fold astigmatism.

• dfa3, dfa3phi, magnitude [Å] and angle [mrad] of 3-fold astigmatism.

• cmode, coherent image formation if true. Otherwise if only partial coher-

ence is assured false. The following two parameters are required for this

case.

• alpha0, illumination semi-angle in [mrad].

• ddf, defocus spread in [Å].

4.6 Usage of the Program

1. Create the crystal configuration file. Table 4.1 shows which settings are

relevant for which program.

2. Run the ixchel atompot program. It produces a Tiff file for each defined

layer. The allowed command-line options are:

-c FILE Reads the crystal configuration from FILE. When this option

is omitted the program will read from crystal struct.cfg

-h A brief summary of the command-line options.

3. Create or modify the simulation config file.

4. Run the ixchel program. It produces Tiff files for the multislice results

at each slice and the multislice results of all evolving wavefunction at the

end slice and at the slices specified in outslices.

-c FILE Reads the crystal configuration from FILE. When this option

is omitted the program will read from crystal struct.cfg
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-i FILE Reads the incoming wavefunction from FILE. When omitted

a plane wave is calculated using the parameters in the simulation

configuration.

-s FILE Reads the simulation configuration from FILE. When this op-

tion is omitted the program will read from simulation.cfg

-h A brief summary of the command-line options.

5. Create or modify the simulation config file.

6. Run the ixchel image program. The program produces Tiff files show-

ing the intensity distribution at the crystal exit plane and at the slices

specified in outslices.

-c FILE Reads the crystal configuration from FILE. When this option

is omitted the program will read from crystal struct.cfg

-o FILE Writes the intensity distribution at the exit plane to FILE.

When omitted the intensity is written to pixsum.tif.

-s FILE Reads the simulation configuration from FILE. When this op-

tion is omitted the program will read from simulation.cfg

-h A brief summary of the command-line options.

7. Repeat either steps 1-6, 3-6 or 5-6 to modify parameters.

4.7 Calculation Effort and Storage Requirement

Only frequently repeated calculations are relevant for the duration of the simu-

lation. The most frequent calculations are entry wise array multiplication and

2D FFT. The array multiplications scale with N2, the 2D FFT with N2. log(N).

As was shown before, the calculation of a succeeding slice needs two 2D FFT

and two array multiplications. The time of one such calculation depends on N .

If the duration of one single slice calculation say tss is known the overall time
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of an ixchel simulation can be estimated as following.

Tixchel = tss

(
n+ 3

n∑
i=1

nscatt[i](n− i)

)
(4.1)

n should be the number of slices, nscatt[i] the number of scattering centres in

slice i. Through parallelisation the calculation time can be split by the number

of available CPU cores to obtain the time a simulation needs.

The procedure to calculate the intensity distribution of one wavefunction in the

ixchel image program requires the reading of the wavefunction from the file,

two 2D FFT, one entry wise multiplication and one addition of two arrays. If

the time needed for one single wavefunction is tsw we can estimate:

Timage = 3tsw

(
n∑
i=1

nscatt[i] +
∑
j∈Nout

j∑
i=1

nscatt[i]

)
(4.2)

Nout is the set of slice numbers in the range [1, n − 1] specified in outslices.

The right term in Eq. 4.2 contains the number of stored wavefunctions. We

add the number of slices n since we stored the multislice result after each slice.

So we know the number of stored wavefunctions. We further know that the size

of a wavefunction is double the size of an intensity image3. The overall storage

space required is then

I = Iwf

(
3

n∑
i=1

nscatt[i] + 3
∑
j∈Nout

j∑
i=1

nscatt[i] +
nout

2

)
(4.3)

Iwf is the size of one wavefunction data file (approx. 2.9 Mb for a 512x512 pixel

data file). nout is the number of elements in the set Nout.

3The wavefunction contains additionally an imaginary array of same size.
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Multislice Simulations

5.1 SrTiO3

The first crystal we are looking at is SrTiO3 (tausonite). In the first step we

have to transfer the cubic crystal structure in Fig. 5.1 into slices. One possible

way with Sr and O in the first slice and Ti and O in the second is shown in Fig.

5.2. Listing 5.1 shows the definition of the slices.

1 # Example crystal structure file

2 # for SrTiO3

3

4 # Stacking sequence

5 stack_seq = "126(ab)";

6 # Real space dimension Nx , Ny in pixel

7 dim = [ 512, 512];

8 # Replication factors of unit cell: NCELLX , NCELLY , NCELLZ

9 NCELL = [ 8, 8, 1];

10 # Layers

11 layers = {

12 a = {

13 # Size of unit cell in Angstrom

14 size_uc = { x = 3.9051; y = 3.9051; z = 1.9525; };

15 # Input file name atomic potential

16 filename = "srtapot.tif";

17 atoms = (

18 {

19 # name not mandatory , Z is read

20 name = "Sr";

21 Z=38;

41
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22 positions = ( [ 0.0, 0.0] );

23 },

24 {

25 name = "O";

26 Z=8;

27 positions = ( [ 0.5, 0.5] );

28 }

29 );

30 };

31 # END layer a

32 b = {

33 size_uc = { x = 3.9051; y = 3.9051; z = 1.9525; };

34 filename = "srtbpot.tif";

35 atoms = (

36 {

37 name = "Ti";

38 Z=22;

39 positions = ( [ 0.5, 0.5] );

40 },

41 {

42 name = "O";

43 Z=8;

44 positions = (

45 [ 0.5, 0.0],

46 [ 0.0, 0.5]

47 );

48 }

49 );

50 };

51 };

Listing 5.1: Crystal structure file for SrTiO3

The simulation was run with energy 300 keV, and inelastic scattering at oxygen

(K-edge) with an energy loss of 532 eV. Cs is 0.9 mm. The optimal defocus can

be calculated with Eq. 3.64 and is approximately 51.5 nm. Listing 5.2 shows

the simulation parameters.

1 # Example simulation file

2 # for SrTiO3

3

4 # Real space dimension Nx , Ny in pixel

5 dim = [ 512, 512];

6 # Energy of incident beam in keV

7 v0 = 300.;

8 # Atomnumber at which electron scatters inelastically

9 Zinel = 8;

10 # Energy loss in eV
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11 Eloss = 532.;

12 # Crystal tilt [ xtilt , ytilt ] in mrad

13 ctilt = [0.0, 0.0];

14 # Incident beam tilt [ xtilt , ytilt ] in mrad

15 btilt = [0.0, 0.0];

16 # Define all the additional depth (# slices) were the inelastic wavefunction

17 # should be written to a file; Note: provide in ascending order.

18 outslices = [28, 56, 84, 112, 140, 168, 196, 224, 252];

19 # Translation invariance of exit intensity array?

20 transopt = true;

21 # Translation invariance of exit wavefunction between replicated unit cells?

22 transwf = true;

23 # File name to read inelastic scattering amplitude

24 filescatt = "O_K_Ang.dat";

25 # Spherical aberration Cs in mm

26 Cs = 0.9;

27 # Defocus , mean , standard deviation and sampling size in Ang.

28 df0 = 515.0;

29 sigmaf = 0.;

30 dfdelt =0.;

31 # Object aperture in mrad

32 aobj = 9.42;

33 # Coherent image calculation mode

34 cmode = true;

35 # Magnitude and angle of 2-fold astigmatism in Ang. and degrees

36 dfa2 = 0.;

37 dfa2phi = 0.;

38 # Magnitude and angle of 3-fold astigmatism in Ang. and degrees

39 dfa3 = 0.;

40 dfa3phi = 0.;

41 # Objective lens and aperture centre x, y in mrad

42 objlx = 0.;

43 objly = 0.;

Listing 5.2: Simulation file for SrTiO3

In Fig. 5.3 the wavefunction shows the propagation through the crystal. The

thickness values equal the number of slices:

outslices = [28, 56, 84, 112, 140, 168, 196, 224, 252];

The last two intensity plots 5.5 and 5.6 show a variation of crystal slices and

defocus values. The first for elastic scattering only the second with inelastic

scattering.
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Figure 5.1: Figure shows the crystal structure of SrTiO3

Figure 5.2: Figure shows the two layers a and b defined in the crystal
structure file Listing 5.1

5.2 Si [110]

The second crystal we are looking at is Si in [110] direction. In Fig. 5.7 the

coloured atoms indicate the two slices (Fig. 5.8) that are needed to replicate

the structure. Listing 5.3 shows the resulting configuration file.
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Figure 5.3: Wavefunction with progressing thickness (from top to down)
for SrTiO3 (1 unit cell) with an energy of 300 keV. The colour-bar indicates
the phase shift in degrees.

Figure 5.4: 4x4 unit cells of the elastic propagated wavefunction at slice
24 for SrTiO3 with an energy of 300 keV
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Figure 5.5: Elastic focal series of SrTiO3 with energy 300 keV and Cs 0.9
mm. The colour-bar indicates the intensity.
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Figure 5.6: Focal series for SrTiO3 with energy 300 keV and Cs 0.9 mm
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1 # Example crystal structure file

2 # for Si (110)

3

4 stack_seq = "126(ab)";

5 dim = [ 512, 512];

6 NCELL = [ 8, 8, 1];

7 layers = {

8 a = {

9 size_uc = { x = 3.84009; y = 5.43071; z = 1.92005; };

10 filename = "siapot.tif";

11 atoms = (

12 {

13 name = "Si";

14 Z=14;

15 positions = (

16 [ 0.0, 0.0],

17 [ 0.5, 0.25]

18 );

19 }

20 );

21 };

22 # END layer a

23 b = {

24 size_uc = { x = 3.84009; y = 5.43071; z = 1.92005; };

25 filename = "sibpot.tif";

26 atoms = (

27 {

28 name = "Si";

29 Z=14;

30 positions = (

31 [ 0.5, 0.5],

32 [ 0.0, 0.75]

33 );

34 }

35 );

36 };

37 };

Listing 5.3: Crystal structure file for Si110

The simulation was run with energy 300 keV, and inelastic scattering at silicon

(L2,3 transition) with an energy loss of 99 eV. Cs is 0.9 mm. The optimal

defocus is approximately 51.5 nm. The intensity plots Fig. 5.9 and Fig. 5.10

show again a thickness and focal series for the elastic and inelastic case. The

thickness values equal the slice number:

outslices = [28, 56, 84, 112, 140, 168, 196, 224, 252];
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Figure 5.7: Look on Si surface in [110] direction.

Figure 5.8: Split-up of Si [110] into unit cells.
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Figure 5.9: Elastic focal series of Si [110] with energy 300 keV and Cs 0.9
mm



Chapter 5. Multislice Simulations 51

Figure 5.10: Focal series for Si [110] with energy 300 keV and Cs 0.9 mm
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Conclusion

The introduced method shows a way to implement inelastic scattering by core

electron transition into the multislice method. It became clear that the calcu-

lation time required for a simulation scales with the power of 2 of the sample

thickness and linear with the number of scattering atoms in a slice. There

are a considerable number of simplifications for special configurations that im-

mensely reduce the calculation time. The simulations can be run in affordable

time on home computers.1 The independence of the single calculations in the

model allows a simple approach to parallelize them. The tendency to extend

the number of processor cores in home computers will improve the run time

even more. Therefore even more complex structures than given here should not

present a problem on modern home computers.

The memory usage scales with the resolution of the image and with the number

of simulations running in parallel but remains in a neglect able range. The hard

disk storage requirements are a bit higher and quickly grow in sizes of gigabytes.

The storage requirement scales with the power of 1 to 2 with the thickness of

the sample (depending on the number of intermediate results we are interested

in). Data compression provides one simple way to reduce the required storage

on the expense of calculation time. Ratios up to 1:2, for periodic data even

up to 1:10 are possible. Exploitation of symmetries and limiting factors would

1The presented SrTiO3 simulations took approximately five hours on a low cost system
(4 CPU cores with 1.7 GHz and 1024 KiB cache)

52
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reduce the storage even more. For example the objective aperture size limits

the relevant domain in the k-space representation of a wavefunction.

The written software provides a practical tool to interpret high resolution

EFTEM images and to find new structures. Versatility was achieved by a

modular design of the program. In the future it can be used as a framework

for improved and more specialized programs.
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Programming Details

A.1 Functions

A.1.1 Initial Calculations

int incwf(config_t *cfg_cry, config_t *cfg_sim,

float **waver, float **wavei, float ***transr, float ***transi,

float **propxr, float **propxi, float **propyr, float **propyi,

float *kx2, float *ky2, float *k2max)

The function incwf() is doing most of the initially required calculations to

start the ixchel program. The results are stored in arrays of different size and

dimension and are repeatedly used in the following calculations.

transr and transi are calculated for each defined layer once. This is done

by reading the reduced potential information from the corresponding atompot

data file and by multiplication with a scaling factor. The scaling factor contains

σ (Eq.3.41) and an relativistic correction factor.

propxr, propyr and their associated imaginary arrays are calculated like seen

in Eq. 3.59.

54
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A.1.2 Elastic Propagation

void transmit( float** waver, float** wavei,

float** transr, float** transi, int nx, int ny )

The function transmit() is doing the calculation tn(x)φn(x) in Eq.3.56. This

is basically a point for point array multiplication in real space. The arrays

transr[][] and transi[][] have been calculated once for each layer at the

program start. Since waver[][] and wavei[][] are the real and imaginary

part as are transr[][] and transi[][] the complex product looks like:

waver[ix][iy] = waver[ix][iy]*transr[ix][iy] - wavei[ix][iy]*transi[ix][iy];

wavei[ix][iy] = waver[ix][iy]*transi[ix][iy] + wavei[ix][iy]*transr[ix][iy];

The results are stored in the arrays waver[][] and wavei[][]. Only these two

arrays change during the function call.

void propagate( float** waver, float** wavei, float* propxr,

float* propxi, float* propyr, float* propyi,

float* kx2, float* ky2, float k2max, int nx, int ny )

The function propagate() calculates the convolution in Eq. 3.56. Since it bears

advantages to use a Fourier transform we employ the convolution theorem and

use Eq.3.53 instead. This means that waver[][] has to contain the Fourier

transformed before it is provided to propagate(). We would end in a simple

array multiplication like in transmit(). Eq. 3.56 allows us to separate for

the two variables kx and ky. Instead of one ”propagation” array of size nx*ny

we remain with one array of size nx and one of size ny. This are the arrays

propxr[] and variations. The wavefunction arrays are now multiplied in the

same way it is done in transmit(). Only this time multiplied with the two

components of the propagation arrays, and only until the sum of kx2 and ky2

reaches the bandwidth limit k2max.
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A.1.3 CRC calculation

Although changes in the configuration files are possible between the three sim-

ulation steps, the dependencies in Table 4.1 have to be considered. If data

files that were produced with different configuration parameters are used in a

following simulation step a warning is printed. To check for changes every data

file contains in the third TIFF directory CRC-checksums of the basic configu-

ration files that were used. The calculation method for the CRC-checksums is

the same which is implemented in the coreutils tool cksum.

unsigned int cksum(const char *filename);

The function reads the passed file and returns a 32 bit checksum.

A.1.4 HSV Colour mapping

int hsv_rgb(float* c_hv, unsigned short * c_rgb );

As explained in the appendix the TIFF format allows two ways to create colour

images[16]. The wave function results we obtain consist of two arrays containing

an real and imaginary value: zkl = xkl + iykl. One way to create images was

to draw the real and imaginary array in grey scale next to each other. An

easier way to interpret the results is to plot the intensity and the - phase shift

(zkl = rkl. exp(iφkl))in a colour RGB image. It is common practice to plot

complex values in the HSV model. The RGB model requires three values per

pixel as does the HSV model. To reduce the degrees of freedom we set the

saturation to 1. Next we map the intensity and the phase shift in the following
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way:

r 7→ v

[rmin . . . rmax[ 7→ [0 . . . 1[

and

φ 7→ h

[0 . . . 2π[ 7→ [0 . . . 1[

hsv rgb() converts the h and v values (passed in the form of the two value array

float c hv[2]) into three corresponding (ushort c rgb[3]) values with the

following algorithm:

1 h = c_hv [0];

2 v = c_hv [1];

3

4 i = floor (6*h);

5 f = 6*h - i;

6

7 x = v*(1-f);

8 y = v*f;

9 if i==0:

10 r = v; g = y; b = 0;

11 if i==1:

12 r = x; g = v; b = 0;

13 if i==2:

14 r = 0; g = v; b = y;

15 if i==3:

16 r = 0; g = x; b = v;

17 if i==4:

18 r = y; g = 0; b = v;

19 if i==5:

20 r = v; g = 0; b = x;

21

22 c_rgb [0] = 256*r;

23 c_rgb [1] = 256*g;

24 c_rgb [2] = 256*b;

Listing A.1: Pseudo code of HSV to RGB colour space conversion in the

case s=1. h, s, v and r, g, b are the coordinates in the corresponding colour

space.[2]



Appendix B. Functions, Data Files and Libraries 58

Figure A.1: Data file structure

The code uses an array of two float elements to calculate three 8 bit values.

A.2 The Data Files

In every simulation step we obtain different kind of data which is saved as a

TIFF file. The TIFF data format offers an almost unlimited number of data

containers, like described in the TIFF documentation [16]. Each container is

called a directory. There are no limitations on the data type we like to store.

We use this container to store independent data depending on the information

we obtain in every simulation step. The data files are designed as three separate

directories. The first directory contains a demonstrative improved representa-

tion of the image data. This allows a simple interpretation of the obtained data.

The second directory contains the float valued result of the simulation. The

third directory contains further information about the simulation. The first

value in this directory is an unsigned int checksum. The checksum allows a

comparison of the current configuration files with the present data file. This

prevents the usage of data files which were obtained with different configuration

parameters.
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Figure A.2: The reduced potential of a SrTiO3 layer (8x8 unit cells) cal-
culated with the ixchel atompot program.

A.2.1 ixchel atompot and ixchel image data files

The ixchel atompot andixchel image data files are build in the same way.

The first IFD holds the data of the image representation. The second all the

data in float precision. The third additional simulation informations. To

achieve a color mapping from the data values the palette-colour method for

TIFFs was used.

short** createColorMap()

The function returns the used colour mapping. It is the same mapping one

would get by using gnuplot with the option rgbformulae 22,13,-31.

A.2.2 ixchel data files

The required wave functions are calculated in the second simulation step. Two

ways to draw the graphical interpretation of the complex wave function are

implemented. The first way is an 8 bit grey scale image plotting the real and
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Figure A.3: Top: Conical representation of the HSV model. Bottom: Hue
of HSV colour space for maximum saturation and value.[2]

complex part of the wave function next to each other. The second possible

way is a colour representation in an RGB valued image. Each colour value is

represented with an 8 bit value. The wave function is mapped to the HSV

model as explained above.

A.3 Configuration Files

A.3.1 Realisation of the Configuration Files

There exist several realisations of configuration file reader routines, so there is

no point in writing one. The most common files used are INI and XML files.

Both of them allow implementations into C and can be manipulated with stan-

dard text editors. Nevertheless neither of those two was used in this program.

The INI files are mainly used on Windows systems, but can also be used on

different platforms. They imply a rather simple to use syntax. For more com-

plex configurations like the configuration of the crystal slices with a whole set

of parameters INI files are not appropriate.

The Extensible Markup Language (XML) is a good choice to define complex
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structured data. XML implies an elaborated syntax. However, the files are not

so simple to read and to create by hand. Therefore it is harder to maintain

readability.

To avoid the mentioned weaknesses a third solution, libconfig[17] was chosen.

The library uses a simple to understand syntax. Variable names can be assigned

with all needed data types. Namely integer, float values and strings. Further-

more it is possible to assign arrays and lists with arbitrary complex nesting.

To give a picture of the configuration files syntax an example from the libconfig

Documentation is printed in Listing A.2.

1 # Example application configuration file

2 version = "1.0";

3 application:

4 {

5 window:

6 {

7 title = "My Application";

8 size = { w = 640; h = 480; };

9 pos = { x = 350; y = 250; };

10 };

11 list = ( ( "abc", 123, true ), 1.234 , ( /* an empty list */) );

12 books = ( { title = "Treasure Island";

13 author = "Robert Louis Stevenson";

14 price = 29.95;

15 qty = 5; },

16 { title = "Snow Crash";

17 author = "Neal Stephenson";

18 price = 9.99;

19 qty = 8; } );

20 misc:

21 {

22 pi = 3.141592654;

23 bigint = 9223372036854775807L;

24 columns = [ "Last Name", "First Name", "MI" ];

25 bitmask = 0x1FC3;

26 };

27 };

Listing A.2: Example of a general configuration file [17]
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TIFF File Format

B.1 TIFF Specification

he simulation software uses the tagged image file format (TIFF)1 version 6.0

for data in and output. The complete specification can be found at [16]. The

TIFF data format was primarily developed to store two-coloured images. It

was then extended to store grey scaled images and finally to store full coloured

images.

The format allows additionally to store any amount of random information.

The standard provides different types of compression. So it is possible to min-

imize size or calculation time. The file format uses a 32 bit offset which allows

a maximum file size of 232byte, that is about 4 GB. Most image processing

software uses quadratic pixel size, although the format does not limit the ratio

of the pixel sizes. If necessary the image is simply stretched in one direction.

62
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Figure B.1: Schematic structure of the TIFF file format

B.2 TIFF Structure

Any TIFF file starts with an eight byte image file header which points to an

image file directory (IFD). The IFD contains all the necessary information of

the image and a pointer which points to the actual data. The TIFF files are

limited to 4 GiB (4,294,967,296 bytes).

1Although TIFF is the abbreviation for tagged image file format (TIFF) it is common to
call it “TIFF format”
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B.2.1 Image File Header

bytes 0-1 sets the type of byte ordering which depends on pro-

cessor and operating system. Possible values are little-

endian (eg. x86 systems), big-endian (eg. M68000)

bytes 2-3 ”An arbitrary but carefully chosen number (42) that

further identifies the file as a TIFF file.”

bytes 4-7 Determines the offset of the first IFD. It can succeed

directly after the image data but it must begin at a

word boundary!

B.2.2 Image File Directory

The IFD starts with 2 bytes. They determine the number of directory entries.

Then 12 bytes field entries follow. At the end follow 4 bytes which determine

the offset for an eventually following IFD entry. They are set to 0 if it was the

last entry.

The 12 byte field has the following format:

bytes 0-1 identification tag

bytes 2-3 type of the field

bytes 4-7 quantity of contained values

The TIFF functions provide additionally to grey scale images different ways to

produce colour images.

B.2.3 Palette-Colour Images

One way is to define a field of RGB colour map (often called lookup-table). For

every grey scale value a red, green and blue value is assigned. Since there doesn’t

exist a predefined lookup table the program has to create it first. This is done

with the TIFFSetField function and the TIFF tag TIFFTAG COLORMAP. For

every RGB colour the address of an array with the assigned values is provided,
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namely *rgbcm[0...2]. Eg. if we want to represent an 8 bit grey scale image

as 8-bit colour image every one of the three arrays contains 28 values, and each

element is of 8 bit size. To set the palette the following function is used:

TIFFSetField(tif, TIFFTAG_COLORMAP, rgbcm[0], rgbcm[1], rgbcm[2]);

B.2.4 RGB Full Color Images

The second way is to save an 8 bit value for every colour in the RGB model.

Additionally there are two ways to store the three colour values. First it is

possible to save the colour values for every pixel in the form of R,G,B next to

each other. The second possibility is to store three fields each containing all

the pixel information for one colour.
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Fouriertheory

C.1 Fourier Transform and Fast Fourier Trans-

formfast Fourier transform (FFT)

F (k) =

∫ ∞
−∞

f(x)e2πikxdx (C.1)

f(x) =

∫ ∞
−∞

F (k)e−2πikxdk (C.2)

It is useful to think of f(x) and F (k) as different representations of the same

function. Some important properties of the Fourier transform are the following:

f(x) = f ∗(x) ⇐⇒ F (−k) = F ∗(k) (C.3)

f(ax)↔ 1

|a|
F (
k

a
) scaling (C.4)

1

|b|
f(
x

b
)↔ F (k) reciprocal scaling (C.5)

f(x− x0)↔ F (k)e2πikx0 shifting (C.6)

f(x)e2πik0x ↔ F (k − k0) reciprocal shifting (C.7)

66
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C.1.1 Parseval’s Theorem∫ ∞
−∞
|f(x)|2dx =

∫ ∞
−∞
|H(k)|2dk (C.8)

Parseval’s theorem has different interpretations depending on its application.

In signal processing it means that the total power of a signal is the same in the

time and in the frequency domain. In quantum mechanics its interpretation as

probability makes clear that the wave function has the same overall probability

in space and reciprocal space representation.

C.1.2 Convolution

Two functions f(x) and g(x) and their corresponding Fourier transforms F (k)

and G(k) allow a combination of interest. For this two functions the convolution

f ⊗ g is defined in the following form:

(f ⊗ g)(x) =

∫ ∞
−∞

f(ξ)g(x− ξ)dξ (C.9)

The convolution has the following properties:

(f ⊗ g)(x) = (g ⊗ f)(x) (C.10)

(f ⊗ g)(x)↔ F (k)G(k) convolution theorem (C.11)

The last property means, that the Fourier transform of the convolution matches

the product of the individual Fourier transforms.

C.2 Fourier Projection Theorem

For a three dimensional function f(x, y, z) the Fourier transform is given by:

F (kx, ky, kz) = FT3D[f(x, y, z)]

=

∫∫∫
f(x, y, z) exp(2πi(xkx + yky + zkz))dxdydz (C.12)
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Next we calculate the two dimensional inverse Fourier transform of the three

dimensional function F (kx, ky, kz)

FT−1
2D [F (kx, ky, kz)] =

=

∫∫
F (kx, ky, kz) exp(2πi(xkx + yky + zkz))dkxdky (C.13)

FT−1
2D [F (kx, ky, kz)] =

=

∫∫ (∫∫∫
f(x′, y′, z′) exp(2πi(x′kx + y′ky + z′kz))dx

′dy′dz′ ×

× exp(−2πi(xkx + yky))

)
dkxdky (C.14)

Changing the order of integration leads to

FT−1
2D [F (kx, ky, kz)] =

∫∫∫
f(x′, y′, z′)× (C.15)

×
∫∫

(exp(2πi((x′ − x)kx + (y′ − y)ky))dkxdky)dx
′dy′dz′ =

=

∫∫∫
f(x′, y′, z′)δ(x′ − x)δ(y′ − y) exp(2πiz′kz)dx

′dy′dz′

Finally setting kz = 0 we receive

FT−1
2D [F (kx, ky, kz = 0)] =

∫
f(x, y, z′)dz′ (C.16)

The inverse Fourier transform applied to a three dimensional function and set-

ting the third reciprocal space coordinate to zero results in the inverse transform

over two dimensions and a projection of the third dimension.



Appendix C. Fourier Transform and Fast Fourier Transform 69

C.3 Discrete Fourier Transform

For N sampled points with equal spacing the discrete Fourier transform is

defined:

Fn =
N−1∑
k=0

fke
2πikn/N (C.17)

fk =
1

N

N−1∑
n=0

Fne
−2πikn/N (C.18)
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