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Abstract

Since  almost  all  biologically  relevant  cell  membranes  are  formed  by 
phospholipid bilayers, the investigation of the influence of anesthetics on the 
physical and chemical properties of these bilayers is essential for actually 
understanding  the  mechanism  of  anesthesia.  In  our  research,  molecular 
dynamics  simulations  of  fully  hydrated  POPC  bilayers  containing  the 
anesthetic ketamine in concentrations between 0 and 8% were performed. A 
variety of  analysis methods were applied to the simulation data to obtain 
detailed information about membrane parameters that may change due to 
the  presence of  anesthetics.  We especially  focused our  attention  on  the 
anesthetic  induced  variation  of  the  lateral  pressure  profile,  whose 
modification can effect  membrane proteins like ion channels by changing 
their conformational equilibrium. The results clearly show that the anesthetic 
most  likely  resides  at  a  certain  height  in  the  bilayer.  Especially  at  that 
position, the lateral pressure gets more and more reduced with increasing 
concentrations, leading to relative differences of more than 10% compared 
to the unanesthetized membrane. The corresponding changes of the first 
and second moments of the lateral pressure applied to a simple geometric 
model of an ion channel confirm that the conformational equilibrium of the 
channel is significantly shifted even at low ketamine concentrations.

4



1 Introduction

All living organisms in nature are formed by cells, no matter whether they 
consist of only one, like bacteria, or of several thousands of billions of cells, 
like we humans. The cells are surrounded by membranes which have the 
function  to  separate  them  from  their  environment.  Furthermore,  the 
membrane must allow the transport of different kinds of material from the 
inside  to  the  outside  or  vice  versa  and  the  transmission  respectively 
reception  of  signals.  Therefore  special  molecules  called  proteins  are 
embedded  in  the  membrane  to  make  these  interactions  possible.  While 
some proteins are integral parts on one side of the membrane, others are 
forming transmembrane structures that have contact to the inside as well as 
to the outside of the cell. Special kinds of transmembrane structures are ion 
channels which are the membrane proteins we will turn our main attention 
to.  These  channels  are  essential  for  controlling  the  potential  difference 
between the  interior  and the  exterior  of  the  cell  because they  provide  a 
selective  transport  of  ions  through  the  membrane.  This  is  especially 
important for the transmission of neuronal signals because the activity of a 
neuron, meaning whether it sends a signal or not, depends on its membrane 
potential. In this way a change of the permeability of ion channels can lead 
to  a modification of  a neuron's transmission behavior.  Thus the specified 
modification can lead to the same effect that anesthetics have: they inhibit 
the  transmission  of  neuronal  signals  and  thereby  lessen  or  take  away 
sensation. Therefore, anesthesia can be seen as a kind of dysfunction of 
neurons.

Even though most scientists working on the topic of anesthesia agree that 
the  change of  the  membrane properties  is  responsible  for  its  effect,  the 
question  how  the  membrane  is  influenced  in  detail  still  lacks  of  a  final 
answer and thereby leads to controversial discussions. In general, there are 
two  major  theories  trying  to  explain  how  an  anesthetic  can  influence 
biological membranes and the proteins within:

• Binding theory

The anesthetic is expected to directly bind to a membrane 
protein  which  leads  to  a  change  of  the  protein's 
conformation and thereby to its function and behavior.

• Membrane theory

According to this theory, the anesthetic does not have any 
direct  contact  to  a  membrane  protein  but  is  expected  to 
diffuse into the membrane. This leads to a modification of 
the  membrane's  physical  and  chemical  properties  and 
thereby influences the embedded proteins.
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The main  reason why neither  of  the  two theories  could  be  abolished or 
totally confirmed can be found in the lack of experimental methods available 
for studying cell membranes. Therefore, in order to get a better insight which 
theory  should  be  preferred,  computer  simulations  provide  a  very  useful 
method for investigating the behavior of biological membranes.

In this thesis we are trying to find support for the membrane theory and thus 
we expect  the  anesthetics  to  diffuse  into  the  membrane.  The effect  one 
expects from the intrusion of  the anesthetic  is  a  change of  the pressure 
inside  the  membrane  which  can  modify  the  functionality  of  proteins  that 
reside  in  it  in  a  pure  mechanical  way.  Since  the  permeability  of  an  ion 
channel  is  sensitive  to  its  depth-dependent  cross-sectional  area,  the 
increase or decrease of pressure at certain positions in the membrane leads 
to a change of the amount of energy needed for the transition of the channel 
from one thermodynamic state to another. This means that the probability 
that this transition takes place changes. Due to this pressure induced shift of 
the  thermodynamic  conformational  equilibrium,  the  behavior  of  the  ion 
channel can be altered in a way that it permanently allows ions to enter or 
leave the cell or stops letting them pass. For simplicity, we expect the ion 
channel to only have two states, namely an opened and a closed one. Both, 
the  possibility  that  the  change  of  pressure  due  to  the  presence  of  an 
anesthetic is responsible for the specified modifications, and the fact that the 
membrane theory gives a good and simple explanation why anesthetics with 
very different structures have the same effects on cells, were basically the 
reasons why we started our research on that  topic.  The reason why the 
experimental determination, which would lead to a verification or falsification 
of  the  theory  we  represent,  is  so  difficult,  are  the  enormous  pressure 
differences of  more than 1000 bar  that  occur  at  distances of  only  a  few 
nanometers.  This  difference  can  be  compared  to  the  one  between  the 
pressure at the surface of the earth and a few thousand meters beyond the 
sea. Until now there has not been any reliable method found for measuring 
these  pressures  accurately.  Nevertheless,  various  experimental  methods 
provide information about different kinds of membrane properties, like area 
per  lipid,  x-ray  form  factors,  deuterium  order  parameters  etc.  These 
properties  can  also  be  derived  using  the  data  obtained  from  computer 
simulations.  A  comparison  allows  to  find  out  how  well  the  simulations 
reproduce the physical and chemical properties of “real” membranes.

1.1 Phospholipids

Almost  all  cell  membranes are formed by phospholipids which consist  of 
glycerol, two fatty acids and a phosphate containing polar headgroup. The 
phospholipid we used to construct our membrane for the simulation is called 
POPC. This name is an abbreviation for its full chemical name 1-palmitoyl-2-
oleoyl phosphatidylcholine.
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Palmitoyl and oleoyl are fatty acids which are simple chains of carbon atoms 
with a carboxyl  group at the end. The carboxyl  group itself  consists of a 
carbon atom, to which a double bonded oxygen and a hydroxy group (OH) 
are connected to. Because of the double bonded oxygen the fatty acids are 
also called acyl chains. If  the carbons of the chain are just connected by 
single bonds, the fatty acid is called “saturated”. Otherwise, namely if double 
or triple bonds can be found, we talk about “unsaturated” chains.

While the palmitoyl chain consists of 16 carbon atoms and is saturated, the 
oleoyl  fatty  acid  consists  of  18  carbon  atoms  and  has  a  double  bond 
between the 9th and the 10th carbon, therefore it is an unsaturated acyl chain. 
The numbering of the carbons of the chain starts with the carboxyl carbon 
that carries the two oxygens.

Each of the two fatty  acids is connected to a glycerol  (propan-1,2,3-triol) 
molecule,  a  secondary  alcohol.  The  connection  is  established  by  a 
condensation reaction. During this chemical reaction two molecules combine 
to  a  single  one  and  emit  a  smaller  molecule.  In  our  case,  the  leaving 
molecule is water. The fatty acids and the glycerol are connected via their 
hydroxy groups, forming an ester bond.

A phosphate group is added to the third hydroxy group of the glycerol. This is 
again  done  by  condensation.  The  phosphate  group  itself  consists  of  a 
phosphorus  with  4  connected  oxygens,  where  one  of  the  oxygens  is 
negatively charged. This negative charge gets compensated by the positive 
charge of the nitrogen atom of the choline which is a primary alcohol and 
connected to the phosphate group. The phosphate and the choline group 
together are generally denoted as the headgroup of a phospholipid.

Due to the fact that one can use a big variety of different fatty acids and 
furthermore connect various molecular groups to the phosphate group, the 
number  of  different  phospholipids,  a  cell  membrane can be built  with,  is 
huge. Since each cell indeed uses a lot of diverse phospholipids, the surface 
is not uniform. This means that the membrane's local physical properties, 
and  thus  the  effectiveness  and  functioning  of  the  embedded  proteins, 
strongly depend on the present phospholipid.
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1.2 Bilayer membranes

Biological  membranes  are  bilayers  consisting  of  two  phospholipid 
monolayers. The reason that the cell  membrane does not consist  of  only 
monolayers  can be found in  the  hydrophilicities  of  the  different  chemical 
groups  of  the  phospholipids.  While  the  headgroup  is  polar  and  thereby 
hydrophilic, the fatty acid chains are obviously hydrophobic. Monolayers are 
not  stable  in  water  because  of  the  large  energetic  cost  of  the  exposed 
hydrophilic-hydrophobic surface of the lipid-water interface. Thus two single 
layers form a bilayer, where the acyl chains point towards each other and the 
headgroups point towards the outside (water). In this way the hydrophobic 
core of the bilayer also hinders water molecules from diffusing through the 
membrane.

1.3 Membrane proteins

In general, proteins are biological catalysts and thus have the function to 
decrease the energy which is needed for executing a certain process, like a 
chemical reaction. For that reason proteins are essential for living cells and 
can be found in all kinds of organisms. Also the correct functioning of cell 
membranes  strongly  depends  on  specific  proteins  embedded  in  the 
membrane, so-called membrane proteins, which fulfill different purposes:

• Structural proteins
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These proteins are connected to microfilaments in the 
cytoskeleton and thereby ensure the cell membrane's 
stability.

• Cell recognition proteins

They allow cells to identify each other which is especially 
important for the interactions between them, for example 
during an immune response.

• Receptor proteins

They serve as connection between the cell's interior and 
exterior because they transmit signals when a certain 
molecule binds to them. In this way the signal can be 
forwarded without the molecule entering the cell.

• Transport proteins

These proteins either passively or actively (using ATP) 
enable the transport of molecules and ions into or out of the 
cell. As already mentioned, especially the ion channels are 
very important for neurons because they make the 
adjustment of their membrane potential possible.

Furthermore,  membrane  proteins  can  be  divided  into  two  subclasses 
depending on their position relative to the membrane:

• Integral membrane proteins

Transmembrane proteins span the total membrane, are 
permanently attached to the membrane and need an apolar 
solvent to be displaced.

• Peripheral membrane proteins

These proteins are only temporarily attached to the 
membrane or to integral membrane proteins.

1.4 Protein conformations

All  known physical systems try to reach a global or at  least local  energy 
minimum; the same behavior holds for proteins. A structure of the protein 
occupying  such  a  minimum  is  thereby  at  least  temporarily  stable  and 
denoted as a conformation or state of the protein.

The  conformation  can  change  when  the  forces  acting  on  a  protein  are 
modified. This means that the conformation always depends on the protein's 
environment. In our case, we expect this environment to be changed by the 
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presence of an anesthetic.

1.5 Anesthetics

Substances that  cause anesthesia  are called anesthetics.  They have the 
purpose to  temporarily  block  or  take  away the  sensation  and thus  allow 
patients to undergo surgery and other procedures which would otherwise be 
very painful. In general, the effect of anesthesia can include:

• Analgesia - blocks the sensation of pain

• Hypnosis - leads to unconsciousness

• Amnesia - prevents memory formation

• Paralysis - leads to an inhibition of movement and muscle tone

Because  of  all  these  effect,  anesthetics  are  widely  used  in  human  and 
veterinary medicine. The general use of anesthetics for surgeries started in 
the 19th century. Even though the first public demonstration of an anesthetic-
aided surgery (using diethyl  ether)  took place in  1846,  the question how 
anesthetics  effect  cells  in  detail,  is  still  unanswered after  more than 160 
years.  The influence on human bodies  for  most  of  the  anesthetics  used 
nowadays is quite well  known, due to the many empirical  data available. 
However, although we know the effects of anesthetics on organisms, we are 
not  sure about  their  mode of  functioning.  Due to  these circumstances,  a 
creation of new anesthetics is not easily possible.

All the uncertainties concerning the topic of anesthesia result in a lot of side 
effects that can occur, even today. Besides the risk of suffering from different 
kinds  of  brain  damage,  it  is  possible  that  one  of  the  general  anesthetic 
effects, like amnesia or paralysis, does not vanish after an operation and 
thereby harms the patient. The main problem one has to keep in mind is that 
the therapeutic window of anesthetics is only very small. This means that 
there is only little difference between a dose leading to a recognizable effect, 
and a dose which is toxic. In combination with the fact, that the constitution 
of patients can strongly vary, which has to lead to an adaption of the dose, 
one has to mention that being anesthetized even nowadays bears a risk.

The anesthetic we turn our attention to is ketamine, also known as  2-(2-
chlorophenyl)-2-methylamino-cyclohexane-1-one. It has been developed by 
Parke-Davis in 1962 and is widely used in human and veterinary medicine. 
Ketamine is pharmacologically classified as an NMDA receptor antagonist 
meaning  that  it  inhibits  the  action  of  N-methyl  d-aspartate  receptor.  In 
general  NMDA receptor  antagonists  are  known  to  induce  a  state  called 
dissociative  anesthesia  which  is  marked  by  amnesia,  analgesia  and 
catalepsy.  Besides  those  of  general  anesthesia,  ketamine  has  several 
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additional effects:

• Hallucinations

• Bronchodilation

• Increase of heart rate

• Elevation of blood pressure

Since ketamine has first been given to soldiers in the Vietnam war, they were 
the first ones who reported experiencing hallucinations under the influence 
of this anesthetic drug. For that reason, it is usually not used as a primary 
drug, but often applied in combination with a sedative drug, like for example 
benzodiazepine.  Because  of  this  negative  side  effect,  ketamine  would 
probably not be used today, if it would not have its advantages. Due to the 
bronchodilation  and  the  increase  of  the  heart  rate  as  well  as  the  blood 
pressure, it  is used for emergency surgery.  These positive effects on the 
circulatory and respiratory system can allow to perform surgeries without the 
use of additional special equipment, like for ventilation.

Chemically, ketamine consists of two ring structures (see Fig. 1.3), namely a 
phenyl- and a cyclohexane-ring. A chlorine atom is connected to the phenyl 
and  an  oxygen  atom  and  a  methylamino  group  are  connected  to  the 
cyclohexane. As most anesthetics, ketamine is mainly hydrophobic, but also 
has  polar  and  thereby  hydrophilic  parts,  like  the  oxygen  atom.  The 
hydrophobicity is another reason why we expect the anesthetic to diffuse into 
the membrane, since it would take a lot of additional surface energy for the 
anesthetic, if it would reside in a polar medium, like water.
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The overview of the remainder of this thesis is as follows. In Chapters 2 and 
3 we provide  the theoretical  basics  of  the computer  simulations  and the 
analysis methods. In Chapter 4 the settings of the performed simulations are 
described and the obtained results are presented and discussed in Chapter 
5. In the last chapter we will then draw conclusion from all results and give 
an outlook to future research.
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2 Theory of molecular dynamics 
simulations

In  general,  molecular  dynamics  (MD)  simulations  allow  to  estimate  the 
temporal  evolution  of  a  system in  atomic  detail.  This  is  done by  solving 
Newton's equations of motion for all atoms of a given system:

F i=mi

∂
2
ri

∂ t 2
. (2.1)

The forces can be obtained from the gradient of the potential V:

F i=−
∂V r i

∂ ri

=− ∇ i V ri  . (2.2)

During every time step of the simulation all equations have to be solved and 
different  kinds  of  boundary  conditions,  like  constance  of  temperature  or 
pressure, have to be fulfilled. In this chapter all these theoretical basics of 
MD simulations will be presented and discussed [1].

2.1 Force field

Depending on the system of interest, different kinds of interactions between 
atoms and molecules can occur. Various force fields have been developed 
for describing these interactions. Due to the several simplifications that have 
to be made when determining the total energy, there is no force field which 
describes all systems well, but certain force fields are optimized for certain 
purposes.  This  can  be  done  by  simulating  representative  systems  and 
comparing  simulated  parameter  values  with  those  obtained  from 
experiments.  If  the  consistency  is  not  satisfying,  various  force  field 
parameters can be fitted until the best agreement is found.

Most  of  the commonly used force fields have a similar  form and include 
Coulomb  and  Lennard-Jones  terms,  harmonic  bond  stretching,  angle 
bending and a torsional energy function. While Coulomb and Lennard-Jones 
interactions  are  denoted  as  “nonbonded”  interactions,  terms  like  for  the 
harmonic  bond  stretching  and  angle  bending,  are  called  “bonded”.  Of 
course,  Coulomb  and  Lennard-Jones  potentials  are  also  responsible  for 
bonding, but to calculate for example the binding energy for two atoms of a 
molecule, one would have to take the overlap of their atomic orbitals and 
other quantum mechanical circumstances into account. This would take a lot 
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of time during a simulation run. For that reason the binding energies are 
approximated by harmonic oscillator potentials, using empirical information 
like the average distance between the two bonding atoms or the angle of the 
triangle spanned by three atoms etc. On the one hand this allows to simplify 
the simulations, but on the other hand one always has to keep in mind that 
the  accuracy  of  a  simulation  primarily  depends  on  the  accuracy  of  the 
empirical values that have been used to optimize the force field.

We used the Berger lipids [2] for describing the POPC lipids, OPLS-AA force 
field  [3] for  the ketamine drug and we applied the SPC water model  [4]. 
OPLS-AA stands for  Optimized  Potentials for  Liquid  System –  All-Atom. It 
has  been  optimized  for  liquid  systems and  works  well  together  with  the 
Berger  lipids  [5];  it  can  therefore  be  used  for  simulating  hydrated  lipid 
bilayers. The suffix “All-Atom” means that all atoms, including the hydrogens, 
are sites for nonbonded interactions. In contrast to this, in United-Atom (UA) 
force fields these sites are only placed on all non-hydrogen atoms and on 
hydrogens attached to heteroatoms or carbons in atomic rings. So while for 
example propanol (C3H7OH) has 5 interaction sites in UA, it has 12 in AA 
representations. Even though UA force fields are computationally attractive, 
AA force fields allow more flexibility  for  charge distributions and torsional 
energies and thereby are in better agreement with experimental result. The 
Berger  lipids  are  a  very  well  tested  UA force  field  with  the  nonbonded 
parameters based on OPLS-UA. The advantage of this representation is a 
speed  gain  of  one  order  of  magnitude.  This  is  essential,  as  membrane 
properties are very slow to equilibrate.

In the OPLS-AA force field the nonbonded interaction energy between two 
molecules x and y is represented by

E xy=E xy , COULOMBE xy , LENNARD− JONES

= ∑
i∈ x
∑
j∈y

q i q j e2

r ij

f ij4∑
i∈x
∑
j∈y

ij [ij

r ij

12

− ij

r ij

6

] f ij

 , (2.3)

where qi*e is the charge of the ith atom, rij is the distance between the ith and 
the jth atom and fij is a scaling factor which is 1, except for intramolecular 1,4 
interactions. The Lennard-Jones (Van der Waals) parameters σij and εij can 
be obtained using the following standard combining rules:

ij= ii jj

ij=ii jj

 . (2.4)

For the bonded interaction terms, the harmonic oscillator potentials for the 
bond stretching and the angle bending are given by 
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Ebond= ∑
i∈bonds

kr , ir i−ri ,0
2

 (2.5)

and

Eangle= ∑
i∈angles

k  ,ii−i ,0
2

 , (2.6)

with kr and kθ being scaling constants and r0 and θ0 being empirical values 
for bond lengths and bond angles.

Additionally, one has to take the intramolecular torsional energy

E torsion=
1
2∑i

V 1
i
[1cos i f 1

i
]V 2

i
[1cos 2i f 2

i
]

V 3
i
[1cos 3i f 3

i
]V 4

i
[1cos 4i f 4

i
]

 (2.7)

into account, where Φ denotes the dihedral angle, Vj are the coefficients in 
the Fourier series and fj are phase angles.

2.2 Algorithms

2.2.1 Temporal evolution

To determine how our  phospholipid  bilayer  evolves in  time,  the leap-frog 
algorithm is used for solving the equations of motion for each atom [6]:

v t
 t
2

=v t−
 t
2


F t 

m
 t

r t t =r t v t
 t
2

 t
 , (2.8)

with Δt being the time step of the simulation. By knowing a particle's position 
and the forces acting on it at the time t and by knowing its velocity at time t – 
Δt/2, one can calculate the position of this particle at the time t + Δt. This 
algorithm can be written as

r t t =2r t −r t− t 
F t 

m
 t 2O  t 4  , (2.9)
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which is called the Verlet algorithm [7]. By repeating this calculations after 
every  time step  and updating  all  particles'  positions,  one can obtain  the 
trajectory  of  each  atom and  thereby  of  the  whole  system.  There  are  of 
course better algorithms available for computing the temporal evolution, like 
the Runge-Kutta [8] or the Adams-Bashforth [9] algorithm, but the one used 
here is very simple, robust and computationally attractive.

For starting a simulation at t = 0 we need an initial structure to start with. 
Since the leap-frog algorithm is  used,  we do on the one hand need the 
position of all atoms at t = 0, and on the other hand the velocities at t = -Δt/2. 
Due to  the fact  that  in  most  cases only  the structure itself,  meaning the 
position  of  each  atom,  is  known,  the  velocities  have  to  be  randomly 
generated.  Therefore,  the  atoms'  velocity  distribution  is  expected  to  be 
Maxwellian:

p v i= mi

2 k bT
exp−mi v i

2

2k bT   . (2.10)

Here  mi and  vi denote  the  mass  and  the  velocity  of  the  ith atom,  kb is 
Boltzmann's constant and T is the temperature of the system.

Due to the randomly generated particle starting-velocities and in most cases 
randomly placed molecular structures, the system is not at equilibrium at the 
beginning  of  a  simulation.  In  general,  the  system  is  said  to  be  in 
thermodynamic equilibrium when it shows only thermal fluctuations around a 
mean value, while remaining in the same conformational basin. As long as 
the system is not disturbed, like for example through the occurrence of an 
external  force,  it  is  stable.  Obviously  it  would  not  make sense to  derive 
representative membrane parameters if this state is not reached. For all the 
performed  analyses  we  therefore  only  used  simulation  data  of  the 
equilibrated system.

2.2.2 Periodic boundary conditions

Periodic boundary conditions are used to minimize edge effects caused by 
the  finite  system  size.  It  is  called  periodic  boundary  because  for  the 
calculations the system is spatially surrounded by identical images of itself. 
This can be done by copying the system and translating it by a certain vector 
(Fig.  2.1).  Thereby  the  computational  artifact  caused  by  unwanted 
boundaries like vacuum is  replaced by the artifact  of  periodic  conditions. 
When simulating crystals such conditions are desired, but for non-periodic 
systems the generated periodicity itself causes errors. Since these errors are 
much smaller than the ones which would arise from unwanted boundaries, 
periodic boundary conditions are also applied for simulations of liquids and 
solutions.
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The use of periodic boundary conditions leads to the implementation of the 
so-called minimum image convention (Fig. 2.1): For nonbonded interactions 
only one, namely the nearest, image of each particle is considered for the 
calculations. Otherwise further side effects would occur due to interaction 
between identical images of particles.

2.2.3 Cutoff radii

In the simulation every atom is expected to only interact with particles that 
are within the cutoff radius. This restriction reduces the computational effort 
for  evaluating  the  nonbonded  energy  terms.  Due to  the  minimum image 
convention and because one does not want an atom to interact with a copy 
of itself, the cutoff radius must be smaller than half the shortest box vector:

Rcutoff 
1
2

min∥a∥,∥b∥,∥c∥  . (2.11)

Here, a, b and c are the vectors that span the simulation box and are called 
box vectors.

2.2.4 Center-of-mass motion removal

Since  the  system's  center-of-mass  motion  would  lead  to  an  unwanted 
translation, the corresponding velocity is subtracted from each particle after 
every time step [10]. Thereby the center-of-mass velocity is almost zero as 
long as no external  forces act  on the system.  This  procedure has to  be 
executed after every time step to prevent center-of-mass motions caused by 
numerical uncertainties.
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2.2.5 Constraints

Several constraints have to be fulfilled to keep for example the bond length 
constant. Therefore, it is necessary to implement algorithms that keep atoms 
at constant distances, since the velocities between bonded atoms do in most 
cases not point  into the same direction.  Thus, from one time step in the 
simulation to the next,  the particles may drift  apart.  Due to this so-called 
“unconstrained”  update  the  need  arises  to  reestablish  the  bond  lengths 
according to the force field settings.

For our simulation two different algorithms, namely the Shake  [11] and the 
Lincs [12] algorithm were used. While the Lincs algorithm is faster and more 
stable than Shake, it can only be used for bond and angle constraints. As an 
example,  Fig.  2.2 shows  how  the  Lincs  method  works:  At  first,  the 
projections of the new bonds that exceed the old bonds are set to zero and 
afterwards the correction for the lengths of the bonds is applied.

2.2.6 Kinetic energy and temperature

The total kinetic energy of a system is given by

E kin=∑
i=1

N mi v i
2

2
 , (2.12)

with  N  being  the  number  of  particles  the  system consists  of.  Since  the 
equipartition theorem says that in thermal equilibrium the energy is shared 
equally  among all  degrees of  freedom, the  system's  temperature can be 
calculated using the relation
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E kin=n f

k b T

2
 , (2.13)

where nf is  the total  number of  degrees of  freedom. For our system this 
number is given by

n f=3N−nc−ncomm  . (2.14)

Here  ncomm =  3  denotes  the  degrees  of  freedom  of  the  center-of-mass 
motion, and nc is the number of constraints imposed on the system.

Due to numerical uncertainties and different kinds of particle drifts that can 
occur  in  the simulation,  it  is  necessary to  control  the temperature of  the 
system. This is done by temperature coupling algorithms. In the frequently 
used Berendsen algorithm [13] the deviation of the system's temperature T 
from the temperature T0 of the heat bath, it is expected to be connected with, 
is assumed to behave according to the following relation

dT
dt

=
T 0−T


 . (2.15)

This means that the deviation decays exponentially with a time constant τ. To 
suppress fluctuations of the kinetic energy the Berendsen thermostat is used 
to scale the velocities by a factor

=1 t
T

[ T 0

T t− t /2
−1]  . (2.16)

The constant τT is close to, but not exactly the same as τ. Due to this simple 
velocity rescaling, the generated ensemble is not canonical. Therefore we 
used the so-called velocity rescaling thermostat for our simulations  [14]. It 
consists of the Berendsen thermostat with an additional stochastic term for 
the kinetic energy:

dE kin= E kin , 0−Ekin
 t
T

2dW  E kin E kin , 0

T n f

 . (2.17)

Thus the system's kinetic energy distribution is the same as of a canonical 
ensemble.  In Eq.  2.17 Ekin,0 is  the kinetic energy at  T = T0 and dW is  a 
Wiener process.
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2.2.7 Pressure and virial tensor

The pressure tensor can be computed from

P=
2
V
Ekin−   , (2.18)

where V is the volume of the simulation box and  Ξ is the so-called virial 
tensor:

=−
1
2∑i j

r ij⊗F ij  . (2.19)

Fij and rij are the force respectively the distance between the ith and the jth 

atom. In case of an isotropic system the scalar pressure is given by

P=
trace P 

3
 . (2.20)

Like  for  the  temperature,  also  pressure  coupling  algorithms  are  used  to 
maintain constant pressure. Applying again the Berendsen algorithm [13] for 
coupling, we assume that

d P
dt

=
P 0−P
P

 , (2.21)

in analogy to Eq. 2.15. Since the pressure is given by a tensor, a matrix has 
to be used for rescaling, namely

 t =−
 t
3P

 P0−P t   , (2.22)

with  δ being  the  Kronecker  delta  and  β denoting  the  isothermal 
compressibility of the system. While for temperature coupling the velocities 
are  modified,  the  coordinates  and  box  vectors  have  to  be  rescaled  for 
pressure coupling.

2.2.8 Neighbor searching

Neighbor or pair lists are used because it takes a high computational effort to 
identify the particles a certain atom interacts with (nonbonded interaction). 
Regarding the minimum image convention and cutoff restrictions, these lists 
are  generated  for  all  particle  pairs,  typically  every  20  fs.  Instead  of 
recalculating  them  during  the  next  step,  one  expects  that  the  covered 
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distance of each particle is so small that the pairs do not change and thereby 
the previously generated list does not have to be updated.

2.2.9 Energy minimization

Energy  minimization  simulations  have  to  be  done  before  starting  a 
simulation. This is necessary because in most cases the system is artificially 
created using algorithms which randomly place and rotate certain molecules 
in the simulation box. Due to the random positioning the energy of the initial 
system is not minimal which would lead to large forces acting on the atoms 
at  the  beginning  of  the  simulation.  Thereby  some  atoms  could  be 
accelerated  so  much  that  they  cover  a  distance  of  several  times  the 
simulation box length during a single time step. In this way they would end 
up far away from the position they ought to be and that would distort the 
simulation's result.

In  general,  there  are  three  frequently  used  algorithms  available  for 
performing  energy  minimization  simulations:  The  steepest  descent,  the 
conjugate  gradient  and  the  Limited-memory  Broyden-Fletcher-Goldfarb-
Shanno quasi-Newtonian minimizer (L-BFGS) algorithm [15]. In most cases 
the steepest descent is used because it is easy to implement, robust and 
efficient  enough, while the other two fail  to find a decent  minimum if  the 
starting coordinates are bad. At first the potential energy and the forces are 
computed. The new position of all particles in the next step is then given by

r n1=rn
Fn

maxi∣F i ,n∣
hn  , (2.23)

where r and F are the 3N-dimensional positions and forces for all atoms and 
h is the maximum displacement. The indices n and n+1 refer to the nth and 
(n+1)th step. If the potential energy of the system at the next step is smaller 
than before, the new coordinates are accepted and hn+1 is set to 1.2 hn. If this 
is not the case, the coordinates are rejected and hn = 0.2 hn. The algorithm 
stops  either  when  the  maximum  of  the  absolute  values  of  the  force 
components is smaller than a specified value, or after a specified number of 
force evaluations.

Since the steepest descent method simply takes a step into the direction of 
the negative gradient, its convergence can be slow, especially close to the 
local  minimum.  In  contrast  to  this,  the  conjugate  gradient  algorithm 
converges faster because it uses gradient information from previous steps. 
The  L-BFGS  method,  which  can  also  be  used,  is  comparable  to  the 
conjugate gradient and converges faster in certain cases.
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2.3 Limitations

Due to the fact that various approximations concerning the calculations have 
to  be  implemented  in  order  to  make  MD  simulations  computationally 
attractive, one always has to keep the limitations in mind:

• The simulations are classical

The  use  of  Newton’s  equations  of  motion  automatically 
implies  that  classical  mechanics  is  used  to  describe  the 
motion of atoms. For most particles at normal temperatures 
this  is  sufficient,  but  there  are  exceptions:  The motion  of 
protons  is  typically  of  quantum  mechanical  character 
because a proton may tunnel through a potential barrier in 
the  course  of  a  transfer  over  a  hydrogen  bond.  Such 
processes cannot be properly treated by classical dynamics. 
Furthermore  the  statistical  mechanics  of  a  classical 
harmonic  oscillator  differs  appreciably  from that  of  a  real 
quantum  oscillator  when  the  resonance  frequency 
approximates or exceeds kbT/h.

• Force fields are approximate

The  force  fields  provide  the  total  energy  and  the  forces 
acting  on  a  system's  atoms.  Thus  the  accuracy  of  the 
simulation is determined by the accuracy of the empirically 
obtained force field parameters. Furthermore, only pairwise 
two body interactions are taken into account.

• Boundary conditions are unnatural

Internal correlations between the periodic images can bias 
the results, especially when simulating small systems. The 
wavelength of membrane undulations for example can not 
be  larger  than  the  length  of  the  simulation  box.  For  the 
systems we studied (box dimensions ~10 nm) the effects of 
the boundary conditions can be neglected.

• Long-range interactions are cut off

Nonbonded  interactions  have  to  be  cut  off  after  some 
distance because of computational efficiency. Van der Waals 
interactions  are  neglected  beyond the  cutoff.  Electrostatic 
interactions  are  typically  treated  by  a  PME  model  [16] 
beyond the cutoff.

• Conservative force fields are used

In  MD  simulations  the  electrons  are  assumed  to 
instantaneously adjust their dynamics when the positions of 
the  atoms  change.  This  is  known  as  Born-Oppenheimer 
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approximation and leads to the fact  that the force field is 
only dependent of the position of the atoms and not of the 
position  of  the  electrons  (conservative  force  field). 
Furthermore the electrons are assumed to remain in their 
ground state.  Due to this, excited states, electron transfer 
processes and chemical reactions can not be described.

• Limited sampling

The position of  all  particles in the simulation is not saved 
after every time step because the stored information would 
use too much space on the hard disk drive. Thus an output 
is only performed once in a few hundred time steps. This 
limited sampling and the corresponding lack of information 
affect the statistical averages that have to be calculated in 
various analysis methods.
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3 Theory of analysis methods

3.1 Area per lipid

The area per lipid is a measure for the lateral size of a lipid molecule:

 AL=
2 Lx Ly

N L
, (3.1)

with Lx and Ly being the size of the system in x- and y-direction and NL being 
the number of lipids the bilayer consists of. An increase of the area per lipid 
corresponds to a lateral  expansion of  the system, but thereby leads to a 
decrease of height because its volume remains approximately constant. This 
is  the  case  because  the  “creation”  of  additional  volume  is  energetically 
disadvantageous.

3.2 Position distribution function

The position distribution function fposition is proportional to the probability to 
find a molecule or atom at a certain vertical position z inside the membrane. 
Since the position of a molecule or atom can be derived from the location of 
its  electrons, the position distribution can be obtained by normalizing the 
electron density distribution:

∫
−h

h

electron  z dz=∫
−h

h electron  z 


dz=1

f position=
electron z 



 . (3.2)

The constant  h  in  the limits  of  the integrals  denotes the half  size of  the 
simulation system in the z-direction, meaning that 2h is the total height.

3.3 Angle distribution function

The angle distribution function is proportional to the probability to measure a 
certain angle α between the vector connecting two molecular groups and the 
vector pointing towards the bilayer normal:
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 x1, x 2=acos   x2− x1∗e z

∣x2−x1∣  . (3.3)

The vectors xn are the coordinates of the center of the nth atom or molecule, 
respectively,  and  ez is  the  unit  vector  along  the  z-axis.  Like  before,  the 
integral over the angle distribution function itself is normalized to 1.

3.4 Deuterium order parameter

The deuterium order parameter SCD,  which in remainder of this thesis will 
also simply be denoted as order parameter, is a measure for the alignment 
of the carbon atoms of an acyl chain compared to the bilayer normal z. This 
parameter  can  be  measured  experimentally  using  nuclear  magnetic 
resonance  (NMR)  and  complementarily  it  can  be  computed  from  the 
simulation  data.  The  comparison  indicates  how  well  the  simulation 
reproduces the bilayer. The prefix “deuterium” arises from the fact that for 
NMR  experiments  the  hydrogen  (1  proton,  1  electron)  is  replaced  by 
deuterium (1 proton, 1 neutron, 1 electron).

For obtaining the order parameter one has to introduce the order parameter 
tensor 

S ij=
1
2
〈3cosi cos j−ij 〉  , (3.4)

where Θi is the angle between the ith molecular axis (i,j=x,y,z) and the bilayer 
normal and δij is the Kronecker delta. The average in Eq.  3.4 runs over all 
lipids  in  the  membrane  and  over  all  time  frames used for  the  analyses. 
Usually  the  molecular  axes  for  the  methylene  groups  of  saturated  acyl 
chains  are  defined  as  follows  [17]:  The  x-axis  is  parallel  to  the  vector 
connecting  the  two  hydrogen  atoms  and  the  y-axis  bisects  the  angle 
spanned by the two vectors from the carbon atom to the hydrogens. The z-
axis is the normal to the plane spanned by the x- and y-axis (see Fig. 3.1).
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Using  this  coordinate  system,  the  two  deuterium order  parameters  for  a 
saturated acyl chain carbon are given by

SCD1
SAT=

2S xx

3


S yy

3
−
22 S xy

3

SCD2
SAT

=
2S xx

3


S yy

3

2 2S xy

3

. (3.5)

Assuming that the deuterium atoms are identical, Sxy must be zero and the 
order parameter can then be calculated using

SCD
SAT

=
2 Sxx

3


Syy

3
. (3.6)

Applying a similar geometric model for unsaturated acyl chains, it can be 
shown [17] that the order parameter for unsaturated carbons is given by

SCD
UNSAT

=
S zz

4


3 Syy

4
∓
3Syz

2
 , (3.7)

where  the last  term has to  be added or  subtracted  depending on  which 
carbon of the double bond is concerned.

For the analyses the position of the hydrogen atoms need not directly be 
available  as the  coordinates of  the  protons can be constructed  from the 
position  of  the  carbon  atoms.  Due  to  the  tetrahedral  geometry  of  the 
methylene groups, the angle between the vectors from the carbon to the 
hydrogens is the same as between the vectors from the carbon to the next 
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and previous one. Using the same axes model as for the saturated case, a 
recursion relation, which allows to calculate the carbon-deuterium from the 
carbon-carbon order parameters, can be derived:

−2SCD
k
=SCC

k
SCC

k1 . (3.8)

In  this  case Sk
CC is  the carbon-carbon order  parameter  of  the kth carbon 

atom.

Looking at

S zz=
1
2
〈3 cos2z−1〉 (3.9)

as an example, one can figure out which values the components of the order 
parameter tensor can take:  They range from 1 to -1/2, where -1/2 means 
that the chain is completely ordered along the z-axis and 1 that it is fully 
ordered  perpendicular  to  the  z-axis.  Since  the  order  along  the  z-axis  is 
maximal for -1/2 and minimal for 1, -SCD is shown in all this thesis' figures to 
relate a positive change of the order parameter to an increase of order.

3.5 X-ray form factor

The  form  factor  F(q)  is  a  measure  for  the  x-ray  scattering  amplitude, 
meaning that  it  contains the information how x-rays are scattered by the 
electron clouds of the atoms when passing a bilayer. Since x-ray scattering 
is a common method to study membrane structures, a lot of experimental 
data  is  available  for  the  comparison  with  the  results  obtained  from 
simulations.

The form factor is obtained by Fourier-transforming the difference between 
the electron density of the system and the electron density of bulk water [18]:

F q=∫
−h

h

e ,system  z −e , bulk watercos qz dz

=∫
−h

h

e , systemz cos qzdz−
2 e ,bulk water sinqh

q

. (3.10)

3.6 Mean square displacement and diffusion coefficients

The  diffusion  coefficient  D  allows  to  estimate  the  distance  a  randomly 
walking particle (Brownian motion) covers over a certain time and is at long 
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time scales proportional to the mean square displacement d2(t):

d 2
=

1
T−

∫
t=

T

∣r t −r t−∣
2
dt

d 2
n⋅Δt =

1
N−n1∑i=n

N

∣r i⋅Δt −r i−n⋅Δt ∣
2

.

(3.11)

In Eq.  3.11, T is the total simulation time,  Δt is the time step and N is the 
number of time steps needed for the total simulation.

With

lim
t∞

d 2
t =2⋅d f⋅D⋅t , (3.12)

where df is the number of the particle's degrees of freedom, the diffusion 
coefficient can be derived from the slope of the mean square displacement.

3.7 Pressure profile

The pressure profile shows the depth-dependence of the pressure inside the 
membrane.  One could  claim that  since  the  pressure  is  proportional  to  a 
force, a pressure different from zero could lead to a movement of certain 
parts of the membrane and would thereby destabilize it. But as long as the 
total pressure, which is in this case the integral over the pressure along the 
bilayer normal, is zero, the membrane is stable. Besides for the mechanical 
stability this is also a criterion that the membrane has reached its equilibrium 
state.

The reason why the pressure varies along the bilayer normal can be found in 
the different  kinds of  interactions that  occur  inside the membrane.  Three 
main interaction regimes are located at different depths:

• Headgroup

The headgroups of the phospholipids tend to mutually repulse 
each other. Therefore a positive pressure can be found at the 
height where the headgroup is most likely to reside.

• Lipid-water interface

The lipid-water interface can be found close to the membrane-
water interface, but it is located a bit closer to the bilayer center 
because the water molecules can slightly enter the membrane. 
In  this  region  a  large  lateral  tension  (=negative  pressure) 
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occurs. This tension arises from the cost of free energy caused 
by  the  contact  of  the  water  molecules  with  the  hydrophobic 
carbon chains of the phospholipids and leads to an attraction of 
the acyl chains at that height. The attraction has the effect that 
it prevents the water molecules from entering the hydrophobic 
core.

• Center

In the center of the bilayer the mutual repulsion of the carbon 
chains  is  the  dominant  interaction  and  leads  to  a  positive 
pressure. In this case the interaction is steric and entropic: The 
carbon  chains  tend  to  increase  the  distance  to  each  other 
because thereby they can increase their entropy. In this way 
one could also describe this interaction as a transition to a less 
ordered state of the chains.

For  the  calculation  of  the  pressure  profile  the  Irving-Kirkwood contour  is 
used [19]. The bilayer is subdivided into lateral slices with a thickness of 0.1 
nm for which the local pressure tensor

pslice z=
1

ΔV
[ ∑

i∈ slice
mi vi∗v i−∑

i j
F ij∗r ij f  z , zi , z j] (3.13)

can be computed. The z-coordinate, mass and the velocity of the i th particle, 
and the force and the distance between particles i and j are denoted by zi, 
mi, vi, Fij, and rij, respectively. ΔV is the volume of one slice. The first sum in 
Eq. 3.13 is taken over all particles in a slice at position z and is proportional 
to  their  total  kinetic  energy.  The  second  term,  the  virial  term,  takes  the 
pressure  contribution  of  the  particle  pair  interactions  into  account.  The 
function f(z, zi, zj) assigns a weight to the virial depending on the position of 
the two particles i and j relative to a certain lateral slice:

f  z , z i , z j =  {
z i − z  z z− z i ...  z i=z j

1
z j−zi

∫
zi

z j

d − z  z z− ... otherwise} . (3.14)

Here Θ(z) is the Heavyside step function and ∆z denotes the height of a 
slice. Eq. 3.14 can be interpreted as follows: If both particles are in the same 
slice,  f  equals 1. If  neither of  the particles is in the slice and the slice is 
between them, then f = ∆z/|zj-zi|. If only one of the particles is in the slice, f is 
dz/|zj-zi|, with dz being the distance between the particle in the slice and the 
edge of the slice that points towards the particle outside the slice. In all other 
cases f = 0.
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In literature pressure profiles generally describe the difference between the 
lateral pressure pLAT and the pressure pointing towards the bilayer normal 
pZZ:

p z =
p XX z pYY  z 

2
−pZZ  z=pLAT  z −pZZ  z  . (3.15)

Since the influence of the lateral pressure on membrane proteins is equally 
important,  our  figures  will  also  show  the  single  pressure  components, 
namely the lateral and the z-component. To ease comparison between the 
different concentrations, all pressure profiles were symmetrized.

Due  to  the  fact  that  the  surface  tension  γ of  our  simulated  system  is 
expected to be zero, its calculation allows to verify the computed pressure 
profiles. It is given by

=∫
−h

h

 pZZ  z −p LAT  z dz  , (3.16)

where 2h denotes the height of the simulation box. In order to estimate the 
error of the pressure profiles, leading to a surface tension γ0 not equal zero, 
we introduce the so-called “integral-equivalent constant”  pIE which can be 
derived from

=0≠00=∫
−h

h

p IE dz=2 h pIE  p IE=
0
2h

 . (3.17)

In this way pIE gives the constant pressure which pZZ-pLAT would have to be 
shifted to obtain zero surface tension:

∫
−h

h

pZZ  z − pLAT  z − pIE dz=0  . (3.18)

The resolution of the pressure profile is proportional to the finite number of 
lateral  slices  used  for  determining  it.  Due  to  this  unavoidable  lack  of 
accuracy, the calculated surface tension will generally never be exactly zero. 
Nevertheless it allows to distinguish between a shift of the pressure and a 
non-sufficiency of accuracy: If an increase of the number of slices leads to a 
smaller absolute value of the surface tension, the mismatch results from the 
inaccuracy. If not, a constant shift of the pressure biases the results.
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3.8 Moments of the lateral pressure

The nth moment of the lateral pressure is given by

Pn=∫
0

h b

zn pLAT  z dz , (3.19)

where  hb denotes  the  height  of  the  monolayer.  As  shown  in  previous 
theoretical  investigations  [20],  these  moments  are  of  high  interest  when 
trying to get information about the conformational equilibria of proteins that 
reside in the bilayer.

If the transition of a membrane protein from one state to another causes a 
change of its volume by ΔV, it has to work against the lateral pressure acting 
on it:

W  = −∫
V

pLAT z dV

= −∫
−hb

h b

pLAT  z A2 z −A1 z dz  = −∫
−hb

h b

pLAT  z A z dz
. (3.20)

A1(z)  and  A2(z)  denote  the  depth-dependent  cross-sectional  area  of  the 
protein  before  and  after  the  transition.  By  expanding  the  cross-sectional 
areas into power series

An z=∑
j=0

∞

a j ,n z j , (3.21)

the difference between the cross-sections is given by

A z  =  A2 z −A1z  = ∑
j=0

∞

a j ,2−a j ,1 z j  = ∑
j=0

∞

 a j z
j (3.22)

and the work W can be expressed in terms of the lateral moments:

W  = −∑
j=0

∞

∫
−hb

hb

pLAT  za j z j dz

 = −∑
j=0

∞

 a j P j

. (3.23)

Since the anesthetic is assumed to cause a change of the lateral pressure 
and thus to modify the moments, the work changes by
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W  = −∑
j=0

∞

∫
−hb

hb

 pLAT z a j z j dz

 = −∑
j=0

∞

 a jP j

, (3.24)

which leads to a shift of the conformational equilibrium K of a protein:

K=K 0e−W / kb T
. (3.25)

K0 denotes  the  conformational  equilibrium  constant  of  the  protein  in  a 
membrane without  anesthetic  and T is  the temperature of  the system. A 
conformational shift is significant if |-ΔW/kbT| is larger than ln(2), meaning 
that the equilibria at least differ by a factor of 2.

3.9 Geometric protein model

We use a simple protein model of bent helices as suggested by Cantor to 
estimate the conformational shift that can occur through the presence of an 
anesthetic [20]. In this case the cross-sectional area is determined by

An  z = [r 0∣z∣tann ]
2
= [ r0

2
2 r0∣z∣tann z2 tan 2n ] , (3.26)

where r0  is  the constant  radius of  the circular cross-sectional  area of the 
protein in the center of the bilayer and ϕn is the angle of inclination between 
the  kinked  helices  and  the  bilayer  normal.  Due  to  the  simplicity  of  this 
geometric model, in which the protein has a shape like an hourglass, only 
the first and second moments of the lateral pressure are of interest for the 
calculations  and  the  difference  between  the  cross-sectional  areas  of  the 
initial (1) and the final (2) state is given by

A2  z −A1 z = [2 r 0∣z∣ tan2−tan1z 2 tan22−tan
21 ] . (3.27)

Thereby, using Eq. 3.20, the total change of the work per monolayer is

W ML=− [2 r 0tan2−tan1P1tan22−tan
2
1P2 ] , (3.28)

with ϕ1 and ϕ2 being the angles for  the initial  and the final  state.  These 
angles may differ for the monolayers due to the membrane protein's possible 
asymmetry. If the geometry of the protein is symmetric around the bilayer 
center,  then  ΔW = 2  ΔWML.  As  one  can  see  from  the  derivation,  the 
anesthetic  concentration-dependent  variation  of  the  work  for  opening  the 
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model  ion  channel  is  directly  proportional  to  the  change of  the  first  and 
second moment of the lateral pressure.

3.10 Membrane elastic properties

The  moments  can  be  used  for  the  determination  of  different  elastic 
properties  of  the  bilayer.  Especially  the  determination  of  the  bending 
modulus κ is of high interest because it is a measure for the stiffness of the 
membrane.  The  product  of  the  bending  modulus  and  the  spontaneous 
curvature c0 is given by

 c0=∫
0

h b

z−z s pLAT z dz=P1−zs P0 (3.29)

and the Gaussian curvature elastic modulus κG can be calculated using

 G=P2−2 zs P1 . (3.30)

In Eq. 3.29 and 3.30 zs denotes the vertical position of the neutral surface at 
which small curvature deformations occur at constant molecular area [21].
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4 Simulation details

All simulations were performed using the Gromacs 4.0 MD package [1]. The 
lipid bilayers used in this work consist of 200 POPC molecules, 5000 water 
molecules  and,  dependent  on  the  concentration,  of  0  to  16  ketamine 
molecules. As already mentioned, Berger lipids were used to describe the 
POPC and the OPLS-AA force field was used for ketamine (Sect. 2.1).

For the construction of the membrane (Fig.  4.1) the POPC molecules were 
at first put into an empty simulation box to form a bilayer with 100 molecules 
in each monolayer. This initial structure was then solvated with explicit SPC 
water [4], adding 25 water molecules per lipid (fully hydrated). Afterwards the 
ketamine molecules were randomly placed inside the bilayer and randomly 
rotated.

The random placement of the molecules can cause two atoms to come too 
close to each other (overlap) and thus the resulting initial forces would be by 
far to high. To avoid this we first inflated the box and thereby the distance 
between the molecules by a factor of 5. Afterwards we performed several 
short energy minimization runs at a temperature of 10 K where we deflated 
the bilayer by a factor of 0.98 after each run until the area per lipid was 0.6 
nm2.  The  systems  obtained  in  this  way  were  then  used  to  start  the 
simulations covering a time frame of 100 ns, using an integration time step 
of 2 fs. Even though all simulated systems were already equilibrated after 20 
ns, we only used the time frame between 50 and 100 ns for all  analyses 
because we increased the output frequency of the simulation after 50 ns.
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Fig. 4.1: Computational structure of hydrated membrane



All the MD simulations were carried out using periodic boundary conditions. 
The neighbor search was conducted according to the grid method, updating 
the neighbor list every 10 steps and using a neighbor list cutoff of 1 nm. A 
constant temperature of 310 K (36.85 C) was maintained using the velocity 
rescale (v-rescale) algorithm (Sect. 2.2.6) with a τT of 0.1 ps. A pressure of 1 
bar  was  established  by  performing  semi-isotropic  Berendsen  pressure 
coupling with τP = 4.0 ps and a compressibility of 4.5 10-5 bar-1 (Sect. 2.2.7). 
Bond  lengths  were  constrained  using  the  Lincs  method  [12].  Coulomb 
energies were calculated according to PME electrostatics [16] with a cutoff of 
1.0 nm and a PME order of 4. Van der Waal’s energies were collected using 
a cutoff of 1.0 nm.
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5 Results

5.1 Area per lipid

The area per lipid only slightly increases with higher ketamine concentration, 
as Fig.  5.1 shows. In our case the change between the highest and the 
lowest concentration is about 0.015 nm², with a maximum of approximately 
0.69 nm² (see Tab. 5.1). The average standard deviation is ~0.0068 nm2.

Concentration [%] Area per lipid [nm²] Standard deviation [nm²]

0.0 0.6754 0.00591

0.5 0.6781 0.00720

1.0 0.6805 0.00717

2.0 0.6799 0.00535

4.0 0.6838 0.00682

8.0 0.6900 0.00852

Tab. 5.1: Area per lipid

The increase of the area per lipid with higher concentrations arises from the 
local change of density that comes with the presence of the ketamine. Due 
to the mutual repulsion, the ketamine molecules do not come arbitrarily close 
to the acyl chains, meaning that they need additional space. This on the 
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Fig. 5.1: Area per lipid



other hand leads to a lateral enlargement of the simulation box and thereby 
to an increase of the area per lipid.

5.2 Position distributions

The vertical  position distributions of  the ketamines clearly show that they 
accumulate in a certain height above and below the center of the bilayer 
(Fig.  5.2). As one can see in Fig.  5.3, this height of approximately 1 nm is 
almost independent of the concentration of the anesthetic. This furthermore 
indicates  that,  at  least  for  the  concentrations  we investigated,  no  mutual 
influence between the ketamine molecules could be recognized.
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Fig. 5.2: Vertical position of various molecular groups



A comparison between the position distributions of the carbon atoms of the 
acyl  chains  and the  one of  the ketamine allows us to  conclude that  the 
anesthetic most likely resides close to the position of the 5th carbon-atom of 
the palmitoyl chain and the 6th carbon-atom of the oleoyl chain, respectively 
(Fig. 5.4).

The ketamine stays at  a certain  vertical  position because the membrane 
provides a local energy minimum. Nevertheless, it can diffuse to the opposite 
side of the membrane (Fig. 5.5).

38

Fig. 5.3: Concentration-independence of vertical 
ketamine position

Fig. 5.4: Vertical position of nearest acyl chain 
carbons



The position distributions of the different characteristic atoms of the ketamine 
(Fig. 5.6) allow to highlight its orientation inside the bilayer. In our case the 
characteristic  ketamine atoms are  the  oxygen (O),  the  nitrogen from the 
methylamino group (N), the chlorine (Cl) and the two carbons that connect 
the  cyclohexane  (CHEX)  and  the  chlorophenyl  ring  (CCPH).  The  oxygen  is 
closest  to  the  headgroup  which  is  not  surprising  because  we  would  not 
expect the polar part to point towards the more lipophilic center. Since the 
nitrogen is like the oxygen connected to the cyclohexane, its orientational 
behavior is comparable to the one of the oxygen. A look at the trajectory 
reveals that the chlorine, attached to the phenyl ring, does not show the 
same  behavior.  Since  the  cyclohexane  and  the  phenyl  can  be  rotated 
against each other around the vector connecting them, the chlorine does 
sometimes point towards the outside and sometimes towards the inside of 
the membrane. For that reason the chlorine's position distribution is broader 
than the one of the oxygen.

39

Fig. 5.5: Vertical movement of different ketamine 
molecules



As expected, there is no preferred lateral position of the anesthetics in the 
membrane (Fig.  5.7).  Starting from the initial  coordinates,  each molecule 
performs  a  random  walk  in  the  membrane  plane.  The  distance,  the 
molecules cover after a certain finite time, strongly varies from molecule to 
molecule which complicates the prediction of their diffusional behavior. Our 
trajectories are still on the short site for the analysis of the diffusion.
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Fig. 5.6: Position of characteristic ketamine atoms

Fig. 5.7: Lateral movement of two selected ketamine 
molecules



5.3 Angle distributions

Figures  5.8,  5.9 and  5.10 show the normalized angle distributions for the 
POPC-headgroups and of both acyl chains. For the headgroup the vector 
between the phosphorus of the phosphate- and the nitrogen of the choline-
group  was  taken  into  account.  The  distribution  has  a  maximum  at 
approximately  79  and  at  101  degrees  relative  to  the  membrane  normal, 
respectively,  depending  on  whether  the  top  or  the  bottom  layer  of  the 
membrane is concerned. This means that the headgroups point only slightly 
towards the outside of the bilayer. For the acyl chains the vector between the 
first carbon after the carboxyl group and the terminal methyl group of the 
chain was used for the angle analysis. The distribution of the oleoyl has a 
maximum at about 29 and at 151 degrees, while for the palmitoyl chain the 
highest probability can be found at approximately 25 and 155 degrees. All 
these angle distributions are almost the same for all concentrations which 
means that the anesthetic does not seem to have a noticeable effect  on 
them.
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Fig. 5.8: Headgroup angle distribution



The angle distributions for  the ketamine's  chlorine-oxygen-  and the CCPH-
CHEX-vector allow us to confirm the interpretation of the orientation obtained 
from the position distributions.  As  one can see in  Fig.  5.11,  these angle 
distributions are not as smooth as the ones of the POPC because much less 
ketamine  molecules  could  be  used  for  the  statistical  average.  Since  the 
ketamine molecule is small compared for example to the phospholipid, small 
relative changes in position between the cyclohexane and the phenyl ring 
lead to large changes of the angle between the chlorine and the oxygen and 
between  CCPH and  CHEX.  For  that  reasons  these  angle  distributions  are 
broader than the ones obtained for the phospholipid headgroups and acyl 
chains.  The  asymmetry  of  the  distributions  between  the  two  monolayers 

42

Fig. 5.9: Palmitoyl angle distribution

Fig. 5.10: Oleoyl angle distribution



arises  from the  small  number  of  molecules  available  for  determining  the 
statistical average.

5.4 Order parameter

The obtained deuterium order parameters of  the palmitoyl  and the oleoyl 
chain are in good agreement with the data obtained from experiments [22]. 
Their comparisons for the different ketamine concentrations (Fig.  5.12 and 
5.13) show an increase of the order parameter with higher concentrations. It 
is  interesting  to  note  that  the  largest  difference  between  the  order 
parameters for both acyl chains can be found between the 5th and the 7th 

carbon atom. As already mentioned before, this is approximately the position 
where  the  ketamine  molecules  most  likely  reside.  For  the  carbon  atoms 
which are closer to the center or closer to the headgroup the difference is 
much smaller.
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Fig. 5.11: Angle distributions for special ketamine 
groups



These results  combined with  the  information  from the  angle  distributions 
allow to  conclude that  the anesthetics only  seem to locally  influence the 
order of the chain while the direction of the vector between the begin and the 
end of the fatty acid approximately stays the same. This means that only the 
local curvature of the chain is altered.

5.5 X-ray form factor

The  computed  form  factors  are  in  quite  good  agreement  with  the 
experimental data (Fig.  5.14). One has to turn attention to the fact that the 
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Fig. 5.13: Order parameter for oleoyl chain

Fig. 5.12: Order parameter for palmitoyl chain



form  factors  only  slightly  change  for  the  different  concentrations.  For  all 
concentrations simulated, the deviation of the form factors from the one of 
the  unanesthetized  membrane  is  smaller  than  the  error  made  in  the 
experiment. Thus, x-ray scattering experiments, which are often used for the 
investigation of membrane structures, do probably not deliver the accuracy 
needed to recognize the influence of an anesthetic.

5.6 Mean square displacement and diffusion coefficient

The mean square displacements shown in Fig. 5.15 confirm the expectation 
that  the prediction  of  the anesthetics'  diffusional  behavior  is  difficult.  The 
diffusion coefficients of the single ketamine molecules (Tab. 5.2) range from 
~0.001 to ~0.376 [10-5cm2/s] which is a variation of more than 2 orders of 
magnitude. Thus the results do not allow to make concrete predictions about 
the diffusion of the anesthetic inside the membrane.
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Fig. 5.14: Form factors for different concentrations 
compared with experimental values



Concentration [%] Diffusion coefficient [10-5cm²/s]

0.5 0.0185173

1.0 0.00800039 0.0205563

2.0 0.0307594 0.0333883 0.0396296 0.0574406

4.0 0.00272544 0.023147 0.0238512 0.0195775

0.0369357 0.0208973 0.0 0.0402795

8.0 0.00398408 0.10252 0.0971801 0.00513357

0.00638738 0.0087023 0.0221889 0.0267876

0.00139461 0.0102742 0.0155864 0.0124069

0.0039912 0.00204373 0.0170728 0.376408

Tab. 5.2: Diffusion coefficients

It is surprising that the mean square displacement varies so much for the 
different ketamine concentrations and between the single molecules since in 
general  the diffusion coefficients  derived from them should approximately 
have the same value. In our case there are two reasons why such a non-
conclusive result has been obtained: On the one hand we can only use a 
few ketamine molecules for the averaging of the mean square displacement. 
Furthermore  the  number  of  these  molecules  is  concentration-dependent 
which  leads  to  the  fact  that  the  average  gets  worse  with  decreasing 
concentration. On the other hand the simulation data used for the analyses 
only covers a time frame of less than 100 ns. Using Eq. 3.12 for determining 
the diffusion coefficient, one would need an infinite time frame to make exact 
predictions.  So  the  smaller  the  investigated  time  frame,  the  bigger  the 
uncertainties  of  the  results.  This  is  not  unexpected,  as  diffusion  in  a 
membrane is very slow because a bilayer is a medium with high viscosity. 
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Fig. 5.15: Mean square displacements



Two lipids  for  example  exchange their  place  on  a  time  scale  of  tens  of 
nanoseconds.

5.7 Pressure profile

As  shown  in  Fig.  5.16,  the  lateral  pressure  decreases  with  increasing 
ketamine concentration especially in regions where the anesthetic is most 
likely  to  be  found.  Elsewhere,  like  in  the  bilayer  center,  the  pressure 
deviation is only very small.  The difference between the pressures at the 
several  concentrations  and  the  pressure  obtained  from  the  simulation 
without ketamine clearly shows the significant change (Fig.  5.17). In some 
areas the deviation exceeds 120 bar for the highest concentration which is 
more  than  15%  of  the  total  difference  between  the  minimum  and  the 
maximum pressure.  Furthermore  the  difference  function  has  a  maximum 
exactly at the most probable vertical ketamine position.
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Fig. 5.16: Lateral pressure



The  pressure  component  along  the  bilayer  normal  (Fig.  5.18)  exhibits 
approximately  the  same  qualitative  behavior  as  the  one  from the  lateral 
case,  except  that  the  maximum  of  the  pressure  deviation  function  has 
slightly moved towards the bilayer center (Fig.  5.19). The absolute value of 
the deviation is smaller, but the length at which a significant difference can 
be found has broadened.
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Fig. 5.17: Difference of lateral pressure compared to 
simulation without ketamine

Fig. 5.18: Vertical pressure



The pressure profiles in Fig.  5.20 displaying  pLAT-pZZ do not differ as much 
from  each  other  as  the  single  components  because  the  subtraction 
compensates most  of  the pressure decrease observed before.  The small 
variation  in  pLAT-pZZ  leads to  the  result  that  the  surface  tension,  which  is 
almost zero for the bilayer without any ketamine, remains almost zero also 
for  the  other  concentrations.  The  integral-equivalent  constant  (Sect.  3.7) 
slightly increases with higher concentrations, but on average the absolute 
value  is  only  around  8  bar  which  is  smaller  than  the  error  made in  the 
simulations.
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Fig. 5.19: Difference of vertical pressure compared to 
simulation without ketamine

Fig. 5.20: Difference between lateral and vertical 
pressure



5.8 Moments of the lateral pressure

Table 5.3 shows the concentration-dependent first and second moments of 
the  lateral  pressure.  The  moments  significantly  increase  towards  higher 
concentrations. The relative changes of the moments range from ~8% for 
the lowest to more than 40% for the highest concentration. A comparison of 
P1/kbT and  P2/kbT with  the  values  derived  theoretically  and  published  by 
Cantor  [20], namely P1/kbT ~ -17 nm-1 and P2/kbT ~ -31.0, shows that the 
simulations lead to higher values than predicted. The difference probably 
arises from the simplified model used for the theoretical deduction.

Concentration [%] P1/kbT [nm-1] ΔP1 [%] P2/kbT [ ] ΔP2 [%]

0.0 -4.56 -6.72

0.5 -4.90 7.48 -7.31 8.85

1.0 -5.11 11.94 -7.52 11.94

2.0 -5.74 25.90 -8.56 27.43

4.0 -6.09 33.66 -8.84 31.63

8.0 -6.62 45.23 -9.48 41.11

Tab. 5.3: First and second moments

Applying the protein model of bent helices discussed in Sect.  3.9, one can 
estimate the effect of the anesthetic on a protein's conformation. Figure 5.21 
depicts  |ΔW/kbT|  =  ln(2)  for  different  concentrations,  angles  and  angular 
changes.  The  radius  r0 of  the  model  protein  was  set  to  2  nm which  is 
assumed to be representative for ligand-gated ion channels. Furthermore, 
an angular change of about 6° between the channel's opened and closed 
state  can  be  expected  [20].  The  results  show  that  even  for  the  lowest 
concentration significant  changes of  the conformational  equilibrium would 
occur already at angular changes Δ  = ϕ ϕ2-ϕ1 below 6° of an ion channel. 
Assuming that the predicted parameters for the ligand-gated ion channels 
are correct, the presence of the anesthetics indeed seems to influence the 
transmission behavior of these channels.
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Using  Eq.  3.29 the  bending  modulus  can  be  calculated  from  the  first 
moment.  Expecting  a  spontaneous curvature  with  radii  in  the  nanometer 
scale, a bending modulus in the order of magnitude of ~10-20  J was found. 
This is in good agreement with the values obtained in earlier studies [23]. If 
we expect the spontaneous curvature to not change with varying anesthetic 
concentration, the increase of the absolute value of P1  leads to an increase 
of the bending modulus, meaning that the bilayer becomes stiffer with higher 
concentrations.

In order to review our analyses we visualize the most important observables 
in Fig. 5.22. To give insight into a single simulation run we display the results 
for the highest ketamine concentration which exhibits the largest effects.
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Fig. 5.21: Changes of protein conformation



Area per lipid Position distribution

Angle distribution Order parameter

Mean square displacement Pressure profile

Fig. 5.22: Analyses of a single simulation run (8.0% ketamine)
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6 Conclusions and Outlook

The  obtained results  clearly  show that  the  ketamine  molecules  prefer  to 
reside  at  certain  vertical  positions  inside  the  membrane.  Due  to  this 
preference the order parameters of the acyl chain carbon atoms feature the 
highest  concentration-dependent  deviations  close  to  that  positions. 
Furthermore, the lateral pressure declines with increasing concentration in 
this vertical regions. Thus we could relate the corresponding changes of the 
moments of the lateral pressure to changes of the conformational equilibrium 
of  a  model  membrane  protein.  Thereby  significant  conformational  shifts 
could be observed, even for the lowest concentration.

As the case of the x-ray form factor shows, some experimental methods that 
are commonly used today to determine various membrane parameters are 
probably not accurate enough to measure anesthetic-caused effects. Thus it 
will be necessary to improve these methods or invent new ones in order to 
further verify the results of the simulations.

In  summary,  all  results  leave  no  doubt  that  significant  parameters  of  a 
phospholipid  membrane  definitely  change  through  the  presence  of  an 
anesthetic. They strongly support the theory of the mode of functioning of an 
anesthetic  where  it  actually  does  not  bind  to  membrane  proteins  or 
receptors, but influences the membrane in a simple mechanical way. This of 
course  does  not  mean  that  the  binding  theory  is  wrong,  but  our  results 
indeed allow to conclude that the pure mechanical effects, as suggested by 
Cantor [24], can not be neglected.

For future investigations, the main goal should be to find further indications 
that serve as a proof of the membrane theory. In our opinion research should 
be continued on:

• Enantiomer effect

For  the  ketamine  studied  in  this  thesis,  the  enantiomer 
(chiral molecule) of the clinically active ketamine is known 
not to have the same anesthetic effect.  Simulations using 
the  enantiomer  could  further  support  the  theory  of  the 
membrane pressure mediated anesthesia mechanism.

• Different kinds of anesthetics

Due  to  the  fact  that  we  only  considered  one  anesthetic 
molecule  in  all  our  simulations,  it  would  be  useful  to 
investigate  the  effects  of  other  anesthetics  applied  in 
medicine. This would allow to determine whether the effect 
that  causes  the  anesthesia  is  always  the  same  or  not. 
Furthermore  one  can  try  to  relate  the  effectiveness  of 
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anesthetics  to  a  relative  change  of  certain  membrane 
parameters.

Of course there is a wide range of cases worth to be studied, but performing 
research on representative ones like the enantiomer is probably the best and 
least time-consuming approach.
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