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Abstract

This thesis deals with a three-state dynamic model of illicit drug consump-

tion. In addition to susceptible non-users and current users of a drug, for

the first time also the supply capacity is considered in a separate state vari-

able. The model is analyzed with parameters derived from data for the U.S.

cocaine epidemic and for injection drug use (IDU) in Australia.

In the first part the uncontrolled base model is described and analyzed. Initi-

ation into drug use is assumed to depend primarily on the interaction between

susceptibles and users. For the U.S. cocaine epidemic the positive feedback

effect from users acting on susceptibles is best described by a convex func-

tion, which allows for two stable equilibria separated by a ”tipping curve”.

However, for Australian IDU the best fit is obtained for a concave initiation

function, for which only one (stable) steady state occurs. That is one reason

why overall the U.S. parameterization yields somewhat more interesting and

insightful results.

The second part of this thesis presents some ”strategic examinations”, which

are assumed to provide decision support for public policy and can be seen

as a preliminary step towards an optimal control model formulation. In this

regard the relative efficiency and cost-effectiveness of treatment and supply

shocks at different stages of the epidemic are determined. One preliminary

conclusion is that treatment or a supply shock early in the epidemic is more

valuable than later in the epidemic.
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Chapter 1

Introduction

The abuse of illicit drugs poses a great challenge for societies and decision

makers all over the world. Consequently, over the past years several mod-

els have been accumulated in the field of optimal dynamic control of drug

use. One of the most recent models is the so-called SA model in which the

group of susceptible non-users and the group of users are the states (see, e.g.,

[Caulkins et al., 2009a], [Caulkins et al., 2009b], [Wallner, 2008]). This thesis

deals with an extension of this model based on [Caulkins, 2008]. One motiva-

tion is that the SA model is an appealing vehicle for extensions because it is

a form of the well-accepted SIR models used in mathematical epidemiology

and there are parameterizations for U.S. cocaine and Australian injection

drug use (IDU). Our analyses provide a basis for (1) looking at the question

of optimal timing of enforcement versus treatment with a richer model of

drug use and (2) examining how the optimal response to supply shocks may

vary over the course of an epidemic.

The extension involves adding a third state variable, C, which can be

understood as the ”capital stock” of the drug smuggling industry. However,

this capital stock represents social/relational capital and tacit knowledge in

comparison with capital stocks in a manufacturing context. Thus, the model

is a dynamic three-state model of drug use in which drug supply, price and

demand are connected. We will refer to this model as the SAC model.

The first part of this thesis concentrates on an extensive analysis of the
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CHAPTER 1. INTRODUCTION 2

uncontrolled model whereas the second part consists of some strategic ex-

aminations which can be seen as a preliminary stage to an optimal control

model approach.

Chapter 2 contains the mathematical formulation of our base model as

well as the parameter values for the U.S. cocaine and Australian IDU epi-

demics.

In Chapter 3 this base model is analyzed. First of all, the steady states

and their stability behavior are determined. Both numerical values and

graphical illustrations are presented. Furthermore, some time paths are dis-

played.

The results of the sensitivity and bifurcation analyses are represented in

Chapter 4. At the beginning, only small modifications of the parameter val-

ues are investigated. Later on, we consider wide ranges of parameter values

and find the blue sky bifurcation points.

Chapter 5 deals with a comparison between the SAC model and the origi-

nal SA model. In particular, the two system dynamics are compared to each

other. The purpose of this exercise is to find out the value of adding one

more state and under which circumstances one may consider the reduced SA

model without losing too much information.

Chapter 6 is then dedicated to some strategic analyses with respect to

the control intervention treatment. Here, the goal is to be able to say some-

thing like, ”Treatment early in the epidemic is more valuable than later in

the epidemic”. Furthermore, the effects of a supply shock are examined.

Finally, Chapter 7 summarizes the most important results and provides

a proposal for further studies in this direction.

Please note that all numerical calculations were done using Wolfram’s

Mathematica 6.0 (see [11]).



Chapter 2

The Model

2.1 General Formulation

The SAC model considered in this thesis has three states with t denoting

the time argument. S(t) tracks the number of people who are not consuming

illicit drugs, but who are susceptible to start using. A(t) tracks the number

of drug users over time and C(t) represents the current ”throughput capac-

ity” of the supply network. Within the use state, frequency of consumption

or degree of addiction are not taken into account explicitly.

People enter the S-pool via a constant inflow rate k (which can be under-

stood as reaching an age when susceptibility to drug use starts) and ”mature

out” of the pool with a constant outflow rate δ. The constant per capita

rate µ can be interpreted as the exit from active use. Reasons for such an

exit may be the successful participation in a treatment program, death or

other reasons. This model approach makes initiation price dependent (cf.

[Tragler et al., 2001]), where price itself depends on A and C and a < 0 is

the elasticity of initiation with respect to the price.

The instantaneous growth rate of the supply network g(p) as well as one

specific functional form for the initiation function f(A) will be discussed in

detail below.

To simplify matters, the time argument t is mostly omitted. Hence, the

3
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dynamic system we consider is

Ṡ = k − δ S − f(A) S p(A,C)a

Ȧ = f(A) S p(A,C)a
− µ A (2.1)

Ċ = g(p) C.

2.1.1 Price Function

In contrast to the SA dynamics our base model is now dependent on the

price p which is derived by equating the short-run demand and supply curves.

Thus, we obtain

QD(p) = d A pηD = s C pηS = QS(p)

where QD(p) and QS(p) are the quantities demanded and supplied. Further-

more, ηD < 0 is the short-run price elasticity of demand and ηS > 0 is that

of supply. Solving for p implies

p(A,C) = d̃

(

A

C

)

1

ηS−ηD

with d̃ = 1 so that prices are normalized to 1 when supply matches demand.

2.1.2 Growth Rate

For the growth rate of the supply network we choose the following assump-

tions. If C is smaller than A, then p > 1 and g(p) > 0 so Ċ > 0. Otherwise,

if C is greater than A, then p < 1 and g(p) < 0 so Ċ < 0. Moreover,

g(p) = 0 should result from p = 1. Consequently, one specific functional

form of g(p) is g(p) = c ln(p). Given this, the growth rate reduces down to

g(p) = c′ (ln(A) − ln(C)) with c′ =
c

ηS − ηD

.

2.1.3 Initiation Function

Finally, we pay our attention to the initiation function f(A). The interaction

between the pool of susceptibles and active users leads to new ”infections”



CHAPTER 2. THE MODEL 5

over the course of a drug epidemic. This flow from the S-state to the A-

state is reflected in the so-called initiation function. As in other models (cf.

[Tragler, 1998]), we use the approach

f(A) = α Aβ (2.2)

with α > 0 and β > 0. Please note that in contrast to others (e.g., [Behrens

et al., 1999], [Behrens et al., 2000]) only ”imitators” are taken into account

here.

2.2 Parameter Values

Table 2.1 summarizes the base parameter values as described in [Caulkins et

al., 2009a] for the U.S. cocaine and Australian IDU epidemics. One crucial

parameter is the exponent β in the initiation function. For the U.S. cocaine

epidemic, β > 1, and so initiation is a convex function of A, which allows

for multiple stable equilibria separated by a tipping point. However, for

Australian IDU, β < 1, and on this account there we will find only one steady

state with a positive amount of drug use which is stable (cf. [Caulkins et al.,

2009a], [Caulkins et al., 2009b]).

Description Symbol U.S. Cocaine Australian IDU
inflow into S-state k 1.3417 0.0526

exit rate from S-state δ 0.0605 0.0952
coefficient in initiation function α 0.0090 0.5112
exponent in initiation function β 1.5604 0.8622

price elasticity of supply ηS 0.5 0.5
price elasticity of demand ηD -0.5 -0.5

elasticity of initiation a -0.25 -0.25
exit rate from active use µ 0.1661 0.1136
coefficient in growth rate c 0.15 0.15

annual discount rate r 0.04 0.04

Table 2.1: Base parameter values.



Chapter 3

Analysis of the Uncontrolled

Model

First, we look at the generalized system, so before the respective param-

eter values are used for the U.S. or Australia. In order to determine the

steady state values and their stability behavior we consider (2.1) with the

specification (2.2). Thus, the formulation we get is

Ṡ = k − δ S − α Aβ S

(

A

C

)

a
ηS−ηD

Ȧ = α Aβ S

(

A

C

)

a
ηS−ηD

− µ A (3.1)

Ċ = c′ (ln(A) − ln(C)) C.

The steady states (Ŝ, Â, Ĉ) of (3.1) are given by the solutions to (Ṡ = 0,

Ȧ = 0, Ċ = 0). Note that we need to assume that C > 0, because the ln(.) is

not defined for C = 0. Hence, in this formulation Ċ = 0 ⇔ Ĉ = Â, implying

that p = 1, so the price effect drops out of the model. Consequently, adding

the first two state equations leads us to

Ṡ + Ȧ = k − δ S − µ A.

This implies that the steady state values satisfy the linear relation

Ŝ =
k − µ Â

δ
.

6
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Inserting this expression into the equation for S and setting it to zero results

in

Â (−α µ Âβ + α k Âβ−1
− δ µ) = 0.

Consequently, there are two possibilities. However, the first one, Â = 0, is

not feasible because of the ln(.) function within the equation for C. On this

account we have to solve

α1 Âβ + α2 Âβ−1 + α3 = 0 (3.2)

with α1 = −α µ, α2 = α k and α3 = −δ µ.

3.1 U.S. Cocaine Use

3.1.1 Steady States, Stability Behavior, and Phase Por-

traits

By solving the equation (3.2) for the U.S. base case parameter set one obtains

two different solutions, Â1 = 0.8867 and Â2 = 5.4888. Figure 3.1 shows these

roots, where the values of the steady state solutions are denoted in millions.

Â1 Â2

2 4 6 8 10
Â

-0.020

-0.015

-0.010

-0.005

Figure 3.1: Solutions for equation (3.2) when using the U.S. parameteriza-
tion.

Hence, we get two steady states located at

Ê1 = (Ŝ1, Â1, Ĉ1) = (19.7426, 0.8867, 0.8867)

Ê2 = (Ŝ2, Â2, Ĉ2) = (7.1076, 5.4888, 5.4888).
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The analysis of the stability behavior uses the Jacobian matrix

J =











ṠS ṠA ṠC

ȦS ȦA ȦC

ĊS ĊA ĊC











with the generalized entries

ṠS = −δ − α Aβ

(

A

C

)

a
ηS−ηD

ṠA = −α S β Aβ−1
(

A

C

)

a
ηS−ηD

−

α S Aβ a
(

A
C

) a
ηS−ηD

−1

C (ηS − ηD)

ṠC =
α S Aβ+1 a

(

A
C

)
a

ηS−ηD
−1

C2 (ηS − ηD)

ȦS = α Aβ

(

A

C

)

a
ηS−ηD

ȦA = −µ + α S β Aβ−1
(

A

C

)

a
ηS−ηD

+
α S Aβ a

(

A
C

)
a

ηS−ηD
−1

C (ηS − ηD)

ȦC = −

α S Aβ+1 a
(

A
C

)
a

ηS−ηD
−1

C2 (ηS − ηD)

ĊS = 0

ĊA =
c′ C

A

ĊC = c′ (ln(A) − ln(C)) − c′.

Using the parameter values and evaluating at the first fixed point Ê1 leads

to

J =











−0.0679597 −0.217657 −0.041525

0.00745974 0.0515574 0.041525

0 0.15 −0.15











with the Eigenvalues

λ1 = −0.177302

λ2 = 0.0666524

λ3 = −0.0557528.
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All Eigenvalues are real and we find opposite signs. Therefore, this equilib-

rium is a saddle point.

For the second steady state Ê2 we get

J =











−0.188769 −0.217657 −0.041525

0.128269 0.0515574 0.041525

0 0.15 −0.15











.

The Eigenvalues are now given by

λ1 = −0.178759

λ2,3 = −0.0542265 ± 0.101054 i

implying that the second equilibrium is a stable focus.

Henceforward, we concentrate on analyzing the qualitative stability be-

havior of the steady states graphically. For this reason, the phase portraits of

the system were created in a neighborhood of the equilibria. Figure 3.2 shows

some trajectories around Ê1 within the (A, S,C)-plane, while the phase por-

trait around the stable focus can be found in Figure 3.3.

0.0
0.2

0.4
0.6

0.8A

20

21

22

S

0.0

0.2

0.4

0.6

0.8

C

Figure 3.2: Phase portrait around Ê1 for the U.S. parameter values.
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5.0

5.5

6.0

A

7.0

7.5

8.0

S

5.0

5.5

6.0

C

Figure 3.3: Phase portrait around Ê2 for the U.S. parameter values.

For a better representation of the stability behavior we next restrict our

examinations to the two-dimensional (A, S)-plane. Since Ĉ = Â is valid in

the stationary points, we reduce the system (3.1) to

Ṡ = k − δ S − α Aβ S

Ȧ = α Aβ S − µ A.

Note that this corresponds exactly to the SA dynamics as described in [Wall-

ner, 2008]. Adding Ṡ = 0 and Ȧ = 0 up, we obtain k − δ Ŝ − µ Â = 0 and

solving for Ŝ yields

Ŝ =
k − µ Â

δ
. (3.3)

This is a downward sloping line between (A, S) = (0, k
δ
) = (0, 22.1769) and

(A, S) = ( k
µ
, 0) = (8.0777, 0).

The isoclines Ṡ = 0 and Ȧ = 0, given by

S =
k

δ + α Aβ
and

S =
µ A

α Aβ
,
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are shown in Figure 3.4. The black straight line represents the linear relation

(3.3) between Ŝ and Â.

A
 
=0

S
 
=0

0 2 4 6 8 10 12 14
A0

5

10

15

20

25
S

Figure 3.4: Isoclines and the linear relation between the steady state values
for the U.S. parameter set.

In order to illustrate the stability behavior within the (A, S)-plane, again,

some trajectories were determined. In Figure 3.5, the equilibria Ê1 and Ê2,

which are located at the intersection of the isoclines, are depicted as black

dots. Below the isocline Ṡ = 0, the number of susceptibles increases. Above

this curve, S decreases. For Ȧ = 0 it is the other way around. Below, the

number of users drops down while it is rising above. This is indicated by the

red arrows.

As stated at the beginning of this chapter, the no-use state, A = 0,

cannot be computed as steady state value because of the ln(.) function within

the state equation for C. However, Figure 3.5 shows that some trajectories

converge towards the point (A, S) = (0, k
δ
) = (0, 22.1769). Indeed, this is

not a surprise, since we actually deal with the SA system, in which Â = 0

is an equilibrium (see [Wallner, 2008], [Caulkins et al., 2009a], [Caulkins et

al., 2009b]). In our extended model, A and C cannot reach the value 0, but

if we choose the two close to zero and assume that Ĉ = Â, we find that the

system (3.1) converges towards zero for (S,A,C) = (k
δ
, A → 0, C = A → 0)

(cf. the analysis carried out in [Feichtinger et al., 2002]). Next, we will

analyze the stability of this ”steady state”. For that purpose, we look at the
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two-dimensional system with its partial derivatives

ṠS = −δ − α Aβ

ṠA = −α β Aβ−1 S

ȦS = α Aβ

ȦA = α β Aβ−1 S − µ.

If A → 0, then the Jacobian matrix becomes

J =





−δ 0

0 −µ



 .

Hence, one concludes directly that it has the stability properties of a stable

node. Overall, this means that for the U.S. cocaine epidemic we have two

stable equilibria which are separated by a saddle point.

E
`

1 E
`

2

A
 
=0

S
 
=0

0 2 4 6 8 10 12 14
A0

5

10

15

20

25
S

Figure 3.5: Phase portrait for the U.S. base case parameter set within the
(A, S)-plane.
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3.1.2 Time Paths

Finally, we extend our picture by looking at a few time paths. For this pur-

pose, three trajectories with different initial values were designed. Trajectory

T1 arises from (S(0), A(0), C(0)) = (1, 2, 2). The second trajectory T2 satis-

fies the conditions (S(0), A(0), C(0)) = (5, 3, 3) and the third trajectory T3

is based on high initial values, namely (S(0), A(0), C(0)) = (22, 8, 8). Here,

A(0) = C(0) was chosen intentionally, so that one can see that the two states

develop differently over a short period before they then converge again when

approaching the corresponding equilibrium.

Figure 3.6 shows the evolution of S(t), A(t), C(t) and of the price within

the first 150 years along T1, where the number of users and susceptibles is

still very low at the beginning of the epidemic. The pool of susceptibles

increases while the number of users is dropping. The number of drug users

monotonously converges to zero, confirming again that Â = 0 is a steady

state.

Figure 3.7 illustrates the time paths along T2. Please note that here the

time ranges from t = 0 to t = 200. The development of S(t) is oscillating as

follows: Strongly increasing at the beginning, then strongly falling, increas-

ing again and flattening out. The progression of A and C is in the opposite

direction. In this case, the values converge towards the high-use equilibrium.

In Figure 3.8 the time span goes up to t = 130. S(t) declines at the

early stages, then slightly grows and then smoothly converges to its steady

state value. A and C, however, increase first, then drop quickly close to their

steady state values.
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Figure 3.6: Time paths relating to T1 for the U.S. parameterization.
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Figure 3.7: Time paths relating to T2 for the U.S. parameterization.
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Figure 3.8: Time paths relating to T3 for the U.S. parameterization.
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3.2 Australian Injection Drug Use

3.2.1 Steady States, Stability Behavior, and Phase Por-

traits

Again, we have to solve equation (3.2). In the context of the base case

parameter values for the Australian IDU epidemic the solution is unique, to

be more precise Â = 0.304916 (see Figure 3.9).

Â

1 2 3 4 5
Â

-0.2

-0.1

0.1

0.2

Figure 3.9: Solution for equation (3.2) when using the Australian parame-
terization.

Thus, we obtain the steady state

Ê = (Ŝ, Â, Ĉ) = (0.188672, 0.304916, 0.304916).

Please note that Ŝ < Â here. Usually, we should expect to find more sus-

ceptibles than active users in the steady state, particularly since for the

Australian parameterization the A-state refers to injection drug use and not

just any use. This suggests that maybe one should reconsider the Australian

parameter values.

The Eigenvalues of the Jacobian matrix

J =











−0.278791 −0.0695459 −0.0284

0.183591 −0.0440541 0.0284

0 0.15 −0.15











are given by

λ1 = −0.248776

λ2,3 = −0.112034 ± 0.0303643 i.
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Therefore, the equilibrium is a stable focus. Figure 3.10 depicts some trajec-

tories within the (A, S,C)-plane.

0.2

0.4

0.6

0.8

A

0.2

0.4

0.6
S

0.0

0.2

0.4

C

Figure 3.10: Phase portrait around Ê for the Australian parameter set.

Further analyses are carried out again only for the two-dimensional sys-

tem. Figure 3.11 represents the isoclines Ṡ = 0 and Ȧ = 0 as well as

the downward sloping line between (A, S) = (0, k
δ
) = (0, 0.552521) and

(A, S) = ( k
µ
, 0) = (0.463028, 0). One sees that there is only one intersec-

tion and so the steady state is unique.

A
 
=0

S
 
=0

0.0 0.2 0.4 0.6 0.8 1.0
A0.0

0.1

0.2

0.3

0.4

0.5

0.6
S

Figure 3.11: Isoclines and the linear relation (3.3) between Ŝ and Â for the
Australian base case parameter set.
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Finally, Figure 3.12 shows the phase portrait within the (A, S)-plane.

The stable focus is depicted as a black dot. The little red arrows trace the

vector field and in order to get a better visualization of the system dynamics

some trajectories are depicted as black curves. Here, all trajectories converge

to Ê. The no-use state is unstable and cannot be reached for initial values

with A(0) > 0. Again, the system is not defined at A = 0 because of the

ln(.) function within the state equation for C.
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Figure 3.12: Phase portrait for the Australian parameterization within the
(A, S)-plane.

3.2.2 Time Paths

The concluding section of this chapter presents some time paths for the Aus-

tralian base case parameter set. The chronological sequence of S(t), A(t),

C(t) and of the price is represented with the help of two trajectories. Tra-

jectory T1 originates from (S(0), A(0), C(0)) = (0.01, 0.01, 0.01). The second

trajectory T2 has high initial values which are given by (S(0), A(0), C(0)) =

(0.5, 0.7, 0.7). Also here, A(0) = C(0) was chosen.

Figure 3.13 shows the paths for trajectory T1 over the first 100 years. The

number of susceptibles is strongly increasing first but then, after reaching a

peak, it is dropping. The increase in use is moderate within the first decade,

but then use begins to grow more strongly until the steady state value is

reached.
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Figure 3.14 demonstrates the evolution along T2 in which only the first

80 years are looked at. The pool of susceptibles is declining first and then

slightly growing towards its steady state value. The number of users briefly

goes up and then falls down rather rapidly.
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Figure 3.13: Time paths relating to T1 for the Australian parameterization.
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Figure 3.14: Time paths relating to T2 for the Australian parameterization.



Chapter 4

Sensitivity and Bifurcation

Analysis

4.1 Sensitivity Analysis

Our base model contains a lot of parameters. Unfortunately, such values are

not exact in most cases. Sensitivity analysis deals with the question how

results vary when parameters are changed. First of all, we consider a 1%

variation of the parameter values. This means that one of the base case

parameters is increased by 1% while the other values are kept the same. The

steady state values are then recalculated and the respective effect is expressed

as percentage.

4.1.1 United States

Table 4.1 summarizes the effects on the first steady state Ê1 = (Ŝ1, Â1, Ĉ1) =

(19.7426, 0.8867, 0.8867) and Table 4.2 gives the results of the sensitivity anal-

ysis for the second steady state Ê2 = (Ŝ2, Â2, Ĉ2) = (7.1076, 5.4888, 5.4888).

Some parameters (more precisely ηS, ηD, a, and c) do not have influence

on the values since in every stationary point Ĉ = Â must be valid and there-

fore the price effect drops out of the model. These parameters were left out

in the tables. Please note that a positive value means an increase relative to

the base case. Contrariwise, a negative value stands for a decrease.

22
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Parameter Ŝ1 Â1 Ĉ1

k 1.43 -2.51 -2.51
δ -1.27 2.31 2.31
α 0.277 -2.24 -2.24
β -0.0513 0.416 0.416
µ -0.448 2.61 2.61

Table 4.1: Effects of a 1% increase of the parameter values on the steady
state Ê1 for the U.S. parameterization.

This table shows that a 1% increase in the parameter values brings about

relatively great consequences for all parameters apart from β. For β only the

modification is less than 1% and that for all values. The effects on the steady

state values are mostly as one would expect in respect of the dynamics Ṡ and

Ȧ.

Parameter Ŝ2 Â2 Ĉ2

k -1.1 1.99 1.99
δ 0.363 -0.645 -0.645
α -1.34 0.631 0.631
β -3.55 1.67 1.67
µ 2.15 -1.99 -1.99

Table 4.2: Effects of a 1% increase of the parameter values on the steady
state Ê2 for the U.S. parameterization.

Here, the strongest impacts on the steady state values are encountered

when the parameters k, β, or µ are modified.

We have already mentioned many a time that Â = 0 is a steady state that

does not exist mathematically because ln(0) is undefined. Nevertheless, some

trajectories converge towards this state and therefore also here a sensitivity

analysis was made which is shown in Table 4.3. Please note that only Ŝ = k
δ

is influenced in this case.
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Parameter Ŝ

k 1.00
δ -0.9901

Table 4.3: Effects of a 1% increase of the parameter values on the no-use
state for the U.S. parameterization.

In conclusion, we still want to give a sensitivity analysis concerning the

drug initiation. For it, we first deal with the base parameter values and

calculate the initiation force at the respective steady states. Afterwards, α

and β are adjusted simultaneously to keep the force of initiation the same at

the equilibria. This means that α is increased by 1% and then the appropriate

β is determined. Now, the results. For Â1 = 0.8867 this examination shows

that β must be increased by 5.301%. A reduction of β by 0.375% is necessary

at the second steady state value Â2 = 5.4888 and, of course, this analysis is

not relevant for Â = 0.

4.1.2 Australia

In this case, the steady state is unique and given by Ê = (Ŝ, Â, Ĉ) =

(0.188672, 0.304916, 0.304916). The results of the sensitivity analysis can

be found in the following table.

Parameter Ŝ Â Ĉ

k 0.194 1.42 1.42
δ -0.0668 -0.484 -0.484
α -0.925 0.48 0.48
β 0.964 -0.5 -0.5
µ 0.804 -1.4 -1.4

Table 4.4: Effects of a 1% increase of the parameter values on the steady
state Ê for the Australian parameterization.
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The strongest effects on the values arise by the increase of k and µ. When

k increases by one percent, Â and Ĉ go up by more than 1.4%. A 1% increase

of µ reduces the values by 1.4%.

At this point, it still is mentioned that β must be increased by 0.972%

after a 1% increase of α, so that the initiation force at Ê is the same as with

the Australian base parameterization.

4.2 Bifurcation Analysis

A bifurcation of a dynamical system is a qualitative change in its dynamics

produced by varying parameters. Examples are the creation or destruction

of steady states or the exchange of the stability behavior of equilibria. Bi-

furcation theory provides a procedure for investigating such disruptions. A

parameter value where a bifurcation occurs is called a critical value of the

system and we will denote it by parameterc.

In this area, a saddle-node bifurcation or tangent bifurcation is a local

bifurcation in which fixed points of a dynamical system are created or de-

stroyed. Another denomination is blue sky bifurcation in reference to the

sudden creation of two fixed points. We will find this type of bifurcation in

our current model. More details on this topic can be found in [Grass et al.,

2008].

4.2.1 United States

4.2.1.1 Flow into Pool of Susceptibles (k)

If the inflow rate into the S-state, k, is changed to a greater extent, then a

blue sky bifurcation occurs. Figure 4.1 shows the bifurcation plots for Ŝ and

Â. Please note that the depiction for Ĉ is the same as that for Â and can

hence be omitted here.

The saddle-node bifurcation turns up at the point BS = (Ŝc, Âc, Ĉc) =

(11.462, 2.33961, 2.33961) and the respective critical parameter value is given

by kc = 1.08206. At the base case parameter value kbc = 1.3417 there is a
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vertical dashed line and the two black dots indicate our previous steady state

values.
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Figure 4.1: Bifurcation diagrams with respect to the parameter k for the
U.S. cocaine epidemic.

4.2.1.2 Exit Rate from Pool of Susceptibles (δ)

The results from the bifurcation analysis for the cocaine epidemic in the

United States with respect to the parameter δ are shown in Figure 4.2.

Again, a saddle-node bifurcation occurs. The critical parameter value

is located at δc = 0.0846261 with the corresponding steady state BS =

(Ŝc, Âc, Ĉc) = (10.1605, 2.901, 2.901).
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Figure 4.2: Bifurcation diagrams with respect to the parameter δ for the U.S.
cocaine epidemic.

4.2.1.3 Initiation Function Coefficient (α)

Figure 4.3 shows the bifurcation diagrams when the parameter α of the U.S.

parameter set varies. The dashed line at αbc = 0.009 represents the base case

coefficient in the initiation function and the black dots denote the base case

steady state values. At the point BS = (Ŝc, Âc, Ĉc) = (14.2123, 2.901, 2.901)

the saddle point Ê1 and the stable focus Ê2 collide. The critical parameter

value is αc = 0.00643419.
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Figure 4.3: Bifurcation diagrams with respect to the parameter α for the
U.S. cocaine epidemic.

4.2.1.4 Initiation Function Exponent (β)

We can find the bifurcation plots with regard to the important parameter β

in Figure 4.4. If the critical parameter value βc = 1 is reached, then there

is only one fixed point instead of two (see also Section 2.2). As opposed to

the other parameters, this equilibrium also exists if one reduces the expo-

nent in the initiation function further. The bifurcation point was detected

at (Ŝc, Âc, Ĉc) = (18.4556, 1.35544, 1.35544).
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Figure 4.4: Bifurcation diagrams with respect to the parameter β for the
U.S. cocaine epidemic.

4.2.1.5 Exit Rate from Active Use (µ)

Finally, we still want to look at the bifurcation plots associated with the exit

rate µ. Here, a blue sky bifurcation point appears at BS = (Ŝc, Âc, Ĉc) =

(14.2323, 2.33961, 2.33961). The corresponding critical parameter value is

given by µc = 0.205956 and is on the right-hand side of the base case param-

eter value µbc = 0.1661.
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Figure 4.5: Bifurcation diagrams with respect to the parameter µ for the
U.S. cocaine epidemic.

4.2.2 Australia

4.2.2.1 Bifurcation Analysis with regard to the Parameters k, δ,

α, and µ

For the Australian IDU epidemic only one parameter leads to a disruption in

the dynamical behavior under parameter variances. This is the exponent in

the initiation function, β. For the other parameters no bifurcations emerge.

This section merely shows the growth of the steady state values Ŝ and Â if

one of the parameters k, δ, α, or µ is changed. The following figures depict

the results.
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Figure 4.6: Bifurcation plots with respect to the parameters k and δ for the
Australian IDU epidemic.



CHAPTER 4. SENSITIVITY AND BIFURCATION ANALYSIS 32

Αbc

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Α0.0

0.1

0.2

0.3

0.4

0.5

0.6
S
`

Αbc

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Α0.0

0.1

0.2

0.3

0.4
A
`

Μbc

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Μ0.0

0.1

0.2

0.3

0.4
S
`

Μbc

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Μ0

1

2

3

4

5
A
`

Figure 4.7: Bifurcation plots with respect to the parameters α and µ for the
Australian IDU epidemic.
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4.2.2.2 Bifurcation Analysis with regard to the Parameter β

If the parameter β is increased relative to its base case, then two bifurcation

points occur. The first one at βc1 = 1.0795 and the second one at βc2 =

1.29002. As soon as the first critical value is reached, the number of steady

states changes. So far, the equilibrium was unique but now there are two

stationary points. These remain upright within a short area until they collide

with each other at the second critical parameter value.

If also negative steady state values were permitted, then there would be

two equilibria in the complete area until the second critical parameter value

is reached.
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Figure 4.8: Bifurcation plots with respect to the parameter β for the Aus-
tralian IDU epidemic.



Chapter 5

SAC Model vs. SA Model

Until now, we have already realized a variety of analyses with our SAC

model. However, it also makes sense to compare its dynamics with the SA

dynamics.

The dynamical system, examined in this thesis is

Ṡ = k − δ S − α Aβ S p
a

ηS−ηD

Ȧ = α Aβ S p
a

ηS−ηD − µ A

Ċ = c′ (ln(A) − ln(C)) C

and the formulation for the SA model is

Ṡ = k − δ S − α Aβ S

Ȧ = α Aβ S − µ A.

The two systems vary in the additional state variable C and in the price

function p(A,C) = A
C
. C represents the current ”throughput capacity” of

the supply network and its state equation is dependent on the parameter c′

which is given by c′ = c
ηS−ηD

. With our parameterization the denominator is

1 and so Ċ is only depending on the coefficient in the growth rate, c, with

the base value 0.15.

In this chapter, we will change this parameter and compare the respective

paths and prices with those of the two-state SA model. Please note that the

34
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bigger the parameter value is, the closer is the adaptation to the original SA

system. Formulated sloppily this means that if c = 0.15 is changed to c = ∞,

then the third state variable basically disappears.

This analysis is carried out for the U.S. cocaine epidemic with two differ-

ent initial values, (S(0), A(0)) = (10, 1.8) and (S(0), A(0)) = (10, 1.6). The

initial conditions were chosen such that once the high-use-equilibrium is ap-

proached and once Â = 0. For C(0) we use C(0) = A(0), C(0) = A(0)
2

, and

C(0) = 2A(0).

The results can be found in Figures 5.1 - 5.6. In some cases, the SAC

model does not yield any significant difference in comparison with the SA

dynamics. But there are also situations in which the SA model and the SAC

model behave very differently. In particular, SA can go to extinction but not

SAC and vice versa, if the parameter c is small enough (see Figure 5.2 and

Figure 5.4). In Figure 5.6 the two systems approach two different steady

states already for the base value c = 0.15. Even if the long-run outcome

is the same, there may be very different trajectories for getting there. We

conclude that it can play a large role depending on which of the two models

is used.
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Figure 5.1: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = A(0)) = (10, 1.8, 1.8).
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Figure 5.2: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = A(0)
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) = (10, 1.8, 0.9).
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Figure 5.3: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = 2A(0)) = (10, 1.8, 3.6).
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Figure 5.4: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = A(0)) = (10, 1.6, 1.6).
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Figure 5.5: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = A(0)

2
) = (10, 1.6, 0.8).
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Figure 5.6: Comparison between the SAC and the SA model for the U.S.
parameter set with (S(0), A(0), C(0) = 2A(0)) = (10, 1.6, 3.2).



Chapter 6

The Relative Efficiency and

Cost-Effectiveness of Treatment

and Supply Shocks at Different

Stages of the Epidemic

6.1 Treatment of U.S. Cocaine Use

This chapter deals with some strategic examinations, which can be seen as

a preliminary stage to an optimal control model. First, we are interested in

determining the relative efficiency of treatment at different stages of the drug

epidemic. In this connection, we deal with the exit from active use, µ, because

an increase of this parameter can be interpreted as resulting from successful

treatment of users. This means that µ has actually the form µ + u(t) and in

the uncontrolled model this control variable u(t) is equal to zero.

However, the quitting rate will not be increased arbitrarily or in some

optimal manner now. Rather, this will be the case only for one year and at

different stages of the epidemic. Therefore, µ is increased in the first year,

then in the second, and so on. These analyses are carried out for the first 50

years. Finally, we aim to determine that point in time where the effectiveness

of treatment is the greatest. More precisely, we are looking for that time at

42



CHAPTER 6. TREATMENT AND SUPPLY SHOCKS 43

which most users quit because of increased investments in treatment. Our

investigations are carried out on the basis of the objective functional

J =
∫

∞

0
e−rt A(t) dt,

which describes the discounted accumulation of users over an infinite plan-

ning horizon. We use a finite (T = 200) approximation to the infinite plan-

ning horizon

J =
∫ T

0
e−rt A(t) dt +

∫

∞

T
e−rt Â dt,

where the integral

∫

∞

T
e−rt Â dt = Â

∫

∞

T
e−rt dt = Â lim

N→∞

∫ N

T
e−rt dt = Â

e−rT

r

is added for a higher precision. Furthermore, we discount at an annual rate

of r = 0.04. The approach used here is similar to examinations pertaining to

prevention in another drug model as described in [Winkler et al., 2004].

The following analysis will be carried out for five different trajectories

with the respective initial values given by (S(0), A(0), C(0)) = (20, 2, 4),

(20, 2, 2), (20, 2, 1), (20, 4, 2), and (5, 7, 5). In the first case there is an

excess supply, while supply and demand coincide in the second case and

(S(0), A(0), C(0)) = (20, 2, 1) means an insufficient supply. The other two

initial conditions serve for comparison purposes. Please note that all select

trajectories converge to the high-use equilibrium Ê2 and therefore Â is at the

value 5.4888.

Every analysis requires two systems which are looked at: on the one hand

that one, where µ is unchanged, and on the other hand that one, where the

exit rate is increased. We will denote the corresponding trajectories by T0

and T1, respectively. Very first, the rise of µ is 1%, then 2%, then 5%, and

finally 10%.

Before looking at the results, we still have to describe the computation

of the cost functional associated with drug consumption. If we calculate the

value of J where µ is not increased, then we get

J0 =
∫ T

0
e−rt AT0

(t) dt +
∫

∞

T
e−rt Â dt.
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If the control intervention treatment, however, is ”switched on” in the

first year, then J1 calculates itself through

J1 =
∫ 1

0
e−rt AT1

(t) dt +
∫ T

0
e−r(t+1) AT0

(t) dt +
∫

∞

T+1
e−rt Â dt.

Special attention should be paid to the second integral here. The values of

the system T0 are used there, but the initial conditions must be in accordance

with the last values of the previous system, i.e. AT1
(1).

For the remaining years the calculation is given by

Ji =
∫ i

0
e−rt AT0

(t) dt +
∫ 1

0
e−r(t+i) AT1

(t) dt +

+
∫ T

0
e−r(t+i+1) AT0

(t) dt +
∫

∞

T+i+1
e−rt Â dt

with adjusted initial values.

The following figures finally show the results of our examinations. Since

the illustrations are very similar, only those results are shown where the exit

rate was increased by 1% and by 10%. Please note that the respective effects

are expressed as percentage.

We see clearly that the first three initial values (Figures 6.1-6.3 and 6.6-

6.8) as well as the 5th ones (Figures 6.5 and 6.10) yield the greatest effect in

the first year. This means that an x% increase of µ within the first year leads

to the lowest objective cost functional. This seems to be very plausible with

regard to the discounting. With (S(0), A(0), C(0)) = (20, 4, 2) it is different

(Figures 6.4 and 6.9). Here, the greatest effect does not occur right at the

beginning but only in the 8th year. This seems to be due to the higher value

of A(0). One possible conclusion is that treatment early in the epidemic is

more valuable than later.
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Figure 6.1: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 1%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.2: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 1%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.3: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 1%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.4: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 1%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.5: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 1%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (5, 7, 5).

10 20 30 40 50
t

152.6

152.8

153.0

153.2

J

10 20 30 40 50
t

0.1

0.2

0.3

0.4

0.5

effects

Figure 6.6: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 10%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.7: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 10%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.8: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 10%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.9: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 10%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.10: Plot of J and of the variation over time in the effectiveness of
treatment when µ is increased by 10%. The initial conditions for the system
with the U.S. parameter values are (S(0), A(0), C(0)) = (5, 7, 5).

Digging somewhat deeper in the interpretations, something very interest-

ing stands out. For the first initial values the decrease is not monotone. In

order to examine this issue more closely, we look at the normalized effects

and the normalized state variables within one graphic. Figure 6.11 shows

this for the first three initial conditions in which µ was increased by 1%.

The thick line describes the number of users. A connection with this state

is obvious, since a higher number of users also leads to higher impacts of

treatment, if the effects are assumed to be proportional and not in absolute

terms. One can recognize that the effects start to climb shortly before the

peak in A(t) is reached.
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Figure 6.11: Normalized effects and state variables for (S(0), A(0), C(0)) =
(20, 2, 4), (20, 2, 2), and (20, 2, 1) when the exit from U.S. cocaine use is
increased by 1%.
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6.2 The Effects of a Supply Shock

Many illicit drug epidemics have experienced at least one significant supply

shock. One prominent example is the recent Australian ”heroin drought”

(see, e.g., [Bultmann et al., 2008a,b], [Degenhardt et al., 2005], [Weather-

burn et al., 2002]). In this section, we deal with such disruptions. In this

connection this means that suddenly the supply could increase or drop at

any time within the epidemic. One can interpret a change of C as follows:

more/less is invested in the control of the supply side (dealers, etc.), so the

drug price changes which in turn influences the consumers.

To simulate and investigate the effects of a supply shock, we project the

model forward from the starting point. Then, we project it again from the

same starting point except that C(0) is cut or raised by, say, one-half. We

repeat this exercise for various initial conditions corresponding to different

stages of the epidemic. The examinations are conducted under the same pre-

conditions and with the same initial values as in the previous section. Again,

we want to determine the biggest effect. The effects are again measured by

the discounted, aggregated number of users, i.e. the objective functional

J =
∫

∞

0
e−rt A(t) dt.

6.2.1 United States

At the beginning, we want to look at the consequences of a supply shock

graphically. For this purpose, we consider a concrete scenario. The ”through-

put capacity” of the supply network is changed by a strong supply shock

(50%) 10 years after the epidemic has started at the initial values (S(0), A(0),

C(0)) = (20, 2, 2). We start with the first case when C drops. By means of

this change, the number of users also goes down, but to a lower extent. Con-

sequently, the price increases what is plausible, since due to stronger controls

on the part of the police, higher ”costs” are caused to the dealers and this

in turn affects the price. On the other hand, the higher price suppresses

initiation. If C is increased, then we get opposite results. The evolution of

the states, the price and the initiation are shown in Figures 6.12 and 6.13.
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Figure 6.12: Evolution of the state variables, the price and initiation for
(S(0), A(0), C(0)) = (20, 2, 2), if the U.S. cocaine supply is cut by 50% after
10 years.
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Figure 6.13: Evolution of the state variables, the price and initiation for
(S(0), A(0), C(0)) = (20, 2, 2), if the U.S. cocaine supply is increased by 50%
after 10 years.
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Next, we want to deal with the case where we start from the equilibrium

Ê2 = (Ŝ2, Â2, Ĉ2) = (7.1076, 5.4888, 5.4888). That means, we already are in

the steady state when the 50% supply shock occurs. Figures 6.14 and 6.15

show the progression of the states, the price and the initiation. We observe

that a supply shock of this magnitude disrupts the system for several decades.
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Figure 6.14: Evolution of the state variables, the price and initiation for
(S(0), A(0), C(0)) = Ê2 = (7.1076, 5.4888, 5.4888), if the U.S. cocaine supply
is reduced by 50%.
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Figure 6.15: Evolution of the state variables, the price and initiation for
(S(0), A(0), C(0)) = Ê2 = (7.1076, 5.4888, 5.4888), if the U.S. cocaine supply
is increased by 50%.
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We now return to the question, when in an epidemic the effects of a supply

shock are strongest. For that purpose, we will look at 5%, 10%, 25%, and

finally 50% supply shocks in both directions. We will start with the same

initial values as the ones used for the treatment section, and the objective

functional J0 is calculated as follows:

J0 =
∫ T

0
e−rt A(t) dt +

∫

∞

T
e−rt Â dt.

Thus, a finite (200-year) approximation to the infinite planning horizon is

used with Â = 5.4888.

If we start at the same point, but increase or reduce C(0), then we get

J̃0 =
∫ T

0
e−rt Ã(t) dt +

∫

∞

T
e−rt Â dt.

The calculation for supply shocks in the further years has one more stage.

The trajectory is evaluated ”normally” until time i, the last state values are

then used as initial values in which C is additionally changed. So,

Ji =
∫ i

0
e−rt A(t) dt +

∫ T

0
e−r(t+i) Ā(t) dt +

∫

∞

T+i
e−rt Â dt.

Finally, Figures 6.16-6.35 show our results. We can see that for all chosen

initial values the effect is the greatest right in the 0th year. Since this applies

to all analyses, only the 5% and the 50% supply shock is represented here.
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Figure 6.16: Illustration of J and of the effects (as percentage) when C is cut
by 5%. The initial conditions for the system with the U.S. parameter values
are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.17: Illustration of J and of the effects (as percentage) when C is cut
by 5%. The initial conditions for the system with the U.S. parameter values
are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.18: Illustration of J and of the effects (as percentage) when C is cut
by 5%. The initial conditions for the system with the U.S. parameter values
are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.19: Illustration of J and of the effects (as percentage) when C is cut
by 5%. The initial conditions for the system with the U.S. parameter values
are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.20: Illustration of J and of the effects (as percentage) when C is cut
by 5%. The initial conditions for the system with the U.S. parameter values
are (S(0), A(0), C(0)) = (5, 7, 5).
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Figure 6.21: Illustration of J and of the effects (as percentage) when C

is increased by 5%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.22: Illustration of J and of the effects (as percentage) when C

is increased by 5%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.23: Illustration of J and of the effects (as percentage) when C

is increased by 5%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.24: Illustration of J and of the effects (as percentage) when C

is increased by 5%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.25: Illustration of J and of the effects (as percentage) when C

is increased by 5%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (5, 7, 5).
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Figure 6.26: Illustration of J and of the effects (as percentage) when C is
cut by 50%. The initial conditions for the system with the U.S. parameter
values are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.27: Illustration of J and of the effects (as percentage) when C is
cut by 50%. The initial conditions for the system with the U.S. parameter
values are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.28: Illustration of J and of the effects (as percentage) when C is
cut by 50%. The initial conditions for the system with the U.S. parameter
values are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.29: Illustration of J and of the effects (as percentage) when C is
cut by 50%. The initial conditions for the system with the U.S. parameter
values are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.30: Illustration of J and of the effects (as percentage) when C is
cut by 50%. The initial conditions for the system with the U.S. parameter
values are (S(0), A(0), C(0)) = (5, 7, 5).
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Figure 6.31: Illustration of J and of the effects (as percentage) when C

is increased by 50%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 4).
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Figure 6.32: Illustration of J and of the effects (as percentage) when C

is increased by 50%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 2).
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Figure 6.33: Illustration of J and of the effects (as percentage) when C

is increased by 50%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 2, 1).
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Figure 6.34: Illustration of J and of the effects (as percentage) when C

is increased by 50%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (20, 4, 2).
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Figure 6.35: Illustration of J and of the effects (as percentage) when C

is increased by 50%. The initial conditions for the system with the U.S.
parameter values are (S(0), A(0), C(0)) = (5, 7, 5).

Admittedly, these results are not really significant, since only five initial

values were considered. For this reason, we want to expand our examinations

a little. In particular, we look at the (A, S)-plane and form a grid consisting

of 40× 40 points, which are now the initial values. For the supply at the ini-

tial state, we use C(0) = A(0) and C(0) = A(0)
2

. Then, a 50% supply shock is

simulated for each of these initial conditions. This means that the supply is

cut by one-half and also at different stages of the epidemic. For the purpose

of reducing the computing time, we only consider the first 15 years for the

U.S. cocaine use. Furthermore, there are now trajectories which converge to

Â = 0, so in this case the last integral drops out of the calculation.

After calculating the objective functionals, the year with the strongest

effect is assigned to every initial value. The corresponding results are repre-

sented in Figures 6.36 and 6.37. If supply and demand coincide, then there

are initial states where the strongest effect of a supply shock occurs only after

10 years. For C(0) = A(0)
2

the maximum effect is after 8 years.

In the case where C(0) = A(0), we go for another analysis. We consider

two concrete initial values: one within the white area (highest efficiency early)

and one within the black area (highest efficiency late) and both close together.

For that purpose, we choose (S(0), A(0), C(0)) = (4.97533, 10.9776, 10.9776)

and (S(0), A(0), C(0)) = (4.26457, 10.9776, 10.9776). While in the first case

the effect is the biggest already in the 0th year, the second initial condi-

tions show their strongest effect only in the 10th year. If one compares the
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respective state paths (see Figure 6.38), then something interesting stands

out. Primarily the evolution of the numbers of users is very similar over time,

but the control-recommendation is completely different. It is reasonable to

assume that in an optimal control formulation, this model will exhibit so-

called DNSS thresholds ([Grass et al., 2008]).
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Figure 6.36: Years, where the consequence of a shock is the biggest when the
U.S. cocaine supply is reduced by 50% and C(0) = A(0).
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Figure 6.37: Years, where the consequence of a shock is the biggest when the
U.S. cocaine supply is reduced by 50% and C(0) = A(0)
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Figure 6.38: Comparison of the states, the price and the initiation for
(S(0), A(0), C(0)) = (4.97533, 10.9776, 10.9776) with a 50% supply shock
at the beginning of the U.S. cocaine epidemic and for (S(0), A(0), C(0)) =
(4.26457, 10.9776, 10.9776) with a 50% supply shock after 10 years.
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In the next and last examination C(0) shall not be reduced by a certain

percentage, but rather by an absolute value λ for the purpose of allowing some

kind of ”cost-effectiveness” analysis. Again, we deal with 40×40 initial points

in the (A, S)-plane in which C(0) and A(0) are assumed to be equal. For

determining the effects, the trajectory emanating from (S(0), A(0), C(0)) is

used first and then that one which originates from (S(0), A(0), C(0)−λ). We

will denote the corresponding cost functionals by J and J̃ and subsequently

calculate the relation J−J̃
λ

. The bigger this value is, the bigger is the benefit or

the damage per unit of capacity destroyed (depending on whether the values

are positive or negative, respectively). However, here we are not using only

the number of users as a measure, but we also look at three other objective

functional forms:

J1 =
∫

∞

0
e−rt A(t) dt

J2 =
∫

∞

0
e−rt C(t) dt

J3 =
∫

∞

0
e−rt p−0.5 A(t) dt

J4 =
∫

∞

0
e−rt p0.5 A(t) dt.

This means that also some proxy for the number of drug sellers (J2), the

quantity of drugs consumed (J3), and the amount spent on drugs (J4) are

added. Furthermore, we consider three different scenarios: λ = 1, λ = 2, and

finally λ = 4.

Figures 6.39-6.50 show the results. For ease of exposition and compari-

son, a suitable scaling was used. All values were divided by the minimum of

all values and then the logarithm to the base 2 was applied so that all values

start from 0.

The black curves in these graphs correspond to the isocline Ȧ = 0 whereas

the black dashed lines indicate the isocline Ṡ = 0. In each case, the steady

state Ê2 is depicted as a black dot. Besides, for J4 the values J−J̃
λ

are always

negative and for this reason the absolute value was taken here and so no

benefit but a damage is represented.
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It is interesting to see that the policy recommendations are fairly similar

for J1, J2, and J3, while for J4, everything is different. In other words,

policy makers who care about the amount of money spent for drugs should

act differently than those who neglect this part of social costs. Another

obvious finding is that the larger the reduction λ, the smaller is the benefit

per unit reduction, which is less surprising.
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Figure 6.39: Illustration of the benefit, measured in terms of J1 and in which
the U.S. cocaine supply is reduced by λ = 1.
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Figure 6.40: Illustration of the benefit, measured in terms of J2 and in which
the U.S. cocaine supply is reduced by λ = 1.
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Figure 6.41: Illustration of the benefit, measured in terms of J3 and in which
the U.S. cocaine supply is reduced by λ = 1.
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Figure 6.42: Illustration of the damage, measured in terms of J4 and in
which the U.S. cocaine supply is reduced by λ = 1.
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Figure 6.43: Illustration of the benefit, measured in terms of J1 and in which
the U.S. cocaine supply is reduced by λ = 2.
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Figure 6.44: Illustration of the benefit, measured in terms of J2 and in which
the U.S. cocaine supply is reduced by λ = 2.
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Figure 6.45: Illustration of the benefit, measured in terms of J3 and in which
the U.S. cocaine supply is reduced by λ = 2.
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Figure 6.46: Illustration of the damage, measured in terms of J4 and in
which the U.S. cocaine supply is reduced by λ = 2.
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Figure 6.47: Illustration of the benefit, measured in terms of J1 and in which
the U.S. cocaine supply is reduced by λ = 4.
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Figure 6.48: Illustration of the benefit, measured in terms of J2 and in which
the U.S. cocaine supply is reduced by λ = 4.
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Figure 6.49: Illustration of the benefit, measured in terms of J3 and in which
the U.S. cocaine supply is reduced by λ = 4.

4 5 6 7 8 9 10

5

10

15

20

25

A

S

0-1

8-9

Figure 6.50: Illustration of the damage, measured in terms of J4 and in
which the U.S. cocaine supply is reduced by λ = 4.



CHAPTER 6. TREATMENT AND SUPPLY SHOCKS 71

6.2.2 Australia

For the examinations of this chapter, so far, only the U.S. parameter values

were substituted into our base model. The last two analyses, however, were

carried out also for the Australian IDU epidemic. Figures 6.51-6.64 summa-

rize the results for the cases λ = 0.05, λ = 0.1, and λ = 0.2. The conclusions

we can draw are qualitatively the same as those for the U.S. cocaine epidemic.
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Figure 6.51: Years with the strongest effect, when the Australian ID-supply
is reduced by 50% and C(0) = A(0).
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Figure 6.52: Years with the strongest effect, when the Australian ID-supply
is reduced by 50% and C(0) = A(0)
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Figure 6.53: Illustration of the benefit, measured in terms of J1 and in which
the Australian ID-supply is reduced by λ = 0.05.
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Figure 6.54: Illustration of the benefit, measured in terms of J2 and in which
the Australian ID-supply is reduced by λ = 0.05.
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Figure 6.55: Illustration of the benefit, measured in terms of J3 and in which
the Australian ID-supply is reduced by λ = 0.05.
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Figure 6.56: Illustration of the damage, measured in terms of J4 and in
which the Australian ID-supply is reduced by λ = 0.05.
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Figure 6.57: Illustration of the benefit, measured in terms of J1 and in which
the Australian ID-supply is reduced by λ = 0.1.
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Figure 6.58: Illustration of the benefit, measured in terms of J2 and in which
the Australian ID-supply is reduced by λ = 0.1.
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Figure 6.59: Illustration of the benefit, measured in terms of J3 and in which
the Australian ID-supply is reduced by λ = 0.1.
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Figure 6.60: Illustration of the damage, measured in terms of J4 and in
which the Australian ID-supply is reduced by λ = 0.1.
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Figure 6.61: Illustration of the benefit, measured in terms of J1 and in which
the Australian ID-supply is reduced by λ = 0.2.
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Figure 6.62: Illustration of the benefit, measured in terms of J2 and in which
the Australian ID-supply is reduced by λ = 0.2.
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Figure 6.63: Illustration of the benefit, measured in terms of J3 and in which
the Australian ID-supply is reduced by λ = 0.2.
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Figure 6.64: Illustration of the damage, measured in terms of J4 and in
which the Australian ID-supply is reduced by λ = 0.2.



Chapter 7

Conclusions and Suggestions

for Extensions

This thesis was devoted to a dynamic three-state model of drug epidemics

derived from the well-known two-state SA model. In addition to susceptible

non-users and users of a drug, also the ”throughput capacity” of the drug

supply network was integrated. Hence, drug supply, price, and demand got

connected with each other. Examinations were carried out for two different

drug epidemics in two different countries, i.e. the U.S. cocaine use and the

Australian injection drug use.

The main purpose of the first part was to analyze the uncontrolled model.

This means that the steady states were determined and afterwards their sta-

bility behavior was analyzed. A sensitivity and bifurcation analysis was con-

ducted in order to deal with the problem that such base parameterizations

can never be exact. Furthermore, the SAC and SA dynamics was com-

pared with each other, which yielded some very interesting results. Having

mastered this, we focused on some strategic examinations as a preliminary

stage to the optimal control framework. We have interpreted an increase of

the parameter µ as a successful method of treatment through which more

users quit, and then the relative efficiency of treatment at different stages

of a drug epidemic was investigated. Subsequently, we have also dealt with

supply shocks. We looked at shocks of different size at different stages of

78
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the epidemic, and these analyses have represented one main emphasis of this

thesis. Altogether, the U.S. parameterization has provided the more inter-

esting and more insightful results. This perhaps can be explained by β > 1.

We want to conclude this thesis by pointing to some possible extensions

that may be taken into consideration in future work.

• Probably, the most important extension would be to look at the optimal

control model, in which optimal drug control strategies can be derived.

Our preliminary results suggest that we may expect DNSS ”tipping”

thresholds in an optimal control formulation. It will be particularly

interesting to see how the policy recommendations change depending

on which of the cost components (i.e., number of users, size of through-

put capacity, amount of drugs used, amount of money spent on drug

use) are considered in the objective functional and/or how they are

weighted.

• Since in our approach the drug price p effects prevalence only through

initiation, the parameter a should probably be increased from 0.25 to

0.5. Another possibility is to let also the exit from active use to depend

on price.

• Further sensitivity analyses for the exponent in the initiation function,

β, should be carried out. Some other hypothetical parameter scenarios

(e.g., β = 1.25 or β = 1) could be considered.

• We chose the logarithm as one specific functional form in the equation

for the throughput capacity. Other functional forms might be consid-

ered.

• Chapter 5 leaves a lot of room for further examinations. For instance,

what is the closest to base case situation for which SAC trajectories

look very different than SA trajectories? How small could a supply

shock be so that SAC still looks different than SA? What parameter

values tend to make the C-state more important in the sense of making

SAC look different from SA?
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• An extension of the cost-effectiveness-analyses in Chapter 6 seems worth-

while. Here, the results could also be shown in terms of impact per per-

son removed by treatment. This means that the number of users would

be reduced by an absolute value λ instead of the current throughput

capacity of the supply network.
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state Ê for the Australian parameterization. . . . . . . . . . . 24

91



Acknowledgements

This thesis is the highlight of all my years of study at the Vienna University

of Technology, but without the support of several people this would not have

been feasible.

First and foremost, I would like to thank my supervisor Gernot Tragler

for his support, patience and for sharing his wisdom and experiences. At this

point, I would also like to thank Jonathan P. Caulkins for his indispensable

comments and inputs.

Part of the work for this thesis was supported financially by the Austrian

Science Fund (FWF).

Finally, I would like to thank my family and all my friends for their

support while I was working on this thesis. In particular, I would like to

thank my boyfriend.

92


