
 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



—— To my parents ——



Abstract

This thesis deals with network coding for wireless relay networks. Network coding

is a technique which, in contrast to routing, allows intermediate network nodes to

combine the data received from multiple sources for subsequent transmission. It has

been shown that network coding is necessary to achieve capacity in networks with

multicast transmission. Moreover, it is known that the separation of network coding

and channel coding is suboptimal in general. It is therefore advantageous to perform

joint network-channel coding at the physical layer. This applies in particular to wireless

networks, where the individual network nodes are connected to each other by error-

prone links.

We first give a brief introduction to network coding and discuss the state of the

art in channel coding and relay-based transmission. Then, we present a physical layer

network coding scheme for the multiple-access relay channel (multiple sources assisted

by a single relay). Contrary to existing schemes, our method builds on forwarding of

soft information about the network-coded bits. This has the advantage that error-free

decoding at the relay is not required. Subsequently, the processing at the relay and

at the destination, which employs an iterative joint network-channel decoder, is de-

scribed in full detail. Furthermore, the issue of log-likelihood ratio (LLR) quantization

is discussed. We show that proper LLR quantization is vital for the performance of

the proposed system. Finally, numerical simulation results for different transmission

settings are presented. A comparison with reference systems shows the gains achieved

with our physical layer network coding scheme.
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Kurzfassung

Diese Diplomarbeit beschäftigt sich mit Netzkodierung für drahtlose Relaisnetze. Netz-

kodierung ist eine Technik die es den Netzknoten, im Gegensatz zu Routing, erlaubt, Da-

ten von mehreren Quellen für die darauffolgende Übertragung zu kombinieren. Es wurde

gezeigt, dass Netzkodierung notwendig ist um die Kapazität in Netzen mit Multicast-

Übertragung zu erreichen. Darüber hinaus ist bekannt, dass die Trennung von Netzko-

dierung und Kanalkodierung im Allgemeinen suboptimal ist. Es ist daher vorteilhaft,

Netz- und Kanalkodierung gemeinsam auf der physikalischen Schicht durchzuführen.

Das trifft insbesondere auf drahtlose Netze zu, in denen die einzelnen Netzknoten durch

fehleranfällige Übertragungsstrecken miteinander verbunden sind.

Zuerst geben wir eine kurze Einführung in die Netzkodierung und behandeln den

Stand der Technik bezüglich Kanalkodierung und relaisbasierter Übertragung. Danach

präsentieren wir ein Übertragungsschema mit Netzkodierung auf der physikalischen

Schicht für den Mehrfachzugriffsrelaiskanal. Im Gegensatz zu bestehenden Übertra-

gungsverfahren basiert unsere Methode auf der Weiterleitung von
”
soft“ Information

über die netzkodierten Daten. Dies hat den Vorteil, dass eine fehlerfreie Dekodierung

am Relaisknoten nicht erforderlich ist. Anschließend wird die Signalverarbeitung am

Relais- und am Empfangsknoten, der einen iterativen Netz- und Kanaldekoder ein-

setzt, ausführlich beschrieben. Zudem wird die Quantisierung von
”
log-likelihood rati-

os“ (LLRs) besprochen. Wir zeigen, dass eine korrekte LLR Quantisierung entscheidend

für die Leistungsfähigkeit des vorgeschlagenen Systems ist. Zum Abschluss präsentieren

wir numerische Simulationsergebnisse für unterschiedliche Übertragungsparameter. Ein

Vergleich mit Referenzsystemen zeigt die Gewinne, die durch unser Übertragungs-

verfahren mit Netzkodierung auf der physikalischen Schicht erzielt werden.
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1

Introduction

Since the publication of the seminal paper on network information flow by Ahlswede

et. al., network coding [1] has attracted increasing attention in the information theory

and communications research communities. The core notion of network coding is to

allow intermediate network nodes to combine the data received from multiple links for

subsequent transmission.

In the above mentioned paper, the authors show that, contrary to one’s intuition,

it is in general not optimal to consider the information to be multicast in a network as

a “fluid” which can simply be routed or replicated at the intermediate nodes. Rather,

network coding has to be employed in order to achieve optimality.

Before we continue our introduction to network coding, let us first define the terms

unicast, multicast and broadcast.

Definition 1.1. A unicast denotes the transmission of information from one source to

one sink. The term multicast is used for transmissions from a single source to multiple

sinks. Finally, a transmission from one source to all available sinks is referred to as

broadcast. In the multicast and broadcast case, all receiving sinks want to obtain the

same information.

1
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It is well known that the maximum information flow in networks with one source

and a single sink is limited by the weakest set of links which completely cut the source

from the sink. This cut can be seen as a bottleneck for the information flowing from

the source to the sink. The max-flow min-cut theorem [2] provides a way to calculate

the maximum information flow in any (single source, single sink) network. In this case

the maximum flow can be achieved by routing. Note that routing is in fact a special

case of network coding.

However, in the case of a network with multiple sinks, i.e., for a multicast transmis-

sion, it is not obvious how to determine the maximum information flow. In [1] it has

been shown that in the multicast case the max-flow min-cut interpretation is still valid.

Moreover, network coding is mandatory in order to achieve the maximum information

flow. This major result of [1] is summarized in the following theorem.

Theorem 1.1. Consider a network with K sources, each transmitting at a certain rate,

and N sinks, where each sink wants to decode all sources. If the source rates are such

that, without network coding, the network can support each sink in isolation (i.e. each

sink can decode all sources in case it is the only sink in the network), then there exists

a (linear) network code such that the network can support all sinks simultaneously.

In the following, we will describe the basic principle of network coding in terms of

a simple example.

Example 1.1. Let us consider a network with one source and two sinks as it is depicted

in Figure 1.1. This network is sometimes referred to as “butterfly network” [1]. Here,

we wish to multicast the bits u1 and u2 from the source node A to the sink nodes F and

G. Each point-to-point link in the network is assumed to be error-free with a capacity

of 1 bit per channel use.

A routing solution to this problem is shown in Figure 1.2(a). Note that the link

from node D to node E has to be used twice in this case.

The aforementioned bottleneck can be circumvented if we allow network coding,

see Figure 1.2(b). Here, node D combines the incoming bits and transmits the bit

u3 = u1 ⊕ u2. Each sink receives u3 and one of the bits u1, u2. The remaining bit can

be recovered by reversing the encoding operation performed at node D, i.e., node F

obtains u2 = u3⊕ u1 and, similarly, node G decodes u1 = u3⊕ u2. In this example, one

bit less has to be transmitted and we can therefore save one channel use.

In addition, we can also observe that in this example, network coding will increase

the throughput. Considering the transmission of an (infinite) stream of bits u1 and u2,

one can see that with network coding both sinks can simultaneously receive 2 bits per
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Figure 1.1: Error-free network with one source node and two sink nodes. Each point-
to-point link has a capacity of 1 bit per channel use.
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Figure 1.2: Transmission of two bits, u1 and u2 , from node A to the nodes F and G.
Note that in (a) we cannot transmit u1 and u2 simultaneously from node
D to E.
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time instant. On the other hand, if we do not allow coding at the network nodes, the

sink nodes will, on average, receive only 1.5 bits per time instant.

This example shows that even a very simple network code can provide significant

gains.

• A throughput of 2 bits is achievable. This is a gain of 33.3 % compared to the 1.5

bits obtained without network coding.

• We save 10 % in channel uses compared to the routing solution, because we need

to transmit one bit less.

�

Although Theorem 1.1 is stated in terms of multicast flows, network coding can

be beneficial also for other traffic types such as unicast flows transmitted by multiple

sources. Furthermore it is important to note that the authors of [1] considered error-free

networks only. In an error-free network, each link can transport information at a given,

deterministic rate without introducing any residual decoding errors.

An implementation of network coding could, for instance, combine messages at the

packet level, i.e., on the network layer. Today, a number of applications use random

network coding [3] in such settings, e.g., for large-scale file distribution systems [4],

[5]. In random network coding, intermediate nodes combine incoming messages at

random in a completely independent and decentralized manner. This strategy has the

advantage that network nodes do not need to have any knowledge about the network

topology. Moreover, the randomized approach is robust against node departures and

link failures. In order to allow decoding of randomly network-coded messages, the

transmitted packets have to contain an encoding vector in addition to the payload

data. The encoding vector specifies the coefficients which were used to combine the

messages included in the respective packet. A sink node can decode N transmitted

messages as soon as it has received sufficiently many packets containing (at least) N

linearly independent encoding vectors.

From a physical layer point of view, real transmission links are never completely

error-free due to the presence of impairments like interference, signal distortion and

noise. Therefore the assumption of error-free links is reasonable only if network coding

is applied on top of a sophisticated physical layer, employing forward error correction

(FEC) and automatic repeat request (ARQ) techniques. Due to the physical nature

of wireless channels, it is, in contrast to wireline networks, practically impossible to

ensure completely error-free links in the wireless domain. Hence, a joint network-

channel coding approach is more promising for wireless systems. In addition it has been
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shown that joint network-channel coding is superior to separate network and channel

coding [6].

Recently, the application of the network coding principle to wireless cooperative net-

works has received tremendous attention from the research community. Using network

coding we can alleviate the loss in spectral efficiency, which is due to the half-duplex

constraint of practical wireless systems. Furthermore, in a wireless scenario, the broad-

cast nature of radio waves can be exploited to increase power efficiency.

The term “physical layer network coding” (PLNC) has been coined for a set of

techniques combining channel coding and network coding in various relay-based com-

munication scenarios, such as two-way communication, multiple access, multicasting,

and broadcasting. In this thesis we use the terms “physical layer network coding” and

“joint network-channel coding” (JNCC) interchangeably. PLNC is also referred to as

“algebraic code superposition” [7] by some authors.

Relay-based cooperative networks are now also being considered by standardization

organizations. The 3rd Generation Partnership Project (3GPP), for example, considers

the introduction of relays for users located at the edge of a cell in order to increase

throughput and coverage area [8].

The main goals of this thesis are to study PLNC at relays and to analyze the gains

PLNC can provide in wireless relay networks.

1.1 Outline

This thesis investigates PLNC in wireless relay networks and provides an extensive

analysis of a PLNC scheme for the multiple-access relay channel (MARC). Moreover,

we discuss quantization of soft information which turns out to be an important issue

for certain relay-based transmission schemes.

The text at hand is structured as follows.

• The remainder of this chapter describes the state of the art in channel coding and

relay-based transmission schemes.

• The starting point of Chapter 2 is the physical layer network coding scheme

presented in [9]. We improve and extend this scheme in several directions. A

detailed description of the processing at each node, with a focus on the iterative

decoder at the destination, is given. Furthermore, reference systems, which will

be used for performance comparison, are introduced.
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• In Chapter 3 we discuss the important issue of soft information quantization.

A comparison between different quantizer design methods is given. From this

comparison it can be seen that proper log-likelihood ratio (LLR) quantization is

vital for the system performance.

• In Chapter 4 numerical simulation results of our PLNC scheme are presented.

We show the BER performance of our PLNC scheme for a wide range of scenarios

and system parameters. Furthermore, a comparison with reference systems shows

the gains that are obtained using our PLNC scheme.

• Finally, Chapter 5 concludes this thesis with a summary and proposes several

directions for future research.

1.2 State of the Art

1.2.1 Channel Coding

Channel Capacity: The promise of channel coding. In Shannon’s ground-

breaking 1948 paper [10], it has been shown that reliable communication over a noisy

channel is possible, with an arbitrarily small error probability, as long as the rate R

does not exceed the channel capacity C. Furthermore, error-free communication cannot

be achieved if R > C. In this case the probability of a decoding error is bounded away

from zero.

Channel coding introduces redundancy in a controlled manner, in order to protect

against transmission errors. Random codes with large blocklength are used in the

proof of the channel capacity theorem. Unfortunately, such codes are not practical

because they do not provide any structure to allow encoding and decoding with feasible

computational complexity. Therefore, all practically relevant channel codes allow for

efficient encoding and decoding due to their inherent structure.

Before we describe some important types of channel codes, we will introduce the

notion of soft information.

Soft Information and log-likelihood ratios. Let us consider the transmission

of data over a noisy channel with the input-output relation y = x + w, where x

is the transmitted signal and w is additive noise, statistically independent of x and

distributed according to some known pdf. Over this channel we want to transmit a

block of information bits u, which we encode using a linear channel code with generator

matrix G. Let ϕ(·) denote the modulator mapping, i.e., the mapping from the code
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bits to the transmitted signal. Then, we obtain y = ϕ(Gu) + w = ϕ(c) + w for the

received signal, where c is a vector of code bits.

At the receiver, the signal y is first processed by a demodulator, whose output is

then fed into the channel decoder. It is well known that, in a coded system, the receiver

should use soft decisions instead of hard decisions in order to decrease the probability

of residual decoding errors [11].

In contrast to hard decisions, soft decisions also reveal the reliability associated

to the respective observation. The a posteriori probability (APP) P{ci = 0 |y} is a

proper measure of the reliability information about the code bit ci. There is, of course,

P{ci = 1 |y} = 1 − P{ci = 0 |y}. Often, it is more convenient to work with log-

likelihood ratios (LLRs) instead of bit probabilities. The a posteriori LLR of ci, given

the observation y, is defined as1

Λ(ci |y) = log
P{ci = 1 |y}
P{ci = 0 |y} . (1.1)

The relation between a LLR Λ(ci |y) and the hard decision ĉi is2

ĉi =

0, Λ(ci |y) < 0

1, Λ(ci |y) ≥ 0
, (1.2)

i.e., the sign of Λ(ci |y) contains the information about the value of the bit. The

magnitude of the LLR expresses the reliability of the associated hard decision. A large

(small) value |Λ(ci)| corresponds to more (less) certainty about the value of the bit ci.

The representation of soft information by LLRs is fully equivalent to using a poste-

riori bit probabilities. Given some LLR value Λ(ci), we obtain

p(b) =
ebΛ(ci)

1 + eΛ(ci)
, (1.3)

where p(b) = P{ci = b |y} and b ∈ {0, 1}.
For two statistically independent bits u1 and u2, one can readily see that

Λ(u1 ⊕ u2) = log
eΛ(u1) + eΛ(u2)

1 + eΛ(u1)+Λ(u2)
= −2 atanh

(
tanh

(
Λ(u1)

2

)
tanh

(
Λ(u2)

2

))
. (1.4)

1With a slight abuse of notation, the conditioning will be suppressed in case it is clear from the
context that Λ denotes an a posteriori LLR. Also note that some authors define LLRs such that the
sign is flipped compared to our definition.

2In case the pdf of Λ(ci |y), fΛ(ξ), is continuous at ξ = 0 (which is usually true) it does not matter
if we attribute Λ = 0 to ĉi = 0 or to ĉi = 1.
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To simplify notation, we will usually express the above calculation in terms of the

“boxplus” operator “�” as

Λ(u1)� Λ(u2) , Λ(u1 ⊕ u2), (1.5)

i.e., the boxplus in the LLR domain is analogous to the modulo-2 addition in the bit

domain. Note that the pair (R,�) forms an abelian monoid. A further introduction to

LLR algebra is given in [12].

Convolutional Codes. In contrast to block codes, convolutional codes are not re-

stricted to finite-length data blocks that are encoded independently of each other.

Rather, a stream of information bits uk is mapped to a stream of code bits cn.

Encoders for convolutional codes have an internal frame structure. The sequence

uk is split up into data frames of length K each. Then, the sequence of data frames is

mapped to a sequence of code frames of length N ≥ K each. The encoding procedure

is not memoryless. Each code frame depends on the current data frame and the past

m data frames. Here, m denotes the frame memory order defined as

m = max
j=0,...,K−1

mj, (1.6)

where mj is the length of the jth shift register. Therefore, the frame memory order is

equal to the encoder’s maximum shift register length. For brevity we will henceforth

denote the frame memory order m as encoder memory.

In most communication systems, data is usually organized in blocks of a certain

length. In order to convert a convolutional code into a linear block code, two standard

modifications, known as termination and truncation, can be applied. We then obtain

a code rate R of (roughly) K/N , assuming the blocklength is large compared to the

encoder memory m.

Whereas for block codes, a large blocklength is required for good performance, the

performance of convolutional codes is mainly determined by the encoder memory m.

Practical convolutional codes show reasonable performance, also for relatively short

blocklength (after termination or truncation). However, they are far away from attain-

ing the Shannon limit, i.e., channel capacity.

Linear shift register circuits provide an efficient way of implementing encoders for

convolutional codes. Encoders for non-systematic convolutional codes (NSCCs) are

usually implemented by feedforward shift register circuits, whereas shift register cir-

cuits with feedback are commonly used to implement encoders for recursive systematic
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Figure 1.3: Shift register implementation of a rate 1/2 recursive systematic convolu-
tional code with generator polynomials (23 , 37 )8 .

convolutional codes (RSCCs).

Figure 1.3 shows an encoder for an RSCC with K = 1, N = 2 and generator

polynomials (23, 37)8, where the first generator polynomial, 238, corresponds to the

feedback part of the encoder. The generator polynomials are given in octal notation

and they specify which outputs of the shift register taps are used to form the respective

code sequence c
(i)
k . The block labeled “P/S” denotes a parallel to serial converter, which

interleaves the sequences c
(0)
k and c

(1)
k to produce a single output sequence cn.

There are numerous algorithms for decoding convolutional codes. The Viterbi algo-

rithm [13] is based on the trellis representation of a convolutional code and performs

(approximate) maximum likelihood sequence decoding. There is also a soft-output vari-

ant of the Viterbi algorithm (SOVA) [14]. The BCJR algorithm [15] also belongs to

the class of graph-searching decoding techniques. However, in contrast to the Viterbi

algorithm, the BCJR algorithm performs (soft-output) maximum a posteriori symbol

decoding and thus minimizes the symbol error probability. Unfortunately, this comes

at the price of a higher computational complexity, compared to the Viterbi algorithm.

The computational complexity of the BCJR algorithm grows exponentially with the

encoder memory m and linearly with the blocklength.

Other decoding techniques, known as sequential decoding, are well suited for decod-

ing convolutional codes with large encoder memory m (corresponding to a large number

of trellis states). Examples for sequential decoding techniques are the Fano algorithm

and the stack algorithm [16].

Parallel Concatenated Convolutional Codes (PCCCs). PCCCs, better known

as turbo codes [17], have revolutionized channel coding since their introduction in 1993.

Turbo codes were the first practical channel codes that enabled reliable transmission

over the AWGN channel at bit rates close to the channel capacity.

The encoder of a PCCC, depicted in Figure 1.4, consists of two constituent RSCCs
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Encoder 2
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u

p

q
Π
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Figure 1.4: Encoder for a PCCC with two constituent codes.

and an interleaver Π. In many cases the two constituent codes are identical, but this is

not a requirement. The second constituent encoder processes the interleaved informa-

tion bits, u′ = Π(u). Both constituent encoders output only the parity bits, i.e., the

systematic bits are punctured from the output of the constituent encoders. The inter-

leaver is particularly important for the performance of the code. Its aim is to rearrange

the input bits in a pseudo-random manner. This is achieved in principle by choosing a

large interleaver depth, but by doing so the encoding delay is increased, which might be

undesirable in some applications. Interleaver design for turbo codes is discussed in [18].

PCCCs were termed turbo codes in [17], because the proposed iterative decoding

method feeds back soft information analogous to the reuse of exhaust gas in turbo

engines. Iterative decoding of turbo codes is attractive, because it attains ML decoding

performance with reasonable computational complexity.

An iterative turbo decoder is shown in Figure 1.5. Two SISO decoders are used to de-

code the constituent codes. Each SISO decoder receives soft information about its code

bits from the demodulator, denoted by the vectors [Λch(u) Λch(p)]T and [Λch(u
′) Λch(q)]T

respectively. Furthermore both decoders exchange a priori information about the in-

formation bits. The extrinsic LLRs Λe(u) are computed by subtracting the prior LLRs

Λp(u) from the posterior LLRs at the output of the first constituent decoder. This

ensures that only information which was newly gained in the previous decoding step

is forwarded to the second constituent decoder. The prior LLRs for SISO decoder 2,

Λp(u
′), are obtained by interleaving the extrinsic LLRs of SISO decoder 1, Λe(u). In

this manner the SISO decoders exchange information for a certain number of iterations,

until eventually a hard decision is performed on the posterior LLRs at the output of

one of the constituent decoders.

A detailed description of the concept of turbo coding can be found in [19].
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]

Figure 1.5: An iterative turbo decoder. Information is passed in the form of log-
likelihood ratios for single bits being grouped into vectors.

Low Density Parity Check (LDPC) Codes. After the invention of PCCCs in

1992 other code constructions have been found which, again combined with iterative

decoding techniques, also allow reliable transmission close to the Shannon limit. One of

these code constructions are LDPC codes, which were introduced by Gallager as early

as in 1962 [20]. Soon after their invention, they were largely forgotten, and “reinvented”

in the mid-1990’s [21], [22], [23]. In the following, we will consider only binary LDPC

codes for the sake of simplicity. However, LDPC codes can be generalized to nonbinary

alphabets.

An LDPC code is a linear block code given by the nullspace of an m × n parity-

check matrix H with a low density of 1’s. This sparsity property makes LDPC codes

amenable to various iterative decoding algorithms with near-optimal performance. An

LDPC code is called regular if H has a constant column weight g and a row weight r,

where r = g(n/m) and g � m. The code rate of a regular LDPC code is bounded as

R ≥ 1 −m/n = 1 − g/r, with equality when H is full rank. If H is low density, but

the number of 1’s in each column or row is not constant, then the LDPC code is called

irregular. The term “low density” is rather vague and cannot be precisely quantified,

although a density of 1 % or lower, i.e., 1 % or fewer entries of H are 1’s, can be called

low density [24].

In addition to the matrix representation, LDPC codes can equivalently be repre-

sented by factor graphs. A factor graph is a bipartite graph with two different kinds of

nodes. The two types of nodes are called variable nodes and check nodes. A variable

node corresponds to a code bit and a check node corresponds to a check equation. The

factor graph of an LDPC code will usually contain cycles. By running loopy belief
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propagation on the factor graph [25] one can obtain approximate posterior LLRs of the

code bits, given a noisy observation.

Since short cycles can significantly degrade the performance of the iterative decoding

algorithm, LDPC codes should be designed such that there are as few short cycles as

possible. Moreover, cycles may contribute to the error floor of LDPC codes. For these

reasons code design for LDPC codes is an important research topic.

A comprehensive treatment of LDPC codes can be found in [24].

1.2.2 Wireless Relay Networks

The increasing demand for high data rates in wireless networks calls for new transmis-

sion strategies. As already mentioned previously, relay-based transmission schemes are

considered as a viable option for future wireless systems.

In the following we state some advantages of wireless relaying, compared to point-

to-point communication.

• Two signal observations, one coming from the source and one from the relay, are

available at the destination. Both, small-scale fading due to multipath propaga-

tion and large-scale fading due to shadowing can be assumed independent for the

source-destination and the relay-destination link. Thus, relaying allows us to gain

spatial diversity, increasing the robustness of the overall communication system.

• Assuming the relay is positioned in a clever way, it is very likely that the link from

the source to the relay is of better quality than the direct link between source and

destination. In this case, relaying promises higher data rates than simple point-

to-point communication. Moreover, the power efficiency of the transmission is

increased, i.e., the source can save transmission energy which is especially benefi-

cial for mobile devices. In cellular systems one can also expect increased coverage

area due to the use of relays.

• The probability of a line-of-sight connection is increased by the use of a relay.

This is especially true for the link between a fixed relay and a fixed destination.

This allows the use of spectrum, on the relay-destination link, which is currently

not used due to its vulnerability against non-line-of-sight conditions.

An obstacle which is common to all relay-based transmission schemes is the fact

that, currently, practical RF implementations of wireless relays impose a half-duplex

transmission constraint. This reduces the spectral efficiency of the overall system. Fur-

thermore, depending on the network topology, the half-duplex constraint may also pre-
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Figure 1.6: The relay channel.

vent simultaneous multiple-access and therefore restrict transmissions to time division

multiple-access (TDMA) or frequency division multiple-access (FDMA) schemes.

Transmission schemes for the relay channel, shown in Figure 1.6, provide spatial di-

versity by introducing cooperation between the source S and the relay R. Furthermore,

it is natural to exploit the broadcast nature of wireless transmissions, i.e., the relay will

overhear the transmission from the source S to the destination D.

Depending on the processing that is performed at the relay, we distinguish between

different forwarding strategies. In the following, three commonly considered forwarding

strategies are briefly described.

• Amplify-and-Forward (AF). In the AF case the relay recovers the equiv-

alent complex baseband samples from the received signal, amplifies them and

subsequently retransmits the new, amplified signal. This method is simple, but

it has the drawback of noise enhancement on the relay-destination link.

• Decode-and-Forward (DF). In the DF case the relay demodulates and de-

codes the received signal. If the relay was able to decode without error, indicated,

e.g., by a cyclic redundancy check (CRC), it forwards a new codeword to the

destination. In the simplest case the forwarded codeword is equal to the received

codeword or a punctured version of it. Thereby the relay provides additional

redundancy to the decoder at the destination. Thus, the code rate at the source

can be increased, because successful decoding using solely the codeword trans-

mitted by the source is not necessary. However, the relay could also forward a

different codeword, e.g., by interleaving and re-encoding the received information

bits. This concept is referred to as distributed turbo coding [26]. In any case the

channel code is distributed between the source and the relay.

If the CRC at the relay indicates non-successful decoding, the relay has the fol-

lowing options.
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– The relay ignores the CRC indication and re-encodes the wrongly decoded

information bits anyway. The drawback of this approach is error propagation.

– In order to prevent error propagation, the relay remains silent and does not

transmit at all. In doing so, any information available at the relay about the

signal transmitted by the source is discarded.

– The DF scheme could be extended to soft decode-and-forward. In this case,

the relay is not required to decode the message from the source correctly.

Here, the relay would either forward soft information obtained by a SISO

decoder or it would use an interleaver and a SISO encoder to perform dis-

tributed turbo coding with soft information relaying [27], [28].

– If there is a feedback channel from the relay to the source, the relay could

indicate to the source that decoding was not successful. Then, the source

would transmit additional code bits in order to increase the probability of

successful decoding at the destination.

Note that the DF scheme works well when the probability of a decoding error at

the relay is small, i.e., when the relay is close to the source.

• Compress-and-Forward (CF). Instead of decoding the information trans-

mitted by the source, the relay can also help the destination by forwarding a

compressed version of its received signal. Compared to DF, compress-and-forward

features a lower computational complexity, because the relay does not need to de-

code the received signal. Furthermore, CF is known to outperform DF when the

relay is close to the destination [29].

It is important to note that even for the relay channel with one source, one relay

and one destination, as it is depicted in Figure 1.6, the capacity is still unknown, except

for special cases discussed, e.g., in [30].

In conjunction with network coding, we consider wireless relay networks with more

than one source and/or sink. In Chapter 2 a PLNC scheme for the multiple-access

relay channel (MARC) will be presented. The MARC, depicted in Figure 1.7, consists

of two source nodes, S1 and S2, one relay R and a destination node D. Here, the relay

supports both sources in their transmission to the destination.

A general model of the MARC is given in [31]. Capacity bounds for the general

MARC, where the sources and the relay are allowed to transmit simultaneously, can be

found in [29].

Another wireless relay network which has recently been considered for physical layer
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network coding is the two-way relay channel (TWRC), shown in Figure 1.8. Here, two

sources, supported by one relay, want to exchange data in both directions.

The achievable rates for the TWRC simultaneous multiple-access and broadcast

transmissions of all nodes are given in [32]. A PLNC scheme for the TWRC can be

found in [33].
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Physical Layer Network

Coding for the

Multiple-Access Relay

Channel

2.1 Introduction

In this chapter we present a physical layer network coding (PLNC) scheme for the

multiple-access relay channel (MARC). The MARC, shown in Figure 1.7, is a wireless

network with two sources, S1 and S2, which transmit data, with the help of a single

relay R, to one common destination node D. Note that the MARC does not consider

direct cooperation between the two sources, instead the sources cooperate with the

relay.

Compared to the general MARC model [31], we assume orthogonal channels for the

transmission of x1, x2 and xr (cf. Figure 1.7). This assumption is suboptimal, but of

great practical relevance, since it allows the nodes to operate in a half-duplex mode

without the need for synchronization on a symbol or even carrier phase level.

In our PLNC scheme we treat network coding and channel coding jointly. Separate

network and channel coding is possible, but it leads to worse performance when com-

pared to joint network-channel coding. A comparison between separate network and

16
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channel coding and joint network-channel coding for the MARC is given in [34]. The

joint network-channel coding approach we follow allows us to exploit the redundancy

in the network code to support the channel code for improved performance. This is

similar to joint source-channel coding where the remaining redundancy after the source

encoder aids the channel code to combat signal corruption. In joint network-channel

coding, a channel code is distributed in the network to include several links. Therefore,

at the destination node, the network and channel codes are decoded jointly by pass-

ing soft information between the network decoder and the channel decoders. This is a

major difference in comparison to separate network and channel coding, where channel

coding is performed locally and separately for each link.

In this chapter we describe the proposed system and explain the processing per-

formed at the nodes. Furthermore, we also introduce reference schemes, which allow to

assess the performance of our PLNC scheme. Numerical simulation results, providing a

comparison between these schemes for different system parameters, are then presented

in Chapter 4.

2.2 System Description

The system under consideration in this chapter is based on the decode-and-forward (DF)

strategy and uses two channel decoders at the relay in order to decode the messages

transmitted by the two sources. This is similar to previously proposed network coding

schemes for the MARC, which would then interleave, network encode and channel

encode the decoded bits at the relay and subsequently transmit the re-encoded bits to

the destination.

A fundamental problem of this strategy is that in order to avoid error propagation,

the relay is required to decode both source messages correctly. The detection of residual

decoding errors is usually implemented by appending a frame check sequence (FCS),

generated by a cyclic redundancy check (CRC) code, to the transmitted information

bits1. With reasonably designed CRC codes the probability of an undetected error

is usually negligible. Specifically, for an (N,K) CRC-p code with p = N − K bits

of redundancy, the probability of an undetected error asymptotically approaches 2−p

(from below) as K increases [35]. Optimization of CRC codes with 24 and 32 parity

bits is discussed in [36].

However, if, in such a scheme, the relay decodes one or both messages in error, it

1Since most current wireless systems already employ CRC codes, this does not represent additional
overhead required by schemes with physical layer network coding.
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has only two clearly suboptimal choices. First, the relay could remain silent in order to

avoid the deteriorating effect of error propagation, thereby discarding all information

obtained by the channel decoders and wasting available transmission time and energy.

Second, the relay could, at the risk of severe error propagation, ignore the decoding

error(s) and process the wrongly decoded data for subsequent transmission.

This dilemma is common to all relaying schemes that require error-free decoding at

the relay. In such schemes, the relay would usually remain silent in case of residual

decoding errors. Note that in case only one source message has been decoded in error,

the system could fall back to a relay channel (cf. Figure 1.6) and one point-to-point

link. This strategy would, however, require additional signaling overhead from the relay

to the destination to indicate that one source message could not be decoded correctly.

In order to circumvent this unfortunate situation the authors of [9] have proposed

a PLNC scheme in which the relay does not merely transmit re-encoded bits, but

rather soft information about these bits. The advantage of this strategy is that all the

information delivered by the soft-output channel decoders at the relay can be exploited,

irrespective of whether the source messages are decoded correctly or not.

By forwarding LLRs about network-coded bits from the relay to the destination,

the relay operation resembles message passing in belief propagation. In [9], however,

the transmission of the LLRs Λr over the relay-destination link is tentatively modeled

as an analog transmission according to

Λ̃r = Λr + w, (2.1)

where w is additive white Gaussian noise with zero mean and variance σ2
w. The SNR

on the relay-destination channel is then given by

ρrd =
E{Λ2

r}
σ2
w

. (2.2)

Since analog LLR transmission is not suited for digital communication systems, coded

transmission of the LLRs Λr should be considered instead of the transmission model

given by (2.1).

The system we propose is based on the idea of [9], with several extensions and

improvements. Figure 2.1 shows the system model of our PLNC scheme for the MARC.

Before describing the processing performed at each node, we will discuss the system

parameters and assumptions related to this system.
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2.2.1 System Parameters and Assumptions

The four nodes of the MARC are connected to each other by five non-interfering, i.e.,

orthogonal, transmission channels. On each channel, we assume ISI-free passband PAM

transmission, modeled in the equivalent complex baseband domain on a symbol level.

Moreover, we assume flat fading channels with additive white noise. Therefore the

input-output relation of the individual channels is given by

yij[n] = hij[n]xi[n] + wij[n] , (2.3)

where i and j denote the transmitting and receiving node, respectively. The indices 1

and 2 are used for the sources S1 and S2, whereas the indices r and d are used for the

relay R and the destination D.

In (2.3) the symbols transmitted by node i are denoted by xi[n], where each sym-

bol xi comes from the symbol alphabet A, xi ∈ A. We assume that all hij[n] are

complex Gaussian random variables, hij ∼ CN (0, 1), which are independent over time,

E{hij[n]h∗ij[m]} = δ[n−m]. Therefore the magnitude of the channel coefficients hij[n]

is Rayleigh distributed with E{|hij[n]|2} = 1. Furthermore, all hij[n] are independent

and identically distributed (i.i.d.). The special case of an AWGN channel is given by

hij[n] ≡ 1, yielding

yij[n] = xi[n] + wij[n] . (2.4)

A broken link corresponds to hij[n] ≡ 0.

The noise wij[n] is i.i.d., complex Gaussian distributed, wij ∼ CN (0, σ2
wij

), and

independent of hij and xi. Thus, the instantaneous SNR γij and the average SNR ρij

are given by

γij = |hij|2 PA
σ2
wij

and ρij = E{γij} =
PA
σ2
wij

, (2.5)

where PA denotes the mean power of the transmitted symbols, PA = E{|xi|2}. Unless

noted otherwise, the term “SNR” will henceforth refer to the average SNR. We assume

that each node transmits symbols xi[n] using the same Gray labeled QPSK mapping

and therefore PA is equal for all nodes, except the relay, as described later.

For reasons that will become clear in Section 2.4, we will often consider symmetric

channels. In the symmetric case the average SNR on both source-relay channels and

both source-destination channels is equal, meaning ρ1r = ρ2r and ρ1d = ρ2d. To simplify

notation we will then denote the source-relay SNR by ρsr and the source-destination
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Figure 2.2: Frame structure obtained by using TDMA with three timeslots.

SNR will be denoted ρsd.

We assume perfect channel state information (CSI) at each receiving node about its

incoming links. This means that the relay is aware of h1r, h2r, and the destination is

aware of h1d, h2d and hrd. It is important to stress that the relay has no CSI about the

source-destination links. This side information would put the relay in a better position,

but it would also require permanent transmission of CSI from the destination to the

relay.

Time division multiple-access (TDMA) with three timeslots is used to achieve the

aforementioned orthogonality between all transmissions in the network. In the first

timeslot source 1 will broadcast its data to the relay and the destination. The second

timeslot will be used in the same manner by source 2. Finally, the relay transmits to

the destination in the third timeslot. Henceforth we will use the term frame in order

to denote three consecutive timeslots. The total number of channel uses per frame is

M . An equal amount of Ms = αM (0 < α < 1/2) channel uses is allocated to each

source and the remaining Mr = (1− 2α)M channel uses are assigned to the relay. The

resulting frame structure is depicted in Figure 2.2. The value of α is closely related to

the processing at the relay and to the signal constellations used by the sources and the

relay. Possible values for α will be discussed in Section 2.4.

The transmit energy per frame at the relay is assumed to be fixed to Er, independent

of the actual number of channel uses Mr. In order to satisfy this energy constraint, the

transmit power at the relay has to be scaled by the factor

β =
Er

PAMr

, (2.6)

which leads to an average transmit power of P̃A = βPA and to an average relay-

destination SNR of ρrd = P̃A/σ
2
wrd

= βPA/σ
2
wrd

.

The optimization of transmit time and/or power allocation is beyond the scope of

this thesis. Furthermore we do not consider synchronization issues and assume perfect
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Figure 2.3: Overview about the processing at the sources.

synchronization, i.e., non-interfering transmissions.

2.3 Processing at the Sources

In this section the processing at the two sources is described. Figure 2.3 gives an

overview about source processing.

The information bits ui, transmitted by source i, are assumed to be statistically

independent and equiprobable. Furthermore all information bits u1 and u2 are assumed

to be mutually independent. Using a block of Ki information bits ui as an input, the

channel encoder produces a block of Ñi code bits c̃i. The code rate R̃c,i is thus given

by R̃c,i = Ki/Ñi. The output of the channel encoder is then processed by a puncturer,

which reduces the number of code bits to Ni ≤ Ñi, yielding an overall code rate of

Rc,i = Ki/Ni. In Figure 2.1 the channel encoder including the puncturer is combined

in the block “Encoder”.

Our PLNC scheme is very flexible with respect to the channel code type and code

rate. The sources can basically use any channel code for which a soft-output decoder is

available. We have used LDPC codes, turbo codes and convolutional codes with possibly

different rates Rc,1 and Rc,2 as channel codes. We have also verified that the system

performs well even if both sources use different types of channel codes. For simplicity

we have restricted the code rates Rc,1 and Rc,2 such that both encoders (including

puncturing) produce the same number of code bits, i.e., N = N1 = N2. While this

assumption slightly simplifies the processing at the relay and at the destination, it does

not impose a significant restriction. A way how to lift this restriction is described in

Section 2.4.

It is important to note that channel codes which work well on point-to-point links

are not necessarily well suited for the MARC with PLNC. Code design for the MARC

is nevertheless beyond the scope of this thesis. For the MARC it can be shown that

the largest code rate yielding a diversity order of 2, i.e., full diversity, is given by

Rc,max = 2/3. A design strategy for LDPC codes which guarantees a diversity order of

2 at a code rate Rc = 2/3 is presented in [37].
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Finally, the block of N code bits is mapped to dN/2e QPSK symbols. With the

symbol alphabetA =
{
a(1), a(2), a(3), a(4)

}
, two bits (b0, b1) ∈ GF(2)×GF(2) are mapped

to one QPSK symbol a ∈ A according to the following Gray labeled mapping.

(b0, b1) ←→ a ∈ A
(0, 0) ←→ a(1) = (−1− j)

√
PA/2

(0, 1) ←→ a(2) = (−1 + j)
√
PA/2 (2.7)

(1, 0) ←→ a(3) = (1− j)
√
PA/2

(1, 1) ←→ a(4) = (1 + j)
√
PA/2

More generally, assuming a source symbol alphabet with Ma,i = |Ai| different sym-

bols, each symbol carries li = log2(Ma,i) bits. Thus, Mi = N/li channel uses are needed

per source and frame. Each source transmits at a rate of liRc,i in its timeslot. This

yields an average rate of Ri = αliRc,i for the ith source, i ∈ {1, 2}. With QPSK as

symbol alphabet this leads to Mi = N/2 channel uses per frame and an average rate of

Ri = 2αRc,i.

2.4 Processing at the Relay

In conventional relaying schemes with multiple sources, the relay can support only one

source at a time. On the other hand, in a PLNC scheme the relay can support multiple

sources simultaneously. In this section we describe the processing that is necessary at

the relay in our PLNC scheme for the MARC. An overview about the relay processing

is given in Figure 2.4. For reasons of space, the soft demodulators have been omitted

in Figure 2.1.

The relay receives two signals, y1r and y2r, coming from the two sources, S1 and S2,

respectively. Since the sources transmit in non-overlapping timeslots, the signals y1r and

y2r do not interfere with each other and can therefore be processed independently. The
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Figure 2.5: Calculation, quantization and encoding of the soft network-coded LLR Λr.

received signals are first processed by soft demodulators which compute LLRs about

the code bits transmitted by the sources, based on the respective channel observation.

These LLRs, Λch(ci), do not take the redundancy introduced by the channel encoder into

account. Rather, they serve as an input to the SISO decoders, which deliver posterior

LLRs Λ(ci) for the code bits. We use an implementation of the BCJR algorithm to

perform MAP symbol decoding of convolutional codes. Turbo codes are decoded by

the iterative decoder shown in Figure 1.5, where each constituent code is again decoded

by the BCJR algorithm. In order to decode LDPC codes we run the sum-product

algorithm on the code’s factor graph. Note that in any case no hard decisions are taken

at the relay.

As a next step, the sequence of LLRs Λ(c2) are interleaved, yielding the LLR se-

quence Λ(c′2) = Π (Λ(c2)), where the code bits obtained by interleaving c2 are denoted

by c′2. Here, interleaving is necessary in order to avoid short cycles in the iterative

decoder at the destination, discussed in Section 2.5. The posterior LLR sequence Λ(c1)

and the posterior interleaved LLR sequence Λ(c′2) are then combined to form a new

LLR sequence Λr, which is processed as shown in Figure 2.5.

In linear network coding over GF(2) the encoding and decoding operations are

performed by computing the bit-wise modulo-2 sum of the correctly received bits (cf.

Example 1.1). Taking transmission errors into account, the authors of [9] proposed to

apply network coding to the soft values instead of the hard bits. This strategy allows

us to apply network coding even if the source messages have not been decoded correctly

at the relay node which performs the encoding operation. By applying Equation (1.4)

we can express the soft network-coded LLR Λr = Λ(c1 ⊕ c′2) in terms of the posterior

LLRs Λ(c1) and Λ(c′2), delivered by the channel decoders at the relay. This means that

the output of the leftmost block in Figure 2.5 is given by

Λr = Λ(c1)� Λ(c′2) = −2 atanh

[
tanh

(
Λ(c1)

2

)
tanh

(
Λ(c′2)

2

)]
. (2.8)
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Due to the similarity of this expression to the XOR operation (modulo-2 sum), we will

also call the coding rule in (2.8) soft XOR coding. In case the two blocks of code bits

are not equally long, the shorter block of LLRs is simply padded with Λ(ci) =∞. This

yields Λr = Λ(cj)� Λ(ci) = Λ(cj)�∞ = Λ(cj).

It can be readily seen that the magnitude of the output of the boxplus operation is

upper bounded by the minimum magnitude of its inputs, i.e.,

|Λr| ≤ min {|Λ(c1)|, |Λ(c′2)|} . (2.9)

Therefore, Λr will be unreliable, i.e., small in magnitude, as soon as one of the LLRs

Λ(c1) and Λ(c′2) is unreliable. Note that Λ(c)�0 = 0 and also∞�0 = 0. It can be seen

that the combination of LLRs according to (2.8) will work well, i.e., Λr will be large in

magnitude, if Λ(c1) and Λ(c′2) are large and approximately equal in magnitude. This is

the case when the SNR on both source-relay channels is relatively high and equal, i.e.,

ρ1r = ρ2r � 1. In the case of unsymmetric source-relay channels, meaning ρ1r 6= ρ2r,

the source with the worse source-relay channel could lower its code rate in order to

increase the corresponding LLRs on average and compensate for the lower SNR on its

source-relay link.

We employ the mutual information I(C1, C
′
2; Λr) between the code bits c1 and c′2 and

the soft network-coded LLR Λr to gain insight into how helpful the relay can be, given

certain source-relay SNRs ρ1r and ρ2r. However, note that this mutual information has

no direct operational meaning in the information theoretic sense. Rather, it indicates

how significantly the relay can support both sources. For I(C1, C
′
2; Λr) we obtain

I(C1, C
′
2; Λr) =

∑
(c1,c′2)∈[GF(2)]2

∞∫
−∞

p(λr, c1, c
′
2) log

p(λr, c1, c
′
2)

p(λr)p(c1, c′2)
dλr

=
1

4

∑
(c1,c′2)∈[GF(2)]2

∞∫
−∞

p(λr|c1, c
′
2) log

4p(λr|c1, c
′
2)∑

c̃1,c̃′2

p(λr|c̃1, c̃′2)
dλr, (2.10)

where the second equality is obtained by applying Bayes rule and assuming that the code

bits are equally likely and statistically independent (which is true, since the code bits

belong to independent messages transmitted by two independent sources). Note that

the conditional LLR distributions p(λr|c1, c
′
2) depend on the source-relay channel SNRs

and the channel codes that are used on the source-relay links. Since we lack an analytical

model of the posterior LLRs at the output of the SISO decoders, all four conditional

pdfs p(λr|c1, c
′
2) have to be obtained using Monte Carlo simulations. However, note
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that due to the symmetry of the coding rule (2.8) we have p(λr|0, 0) = p(λr|1, 1) and

p(λr|1, 0) = p(λr|0, 1). Therefore we can simplify (2.10) to

I(C1, C
′
2; Λr) = I(Cn; Λr) =

1

2

∑
cn∈GF(2)

∞∫
−∞

p(λr|cn) log
2p(λr|cn)∑̃
cn

p(λr|c̃n)
dλr, (2.11)

where cn = c1 ⊕ c′2.

Figure 2.6 depicts a plot of the mutual information I(C1, C
′
2; Λr) versus the average

SNR ρsr (symmetric case) for two different channel codes. For the blue curve each source

uses an RSCC with the channel encoder shown in Figure 1.3. The red curve is obtained

when the sources use an irregular LDPC code2 with code rate 1/2 and a blocklength

of N = 64 000. In any case the source-relay channels are modeled according to (2.3).

From Figure 2.6 we can see that with increasing ρsr the confidence about the value of

c1 ⊕ c′2 is growing and eventually saturates at I(C1, C
′
2; Λr) = 1 for high SNR. On the

other hand, if ρsr is too low, then also the mutual information is small. This means

that the relay won’t be able to significantly support the sources in their transmission.

The mutual information I(C1, C
′
2; Λr) in case of non-symmetric source-relay channels

is depicted in Figure 2.7. Here, both sources use the RSCC used in Figure 2.6 and

all other system parameters are the same as above. It can be clearly seen that in

case of non-symmetric source-relay channels the soft XOR network coding strategy is

suboptimal. If one source has a very bad channel to the relay, it will render all LLRs Λr

unreliable, irrespective of the SNR on the other source-relay channel. As pointed out

previously, one strategy to compensate for non-symmetric source-relay channels is to

adapt the code rates of the two sources. A more sophisticated strategy is to apply vector

quantization directly to the two posterior LLRs from the channel decoders, instead of

first combining them and performing a scalar quantization afterwards. A PLNC scheme

for the MARC using LLR vector quantization is presented in [38].

The subsequent processing should be designed such that the information about c1⊕c′2
in Λr can be recovered as accurately as possible at the destination. In order to allow

forwarding of the LLRs Λr ∈ R using digital transmission, we have to quantize the LLRs.

To this end, we use a scalar quantizer Q(·) with Q levels, i.e., we quantize using log2(Q)

bits per LLR. For each LLR the quantizer produces an integer zr ∈ {0, 1, . . . , Q− 1}, the

quantization index, at its output. Several quantizer design methods for soft information

quantization are discussed and compared in Chapter 3.

The quantization indices zr are subsequently converted to a binary representation,

2The LDPC code was designed using the EPFL web-tool at http://ipgdemos.epfl.ch/ldpcopt/.
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Figure 2.6: Mutual information I(C1, C
′
2; Λr) between the code bits transmitted by the

sources and the soft network-coded LLR Λr for an RSCC and an LDPC
code versus ρsr, the average SNR on the source-relay links (symmetric
case). Note that the decoding threshold of the LDPC code at ρsr ≈ 2 dB
is clearly visible in I(C1, C

′
2; Λr).

denoted by ur. One possibility for this conversion is depicted in Figure 2.8(a). Here,

we take each integer zr and map it to its natural binary representation using dlog2(Q)e
bits. However, note that in general, for Q > 2, the quantizer levels will be used with

unequal probabilities. Therefore it is possible to find a binary representation ũr of

length Ñr using fewer bits by applying a source code with variable rate, i.e., lossless

data compression, to the quantization indices zr as shown in Figure 2.8(b). We define

the source coding rate, i.e., the data compression ratio, Rs as the number of uncoded

bits over the expected number of source-coded bits,

1 ≤ Rs =
dlog2(Q)eN

E{Ñr}
≤ dlog2(Q)e

H(Zr)
, (2.12)

where H(Zr) is the entropy of the quantizer output. In order to recover zr from ũr using

a source decoder, we have to ensure that ũr is available at the destination without errors.

Therefore we append a frame check sequence, e.g., the parity bits of a CRC code, to ũr

in order to allow error detection at the destination. In the following, the overhead due
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Figure 2.7: Mutual information I(C1, C
′
2; Λr) versus ρ1r and ρ2r (non-symmetric

case). It can be seen that soft XOR network coding is suboptimal in the
general case of non-symmetric source-relay channels. Here, both sources
use an RSCC as channel code.

to the FCS will be neglected.

If, with source coding, an error is detected at the destination, the whole block trans-

mitted by the relay has to be discarded in order to avoid error propagation through the

source decoder. The relay-destination channel, seen at the output of the source decoder,

is thereby converted to a binary (block) erasure channel. For lossless compression of

quantizer indices we use arithmetic coding, which is well suited for long sequences from

sources having skewed symbol distributions and small symbol alphabets. An introduc-

tion to arithmetic coding can be found in [39].

The remaining processing steps, namely channel encoding and symbol mapping, are

similar to the processing at the sources (cf. Section 2.3). More specifically, the relay

uses a channel code with code rate (including puncturing) of Rc,r and it transmits using

the QPSK mapping defined in (2.7), i.e., each symbol carries lr = 2 bits. The relay

has to transmit dlog2(Q)eN/Rs bits per frame, where N = RciKi, i ∈ {1, 2}, and Rs

is the source coding rate (Rs = 1 in case source coding is not employed). Including

channel coding this amounts to dlog2(Q)eN/(Rc,rRs) code bits per frame. Using a

symbol alphabet with Ma,r = |Ar| different symbols, we have lr = log2(Ma,r) bits per
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Figure 2.8: Binary encoding of the quantization index zr .

symbol. Therefore we obtain

Mr =
dlog2(Q)eN
lrRc,rRs

(2.13)

transmitted symbols, i.e., relay channel uses, per frame. Assuming l1 = l2 and therefore

M1 = M2, we get

M = 2Mi +Mr = N

(
2

li
+
dlog2(Q)e
lrRc,rRs

)
(2.14)

for the total number of channel uses per frame. Since Mi = αM we obtain the following

expression for the time sharing parameter α,

α =

(
2 +
dlog2(Q)e
Rc,rRs

li
lr

)−1

. (2.15)

Table 2.1 shows some possible values for α depending on the relay symbol alphabet

size Ma,r = 2lr and on the number of quantizer levels Q. For a TDMA system with two

sources and one destination, but without the relay, the total transmission time would

be divided equally between both sources, yielding α = 1/2. From Table 2.1 it can be

seen that the relay should use a large symbol alphabet size Ma,r in order to keep the

rate loss, compared to the case without relay, small. For system deployment this means

that the relay should be positioned such that the relay-destination SNR ρrd allows the

use of relatively large signal constellations.

Finally, we conjecture that it would be beneficial to design the coding and modula-

tion at the relay such that the sign of the LLRs is better protected than the magnitude

information. However, in this thesis we do not consider such unequal error protection

techniques.
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Ma,r Q α

4 2 1/4
4 4 1/6
4 8 1/8
16 2 1/3
16 4 1/4
16 8 1/5
64 2 3/8
64 4 3/10
64 8 1/4

Table 2.1: Value of the time sharing parameter α for different relay symbol alphabet
sizes Ma,r = 2lr and for different numbers of quantizer levels Q. Here, Rc,r

is equal to 1/2 , li is fixed to 2 and Rs is assumed to be 1 , e.g., no source
coding is used.
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ẑr Λ̃rQ-1(·)ûryr
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Figure 2.9: Overview about the processing at the destination.

2.5 Processing at the Destination

In this section we describe the processing at the destination with a focus on the iterative

joint network-channel decoder. An overview about the destination processing is given

in Figure 2.9.

The destination can avail of three observations, two coming directly from the sources

and one coming from the relay. The received signals y1 and y2 are processed by soft

demodulators in order to calculate the posterior LLRs Λch(ci) about the code bits

transmitted by the sources. From the signal yr the destination seeks to recover the

quantization indices zr. To this end, yr is demodulated and decoded to obtain an

estimate ûr about the corresponding bits ur. These bits then have to be converted to

the respective quantization indices.
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Figure 2.10: Conversion of the decoded bits ûr to the quantization index ẑr.

In case no source codec has been used for the transmission of the quantization

indices, this amounts to taking blocks of dlog2(Q)e bits ûr and calculating the cor-

responding integer ẑr, as shown in Figure 2.10(a). Note that in this case ẑr is not

necessarily equal to zr. On the other hand, if a source codec has been used, we have

to ensure that the source-coded bits ũr have been decoded correctly at the destination.

This is accomplished by calculating the FCS of the decoded bits and comparing it to

the FCS that has been received, as depicted in Figure 2.10(b). In case no decoding

error is detected, the bits ũr are fed into the source decoder which then produces the

true quantization indices zr at its output. If a decoding error has been detected, the

source decoder and the block labeled “Q−1(·)” (cf. Figure 2.9) are bypassed and all

LLRs Λ̃r are set to zero. In all cases except the latter, the decoded quantization indices

ẑr are used to obtain the respective quantizer reproducer value Λ̃r. This operation is

performed by the block “Q−1(·)”, depicted in Figure 2.9. Note, we assume the desti-

nations knows which quantizer has been used at the relay, i.e., the mapping zr ↔ Λ̃r

is known at the destination. As we will see in Chapter 3 the choice of the quantizer

mapping, for given channel codes, depends only on the source-relay channel SNRs. In

this thesis we do not consider the impact of noisy transmission of the relay’s quantizer

choice to the destination. Furthermore, we neglect the overhead that is due to the

transmission of the quantizer choice in a practical system.

The LLRs Λch(c1),Λch(c2) and Λ̃r, corresponding to the three observations at the

destination, form the input to the joint network channel decoder discussed in the fol-

lowing subsection.

2.5.1 Iterative Joint Network-Channel Decoder

The iterative joint network-channel decoder of our PLNC scheme, shown in Figure

2.11, essentially consists of two channel decoders, one for each source, and two identical
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û2

û1
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Figure 2.11: Iterative joint network-channel decoder. The inputs to the iterative de-
coder are indicated in red and the outputs are indicated in green.

network decoders (since only one node, namely the relay, performs network encoding).

Both channel decoders are coupled and exchange information via the network de-

coder in an iterative manner. The coupling is due to the fact that the destination

receives soft information about the network-coded bits cn = c1⊕c′2 from the relay. This

information, together with information about either c1 or c′2, can be used to obtain prior

information about the respective other code bit and thus induces coupling between the

channel decoders.

In the following we will explain the processing of the iterative decoder. Let us assume

decoding starts with the invocation of channel decoder 1. In the first iteration there is

no prior information available, i.e., Λp(c1) = 0. Thus the LLRs Λch(c1), corresponding

to the direct observation from source S1, form the input for channel decoder 1. At the

output of the channel decoder, we obtain posterior LLRs about the information bits u1

and about the code bits c1. The extrinsic LLRs Λe(c1) are calculated by subtracting the

LLRs at the input from the posterior LLRs at the output of the channel decoder. These

extrinsic LLRs, together with Λ̃r, are fed into the network decoder, which produces prior

information about the code bits transmitted by source S2. The prior LLRs at the output

of the network decoder, Λp(c
′
2), are deinterleaved and added to the LLRs Λch(c2). The

resulting LLRs form the input to channel decoder 2. Similarly to channel decoder 1,

the second channel decoder calculates posterior LLRs about the information bits and

code bits transmitted by source S2. The interleaved extrinsic LLRs Λe(c
′
2) and Λ̃r are
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then used by the network decoder to calculate prior information about the code bits c1.

This prior information is used by channel decoder 1 in the next iteration. The decoder

will perform a certain number of iterations until a stopping criterion is met. Then, a

hard decision on the posterior LLRs about the information bits u1 and u2 is performed

in order to obtain the corresponding estimates û1 and û2.

The level of confidence the destination has about the value of c1 ⊕ c′2 determines

how tightly the channel decoders are coupled. From this point of view, the network

decoder can be seen as a gate, controlled by Λ̃r, for the amount of information transfered

between the channel decoders. In case there is no knowledge about the value of c1⊕ c′2
at the destination, i.e., Λ̃r = 0, the two channel decoders are completely decoupled.

On the other hand, as Λ̃r → ±∞, all the extrinsic information of one decoder will be

used as prior information for the other decoder. In this case the overall decoder works

basically like the turbo decoder shown in Figure 1.5. As we will presently see, the

tighter the coupling between the channel decoders is, the more gain will the iterations

yield and the more turbo-like will the joint network-channel decoder perform.

Let us now discuss the processing that is performed by the network decoder. Figure

2.12 shows the factor graph corresponding to the network decoder. Here, the function

node f is defined as

f(c1, c
′
2, cn) =

1, cn = c1 ⊕ c′2
0, otherwise

. (2.16)

The output of the network decoder, in this case Λp(c
′
2), can be determined using belief

propagation [25]. By applying the message update rule, we obtain

Λp(c
′
2) =

∑
∼c′2

f(c1, c
′
2, cn)Λe(c1)Λ̃r(cn)

= −2 atanh

(
tanh

Λe(c1)

2
tanh

Λ̃r(cn)

2

)
= Λe(c1)� Λ̃r(cn), (2.17)

i.e., the output of the network decoder is the boxplus of its inputs. We observe that the

network decoder performs the same calculation as the network encoder does. This is

analogous to network decoding in the bit domain, where encoding and decoding, amount

to a modulo-2 addition (cf. Example 1.1). However, note that cn⊕cj = (cj⊕ci)⊕cj = ci,

but Λr � Λ(cj) = Λ(cj ⊕ ci) � Λ(cj) 6= Λ(ci). Thus, the boxplus operation is not an

involution.
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Figure 2.12: Factor graph representation of the network decoder.

Now it is also evident that the network decoder, controlled by Λ̃r, determines the

information exchange between the channel decoders. Recalling the rules for the boxplus

calculation, we see that Λ� 0 = 0 and Λ�±∞ = ±Λ. For these two extreme cases we

therefore obtain Λp(ci) = Λe(cj) � 0 = 0 (channel decoders are completely decoupled,

iterations yield no gain) and Λp(ci) = Λe(cj) � ±∞ = ±Λe(cj) (channel decoders are

perfectly coupled, yielding turbo-like performance).

2.6 Reference Systems

In order to assess the performance of our scheme, we will compare it to three different

reference schemes. In the following, these schemes are briefly described.

The first reference system is equal to the scheme we propose, except for the LLR

forwarding strategy. This reference system uses analog LLR forwarding from the relay to

the destination (cf. [9]) modeled according to (2.1). Since the analog LLR transmission

described in [9] can be considered as a gedankenexperiment, it is difficult to find a way

for a fair comparison to schemes using coded LLR transmission. We therefore compare

this scheme to our scheme using the same system parameters and an equal SNR on the

relay-destination channel.

The second reference system is a decode-and-forward scheme, where the relay uses

half of its timeslot for source S1 and the other half for source S2. The relay forwards

the decoded code bits without re-encoding the received data. Thereby the relay equally

supports both sources in each frame. The destination combines the LLRs obtained for

the respective codewords and decodes both messages separately. In case the relay can
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only decode one of the two source messages, it spends its complete timeslot for that

source. If the relay was unable to decode any message it will remain silent. In any case,

the time sharing parameter αref is fixed to 1/3. Note, if the relay would use its timeslot

to support only one source in each frame, the average BER for each source could at

best be halved. This corresponds to a small SNR gain compared to the case where the

relay does not help the sources at all. Therefore it is clearly advantageous to support

both sources in each frame (if possible).

The third reference system considers multiple-access of two sources to a common

destination, i.e., the network is obtained by removing the relay node from the MARC.

Here, we again assume TDMA with equally long timeslots for each source. Therefore

the time sharing parameter αref is equal to 1/2.

To allow for a fair comparison between the systems we assume that in each case

both sources transmit the same number of bits using the same channel code and signal

constellation. Therefore the sources need the same number of channel uses per frame

in each system. However, the time sharing parameters α (for the proposed system) and

αref may be different because the transmission time occupied by the relay (if present)

may differ. This means, we have to compensate for the differences in the average rates

when comparing two systems. We obtain

Ri

Ri,ref

=
α

αref

, (2.18)

or, equivalently,

(Eb/N0)i
(Eb/N0)i,ref

=
αref

α
. (2.19)

This leads to the following relation between (Eb/N0)
[dB]
i,ref and (Eb/N0)[dB]

i

(Eb/N0)
[dB]
i,ref = (Eb/N0)[dB]

i − 10 log10

(αref

α

)
dB. (2.20)



3
Quantization of Soft

Information

3.1 Introduction

In this chapter we discuss the important issue of soft information quantization. As we

have seen in Chapter 2, quantization of LLRs is necessary for the PLNC scheme we

propose in order to forward soft information from the relay to the destination using

digital transmission. In the following we want to further motivate soft information

quantization.

In Chapter 1 we have introduced the notion of soft information. In contrast to

hard decisions, soft decisions provide additional reliability information. Therefore, soft

information processing is, in terms of performance, generally superior to the use of

hard decisions. In many applications of digital communications concatenated modules

(iteratively) exchange soft information to perform a certain task. Today, virtually all

advanced receiver concepts build on the processing and exchange of soft information,

e.g., the turbo decoder shown in Figure 1.5. Moreover, in wireless relay networks, as

we have explained previously, it is beneficial to exchange soft information between the

individual nodes.

However, compared to hard decisions, which can be represented by a single bit, soft

decisions are real numbers and therefore cannot be represented exactly using a finite

number of bits. Nevertheless, practical implementations usually impose constraints with

respect to memory consumption and computational complexity. Thus, soft information

has to be quantized, i.e., represented by a finite number of bits, whenever it is processed,

stored or transmitted. In general one would like to spend as few bits as possible for

36
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each soft decision. The number of bits that is used to represent the quantized values

is especially critical in case the information has to be exchanged between spatially

distant nodes. On the other hand, we have to expect an increasing loss in performance

the cruder we represent the available soft information. This fundamental tradeoff is

common to all lossy source coding problems.

Clearly, the number of bits per quantized value, henceforth called the (quantizer)

rate, is not the only thing that matters. If we are given a fixed rate then we can still

choose the quantization regions and the associated reproducer values. These choices

should of course be taken according to some optimality criterion. In the following

section we will discuss the details of quantizer design for soft information quantization.

3.2 Quantizer Design for Soft Information Quantization

Soft information can be represented in various ways, in the following we will, however,

focus on the quantization of log-likelihood ratios. We want to design a scalar quantizer

Q with fixed rate RQ. In the case of scalar quantization, RQ is an integer and the

number of quantizer levels is given by Q = 2RQ . Likewise there are Q quantization

regions R(i), given by the intervals [gi−1, gi] ⊆ R, i ∈ {1, 2, . . . , Q}. Here, gi denotes the

decision boundary between the quantization regions R(i) and R(i+1). Note that we set

g0 = −∞ and gQ =∞. The quantizer Q maps an LLR Λ ∈ R to one reproducer value

λi according to the following relation.

Λ̂ , Q(Λ) = λi if Λ ∈ R(i), i = 1, 2, . . . , Q. (3.1)

Quantizer design thus amounts to specifying the quantization regions R(i) and the

corresponding reproducer values λi. For the transmission of the quantized LLR Λ̂ we

will use the index i ∈ N of the respective quantization region, instead of the reproducer

value λi ∈ R itself. This implies, however, that the reproducer values λi have to

be known at the destination. Note that for Q > 2 the individual quantizer levels

might be used with pronounced unequal probabilities. We can therefore perform data

compression as described in Section 2.4 in order to represent a sequence of quantizer

indices i by a smaller number of bits.

The LLRs we want to quantize are the observations Λr = Λ(c1) � Λ(c′2), obtained

at the relay of our PLNC scheme for the MARC (cf. Figure 2.5). As in Chapter 2 the

quantization index corresponding to Λr will be denoted by zr. For the design of the

quantizer Q we use the conditional LLR distributions p(λr|c1, c
′
2), which are obtained

by Monte Carlo simulations. Thus the quantizer design happens “offline”. Performing
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on-the-fly quantizer design during data transmission could be beneficial, since we would

not have to presuppose knowledge of the conditional LLR distributions. However, in

our PLNC scheme for the MARC all information about the quantizer design would have

to be signaled from the relay to the destination in case of an on-the-fly quantizer design

approach.

It is important to note that the conditional LLR distributions p(λr|c1, c
′
2) do not

depend on c1 and c′2 independently. Rather, they depend only on c1 ⊕ c′2, i.e., we

have the symmetries p(λr|0, 0) = p(λr|1, 1) and p(λr|1, 0) = p(λr|0, 1). Moreover, the

unconditional LLR distribution p(λr) is an even function, yielding p(−λr) = p(λr).

This leads to the additional symmetry relation p(−λr|0, 0) = p(λr|0, 1) between the two

different conditional LLR distributions. We will therefore use a symmetric quantizer

design in order to reflect the aforementioned symmetries. Specifically we get

gQ−i = −gi, i ∈
{⌈

Q

2

⌉
,

⌈
Q

2

⌉
+ 1, . . . , Q

}
(3.2)

for the decision boundaries, and

λQ−i+1 = −λi, i ∈
{⌈

Q+ 1

2

⌉
,

⌈
Q+ 1

2

⌉
+ 1, . . . , Q

}
(3.3)

for the quantizer reproducer values. This implies that gQ/2 = 0 if Q is even and

λdQ/2e = 0 in case Q is odd.

Figure 3.1 shows the unconditional LLR distribution p(λr) for two different source-

relay SNRs. We can see that for a relatively low SNR of 2 dB the LLR distribution is

unimodal, whereas for a higher SNR of 7dB the distribution is multimodal. In addition

to the SNR, the LLR distribution also depends on the channel model and the channel

code employed by the sources. Here, we used the same RSCC as in the previous chapter

and we assumed fast i.i.d. Rayleigh flat fading. Obviously, the quantizer we use has to

be designed for a wide range of SNR values. The relay node in our PLNC scheme then

has to select the quantizer that was designed for the SNR that is closest to the current

channel SNR. Note that in our scheme we assume perfect CSI (about the source-relay

links) at the relay and thus the relay will always choose the correct quantizer. We do

not study the effect of imperfect CSI on the quantizer choice and its impact on the

system performance.

The framework of rate-distortion theory is commonly used to analyze lossy source

coding problems. Rate-distortion theory characterizes the tradeoff between the signal

representation size, i.e., the rate, and the average distortion of the reconstructed signal.

In particular, it tells us how large the average bit rate RQ has to be in order to represent
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Figure 3.1: Unconditional LLR distribution p(λr) for two different values of the
source-relay SNR ρsr. Note the symmetry of the LLR distributions.

a source with some given distortion DQ (rate-distortion function), or, equivalently, how

small the mean distortion DQ can be, when encoding a source at some given rate RQ

(distortion-rate function, the inverse of the rate-distortion function). However, the rate

distortion function is generally not known analytically and moreover rate-distortion

theory only allows us to find upper limits for the potential system performance, since

it provides only asymptotic results.

For a source producing symbols λ ∈ L, distributed according to p(λ), rate-distortion

theory tells us that the minimum rate required to represent the source by a random

variable Z ∈ Z, with a mean distortion of at most DQ, is given by [40]

RQ(DQ) = min
p(z|λ)

I(Λ;Z) subject to E{d(z, λ)} ≤ DQ. (3.4)

Here, d : Z × L → R+
0 is the distortion measure. At this point the problem is that the

distortion measure d has to be fixed in advance in order to solve this rate-distortion

problem. The choice of the distortion measure is not part of rate-distortion theory.

Unfortunately, there is no general approach for finding a good or even the best distortion

measure for a specific problem.

In the following sections we describe three different quantizer design approaches

based on different optimality criteria.
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3.3 The Lloyd Algorithm

The Lloyd algorithm [41], [42] is based on the squared-error distortion measure, i.e.,

d(x̂, x) = (x̂ − x)2. The main idea of the Lloyd algorithm is to minimize the mean

square error (MSE) distortion by adapting the quantizer reproducer values to the pdf

of the signal that shall be quantized. Therefore the Lloyd algorithm allows us to design

optimal scalar quantizers (with respect to the MSE distortion measure). The Lloyd

algorithm is frequently applied to quantizer design for waveform signals as well as

in image processing. However, the Lloyd algorithm is applicable only if the source

distribution is either known a priori or if it can be estimated sufficiently well.

For a fixed-rate quantizer with Q levels, the mean power of the quantizer distortion

PD is given by

PD = E {d(Q(Λ),Λ)} = E{(Λ̂− Λ)2} =

Q−1∑
i=0

gi+1∫
gi

(λi+1 − λ)2p(λ)dλ, (3.5)

where λi denotes the ith quantizer reproducer value and p(λ) is the pdf for which we

want to optimize the quantizer. A direct minimization of PD is generally not possible

because all gi and λi are unknown. However, by applying the Lloyd algorithm, this

optimization problem can be solved iteratively. As a first step, let us assume we knew

the reproducer values. Then we can optimize the decision boundaries gi by computing

∂PD
∂gj

= (λj − gj)2p(gj)− (λj+1 − gj)p(gj) !
= 0. (3.6)

This leads to

gj =
λj+1 + λj

2
, j = 1, 2, . . . , Q− 1, (3.7)

and g0 = −∞, gQ =∞, i.e., the optimal decision boundaries are in the middle between

two reproducer values. Now we can do the same thing for the reproducer values. Setting

to zero the partial derivatives

∂PD
∂λj+1

=
∂

∂λj+1

gj+1∫
gj

(λj+1 − λ)2p(λ)dλ = 2

gj+1∫
gj

(λj+1 − λ)p(λ)dλ (3.8)
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yields

λj+1 =

∫ gj+1

gj

λp(λ)dλ∫ gj+1

gj

p(λ)dλ

, j = 1, 2, . . . , Q. (3.9)

This means that the optimal reproducer values are given by the centroid of the corre-

sponding decision region.

By evaluating (3.7) and (3.9) the optimal scalar quantizer can be determined. How-

ever, these equations cannot be solved independently since they are coupled. In order

to obtain a solution one can start with a guess for the reproducer values and itera-

tively compute the new decision boundaries and the updated reproducer values. The

iterations are performed until all λi do not (significantly) change anymore. The Lloyd

algorithm is guaranteed to converge to a local minimum of PD, as PD decreases in each

iteration (until convergence). Therefore the initial guess for the reproducer values will

have an impact on the quality of the solution. In order to obtain a good quantizer,

multiple instances of the Lloyd algorithm can be run on a sufficiently large number of

initial guesses. The best quantizer, i.e., the one yielding the smallest average distortion,

is then chosen as the result of the quantizer design procedure.

The Lloyd algorithm can also be used with other distortion measures than the

squared-error distortion. However, using a different distortion measure will presumably

not yield closed-form expressions for the decision boundaries and the reproducer val-

ues. Furthermore the optimization problem of minimizing PD can be constrained by

introducing Lagrange multipliers to obtain solutions adapted to the given constraints.

An extension of the Lloyd algorithm to vector quantization is given by the LBG

(Linde, Buzo and Gray) algorithm [43].

3.4 Equiprobable Output Quantizer

In contrast to the Lloyd algorithm the equiprobable output quantizer [44] has been

developed with communications applications in mind. In communication systems con-

catenated modules exchange information to perform certain tasks. Motivated by the

data processing inequality, it seems natural to strive for minimum information loss in

a processing chain.

Consider the generic transmission system shown in Figure 3.2. Here, the informa-

tion bits u are encoded and the code bits c are transmitted over a channel. The channel
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Figure 3.2: A generic transmission system with LLR quantization in which the chan-
nel decoder processes quantized LLRs. Note that complexity and memory
constraints may necessitate LLR quantization.

output y is then demodulated, yielding posterior LLRs Λ about the code bits. These

LLRs are subsequently quantized resulting in quantized LLRs Λ̂ which are finally pro-

cessed by a decoder to produce estimates û about the transmitted bits u. Note that

LLR quantization might be necessary due to memory or complexity constraints.

Quantization of LLRs for maximum mutual information, or, equivalently, minimum

mutual information loss, has been discussed in [45] for the special case of BPSK trans-

mission over an AWGN channel. In that paper the LLR quantization was designed

such that the mutual information I(C; Λ̂) is maximized. However, an extension of

this approach to more sophisticated modulation schemes and different channel models

appears infeasible. Hence the authors of [44] proposed a quantization scheme which

deviates from mutual information maximization and allows for simple implementation

while leading only to a small decrease of the information rate.

In the following we will describe the basic idea of the equiprobable output quantizer.

From Figure 3.2 it can be seen that c− Λ− Λ̂ forms a Markov chain. Hence, the data

processing inequality implies I(C; Λ̂) ≤ I(C; Λ). In order for I(C; Λ̂) to be as close as

possible to I(C; Λ) for a fixed number of quantizer levels Q, [44] proposes to maximize

I(Λ; Λ̂). This mutual information can be expressed as

I(Λ; Λ̂) = H(Λ̂)−H(Λ̂|Λ) = H(Λ̂), (3.10)

where H(Λ̂|Λ) is zero since Λ̂ = Q(Λ) is a deterministic function of Λ. Thus the

equiprobable output quantizer maximizes H(Λ̂) which is achieved by a uniform distri-

bution of Λ̂. This implies that the quantizer decision boundaries gi have to be such

that P{Λ̂ = λi} = 1/Q. Using the cumulative distribution function (cdf)

FΛ(λ) = P{Λ ≤ λ} =

∫ λ

−∞
pΛ(ξ)dξ (3.11)

the optimal decision boundaries can be obtained by finding the arguments of FΛ(λ) for
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which FΛ(λ) = i/Q, i.e.,

gi = F−1
Λ (i/Q) , i = 1, 2, . . . , Q− 1. (3.12)

As before we set g0 = −∞ and gQ =∞.

It is important to realize that the mutual information I(C; Λ̂) only depends on

the distribution p(Λ̂), i.e., on the probabilities P{Λ̂ = λi}. The actual values of the

quantizer reproducers λi do not influence the mutual information, however, they are

important in order to provide the decoder with proper reliability information. In view

of the equivalent discrete channel with input c and output Λ̂ the quantizer reproducer

values λi are chosen as LLRs given by [46]

λi = log
P{c = 1 |Λ ∈ R(i)}
P{c = 0 |Λ ∈ R(i)} = log

P1,i

P0,i

. (3.13)

Since closed-form expressions for the distribution of the LLRs Λ are not available, except

for a few special cases, Monte Carlo simulations are generally required to determine the

probabilities P1,i and P0,i. However, carefully note that in [44] the authors also proposed

a method for designing the equiprobable output quantizer during data transmission.

In [44] it has been shown that this on-the-fly quantizer design leads only to a negligible

performance loss compared to offline quantizer design. Therefore knowledge of the

(conditional) LLR distributions is not mandatory for the design of the equiprobable

output quantizer.

The equiprobable output quantizer can be extended to N dimensional vector quan-

tization by applying N independent equiprobable output quantizers, one for each di-

mension, if all vector components are statistically independent.

3.5 The Information Bottleneck Method

As we have mentioned before, an analysis of quantization in terms of the of rate-

distortion theory requires that we fix a specific distortion measure in advance. However,

the “right” distortion measure is rarely available or known. We therefore consider the

approach presented in [47] by Tishby et al. who have introduced the notion of relevance

through another variable. Note that information theory in its original formulation by

Shannon does not provide a quantitative notion of “relevant” information.

Relevant information in a random variable X is defined as the information this

random variable provides about another random variable Y . The variable Y is called
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relevance variable. Clearly, X and Y must not be statistically independent. The aim

of the information bottleneck method (IBM) is to find a representation of X, using as

few bits (or codewords) as possible, while preserving a certain amount of information

about Y . The name “information bottleneck method” comes from the idea that we

squeeze the information that X provides about Y through a bottleneck formed by

the limited set of codewords. In contrast to rate-distortion theory the IBM does not

constrain the average distortion. Rather, it requires that X̃, the quantized version of

X, provides a minimum amount of information about Y . Note that this is equivalent to

maximizing the relevant information for a fixed compression of the original variable X.

This constrained optimization problem can be seen as a generalization of rate-distortion

theory in which the distortion measure emerges from the joint statistics of X and Y .

For the IBM we have to assume that we have access to the joint distribution p(x, y).

In terms of the setting described in Chapter 2 this means that we want to quantize

the LLRs Λr, yielding a quantized representation Zr, where we require that Zr carries

a minimum amount of information about the network-coded bits Cn = C1 ⊕ C ′2 (cf.

Figure 2.5). More specifically, we want to solve the optimization problem

min
p(zr|λr)

I(Λr;Zr) subject to I(Cn;Zr) ≥ I ′. (3.14)

As in the previous section we observe that Cn − Λr − Zr forms a Markov chain. Due

to the data processing inequality we have I(Cn;Zr) ≤ I(Cn; Λr), which implies that

0 ≤ I ′ ≤ I(Cn; Λr). Since the IBM is phrased in terms of discrete random variables

we have to treat Λr as a discrete random variable in the following. Hence, we can

think of the distribution p(λr) as a discretized version of the true pdf of Λr, where the

discretization is performed with a sufficiently high resolution.

Let us now take a more detailed look at the left hand side of the constraint in (3.14).

We obtain

I(Cn;Zr)
(1)
= I(Cn; Λr) + I(Cn;Zr|Λr)︸ ︷︷ ︸

= 0

−I(Cn; Λr|Zr)

= I(Cn; Λr)−
∑

cn,λr,zr

p(cn, λr, zr) log
p(cn, λr|zr)

p(cn|zr)p(λr|zr)
(2)
= I(Cn; Λr)−

∑
λr,zr

p(λr, zr)
∑
cn

p(cn|λr) log
p(cn|λr)
p(cn|zr) (3.15)

= I(Cn; Λr)−
∑
λr,zr

p(λr, zr)D(p(cn|λr) || p(cn|zr))

= I(Cn; Λr)− E {D(p(cn|λr) || p(cn|zr))} ,
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where D(· || ·) denotes the Kullback-Leibler divergence. In (3.15) equality (1) is obtained

by expanding I(Cn; Λr, Zr) as

I(Cn; Λr, Zr) = I(Cn;Zr) + I(Cn; Λr|Zr) = I(Cn; Λr) + I(Cn;Zr|Λr). (3.16)

Furthermore I(Cn;Zr|Λr) is equal to zero since Zr = Q(Λr) is a deterministic function

of Λr. Equality (2) is obtained by applying the chain rule for probability distributions

and by noting that p(cn|λr, zr) = p(cn|λr) due to the Markov chain property.

From (3.15) we can see that the Kullback-Leibler divergence has emerged as the

right distortion measure for our problem. We can now rewrite (3.14) in the way that is

usual for rate-distortion problems, i.e.,

min
p(zr|λr)

I(Λr;Zr) subject to E {D(p(cn|λr) || p(cn|zr))} ≤ I ′′, (3.17)

where we have set I ′′ = I(Cn; Λr)− I ′. In [47] the authors have shown that the optimal

probability assignment solving (3.17) is given by

p(zr|λr) =
p(zr)

ζ(λr, β)
exp [−β D(p(cn|λr) || p(cn|zr))] , (3.18)

with some β > 0 and a normalization term (partition function) ζ(λr, β) which ensures

that p(zr|λr) is a valid probability distribution. However, it must be emphasized that

(3.18) is only a formal solution since both p(zr) and p(cn|zr) are defined implicitly in

terms of p(zr|λr). For p(cn|zr) we obtain

p(cn|zr) =
1

p(zr)

∑
λr

p(cn, λr)p(zr|λr), (3.19)

where we have used Bayes rule and the Markov chain condition Cn −Λr −Zr. Clearly,

due to consistency, p(zr) can be expressed as

p(zr) =
∑
λr

p(zr|λr)p(λr). (3.20)

Note that in all expressions above we assume that the joint distribution p(cn, λr) is

known. Thus, also for the IBM, we have to obtain the conditional LLR statistics by

Monte Carlo simulations.

Although p(zr|λr) cannot be obtained in closed form, an iterative algorithm can

be used to obtain the solution of (3.17) numerically. The iterative IBM algorithm is

guaranteed to converge to a local optimum and can be seen as a generalization of the
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Blahut-Arimoto algorithm [48], which is used for the numerical computation of rate-

distortion functions and channel capacities. In Algorithm 1 we summarize the iterative

IBM algorithm for the computation of p(zr|λr).
Algorithm 1 Iterative IBM algorithm for the computation of p(zr|λr).

Input: p(cn, λr), β, Q = |Z| (number of quantizer levels), K (number of iterations)

Require: β > 0, Q ≥ 2, K ≥ 1 and p(cn, λr) is a valid probability distribution

Initialization: randomly choose p0(zr|λr), k ← 1

while k ≤ K do

pk(zr)←
∑
λr

pk−1(zr|λr)p(λr)

pk(cn|zr)← 1
pk(zr)

∑
λr

p(cn, λr)pk−1(zr|λr)

pk+1(zr|λr)← pk(zr) exp [−β D(p(cn|λr) || pk(cn|zr))]
pk+1(zr|λr)← pk+1(zr|λr)/

∑
zr

pk+1(zr|λr)
k ← k + 1

end while

p(zr|λr)← pk(zr|λr)

Clearly, our quantizer design using the iterative IBM algorithm should yield a deter-

ministic mapping, i.e., each λr is mapped to exactly one zr. This means that for each λr

we have p(z?r |λr) = 1 for one specific zr = z?r and p(zr|λr) = 0 for all other zr. In order

to obtain such a 0−1 probability distribution for p(zr|λr) the value of β has be to chosen

large enough. In our quantizer design we have chosen β such that 100 ≤ β ≤ 300, with

increasing values of β for higher source-relay SNRs. Note that values of β that are too

large will likely lead to numerical problems in the IBM algorithm.

With p(zr|λr) the Q quantizer decision regions R(i) are fixed. The corresponding

quantizer reproducer values λi are not determined by the IBM since they are irrelevant

for the mutual information. However, in order to provide the decoder in our PLNC

scheme with proper reliability information, we again set the reproducer values according

to (3.13).

We emphasize that the choice of p0(zr|λr) is important, since the iterative IBM

algorithm will in general only converge to a local optimum. It is vital for the quality

of the result p(zr|λr) to choose p0(zr|λr) at random in the initialization of the IBM

algorithm. In order to obtain good results, multiple instances of the IBM algorithm

can be run on a sufficiently large number of different initializations p0(zr|λr). The best

mapping p(zr|λr) in terms of mutual information loss is then chosen as the result of the

quantizer design procedure.
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The number of iterations needed until the result of the IBM algorithm converges

sufficiently well generally depends on the source-relay SNR. We observed that for lower

source-relay SNRs the required number of iterations is larger that for higher source-

relay SNR. For high source-relay SNR, i.e., when I(Cn; Λr) is close to 1 bit, roughly 20

iterations are sufficient for convergence, whereas for low source-relay SNR about 100

iterations may be necessary to reach convergence.

It is important to note that we applied the IBM in our quantization problem to

maximize the mutual information I(Cn;Zr) for a fixed rate, i.e., for a fixed number

of quantizer levels Q. However, due to the transmission of the quantizer indices zr

over a noisy channel from the relay to the destination, the decoded quantizer indices

ẑr at the destination might not be equal to the ones that were transmitted (cf. Figure

2.9). Therefore we should include the effect of the relay-destination channel in our

quantizer design, i.e., we should maximize the mutual information I(Cn; Ẑr) for a fixed

number of quantizer levels (instead of I(Cn;Zr)). But due to our assumptions regarding

channel state information this is impossible, since the relay has no CSI about the relay-

destination link.

3.6 Quantizer Comparison

In this section we will compare the three quantizer design approaches described in the

previous sections. We apply the respective quantizers to our PLNC scheme for the

MARC, where we use the RSCC depicted in Figure 1.3 as channel code and we model

all links as fast i.i.d. Rayleigh flat fading channels.

Figure 3.3 shows the LLR statistic and the corresponding quantizer design results

for quantizers with Q = 4 levels at a source-relay SNR of ρsr = 3.75 dB. Note that

due to symmetry we plot the results in Figure 3.3 only for λr > 0. In this figure,

the quantizer decision boundaries are indicated by vertical lines and the reproducer

values are plotted as squares on the abscissa. It is interesting to note that the decision

boundaries and reproducer values of the IBM quantizer are the smallest, then come

those of the equiprobable output quantizer and the Lloyd quantizer yields the largest

values for the decision boundaries and quantizer reproducers. In addition it can be

seen that the reproducer values of the Lloyd quantizer are significantly larger than

the reproducer values of the other quantizers. This is due to the fact that the Lloyd

quantizer chooses the reproducers such that the MSE is minimized (cf. Equation (3.9)),

whereas for the other two quantizers the reproducer values are given by (3.13).

Since Λr = Λ(c1) � Λ(c′2), the decision boundaries gi in Figure 3.3 are related to
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Figure 3.3: LLR distribution, quantizer decision boundaries and quantizer reproducer
values for Q = 4 levels at a source-relay SNR of 3 .75 dB. Note that the
LLR statistics and the quantizer designs are symmetric around λr = 0.
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the respective code bit LLRs by Λ(c1)� Λ(c′2) = gi. A two dimensional representation

of the quantizer decision regions of the IBM quantizer from the example in Figure 3.3

is depicted in Figure 3.4. The shape of the borders of the decision regions directly

reflects the soft XOR encoding rule. The boxplus operation together with the scalar

IBM quantizer which lead to the result depicted in Figure 3.3 are equivalent to a two

dimensional vector quantizer, with the decision regions shown in Figure 3.4, operating

directly on Λ(c1) and Λ(c′2). However, note that the two dimensional quantizer decision

regions are disconnected. Here, each decision region consists of two disjoint components.

This is in contrast to the Voronoi tessellation generated by usual vector quantization

algorithms which lead to connected Voronoi cells.

Figure 3.5 shows the quantizer decision boundary g3 versus the source-relay SNR ρsr

for Q = 4 levels. Note that all other decision boundaries are determined by (3.2). Here

we can see that there is a large difference between the value of the decision boundary

of the IBM quantizer and the other quantizers. Furthermore the value of the decision

boundary of the Lloyd quantizer is always the largest, whereas for the equiprobable

output quantizer it is the smallest for low SNR and closely follows the value of the

decision boundary of the Lloyd quantizer for high SNR. In addition we can observe

that it should be possible to approximate the curve corresponding to the IBM quantizer

by a (piecewise) linear function with small approximation error. This would allow for

on-the-fly design of the quantizer during data transmission.

In Figure 3.6 we plot the quantizer reproducer values λ3 and λ4, again for Q = 4

levels, versus the the source-relay SNR ρsr. Here, the dashed lines correspond to the

larger reproducer value λ4, whereas the solid lines correspond to λ3. Note that λ1 = −λ4

and λ2 = −λ3 due to symmetry. We note that the behavior of the reproducer values

versus the SNR is similar to the behavior of the quantizer decision boundaries versus

the SNR. However, we observe that λ3 of the equiprobable output quantizer follows the

result of the IBM quantizer much more closely than it does for λ4. Again, we note that

an approximation of the curves corresponding to the IBM quantizer by piecewise linear

functions should lead to good results.

Figure 3.7 shows a comparison of the three quantizer design approaches we have

considered in terms of the mutual information loss ∆I = I(C1, C
′
2; Λr)− I(C1, C

′
2;Zr).

Note that I(C1, C
′
2; ·) = I(Cn; ·), with Cn = C1 ⊕ C ′2. The comparison in terms of

mutual information loss is motivated by the data processing inequality, i.e., we want to

lose as little information as possible due to the quantization of the LLRs Λr. We will

show in Chapter 4 that the metric of mutual information loss is indeed relevant for the

performance of our PLNC scheme. The mutual information on the abscissa of Figure

3.7 is shown in Figure 2.6 versus the source-relay SNR ρsr.
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Figure 3.5: Quantizer decision boundary g3 versus the source-relay SNR ρsr for quan-
tizers with Q = 4 levels. Note that the other quantizer boundaries are
given by g0 = −∞, g1 = −g3, g2 = 0 and g4 =∞ due to symmetry.
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We compare the different quantizers for 2, 4 and 8 levels. For an odd number of

levels both the equiprobable output quantizer and the Lloyd quantizer show rather

poor performance, particularly for relatively high source-relay SNR or, equivalently,

for I(C1, C
′
2; Λr) close to 1. Note that when Q is odd we have a quantizer reproducer

value at λ = 0. Therefore, the equiprobable output quantizer will, especially for high

SNR, map a large part of the LLR distribution to λ = 0 which leads to a large mutual

information loss.

From Figure 3.7 we can see that for Q = 2 levels all quantizers show equal perfor-

mance. This is due to the fact that the only (finite) quantizer decision boundary is,

due to symmetry, at g1 = 0 for Q = 2. Since the choice of the quantizer reproducer

values does not effect the mutual information, it is obvious that all quantizers with 2

levels are equal in terms of mutual information loss. Note that a quantization of the

LLRs with Q = 2 levels, i.e., with 1 bit/LLR, corresponds to a hard decision on the

sign of the LLRs. Furthermore, since we use a scalar quantizer, the rate cannot be any

smaller than 1 bit/LLR.

Clearly, if the number of levels is increased, the mutual information loss will decrease.

For 4 and 8 quantizer levels, we can see that the IBM quantizer is superior to the other

quantizers in terms of mutual information loss. This is due to the fact that the IBM

quantizer maximizes I(C1, C
′
2;Zr) and thus minimizes the mutual information loss ∆I.

For those values of the mutual information I(C1, C
′
2; Λr) which are relevant for the

operation of our PLNC scheme, the equiprobable output quantizer outperforms the

Lloyd quantizer. However, we can see that the maximization of I(Λr;Zr) performed by

the equiprobable output quantizer does not minimize the mutual information loss. In

this comparison the Lloyd quantizer performs worst, which means that quantizer design

for minimum MSE distortion is far away from minimizing the mutual information loss

that is due to the quantization. Finally it is interesting to note that the maximum

of the mutual information loss seems to be shifted to smaller values of the mutual

information with an increasing number of levels for the IBM quantizer, whereas for the

other quantizers just the opposite is the case.
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Figure 3.7: Quantizer comparison in terms of mutual information loss ∆I. Note that for Q = 2 levels all quantizer designs are
equal since the only decision boundary g1 = 0 for all quantizers. The IBM quantizer is designed to minimize the
mutual information loss and thus it is superior to all other quantizers in this comparison.



4
Simulation Results

4.1 Introduction

In this chapter we will present numerical simulation results of the PLNC scheme de-

scribed in Chapter 2. We show the BER performance of our scheme for a variety of

system parameters and transmission scenarios and provide comparisons to the perfor-

mance of the reference systems introduced in Section 2.6. Furthermore, we will compare

the LLR quantizers described in Chapter 3 in terms of BER performance.

In Section 4.2 we consider the symmetric MARC, i.e., we assume equal SNR values

on the source-relay channels and on the source-destination channels respectively. Per-

formance results for the general case, i.e., for the non-symmetric MARC, are presented

in Section 4.3.

Unless otherwise noted, we have used the following system parameters in order to

obtain the BER results presented in this chapter.

• The input-output relation of the individual channels is given by (2.3), where we

assume fast i.i.d. Rayleigh flat fading.

• Each source uses the RSCC depicted in Figure 1.3 with octal generator polynomial

378 and feedback polynomial 238. The sources do not employ puncturing of the

encoder output and therefore the code rate Rc,i is equal to 1/2. The convolutional

codes are terminated and the resulting blocklength is 8000 bits per codeword.

• The relay always uses the same channel code as the sources.

• Each node transmits Gray labeled QPSK symbols defined according to (2.7).

53
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• LLR quantization at the relay is performed using a scalar quantizer designed using

the information bottleneck method (cf. Section 3.5).

• We do not perform data compression, i.e., lossless source coding, on the sequence

of quantizer indices.

• The number of iterations of the joint network-channel decoder is fixed to 10.

Note that the plots in the following sections show the BER versus the average source-

destination channel SNR. This is especially important to note in case both source use

a different code rate, since this will change the Eb/N0 ratio, but will, of course, leave

the channel SNR defined in (2.5) unchanged.

In order to allow for a fair comparison between our scheme and the reference sys-

tems from Section 2.6, we compensate for the possibly different transmission (frame)

durations, i.e., for the different time sharing factors α, by adapting the SNR according

to (2.20). Moreover, note that the transmit energy per frame of the relay is fixed to Er.

Therefore, depending on the number of channel uses Mr, the average transmit power

of the relay is scaled by the factor β according to (2.6).

4.2 The Symmetric Case

In this section we consider the case of the symmetric MARC. This means that we have

ρsr = ρ1r = ρ2r and ρsd = ρ1d = ρ2d. Therefore, under the assumption that both sources

use the same channel code, the average BER is equal for both sources. The figures in

this section show the BER versus the source-destination SNR ρsd. In most cases the

BER curves are parametrized by the relay-destination SNR ρrd.

Coded LLR transmission versus analog LLR forwarding. In Figure 4.1 we

compare our PLNC scheme to the system proposed in [9]. Note that we use coded

transmission of the LLRs from the relay to the destination whereas the LLR forwarding

in [9] is modeled as an analog transmission according to (2.1). Here we assume AWGN

channels instead of fast fading channels and we fix the source-relay SNR to ρsr = 5 dB.

For the LLR quantization we use only Q = 2 quantizer levels, i.e., 1 bit/LLR. From

Figure 4.1 we can see that the coded LLR transmission (solid lines) outperforms the

analog LLR transmission (dashed lines). However, the gap between the two schemes

is reduced as ρrd increases. The blue line in Figure 4.1 shows the BER performance

achieved when the relay is present but silent, yielding ρrd = −∞ dB. In this case the

performance is of course equal for both systems.
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Figure 4.1: Comparison between coded LLR transmission (solid lines) and analog LLR
forwarding (dashed lines). Here, the channels are modeled as AWGN
channels, ρsr is fixed to 5 dB and we use Q = 2 quantizer levels.

Error floor behavior. We can observe from Figure 4.1 that both systems exhibit

an error floor. This error floor is due to the imperfect coupling between the channel

decoders in the iterative joint network-channel decoder. Perfect coupling between the

channel decoders would imply that Λ̃r = Λr → ±∞. However, the LLRs Λr are

possibly small, i.e., |Λr| 6= ∞, depending on the quality of the source-relay channels,

and furthermore they are not available perfectly at the destination, i.e., Λ̃r 6= Λr. These

“wrong” LLRs are subsequently “injected” into the iterative decoder via the network

decoder (cf. Figure 2.11). Thus the noisy transmission from the sources to the relay and

the noisy transmission from the relay to the destination are the two main reasons for

the presence of the error floor. In addition, the LLRs are distorted by the quantization.

Clearly, LLR quantization is unavoidable for coded LLR transmission and therefore the

additional quantization noise can only be reduced by increasing the number of quantizer

levels. The noise on the source-relay and relay-destination channels should be combated

by the use of suitable channel codes and modulation schemes.

The above reasoning is supported by the fact that the error floor of the analog LLR

forwarding scheme vanishes as ρrd →∞, if the source-relay SNR ρsr is sufficiently high.

In that case the iterative decoder at the destination performs like a turbo decoder,
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where the constituent codes are those used by the two sources. Note that the error

floor does not vanish as ρrd → ∞ in the case of coded (quantized) LLR transmission,

since the quantization noise is independent of the relay-destination SNR ρrd. For a

fixed quantizer choice and a given ρsr, the error floor can only be lowered by using a

strong channel code on the relay-destination link and by taking care that ρrd is large

enough for reliable transmission of the coded LLRs from the relay to the destination,

e.g., by clever deployment of the relay.

Decoding threshold. From Figure 4.1 we can see that the decoding threshold, in

terms of the source-destination SNR ρsd, is located at very low values of ρsd. Commu-

nication at a reasonable BER is possible using our PLNC scheme at source-destination

SNRs as low as ρsd = −5dB, under the assumptions that lead to the results in Figure 4.1.

Furthermore note that in our scheme the decoding threshold is not (significantly) shifted

to higher SNR values as ρrd decreases, as long as the BER on the relay-destination link

is not too high (which depends on the channel code that is employed by the relay).

This is a further advantage of coded LLR transmission when compared to analog LLR

forwarding.

In case the destination is confident about the sum of the transmitted code bits c1⊕c′2,

i.e., I(C1, C
′
2; Ẑr) is large, it seems that only very little information from the sources is

necessary at the destination in order to induce coupling between the individual channel

decoders in the iterative joint network-channel decoder and thereby obtaining turbo

decoding gains. Thus, given a sufficiently high source-relay SNR ρsr, the decoding

threshold is mainly determined by the reliability of the LLRs coming directly from the

sources, whereas the error floor is determined by the quality of the LLRs transmitted by

the relay, i.e., by the number of quantizer levels and the BER on the relay-destination

link. This reasoning is backed up by results shown in Section 4.3.

The effect of decoder iterations. Figure 4.2 shows the effect of the iterations

of our joint network-channel decoder. Here, the system parameters are the same as

for Figure 4.1 and we have fixed ρrd to 5 dB. From Figure 4.2 we note that the first

iteration yields the largest gain, whereas after five iterations the gains are already small.

Moreover we see that (at least in this SNR regime) the iterative decoding procedure

converges sufficiently well after a relatively small number of iterations. Furthermore it

is interesting to see that the error floor is established after only two iterations.

The black curve in Figure 4.2 is equal to the solid green curve in Figure 4.1 since

we run 10 decoder iterations in total. However, the blue curve in Figure 4.2 is different

from the blue curve in Figure 4.1, since the former is obtained after one (half) iteration.
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Figure 4.2: The effect of decoder iterations. The system parameters are the same as
in Figure 4.1. Here, the relay-destination SNR is fixed to 5 dB.

Note that in the first iteration of our joint network-channel decoder, only the second

channel decoder obtains prior information from the network decoder. The first channel

decoder has to decode using only the direct observation from the respective source in

the first iteration. Therefore the average BER after one iteration is only slightly better

than in the case where the destination receives no information from the relay. As shown

in Figure 4.2 the average BER drops significantly after the second iteration, i.e., after

both channel decoders have exchanged information (via the network decoder) for the

first time.

Comparison to a transmission without relay. Let us now investigate the per-

formance gain of our PLNC scheme compared to a transmission without relay. Figure

4.3 shows the corresponding results for a source-relay SNR of ρsr = 10 dB and Q = 2

quantizer levels. Here, we assume fast i.i.d. Rayleigh flat fading channels (as we will

henceforth always do). The comparison in Figure 4.3 is fair in the sense that we com-

pensate for the different time sharing factors α, i.e., for the different transmission rates.

For the case without relay, both source equally share the available transmission time,

yielding αref = 1/2. For our PLNC scheme we have α = 1/4 and therefore, according

to (2.20), the BER curve for the case without relay is shifted by 3 dB towards lower
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Figure 4.3: Comparison between our PLNC scheme and a transmission without relay.
The source-relay SNR ρsr is fixed to 10 dB and we use Q = 2 quantizer
levels. We observe an SNR gain of up to 9 .5 dB in this example.

SNRs. The average transmit power of the relay is PA since β = 1 according to (2.6).

Figure 4.3 shows that the we can achieve large gains with our PLNC scheme. Here,

we obtain an SNR gain of approximately 9.5 dB (for ρrd = 7 dB) compared to the

case without relay. We can furthermore see that the decoding threshold is shifted by

approximately 1dB compared to a transmission over AWGN channels. This is intuitive

since for fading channels we need a higher SNR than in the AWGN case to convey the

same amount of information to the destination. The same is true with respect to the

error floor. In order to lower the error floor we would need higher SNRs ρrd and ρsr or

we could use stronger channel codes.

Quantizer comparison in terms of BER. In Figure 4.4 we show the BER per-

formance of our PLNC scheme using different quantizers for a source-relay SNR of

ρsr = 7 dB and Q = 4 quantizer levels, i.e., 2 bits/LLR. We compare the quantizers

resulting from the quantizer design methods presented in Chapter 3. We can see that

the IBM quantizer (solid lines) is clearly superior to the other quantizers. Furthermore

the equiprobable output quantizer (dashed lines) performs better than the Lloyd quan-

tizer (dash-dotted lines). Thus we see that the results in terms of mutual information
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Figure 4.4: Quantizer comparison in terms of BER for Q = 4 quantizer levels and
a source-relay SNR of ρsr = 7 dB. The IBM quantizer (solid lines) is
superior and the equiprobable output quantizer (dashed lines) performs
better than the Lloyd quantizer (dash-dotted lines).

loss from Chapter 3 are reflected directly in this BER comparison. This means that

mutual information loss is a proper measure for the design of quantizers in digital com-

munication systems. As shown in Figure 4.4 the IBM quantizer performs best in terms

of the error floor and the decoding threshold (although in this example the decoding

threshold is the same for all three quantizers if ρrd is large enough).

Since we have seen that the IBM quantizer yields the better BER performance

compared to the other quantizers, we will henceforth use only the IBM quantizer.

Similar results than those shown in Figure 4.4 are obtained for the case of Q = 8

quantizer levels.

Source coding at the relay. As already mentioned in Chapter 2, the quantizer

output will in general not be uniformly distributed for Q > 2. Therefore lossless source

coding can be applied to the sequence of quantizer indices zr in order to save bits

in the transmission from the relay to the destination. However, this implies that the

destination will discard the data received from the relay in case the it was unable to

correctly decode the source-coded message.
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Figure 4.5: Comparison between transmission with source code (dashed lines) and
without source code (solid lines). The source-relay SNR ρsr is fixed to
10 dB and we use Q = 4 quantizer levels.

In Figure 4.5 we compare the performance of our PLNC scheme for the case with-

out source coding (solid lines) and for the case with source coding at the relay (dashed

lines). In order to obtain these results we used Q = 4 quantizer levels and we fixed

the source-relay SNR to ρsr = 10 dB. In this comparison we compensate for the un-

equal time sharing parameters and the different number of relay channel uses in both

cases. This implies that the relay-destination SNR is roughly 3 dB better for the case

with source coding (the legend in Figure 4.5 shows the values of ρrd for the case with-

out source coding). However, even with a relatively high SNR of ρrd = 10 dB many

source-coded messages have to be discarded at the destination due to decoding errors.

Therefore the BER performance with source coding at the relay is poor in this SNR

regime. Nevertheless, for very high values of the relay-destination SNR ρrd it is a viable

option to reduce the number of channel uses required by the relay. We note that it

should be investigated whether it is really necessary to always discard the complete

data transmitted by the relay in case the destination was unable to decode the message

without error.
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Figure 4.6: Comparison between our PLNC scheme (solid lines) and a decode-and-
forward scheme (dashed lines). The source-relay SNR is equal to 10 dB
and we use Q = 2 quantizer levels. In this example we obtain an SNR
gain of almost 10 dB.

Comparison to a decode-and-forward scheme. Let us compare the performance

of our PLNC scheme to the simple DF scheme described in Section 2.6. In this DF

scheme the relay decodes both source messages and forwards half of the bits from each

codeword to the destination without re-encoding the received data. At the destination

the LLRs corresponding to the respective codewords are combined and then both mes-

sages are decoded separately. In case the relay can only decode one of the two source

messages, it spends its complete timeslot for that source. If the relay was unable to

decode any message it will remain silent. In any case, the time sharing parameter α is

fixed to 1/3.

The performance comparison between our PLNC scheme (solid lines) and the DF

scheme described above (dashed lines) is depicted in Figure 4.6. Here, the source-relay

SNR is equal to 10 dB and we use Q = 2 quantizer levels. As a reference we also plot

the BER for the case of no relay in Figure 4.6. In all cases we have compensated for the

difference in the transmission time in order to ensure a fair comparison. From Figure

4.6 we can see that the SNR gain of our scheme compared to the reference DF scheme

is almost 10 dB at a BER of 10−3 (for ρrd = 10 dB). Furthermore we observe that such
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Figure 4.7: BER performance with LDPC codes and a comparison to the case without
relay. Here, the SNRs are given by ρsr = ρrd = 3 dB and we use Q = 2
quantizer levels. In this example we obtain an SNR gain of 2 dB compared
to a transmission without relay.

a DF scheme is not able to significantly improve the BER performance of two sources

simultaneously. Moreover, for the DF scheme without re-encoding at the relay, the

SNR gain compared to the case without relay vanishes as ρsd increases. For ρsr < 10dB

the difference between the DF scheme and the case without relay is even less (also for

lower ρsd), since the probability of successful decoding at the relay decreases for with

decreasing ρsr.

BER performance with LDPC codes. In the previous examples we have seen that

the error floors in our scheme were relatively high in the SNR regime we considered.

In Figure 4.7 we show BER results for the case where each source (and also the relay)

uses an LDPC code. The LDPC code we use has a code rate of 1/2 and the blocklength

is 64 000 bits. Using this channel code we did not observe any error floor. It is very

likely that there is still an error floor, however, according to our simulation results this

error floor should be below 10−8. Since LDPC codes exhibit a pronounced threshold

behavior, the BER performance does not change significantly once the SNR is above

the decoding threshold. Therefore we choose ρsr = ρrd = 3 dB and we use Q = 2
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quantizer levels.

From Figure 4.7 we can see that our PLNC scheme with LDPC codes yields an SNR

gain of 2 dB compared to the case without relay. Note that the decoding threshold

when using LDPC codes is at an approximately 2 dB higher SNR compared to the

decoding threshold obtained with the RSCC which is used in the other examples. For

the iterative decoder at the destination we have performed up to 50 inner iterations of

the sum-product algorithm to decode the constituent codes and we have again used 10

outer iterations in which the channel decoders exchange information via the network

decoder. We note that it might be possible to improve the result shown in Figure 4.7

by considering advanced scheduling algorithms for the iterative joint network-channel

decoder.

4.3 The General Case

In this section we extend our analysis to the non-symmetric MARC. This means that

in general we have ρ1r 6= ρ2r and ρ1d 6= ρ2d. In this case both sources will have different

BERs, denoted by BER1 and BER2. In the plots, the BER of source 1 will be indicated

by solid lines and the BER of source 2 will be indicated by dashed lines. In order to be

able to present our results in two-dimensional plots, we will not consider independent

SNRs ρij. Instead, we will consider a fixed offset between the source-relay SNRs and/or

the source-destination SNRs. We show that the non-symmetries can be compensated

by adapting the code rate of the sources.

In this section, unless otherwise noted, we assume ρ1r = 7 dB and we use Q = 4

levels for the LLR quantization.

Non-symmetric source-relay channels: ρ1r > ρ2r, ρ1d = ρ2d. In Figure 4.8 we

show BER performance of our system in case of non-symmetric source-relay channels

and equal code rates Rc,1 = Rc,2 = 1/2. The source-relay SNRs are given by ρ1r = 7 dB

and ρ2r = 4 dB. From Figure 4.8 we can see that the error floor of source 2 is increased

by an order of magnitude due to its lower source-relay SNR, while the performance of

source 1 is almost unchanged compared to the symmetric case. The decoding threshold

remains unchanged, as it is basically determined by the quality of the source-destination

links in this SNR regime. We note that the difference in the error floors between the two

sources decreases with increasing source-relay SNR (for a constant SNR offset ρ1r−ρ2r).

For very high source-relay SNR, i.e., when I(C1, C
′
2; Λr) ≈ 1, we obtain the performance

of the symmetric case.
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Figure 4.8: Non-symmetric source-relay channels. Here, both sources use the same
code rate and the source-relay SNRs are given by ρ1r = 7 dB , ρ2r = 4 dB.
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Figure 4.9: Non-symmetric source-relay channels. Here, the code rates are given by
Rc,1 = 1/2, Rc,2 = 1/4. The source-relay SNRs are ρ1r = 7 dB , ρ2r =
4 dB.
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In order to compensate for the worse BER performance in the non-symmetric case,

source 2 can lower its code rate, e.g., to Rc,2 = 1/4 while the parameters of source 1

remain unchanged. The performance in this case is depicted in Figure 4.9. We observe

that the BER performance of source 2 has improved dramatically with an error floor

of less than 10−5. Here, both sources benefit from a decoding threshold which is more

than 3 dB lower than in the case of equal code rates. This is due to the fact that source

2 provides a sufficient amount of information in order to obtain turbo gains already at

a lower source-destination SNR. The difference of 3 dB corresponds to the difference

in Eb/N0 when decreasing the code rate from 1/2 to 1/4. Except for the decoding

threshold, the performance of source 1 again remains largely unchanged.

Non-symmetric source-destination channels: ρ1d > ρ2d, ρ1r = ρ2r. The BER

performance of our system in case of non-symmetric source-destination channels is

depicted in Figure 4.10. Here, both sources use the same code rate, Rc,1 = Rc,2 = 1/2,

and the source-destination SNRs are related by ρ1d − ρ2d = 3 dB. The result in Figure

4.10 shows that the error floor of source 2 is slightly increased in case of higher relay-

destination SNRs ρrd. On the other hand, the error floor of source 2 is smaller than

the one of source 1 for ρrd = 2 dB. We conjecture that this is the case, because the

LLRs corresponding to the code bits transmitted by source 2 are (on average) smaller

than the code bit LLRs corresponding to source 1, and the smaller LLRs are influenced

less by distorted LLRs coming from the relay due to the properties of the boxplus

operation. Furthermore we can see that the decoding threshold is increased, because

source 2 provides less information about its code bits to the iterative decoder at the

destination. Again, the performance of source 1 remains almost unchanged compared

to the symmetric case.

When source 2 lowers its code rate to 1/4, we obtain the results depicted in Figure

4.11. We note that this result is similar to the result for the non-symmetric source-

relay channels. The BER performance of source 2 is significantly improved and the

corresponding error floor is lower than 10−5. The decoding threshold is again improved

by 3 dB when compared to the non-symmetric case, while otherwise the performance

of source 1 remains basically unchanged.

Non-symmetric source-relay and source-destination channels. In this case

both the source-relay channel and the source-destination channel of one source have an

SNR offset compared to the respective channels of the other source. We will not discuss

this case in detail since it is just a combination of the two previous examples and there

are no additional noteworthy effects in this case.
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Figure 4.10: Non-symmetric source-destination channels. In this example, the source-
destination SNRs are related by ρ1d−ρ2d = 3 dB and both sources use the
same code rate. The source-relay channels are symmetric, i.e., ρ1r = ρ2r.
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Figure 4.11: Non-symmetric source-destination channels. Here, the code rates are
given by Rc,1 = 1/2, Rc,2 = 1/4 and the source-destination SNRs are
related by ρ1d − ρ2d = 3 dB. The source-relay channels are symmetric,
i.e., ρ1r = ρ2r.
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Figure 4.12: The case of a broken source-relay link. Here the source-relay and relay-
destination SNRs are given by ρ1r = 7 dB, ρ2r = −∞ and ρ1d = ρ2d.

The case of a broken source-relay link: ρ2r = −∞, ρ1d = ρ2d. If one of the two

source-relay links is broken, then the relay has to cease its support for the source in

question. Otherwise, all LLRs Λr would be zero and thus the relay would be unable to

help the other source. This means that in case ρ2r = −∞, the MARC will degrade to a

relay channel and a point-to-point link. We can see this behavior in Figure 4.12. Here,

the BER performance of source 2 is independent of ρrd and equal to the performance

of a point-to-point link. In Figure 4.12 we have ρ1r = 7 dB and we quantize the LLRs

at the relay using 2 bits/LLR. We can observe that the BER performance of source 1

improves as ρrd increases. However, we again see an error floor in the regime of low SNR

ρ1d. Here, the BER performance is limited by the SNR ρ1r even if the relay-destination

SNR ρrd → ∞. Clearly, as the source-destination SNR ρ1d increases the support from

the relay becomes less important.

The case of a broken source-destination link: ρ2d = −∞, ρ1r = ρ2r. Figure

4.13 shows that in our PLNC scheme it is possible to decode the data of both users

even if one source-destination channel is broken. The decoding threshold is equal for

both sources, however compared to the symmetric case the decoding threshold is sig-

nificantly increased, because only one of the two direct links conveys information to the
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Figure 4.13: The case of a broken source-destination link. Here the SNRs are given
by ρ2d = −∞ and ρ1r = ρ2r = 7 dB.

destination. Furthermore we note that source 2 exhibits an increased error floor. As

before, the performance of source 1 remains largely unchanged.

We conclude that our PLNC scheme shows good performance even if the source-

destination channels are non-symmetric. Moreover the system can compensate for a bro-

ken source-destination link. In addition we have seen that the impact of non-symmetric

source-relay channels is more severe than the effect of non-symmetric source-destination

channels. We propose to compensate for non-symmetric source-relay channels by adapt-

ing the code rate of the sources.



5
Summary and Outlook

5.1 Summary

In this thesis, we have presented a PLNC scheme for the MARC. An important advan-

tage of this transmission scheme is that error-free decoding of the source messages at

the relay node is not required. The relay can therefore make use of all the information

it has obtained from its received signals. At the destination node, the network code

and the channel codes are decoded jointly by exchanging soft information between the

network decoder and the channel decoders. The joint network-channel decoder of our

PLNC scheme shows “turbo-like” performance for a wide range of SNR values. The

overall system offers significant SNR gains compared to legacy relaying schemes.

In our PLNC scheme the relay forwards soft information to the destination. In

order to allow for digital transmission, the soft values have to be quantized at the

relay. We have analyzed different quantizer design approaches and we have found that

the information bottleneck method provides a framework for optimum quantizer design

in terms of mutual information loss. Furthermore we have shown that proper LLR

quantization is vital for the performance our PLNC scheme, i.e., the metric of mutual

information loss is indeed relevant for the performance of the proposed system.

Finally we have provided numerical simulation results for a variety of system pa-

rameters and transmission scenarios. We have shown the performance gain that can be

achieved using our PLNC scheme by comparing it to a number of reference systems.

Moreover we have gained insight on which parameters determine the decoding threshold

and the error floor of our system. A detailed analysis of the system performance for
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the case of the non-symmetric MARC has shown that we can compensate for different

channel conditions by adapting the code rate of the sources.

5.2 Outlook

In this section we propose several ideas for future research. Most of these ideas concern

extensions to the PLNC scheme proposed in this thesis.

• In our PLNC scheme for the MARC we use TDMA with three timeslots in order to

obtain orthogonal channels. Therefore the sources may use only a fraction of the

total frame duration for their transmission. This approach helps to simplify the

receivers and the synchronization between the nodes, however, it also decreases

the overall rate at which the sources transmit their data. We should therefore try

to reduce the number of timeslots in order to increase the transmission rate of

the sources. Clearly, a full-duplex relay is required if only one timeslot is used,

i.e., if both sources and the relay constantly transmit data. Since wireless full-

duplex relays are infeasible at the moment, we do not consider non-orthogonal

multiple-access of all nodes for our PLNC scheme. Nevertheless, we can combine

the timeslots of the two sources and still use a half-duplex relay, thereby increasing

the transmission rate of the sources. It remains to be seen if such a non-orthogonal

multiple-access scheme with two timeslots is a viable option for our PLNC scheme

in terms of computational complexity and system performance.

• So far we have only considered offline design of the LLR quantizer employed in

our PLNC scheme. This is because optimum quantizer design requires knowledge

of the conditional LLR statistics which can only be obtained using Monte Carlo

simulations since we lack an analytical model of the LLRs obtained at the re-

lay. Of course, it would be more practical if the quantizer design would happen

“on-the-fly”, i.e., during data transmission. The quantizer levels and the repro-

ducer values of the IBM quantizer discussed in Section 3.5 seem to scale with

increasing source-relay SNR in a way that should allow on-the-fly quantizer de-

sign. Further investigations would then be necessary in order to assess the impact

of (suboptimal) on-the-fly quantizer design on the system performance.

• The network coding operation at the relay is performed in terms of soft values in

our PLNC scheme. We have seen that the LLR of the modulo-2 sum of two inde-

pendent code bits is given by the “boxplus” of the two code bit LLRs. We thereby

combine two individual LLRs to one LLR about the network-coded bits, which
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is subsequently quantized by a scalar quantizer. Using this approach the rate of

the relay-destination link is equally divided between the two sources. Whereas

this is optimum in case of symmetric source-relay channels, i.e., when ρ1r = ρ2r, a

different rate allocation, preferring the user with the better source-relay channel,

should be used in case of non-symmetric source-relay channels. This could be

realized by applying two-dimensional vector quantization directly to the code bit

LLRs, instead of first combining them and performing a scalar quantization af-

terwards. This would make our scheme more suitable for non-symmetric channel

conditions.

• In our scheme, the sequence of quantizer output indices is channel encoded and

modulated at the relay prior to the transmission to the destination. We conjecture

that it would be beneficial to design the coding and modulation at the relay such

that the sign of the LLRs is better protected than the magnitude information.

This could be achieved by applying unequal error protection techniques. However,

it remains an open question if the performance of our system can be improved

significantly by considering unequal error protection.

• Up to now we have investigated PLNC with soft information forwarding only for

the MARC. It would be interesting to see if the basic ideas of our PLNC scheme

for the MARC can also be applied to other wireless relay networks. In particular,

PLNC for the TWRC might be studied in future work.

• Finally, we think that PLNC in conjunction with rateless codes is an important

topic that should be studied in detail.
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Notation

Throughout this thesis, vectors are denoted by boldface letters. Time dependent quan-

tities are denoted by x(t) or x[n] in the continuous time and discrete time case, re-

spectively. Unless noted otherwise, the meaning of the following symbols is as stated

below.

Symbol Meaning

A Symbol alphabet

a Transmit symbol, a ∈ A
CN (µ, σ2) Circularly symmetric, complex Gaussian distribution

with mean µ and variance σ2

ci Sequence of code bits transmitted by node i

ĉi Estimate of the sequence of code bits ci transmitted by node i

E{X} Expectation of the random variable X

Ei Transmit energy of node i per codeword

GF(q) Galois field with q elements

hij Channel coefficient of channel from node i to node j

Ki Dimension of the channel code used by node i,

i.e., the number of information bits per codeword

l Number of bits carried by one symbol, l = log2(Ma)

Ma Cardinality of A, Ma = |A|
Mi Number of symbols transmitted by node i per codeword

M Total number of symbols transmitted per frame

Ni Blocklength of the channel code used by node i

P{E} Probability of the event E
Pi Transmit power of node i
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Rc,i Rate of channel code used by node i, Rc
i = Ki/Ni

Ri Transmission rate of node i in bit per channel use, Ri = Ki/Mi

ui Sequence of information bits transmitted by node i

ûi Estimate of the sequence of information bits ui transmitted by node i

wi Sequence of noise samples observed at node i

xi Sequence of symbols transmitted by node i

yij Sequence of noisy symbols received at node j, transmitted by node i

α Time sharing parameter (for the ith source we have Mi = αM)

γij Instantaneous SNR on the channel from node i to node j

Λ(·) A posteriori log-likelihood ratio

Λp(·) A priori LLR

Λe(·) Extrinsic LLR

Π(·) Interleaver

Π-1(·) Deinterleaver

ρij Average SNR on the channel from node i to node j

⊕ Modulo-2 addition, bit-wise XOR operation

� Boxplus operation [12]



List of Abbreviations

3GPP 3rd Generation Partnership Project

APP a posteriori probability

ARQ automatic repeat request

AWGN additive white Gaussian noise

BCJR algorithm Bahl, Cocke, Jelinek and Raviv algorithm [15]

BER bit error ratio

BPSK binary phase shift keying

CRC cyclic redundancy check

CSI channel state information

FCS frame check sequence

FEC forward error correction

i.i.d. independent and identically distributed

JNCC joint network-channel coding

LDPC code low density parity check code

LLR log-likelihood ratio

MARC multiple-access relay channel

PCCC parallel concatenated convolutional code

pdf probability density function

PLNC physical layer network coding

QPSK quadrature phase shift keying

RF radio frequency

RSCC recursive systematic convolutional code

SISO decoder soft-input soft-output decoder

SNR signal-to-noise ratio

TDMA time division multiple-access

TWRC two-way relay channel
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