
▪ ▪ ▪

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt
und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Wien, October 30, 2009

i

Danksagung

Ich möchte mich an dieser Stelle bei allen Personen bedanken die mich während
meines Studiums unterstützt haben.

Darüber hinaus bedanke ich mich bei Herrn Dipl.-Ing. Oliver Hrazdera für die
Möglichkeit die Diplomarbeit in einem sehr spannenden und herausfordernden
Projekt bei Rosenbauer International AG anzufertigen. Bei Herrn Dipl.-Ing.
Joris Gruber bedanke ich mich für die Hilfe in speziellen technischen Angele-
genheiten. Ein ganz besonderes Dankeschön geht an Herrn Anton Klucsarits für
das Erklären zahlreicher CAN Bus Details und das Beantworten vieler Fragen.

Für die sehr gute Betreuung und die nützlichen Anregungen bei der Erstellung
dieser Diplomarbeit möchte ich mich bei Frau Mag. Petra Brosch und Frau o.
Univ.-Prof. Mag. Dipl.-Ing. Dr. Gerti Kappel bedanken. Bei Frau Mag. Petra
Brosch auch für die Unterstützung bei vielen interessanten Meetings in Linz.

Zu guter Letzt möchte ich mich bei meiner Mutter Frau Mag. Inge Bruck-
mayer für die finanzielle und moralische Unterstützung während meines ganzen
Studiums bedanken.

ii

Abstract

A sustainable knowledge management and sophisticated tool support are ex-
tremely important for every successfully operating company. Within an extremely
wide range of tools, Web applications gain more and more importance to meet
the constantly increasing requirements. Outstanding benefits are worldwide ac-
cessibility and interoperability on a very large scale. Moreover, in many cases
no installation on single clients is needed, updates can be provided easily, and
centralized data management on the server-side avoids costly synchronizations.
These factors lead to reduced costs for the information infrastructure and sup-
port the employees to do their work. For example, a constructor of fire-fighting
trucks can query the headquarter’s database on the other side of the world to find
out which CAN data (Controller Area Network) is needed to configure a specific
vehicle.

Building such solutions is not a trivial task and therefore disciplines like Web
Engineering and Internet Computing emerged. Furthermore, developers can
choose from a wide range of technologies to realize their solutions. Handling
these technologies leads to successful development of Web applications. This mas-
ter’s thesis describes in detail the solution for a specific problem in the industry,
namely a Web application called CORA (CAN Bus Organization - Rosenbauer
Assistant) to manage the CAN data for Rosenbauer International AG. Accord-
ing to the company’s IT-infrastructure MSSQL Server, IIS, and ASP.NET were
chosen as core technologies. On one hand the .NET framework provides the
possibility to develop applications in a rather short time, also known as Rapid
Application Development (RAD). On the other hand many RAD-techniques are
not applicable on large enterprise solutions where the complexity has to be broken
down into several layers. This work presents approaches, patterns and techniques
for each layer.

The Data Access Layer is responsible for retrieving and manipulating data and
uses LINQ to SQL as object-relational mapper. The Business Layer handles the
communication to external systems and adds business functionality between the
Data Access Layer and the Presentation Layer. Finally, the Presentation Layer
presents the data in an appropriate format and handles the user interaction.

Furthermore, the database schema of the sample application has been con-
stantly renewed and improved to cover additional requirements like multiple CAN
bus systems, multilingualism, user administration, and a history of important
entities. Therefore, schema evolution and data migration play an additional im-
portant role in this thesis. All these aspects are elaborated theoretically and
explained practically with the help of CORA.

iii

Kurzfassung

Ein nachhaltiges Wissensmanagement in Verbindung mit einer ausgeklügelten
Werkzeugunterstützung ist extrem wichtig für jedes erfolgreich agierende Un-
ternehmen. Unter einer Vielzahl von Werkzeugen erlangen Web-Anwendungen
immer mehr an Bedeutung. Herausragende Vorteile von Web-Anwendungen
sind weltweite Erreichbarkeit und Interoperabilität. Darüber hinaus ist in vielen
Fällen keine Klientinstallation notwendig, Updates können leicht zur Verfügung
gestellt werden und eine zentrale Verwaltung der Daten am Server vermeidet
teure Datensynchronisation. Diese Faktoren führen zu einer Kostenverminderung
für die Informationsinfrastruktur und unterstützen die Arbeitskräfte bei ihrer
täglichen Arbeit. Zum Beispiel kann ein Konstrukteur von Feuerwehrautos die
Datenbank von einem entfernten Produktionsstandort nach einer speziellen CAN
Konfiguration (Controller Area Network) für ein spezifisches Fahrzeug abfragen.

Der Entwurf solcher Lösungen führte zu Disziplinen wie Web Engineering
und Internet Computing. Außerdem können Entwickler aus einer Vielzahl von
Technologien wählen, um deren Lösungen zu realisieren. Diese Diplomarbeit
beschreibt im Detail die Lösung für ein spezielles Problem aus der Industrie,
nämlich eine Web-Anwendung genannt CORA für die Verwaltung der CAN Daten
für Rosenbauer International AG. Gemäß der firmeninternen IT - Infrastruktur
wurden der MSSQL Server, IIS und ASP.NET als Kerntechnologien ausgewählt.
Auf der einen Seite bietet das .NET Framework die Möglichkeit Anwendungen
in kurzer Zeit zu entwickeln, auch als Rapid Application Development (RAD)
bekannt. Auf der anderen Seite sind viele RAD-Technologien nicht im großen
Rahmen für Unternehmenslösungen einsetzbar, da diese eine Aufteilung der Kom-
plexität in einzelne Schichten verlangen. Diese Arbeit präsentiert Herangehens-
weisen, Entwurfsmuster und Techniken für jede einzelne Schicht.

Die Datenzugriffsschicht ist für die Abfrage und Manipulation von Daten ver-
antwortlich und verwendet LINQ to SQL als Objekt Mapper. Die Schicht der
Geschäftslogik behandelt die Kommunikation zu externen Systemen und führt
die Geschäftslogik aus. Letztendlich präsentiert die Präsentationsschicht die auf-
bereiteten Daten dem Benutzer und verarbeitet die Benutzereingaben.

Des Weiteren wurde das Datenbankschema der Beispielanwendung ständig
erneuert und erweitert, um den zusätzlichen Anforderungen wie verschiedenen
CAN Bus Systemen, Mehrsprachigkeit, Benutzerverwaltung, und einer Änderungs-
liste der CAN Entitäten, gerecht zu werden. Deswegen spielen Schema Evolution
und Datenmigration eine wichtige Rolle in dieser Arbeit. All diese Aspekte wer-
den theoretisch im Detail behandelt und anhand der CORA praktisch erörtert.

iv

Contents

1. Introduction 1
1.1. Web Engineering . 1
1.2. ASP.NET . 3
1.3. Rapid Application Development 3
1.4. Layered Architecture . 6
1.5. Patterns . 8
1.6. Problem Statement . 8
1.7. Structure of the Thesis . 9

2. Worldwide Management of CAN Data 10
2.1. Rosenbauer International AG . 10
2.2. What is CAN data? . 10
2.3. How CAN data has been managed so far? 11
2.4. Requirements for a Web-based CAN Management System 12

3. Data Management 13
3.1. Schema Evolution . 14
3.2. Database Schema . 14

3.2.1. Modification based on new requirements 15
3.2.2. Improvements . 18
3.2.3. Dealing with further Schema Evolution 20

3.3. Data Migration . 24
3.3.1. Challenge of combining multiple independent databases. . 24

4. Data Access Layer 29
4.1. Object-Relational Mapping . 32
4.2. LINQ to SQL . 34
4.3. Generic Controller Pattern . 43
4.4. Data Transportation . 47
4.5. Advanced Data Retrieval and Manipulation 52
4.6. Creation of Data Access Layer Components 58

5. Business Application Layer 60
5.1. Communication . 62
5.2. Interfaces . 64

5.2.1. Import . 64
5.2.2. Export . 64

6. Presentation Layer 66
6.1. Separation of Concerns . 66

v

6.1.1. Page Controller . 68
6.1.2. Template View . 70
6.1.3. Separation of Concerns regarding the CORA 70

6.2. Data Presentation . 71
6.3. User Interaction . 80

7. Security 83
7.1. User and Role Management . 84
7.2. Authentication . 84
7.3. Implementing CORA Security . 85

8. Deployment 88

9. Conclusion 91
9.1. Lessons Learned . 91
9.2. Future Work . 92

A. Database Diagram 94

B. Screenshots Frontend 97

List of Figures 99

List of Tables 101

Listings 102

Bibliography 104

vi

1. Introduction

1.1. Web Engineering

It is intrinsic to human nature to search for answers to open questions and to de-
velop supportive tools. Therefore the raise of the Internet, especially the World
Wide Web, had an enormous impact on society. People are now able to find
desired information instantly and share knowledge across the planet. Moreover,
the industrial information management changed to a great extent as well as now
companies provide their departments with new tools to handle their highly spe-
cialized knowledge. Imagine a company which produces fire-fighting technologies
including vehicles. One department possesses the knowledge to equip a specific
vehicle to perform a desired action, for example the configuration of the pump
engine. Now another production location wants to use the already developed con-
figuration for their pump engines. One possible solution would be a worldwide
accessible database which stores this configuration. Therefore Web solutions are
essential among knowledge management tools and range from simple document
centric Web sites and static HTML documents to interactive Web applications.
Realizing such solutions would not have been possible without the manifestation
of a discipline called Web Engineering, which provides systematic approaches,
concepts, methods, techniques, tools and technologies. The sources for Web En-
gineering can be described as in figure 1.1.

Figure 1.1.: Sources of Web Engineering according to [5]

Nevertheless Web development and traditional software development differ in
a number of areas. One of the main differences is that the former uses communi-
cation technologies and generates non-sequential Web applications which can be
accessed on different platforms. This leads to new challenges for the developers
which may include user interfaces for mobile devices or a navigation structure
which handles multiple resources for different user groups. Consequently devel-
oping Web applications for a specific problem domain is a highly complex process
consisting of different phases. There exist numerous process models and frame-
works like the Rational Unified Process (RUP)1, the Microsoft Solution Frame-

1http://en.wikipedia.org/wiki/IBM Rational Unified Process

1

1. Introduction

work (MSF)2, or SCRUM3 to support the development life cycle. In many cases it
is not necessary to strictly follow a process model but it is inalienable to abstract
some basic conditions to give the own Web application development process a
certain structure. The Web application for the worldwide management of CAN
data was realized through the following phases:

1. Envisioning: At the beginning of the development process a vision for solv-
ing the given problem must be generated. Therefore all the involved stake-
holders have to meet and formulate requirements. Back to our CAN data
management example, an existing solution allows the derivation of many
requirements for the new Web solution. Nevertheless a detailed use case
specification is essential.

2. Planning: After formulating requirements the solution needs to be planned
and possible technologies must be evaluated.

3. Developing: The solution is implemented during the development phase.
Certain milestones and review meetings guarantee that the development is
on the right track.

4. Stabilizing: The functional efficiency of the developed solution can only be
assured through numerous tests. In addition needed updates and bug fixes
are realized in this phase.

5. Data Migration: When the quality of the implemented solution has been
assured, all the existing data has to be migrated to work flawlessly with the
new system.

6. Deploying: Finally the developed solution gets deployed on the productive
system.

These phases are not intended to be executed in a strict sequence; in turn they
are performed within iterations. For instance, some data can be migrated before
stabilizing takes place in order to support quality tests.

Web Engineering incorporates a huge amount of different technologies but many
aspects are technologically independent and universally valid. For example the
concept of separation between layout and logic should be taken into account for
every solution, no matter if Java, ASP.NET or PHP has been chosen as core
technology. Choosing the right technology is a critical parameter for the Web
project management. Several factors including the estimated size of the project
have to be considered. In many cases the decision is limited by the company’s
IT-infrastructure. For the practical example described in this thesis ASP.NET
was chosen as core technology by the IT-authorities.

2http://en.wikipedia.org/wiki/Microsoft Solution Framework
3http://en.wikipedia.org/wiki/Scrum (development)

2

1. Introduction

1.2. ASP.NET

ASP.NET is a server-side Web application technology developed by Microsoft as
the successor to the Active Server Pages (ASP). The predecessor has to deal with
several problems like the following.

Spaghetti Code. HTML is mixed with server-side script in classic ASP. This
leads to larger source files which are harder to read and to maintain. Furthermore
the performance is affected due to the server’s script engine which has to switch
on and off several times.

Script Languages. In classic ASP every object or variable is created as weakly
typed data type which requires higher amount of memory and slows down per-
formance. Furthermore it is impossible to develop a sophisticated integrated
development environment (IDE) when the data type can be only determined and
checked during runtime. This means no debugging, error checking and Intel-
liSense (auto completion) to support the developer.

According to [14] Microsoft was able to start from scratch with ASP.NET
including the following fundamental changes.

Integration within the .NET platform. ASP.NET is completely integrated
within the .NET platform and therefore the developers can choose among sev-
eral supported languages (including C# and Visual Basic) and can use all the
functionality of the sophisticated .NET Class Library.

Object orientation. In addition to the access of all ASP.NET objects provided
by the .NET framework, a developer can use all the benefits of an object-oriented
programming environment. For instance, programmers are able to create reusable
classes, extend existing classes or use interfaces to standardize their code. Fur-
thermore good examples of object-oriented thinking in ASP.NET are server-based
controls. Developers can customize these objects, which are also able to react to
certain events, to render any desired low-level HTML markup.

1.3. Rapid Application Development

The complexity and amount of data which has to be managed by different depart-
ments within a company is constantly increasing. As a consequence the desire
for ingenious tool support and solutions with a shorter development cycle has
never been higher. This applies to Web applications as well, and the industry re-
acts with products to support shorter development methods also known as Rapid
Application Development (RAD). For example Microsoft’s Visual Studio allows
developing data centric Web applications in ASP.NET with the help of prede-
fined controls and data sources in a rather short time. So the developer can use
a designer with drag and drop possibilities to create a Web site that displays and
modifies data without writing a single line of code. The major drawback lies in

3

1. Introduction

the tight coupling of the numerous components. For example the Presentation
Layer easily includes elements for data access. In the worst case SQL commands
get directly inserted into the template files which should only define the Web
site structure. More sophisticated RAD approaches in Visual Studio call stored
procedures on the database-side or call methods to return objects. Nevertheless,
the use of these predefined controls always comes along with limitations for the
developer, for instance the method called by the data-source-control must provide
a specific signature or supports limited return types.

The following example 1.2 demonstrates the development of a Web site which
displays a simple result set.

Figure 1.2.: Rapid Application Development in ASP.NET with Visual Studio

In the example above the SQL command is directly inserted in the ASPX
template file which leads to several problems. First of all, it is really difficult
to apply additional logic to the retrieved data. Moreover, if a similar result set
is needed on another page the query has to be generated again which means a
maintenance nightmare in large applications, because then every page has to be
updated. In addition service orientation gains more and more importance in the
company IT landscape, which basically means that before developing monolithic
applications for every particular problem one should consider several services
which provide certain functionality. In our example a Web service could provide
the queried data for several Web applications. This is not possible when the
data is directly bound to a presentation control and therefore not stored in a
communicable format on a single accessible location. Last but not least a screen
designer, who does not have a firm grasp of data retrieval techniques, has to deal
with SQL in the template files and could produce errors.

Data source controls Almost every enterprise application has to deal with
persistently stored data. Therefore data retrieval, data manipulation and data
representation are targets for RAD approaches. Moreover, in many cases the data

4

1. Introduction

sources are multifaceted like relational database systems or XML files. With the
data source controls ASP.NET provides a method for linking a Web site to a data
source. According to [14] the NET framework includes the following data source
controls:

• SqlDataSource

• ObjectDataSource

• AccessDataSource

• XMLDataSource

• SiteMapDataSource

• LinqDataSource

For the CORA (CAN Bus Organization - Rosenbauer Assistant) the SqlData-
Source and the LinqDataSource are not considered because the data logic is far too
complex to combine parts of it with the presentation logic. The AccessDataSource
and the XMLDataSource are not needed because at the moment CAN data is nei-
ther stored in Access databases nor in XML files. The SiteMapDataSource is used
to connect the Web.sitemap file, which describes the navigational structure of
the CORA, with the primary navigation menu. The ObjectDataSource is the only
data source control which is recommended as an approach for large-scale profes-
sional Web applications because it basically supports a layered architecture [14].
Nevertheless, after evaluating the possibilities of the ObjectDataSource it became
clear that this data source control was not able to satisfy the requirements of the
CORA either. First of all, all objects that are intended to be updated by the
control are required to have a certain appearance like a default, parameterless
constructor. In addition to this the ObjectDataSource suffers from the same lim-
itation like all the other data source controls, namely that it is not possible to
explicitly handle the creation of the data object which is bound to the control.
This causes a lot of problems, for instance the problem of adding extra items
and the problem of handling the logic when the extra items are selected. For
example, it is impossible to create a data source populated drop down-list that
does not have a selected item (unless it is empty) [14]. It is inescapable to place
a “Select item” on top of a drop down-list whose item selection triggers complex
and resource intensive operations. For instance, a “Select CAN module” entry
avoids that the entire hardware configuration is automatically loaded for the first
item in the populated drop down-list when the user simply opens the Web site.
There exist workarounds for many data source related problems but in the end
the complete abandonment of data source controls and the direct data binding
of collections of custom objects were selected as main approach. In this case all
the object-oriented features can come into play and data binding is used to a
reasonable extent as described in chapter 6.

5

1. Introduction

1.4. Layered Architecture

Rapid Application Development enables the creation of solutions in an unprece-
dented short time when used correctly, but to encounter the mentioned limitations
the underlying application architecture must always be the center of attraction.
Otherwise the quickly created architecture cannot satisfy new requirements and
the whole application has to be replaced. The term “architecture” can be de-
scribed in numerous ways, including the following definition from [2]:

The architecture of a software system consists of its structures, the de-
composition into components, and their interfaces and relationships.
It describes both the static and the dynamic aspects of that software
system, so that it can be considered a building design and flowchart
for a software product.

Moreover, not only functional requirements defined by users and other stake-
holders influence the architecture but additional quality considerations like per-
formance and scalability. In addition to this, existing architecture, patterns and
technical aspects are subjects to change and therefore a sophisticated architec-
ture should be able to deal with significant changes in the problem domain. An
established method to deal with a very complex system is its decomposition into
smaller, less complex components. This is the fundamental idea of a layered ar-
chitecture where the higher layer uses various services defined by the lower layer,
but the lower layer is unaware of the higher layer. Furthermore, each layer usually
hides its lower layers from the layers above.

In [7] the benefits of a layered system are described as the following:

• A single layer can be understood without knowing much about the other
layers.

• A single layer can be substituted with an alternative implementation. For
instance, if the fundamental database changes, only the Data Access Layer
has to be adapted as long as it passes the appropriate information to the
Business Layer. On the other hand, if another fronted for displaying data is
needed, only a new Presentation Layer which uses the existing Data Access
and Business Layer has to be developed.

• Between layers dependencies are minimized.

• Layers make a good place for standardization.

• Once a layer is built, it can be used for many higher-level services.

On the other hand there are some downsides in [7] described as well:

• Sometimes cascading changes are necessary. For example when a field needs
to be displayed in the user interface, all the layers down to the database
have to be altered as well.

• Additional layers can harm performance.

6

1. Introduction

Web applications often use a three- or multi-layered architecture. For instance,
in one layer the data is stored, another layer retrieves and prepares the data for
further processing in the next layer which applies certain business functionality
or domain logic. Finally a controller layer prepares the data for the presentation
layer, which provides user interaction. Table 1.1 describes the five principal layers.

Layer Responsibilities

Presentation Provision of services, display of information
(e.g., in Windows or HTML, handling of user
request (mouse clicks, keyboard hits), HTTP
requests, command-line invocations, batch
API)

Controller Linkage between presentation and domain
layer. Prepare the data to a requested pre-
sentation, like HTML, Swing or other tech-
nologies.

Domain Logic that is the real point of the system
Data Mapping Linkage between domain and data source

layer
Data Source Communication with databases, messaging

systems, transaction managers, other pack-
ages

Table 1.1.: Five principal layers [4], [7]

The CAN data management application called CORA uses a layered architec-
ture as described in figure 1.3. A Microsoft SQL Server 2005 acts as data source
and can be configured through Microsoft SQL Server Management Studio. The
Controllers in the Data Access Layer are responsible for retrieving and manipu-
lating data where LINQ to SQL is used to bridge the gap between the relational
data stored in the database and the object-oriented world of the accessing solu-
tion. Data Transfer Objects are used to transport the data through the layers.
The Business Layer adds business functionality and is primarily responsible for
user administration, import- and export functionality. The Presentation Layer
uses the code-behind model and custom server objects to present the data and
to provide user interaction.

The development environment should reflect the architecture but this does not
automatically mean that every layer must be an organizational unit of its own.
For instance, Microsoft Visual Studio is one of the key development tools and
the source for the Data Transfer Objects (DTOs) is allocated to the Visual Studio
Project called Data Access Layer and not in a separate project called Common
Layer. For sure the development environment can be reorganized for the future
evolution of the CORA.

7

1. Introduction

Figure 1.3.: The CORA architecture

1.5. Patterns

It is difficult to find a generally accepted definition of a pattern but [7] provides
the following deceleration by Christopher Alexander.

Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.

One key characteristic of a pattern is that they provide a basic idea for a certain
solution and have to be customized according to the given problem. Furthermore
patterns are not isolated and often the usage of one particular pattern paves the
way for the usage of another pattern. The boundaries between patterns are vague
and the described approaches to realize the CORA are often based on numerous
patterns. Nevertheless certain CORA components are often explicitly linked to
widely used pattern names (regarding the highest subjective analogy) to ease
communication or the finding of further resources.

1.6. Problem Statement

Managing information is a very complex task, especially when the related prob-
lem domain is very specific. For instance, the worldwide management of CAN
data requires a database for storing all the information ranging from the de-
scription of a single hardware pin to the information exchange model between
single CAN modules. Furthermore a solution is needed to work with the stored

8

1. Introduction

data. Realizing such solutions confronts the developer with numerous recurrent
challenges. Unfortunately patterns and best practice catalogs to overcome these
challenges are rare to find, regarding certain technologies. For instance, in .NET
and Visual Studio it is encouraged to bind data directly from the user interface
to an underlying database. Especially the drag and drop facilities in Visual Stu-
dio strengthen this development approach and are well documented in numerous
resources. Unfortunately this approach is bound to fail in complex enterprise
scenarios where a layered architecture is needed. Resources describing the de-
velopment of a layered .NET Web application by means of a detailed enterprise
example are rarer to find.

1.7. Structure of the Thesis

The purpose of this thesis is to discuss architecture and design patterns of Web
applications in general and especially in relation to the .NET platform. The work
is based on the development of the CORA, a solution for Rosenbauer International
AG to manage their CAN data worldwide. Chapter 2 introduces the company
and describes how the department responsible for the CAN bus development
managed their knowledge so far. The evolution from the previous data storage
to the new data management is described in chapter 3. Moreover, the CORA
architecture is decomposed into single layers to present patterns and practices
for data access (chapter 4), for applying business logic (chapter 5) and finally
for providing user interaction (chapter 6). The CORA supports multiple users
including a role model to restrict certain operations. The realization of security
aspects is described in chapter 7. Deploying a new solution into an existing
IT-landscape is not a trivial task and therefore chapter 8 provides consideration
regarding the CORA deployment. The last chapter 9 summarizes the project and
points out lessons learned.

9

2. Worldwide Management of CAN
Data

2.1. Rosenbauer International AG

The Rosenbauer Group is a worldwide manufacturer of fire-fighting vehicles with
a wide range of products and services including vehicles, aerials (e.g., turntable
ladders), fire-fighting components (e.g., built-in pumps) and safety equipment.
Three manufacturing bases are located in North America, five in Europe and
one in South East Asia. According to the company profile [25] 1800 employees
achieved sales over 500 000 000 EUR in 2008. In 2002 Rosenbauer introduced the
Controller–area network (CAN) to standardize the information exchange within
many products and to meet the increasing complexity of the customer require-
ments.

2.2. What is CAN data?

When a signal lamp tells the driver of a fire-fighting vehicle that the several meters
long aerial ladder is not completely retracted and can cause heavy damages while
driving, some information exchange takes place. More precisely, a sender (in this
case a sensor which controls the state of the ladder) sends some information over
a communication channel to a receiver (in this case the warn signal lamp). To
realize this information exchange standards and common interfaces are essential,
for instance the receiver must use the same protocol as the sender to be able to
interpret the information sent. The BOSCH company started the development
of the CAN bus system for engine management at the beginning of the eighties.
A bus is a system for data transfer where all communication partners are using a
shared medium namely a single set of wires. As a consequence it is not necessary
to wire every component with an extra cable for each function. For instance, a
rear light of a fire truck needs cables for brake- and backup-light which have to
be linked to the switches and lead through the whole vehicle. This means the
end for obscure cable trees and results in reduced weight. Another big advantage
of a CAN bus system is that every component interacts with a controller which
enables self diagnosis. For example when the ignition is triggered all signal lamps
are able to communicate their status and report defects to the driver. Biggest
drawbacks are the required expertise and the increased complexity. Therefore a
CAN bus system is basically used to realize more complex circuits. Figure 2.1
shows the CAN wiring of a fire-fighting truck. A detailed explanation concerning
CAN data and further resources can be found at [29].

A lot of information and configuration is needed to operate a CAN bus system.

10

2. Worldwide Management of CAN Data

Figure 2.1.: CAN wiring of fire-fighting truck (Picture from Rosenbauer TLF AT
DoKa catalog)

Programmable CAN modules with a specific hardware configuration (including
connectors, pins, etc.) serve as senders and receivers and communicate with CAN
messages. A single CAN message must be unequivocally identifiable and uses a
carrier signal in combination with a specific byte and bit range to reach its desired
destination. In order to allow an incoming message to invoke a CAN module’s
particular functionality, the receiver must be related to a function code which
can be equipped with several parameter codes. All this information and many
additional parameters are required to operate a CAN system. Sophisticated infor-
mation management allows reusing a configured CAN system in another vehicle
and the transfer to another production location. Consequently the management
of configured CAN data is tremendously important for Rosenbauer.

2.3. How CAN data has been managed so far?

Bernhard Stadler describes the beginning of Rosenbauer’s CAN data manage-
ment in his work [29]. In summary, the first CAN data management solutions
were file system based. More precisely every constructing engineer and every
department used another tool (e.g., Excel, Word) to persist the data. The data
loss caused by overwriting files was the first problem the engineering teams had
to face. In addition to this, the search for specific information became harder and
harder with a constantly growing amount of files. As a consequence the amount
of redundant data increased as well.

The use of a centralized database system should eliminate the described prob-
lems. When all the CAN data information is integrated into a single database
certain operations can be applied easily and data queried smoothly. Moreover
diverse applications can access specific views of the stored data. Further benefits
of database systems are consistency checks, user- and role management, transac-
tions, synchronization and backup possibilities.

11

2. Worldwide Management of CAN Data

The first concepts and the resulting solution called EVI (German: Elektronis-
ches Verwaltungs Instrument) for managing Rosenbauer’s CAN data can be found
in [29], including the database schema and entities definition. The IT landscape
of Rosenbauer is based on the Microsoft product line and therefore the database
and the information system were implemented as an Access application. The
EVI abolished the problems of the file based information management but the
spreading use of the CAN bus technology lead to new challenges.

2.4. Requirements for a Web-based CAN
Management System

• Consider multiple CAN bus systems: The EVI was only designed for a single
CAN bus and therefore a new Access database was needed for every CAN
bus. This again raises the problem of data redundancy because some entities
like a connector can be used on multiple CAN bus systems. Furthermore a
lot of different database files are a lot harder to maintain.

• Consider multiple production locations: Every production location needs to
manage its own CAN bus data but should be able to retrieve information
from other locations as well.

• Worldwide accessibility: Although Microsoft Access solutions can be oper-
ated in a distributed environment they cannot compete with the accessibil-
ity offered by Web technologies. The new CAN management solution must
be accessible from all over the world with different devices and multiple
platforms. Therefore most established browsers have to be supported.

• User- and role management: Additional roles are needed for the worldwide
CAN data management as described in section 7.1.

• Internationalization: The CAN data itself and the user interface must sup-
port multiple languages. It must be able to easily add new languages to the
system without changing the database schema or a lot of the programming
code.

• History support: For specific entities all the applied changes have to be
traceable.

• Additional input-, import-, export possibilities for remaining file based data:
Some information is still kept in comma separated value files (csv files) and
should be integrated into the new database system as well.

In addition improved search functionality and certain changes for specific CAN
bus entities were requested. With these significant new requirements the evolution
of the old database schema and new technologies were out of the question. The
whole CAN bus data management of Rosenbauer International AG needed to be
revolutionized.

12

3. Data Management

Before the revolution in Rosenbauer’s CAN data management was able to take
place in form of the CORA, the fundamental database and the data itself had to
be updated to fit into the new system. But database changes are not limited to
introductions of new solutions. On the contrary it is likely that database systems
(DBS) evolve according to the evolvement of real world systems. For instance,
with the ongoing development of the CAN bus system it is inescapable to make
changes to the database. According to [33] the evolvement of a database system
can be classified along two independent dimensions: the level of abstraction and
the transformation mode. The former refers to the data modeling levels and the
latter to the handling of their changes. According to this classification one can
distinguish between:

Instance evolution and instance versioning. Although the database content
is frequently modified by diverse database operations a consistent state must be
always guaranteed. Most of the traditional DBS offer mechanisms for instance
evolution like transactions, which ensure that data gets only changed in mean-
ingful units. For example when a new CAN node is inserted to the database all
the corresponding identifiers are created as well. If the system crashes during
these operations the database will be rolled back to the previous state. On the
other hand if all operations are successfully completed the original data becomes
inaccessible. Therefore instance versioning often has to be implemented manually.

Schema Evolution and schema versioning. The database schema has to change
accordingly to the development of information which has to be stored persistently.
Schema Evolution deals with the management of modifications at the schema
level and the resulting changes at the database level. For example the CORA
completely supports internationalization and therefore all the language specific
information has to be stored in an extra table. In the case of CAN data man-
agement, schema evolution plays the most important role and will therefore be
described in more detail in the next section. Schema versioning is not supported
and therefore old instances must be converted to conform the accurate schema.

Data model evolution and data model versioning. The structure and behavior
of database schemas are defined on the data model level. It is highly unlikely
that Rosenbauer will switch to a database system that does not support previous
schemas and therefore this topic will not be covered in this paper. Please refer
to [33] for further resources.

13

3. Data Management

3.1. Schema Evolution

A database system is able to respond to changes in the real world by allowing
the database schema to evolve. This ability can be referred as Schema Evolution.
Moreover, as mentioned above, Schema Evolution deals with the management
of modifications. The reasons for modifications can be manifold, reaching from
changes in the real world, to requirement changes or mistakes during the schema
design. Requirement changes were the main reason for the schema evolution from
the EVI to the CORA but improvements to existing entities were realized as well.
There exist three principle lines for approaching Schema Evolution according
to [1].

1. Previous states are not considered: The first approach does not retain the
pre-modification state. Therefore each database schema change is applied
irreversibly without taking possible consequences to the data into account.
This approach is only applicable during design phase.

2. Previous states are not considered but data is converted to correspond to
the new schema. Again the evolution of the database is not controlled and
the data in its old structure will be lost.

3. State of the schema before modification is conserved.

There are two ways to realize the third approach. The first one is the so called
historical approach. Every change in the database model creates a new version
and each version is kept along with the related data. The versions are stored
independently. Only the current version is allowed to be changed. The parallel
approach on the other hand enables a common storage of all schema versions and
common operations on the same data collection but is very complex to implement.
In case of the CORA the second principle was used. The database schema had
been renewed and the existing data migrated.

3.2. Database Schema

The database schema reflects the real-world entities, elaborated during the re-
quirement specifications and the database design. Data types and relationships
between entities are fundamental aspects of every database schema. For complex
schemas it is highly recommended to use a model in combination with a tool to
visualize the schema. Although a database schema basically describes the struc-
ture of a database, it directly impacts the Data Access Layer (DAL) of database
accessing applications as well. As a consequence the schema creation possibilities
of the DAL technologies (e.g., object-relational mapper frameworks) should be
evaluated in the schema planning phase as well. As described in chapter 4 LINQ
to SQL is used as object-relational mapper and offers schema generation possibil-
ities. However, when data is inserted in the created database it cannot be altered
with the LINQ to SQL designer anymore. As a consequence the database schema
has to be designed separately from the application model with established tools.

14

3. Data Management

For the design of the CORA database schema Microsoft Visio for Enterprise
Architects was used. The drafted model was then synchronized with the Microsoft
SQL server. For sure one can omit Visio and design the database directly in
Microsoft SQL Server Management Studio with the help of database diagrams.
The major disadvantages are the limited presentation possibilities and the on the
fly manipulation of database components. At the time this thesis was written,
there was no Visio for Enterprise Architects version available that had installed
Visual Studio 2008 instead of Visual Studio 2005. Modifying the windows registry
provides a workaround, detailed instructions can be found at [6]. Visio allows the
generation of scripts and the direct execution of database commands as well. The
synchronization works in both directions so it is possible to apply changes in Visio
and in SQL Server Management Studio. The evaluation of the CORA database
schema creation results in the following best practice:

1. Generation of the initial schema with Visio into a script.

2. Loading and execution of the script in SQL Server Management Studio.

3. Applying all the changes in SQL Server Management Studio and update
the model in Visio.

The reasons for that approach are simple. With the help of a standardized
script the database schema creation is decoupled from the original tool. With the
generated script the initial state of the database can be created without touching
Visio again. Applying changes directly in SQL Server Management Studio has the
advantage that developers can use all the security mechanism and the advanced
features of the SQL server. For example several tables can be altered at once
with the help of T-SQL and it is impossible to apply incompatible data types. In
Visio model validation is only triggered automatically before the update process.
If modifications are not compatible cause of existing data the update process will
fail and the model has to be adapted manually.

3.2.1. Modification based on new requirements

The existing database schema had to be modified to meet new requirements
described in Requirements for a Web-based CAN Management System (2.4).

Multiple CAN bus systems. As described in figure 3.1 two entities called CAN-
Bus and CANBusInfo represent a CAN bus. The former entity encapsulates the
data which describes a specific CAN bus (e.g., id and name) and uses the latter
to describe general characteristics like the protocol, bits and frequency. The sep-
aration into two entities can be easily explained because several CAN buses can
have the same characteristics. The entire CAN bus specific entities can reference
the CAN bus using a foreign key. Some entities are uniquely identified because of
their CAN bus affiliation and therefore the referenced CANBusID becomes part
of their primary key. For instance, a CAN module with a specific item number
(e.g., in German Teilenummer) has a composite primary key in contrast to a
signal with an auto-generated identifier.

15

3. Data Management

Figure 3.1.: Database schema for multiple CAN Bus support

Multiple production locations. As shown in figure 3.2 the introduction of a
new entity called Standort (German for location) assigns a CAN bus clearly to a
specific production location.

Figure 3.2.: Database schema for multiple production locations

User- and role- management ASP.NET provides built-in security mechanisms
including user- and role- management. Using these features would result in au-
tomatically generated database entities. However the security requirements are
too specific and therefore the built-in security mechanisms have been extended,
as described in chapter 7. According to the requirements a user (German: Be-
nutzer) must be assigned a specific role (German: Rolle) for a certain location.
The combination of these three entities generates a new right (German: Recht).
In the case of a CAN bus administrator not all the CAN buses belonging to a
specific location are automatically manageable. On the contrary, the design en-
ables the selection of single CAN buses for a CAN bus administrator. Figure 3.3
describes the designed entities.

16

3. Data Management

Figure 3.3.: Database schema for role management

Internationalization. A properly-designed database schema supports future lan-
guage additions with no changes to the schema. An internationalized catalog
schema is described in [31]. According to this approach every internationalized
entity has an additional entity (a “details entity”) to store localized data. As
a consequence adding or removing language specific data can be achieved with
a simple insert or delete operation. In the EVI database every language is rep-
resented through an extra column but the CORA database design described in
figure 3.4 allows a flexible language management.

Figure 3.4.: New internationalized schema

History support Many different users are performing operations on the same
entity and therefore every create-, update- and delete- operation is logged to a
history entity. This entity includes all the original fields and adds the following
information:

17

3. Data Management

• Time stamp: Describes when the operation took place. The field Histo-
ryCreated indicates when the history entry was created

• User: The field HistoryBenutzer contains the user who performed the oper-
ation.

• Comment: The HistoryComment field describes the operation.

Consequently the database provides a very slim variant of instance versioning.

3.2.2. Improvements

Even highly elaborated database schemes are likely to evolute after some time,
not only because of new requirements but also because of reviewing the database
schema again during a new development life cycle. So while reviewing the entity
relationship diagram of the original Access database the following improvements
had been made to the database schema.

Separation of Function- and Parameter code. The table dbo FunktionCode
contains twenty columns to describe a parameter for a function code on a specific
position. This parameter itself is a code with a function code greater than 9000
and without input- or output characteristics. So function- and parameter codes
are inserted into the table dbo FunktionCode but the latter does not need the
Eingang and Ausgang columns. In addition to this the table references itself to
assign a parameter- to a function code. Moreover, if more than ten parameters
are needed the database schema has to be modified. The introduction of an extra
entity called Parameter puts things right. Now function- and parameter codes can
be described exactly by the really needed fields and a connection table realizes
the many to many relationship. The position field allows a variable amount of
parameters. The improvement to the database schema concerning the function
code is described in 3.5.

Figure 3.5.: Schema Evolution function code

18

3. Data Management

Introducing the CAN message entity (German: CAN Nachricht). A CAN
message is basically represented by an identifier, a certain byte- and bit range
and a carrier signal. In the original database schema a CAN message entity does
not exist. The byte- and bit range is specified by a single column called Bits and
separated by a delimiter. So the value 2.3 indicates that byte 2 and bit 3 are used.
Furthermore every table which represents an association between a function code
and signal has to specify the Identifier and the Bits column. The introduction
of a CAN message entity makes the association between the function codes and
signals clearer and supports object-oriented thinking. In the remodeled database
schema a CAN message uses an identifier and a signal. The Bits column is split
into two atomic fields namely BytePos and BitPos which eases query possibilities.
Finally the CAN message is associated with the function code. The Modus flag
combines the two tables for read and write operations into one single association
table. The improvement to the database schema concerning the CAN message is
described in 3.6.

Figure 3.6.: Schema Evolution CAN message

19

3. Data Management

Introducing the measurement entity(German: Maßeinheit). In the original
database model a signal has six columns describing metric- and inch measurement
characteristics. If a measurement applies for metric and inch all the values have to
be inserted. If another measurement system is needed several extra columns are
needed. The introduction of a measurement (German: Maßeinheit) entity allows
to specify a measurement system for every measurement range. For instance, the
min value “on” and the max value “off” apply to metric and inch and therefore
the signal only has to reference these measurements twice instead of inserting the
value twice. If an additional measurement system is needed only one foreign key
column has to be added to the signal. Moreover a many to many association
table could connect a signal with an arbitrary number of measurement systems.
The improvement to the database schema concerning the measurement units is
described in 3.7.

Figure 3.7.: Schema Evolution measurement units

3.2.3. Dealing with further Schema Evolution

As described earlier, two tools supported the development of the CORA database
schema, namely Microsoft Visio for Enterprise Architects and Microsoft SQL
Server Management Studio. The third tool called LINQ to SQL designer, which
bridges the gap between the relational database and the object-oriented applica-
tion, is described in detail in chapter 4. In summary, at the moment the CORA
database schema is presented by three different tools.

1. Microsoft Visio for Enterprise Architects

2. Microsoft SQL Server Management Studio

3. LINQ to SQL designer

The schema modification possibilities of these tools differ in many ways. Ac-
cording to [32] it is possible to create the initial version of the database schema
with the LINQ to SQL designer, but once the database is populated with live
data, it can no longer be changed by simply re-creating the entire database.

20

3. Data Management

Therefore the LINQ to SQL designer only supports the model-first or model-
driven approach, but not ongoing development. Consequently two tools remain
as a starting point to realize changes in the database schema. As described in
the beginning of this chapter, the development of the CORA database schema
has proven that Visio is great for the initial creation of the database and that the
Management Studio is more suitable for changes. On the grounds that SQL Server
Management Studio is the primary tool for managing the schema of the database
engine possible synchronization errors caused by applied changes in Visio can be
excluded. Changes applied in the Server Management Studio may only result
in unsatisfactory model presentation in Visio after the synchronization, but do
not harm any stored data. Furthermore T-SQL, also known as Transact-SQL, a
proprietary extension to SQL for the Microsoft SQL Server products, enables com-
plex schema modification possibilities. For instance, by now the CORA database
schema identifies a language by an ISO 639 two-letter lowercase culture code. So
“en” stands for English and “de” for German. Consequently the CORA makes no
difference between American English and British English. This was an explicit
requirement to prevent additional translation work. The column to store the ISO
639 language code has the exact length of two. A possible scenario would be the
extension of the language field to three, to meet the needs of ISO 639-2 (e.g.,
“eng” for English), or to five to allow the storage of language codes according
to ISO 639 in combination with ISO 3166 (two-letter uppercase subculture code
associated with a country or region like “en-US”). According to the internation-
alization pattern 3.2.1 the language specific data of every entity is stored in an
extra table. In the case of the CORA this means that 24 detail tables have to
be updated. This is a time consuming task, regardless if the changes are applied
with the help of a database diagram representation or with the dialogs of the
object explorer. A faster way to realize the desired modifications provides the
usage of the following T-SQL script. The fact that the language code is part of
a composite primary key adds additional complexity. In order to be able to alter
the table column, the primary key constraint has to be dropped first and then
added again.

Listing 3.1: Modify database schema with T-SQL
1 declare @tblName varchar (200)

2 declare @colName varchar (200)

3 declare @dataType varchar (200)

4 declare @charMaxLength varchar (200)

5 declare cur cursor for SELECT TABLE_NAME , COLUMN_NAME , DATA_TYPE ,

CHARACTER_MAXIMUM_LENGTH FROM information_schema.columns WHERE TABLE_NAME

LIKE ’%_Details ’

6 open cur

7

8 fetch Next from cur into @tblName , @colName , @dataType , @charMaxLength

9 while @@fetch_status = 0

10 begin

11 if(@colName = ’Sprachcode ’)

12 begin

13 declare @con_name varchar (500)

14 declare @con_colname varchar (500)

15 declare @sql varchar (500)

16 declare @cur_pk_size int

17 SET @sql = ’alter table "’+ @tblName+’" add constraint ’

18 -- retrieve and save the primarykey constraint

19 declare cur_pk cursor for SELECT K.CONSTRAINT_NAME , K.COLUMN_NAME FROM

INFORMATION_SCHEMA.KEY_COLUMN_USAGE K INNER JOIN INFORMATION_SCHEMA.

21

3. Data Management

TABLE_CONSTRAINTS C ON K.CONSTRAINT_NAME = C.CONSTRAINT_NAME WHERE C.

CONSTRAINT_TYPE = ’PRIMARY KEY’ AND K.TABLE_NAME = @tblName

20 select @cur_pk_size = COUNT (*) FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE K

INNER JOIN INFORMATION_SCHEMA.TABLE_CONSTRAINTS C ON K.CONSTRAINT_NAME = C

.CONSTRAINT_NAME WHERE C.CONSTRAINT_TYPE = ’PRIMARY KEY’ AND K.TABLE_NAME

= @tblName

21 open cur_pk

22 Declare @counter int

23 set @counter =0

24 fetch next from cur_pk into @con_name , @con_colname

25 while @@fetch_status = 0

26 begin

27 if(@counter =0)

28 begin

29 SET @sql = @sql+’"’+@con_name+’" primary key (’

30 end

31 if(@counter +1= @cur_pk_size)

32 SET @sql = @sql+’"’+@con_colname+’")’

33 else

34 SET @sql = @sql+’"’+@con_colname+’",’

35 set @counter=@counter +1

36 fetch next from cur_pk into @con_name , @con_colname

37 end

38 CLOSE cur_pk

39 DEALLOCATE cur_pk

40 exec(’ALTER TABLE "’ + @tblName + ’" DROP CONSTRAINT "’+@con_name+’"’)

41 --alter the desired column

42 exec(’ALTER TABLE "’ + @tblName + ’" ALTER COLUMN Sprachcode char (5) not null

’)

43 --add primary key again

44 exec(@sql)

45 --print @sql

46 end --ende vom if

47 fetch next from cur into @tblName , @colName , @dataType , @charMaxLength

48 end

49 CLOSE cur

50 DEALLOCATE cur

After the modification of the database schema the related applications have to
be updated as well. In case of a layered architecture only the Data Access Layer
has to be updated. Unfortunately LINQ to SQL does not provide any synchro-
nization mechanism and therefore the changes to the LINQ to SQL entity model
have to be done manually. If a lot of tables have been altered (like in the example
with the language code) and the LINQ to SQL entity model represents nearly
exactly the SQL database schema and the few differences are well documented,
the entire entity model can be recreated from the database schema.

The SQL Server Management Studio database diagrams can present the Schema
Evolution caused by the evolution of the language code but Microsoft Visio pro-
vides a richer set of model presentation possibilities. The following steps reverse
engineer the modified database schema.

1. Open a new database drawing (e.g., Database Model Diagram Metric).

2. Select Database → Reverse Engineer... and create or choose an existing
ODBC data source. Worth mentioning is the fact that it is possible to
create an ODBC data source at this point but modifications and deletion
must be performed in the Microsoft Windows system settings.

3. Select the objects which should be imported.

4. Arrange the object on the diagram (relationship are drawn automatically).

22

3. Data Management

Another example where T-SQL becomes extremely handy is the implementa-
tion of the history pattern 3.2.1. According to this pattern every table is as-
sociated with an extra history table to persist old versions of stored data with
additional meta data. Of course these tables are not created by hand, the 63
history tables of the CORA database schema were created with the help of a
script generated by the following T-SQL script:

Listing 3.2: Create history tables
1 declare @tblName nvarchar (200)

2 declare @table_type nvarchar (200)

3

4 declare cur cursor for SELECT TABLE_NAME , table_type FROM information_schema.

tables WHERE table_type = ’BASE TABLE’ order by table_name

5 open cur

6 fetch Next from cur into @tblName , @table_type

7 while @@fetch_status = 0

8 begin

9 declare @sql nvarchar(max)

10 SET @sql = ’GO’ + char (10) + ’CREATE TABLE [dbo].[’+@tblName+’_History](

11 [HistoryID] [int] IDENTITY (1,1) NOT NULL ,

12 [HistoryCreated] [datetime] NOT NULL ,

13 [HistoryComment] [nvarchar](250) COLLATE Latin1_General_CI_AS NULL ,

14 [HistoryBenutzer] [nvarchar](100) COLLATE Latin1_General_CI_AS NOT NULL ,’;

15 SET @sql = @sql +char (10);

16 declare @colName nvarchar (200)

17 declare @dataType nvarchar (200)

18 declare @charMaxLength nvarchar (200)

19 declare @nullable nvarchar (200)

20 declare cur_col cursor for SELECT COLUMN_NAME , DATA_TYPE , isnull(

CHARACTER_MAXIMUM_LENGTH ,-1), IS_NULLABLE FROM information_schema.columns

WHERE TABLE_NAME = @tblName

21 open cur_col

22 fetch Next from cur_col into @colName , @dataType , @charMaxLength , @nullable

23 while @@fetch_status = 0

24 begin

25 if(@charMaxLength =-1)

26 SET @charMaxLength = ’’

27 else

28 SET @charMaxLength = ’(’+@charMaxLength+’)’

29 if(@nullable = ’YES’)

30 SET @nullable = ’NULL’

31 else

32 SET @nullable = ’NOT NULL’

33 SET @sql = @sql + ’ [’ + @colName + ’] [’+ @dataType + ’] ’ + @charMaxLength

+’ ’+@nullable+’,’+char (10)

34 fetch next from cur_col into @colName , @dataType , @charMaxLength , @nullable

35 end

36 CLOSE cur_col

37 DEALLOCATE cur_col

38

39 SET @sql = @sql + ’CONSTRAINT [’+@tblName+’_History_PK] PRIMARY KEY CLUSTERED

40 (

41 [HistoryID] ASC

42)WITH (PAD_INDEX = OFF , IGNORE_DUP_KEY = OFF) ON [PRIMARY]

43) ON [PRIMARY]’

44 SET @sql = @sql +’;’+char (10);

45 print @sql

46 fetch next from cur into @tblName , @table_type

47 end

48 CLOSE cur

49 DEALLOCATE cur

The evolution of the CORA database schema will constantly go on, but when
the design of the database schema is completed so far to meet the actual require-
ments, the database is ready to store the old data.

23

3. Data Management

3.3. Data Migration

According to [11] the term database migration is defined as the following:

Database migration is the process of mapping a database application
from a source DBS to a target DBS. The migration process consists
of a set of conversion operations or conversion techniques that are ap-
plied to the source database application and result in a target database
application.

Furthermore [11] distinguishes two parts in a database application, namely the
database interaction part and the computation part. The former is usually formu-
lated in SQL or other high-level data definition and manipulation language but
embedded in the application code (In case of a layered architecture in a separate
layer). The computation part is programmed in a specific programming language
and applies the application logic. In general data migration approaches benefit
from this separation because the database queries are isolated. In case of the
update from the EVI to the CORA this separation does not play an important
role because the data access logic was completely rewritten.

The CAN data existing in several Microsoft Access databases had to be mi-
grated into a single database on Microsoft SQL Server 2005 with a new database
schema. During the development of the old CAN data management application
(EVI) a conversion to SQL server had already been taken into account as shown
in figure 3.8. As a consequence the data had been separated from the application
logic into a separate Microsoft Access file.

Figure 3.8.: Outlook for the EVI development in [29]

Converting an Access database to a SQL Server is straight forward by using the
built in Upsizing Wizard. Consequently the challenges of migrating data between
two different database technologies can be avoided. Moreover, the use of T-SQL
scripts to migrate the upsized data to the final single target database seemed to
be reasonable at a first glance, but the following challenges substantiate the need
for a more sophisticated migration solution.

3.3.1. Challenge of combining multiple independent
databases.

The fact that the EVI uses a single database for each CAN bus bears the chal-
lenge of migrating redundant data. For instance, a specific connector exists on

24

3. Data Management

“CAN bus A” and on “CAN bus B”. In the old CAN bus management solution
the database storing the CAN data of “CAN bus A” and the database storing the
CAN data of “CAN bus B” include both the same connector. Simple copying of
the data of both databases into the new CAN bus combining database would lead
to the double insertion of the same connector. This problem only affects CAN
bus independent data, or to put it differently, entities that exist on multiple
CAN bus systems, for instance connectors, hardware pins or programming cate-
gories. Entities that are assigned to a specific CAN bus, like a configured CAN
module, are equipped with an additional attribute to mark the CAN bus affilia-
tion. CAN bus independent entities with an auto-generated identity provide the
biggest challenge because an auto-generated identity column is only valid for the
particular table. Back to the connector example, if the primary key column is an
auto-generated sequential number, it cannot be used to verify if a connector had
already been migrated from another database. Consequently another attribute
has to be chosen to identify a connector, for instance a custom text description.
In addition the auto-generated identities are often used as foreign key references
and it is tremendously important not to lose any associations between tables dur-
ing migration. In this case it is necessary to look up the manually chosen identity
column of the associated entity and to map it to the newly generated auto id.

Figure 3.9.: Mapping solution for auto generated IDs

In figure 3.9 the Category entity is CAN bus independent and has an auto-
generated primary key. Consequently not the ID column is used as unique identi-
fier for the migration process but the more descriptive Category column. There-
fore, four categories are migrated to the combined table and they all get a new
auto-generated identity. When a CANModule entity from the source database 2 is
migrated, it is necessary to retrieve the new auto-generated identifier by means of
the manually chosen identifier column. Unfortunately, without explicit database
constraints, the uniqueness of the manually chosen identifier column cannot be
guaranteed. If a value of the Category column appears more often in the table, the
mapping is bound to fail. These entities have to be migrated manually. Check
routines must ensure that these entities are pointed out and do not affect the mi-

25

3. Data Management

gration process. The following T-SQL statement finds multiple entries according
to a specific column, in this case the column describing signals.

Listing 3.3: Find multiple entries
1 SELECT DISTINCT t1.SignalID , t1.SignalBeschrDeutsch FROM dbo.dbo_Signal t1, dbo

.dbo_Signal t2 WHERE t1.SignalBeschrDeutsch = t2.SignalBeschrDeutsch AND t1.

SignalID <> t2.SignalID order by t1.SignalBeschrDeutsch

Summarizing the complexity of the data migration, only the use of T-SQL is
inefficient for the given circumstances, and the development of a separate object-
oriented migration application is inescapable. Especially the possibility to express
tables and columns with objects and properties endorse the following migration
approach:

1. Migrate the Access database to SQL Server using the Upsizing Wizard.

2. Retrieve all the data from the source database into an object-oriented con-
text.

3. Create new objects considering the source data and the already inserted
data in the target database.

4. Insert the newly created objects into the target database.

5. Iterate the approach with the next Access database.

Bridging the gap between the relational- and the object-oriented world seems
to be the biggest problem with this migration approach, also known as impedance
mismatch and will be discussed in more detail in the chapter Data Access Layer
(4). In the case of data migration between the EVI and the CORA the object
structure is simple, because one table is reflected exactly by one object. In sum-
mary the in .NET 3.5 integrated object-relational mapper LINQ to SQL solves
the problem. The whole migration approach is described in figure 3.10.

Figure 3.10.: Data migration approach

26

3. Data Management

The migration application is a C# command line application organized in dif-
ferent classes, each of them responsible for the migration of specific tables. For
instance, there exists a CANModulMigrator, a FunktionCodeMigrator or a SignalMi-
grator. All these classes inherit from a superclass Migrator which provides initial
settings, the source- and the target data context and mapping collections. Fur-
thermore the migration application is designed to support incremental migration.
This means that single tables can be marked for migration in the instruction file
and the source database can be changed in a configuration file. In other words a
table by table migration is possible. This supports manual interference and keeps
the cost of system resources down. Nevertheless several source databases require
a migration process that takes transactional behavior into account. In many
cases it is inescapable that data gets immediately written to the target database.
For example, regarding the internationalization pattern in combination with an
auto-generated primary key on the database side, the table for language specific
data and the table for language unspecific data must represent the same entity
with the help of a unique identifier. Before the primary key can be inserted in
language specific data tables it has to be generated through the insertion of data
into the language unspecific table. Imagine the migration process crushes ex-
actly after the language specific data has been inserted. Then an entity without
the language specific data exists on the target database. To prevent this awful
scenario the migration of every single source table has to be defined as trans-
action. This means if something goes wrong, the state of the target database
will be rolled back. After solving the errors, the migration of the table can be
started again without leaving the database in an inconsistent state. Running
the table migration within a transactional context is more expensive regarding
resources, but there exist no applicable alternatives. One possibility would be to
log every single entity migration. In case of an unexpected interruption of the
migration process the log files can be consulted to check if all the data of the
last touched entity has been migrated. Even if no entity has been incompletely
migrated there remains the problem of the incompletely processed table, because
without a transactional triggered rollback the so far migrated data remains in
the target tables. In this case one could either modify the statements for re-
trieving the source entities to start with the right database row, or start from
the beginning including validation logic which prevents an entity from getting
migrated twice. This validation logic could be complex regarding the mentioned
changes of primary keys during the migration. Consequently every table migra-
tion is considered as transaction. Transactions in LINQ to SQL are described in
more detail in the chapter Data Access Layer (4). Regarding the data migration
process it is important to know that putting the LINQ to SQL datacontext of the
source and target database inside the same transaction scope requires that the
“Distributed Transaction Coordinator service” is running. If not the following
code listing will cause an exception that the Microsoft Distributed Transaction
Coordinator (MSDTC) service is unavailable on the database server.

27

3. Data Management

Listing 3.4: Transaction spanning two DataContexts
1 using (TransactionScope scope = new TransactionScope ())

2 {

3 List <dbo_CANModul > srcEntities = (from src in sourceContext.dbo_CANModuls

select src).ToList ();

4 List <CANModul > targetEntities = (from target in targetContect.CANModuls select

target).ToList ();

5 }

The Distributed Transaction Coordinator can be turned on easily in the ad-
ministrative tools but distributed transactions require a lot of resources. During
the migration process no changes are made to the source database and therefore
there is no need to make the retrieval of the source entities part of the transaction.

Listing 3.5: Transaction for one DataContext
1 List <dbo_CANModul > srcEntities = (from src in sourceContext.dbo_CANModuls select

src).ToList ();

2 using (TransactionScope scope = new TransactionScope ())

3 {

4 List <CANModul > targetEntities = (from target in targetContect.CANModuls select

target).ToList ();

5 }

In most cases the migration process of a single table does not exceed the stan-
dard timeout for transactions. On the other hand the migration of tables with
many entries, or in cases that require many additional entries, the timeout has
to be increased explicitly. For example the EVI only stored the first bit and the
last bit of occupied ranges in certain relation tables. It was the job of the EVI
to perform additional counting to calculate the occupied bytes and bits. The
CORA stores the full byte and bit assignments, so that no additional application
logic to the database queries is required to determine an occupied byte and bit
range. The following code listing demonstrates a transaction scope to successfully
migrate a table with a manually increased timeout.

Listing 3.6: Transaction with increased timeout
1 TransactionOptions options = new TransactionOptions ();

2 options.Timeout = TimeSpan.FromMinutes (10);

3 using (TransactionScope scope = new TransactionScope(TransactionScopeOption.

Required , options))

4 {

5 }

In summary an object-oriented data migration approach overcomes all the de-
scribed challenges. Several migration objects provide functions to migrate the
source tables to meet the new database schema.

28

4. Data Access Layer

The persistently stored data must be accessible and modifiable for one or more
applications. Therefore the application has to be aware of the database’s physical
structure. In case of a relational database the data is presented in form of many
related tables and columns. Regarding a layered architecture the functionality
for allowing an application to interact with the database is placed in a sepa-
rate layer. As a consequence many different applications can build on the same
layer and code only has to be adapted at a central point if the database changes,
without affecting the application logic. This means a huge maintenance benefit
compared to monolithic applications where data access aspects pervade the whole
application. Long story short, the role of the Data Access Layer is to handle the
communication between applications and the database.

A sophisticated Data Access Layer exists of numerous components, and sev-
eral patterns provide guidelines for designing them to face common data access
challenges. The first challenge lies in establishing a connection to the database.
Then commands in a for the database understandable language must be executed
in order to perform data retrieval and data manipulation operations. The Struc-
tured Query Language (SQL) is jointly responsible for the success of relational
databases and used by many applications to retrieve and manipulate data. It
is recommended to separate SQL access from the domain logic and place it in
separate classes which form a Gateway to the database tables. By decoupling
the persistent storage implementation from the rest of your application a huge
maintenance benefit is gained and interoperability is strengthened. If data access
logic does not pervade the whole application changes can be applied on a central
point or the whole database can be exchanged more easily without affecting code
of other layers. Moreover, an approved Data Access Layer can be used by many
different applications. According to [7] the gateway pattern promotes to use the
following patterns.

Table Data Gateway. A Table Data Gateway is an object that handles all the
rows of a table. Therefore it contains finder methods to retrieve data with the
help of Record Sets (an in-memory representation of tabular data) and methods
for insert-, update- and delete operations.

Row Data Gateway. A Row Data Gateway is an object that looks exactly like a
row in the database and often uses a Finder Object to query data. Therefore every
database table is represented by a Row Data Gateway and a Finder Object. In case
of the CORA this could be a CANModule Gateway which implements fields for
the item number, the programming category and additional methods for insert-,

29

4. Data Access Layer

update- and delete operations. The CANModule Finder could provide methods
for returning all CAN modules without a hardware configuration.

Active Record. The next design question concerns the extent of functional-
ity provided by the objects that represent database data. A so called Active
Record carries data and behavior and can be considered as an object that wraps
a database row, encapsulates database access and even adds domain logic to the
data.

Data Mapper. The biggest challenge lies in bridging the database’s relational
world with the application’s object-oriented world, also known as object-relational
mismatch. Building applications according to the object paradigm means creating
objects that include data and behavior. On the contrary, the relational paradigm
is based on storing data in table rows. At this point object-relational mapper
come into play as described in 4.1.

Data Access Object. According to [3] a Data Access Object is described as the
following:

The Data Access Object (also known simply as DAO) implements
the access mechanism required to work with the data source. Regard-
less of what type of data source is used, the DAO always provides
a uniform API to its clients. The business component that needs
data access uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source implementation
details from its clients. Because the interface exposed by the DAO
to clients does not change when the underlying data source imple-
mentation changes, this allows you to change a DAO implementation
without changing the DAO client’s implementation. Essentially, the
DAO acts as an adapter between the component and the data source.

The CORA Controllers which are introduced in chapter 4.3 resemble the DAO
pattern because they provide all the functionality for accessing data. Although
not every function is exposed as an interface to the accessing Managers of the
CORA Business Layer (described in chapter 5) at the moment, the Managers can
simply call the method of the particular Controllers without needing any addi-
tional information concerning the data access. The structure of the Data Access
Object pattern is described in figure 4.1.

In case of the CORA the Client is a Business Object of the Business Layer and uses
a Controller class (DataAccessObject) which accesses a Microsoft SQL Database
Server as underlying DataSource. Furthermore the Controller uses the ResultSet,
which is generated by the database engine in response to LINQ to SQL generated
queries, and creates a collection of DataTransferObjects. These objects transport
the data to the Business Layer which applies business logics and forwards the data
to the Presentation Layer.

The sequence diagram depicted in figure 4.2 shows the process and the inter-
action of various components of the Data Access Object pattern for retrieving

30

4. Data Access Layer

Figure 4.1.: Structure of the Data Access Object pattern [3]

data from a data source. In the constructor of the Business Objects the required
DataAccessObjects are initialized. The DataAccessObjects use a LINQ to SQL
DataContext, and a LINQ to SQL query (cf. section 4.2) that populates a Trans-
ferObject (cf. section 4.4), to take care of all the further described actions.

Figure 4.2.: Data Access Object sequence diagram [3]

Taking all the ideas of the mentioned patterns into account, the main compo-
nents of the CORA Data Access Layer are:

• Classes generated by the object-relational mapper LINQ to SQL as de-
scribed in section 4.2.

• Controllers which provide access to the database and perform data retrieval
and data manipulation operations. With the help of LINQ to SQL one

31

4. Data Access Layer

Controller handles one CAN bus entity which consists of multiple tables as
described in section 4.3.

• Data Transfer Objects which transport retrieved data to other layers or de-
liver user changed data to the DAL as described in section 4.4.

Figure 4.3 describes the basic architecture of the CORA Data Access Layer.

Figure 4.3.: Data mapping inside the Data Access Layer

4.1. Object-Relational Mapping

According to [7] a mapper can be defined as the following:

An object that sets up a communication between two independent
objects.

A data mapper (cf. figure 4.4) is a more concrete example of a mapper and
can be defined as the following:

A layer of mappers that moves data between objects and a database
while keeping them independent of each other and the mapper itself.

An object-relational mapper (ORM) is a special occurrence of a data map-
per and can be described as a technique for converting data between relational
databases and object-oriented programming languages; or to put it differently, to
support automatic retrieval and persistence of data between the object-oriented-
and the relational world. In many cases the mapping is realized by a model which
maps the application objects to columns and tables in a database. This data map-
ping can be described in different formats, for example in XML. A sophisticated
ORM framework has to fulfill the following criteria [4].

32

4. Data Access Layer

Figure 4.4.: Data mapper [7]

• An API to perform basic create-, read-, update- and delete (CRUD) op-
erations. For instance, a developer should be able to store a collection of
objects persistently in the database with a single function call and without
worrying about executing numerous insert statements manually.

• A language or API to query the database and generate application objects
out of the retrieved result set.

• Provide a possibility for specifying mapping meta data.

• Support advanced database features like transactions.

• Consider performance.

There exist numerous object-relational mappers for different Web development
technologies with different possibilities. Some of them only map directly the
database schema and other more powerful solutions are able to persist object
models that use advanced object-oriented features like inheritance. Therefore a
well elaborated evaluation of all the possible ORM solutions is extremely impor-
tant.

Entity Framework

• Required .NET Version: 3.5 Service Pack 1

• Three layers: Source schema, conceptual layer, and the mapping layer in
between.

• LINQ as integrated query language.

LINQ to SQL

• Required .NET Version: 3.5

• One-to-one mapping of tables to objects.

• LINQ as integrated query language.

NHibernate

• Required .NET Version: 1.1 or 2.0

33

4. Data Access Layer

• Open source and distributed under the GNU Lesser General Public License.

• Long established in the development community.

• No LINQ support.

Genome

• Required .NET Version: 2.0

• Supports complex mappings.

• Supports multiple databases.

• Additional license costs.

The Microsoft Entity Framework had not been officially released at the start of
the CORA project and after a consultation with Rosenbauer’s IT officials LINQ
to SQL was chosen as object-relational mapper.

4.2. LINQ to SQL

A quick introduction to LINQ to SQL can be found at Scott Guthrie’s Web
log [10]. A more detailed insight is provided by [15]. Moreover, the following list
of criteria from [36] substantiated the choice for LINQ to SQL.

Object identity. In a relational database every entry is uniquely identifiable
with the help of a primary key. When an existing attribute is used one speaks of
a meaningful or natural key. If an extra column only for identification is added
one speaks of a meaningless or surrogate key. Natural key can affect the readabil-
ity of the database schema in many-to-many relationships. Primary keys are not
limited to a single column. For instance, in the CORA database schema every
entity which is associated to a specific CAN bus and does not use a surrogate
primary key has a composite key (or compound key), existing of the natural key
and the CAN bus ID. Furthermore surrogate keys are often automatically gener-
ated in form of a sequence on the database side. Certainly the database ID field
has to be stored in the object which represents the database entity to maintain
identity between an in-memory object and database rows.

In LINQ to SQL, the so called DataContext manages the connection to the
database and the object identity. The DataContext can be described as source of
all entities mapped over a database connection. Therefore if the same query is
executed two times, you receive a reference to the same object in memory every
time as described in the following code listing [21].

Listing 4.1: Retrieving reference to same object
1 Customer cust1 =

2 (from cust in db.Customers

3 where cust.CustomerID == "BONAP"

4 select cust).First();

5

34

4. Data Access Layer

6 Customer cust2 =

7 (from ord in db.Orders

8 where ord.Customer.CustomerID == "BONAP"

9 select ord).First ().Customer;

Furthermore, in case of an auto-generated ID on the database side, the value of
the identity field can only be determined after the insert operation took place and
the corresponding object has to be updated on the object-oriented application
side. The by the LINQ to SQL designer generated entity classes can handle
composite primary keys and get automatically synced in case of auto-generated
identifier. This is important for the creation of language specific entities. In the
CORA database schema carrier signals for CAN messages have an auto-generated
ID. If a new Signal is inserted into the database the corresponding details object
automatically gets the generated SignalID assigned as described in the following
code listing.

Listing 4.2: Auto synchronization for ID field
1 using (TransactionScope scope = new TransactionScope ())

2 {

3 Signal signal = new Signal ();

4 DataContext.Signals.InsertOnSubmit(signal);

5 // Submit needed to get auto -generated ID

6 DataContext.SubmitChanges ();

7 Signal_Detail signalDetailGer = new Signal_Detail ();

8 //Due to synchronization the auto -generated SignalID can be assigned to the

language specific entity

9 signalDetailGer.SignalID = signal.SignalID;

10 signalDetailGer.Sprachcode = "en";

11 signalDetailGer.Bezeichnung = "This is a testsignal";

12 }

Relationships. In the relational model relationships among tables are realized
through column references. For a 1:n or 1:1 relation the primary key of one table
is used as a foreign key in the referenced table. If primary key and foreign key
contain the same value the datasets are referenced. The LINQ to SQL designer
automatically recognizes the relationships for the given tables and generates the
entity classes accordingly. Figure 4.5 demonstrates a 1:n relation in the LINQ to
SQL designer. The automatically generated entity classes provide a property to
return the related entities, stored in a collection of the type EntitySet<T>.

Figure 4.5.: A 1:1 or 1:n relationship displayed by the LINQ to SQL designer

As described in figure 4.6 it is easily possible to realize m:n relations with the
help of an additional table. The generated LINQ to SQL classes do not provide
built-in support for many to many relationships (like generated properties or

35

4. Data Access Layer

methods which return the desired result), but LINQ eases the creation of complex
join queries thanks to the marvelous integration into Visual Studio.

Figure 4.6.: An n:m relationship displayed by the LINQ to SQL designer

Embedded Value. Objects are often finer grained than tables in the database.
As a consequence a technique is required to map an object into several fields of
another object’s table. A good example is provided in [7] where an employment
object links to a data range object. In the object-oriented world this distinc-
tion makes sense but not necessarily in the relational world. Here the start- and
the end date of the employment are directly stored in an employments table.
LINQ to SQL provides the possibility to specify a storage column for every cor-
responding class but mapping a LINQ to SQL entity class to multiple tables is
not supported [17].

Inheritance. The traditional relational model does not provide inheritance and
therefore additional strategies are needed to model hierarchies as described in [7].
The CORA database schema does not use any inheritance but LINQ to SQL
supports Single Table Inheritance and possible implementation approaches can be
found in [15].

Lazy Loading. The Lazy Load pattern is described in [7] as an object that does
not contain all the needed data but knows how to get it. By default LINQ to SQL
only executes queries when the results are processed, also called deferred query
execution. If immediate query execution is desired the result must be stored into
an in-memory collection for example with the extension method toList().

Listing 4.3: Demonstration of Lazy Loading
1 var query = from signal in DataContext.Signals select signal;

2 //query is executed for the first time

3 foreach(var signal in query)

4 {

5 Console.WriteLine(signal.SignalID);

6 }

7 //query is executed again

8 foreach (var signal in query)

9 {

10 Console.WriteLine(signal.SignalID);

11 }

12

13 //query is executed immediately

14 var query2 = (from signal in DataContext.Signals select signal).ToList ();

15 foreach (var signal in query2)

16 {

36

4. Data Access Layer

17 Console.WriteLine(signal.SignalID);

18 }

19 foreach (var signal in query2)

20 {

21 Console.WriteLine(signal.SignalID);

22 }

Connection Pooling. Creating connections is expensive in many environments
and therefore requesting and releasing existing connections from a pool can im-
prove performance in many situations. LINQ to SQL supports Connection Pooling
and provides settings like the number of active connections that are managed by
the pooling infrastructure.

Transactions. The challenge of combining multiple databases during the mi-
gration process (cf. section 3.3.1) introduced the LINQ to SQL capabilities to
handle transactions. Before going into detail regarding the TransactionScope ob-
ject it is important to know that LINQ to SQL provides a default concurrency
implementation due to the object tracking functionality of the DataContext. A
good example is an insert scenario which does not require any field generation
on the database server side. For instance, the generation of a new CAN node
triggers the generation of multiple identifier for the CAN messages. If either the
generation of the node or of the identifiers fails nothing should be committed
to the database. No additional programming effort is needed to guarantee this
consistent state because methods like InsertOnSubmit() and InsertAllOnSubmit()
only mark objects for insertion but the actual database commands are submitted
when the method SubmitChanges() is called. As a consequence the CRUD meth-
ods of the Controller (classes for data access described in section 4.3) provide a
parameter to indicate if SubmitChanges() should be called.

Listing 4.4: CRUD method with submit parameter
1 public List <TDTO > Insert(List <TDTO > dtobjects , bool submitChanges)

2 {

3 }

Therefore the class which is responsible for inserting a CAN node only creates
the node object and marks it for insertion by passing a false boolean. The class
which creates the corresponding CAN message identifier completes the insert
operation by calling SubmitChanges(). This is only possible because neither the
CAN node nor the CAN identifier require an auto generated column on the server
side. The former uses a custom integer less or equal 64 as a node number, the
latter is generated according to the node number. If an automatically created
sequence by the database server is used the TransactionScope object provides
transactional benefits. Moreover, using the TransactionScope does not require to
explicitly begin the transaction or to roll it back. The only requirement is to
complete the transaction by calling the Complete() method.

Listing 4.5: Transaction with TransactionScope
1 using (System.Transactions.TransactionScope scope =

2 new System.Transactions.TransactionScope ())

3 {

4 context.SubmitChanges ();

37

4. Data Access Layer

5 scope.Complete ();

6 }

Furthermore nested transactions (if a method call inside a TransactionScope
invokes a method which implements a TransactionScope as well) are flawlessly
supported and the behavior can be specified by numerous parameters. These are
the transactional mechanism used by the CORA so far, more detailed information
can be found at [15] and [20].

Reuse LINQ queries. One possible solution to reuse LINQ queries is to provide
functions which return IQueryable collections as show in code listing 4.6.

Listing 4.6: Returning IQueryable to enable reuse
1 public IQueryable <CANModulSWHWBelegungDTO > GetHWComponentsQuery ()

2 {

3 StringBuilder langCondition = new StringBuilder ();

4 langCondition.AppendFormat("Sprachcode ==\"{0}\"", settings.Language);

5 var query = from hb in DataContext.CANModulSW_HWBelegungs

6

7 join hbd in DataContext.CANModulSW_HWBelegung_Details.Where(

langCondition.ToString ())

8 on hb.HWBelegungID equals hbd.HWBelegungID into dj

9 from hbdX in dj.DefaultIfEmpty ()

10

11 join steckerDetails in DataContext.Stecker_Details.Where(

langCondition.ToString ())

12 on hb.SteckerID equals steckerDetails.SteckerID into sd

13 from sdX in sd.DefaultIfEmpty ()

14

15 join steckerFunktionDetails in DataContext.SteckerFunktion_Details

.Where(langCondition.ToString ())

16 on hb.SteckerFunktionID equals steckerFunktionDetails.

SteckerFunktionID into sfd

17 from sfdx in sfd.DefaultIfEmpty ()

18

19 join hwpb in DataContext.HardwarePinBezs

20 on hb.HardwarePinBezID equals hwpb.HardwarePinBezID into hwpbJR

21 from hwpbj in hwpbJR.DefaultIfEmpty ()

22

23 join hwpbd in DataContext.HardwarePinBez_Details.Where(

langCondition.ToString ())

24 on hb.HardwarePinBezID equals hwpbd.HardwarePinBezID into

hwpbetails

25 from hwpbdX in hwpbetails.DefaultIfEmpty ()

26

27 join pf1 in DataContext.PinFunktion_Details.Where(langCondition.

ToString ())

28 on hb.PinFunktionID_1 equals pf1.PinFunktionID into pfjoined

29 from pf1x in pfjoined.DefaultIfEmpty ()

30

31 join pf2 in DataContext.PinFunktion_Details.Where(langCondition.

ToString ())

32 on hb.PinFunktionID_2 equals pf2.PinFunktionID into pf2joined

33 from pf2x in pf2joined.DefaultIfEmpty ()

34

35 join sf in DataContext.SteckerFunktions

36 on hb.SteckerFunktionID equals sf.SteckerFunktionID into sfjoined

37 from sfx in sfjoined.DefaultIfEmpty ()

38

39 join defaultfc in DataContext.FunktionCodes

40 on hb.DefaultFunktionCodeID equals defaultfc.FunktionsCodeID into

defaultfcjoined

41 from defaultfcX in defaultfcjoined.DefaultIfEmpty ()

42

43 join defaultfcd in DataContext.FunktionCode_Details.Where(x => x.

Sprachcode == settings.Language)

38

4. Data Access Layer

44 on hb.DefaultFunktionCodeID equals defaultfcd.FunktionsCodeID into

defaultfcdjoined

45 from defaultfcdX in defaultfcdjoined.DefaultIfEmpty ()

46

47 join konfigfc in DataContext.FunktionCodes

48 on hb.KonfigFunktionCodeID equals konfigfc.FunktionsCodeID into

konfigfcjoined

49 from konfigfcX in konfigfcjoined.DefaultIfEmpty ()

50

51 join konfigfcd in DataContext.FunktionCode_Details.Where(x => x.

Sprachcode == settings.Language)

52 on hb.KonfigFunktionCodeID equals konfigfcd.FunktionsCodeID into

konfigfcdjoined

53 from konfigfcdX in konfigfcdjoined.DefaultIfEmpty ()

54

55 select new CANModulSWHWBelegungDTO

56 {

57 HWBelegungID = hb.HWBelegungID ,

58 CANModulSWTLNR = hb.CANModulSWTLNR ,

59 CANModulSWCANBusID = hb.CANModulSWCANBusID ,

60 HardwarePin = hb.HardwarePin ,

61 SoftwarePin = hb.SoftwarePin ,

62 SteckerBez = sdX.Bezeichnung ,

63 SteckerFunktionBez = sfdx.Bezeichnung ,

64 HardwarePinBezeichnung = hwpbdX.Bezeichnung ,

65 Pinfunktion1Bez = pf1x.Bezeichnung ,

66 Pinfunktion2Bez = pf2x.Bezeichnung ,

67 SteckerFunktionID = hb.SteckerFunktionID ,

68 SteckerFunktionIndex = sfx.SteckerFunktionIndex ,

69 AnaEingang = sfx.AnaEingang ,

70 AnaAusgang = sfx.AnaAusgang ,

71 DigEingang = sfx.DigEingang ,

72 DigAusgang = sfx.DigAusgang ,

73 Sprachcode = hbdX.Sprachcode ,

74 KonfigFunktionCodeID = konfigfcX.FunktionsCodeID ,

75 KonfigFunktionCodeBez = konfigfcdX.Bezeichnung ,

76 DefaultFunktionCodeID = hb.DefaultFunktionCodeID ,

77 DefaultFunktionCode = defaultfcX.FunktionsCode ,

78 DefaultFunktionCodeBez = defaultfcdX.Bezeichnung ,

79 PinFunktionID_1 = hb.PinFunktionID_1 ,

80 PinFunktionID_2 = hb.PinFunktionID_2 ,

81 HardwarePinBezID = hb.HardwarePinBezID ,

82 AusgabeInCSV = hwpbj.AusgabeInCSV ,

83 SteckerID = hb.SteckerID ,

84 Bemerkung = hbdX.Bemerkung ,

85 AdditionalKonfigFunktionCode = hb.AdditionalKonfigFunktionCode

86

87 };

88 return query;

89 }

90

91 Now another function can retrieve this query and add additional filter criteria

or search expression as described in~\ref{list:RetrieveQuery }.

92

93 \begin{lstlisting }[commentstyle =\ scriptsize\ttfamily ,caption=Retrieve and enrich

existing query ,label=lst:RetrieveQuery]{}

94 public List <CANModulSWHWBelegungDTO > GetHWComponentsExport(

CANModulSWHWBelegungDTO search , string sortExp , string sortDirection)

95 {

96 var query = GetHWComponentsQuery ();

97 query = from hwconfig in query

98 where hwconfig.CANModulSWTLNR == search.CANModulSWTLNR && hwconfig.

CANModulSWCANBusID == settings.CANBusID

99 select hwconfig;

100 if (sortExp != null && sortDirection != null) query = query.OrderBy(

CreateMultipleOrder(sortExp , sortDirection));

101 List <CANModulSWHWBelegungDTO > result = new List <CANModulSWHWBelegungDTO >(

query);

102 return result;

103 }

39

4. Data Access Layer

Combining LINQ queries. According to the CORA requirements, one single
user interaction can require data from additional tables without losing existing
search parameters. A good example is the listing of CAN messages for a spe-
cific CAN module. Among other search criteria the user can specify if only the
CAN node or the associated function codes as well, should be taken into account
to reference the CAN messages. One possibility is to create every search query
explicitly, but a nicer solution is to modularly extend the existing query with ad-
ditional tables which is fully supported by LINQ to SQL. The first query ensures
that only CAN message identifier for a specific CAN bus are used.

Listing 4.7: Query identifier for a specific CAN bus
1 var identQuery = from ident in DataContext.Identifiers.Where(x => x.

IdentifierCANBusID == settings.CANBusID) select ident;

This query is used in a join condition with the base query for retrieving CAN
messages.

Listing 4.8: Combine Identifier query with CAN message query
1 var query = from cn in DataContext.CANNachrichts.Where(x => x.IdentifierCANBusID

== settings.CANBusID)

2 join ident in identQuery

3 on new { cn.Identifier , cn.IdentifierCANBusID } equals new {

Identifier = ident.Identifier1 , IdentifierCANBusID = ident.

IdentifierCANBusID }

With this technique LINQ queries can be combined in any imaginable way with
all the language benefits of C# to realize validation. In the next code listing it is
verified if function codes should be taken into account. If this is the case, all the
for the CAN module approved function codes are retrieved for a specific CAN
bus.

Listing 4.9: Query associated function codes
1 if (searchCmsw.ConsiderCodesWriting)

2 {

3 var cmsw_fc_query = from cmsw_fc in DataContext.ZOT_CANModulSW_FunktionCodes.

Where(x => x.CANModulSWTLNR == searchCmsw.CANModulSWTLNR && x.

CANModulSWCANBusID == settings.CANBusID) select cmsw_fc;

4 if (searchCmsw.FunktionCodeTLNRFreigabe.HasValue)

5 {

6 cmsw_fc_query = cmsw_fc_query.Where(x => x.FunktionCodeTLNRFreigabe ==

searchCmsw.FunktionCodeTLNRFreigabe);

7 }

In the end, the original query and the query which specifies the function code
relation are joined.

Listing 4.10: Combine the query to retrieve the can messages
1 query = from tempResult in query

2 join fc_cn in fc_cn_query

3 on tempResult.NachrichtID equals fc_cn.NachrichtID

4 select new CANNachrichtDTO

5 {

6 }

Grouping data with LINQ to SQL. Grouping data is required to present en-
tities that are represented by multiple rows in a database. A good example is
the CAN message entity which uses a specific byte- and bit range on a certain

40

4. Data Access Layer

CAN identifier. It depends on the length of the carrier signal how many bits are
occupied. For instance, a CAN message which uses a signal with a length of 16
is represented by 16 rows on the database level, each row indicating which byte
and bit is occupied. The database representation of a CAN message is shown in
figure 4.7.

Figure 4.7.: CAN message representation on database level

The old EVI database schema does not store every occupied byte and bit al-
location persistently in some cases. For example only the start- and the end bit
are stored in the relation with function codes. Additional calculation based on
the signal length is needed to determine if a certain bit position is already occu-
pied. Furthermore there does not exist an object to represent the byte and bit
assignments. The CORA uses the CAN message object (CANNachrichtDTO) in
combination with a ByteBitRepresentation class. Listing 4.11 show the simplified
version (without joins to language specific data and additional signal character-
istics) of the query specification to retrieve CAN messages.

Listing 4.11: Retrieve CAN messages
1 var query = from cn in DataContext.CANNachrichts

2 join ident in identSet

3 on new { cn.Identifier , cn.IdentifierCANBusID } equals new {

Identifier = ident.Identifier1 , IdentifierCANBusID = ident.

IdentifierCANBusID }

4 join signal in DataContext.Signals

5 on cn.SignalID equals signal.SignalID

6 select new

7 {

8 NachrichtID = cn.NachrichtID ,

9 Identifier = cn.Identifier ,

10 Pos = cn.Pos ,

11 BytePos = cn.BytePos ,

12 BitPos = cn.BitPos ,

13 SignalID = cn.SignalID ,

14 };

Listing 4.12 shows how grouping and a sub query enrich the original defined
query to create the desired transfer objects. In LINQ to SQL it is possible to
perform grouping by multiple criteria with the help of anonymous types.

41

4. Data Access Layer

Listing 4.12: Group the retrieved CAN messages
1 var groupedQuery = from n in query

2 group n by new { n.SignalID , n.Identifier } into g

3 select

4 new CANNachrichtDTO

5 {

6 NachrichtIDsc = g.Select(x => x.NachrichtID).ToList ()

,

7 Identifier = g.Key.Identifier ,

8 BytePos = g.First().BytePos ,

9 BitPos = g.First ().BitPos ,

10 ByteBitRep = (from bbr in g

11 select new ByteBitRepresentation ()

12 {

13 Pos = bbr.Pos ,

14 BytePos = bbr.BytePos ,

15 BitPos = bbr.BitPos

16 }).ToList ()

Dynamic LINQ to SQL. One of the benefits of LINQ to SQL is that it enables
the creation of type-safe queries in a .NET language like C#. As a consequence
the developer is supported with compile-time checking of the LINQ queries, and
full IntelliSense and refactoring support over the code. Writing type-safe queries
is great for many scenarios, but there are cases where developers want the flex-
ibility to dynamically construct queries on the fly. For example the Query By
Example technique (described later in the chapter 4.5) allows the dynamically
construction of queries based on an input object. In this case a StringBuilder
is responsible for the concatenation of the WHERE clause. To enable this sce-
nario the Dynamic Query Library1 provides extension methods which take string
expressions as parameter. Another example is dynamic sorting of data because
a CORA user can customize the ordering of the desired results with the help of
the user interface. The code representing the Dynamic Query Library is placed in
the Dynamic.cs source file under the lib folder of the CORA Data Access Layer.

Impact of LINQ to SQL on the application architecture. As pointed out
before, the complexity of the CORA database schema (3.2.1) strongly encourages
the creation of an explicit Data Access Layer and not to follow the RAD way (1.3)
and use LINQ to SQL directly in your Presentation- or Business Logic Layer. The
whole chapter 4 describes how to use LINQ to SQL in a three layered architecture
but a few things have to be considered using LINQ to SQL the RAD way (through
the whole application) as described in [15]. In this case LINQ to SQL acts as
a kind of a minimal Data Access Layer. The classes generated by the LINQ
to SQL Designer or the SqlMetal tool are the data entities that form the data
object model. Moreover, there is no data access code in these entities. The SQL
code that performs data retrieval or data manipulation operations is generated by
the LINQ to SQL DataContext based on queries written in C# or VB. Therefore
the actual interaction with the database is always realized with LINQ to SQL.
Furthermore using LINQ to SQL in a RAD way allows fine-grained customization
and very often each page requires a custom database query. When working with
a DAL one can provide these methods in the Data Access Objects. If a method

1http://msdn.microsoft.com/en-us/vcsharp/bb894665.aspx

42

4. Data Access Layer

already exists to return the desired object, and one specific Web site does not
require displaying all the fields, it is highly likely that the existing method is
still used and simply some fields are omitted at the output. This can affect
performance. More precisely, if there is any DAL that has code generic enough
to satisfy the needs of every page, it may be at the cost of performance [15]. In
case of enterprise applications the benefits of an explicit DAL (e.g., separation
of concerns) usually exceed the performance impacts by far. Moreover, it is
easily possible to add some RAD approaches at some points in a multi layered
application but it is extremely costly the other way round.

4.3. Generic Controller Pattern

Within the Data Access Layer of the CORA the Controllers are the Data Access
Objects mentioned in [3] and based on the architectural approach described in
“An Example of a Multi Tier Architecture for LINQ to SQL” project, developed
by developers of the open source community and formerly hosted on MSDN Code
Gallery2 and now on Codeplex3.

The GenericController design approach addresses the problem of managing the
LINQ to SQL DataContext and the reuse of queries among Data Access Objects.
Regarding a Web application it is a recommended approach to maintain the
DataContext for each request, also known as scoped DataContext. Therefore the
DataContext has to be stored in a collection that is valid for the current HTTP
request. The HttpContext.Current.Items collection exactly offers this possibility.
The following code listing describes the management of the Datacontext.

Listing 4.13: Managing the DataContext during a request
1 private TDataContext _dataContext;

2 protected TDataContext DataContext

3 {

4 get

5 {

6 //We are in a Web app , use a request scope

7 if (HttpContext.Current != null)

8 {

9 TDataContext _dataContext = (TDataContext)HttpContext.Current.Items[

"_dataContext"];

10 if (_dataContext == null)

11 {

12 // Create a new DataContext

13 _dataContext = Activator.CreateInstance <TDataContext >();

14 HttpContext.Current.Items.Add("_dataContext", _dataContext);

15 }

16 if (logging)

17 {

18 string linq_log_file = System.Configuration.ConfigurationManager

.AppSettings["DataAccessLayer_linq_logfile"];

19 _dataContext.Log = new HelperTools.FileLogger(linq_log_file ,

false);

20 }

21 return _dataContext;

22 }

23 else

24 {

25 //If this is not a Web app then just create a datacontext

2http://code.msdn.microsoft.com/
3http://www.codeplex.com/

43

4. Data Access Layer

26 //which will have the same lifespan as the app itself

27 //This is only really to support unit tests and should not

28 //be used in any production code. A better way to use this

29 //code with unit tests is to mock the HttpContext

30 if (_dataContext == null)

31 {

32 _dataContext = Activator.CreateInstance <TDataContext >();

33 }

34 return _dataContext;

35 }

36 }

37 }

Worth mentioning is the fact that the DataContext is generated via reflections
according to the passed TDataContext type. Therefore the class which manages
the DataContext is not limited to a specific source database. Using generic pa-
rameters to enable reuse on a very large scale is the basic idea behind the Generic
Controller Pattern. Every single Controller takes care of the data access logic for
one CAN entity and inherits from the GenericController. In the original version
the GenericController is defined by the following code listing.

Listing 4.14: Class definition of the GenericController
1 public class GenericController <TEntity , TDataContext > where TDataContext :

DataContext where TEntity : class

In addition to the TDataContext the particular LINQ to SQL entity is passed to
implement CRUD operations. The following code listing demonstrates a method
which returns an entity according to a specified ID.

Listing 4.15: Generic database retrieval
1 protected static string TableName

2 {

3 get

4 {

5 var att = EntityType.GetCustomAttributes(typeof(TableAttribute), false).

FirstOrDefault ();

6 return att == null ? "" : ((TableAttribute)att).Name;

7 }

8 }

9

10 private static PropertyInfo _primaryKey;

11 protected static PropertyInfo PrimaryKey

12 {

13 get

14 {

15 if (_primaryKey == null)

16 {

17 foreach (PropertyInfo pi in Columns)

18 {

19 foreach (ColumnAttribute col in pi.GetCustomAttributes(typeof(

ColumnAttribute), false))

20 {

21 if (col.IsPrimaryKey)

22 _primaryKey = pi;

23 }

24 }

25 }

26 return _primaryKey;

27 }

28 }

29

30 public static TEntity GetEntity(object id)

31 {

32 string query = string.Format("Select * from {0} where {1} = {2}", new object

[] { TableName , PrimaryKey.Name , id });

44

4. Data Access Layer

33 return DataContext.ExecuteQuery <TEntity >(query).FirstOrDefault ();

34 }

A general method which is responsible for the insertion of all entities can be
easily implemented as well.

Listing 4.16: Generic database operation
1 public static void Insert(TEntity entity , bool submitChanges)

2 {

3 EntityTable.InsertOnSubmit(entity);

4 if (submitChanges)

5 DataContext.SubmitChanges ();

6 }

So by simply implementing a CategoryController or a ProductController the func-
tionality for retrieving an entity according to an ID field and to insert a new
entity is provided. The class CategoryController does not need any further code
than specified in the following code listing.

Listing 4.17: Controller definition
1 public class CategoryController : GenericController <Category ,

NorthwindDataContext >

2 {

3 }

4 }

The overall rule for the Generic Controller Pattern is to implement general data
logic in the GenericController and entity specific logic in the particular Controller
for each single entity by adding functions, or by overwriting inherited functions.
The GenericController of the CORA exists of nearly 2500 lines of code, requires
additional generic parameter types and implements a generic interface which de-
scribes the available functionality and therefore allows method invocation via
reflection.

Listing 4.18: Definition of the Generic Controller of the CORA DAL
1 public class GenericController <TDTO , TEntity , TEntityDetails , TEntityHistory ,

TDetailsHistory , TDataContext > : IController <TDTO , TEntity , TEntityHistory >

2 where TDTO : class , IDTO

3 where TEntity : class

4 where TEntityDetails : class

5 where TEntityHistory : class

6 where TDetailsHistory : class

7 where TDataContext : DataContext

• TDTO: The type of object which transports data to other layers (described
in 4.4).

• TEntity: The type of the LINQ to SQL generated object representing the
language specific data.

• TEntityDetails: The type of the LINQ to SQL generated object represent-
ing the language unspecific data.

• TEntityHistory: The type of the LINQ to SQL generated object represent-
ing the history table for language unspecific data.

45

4. Data Access Layer

• TDetailsHistory: The type of the LINQ to SQL generated object represent-
ing the history table for language specific data.

• TDataContext: The type of the LINQ to SQL Datacontext.

For simple CAN bus entities like a hardware pin or a connector (German:
Stecker) the generic methods of the GenericController suffice to implement the
data access logic. For example if specific connectors are requested, language
specific and language unspecific data is combined into a single object and sent
to the other layers. If a user modifies an existing connector or inserts a new
one, the single object is sent to the SteckerController and mapped to the LINQ
to SQL entities which insert the data into the particular tables. In addition
the history of each connector can be retrieved as well. All these operations are
instantly available due to the generic logic of the parent class and therefore the
class SteckerController only requires the following lines of code.

Listing 4.19: Definition of a CORA controller
1 public class SteckerController : GenericController <SteckerDTO , Stecker ,

Stecker_Detail , Stecker_History , Stecker_Details_History ,

CANBusDatenDataContext >

2 {

3 public SteckerController(SettingsDTO settings)

4 : base(settings)

5 {

6 }

7

8 public SteckerController ()

9 {

10 }

11 }

The SettingsDTO provides initial settings for the Data Access Layer like the
current selected language of the Web application, the current user, the selected
headquarter and the selected CAN bus. This eases the parameter management
and provides information because an additional parameter can easily be added
to the SettingsDTO class and there is no need to update numerous method signa-
tures. Furthermore the Controller knows on which CAN bus the user is currently
working on and therefore there is no need to set the CANBusID on every entity
explicitly.

More complex CAN bus entities like CAN modules, signals and function codes
provide much more functionality within their specific Controllers. For example the
generic default retrieval methods are insufficient if the entity is composed of more
than the two (language specific and language unspecific) LINQ to SQL entities.
In this case some methods of the GenericController have to be overwritten. In
many cases the overwritten methods in the child controllers use generic methods
of the common parent controller. The following example demonstrates the benefits
of an object-oriented approach like the Generic Controller Pattern. The deletion
of a production location (German: Standort) sounds like a complex process be-
cause all the reference data like CAN bus systems and user settings have to be
deleted as well. With the help of the Generic Controller Pattern only a few lines
of code are required. In the StandortController the Delete method is overwritten
to delete the referenced data first and finally the generic delete method is called
(base.Delete(dtObject)) to delete the production location.

46

4. Data Access Layer

Listing 4.20: Generic overwritten method
1 public override void Delete(StandortDTO dtObject)

2 {

3 using (TransactionScope scope = new TransactionScope ())

4 {

5 canbusCon.Delete(dtObject);

6 benutzerCon.DeleteRights(dtObject);

7 base.Delete(dtObject);

8 scope.Complete ();

9 }

10 }

Moreover, validation-, logging- and security aspects can be managed at a cen-
tral point in the GenericController, which results in huge maintenance benefits.
CAN bus entities which do not need certain functionality of the GenericController
yet pass default classes. For example the signal cycle is represented by the Zyk-
lusController but does not incorporate any language specific data. So the class is
defined like the following.

Listing 4.21: Controller for a simple CAN entity
1 public class ZyklusController : GenericController <DefaultDTO , Zyklus ,

DefaultDetails , Zyklus_History , DefaultDetailsHistory ,

CANBusDatenDataContext >

2 {

3 public ZyklusController(SettingsDTO settings)

4 : base(settings)

5 {

6 }

7

8 public ZyklusController ()

9 {

10 }

11

12 }

The GenericController performs operations according to the passed types. In
case of DefaultDetails no LINQ to SQL entity and table for language specific data
is taken into account for CRUD operations.

4.4. Data Transportation

Data has to be transported through the layers. There are different architectural
options regarding data transportation due to the choice between a generic data
transfer structure and a specific data transfer object. Figure 4.8 shows the dif-
ferent options according to [27].

1. The first option is a generic, relational data object (e.g., an ADO.NET
DataSet) offered by the Data Access Layer. This generic data object is
forwarded from the business logic to the user interface.

2. The Data Access Layer offers a generic, relational data object (e.g., an
ADO.NET DataSet), which is packed into a typed data object within the
Data Access Layer or the Business Layer.

47

4. Data Access Layer

Figure 4.8.: Options for data transport according to [27]

3. The Data Access Layer offers a generic, relational data object (e.g., an
ADO.NET DataSet) out of which the business logic creates a domain spe-
cific business object. In this case the object-relational mapping takes place
within the Business Application Layer.

4. Already the Data Access Layer provides a domain specific data object.
This object is transformed within the Business Layer into a domain specific
business object. This transformation is based on copying the data between
the objects, also referred as object mapping.

5. To avoid the copying process the domain specific business objects inherit
from the domain specific data objects.

6. The last displayed alternative puts the data transfer objects in a separate
library which is used by every layer. In this case the business object is
instantiated in the Data Access Layer and passed to the Presentation Layer
over the Business Layer. The business object is a plain data object which is
managed by manager objects on both layers.

The CORA architecture is based on the last option. Furthermore, the archi-
tecture considers the needs of service orientation which demand the exchange
of automatically processable information. As a consequence the only concern of
data carrying, layer pervading objects is data transportation, and therefore they
do not contain any domain or database access logic. Furthermore, to support
disconnected environments and future architectural trends like Service Oriented
Architecture it is recommended to avoid exposing LINQ to SQL generated entities
through the DAL. On the contrary the DAL should return simple Data Transfer
Objects (DTO) whose sole purpose is to carry data across service boundaries [28].
Although the CORA Web application does not operate in a disconnected environ-
ment at the moment, the objects which carry assembled data from the LINQ to
SQL entities are referred to as Data Transfer Objects (DTO). Figure 4.9 provides
a definition for a DTO.

48

4. Data Access Layer

Figure 4.9.: Data Transfer Object according to [7]

The CORA Data Transfer Objects are plain C# objects. They do not provide se-
rialization methods to XML but they make use of the ISerializable interface which
allows an object to control its own serialization and deserialization. In the first
released version of the CORA the DTOs are generated manually with the help of
auto-implemented properties (or automatic properties). The compiler automat-
ically creates a private field which can only be accessed through the property’s
get and set accessors which result in less code for a property deceleration. The
major drawback is that no additional logic can be added to the property. In ad-
dition to the properties to store queried data a CORA DTO must implement the
interface IDTO which instructs the implementation of a GetID and SetID method.
Furthermore the interfaces IMultiLangDTO and IHistoryDTO are available for im-
plementation. In addition the property names which store the ID, the CAN bus
ID and the language code, are exposed by constants. This allows the comfortable
invocation via reflection. For example the StandortDTO looks like the following.

Listing 4.22: Sample DTO
1 [Serializable]

2 public class StandortDTO : IDTO , IMultiLangDTO , IHistoryDTO

3 {

4 public const string IDFieldname = "StandortID";

5 public const string CANBusIDFieldName = null;

6 public const string SprachcodeFieldName = "Sprachcode";

7

8 public object GetID() { return StandortID; }

9 public void SetID(object id) { StandortID = int.Parse(id.ToString ()); }

10

11 public int StandortID { get; set; }

12 public string Name { get; set; }

13 public string DMDNR { get; set; }

14 public string DFINR { get; set; }

15 public string DWKNR { get; set; }

16 [LanguageDependent]

17 public string Bezeichnung { get; set; }

18 [LanguageDependent]

19 public string Sprachcode { get; set; }

20

21 public DateTime HistoryCreated { get; set; }

22 public string HistoryBenutzer { get; set; }

23 public string HistoryComment { get; set; }

24 }

The fact that LINQ to SQL supports the automatic population of custom ob-
jects eliminates any programming code overhead for copying the retrieved result
set into the DTOs. The following code demonstrates a query to get the entire

49

4. Data Access Layer

CAN bus systems for a specific production location.

Listing 4.23: Populating a DTO with LINQ query
1 public List <CANBusDTO > GetForStandort(StandortDTO standort)

2 {

3 var query = from cb in DataContext.CANBus

4 where cb.StandortID == standort.StandortID

5 join cbd in DataContext.CANBus_Details.Where(x => x.Sprachcode

== settings.Language)

6 on cb.CANBusID equals cbd.CANBusID

7 into cbdJ

8 from cbdjX in cbdJ.DefaultIfEmpty ()

9 join cbi in DataContext.CANBusInfos

10 on cb.CANBusInfoID equals cbi.CANBusInfoID

11 join cbid in DataContext.CANBusInfo_Details.Where(x => x.

Sprachcode == settings.Language)

12 on cbi.CANBusInfoID equals cbid.CANBusInfoID

13 into cbiJ

14 from cbiJX in cbiJ.DefaultIfEmpty ()

15 select new CANBusDTO

16 {

17 CANBusID = cb.CANBusID ,

18 Bezeichnung = cbdjX.Bezeichnung ,

19 Bits = cbi.Bits ,

20 Frequenz = cbi.Frequenz ,

21 Protokoll = cbi.Protokoll ,

22 CANBusInfoID = cb.CANBusInfoID ,

23 };

24 List <CANBusDTO > result = new List <CANBusDTO >(query);

25 return result;

26 }

The custom object population is not limited to LINQ to SQL statements which
get translated into T-SQL queries. Custom SQL queries executed by the LINQ
to SQL framework populate custom objects as well. The following code returns
a collection of DTOs of the type TDTO queried by a custom SQL string.

Listing 4.24: Populate DTO with custom SQL statement using LINQ to SQL
1 \begin{lstlisting}

2 List <TDTO > resultList = DataContext.ExecuteQuery <TDTO >(query.ToString ()).ToList <

TDTO >();

Unfortunately the custom object population provided by the LINQ to SQL
framework is limited to flat objects. So it is not possible to define common
properties in an abstract base class or an interface. So repeating fields like His-
toryComment have to be implemented in every single DTO.

Mapping a DTO to the corresponding LINQ to SQL entities (or the other way
round) is achieved via Reflection (the process by which a program can read its
own metadata [13]) and a strict naming convention. If a property of a DTO is
named exactly like the property of the LINQ to SQL generated class the value
can be copied automatically. For sure additional validation logics have to be
taken into account as well. For example not only the name of the property has
to match but also the return type. Code listing 4.25 demonstrates the mapping
of the language specific entity and the language unspecific entity to an assembled
DTO.

Listing 4.25: Map LINQ to SQL entities to a DTO
1 private TDTO EntitiesToDTO(TDTO dtObject , TEntity ent , TEntityDetails entDet)

2 {

50

4. Data Access Layer

3 foreach (PropertyInfo piDTO in dtObject.GetType ().GetProperties ())

4 {

5 if (ent != null)

6 {

7 foreach (PropertyInfo piEntity in GetType <TEntity >().GetProperties ())

8 {

9 PropertyInfo piDTOent = GetType <TDTO >().GetProperty(piEntity.Name)

;

10 {

11 if (piDTOent != null && CheckProperty <TEntity >(ent , piEntity)

&& piEntity.PropertyType.Name.Equals(piDTOent.PropertyType

.Name))

12 {

13 piDTOent.SetValue(dtObject , piEntity.GetValue(ent , null),

null);

14 }

15 }

16 }

17 }

18 if (entDet != null)

19 {

20 foreach (PropertyInfo piEntityDetails in GetType <TEntityDetails >().

GetProperties ())

21 {

22 PropertyInfo piDTOdet = GetType <TDTO >().GetProperty(

piEntityDetails.Name);

23 {

24 if (piDTOdet != null && CheckProperty <TEntityDetails >(entDet ,

piEntityDetails) && piEntityDetails.PropertyType.Name.

Equals(piDTOdet.PropertyType.Name))

25 {

26 piDTOdet.SetValue(dtObject , piEntityDetails.GetValue(

entDet , null), null);

27 }

28 }

29 }

30 }

31

32 }

33 return dtObject;

34 }

Furthermore it is possible to add additional information to properties with
the help of Attributes, which are a mechanism for adding metadata, or to put it
differently, an object that represents data which is intended to be associated with
an element of the program [13]. With Custom Attributes as described in 4.26 the
properties of a DTO can be exactly mapped to the corresponding LINQ to SQL
generated class. Moreover the LanguageDependent attribute has been designed
for properties which contain language specific data.

Listing 4.26: Custom Attribute
1 public class FieldRelations : Attribute

2 {

3 public string EntityName { get; set; }

4 public string PropertyName { get; set; }

5

6 public FieldRelations(string entityname , string propertyName)

7 {

8 EntityName = entityname;

9 PropertyName = propertyName;

10

11 }

12 }

In summary the Data Access Layer of the CORA uses Metadata Mapping twice.
Firstly for mapping the fields in the database to the fields of in-memory objects

51

4. Data Access Layer

(LINT to SQL entities) and secondly for mapping the fields of in-memory objects
to assembled Data Transfer Objects and vice versa.

4.5. Advanced Data Retrieval and Manipulation

In a layered architecture the implementation of the information exchange be-
tween the single layers is a crucial architectural decision. The main characteristic
of data-centric Web applications like the CORA is the high amount of require-
ments concerning data storage and manipulation. The focus lies on retrieving
stored data, presenting it to the user, and applying all made modifications. In
many cases data is represented in the tabular relational form. A Record Set is an
in-memory representation of tabular data and looks like the result of a database
query. In ASP.NET the typed DataSet gained widespread popularity but mainly
because it fully supports data-binding and has great integration with Visual Stu-
dio’s IDE. Therefore built-in wizards can automatically create typed DataSets.
Another approach is to store retrieved data in custom objects. There exist nu-
merous debates when to use typed Datasets and when custom objects. Most jump
to the conclusion that typed DataSets support Rapid Application Development for
smaller solutions because they can be created automatically through the IDE.
Custom objects on the other hand are fully object-oriented and to favor in terms
of enterprise applications. In case of the CORA it was obvious that custom ob-
jects like the automatically generated LINQ to SQL classes should act as the
primary representer of tabular data. Moreover, due to the fact that these entities
are generated as partial classes it is easy to add additional code which is not
lost on recreation. At the moment the business logic does not require that the
objects, which represent the persistently stored real world data, are transformed
to particular Business Objects. On the contrary the business logic can be applied
directly on collections of the data carrying objects as described in 5. Furthermore
the Presentation Layer can use these object collections to provide user interac-
tion. Due to the fact the data representing objects are used through the whole
application, the LINQ to SQL generated classes are insufficient mainly because
of the following two reasons.

Many object-relational mappers allow to map an object to multiple tables. For
example the Entity Framework allows a way of describing the data structure (the
schema) on a higher level of abstraction with the help of the Entity Data Model.
This model supports entities which contain information out of multiple database
tables and therefore there are no additional joins required, as described in the
example provided by [23]. On the other hand LINQ to SQL only supports one-to-
one table mapping, but the generated classes can be mapped to a database view
that joins multiple related tables. For example a CAN bus signal is represented
by the following database tables as shown in figure 4.10.

Basically a database view is a virtual table created by stored queries. The
SQL Server Management Studio supports the creation of views with the Query
Designer which enables to build a query graphically including links between as-
sociated tables.

The class representing the created view can be easily generated by the LINQ

52

4. Data Access Layer

Figure 4.10.: Tables that represent a CAN bus signal

to SQL Designer. Querying the view is similar to query a table. In listing 4.27
the assembled CAN Signal is first bound directly to a GridView. The next code
lines demonstrate how easily the result of multiple tables can be combined into
a single object.

Listing 4.27: Querying a databse with with LINQ to SQL
1 DataClasses1DataContext dc = new DataClasses1DataContext ();

2 //bin directly to a GridView

3 var query1 = from signals in dc.vSignals select signals;

4 GridView1.DataSource = query1.Take (10);

5 GridView1.DataBind ();

6

7 // create custom objects

8 var query2 = from signals in dc.vSignals where signals.SignalID > 500

9 select new SignalDTO

10 {

11 SignalID = signals.SignalID ,

12 Desription = signals.Bezeichnung

13 };

14 query2 = query2.Take (10);

15 List <SignalDTO > signalsList = query2.ToList ();

16 //this collection of custom objects (SignalDTOs) can be send across layers and

systems

17 //for instance to a PresentationLayer which retrieves the list

18 GridView1.DataSource = signalsList;

19 GridView1.DataBind ();

As indicated by the name, a database view can only be accessed by reading
operations. It is not possible to perform update operations against a view in order
to automatically update the underlying tables. A common approach is to use
Stored Procedures to update the database. The fact that LINQ to SQL queries
are automatically translated to cached parameterized T-SQL queries reduces the
concerns from a performance and security point of view. Nevertheless, it is easy
to use Stored Procedures with LINQ to SQL. In listing 4.28 the simplified version

53

4. Data Access Layer

of a Stored Procedure which updates a CAN signal is shown.

Listing 4.28: Create Stored Procedure
1 CREATE PROCEDURE UpdateSignal

2 @SignalID int ,

3 @Comma int ,

4 @Bezeichnung nvarchar (100) ,

5 @Sprachcode char (2)

6 AS

7 BEGIN

8 UPDATE dbo.Signal SET Comma = @Comma WHERE SignalID = @SignalID;

9 Update dbo.Signal_Details SET Bezeichnung = @Bezeichnung WHERE SignalID =

@SignalID AND Sprachcode = @Sprachcode

10 /* more tables and fields */

11 END

12 GO

After adding the Stored Procedure to the DataContext with the drag and drop
capabilities of the LINQ to SQL Designer, the invocation only requires one line
of code.

Listing 4.29: Calling a SPROC with LINQ to SQL
1 DataClasses1DataContext dc = new DataClasses1DataContext ();

2 dc.UpdateSignal (1, 2, "SPROC test", "en");

It is even possible to customize LINQ to SQL entities to use custom Stored
Procedures for their built in CRUD operations. In this case the developer only
has to assign the object properties and in the minute when the DataContext calls
SubmitChanges() all the associated Stored Procedures are automatically invoked.
A quick example can be found at [9]. Using Stored Procedures to retrieve data
does not work that flawlessly with LINQ to SQL. When the Stored Procedure
returns multiple result sets, uses a temporary table, or executes dynamic string
concatenating queries, the LINQ to SQL Designer cannot figure out the return
type. For instance, it is not possible to pass the sort criteria as a string parameter
to complete the query. All the sort possibilities must be hard coded in a control
structure, like case or if statements.

Views and Stored Procedures are a wide spread approach to realize data re-
trieval and manipulation. Nevertheless one cannot find a single View or a Stored
Procedure in the CORA database (maybe only for testing purposes) at the mo-
ment. The maintenance benefits of the object-oriented LINQ to SQL queries in
combination with the excellent integration into Visual Studio got the upper hand
in the end. Therefore even complex queries including multiple joins are written
as LINQ to SQL queries and provided for reuse by methods as demonstrated in
section 4.2. Articles about the Entity Framework like [23] point out that database
views are simply too complex to be generated and maintained by developers in
a cost-effective way. Moreover, databases are often used by many departmental
applications, and having each individual application create several views in the
database would pollute the database schema and create significant maintenance
workload for the database administrators. In addition to this views are limited
to the expressiveness of the relational world.

The fact that views have not been used so far by the CORA does not imply that
they should not be used in the future. The same applies for stored procedures.

54

4. Data Access Layer

There are a lot of discussions going on in which case stored procedures should be
favored over retrieving mechanisms offered by object-relational mapping frame-
works. The result of these discussions should not be exclusive. On the contrary
the object-relational mapper should support multiple retrieving strategies.

Query by Example Originally Query by Example (QBE) refers to a database
query language for relational databases, devised by Moshé M. Zloof at IBM Re-
search during the mid 1970s. Nowadays the term is often used to describe a
general technique influenced by Zloof’s work whereby only items with search val-
ues are used to filter the results [35]. The queries are automatically generated
according to these items. The Controllers of the CORA Data Access Layer often
expect DTOs as input parameters for the LINQ to SQL query generation. List-
ing 4.30 shows a simplified version of the GenericController methods which creates
a query according to the property values of the passed object.

Listing 4.30: Query by example query generation
1 public StringBuilder CreateLinqConditionsBasedOnQueryDTO(Object input ,

QuerySettings querySettings)

2 {

3 StringBuilder result = new StringBuilder ();

4 Type type = input.GetType ();

5 foreach (PropertyInfo propInfo in type.GetProperties ())

6 {

7 object value = propInfo.GetValue(input , null);

8 if (value != null)

9 {

10 Type propType = propInfo.PropertyType;

11 PropertyInfo piHasValue = input.GetType ().GetProperty(propInfo.Name

+ "HasValue");

12 switch (propType.Name)

13 {

14 case "Int32":

15 if (piHasValue != null)

16 {

17 if (bool.Parse(piHasValue.GetValue(input , null).ToString

()) == true)

18 {

19 if (result.Length > 0) result.Append(" " +

querySettings.ConjunctionOperator + " ");

20 result.AppendFormat(prefix + propInfo.Name + " = {0}

", value);

21 }

22 }

23 else

24 {

25 if ((int)value != -1 && (int)value != -0)

26 {

27 if (result.Length > 0) result.Append(" " +

querySettings.ConjunctionOperator + " ");

28 result.AppendFormat(prefix + propInfo.Name + " ={0}"

, value);

29 }

30 }

31 break;

32 case "Int64":

33 break;

34 case "String":

35 break;

36 case "Nullable ‘1":

37 if (result.Length > 0) result.Append(" " + querySettings.

ConjunctionOperator + " ");

38 result.AppendFormat(prefix + propInfo.Name + " = {0}", value

);

39 break;

55

4. Data Access Layer

40 }

41 }

42 }

43 return result;

44 }

The first parameter is the Query by example object, the second a custom object
which specifies additional parameter for the query generation, like which conjunc-
tion operator (e.g., “AND” or “OR”) should be used to connect the single search
conditions. At the beginning the PropertyType is determined to delegate the query
creation accordingly. Then a check is performed if a “HasValue” property exists
to indicate if a search criterion is set for a particular property. Otherwise the
check is preformed against the standard value. If the property contains a value
that passes all the validation logic, the value is used for the query creation.

Realizing entity history. One of the CORA requirements covers a history or
a change log for the most important CAN entities as described in section 2.4.
There are two possible implementation strategies:

1. Single table approach: All entries are stored in the same table with addi-
tional assigned fields which indicate the expiration of the validity for every
entry.

2. History tables approach: An additional table which backups every single
entry is created for every table.

The initial implementation of the first approach is not very laborious. One
field indicates the creation of the row and a second field contains the time stamp
of the first modification, or null if it is the current entry. This modification can
be an update- or delete operation. Before an operation takes place the database
row is copied to provide the traceability for all changes. A simple query against
null still ensures acceptable performance for retrieving the current entities. The
biggest drawback of this approach is that every table gets polluted with obsoles-
cent (only for change tracking relevant) data. In case of an enterprise application
like the CORA this can result in tremendously big tables. Moreover, every ap-
plication that accesses this database has to take the history pattern into account
as well. On the other hand the history tables approach allows a clean separation
of current- and history data. As a consequence not every single query has to be
concerned about the retrieval of the current entry, and the additional table im-
plementation guarantees transparency for application which do not need change
tracking aspects. In general, data which represents old version of CAN entities is
only touched when really needed. The creation of the history tables is not that
cumbersome with the help of tools or scripts as described in 3.2.3. The major
drawback lies in changes to the database schema after the initial creation because
every affected history table has to be modified as well. For environments where
database schemes are changing frequently the modification of the history tables
should be automated as well.

The next point to consider is the strategy to backup every single database row
before any kind of modification is applied. Any kind of modification refers to

56

4. Data Access Layer

CRUD operations without taking “read” into account. Again there exist two
approaches, whereas the former is completely realized by the database engine
itself and the latter is realized on the application side:

1. The use of database triggers.

2. The Data Access Objects control the creation of the history entries.

Using database triggers to perform backup operations is a wide spread ap-
proach. Due to the fact that the triggers operate completely on the database
side it is not possible to pass any parameters and therefore all the information
must be available in the database schema. This is not a big problem for simple
scenarios like basic change tracking realized with history entries including three
fields as described in section 3.2.1. The time stamp of the last performed opera-
tion and the responsible user can be stored in the table on which the operation
is applied. The history table needs an additional field describing the operation
which leads to the creation of the history entry. If history support is limited to
create-, update- and delete operations the description can be hard coded within
the trigger generation or referenced from a table which stores history comments.
Listing 4.31 shows the code for creating a trigger that backups an inserted entry
into the history table.

Listing 4.31: Create Trigger for Insert History
1 CREATE TRIGGER CANModul_Insert

2 ON dbo.CANModul

3 AFTER INSERT

4 AS

5 BEGIN

6 DECLARE @CANModulTLNR VARCHAR (100);

7 DECLARE @CANBusID int;

8 DECLARE @ProgrammierungsKategorieID int;

9 DECLARE @Modified datetime;

10 DECLARE @User VARCHAR (100);

11

12 SET @CANModulTLNR = (SELECT CANModulTLNR FROM Inserted);

13 SET @CANBusID = (SELECT CANBusID FROM Inserted);

14 SET @ProgrammierungsKategorieID = (SELECT ProgrammierungsKategorieID FROM

Inserted);

15 SET @Modified = (SELECT Modified FROM Inserted);

16 SET @User = (SELECT [User] FROM Inserted);

17

18 INSERT INTO dbo.CANModul_History (HistoryCreated , HistoryComment ,

HistoryBenutzer , CANModulTLNR , CANBusID , ProgrammierungsKategorieID)

19 VALUES (@Modified , ’CREATED ’, @User , @CANModulTLNR , @CANBusID ,

@ProgrammierungsKategorieID);

20 END

With the help of the automatically created virtual tables (Inserted, Updated,
Deleted) it is possible to create triggers for all data manipulating operations. For
sure the data contained in the language specific tables must be backed up as well.
When retrieving the history of an entity for a specific time it makes sense to join
language unspecific and language specific data. Therefore the time stamp which
stores the date of a single operation should be the same in both tables describ-
ing the entity. This can be easily realized by querying the history table of the
language unspecific data first and then make the history entry for the language
specific table.

57

4. Data Access Layer

The second approach allots the Data Access Objects to take care of creating a
history for each database row. In this case custom queries can realize any imagin-
able creation of history entries. As described in section 4.3 the GenericController
pattern provides the possibility for child controllers to pass generic parameters.
Therefore every child controller can pass the objects which represent the history
tables to the GenericController and generic methods ensure that the history entries
are created for each CAN entity as described in listing 4.32.

Listing 4.32: Entity history managed by generic DAO
1 public void AddHistoryEntry(TEntity ent , string comment , DateTime dateTime)

2 {

3 TEntityHistory history = (TEntityHistory)Activator.CreateInstance(GetType <

TEntityHistory >());

4 CopyEntityProperties <TEntity , TEntityHistory >(ent , history);

5 AddHistoryGeneric <TEntityHistory >(history , comment , dateTime);

6 }

7

8 public void AddHistoryDetailsEntry(TEntityDetails det , string comment , DateTime

dateTime)

9 {

10 TDetailsHistory history = (TDetailsHistory)Activator.CreateInstance(GetType <

TDetailsHistory >());

11 CopyEntityProperties <TEntityDetails , TDetailsHistory >(det , history);

12 AddHistoryGeneric <TDetailsHistory >(history , comment , dateTime);

13 }

14

15 private void AddHistoryGeneric <T>(T history , string comment , DateTime dateTime)

where T : class

16 {

17 PropertyInfo piCreated = history.GetType ().GetProperty(HistoryHelperDTO.

CreatedField);

18 piCreated.SetValue(history , dateTime , null);

19 PropertyInfo piComment = history.GetType ().GetProperty(HistoryHelperDTO.

CommentField);

20 piComment.SetValue(history , comment , null);

21 PropertyInfo piBenutzer = history.GetType ().GetProperty(HistoryHelperDTO.

BenutzerField);

22 piBenutzer.SetValue(history , settings.User , null);

23 GetTable <T>().InsertOnSubmit(history);

24 }

The biggest difference between the two approaches is that different environ-
ments take care of the history management. When using triggers on the database
side the history support is automatically enabled for every application that is able
to perform database operations with Microsoft SQL Server, regardless the tech-
nology and the actual implementation. On the other hand creating and managing
triggers in a database environment is often more cumbersome than using fully
object-oriented features provided by accessing applications. Due to the Generic-
Controller pattern, the fact that the CORA is the only application that interacts
with the database at the moment, and the limited resources, triggers are not
implemented and the Data Access Layer takes care of managing the history for
CAN entities.

4.6. Creation of Data Access Layer Components

Model Driven Development (MDD) is a generic term for techniques which focus
on models to create solutions. In many software engineering projects models are
primarily used for documentation purposes but for the MDD approach models

58

4. Data Access Layer

are equal to code. Moreover models are used to generate code. One core benefit
of models lies in the higher level of abstraction. For instance, a software architect
is able to model the software architecture with the help of platform independent
models which are automatically transformed to platform specific models and fi-
nally to code. This approach is called Model Drive Architecture which can be
considered as part of MDD but defines interoperability as primarily goal. On the
contrary general MDD aims to generate usable building blocks.

The CORA is designed as an ASP.NET Web application and until this time
there is no need to transfer the architecture to other technologies and therefore
MDA has not been applied so far. On the other hand MDD was used to generate
the database schema with the help of Microsoft Visio as described in 3.2. Fur-
thermore the in Visual Studio integrated LINQ to SQL Designer provides a visual
model to create the LINQ to SQL entities and model the data mappings. Unfor-
tunately this model does not provide the possibility to model the Data Transfer
Objects and the Controllers. Additional tools like Enterprise Architect from Sparx
Systems4 or Scultpure by Dawaliasoft 5 can be considered to enable richer model
driven possibilities for the ongoing CORA development. Another possibility is
the creation of the DTOs source files with the help of Reflection.

4http://www.sparxsystems.com/
5http://www.dawliasoft.com/

59

5. Business Application Layer

The Business Application Layer (BAL) contains the components which realize the
business logic for certain requirements of a company. In other words this layer
coordinates the application, processes user commands, makes logical decisions,
evaluations and performs calculations [34]. For example the calculation of a CAN
message identifier is based on a strict formula and implemented in a class of the
Business Application Layer. Moreover the BAL coordinates the communication
between the Presentation Layer and the Data Access Layer. According to [7]
there exist three general approaches for realizing domain logic:

1. Transaction Script

2. Domain Model

3. Table Module

Transaction Script. This approach defines a Transaction Script basically as a
procedure that takes the input from the Presentation Layer, applies validation
and calculations and finally stores the processed data in the databases. Dur-
ing this process invocations of operations from other systems can take place as
well. Furthermore the Transaction Script retrieves data from the databases, again
applies business logics, and represents the output to the user. The basic char-
acteristic of a Transaction Script is the simple procedural model without taking
object-oriented ideas into account, which is only suitable for a simple problem
domain and leads to problems with more complex scenarios. For instance, the
business logic for the hardware configuration of a raw CAN module without soft-
ware can be realized with a Transaction Script. The business logic for the hardware
configuration of a CAN module with software must be implemented as well, and
therefore another Transactions Script is needed. Both processes will have com-
mon and shared validation logic. Although it is possible to factor out common
subroutines, the biggest disadvantage of the Transaction Script pattern for realiz-
ing business logic is duplicated code because several transactions perform similar
operations.

Domain Model. A Domain Model considers object-oriented principles and de-
scribes various Business Objects and their relationships instead of having one
routine dealing with all the logic for a single user action. This enables devel-
opers to handle increasingly complex logic in a well-organized way. Within a
Domain Model multiple objects can interact until the desired result is achieved.
For instance, a hardware configuration object can be called by multiple objects
representing the different kinds of CAN modules or two separate configuration
objects can inherit the common validation logic from a parent object. According

60

5. Business Application Layer

to [3] these Business Objects encapsulate and manage business data, or to put it
differently they implement a well-defined business domain concept and include
intrinsic business logic and business rules that apply to that domain concept.
Moreover, there exist primarily two strategies for implementing Business Objects:

1. With “regular” objects offered by the used object-oriented environment,
POJOs for JAVA or POCOS for .NET.

2. With Entity Beans or Composite Entities, which provide a persistent storage
mechanism.

Table Module. The third choice for structuring domain logic is the Table Mod-
ule which resembles a Domain Model. The significant difference is that the Domain
Model uses an extra instance of a Business Object to apply business logic to each
entity, and the Table Module only uses one single instance and works with a col-
lection of entities. For example the configuration of CAN modules leads to the
instantiation of multiple CAN module Business Objects according to the Domain
Model pattern. In this case different parameters can be passed to the multiple in-
stances and they can therefore perform customized operations in any imaginable
way. According to the Table Module pattern one instance of a Business Object
managing a collection of CAN modules is created to apply the desired business
logic. This example illustrates that a Table Module can be placed between a
Transaction Script and a Domain Model when it comes to organize the domain
logic. As the name indicates a Table Module organizes the domain logic around
the database tables. This provides more structure and eases the search and re-
moval for duplication than straight procedures. However Table Modules cannot
tap the full object oriented potential which comes along with a finer grained logi-
cal structure provided by a Domain Model. According to [7] the biggest advantage
of a Table Module is the integration into the rest of the application architecture.
For example an environment like .NET and Visual Studio provide a lot of tools
to work with Record Sets. The previous chapter 4 described the manifold possi-
bilities for creating generic result sets with LINQ to SQL. These result sets can
be easily processed by Table Modules.

The choice between the three patterns is basically influenced by the complexity
of the domain logic. The initial effort for developing a Domain Model is rather
high and therefore Transaction Scripts are more suitable when dealing with simple
domain logic. On the other hand complex business logic needs object-oriented
possibilities to be realized in a cost efficient way. Figure 5.1 depicts the relation-
ship between complexity and effort for different domain logic styles.

Stored Procedures. Database engines provide mechanisms like Stored Proce-
dures for applying business logic as well. For example the calculation of the CAN
message identifier could be easily realized with a Stored Procedure. The advantage
of this approach are modularity, portability and in general a good performance.
The major drawbacks are that most database environments do not offer gut struc-
turing mechanisms and it requires a lot of effort to realize more complex business

61

5. Business Application Layer

Figure 5.1.: Relationship between complexity and effort [7]

logic without fully object-oriented methods.

For the CORA the Table Module pattern is the most suitable approach be-
cause the business logic is rather simple compared to the data access and the
presentation. Moreover the table centric approach fits perfectly with the design
of the Data Access Layer and the Generic Controller Pattern. The Table Modules
are represented by the Manager classes within the Business Application Layer of
the CORA. Every Manager takes care of a set of CAN bus entities. For example
there exists a CANModulManager, a FunktionCodeManager and a SignalManager.
If the complexity of the business logic increases over time a shift to a Domain
Model is extremely easy to realize because the Data Access Layer provides all
the needed functionality. As a consequence the additional Business Objects like
a CANModulBO can receive all the data from the corresponding Data Transfer
Objects and add business functionality with the help of additional methods. The
Data Transfer Objects can be mapped to the Business Objects or inheritance can be
used to realize the data exchange. More information concerning the data trans-
fer between the objects provided by the Data Access Layer and business logic
realizing objects can be found in [26].

5.1. Communication

Besides executing business requirements, the Business Application Layer has to
coordinate the communication between the Data Access Layer and the Presenta-
tion Layer in both directions. The Managers of the BAL follow the same generic
strategy as the Controllers of the DAL and therefore inherit from a GenericMan-
ager. Listing 5.1 shows the class definition of the GenericManager. The corre-
sponding Controller and the DTO are specified as generic parameters. Moreover,
the type of the CAN entity and the related history are provided for simple sce-

62

5. Business Application Layer

narios when an assembled DTO is not needed.

Listing 5.1: Generic Manager class definition
1 public class GenericManager <TController , TEntity , TDTO , THistory > :

IGenericManager <TDTO >

2 where TDTO : class

3 where TEntity : class

4 where THistory : class

5 where TController : IController <TDTO , TEntity , THistory >, new()

6 {

7 protected SettingsDTO settings;

8 protected TController controller;

9

10 public GenericManager(SettingsDTO settings)

11 {

12 this.settings = settings;

13 controller = (TController)Activator.CreateInstance(typeof(TController));

14 }

15

16 public GenericManager ()

17 {

18 }

19 }

The GenericController provides methods to call the CRUD methods of the par-
ticular Controller. In many cases the objects are just forwarded and no business
logic is applied, but the CORA architecture considers scalability. These methods
shown in 5.2 can be enriched with additional business logic during the future
development.

Listing 5.2: Basic methods provided by the GenericManager
1 public List <TDTO > Insert(List <TDTO > insert)

2 {

3 return controller.Insert(insert);

4 }

5

6 public List <TDTO > GetList(TDTO search , QuerySettings querySettings)

7 {

8 return controller.GetList(search , querySettings);

9 }

10

11 public void Update(List <TDTO > update)

12 {

13 controller.Update(update);

14 }

15

16 public void Delete(List <TDTO > delete)

17 {

18 controller.Delete(delete);

19 }

For sure this is only a small excerpt of the provided methods because the Man-
agers prepare the method invocations for the Controllers. This means that in
many cases a Controller only has to specify one method signature, for example
GetList(search, querySettings). If the caller in the Presentation Layer does not
need to specify custom settings for the query, the Manager provides an additional
method with only one parameter and will simply call the corresponding method
with a second default parameter. This explains the numerous method definitions
within the Managers. Moreover, simple CAN bus entities like connectors and
hardware pins are assembled into a common Manager class, like a HardwareMan-
ager.

63

5. Business Application Layer

In addition to the Managers, which manage the business logic for CAN entities,
a DTOManager takes care of mapping information entered by the user in the
Presentation Layer to the DTOs. The class takes a collection of values from a
presentation control and matches the names to the properties via Reflection.

5.2. Interfaces

The BAL is not only responsible for managing the communication within the ap-
plication but also to external systems. The CORA interacts with the Rosenbauer
Service Tool (RST) which finally configures the CAN bus systems on the vehicles
with the help of the meta-data delivered by the CORA. This interaction is based
on the exchange of comma-separated value files (CSV files). As a consequence
the CORA Business Application Layer provides objects to realize the import-
and export functionality.

5.2.1. Import

The name space import contains all the classes which are relevant for import
scenarios. An abstract base class called Importer provides basic information,
like a standard import location, for every specific import implementation. The
MultipleFileImporter is another base class which provides shared functionality for
classes that are designed to import multiple files. For instance, the function for
retrieving data from the files and an in-memory collection for storing the retrieved
data. The import process includes the following stages:

1. Locate the input files.

2. Open the input files.

3. Retrieve data according to a given structure.

4. Store the retrieved data in an in-memory collection.

5. Apply business logic.

6. Save the retrieved data persistently.

Regarding the import process of CSV files it is important to map the values
of the single columns of the import file, indicated by a delimiter (in this case
a comma), to the corresponding in-memory objects. This mapping can be real-
ized with the help of a key value collection like a generic Dictionary in a .NET
environment.

5.2.2. Export

The export mechanism is realized with a similar object-oriented approach. Ev-
ery class responsible for an export use case inherits from a common base class
called Exporter. This common base class provides general properties for storing
the file path, the file name, the file extension, the delimiter and references to

64

5. Business Application Layer

other objects. A fundamental use case of the CORA is the export of the set-
tings for a specific CAN module (or CAN controller). Therefore the export file
needs aggregated information out of numerous database tables. Retrieving this
information is achieved with the help of the Data Access Layer. Fine grained
methods create the export file. One method is responsible for the creation of the
head line, another for the creation of the CAN signals, and additional methods
create the entries for the hardware configuration, the function codes including
parameter codes, and the error codes. If the complexity of the export logic in-
creases the single ControllerSettingsExporter class can be divided into multiple
objects. Again the mapping to columns is crucial, especially in an internation-
alized environment where one language column can be added or removed easily.
Therefore every export column is represented through an ExportColumn object
for enabling a comfortable composition of the export files. The columns of an
export file are managed by the ExportColumnManager. Moreover, two approaches
are implemented considering different export formats and depending if the export
process results in a single or in multiple files.

1. Single file: For a single export file the output is directly sent to the client
with the help of HttpContext.Current.Response. In this case the user receives
a file which can be stored locally.

2. Multiple files: The content for multiple export files is written with the help
of a FileStream and a StreamWriter. In addition to this it is possible to
archive the created files in a zip archive using SharpZipLib1.

During the development of the CORA it was impossible to change the com-
munication format from CSV to XML because legacy systems are only able to
understand CSV at the moment. However the CORA can deal easily with the
shift from CSV to XML because the export data is represented by in-memory
collections which simply have to be transformed into the desired output format.

1http://www.sharpdevelop.net/OpenSource/SharpZipLib/Default.aspx

65

6. Presentation Layer

The with business logic enriched data has to be presented to the user for fur-
ther processing or display. The rise of Web-browser-based user interfaces has
changed the landscape of enterprise applications significantly because they are
often preferred to rich-clients which run the presentation on the client. As a
Microsoft Access application the EVI provided a rich-client presentation. There-
fore the users are used to fast responsiveness and mighty user interface elements
like combo boxes. Nevertheless, scaling the management of CAN data up to
a worldwide extent (including multiple production locations and CAN bus sys-
tems) requires the benefits which come along with Web applications. First of
all universal access is guaranteed because any connected device can access the
Web application with a URL. Moreover no extra installation of client software
is required and a central Web server eases the update process tremendously. In
addition, a common user interface and huge support in the software engineering
industry favor Web applications as preferred presentation mechanism.

As for the other layers, there exist numerous patterns for the Presentation
Layer and again many of them can be found in [7]. In general a request has to
be processed on the server-side and an appropriate response has to be presented
to the client. In many cases the response is a dynamically generated HTML
document. Investigating the request-response principle, a first separation into two
parts makes sense. The first part interprets the request and the second part takes
care of the response formatting. This separation of concerns is a fundamental
approach but often neglected when it comes to presentation of information.

6.1. Separation of Concerns

In fact the separation is an old idea but first surfaced in user interfaces with the
introduction of the Model View Controller (MVC) pattern which acts as a basis for
many other patterns regarding presentation. Basically the Model View Controller
pattern states that nonpresentation logic should be factored out by dividing the
user interface interaction into three distinct roles as shown in figure 6.1.

There exist numerous different ways for implementing a MVC pattern but the
distinction between the three roles must be visible.

• Model: The model is an object that represents information about the do-
main, including data and in many cases business logic as well.

• View: The view represents the display of the model in the user interface. It
is possible that multiple views exist for a single model for different display
purposes.

66

6. Presentation Layer

Figure 6.1.: Model View Controller [7]

• Controller: The controller handles the user input, manipulates the model
and causes the view to update appropriately.

According to [7] the MVC pattern comprises two principal separations. First
separating the presentation from the model and then separating the controller
from the view. These two separations implicate many advantages. First of all,
software developer can specialize in working with a model (including business
logic and database interaction) or in designing a sophisticated view and provid-
ing a good user interface. Moreover, when the model is clearly separated, entirely
different views can be created to display the same model. For example the hard-
ware configuration of a CAN module can be presented by a rich-client, a Web
browser, a remote API or even a command-line-interface. Finally a model free of
any visual objects is usually easier to test.

In general the separation between presentation and model is easier to achieve
than to assert independent controllers. Furthermore the term “controller” is used
in multiple ways (e.g., not to be confused with the Controllers which act as DAO
within the DAL) and therefore the term input controller is more significant for
the controller in the MVC pattern. The following sequence diagram depicted in
figure 6.2 illustrates how the model, view and input controller work together with
a Web server.

An input controller handles an incoming request and derives information. Then
the controller triggers particular model objects to gather information to build the
model for the response. When the model is finished the control is returned to
the input controller which investigates the result and decides which view is most
suitable for displaying the response. Finally the controller passes the control to
the view and the HTTP response is generated. As pointed out before, there exist
multiple occurrences and different implementations and frameworks for the Model
View Controller pattern. Therefore a detailed evaluation is important to choose a
suitable architecture for the Presentation Layer for a certain domain.

Implementing Model View Controller in ASP.NET. The code-behind feature
of the Microsoft Visual Studio .NET development system makes it easy to sepa-

67

6. Presentation Layer

Figure 6.2.: MVC in action together with a Web server [7]

rate the presentation (view) code from the model-controller code. Furthermore,
each ASP.NET page has a mechanism that allows methods, that are called from
the page, to be implemented in a separate class [18].

6.1.1. Page Controller

A Page Controller handles a request for a specific page or action on a Web site [7].
Having one module on the Web server which acts as the controller for each page
on the Web site does not work out exactly, because a link may redirect to a
different page, but the controller is associated with each action. The role of
the Page Controller can be described as the following. The controller receives a
page request, extracts any relevant data, invokes any updates to the model, and
forwards the request to the view. The view in turn depends on the model for
retrieval of data to be displayed. Defining a separate page controller isolates the
model from the specifics of the Web request - for example, session management,
the use of query strings or hidden form fields, or passing of parameters to the
page [22]. Figure 6.3 depicts the structure and the relation to the view and the
model.

Figure 6.3.: Page Controller structure [22]

To avoid significant code duplication, which results of the creation of a separate
controller for each Web page (or action), a BaseController class which incorporates

68

6. Presentation Layer

common functions should be considered. Each individual Page Controller can in-
herit this common functionality from the BaseController. In addition to inheriting
from a common base class, the definition of helper classes (which can be called
by the controllers to perform common functions) leads to more structured code.
Figure 6.4 illustrates the approach.

Figure 6.4.: Using BaseController to eliminate code duplication [22]

Many Web application frameworks provide a default implementation of the
Page Controller but make it very easy for the developer to combine view-related
code with controller-related code. Therefore many approaches favor the Front
Controller patterns where a controller handles all requests for a Web site. In this
case a single controller and a hierarchy of commands solve the decentralization
problem present in the Page Controller. Nevertheless, the code-behind classes
of the ASP.NET page framework provide an excellent mechanism for achieving
separation and for implementing a Page Controller.

Implementing Page Controller in ASP.NET. The concepts of the Page Con-
troller pattern are implemented in ASP.NET by default. The underlying mecha-
nism of capturing an event on the client, transmitting it to the server, and calling
the appropriate method is automatic and invisible to the implementer [19]. One
crucial component of this underlying mechanism is the ASP.NET Page Life Cycle
which covers among other things: initialization, instantiating controls, restoring
and maintaining state. Within each stage of the life cycle of a page events are
raised to run custom code. More information concerning the ASP.NET Page Life
Cycle can be found at [16], [14] or [26]. Figure 6.5 depicts the structure of the
code-behind pages implementation regarding PageController in ASP.NET.

Another approach would be the use of the ASP.NET MVC framework 1 instead
of ASP.net Web Form model. The biggest advantages of this approach are that
ViewState, PostBack events and code behind classes are more or less replaced
by classes which explicitly define a controller and a view. One of the bigger
drawbacks using this framework is that controls that take advantage of PostBacks
or ViewState will not work. There was no explicit need to use the ASP.NET MVC
framework for the CORA at the moment but the framework can be useful for the
future development.

1http://www.asp.net/mvc/

69

6. Presentation Layer

Figure 6.5.: Structure of the code-behind pages implementation [19]

6.1.2. Template View

A Template View or Template Method renders information into HTML by embed-
ding markers in an HTML page as described in figure 6.6.

Figure 6.6.: Template View structure [7]

Dynamic Web pages cannot be created with regular HTML editor because
their appearance varies for each result. A recommended approach to compose a
dynamic Web page is to create a static page with placeholders or markers that can
be resolved into calls to gather dynamic information [7]. Markers can be placed
in the HTML in several ways, including HTML-like tags or special text markers
in the body text. Many environments provide markers or even objects which
render to HTML. In addition they allow embedding arbitrary programming logic
into the template. This should be avoided regarding the separation of concerns
principle and the accompanying disadvantages.

6.1.3. Separation of Concerns regarding the CORA

As [7] points out, realizing ASP.NET Web applications with Visual Studio works
great with Page Controller in combination with Template View. The CORA archi-
tecture of the Presentation Layer continuous the generic approach of the previous

70

6. Presentation Layer

layers and defines a GenericBasePage which extends System.UI.Page and acts as a
common BaseController for multiple Web pages.

Listing 6.1: Definition of GenericBasePage
1 public class GenericBasePage <TManager , TDTO > : Page

2 where TManager : IGenericManager <TDTO >, new()

3 where TDTO : class , IDTO , new()

4 {

5 }

As shown in listing 6.2 a ChildPage passes the type of the primarily associated
Manager (a TableModule of the Business Application Layer) and the type of the
primarily associated Data Transfer Object to realize common basic operations in
the GenericBasePage. If a page is designed to manage a specific CAN entity
“primarily associated” means the corresponding objects of other layers. For sure
many pages use multiple Manager and DTOs but they have to be handled in the
ChildPage.

Listing 6.2: Definition of ChildPage
1 public partial class CANModulDetails : GenericBasePage <CANModulManager ,

CANModulDTO >

2 {

3 }

The fundamental task of the GenericBasePage is to initialize and process the
following parameters which are relevant for the whole application and not only
for specific Web pages like:

• The authenticated user

• The application language

• The production location

• The CAN bus

Preferred default settings are stored in the database for every CORA user,
like the preferred language, the preferred production location and the preferred
CAN bus. Therefore the GenericBasePage verifies if the user has already applied
any particular settings, for example has decided to work on a specific CAN bus,
otherwise the preferred default settings are applied. While working with the
CORA, the application settings have to be managed for the whole session, which
is realized with the help of the SessionManager. Moreover, the inheritance level of
the BasePage pattern can be increased for certain scenarios. For example all the
pages which provide the possibility to copy a particular CAN bus entity like a
CAN module or a function code to another CAN bus, inherit from CopyBasePage
which provides common validation logic. The class CopyBasePage in turn inherits
from a class called PopupBasePage which provides initial settings for pop-ups.

6.2. Data Presentation

The aim of displaying data is to convey information, and therefore a clearly
understandable structure and a supportive layout is required. In order to provide

71

6. Presentation Layer

a smooth shift from the EVI to the CORA, the existing navigational structure was
considered and retained to a reasonable extent. A detailed description concerning
structure and layout of the old Microsoft Access application can be found at [29].
A first draft of a CORA Web page for managing a CAN bus entity is shown in
figure 6.7.

Figure 6.7.: First draft of the CORA interface

Such a screen sketch can be quickly realized with any graphical software and
provides an assailable basis for further discussion to understand the UI needs of
the different stakeholders. Figure 6.8 shows a CORA Web page for managing
CAN module with software. The fundamental elements are described in the
following enumeration whereas the enumeration numbers refer to the numbers on
the screen.

1. The three drop-down menus provide the mentioned general settings for the
application. Furthermore the current user and role are displayed.

2. The left-sided vertical menu acts as primary navigation for the different
CORA Web sites. It adapts accordingly to the role of the authenticated
user. As a consequence more menu items are provided for a system adminis-
trator than for a CAN bus administrator. The selected item is emphasized.

3. The bread crump navigation menu helps the users to keep track of their
location within the CORA Web pages.

4. The filter controls allow filtering the subsequent entity list accordingly to
multiple parameters. Moreover it is possible to execute several operations
for these entities.

5. The entity list displays the CAN bus entities accordingly to the applied
filters. Due to the possibilities offered by the DataPresenter the list can

72

6. Presentation Layer

Figure 6.8.: CORA screenshot

be sorted, browsed and the number of the per page displayed entities cus-
tomized. Furthermore it is possible to edit, delete, create and select items.
The details of the selected entity are displayed underneath.

6. The horizontal secondary navigation menu enables the user to navigate
through the details of a selected entity. For example the function codes or
the hardware configuration for a specific CAN module can be viewed and
modified.

7. As for the corresponding entity, certain operations can be performed for
the detail items of a selected CAN bus entity. For example all hardware
configuration entries can be deleted for a selected CAN module. In addition,
filters can be applied to customize the listing of the detail items.

8. The second DataPresenter displays the detail entries and again sorting,
browsing, editing, deleting and inserting functionality is offered.

9. The footer only displays the current version of the CORA at the moment.

The consistent layout for the pages of the CORA Web application is realized
with the help of Master Pages and Nested Master Pages which define the look
and feel and standard behavior for all of the pages (or a group of pages). The
individual content pages contain the content which is intended to be displayed
and when a user request a content page, it merges with the master page to pro-
duce output that combines the layout of the master page with the content from
the content page. The Site.master defines the global layout of the CORA and
subgroups are defined by nested master pages like Search.master for all the sites

73

6. Presentation Layer

which offer advanced search functionality.

Comparing the user interface of the EVI and the CORA, one of the most sig-
nificant differences is the handling of the segregation between input possibilities
and the simple display of information. The EVI defines distinct Access Forms,
with basically the same layout, for editing and viewing scenarios. Furthermore
form objects which provide input possibilities for the user submit the changes in-
stantly to the database. Moreover the primary navigation of the main menu form
is divided into two columns, whereas the left sided column offers access to parts
of the application which are accessible for default users and the navigational ele-
ments of the right sided column are reserved for administrative users. The CORA
takes a slightly different approach. The user can transform objects which serve
display purposes into objects which accept user input if needed. Moreover the
presentation objects are adjustable according to the role of the authenticated
user. Therefore the primary navigation is not divided but will hide some menu
elements if the user does not possess sufficient rights. In addition some presenta-
tion controls are enabled or disabled according to the role of the user.

Investigating the graphical user interface of the EVI and the CORA it becomes
obvious that the preferred way to manage CAN bus entities is the display of data
in an extremely flexible tabular form. Furthermore it must be possible to retrieve
a subset of specific CAN data, according to a user defined amount of displayed
items, to enable efficient working. Therefore paging and sorting of data has to
be fully supported by the CORA user interface. The ASP.NET environment
provides predefined controls for displaying data. Table 6.1 shows a comparison of
the different data controls. Due to the rich out of the box functionality, and the
through templates improved control over the rendering process, the in ASP.NET
3.5 introduced ListView control was chosen as primary control for displaying data.

Control Paging Data
Grouping

Flexible
Layout

Update,
Delete

Insert Sorting

ListView x x x x x x
GridView x x x
DataList x x
Repeater x

Table 6.1.: Comparing ASP.NET data presentation controls according to [8]

Paging. In addition to the ListView, a new control called DataPager was intro-
duced with ASP.NET 3.5. Unfortunately this new control is very limited because
it only works with the ListView control and both controls have to have Viewstate
enabled at the moment. Moreover, the DataPager has no Paging Events and no
SelectedPageIndex property and it is not possible to overwrite the paging behavior
manually [30]. Furthermore the CORA data presentation control has to support
server-side paging. Retrieving all configuration entries and trimming the result on
the client for displaying purposes would harm performance significantly. In this

74

6. Presentation Layer

case only the result specified by the number of displayed items has to be retrieved.
In fact the DataPager offers built-in server-side paging in combination with data
source controls but not for custom collections returned by business objects. All
these limitations lead to the development of a custom pager control for the CORA
called EviPager. Worth mentioning at this point is the fact that all custom server
controls of the CORA still have the “EVI” prefix, because the name of the EVI
successor was not defined at the moment of their creating. Renaming should take
place within the next refactoring iteration. The EviPager provides all the relevant
information for the paging process like the current page and the customized page
size in an object-oriented way and can be easily extended. Furthermore the layout
and the images for the buttons can be arbitrarily adapted. Any user interaction
triggers an event which has to be captured for further processing.

Sorting. Although the ListView offers built-in sorting possibilities in combina-
tion with data source controls, the requirements are the same as for the paging
process. Therefore an independent expendable object which provides all the nec-
essary sorting information for the Data Access Objects is the best solution. For
this purpose the classes SortableTableHeaderRow and HeaderField were generated.
Any presentation control simply has to provide a collection of Headerfields and
the sorting possibilities are automatically realized.

Presentation control. Due to the previous mentioned data presentation re-
quirements including paging and sorting it is obvious that the final CORA data
presentation control consists of numerous objects. Furthermore these objects have
to be integrated into a common template because editing every tabular presen-
tation control of the whole Web application would end in a maintenance night-
mare. For example future requirements demand an additional headline above
the SortableTableHeaderRow, changing every presentation template would be ex-
tremely inefficient. The first idea was to load common templates dynamically
with the help of an ItemPlaceHolder within the LayoutTemplate of the ListView.
This raises some problems as described in [24] and even becomes impracticable
if the template contains custom user- and server controls. The solution comes
in form of the DataPresenter, a custom user control which serves as a container
control for all the objects which make up the final presentation as shown in fig-
ure 6.9.

Figure 6.9.: CORA presentation control

The DataPresenter is an ASP.NET user control which consists of two files, a

75

6. Presentation Layer

template- and a code file. Listing 6.3 shows an abstract of the template file
combining the object for sorting, the ListView for displaying the data, and the
control for paging.

Listing 6.3: Abstract of the DataPresenter template file
1 <esc:CustomTable ID="tblWrapper" runat="server" CellPadding="0">

2 <esc:SortableTableHeaderRow ID="sorterRow" runat="server" OnSorterCommand="

SorterRow_Command"

3 CssClass="Header" />

4 <esc:CustomTableRow >

5 <esc:CustomTableCell >

6 <esc:EviListView ID="lvContent" runat="server">

7 <LayoutTemplate >

8 <tbody id="itemPlaceholder" runat="server" />

9 </LayoutTemplate >

10 </esc:EviListView >

11 </esc:CustomTableCell >

12 </esc:CustomTableRow >

13 <asp:TableFooterRow ID="tfrFooter" runat="server" CssClass="Footer">

14 <asp:TableCell ID="tcFooter">

15 <asp:Table ID="tblFooterElements" runat="server" CssClass="

FooterElements">

16 <asp:TableRow ID="trFooterElements" runat="server">

17 <asp:TableCell ID="tcPageSize" runat="server" CssClass="

PageSize" Wrap="false">

18 <asp:TextBox ID="tbPagesize" runat="server" Width="25"

/>

19 <asp:Button ID="btnPagesize" runat="server" OnClick="

btnPagesize_Click" Text=" <%$ Resources:Site , Ok %>"

/>

20 </asp:TableCell >

21 <asp:TableCell ID="tcPrint" runat="server" CssClass="Print">

22 <asp:HyperLink ID="hlPrint" runat="server" Text=" <%$

Resources:Site , Print %>" />

23 </asp:TableCell >

24 <asp:TableCell ID="tcPager" runat="server" CssClass="Pager"

Wrap="false">

25 <esc:EviPager ID="pager" runat="server" OnPagerCommand="

Pager_Command" />

26 </asp:TableCell >

27 </asp:TableRow >

28 </asp:Table >

29 </asp:TableCell >

30 </asp:TableFooterRow >

31 </esc:CustomTable >

The ListView is the heart of the DataPresenter, but as the tag esc:EviListView
indicates it is an extended ListView and not the default implementation offered
by the ASP.NET environment. The extension provides any imaginable flexibility
but first of all, without using a predefined data source control a custom imple-
mentation for accessing user input is needed. For this purpose the EviListView
provides a NewValues collection and numerous methods gather the data while
iterating over all the controls specified within the ListView templates.

The code-behind file of the DataPresenter carries a lot of presentation logic and
provides properties of the type ITemplate and the PersistenceMode.InnerProperty
which specifies that the property persists in the ASP.NET server control as a
nested tag. As a consequence the DataPresenter offers the possibility to spec-
ify a template declaratively and map it to the templates of the ListView. This
mapping adds additional flexibility. For example the default ListView has dif-
ferent templates for scenarios which require similar controls. Viewing an item
only needs a control for simple textual representation but editing and inserting

76

6. Presentation Layer

both require a control which takes user input, like a TextBox. Moreover, edit-
ing and inserting require the same controls in many cases and adding an extra
template would cause additional maintenance costs. Therefore the DataPresenter
introduces a ModifyTemplate which is mapped editing and inserting templates of
the ListView. The few elements that differ within the ModifyTemplate like an edit
and insert button for triggering the desired operations are automatically treated
by additional routines with the help of strict naming conventions. For instance,
a button with the id “lbtnUpdate” is only rendered if the DataPresenter is in edit
mode. In case that the insert operation requires totally different controls than the
editing operation, separate editing and inserting templates for both scenarios are
provided as well. Code listing 6.4 depicts the simplified version of the declarative
definition of a DataPresenter for displaying the hardware configuration of a CAN
module.

Listing 6.4: Defining a DataPresenter
1 <esc:DataPresenter OnContentUpdating="dpSettings_Updating" OnContentInserting="

dpSettings_Inserting">

2 <ItemTemplate >

3 <asp:HiddenField ID="hfHWBelegungID" runat="server" Value=’ <%# Bind("

HWBelegungID ") %>’ />

4 <tr class=" <%# Container.DisplayIndex % 2 == 0 ? "dp -item" :"dp-alternate -

item" %>">

5 <td>

6 <asp:Literal ID="ltSteckerBez" runat="server" Text=’ <%#Eval("

SteckerBez ") %>’ />

7 </td >

8 <td>

9 <asp:Literal ID="ltHardwarePin" runat="server" Text=’ <%#Eval("

HardwarePin ") %>’ />

10 </td >

11 <td>

12 <asp:Literal ID="ltSteckerFunktionBez" runat="server" Text=’ <%#

Eval(" SteckerFunktionBez ") %>’ />

13 </td >

14 <td>

15 <asp:Literal ID="ltSoftwarePin" runat="server" Text=’ <%#Eval("

SoftwarePin ") %>’ />

16 </td >

17 <td>

18 <asp:LinkButton ID="lbtnEdit" ValidationGroup="vgEdit" CommandName

="Edit" runat="server"

19 Text=" <%$ Resources:Site , Edit %>" />

20 </td >

21 </tr >

22 </ItemTemplate >

23 <ModifyTemplate >

24 <asp:HiddenField ID="hfHWBelegungID" runat="server" Value=’ <%# Bind("

HWBelegungID ") %>’ />

25 <tr class=" <%# Container.DisplayIndex % 2 == 0 ? "dp -item" :"dp-alternate -

item" %>">

26 <td>

27 <asp:DropDownList ID="ddlSteckerID" runat="server" />

28 <asp:RequiredFieldValidator ID="rfvSteckerID" runat="server"

ControlToValidate="ddlSteckerID"

29 InitialValue="<%$ Resources:Site , DdlInitVal %>" Display="

dynamic" Text="*" ValidationGroup="vgModify" />

30 </td >

31 <td>

32 <asp:TextBox ID="tbHardwarePin" runat="server" Text=’ <%#Bind("

HardwarePin ") %>’ />

33 </td >

34 <td>

35 <asp:DropDownList ID="ddlSteckerFunktionID" runat="server" />

36 </td >

37 <td>

77

6. Presentation Layer

38 <asp:TextBox ID="tbSoftwarePin" runat="server" Text=’ <%#Bind("

SoftwarePin ") %>’ />

39 </td >

40 <td>

41 <table class="actions">

42 <tr>

43 <td>

44 <asp:LinkButton ID="lbtnInsert" CommandName="Insert"

runat="server" ValidationGroup="vgModify"

45 Text=" <%$ Resources:Site , Save %>" Visible="false"

/>

46 </td >

47 <td>

48 <asp:LinkButton ID="lbtnUpdate" CommandName="Update"

runat="server" ValidationGroup="vgModify"

49 Text=" <%$ Resources:Site , Update %>" />

50 </td >

51 <td>

52 <asp:LinkButton ID="lbtnCancel" CommandName="Cancel"

runat="server" Text=" <%$ Resources:Site , Cancel %>

" />

53 </td >

54 <td>

55 <asp:LinkButton ID="lbtnDelete" CommandName="delete"

runat="server" Text=" <%$ Resources:Site , Delete %>

" />

56 </td >

57 </tr >

58 </table >

59 </td >

60 </tr >

61 </ModifyTemplate >

62 </esc:DataPresenter >

Outstanding are the multiple event handler definitions like OnContentUpdating
and OnContentInserting. This enables the DataPresenter to handle multiple events.
Moreover, a technique called Event Bubbling allows a child control to propagate
events up its containment hierarchy. With the extension of the ListView Event
Bubbling offers multiple points for realizing certain logic. For instance, when the
user clicks the link button to update some values of a CAN module the extended
ListView catches the event with overriding the parent method OnItemUpdating,
retrieves all the updated values, and raises another event which is handled by
the DataPresenter above in the hierarchy. At this point additional common logic
concerning the update process can be applied and another event is triggered which
is finally handled by the page containing the DataPresenter. Here the updated
values are passed to the corresponding Business Object. Figure 6.10 illustrates
the update scenario.

If the next control in the hierarchy does not handle the Event it will be simply
passed on, so one could easily omit the handling routine of the DataPresenter if no
logic has to be applied at the moment. In addition to this Event Bubbling enables
to bundle events. For example it is not required that every page defines an own
method for handling the event raised by the SortableTableHeaderRow when a GUI
element for sorting is pressed and an own method for every button click of the
paging object. In both scenarios a data reload with the actual parameters is
required. Therefore both events are handled within the DataPresenter and raise
a common single event to reload the content of the page.

Transforming the DataPresenter. A lot of flexibility and transformation pos-
sibilities are gained due to the numerous templates and the component based

78

6. Presentation Layer

Figure 6.10.: Event Bubbling

structure of the DataPresenter. For example the DataPresenter can be set into
insert mode which causes the contained and extended ListView to specify the
location of the InsertItemTemplate and to render the appropriate HTML. Fur-
thermore a select mode is available which does not only affect the ListView to
display an additional column with select check boxes, but also enables controls
like a button for submitting the desired select action. Moreover, the possibility to
alter columns at will allows reusing a DataPresenter for different use cases which
demand a similar result set. For instance, the use case “show reserved function
codes of all users” requires one extra column compared to the use case “show
reserved function codes of the current user”, namely a column which displays the
user who reserved the function code. In general the greatest common subset of
shared columns defined in the template files is displayed by default and the other
columns are set to “invisible”. Within the code behind file, subroutines which
are executed accordingly to the use cases add the additional column objects and
the DataPresenter automatically changes the column status to visible.

Rendering HTML. Every ASP.NET Server Control can render itself into a pre-
sentation format which is sent back to the client in response to a Web request.
In most cases this presentation format is HTML. One possibility to customize
the rendering process is to overwrite the Render method of the base class Sys-
tem.Web.UI.Control. Another possibility is to write custom Control Adapters or
to use existing solutions like the CSS Friendly Control Adapters2. The CORA uses

2http://www.asp.net/CssAdapters/

79

6. Presentation Layer

the CSS Friendly Control Adapters to render the menus with more CSS suitable
HTML than provided by the default rendering process.

Internationalization. How internationalization affects the persistent storage of
information is described in previous chapters. Among other things, internation-
alization for the Presentation Layer means to provide the graphical user interface
elements in different languages. A prerequisite for internationalization of Web
applications are independent resources which contain the language specific infor-
mation. Moreover text, graphics and videos which should be easily replaceable
should not be compiled within the application. The .NET framework provides
an infrastructure for the management of resource files in different languages. The
separation results from different filenames or sub folders according to RFC 1766.
For the CORA again only the language code, but not the country or region code is
important. Furthermore the CORA uses only Explicit Localization and not Implicit
Localization because many resource entries are used on multiple pages.

6.3. User Interaction

The advantages of Web application are apparent but the user acceptance of a
new enterprise application depends whether a comfortable interaction is possible.
With HTML and additional client-sided technologies it is possible to generate
an UI which does not have to fear the competition with the UI of rich-clients.
Nevertheless, in Microsoft Access a so called combo box allows dynamic filtering of
a drop down list accordingly to user input. This control is widely used in the EVI.
Unfortunately there is no default representation of a combo box in HTML but
there exist several solutions to provide a comfortable handling of large drop-down
lists. Some browsers like Firefox already support the search for an entry within a
drop down list by simple fast typing the sequence of the letters. Unfortunately at
the moment the Internet Explorer, which is Rosenbauer’s standard browser, only
recognizes the first letter. Even if a user types the sequence of the letters very
fast, the Internet Explorer always jumps to the word beginning with the letter.
Moreover with a fully functional combo box users are able to correct the search
input. For example they can delete a single letter, or add an additional one. This
functionality is provided by the ListSearchExtender of the ASP.NET Ajax Control
Toolkit3, which is an open-source project built on top of the Microsoft ASP.NET
AJAX framework and provides a rich control collection. Figure 6.11 demonstrates
a ListSearch control to search a drop-down list displaying multiple CAN modules.

In order to provide a sophisticated interaction for the user the logical, temporal,
and physical separation between the client and the server has to be considered.
The rich server-based programming model provided by ASP.NET easily entraps
developers to disregard the client-side which affects performance. For instance,
it is totally unnecessary to send data to the server only to validate if the integer
input lies within a predefined range. This validation can easily be realized with
client-side scripts. Fortunately many ASP.NET validation controls provide client-
side validation and there are numerous built-in possibilities for adding client-side

3http://www.asp.net/ajax/AjaxControlToolkit/Samples/

80

6. Presentation Layer

Figure 6.11.: Searchable drop-down list with an Ajax control

script to a Web page. The CORA takes a step forward and provides two classes
to enrich client-side user interaction:

• ScriptInitiator

• ScriptManager

The ScriptInitiator is used for the dynamic creation of client-side code, for ex-
ample JavaScript functions. Due to the fact that StringBuilders are used, this code
can be arbitrarily composed as show in code listing 6.5.

Listing 6.5: Dynamically Creation of client-side code
1 public StringBuilder EnableDisableControls(List <Control > controls , CheckBox

cbFlag)

2 {

3 StringBuilder sb = new StringBuilder ();

4 sb.AppendLine("function EnableDisableControls" + cbFlag.ClientID + "()");

5 sb.AppendLine("{");

6 sb.AppendLine("var disabled = true;");

7 sb.AppendLine("if(document.getElementById(’" + cbFlag.ClientID + " ’).checked

)");

8 sb.AppendLine("{");

9 sb.AppendLine("disabled = false;");

10 sb.AppendLine("}");

11 foreach (Control con in controls)

12 {

13 sb.AppendLine("document.getElementById(’" + con.ClientID + "’).disabled=

disabled;");

14 }

15 sb.AppendLine("}");

16 return sb;

17 }

The ScriptManager is responsible for managing the client-side script for a Web
page. The class takes client code in form of a string and stores it within a col-
lection. Finally the client script is rendered into the HTML response. Another
approach is to use external files with client-side code to use the full debugging
potential of Visual studio.

Input validation plays a tremendously important role for the CORA in order to
guarantee the consistency of the complex CAN data. The default ASP.NET vali-
dation controls are suitable for most scenarios and a CustomValidator enables user
defined validation logic on the server- and client-side. Moreover, the ExistsValida-
tor inherits from the BaseValidator and provides multiple methods to validate if a
particular entity already exists on a specific CAN bus. All validation controls can

81

6. Presentation Layer

be dynamically enabled or disabled. This becomes handy when copying multiple
entities between two different CAN bus systems. In this case an exclusion of
an entity from the copy process automatically results in the deactivation of all
validation controls regarding this entity, without affecting the validation of the
other entities.

82

7. Security

Sophisticated security mechanisms are an essential part of enterprise Web appli-
cations to prevent unauthorized actions. These include identifying users, granting
or denying access to sensitive resources, and protecting data. The application’s
environment tremendously affects the security strategy and as a consequence
threat modeling gained importance within Web Engineering. According to [14]
threat modeling is a structured way of analyzing the application’s environment for
possible threats and ranks them according to certain criteria. In addition to this,
Web applications have to face the following security topics according to [27].

• Authentication: A fundamental security design decision addresses the ques-
tion if the application is available for anonymous users or if an authentica-
tion is inescapable. This raises the question if the users have to provide the
information required for the login explicitly, or if the operation system can
pass the login to the Web server.

• Access control: Which resources or pages are allowed to be accessed by
which users?

• Application identity: The next question concerns the user context in which
the Web application is acting on the server and if the identity of the autho-
rized user or a dedicated identity is used.

• Accounts management: The management of the user accounts and user
groups is another fundamental security decision.

ASP.NET as the underlying framework for the CORA provides built-in func-
tionality for implementing security aspects. In [27] the security mechanisms of
a typical ASP.NET Web application are described as the following:

• Access restriction based on IP-addresses: The Web server can check for
each request whether the client is allowed to send requests at all.

• The next step addresses the browser authentication.

• After passing the IIS Web server, the request is forwarded to the ASP.NET
framework. At this point the user identity has to be clarified. It is possible
to forward the identity of the authenticated user or an independent identity.

• By means of the passed identity the framework checks the access rights,
including database access or access to other application servers.

• Moreover, with the help of additional connection strings the identity can
be modified again.

83

7. Security

7.1. User and Role Management

For controlling authentication and access to certain resources the allocation of
users to certain groups is a well established approach. ASP.NET supports a user
group based security system, but the term “role” is preferred over the term “user
groups”. For instance, it is possible to define different roles declaratively in the
web.config file, or one can use the Microsoft Active Directory, the user database
of a windows system (SAM), or a Microsoft SQL server database. For the last
mentioned approach a tool for generating all the needed tables exists and even a
default Web interface is available for managing the roles.

The CORA distinguishes between the following roles:

• System administrator: This role stands above the affiliation to a specific
production location and manages other users and their role memberships.

• Production location administrator: Users of this role are able to manage
production locations and for sure perform all CAN bus related operations.

• CAN bus administrator: A CAN bus administrator can create, edit and
delete different CAN bus systems and even copy CAN entities to another
CAN bus. It is possible to assign the role CAN bus administrator only for
a particular CAN bus system. If a CAN bus administrator switches to a
CAN bus which is not explicitly allocated to him, only working rights are
granted.

• Working: A working user can manage many CAN bus entities but not the
CAN bus itself. For instance, the role is allowed to create a CAN module,
or to configure hardware settings and to manage signals.

• Reading: A reading role is able to view a CAN bus but is not able to apply
any changes.

The CORA Microsoft SQL database is used for storing these roles as men-
tioned in section 3.2.1. All the tables are manually designed because the default,
tool generated role management does not meet the requirements considering the
different production locations and CAN bus systems, because a single user can
be a CAN bus administrator for a specific production location and a CAN bus
worker for another. Furthermore many built in functionality like password man-
agement is not needed because the authentication of the windows system is used
as described later on.

7.2. Authentication

ASP.NET distinguishes between two forms of authentication namely forms au-
thentication and Windows authentication. The former provides a flexible approach
and custom login pages whereas the latter uses existing windows accounts. As an
enterprise application the CORA uses Windows authentication, and therefore no

84

7. Security

login user interface is required, and no additional precautions against the inter-
ception of network traffic is needed. A drawback of using Windows authentication
is that it is limited to Windows users. Moreover, it is important to know that
Windows authentication is not built into ASP.NET but the responsibility lies by
the IIS. Here several authentication strategies can be used including Integrated
Windows authentication where user name and password are not transmitted, but
the identity of an already logged in Windows user is passed automatically as a
token. In this case the authentication takes place transparently and no user in-
tervention is needed. Detailed instructions concerning the configuration can be
found in [14].

7.3. Implementing CORA Security

In the case of the CORA it is important that an authenticated user only accesses
resources or performs actions according to the assigned role. As a consequence
the enterprise application has to take the following security requirements into
account:

• Some Web pages are only accessible for certain roles. Therefore the primary
navigation menu has to be adapted and access denied to certain resources.

• The user interface has to be transformed accordingly to the given role to
deny certain operations. This includes simple enabling and disabling of
buttons or the complete rendering prevention of insert elements of a Dat-
aPresenter.

• Certainly deactivating only user interface elements is insufficient, whole
code blocks have to be prevented from execution.

First of all the user has to be automatically authenticated with Integrated Win-
dows Authentication. The GenericBasePage checks if the request is authenticated
and the EviRoleProvider takes care of the role management. Therefore the class
inherits from RoleProvider to use the built in ASP.NET security mechanism in-
cluding the Role Management Providers, which separate the functionality of role
management from the data store that contains role information. Furthermore, the
EviRoleProvider overrides the GetRolesForUser method to return the role names
that the specified user is associated with as a string array. The first mentioned
security requirement, namely the access restriction to certain Web pages can eas-
ily be realized with a configuration in the web.config file. Listing 7.1 depicts a
role based Web site restriction.

Listing 7.1: Role based Web site restriction
1 <location path="Sections/Exports/Exports.aspx">

2 <system.web >

3 <authorization >

4 <allow roles="Systemadmin , Standortadmin , CANBus -Admin"/>

5 <deny users="*"/>

6 </authorization >

7 </system.web >

8 </location >

85

7. Security

In this case only a system administrator, a production location administrator,
or a CAN bus administrator is allowed to access a Web site which offers export
possibilities, like the export of a configured CAN bus to the Rosenbauer Service
Tool. The menu entry in the primary navigation is hidden as well. The fact
that the role determination requires additional information from the application,
namely the current selected production location and the current selected CAN
bus affects the security implementation. When the user changes the production
location with the help of the drop down-list in the header, the Web site has to
adapt accordingly for the newly assigned role. This is not a problem if only GUI
elements have to be transformed, but additional handling is required when the
access to the current page is now denied. The CORA prevents this scenario by
simply deactivating the drop down-list for switching a production location on
Web sites which access is limited to certain roles and therefore have an autho-
rization entry in the web.config.

For instructing a presentation control to render HTML accordingly to a security
role, the SecurityManager has been introduced. This class takes a “minimum role”
which indicates that the role of the authenticated user has to satisfy at least this
security level for passing the validation.

Listing 7.2: SecurityManager access control
1 public bool GrantAccess(EviEnumerations.Rollen minimumRole)

2 {

3 bool grant = false;

4 switch (minimumRole)

5 {

6 case EviEnumerations.Rollen.Working:

7 grant = GrantAccessMinWorking ();

8 break;

9 case EviEnumerations.Rollen.CANBusAdmin:

10 grant = GrantAccessMinCANBusAdmin ();

11 break;

12 case EviEnumerations.Rollen.Standortadmin:

13 grant = GrantAccessMinStandortadmin ();

14 break;

15 case EviEnumerations.Rollen.Systemadmin:

16 grant = GrantAccessMinSystemadmin ();

17 break;

18 }

19 return grant;

20

21 }

22

23 private bool GrantAccessMinStandortadmin ()

24 {

25 bool grant = false;

26 if (RoledID == (int)EviEnumerations.Rollen.Standortadmin) grant = true;

27 if (RoledID == (int)EviEnumerations.Rollen.Systemadmin) grant = true;

28 return grant;

29 }

30

31 private bool GrantAccessMinWorking ()

32 {

33 bool grant = false;

34 if (RoledID == (int)EviEnumerations.Rollen.Working) grant = true;

35 if (RoledID == (int)EviEnumerations.Rollen.CANBusAdmin) grant = true;

36 if (RoledID == (int)EviEnumerations.Rollen.Standortadmin) grant = true;

37 if (RoledID == (int)EviEnumerations.Rollen.Systemadmin) grant = true;

38 return grant;

39 }

86

7. Security

A SecurityManager instance is allocated to each DataPresenter. For example, the
DataPresenter for managing the production locations receives a SecurityManager
with a production location administrator as a minimum role, and the DataPresen-
ter for managing CAN modules receives a SecurityManager with a working role. In
both cases the GrantAccess method will indicate when the edit button should be
rendered as enabled or disabled. For security purposes most pages and controls
are equipped with an ApplySecurity method which is invoked shortly before the
rendering process.

With the help of the PrincipalPermissionAttribute it is verified that users running
certain code have been authenticated and belong to a specified role. For instance,
if a method is declaratively protected by the PrincipalPermissionAttribute and users
manage to find a workaround to invoke this method, or if one GUI element is
accidentally enabled, a security exception is thrown. Code listing 7.3 depicts an
example where only a system administrator is allowed to run the code to insert
a new production location.

Listing 7.3: PrincipalPermission code execution
1 [PrincipalPermission(SecurityAction.Demand , Role = "Systemadmin")]

2 protected void dpList_Inserting(object sender , ListViewInsertEventArgs e)

3 {

4 StandortDTO insert = new StandortDTO ();

5 dtoMan.ValuesToDTO(dpList.Content.NewValues , insert);

6 CANBusDTO insrtCanbus = new CANBusDTO ();

7 insrtCanbus.Bezeichnung = Resources.Entity.Template;

8 standortMan.InsertStandort(insert , insrtCanbus);

9 base.InitStandortCon ();

10 }

87

8. Deployment

Deploying an enterprise application is a complex process and many methodolo-
gies like the Rational Unified Process1 provide detailed guidance. In the same
way additional steps are required in order to make the CORA available for all
departments which manage the CAN bus systems of Rosenbauer. First of all
the existing IT-infrastructure has to be analyzed considering the CORA deploy-
ment. An Internet Information Services (IIS) Web server which runs as virtual
server on an ESX2 farm is used. Furthermore the server runs in combination
with a Microsoft Office SharePoint Server (MOSS) and is protected through a
Microsoft Internet Security and Acceleration Server and an additional firewall.
After analyzing the infrastructure the following steps for deploying the CORA
remain:

• Publishing and configuration of the database: The database schema of the
development environment has to be published to the production environ-
ment.

• Publishing the CORA Web application: The source code including all the
additional resources has to be deployed on the Web server.

• Configuration of the Web server: The Web server has to be configured in
order to provide the deployed Web application according to the require-
ments.

Publishing the database. Microsoft SQL Server 2005 is used for the develop-
ment environment as well as for the production environment. For publishing the
database, the database schema of the development database is exported into a
file and executed on the server. This file includes all the necessary instructions
for creating the database. In addition, the database has to be filled with ini-
tial data, like users, roles, default production locations and CAN bus systems.
Unfortunately the SQL Server Management Studio does not support the export
of the database schema or the database content into a SQL file but Visual Stu-
dio 2008 provides this functionality with the SQL Database Publishing Wizard.
Therefore the CORA database could be easily created. Regarding maintenance
after the initial creation, all changes are first made and tested in the development
environment and then applied to the database of the production environment. In
this case database management tools are used instead of a file based information
exchange.

1http://de.wikipedia.org/wiki/Rational Unified Process
2http://www.vmware.com/

88

8. Deployment

Publishing the CORA Web application. In order to deploy an ASP.NET Web
application the source files have to be compiled. There exist two possibilities
regarding the compilation.

1. Compile at runtime: The Web application gets compiled for the first re-
quest or again in case of applied modifications. In this case the source of the
development environment can simply be copied to the production environ-
ment, also referred as XCopy deployment. This enables instant modification
within the production environment.

2. Compile at development time: A precompilation within the development
environment provides a faster access of the Web application for the first
request.

The CORA was precompiled and published with the built in Publish Wizard
offered in Visual Studio 2008. A lot of settings are available for the publishing
process but in the initial case the output folder of the CORA contained a sub
folder called bin which includes all the required libraries. Other resources like the
language files for the user interface, images, CSS and the template files remain in
an editable format. This enables the possibility to apply modification to certain
resources within the production environment. Therefore a strict deployment and
maintenance policy is needed which states exactly what kind of modifications
have to be applied in which environment in order to avoid inconsistencies. At
the moment all modifications of the CORA Web application are first applied in
the development environment and then deployed to the server. To keep track of
the changes, the Version of the CORA is set in the AssemblyInfo.cs and updated
accordingly. Furthermore, configuration files like the Web.config differ in both
environments and must be handled carefully during the deployment process. In
case of the CORA all the application settings are stored in the Web.config file
and there exist two separate versions, one for the development environment and
one for the production environment.

Web Deployment Projects. In addition to the default deployment possibilities
offered in Visual Studio Microsoft provides an additional Visual Studio project
template called Web Deployment Project with a GUI for further deployment
options including [27]:

• Automatic precompilation through the translation process.

• More influence how the assemblies are assembled.

• Part of the web.config file can be automatically exchanged.

Web server configuration. The IIS provides tons of configuration options, some
of them are described in [14]. For the CORA the following settings are essentially
important:

• Enabled Integrated Windows Authentication.

89

8. Deployment

• Access to the database server.

• Access to file system for accessing import files generating export files.

Therefore the Trust Level has to be set to FULL with the help of the IIS Man-
ager.

90

9. Conclusion

Providing enterprise solutions for a certain problem domain is a complex pro-
cess which is most likely to succeed with the help of sophisticated patterns and
a tailored architecture. This master’s thesis describes one possible approach for
realizing a solution with the help of existing patterns and architectural guidelines
by means of a real life example called CORA. The CORA enterprise solution
enables the worldwide management of CAN data of fire-fighting vehicles. The
flexible three layered architecture, which is commonly used in software systems,
defines the structure of this thesis. But flexibility adds additional complexity and
therefore technologies and frameworks gain more and more importance. In case
of the CORA the primarily used technologies are Microsoft SQL Server, LINQ to
SQL and ASP.NET. Consequently, on one hand the development of the CORA
covers long established and well documented technologies and on the other hand
brand new technologies which call for documented application in enterprise solu-
tions. For instance at the beginning of the Data Access Layer development it was
hard to find detailed literature dealing with the use of LINQ to SQL in a layered
architecture. Furthermore, the Rapid Application development approach plays
an important role in the .NET development community and advanced architec-
tural principles are not that well documented. This thesis presents technologies
and patterns for each architectural layer and how to link them together.

9.1. Lessons Learned

During the development of the CORA the author gained a lot of experience in-
cluding positive and negative aspects. On the positive side one has to mention
the fact that the described and newly introduced technologies like LINQ to SQL
for ASP.NET enable a single developer to realize complex enterprise solutions.
After some inquiries basically every sophisticated pattern could be applied, and
every problem solved. On the other hand it was harder to start with .NET
in the enterprise development world as with comparable technologies like JAVA
from a subjective point of view. The reasons for this might be the popular and
wide spread Rapid Application Development approach within the .NET world.
This made it harder to find the answers to particular questions. For instance,
the question for an appropriate architecture concerning the communication ex-
change between the layers (regarding the new LINQ to SQL technology) invoked
a longer discussion including the reasons for neglecting standard data source- and
presentation controls. In the end it was inescapable to try different approaches
because detailed information of more complex enterprise solutions was hard to
find. Another example is the design of the component based presentation control.
The idea of composing a presentation control out of numerous single components
enables a lot of flexibility and obviously inspired the development of the newly

91

9. Conclusion

introduced controls in ASP.NET 3.5 as well. Nevertheless, it was hard to find
existing patterns considering a custom container control which was indispensable
for maintenance and for applying generic logic. But the fact that every architec-
tural problem was solved immediately and not deferred, according to the broken
windows theory1, contributes to the success of the CORA. Another lesson learned
is the impact of an existing predecessor solution on the development of the suc-
cessor solution. It makes sense to keep an eye on the existing solution if it has
satisfied the company requirements for years, but one always has to evaluate the
design principles again. For instance, it seemed reasonable to take the existing
model of representing a function code signal including the identifier, byte- and
bit position from the already existing solution at a first glance. While implement-
ing this model, it quickly became obvious that it is inefficient to store the byte-
and bit position in the same field as a decimal number, separated by a delimiter
which is even culture specific. The creation of an additional CAN message entity
and separating the information into atomic fields solves a lot of problems and in
this case the existing predecessor solution led to a false track. In a nutshell, the
author was able to learn a lot of lessons which can be summarized as follows:

• Model the “real world” according to object-oriented principles.

• If time allows, evaluate even proven concepts again.

• Solve any crucial architectural design problem immediately and not in the
next iterative cycle.

• For each scenario, try to identify aspects which can be solved in a generic
way and those which require tailored handling.

9.2. Future Work

Already during the development it became clear that the CORA offers a lot of new
possibilities and needs ongoing development to unfold its full potential. Apart
from the evolvement of the problem domain, the existing CORA offers plenty of
room for improvements.

To begin with the Data Access Layer, LINQ to SQL seems to reach the limit
as an object-relational mapper. Regarding the GenericController pattern, an ad-
vanced object-relational mapper enables to pass an already automatically as-
sembled entity to the GenericController, instead of multiple single LINQ to SQL
entities which represent a single table and have to be assembled manually.

Within the Business Application Layer the file-based communication to ex-
ternal systems could be enhanced with a more convenient transport format like
XML. For sure, the communication partners and legacy systems have to be up-
dated as well.

1http://en.wikipedia.org/wiki/Broken windows theory

92

9. Conclusion

For future work regarding the Presentation Layer the feedback provided by
CORA users will contribute to further improvements like additional search func-
tionality and extra validation logic. Moreover, they will give precious feedback
about the page design.

Furthermore, from an architectural point of view the expansion from the lay-
ered CORA to a more service oriented approach should be considered. As [12]
states enterprise software is tightly coupled with the internal organization, pro-
cesses and business model of the enterprise. The process of managing CAN data
will increase over time and maybe even additional applications are required for
technological support. Service-oriented architecture (SOA) promotes the usage of
loosely coupled services which provide certain functionality instead of monolithic
applications. For instance, one could extract the logic for creating CAN message
identifiers out of the Business Application Layer and create a service which could
be used by any other application. Web services are one possible implementation
technology for SOA. The .NET framework supports the usage and the allocation
of Web services. Depending on the development of the Rosenbauer IT landscape
it could be advantageous to provide the functionality of the CORA Business
Application Layer with the help of multiple Web services. In this case another
department which uses a different technology for developing solutions (for exam-
ple JAVA) could use the existing implementation of the business logic offered by
the CORA Web services within their applications. Last but not least the ongoing
development of ASP.NET and hence the resulting potential improvements for the
CORA have to be observed.

93

A. Database Diagram

On the following two pages a simplified version of the CORA database schema
is described. For a better overview the language specific tables and the tables
which contain the history entries are omitted.

94

A. Database Diagram

Figure A.1.: CORA Database Schema simplified version 1/2

95

A. Database Diagram

Figure A.2.: CORA Database Schema simplified version 2/2

96

B. Screenshots Frontend

Figure B.1.: Edit CAN module

Figure B.2.: Copy CAN module

97

B. Screenshots Frontend

Figure B.3.: Approve codes

Figure B.4.: Select code

98

List of Figures

1.1. Sources of Web Engineering according to [5] 1
1.2. Rapid Application Development in ASP.NET with Visual Studio . 4
1.3. The CORA architecture . 8

2.1. CAN wiring of fire-fighting truck (Picture from Rosenbauer TLF
AT DoKa catalog) . 11

3.1. Database schema for multiple CAN Bus support 16
3.2. Database schema for multiple production locations 16
3.3. Database schema for role management 17
3.4. New internationalized schema . 17
3.5. Schema Evolution function code 18
3.6. Schema Evolution CAN message 19
3.7. Schema Evolution measurement units 20
3.8. Outlook for the EVI development in [29] 24
3.9. Mapping solution for auto generated IDs 25
3.10. Data migration approach . 26

4.1. Structure of the Data Access Object pattern [3] 31
4.2. Data Access Object sequence diagram [3] 31
4.3. Data mapping inside the Data Access Layer 32
4.4. Data mapper [7] . 33
4.5. A 1:1 or 1:n relationship displayed by the LINQ to SQL designer . 35
4.6. An n:m relationship displayed by the LINQ to SQL designer . . . 36
4.7. CAN message representation on database level 41
4.8. Options for data transport according to [27] 48
4.9. Data Transfer Object according to [7] 49
4.10. Tables that represent a CAN bus signal 53

5.1. Relationship between complexity and effort [7] 62

6.1. Model View Controller [7] . 67
6.2. MVC in action together with a Web server [7] 68
6.3. Page Controller structure [22] . 68
6.4. Using BaseController to eliminate code duplication [22] 69
6.5. Structure of the code-behind pages implementation [19] 70
6.6. Template View structure [7] . 70
6.7. First draft of the CORA interface 72
6.8. CORA screenshot . 73
6.9. CORA presentation control . 75
6.10. Event Bubbling . 79

99

6.11. Searchable drop-down list with an Ajax control 81

A.1. CORA Database Schema simplified version 1/2 95
A.2. CORA Database Schema simplified version 2/2 96

B.1. Edit CAN module . 97
B.2. Copy CAN module . 97
B.3. Approve codes . 98
B.4. Select code . 98

100

List of Tables

1.1. Five principal layers [4], [7] . 7

6.1. Comparing ASP.NET data presentation controls according to [8] . 74

101

Listings

3.1. Modify database schema with T-SQL 21
3.2. Create history tables . 23
3.3. Find multiple entries . 26
3.4. Transaction spanning two DataContexts 28
3.5. Transaction for one DataContext 28
3.6. Transaction with increased timeout 28

4.1. Retrieving reference to same object 34
4.2. Auto synchronization for ID field 35
4.3. Demonstration of Lazy Loading 36
4.4. CRUD method with submit parameter 37
4.5. Transaction with TransactionScope 37
4.6. Returning IQueryable to enable reuse 38
4.7. Query identifier for a specific CAN bus 40
4.8. Combine Identifier query with CAN message query 40
4.9. Query associated function codes 40
4.10. Combine the query to retrieve the can messages 40
4.11. Retrieve CAN messages . 41
4.12. Group the retrieved CAN messages 42
4.13. Managing the DataContext during a request 43
4.14. Class definition of the GenericController 44
4.15. Generic database retrieval . 44
4.16. Generic database operation . 45
4.17. Controller definition . 45
4.18. Definition of the Generic Controller of the CORA DAL 45
4.19. Definition of a CORA controller 46
4.20. Generic overwritten method . 47
4.21. Controller for a simple CAN entity 47
4.22. Sample DTO . 49
4.23. Populating a DTO with LINQ query 50
4.24. Populate DTO with custom SQL statement using LINQ to SQL . 50
4.25. Map LINQ to SQL entities to a DTO 50
4.26. Custom Attribute . 51
4.27. Querying a databse with with LINQ to SQL 53
4.28. Create Stored Procedure . 54
4.29. Calling a SPROC with LINQ to SQL 54
4.30. Query by example query generation 55
4.31. Create Trigger for Insert History 57
4.32. Entity history managed by generic DAO 58

102

5.1. Generic Manager class definition 63
5.2. Basic methods provided by the GenericManager 63

6.1. Definition of GenericBasePage . 71
6.2. Definition of ChildPage . 71
6.3. Abstract of the DataPresenter template file 76
6.4. Defining a DataPresenter . 77
6.5. Dynamically Creation of client-side code 81

7.1. Role based Web site restriction 85
7.2. SecurityManager access control 86
7.3. PrincipalPermission code execution 87

103

Bibliography

[1] Andany, J., Léonard, M., and Palisser, C. Management Of Schema
Evolution In Databases. 17th International Conference on Very Large Data
Bases (VLDB) (1991), 161–170.

[2] Bass, L., Clements, P., and Kazman, R. Software Architecture in
Practice. Addison Wesley, 1998.

[3] Deepak, A., Crupi, J., and Malks, D. Core J2EETM Patterns: Best
Practices and Design Strategies. Prentice Hall PTR, 2003.

[4] Demolsky, M. State of the Art in Java Enterprise Web Application
Development. Master’s thesis, TU Wien, 2006.

[5] Dumke, R., Lother, M., Wille, C., and Zbrog, F. Web
Engineering. Pearson Studium, 2003.

[6] Foster, J. Visual Studio 2008 and Visio for Enterprise Architects. Web
site. http://www.gravitycube.net/blog/post/
Visual-Studio-2008-and-Visio-for-Enterprise-Architects.aspx;
Last visit: 2009-07-31.

[7] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and
Stafford, R. Patterns of Enterprise Application Architecture. Addison
Wesley, 2002.

[8] Ghanem, A. Comparing ListView with GridView,DataList and Repeater.
Web site. http://weblogs.asp.net/anasghanem/archive/2008/09/06/
comparing-listview-with-gridview-datalist-and-repeater.aspx;
Last visit: 2009-09-16.

[9] Guthrie, S. LINQ to SQL (Part 7 - Updating our Database using Stored
Procedures). Web site.
http://weblogs.asp.net/scottgu/archive/2007/08/23/

linq-to-sql-part-7-updating-our-database-using-stored-procedures.

aspx; Last visit: 2009-09-04.

[10] Guthrie, S. Using LINQ to SQL (Part 1) . Web site.
http://weblogs.asp.net/scottgu/archive/2007/05/19/

using-linq-to-sql-part-1.aspx; Last visit: 2009-08-24.

[11] Huemer, C., Kappel, G., and Vieweg, S. Migration in
Object-oriented Database Systems-A Practical Approach.
Software-Practice and Experience 25(10) (1995), 1065–1096.

104

http://www.gravitycube.net/blog/post/Visual-Studio-2008-and-Visio-for-Enterprise-Architects.aspx
http://www.gravitycube.net/blog/post/Visual-Studio-2008-and-Visio-for-Enterprise-Architects.aspx
http://weblogs.asp.net/anasghanem/archive/2008/09/06/comparing-listview-with-gridview-datalist-and-repeater.aspx
http://weblogs.asp.net/anasghanem/archive/2008/09/06/comparing-listview-with-gridview-datalist-and-repeater.aspx
http://weblogs.asp.net/scottgu/archive/2007/08/23/linq-to-sql-part-7-updating-our-database-using-stored-procedures.aspx
http://weblogs.asp.net/scottgu/archive/2007/08/23/linq-to-sql-part-7-updating-our-database-using-stored-procedures.aspx
http://weblogs.asp.net/scottgu/archive/2007/08/23/linq-to-sql-part-7-updating-our-database-using-stored-procedures.aspx
http://weblogs.asp.net/scottgu/archive/2007/05/19/using-linq-to-sql-part-1.aspx
http://weblogs.asp.net/scottgu/archive/2007/05/19/using-linq-to-sql-part-1.aspx

Bibliography

[12] Krafzig, G., Banke, K., and Slama, D. Enterprise SOA. Prentice
Hall, 2004.

[13] Liberty, J. Programming C#. O’Reilly, 2001.

[14] MacDonald, M., and Szpuszta, M. Pro ASP.NET 3.5 in C#. Apress,
2007.

[15] Marquerie, F., Eichert, S., and Wooley, J. LINQ in Action.
Manning, 2008.

[16] MSDN authors. ASP.NET Page Life Cycle Overview. Web site.
http://msdn.microsoft.com/en-us/library/ms178472.aspx; Last visit:
2009-09-16.

[17] MSDN authors. How to: Create LINQ to SQL Classes Mapped to
Tables and Views (O/R Designer). Web site.
http://msdn.microsoft.com/en-us/library/bb384396.aspx; Last visit:
2009-08-31.

[18] MSDN authors. Implementing Model-View-Controller in ASP.NET.
Web site. http://msdn.microsoft.com/en-us/library/ms998540.aspx;
Last visit: 2009-09-16.

[19] MSDN authors. Implementing Page Controller in ASP.NET. Web site.
http://msdn.microsoft.com/en-us/library/ms998548.aspx; Last visit:
2009-09-16.

[20] MSDN authors. Introducing System Transactions. Web site.
http://msdn.microsoft.com/en-us/library/ms973865.aspx; Last visit:
2009-09-04.

[21] MSDN authors. Object Identity (LINQ to SQL). Web site.
http://msdn.microsoft.com/en-us/library/bb399376.aspx; Last visit:
2009-08-24.

[22] MSDN authors. Page Controller. Web site.
http://msdn.microsoft.com/en-us/library/ms978764.aspx; Last visit:
2009-09-16.

[23] MSDN authors. The ADO.NET Entity Framework Overview. Web site.
http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx;
Last visit: 2009-09-04.

[24] Ormond, M. Dynamically Loading ListView Templates. Web site.
http://blogs.msdn.com/mikeormond/archive/2008/07/26/

dynamically-loading-listview-templates.aspx; Last visit: 2009-09-20.

[25] Rosenbauer. Rosenbauer Web site. Web site.
http://www.rosenbauer.com; Last visit: 2009-07-21.

105

http://msdn.microsoft.com/en-us/library/ms178472.aspx
http://msdn.microsoft.com/en-us/library/bb384396.aspx
http://msdn.microsoft.com/en-us/library/ms998540.aspx
http://msdn.microsoft.com/en-us/library/ms998548.aspx
http://msdn.microsoft.com/en-us/library/ms973865.aspx
http://msdn.microsoft.com/en-us/library/bb399376.aspx
http://msdn.microsoft.com/en-us/library/ms978764.aspx
http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx
http://blogs.msdn.com/mikeormond/archive/2008/07/26/dynamically-loading-listview-templates.aspx
http://blogs.msdn.com/mikeormond/archive/2008/07/26/dynamically-loading-listview-templates.aspx
http://www.rosenbauer.com

Bibliography

[26] Schwichtenberg, H. ASP.NET 2.0 mit Visual C# 2005. Microsoft
Press, 2006.

[27] Schwichtenberg, H. ASP.NET 3.5 mit Visual Basic 2008. Microsoft
Press, 2009.

[28] Sneed, A. Flexible Data Access With LINQ To SQL And The Entity
Framework. Web site.
http://msdn.microsoft.com/en-us/library/bb384396.aspx; Last visit:
2009-08-31.

[29] Stadler, B. CAN Bus Informationssystem für Feuerwehrfahrzeuge.
Master’s thesis, FH Oberösterreich, Automatisierungstechnik Wels, 2005.

[30] Stahl, R. ListView and DataPager in ASP.NET 3.5. Web site.
http://www.west-wind.com/WebLog/posts/127340.aspx; Last visit:
2009-09-20.

[31] Sun Microsystems. Java BluePrints. Web site.
http://java.sun.com/blueprints; Last visit: 2009-07-30.

[32] Sych, O. T4 Toolbox: LINQ to SQL schema generator. Web site.
http://www.olegsych.com/2009/05/

t4-toolbox-linq-to-sql-schema-generator; Last visit: 2009-08-24.

[33] Vieweg, S., Kappel, G., and Tjoa, A. Change Management in
Object-Oriented Database Systems. Tech. rep., Institute of Computer
Science. Department of Information Systems. University of Linz, Austria,
1994.

[34] Wikipedia authors. Business logic. Web site.
http://en.wikipedia.org/wiki/Business_logic; Last visit: 2009-09-04.

[35] Wikipedia authors. Query by Example. Web site.
http://en.wikipedia.org/wiki/Query_by_Example; Last visit:
2009-09-04.

[36] Zöchbauer, G. O/R-Mapping in .NET Das ADO.NET Entity
Framework. Master’s thesis, Fachhochschule Hagenberg, 2008.

106

http://msdn.microsoft.com/en-us/library/bb384396.aspx
http://www.west-wind.com/WebLog/posts/127340.aspx
http://java.sun.com/blueprints
http://www.olegsych.com/2009/05/t4-toolbox-linq-to-sql-schema-generator
http://www.olegsych.com/2009/05/t4-toolbox-linq-to-sql-schema-generator
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Query_by_Example

	Introduction
	Web Engineering
	ASP.NET
	Rapid Application Development
	Layered Architecture
	Patterns
	Problem Statement
	Structure of the Thesis

	Worldwide Management of CAN Data
	Rosenbauer International AG
	What is CAN data?
	How CAN data has been managed so far?
	Requirements for a Web-based CAN Management System

	Data Management
	Schema Evolution
	Database Schema
	Modification based on new requirements
	Improvements
	Dealing with further Schema Evolution

	Data Migration
	Challenge of combining multiple independent databases.

	Data Access Layer
	Object-Relational Mapping
	LINQ to SQL
	Generic Controller Pattern
	Data Transportation
	Advanced Data Retrieval and Manipulation
	Creation of Data Access Layer Components

	Business Application Layer
	Communication
	Interfaces
	Import
	Export

	Presentation Layer
	Separation of Concerns
	Page Controller
	Template View
	Separation of Concerns regarding the CORA

	Data Presentation
	User Interaction

	Security
	User and Role Management
	Authentication
	Implementing CORA Security

	Deployment
	Conclusion
	Lessons Learned
	Future Work

	Database Diagram
	Screenshots Frontend
	List of Figures
	List of Tables
	Listings
	Bibliography

