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Abstract

A statistical method for identification of nonlinearity in time series is dis-
cussed. The approach is based on Monte Carlo methods and bootstrapping.
Artificial surrogate series are generated, which are consistent with a range
of null hypotheses that include linearity. In this way, the distribution of test
statistics, that are computed for the original data, can be empirically esti-
mated by an ensemble of surrogates. If a test statistic is out of range of its
estimated distribution, then the corresponding null hypothesis is rejected,
and nonlinearity can be assumed. However, other data characteristics, like
nonstationarity, may bias the test result. Thus, surrogates should feature
these characteristics as well. By means of surrogate data, nonlinear depen-
dencies can be detected both within time series and between them. The
surrogate algorithms are applied to different simultaneously measured time
series taken from a diesel combustion engine. The complexity of choosing
an appropriate surrogate method is demonstrated for different setups of the
engine.
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Chapter 1

Introduction

1.1 Motivation

In order to understand the underlying dynamics of an observed time series,
it is necessary to divide these dynamics into categories. Basically, they can
consist of any mix of

• linear deterministic dynamics

• nonlinear deterministic dynamics

• chaos

• stochastic dynamics

Whereas linear system identification is supported by numerous tools that are
well implemented in many software environments, the identification of chaos
and stochastic dynamics may often not be applicable. Hence, the choice of
focusing on nonlinear deterministic structures is a compromise between these
options.

A basic assumption of this thesis is that the data series are observed only
once, and are not replicable. The reasons for this could be high expenses of
measurement, or simply, that the phenomenon in focus only occured once.
A good example are geological or astronomical data. In this thesis, a sample
techniques based on bootstrapping is applied, in order to estimate distribu-
tions of certain characteristics. Randomized samples are created, in order
to test quantifiers against their estimated empirical distribution calculated
on these samples. In many situations, it is desirable that the randomized
samples feature certain properties of the original time series. A method to
accomplish this is described and applied in this thesis: the method of sur-
rogate data. First published by James Theiler et al. (1992), it has become
a standard for testing nonlinearity over the last years. Surrogate data allow

1



1. Introduction 2

not only testing within, but also between different univariate time series.

The applied data are physical measurements taken from a Diesel combus-
tion engine. A high–quality engine should meet the requirements of both be-
ing fuel effective and produce as less harmful exhaust as possible. Especially
the amount of emitted soot is central in numerous health–related research
projects. As it is very difficult to measure soot particles, the related NOX
particles are observed instead. The amount of NOX is influenced by a lot of
variables, both related to the engine and to external influences like driving
behavior. The examination of all variables, if ever possible, is a target, that
is set far too high in context of this thesis. Therefore, the dependencies be-
tween only two data series, the manifold pressure and the amount of NOX
molecules, are examined here.

1.2 Composition

This thesis is divided into seven chapters:

Chapter 2, that follows this brief introduction, is supposed to give a gen-
eral overview of basic linear, and nonlinear modelling techniques, including
ARMA, and nonlinear parameter varying processes. A definition of wide
sense stationary processes is provided as well.

The first part of Chapter 3 is dedicated to statistical hypothesis testing,
followed by more specific theory on testing of nonlinearity. Afterwards, the
technique of surrogate data, based on bootstrapping and Monte Carlo sim-
ulations is presented. It allows to create artificial time series in accordance
with a set of null hypotheses, in order to empirically estimate the distribu-
tion of a test statistic.

The next two chapters are the main theoretical parts of this thesis. In
Chapter 4, different standard methods for the construction of univariate sur-
rogates are presented. The underlying idea is to transfer a time series by
discrete Fourier transform into frequency domain, and randomize its Fourier
phases. The Fourier amplitudes stay unchanged, hence the linear properties
of the time series are preserve. A surrogate is created by inverse discrete
Fourier transform. Then, a more flexible method, coming from the field of
thermo–dynamics, is presented: simulated annealing is an iterative optimiza-
tion algorithm, that enables the reproduction of certain characteristics (such
as linearity) by means of a cost function on a random series. The subsequent
section provides a toolkit of methods for dealing with nonstationarities, that
may be difficult to distinguish from nonlinear dependencies, and hence bias
the results of nonlinearity testing. Instead of the Fourier transform, a wavelet



1. Introduction 3

transform is used to construct surrogates, that are ’similar’ to the original
time series. A section on nonlinear test statistics concludes this chapter, that
can be seen as justification for utilizing the nonlinear multivariate methods
in the next part of this thesis.

Chapter 5 is concerned with the construction of multivariate surrogates,
that enable not only testing relationships within each univariate subsystem,
but also testing dependencies between them. The channels are simultaneously
recorded series of physical measurements in the same system. Modifications
and extensions of both the Fourier–based methods, and the applied simulated
annealing procedure are described, as well as a multivariate wavelet–based
technique. A section about symmetric and asymmetric nonlinear quantifiers,
including transfer entropy, information theoretic measures, and measures of
interdependencies, finalizes this part.

Chapter 6 describes an application of the surrogate data method. Time
series measured in a Diesel engine are first treated as separate univariate
channels, and then as linked system. Surrogates are used to test dependen-
cies between manifold pressure and NOX exhaust. The operating principle
of the engine is addressed, as well as the test results. The software used for
testing is MATLAB®7.8.0(R2009a).

Finally, Chapter 7 concludes the gained findings, and gives a prospect to
further possibilities of extending, and applying the presented techniques.

Appendix A provides an overview of the most important algorithms and
some useful MATLAB® source code extracts that are used in this thesis.



Chapter 2

Types of Nonlinearity

2.1 Basic Linear Concepts

This section is supposed to give an overview of main linear concepts in time
series analysis. Linear concepts provide the tools to gain an understanding
for the nonlinear models that are extensions of linear models. Some of the
most fundamental ideas are presented in this and the next section.

Let X = (x1, . . . , xn) with xt ∈ R
m and t = 1, . . . , n be a time series,

i.e. any set of observations ordered in time. When necessary, the information
whether X is univariate or multivariate is given throughout this thesis. Since
there is no need for distinction in this section, let m ∈ N. In contrast to the
usual assumption of classical statistics, the ordering in time is crucial for time
series analysis. The basic assumption is an underlying stochastic mechanism,
a stochastic process [11].

Definition 2.1.1 (Stochastic process). A stochastic process is a family of
random variables (xt|t ∈ T), that is defined on an underlying probability space
(Ω,A, P ).

In general, T ⊂ R is a set of indices. Here, it is understood as set of
discrete equidistant time points, thus T = N. The time series X is assumed
to be generated by a stochastic process (xt|t ∈ T), and is called realization
of (xt|t ∈ T).

The concept of stationarity is an important property of stochastic pro-
cesses.

Definition 2.1.2 (Wide sense stationarity). A stochastic process is called
wide sense stationary if

(i) Ex∗txt <∞ ∀t ∈ Z

(ii) Ext = const ∀t ∈ Z

4



2. Types of Nonlinearity 5

(iii) γ(s, t) = γ(s+ τ, t+ τ) holds ∀τ, s, t ∈ Z

where x∗t is the conjugate transpose of xt. The last assumption means that
the covariance of a stationary process γ(s, t) only depends on the lag τ , i.e.
time difference. Therefore, the notation γ(τ) with τ ∈ Z is used. Granger
describes a time series as stationary if its generating mechanism is time in-
variant and if the series is short–memory. He points out that stationarity is a
useful property but is difficult to test for in practice. What is tested are some
particular aspects of stationarity, such as over time constant means and vari-
ances [5]. The importance of stationary processes is that a single realization
of the process displays the probability law of the process. According to this,
any descriptive quantification averaged over time, such as mean or auto–
covariance, can be interpreted as estimator of the corresponding population
function. For some models in this chapter, stationarity can be established
when certain conditions are given.

In order to define linearity for stochastic processes, the following defini-
tions are required:

Definition 2.1.3 (Filtration). An increasing sequence of sub–σ–algebras
{At ⊂ A : t ∈ N} with At ⊂ At+1 is called filtration.

Definition 2.1.4 (Martingale). Let {At ⊂ A : t ∈ N} be a filtration, and
{xt : t ∈ N} a stochastic process. {xt} is a martingale in discrete time if ∀t

(i) E|xt| <∞

(ii) xt is At–measurable

(iii) E[xt+1|At] = xt

Assumption (i) says that {xt} ∈ L
1. For a martingale {xt}, the conditional

expected value of the next xt+1, given At, is equal to the last xt. For exam-
ple, let At = (x1, . . . , xt), then E[xt+1|(x1, . . . , xt)] = xt, and the conditional
expected xt+1, given all the past observations, is equal to xt.

Definition 2.1.5 (Martingale difference sequence). Let {xt} be a martin-
gale, and {yt} be its difference sequence1. {yt} is called martingale difference
sequence, if it is a zero–mean, uncorrelated process with, ∀t,

E[yt+1|yt, . . . , y1)] = 0

1yt = xt − xt−1
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This definition of a martingale difference sequence is more restrictive than
the definition of white noise, because not only the unconditional expectation
is zero, as for white noise, but also its conditional expectation is zero at every
t. Note, that any martingale sequence is white noise.
Wold’s representation theorem says that every stationary process can be
written as an infinite moving average process

xt =
∞∑

j=0

bjǫt−j , bj ∈ R
m×m (2.1)

The infinite sum in equation 2.1 exists, if
∑∞

j=0 |bj | <∞. {ǫt} is uncorrelated,
and called innovation process of {xt}. The right side of equation 2.1 can
be interpreted as linear predictor of xt. These findings allow the following
definition of linearity for stochastic processes:

Definition 2.1.6 (Linear stochastic process). A stochastic process {xt} is
considered to be linear, if its innovation process {ǫt} is a Martingale differ-
ence sequence.

An equivalent explanation is that the linear least squares predictor of xt
equals the least squares predictor of xt.

The following types of stochastic processes are the foundation of nonlin-
ear extensions that are presented later.

MA(q). A stochastic process (xt) is called moving average process of order
q (MA(q)) when ∀t = 1, . . . , n

xt =

q∑

j=0

bjǫt−j , bj ∈ R
m×m (2.2)

with b0 6= 0, bq 6= 0 and ǫt white noise, i.e. it is a zero mean process with no
linear memory. It can easily be proved that every MA(q) and even MA(∞)
is stationary. Because this proof is in no way important for the purpose of
this thesis, the reader is referred to the broad range of introductory literature
about time series analysis.

AR(p). In data analysis, a phenomenon that is often observed is that the
xt depend on their past xt−1, . . . , xt−p. This is the basic assumption of an
autoregressive process of order p (AR(p))

xt =

p∑

i=1

aixt−i + ǫt , ai ∈ R
m×m (2.3)

with ap 6= 0 and ǫt white noise again. Note, that AR(p) processes are only
stationary in a wide sense under certain stability–conditions.
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ARMA(p, q). The combination of the two former models is the autore-
gressive moving average process of orders p and q (ARMA(p, q))

xt =

p∑

i=1

aixt−i +

q∑

j=0

bjǫt−j , ai, bj ∈ R
m×m (2.4)

with the same parameter assumptions as before. It is generally considered
good practice to find the smallest values of p and q that provide an accept-
able fit to the data.

Clearly other more exotic linear models are possible, but they are not the
subject of this thesis. Statisticians George Box and Gwilym Jenkins were two
of the first to use these kinds of stochastic models for time series analysis in
1970. The Box–Jenkins methodology applies ARMA or ARIMA models to
find the best fit of a time series to its past values in order to make forecasts.
According to them, the stages of analysis of linear models are

• model specification

• model estimation

• model evaluation

This modelling strategy can also serve as a guideline for nonlinear modelling,
which will be discussed in the next section. For further interest on linear
stochastic processes, the reader is referred especially to [49] by Box and
Jenkins, and also to [51] by Granger and Newbold, and to [50] by Hamilton.

2.2 Modelling Nonlinearity

As mentioned, many nonlinear models are generalizations of AR, MA, or
ARMA models. The following generalizations are those which have also
found application in practical modelling situations. There is a broad range
of alternatives which will not be discussed here.

NLAR(p). An important generalization of AR models is the nonlinear
autoregressive model of order p (NLAR(p))

xt = f(xt−i, i = 1, . . . , p) + ǫt (2.5)

where ǫt ∼ i.i.d.(0, σ2) and f(·) is nonlinear. Some particular models in this
class have been intensively investigated and applied. The most important of
these are presented, in accordance with [5] and [6].
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(S)TAR, SETAR. Another subclass of NLAR models are the threshold
autoregressive models of orders p and d (TAR(p, d)). The assumption of
these models is a change in the parameters to a switching rule, which usually
depends on a past xt−d

xt =

{ ∑p
i=1 a

(1)
i xt−i + ǫ

(1)
t if xt−d ≥ c∑p

i=1 a
(2)
i xt−i + ǫ

(2)
t if xt−d < c

(2.6)

where d is a positive integer, and ǫ
(1)
t and ǫ

(2)
t are independent white noise

processes. The parameter c is called ’threshold parameter’.
There are several possible generalizations regarding the switching rule.

In equation 2.6, the parameter switch happens abruptly, which is not wanted
in some cases. This leads to the smooth transition autoregressive models
(STAR). A descriptive example that can easily be extended is

xt = a · g(xt−2)xt−1 + ǫt (2.7)

where g(·) is a smooth nondecreasing function with g(x) = α1, g(x) = α2,
and α1 < g(·) < α2 all other xt. Granger compares g(·) to a cumulative
density, or a logistic function. [5] A similar extension of TAR models is the
self–exciting threshold autoregressive model (SETAR). The 2.6 model is also
in the class of SETAR models, since the switching rule only depends on the
past of xt. Other models with switching rules that depend on exogenous
variables yt and their past values yt−d would be possible as well, but are not
discussed here.

NMLA(q). Nonlinear generalizations ofMAmodels are also widely used,
for example the nonlinear moving average models of order q (NLMA(q)). In
general NLMA(q) have the following representation

xt = f(ǫt−j , j = 0, . . . , q) (2.8)

with a nonlinear function f(·). The errors ǫt are not necessarily white noise.



Chapter 3

Testing for Nonlinearity

3.1 Statistical Hypothesis Testing

A formal framework for posing questions about certain properties of exper-
imental data can be found in statistical hypothesis testing. In context of
nonlinearity, the questions arising could be

• Do linear deterministic dynamics sufficiently describe the time series?

• Is there a nonlinear structure in the time series?

• What kind of nonlinear structure?

In order to test for nonlinearity, the following has to be specified: a null
hypothesis H0 against which observables are tested, a discriminating statistic
T , and a probability of rejecting H0 when it is in fact true.

Null hypothesis H0. The null hypothesis is a potential explanation for
the data that we seek to show is inadequate. It is not positively proven
because the aim is to show that the data are unlikely to be consistent with
H0, and hence to reject the null hypothesis. Theiler and Prichard point out
that it is important to distinguish two types of null hypotheses:

• simple

• composite

Formally, let F be the space of parameters under consideration, and F0 ⊂ F
be the set of parameters that are consistent with the null hypothesis. H0

says that the process F , that generated the data, is an element of the set
F0. If this set consists of a single member, then the null hypothesis is simple.
Otherwise, the null hypothesis is composite, and it says that the data were
generated by some process F ∈ F0, but does not specify which F [15].

9
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Discriminating statistic T . A discriminating statistic T is a random
variable, that quantifies some aspect of a time series X. A difficulty arises
when the null hypothesis is composite, and it is not clear at first sight which
process should be considered. Therefore, T has to be pivotal, which means
that the distribution of T is the same for all members F of the family of
processes F0 consistent with the null hypothesis. If this condition is met,
it is not necessary to know the precise F ∈ F0, any F ∈ F0 can be used.
Otherwise it would not make sense to compare the obtained distribution
of T to the quantifier obtained for the data set X. To be pivotal is a very
strict criterion, and is often fulfilled only in the asymptotic limit as the size
n of X approaches infinity. If the condition to be pivotal is met for n < ∞
it can be shown that a Monte Carlo test can be even more accurate than
a corresponding asymptotical test [15] [42]. The Monte Carlo method used
in this paper has the advantage that the test statistic does not necessarily
have to be pivotal. This is further discussed in the next chapter. When a
test statistic is different for the observed data than would be expected under
the null hypothesis, then H0 can be rejected [9]. This only means that it is
unlikely that H0 is correct, but does not prove it to be wrong.

Errors. This uncertainty leads to another main part of statistical testing,
the errors. Basically, there are two possibilities for making a mistake when
testing a certain null hypothesis: first, to reject H0 when it is in fact true,
and the second, failing to reject H0 when it is in fact false. The former is
called Type I error, the latter Type II error. In order to evaluate a test, it is
designed with a predefined size α, which corresponds to the expected rate of
Type I errors. Hence, the smaller α is set, the less probable a Type I error is.
Usually, α = 0.05 is the upper limit that is considered significant. A test is
well–posed if α corresponds to the actual probability of committing a Type
I error. This probability can only be calculated a posteriori, therefore a test
has to be applied in practice before being evaluated. The probability of Type
II errors occuring is commonly denominated β, and 1−β is called the power
of the test.

3.2 Testing of Nonlinearity

Very useful advice from many authors on testing a time series for nonlinear-
ities is the following: always consider a linear approach first. Occam’s razor
tells us that we should rule out the simplest explanation. In this case, an
underlying linear process, before we venture to construct more complicated
models. In many cases, though not obvious, a linear model may be good
enough to describe the dependencies in X. Even if a system contains nonlin-
ear components, this does not prove that this nonlinearity is also reflected
in a specific signal we measure from that system. In particular, we do not
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know if it is of any practical use to go beyond the linear approximation
when analyzing the signal. After all, we do not want our data analysis to
reflect our prejudice about the underlying system, but rather to represent
a fair account of the structures that are present in the data. Consequently,
for data driven analysis, the application of nonlinear time series methods
has to be justified by establishing nonlinearity in the time series [25]. The
benefits of assuming an underlying linear process are numerous. There is
more literature, theory, and knowledge disposable, as well as a variety of
software solutions and packages for linear analysis tools. When the linearity
of a data series is not visible at first sight, e.g. when the time series is short
and unrepeatable, one may be misleaded to suppose an underlying nonlinear
process. The resulting scenario of applying a wrong model is drawing appar-
ently wrong assumptions about the elementary procedures behind the data
series. Needless to say, this should be avoided. Hence, the usage of nonlinear
methods has to be justified, which in the language of statistics means nonlin-
earity has to be tested against linearity before applying nonlinear techniques.

In [5] Granger and Teräsvirta divide the nonlinearity tests into two broad
categories:

• tests without any specific nonlinear model in mind against which could
be tested

• tests against a predefined nonlinear alternative

For further insights into this categorization, the reader is referred to chap-
ter 6 of [5]. The authors provide several tests against unspecified, as well as
certain specified nonlinear models.

Different univariate and multivariate statistics will be presented in their
respective chapters. For the purpose of nonlinearity testing, quantities should
be used that are particularly powerful in discriminating linear dynamics and
weakly nonlinear signatures — strong nonlinearity is usually more easily
detected [25].

3.3 The Idea of Surrogate Data

For finite sample size, where only one realization X is available, it is often
not possible to derive the distribution of a given statistic TX analytically. In
order to perform a hypothesis test the sampling distribution of TX under the
null hypothesis H0 has to be determined. H0 is the assumption of linearity
and certain other restrictions of the time series. To be able to approximate
the distribution of TX , randomization and Monte Carlo resampling are used.
These methods are statistical sampling techniques, which are often used
when analytical solutions are difficult to find. They are based on (pseudo)
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random sample computations. For further information, the reader is referred
to B.Efron’s paper [27]. With the use of Monte Carlo methods, it is possible to
estimate the distribution of TX numerically. The idea is to compute values
TS for a sufficient number N of different random realizations of the null
hypothesis, and to empirically estimate the distribution of TX from this
ensemble of values. One has to specify what a ’sufficient number N ’ means
in terms of statistical hypothesis testing. When data created by Monte Carlo
methods is tested, the first decision to be made is about the test statistics TX
and TSi

. Depending on the statistics, the test is either one or two–sided. The
size α, i.e. the significance level of a test, gives the probability of incorrectly
rejecting the null hypothesis. In case of a one–sided test, the null hypothesis
H0 is rejected if TX is amongst either the (N + 1)α biggest (or smallest)
values of the TSi

. Therefore, one has to create at least N = 1
α
− 1 surrogate

data series. In case of a two–sided test, H0 is rejected if TX is amongst
either the (N+1)

2 α biggest or smallest values of the TSi
. Hence the sufficient

amount of realizations is N = 2
α
− 1 [1]. For α = 0.05 this means at least

19 or 39 realizations have to be created. In order to gain better test power,
it is advisable to create more than this mimimal sufficient amount [25]. For
further insight, the reader is referred to Marriott who investigates the effects
of using a higher number of simulations in [14].

Surrogate data. The method used for creating the different realizations
is the method of surrogate data, first published by James Theiler et al. in [9].
The term surrogate originates in the Latin verb surrogare, which means ’to
put in another’s place’. A surrogate data series is an artificial time series,
created with Monte Carlo methods, of the same dimension as X, which is
consistent with the null hypothesis H0. If a sufficient number N of surro-
gates has been created, it is possible to estimate the distribution of TX by
computing the test statistics TSi

, i = 1, . . . , N , and using the empirical dis-
tribution. This technique can be regarded as an application of the bootstrap
method of modern statistics [9]. This name was first used by Efron in [12]
in 1979. It is a general approach to statistical inference based on building a
sampling distribution for a statistic by resampling from the data at hand.
The term bootstrapping is an allusion to the expression ’pulling oneself up
by one’s bootstraps’. The sample data are used as a population from which
repeated samples are drawn [13]. The method of surrogate data is described
as a statistical approach for identifying nonlinearity in time series. The ac-
tual quantification of nonlinearity within time series by statistical testing
of surrogate data is the purpose of this section. It is an indirect approach,
attempting to exclude that the data are linear [40]. In general, this method
can be used with any nonlinear statistic that characterizes a time series by
a single number. The basic assumption is that there is only one finite time
series X available. In practice, this may be the case if measurement is very
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expensive, or if the observed phenomenon only occured once, for example ge-
ological or astronomical measurements. The (wide sense) stationarity of the
underlying process is a very restrictive, but important assumption. In [9],
the authors refer to several papers that discuss problems in nonlinear statis-
tics that arise with nonstationary data. Because nonstationarity is difficult
to detect and to specify, it may be often misinterpreted as nonlinearity. In
this thesis, methods to create surrogate data for an underlying process with
nonstationarities will be addressed as well.

In order to test a time seriesX for nonlinearity, surrogate data Si with the
same linear properties as X have to be created. The methods are commonly
divided into two types [1]:

Typical realization. This type of realization pursues the approach of
defining null hypotheses H0 over the class of linear models. Many other
traditional bootstrap methods also use explicit model equations that have
to be extracted from the data. The surrogate data series are N different
realizations of one of the models. Typical realization is only possible, if the
unknown parameters can be estimated through fitting to X. This is one of
the biggest disadvantages of the typical realization: it may not be possible
to estimate the parameters with sufficient precision. Furthermore, there has
to exist a known model dependent on the null hypothesis. In case of testing
for nonlinearity, a model for linear processes is the ARMA(p,q) model (see
equation 2.4).

The approach used in [9] falls into the category of typical realization: the
authors specify a well–defined underlying linear process, and determine the
distribution of the quantity of interest, i.e. TX , for an ensemble of surrogate
data sets. These are different realizations of the hypothesized linear stochas-
tic process. By means of the surrogate data series, they estimate the deviation
from the standard deviation of the estimated quantities TSi

numerically.

Constrained realization. This approach doesn’t follow the path of esti-
mating properties through fitting. Instead, the desired properties are exactly
re–produced on the surrogate data series. When testing for nonlinearity, the
mean, variance, and also the probability distribution of the data points can
be imposed in this way onto an artificial randomized time series. According
to the assumption that X consists of independent draws from a fixed prob-
ability distribution, surrogates could be created through randomly shuffling
the original time series. The maximum number of different surrogates would
be n! in this case. If there are significantly different serial correlations in
the data and the shuffles, the hypothesis of independence can be rejected.
Constrained realizations are obtained by creating permutations without re-
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placement. The surrogates are constrained to have exactly the same values
as the data, just in random temporal order. One could also have used the
data to infer the probability distribution and drawn new time series from it.
These permutations with replacement would then follow the way of typical
realization [25].

In [15], Theiler and Prichard advocate that the constrained realization
should be preferred in general, as it comparatively gives better test results.
They find the reason is dua to whether a test statistic is pivotal or not,
i.e. its distribution is the same for all processes consistent with the null
hypothesis. The typical realization method requires that the discriminating
statistic satisfies this property. The constrained realization approach, on the
other hand, does not share this requirement, and can provide an accurate
and powerful test without having to sacrifice flexibility in the choice of a
discriminating statistic. In the context of testing nonlinearity, the following
finding of [15] is of assistance: accurate and powerful statistical testing for
nonlinearity requires either a pivotal statistic TX which does not depend
on any autocorrelation, or a Monte Carlo method which constrains the sur-
rogate data to match the sample autocorrelation of the original data. The
algorithms presented in the next chapter are in line with these findings.

To sum up the idea, surrogate data are artificial time series with two
basic properties:

• They have no dynamical nonlinearities. By construction, a surrogate is
equivalent to passing Gaussian white noise through a linear filter, that
reproduces the linear properties of X on it.

• The process that generates surrogate data is stationary. If the linear
filter is seen as this process, it does not change during the duration of
the surrogate data [60]. As mentioned before, there are nonstationary
extensions applied as well.



Chapter 4

Nonlinear Dependencies within

Time Series

4.1 Fourier–based Algorithms

The focus of this section is on algorithms for the creation of surrogate data.
Most of these algorithms are motivated by the ideas of [9] and [10], and
summarized in [1]. Basically, the standard procedure is to reproduce the
auto–covariance on the surrogate data, and thus preserve the linear proper-
ties of a time series X. This is relatively straight–forward, and it does not
require any model–fitting. In this chapter, the data are univariate of length
n ∈ N:

X = (x1, . . . , xn) ∈ R
(1×n) (4.1)

A common estimator for the auto–covariance is

γX(τ) =
1

n− τ

n−τ∑

j=1

(xj − (x̄))(xj+τ − (x̄)) , τ ∈ {0, . . . , n− 1} (4.2)

where τ is the time lag. In order to reproduce γX on a surrogate, the time
series X is transformed into frequency domain, and a relation of discrete
Fourier amplitudes and auto–correlation of X is used.

The information that X contains can either be described on a time scale
or in frequency domain. A commonly used transformation from time to fre-
quency domain is the discrete Fourier transform (DFT):

F(xt) = x̃k =
1√
n

n∑

t=1

xte
−it 2πk

n , k = −⌊(n− 1

2
)⌋, . . . , ⌊(n

2
)⌋ (4.3)

The DFT corresponds to a finite number of sample values at equidistant
frequencies, the Fourier frequencies

λk =
2πk

n
, k = −⌊(n− 1

2
)⌋, . . . , ⌊(n

2
)⌋ (4.4)

15
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where eiλkt are the primitive nth roots of unity. {eiλkt : k = −⌊(n−1
2 )⌋, . . . , ⌊(n2 )⌋}

build an orthonormal basis of C
n [11].

1

n

n∑

t=1

e−iλkteiλjt =

{
1 for λj = λk

c = e
i(λj−λk)

n
1−ei(λj−λk)n

1−ei(λj−λk) else
(4.5)

with c
n→∞−→ 0. Hence, the {eiλkt} are orthonormal in t. The complex x̃k

express X in terms of a sum of sinusoidal components. They can be described
by their amplitudes Ak = |x̃k|, and their phases φk = arctan( Im(x̃k)

Re(x̃k) ). The

inverse discrete Fourier transform (IDFT) of x̃k is defined as

xt =
n∑

k=1

x̃ke
ik 2πt

n , k = −⌊(n− 1

2
)⌋, . . . , ⌊(n

2
)⌋ (4.6)

The reason for the transformation into frequency domain is a relation of
the amplitudes Ak and the auto–correlation function ̺X . The periodogram
In(λk) is defined as the averaged squared Fourier amplitudes, and is a non–
consistent estimator for the power spectrum. Furthermore, the power spec-
trum nearly equals the DFT of the time–averaged auto–correlation function
̺X(t).1 As a consequence, and due to equations 4.5,

{A2
k} ≈ F{̺X(t)}. (4.7)

holds for a real–valued wide sense stationary process with ̺X(t) ∈ l
1(R)2.

Hence, the set of squared Fourier amplitude is estimator for the DFT of the
time–averaged auto–correlation. These findings are summarized in [17]. Liu
and Varwani extend the Wiener–Khinchin theorem on any random process
in [16]. A certain symmetry exists for the x̃k of a real–valued signal X:

Theorem 4.1.1. If xt with t = 1, . . . , n is real–valued, the relation x̃n−k =
x̃k holds.

Proof. As a result of Euler’s identity3 and eiφ = e−iφ, following equation
holds:

x̃n−k =
1√
n

n∑

t=1

xte
−itλneitλk =

1√
n

n∑

t=1

xte−itλk = x̃k

Conversely, if x̃n−k = x̃k is true ∀k, then the IDFT of x̃k is real–valued.

1According to the Wiener–Khinchin theorem: see [17] and [16]
2i.e. the space of sequences, whose series is absolutely convergent
3e2πi = 1.
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Figure 4.1: The normalized one–sided auto–covariance, and the correspond-
ing squared one–sided Fourier amplitudes of a NOX data series. The high
frequencies have more contribution to the power spectrum than the low fre-
quencies, which indicates strong oscillations in the data.

4.1.1 Unwindowed FT Algorithm

The aim of this section is to create surrogate data series, which have the same
Fourier amplitudes as X. First, X is transformed into frequency domain (see
equation 4.3). Amplitudes stay unchanged, but the phases are replaced by
random numbers φ ∈ [0, 2π). In order to construct real–valued surrogates, the
φ must have the same symmetric character as the original phases. Finally,
the constructed series has to be transformed back into time domain (see
equation 4.6) to get a surrogate for X. Formally, the linear characteristics of
X are specified by the squared amplitudes of the DFT

|x̃k|2 = | 1√
n

n∑

t=1

xte
2πi tk

n |2. (4.8)

This is the periodogram estimator of the power spectrum. A surrogate st is
readily created by multiplying the DFT of X by random phases, and then
transforming the constructed series back to time domain:

st =
1√
n

n∑

k=1

eiφk x̃ke
−2πi tk

n (4.9)
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Figure 4.2: The upper pane shows a simple cosine function in the interval
[0, 5π] measured at a rate of 0.01. The lower pane displays a surrogate that
was created by the unwindowed FT algorithm. It demonstrates the occuring
spurious high frequencies due to a jump discontinuity in the data.

where 0 ≤ φk < 2π are independent uniform random numbers [25]. The
randomization of the phases and the IDFT back to time domain can be
interpreted as white noise, that is filtered by a linear Gaussian wide sense
stationary filter. Therefore, the null hypothesis, that corresponds to these
surrogates, is

H0: X is realization of a linear Gaussian wide sense stationary
process.

This H0 is highly restrictive. In [1], Schmitz gives the example, that X is
obtained by a nonlinear measuring function. If the distribution of X differs
from a Gaussian distribution, a test would correctly abandon H0. The matter
with the unwindowed Fourier transform algorithm (FT) is the implicit as-
sumption, that the data represent one period of length n of a∞–dimensional
series. In case of a jump discontinuity from x1 to xn, spurious high frequen-
cies can be introduced as artifact on the surrogates. Figure 4.2 exemplifies
this effect for a simple cosine function. A way to avoid these spurious fre-
quencies is to shorten the time series to a length ñ, with x1 ≈ xñ. Because
the time series is assumed to be stationary, it only has to be long enough4

to make this solution work. It should be longer than the coherence time of
any given frequency as well [9]. The effect of this procedure is illustrated in
figure 4.3.
Another matter is the quality of the amplitude estimation for the power spec-
trum [1]. Other possibilities to numerically estimate the power spectrum are

4i.e. longer than its dominant frequency
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Figure 4.3: The upper pane shows the cosine function in the interval [0, 4π].
With this, x1 ≈ xn holds. The surrogate in the lower pane is as smooth as
the original data set.

discussed by Press et al.. Besides the commonly used fast Fourier transform
(FFT) algorithm, the authors use a maximum entropy method for estimation
as well. For further discussion, the reader is referred to [54].

4.1.2 Windowed FT Algorithm

Besides of shortening the data, the issue of a jump discontinuity could also
be adressed by the introduction of a weight function

w(t) = α sin(
πt

n
) , w(1) = w(n) = 0, α ∈ R (4.10)

This strategy is called windowing, and it represses the jump from x1 to xn.
Thereby, the problem of residual high frequencies has vanished, but addi-
tional low frequencies are introduced by the power spectrum of the weight
function w(t). Therefore, windowing does not solve the problem of additional
’noise’ in the frequencies, but only changes the trigger of it. Theiler et. al.
set the magnitude of the offending frequency to zero, but if there is signif-
icant power at that frequency in X, it too will be suppressed [9]. However,
the issue of the FT algorithm still exists for the WFT algorithm. Hence, this
method is not applied in this thesis. In several cases, the following algorithms
provide much better results.

4.1.3 Amplitude Adjusted FT Algorithm

The null hypothesis, that corresponds to the amplitude adjusted FT algo-
rithm (AAFT), is
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Figure 4.4: The upper pane displays manifold pressure observations in a
Diesel engine, measured by frequency 10Hz. The lower pane shows a AAFT
surrogate for the measurements.

H0: X is a static monotonic nonlinear transformation of a linear
Gaussian wide sense stationary process.

This is true, if a linear process is observed by a nonlinear measure function.
A surrogate according to this H0 is constructed as follows: First, n Gaus-
sian random numbers yi

5 have to be computed. Then, these yi are rescaled
according to the order of the xi. Hence, the smallest yi has to have the
same index as the smallest xi, the second smallest yi the same as the second
smallest xi,. . .. The elements of the re–arranged sequence are denoted as ỹi.
After that, the (W)FT algorithm is applied on {ỹi}ni=1. Finally, the xi are
re–ordered according to the order of the (W)FT series, in order to get a sur-
rogate for X. The point–wise distribution of the surrogate matches exactly
with the point–wise distribution of X. Moreover, the autoc–ovariances are
approximately identical. X and a AAFT surrogate are displayed in figure 4.4
Although the null hypothesis has been generalized, it is still not very flexible.
The approximation of the unknown monotonic transformation is not exact
for n <∞, thus there is an additive spectrum of the emerging residuals. The
phase randomization preserves the Gaussian distribution only on average.
The precision of the spectra match gets worse, as n gets smaller. In other
words, the AAFT algorithm, though asymptotically correct, cannot repro-
duce the spectrum of the data very precisely. There is a certain bias towards
a too flat spectrum [10]. A comparison between the auto–covariances of data
X, and a typical surrogate are illustrated in figure 4.5.

5i = 1, . . . , n
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Figure 4.5: The normalized auto–covariances of X and AAFT (X) (as seen
in figure 4.4).

4.1.4 Iterative AAFT Algorithm

In [10], another surrogate algorithm is presented. The iterative AAFT algo-
rithm (IAAFT) allows a more general null hypothesis

H0:X is a time–independent static instantaneous invertible trans-
formation of a linear Gaussian wide sense stationary process.

Note, that instead of monotony of the measure function, an invertible tran-
formation is considered now. This transformation has to be continuously
differentiable, but not monotonic. [10]. The advantage of the IAAFT is a bet-
ter approximation of the amplitudes, and therefore of the auto–covariances.
In [1], the algorithm is described as follows: first, the Fourier amplitudes of
X are calculated. The xi are rearranged in ascending order. The following
iteration method consists of two consecutive procedures. It starts with a ran-
dom permutation of X, denoted as S(0). In iteration step i, S(i) is Fourier
transformed, and the amplitudes are replaced by the original amplitudes of
X. Then, the inverse Fourier transform is computed to get S̃(i). By rearrang-
ing the order of S̃(i) according to the sorted X, one gets S(i+1). After each
step, the remaining discrepancy between the spectra is checked. Eventually,
the transformation towards the correct spectrum will result in a change,
that is too small to cause a reordering of the series. Thus, after rescaling, no
change happens any more, and the iteration procedure has reached a fixed
point S(i+1) = S(i). S(i) is the generated surrogate. The nonlinear measure
function is approximated with this algorithm. The result cannot be exact for
finite time series. The IAAFT follows the constrained realization approach:
the variations in spectrum and distribution within the class, defined by the
null hypothesis, are suppressed by constraining the surrogates, in order to
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have approximately the same power spectrum, as well as the same distri-
bution as X [10]. The final accuracy, that can be reached, depends on the
size and structure of the data, but is sufficient for hypothesis testing in gen-
eral [25].

Note, that although the null hypothesis of the IAAFT algorithm is less
restrictive, its rejection does not imply nonlinear dynamics. For instance,
noninstantaneous measurement functions are not included, and would (cor-
rectly) lead to a rejection of H0, although the underlying dynamics may be
linear [10].

4.1.5 Constraints

The main disadvantage of the presented algorithms is the constrained class
of null hypotheses. Even the most general H0 is still highly restrictive. This
is not the only constraint, Schmitz adresses two other restrictions and dis-
advantages of the Fourier methods in [1]:

Periodicity. As mentioned before, the Fourier transform is periodic in the
frequencies k with period n. Therefore, by the presented standard Fourier
methods, not the estimated auto–correlation ̺X is reproduced on the surro-
gate, but the estimated periodical auto–correlation ̺XP

. The corresponding
estimator for the periodical auto–covariance writes

γXP
(τ) =

1

n

n∑

j=1

(xj − (x̄))(xmod(j+τ−1,n)+1 − (x̄)) (4.11)

In general, X is not a realization of a period of an infinite periodical process.
The difference between γX(τ) and γXP

(τ) produces unmeant artefacts in
the surrogates, especially if x1 and xn vary significantly [26]. Windowing, or
attaching zeros to the ends of X, implicate that this modified X cannot be an
invertible transform of a process any more. Thus, these techniques cannot
be applied. Another possibility to avoid unmeant artefacts is to cut X to
match its ends. If n is large enough, this is an easy way to improve quality
of the test results. The slopes should match as well to avoid an unwanted
peak, especially if X is very smooth.

Non–Stationarity. All surrogates created with the presented methods are
stationary: the Fourier phases have been replaced by random phases. The
IDFT is then the linear combination of independent, periodical, stationary
functions, and is therefore also stationary. A non–stationary X may often
lead, depending on the test statistic, to a rejection of H0, and the validity
of the test can be questioned. The data applied for this thesis are measured
in a Diesel engine. As its level of activity is changing during a simulation,
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it would be unreasonable to expect unchanging signals [60]. Hence, before
creating surrogates, X should be inspected for non–stationarity. If n is big,
it is possible to divide X in segments, and to compare key figures like means,
or variances on them. If they differ a lot from each other, non–stationarity
could be a possible reason. Figure 4.6 displays the means calculated on seg-
ments of a time series. Also, only a single stationary segment of X can
be tested. A rejection of H0 would justify the use of nonlinear techniques.
Schmitz discusses a possibility to create non–stationary surrogates for short
X, when non–stationarity cannot be excluded. The idea is to divide X in
segments, and create a surrogate for each of them. By stringing them to-
gether, a surrogate with the same non–stationarities as X on the segment
length is constructed. The difficulty is to choose the right segment length.
If it is too short, then too much information is lost, and if it is too long,
then the non–stationarities cannot be reproduced. For further reading I refer
to [20], where Schmitz and Schreiber give examples for successfully creat-
ing surrogate data with this method. They use the iterative algorithm for
creating the surrogates, and test for an ARMA process with slowly varying
coefficients. The issue of nonstationarity is addressed in detail later in this
chapter.

4.2 Applied Simulated Annealing

In this section, a more flexible surrogate algorithm is presented. This method
enables to reproduce γX on a surrogate with arbitrary precision, and H0 may
include known non–stationarities as well.

The idea of applied simulated annealing is to translate the problem of cre-
ating surrogates with certain characteristics into a single, real–valued cost
function E. This cost function is minimized by a simulated annealing al-
gorithm. Usually, the set of surrogates, that have exactly the same charac-
teristics as X, consists of trivial translations of X only. Therefore, not the
global optimum of E, but a local optimum close to the global optimum is
intended to be reached. Any characteristic, that can be described by a sin-
gle number, can be reproduced on a surrogate in this way. Kirkpatrick et
al. have introduced this application of simulated annealing in [2]. A disad-
vantage of simulated annealing is its high computing effort. However, if the
observation of a phenomenon is very expensive, or if this phenomenon only
occurs once, then the high computing effort may be justified. Besides, the
computing power increases as technology proceeds.
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Figure 4.6: The upper pane displays NOXppm data with a drifting mean.
The time series was divided into segments with length 100 and overlap 10,
and the mean was calculated segment–wise. The result is shown in the lower
pane, together with a linear least square regression line to highlight the slope.

4.2.1 Cost Function

The method of constructing surrogates by the useage of applied simulated
annealing is described by Schreiber in [19]. This section outlines the basic
ideas of this paper.
First, a set of characteristics {CX,i}Ii=1

6, that a surrogate S ∈ R
(1×n) is meant

to feature, has to be defined. CXi
is exactly reproduced on a surrogate, when

Ci := CS,i − CX,i = 0 (4.12)

holds7. All Ci have to be summarized to a single, real–valued cost function

E =
( n−1∑

τ=0

|CS,i(τ)− CX,i(τ)|q
) 1

q
(4.13)

where q ∈ N defines the norm.8 At the global optimum, E = 0 holds, and
the features of X are exactly reproduced on S. In thermo–dynamics, E is

6i = 1, . . . , I < ∞
7CS,i describes the ith characteristic on S.
8e.g. Manhattan–norm for q = 1, L2–norm for q = 2, or maximum–norm for q → ∞.
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interpreted as energy in a molecular system, and T as temperature, that
controls the energy decrease. In principle, any function CS,i(τ) with global
minimum at CX,i(τ) can be used. In testing for nonlinearity, CX,i and CS,i
are γX and γS . In this way, linear features of X are reproduced on surrogates,
and the use of γP,X (see equation 4.11) is avoided.

4.2.2 Optimization by Simulated Annealing

Minimization of a single real–valued cost function is an entirely different ap-
proach than the Fourier methods. One of the major difficulties of minimizing
a cost function is the ∞–dimensional solution space of the problem9. An ex-
pedient is the introduction of additional constraints, in order to reduce the
solution space dimension to a finite number. A common requirement is that
the surrogates have to follow the same single time probability distribution as
X [19]. This is the same constraint as used in the standard Fourier methods.
Only permutation of X feature the same single time probability distribution
as X. Thus, solution space dimension is reduced to the number of possible
permutations of X, n! [1].

Although solution space is not infinite any more, it is still vast for large
n. The possibly high number of local extremes pose a problem for mini-
mization of E. Many optimization algorithms do not provide the possibility
to leave these local extremes once they are reached. These algorithms are
constructed to respond to improvement of E in immediate proximity to the
current position only. Simulated annealing offers the possibility to leave local
extremes, and thus it is suitable for optimizing the constructed cost function.

The main problem of simulated annealing is, as already mentioned, its
high computing effort. It is advisable to introduce a limit of sufficient preci-
sion to reduce CPU time. Several ways to introduce this limit will be further
discussed in a later part of this section.

In [2], Kirkpatrick et al. divide the strategies for solving complex combi-
natorial optimization problems into two categories:

Divide– and Conquer. A complex problem is divided into many small,
hence often easier solvable, parts. The difficulty is to chose a suitable number
of subsystems, the splitting points, and to not misinterpret results for the
single small problems.

Iterative Improvement. Optimization starts with a known state of a
system. A predefined operating mechanism continuously adapts the system

9A optimum has to be found within all possible surrogates.



4. Nonlinear Dependencies within Time Series 26

state, until a cost reduction is attained. The system is in a new state, and
the procedure starts again. This happens, until either the cost cannot be
lowered any more, or a predefined limit is reached.

Applied simulated annealing falls into the latter category. It origins in
thermo–dynamics, which is, among others, concerned with the behavior of
atoms and molecules in a system. The considerations of Austrian physicist
Ludwig Boltzmann laid the foundation for this discipline in the late nine-
teenth century. The energy E of a thermo–dynamical system depends on the
constellation of its molecules at a given temperature T . The focus is on the
relation between a decrease in temperature, and a corresponding change in
energy. Each temperature–energy pair defines a probability factor

β = e−
E
T . (4.14)

The Boltzmann factor is crucial for reaching a low temperature–energy state.
It enables to leave any local extreme with certain possibility, if the temper-
ature decrease is slow enough. In practice, the state equilibria are examined
by cautious annealing. After heating a system, temperature is lowered slowly.
Especially the stadium in close vicinity to ’freezing point’10 of a system is
critical. The temperature has to stay long time at this transitional phase.
Otherwise, the substance may not reach an optimal state, and it has to be
heated again. In industry, this method is used to correct defects in materials
like alloys. Cautious annealing results in regular molecular structure.

By simulating this annealing procedure, combinatorial optimization prob-
lems can be solved. The real–valued cost function represents the energy of a
thermo–dynamical system, and the n! possible permutations can be seen as
possible configurations of n molecules. By rearranging the molecules, energy
varies. Control parameter is the temperature T , that decreases during the
process. If only permutations that reduce E are considered, the probability
of getting stuck in a local extreme is very high. Metropolis algorithm offers a
way out of this issue: In [3], Metropolis et al. introduced this modified Monte
Carlo method. The authors assume, that a substance is built of squares, and
each square consists of n molecules. In order to find out more about the fea-
tures of the system, Monte Carlo methods are applied. The authors choose a

state with probability e−
E
T , and assign the same weights to each state. For a

new state, the energy difference to the previous state ∆E is calculated. The
probability of accepting a new configuration with given ∆E and T is

p(∆E,T ) =

{
1 for ∆E < 0

e−
∆E
T for ∆E ≥ 0

(4.15)

10T = 0



4. Nonlinear Dependencies within Time Series 27

In case ∆E < 0, a state is accepted11. The crucial case is ∆E ≥ 0, where

a state is accepted with probability e−
∆E
T . This scheme can solve the issue

of getting stuck in local extremes. It enables the energy function to walk
’uphill’ with a certain probability. Numerically, this is implemented by gen-
erating uniformly distributed random numbers in [0, 1). If a random number

is smaller than e−
∆E
T , then a new state is accepted. Note, that the Metropolis

algorithm is asymptotically optimal with probability 1 [29]. Van Laarhoven
et al. describe the convergence conditions for the procedure in [33].

The Metropolis algorithm enables to solve combinatorial optimization
problems by simulating an annealing process. In [1], this method is used to
create surrogates with nearly the same characteristics as X.

4.2.3 Annealing Scheme and Parameter Tuning

In practice, the aim is to find a local optimum of E, that is sufficiently close
to the global optimum. Thus, characteristics of a surrogate should not be
identical, but very similar to characteristics of X. The finite–time character-
istics of simulated annealing algorithm depend on several control parameters.
Deliberate choice is the key aspect of the procedure. Control parameters are
discussed in this section.

The set of parameter choices is divided into two categories [4]:

Generic decisions. This category contains all parameters of the annealing
scheme12:

• T0. . . initial temperature

• Lk. . . length of kth Markov chain13

• Tk. . . temperature function

• truncation criteria

A good annealing scheme is characterized by both nearly optimal solutions
and a short execution time [4].

Problem specific decisions. Problem specific decisions vary with the
problem, and they consist of

• S0. . . initial state of the system

11The aim is to minimize E.
12i.e. the way in which the temperature is manipulated
13i.e. the number of iterations, after which T decreases
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• neighborhood generation

• Ek. . . energy function, and its evaluation

The parameter setting has to be followed by a set of experiments, in order
to fine–tune the procedure.

Algorithm 4.1: Applied simulated annealing scheme.

1: Calculate E(S(0)) and T (0)

⊲ Initial energy and temperature

2: repeat

3: S(k) −→ S̃(k): s
(k)
i ↔ s

(k)
j

⊲ Switch indices i, j ∈ 1, . . . , n, i 6= j
4: Calculate E(S̃(k))
⊲ Energy of the surrogate candidate

5: if E(S̃(k)) ≤ E(S(k)) then

6: S(k+1) ← S̃(k) ⊲ Configuration accepted
7: else

8: if e
(−

E(S̃(k))−E(S(k))

T (k)
)
> r ∈ [0, 1) then

9: S(k+1) ← S̃(k) ⊲ Configuration accepted
10: else

11: S(k+1) ← S(k) ⊲ Configuration rejected
12: end if

13: end if

14: if l = Lk then

15: T (k+1) ← αT (k) ⊲ Decreasing the temperature
16: l← 0
17: else

18: T (k+1) ← T (k)

19: end if

20: k ← k + 1
21: l← l + 1
22: until truncation condition
23: return

In [4], Vidal divides simulated annealing into inhomogeneous versions
and homogeneous versions. The difference between the two procedures is
their different annealing schedule. The inhomogeneous algorithm decreases
Tk after each transition, whereas the homogeneous algorithm decreases Tk af-
ter a number of transitions Lk. In other words, the homogeneous algorithm is
repeated Lk times at each temperature. This allows to ’escape’ local extremes
easier than the inhomogeneous algorithm. The inhomogeneous algorithm is
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a special case of the homogeneous algorithm with Lk = 1 ∀k = 1, . . . , kmax.
A pseudo–code for simulated annealing is shown in algorithm 4.1.

There is a broad range of possible realizations of this scheme. Basically,
they can be divided into two groups [4]. Fixed annealing schedules are charac-
terized by a fixed initial temperature T0, a constant temperature decrement
α ∈ (0, 1), and a constant Lk. In order to choose appropriate parameters,
they have to be tested in several configurations. Due to high computing effort
of simulated annealing, this is not practicable in many cases. Cooling sched-
ules with parameters that adapt themselves during the process are called
self–adapting schedules. They are more efficient, and less sensitive to initial
parameter values.

The following three approaches describe a fixed, a self–adaptive, and a
’hybrid’ cooling scheme.

Schmitz uses a fixed annealing schedule in [1]:

Initial temperature. Initial temperature T0 has to be chosen high enough.
Otherwise, the algorithm is likely to get stuck in a local extreme soon. T0

should be higher than the maximal reachable energy–difference ∆E, in order
to attain a high acceptance rate. A possibility to estimate ∆E and T0 is to
compute m ∈ N independent random states, and to calculate the energy–
differences ∆E0,m of them. T0 is then the maximum of these ∆E0,m. Ac-
cording to Schmitz, practical applications show that this value is too high,
because no energy decrease happens at the beginning. In general, more than
one surrogate is needed. The temperature, at which the energy of the first
surrogate decreases, could be used as benchmark for T0 for other surrogates.
In this way, redundant calculations can be avoided.

Cooling process. If temperature is lowered too fast, the algorithm is likely
to get stuck in a local extreme with inadequate value. On the other side, if
temperature is lowered too slow, then the result is in general better, but
CPU time increases drastically. Schmitz uses an exponential cooling scheme,
as described in [2]:

T0 = max
m

(E0,m)−min
m

(E0,m) (4.16)

Tk+1 = αTk (4.17)

α ∈ (0, 1) a priori fixed (4.18)

The decrement α ∈ (0, 1) can be chosen randomly, the smaller α, the faster
the annealing. Tk decreases either after Lk steps, or after the number of
accepted states at Tk L

acc
k . Lk and Lacck should bear a relation to the length
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of X. Schmitz chooses Lk = 10n and Lacck n as boundaries. He also introduces
a lower limit for the energy as truncation criterion. This limit is given by
the requested exactness of the surrogate properties. Another possibility is to
use Lacck as a benchmark. If Lk is reached, while still Lacck = 0 holds, then no
more changes are accepted.

Initial solution. Due to the constraint, that point–wise distributions of
X and S have to match, the generation of the initial state14 is comparatively
easy. S(0) is a random permutation ofX. Finding an appropriate way to come
to the next step is more difficult. Energy decrease, that results of swapping
the positions of only two data points, may be too small. Then again, the
swap of several indices at the same time may have a negative impact on the
final result.

Huang et al. give an example of a self–adapting schedule in [7]:

Cooling process. Initial temperature T0, and the temperature decrement
αk between step k and step k + 1, are functions of the energy standard
deviation σE .

T0 = cσE (4.19)

αk = max(0.5, e
(−

λTk
σE(Tk)

)
) (4.20)

Tk+1 = αkTk (4.21)

σE(Tk) denotes the energy standard deviation at temperature Tk. Huang et
al. choose c high enough15, in order to make sure that a deterioration of
3σE is accepted. λ ≤ 1 regulates the speed of temperature decrease. The
authors suggest to choose λ = 0.7, based on their practical experiments. The
construction of αk brings an expected energy mean at Tk+1, that lies in a
range σE around the energy mean at Tk. σE is estimated in the same way as
before.

In [28], Atqullah describes a ’hybrid’ annealing scheme with elements of
both fixed and self–adapting algorithms:

Temperature. Initial temperature T0 has to be chosen high enough, so
that virtually every transition to another state is accepted. All states exist
with equal probability of acceptance. Temperature has to converge to zero as
the algorithm progresses. In practice, temperature is reduced to a sufficiently
small value, until no further significant energy decrease can be expected.

14i.e. a high–temperature state of the system
15c = 10



4. Nonlinear Dependencies within Time Series 31

200 400 600 800 1000 1200

950

1000

1050

X

E = 0

 

 

200 400 600 800 1000 1200

950

1000

1050

S
1

E = 18.09

200 400 600 800 1000 1200

950

1000

1050

S
2

E = 9.045

200 400 600 800 1000 1200

950

1000

1050

S
3

E = 4.5225

200 400 600 800 1000 1200

950

1000

1050

S
4

E = 0.5

Figure 4.7: The panes show how a surrogate changes during the annealing
process. The upper pane displays the original data X, i.e. manifold pressure
measurements. The first surrogate represents the initial configuration. It is a
random permutation of X. Above each pane is the corresponding value of the
energy given. The corresponding auto–covariances to these four surrogates
can be found in figure 4.9.

Markov chain. The number of transitions Lk at any specific Tk is the
length of the kth Markov chain. Chain length is governed by the ’closeness’
of the current probability distribution to a predefined stationary distribution.

Temperature Decrement. A large decrement of Tk makes a large num-
ber of transitions necessary, in order to reach a quasi–equilibrium state. Most
schedules adopt the strategy of small temperature decrements, in order to
avoid long chains Lk.

Atqullah introduces the following parametric cooling schedule:

T0 =
(∆E + 3σ∆E)

ln( 1
A0

)
(4.22)

Tk+1 = αTk (4.23)

α = a−( k
d·kmax

)b

(4.24)

Lk = min(Lacck , Lrejk ) +B (4.25)

where ∆E is an estimator for the expected change in energy. It is the sum of
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the absolute energy differences, divided by the number of trials applied. σ∆E

is the sample standard deviation of |∆E|16, and A0 is the initial acceptance
ratio17. T0 is constructed to expect A0 ≈ 1. a ∈ R and d ∈ R are control
parameters for the temperature decrement, b ∈ N depends on both of them,
as well as on T0, and the (predefined) final temperature. k is the number of
chains executed, and kmax is the (predefined) maximal number of chains to
be executed. By construction, the annealing is manipulated by the choice of
a, b, and d. For example, a = 3, b = 1, and f = 1

4 control the annealing
in such a way that Tk ≈ 1

3T0 holds at 1
4kmax. Lk is defined by the number

of accepted moves Lacck , the number of rejected moves Lrejk , and an upper
boundary B for both of them. Additional stop criteria are introduced, such as
the requirement, that the absolute energy decrease over a predefined number
of chains has to be beyond a predefined ǫE . This cooling scheme allows to
control the maximal number of computing steps (2B − 1)kmax. Figure 4.8
shows a temperature function, and the according energy created by this
cooling scheme. The temperature reaches T0

2 after 1
100 of kmax10n, and thus

describes a very fast cooling. kmax = 10n enables the algorithm to reach an
appropriate energy value. The boundary B for both accepted and rejected
steps is 200. This is still high enough to get good results with comparatively
small computing effort. For further discussion on this annealing schedule,
the reader is referred to [28].

For further discussion of annealing schemes, and a comparison between
them, the reader is referred to [30], [31], and [32].

4.2.4 Improving the Performance

As already mentioned, the disadvantage of simulated annealing is the re-
quired computing power, and the time to get good results. In [1], Schmitz
discusses several possibilities to increase efficiency of the procedure, in or-
der to reduce CPU time. Some of these ideas are described in the following
paragraphs.

Calculating Ek. If simulated annealing is naively implemented, energy
Ek is calculated anew at each algorithm step, and the same happens with
∆Ek = Ek − Ek−1. A new state is the result of a random swap of indices
i and j. This change does not affect every term of the estimated auto–
covariance. The only values that change are those with indices i, j, i − τ ,
and j−τ . Instead of re–calculating all n−τ terms, just four of them have to be
calculated anew to get the new energy value. Nonetheless, after some steps,
the energy should be calculated anew, in order to avoid possibly occurring

16The states are assumed to be normally distributed.
17i.e. the number of accepted moves divided by the number of proposed moves.
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Figure 4.8: The left pane shows a typical temperature function. At the
beginning of the procedure, the temperature falls away sharply, whereas it
gets very flat in the end. The right pane displays the corresponding energy
function. Both functions are computed by the cooling schedule described in
section 4.2.3.

rounding errors. Besides, there are some special cases to pay attention to,
e.g. i, j ≤ τ , or |i− j| = τ .

Rejecting configurations. Another possibility to increase efficiency is to
reject a new state in an early stage. A state with ∆E > 0 is only accepted if

e−
∆E
T ≥ r (4.26)

holds. A possibility to reduce CPU time is the following: the random number
r ∈ [0, 1) has to be generated before the calculation of ∆E. ∆E = Enew−Eold
and inequation 4.26 result18 in

Eqnew ≤ (Eold − T ln(r))q (4.27)

The left side of inequation 4.27 is positive. In order to reject a new state,
both sides of the inequation have to be observed during the summation. If
the inequation is not fulfilled, then the state is rejected.

18exponentiate q ∈ N
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Figure 4.9: The panes display the normalized one–sided sample auto–
covariances of the four surrogates in figure 4.7 as continuous lines, and
the normalized one–sided sample auto–covariance of X as broken line. The
smaller the energy is, the better the auto–covariances match. The smallest
energy displayed is 0.5; there are still discrepancies visible.

Acceptance rate. An appropriate way of generating the next state im-
proves efficiency as well. At the beginning of the annealing procedure, the
swap of only two indices results in a very small energy decrease. On the other
hand, the interchange of two indices may have a large effect on the energy in
the end of the process. According to [1], the rate of acceptance is denoted A,
and is the ratio of accepted updates to proposed updates. A decreases with
the decrease of T . A constant acceptance rate A ≈ 50% is optimal [8]. If the
acceptance rate is too high, it can be lowered by interchanging more than two
indices. In order to increase the acceptance rate in the end of the procedure,
one has to differ between indices in close vicinity, and those further away
from each other. The indices with the biggest difference are i = 1 and j = n.
An interchange of i and j would result in a big change of E that is unlikely to
be accepted. Hence, in order to increase A, two additional variables have to
be introduced: First, one has to define the distance d of indices i and j with
i 6= j, e.g. d = |i− j| − 1. d reaches a minimum, if xi and xj are neighbours
in time. A probability function pij(d) has to be introduced as well. It has
to reach a maximum for d = 0, and decrease with an increasing d. In other
words, it should be more likely that a pair {xi, xj} with small difference d is
chosen. The exact shape of pij is not important. Both an exponential and a
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Gaussian probability function result in a decrease of computing time [1].

Testing. There is another, comparatively easy way to reduce the comput-
ing time. In order to approve a null hypothesis, the test statistic TX has to be
within a certain range of the surrogate test statistics. This range depends on
the significance level α, and on the total number of surrogates N . N and α
are known a priori, and therefore also the range. After creating a surrogate,
TX can be compared to the already created surrogate test statistics. If TX
is out of range, it is not necessary to create other surrogates any more, and
the null hypothesis can be rejected.

4.2.5 Advantages

The simulated annealing method enables to avoid some problems of the
Fourier–based methods. Simulated annealing implements a characteristic di-
rectly on a surrogate. Therefore, this method is much more flexible than the
standard methods. Schmitz gives two examples of this flexibility in [1].

Periodicity. One problem of the Fourier standard methods is the implicit
assumption that X is a period of an infinite periodical process. This may lead
to artefacts in the surrogates in form of high frequencies, especially when
there exists a jump discontinuity from xn to x1. This effect even occurs for
x1 ≈ xn, but an untypical peak occurs when the ends of X are attached to
each other. All Fourier–based surrogates have about the same initial and final
values. The simulated annealing method avoids these periodicity issues. γX
can be directly implemented on a surrogate, and it is possible to construct
surrogates with the same initial and final values as X. Fixing the endpoints
means to implicitly introduce long–reaching correlations of X on a surrogate.
Therefore, γX does not have to be reproduced for all lags, which lowers the
computing effort. For a detailed description, the reader is referred to [1].

Precision. In general, it is possible to reproduce quantifiable characteris-
tics with arbitrary precision on a surrogate. However, it may be unwanted
to reproduce these characteristics exactly on a surrogate. Only some trivial
transformations of X, like the time–inverted series, have the same γ as X, for
example. The exclusion of these unwanted surrogates a priori is not possible
with Fourier methods. With simulated annealing, it is. Energy function can
be adapted to exclude these surrogates. The size of n and the shape of the
energy function determine, if enough local optima exist in vicinity to E = 0.

4.2.6 Extension of H0

Up to now, the most general null hypothesis is that X is a realization of a
linear wide sense stationary process, measured by an instantaneous invertible
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measure function. Any a priori–known quantifiable characteristics of X can
be reproduced on a surrogates with simulated annealing. This enables the
construction of surrogates also in cases, where the standard methods fail.
Therefore, a broader range of null hypotheses can be tested. This helps to
gain better insights into a system.

Non–Stationarity. In context of this thesis, the flexibility concerning
non–stationarity is the biggest advantage of simulated annealing. The ap-
plied data indicate a lot of non–stationarities that can falsify test results.
A null hypothesis may be rejected due to non–stationarity, and not due
to nonlinearity, as intended. When X evidently contains non–stationarity,
there are several ways to deal with it. In section 4.1.5, one possibility has
been discussed. Another way to get rid of unwanted non–stationarities is the
use of the pointwise difference between X and the non–stationarity as new
data series. In order to do that, the non–stationarites have to be observed
by additional parallel measurements, or modeled through fitting to X. Both
options may be difficult to achieve. In some cases, not only the fact, that a
time series is non–stationary is known, but also the type of non–stationarity.
A simple example is yearly cycles. By implementing the non–stationarity
into the cost function E, surrogates with the same non–stationarities as X
can be created [1]. This aproach will be discussed in a later section.

Varying time intervals. So far, the focus has only been on evenly mea-
sured time series. In practice, it is often not possible to observe and measure
data evenly. A common example are financial data, like stock quotations,
which are not listed on weekends and holidays. Another example is given
by Scargle in [21]. The author examines astronomical time series, which can
only be measured if circumstances permit19 [22]. Interpolating X on evenly
spaced observation times is not advisable in case of testing for nonlinearity.
Unwanted nonlinearities could be introduced, which cannot be distinguished
from nonlinear structures in X. Filling the data gaps with zeros is only possi-
ble if the gaps appear regularly [1]. Frequency domain provides a possibility
to create appropriate surrogates with the same linear properties as an un-
evenly measuredX. Scargle and Lomb give a new periodogram definition, the
so–called LS–periodogram. It is an alternative estimator for the power spec-
trum that is based on the least squares fitting of sine and cosine functions to
the data. The LS–periodogram enables to estimate the spectrum of X with
randomly, but chronologically fixed observation times. Vityazev compares the
periodogram and the LS–periodogramm, and concludes, that, under certain
conditions, they are identical. For further discussion, the reader is referred
to his paper [23]. In general, there is no inversion of the LS–periodogram,

19e.g. night time, weather, availability of telescope time, the position of the object of
observation, etc.
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which makes the Fourier–based standard methods not practicable. The sim-
ulated annealing method does not require the invertibility. By implementing
the LS–periodogram into the cost function E, the linear properties of X are
reproduced on a surrogate. For application examples, the reader is referred
to [22] and [21]. Schmitz and Schreiber implement the LS-periodogram into
the cost function of a simulated annealing process in [24].
Another option is the implemenation of the linear properties of X on time
domain. As for the periodogram, it is not possible to use the common estima-
tor for the auto–covariance in case of unevenly sampled time series. Schmitz
provides an extension of this estimator, which equals γX for evenly measured
data. He divides the lags τ into intervalls of length δτ , and counts the pairs
{xi, xj}, i, j ∈ {1, . . . , n}, whose difference is within δτ . In this way, it is
possible to estimate the auto–covariance with lag τ + δτ

2 in the middle of the
interval [τ, τ + δτ ]. δτ has to be chosen properly, in order to make sure that
the estimator exists [1]. In [25], this approach is used to create surrogates
for a part of the Greenland ice core data set.
The two approaches give the possibility to investigate certain properties of
unevenly sampled time series. Which of them should be used depends on the
data.

Spike trains. A spike train is a sequence of events occurring at times {ti},
e.g. heart beats. Variations in the events beyond their timing are ignored.
This very common kind of data is fundamentally different from unevenly
sampled time series. The sampling instances {ti} are not independent of
the measured process. In fact, between these instances, the value of xt is
undefined, and the {ti} contain all the information. The discrete sequence of
inter–event intervals xti = ti − ti−1 is often treated as if it were an ordinary
time series. The index i is not proportional to time any more. It depends on
the nature of the process, if it is more reasonable to look for correlations in
time, or in number of events. Because the applied data are evenly measured
over time t, the cases of varying time intervals, or spike trains are not further
discussed in this thesis. The interested reader is referred to [25].

Multivariate data. Another extension of null hypotheses that can be
applied by simulated annealing will be discussed in the next chapter: X is
a realization of a multivariate Gaussian linear process. Thus, dependencies
between simultaneously measured data series can be tested.

4.3 Dealing with Nonstationarity

This section addresses the issue of nonstationarity in the data. Because the
null hypotheses of the standard methods always imply the stationarity of
X, any nonstationary behavior could lead to a false interpretation of the
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test results. A rejection of H0 can be caused by nonstationarity instead of
nonlineariy. However, the stationarity restriction could be used to perform
nonstationarity tests with surrogates. Several possibilities to reproduce cer-
tain nonstationarities on surrogates are discussed. Some of them are based
on the already described methods, others are entirely new approaches.

4.3.1 Detecting Nonstationarities

Whereas the detection of nonlinearity allows to know, when linear analysis
techniques are capturing all information in X, detecting nonstationarity al-
lows to make informed decisions in data analysis, e.g. whether longer runs
of data provide better estimates for a test statistic [60]. The first option of
proceeding with nonstationarity is to simply regard nonstationarity as not
suitable for time series analysis. The next step is to try to establish stationar-
ity, i.e. to transform X in a way that it becomes stationary. The motivation
for this is the assumption, that the underlying process may stay unchanged,
but the measurement of the data does not reflect this fact [62]. A possibility
to accomplish this is to use first differences

∆xt = xt − xt−1 , t = 2, . . . , n (4.28)

This eliminates nonstationarities of mean and variance.
Another possibility is to divide X into short stationary segments, and to
analyze each of them separately. The motivation for this is that station-
ary analysis methods are feasible, while a change of the underlying process
can still be tracked. Therefore, time–varying dynamics are seen as essential
parts of the underlying process. Examples are processes with power–law20.
This is called heteroscedasticity, and can be modeled by the ARCH model
that was introduced before. These processes are considered as nonstation-
ary, since more measurements do not provide better estimates. In testing for
nonlinearity, nonlinear statistics are used, as well as the assumption that the
data were generated by a stationary process. By using linear statistics, it is
not possible to discriminate between X and a surrogate, as all linear test
statistics on the surrogates have the same value as TX . However, if X and
the surrogates are divided into equally long segments, linear statistics differ
from segment to segment in general. If X satisfies H0, then the segment–by–
segment values of TX should be within the sampling distribution given by
the segment–by–segment statistics TSi

. The use of linear statistics limites the
sensitivity to nonlinearity, and a difference of TX and its estimated distri-
bution is evidence for nonstationarity. Alternatively, by the use of nonlinear
test statistics, nonlinearity on the segment–by–segment level can be tested
by calculating surrogates for each segment individually. [60] The latter is
applied, if there is a certain type of nonstationarity suspected. It is difficult

20i.e. time–dependent mean and variance.
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to choose an appropriate segment length. If it is too short, the estimations
of any quantifiers will be very poor. And if it is too long, the segments may
be influenced by nonstationarities. Another approach is to use the null hy-
pothesis, that X is a realization of a stationary process. However, such a test
is not sufficient, because it simply might have no power against the type of
nonstationarity. A test against nonstationary would be desirable, but this
H0 is so composite, that there is no statistical test for it available [62].

In [59], Timmer makes use of the fact that it is difficult to distinguish
between nonlinearity and nonstationarity. He investigates the power of data
testing against two violations of stationarity. The use of cyclostationary pro-
cesses21 makes him conclude, that surrogate testing for linear Gaussian wide
sense stationary stochastic processes is powerful against a violation of the
assumption of stationarity. [59] Borgnat’s approach is similar, but he utilizes
an estimator for a time–varying spectrum, the multitaper spectogram. He
shows, that for certain given nonstationary X, the multitaper spectrogram
displays a clear organized structure and evolution along time. In contrast, a
surrogate drawn from this signal reveals no specific structure in time, which is
an evidence of stationarity. For further interest, the reader is referred to [61].

The following sections address the issue of creating surrogates with the
same nonstationarities as X. Hence, the already discussed null hypotheses
have to be extended with respect to the assumption of stationarity.

4.3.2 Fourier–based nonstationary Surrogates

The approach of Schmitz and Schreiber has already been mentioned before:
they split the time series X into segments that can be considered nearly sta-
tionary, and generate a surrogate for each segment by means of the IAAFT
algorithm. In order to receive a surrogate for X, the segment–surrogates are
simply joined together. Clearly, this approach is not suitable for short X,
or X with quickly varying nonstationarities, because the segments would
have to be too short to work with. Moreover, all correlations between the
segments get lost. The null hypothesis that corresponds to these surrogates is

H0: X is realization of an ARMA process with slowly varying
coefficients.

Faes et al. use a typical realization in [63]: in order to test the presence
of nonlinear dynamics in potentially nonstationary signals, they are fitting

21i.e. linear processes with a periodic auto–covariance function in time
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a time–varying (TV) autoregressive model to the original series:

x(t) = a(0, t) +

p∑

i=1

a(i, t)x(t− i) + ǫ(t) (4.29)

The model coefficients a(·, t) are regressed with random replacements of the
model residuals to generate TVAR surrogate series. These are used in com-
bination with a TV sample entropy discriminating statistic to assess nonlin-
earity in both simulated and experimental time series. For parameter opti-
mization, the authors use a modified AIC criterion. For further description
and test results, the reader is referred to [63].

4.3.3 Simulated Annealing and Nonstationarity

The flexibility of simulated annealing enables to include arbitrary character-
istics in the cost function. If nonstationarity is known to be present, it has
to be included in the null hypothesis explicitly. In general, this is difficult,
but can be undertaken in some well behaved cases [25]. An easy example is
a slow drift of mean and variance of the data. In [19], Schreiber gives the
example of an AR(2) process with periodically modulated variance. He uses
the annealing scheme to preserve the first 100 lags of γX(τ), but also the
running variance in blocks of 200 and an overlap of 100 at n = 2000. The
corresponding null hypothesis is

H0: X is realization of a correlated linear stochastic process with
time dependent local mean and variance.

Schmitz and Schreiber create surrogates, that satisfy this H0. Their cost
function was set up to match the auto–correlation function up to five days,
and the moving mean and variance in sliding windows of 100 days. The au-
thors also examine a time series with a single peak. They conclude that the
spike results from some external process, and thus consider the time series
nonstationary. A violation of the null hypothesis may be caused by that
nonstationarity rather than nonlinearity. The simulated annealing method
causes the spectral content of the single peak to be represented in the sur-
rogates by a large number of shorter spikes [25].

4.3.4 Pseudoperiodic Surrogates

The method in this section was first presented by Small et al. in [64], and
in [65]. It is based on the observation, that the standard surrogate tech-
niques have very limited utility, when applied to a time series with a strong
pseudoperiodic behavior that is not generated by any noise. The length of
X is unlikely to be an integer multiple of the dominant period P , and the
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jump discontinuity, as already described, may lead to additional fluctua-
tions. In case of strong periodicities, the difference of the spectra of X and
the surrogates is likely to influence the test result. Data that exhibit peri-
odic structure are in most cases inconsistent with the hypothesis of a static
monotonic nonlinear transformation of linearly filtered noise. The simulated
annealing method, on the other hand, is able to reproduce the periodicities
on the surrogates, but the computing effort is enormous. Another method
suggested by Theiler is to shuffle the individual cycles, in order to destroy
any structure with a period longer than the cycle length. However, this only
works, if there exist convenient points at which to split the cycles [66].
The pseudoperiodic surrogate (PPS) algorithm offers an entirely new surro-
gate generation algorithm, which tests the null hypothesis

H0: X is consistent with an (uncorrelated) noise–driven periodic
orbit.

Assuming that X is nearly periodic with period P 22, the periodic orbit is the
image of the periodicity interval underX in the state space23. In other words,
the PPS preserve the periodic structure of the data, but are contaminated
with dynamic noise in such a way that any existing additional structure, also
linear and nonlinear determinism, is destroyed. Hence, these surrogates are
not suitable for testing against linearity. Still, the basic ideas of the method
are described in this section, because it is an interesting approach regarding
nonstationarity.

At first, the underlying dynamic of the process is reconstructed by time
delay embedding : An embedding vector in m dimensions has the following
appearance:

~xt = (xt−(m−1)τ , xt−(m−2)τ , . . . , xt−τ , xt) (4.30)

where τ is the embedding lag, and m is called embedding dimension. A time
series with length n results in ñ = n − (m − 1)τ embedding vectors, which
are indexed in accordance to the notation in [64] as {~xt}ñt=1. The idea is to
get the underlying dynamic of a process from a local constant model over
neighbors in state space, and to contaminate it with dynamic noise. The
algorithm described by Small and Tse is displayed in algorithm 4.2. The
authors use a parameter noise radius to define the type of noise applied. If
this radius is chosen too small, the surrogate will be very similar, or even
identical, to X. If radius is too large, then the surrogate will be effectively
i.i.d. noise.
For a more detailed description of this method, and for examples of how to
apply it, the reader is referred to [65].

22i.e. the minimum such xt = xt+P .
23i.e. the set of all possible states of a dynamical system.
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Algorithm 4.2: Pseudoperiodic Surrogate

1: Random choice of initial condition s1 ∈ {~xt}ñt=1

2: i = 1
3: repeat

4: Random choice of one neighbor of si from {~xt}ñt=1, say ~xj
5: si+1 ← ~xj+1

6: i← i+ 1
7: until i = n
8: PPS = {(st)1 : t = 1, . . . , n}
⊲ (·)1 is the scalar first coordinate of a vector

9: return

4.3.5 Wavelet–based Surrogates

In this section, a fairly new method of constructing surrogates for hypothesis
testing of nonlinearity is presented. Whereas standard Fourier methods are
based on the DFT of X, this method applies a wavelet decomposition of
the time series. In context of surrogates, it was first used and discussed by
Breakspear in [69], and later by Keylock, who presented a modified version
in [67] and [68]. The following description is based on these papers.

Wavelet Decomposition. The main difference between Fourier trans-
form and wavelet transform is that the former is only localized in frequency,
whereas the latter is localized both in time and frequency. The idea of a
wavelet representation is an orthogonal decomposition across a hierarchy
of temporal and spatial scales by a set of wavelet and scaling functions.
The (weighted) wavelet functions give the detail of the data at each scale,
whereas the (weighted) scaling functions provide an approximation of the
original time series at each scale, with the detail of smaller scales removed.
These scaling functions form a nested sequence, as each successive level gives
a better approximation of X. Instead of randomizing the Fourier phases as
before, the wavelet coefficients are randomly permuted, in order to destroy
any nonlinear information, while preserving other structures. A surrogate is
constructed by combining each scaling level together with the detail at each
level.

Formally, be L
2 the space of square integrable functions. By scaling and

shifting a so–called mother wavelet function ψ ∈ L
2(R), families of functions

ψj,k(xt) =
1√
2j
ψ(
xt − 2jk

2j
) , j, k ∈ Z (4.31)

are generated. They form an orthonormal basis of L
2. In equation 4.31, j

is the scaling, and k is the shifting (translating) factor. For every mother
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wavelet function, there is a unique father wavelet function φ ∈ L
2(R)24.

φj,k are derived in a similar way as ψj,k. Effectively, ψ and φ act as band–
pass filters. There are many pairs of mother and father wavelet functions in
literature. The pair applied in this thesis is the Daubechies 6 tap wavelet,
which is a pair of orthogonal wavelets defining a discrete wavelet transform.
It is designed to have the highest number M of vanishing moments:

∫ ∞

−∞

ylψ(y)dy = 0 , l = 0, . . . ,M − 1 (4.32)

Precise appearance of ψ and φ goes beyond the scope of this thesis, the
interested reader is referred to the works of Daubechies, especially to [70].
Numerically, wavelet functions can be derived with the Wavelet ToolboxTM

in MATLAB®.
From the wavelet functions, one defines linear subspaces of L

2(R)

Vj = span(φj,k : k ∈ Z) (4.33)

Wj = span(ψj,k : k ∈ Z), (4.34)

and requires the sequence

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·L2(R) (4.35)

to form a multiresolutional decomposition, i.e. to satisfy certain self–similarity,
completeness, and regularity relations in time/space and scale/frequency. By
construction, Wj is the orthogonal complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj (4.36)

Therefore, any function f ∈ L
2 can be represented as

f =
∑

k∈Z

cJ,kφJ,k +
∑

j≥J

∑

k∈Z

dj,kψj,k (4.37)

The first sum represents the orthogonal subspace projector from L
2(R) onto

the subspace Vj , and it describes the approximation of the function f at
scale j. The second sum gives the orthogonal subspace projector from L

2(R)
onto Wj , and stands for the details of f at scale j. The constants cJ,k and
dj,k are called approximation and detail coefficients. Breakspear points out,
that these coefficients vanish outside an interval k ∈ [k1, k2] for a finite time
series X. The length of this interval at level j is determined by a constant
const, that is derived by the wavelet function and n

Nj = 2jn+ const (4.38)

24i.e. a scaling function in the time domain.
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Figure 4.10: The top left pane displays a data series of manifold pressure
with an indicated sine oscillation. The first four scales of the corresponding
detail coefficients are depicted beneath. The right side displays a surrogate,
that was created by random permutation through all scales, and the corre-
sponding detail coefficients beneath.

Manipulating the Detail Coefficients. The main question that arises is
to what extent does the wavelet decomposition include information about the
linear properties of X. Breakspear and Keylock conclude, that a large part
of nonlinear properties are described by the detail coefficients dj,k. Though,
a manipulation of these coefficients, in order to destroy nonlinearities in
the surrogates, may also destroy linear correlation structures. The central
assumption in constructing wavelet–based surrogates is, that the correlations
between the detail coefficients are much weaker than in the data. The reason
can be found in the vanishing moments, that the detail coefficients possess:
if the mother wavelet is chosen to have a sufficient number of vanishing
moments, the correlations between coefficients within and between levels
decay rapidly. Hence, a manipulation of the linear correlation structure of
dj,k has a small impact on γX [69]. Because the approximation coefficients
cj,k do not have vanishing moments, their correlations cannot be assumed to
be much weaker than those of the data. Hence, they are not manipulated in
any way. These findings are adressed, among others, by Percival and Walden
in [71].

There are several ways to manipulate detail coefficients. A resampling,
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that involves permutations of detail coefficients between different scales, leads
to a large discrepancy of the linear properties of X and a surrogate. There-
fore, this is not a reasonable option [69]. Manipulations within the different
scales should be utilized only. Breakspear describes three possible ways to
manipulate the detail coefficients within each scale:

• Free permutation

• Cyclic rotations

• Block resampling

The first method is the simplest, it only uses a random shuffle of dj,k. This
can preserve the correlations of the original data only if the detail coefficients
are either nearly uncorrelated

E[dj,k, dj̃,k̃] ≈ 0 , ∀j, k, j̃, k̃ ∈ Z, (4.39)

or there are enough vanishing moments in the mother wavelet function. How-
ever, there may be regions of frequency mismatch in the surrogates, as well
as significant flattening of local peaks, because the shuffling also destroys
correlations between different scales.
The second possibility is a cyclic rotation. The same random number is added
to all indices within each level, and taken modulus Nj (see equation 4.38).
This results in a spectral density function of the surrogates, that matches
closer with the original spectrum than free permutation. However, the num-
ber of possible realizations is reduced from

∏J
j=1Nj ! to

∏J
j=1Nj .

The third technique divides the coefficients into blocks of length Mj at each
level. These blocks are randomly permuted among themselves. All corre-
lations within each block are preserved, which leads to a better fit of the
spectra. The number of possible realizations is

∏J
j=1⌊

Nj

Mj
⌋!.

These techniques are able to preserve certain behavior in the time–frequency
plane. However, as they also produce, like the Fourier–based methods, surro-
gates with on average Gaussian amplitude distribution, they offer no clear ad-
vantage over the iterative AAFT algorithm presented earlier, at least for uni-
variate time series. [67] Furthermore, the inherent periodicity of the wavelet
coefficients at a each scale is not preserved by these coefficient manipula-
tions [68].

WIAAFT and PWIAAFT. In order to overcome these problems, Key-
lock presents a different wavelet–based method in [67]. Again, X is trans-
formed via a certain type of discrete wavelet transform, the maximal overlap
discrete wavelet transform (MODWT). It has the advantage of being well
defined for any length n, and is not restricted to a multiple of 2J . Addition-
ally, it produces coefficients and spectra, that are not affected by a shift of
the data. The variance of the dj,k at each level is equivalent to the Fourier
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spectrum of X. The important difference between this algorithm and the
previous ones is the treatment of the detail coefficient sequences as time se-
ries themselves. The iterative AAFT algorithm is used to create a surrogate
dsurrj,k for each of the J scales. This retains the frequency behavior of the
coefficients. In order to locate peaks at the right locations in the signal, one
has to transpose the dsurrj,k , and fit both the surrogate and its transpose by
circular rotation and a least–square criterion to the original coefficients. The
series with the smallest error term is chosen. This helps to preserve the tem-
poral structure. The next step is to perform the inverse MODWT with the
detail coefficient surrogates, and the original approximation coefficients. An
iterative procedure, that is identical to that of the IAAFT, has to be used
to retain a wavelet–based IAAFT (WIAAFT) surrogate for X. Besides the
fact, that these WIAAFT surrogates are optically very similar to X, they
preserve the local mean and variance structure of X [67].

Sometimes it may be necessary to create surrogates, that leave certain
striking data points in their exact position. In [68], Keylock presents a
wavelet–based method, that allows to pin certain striking data points by
means of a threshold criterion. Certain detail cofficients are fixed at their
position within a scale, in order to construct pinned WIAAFT (PWIAAFT)
surrogates. The algorithm is a slightly modification of the WIAAFT method:
the shuffling within the IAAFT algorithm, that is applied on the detail coef-
ficients, is not purely random any more. Some of the coefficients are simply
excluded from the shuffling process and held in place. The iteration scheme
in the IAAFT removes irregularities at higher frequencies. The rest of the
procedure is in accordance to the WIAAFT technique. The question is, how
many, and which, coefficients should be pinned. In order to answer this ques-
tion, a threshold parameter t∗ is introduced. The local energy of a coefficient
at location i and scale j has to be defined as well. Only normalized detail
coefficients25 are used as in [68]. Because the power spectrum is proportional
to the variance of the di,j , the local energy is described by the squared coef-
ficients d2

i,j , and the overall energy by

K =
n∑

i=1

J∑

j=1

d2
i,j . (4.40)

The threshold is defined as the ratio of the energy of the unpinned points
Kup to that of all points K

t∗ =
Kup

K
. (4.41)

Setting t∗ = 0 would produce identical surrogates, because no energy comes
from the unpinned coefficients. The WIAAFT algorithm is a special case

25with mean ∼ 0
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when t∗ = 1, where no coefficients are held in place. Keylock concludes
that a threshold of 0.1 is reasonable for data that consist of more than
512 observations. For a comparison of different thresholds for different data
length, the reader is referred to [68].

4.4 Nonlinear Test Statistics

4.4.1 Higher and Cross Moments

The easiest and most natural nonlinear statistics are basically generalizations
of γX . Higher and cross moments provide a class of discriminating statistics,
in fact, many of them are the basis of traditional tests for nonlinearity in
time series [9]. The justification for that comes from the fact, that higher
moments than the second vanish for linear time series. Therefore, when TX
significantly differs from zero, nonlinearity could be a possible reason.

Three point autocovariance. The three point auto–covariance is a gen-
eralization of linear (two point) auto–covariance. A second lag is introduced:

γ3P (τ1, τ2) =
1

n− τ2 − 1

n−τ2∑

i=1

(xi − x̄)(xi+τ1 − x̄)(xi+τ2 − x̄) (4.42)

Without loss of generality, let τ1 < τ2. Schreiber proposes to use τ2 = 2 ·τ1 in
[36]. In order to normalize the test statistics, the three point auto–correlation
may be estimated in the same manner:

̺3P (τ1, τ2) =
γ3P (τ1, τ2)

γ3P (0, 0)
(4.43)

Time reversal asymmetry. This test statistic is based on third moments
as well. It is the estimator for time reversal asymmetry:

T rev(τ) =

∑n−τ
i=1 (xi − xi+τ )3∑n−τ
i=1 (xi − xi+τ )2

(4.44)

A time series is said to be reversible, if its probabilistic characteristics are
invariant with respect to time reversal. Formally, the joint probability of
(xi, xi+1, . . . , xi+τ ) equals the joint probability of (xi+τ , xi+τ−1, . . . , xi) ∀i, τ
[37]. This test statistic is both rapidly computable, and often quite powerful.
Informally, it indicates the asymmetry between rise and fall times in the time
series [9]. For linear processes, T rev = 0 holds, whereas nonlinear processes
often show a strong asymmetry with respect to time reversal. Hence, time
irreversibility can be a strong signature of nonlinearity. For a detailed analysis
and description of time reversal asymmetry, the reader is referred to [37].
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4.4.2 Time Delay Embedding

The following nonlinear statistics are inspired by the theory of nonlinear dy-
namical systems, and they rely on a time delay embedding of the time series
(see equation 4.30). Recall, if X is a scalar time series, an embedding vector
in 2 dimensions consists of two elements, xt and xt−τ . This is shown in figure
4.11 for a data series and its surrogate. The vectors are not identical but sim-
ilar, which can be understood as a good reproduction of the characteristics
of X on S.
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Figure 4.11: Embedding vectors in 2 dimensions with τ = 20 for a data
series X of manifold pressures, and a surrogate, which was created by the
simulated annealing algorithm presented in equation 4.25.

Prediction error. Many quantities, that have been proposed in literature
for nonlinearity testing, quantify the nonlinear predictability of a signal. A
particularly stable representative of this class is the nonlinear prediction
error with respect to a locally constant predictor F [36]

T pe(m, τ, r) =

(
1

n− 1

n−1∑

i

[~xi+1 − F (~xi)]
2

) 1
2

(4.45)
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The local constant predictor F is an average over the future values of all
neighboring delay vectors in m dimensions, that are closer than r:

F (~xi) =
1

‖Ui(r)‖
∑

~xj∈Ui(r)

xj+1 (4.46)

where ‖Ui(r)‖ is the number of points within the r–neighborhood of ~xi [1].

Correlation dimension. The estimate of the correlation dimension has
been widely used as a measure of the dimensionality of the underlying system.
First, one has to define a correlation function, the correlation sum:

Cn(ǫ) =

(
n

2

)−1 ∑

0≤i<j≤n

I(‖~xi − ~xj‖ < ǫ) (4.47)

where I(·) equals 1 if the condition is fulfilled, and 0 otherwise. ‖ · ‖ is the
usual distance function in the embedding room. The correlation dimension
is defined as

dc = lim
ǫ→0

lim
n→∞

logCn(ǫ)

log ǫ
(4.48)

The normalization of Cn(ǫ) is chosen so that rather than being an esti-
mate of the average volume of an object within radius ǫ of a point, Cn(ǫ)
is instead an estimate of the probability, that two points chosen at random
are within a distance ǫ [38]. A widely used estimator for the correlation
dimension is the Grassberg–Procaccia correlation dimension. Schreiber and
Schmitz use two different algorithms for estimating the correlation dimen-
sion in [36], the BDS (Brock, Dechert, and Scheinkman) estimation, and the
ML (maximum–likelihood) estimation. For further discussion, the reader is
referred to Panagiotidis as well, who uses the BDS and several other tests
in [39].

There is no general rule, which test statistic should be used. Schreiber
and Schmitz conclude, that the root mean squared error of a simple nonlin-
ear predictor gives consistently good discrimination power. They state, that
other nonlinearity measures give even better performance in some cases, but
fail in others. In particular, the time reversal asymmetry does very well most
of the time, but can fail completely as well. The reason for this can be found
in the fact that asymmetry under time reversal is a sufficient and powerful
indicator of nonlinearity, but not a necessary condition. In the case where
only a short time series is available, it seems advisable to use a robust,
general purpose statistic with few adjustable parameters, for example a sim-
ple prediction error. If asymmetry under time reversal appears under visual
inspection of the data, a simple statistic like T rev will probably give best
results [36]. For further information on nonlinear test statistics, the reader
is referred to [36], and to [35].



Chapter 5

Nonlinear Dependencies

between Time Series

In practice, several time series are often observed simultaneously in a system.
In this thesis, two different physical measurements in a Diesel engine are
applied. Hence, X is bivariate, and it consists of two channels

X1 = (x1,1, . . . , x1,n) ∈ R
(1×n) (5.1)

X2 = (x2,1, . . . , x2,n) ∈ R
(1×n) (5.2)

A generalization of bivariate methods can easily be found sometimes, but
it is not part of this thesis. The analysis of nonlinear dependencies between
different univariate time series is a broad and complex field. Therefore, its
use has to be justified first. A common approach is to observe nonlinearities
within the univariate time series respectively. By doing this, X1 and X2 are
implicitely assumed to be independent. If there is evidence for nonlinearity,
then the nonlinear dependencies between the series can be examined. With
this in mind, the structure of this thesis was defined. The methods, that were
discussed in the previous chapter, are able to justify methods in this chapter.

In order to construct surrogates with the same linear properties as a bi-
variate X, the reproduction of the linear characteristics of X1 and X2 respec-
tively1 is insufficient. The linear dependencies between them have to be re-
produced as well. These dependencies are described by the cross–covariance
which can be estimated through

γX1X2(τ) =
1

n− τ

n−τ∑

t=1

(x1,t − x̄1)(x2,t+τ − x̄2) , τ ≥ 0 (5.3)

Note, that γX1X2(−τ) = γX2X1(τ). The cross–correlation is

1i.e. γX1
and γX2

.
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Figure 5.1: The upper pane displays a charging pressure data series, the
next pane shows a simultaneously measured NOX data series, and the lower
pane shows the corresponding (normalized) empirical cross–covariance.

̺X1X2(τ) =
1

n− τ

n−τ∑

t=1

(x1,t − x̄1)(x2,t+τ − x̄2)√
V arX1 · V arX2

, τ ≥ 0 (5.4)

If X1 and X2 are linearly independent, then ̺X1X2 = 0. In case of a perfect
linear relation, ̺X1X2 = 1 holds. Some algorithms, that are presented in
the next section, are based on Fourier methods. These algorithms reproduce
the periodioc cross–covariances on a surrogate. An estimator for the cross–
covariance is

γ
(P )
X1X2

(τ) =
1

n− τ

n−τ∑

t=1

(x1,t − x̄1)(x2,mod(t+τ−1,n)+1 − x̄2) , τ ≥ 0 (5.5)

5.1 Fourier–based Algorithms

In the previous chapter, (inverse) discrete Fourier transform and phase ran-
domization are used to create univariate surrogates. The amplitudes stay un-
changed, because they contain the information on the linear characteristics of
a data series. In the bivariate case, an extension of the Wiener–Khinchin the-
orem can be applied: the cross–correlation theorem. The basic statement of
this theorem is that the Fourier transform of the (periodic) cross–correlation
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equals the cross–spectrum:

FX = F∗
X1
FX2 = A1A2e

i(φ2−φ1) (5.6)

where F is the DFT, F∗ its complex conjugate, and Ai and φi are the
Fourier amplitudes and phases, i ∈ {1, 2}. Note, that the cross–spectrum
reflects only the phase difference φ2− φ1. The normalized cross–spectrum is
called coherence. The cross–correlation theorem enables to create bivariate
surrogate data with the same linear characteristics as X. These characteris-
tics are described by γX1 , γX2 , and γX1X2 .

The simplest null hypothesis is

H0: X1 and X2 are realizations of two independent linear Gaus-
sian wide sense stationary processes.

Creating surrogates consistent with this H0 has already been accomplished
by simply creating univariate FT surrogates forX1 andX2, respectively. This
preserves linear dependencies within X1 and X2, but does not preserves any
(linear or nonlinear) interdependencies between them. Andrzejak et al. use
the IAAFT method to construct surrogates, and they refer to them as type–I
surrogates [44].

5.1.1 Unwindowed FT Algorithm

Theiler and Prichard describe an extension of the unwindowed FT algorithm
in [43]. According to them, it is necessary to fix F∗

Xi
FXj

for all pairs {i, j},
in order to preserve the auto–correlations and cross–correlations. This can
be achieved by adding the same random sequence φr ∈ [0, 2π) to φ1 and φ2.

2

Formally, the bivariate surrogate S consists of

Si = F−1
Xieiφr

, i = 1, 2 (5.7)

Theiler and prichard apply this modified FT algorithm both to a simulated
example3 and to multichannel EEG data. The reader is referred to the paper
[43].

5.1.2 Windowed FT Algorithm

The technique of windowing works as before. In order to suppress the jump
from x1,1 to x1,n, and that from x2,1 to x2,n, a weight–function is used.
The procedure is described in the previous chapter. Note, that the weight–
function has to be the same for X1 and X2. Otherwise, the cross–correlation
function is not reproduced on a surrogate.

2There are only phase differences involved in equation (5.6).
3i.e. components of the Lorenz equations.
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5.1.3 Iterative Algorithm

Schreiber and Schmitz discuss a combination of bivariate phase randomisa-
tion and an amplitude adjustment step in [25]. The extension of the iterative
refinement scheme to the bivariate case is relatively straightforward. The au-
thors point out, that deviations from a Gaussian distribution are very com-
mon, and may occur due to a simple invertible rescaling. This is supposed
to simulated a measurement process. The IAAFT method consists of two
procedures, which are applied in an alternating fashion, until convergence
to a fixed point is achieved. The amplitude adjustment by rank ordering is
readily applied to each channel individually. However, the spectral adjust-
ment in the Fourier domain has to be modified. The change has to be applied
to the filtering subprocedure. The randomized phases φr1,k and φr1,k have
to be replaced by phases ψ1,k and ψ2,k

4. The replacement should be minimal
in the least squares sense, i.e. ψ1,k and ψ2,k should minimize

hk =

2∑

m=1

|eiψm,k − eiφrm,k |2 (5.8)

Also, the new phases must implement the same phase differences

ei(ψ1,k−ψ2,k) = ei(φ1,k−φ2,k). (5.9)

Equation 5.9 holds if

ψ1,k − ψ2,k = φ1,k − φ2,k = αk (5.10)

Under this additional constraint, the minimization problem of hk becomes
one–dimensional. An appropriate value for αk is found by eliminating ψ1,k

and ψ2,k from equation 5.8:

hk = 4− 2 cos(αk − φr1,k + φ1,k)− 2 cos(αk − φr2,k + φ2,k) (5.11)

This is extremal for

tanαk =
sin(φr1,k − φ1,k) + sin(φr2,k − φ2,k)

cos(φr1,k − φ1,k) + cos(φr2,k − φ2,k)
, (5.12)

and minimal if αk is chosen in the correct quadrant. For negative k, the
values have to be adjusted as in the previous chapter, in order to make sure
that the surrogate is real–valued [44]. Andrzejak et al. refer to surrogates,
that are designed to test the null hypothesis

H0: X is realization of a bivariate linear stochastic processes,
with an arbitrary degree of linear cross–correlation.

as type–II surrogates. In [25], the design of type–II surrogates for a simul-
taneous recording of breath rate and instantaneous heart rate of a human
during sleep is described.

4k = −⌊(n−1
2

)⌋, . . . , ⌊(n
2
)⌋.
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5.1.4 Constraints

When creating surrogates with Fourier–based algorithms, only the linear
characteristics within and between X1 and X2 are reproduced. All nonlinear
dependencies vanish during the procedure. In many cases, this is unwanted.
If there are found nonlinearities within X1 and X2 respectively, the ques-
tion may arise whether the nonlinearities in one of the series depend on the
nonlinearities in the other. Schmitz gives the example of breath and heart
rate [1]. A possibility is to fix on of the time series, and to create surrogates
of the other series with the same auto–covariances and cross–covariances.
This is not possible with the standard Fourier–based methods.

5.2 Applied Simulated Annealing

5.2.1 Cost Function

Standard Fourier–based methods are not able to satisfy more general null
hypotheses like

H0: X1 and X2 are realizations of processes with arbitrary struc-
ture, and an arbitrary degree of linear cross–correlation, but with-
out nonlinear interdependence.

Andrzejak et al., for example, assume two independent nonlinear determin-
istic dynamics, which have been measured by some kind of a linear superpo-
sition. It is not possible to distinguish a linear superposition of independent
nonlinear deterministic dynamics from interdependent nonlinear determin-
istic dynamics by the previous null hypotheses. In some cases, it might be
sufficient to preserve only X1 and γX1X2 , and to ramdomize X2. However,
at least the linear characteristics of X2, γX2 , should be preserved. The con-
straints to simultaneously preserveX1, γX1X2 , and γX2 would still overspecify
the problem. The only surrogate possible would be an exact copy of X. As a
way out of this dilemma, Schreiber proposes to preserve γX1X2 and γX2 only
up to a maximum lag τmax. This can be achieved by minimizing an energy
function

E = ω1

τmax∑

τ=1

(γX2 − γS2) + ω2

τmax∑

τ=−τmax

(γX1X2 − γX1S2) (5.13)

where ω1 > 0 and ω2 > 0 are weights. Only positive τ have to be summed
up, because the empirical auto–covariance is symmetric. In contrary, the
cross–covariances require all τ in the sum.

5.2.2 Additional Remarks

The simulated annealing procedure works exactly the same as before. The
additional parameters ω1 and ω2 have to be adjusted propperly by back–
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testing several configurations. The parameters depend on X, hence there is
no general tuning rule for them.

Regarding efficiency, this algorithm should not be naively implemented.
Similar to the univariate case, there are several possibilities to reduce com-
puting time, for example by calculating the by change affected elements of the
sums only. Andrzejak et al. describe disadvantages of the bivariate simulated
annealing in [44]. First, they mention a whitening of the surrogates power
spectrum, which is caused by a mismatch of the auto–correlations. Even for
extremely low energy values, a persistent noise cannot be suppressed. The
second problem arises for time series X1 and X2 with very strong cross–
correlation. The surrogates are constructed to preserve the cross–correlation
of X. If one channel X1 is fixed, the surrogates tend to converge towards a
copy of the original time series. This is hardly relevant for long time series.

5.3 Wavelet–based Surrogates

Similar to the Fourier methods, the univariate wavelet methods can be ex-
tended as well. A possible approach is provided by Breakspear, and is de-
scribed in [69]. In order to test the null hypothesis of no (linear or nonlinear)
correlation between two time series X1 and X2, two univariate wavelet sur-
rogates are created, with different permutations of the detail coefficients dj,k.
This preserves only the linear structure within each channel.

The null hypothesis of linear dependency between X1 and X2 can be
tested by a procedure analog to the synchronical Fourier phase randomiza-
tion. The same manipulations of the detail coefficients on the same scales
are implemented. Breakspear concludes, after comparing the empirical co-
herence of X and the surrogates, that the surrogate coherence matches the
overall trend, but does not preserve peaks and troughs, that are present in
the coherence of the original data. A cyclic rotation of the coefficients en-
ables a better preservation across all frequencies. The best match with the
original coherence can be achieved by block sampling, which is capable of
preserving even fine patterns.

If dependencies between different scales are supposed to be tested as well,
the coherence is not a suitable tool. It is sensitive to the same frequencies
in the channels only. A possibility is to observe correlations between detail
coefficients at different scales.



5. Nonlinear Dependencies between Time Series 56

5.4 Nonlinear Test Statistics

The way in which surrogates are designed, highly influences the class of
possible test null hypotheses, and also the class of nonlinear test statistics.
Concerning a test statistic TX , the questions, that may arise, are

• Is the focus on just detecting nonlinearity?

• What is the direction of the nonlinearity?

• Is one part of the system the driver of nonlinearity? Or is it interactive?

• How strong is the nonlinear dependency?

According to the answers, the test statistic is chosen. The purpose of this
section is to introduce several possible test statistics, and to outline their
advantages and weaknesses respectively. The guideline for this section can
be found in [1] and [44].

5.4.1 General Properties

The multitude of possible dependencies between different channels in a sys-
tem leads to an immense number of descriptive quantifiers. The fact, that
only bivariate systems X = {X1, X2} are considered in this thesis, does
not make the task less multi–faceted. For illustration, consider a physical
(sub)system consisting of X1 and X2. Depending on the purpose of testing,
surrogates are created, and several types of dependencies between the two
channels are explored by surrogate testing. But what, if any found nonlin-
earity depends on a third unknown channel X3? Are the results still valid?
And what if X3 is not only unknown, but also even not observable? Although
this is a simple example, it shows the difficulty not only of testing, but even
more of interpreting the results appropriately. The better the properties of
the used test are understood, the better they can be interpreted afterwards.
Therefore, it makes sense to think about classes and basic features of test
statistics, before applying them in practice. In this section, the notation
TX1X2 is used for a general test statistic, in order to indicate that TX1X2

describes the dependency between X1 and X2.

Symmetric vs. Asymmetric. Symmetry is concerned with the inter-
changeability of X1 and X2. Formally, an observable TX1X2 is called sym-
metric if

TX1X2 = TX2X1 (5.14)

Any symmetric TX1X2 does not tell anything about the direction of the de-
pendency. Also, there are trivial asymmetries that do not give any informa-
tion on the direction of the coupling, e.g. TX1X2 = −TX2X1 . This is a basic
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property of the cross–covariance γX1X2 (see equation 5.3)

γX1X2(−τ) = γX2X1(τ) (5.15)

Hence, the cross–covariance with lag τ = 0 is symmetric, and does not
provide any information about the direction of dependency. In other words,
it is not possible to determine any instantaneous driver–response relationship
between X1 and X2 with γX1X2 .

Static vs. Dynamic. Another way to distinguish classes of test statistics,
is to divide them into static and dynamic. TX1X2 is static, if it is neither based
on the dynamics of X1 and X2 nor on the coupling between them. Instead,
only embedding vectors and their distribution are utilized. Remember, the
embedding vectors of X1 and X2 have the representation

~xk,i = (xk,i−(m−1)τ , xk,i−(m−2)τ , . . . , xk,i−τ , xk,i) (5.16)

with k = 1, 2, i = 1, . . . , n, and m ∈ N is the embedding dimension. Whereas
static TX1X2 enable to ascertain strength and direction of the coupling, dy-
namic TX1X2 may even give the possibility to determine any dynamic in
it.

5.4.2 Nonlinear Extension of γX1X2

In the univariate case, three test statistics have been presented, which are
all nonlinear extensions of the auto–covariance function. The same strategy
can be pursued in the multivariate case. Schmitz proposes TX1X2 to have the
following representation:

γ
(rs)
X1X2

(τ) =
1

n− τ

n−τ∑

t=1

(x1,t − x̄1)
r(x2,t+τ − x̄2)

s , r, s ∈ N. (5.17)

γ
(rs)
X1X2

allows to detect any arbitrary dependencies between X1 and X2. The

channels are statistically independent, only if γ
(rs)
X1X2

(τ) = 0 ∀r, s, τ holds.

The broad parameter space makes γ
(rs)
X1X2

computing intensive and unhandy.
There are several better suited alternatives of nonlinear dependency mea-
sures.

5.4.3 Cross–correlation Sum

As mentioned in section 4.4.2, the correlation dimension is a widely used tool
for better understanding of an underlying system. In this section, a slightly
different notation (see [1]) will be used, in order to find the multivariate
extension for the correlation sum, the cross–correlation sum. Recapitulate,
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the correlation dimension is an estimate of the probability, that ~xi and ~xj
chosen at random are within a distance ǫ of each other. This is represented
by the correlation sum

C(ǫ) =
2

(n− tmin)(n− tmin − 1)

n∑

i=1

n∑

j=i+tmin

Θ(ǫ− ‖~xi − ~xj‖) (5.18)

where Θ(·) is the Heaviside–function5. By choosing tmin > 1, neighboring
points are excluded from summation. The correlation dimension is estimated
as in equation 4.48

dc = lim
ǫ→0

logC(ǫ)

log ǫ
(5.19)

In the univariate case, ~xi and ~xj have to be construed by embedding the
scalar xi in m dimensions with a certain lag τ . In the multivariate case, the
~xi and ~xj could also be the multivariate data points of the time series. The
extension of the correlation sum is the cross–correlation sum

CX1X2(ǫ) =
1

n2

n∑

i,j=1

Θ(ǫ− ‖~x1,i − ~x2,j‖). (5.20)

CX1X2 is symmetric, and when it is identical with the individual correlation
sums CX1X1 and CX2X2 , identical distributions can be assumed. It can be
seen as measure of similarity of ~x1,i and ~x2,j . The main critique of this
test statistic is that it can hardly be interpreted properly, if X1 and X2

are measured in different systems. Prichard and Theiler also use the cross–
correlation and an estimator of correlation dimension as test statistic in [43].

5.4.4 Information Theoretic Measures

The discipline of information theory was crucially affected by the work of
Shannon about communication theory [45]. The author examines the el-
ements of communication systems and their interaction. According to his
findings, a system consists of an information source, a transmitter, a chan-
nel, a receiver, and a destination. Furthermore, he classifies communication
systems into three main categories: discrete, continuous and mixed. A dis-
crete system is one, in which both the message and the signal are a sequence
of discrete symbols. An example is telegraphy, where the message is a se-
quence of letters, and the signal a sequence of dots, dashes, and spaces. A
sequence of choices from a finite set of elementary symbols, i.e. the ’letters’
L = {L1, L2, . . . , LB}, can be transmitted from one point to another. Each
of the symbols Li is assumed to have a certain probability of occurrence p(i)
with

∑
i p(i) = 1,i = 1, . . . , B. The question proposed by Shannon is whether

it is possible to find a measure of uncertainty of the outcome. He states, that

5Θ(v > 0) = 1, and Θ(v ≤ 0) = 0
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if there is such a measure H(p(1), p(2), . . . p(B)), it is reasonable to require
the following properties:

• H should be continuous in the p(i).

• If all p(i) are equal, then H should be a monotonic increasing function
of B.6

• If a choice is broken down into two successive choices, the original H
should be the weighted sum of the individual values of H.

H fulfilling these conditions is

H(X1, L) = −K
∑

i

p(i) log p(i) (5.21)

where K is a positive constant, and w.l.o.g. K = 1. In literature, equa-
tion 5.21 is referred as Shannon–entropy. It is used in information theory as
measure of information, choice, and uncertainty. In this thesis, it is used as
quantity, that measures the information, that can be gained by observing
X1 [1]. In the scalar case, Schmitz uses an intervall in R for L, or a subset of
R
m for m–dimensional embeddings. By partitioning L into L1, . . . , LB, the

definition of p(i) is the probability, that x1,t, or ~x1,t, is within Li. This proba-
bility can be estimated by dividing the number of observed points within the
partition by the number of data n, or n− (m− 1)τ (when using embedding
vectors). In the latter case, the partitions are m–dimensional disjoint boxes
which overlay L. The box–size δ is a free parameter with

dδ = lim
δ→0

−H(X1, δ)

log δ
, (5.22)

that is called information dimension.

The extension to the bivariate case follows the same principle. Two finite
sets of elementary symbols LX1 and LX2 have to be introduced. Let p(i, j)
be the probability, that x1,t, or ~x1,t, is within LX1

i , and x2,t, or ~x2,t, is within

LX2
j . The entropy of the joint events is then

H(X1, X2) = −K
∑

i,j

p(i, j) log p(i, j) (5.23)

with

H(X1) = −K
∑

i,j

p(i, j) log
∑

j

p(i, j) (5.24)

H(X2) = −K
∑

i,j

p(i, j) log
∑

i

p(i, j) (5.25)

6When events are equally likely, there is more uncertainty, as the number of events
increases.
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It can easily be shown that

p(i, j) ≤ p(i) · p(j) (5.26)

and hence
H(X1, X2) ≤ H(X1) +H(X2) (5.27)

Thus, the uncertainty of a joint event is less than, or equal to, the sum of
the individual uncertainties. The equality is only given if X1 and X2 are
independent.

Schmitz uses these findings to design a test statistic of mutual informa-
tion

M(X1, X2) = H(X1) +H(X2)−H(X1, X2). (5.28)

When X1 and X2 are independent, then M(X1, X2) = 0 holds. In case of
total dependency of X2, M(X1, X2) = H(X2) holds, and in case of identical
channels X1 = X2, then M(X1, X2) = H(X1) holds. This test statistic is
symmetric, and is not suitable to give any information on the direction of
the dependency. For a multivariate extension the reader is referred to [1].

Kullback and Leibler introduce a related, but different entropy in [46].
Their motivation is the statistical problem of discrimination, and they in-
troduce a measure of ’divergence’ between statistical populations in terms
of their measure of information. They define

log
p1(X1)

p2(X1)
(5.29)

as the information in X1 for discrimination between the hypotheses, that
X1 realizes a probability measure pi, i = 1, 2. By using Equation 5.29, the
information between X1 and X2 can be measured by the Kullback–Leibler–
entropy

M(X1, X2) =
∑

i,j

p(i, j) log
p(i, j)

p(i)p(j)
(5.30)

M(X1, X2) can be interpreted as surplus information resulting from using
the probability distribution p(i)p(j) instead of p(i, j). This corresponds to
the assumption of inderpendence of X1 and X2. Only if this assumption is
true, M(X1, X2) = 0 holds.

Schmitz gives another possibility to compute entropies. The basic idea is
to use neighborhoods of the embedding vectors ~x1,t and ~x2,t instead of boxes,
and to use a relationship of correlation sum and entropy. For a detailed de-
scription the reader is referred to [1].
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The main disadvantage of the presented test statistics is their symmetry.
Schreiber introduces several asymmetric statistics in [47], which are pre-
sented in the following sections.

5.4.5 Time–delayed Mutual Information

The mutual information measures, that are presented in the previous sec-
tions, contain neither dynamical nor directional information. One possibility
for improvement is introducing a time delay τ in one of the observations.
Applying this idea on the Kullback–Leibler–entropy, for example, yields

MX1X2(τ) =
∑

i,j

p(it, jt+τ ) log
p(it, jt+τ )

p(it)p(jt+τ )
(5.31)

The asymmetry in MX1X2 originates from the time delay τ only.

MX1X2(−τ) = MX2X1(τ) (5.32)

In some cases, the time–delayed entropy is able to identify non–instantaneous
couplings, if the delay is smaller than the time that coupling needs. Also,
instantaneous couplings may be identified, if the information does not get
lost in time dynamics [1]. Still, this method does not explicitly distinguish
information, that is actually exchanged, from inrformation, that occurs due
to the response to a common input signal or history [47].

5.4.6 Conditional Entropy

A different approach is to use conditional information. The proceeding is the
same as for the already discussed entropies, except for the probability distri-
butions. Instead of the mutual probability p(i, j), the conditional probability

p(i|j) =
p(i, j)

p(j)
(5.33)

is applied. It is the probability, that X1 is observed in state i when X2 is in
state j. Starting from the Shennon–entropy, the conditional entropy for the
state j is given by

Hj(X1|X2) = −K
∑

i

p(i|j) log p(i|j) (5.34)

and by summation over j with respect to p(j)

H(X1|X2) = −K
∑

i,j

p(i, j) log p(i|j). (5.35)

The relation between Shannon and conditional entropy is given by

H(X1|X2) = H(X1, X2)−H(X2) (5.36)
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Substitution in equation 5.28 gives

H(X1|X2) = H(X1)−M(X1, X2) (5.37)

The asymmetry of the constrained entropy is only based on the differences
of the individual entropies H(X1) and H(X2)

H(X1|X2)−H(X2|X1) = H(X1)−H(X2) (5.38)

and not on information flow. [47]

5.4.7 Transfer Entropy

The concepts of time–delayed and conditional entropy lead to the so–called
transfer entropy. This denomination arises from the method of studying
dynamical structures by transition probabilities, rather than static proba-
bilities. The basic assumption is that the system X is approximated by a
stationary Markov process of order k

p(it+1|it, . . . , it−k+1) = p(it+1|it, . . . , it−k+1, it−k) (5.39)

Equation 5.39 states that the conditional probability to find X1 in state it+1

at time t + 1 is independent of state it−k. In line with [47], the notation

i
(k)
t = (it, . . . , it−k+1) is used from now on. The average information needed

to describe one additional state of the system, if all previous states are known,
is given by the entropy rate

G
(k)
X1

= −K
∑

p(it+1, i
(k)
t ) log p(it+1|i(k)t ) (5.40)

G
(k)
X1

equals the difference between the Shannon–entropies of the processes,
given by k+1 and k dimensional delay vectors constructed from X1. Schmitz
and Schreiber give a more detailed derivation for these findings in [47] and [1].

A way to extend the univariateG
(k)
X1

to a bivariateG
(k,l)
X1X2

is to adapt equation
5.39 to

p(it+1|i(k)t ) = p(it+1|i(k)t , j
(l)
t ) (5.41)

If equation 5.41 holds, then the state of X2 has no influence on the transition
probability on X1. By utilizing this matter of fact, the transfer entropy can
be introduced

H(X2 → X1) =
∑

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1|i(k)t , j
(l)
t )

p(it+1|i(k)t )
(5.42)

By construction, H(X2 → X1) is asymmetric, and therefore well–suited for
the purpose of identifying the direction of couplings between X1 and X2. For
a further interpretation of the transfer entropy, and an accurate choice of k
and l, the reader is again referred to [47] and [1].
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5.4.8 Interdependencies

A main concept, that is used to measure interdependencies, is that of syn-
chronization. This section is supposed to summarize the findings of [1] and
[48]. The first, and most demonstrative observation of synchronization was
that of Huygens in ’Horologium Oscillatorium’ in 1673. He describes two pen-
dulum clocks arranged on the same wall, which after a certain time swing
regularly, i.e. isochronously, irrespective of their amplitudes. The wall con-
ducted a coupling of the clocks. Schmitz describes the different types of
synchronization, that have been examined so far, in [1]:

• Identical synchronization

• Generalized synchronization

• Strong synchronization

• Weak synchronization

A system X consisting of two coupled channels X1 and X2 with

~x1,t+1 = F (~x1,t) (5.43)

~x2,t+1 = G(~x2,t, ~x1,t) (5.44)

is a drive–response system with X1 as driver and X2 as responder.

An identical synchronization is given, if the relation

F (·) = G(·, 0) (5.45)

holds, and the systems move, independent of initial values, synchronically,
i.e. ~x2,t = ~x1,t.

The generalized synchronization extends the condition of equality of ~x1,t

and ~x2,t to ~x2,t = ψ(~x1,t). Still, the response system X2 is only dependent on
the drive–system X1. When the transfer–function ψ(·) is a smooth function7,
the synchronization is considered to be strong. Depending on the context,
’smooth’ can also be referred to infinitely continuous differentiable. Synchro-
nizations of systems without this property are called weak.

The concept of synchronization does not provide the possibility to iden-
tify directions of a coupling, for example when ψ(·) is bijective. Also, general-
ized synchronizations are difficult to identify in general. When the underlying
process of X1 and X2 is known, the latter issue may be solved. Schmitz de-
scribes two methods to do so: the first is based on estimating the Lyapunov–
coefficient of the overall system X. Sufficient, and necessary condition to de-
tect generalized synchronization is the negativity of all Lyapunov–coefficients

7i.e. it is continuously differentiable
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of the response system X2. The second approach considers two response sys-
tems X2a and X2b, which are used to compare the synchronizations. The
main disadvantage of these methods is that the underlying process has to
be known. As this is often not the case, the process has to be estimated.
The estimation has to be very well–fitting, because synchronizations may
be weak and difficult to identify. Also, any noise could falsify the results.
Therefore, this method is not suitable for most time series that are observed
only once. Especially in biology, and the research of procedures in the human
body, the methods of detecting synchronization are promising. An example
are brainwaves during epileptic seizures. Identification of synchronization in
between the different channels of brainwaves could give important insights.

Even though it is hardly ever possible to identify synchronizations pre-
cisely, it is desirable to know, which part of the system is the driver, and
which the responder8. Arnhold et al. propose a measure, that is asymmetric,
and provides information about the direction of interdependence. The au-
thors design the measure to be robust against noise, and to be able to detect
weak couplings as well. The following methods are explained in detail in [48]:

Let X1 = (x1,1, . . . , x1,n) and X2 = (x2,1, . . . , x2,n) denote two differ-
ent simultaneously observed time sequences. The internal dynamics of the
system is not known. In particular, it is not known, whether the system is de-
terministic, or stochastic. The embedding vectors ~x1,i and ~x2,i are defined as

before. The arrays of all delay vectors will be denoted ~X1 = (~x1,1, . . . , ~x1,n)

and ~X2 = (~x2,1, . . . , ~x2,n). Let ri,j and si,j , j = 1 . . . , k denote the time in-
dices of the k nearest neighbors of ~x1,i and ~x2,irespectively. For each ~x1,i, the
squared mean Euclidean distance to its k closest neighbors is defined as

R
(k)
i ( ~X1) =

1

k

k∑

j=1

(~x1,i − ~x1,ri,j )
2 (5.46)

while the conditional mean squared Euclidean distance, conditioned on the
closest neighbor times in ~X2, is

R
(k)
i ( ~X1| ~X2) =

1

k

k∑

j=1

(~x1,i − ~x1,si,j
)2 (5.47)

R
(k)
i ( ~X2) and R

(k)
i ( ~X2| ~X1) are defined in complete analogy. If the dynamic

of ~X2 is independent of ~X1, then there is no particular relation between ri,j
and si,j , and

R
(k)
i ( ~X1| ~X2)≫ R

(k)
i ( ~X1) (5.48)

8in case such a relationship exists
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holds. Accordingly, Arnhold introduces the interdependence measure

S(k)( ~X1| ~X2) =
1

n

n∑

i=1

R
(k)
i ( ~X1)

R
(k)
i ( ~X1| ~X2)

(5.49)

which by construction is 0 < S(k)( ~X1| ~X2) ≤ 1. Therefore, this is a nor-
malized quantifier for the interdependence of ~X1 and ~X2. This interde-
pendence becomes maximal, when S(k)( ~X1| ~X2) → 1. The opposite depen-
dence S(k)( ~X2| ~X1) is designed in analogy. By comparing S(k)( ~X1| ~X2) and
S(k)( ~X2| ~X1), the more ’active’ channel of the system can be determined. If
S(k)( ~X1| ~X2) > S(k)( ~X2| ~X1), i.e. ~X1 depends more on ~X2 than the other
way around, ~X2 is called more active than ~X1. Still, this does not imply any
causal interpretation in general.

Another measure is introduced by comparingR
(k)
i ( ~X1| ~X2) to the mean squared

distances to random points

Ri( ~X1) =
1

n− 1

∑

j 6=i

(~x1,i − ~x1,j)
2 (5.50)

By using the geometrical average, a measure is

H(k)( ~X1| ~X2) =
1

n

n∑

i=1

Ri( ~X1)

R
(k)
i ( ~X1| ~X2)

(5.51)

H(k)( ~X1| ~X2) = 0 suggests (but does not proof) that ~X1 and ~X2 are com-
pletely independent, while H(k)( ~X1| ~X2) > 0, if nearness in ~X2 implies near-
ness in ~X1 for equal time partners as well. H(k)( ~X1| ~X2) < 0 holds, if close
pairs in ~X2 correspond mainly to distant pairs in ~X1. This is very unlikely,
but not impossible. The asymmetry under the exchange ~X1 ↔ ~X2 is the
main difference between the discussed quantifiers and mutual information.
For further discussion of the measures, the reader is referred to [48], and
to [44]. Schmitz summarizes the theoretical findings of [48] in [1].



Chapter 6

Application: Diesel Engine

In this chapter, the presented methods are applied on time series measured
in a diesel combustion engine. First, the manifold pressure p measured in
hPa (hectopascal), and the emitted NOX particles measured in ppm (parts
per million), are treated as univariate separate time series. Secondly, the de-
pendency between them is tested. A short description of a diesel engine, and
the measurement procedure is provided as well. Both the material and the
physical data have been kindly provided by the Linz Center of Mechatronics
GMBH, and the Institute for Design and Control of Mechatronical Systems.

6.1 The Engine

This section is supposed to give a basic overview of the functionality of a
diesel engine. For further description, the reader is referred to [55] and [56].

Basics. A diesel engine is an internal combustion engine, that initiates ig-
nition to burn fuel by using the heat of compression. This differs from a
petrol engine, that ignites a mixture of fuel and air by a spark plug. The
fuel is injected into the combustion chamber after a certain pressure and
heat1 are reached. There are several different possibilities of fuel injection2,
but there is no necessity to go into detail. The more modern the engine, the
better distributed are the injected fuel–droplets. Due to the heat of the com-
pressed air, the fuel inflames, until all droplets are burned, and the process
starts from beginning. The combustion in a Diesel engine results, next to
several emission gases, in Diesel particulate matter (DPM). DPM is com-
monly known as black soot from exhaust, which consists of unburned carbon
compounds. Black soot originiates in not fully–atomized fuel due to local
low temperatures. These local low temperatures occur at the cylinder walls,

1typically about 40.000hPa and 550◦C
2pre–chamber injection
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and at the outside of large fuel droplets. The mixture has less air to burn
there, and some of the fuel turns into a carbon deposit. Some modern diesel
engines feature diesel particulate filters, which catch a large part of the black
soot, and are automatically regenerated by burning the particles when they
are saturated.

The main particulate fraction of diesel exhaust consists of small particles.
Because of their small size, inhaled particles may easily penetrate deep into
the lungs. Also, the rough surfaces of these particles makes it easy for them
to bind with other toxins in the environment. Thus, the hazards of particle
inhalation increase, and can cause serious health issues. Many people suffer-
ing from soot–related health problems are close to diesel–powered engines
most of their time, e.g. truckers, or railroad workers. In general population,
adverse health effects have been observed as well [57] [58].

NOX particles in exhaust are often examined instead of soot particles,
because latter are very difficult to measure. The examination of dependencies
within an engine may give an idea of how to make the engine more efficient,
and to reduce the NOX exhaust. Obviously, this cannot be achieved by using
only manifold pressure observations. This thesis is rather supposed to give
an idea of the capabilities of the presented methods.

Measurements. The test block used to simulate a diesel engine under
realistic conditions consists of two parts: a dynamometer, which simulates the
load, and a four–cylinder two–liter diesel combustion engine with common
rail injection, variable geometry turbocharger, and exhaust gas recirculation
(EGR). The common rail is a tube, that supplies each computer–controlled
injector. EGR reduces the amount of NOX that the combustion generates
by recirculating a portion of an engine’s exhaust gas back to the engine
cylinders. The test block is dynamic, hence it is possible to simulate dynamic
processes like changes in the load, or jumps in engine speed at shifts. Sensors
measure different physical quantities in particular points, e.g.

• Temperature

• Air–pressure, e.g. manifold pressure p.

• Torsional moment

• Engine speed

• Airmass

• Exhaust gases, e.g. NOX , HC, CO

• Angle of gas pedal
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Figure 6.1: Sensors on the test block in Linz.

• Fuel–weight

The quantities applied are manifold pressure p, and number of NOX parti-
cles. The data are measured in different setups, that simulate different states
of the engine. The sampling time is 10ms, and the sample sizes are in the
order of 7× 103 to 14× 104, depending on the setup.

6.2 Procedure and Notations

This section is supposed to describe the applied test procedure, and to pro-
vide a list of notations and debreviations that are used in the next section.

Procedure. The manifold pressure and NOX data are equidistantly mea-
sured with frequency 100Hz3. Some of the figures show a different scale for
better visibility of key aspects. The goal of this application is the detection of
nonlinear dependencies in this two–channel system. At first, each channel is
exmined and tested individually by means of univariate surrogate data. The
observation of nonlinear behavior in a channel justifies multivariate meth-
ods, that are used afterwards. A list of algorithms for the construction of
surrogates is given in the following paragraph, as well as the corresponding

3i.e. the data is observed every 10ms.
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null hypotheses. In each engine setup, there are at least two surrogate algo-
rithms addressed. In this way, all methods are displayed through the four
setups. A table informs about all test results in each section respectively. 1
signifies that a null hypothesis is approved, 0 indicates its rejection. As test
statistic for univariate testing, an indicator of time reveral asymmetry T rev

is used. T rev is an easy computable, though powerful quantifier (see 4.44).
The test results are only valid in correspondence with this statistic, another
quntifier may lead to different findings. Then the data sets are treated as bi-
variate system, in order to examine the relationship between channels. This
is accomplished by bivariate surrogates. The test statistic that is used is the
cross–correlation sum (see 5.20). As before, there is a table in the end of each
section respectively, which contains the test results. The number of surro-
gates used for both univariate and multivariate testing is 39. This amount
corresponds to a significance level α = 0.05 for a two–sided test.(see sec-
tion 3.3) Each of the engine setups displays a certain state of the engine,
and can easily be interpreted as such by trained eye. The method of surro-
gates is data–driven only, hence any assumptions about these states are of
no consideration.

Notations. The next sections include notations and abbreviations that re-
quire explanation. The following list provides both the tested null hypothe-
ses and the algorithms, that are used to construct consistent surrogates. The
range goes from highly restrictive to more flexible, for both univariate and
multivariate data. The null hypotheses describe which underlying process is
assumed.

H
(1u)
0 : a linear Gaussian wide sense stationary process.

Methods: Unwindowed Fourier transform algorithm (FT)

H
(2u)
0 : a monotonic nonlinear transformation of a linear Gaussian wide sense

stationary process.

Methods: Amplitude adjusted Fourier transform algorithm (AAFT)

H
(3u)
0 : a linear Gaussian wide sense stationary process measured by a instan-

taneous invertible function that does not depend on time.

Methods: Iterative amplitude adjusted Fourier transform algorithm (IAAFT)

H
(4u)
0 : a linear wide sense stationary process.

Methods: Applied simulated annealing (SA)

H
(5u)
0 : a composition of segment–wise linear Gaussian wide sense stationary

process measured by a instantaneous invertible function that does not
depend on time.
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Methods: Iterative amplitude adjusted Fourier transform algorithm on stationary
segments (IAAFTseg)

H
(6u)
0 : a linear wide sense stationary process with drifting mean and variance.

Methods: Applied simulated annealing (SAdrift)

H
(7u)
0 : a linear Gaussian process.

Methods: Permutation of detail coefficients of the discrete wavelet transform
(DWTp)
Cyclic shift of detail coefficients of the discrete wavelet transform (DWTc)
Block–wise shift of detail coefficients of the discrete wavelet transform
(DWTb)

H
(8u)
0 : a linear Gaussian process measured by a instantaneous invertible func-

tion that does not depend on time.

Methods: IAAFT on detail coefficients of the maximum overlap discrete wavelet
transform (WIAAFT)
IAAFT on (pinned) detail coefficients of the maximum overlap discrete
wavelet transform (PWIAAFT)

H
(1b)
0 : a bivariate linear Gaussian wide sense stationary process.

Methods: Biivariate unwindowed Fourier transform algorithm (FTbv)

H
(2b)
0 : a bivariate linear Gaussian wide sense stationary process measured by

a instantaneous invertible function that does not depend on time.

Methods: Bivariate iterative amplitude adjusted Fourier transform algorithm (IAAFTbv)

H
(3b)
0 : a bivariate linear wide sense stationary process.

Methods: Bivariate applied simulated annealing (SAbv)

H
(4b)
0 : a bivariate linear Gaussian process.

Methods: Bivariate permutation of detail coefficients of the discrete wavelet trans-
form (DWTbv)
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6.3 Setup 1
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Figure 6.2: Setup 1: both the manifold pressure data (top) and the NOX

particle data (bottom) show evidence for nonstationarity, that may be diffi-
cult to distinguish from nonlinear dependencies.

6.3.1 Univariate Testing

The measurements of the first setup are displayed in figure 6.2. The data
channels have length 13801, and are simultaneously measured. Compara-
tively high peaks in both panes are indicators for either nonlinearity or non-
stationarity. There is only small jump discontinuity between the first and the
last data points. Hence, there is no need to shorten the series. The unwin-
dowed Fourier method is used to create surrogates for the manifold pressure
channel. Figure 6.3 displays a typical example of a (centered) FT surrogate.
Another surrogate, created by applied simulated annealing, is shown in fig-
ure 6.4. Whereas the FT surrogate does not reproduce the characteristics4

of X1 well, the SA surrogate seems to be more suitable. According to 4.25,
the cooling parameters are set as follows: the maximum lag for the esti-
mated auto–covariance equals 100, more long–term linear dependencies are
neglected. The choice a = 2, b = 1, and d = 1

50 signifies that half of the initial
temperature is reached after 1

50 of total steps. In this way, rather fast anneal-
ing is simulated. Truncation conditions are T = 0.000001, E = 0.000001, and

4e.g. high peaks
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Figure 6.3: A typical unwindowed FT surrogate is displayed. Because the
surrogate does not preserve basic characteristics of the manifold pressure
data, the FT algorithm does not seem to be the right approach.

total number of temperature decrements equals 10 ∗ n. CPU time for a sur-
rogate according to this annealing scheme is ≈ 3h. Although this is a rather
fast cooling scheme, good results cannot be reached within shorter time.
Thus, this method is unattractive when good results can be accomplished by
other algorithms as well. Figure 6.5 displays the test result of FT surrogates.
The test statistic differs significantly from the empirical distribution, which
is computed on 39 surrogates. The null hypothesis, that X1 is realization of
a linear Gaussian wide sense stationary process, can be rejected.

Figure 6.6 displays an AAFT surrogate for the NOX channel. As before,
the surrogate does not seem to feature the overall characteristics of X2. The
test statistic calculated on X2 is much lower than its estimated distribution
(see 6.7). The null hypothesis, that X2 is realization of a monotonic nonlinear
transformation of a linear Gaussian wide sense stationary process is rejected.
This result provides no guarantee for nonlinearity. Any other condition, like
stationarity, could be unmet as well.

6.3.2 Bivariate Testing

A bivariate FT surrogate is displayed in figure 6.8. Identical randomized
phases are added to the Fourier phases of both channel respectively. In
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Figure 6.4: A surrogate constructed by applied simulated annealing is
shown on top, and the corresponding energy function is displayed on the
bottom. The basic data structure is better preserved than by the surrogate
displayed in figure 6.3. The price for achieving this is a high computing time.
In order to reach an acceptable energy, lots of algorithm steps have to be
taken.

Manif. Pr. NOX Procedure

H
(1u)
0 0 0 FT

H
(2u)
0 0 0 AAFT

H
(3u)
0 1 0 IAAFT

H
(4u)
0 1 0 SA

H
(5u)
0 1 1 IAAFTseg

H
(6u)
0 1 1 SAdrift

H
(7u)
0 0 0 DWTp, DWTc, DWTb

H
(8u)
0 1 1 (P )WIAAFT

Table 6.1: Test results for the respective univariate channel in setup 1
demonstrate the difficulties of choosing the right surrogate method. The re-
sults of the three standard methods cannot be seen as indicators for nonlin-
earity, because their null hypotheses include stationarity as well. Segment–
wise IAAFT, SA with moving average in the cost function, and (P)WIAAFT
surrogates approve the corresponding hypotheses.
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Figure 6.5: The empirical distribution of time reversal asymmetry, which is
computed on 39 FT surrogates, is shown. The red bar indicates the ’region’ of
T rev in the histogram. The bar furthest to the left of the histogram includes
values up to −∞, and the bar furthest to the right includes values up to
∞. The dotted line marks the actual value of T rev. In this case, T rev is the

largest value, hence the null hypothesis H
(1u)
0 is rejected.

Result Procedure

H
(1b)
0 0 FTbv

H
(2b)
0 0 IAAFTbv

H
(3b)
0 0 SAbv

H
(4b)
0 0 DWTbv

Table 6.2: Test results for the bivariate system in setup 1 are distinct. None
of the null hypotheses is approved, and nonlinear structures in the data can
be assumed.

this way, linear structure within and between the surrogate channels are
preserved. Any other relations are not reproduced on the surrogates. This
method corresponds to the null hypothesis, that X is realization of an un-
derlying bivariate linear Gaussian wide sense stationary stochastic process.
Rejection of the null hypothesis (see figure 6.9) can be caused by occurring
nonstationarities in data.
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Figure 6.6: A typical surrogate created by AAFT.
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Figure 6.7: Time reversal asymmetry does not correspond to its empirically
estimated distribution.
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Figure 6.8: A bivariate FT surrogate features linear characteristics in and
between data channels. Any other structures are not preserved.
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Figure 6.9: Cross–correlation sum differs significantly from the empirical
distribution, that is estimated by bivariate FT surrogates. The null hypoth-
esis is rejected.
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6.4 Setup 2
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Figure 6.10: Data in setup 2 display an abrupt change, that indicates a
change in activity of the engine. This nonstationary behavior may lead to a
falsification of test results.

6.4.1 Univariate Testing

Data channels in the second engine setup consist of 213 measurements. Both
channels experience a structure break, manifold pressure at ≈ 5300, and
NOX at ≈ 6000 with a delay (see figure 6.10). The break may indicate a
change in the engine’s activity, e.g. a change into another gear. Anyway,
most methods have difficulties to preserve structure breaks on surrogates.
Figure 6.11 displays a typical surrogate, that is created by a cyclic shift of
detail coefficients of data. The jump manifests itself both as a small differ-
ently located jump and as other spurious remnants in the surrogate. IAAFT
surrogates on segments with length 1000 seem to preserve characteristics of
X1 well. Figure 6.12 shows a typical example for an IAAFTseg surrogate.
The break in structure has similar location, and behavior on other segments
is preserved as well. A disadvantage of this procedure is the loss of all de-
pendencies between segments. Nonetheless, if there are only few structure
breaks in data, then the IAAFTseg algorithm is an appropriate way to cre-



6. Application: Diesel Engine 78

1000 2000 3000 4000 5000 6000 7000 8000

1050

1100

1150

1200

1250

time

D
W

T
c s

u
rr

o
g
a
te

Figure 6.11: A typical surrogate, created by a cyclic shift of the detail co-
efficients, is displayed. There is evidence for nonstationarity in the surrogate
as well, but elsewhere.

ate surrogates.
Figure 6.13 pictures test results of IAAFTseg surrogates. The null hypoth-

esis, that a segment–wise linear Gaussian wide sense stationary process is
underlying, is approved.

The surrogate depicted in figure 6.14 is constructed by the IAAFT algo-
rithm. The corresponding null hypothesis says that the underlying process is
linear, Gaussian, wide sense stationary, and measured by an instantaneous
invertible function, that does not depend on time. The structure break in
data is reproduced as two jumps in the surrogate. Clearly, this is not in-
tended. The test result is displayed in figure 6.15.

6.4.2 Bivariate Testing

The bivariate surrogate in figure 6.16 is constructed by the bivariate IAAFT
algorithm. This method has the same difficulties as the univariate IAAFT
method, and is not able to preserve structure breaks. Due to a minimal
distance between the random Fourier phases of X1 and X2, both channels

show a similar behavior. Null hypothesis H
(2b)
0 is rejected (see figure 6.17),
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Figure 6.12: In order to reproduce the jump in data, segment–wise sur-
rogates are created and fit together. In this way, the resulting surrogates
indicate nonstationary behavior similar to that of the original data.
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Figure 6.13: TRA test statistic corresponds to the distribution, that is
empirically estimated by 39 IAAFTseg surrogates. The null hypothesis, that
includes a drifting mean, is approved.
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Figure 6.14: The IAAFT algorithm is not able to preserve nonstationarities
occuring in NOX channel in setup 2.
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Figure 6.15: Test result for 39 AAFT surrogates: the null hypothesis of
an underlying linear Gaussian wide sense stationary process measured by an
instantaneous invertible function, that does not depend on time, is rejected.
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Manif. Pr. NOX Procedure

H
(1u)
0 0 0 FT

H
(2u)
0 0 0 AAFT

H
(3u)
0 1 0 IAAFT

H
(4u)
0 0 1 SA

H
(5u)
0 1 1 IAAFTseg

H
(6u)
0 0 1 SAdrift

H
(7u)
0 0 0 DWTp, DWTc, DWTb

H
(8u)
0 1 1 (P )WIAAFT

Table 6.3: Test results for univariate channels in setup 2 is amiguous. Only
the null hypotheses that correspond to IAAFTseg and (P)WIAAFT surro-
gates are approved on both channels. Former do not consider any correlations
between segments, and this result has to be questioned. According to these
results, nonlinear bivariate methods should be at least considered.
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Figure 6.16: A typical bivariate surrogate of setup 2 is shown, which is
created by the bivariate IAAFT method.
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Figure 6.17: Test result for IAAFT surrogates of setup 2.

Result Procedure

H
(1b)
0 0 FTbv

H
(2b)
0 0 IAAFTbv

H
(3b)
0 1 SAbv

H
(4b)
0 0 DWTbv

Table 6.4: Test result of setup 2: only the null hypothesis that corresponds
to simulated annealing with integrated cross–correlation is approved. Note,
that the break in data behavior may distort this result.

and a time independent instantaneous invertible function is not suited to
explain data behavior sufficiently.
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6.5 Setup 3
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Figure 6.18: Both manifold pressure and NOX particles show evidence of
an indicated oscillation. In fact, this sinusoidal oscillation with increasing
frequency is artificially induced to the system.

6.5.1 Univariate Testing

Both channels displayed in figure 6.18 show evidence for an oscillation with
increasing frequency. A random permutation of detail coefficients of X1 is
used to construct surrogates like that in figure 6.19. This method is suited
to preserve main characteristics, such as trend, but fails to preserve details
at higher frequencies. Time reversal asymmetry deviates from its estimated
distribution. Hence, an underlying linear Gaussian process is not qualified
to explain the data behavior adequately.

Figure 6.21 shows a surrogate, that is created by a cyclic shift of detail
coefficients at each scale individually. This method is able to reproduce char-
acteristics of X2 on a surrogate well, but with a shift in time. Nevertheless,
a very similar look to the original data reached. In this case, the null hy-
pothesis, that a linear Gaussian process is underlying, is approved (see figure
6.22). An elaborate choice of surrogate algorithm is crucial for qualitative
testing.
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Figure 6.19: A random permutation of detail coefficients at each scale in-
dividually is suited for preserving the overall trend of data, but not for pre-
serving more detailed characteristics, like high frequency oscillations in setup
3.
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Figure 6.20: Test result for DWTp surrogates of setup 3.
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Figure 6.21: A cyclic shift of detail coefficients at each scale individually is
suited to preserve oscillations in setup 3. Result is very look–alike surrogates.
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Figure 6.22: The TRA quantifier is in line with its estimated distribution.

Null hypothesis H
(7u)
0 is approved.
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Manif. Pr. NOX Procedure

H
(1u)
0 1 1 FT

H
(2u)
0 1 1 AAFT

H
(3u)
0 1 1 IAAFT

H
(4u)
0 1 1 SA

H
(5u)
0 1 1 IAAFTseg

H
(6u)
0 1 1 SAdrift

H
(7u)
0 0 0 DWTp, DWTc, DWTb

H
(8u)
0 1 1 (P )WIAAFT

Table 6.5: Test results for setup 3 show a tendency towards approving the
range of null hypotheses. Even the most restrictive of them is accepted. Only
DWT algorithms lead to a rejection. The oscillations in data may bias these
results.

Result Procedure

H
(1b)
0 1 FTbv

H
(2b)
0 1 IAAFTbv

H
(3b)
0 1 SAbv

H
(4b)
0 0 DWTbv

Table 6.6: The bivariate surrogates for setup 3 display an approval of most
null hypotheses. The result is consistent with univariate testing, where the
DWT algorithms lead to a rejection of the corresponding H0 as well.

6.5.2 Bivariate Testing

The bivariate extension of DWTp algorithm preserves overall trends both in
and between channels. However, surrogates do not show the same oscillations
as X (see figure 6.23). This may be a possible explanation for rejection of
the null hypothesis (see figure 6.24). A linear process may not be able to
explain the oscillations sufficiently.
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Figure 6.23: The bivariate DWT algorithm preserves the overall trend in
data, but is not able to reproduce fine oscillations.
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Figure 6.24: Null hypothesis H
(4b)
0 is rejected.
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6.6 Setup 4
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Figure 6.25: The manifold pressure is highly vibrating in channel 4, whereas
NOX values seem to experience a drifting mean.

6.6.1 Univariate Testing

In setup 4, channels show differing behavior. X1 is a highly vibrating signal,
that does not show any irregularities in mean, or variance.X2 shows a drifting
mean, i.e. a decreasing relative amount of NOX ppm (see figure 6.25). Figure
6.26 displays a PWIAAFT surrogate for X1. Since the time series has no
significant peaks or irregularities, every 15th measurement is pinned. In this
way, surrogates with the same vibrations as X1 are constructed. The TRA
clearly corresponds to its empirically estimated distribution (see figure 6.27),
hence this data series a linear process seems to accurately describe the data
structure .

As mentioned, NOX channel shows a drifting mean, that has to be re-
produced on surrogates, in order to get convincing test results. This is ac-
complished by introducing a moving average of length 50, and an overlap
of 10 into the cost function of applied simulated annealing. A slow cooling
scheme is chosen: 1000 accepted annealing steps are needed, before tem-
perature decrement happens. Truncation criterion is T = 0.01. A typical
surrogate can be seen in figure 6.28. The corresponding null hypothesis, that
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Figure 6.26: The PWIAAFT algorithm, with every 15th measurement
pinned, produces a surrogate similar to X1.
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Figure 6.27: The TRA corresponds to its empirically distribution, estimated
by 39 PWIAAFT surrogates.
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Figure 6.28: The implementation of a moving average in the energy function
of simulated annealing enables to reproduce a drifting mean on a surrogate.

Manif. Pr. NOX Procedure

H
(1u)
0 1 1 FT

H
(2u)
0 1 1 AAFT

H
(3u)
0 1 1 IAAFT

H
(4u)
0 1 0 SA

H
(5u)
0 1 0 IAAFTseg

H
(6u)
0 1 1 SAdrift

H
(7u)
0 1 0 DWTp, DWTc, DWTb

H
(8u)
0 1 1 (P )WIAAFT

Table 6.7: Test results of setup 4. There is clear evidence for linearity in the
first channel. X1 does not show irregular nonstationarities that could bias
the result. The outcome of the tests for X2 are different. SA, IAAFTseg, and
DWT algorithms lead to a rejection of the corresponding null hypotheses.
Reason could be the drifting mean.

the underlying process is linear with drifting mean, is approved (see figure
6.29)
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Figure 6.29: The null hypothesis including a drifting mean is approved.

Result Procedure

H
(1b)
0 1 FTbv

H
(2b)
0 1 IAAFTbv

H
(3b)
0 0 SAbv

H
(4b)
0 1 DWTbv

Table 6.8: Most of the null hypotheses are approved by the bivariate surro-
gates of setup 4. Hence, an underlying linear dynamic seems feasible. How-
ever, these findings have to be treated cautiously.

6.6.2 Bivariate Testing

Bivariate surrogates are created by implementing estimated cross–covariances
into the energy function of simulated annealing (see figure 6.30). Reproduc-
ing only the linear characteristics ofX does not seem to capture the structure
of the bivariate system very well. Cross–correlation sum cleary differs from
its empirically estimated distribution. This is depicted in figure 6.31.
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Figure 6.30: The lower channel of a bivariate SA surrogate differs from X2,
whereas the upper channel and X1 show similar behavior.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

x 10
−3xCorrSum

#
 o

f 
o
cc

u
rr

en
ce

Figure 6.31: Cross–correlation sum calculated on X differs from its esti-
mated distribution.



Chapter 7

Conclusion

Throughout this thesis, different techniques to create surrogates for testing
of nonlinearity have been presented. First, standard Fourier–based meth-
ods have been discussed. They are based on destruction of both nonlin-
ear and nonstationary dependencies through Fourier phase randomization.
Then, a more sophisticated method has implemented an additional Fourier–
amplitude adjustment step, in order to assimilate the point–wise distribution
of a surrogate. This allows to test the possibility of a nonlinear function that
measures a linear process. Afterwards, a technique coming from the field
of thermo–dynamics has been introduced: applied simulated annealing. This
method is more flexible than the standard methods, and enables reproduction
of certain characteristics with arbitrary exactness. The price for exactness is
a high computing time, and a vast amount of parameters, that have to be
fine–tuned. In order to exclude a bias in test results, that comes from nonsta-
tionarity, other methods have been discussed. The most important class are
wavelet–based surrogates. Detail coefficients of the (maximal ovelap) discrete
wavelet transform are settled in the time–phase plane. Their manipulation
preserves both linear characteristics and certain nonstationarities in data.
The difficulty is to decide whether linear characteristics are reproduced well
enough. Extensions of these methods have been discussed as well, together
with a list of corresponding null hypotheses that range from highly restric-
tive to acceptably general. Basic test statistics have been addressed as well.
Which of them should be used has to be decided each time individually.
All these methods are powerful in statistical hypothesis testing, and have
been applied on different data of a diesel combustion engine. The difficulty
to choose the right surrogate algorithm has been demonstrated. Most of the
difficulties origin in nonstationary behavior of the time series. Considering
growing CPU power, simulated annealing may be a valuable tool in future
nonlinearity testing. This method could help to understand and interpret
nonlinear systems with different channels influencing each other in a bet-
ter way. In context of combustion engines, statistical techniques, like the
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method of surrogate data, are valuable tools for aiming goals like decreasing
pollution, and increasing efficiency.



Appendix A

Algorithms and Methods

Appendix A provides an overview of important algorithms to create surrogate
data, and some useful MATLAB® source code extracts as well.

A.1 (Un)Windowed Fourier Transform Algorithm

Algorithm A.1: (W)FT

1: Insert data X ∈ R
(1×n)

⊲ if not x1 ≈ xn, windowing should be applied

2: X
DFT−→ F(X)

⊲ DFT. . . Discrete Fourier transform

3: F(X) −→ F̃(X): replace φk by random numbers in [0, 2π)
⊲ k = −⌊(n−1

2 )⌋, . . . , ⌊(n2 )⌋
⊲ φk. . . Fourier phases

4: F̃(X)
IDFT−→ S

⊲ IDFT. . . Inverse discrete Fourier transform

5: return

MATLAB® computes the (inverse) discrete Fourier transform by common
(inverse) fast Fourier transform algorithm. The function fft returns a 1×n–
dimensional vector of complex numbers. The corresponding Fourier ampli-
tudes are computed by amp=abs(fft(X)). The sequence tmp=2*pi*rand(1,n/2)
returns a row vector of n/2 pseudo–random numbers in [0, 2π). Alterna-
tively, if n is odd, tmp=2*pi*rand(1,(n-1)/2) has to be used. In order to
get a real–valued surrogate, the randomized phases have to be symmetrized.
This can be achieved by the sequence phase=[tmp,-1*fliplr(tmp)], where
fliplr(tmp) returns the phases with columns flipped about a vertical axis.
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Finally, the sequence ifft(amplitude.*(cos(phase)+1i*sin(phase))) re-
turns the surrogate.

A.2 Amplitude Adjusted FT Algorithm

Algorithm A.2: AAFT

1: Insert data X ∈ R
(1×n)

2: create Gaussian distributed random vector Y ∈ R
(1×n)

3: Y −→ Ỹ : rescale Y according to X
⊲ match indices according to the ascending order of X

4: Ỹ
DFT−→ F(Ỹ )

⊲ DFT. . . Discrete Fourier transform

5: F(Ỹ ) −→ F̃(Ỹ ): replace φk by random numbers in [0, 2π)
⊲ k = −⌊(n−1

2 )⌋, . . . , ⌊(n2 )⌋
⊲ φk. . . Fourier phases

6: F̃(Ỹ )
IDFT−→ Ŷ

⊲ IDFT. . . Inverse discrete Fourier transform

7: X −→ S: rescale X according to Ŷ
⊲ match indices according to the ascending order of Ŷ

8: return

Creating a vector of n Gaussian distributed random numbers can easily be
done by the MATLAB® function randn(1,n). A rescaled vector of X is
computed by the sequence [B,ind]=sort(X). ind∈ N

(1×n) is a permutation
vector of the corresponding indices of X with B=X(ind).
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A.3 Iterative AAFT Algorithm

Algorithm A.3: IAAFT

1: Insert data X ∈ R
(1×n)

2: X −→ X̃: sort X in ascending order

3: X −→ S(0): random permutation of X
⊲ Initializing

4: while S(i+1) 6= S(i) do

5: S(i) DFT−→ F(S(i))
⊲ DFT. . . Discrete Fourier transform

6: F(S(i)) −→ F̂(S(i)): replace Fourier amplitudes by Ak
⊲ k = −⌊(n−1

2 )⌋, . . . , ⌊(n2 )⌋
⊲ Ak. . . Fourier amplitudes of X

7: F̂(S(i))
IDFT−→ S̃(i)

⊲ IDFT. . . Inverse discrete Fourier transform

8: S̃(i) −→ S(i+1): rescale S(i) according to X̃
⊲ match indices according to the ascending order of X̃

9: i← i+ 1

10: end while

11: return

The replacement of the Fourier amplitudes by Ak can be achieved by the
sequence A_k.*(fft(X)./abs(fft(X))). All other MATLAB® commands
that were used for the IAAFT algorithm are already mentioned in the pre-
vious descriptions.
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A.4 Applied Simulated Annealing

Algorithm A.4: SA

1: Insert data X ∈ R
(1×n)

2: X −→ S(0): random permutation of X
⊲ Initializing

3: Calculate E(S(0)) and T (0)

⊲ Initial energy and temperature

4: repeat

5: S(i) −→ S̃(i): s
(i)
j ↔ s

(i)
k

⊲ Switch indices j, k ∈ 1, . . . , n, j 6= k

6: Calculate E(S̃(i))
⊲ Energy of the surrogate candidate

7: if E(S̃(i)) ≤ E(S(i)) then

8: S(i+1) ← S̃(i) ⊲ Configuration accepted
9: else

10: if e
(−

E(S̃(i))−E(S(i))

T (i)
)
> r ∈ [0, 1) then

11: S(i+1) ← S̃(i) ⊲ Configuration accepted
12: else

13: S(i+1) ← S(i) ⊲ Configuration rejected
14: end if

15: end if

16: if cooling condition fulfilled then

17: T (i+1) ← αT (i) ⊲ Decreasing the temperature
18: else

19: T (i+1) ← T (i)

20: end if

21: i← i+ 1

22: until break condition
23: return

The estimated auto–covariance is computed by xcov(X) with MATLAB®.
In order to increase efficiency of the code, only elements of xcov that are
affected by a change of indices could be calculated as well.
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A.5 Discrete Wavelet Transform Algorithm

Algorithm A.5: DWT

1: Insert data X ∈ R
(1×n)

2: X
DWT−→ W(X)

⊲ DWT. . . Discrete wavelet transform

3: W(X) −→ W̃(X): manipulate dj,·
⊲ dj,· . . . detail coefficients at scale j

4: W̃(X)
IDWT−→ S

⊲ IDWT. . . Inverse discrete wavelet transform

5: return

Several ways to compute the (inverse) discrete wavelet transform are imple-
mented in MATLAB®. For the purpose of this thesis, the functions dwt and
idwt from the Wavelet ToolboxTM were used. The dwt command performs
a wavelet decomposition with respect to a particular wavelet, e.g. ’db6’ for
Daubechies 6 tap wavelet.

A.6 (Pinned) Wavelet IAAFT Algorithm

Algorithm A.6: (P)WIAAFT

1: Insert data X ∈ R
(1×n)

2: X
MODWT−→ W(X)

⊲ MODWT. . . Maximal overlap discrete wavelet transform

3: W(X)
IAAFT−→ W̃(X)

⊲ Create IAAFT–surrogate for dj,· at each scale j
⊲ dj,· . . . detail coefficients at scale j

4: W̃(X)
IMODWT−→ S̃

⊲ IDWT. . . Inverse maximal overlap discrete wavelet transform

5: X −→ S: rescale X according to S̃
⊲ match indices according to the ascending order of S̃

6: return
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A.7 Bivariate Fourier Transform Algorithm

Algorithm A.7: BFT

1: Insert data X ∈ R
(2×n)

⊲ if not X(:, 1) ≈ X(:, n), windowing should be applied

2: X
DFT−→ F(X)

⊲ DFT. . . Discrete Fourier transform on each row

3: F(X) −→ F̃(X): replace φ( :, k) by the same random numbers in [0, 2π)

⊲ k = −⌊(n−1
2 )⌋, . . . , ⌊(n2 )⌋

⊲ φ( :, k). . . Fourier phases

4: F̃(X)
IDFT−→ S

⊲ IDFT. . . Inverse discrete Fourier transform on each row

5: return
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A.8 Bivariate Iterative AAFT Algorithm

Algorithm A.8: BIAAFT

1: Insert data X ∈ R
(2×n)

2: for m = 1 To 2 do

3: X(m, :) −→ X̃(m, :): sort X(m, :) in ascending order

4: X(m, :) −→ S(0)(m, :): random permutation of X(m, :)
⊲ Initializing

5: while S(i+1)(m, :) 6= S(i)(m, :) do

6: S(i)(m, :)
DFT−→ F(S(i)(m, :))

⊲ DFT. . . Discrete Fourier transform

7: F(S(i)(m, :)) −→ F̂(S(i)(m, :)): replace Fourier amplitudes by
A(m, k)
⊲ k = −⌊(n−1

2 )⌋, . . . , ⌊(n2 )⌋
⊲ A(m, k). . . Fourier amplitudes of X(m, :) that fulfill equation 5.12

8: F̂(S(i)(m, :))
IDFT−→ S̃(i)(m, :)

⊲ IDFT. . . Inverse discrete Fourier transform

9: S̃(i)(m, :) −→ S(i+1)(m, :): rescale S(i)(m, :) according to X̃(m, :)
⊲ match indices according to the ascending order of X̃(m, :)

10: i← i+ 1

11: end while

12: end for

13: return



A. Algorithms and Methods 102

A.9 Bivariate Applied Simulated Annealing

Algorithm A.9: BSA

1: Insert data X ∈ R
(2×n)

2: X −→ S(0): random permutation of columns of X
⊲ Initializing

3: Calculate E(S(0)) and T (0)

⊲ Initial energy and temperature

4: repeat

5: S(i) −→ S̃(i): s
(i)
j ↔ s

(i)
k

⊲ Switch indices j, k ∈ 1, . . . , n, j 6= k

6: Calculate E(S̃(i))
⊲ Energy of the surrogate candidate

7: if E(S̃(i)) ≤ E(S(i)) then

8: S(i+1) ← S̃(i) ⊲ Configuration accepted
9: else

10: if e
(−

E(S̃(i))−E(S(i))

T (i)
)
> r ∈ [0, 1) then

11: S(i+1) ← S̃(i) ⊲ Configuration accepted
12: else

13: S(i+1) ← S(i) ⊲ Configuration rejected
14: end if

15: end if

16: if cooling condition fulfilled then

17: T (i+1) ← αT (i) ⊲ Decreasing the temperature
18: else

19: T (i+1) ← T (i)

20: end if

21: i← i+ 1

22: until break condition
23: return

In the bivariate case, the cross–covariance has to be computed as well.
Again, this is done by the xcov command, but with both rows as input:
xcov(X(1,:),X(2,:)).
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A.10 Bivariate Discrete Wavelet Transform Algo-
rithm

Algorithm A.10: BDWT

1: Insert data X ∈ R
(2×n)

2: X
DWT−→ W(X)

⊲ DWT. . . Discrete wavelet transform on each row

3: W(X) −→ W̃(X): manipulate dj,·
⊲ dj,· . . . detail coefficients at scale j for each row
⊲ Identical manipulation of dj,·(1, :) and dj,·(2, :)

4: W̃(X)
IDWT−→ S

⊲ IDWT. . . Inverse discrete wavelet transform on each row

5: return
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