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Kurzfassung

Diese Arbeit gibt einen Überblick über jüngere Entwicklungen der
Theorie der Algebren verallgemeinerter Funktionen im Sinne von
Colombeau auf differenzierbaren Mannigfaltigkeiten. Ursprünglich
von J.-F. Colombeau in den achtziger Jahren entwickelt, enthal-
ten Colombeau-Algebren glatte Funktionen als Unteralgebra sowie
Distributionen als einen linearen Unterrraum und ermöglichen es
somit, nichtlineare Operationen auf Distributionen zu erklären. Dies
spielt vor allem bei der Modellierung von nichtlinearen physikalisch-
en Phänomenen – etwa in der allgemeinen Relativitätstheorie – eine
wichtige Rolle. Es zeigt sich, dass wohlbekannte Konzepte wie der
Fluss von Vektorfeldern und pseudo-Riemannsche Geometrie sinnvoll
in diesem Kontext erklärt werden können. Als physikalische Anwen-
dung dieser Theorie werden die Geodäten einer durch eine impulsive
Gravitationswelle beschriebenen Raum-Zeit bestimmt.

Abstract

This work gives a survey on recent developments in the field of al-
gebras of generalized functions in the sense of Colombeau on dif-
ferentiable manifolds. Developed by J.-F. Colombeau in the 1980s,
Colombeau Algebras contain smooth functions as a subalgebra and
distributions as a linear subspace and thus provide a way to define
nonlinear operations on distributions. This plays an important role
in the modelling of nonlinear physical phenomena, for instance in the
theory of general relativity. It turns out that well-known concepts
like the flow of vector fields and pseudo-Riemannian geometry can be
extended to this new setting. As a practical application in physics
we consider a space-time given by an impulsive gravitational wave
and determine its geodesics.

vii





Chapter 1

Notation and Terminology

This section introduces notational conventions and tools used throughout
the rest of this work. Readers with no more than a basic background
in differential geometry will find [Die72, Abr67, GHV72] to be valuable
resources to deepen their knowledge sufficiently to follow the presentation.
Care was taken not to overwhelm those only partly adept in the language
of differential geometry but to explain in more detail than would be strictly
necessary.

Real Analysis

In general, the letters denoting dimensions will not be explicitly introduced
and should be taken from the context. N is the set of all positive integers,
N0 of all nonnegative ones. R+ is the set of nonnegative real numbers.
Partial derivatives with respect to a multi-index α = (α1, . . . , αk) ∈ Nk

0 are
denoted by ∂α, D is the total derivative. We define A ⊂⊂ B to mean that
A is a compact subset of B◦ (the interior of B). ‖f‖∞ is the uniform norm
of a real-valued function f . The expression smooth means differentiable of
infinite order. Br(x) is the open Euclidean ball of radius r around x ∈ Rn.
While |·| is used for the absolute value in R, ‖·‖ shall be the Euclidean norm
on Rn.

Sheaves

We will also emplay the notion of a sheaf; as giving the whole background
about sheaves would certainly cause acute mental strain in both the author
and the reader, the following will suffice for our purposes. With (Ωλ)λ∈Λ an
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1. Notation and Terminology

open covering of U ⊆ Rn a sheaf of differential algebras (or modules, rings,
...) on U is a mapping which assigns to each Ω ⊆ U a differential algebra
(module, ring, ...) G(U) such that the following conditions are satisfied:

(S0) For u ∈ G(Ω) and Ω′′ ⊆ Ω′ ⊆ Ω, (u|Ω′)|Ω′′ = u|Ω′′ .

(S1) If u, v ∈ G(Ω) and u|Ωλ
= v|Ωλ

for all λ ∈ Λ then u = v.

(S2) If there is given a family of uλ ∈ G(Ωλ) satisfying uλ|Ωλ∩Ωµ = uµ|Ωλ∩Ωµ

for all λ, µ ∈ Λ with Ωλ ∩ Ωµ 6= ∅, then there exists a u ∈ G(Ω) such
that u|Ωλ

= uλ for all λ ∈ Λ.

Nets

A net is defined as a mapping on a directed set into any other set ([Kel55]).
There are various ways of denoting nets; as the main objects of Colombeau
algebras are nets of functions (or points) we strive for a presentation which
is short and readable but still explicit enough to be intuitively understood.
We will only consider such nets where also the dependence on the index
ε ∈ I := (0, 1] is smooth; therefore a net will always be an element of some
C∞(I×Ω,Ω′) for some sets Ω,Ω′ such that we can speak of smoothness. We
will denote such a net by a symbol indexed by ε, e.g., uε ∈ C∞(I × Ω,Ω′).
Note that a priori the symbol uε has no relationship at all with the symbol
u (though often it will be defined to have such). The class of a net uε with
respect to some factor space will be written as [uε].

Differential Geometry

We will find ourselves situated on manifolds which are without exception
smooth, paracompact, Hausdorff, connected, and of finite dimension; the
letters X, Y and Z shall denote such. A chart in X where the domain U is
an open set in X and ϕ is a homeomorphism of U onto an open set in Rn is
written as (U,ϕ) and an atlas of X is given as {(Uα, ϕα) | α ∈ A} without
further specification of the index set A.

X(X) and X∗(X) shall be the space of vector fields and one forms on a
manifold X, respectively, X(α) the space of vector fields along a curve α in
X.

A vector bundle E overX with projection π : E → X is written as (E,X, π).
Vector bundle charts (fibered charts in [Die72]) will be given as mappings

2



of the form

Ψ : π−1(U) → ϕ(U)× Rn′

x 7→ (ϕ(π(x)),ϕ(x))

where (U,ϕ) is a chart in X and ψ is a linear isomorphism of each fiber
π−1(x), x ∈ U to Rn′ . Vector bundle charts shall be denoted by uppercase
Greek letters as in (U,Φ) with U ⊆ X; the corresponding lowercase Greek
letter ϕ will stand for the chart in the base manifold and, in bold script like
ϕ, for the linear isomorphism.

The space of smooth sections of a vector bundle (E,X, π) is denoted by
Γ(X,E). The local expression sα of a section s ∈ Γ(X,E) relative to a
vector bundle chart (Uα,Φα), given by sα := Φα ◦ s ◦ ϕ−1

α , is a mapping of
the form

ϕ(Uα) → ϕ(Uα)× Rn′

x→ (x, s1
α, . . . , s

n′

α ).

The siα are called components of s.

If (E,X, πX) and (F, Y, πY ) are vector bundles, a vector bundle homomor-
phism from E to F is a pair (f, g) where f : E → F and g : X → Y are
smooth mappings satisfying g ◦ πX = πY ◦ f and such that the restriction
f |π−1

X (x) : π−1
X (x) → π−1

Y (g(x)) is linear on each fiber π−1
X (x), x ∈ E of E.

We will simply write f in place of g and f in place of (f, f). The space of
vector bundle homomorphisms from E to F is denoted by Hom(E,F ).

The local expression of f ∈ Hom(E,F ) with respect to vector bundle charts
(U,Φ) in E and (V,Ψ) in F is of the form

ϕ(U)× Rn′ → ψ(V )× Rm′
(1.1)

(x, ξ) 7→ (f
(1)
ΨΦ(x), f

(2)
ΨΦ(x) · ξ)

where f
(1)
ΨΦ = ψ ◦ f ◦ ϕ−1 is a smooth mapping of ϕ(U) into ψ(V ) and f

(2)
ΨΦ

a smooth mapping of ϕ(U) into the set of linear mappings from Rn′ to Rm′

(identified with the set of n′ ×m′-matrices over R).

A Riemannian metric on a vector bundle (E,X, π) is defined as a section
g ∈ Γ(X,E0

2) such that g(p) is symmetric and positive definite on every
fiber ([GHV72], Ch. II, 2.17). A norm ‖·‖g on the fibers of E is then
induced by ‖e‖g := g(π(e))(e, e) ∀e ∈ E.

The following Lemma will be used frequently in order to derive estimates
chart-wise on compact sets.
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1. Notation and Terminology

Lemma 1.1. Let K ⊂⊂ X and (Uα, ϕα) be an atlas of X. Then there are
r ∈ N, αi ∈ A and Ki ⊂⊂ Uαi

for i = 1, . . . , r such that K =
⋃r
i=1Ki.

Proof. For each p ∈ K there is an αp ∈ A with p ∈ Uαp . As X is regular
as a topological space we can choose open neighborhoods Up of p satisfying
Up ⊂⊂ Uαp for all p ∈ K. Because K ⊆

⋃
p∈K Up and K is compact

there are r ∈ N and p1, . . . , pn ∈ K such that K ⊆
⋃r
i=1 Upi

. We set
Ki := K ∩ Upi

.

Differential Operators

If E and F are complex vector bundles over X, a (C∞ linear) differential
operator from E to F is a continuous linear mapping P : Γ(X,E) → Γ(X,F )
for which suppPu ⊆ suppu holds for all sections u ([Die72]). Operators
satisfying this latter condition are called local. If on E and F we have vector
bundle charts (U,Φ) and (U,Ψ), respectively, the maps

f 7→ ϕ ◦ f ◦ ϕ−1 : Γ(U,E) → C∞(ϕ(U))n
′

and

f 7→ ψ ◦ f ◦ ϕ−1 : Γ(U, F ) → C∞(ϕ(U))n
′′

are isomorphisms. For any differential operator P from E to F , the value
(P · f)|U depends only on f |U . Therefore there exists a linear mapping
Q : C∞(ϕ(U))n

′ → C∞(ϕ(U))m
′
such that

Γ(U,E)
P−−−→ Γ(U, F )

f 7→ϕ◦f◦ϕ−1

y yf 7→ψ◦f◦ϕ−1

C∞(ϕ(U))n
′ −−−→

Q
C∞(ϕ(U))m

′

is commutative, i.e.

θ ◦ (P · f)|U ◦ ϕ−1 = Q · (ϕ ◦ (f |U) ◦ ϕ−1). (1.2)

Q is then called the local expression of the operator P corresponding to the
charts ϕ, Φ and Ψ.

Peetre’s theorem states that such P can be characterized locally in terms
of linear mappings and partial derivatives.

Theorem 1.2 (Peetre). In order that a linear mapping P of Γ(X,E) into
Γ(X,F ) is a differential operator, it is necessary and sufficient that for each
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x ∈ X there exist vector bundle charts of E and F at the point x such that
the corresponding local expression of P is of the form

g 7→
∑
|α|≤p

Aα · ∂αg,

where, for each multi-index α such that |α| ≤ p, the mapping y 7→ Aα(y) is
a C∞-mapping of ϕ(U) into the vector space HomK(Kn′ ,Km′

) (the space of
K-linear mappings which can be identified with the space of m′×n′ matrices
over K).
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Chapter 2

Introduction to Colombeau
Algebras

It is assumed that the reader already is familiar with the special variant
of Colombeau algebras on Rn. The most important definitions and results
will be given in this chapter in order to fix notation and terminology and
to serve as reference points for the extension of concepts to manifolds. For
proofs and further background, consult [GOKS01].

Generalized functions on Rn

The nets of functions we consider are indexed by I = (0, 1]. The constituting
parts of the Colombeau algebra on a subset Ω of Rn are then defined by

E(Ω) :=
{
uε ∈ C∞(I × Ω)

}
,

EM(Ω) :=
{
uε ∈ E(Ω)

∣∣ ∀K ⊂⊂ Ω ∀α ∈ Nn
0

∃N ∈ N : sup
x∈K

‖∂αuε(x)‖ = O(ε−N)
}
,

N (Ω) :=
{
uε ∈ EM(Ω)

∣∣ ∀K ⊂⊂ Ω ∀α ∈ Nn
0

∀m ∈ N : sup
x∈K

‖∂αuε(x)‖ = O(εm)
}
,

and the algebra itself by

G(Ω) :=EM(Ω)/N (Ω).
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2. Introduction to Colombeau Algebras

E(Ω) is called base space, nets in EM(Ω) and N (Ω) moderate and negligi-
ble functions, respectively. G(Ω) is the Colombeau algebra of generalized
functions on Ω, its elements are written as uε +N (Ω) or [uε]. G(Ω) is an
associative commutative algebra with unit [(ε, x) 7→ 1] where operations are
defined component-wise, i.e. [uε] + [vε] := [uε + vε] and [uε] · [vε] := [uε · vε].
It is also a differential algebra with respect to ∂i[uε] := [∂iuε]. Important
properties of G(Ω) are the existence of injective embeddings

ι : D′(Ω) → G(Ω) and σ : C∞(Ω) → G(Ω) (2.1)

and derivatives ∂i which extend the derivations of D′ onto G(Ω); further-
more, multiplication extends the pointwise multiplication of C∞-functions.
The mapping G( ) : Ω 7→ G(Ω) for Ω ⊆ Rn is a fine sheaf of differential
algebras on Rn.

Negligible functions can be characterized in a simpler way by

N (Ω) :=
{
uε ∈ EM(Ω)

∣∣ ∀K ⊂⊂ Ω ∀m ∈ N : sup
x∈K

|uε(x)| = O(εm)
}
. (2.2)

Generalized Numbers

Generalized numbers are defined analogously to generalized functions by
moderate and negligible objects

E :=
{
vε ∈ C∞(I,K) | ∃N ∈ N : |vε| = O(ε−N)

}
,

N :=
{
vε ∈ C∞(I,K) | ∀m ∈ N : |vε| = O(εm)

}
,

K := E/N .

K is a ring. For K = R we will also write R in place of K. The point
value of a generalized function u = [uε] ∈ G(Ω) at a point x ∈ Ω given by
u(x) := uε(x) +N is a well-defined element of K. The point values at all
points of Ω are, however, not enough to uniquely determine the function -
we need to extend our concept of points to generalized points. On a subset
Ω ⊆ Rn, we therefore consider the set

ΩM :=
{
xε ∈ C∞(I,Ω) | ∃N ∈ N : ‖xε‖ = O(ε−N)

}
.

Elements of ΩM are called equivalent, written xε ∼ yε, if ‖xε−yε‖ = O(εm)
for all m ∈ N. We then factor ΩM by this equivalence relation, and of
the resulting set we only consider those elements [xε] for which there is
a compact set K with xε ∈ K for small ε. Those are called compactly
supported generalized points and are denoted by Ω̃c.
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Point Values

Proposition 2.1. For u = [uε] ∈ G(Ω), the evaluation at the generalized

point x = [xε] ∈ Ω̃c given by u(x) := [uε(xε)] is a well-defined element of K
called the generalized point value of u at x.

Proposition 2.2. Let u ∈ G(Ω). Then u = 0 if and only if u(x) = 0 for

all x ∈ Ω̃c.

Invertibility

Lemma 2.3. Let A ∈ Kn2
be a square matrix. Then the following state-

ments are equivalent.

(i) A is non-degenerate, i.e., ξ ∈ Kn, ξtAη = 0 ∀η ∈ Kn implies ξ = 0.

(ii) A : Kn → Kn is injective.

(iii) A : Kn → Kn is bijective.

(iv) det(A) is invertible.

Proposition 2.4. u ∈ G(Ω) is invertible if and only if u(x) is invertible in

K for each x ∈ Ω̃c.

Theorem 2.5. A generalized function u ∈ G(Ω) is invertible if and only if
for each representative uε of u and each K ⊂⊂ Ω there exist ε0 > 0 and
m ∈ N such that infx∈K |uε(x)| ≥ εm for all ε < ε0.

9





Chapter 3

Colombeau Generalized
Functions on Manifolds

3.1 Generalized Functions

Basic Definition

In the following, charts shall be taken from an atlas {(Uα, ϕα) | α ∈ A} if
not stated otherwise.

In order to construct Colombeau algebras on manifolds, we need notions of
moderate and negligible functions there. One natural starting point is to use
the framework already established on Rn, enabling us to define moderate
functions on a manifold X as nets uε ∈ C∞(I ×X) whose local expression
on charts is moderate, i.e., uε ◦ ϕ−1

α ∈ EM(ϕα(Uα)). This makes sense, as
moderateness then is invariant under change of charts.

On the other hand, on Rn growth conditions are imposed on the partial
derivatives ∂αuε. In the manifold setting, one can do the same with Lie
derivatives, applying the same growth conditions to Lξ1 . . . Lξkuε with each
ξi ∈ X(X) being a vector field.

A third door is opened by Peetre’s theorem, relating differential operators on
a manifold to local expressions made up of partial derivatives. We denote
by P(X) the space of differential operators as defined above with vector
bundles E = F = X ×R. In this case the sections of E and F are the real
valued smooth functions on X. For each chart (U,ϕ) in X a vector bundle
chart is then given by (U,ϕ× idR), so the corresponding local expression of
an operator P ∈ P(X) is given by P itself (as can be verified by replacing
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3. Colombeau Generalized Functions on Manifolds

ϕ and ψ in (1.2) by idRm) and by Peetre’s theorem we obtain

(Pf)(x) =
(∑

Aα∂
α(f ◦ ϕ−1)

)
◦ ϕ(x) (3.1)

for x ∈ U and f ∈ C∞(X).

For the construction of G(X) we define E(X) := C∞(I ×X) as base space,
consisting of the nets of functions which will model our generalized func-
tions. Note that the smooth dependence on ε ∈ I is not necessary for the
construction of Colombeau algebras.

Theorem 3.1. The following conditions for a net uε ∈ E(X) of smooth
functions on the manifold X are equivalent:

(i) ∀K ⊂⊂ X ∀P ∈ P(X) ∃N ∈ N : supp∈K |Puε(p)| = O(ε−N).

(ii) ∀K ⊂⊂ X ∀l ∈ N0 ∀ξ1, . . . , ξl ∈ X(X) ∃N ∈ N :

sup
p∈K

|Lξ1 . . . Lξluε(p)| = O(ε−N).

(iii) uε ◦ ϕ−1 ∈ EM(ϕ(U)) for all charts (U,ϕ) in X.

Proof. (i) ⇒ (ii): For uε ∈ C∞(X) and ξ ∈ X(X), the Lie derivative Lξuε
as well as the iterated Lie derivatives are easily seen to be local and therefore
elements of P(X) by the coordinate description

Lξuε(x) =
n∑
i=1

ξi
∂uε
∂xi

.

(ii) ⇒ (iii) follows as well from the local form of the Lie derivative and (iii)
⇒ (i) is a direct consequence of Peetre’s theorem, taking into account the
local form (3.1) of P .

Definition 3.2. The space EM(X) of moderate functions on X is defined
as the set of all elements of E(X) satisfying one of the equivalent conditions
of Theorem 3.1.

Replacing ”∃N”, ”ε−N” and EM by ”∀m”, ”εm” and ”N ” in (i)-(iii), re-
spectively, yields the following characterization of negligible nets.

Theorem 3.3. The following conditions for a net uε ∈ EM(X) are equiva-
lent:

12



Generalized Functions

(i) ∀K ⊂⊂ X ∀P ∈ P(X) ∀m ∈ N : supp∈K |Puε(p)| = O(εm).

(ii) ∀K ⊂⊂ X ∀l ∈ N0 ∀ξ1, . . . , ξl ∈ X(X) ∀m ∈ N :

sup
p∈K

|Lξ1 . . . Lξluε(p)| = O(εm).

(iii) uε ◦ ϕ−1 ∈ N (ϕ(U)) for all charts (U,ϕ) in X.

The equivalence of these conditions can be seen in total analogy to the
corresponding statement for moderateness. A simplification can be made
by a glance at (2.2) and the local description (iii); one does not need to
take into account the derivatives at all.

Definition 3.4. The space N (X) of negligible functions on X is defined
as the set of nets uε ∈ EM(X) satisfying

∀K ⊂⊂ X ∀m ∈ N : sup
p∈K

|uε(p)| = O(εm).

Definition 3.5. The Colombeau algebra of generalized functions on X is
defined as

G(X) := EM(X)/N (X).

Elements of G(X) are again denoted by [uε] = uε +N (X). Naturally, the
zero element 0+N (X) in G(X) is denoted by 0 and the multiplicative unit
[(ε, p) 7→ 1] by 1. Smooth functions f ∈ C∞(X) can be embedded into
G(X) by the constant embedding σ(f) := [ε 7→ f ].

Proposition 3.6. G(X) is an associative commutative algebra with unit
and a differential algebra with respect to Lie derivatives, where the opera-
tions +, · and Lξ are defined component-wise.

Proof. That EM(X) is a subalgebra of E(X) follows from the linearity of P
(or Lξ) and the fact that Lξ satisfies the Leibniz rules for derivatives. From
the latter we also conclude that N (X) is an ideal in EM(X), so multiplica-
tion is well-defined. For Lξ to be well-defined we need Lξ(EM(X)) ⊆ EM(X)
and Lξ(N (X)) ⊆ N (X) for all ξ ∈ X(X), which immediately result from
the corresponding definitions.

As seen above, moderateness and negligibility on manifolds can be described
locally by the respective conditions on Rn. In fact, we even have the fol-
lowing identification.
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3. Colombeau Generalized Functions on Manifolds

Proposition 3.7. A generalized function u = [uε] ∈ G(X) can be identified
with the family (uα)α of generalized functions defined by

uα := [uε ◦ ϕ−1
α ] ∈ G(ϕα(Uα))

satisfying the transformation law

uα|ϕα(Uα∩Uβ) = uβ|ϕβ(Uα∩Uβ) ◦ ϕβ ◦ ϕ−1
α

for α, β ∈ A and Uα ∩Uβ 6= ∅, where
{
(Uα, ϕα)α | α ∈ A

}
is an atlas of X.

Proof. The one-to-one correspondence is evident.

Theorem 3.8. G( ) : Ω → G(Ω) is a sheaf of differential algebras on X.

Proof. (S0) is obvious.

For the rest suppose (Ωλ)λ to be an open covering of Ω.

(S1) For u, v ∈ G(Ω) and u|Ωλ
= v|Ωλ

∀λ, we have to show that u = v. This
follows using the local descriptions (uα)α and (vα)α and the sheaf property
already established for Colombeau algebras on Rn, as ϕα(Uα) is covered
by the open sets ϕα(Uα ∩ Ωλ) on each of which uα = vα holds; therefore
uα = vα on ϕα(Uα) ∀α which is equivalent to u = v.

(S2) Given uλ ∈ G(Ωλ) such that uλ|Ωλ∩Ωµ = uµ|Ωλ∩Ωµ ∀λ, µ, we first fix a
chart (Uα, ϕα) and note that uλ|Uα is in G(Uα∩Ωλ) and satisfies uλ = uµ on
Uα ∩ Ωλ ∩ Ωµ. Hence we have the local expression (uλ)α ∈ G(ϕα(Uα ∩ Ωλ))
with (uλ)α = (uµ)α on ϕα(Uα ∩ Ωλ ∩ Ωµ). As (ϕα(Uα ∩ Ωλ))λ is an open
covering of ϕα(Uα), there is a ũα ∈ G(ϕα(Uα)) by the sheaf property on Rn

such that ũα|ϕα(Uα∩Ωλ) = (uλ)α. This can be done on each chart, giving a
family of functions (ũα)α satisfying the transformation law

ũα|ϕα(Uα∩Uβ∩Ωλ) = (uλ)α|ϕα(Uα∩Uβ) = (uλ)β|ϕα(Uα∩Uβ) ◦ ϕβ ◦ ϕ−1
α

= ũβ|ϕα(Uα∩Uβ∩Ωλ) ◦ ϕβ ◦ ϕ−1
α

for each λ and, consequently,

ũα|ϕα(Uα∩Uβ) = ũβ|ϕα(Uα∩Uβ) ◦ ϕβ ◦ ϕ−1
α

resulting – via the identity of proposition 3.7 – in a generalized function
u ∈ G(Ω) for which u|Ωλ

= uλ holds because the respective local expressions

(u|Ωλ
)α = ũα|ϕα(Ωλ∩Uα) = (uλ)α

are equal. Uniqueness follows from (S1).
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Point Values

Generalized functions on manifolds can be characterized by their point val-
ues, but evaluation on all points x ∈ X is not enough for that; we need
generalized points. To this end, we define compactly supported points on
X as

Xc :=
{
pε ∈ C∞(I,X) | ∃K ⊂⊂ X ∃ε0 ∈ I : pε ∈ K ∀ε ≤ ε0

}
and their equivalence by

pε ∼ qε ⇐⇒ dh(pε, qε) = O(εm) ∀m ∈ N,

where dh is the Riemannian distance induced by a Riemannian metric h on
X. The equivalence classes with respect to ∼ are called compactly supported
generalized points on X. This set will be denoted by X̃c. For X = R we
will write Rc instead of R̃c. Lemma 3.13 will establish that X̃c in fact does
not depend on the metric h, but first we need some preparations.

Lemma 3.9. Let h1 and h2 be Riemannian metrics on X. Then for all
K ⊂⊂ X there exist C1, C2 > 0 such that

C1‖v‖h2(p) ≤ ‖v‖h1(p) ≤ C2‖v‖h2(p) ∀p ∈ K ∀v ∈ TpX.

Proof. By virtue of Lemma 1.1 we may assume without loss of generality
that K ⊂⊂ Uα for some chart (Uα, ϕα). If we denote by hαi the local
expression of hi (i = 1, 2), we can define the function

f(x, v) :=
hα1 (x)(v, v)

hα2 (x)(v, v)

which is continuous on ϕα(K)×Rn \{0}. Therefore, the supremum of f on
this set, which is equal to the supremum on ϕα(K) × {v ∈ Rn | ‖v‖ = 1},
is finite, giving a constant C2 such that ‖v‖h1 ≤ C2‖v‖h2 . By the same
procedure we obtain C1 as required.

We will also need the same result for Riemannian metrics on vector bundles
instead of manifolds.

Lemma 3.10. Let K ⊂⊂ X and g1, g2 be Riemannian metrics on a vector
bundle (E,X, π) inducing the norms ‖·‖g1 and ‖·‖g2 on the fibers of E.
Then there exist constants C1, C2 > 0 such that

C1‖p‖g1 ≤ ‖p‖g2 ≤ C2‖p‖g1 ∀p ∈ π−1(K).
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3. Colombeau Generalized Functions on Manifolds

Proof. Without loss of generality we may assume that there is a vector
bundle chart (U,Φ) such that K ⊂⊂ U . The local expressions of g1 and g2

with respect to this chart are then given by

(Φ∗gi)(x)(ξ1, ξ2) := gi
(
ϕ−1(x)

)(
(ϕ|Eϕ−1(x)

)−1(ξ1), (ϕ|Eϕ−1(x)
)−1(ξ2)

)
.

By the continuity of

f(x, v) :=
(Φ∗g1)(x)(v, v)

(Φ∗g2)(x)(v, v)

on ϕ(K)×Rn′ \{0}, there exists C > 0 such that sup(x,v)∈ϕ(K)×Rn′ f(x, v) =

sup(x,v)∈ϕ(K)×B1(0) f(x, v) = C. For all e ∈ π−1(K) we obtain

‖e‖g1 = g1(π(e))(e, e)

= (Φ∗g1)
(
ϕ(π(e))

)(
ϕ(e),ϕ(e)

)
≤ C(Φ∗g2)

(
ϕ(π(e))

)(
ϕ(e),ϕ(e)

)
= Cg2(π(e))(e, e) = C‖e‖g2 .

Corollary 3.11. If g is a Riemannian metric on E, (U,Φ) a vector bundle
chart in E and K ⊂⊂ U there exist constants C1, C2 > 0 such that

C1‖e‖g ≤ ‖ϕ(e)‖ ≤ C2‖e‖g ∀e ∈ π−1(K).

Proof. Immediate by extending the inner product on Rn′ to a Riemannian
metric h on E and applying the previous lemma.

Lemma 3.12. Let h1 and h2 be Riemannian metrics on X. Then for all
K ⊂⊂ X there exist constants ε0, C > 0 such that ∀p ∈ K ∀ε ≤ ε0:

B(2)
ε (p) ⊆ B

(1)
Cε (p)

where B
(i)
ε (p) = {q ∈ X | di(p, q) < ε} and di denotes the Riemannian

distance with respect to hi.

Proof. For any p ∈ X we can choose (by virtue of [O’N83], Chapter 5,
Proposition 7) a geodesically convex (with respect to h2) and relatively
compact neighborhood Up of p. Applying Lemma 3.9 to Up we obtain a
constant Cp > 0 such that ‖v‖h1(q) ≤ Cp‖v‖h2(q) ∀q ∈ Up ∀v ∈ TqX. For any
q, q′ ∈ Up, let α be the connecting h2-geodesic. Denoting by Li the length of
α with respect to hi we then have d1(q, q

′) = L1(α) ≤ CpL2(α) = Cpd2(q, q
′).
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For each p ∈ K we choose εp such that B
(2)
εp (p) ⊆ Up. As K is compact

there exist finitely many pi (i = 1, . . . ,m) such that K is contained in

U :=
⋃m
i=1B

(2)
εpi/2

(pi). Then, set ε0 := min(d2(K, ∂U), εp1/2, . . . , εpm/2) and

C := max1≤i≤mCpi.

Finally, take p ∈ K, ε ≤ ε0 and q ∈ B(2)
ε (p). As K was covered by d2-balls

with radius εpi
/2, there exists i such that d2(p, pi) ≤ εpi

/2. By the choice

of ε, d2(p, q) ≤ εpi
/2 and therefore p, q ∈ B

(2)
εpi

(pi) ⊆ Upi
. This results in

d1(p, q) ≤ Cpi
d2(p, q) ≤ Cε or q ∈ B(1)

Cε (p).

Lemma 3.13. Let hi be Riemannian metrics inducing the Riemannian
distances di on X (i = 1, 2). Then for K,K ′ ⊂⊂ X there exists C > 0 such
that d2(p, q) ≤ Cd1(p, q) for all p ∈ K and q ∈ K ′.

Proof. Assume to the contrary that there exist subsequences pm, qm such
that d2(pm, qm) > md1(pm, qm) ∀m ∈ N. While m tends to ∞, d1(pm, qm)
converges to zero. As both sequences will stay inside a fixed compact set for
small ε, we may additionally choose suitable subsequences and suppose that
both pm and qm converge to some p ∈ K. Let V be a relatively compact
neighborhood of p. By virtue of Lemma 3.12 there exist r0, α > 0 such that
B

(1)
r (q) ⊆ B

(2)
αr (q) for all q ∈ V and r ≤ r0. For m > α sufficiently large,

pm and qm are in V , d1(pm, qm) ≤ r0 and we arrive at the contradiction
d2(pm, qm) ≤ αd1(pm, qm).

The following two lemmas will be needed in order to introduce point value
evaluation for functions in G(X).

Lemma 3.14. If K ⊂⊂ U with (U,ϕ) a chart in X and h any Rie-
mannian metric on X there exists C > 0 (depending on h) such that
‖ξ‖ ≤ C‖Tϕ(p)ϕ

−1ξ‖h ∀p ∈ K ∀ξ ∈ Rn.

Proof. The inner product 〈·, ·〉 on Rn can be extended to a Riemannian
metric g on a neighborhood of K. For a point p in this neighborhood we
define g at p as

gp : TpX × TpX → R
(u, v) → χ(p) · 〈Tpϕu, Tpϕv〉

where χ ∈ D(X) is a cut-off function satisfying χ ≡ 1 on some open neigh-
borhood W of K with suppχ ⊆ V and W ⊂⊂ V . Lemma 3.9 then gives a
constant C > 0 such that for ξ ∈ Rn and p ∈ K we have

‖ξ‖ = ‖Tϕ(p)ϕ
−1ξ‖g ≤ C‖Tϕ(p)ϕ

−1ξ‖h.
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3. Colombeau Generalized Functions on Manifolds

Lemma 3.15. For nets pε, qε ∈ C∞(I,X) compactly supported in some Wα

which is geodesically convex with respect to a Riemannian metric h on X
and satisfies W α ⊂⊂ Uα for some chart (Uα, ϕα), the following equivalence
holds true.

pε ∼ qε ⇐⇒ ‖ϕα(pε)− ϕα(qε)‖ = O(εm) ∀m ∈ N.

Proof. (⇒): Denoting by γε : [αε, βε] → Wα the unique geodesic in Wα

joining pε and qε, we have

dh(pε, qε) =

∫ βε

αε

‖γ′ε(s)‖hds = O(εm) ∀m > 0.

By Lemma 3.14 there exists C > 0 such that

‖ξ‖ ≤ C‖Tϕα(p)ϕ
−1
α ξ‖h ∀p ∈ W α ∀ξ ∈ Rn

and therefore

‖ϕα(pε)− ϕα(qε)‖ ≤
∫ βε

αε

‖(ϕα ◦ γε)′(s)‖ds ≤ C

∫ βε

αε

‖γ′ε(s)‖h ds = O(εm).

(⇐): If for some Riemannian metric g on X we establish dg(pε, qε) = O(εm),
the claim immediately follows from Lemma 3.13. Choosing K ⊂⊂ Wα such
that pε, qε ∈ K for small ε, we construct g as in the proof of Lemma 3.14
employing a cut-off function supported in Uα equal to 1 in a neighborhood
W ′ of Wα with K ⊂⊂ Wα. For small ε the line connecting pε and qε is
contained in W ′, hence we can write (for small ε again)

dg(pε, qε) = dg|W ′ (pε, qε) = ‖ϕα(pε)− ϕα(qε)‖ = O(εm).

Proposition 3.16. For u = [uε] ∈ G(X) and p = [pε] ∈ X̃c, the point value
of u at p defined by u(p) := [uε(pε)] is a well-defined element of K.

Proof. Because p is compactly supported, uε(pε) is moderate or negligi-
ble if uε is. Therefore different representatives of uε give the same re-
sult. Choosing any other representative qε of p, we have to establish that
uε(pε) ∼ uε(qε). For small ε, pε and qε will stay inside a fixed K ⊂⊂ X.
Cover K by finitely many geodesically convex sets Wα with respect to some
Riemannian metric h having the property W α ⊂⊂ Uα ([O’N83]). For all
ε small enough there exists iε such that the whole line connecting ϕαiε

(pε)
and ϕαiε

(qε) is contained in ϕαiε
(Wαiε

). In order to obtain moderateness
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estimates we recall that for each differentiable function f : Rn → R, we
have

∂

∂σ
f
(
a− σ(a− b)

)
= (Df)

(
a− σ(a− b)

)
· (b− a)

and by integration

|f(b)− f(a)| ≤
∫ 1

0

∣∣(Df)
(
a− σ(a− b)

)
(b− a)

∣∣ dσ.

Substituting uε ◦ ϕ−1
α for f and ϕα(pε) := pε,α and ϕα(qε) := qε,α for a and

b, respectively, we get

|uε(qε)− uε(pε)| ≤
∫ 1

0

∣∣D(uε ◦ ϕ−1
α )

(
pε,α − σ(qε,α − pε,α)

)
(pε,α − qε,α))

∣∣ dσ

where α = αiε . For sufficiently small ε, the line connecting pε,α and qε,α is
contained in ϕα(Wα) and the claim follows from Lemma 3.15 and the fact
that uε ◦ ϕ−1

α is moderate.

We finally arrive at the following point value characterization of generalized
functions on a manifold.

Theorem 3.17. Let u ∈ G(X). Then u = 0 in G(X) if and only if u(p) = 0

in K for all p ∈ X̃c.

Proof. Necessity is clear from Proposition 3.16. Conversely, let uε be a
representative of u. Take a Riemannian metric h and cover X by geodesi-
cally convex sets Wα with W α ⊂⊂ Uα as above. For x = [xε] ∈ ϕα(Wα)

∼
c ,

the class of pε := ϕ−1
α (xε) is a well-defined element of X̃c. By assumption,

uε(pε) = uε ◦ ϕ−1
α (xε) is negligible, so we have uε ◦ ϕ−1

α = 0 in G(ϕα(Wα))
for all α and therefore u = 0.

3.2 Generalized Sections of Vector Bundles

Sections of vector bundles can be generalized in the sense of Colombeau
as well. There are two equivalent ways to define moderate and negligible
sections; the first is via the components.
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3. Colombeau Generalized Functions on Manifolds

Definition 3.18. Let (E,X, π) be a vector bundle. Then the base space
ΓE(X,E), the space of moderate sections ΓEM

(X,E) and the space of neg-
ligible sections ΓN (X,E) are defined as follows.

ΓE(X,E) :=
{
sε ∈ C∞(I ×X,E) | sε ∈ Γ(X,E) ∀ε ∈ I

}
,

ΓEM
(X,E) := {sε ∈ ΓE(X,E) | ∀α, ∀i : (sε)

i
α ∈ EM(ϕα(Uα))},

ΓN (X,E) := {sε ∈ ΓEM
(X,E) | ∀α, ∀i : (sε)

i
α ∈ N (ϕα(Uα))}.

For those spaces to be well-defined, moderateness and negligibility should
be preserved under change of charts. This, however, is immediately clear
as a change of vector bundle charts has the form

Ψβ ◦Ψ−1
α (y, w) =

(
ϕβα,ϕβα(y)w

)
with ϕβα ∈ GL(n′,R), so the components of a section change linearly.

The second way to introduce generalized sections is a characterization by
Peetre’s theorem. We denote by P(X,E) the space of linear differential
operators from E into itself.

Proposition 3.19. For sε ∈ ΓE(X,E) and ‖·‖ a norm on the fibers of E
induced by any Riemannian metric on E, the following equivalences hold
true.

(i) sε ∈ ΓEM
(X,E) ⇐⇒ ∀P ∈ P(X,E) ∀K ⊂⊂ X

∃N ∈ N : sup
p∈K

‖Puε(p)‖ = O(ε−N).

(ii) sε ∈ ΓN(X,E) ⇐⇒ ∀P ∈ P(X,E) ∀K ⊂⊂ X

∀m ∈ N : sup
p∈K

‖Puε(p)‖ = O(εm).

Proof. For both directions it suffices to show the estimates for compact sets
fully contained in the domain of some chart. The general case then follows
by application of Lemma 1.1.

(⇒): For each vector bundle chart (Uα,Φα) on E, every differential operator
P ∈ P(X,E) gives rise to its corresponding local expression Q such that

(P · uε)|Uα = ϕ−1
α ◦Q · (ϕα ◦ uε|Uα ◦ ϕ−1

α ) ◦ ϕα

holds. Because of ϕα ◦ uε|Uα ◦ϕ−1
α =

(
(uε)

1
α, . . . , (uε)

n′
α

)
we can make use of

the fact that by Peetre’s theorem Q consists only of a combination of linear
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mappings and partial derivatives. Hence it follows that the components of
Q · (ϕα ◦ uε|Uα ◦ ϕ−1

α ) ◦ ϕα satisfy the necessary estimates. The mapping
ϕ−1
α then only adds a constant (Lemma 3.11).

(⇐): To establish growth estimates on derivatives of (uε)
i
α we construct a

differential operator P ∈ P(X,E) by

(P · uε)|Uα
:= ϕ−1

α ◦Q · (ϕα ◦ uε|Uα ◦ ϕ−1
α ) ◦ ϕα,

where Q is chosen such that the components (uε)
i
α are mapped to their

partial derivatives of the required degree, immediately resulting in the claim.

Definition 3.20. The space of generalized sections of (E,X, π) is defined
as

ΓG(X,E) := ΓEM
(X,E)/ΓN (X,E).

Proposition 3.21. With operations defined component-wise, ΓG(X,E) is
a G(X)-module.

Proof. We need to establish that the product of any given [sε] ∈ ΓG(X,E)
and [uε] ∈ G(X) is well defined. First, to show that [sεuε] is in ΓG(X,E) we
need to have (sεuε)

i
α ∈ EM(ϕα(Uα)). We set p = ϕ−1

α (x) and observe that

(sεuε)α(x) = Φα ◦ sεuε ◦ ϕ−1
α (x) =(

ϕα(π(sε(p)uε(p))),ϕα(sε(p)uε(p))
)

=

(ϕα(π(sε(p)uε(p)), uε(p) ·ϕα(sε(p)))

and from ϕiα ◦ sε ◦ ϕ−1
α ∈ EM(ϕα(Uα)) and uε ◦ ϕ−1

α ∈ EM(ϕα(Uα)) we also
have a moderate product ϕiα ◦ sε ◦ ϕ−1

α · (uε ◦ ϕ−1
α ) ∈ EM(ϕα(Uα)), therefore

(sεuε)
i
α ∈ EM(ϕα(Uα)).

If we take different representatives

[sε] = [sε +mε],m ∈ ΓN (X,E)

and [uε] = [uε + nε], n ∈ N (X),

we also have [(sε +mε)(uε + nε)] = [(sεuε)] because sεnε, mεuε, and mεnε
are seen to be in ΓN (X,E) in exactly the same manner as above.

For a generalized section s = [sε] ∈ ΓG(X,E) and a chart (Uα, ϕα) the func-
tions (sε)

i
α are in EM(ϕα(Uα)) or N (ϕα(Uα)) if sε is moderate or negligible,

respectively. Therefore we may define the components siα of s and its vector
part sα relative to this chart as

siα := [(sε)
i
α] ∈ G(ϕα(Uα)),

sα := (s1
α, . . . , s

n′

α ) ∈ G(ϕα(Uα))
n′ .
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3. Colombeau Generalized Functions on Manifolds

Proposition 3.22. ΓG(X,E) can be identified with the set of all families
(sα)α with sα ∈ G(ϕα(Uα))

n′ satisfying the transformation law

sα = ϕα ◦ϕ−1
β ◦ sβ ◦ ϕβ ◦ ϕ−1

α on ϕα(Uα ∩ Uβ) (3.2)

or written in components

siα(x) = (ϕαβ)
i
j(ϕβ ◦ ϕ−1

α (x))sjβ(ϕβ ◦ ϕ
−1
α (x))

where ϕα ◦ϕ−1
β =: ϕαβ = (ϕαβ)

i
j.

Proof. Evident by definition.

Proposition 3.23. ΓG(X,E) is a fine sheaf of G(X)-modules.

Proof. (S0) is clear. Now take an open covering (Ωλ)λ of X. Equality of
two sections on each set of the covering implies equality of the components
on ϕα(Uα ∩ Ωλ) ∀λ, α and therefore on ϕα(Uα), giving (S1). For (S2),
restriction to Uα gives components of generalized sections locally which in
course satisfy the transformation law (3.2).

Smooth sections s ∈ Γ(X,E) can be embedded into ΓG(X,E) by the con-
stant embedding Σ(s) := [ε 7→ s].

Generalized Tensor Fields

If E is the tensor bundle T rs (X) over X, the space Grs(X) := ΓG(X,T
r
s (X))

is called the space of generalized (r, s) tensor fields on X. We will also write
XG(X) in place of G1

0(X) and X∗
G(X) in place of G0

1(X).

Theorem 3.24. As G(X)-module, Grs(X) is isomorphic to the space of
multilinear maps LG(X)(X

∗
G(X)r,XG(X)s;G(X)).

Proof. Let t = [tε] ∈ Grs(X) be a generalized tensor field, ωk = [ωkε ] ∈ X∗
G(X)

generalized one-forms for 1 ≤ k ≤ r and ξl = [ξlε] ∈ XG(X) generalized
vector-fields on X for 1 ≤ l ≤ s. We then can define an isomorphism
ι : Grs(X) → LG(X)(X

∗
G(X)r,XG(X)s;G(X)) by

ι(t)(ω1, . . . , ωr, ξ1, . . . , ξs) := [tε(ω
1
ε , . . . , ω

r
ε , ξ1ε, . . . , ξsε)]

in which the right-hand side is well-defined by classical theory. Using the
local description it is straightforward to obtain well-definedness of ι. For
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showing injectivity assume ι(t) = 0, i.e., tε(ω
1
ε , . . . , ω

r
ε , ξ1ε, . . . , ξsε) ∈ N (X).

If we can show t = 0 locally it holds globally, as Grs(X) is a sheaf. For a
chart (Uα, ϕα) in X we therefore choose K ⊂⊂ Uα and one-forms ωk as
well as vector fields ξl whose compact support is contained in Uα such that
ω = Σ(dxi) and ξ = Σ(∂j) on an open neighborhood U of K in Uα. Then
ti1...irj1...js

|U = tε(ω
1
ε , . . . , ω

r
ε , ξ1ε, . . . , ξsε) ∈ N (U), hence t = 0 is established.

For surjectivity let t̃ ∈ LG(X)(X
∗
G(X)r,XG(X)s;G(X) be given. We define

the nr+s components of a section t with respect to a chart (Uα, ϕα) as

(tα)
i1...ir
j1...js

:= t̃|Uα(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js) ◦ ϕ−1
α ∈ G(ϕα(Uα)),

which are well-defined by Lemma 3.25 below and constitute a coherent
family satisfying (3.2). The (tα)

i1...ir
j1...js

thus are the local coordinates of a

unique section t ∈ Grs(X) which by construction is mapped onto t̃ by ι.

Lemma 3.25. Take some t ∈ LG(X)(X
∗
G(X)r,XG(X)s;G(X)), ωk ∈ X∗

G(X)
for 1 ≤ k ≤ r and ξl ∈ XG(X) for 1 ≤ l ≤ s. Suppose that the restriction
of some ωk or ξl onto some open set U ⊂⊂ X is the zero element. Then
t(ω1, . . . , ωr, ξ1, . . . , ξs)|U = 0.

Proof. Assume that, say, ξs|U = 0. For each point p ∈ U there is an open
neighborhood Up of p such that Up ⊂⊂ Vα for some chart (Uα, ϕα). We may
therefore assume without loss of generality that U ⊂⊂ Uα for some chart
Uα, as the general case then follows by the sheaf property of G(X). In local
coordinates we can write ξ|Uα = ξi∂i with ξi ∈ G(Uα) and ξi|U = 0. Let
f ∈ D(Uα) such that f |U = 1. We use the embedding F := σ(f) ∈ G(X) of
f and obtain

t(ω1, . . . , ξs)|U = (F |U)2t(ω1, . . . , ξs)|U
= (F 2t(ω1, . . . , ξs))|U
= t(ω1, . . . , F ξisF∂i)|U
= (Fξist(ω

1, . . . , F∂i))|U
= (Fξis)|U t(ω1, . . . , F∂i)|U
= 0.

A consequence of Lemma 3.25 is that for V ⊆ X, ωk ∈ X∗
G(V ) (1 ≤ k ≤ r)

and ξl ∈ XG(V ) (1 ≤ l ≤ s) the restriction t|V (ω1, . . . , ωr, ξ1, . . . , ξs) is
well-defined.
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Remark 3.26. For a generalized tensor field t ∈ Grs(X) the components of t
relative to a chart (Uα, ϕα) are the functions

ti1...irj1...js
:= t|Uα(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js) ∈ G(Uα).

Now let (Uα, ϕα) be charts covering X. Then the natural vector bundle
charts (T rsUα, (Tϕ)rs|T r

s Uα) constitute an atlas for T rsX ([Abr67], Definition
6.10). The vector part tα of t at a point x ∈ ϕα(Uα) then is an element of
T rs (Rn) and has tensor components (where ej is the canonical basis of Rn

and εi its dual basis)

(tα)
i1...ir
j1...js

(x) = tα(x)(ε
i1 , . . . , εir , ej1 , . . . , ejs)

which in fact are the coordinates of tα in the nr+s-dimensional vector space
T rs (Rn). Because of the identity

ti1...irj1...js
(p) = (tα)

i1...ir
j1...js

(ϕα(p)) ∀p ∈ Uα,

moderateness and negligibility estimates of a generalized tensor can be de-
termined in terms of its components ti1...irj1...js

.

Inserting a generalized point x̃ ∈ ϕα(Uα)∼c into the vector part of t naturally
gives a multilinear mapping tα(x̃) : Knr+s → K.

Proposition 3.27. Let t ∈ Grs(X) and p = [pε] ∈ X̃c. Let ω1, . . . , ωr and
ω1′, . . . , ωr ′ be generalized one-forms with ωi(p) = ωi

′
(p) for 1 ≤ i ≤ r. Let

ξ1, . . . , ξs and ξ′1, . . . , ξ
′
s be generalized vector fields with ξj(p) = ξ′j(p) for

1 ≤ j ≤ s. Then

t(ω1, . . . , ωr, ξ1, . . . , ξs)(p) = s(ω1′, . . . , ωr ′, ξ′1, . . . , ξ
′
s)(p).

Proof. The first step of our proof is to show that if any ωi or ξj is zero at p,
then s(ω1, . . . , ωr, ξ1, . . . , ξs)(p) = 0. Suppose that ξs(p) = 0. Also, assume
that there exists a chart (U,ϕ) and K ⊂⊂ U such that pε ∈ K for small ε.
Choose a smooth bump function f with support in U such that f ≡ 1 in a
neighborhood of K. Then F := [f ] ∈ G(U) and F∂j ∈ XG(X). Hence

F 2t(ω1, . . . , ωr, ξ1, . . . , ξs)

= t(ω1, . . . , ωr, ξ1, . . . , ξs−1, F
2ξs)

= t(ω1, . . . , ωr, ξ1, . . . , ξs−1,
∑
j

FξjsF∂j)

=
∑
j

Fξjst(ω
1, . . . , ωr, ξ1, . . . , ξs−1, F∂j).
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Generalized Functions Valued in a Manifold

Since ξs(p) = 0, the coordinates ξjs are zero and inserting p into the above
equation yields the claim of the first step.

In the second step, we remit the above assumption on K, which now does
not have to be wholly contained in a chart. Now suppose that

t(ω1, . . . , ωr, ξ1, . . . , ξs)(p) 6= 0. (3.3)

Then there exist representatives tε, w
i
ε, ξjε and pε, a sequence εk → 0 and

m0 ∈ N such that

|tε(ω1
εk
, . . . , ωrεk

, ξ1εk
, . . . , ξsεk

)(pεk
)| > εm0

k

for all k ∈ N. By restricting pεk
to a subsequence of itself we may assume

without loss of generality that pεk
converges to some p ∈ X. This enables

us to choose representatives such that the argument of step one gives a
contradiction to equation (3.3).

Definition 3.28. For ξ ∈ XG(X) and t ∈ Grs(X), the generalized Lie-
derivative of t with respect to ξ is defined as

Lξt := [Lξεtε],

where for u ∈ G(X) we also write ξ(u) in place of Lξ(u).

Well-definedness of the generalized Lie-derivative follows at once from the
local form

(Lξεtε)
i1...ir
j1...js

=
∂ti1...irj1...js

∂xk
ξkε +

s∑
µ=1

ti1...irj1...l...js

∂ξlε
∂xjµ

−
r∑

ν=1

ti1...l...irj1...js

∂ξiν

∂xl
.

All properties of the classical Lie derivative are valid for the generalized
case as well, as they carry over component-wise.

3.3 Generalized Functions Valued in a

Manifold

In order to introduce generalized functions on a manifold X which take
values not in Rn but in another manifold Y we build on [AB91], where the
space G[Ω,Ω′] of generalized functions on Ω ⊆ Rn taking values in Ω′ ⊆ Rm

is introduced, called G∗(Ω; Ω′) therein.
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3. Colombeau Generalized Functions on Manifolds

We will first give the definition of G[Ω,Ω′]: we denote by E [Ω,Ω′] the set of
all uε ∈ C∞(I × Ω,Ω′) satisfying

∀K ⊂⊂ Ω ∃ε0 ∈ I ∃K ′ ⊂⊂ Ω′ ∀ε < ε0 : uε(K) ⊆ K ′ (3.4)

and by EM [Ω,Ω′] := E [Ω,Ω′] ∩ EM(Ω)m the subset of moderate elements.
Functions satisfying condition (3.4) will also be called compactly bounded
or c-bounded. Then the space of compactly bounded generalized functions
from Ω into Ω′ is defined as G[Ω,Ω′] := EM [Ω,Ω′]/(N (Ω)m).

There turns out to be a way to characterize those functions by charts which
can be transferred to manifolds easily.

Proposition 3.29. For uε ∈ E [Ω,Ω′], the following statements are equiva-
lent:

(a) uε ∈ EM [Ω,Ω′].

(b) (i) ∀K ⊂⊂ Ω ∃ε0 ∈ I ∃K ′ ⊂⊂ Ω′ ∀ε < ε0 : uε(K) ⊆ K ′.

(ii) ∀k ∈ N0, for all charts (U,ϕ) in Ω and (V, ϕ) in Ω′, each L ⊂⊂ U
and L′ ⊂⊂ V there exists N ∈ N with

sup
x∈L∩u−1

ε (L′)

‖D(k)(ψ ◦ uε ◦ ϕ−1)(ϕ(x))‖ = O(ε−N)

where ‖·‖ is any norm on the respective space of multilinear
maps.

Proof. First, note that condition (ii) is independent of the choice of the
norm.

Regarding (a)⇒(b), (i) holds by definition. For (ii), fix k, (U,ϕ), (V, ψ),
L, and L′ as required. Using the chain rule we then are able to estimate
‖D(k)(ψ ◦ uε ◦ ϕ−1)(ϕ(x))‖ for x ∈ L ∩ u−1

ε (L′) by expressions consist-
ing of sums of products of supy∈ϕ(L)‖D(j1)(ϕ−1)(y)‖, supz∈L′‖D(j2)(ψ)(z)‖
(which clearly are finite) and supx∈L‖D(j3)(uε)(x)‖ (which is O(ε−Nj3 ))
with 1 ≤ j1, j2, j3 ≤ k. In total this gives an estimate of O(ε−N) with
N := max1≤j3≤kNj3 .

(b)⇒(a): To establish moderateness on K ⊂⊂ Ω, we set (U,ϕ) = (Ω, idΩ),
(V, ψ) = (Ω′, idΩ′), L = K, and L′ = K ′ where K ′ is as in (i).

Moving on, we define moderate mappings between manifolds X and Y the
same way. We set E [X, Y ] := C∞(I ×X, Y ) for the base space.
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Generalized Functions Valued in a Manifold

Definition 3.30. The space EM [X, Y ] of compactly bounded moderate maps
from X to Y is defined as the set of all nets uε ∈ E [X, Y ] satisfying

(i) ∀K ⊂⊂ X ∃ε0 ∈ I ∃K ′ ⊂⊂ Y ∀ε < ε0 : uε(K) ⊆ K ′.

(ii) ∀k ∈ N0, for all charts (U,ϕ) in X and (V, ψ) in Y , each L ⊂⊂ U and
L′ ⊂⊂ V there exists N ∈ N with

sup
p∈L∩u−1

ε (L′)

‖D(k)(ψ ◦ uε ◦ ϕ−1)(ϕ(p))‖ = O(ε−N)

where ‖·‖ is any norm on the respective space of multilinear maps.

Proposition 3.31. In Definition (3.30) it suffices to require condition (ii)
merely for charts from given atlases of X and Y .

Proof. Suppose that condition (ii) is satisfied for charts from given atlases
AX = {(Uα, ϕα) | α ∈ A} and AY = {(Vβ, ψβ) | β ∈ B} of X and Y , re-
spectively, and fix k, (U,ϕ), (V, ψ), L, and L′ as required. Using Lemma
1.1 we write

L =
r⋃
i=1

Li and L′ =
s⋃
j=1

L′j with Li ⊂⊂ Uαi
, L′j ⊂⊂ Vβj

for some r, s ∈ N and αi ∈ A, βj ∈ B. For each i and j we obtain estimates

sup
p∈Li∩u−1

ε (L′j)

‖D(k)(ψβj
◦ uε ◦ ϕ−1

αi
)(ϕαi

(p))‖ ≤ Cijε
−Nij for ε ≤ εij.

For each p ∈ L ∩ u−1
ε (L′) we have i, j such that p ∈ Li ∩ u−1

ε (L′j). Let
N := maxi,j Nij and ε0 := mini,j εij. In a neighborhood of p we can write

ψ ◦ uε ◦ ϕ−1 = ψ ◦ ψ−1
βj
◦ (ψβj

◦ uε ◦ ϕ−1
αi

) ◦ ϕαi
◦ ϕ−1 (3.5)

and by the chain rule and the boundedness of derivatives of ψ ◦ ψ−1
βj

and

ϕαi
◦ϕ−1 on ψβj

(L′j) and ϕ(Li), respectively, there is a constant C such that

sup
p∈L∩u−1

ε (L′)

‖D(k)(ψ ◦ uε ◦ ϕ−1)(ϕ(p))‖ ≤ Cε−N for ε ≤ ε0.

In Rn the concept of negligible elements is an essential ingredient in the
construction of Colombeau algebras. There, the ideal N gives rise to an
equivalence relation (via x ∼ y ⇔ x − y ∈ N ) by which the space of
moderate functions is factored. In the absence of a linear structure, as is
the case with E [X, Y ], equivalence has to be defined directly.
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3. Colombeau Generalized Functions on Manifolds

Definition 3.32. Two nets uε, vε ∈ EM [X, Y ] are called equivalent, written
uε ∼ vε, if the following conditions are satisfied:

(i) ∀K ⊂⊂ X: supp∈K dh
(
uε(p), vε(p)

)
→ 0 for ε → 0, where h is some

Riemannian metric on Y .

(ii) ∀k ∈ N0, ∀m ∈ N, for each chart (U,ϕ) in X and (V, ψ) in Y , each
L ⊂⊂ U and L′ ⊂⊂ V :

sup
p∈L∩u−1

ε (L′)∩v−1
ε (L′)

‖D(k)(ψ ◦ uε ◦ ϕ−1 − ψ ◦ vε ◦ ϕ−1)(ϕ(p))‖ = O(εm).

An auxiliary result will be needed in order to show that equivalence can
be determined as well by verifying the requirements of Definition 3.32 (ii)
merely on given atlases.

Lemma 3.33. For all f : Ω ⊆ Rn → Ω′ ⊆ Rm which are continuously
differentiable and all K ⊂⊂ Ω there exists a constant C ≥ 0 such that
‖f(x)− f(y)‖ ≤ C‖x− y‖ ∀x, y ∈ K.

Proof. Choose χ ∈ D(Rn) with suppχ ⊆ Ω and equal to 1 in a neigh-
borhood of K. Then χf can be extended to a smooth function f̃ on Rn.
Because f̃(x) − f̃(y) = (x − y) · Df̃(ξ) for some ξ between x and y, the
supremum of ‖Df̃‖ on the convex hull of K is the needed constant C.

Remark 3.34. As the mean value theorem ([Die60], 8.5.2) can be stated for
any function taking values in a Banach space, the previous Lemma is in
particular also valid for f taking values in the space of linear maps from Rn

to Rm, without modification of the proof.

Proposition 3.35. Definition 3.32 (i) is independent of the choice of h.
Furthermore, it suffices to require (ii) merely for charts from given atlases.

Proof. The first assertion follows immediately from Definition 3.30 (i) and
Lemma 3.13. For the second assertion fix atlases AX = {(Uα, ϕα) | α ∈ A}
and AY = {(Vβ, ψβ) | β ∈ B} of X and Y , respectively, k ∈ N0, m ∈ N,
(U,ϕ) and (V, ψ) charts in X and Y , respectively, L ⊂⊂ U , and L′ ⊂⊂ V .
Using Lemma 1.1 we write

L =
r⋃
i=1

Li and L′ =
s⋃
j=1

L′j with Li ⊂⊂ Uαi
, L′j ⊂⊂ Vβj

for some r, s, αi, βj. We require that both uε(p) and vε(p) are in a compact
subset of the domain of the same chart. For this we choose neighborhoods

28



Generalized Functions Valued in a Manifold

V ′
j of L′j with V ′

j ⊂⊂ Vβj
for j = 1, . . . , s and infer from Definition 3.32 (i)

the existence of ε1 > 0 such that

sup
p∈L

dh
(
uε(p), vε(p)

)
< min

j=1,...,s
dh(L

′
j, ∂V

′
j ) ∀ε < ε1.

Then for any p ∈ L ∩ u−1
ε (L′) ∩ v−1

ε (L′) there are i and j such that p ∈ Li,
uε(p) ∈ V ′

j and vε(p) ∈ V ′
j . Because Definition 3.32 (ii) holds on the given

atlases we obtain constants Cij and εij for which

‖D(k)(ψβj
◦ uε ◦ ϕ−1

αi
− ψβj

◦ vε ◦ ϕ−1
αi

)(ϕ(p))‖ ≤ Cijε
m

holds for all ε < εij and p ∈ Li ∩ u−1
ε (V ′

j ) ∩ v−1
ε (V ′

j ). In a neighborhood of
such p we have

ψ ◦ uε ◦ ϕ−1 − ψ ◦ vε ◦ ϕ−1 =(ψ ◦ ψ−1
βj

) ◦ (ψβj
◦ uε ◦ ϕ−1

αi
) ◦ (ϕαi

◦ ϕ−1)

− (ψ ◦ ψ−1
βj

) ◦ (ψβj
◦ vε ◦ ϕ−1

αi
) ◦ (ϕαi

◦ ϕ−1).

(3.6)

Lemma 3.33 together with the chain rule gives the needed estimates.

Proposition 3.36. The relation ∼ of Definition 3.32 is an equivalence
relation.

Proof. Reflexivity and symmetry are obvious. For transitivity suppose
uε, vε, wε ∈ EM [X, Y ] with u ∼ v and v ∼ w. (i) of Definition 3.32
is obvious from the triangle inequality. Regarding (ii) for any given at-
lases AX = {(Uα, ϕα) | α ∈ A} of X and AY = {(Vβ, ψβ) | β ∈ B} of Y ,
fix k ∈ N0, m ∈ N, charts (U,ϕ) ∈ AX , (V, ψ) ∈ AY , L ⊂⊂ U and
L′ ⊂⊂ V . We then can write L =

⋃r
i=1 Li and L′ =

⋃s
j=1 L

′
j with

Li ⊂⊂ Uαi
, L′j ⊂⊂ Vβj

for some r, s, αi, βj and choose neighborhoods V ′
j

of L′j with V ′
j ⊂⊂ Vβj

∀j ∈ {1, . . . , s} as well as ε0 such that each of

supp∈L dh
(
uε(p), vε(p)

)
, supp∈L dh

(
vε(p), wε(p)

)
and supp∈L dh

(
uε(p), wε(p)

)
in course is smaller than minj=1,...,s dh(L

′
j, ∂V

′
j )/2 for ε < ε0. From this we

gain that for each p ∈ L ∩ u−1
ε (L′) ∩ w−1

ε (L′) and ε < ε0 there are i, j such
that p ∈ Li ∩ u−1

ε (V ′
j ) ∩ v−1

ε (V ′
j ) as well as p ∈ Li ∩ v−1

ε (V ′
j ) ∩ w−1

ε (V ′
j ).

Equivalence of uε and wε then follows directly by writing

ψ ◦ uε ◦ ϕ−1 − ψ ◦ wε ◦ ϕ−1 =(ψ ◦ uε ◦ ϕ−1 − ψ ◦ vε ◦ ϕ−1)

+ (ψ ◦ vε ◦ ϕ−1 − ψ ◦ wε ◦ ϕ−1)

and estimating.
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3. Colombeau Generalized Functions on Manifolds

We arrive at the definition of manifold-valued generalized functions.

Definition 3.37. The quotient G[X, Y ] := EM [X, Y ]/∼ is called the space
of compactly bounded Colombeau generalized functions from X to Y .

In fact, G[ , Y ] is a sheaf of sets (for proof see [KSV06], Theorem 2.3).

Points in X̃c can be embedded into G[X,X] injectively (i.e., equivalence
preserving) in the following way. Define the embedding

ιX : X̃c → G[X,X]

p = [pε] 7→ [(ε, x) 7→ pε].

Then moderateness of ιX(p) is obvious from the corresponding definitions,
as is the property

[pε] = [qε] in X̃c ⇐⇒ [ιXpε] ∼ [ιXqε] in G[X,X], (3.7)

which ensures well-definedness and injectivity.

3.4 Generalized Vector Bundle

Homomorphisms

We will now introduce generalized vector bundle homomorphisms in order
to treat tangent mappings of elements of G[X, Y ] later on. As base space
we define

EVB[E,F ] :=
{
uε ∈ C∞(I × E,F )

∣∣ uε ∈ Hom(E,F ) ∀ε ∈ I
}
.

Definition 3.38. The space EVBM [E,F ] is defined as the set consisting of
all nets uε ∈ EVB[E,F ] satisfying

(i) uε ∈ EM [X, Y ].

(ii) ∀k ∈ N0, for all vector bundle charts (U,Φ) in E and (V,Ψ) in F, each
L ⊂⊂ U and L′ ⊂⊂ V there exists N ∈ N with

sup
p∈L∩uε

−1(L′)

‖D(k)(u
(2)
εΨΦ)(ϕ(p))‖ = O(ε−N)

where ‖·‖ is any norm on the respective space of multilinear maps.
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Generalized Vector Bundle Homomorphisms

It suffices to require (ii) merely for charts from given vector bundle atlases
of E and F . The proof is very similar to that of Proposition 3.31; the only
significant change is in equation (3.5). If any k, (U0,Φ0), (V0,Ψ0), L ⊂⊂ U ,
and L′ ⊂⊂ V are given as required in (ii), we write the change of charts
on the base as ϕαi0 and ψ0βj

and the transition functions as ϕαi0
and ψ0βj

.
Then we replace equation (3.5) by

u
(2)
εΨ0Φ0

(ϕ0(p)) = ψ0βj
(u

(1)
εΨβj

Φαi
(ϕαi0(ϕ(p))))

· u(2)
εΨβj

Φαi
(ϕαi0(ϕ(p))) ·ϕαi0

(ϕ(p)) (3.8)

and estimate by the chain rule.

Definition 3.39. Two elements uε, vε ∈ EVBM [E,F ] are called vb-equivalent,
written uε ∼vb vε, if the following conditions are satisfied:

(i) uε ∼ vε in EM [X, Y ].

(ii) ∀k ∈ N0, ∀m ∈ N, for each vector bundle chart (U,Φ) in E and (V,Ψ)
in F , each L ⊂⊂ U and L′ ⊂⊂ V :

sup
p∈L∩uε

−1(L′)∩vε
−1(L′)

‖D(k)(u
(2)
εΨΦ − v

(2)
εΨΦ)(ϕ(p))‖ = O(εm).

Furthermore, uε and vε are called vb0-equivalent, written uε ∼vb0 vε, if
uε ∼0 vε holds and (ii) is satisfied for k = 0.

As before, it suffices to require (ii) in Definition 3.39 only for charts of
given vector bundle atlases of E and F . The proof is very similar to that
of Proposition 3.35; with notation as above, the only significant change is
in equation (3.6), which is replaced in the same manner as shown in (3.8).
Furthermore, ∼vb is seen to be an equivalence relation the same way as in
Proposition 3.36.

Definition 3.40. The quotient HomG[E,F ] := EVBM [E,F ]/∼vb is called the
space of Colombeau generalized vector bundle homomorphisms.

HomG(π
−1
X ( ), F ) is a sheaf of sets on X (for proof see [KSV06], Theorem

2.5).

For u = [uε] ∈ HomG[E,F ] we set u := [uε] ∈ G[X, Y ].

Later on, we will give an injective embedding of generalized vector bundle
points of E (still to be defined) into HomG[E,E].
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3. Colombeau Generalized Functions on Manifolds

Definition 3.41. For u = [uε] ∈ G[X, Y ] we define the tangent map

Tu := [Tuε] ∈ HomG(TX, TY ).

Well-definedness of Tu follows immediately from the definitions of ∼ and
∼vb.

3.5 Hybrid Generalized Functions

We will now define the space Gh[X,F ] of hybrid generalized functions on
X taking values in a vector bundle F over Y . As base space we will use
Eh[X,F ] := C∞(I×X,F ) and write uε := πY ◦uε for any net uε ∈ Eh[X,F ].

Definition 3.42. The space EhM [X,F ] of hybrid moderate generalized func-
tions from X to F is defined as the set of all nets uε ∈ Eh[X,F ] satisfying

(i) uε is c-bounded.

(ii) ∀k ∈ N0, for each chart (U,ϕ) in X and each vector bundle chart
(V,Ψ) in F , each L ⊂⊂ U and L′ ⊂⊂ V there exists N ∈ N such that

sup
p∈L∩uε

−1(L′)

‖D(k)(Ψ ◦ uε ◦ ϕ−1)(ϕ(p))‖ = O(ε−N)

where ‖·‖ is any norm on the respective space of multilinear maps.

Definition 3.43. Two elements uε, vε ∈ EhM [X,F ] are called equivalent,
written uε ∼h vε, if the following conditions are satisfied:

(i) ∀K ⊂⊂ X : supp∈K dh
(
uε(p), vε(p)

)
→ 0 for ε → 0, where h is some

Riemannian metric on Y .

(ii) ∀k ∈ N0, ∀m ∈ N, for each chart (U,ϕ) in X and each vector bundle
chart (V,Ψ) in Y , each L ⊂⊂ U and L′ ⊂⊂ V :

sup
p∈L∩uε

−1(L′)∩vε
−1(L′)

‖D(k)(Ψ ◦ uε ◦ϕ−1 −Ψ ◦ vε ◦ϕ−1)(ϕ(p))‖ = O(εm).

Furthermore, uε and vε are called equivalent of order zero, written uε ∼h0 vε,
if (ii) is satisfied for k = 0.
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Hybrid Generalized Functions

In Definitions 3.42 and 3.43 it suffices to require condition (ii) merely for
charts from given atlases of X and F . The proof is almost the same as the
proof of Propositions 3.31 and 3.35.

The resulting space of generalized maps is, as usual, the quotient of moder-
ate functions by∼h, where the latter again is easily seen to be an equivalence
relation.

Definition 3.44. The quotient Gh[X,F ] := EhM [X,F ]/∼h is called the
space of hybrid Colombeau generalized functions from X to F .

For ξ = [ξε] ∈ Gh[X,F ] we set ξ := [ξε] ∈ G[X, Y ].

Definition 3.45. For u ∈ G[X, Y ], the space of generalized sections along
u is defined as G[X,F ](u) :=

{
ξ ∈ Gh[X,F ] | ξ = u

}
. The space of gener-

alized vector fields along u is defined as

XG(u) :=
{
ξ ∈ Gh[X,TY ] | ξ = u

}
.
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Chapter 4

Characterization results

In the preceding chapter several kinds of generalized functions were de-
fined, distinguished by the structure of their domain of definition and their
range space. While for generalized functions on a manifold and generalized
sections a characterization was given which does not depend on local ex-
pressions on charts (Theorems 3.1, 3.3 and Proposition 3.19), the definition
of generalized functions valued in a manifold, generalized vector bundle ho-
momorphisms, and hybrid generalized functions so far rests solely on such a
description. We will therefore aim to supplement those spaces with intrinsic
characterizations of moderate and negligible elements, i.e., one without the
use of charts, and will also give point value characterizations. Furthermore,
we will show that equivalence can be defined without imposing restrictions
on the derivatives but only on the functions themselves, as is the case in
practically all other variants of Colombeau algebras.

The central idea of the following results is to replace the local expression
on charts – in other words, local composition with smooth functions – by
composition with globally defined smooth functions on the manifold.

4.1 Manifold-Valued Generalized Functions

Intrinsic Characterization

Proposition 4.1. Let uε ∈ E [X, Y ]. Then the following conditions are
equivalent.

(i) uε is c-bounded.
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4. Characterization results

(ii) f ◦ uε is c-bounded for all f ∈ C∞(Y ).

(iii) f ◦ uε is moderate of order zero for all f ∈ C∞(Y ), i.e.,

∀K ⊂⊂ X ∃N ∈ N : sup
p∈K

|f ◦ uε(p)| = O(ε−N) ∀f ∈ C∞(Y ).

(iv) uε(xε) ∈ Yc ∀xε ∈ Xc.

Proof. (i) ⇒ (ii) ⇒ (iii) is easy to see as well as (i) ⇔ (iv). For (iii) ⇒ (i),
any non-compact Y can be covered by compact sets Ln with Ln ⊆ Ln+1

and L◦n+1 \ Ln 6= ∅ ∀n ∈ N. Assuming (i) to be false, we have

∃K ⊂⊂ X ∀n ∈ N ∃εn ≤
1

n
∃pn ∈ K : uεn(pn) 6∈ Ln.

Without loss of generality we may write uεn(pn) ∈ L◦n+1 \ Ln. Now choose
fn ∈ D(L◦n+1\Ln) with fn(uεn(pn)) = e1/εn and set f :=

∑∞
n=1 fn ∈ C∞(Y ).

Taking into account (iii) there exists N ∈ N : supp∈K |f ◦ uε(p)| ≤ Cε−N for

small ε, giving e1/εn ≤ Cε−Nn which is a contradiction for large n.

Remark 4.2. Note that for (iii) ⇒ (i) in 4.1, the growth does not have to be
like O(ε−N). In fact, any estimate supp∈K |f ◦uε(p)| = h(ε) with arbitrary h
would be sufficient to give the implication, as we can set fn(uεn(pn)) = g(εn)
with g chosen such that g(εn) > h(εn), which then is a contradiction to (iii)
stating g(εn) ≤ h(εn).

Proposition 4.3. Let uε ∈ E [X, Y ]. Then the following statements are
equivalent.

(a) uε ∈ EM [X, Y ].

(b) (i) uε is c-bounded and

(ii) f ◦ uε ∈ EM(X) ∀f ∈ D(Y ).

(c) f ◦ uε ∈ EM(X) ∀f ∈ C∞(Y ).

Proof. (c) ⇒ (b) follows from Proposition 4.1.

Regarding (b) ⇒ (a), (i) of Definition 3.30 equals (i) of (b). For (ii) thereof,
fix k ∈ N0, charts (U,ϕ) in X and (V, ψ) in Y , L ⊂⊂ U , and L′ ⊂⊂ V . We
may establish the claim by locally replacing the coordinates of the chart in
Y by functions in D(Y ): if the dimension of Y equals m, we can choose
f ∈ D(W )m such that f ≡ ψ in a neighborhood of L′. Setting fj := prj ◦f
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(the projection onto the j-th coordinate) we have ψj ◦ uε = fj ◦ uε in a
neighborhood of each p ∈ L∩u−1

ε (L′), where ψj is the j-th coordinate of ψ.
Hence ‖D(k)(ψj ◦ uε ◦ϕ−1)(ϕ(p))‖ = ‖D(k)(fj ◦ uε ◦ϕ−1)(ϕ(p))‖ = O(ε−Nj)
for some Nj, resulting in moderateness of u.

Concerning (a) ⇒ (c), fix f ∈ C∞(Y ) and K ⊂⊂ X. Without loss of
generality we may assume K ⊂⊂ U for some chart (U,ϕ) in X (in the
general case, the following procedure would be applied to each component
of a suitable partitioning of K). As u is c-bounded there exist K ′ ⊂⊂ Y and
ε0 > 0 such that uε(K) ⊆ K ′ for all ε < ε0. Covering K ′ by finitely many
charts (Vl, ψl) in Y we can, by virtue of Lemma 1.1, write K ′ =

⋃r
l=1K

′
l

with K ′
l ⊂⊂ Vl (1 ≤ l ≤ r). Applying (ii) of Definition 3.30 on L := K for

the chart (U,ϕ) and L′ := K ′
l for the chart (Vl, ψl), we obtain (for fixed k)

constants Cl, Nl and εl such that

sup
p∈K∩u−1

ε (K′
l)

‖D(k)(ψl ◦ uε ◦ ϕ−1)(ϕ(p))‖ ≤ Clε
−Nl for ε < εl,

and because each p ∈ K is mapped into some K ′
l by uε there is N ∈ N with

sup
p∈K

‖D(k)(ψl ◦ uε ◦ ϕ−1)(ϕ(p)‖ = O(ε−N) (ε→ 0).

Furthermore, f ◦ uε = (f ◦ ψ−1
l ) ◦ (ψl ◦ uε) in a neighborhood of p. By the

chain rule we arrive at moderateness of f ◦ u.

The same methods are now used to obtain similar characterizations of equiv-
alence; additionally, we will refer to equivalence of order zero in the following
sense.

Definition 4.4. uε, vε ∈ EM [X, Y ] are said to be equivalent of order zero,
written uε ∼0 vε, if Definition 3.32 holds with k = 0 in (ii), which can
equally be rewritten as

(i) ∀K ⊂⊂ X and for some (hence every) Riemannian metric h on Y ,
supp∈K dh

(
uε(p), vε(p)

)
→ 0 for ε→ 0.

(ii) ∀K ⊂⊂ X, ∀m ∈ N, each chart (V, ψ) in Y and each L′ ⊂⊂ V :

sup
p∈K∩u−1

ε (L′)∩v−1
ε (L′)

‖ψ ◦ uε(p)− ψ ◦ vε(p)‖ = O(εm).

That (ii) in Definition 4.4 is indeed equivalent to Definition 3.32 (ii) with
k = 0 can be inferred by the same methods as used in the proof of Propo-
sition 3.31.
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Theorem 4.5. Let uε, vε ∈ EM [X, Y ]. Then the following statements are
equivalent.

(a) uε ∼ vε.

(b) uε ∼0 vε.

(c) f ◦ uε − f ◦ vε ∈ N (X) ∀f ∈ D(Y ).

(d) f ◦ uε − f ◦ vε ∈ N (X) ∀f ∈ C∞(Y ).

Proof. (a) ⇒ (b) is obvious.

(b) ⇒ (c): Fix f ∈ D(Y ) and K ⊂⊂ X. In order to establish

sup
p∈K

|f ◦ uε(p)− f ◦ vε(p)| = O(εm) ∀m ∈ N

we choose (by c-boundedness of uε and vε) K
′ ⊂⊂ Y and ε0 > 0 such that

uε(K) ∪ vε(K) ⊆ K ′ ∀ε < ε0. We cover K ′ by finitely many open sets V ′
l

with V ′
l ⊂⊂ Vl for charts (Vl, ψl) in Y . For each l there exists by virtue of

Lemma 3.33 a constant C ≥ 0 independent of ε such that

|(f ◦ uε − f ◦ vε)(p)| = |(f ◦ ψ−1
l ) ◦ (ψl ◦ uε)(p)− (f ◦ ψ−1

l ) ◦ (ψl ◦ vε)(p)|
≤ C‖(ψl ◦ uε − ψl ◦ vε)(p)‖ = O(εm)

for all p ∈ K ∩ u−1
ε (V ′

l ) ∩ v−1
ε (V ′

l ) and all m ∈ N by assumption. As for
small ε (as in the proof of Proposition 3.35) each p ∈ K gets mapped into
a certain V ′

l by both uε and vε, the claim follows from the definition of
equivalence.

(c) ⇒ (a) First we need to establish that for all K ⊂⊂ X and for each
Riemannian metric h on Y supp∈X dh

(
uε(p), vε(p)

)
→ 0. Assuming the

contrary we have

∃K ⊂⊂ X ∃δ > 0 ∀k ∈ N ∃εk <
1

k
∃pk ∈ K : dh

(
uεk

(pk), vεk
(pk)

)
≥ δ

(4.1)

with some Riemannian metric h. Because uε, vε ∈ EM [X, Y ] there exists
K ′ ⊂⊂ Y with uε(K) ∪ vε(K) ⊆ K ′ for small ε. By choosing suitable
subsequences of εk and pk we may assume without loss of generality that
uεk

(pk) → q1 ∈ K ′ and vεk
(pk) → q2 ∈ K ′ with (4.1) implying q1 6= q2.

Take f ∈ D(Y ) such that f(q1) = 1 and f(q2) = 0. Then the first part
of implication (a) is a direct consequence of the contradiction arising from
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1 = limk→∞|f(uεk
(pk)) − f(vεk

(pk))| by construction on the one hand and
supp∈K |f(uεk

(p))− f(vεk
(p))| = O(εmk ) for all m ∈ N on the other hand.

Second, take L ⊂⊂ U and L′ ⊂⊂ V for charts (U,ϕ) in X and (V, ψ) in
Y . Again we work with coordinates ψj of ψ. For each j we may choose
fj ∈ D(V ) such that fj ≡ ψj in a neighborhood of L′. For each point
p ∈ L ∩ u−1

ε (L′) ∩ v−1
ε (L′), ψj ◦ uε = fj ◦ uε and ψj ◦ vε = fj ◦ vε in some

neighborhood of p. The final conclusion establishing the needed estimates
reads

‖D(k)(ψj ◦ uε ◦ ϕ−1 − ψj ◦ vε ◦ ϕ−1)(ϕ(p))‖ ≤
sup
p′∈L

‖D(k)(fj ◦ uε ◦ ϕ−1 − fj ◦ vε ◦ ϕ−1)(ϕ(p))‖ = O(εm)

for the coordinates of ψ and therefore for ψ itself.

(d) ⇒ (c) is obvious; for the converse fix f ∈ C∞(Y ) and K ⊂⊂ X. Set K ′

such that uε(K) ∪ vε(K) ⊆ K ′. Choosing f̃ ∈ D(Y ) with f ≡ f̃ on K ′, (c)
gives

sup
x∈K

|(f ◦ uε − f ◦ vε)(x)| = sup
x∈K

|(f̃ ◦ uε − f̃ ◦ vε)(x)| = O(εm).

As this can be done for each K, we are finished.

There is an intrinsic characterization of equivalence which will be useful
when introducing point values.

Theorem 4.6. For uε, vε ∈ EM [X, Y ] to be equivalent it is necessary and
sufficient that for some (hence every) Riemannian metric h on Y , every
m ∈ N and each K ⊂⊂ X we have

sup
p∈K

dh
(
uε(p), vε(p)

)
= O(εm) for ε→ 0.

Proof. We establish necessity indirectly. Assume uε and vε to be equivalent
and

∃K ⊂⊂ X ∃m0 ∈ N ∀k ∈ N ∃εk <
1

k
∃pk ∈ K : dh

(
uεk

(pk), vεk
(pk)

)
≥ εm0

k .

By choosing a suitable subsequence of pk we may assume pk → p ∈ K,
uεk

(pk) → q ∈ Y and vεk
(pk) → q. The latter have the same limit because

uε ∼ vε. Taking a chart (V, ψ) in Y containing q we set L′ = ψ−1(Br(ψ(q)))
for suitable r such that uεk

(pk), vεk
(pk) ∈ L′ ⊂⊂ V for all k larger than some

k0. Employing a smooth cut-off function equal to 1 on L′ and supported
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in V we extend the inner product on Rm to a Riemannian metric g on a
neighborhood of L′ like in the proof of Lemma 3.14. For k > k0 we have

dg
(
uεk

(pk), vεk
(pk)

)
= ‖ψ ◦ uεk

(pk)− ψ ◦ vεk
(pk)‖ = O(εm) ∀m ∈ N

by Definition 4.4 (ii). Lemma 3.13, however, gives the contradiction

dh
(
uεk

(pk), vεk
(pk)

)
≤ Cdg

(
uεk

(pk), vεk
(pk)

)
for some C > 0 and all k.

Conversely, 4.4 (i) is obvious. Concerning (ii), fix K ⊂⊂ X and take a
chart (V, ψ) in Y and L′ ⊂⊂ V . First suppose that L′ is contained in
a geodesically convex set V ′ with V ′ ⊂⊂ V . Any m ∈ N gives rise to
constants ε′ > 0 and C ′ > 0 such that

sup
p∈K

dh
(
uε(p), vε(p)

)
≤ C ′εm for ε < ε′.

Denoting by γε : [aε, bε] → V ′ the unique geodesic joining uε(p) and vε(p)
for some p ∈ K ∩ u−1

ε (L′) ∩ v−1
ε (L′) we obtain

dh
(
uε(p), vε(p)

)
=

∫ bε

aε

‖γ′ε(s)‖ ds. (4.2)

Glancing at Lemma 3.14 we use

∃C ′′ > 0 : ‖ξ‖ ≤ C ′′‖Tψ(p)ψ
−1(ξ)‖h ∀p ∈ V ′ ∀ξ ∈ Rn

and (4.2) to estimate

‖ψ(uε(p))− ψ(vε(p))‖ ≤
∫ bε

aε

‖(ψ ◦ γε)′(s)‖ ds

≤ C ′′
∫ bε

aε

‖γ′ε(s)‖h ds = C ′′dh
(
uε(p), vε(p)

)
= O(εm),

giving the claim for L′ as above.

Arbitrary L′ ⊂⊂ V can be covered by finitely many geodesically convex
open sets Vi ([O’N83], Proposition 5.7) whose closure is compact and con-
tained in V . Then there are L′i ⊂⊂ Vi (1 ≤ i ≤ k) such that L′ =

⋃k
i=1 L

′
i.

We may choose ε′′ > 0 with dh
(
uε(p), vε(p)

)
< mini=1,...,k dh(L

′
i, ∂Vi) for all

ε < ε′′ and all p ∈ K.

For such ε and p ∈ u−1
ε (L′)∩v−1

ε (L′) there exists i with uε(p), vε(p) ∈ Vi. By
what was proven above there are, for each i = 1, . . . , k, positive constants
εi and Ci such that ‖ψ(uε(p)) − ψ(vε(p))‖ ≤ Ciε

m for all ε smaller than
εi and p in K ∩ u−1

ε (Vi) ∩ v−1
ε (Vi). Setting ε1 = min(ε′, ε1, . . . , εk) and

C = maxi=1,...,k Ci establishes the claim.
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Point Values

In order to introduce point values for elements of G[X, Y ] we need the
following terminology. Let f : (X, g) → (Y, h) be a smooth map between
Riemannian manifolds and p ∈ X. We denote by ‖Tpf‖g,h the norm of
the linear map Tpf : (TpX, ‖ ‖g) → (Tf(p)Y, ‖ ‖h). First, we establish an
auxiliary result.

Lemma 4.7. Let uε ∈ EM [X, Y ] and take Riemannian metrics g and h on
X and Y , respectively. Then for any K ⊂⊂ X there exists N ∈ N such
that

sup
p∈K

‖Tpuε‖g,h = O(ε−N).

Proof. As the local expression of Tpuε is the Jacobian of the local expression
of f , the claim follows directly from the definition of moderateness.

Proposition 4.8. Let u = [uε] ∈ G[X, Y ], p = [pε] ∈ X̃c. Then the point

value of u at p defined by u(p) := [uε(pε)] is a well-defined element of Ỹc.

Proof. Membership in Ỹc follows from c-boundedness of u.

Next we have to show that different representatives of u and p still give the
same element of Ỹc. Let h be any Riemannian metric on Y .

First, let u′ε ∈ EM [X, Y ] with uε ∼ u′ε. Choosing K ⊂⊂ X such that pε ∈ K
for small ε, by Theorem 4.6 we have

dh
(
uε(pε), u

′
ε(pε)

)
≤ sup

p∈K
dh

(
uε(p), u

′
ε(p)

)
= O(εm)

for all m ∈ N, which establishes that uε(pε) ∼ u′ε(pε).

Second, let p′ε ∈ Xc with pε ∼ p′ε. As X is assumed to be paracompact and
connected, there exists a geodesically complete Riemannian metric g on X
([NO61]). For all ε there exists a g-geodesic γε : [aε, bε] → X connecting pε
and p′ε such that

dg(pε, p
′
ε) =

∫ bε

aε

‖γ′ε(s)‖gds.

In order to apply Lemma 4.7 we choose any q ∈ K and a suitable r ∈ R+

such that the ball {p ∈ X | dg(p, q) ≤ r} covers K and subsequently set
K ′ := {p ∈ X | dg(p, q) ≤ 2r}. For any s ∈ [aε, bε], the g-distance of γε(s)
to either pε or p′ε is no more than r because dg(pε, p

′
ε) ≤ 2r. As dg(pε, q) ≤ r

and dg(p
′
ε, q) ≤ r we get dg(γε(s), q) ≤ 2r, i.e., γε(s) ∈ K ′. Employing the
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Hopf-Rinow theorem, which states that K ′ is compact, there are by Lemma
4.7 positive constants C and ε0 such that supp∈K′‖Tpuε‖g,h ≤ Cε−N for all
ε < ε0. We finally infer uε(pε) ∼ uε(p

′
ε) from

dh
(
uε(pε), uε(p

′
ε)

)
≤

∫ bε

aε

‖(uε ◦ γε)′(s)‖hds ≤
∫ bε

aε

‖Tγε(s)uε‖g,h‖γ′ε(s)‖gds

≤Cε−Ndg(pε, p′ε) ∀ε < ε0

and the fact that dg(pε, p
′
ε) = O(εm) ∀m > 0 by assumption. Summing up,

for any choice of u′ε and p′ε such that uε ∼ u′ε and pε ∼ p′ε it follows that
uε(pε) ∼ uε(p

′
ε) ∼ u′ε(p

′
ε), i.e., [uε(pε)] = [u′ε(p

′
ε)].

We can thus give a point value characterization of elements of G[X, Y ].

Proposition 4.9. Let u and v be in G[X, Y ]. Then u = v if and only if

u(p) = v(p) for all p ∈ X̃c.

Proof. Necessity was already shown in the proof of Proposition 4.8. For
sufficiency we employ Theorem 4.6 and suppose indirectly that u and v are
not equivalent. Let h be any Riemannian metric on X and choose uε and
vε to be representatives of u and v, respectively. In this way we obtain

∃K ⊂⊂ X ∃m ∈ N ∀k ∈ N ∃εk <
1

k
∃pk ∈ K : dh

(
uε(p), vε(p)

)
> εmk .

We choose a p̃ = [p̃ε] ∈ X̃c with p̃1/k = pk and obtain u(p̃) 6= v(p̃).

4.2 Generalized Vector Bundle

Homomorphisms

Generalized Vector Bundle Points

Before we attempt to characterize elements of HomG[E,F ] by point val-
ues we shall introduce an appropriate concept of generalized vector bundle
points.

Definition 4.10. Let (E,X, π) be a vector bundle. We consider the set of
all nets eε ∈ C∞(I, E) satisfying

(i) π(eε) ∈ Xc.
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(ii) For each Riemannian metric h on E inducing the norm ‖ ‖h on the
fibers of E, there exists N ∈ N such that

‖eε‖h = O(ε−N).

These are called vb-moderate generalized points.

On this set we define an equivalence relation ∼vb and call two elements eε, e
′
ε

equivalent if

(iii) π(eε) ∼ π(e′ε) in Xc.

(iv) For all m ∈ N, vector bundle charts (U,Φ) in E, and L ⊂⊂ U there
exist ε1 > 0 and C ≥ 0 such that

‖ϕeε −ϕe′ε‖ ≤ Cεm

for all ε < ε1 whenever both π(eε) and π(e′ε) lie in L.

This set of equivalence classes is denoted by E∼vb
c .

Again, it suffices to require (iv) merely for charts of a given vector bundle
atlas.

There is an injective (i.e., equivalence preserving) embedding of E∼vb
c into

HomG[E,E] given by

ιE : E∼vb
c → HomG[E,E]

e = [eε] 7→ [(ε, f) 7→ eε].

It is easy to see moderateness of ιE(e) as well as the property

eε ∼vb e
′
ε in E∼vb

c ⇐⇒ ιEeε ∼vb ιEe
′
ε in HomG[E,E]. (4.3)

For e = [eε] ∈ E∼vb
c we call π(e) := [π(eε)] the base point of e. For any

p ∈ X̃c we set (E∼vb
c )p := {e ∈ E∼vb

c | π(e) = p}.

Lemma 4.11. Let e = [eε] ∈ (E∼vb
c )p, p = [pε] ∈ X̃c. Then there exists a

representative e′ε of e such that π(e′ε) = pε for small ε.

Proof. There exists K ⊂⊂ X such that pε ∈ K for small ε. Then there
are vector bundle charts (Ui,Φi) covering K such that (employing Lemma
1.1) we can write K =

⋃k
i=1Ki with Ki ⊂⊂ Ui. Let U ′

i be a neighborhood
of Ki whose closure is compact and contained in Ui. For small ε all π(eε)
and pε are contained in the same π(U ′

i). For such ε we consequently set
e′ε = Φ−1

i (ϕi(pε),ϕi(eε)). By construction, eε ∼vb e
′
ε and π(e′ε) = pε.
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Intrinsic Characterization

In order to derive characterizations of generalized vector bundle homomor-
phisms similar to those for G[X, Y ] we replace the chart-wise description in
F by composition with vector bundle homomorphisms from F to R×Rm′

.
For uε ∈ EVB[E,R × Rm′

] and (U,Φ) a vector bundle chart in E we can
write the local expression of uε like in (1.1) as

uε ◦ Φ−1(x, ξ) = (u
(1)
ε id Φ(x), u

(2)
ε id Φ(x) · ξ).

Proposition 4.12. (a) Let uε ∈ EVB[E,R × Rm′
]. Then uε is moderate

if and only if

(i) uε is c-bounded and

(ii) u
(1)
ε id Φ ∈ EM(ϕ(U)) and u

(2)
ε id Φ ∈ EM(ϕ(U))n

′·m′
for all vector bun-

dle charts (U,Φ) in E.

(b) Let uε, vε ∈ EVBM [E,R × Rm′
]. Then uε ∼vb vε holds if and only if

u
(1)
ε id Φ − v

(1)
ε id Φ ∈ N (ϕ(U)) and u

(2)
ε id Φ − v

(2)
ε id Φ ∈ N (ϕ(U))n

′·m′
for all

vector bundle charts (U,Φ) in E.

Proof. This is a straightforward calculation from the definitions.

In the following we denote by Homc(E,R×Rm′
) the set of all vector bundle

homomorphisms f ∈ Hom(E,R × Rm′
) such that f : X → R has compact

support.

Proposition 4.13. Let uε ∈ EVB[E,F ]. Then the following conditions are
equivalent.

(a) uε ∈ EVBM [E,F ].

(b) (i) uε is c-bounded and

(ii) f̂ ◦ uε ∈ EVBM [E,R× Rm′
] ∀f̂ ∈ Homc(F,R× Rm′

).

(c) f̂ ◦ uε ∈ EVBM [E,R× Rm′
] ∀f̂ ∈ Hom(F,R× Rm′

).

Proof. (a) ⇒ (c): Let f̂ ∈ Hom(F,R×Rm′
) and (U,Φ) be a vector bundle

chart in E. By assumption, uε is c-bounded and therefore f̂ ◦ uε also is;

(f̂ ◦ uε)(1)
id Φ = f̂ ◦ uε ◦ ϕ−1 ∈ EM(ϕ(U)) by Proposition 4.3. We then need

that g := (f̂ ◦ uε)(2)
id Φ ∈ EM(ϕ(U))n

′·m′
or, in coordinates gij of g:

∀K ⊂⊂ ϕ(U) ∀α ∈ Nn
0 ∃Nij ∈ N : sup

x∈K
|∂αgij(x)| = O(ε−Nij)

44



Generalized Vector Bundle Homomorphisms

for each i and j. This requirement is equivalent to

∀L ⊂⊂ U ∀k ∈ N0 ∃N ∈ N : sup
p∈L

‖D(k)g(ϕ(p))‖ = O(ε−N),

which is what we will show.

Fix ε0 > 0 and L′ ⊂⊂ Y such that uε(L) ⊆ L′ ∀ε < ε0. Covering L′ by
finitely many vector bundle charts (Vj,Ψj) in F we subsequently choose
L′j ⊂⊂ Vj (j = 1, . . . , s) such that L′ =

⋃s
j=1 L

′
j. As each p ∈ L gets

mapped into some L′j by uε we can write for all p′ in a neighborhood of
such p:

(f̂ ◦ uε)(2)
id Φ(ϕ(p′)) = (f̂ ◦Ψ−1

j )(2)(ψj ◦ uε(p′)) · u(2)
εΨjΦ

(ϕ(p′))

and thus supp∈L∩uε
−1(L′j)

‖D(k)g(ϕ(p))‖ can be estimated with the help of

the chain rule by terms consisting of

sup
p∈L∩uε

−1(L′j)

‖D(k′)((f̂ ◦Ψ−1
j )(2)(ψj ◦ uε(p))‖,

which is finite, and

sup
p∈L∩uε

−1(L′j)

‖D(k′′)(u
(2)
εΨjΦ

)(ϕ(p))‖,

which satisfies moderateness estimates by assumption.

(c) ⇒ (b): (i) follows directly from Proposition 4.1, (ii) is evident.

(b) ⇒ (a): In order to establish (i) of Definition 3.38 it suffices by Propo-
sition 4.3 to show that f ◦ uε ∈ EM(X) for all f ∈ C∞(Y ). Since for all

f̂ ∈ Hom(F,R × Rm′
) and every vector bundle chart (U,Φ) in E we have

(f̂ ◦uε)(1)
id Φ = f̂ ◦uε◦ϕ−1 ∈ EM(ϕ(U)) we only need to choose, for every given

f ∈ C∞(Y ), any f̂ ∈ Hom(F,R×Rm′
) with f̂ = f to reach uε ∈ EM [X, Y ].

Then, fix vector bundle charts (U,Φ) in E, (V,Ψ) in F , L ⊂⊂ U , and
L′ ⊂⊂ V . As for all x ∈ ϕ(L ∩ uε−1(L′)) and ξ ∈ Rn′ we have

(Ψ ◦ uε ◦ Φ−1)(x, ξ) = (u
(1)
εΨΦ(x), u

(2)
εΨΦ(x) · ξ)

we choose an open neighborhood V ′ of L′ with V ′ ⊂⊂ V and for any
l ∈ {1, . . . ,m} define f̂l ∈ Homc(F,R× Rm′

) such that

f̂l|π−1
Y (V ′) = (prl× idRm′ ) ◦Ψ|π−1

Y (V ′)

(where prl is the projection on the j-th coordinate) and have

u
(2)
εΨΦ(ϕ(p)) = (f̂l ◦ uε ◦ Φ−1)(2)(ϕ(p)) ∀p ∈ L ∩ uε−1(L′), (4.4)

giving the desired estimates for supp∈L∩uε
−1(L′)‖D(k)(u

(2)
εΨΦ)(ϕ(p))‖.
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Theorem 4.14. Let uε, vε ∈ EVBM [E,F ]. Then the following statements are
equivalent.

(i) uε ∼vb vε.

(ii) uε ∼vb0 vε.

(iii) f̂ ◦ uε ∼vb f̂ ◦ vε in EVBM [E,R× Rm′
] ∀f̂ ∈ Homc(F,R× Rm′

).

(iv) f̂ ◦ uε ∼vb f̂ ◦ vε in EVBM [E,R× Rm′
] ∀f̂ ∈ Hom(F,R× Rm′

).

Proof. (i) ⇒ (ii) is evident.

(ii) ⇒ (iv): Take f̂ ∈ Hom[F,R× Rm′
]. We now need to establish that

(f̂ ◦ uε − f̂ ◦ vε)(1)
id Φ ∈ N (ϕ(U))

and (f̂ ◦ uε − f̂ ◦ vε)(2)
id Φ ∈ N (ϕ(U))n

′·m′
(4.5)

for every vector bundle chart (U,Φ) in E.

First, uε ∼ vε in EM [X,R] by assumption and therefore f◦uε−f◦vε ∈ N (X)
for all f ∈ C∞(Y ) by the characterization in Theorem 4.5. This gives

(f̂ ◦ uε − f̂ ◦ vε)(1)
id Φ(ϕ(p)) = (f̂ ◦ uε − f̂ ◦ vε) ◦ ϕ−1 ∈ N (ϕ(U)).

Second, condition (4.5) is equivalent to

∀L ⊂⊂ U ∀m ∈ N : sup
p∈L

‖(f̂ ◦ uε − f̂ ◦ vε)(2)
id Φ(ϕ(p))‖ = O(εm). (4.6)

For L ⊂⊂ U choose ε1 > 0 and L′ ⊂⊂ Y such that uε(L)∪vε(L) ⊆ L′ for all
ε < ε1. With (Vl,Ψl) vector bundle charts in F , cover L′ by finitely many
open sets V ′

l satisfying V ′
l ⊂⊂ Vl. As u ∼vb0 v implies uε ∼ vε and therefore

supp∈L dh
(
uε(p), vε(p)

)
→ 0 (ε→ 0), both uε(p) and vε(p) are contained in

some V ′
l for p ∈ L and small ε as in the proof of Proposition 3.35.

We finally write for p ∈ L ∩ uε−1(V ′
l ) ∩ vε−1(V ′

l )

(f̂ ◦ uε − f̂ ◦ vε)(2)
id Φ(ϕ(p)) =

(f̂ ◦Ψ−1
l )(2)(ψl ◦uε(p)) ·u(2)

εΨlΦ
(ϕ(p))− (f̂ ◦Ψ−1

l )(2)(ψl ◦ vε(p)) · v(2)
εΨlΦ

(ϕ(p)) =(
(f̂ ◦Ψ−1

l )(2)(ψl ◦ uε(p))− (f̂ ◦Ψ−1
l )(2)(ψl ◦ vε(p))

)
· u(2)

εΨlΦ
(ϕ(p))+

(f̂ ◦Ψ−1
l )(2)(ψl ◦ vε(p))

(
u

(2)
εΨlΦ

(ϕ(p))− v
(2)
εΨlΦ

(ϕ(p))
)
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and obtain the needed estimates for (4.6) by

sup
p∈L∩uε

−1(V ′
l )

‖u(2)
εΨlΦ

(ϕ(p))‖ = O(ε−Nl) for some Nl ∈ N,

sup
p∈L∩uε

−1(V ′
l )∩vε

−1(V ′
l )

‖u(2)
εΨlΦ

(ϕ(p))− v
(2)
εΨlΦ

(ϕ(p))‖ = O(εm) ∀m ∈ N

and the help of Lemma 3.33 and the remark following it: as there is a
compact set Ω ⊂⊂ Rm such that

ψl ◦ uε(L ∩ uε−1(V ′
l )) ∪ ψl ◦ vε(L ∩ vε

−1(V ′
l )) ⊆ Ω

we get for all p ∈ L ∩ uε−1(V ′
l ) ∩ vε−1(V ′

l )

‖(f̂ ◦Ψ−1
l )(2)(ψl ◦ uε(p))− (f̂ ◦Ψ−1

l )(2)(ψl ◦ vε(p))‖
≤ C‖ψl ◦ uε(p)− ψl ◦ vε(p)‖

and conclude the argument by applying Definition 4.4 (ii) and the assump-
tion uε ∼ vε.

(iv) ⇒ (iii) is clear.

(iii) ⇒ (i): As uε ∼ vε in EM [X, Y ] is equivalent to f ◦ uε − f ◦ vε ∈ N (X)

for all f ∈ D(Y ) by Theorem 4.5, we choose any f̂ ∈ Homc(F,R × Rm′
)

such that f̂ = f and obtain by assumption (iii) and Proposition 4.12 that

(f̂ ◦ uε)(1)
id Φ − (f̂ ◦ vε)(1)

id Φ = (f ◦ uε − f ◦ vε) ◦ ϕ−1 ∈ N (ϕ(U))

for each vector bundle chart (U,Φ), which gives equivalence of uε and vε.
Part (ii) of Definition 3.39 follows easily from a representation as in (4.4) of

both u
(2)
εΨΦ and v

(2)
εΨΦ and an f̂l chosen as in the Proof of 4.13, (b) ⇒ (a).

Point Values

Now we can state a corollary of Theorem 4.14 which transfers its conclusions
to generalized vector bundle points.

Corollary 4.15. Let e = [eε], e
′ = [e′ε] ∈ E∼vb

c . Then the following state-
ments are equivalent.

(i) e = e′.
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(ii) f̂(e) = f̂(e′) in (R×Rn′)∼vb
c for all f̂ ∈ Homc(E,R×Rn′) (or for all

f̂ ∈ Hom(E,R× Rn′)).

(iii) ‖f̂(eε) − f̂(e′ε)‖ = O(εm) (ε → 0) ∀m ∈ N,∀f̂ ∈ Homc(E,R × Rn′)
(or ∀f̂ ∈ Hom(E,R× Rn′)).

Proof. (i) ⇔ (ii) follows from Theorem 4.14, property (4.3) and the fact
that f̂(ιEeε) = ιR×Rn′ f̂(eε). (ii) ⇔ (iii) is clear from the definitions.

Proposition 4.16. Let u = [uε] ∈ HomG[E,F ] and e = [eε] ∈ E∼vb
c . Then

the point value of u at e defined by u(e) := [uε(eε)] is a well-defined element
of F∼vb

c .

Proof. (i) of Definition 4.10 follows from πY (uε(eε)) = uε(πX(eε)) ∈ Yc.
For (ii), we assume without loss of generality that there are vector bundle
charts (U,Φ) in E and (V,Ψ) in F , L ⊂⊂ U , L′ ⊂⊂ V , and ε0 > 0 such
that πX(eε) ∈ L and πY (uε(eε)) ∈ L′ for all ε < ε0; in the general case
we would employ Lemma 1.1 as in previous proofs. Let h and h̃ be any
Riemannian metrics on E and F , respectively. By Corollary 3.11 we can
write for all ε < ε0

‖uε(eε)‖h̃ ≤C‖ψ ◦ uε ◦ Φ−1 ◦ Φ(eε)‖
=C

∥∥u(2)
εΨΦ

(
ϕ(πX(eε))

)
·ϕ(eε)

∥∥,
and because for all ε < ε0 we have

∃N ∈ N :
∥∥u(2)

εΨΦ

(
ϕ(πX(eε))

)∥∥ ≤ sup
p∈L∩uε

−1(L′)

∥∥u(2)
εΨΦ

(
ϕ(p)

)∥∥ = O(ε−N) and

∃N ′ ∈ N, C ′ > 0 : ‖ϕ(eε)‖ ≤ C ′‖eε‖h = O(ε−N),

vb-moderateness of uε(eε) is ensured.

Now suppose that uε ∼ u′ε and eε ∼ e′ε for some u′ε ∈ EVBM [E,F ] and
vb-moderate e′ε. In both cases we easily get (iii) of Definition 4.10 from
πY (uε(eε)) = uε(πX(eε)) ∼ u′ε(πX(e′ε)) = πY (u′ε(e

′
ε)). Then, writing

‖ψ(uε(eε))−ψ(u′ε(eε))‖
= ‖ψ ◦ uε ◦ Φ−1 ◦ Φ(eε)−ψ ◦ u′ε ◦ Φ−1 ◦ Φ(eε)‖
=

∥∥u(2)
εΨΦ

(
ϕ(πX(eε))

)
·ϕ(eε)− (u′ε)

(2)
ΨΦ

(
ϕ(πX(eε))

)
·ϕ(eε)

∥∥
≤

∥∥u(2)
εΨΦ

(
ϕ(πX(eε))

)
− (u′ε)

(2)
ΨΦ

(
ϕ(πX(eε))

)∥∥ · ‖ϕ(eε)‖
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gives (iv) because the first factor is O(εm) and the second is O(ε−N) by
assumption.

Finally, we know from Corollary (4.15) that uε(eε) ∼ uε(e
′
ε) is equivalent to

(f̂ ◦ uε)(eε) ∼ (f̂ ◦ uε)(e′ε) in (R × Rm′
)c for all f̂ ∈ Homc(F,R × Rm′

). A
consequence of

‖(f̂ ◦ uε)(1)
id Φ(ϕ(π(eε)))− (f̂ ◦ uε)(1)

id Φ(ϕ(π(e′ε)))‖ =

‖f̂ ◦ uε(π(eε))− f̂ ◦ uε(π(e′ε))‖,
(4.7)

f̂ ◦ uε ∈ EM [X,R] and π(eε) ∼ π(e′ε) in Xc is that (4.7) is O(εm) for all
m ∈ N. All that remains to be shown now is that∥∥(f̂ ◦ uε)(2)

id Φ

(
ϕ(πX(eε))

)
·ϕ(eε)− (f̂ ◦ uε)(2)

id Φ

(
ϕ(πX(e′ε))

)
·ϕ(e′ε)

∥∥
is O(εm), which follows easily from πX(eε) ∼ πX(e′ε), moderateness of uε
and the fact that ‖ϕ(eε)−ϕ(e′ε)‖ = O(εm).

Theorem 4.17. Let u, v ∈ HomG[E,F ]. Then u = v holds if and only if
u(e) = v(e) in F∼vb

c for all e ∈ E∼vb
c .

Proof. Necessity follows from the proof of Corollary 4.16. Conversely, let
uε and vε be representatives of u and v. Suppose that uε 6∼ vε holds,
which either means uε 6∼ vε or that (ii) of Definition 3.39 is violated for
k = 0 – remember that vb-equivalence equals vb0-equivalence. The first
option implies the existence of p = [pε] ∈ X̃c such that u(p) 6= v(p),
so with any e = [eε] ∈ (E∼vb

c )p such that πX(eε) = pε (Lemma 4.11),
πY (uε(eε)) = uε(πX(eε)) = uε(pε) 6∼ vε(pε) = vε(πX(eε)) = πY (vε(eε)) sub-
sequently implies that u(e) 6= v(e).

The second option translates into the existence of m ∈ N, vector bundle
charts (U,Φ) in E and (V,Ψ) in F, L ⊂⊂ U , and L′ ⊂⊂ V satisfying

∀C > 0 ∀k ∈ N ∃εk <
1

k
∃pk ∈ L ∩ uεk

−1(L′) ∩ vεk

−1(L′) :

‖(u(2)
εkΨΦ − v

(2)
εkΨΦ)(ϕ(pk))‖ > Cεmk .

This means there is a bounded sequence of vectors vk ∈ Rn′ satisfying

‖(u(2)
εkΨΦ − v

(2)
εkΨΦ)(ϕ(pk)) · vk‖ > Cεmk .

Now choose an element e = [eε] of E∼vb
c which satisfies

e1/k = Φ−1(ϕ(pk), vk).
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Then πY (uεk
(eεk

)) = uεk
(πX(eεk

)) = uεk
(pk) ∈ L′ and πY (vεk

(eεk
)) ∈ L′ but

‖ψ(uεk
(eεk

))−ψ(vεk
(eεk

))‖
= ‖u(2)

εkΨΦ(ϕ(πX(eεk
))) ·ϕ(eεk

)− v
(2)
εkΨΦ(ϕ(πX(eεk

))) ·ϕ(eεk
)‖

= ‖(u(2)
εkΨΦ − v

(2)
εkΨΦ)(ϕ(pk)) · vk‖ > Cεmk ∀k ∈ N,

which is a contradiction to requirement (iv) of Definition 4.10.

4.3 Hybrid Generalized Functions

In the following, we will write f = (f (1), f (2)) for any function f which maps
into R× Rn.

Intrinsic Characterization

Lemma 4.18. Let uε ∈ Eh[X,R×Rm′
]. Then uε is moderate if and only if

(i) uε is c-bounded,

(ii) uε ∈ EM(X), and

(iii) u
(2)
ε ∈ EM(X)m

′
.

Furthermore, for uε, vε ∈ EhM [X,R× Rm′
], uε ∼h vε holds if and only if

(iv) uε ∼ vε in EM(X) and

(v) u
(2)
ε − v

(2)
ε ∈ N (X)m

′
.

Proof. Taking the single chart (R×Rm′
, idR×Rm′ ) as atlas for F in Definition

3.42, the condition ”∀L′ ⊂⊂ W” is redundant and ”p ∈ L ∩ uε−1(L′)” can
be replaced by ”p ∈ L”. The claim then is evident as growth conditions
can be applied coordinate-wise.

Remark 4.19. Note that by Definition 3.4, for (v) in Lemma 4.18 we only
need to establish growth estimates of order zero.

Proposition 4.20. Let uε ∈ Eh[X,F ]. Then the following conditions are
equivalent.
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(a) uε ∈ EhM [X,F ].

(b) (i) uε is c-bounded and

(ii) f̂ ◦ uε ∈ EhM [X,R× Rm′
] ∀f̂ ∈ Homc(F,R× Rm′

).

(c) f̂ ◦ uε ∈ EhM [X,R× Rm′
] ∀f̂ ∈ Hom(F,R× Rm′

).

Proof. (a) ⇒ (c): Take f̂ ∈ Hom(F,R × Rm′
). Then f̂ ◦ uε is c-bounded

because uε ∈ EM [X, Y ] is. Furthermore, Proposition 4.3 tells us that f̂ ◦ uε
is in EM(X). (i) and (ii) of Lemma 4.18 are thus established.

Now given any chart (U,ϕ) in X and L ⊂⊂ U for (iii), we need to show the
existence of some N ∈ N such that

sup
p∈L

‖D(k)(f̂ (2) ◦ uε ◦ ϕ−1)(ϕ(p))‖. (4.8)

Fix L′ ⊂⊂ Y such that uε(L) ⊆ L′ for small ε and decompose L′ into
L′ =

⋃s
j=1 L

′
j with L′j ⊂⊂ Vj and (Vj,Ψj) vector bundle charts in F . Then

we can write for uε(p) ∈ L′j:

D(k)(f̂ (2) ◦ uε ◦ ϕ−1)(ϕ(p)) = D(k)
(
(f̂ (2) ◦Ψ−1

j ) ◦ (Ψj ◦ uε ◦ ϕ−1)
)
(ϕ(p)).

For each j we have for any k′ ∈ N0, by moderateness of uε, the existence of
Nj ∈ N such that

sup
p∈L∩uε

−1(L′j)

‖D(k′)(Ψj ◦ uε ◦ ϕ−1)(ϕ(p))‖ = O(ε−Nj).

As Ψj(L
′
j) is compact and f̂ (2)◦Ψ−1

j : Rm′ → Rm′
is smooth, every derivative

of the latter on the former is bounded and by the chain rule we obtain (4.8).

(c) ⇒ (b): (ii) is clear, (i) follows directly from Proposition 4.1.

(b) ⇒ (a): For (ii) of Definition 3.42, given any chart (U,ϕ) in X, any
vector bundle chart (V,Ψ) in F , L ⊂⊂ U , and L′ ⊂⊂ V , choose an open
neighborhood V ′ of L′ whose closure is contained in V . For each coordinate
ψj of ψ (1 ≤ j ≤ m) take f̂j ∈ Homc(F,R× Rm′

) such that

f̂j|π−1
Y (V ′) = (prj × idRm′ ) ◦Ψ|π−1

Y (V ′).

For each p ∈ L ∩ uε−1(L′) we then have (in some neighborhood of p)

f̂j ◦ uε = (ψj ◦ uε,ψ ◦ uε).

51



4. Characterization results

In order to estimate

sup
p∈L∩uε

−1(L′)

‖D(k)(Ψ ◦ uε ◦ ϕ−1)(ϕ(p))‖

= sup
p∈L∩uε

−1

∥∥D(k)
(
(ψ ◦ uε ◦ ϕ−1,ψ ◦ uε ◦ ϕ−1)

) (
ϕ(p)

)∥∥
we resort to the coordinates of ψ and obtain

sup
p∈L∩uε

−1(L′)

∥∥D(k)
(
(ψj ◦ uε ◦ ϕ−1,ψ ◦ uε ◦ ϕ−1)

) (
ϕ(p)

)∥∥ =

sup
p∈L∩uε

−1(L′)

‖D(k)(f̂j ◦ uε ◦ ϕ−1)(ϕ(p))‖,

which satisfies moderateness estimates by assumption.

Theorem 4.21. Let uε, vε ∈ EhM [X,F ]. Then the following statements are
equivalent.

(i) uε ∼h vε.

(ii) uε ∼h0 vε.

(iii) f̂ ◦ uε ∼h f̂ ◦ vε in EhM [X,R× Rm′
] ∀f̂ ∈ Homc(F,R× Rm′

).

(iv) f̂ ◦ uε ∼h f̂ ◦ vε in EhM [X,R× Rm′
] ∀f̂ ∈ Hom(F,R× Rm′

).

Proof. (i) ⇒ (ii) is evident.

(ii) ⇒ (iv): Let f̂ ∈ Hom(F,R× Rm′
). As uε ∈ EM [X, Y ] and f̂ ∈ C∞(Y ),

f̂ ◦ uε ∼ f̂ ◦ vε by Theorem 4.5, giving (iv) of Lemma 4.18. For (v), choose
a chart (U,ϕ) in X and L ⊂⊂ U . By Remark 4.19 we now only need to
estimate

(f̂ ◦ uε)(2) − (f̂ ◦ vε)(2). (4.9)

For this we choose L′ ⊂⊂ Y such that uε(L) ⊆ L′ for small ε. As in the
proof of Proposition 3.35, we may choose finitely many vector bundle charts
(Vj,Ψj) in F , L′j ⊂⊂ Vj such that L′ =

⋃s
j=1 L

′
j and open neighborhoods

V ′
j of L′j with V ′

j ⊂⊂ Vj for j = 1, . . . , s such that for each p contained in
L ∩ uε−1(L′) ∩ vε−1(L′) there is a j ∈ {1, . . . , s} such that both uε(p) and
vε(p) are in V ′

j . Expression (4.9) can then be rewritten as

(f̂ (2) ◦Ψ−1
l ) ◦ (Ψl ◦ uε)− (f̂ (2) ◦Ψ−1

l ) ◦ (Ψl ◦ vε). (4.10)
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As Ψl(V ′
j ) is compact we can happily employ Lemma 3.33 to obtain a

positive constant C such that the supremum of the norm of (4.10) on
K := L ∩ uε−1(V ′

j ) ∩ vε−1(L′) can be estimated by

C · sup
p∈K

‖(Ψl ◦ uε −Ψl ◦ vε)(p)‖ = O(εm)

for all m ∈ N by assumption.

(iv) ⇒ (iii) is clear like sunlight.

(iii) ⇒ (i): Definition 3.43 (i) follows from Theorem 4.5. For (ii) fix k, m,
(U,ϕ), (V,Ψ), L, and L′ as required. We choose an open neighborhood
V ′ of L′ satisfying V ′ ⊂⊂ V and for each j ∈ {1, . . . ,m} we take some
f̂j ∈ Homc(F,R× Rm′

) with

f̂j|π−1
Y (V ′) = (prj × idRm′ ) ◦Ψ|π−1

Y (V ′).

For p ∈ L ∩ uε−1(L′) ∩ vε−1(L′) we can then write

f̂j ◦ uε − f̂j ◦ vε = (ψj ◦ uε − ψj ◦ vε,ψ ◦ uε −ψ ◦ vε),

which enables us to estimate via coordinates ψj of ψ, after abbreviating
L′′ := L ∩ uε−1(L′) ∩ vε−1(L′):

sup
p∈L′′

‖D(k)(ψj ◦ uε ◦ϕ−1−ψj ◦ vε ◦ϕ−1,ψ ◦ uε ◦ϕ−1−ψ ◦ vε ◦ϕ−1)(ϕ(p))‖

= sup
p∈L′′

‖D(k)(f̂j ◦ uε − f̂j ◦ vε)(ϕ(p))‖.

By assumption, the last expression satisfies negligibility estimates.

Point Values

We end up at the following point value characterization.

Proposition 4.22. Let u = [uε] ∈ Gh[X,F ], p = [pε] ∈ X̃c. Then the point
value of u at p, defined by u(p) := [uε(pε))], is a well-defined element of
F∼vb
c .

Proof. First, πY (uε(pε)) is compactly supported because of Definition 3.42
(i).

Second, we need to estimate ‖uε(pε)‖h for some Riemannian metric h on

F . As pε ∈ X̃c and uε(pε) ∈ Ỹc there exist ε0 > 0 as well as compact sets
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L ⊂⊂ X and L′ ⊂⊂ Y such that pε ∈ L ∩ uε−1(L′) for all ε < ε0. By
Lemma 1.1 we can write L =

⋃r
i=1 Li and L′ =

⋃s
j=1 L

′
j with Li ⊂⊂ Ui and

L′j ⊂⊂ Vj where (Ui, ϕi) and (Vj,Ψj) are charts in X and vector bundle
charts in F , respectively (1 ≤ i ≤ r, 1 ≤ j ≤ s).

For each ε < ε0 there are i, j such that pε ∈ Li ∩ uε−1(L′j). By Corollary
3.11 there exists C > 0 such that

sup
q∈π−1

Y (L′j)

‖q‖h ≤ C‖ψjq‖ ∀j ∈ {1, . . . , s} ∀ε < ε0,

so we can estimate

‖uε(pε)‖h ≤ C‖(ψj ◦ uε ◦ ϕ−1
i )(ϕi(pε)‖

≤ C sup
p∈Li∩uε

−1(L′j)

‖ψj ◦ uε ◦ ϕ−1
i )(ϕi(p))‖ = O(ε−Nij)

for some Nij ∈ N by moderateness of uε and after setting N := maxi,j Nij

we subsequently conclude that ‖uε(pε)‖h = O(ε−N). So uε(pε) indeed is an
element of F∼vb

c .

What remains to be shown is independence of the choice of representatives
of u and p. So let p′ε ∈ Xc be given with pε ∼ p′ε. Corollary 4.15 states
that [uε(pε)] = [uε(p

′
ε)] in F∼vb

c is equivalent to [f̂(uε(pε))] = [f̂(uε(p
′
ε))] in

(R×Rm′
)∼vb
c for all f̂ ∈ Homc(F,R×Rm′

). There exists K ⊂⊂ X such that
pε, p

′
ε ∈ K for small ε. We cover K by charts (Ui, ϕi) and as in previous

proofs choose sets Li ⊂⊂ Ui such that for all small ε there exists i with
pε, p

′
ε ∈ Li. We then can write

‖f̂ ◦ uε(pε)− f̂ ◦ uε(p′ε)‖ = ‖f̂ ◦ uε ◦ ϕ−1
i ◦ ϕi(pε)− f̂ ◦ uε ◦ ϕ−1

i ◦ ϕi(p′ε)‖
≤ sup

q∈Li

‖D(f̂ ◦ uε ◦ ϕ−1
i )(ϕi(q))‖ · ‖ϕ(pε)− ϕ(qε)‖

and obtain vb-equivalence of uε(pε) and uε(p
′
ε) by moderateness of f̂ ◦ uε

and the assumption pε ∼ p′ε.

Now let uε ∼h u
′
ε. Then uε(pε) ∼vb u

′
ε(pε) follows at once from the definition

of equivalence in Gh[X,F ].

Proposition 4.23. Let u = [uε], v = [vε] ∈ Gh[X,F ]. Then u = v if and

only if u(p) = v(p) for all p ∈ X̃c.

Proof. Necessity has already been established in Proposition 4.22. For the
converse suppose that uε 6∼h vε, which by Theorem 4.21 is equivalent to
uε 6∼h0 vε. Then there are two possibilities:
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Hybrid Generalized Functions

First, uε 6∼0 vε implies by Theorem 4.9 the existence of a p ∈ X̃c with
u(p) 6= v(p) and therefore u(p) 6= v(p).

Second, if (ii) of Definition 3.43 is violated for k = 0 there exist m ∈ N,
a chart (U,ϕ) in X, a vector bundle chart (W,Ψ) in F , sets L ⊂⊂ U and
L′ ⊂⊂ V and for each n ∈ N an εn < 1/n and pn ∈ L∩uεn

−1(L′)∩vεn
−1(L′)

satisfying
‖Ψ ◦ uε(pn)−Ψ ◦ vε(pn)‖ > nεmn .

This allows us to construct a point [pε] ∈ X̃c by pεn
:= pn for which then

u(p) 6= v(p) holds.
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Chapter 5

Composition

We can now state results about composition of generalized functions of
various kinds.

Between Manifolds

Theorem 5.1. Let u = [uε] ∈ G[X, Y ] and v = [vε] ∈ G[Y, Z]. Then
v ◦ u := [vε ◦ uε] ∈ G[X,Z].

Proof. For c-boundedness of v ◦ u we note that for each K ⊂⊂ X we get

∃K ′ ⊂⊂ Y, ε′0 > 0 : uε(K) ⊆ K ′ ∀ε < ε′0 and

∃K ′′ ⊂⊂ Z, ε′′0 > 0 : vε(K
′) ⊆ K ′′ ∀ε < ε′′0

which gives (vε ◦ uε)(K) ⊆ K ′′ ∀ε < min(ε′0, ε
′′
0).

Regarding moderateness we fix k ∈ N0, charts (U,ϕ) in X and (W, ζ) in Z,
L ⊂⊂ U , and L′′ ⊂⊂ W . As uε is c-bounded there is ε0 > 0 and L′ ⊂⊂ Y
such that uε(L) ⊆ L′ ∀ε < ε0. We cover L′ by finitely many charts (Vi, ψi)
in Y and decompose it into L′ =

⋃r
i=1 L

′
i with L′i ⊂⊂ Vi and r ∈ N. By

Definition 3.30 there are Ni, N
′
i ∈ N (i = 1, . . . , r) such that

sup
p∈L∩u−1

ε (L′i)

‖D(k)(ψi ◦ uε ◦ ϕ−1)(ϕ(p))‖ = O(ε−Ni) and

sup
p∈L′i∩v

−1
ε (L′′)

‖D(k)(ζ ◦ vε ◦ ψ−1
i )(ψi(p))‖ = O(ε−N

′
i).

(5.1)

For every p ∈ L ∩ (vε ◦ uε)−1(L′′) and ε < ε0 there is an i ∈ {1, . . . , r} such
that uε(p) ∈ L′i. We thus write for all p′ in a neighborhood of p

D(k)(ζ ◦ vε ◦ uε ◦ ϕ−1)(ϕ(p′)) = D(k)((ζ ◦ vε ◦ ψ−1
i ) ◦ (ψi ◦ uε ◦ ϕ−1))(ϕ(p′))
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5. Composition

and obtain moderateness by estimates (5.1) and the chain rule.

In order to show that v ◦ u is indeed well-defined we assume some u′ε and
v′ε in EVBM [X, Y ] to satisfy uε ∼ u′ε and vε ∼ v′ε.

Proposition 4.9 states that for all pε ∈ Xc, [uε(pε)] = [u′ε(pε)] holds in Ỹc.
By Proposition 4.8, point value evaluation is independent of the specific
representatives of both the point and the function, therefore we know that
[vε(uε(pε))] = [v′ε(u

′
ε(pε))] holds in Z̃c. Again by Proposition 4.9, composi-

tion of v and u is well-defined.

Corollary 5.2. (i) Let u ∈ C∞(X, Y ) and v = [vε] ∈ G[Y, Z]. Then
v ◦ u := vε ◦ u ∈ G[X,Z] is well-defined.

(ii) Let u = [uε] ∈ G[X, Y ] and v ∈ C∞(Y, Z). Then v ◦ u := [v ◦ uε] is a
well-defined element of G[X,Z].

Proof. The proof of Theorem 5.1 is easily adapted to these cases.

Theorem 5.3. Let u = [uε] ∈ G[X, Y ] and v = [vε] ∈ G(Y ) be given. Then
v ◦ u := [vε ◦ uε] ∈ G(X) is well-defined.

Proof. For moderateness of vε ◦ uε we need to estimate

sup
p∈L

‖D(k)(vε ◦ uε ◦ ϕ−1)(ϕ(p))‖

for each k ∈ N0 and L compactly contained in the domain of a chart (U,ϕ)
in X. As uε is c-bounded, we have

∃ε0 > 0 ∃L′ ⊂⊂ Y : uε(L) ⊆ L′ ∀ε < ε0,

and write L′ =
⋃s
j=1 L

′
j with L′j ⊂⊂ Vj and (Vj, ψj) charts in Y . Moderate-

ness estimates are then established by the chain rule applied to vε◦uε◦ϕ−1 =
(vε ◦ ψ−1

j ) ◦ (ψj ◦ uε ◦ ϕ−1).

We now take any u′ = [u′ε] ∈ G[X, Y ] and v′ = [v′ε] ∈ G(Y ) with uε ∼ u′ε
and vε ∼ v′ε. By Proposition 4.9, u(x) = u′(x) holds in Ỹc for all x ∈ X̃c

and v(u(x)) = v′(u′(x)) as well. By the same Proposition, v ◦ u = v′ ◦ u′
follows and therefore composition is well-defined.
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Between Vector Bundles

Theorem 5.4. Let u = [uε] ∈ HomG[E,F ], v = [vε] ∈ HomG[F,G]. Then
v ◦ u := [vε ◦ uε] is a well-defined element of HomG[E,G].

Proof. For vε◦uε ∈ EVBM [E,G] it suffices to show f̂ ◦vε◦uε ∈ EVBM [E,R×Rk′ ]

for each f̂ ∈ Homc(G,R × Rk′). Because Proposition 4.13 implies that
f̂ ◦ vε is in EVBM [F,R × Rk′ ], we may assume without loss of generality
that G = R × Rk′ . (i) of Definition 3.38 is clear by Theorem 5.1 from
vε ◦ uε = vε ◦ uε ∈ EM [X,Z]. Now regarding (ii), it suffices to show (by

Proposition 4.12) that for any vector bundle chart (U,Φ) in E, (vε ◦ uε)(2)
id Φ

is an element of EM(ϕ(U))n
′·m′

. Again, this is equivalent to

∀L ⊂⊂ U ∀k ∈ N0 ∃N ∈ N : sup
p∈L

‖D(k)(vε ◦ uε)(2)
id Φ(ϕ(p))‖ = O(ε−N).

Let L ⊂⊂ U and choose ε0 > 0 and L′ ⊂⊂ Y such that uε(L) ⊆ L′ for
all ε < ε0. Then cover L′ by finitely many vector bundle charts (Vi,Ψi)
in F and choose L′i ⊂⊂ Vi such that L′ =

⋃l
i=1 L

′
i. For each p ∈ L and

ε < ε0 there is an i ∈ {1, . . . , l} such that uε(p) ∈ L′i. Then for p′ in a
neighborhood of p we have

(vε ◦ uε)(2)
id Φ

(
ϕ(p′)

)
= v

(2)
ε id Ψi

(
ψi ◦ uε(p′)

)
· u(2)

εΨiΦ

(
ϕ(p′)

)
.

By Definition 3.38 (ii), we have

∀k′ ∈ N0 ∃N ′ ∈ N : sup
p∈L∩uε

−1(L′i)

‖D(k′)(u
(2)
εΨiΦ

)
(
ϕ(p)

)
‖ = O(ε−N

′
),

while Proposition 4.12 tells us that

∀k′′ ∈ N0 ∃N ′′ ∈ N : sup
p∈L∩uε

−1(L′i)

‖D(k′′)(v
(2)
ε id Ψi

)(ψi ◦ uε(p))‖ ≤

sup
p∈L′i

‖D(k)(v
(2)
ε id Ψi

)(ψi(p))‖ = O(ε−N
′′
).

The estimate for D(k)
(
(vε ◦ uε)(2)

id Φ

)
thus follows by the chain rule.

Finally let u′ε ∈ EVBM [E,F ] and v′ε ∈ EVBM [F,G] be given with uε ∼ u′ε and
vε ∼ v′ε. Then for eε ∈ E∼vb

c the equivalences uε(eε) ∼vb u
′
ε(eε) as well as

vε ◦ uε(eε) ∼vb v
′
ε ◦ u′ε(eε) imply well-definedness of v ◦ u.

59



5. Composition

Hybrids

Theorem 5.5. For any u = [uε] ∈ G[X, Y ], v = [vε] ∈ Gh[Y,G] and
w = [wε] ∈ HomG[G,H] the compositions v ◦ u := [vε ◦ uε] ∈ Gh[X,G] and
w ◦ v = [wε ◦ vε] ∈ Gh[Y,H] are well-defined.

Proof. Instead of repeating parts of previous proofs ad nauseam, it should
suffice to say at this point that moderateness follows in the obvious way and
well-definedness is an immediate consequence of Proposition 4.9, Theorem
4.17 and Proposition 4.23.

Theorem 5.6. (i) Let u = [uε] ∈ G[X, Y ] and v = [vε] ∈ ΓG(Y, F ).
Then v ◦ u := [vε ◦ uε] ∈ Gh[X,F ] is well-defined.

(ii) Let u = [uε] ∈ ΓG(X,E) and v = [vε] ∈ HomG[E,F ]. Then the
composition v ◦ u := [vε ◦ uε] ∈ Gh[X,F ] is well-defined.

Proof. (i) For moderateness of vε ◦uε note that vε ◦ uε = (πY ◦ vε) ◦uε = uε
immediately gives (i) of Definition 3.42. Next, choose k ∈ N, a chart (U,ϕ)
in X, a vector bundle chart (V,Ψ) in Y , L ⊂⊂ U , and L′ ⊂⊂ V . Then

sup
p∈L∩u−1

ε (L′)

‖D(k)(Ψ ◦ vε ◦ uε ◦ ϕ−1)(ϕ(p))‖

can be estimated to be O(ε−N) for some N ∈ N by writing

Ψ ◦ vε ◦ uε ◦ ϕ−1 = (Ψ ◦ vε ◦ ψ−1) ◦ (ψ ◦ uε ◦ ϕ−1)

and incorporating moderateness of uε and vε.

In order to be well-defined the composition has to be independent of the
specific choice of representatives. Let u′ε ∈ EM [X, Y ] satisfy uε ∼ u′ε. Then
(i) of Definition 3.43 for K ⊂⊂ X follows from

sup
p∈K

dh
(
(vε ◦ uε)(p), (vε ◦ u′ε)(p)

)
= sup

p∈K
dh

(
uε(p), u

′
ε(p)

)
→ 0 (ε→ 0)

by Theorem 4.6. For (ii), choose L, L′, (U,ϕ) and (V,Ψ) as required.
Then, write L′ =

⋃r
j=1 L

′
j with L′j ⊂⊂ V ′

j ⊂⊂ Vj where V ′
j is an open

neighborhood of L′j and (Vj,Ψj) are vector bundle charts in F . Then for
each p ∈ L ∩ u−1

ε (L′) ∩ (u′ε)
−1(L′) and small ε there exists a j such that

uε(p) and u′ε(p) are in Vj. Subsequently, derivatives of

(Ψ ◦ vε ◦ uε ◦ ϕ−1 −Ψ ◦ vε ◦ u′ε ◦ ϕ−1)(ϕ(p))

=
(
(Ψ ◦Ψ−1

j ) ◦ (Ψj ◦ vε ◦ ψ−1
j ) ◦ (ψj ◦ uε ◦ ϕ−1)

− (Ψ ◦Ψ−1
j ) ◦ (Ψj ◦ vε ◦ ψ−1

j ) ◦ (ψj ◦ u′ε ◦ ϕ−1)
)
(ϕ(p))
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can be estimated with the help of Lemma 3.33, using moderateness of vε
and equivalence of uε and u′ε.

Now let vε ∈ ΓEM
(Y, F ) such that vε − v′ε ∈ ΓN (Y, F ). For establishing

vε ◦ uε ∼h v
′
ε ◦ uε, (i) of 3.43 is clear from vε ◦ uε = v′ε ◦ uε = uε. For (ii),

with L ∩ vε ◦ uε−1(L′) ∩ v′ε ◦ uε(L′) = L ∩ u−1
ε (L′) we can easily ascertain

that

sup
p∈L∩u−1

ε (L′)

‖D(k)(Ψ ◦ vε ◦ uε ◦ ϕ−1 −Ψ ◦ v′ε ◦ uε ◦ ϕ−1)(ϕ(p))‖

= sup
p∈L∩u−1

ε (L′)

∥∥D(k)
(
Ψ ◦ (vε − v′ε) ◦ ψ−1 ◦ (ψ ◦ uε ◦ ϕ−1)

)(
ϕ(p)

)∥∥
satisfies negligibility estimates, as derivatives of Ψ ◦ (vε − v′ε) ◦ ψ−1 are
on ψ(L′) for all m ∈ N and each derivative of ψ ◦ uε ◦ ϕ−1 is O(ε−N) on
L ∩ u−1

ε (L′) for some N ∈ N. In total, the composition of v and u is
well-defined.

(ii) C-boundedness of vε ◦ uε = vε means (i) of 3.42. For (U,ϕ) a chart in
X, (V,Ψ) a vector bundle chart in F , L ⊂⊂ U , and L′ ⊂⊂ V there should
exist an N ∈ N such that

sup
p∈L∩vε

−1(L′)

‖D(k)(Ψ ◦ vε ◦ uε ◦ ϕ−1)(ϕ(p))‖ = O(ε−N). (5.2)

Writing Ψ ◦ vε ◦ uε ◦ ϕ−1 = (Ψ ◦ vε ◦Φ−1) ◦ (Φ ◦ uε ◦ ϕ−1), where (U,Φ) is a
vector bundle chart in E over (U,ϕ), we obtain (5.2) by moderateness of u
and v.

For well-definedness, assume that uε − u′ε is in ΓN (X,E) for some u′ε ∈
ΓEM

(X,E). Part (i) of Definition 3.43 is clear from vε ◦ uε = vε ◦ u′ε = vε.
For (ii) we use the notation

Φ ◦ uε ◦ ϕ−1(x) = (x, u
(2)
εΦ(x))

and proceed with

Ψ ◦ vε ◦ uε ◦ ϕ−1(x) = (Ψ ◦ vε ◦ Φ−1) ◦ (Φ ◦ uε ◦ ϕ−1)(x)

=
(
v

(1)
εΨΦ, v

(2)
εΨΦ(x) · u(2)

εΦ(x)
)
,

giving in turn

Ψ ◦ vε ◦ uε ◦ ϕ−1(x)−Ψ ◦ vε ◦ u′ε ◦ ϕ−1(x)

=
(
0, v

(2)
εΨΦ(x) · (u(2)

εΦ − (u′εΦ)(2))(x)
)
.
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5. Composition

Because ‖v(2)
εΨΦ‖ is O(ε−N) and ‖u(2)

εΦ−(u′εΦ)(2)‖ is O(εm), from this we obtain
vε ◦ uε ∼ vε ◦ u′ε.
Last but not least, let v′ε ∈ EVBM [E,F ] with vε ∼vb v

′
ε. Similarly as before,

we now need to estimate∥∥(
v

(1)
εΨΦ − v

(1)
εΨΦ, (v

(2)
εΨΦ − v

′(2)
εΨΦ) · u(2)

εΦ(x)
)∥∥,

which is straightforward from the assumptions.
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Chapter 6

Generalized ODEs and Flow

In the previous chapters a theory of generalized functions on Rn as well as
on manifolds was presented. Our aim now is to compare certain aspects of
the classical and the generalized setting in the field of differential equations,
namely the flow properties of autonomous ODE systems. A certain degree
of consistency - even with some restrictions - would be desirable in order to
ascertain the validity of the approach taken.

Auxiliary Results

We first review some results of classical ODE theory, taken from [Ama83]
and [Aul04].

First, we will need the Lemma of Gronwall in the following form ([Ama83],
Theorem 6.2).

Lemma 6.1. Let J be an interval in R, t0 ∈ J and let α, β, u ∈ C(J,R+)
satisfy

u(t) ≤ α(t) +
∣∣∣∫ t

t0

β(s)u(s)ds
∣∣∣ ∀t ∈ J.

Furthermore, assume that α(t) = α0(|t − t0|) for a nondecreasing function
α0 ∈ C(R+,R+). Then

u(t) ≤ α(t) exp
(∣∣∣∫ t

t0

β(s)ds
∣∣∣) ∀t ∈ J.

The following theorem ([Aul04], Theorem 2.5.6) assures existence as well
as uniqueness of a global solution for a nonlinear ODE system.
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6. Generalized ODEs and Flow

Theorem 6.2. For D := (a, b) × Rn with −∞ ≤ a < b ≤ ∞, let the
function F : D → Rn be continuous, Lipschitz-continuous in x and linearly
bounded, i.e.,

‖F (t, x)‖ ≤ L(t)‖x‖+M(t) ∀t ∈ (a, b) ∀x ∈ Rn

with M,T : (a, b) → R+ continuous. Then the initial value problem

ẋ(t) = F (t, x)

x(t0) = x0

(t0, x0) ∈ (a, b)× Rn

has a unique solution on (a, b).

As we will have to deal with ODE systems depending on a parameter ε ∈ I,
we will use the following theorem to assure that the solution is not only
smooth in t but also depends smoothly on initial values and parameters
([Ama83], Theorem 10.3).

Theorem 6.3. For m ∈ N ∪ {∞}, I ⊆ R open, J ⊆ R an interval and
D ⊆ Rn open, let F ∈ Cm(J × D × I,Rn). Then the unique maximal
solution u = u(t; t0, x0, ε0) of

ẋ(t) = F (t, x, ε0)

x(t0) = x0

(t0, x0, ε0) ∈ J ×D × I

is of class Cm on its domain of definition.

The next theorem ([Ama83], Theorem 10.3) ensures smoothness for the flow
of an autonomous system. As a system with parameters can be transformed
into an equivalent system without parameters ([Aul04], Theorem 7.1.2), the
flow then even depends smoothly on the parameter if the right-hand side
does so.

Theorem 6.4. If F ∈ Cm(Rn,Rn), its corresponding flow is of class Cm

on its domain of definition.

6.1 Euclidean Space Setting

Classical case

For completeness and clarity of presentation we first consider the classical,
non-generalized case. The object of our studies is a system of autonomous
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Euclidean Space Setting

nonlinear ODEs on Rn given by

ẋ(t) = F (x(t))

x(t0) = x0

(t0, x0) ∈ R1+n

(6.1)

with x : R → Rn and F ∈ C∞(Rn,Rn). Furthermore, we assume that F is
linearly bounded, i.e., there exist constants M,L > 0 such that

‖F (x)‖ ≤M + L‖x‖ ∀x ∈ Rn.

Then by Theorems 6.2 and 6.3 there exists a unique globally defined smooth
solution of system (6.1) for each choice of (t0, x0). Theorem 6.4 assures that
the corresponding flow, which is defined globally, also is smooth. These two
statements will now be generalized to the Colombeau setting.

Generalized case

If we state system (6.1) with F = [Fε] ∈ G(Rn)n, x0 = [x0ε] ∈ Rn
c and

t0 ∈ R, on the level of representatives it takes the form

ẋε(t) = Fε(xε(t))

xε(t0) = x0ε

(6.2)

where the solution x should be an element of G(R,Rn). We now present a
basic theorem about existence and uniqueness of solutions.

Theorem 6.5. Let the system given by (6.2) satisfy

(i) ∃M,L, ε0 > 0 : ‖Fε(x)‖ ≤M + L‖x‖ ∀x ∈ Rn ∀ε < ε0 and

(ii) ∀K ⊂⊂ Rn : supx∈K‖DFε(x)‖ = O(|log ε|).

Then the initial value problem (6.2) has a unique solution in G[R,Rn].

Proof. By Theorems 6.2 and 6.3 there exists a net xε ∈ C∞(I×R,Rn) such
that

ẋε(t) = Fε(xε(t))

xε(t0) = x0ε
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6. Generalized ODEs and Flow

for all ε ∈ I. For xε to be in G[R,Rn] we first need to establish c-
boundedness. By our assumptions on Fε we have for all ε < ε0 and all
t ∈ R

‖xε(t)‖ ≤ ‖x0ε‖+
∣∣∣∫ t

t0

∥∥Fε(xε(s))∥∥ds
∣∣∣

≤ ‖x0ε‖+ |t− t0|M +
∣∣∣∫ t

t0

L
∥∥xε(s)∥∥ds

∣∣∣
and are in the position to apply Gronwall’s Lemma to obtain

‖xε(t)‖ ≤ (‖x0ε‖+ |t− t0|M)e|t−t0|L ∀ε < ε0

which implies c-boundedness of xε, as x0ε is moderate and the remainder
of the right hand side is continuous and independent of ε. By assumption
(i), ẋε is c-bounded as well. Next we are going to show moderateness of xε,
which requires

∀K ⊂⊂ R ∀k ∈ N0 ∃N ∈ N : sup
t∈K

‖x(k)
ε (t)‖ = O(ε−N). (6.3)

This condition is clearly satisfied for k ∈ {0, 1} by the statements about
c-boundedness. For k = 2 we have

‖ẍε(t)‖ ≤ ‖(DFε)(xε(t))‖ · ‖ẋε(t)‖ (6.4)

which satisfies (6.3) by moderateness of F and c-boundedness of xε and
ẋε. Derivatives of higher order are estimated inductively by differentiating
equation 6.4, giving a term consisting of derivatives of Fε and xε up to order
k− 1. So xε is indeed moderate. We finally need to show that the solution
is independent of the choice of representatives of F and x0. To this end we
consider the system

ẏε(t) = Gε(yε(t))

yε(t0) = y0ε

(6.5)

with Gε = Fε + Nε, Nε ∈ N (Rn)n, y0ε = x0ε + nε, nε ∈ N and with Gε

satisfying (i) and (ii). We will now provide all ingredients necessary for
showing negligibility estimates of order zero, i.e.,

∀K ⊂⊂ R ∀m ∈ N : sup
t∈K

‖(xε − yε)(t)‖ = O(εm).
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For the following, fix K and m. It is evident that

(xε − yε)(t) = x0ε − y0ε +

∫ t

t0

(
Fε(xε(s))−Gε(yε(s))

)
ds

= −nε +

∫ t

t0

(
Fε(xε(s))− Fε(yε(s))−Nε(yε(s))

)
ds. (6.6)

As yε is c-bounded there exists C > 0 such that

sup
t∈K

∣∣∣∫ t

t0

∥∥Nε(yε(s))
∥∥ds

∣∣∣ ≤ Cεm

for small ε. Choosing K ′ ⊂⊂ R such that xε(s) ∈ K ′ and yε(s) ∈ K ′ for all
s with min(t0,minK) ≤ s ≤ max(t0,maxK) and small ε, we obtain by the
mean value theorem for the remainder of the integral in (6.6)

‖Fε(xε(s))− Fε(yε(s))‖ ≤ sup
σ∈K′

‖(DFε)(σ)‖ · ‖(xε − yε)(s)‖.

By assumption (ii) there exists C ′ > 0 such that

sup
σ∈K′

‖(DFε)(σ)‖ ≤ C ′|log ε|

for small ε. Putting all pieces together we can now apply Gronwall’s in-
equality to

‖(xε − yε)(s)‖ ≤ ‖nε‖+ Cεm +
∣∣∣∫ t

t0

C ′|log ε| · ‖(xε − yε)(s)‖ds
∣∣∣

to obtain, for small ε,

‖(xε − yε)(s)‖ ≤ (‖nε‖+ Cεm) · e|t−t0|C′ log ε.

As m was chosen arbitrarily, ‖(xε − yε)(s)‖ = O(εm) holds for all m ∈ N,
implying uniqueness of the solution.

We will now give the corresponding flow theorem for our generalized system.

Theorem 6.6. For F ∈ G(Nn)n satisfying (i) and (ii) of Theorem 6.5 there
exists a unique generalized function Φ ∈ G[Rn+1,Rn], the generalized flow
of F , such that

(i) d
dt

Φ(t, x) = F (Φ(t, x)) in G[Rn+1,Rn],
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(ii) Φ(0, ·) = idRn in G[Rn,Rn], and

(iii) Φ(t+ s, ·) = Φ(t,Φ(s, ·)) in G[R2+n,Rn].

Proof. From classical theory (Theorem 6.4) we infer the existence of a glob-
ally defined smooth flow Φε satisfying (i)-(iii) on the level of representatives.
For establishing c-boundedness of Φε we consider

‖Φε(t, x)‖ ≤ ‖Φε(0, x)‖+
∣∣∣∫ t

0

∥∥Fε(Φε(s, x))
∥∥ds

∣∣∣
≤ ‖x‖+ tM +

∣∣∣∫ t

0

L‖Φε(s, x)‖ds
∣∣∣

and apply the Gronwall inequality to get

‖Φε(t, x)‖ ≤ (‖x‖+ |t|M) · e|t|L.

Then, d
dt

Φε is c-bounded as well because of∥∥∥( d

dt
Φε

)
(t, x)

∥∥∥ = ‖Fε(Φε(t, x))‖ ≤M + L‖Φε(t, x)‖. (6.7)

Higher order derivatives of Φε with respect to t are estimated inductively,
as dk

dtk
Φε consists of derivatives of Fε and Φε up to order k − 1.

For moderateness of Φε we need to show that

∀K = K1 ×K2 ⊂⊂ R× Rn ∀k ∈ N0 ∃N ∈ N :

sup
(t,x)∈K

‖(D(k)Φε)(t, x)‖ = O(ε−N).

Starting with

Φε(t, x) = Φε(0, x) +

∫ t

0

Fε(Φ
ε(s, x))ds

we form the partial derivative with respect to x,

(DxΦ
ε)(t, x) = idRn +

∫ t

0

(DFε)(Φ
ε(s, x)) · (DxΦ

ε)(s, x)ds. (6.8)

By c-boundedness of Φε there exist K ′ ⊂⊂ Rn containing Φε([0, t]×K2) for
all t ∈ K1 and C > 0 with supx∈K′‖(DFε)(x)‖ ≤ C|log ε|, both for small ε.
We can now apply Gronwall’s inequality to

‖(DxΦ
ε)(t, x)‖ ≤ 1 +

∣∣∣∫ t

0

C|log ε| · ‖(DxΦ
ε)(s, x)‖ds

∣∣∣ ∀(t, x) ∈ K
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to obtain

‖(DxΦ
ε)(t, x)‖ ≤ ε−|t|C ∀(t, x) ∈ K and small ε

from which the moderateness estimate is obvious.

Estimates for higher order derivatives of Φε with respect to x are assured in
the same manner by differentiating equation (6.8), employing moderateness
of Fε, assumption (ii) and the estimates already established for lower orders.

Derivatives with respect to t are obviously moderate for orders zero and one
by c-boundedness of Φε and d

dt
Φε. Higher orders are obtained inductively

by differentiating equation (6.7).

Mixed derivatives follow suit, first differentiating equation (6.8) with respect
to x and then with respect to t as needed.

In order to substantiate uniqueness, assume that Ψ ∈ G[Rn+1,R] is another
generalized function satisfying (i)-(iii). As for any t0 in R and x0 = [x0ε] in
Rn
c the functions xε(t) := Φε(t, x0) and yε(t) := Ψε(t, x0) solve the initial

value problem (6.2), xε ∼ yε follows from Theorem 6.5. Therefore, the
point value characterization of Proposition 4.9 first gives Φ(t, x) = Ψ(t, x)
∀(t, x) ∈ R1+n

c and then Φ = Ψ in G[Rn+1,Rn]. As properties (i)-(iii) hold
on the level of representatives, we are finished.

6.2 Manifold Setting

Classical case

The notion of an autonomous ODE system as in (6.1) can be transferred
to a manifold. When x is a mapping from R into X, the derivative ẋ(t) is
a tangent vector in Tx(t)X and the right hand side has to be a vector field
on X. We thus get the system

ẋ(t) = ξ(x(t))

x(t0) = x0

(t0, x0) ∈ (R×X)

(6.9)

with ξ ∈ X(X) and x : R → X. If ξ is complete there exists a globally de-
fined smooth solution of system (6.9) for each choice of the initial condition.
Furthermore, there is a globally defined smooth flow ([Lan95], Chapter IV,
Theorem 2.6).
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Generalized case

If for the left-hand side we consider a generalized function x ∈ G[R, X],
the derivative ẋ(t) is an element of XG(x) =

{
v ∈ Gh[R, TX] | πX ◦ v = x

}
.

For a a generalized vector field ξ ∈ XG(X), on the right-hand side the
composition ξ ◦ x is an element of XG(x) by virtue of Theorem 5.6. This
allows us to formulate a generalized differential equation of first order on
a manifold, for which the next theorem ensures the existence of a solution.
But first we need to introduce a way of describing certain properties of
vector fields on a manifold.

Definition 6.7. Let ξ ∈ XG(X) and h be a Riemannian metric on X. Then
we call ξ

(i) locally bounded if for all K ⊂⊂ X there exists for one (hence every)
representative ξε of ξ a constant C > 0 such that

sup
p∈K

‖ξε(p)‖h ≤ C ∀ε ∈ I,

(ii) locally of L∞-log-type if for all K ⊂⊂ X there exists for one (hence
every) representative ξε of ξ a constant C > 0 such that

sup
p∈K

‖ξε(p)‖h ≤ C|log ε| ∀ε ∈ I,

(iii) globally bounded with respect to h if for one (hence every) represen-
tative ξε of ξ there exists a constant C > 0 such that

sup
p∈X

‖ξε(p)‖h ≤ C ∀ε ∈ I.

If (i) or (ii) is satisfied for a Riemannian metric, then by Lemma 3.9 it also
holds for any other Riemannian metric on X.

Theorem 6.8. Consider the differential equation system

ẋ(t) = ξ(x(t))

x(t0) = x0

(t0, x0) ∈ R× X̃c

(6.10)

with ξ ∈ XG(X). Furthermore, let ξ be globally bounded with respect to a
complete Riemannian metric h on TX. Then there exists a unique solution
x ∈ G[R, X] of system (6.10).
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Proof. For each ε ∈ I, on the level of representatives we have, because
of completeness of h and the assumption on ξ, the existence of a global
solution xε ∈ C∞(R× I,X) of

ẋε(t) = ξε(xε(t))

xε(t0) = x0ε.

For c-boundedness of xε we will show that for all t1, t2 ∈ R with t1 < t2 and
ε0 small enough the set

⋃
ε<ε0

xε([t1, t2]) is compact. In fact we can write

L(xε|[t1,t2]) =

∫ t2

t1

‖ẋε(s)‖hds =

∫ t2

t1

‖ξε(xε(s))‖hds ≤ C|t2 − t1| (6.11)

by assumption and thus, choosing K ⊂⊂ X and ε0 such that xε(t1) ∈ K
for all ε < ε0, we obtain⋃

ε<ε0

xε([t1, t2]) ⊆
{
p ∈ X | dh(p,K) ≤ C|t2 − t1|

}
.

By the Hopf-Rinow theorem the latter set is compact, so xε is c-bounded.
Concerning moderateness we need to estimate D(k)(ϕ ◦ xε)(t) for some
chart (U,ϕ). For k = 0 the estimates are an obvious consequence of c-
boundedness of xε; for k ≥ 1 the equality

D(k)(ϕ ◦ xε)(t) = D(k−1)(Tϕ ◦ ξε ◦ xε)(t) ∀k ≥ 1

together with c-boundedness of xε and moderateness of ξε entails moder-
ateness of xε.

In order to establish uniqueness of the solution, choose a > 0, K ⊂⊂ X
and ε0 > 0 such that xε([−a − 1, a + 1]) ∪ yε([−a − 1, a + 1]) ⊆ K for all
ε < ε0. We take different representatives in system (6.10), i.e.,

ẏ(t) = η(x(t))

y(t0) = y0

with ξ ∼ η in XG(X) and x0 ∼ y0 in X̃c. Let t0 ∈ (−a, a). By [Aub82],
Theorem 1.36, there exists r > 0 such that we can cover K by finitely many
metric balls Br(pi), pi ∈ K with B4r(pi) a geodesically convex domain for
the chart ψi := exp−1

pi
. Then we choose ε1 < ε0 such that

dh
(
xε(t0), yε(t0)

)
= dh(x0ε, y0ε) < r ∀ε < ε1.

With C being the constant of equation 6.11 we choose 0 < d < r/C.
For each ε < ε1 there exists an i such that x0ε ∈ Br(pi) and therefore
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y0ε ∈ B2r(pi). Then for each t with |t − t0| < d the entire line connecting
xε(t) and yε(t) is contained in B3r(pi) and by convexity of the charts, the line
connecting ψi(xε(t)) and ψi(yε(t)) is contained in ψi(B3r(pi)). Applying a
Gronwall argument as in 6.5 then shows that there exist ε2 < ε1 and C ′ > 0
such that

‖ψi ◦ xε(t)− ψi ◦ yε(t)‖ ≤ C ′εm ∀ε < ε2

where ε2 and C ′ depend only on K, x0ε, y0ε and ψi and thus can be chosen
uniformly for i ∈ {1, . . . , k} and t ∈ [t0 − d, t0 + d]. This gives

sup
t∈[t0−d,t0+d]

dh
(
xε(t), yε(t)

)
≤ C ′′εm ∀ε < ε2

which implies xε ∼ yε on (t0 − d, t0 + d). It follows that if x and y coincide
at any point of (−a, a) then they agree on the whole interval. As a was
arbitrary, x and y agree globally.

Theorem 6.9. In system (6.10), let ξε be globally bounded with respect to
a complete Riemannian metric h on TX and such that for each differential
operator P ∈ P(X,TX) of first order Pξ is locally of L∞-log-type. Then
there exists a globally defined function Φ ∈ G[R × X,X], the generalized
flow of ξ, satisfying

(i) d
dt

Φ(t, x) = ξ(Φ(t, x)) in Gh[R×X,TX],

(ii) Φ(0, ·) = idX in G[X,X], and

(iii) Φ(s+ t, ·) = Φ(s,Φ(t, ·)) in G[R2 ×X,TX].

Proof. For c-boundedness, let K1×K2 ⊂⊂ R×X, where K1 ⊆ [t1, t2] with
t1, t2 ∈ R. Then the assumption that ξ is globally bounded tells us

L
(
Φε([t1, t2], x)

)
≤ C|t2 − t1| ∀x ∈ X, (6.12)

so Φε(K1 × K2) is a subset of {p ∈ X | dh(p,K) ≤ C|t2 − t1|}, which is
compact by the Hopf-Rinow theorem.

Moderateness of Φε requires that for all charts (U,ϕ) and (V, ψ) in X,
L ⊂⊂ R× U and L′ ⊂⊂ V there exists an N ∈ N such that

sup
(t,p)∈L∩(Φε)−1(L′)

∥∥D(k)
(
ψ ◦ Φε ◦ (id×ϕ−1)

)(
t, ϕ(p)

)∥∥ = O(ε−N). (6.13)

We may assume without loss of generality that L = T ×K with T := [0, a],
a ∈ R+ and K ⊂⊂ U . By c-boundedness of Φε there exists a compact
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subset of X containing Φε(L) for all small ε, which by Lemma 1.1 can be
written as the union of compact sets Kj (1 ≤ j ≤ n ∈ R) with Kj ⊂⊂ Uj
where the (Uj, ϕj) are charts taken from an atlas of X. Then we choose
open neighborhoods U ′

j of Kj such that U ′
j ⊂⊂ Uj, which implies that

dj := dh(Kj, ∂U
′
j) is positive.

Now take p ∈ K contained (after a possible renumbering of the Kj) in
K1. As t ∈ T grows, we can follow the integral curve Φε(t, p) through one
or more of the U ′

j. As soon as it leaves U ′
j, it will have travelled at least

the distance dj and will enter some Kl, so that we may repeat the above
procedure with Kl and U ′

l . Because of inequality (6.12), the length of each
such integral curve is bounded by aC. This means that we can write the
time interval as T =

⋃n
i=1[ti−1, ti] with n ∈ N, t0 = 0 and tn = a such that

Φε([ti−1, ti], p) ⊂⊂ Ui, where n is by construction necessarily smaller than
nmax := aC/minj dj + 1.

For shorter notation we set

Ti = [ti−1, ti],

fi = ϕi ◦ Φε ◦ (id×ϕ−1
1 ), and

gi = Tϕi ◦ ξε ◦ ϕ−1
i

and note that d
dt
fi = gi ◦ fi.

We will establish the moderateness estimate for the first derivative with
respect to x; higher x-derivatives and mixed x, t-derivatives are obtained
by differentiating the equations and following the same process. We set
x := ϕ1(p) and begin with

f1(t, x) = f1(0, x) +

∫ t

0

f ′1(s, x)ds = x+

∫ t

0

g1

(
f1(s, x)

)
ds ∀t ∈ T1

and differentiate with respect to x to get

Dxf1(t, x) = id +

∫ t

0

Dg1

(
f1(s, x)

)
·Dxf1(s, x)ds. (6.14)

We now need to estimate ‖Dg1(f11(s, x))‖. For this we define a differential
operator P of first order on each Kj by

Tϕj ◦ (Pf) ◦ ϕ−1
j = D(Tϕj ◦ f ◦ ϕ−1

j ) or

Pf = Tϕ−1
j ◦D(Tϕj ◦ f ◦ ϕ−1

j ) ◦ ϕj ∀f ∈ Γ(Kj, TKj)

and because Pξ is locally of L∞-log-type we obtain

sup
p∈Kj

‖D(Tϕj ◦ ξε|Kj
◦ ϕ−1

j )(ϕj(p))‖ ≤ C ′
j sup
p∈Kj

‖(Pξε|Kj
)(p)‖ ≤ Cj|log ε|
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with some constants C ′
j, Cj > 0. As each (s, p) ∈ L gets mapped into a

certain Kj by Φε, there exists a constant C such that∥∥D(Tϕj ◦ ξε ◦ ϕ−1
j )

(
ϕj ◦ Φε ◦ (id×ϕ−1

i )(s, ϕi(p))
)∥∥ ≤ C|log ε|

uniformly for each choice of (s, p) ∈ L and corresponding j and i. So this
gives us ∥∥Dgj(fj(s, x))∥∥ ≤ C|log ε| ∀s ∈ T.

Taking the norm in equation (6.14) we can apply the Gronwall inequality
on

‖Dxf1(t, x)‖ ≤ 1 +

∫ t

0

C|log ε| · ‖Dxf1(s, x)‖ds ∀t ∈ T1

and obtain

‖Dxf1(t, x)‖ ≤ ε−Ct ∀t ∈ T1 ∀ε < ε0.

Note that this estimate does not depend on the starting point x, but only
on t.

Now we demonstrate the inductive step which will incorporate the change
to the next chart and continue the Gronwall estimate. The inductive as-
sumption for i is

‖Dxfi(t, x)‖ ≤ Ciε
−Nit ∀ε < εi ∀t ∈ Ti

with C1 := 1 and N1 := C. We continue with

fi+1(ti + t, x) = fi+1(ti, x) +

∫ t

0

f ′i+1(ti + s, x)ds

= (ϕi+1 ◦ ϕ−1
i ) ◦ fi(ti, x) +

∫ t

0

gi+1

(
fi+1(ti + s, x)

)
ds

and, differentiating,

Dxfi+1(ti + t, x) = D(ϕi+1 ◦ ϕ−1
i )

(
fi(ti, x)

)
·Dxfi(ti, x)

+

∫ t

0

Dgi+1

(
fi+1(ti + s, x)

)
·Dxfi+1(ti + s, x)ds

(6.15)

for all t ∈ [0, ti+1 − ti]. There is a uniform constant E such that

‖D(ϕi+1 ◦ ϕ−1
i )(fi(t, x))‖ ≤ E
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for all (t, x) appearing in the estimate. We then take the norm in equation
(6.15) and achieve

‖Dxfi+1(ti + t, x)‖ ≤ ECiε
−Niti +

∫ t

0

C|log ε| · ‖Dxfi+1(ti + s, x)‖ds

for all t ∈ [0, ti+1 − ti]. Applying the Gronwall inequality again gives

‖Dxfi+1(ti + t, x)‖ ≤ ECiε
−Nitiε−Ct ∀t ∈ [0, ti+1 − ti]

from which we derive Ci+1 := ECi = Ei and Ni+1 = Ni = C (i > 1). We
finally obtain estimate (6.13) from

‖Dxfn(t, ϕ(p))‖ ≤ En−1ε−Ct ≤ Enmax−1ε−Ct ∀(t, p) ∈ L.

Uniqueness of the flow follows as in Theorem 6.6.
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Chapter 7

Generalized
Pseudo-Riemannian Geometry

We shall recall some statements of classical pseudo-Riemannian Geometry
(see [O’N83], Chapter 3).

(G1) A symmetric bilinear form is non-degenerate if and only if its matrix
relative to one (hence every) basis is invertible.

(G2) The index of a symmetric bilinear form b on a vector space V is the
largest integer that is the dimension of a subspace W ⊆ V on which
b|W is negative definite.

(G3) A metric tensor g on a smooth manifold M is a symmetric non-
degenerate (0,2) tensor field on M of constant index.

(G4) A pseudo-Riemannian manifold is a smooth manifold M furnished
with a metric tensor g. If the index of g is zero, we speak of a
Riemannian manifold.

We will now step by step establish corresponding statements in the context
of generalized functions. The object of our interest will naturally be a
generalized (0,2) tensor field ĝ ∈ G0

2(X).

Non-degeneracy

A tensor field g ∈ T 0
2 (X) is by definition non-degenerate if the function

g(x) : TxX × TxX → R is non-degenerate in every point x ∈ X. With
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7. Generalized Pseudo-Riemannian Geometry

statement (G1) this means that for each chart (Uα, ϕα) and each x ∈ ϕα(Uα)
the matrix consisting of the coordinates of the tensor gα(x) ∈ T 0

2 (Rn) is
invertible. Now by Remark 3.26, ĝα(x̃) is a map from Kn × Kn into K
for each x̃ ∈ ϕα(Uα)

∼
c . As non-degeneracy is well-defined for such maps

(Lemma 2.3), we can thus define non-degeneracy for generalized (0,2) tensor
fields in the next theorem, which will also establish a connection to classical
pseudo-Riemannian metrics.

Theorem 7.1. Let ĝ ∈ G0
2(X). Then the following statements are equiva-

lent.

(i) For each chart (Uα, ϕα) and each choice of x ∈ (ϕα(Uα))
∼
c the mapping

ĝα(x) : Kn ×Kn → K is symmetric and non-degenerate.

(ii) For each chart (Uα, ϕα), the map ĝ : XG(X) × XG(X) → G(X) is
symmetric and det ĝα is invertible in G(ϕα(Uα)).

(iii) For each chart (Uα, ϕα), det ĝα is invertible in G(ϕα(Uα)) and for each
relatively compact open set V ⊆ X there exist a representative ĝε of ĝ
and ε0 > 0 such that ĝε|V is a smooth pseudo-Riemannian metric for
all ε < ε0.

Proof. (i) ⇒ (ii): By Lemma 2.3 and Proposition 2.4, det ĝα is invertible.
For symmetry of ĝ ∈ LG(XG(X)2;G(X)) note that this map is given by
the assignment (ξ, η) 7→ [gε(ξε, ηε)] (cf. the Proof of Theorem 3.24). By
Proposition 3.7 we can identify ĝ(ξ, η) with the family of local expressions
given by

ĝ(ξ, η)α = [gε(ξε, ηε) ◦ ψ−1
α ] ∈ G(ϕα(Uα))

whence by inserting a point x ∈ ϕα(Uα)
∼
c and using local coordinates and

Proposition 3.27 we obtain

ĝ(ξ, η)α(x) =ĝα(x)
(
ξ(x), η(x)

)
=ĝα(x)

(
η(x), ξ(x)

)
= ĝ(η, ξ)α(x).

Therefore ĝ(ξ, η) = ĝ(η, ξ) holds in G(X) for every choice of ξ and η and ĝ
is symmetric.

(ii) ⇒ (iii): As ĝ is symmetric we have

ĝ(ξ, η) =
1

2

(
ĝ(ξ, η) + ĝ(η, ξ)

)
.
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If for a representative f̂ε of ĝ we denote the mapping (ξ, η) 7→ f̂ε(ηε, ξε) by
f̌ε, we can write

ĝ(ξ, η) =
[
1/2(f̂ε + f̌ε)(ξε, ηε)

]
in LG(XG(X)2;G(X))

and therefore ĝε := 1/2(f̂ε + f̌ε) is a representative of ĝ such that each
gε : X(X) × X(X) → C∞(X) is symmetric. As V is compact in X we
can write it as the union of compact sets each of which is contained in the
domain of one of finitely many charts. For each of these compact sets –
denote one by K – there exists by Theorem 2.5 an ε0 > 0 and m ∈ N such
that infp∈K |det(ĝε(p))| > εm for ε < ε0, so each ĝε is non-degenerate and
therefore a pseudo-Riemannian metric on K for such ε. We conclude that
ĝε restricted to V also is a pseudo-Riemannian metric.

(iii) ⇒ (i): Let x ∈ ϕα(Uα))
∼
c be supported in K ⊂⊂ ϕα(Uα) and ĝε be a

representative of ĝ such that each ĝε is a pseudo-Riemannian metric on a
neighborhood of ϕ−1

α (K) for small ε. Symmetry of ĝα(x) then follows di-
rectly from symmetry of ĝε and non-degeneracy is a consequence of Lemma
2.3.

We thus have a notion of non-degeneracy for generalized (0,2) tensor fields
and can state a ’generalized’ version of statement (G1).

The Index

Definition 7.2. A generalized (0,2)-tensor field ĝ is called non-degenerate
if it satisfies one of the equivalent conditions in Theorem 7.1.

Concerning a generalization of (G2), somehow incorporating the index of
the representatives in Theorem 7.1 (iii) apparently is the most straightfor-
ward approach. Let ĝ be a non-degenerate (0,2) tensor field, V a relatively
compact subset of X and ĝε a representative of ĝ as in Theorem 7.1 (iii).
We require that the index of ĝε is the same for all (small) ε and all choices
of V , but we also need independence of the specific representative of ĝ in
order to properly define an index for ĝ. So fix V for the moment and let
g̃ε be another representative of ĝ as in Theorem 7.1 (iii). We need to show
that for each ε the index of ĝε|V equals the index of g̃ε|V .

As a side-note, it is not surprising that while in the classical case the index
can be determined pointwise, in the generalized case we have to examine a
relatively compact subset of the manifold.
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In order to incorporate invertibility of det ĝα we split V into finitely many
sets compactly contained in some charts (Uα, ϕα). Let K ⊂⊂ Uα be one of
these sets. Denote by λ̂1

ε(x) ≥ · · · ≥ λ̂nε (x) for x ∈ ϕα(K) the eigenvalues
of (ĝα)ε(x) : Rn × Rn → R. Because the operator norm of a matrix is an
upper bound for its absolute eigenvalues, all λ̂iε are moderate of order zero,
i.e., grow like O(ε−N) for some N on compact subsets of ϕα(K). Because
det ĝα is invertible in G(ϕα(K)) it satisfies

inf
x∈L
|det(ĝα)ε(x)| = inf

x∈L
|λ̂1
ε(x) · · · λ̂nε (x)| ≥ εk (7.1)

for each L ⊂⊂ ψα(K) and some k ∈ N. Therefore there has to exist
an m ∈ N such that infx∈L|λ̂iε(x)| ≥ εm for all small ε and 1 ≤ i ≤ n,
as otherwise (7.1) would not hold. Denoting the eigenvalues of (g̃α)ε by
λ̃1
ε ≥ . . . ≥ λ̃nε , we can estimate

max
i
|λ̃iε − λ̂iε| ≤ ‖(g̃α)ε − (ĝα)ε‖ = O(εm) ∀m ∈ N.

Therefore each λ̃iε has the same sign as λ̂iε for small ε. This enables us to
unambiguously define the index for symmetric non-degenerate generalized
(0,2) tensor fields.

Definition 7.3. Let ĝ ∈ G0
2(X) be non-degenerate. If there exists some

j ∈ N0 with the property that for each relatively compact open subset V
of X there exists a representative ĝε of ĝ as in Theorem 7.1 (iii) such that
the index of each ĝε|V equals j, we call j the index of ĝ.

With this result we may state the generalized counterparts of (G3) and
(G4).

Definition 7.4. A generalized metric tensor on a manifoldX is a symmetric
non-degenerate generalized (0,2) tensor field possessing an index.

Definition 7.5. A pseudo-Riemannian manifold (X, ĝ) is a manifold X
furnished with a metric tensor ĝ. If the index of ĝ is zero, (X, ĝ) is called a
generalized Riemannian manifold.

We will also write 〈ξ, η〉 in place of ĝ(ξ, η).

Inverse Metric

Proposition 7.6. Let (X, ĝ) be a generalized pseudo-Riemannian manifold
and ĝε a representative of ĝ. Then the inverse metric ĝ−1 := [ĝ−1

ε ] is a
well-defined element of G2

0(X).
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Proof. Cover X by open sets Wα such that W α ⊂⊂ Uα where (Uα, ϕα) are
charts on X. As det ĝα is invertible in G(ϕα(Wα)), Theorem 2.5 implies the
existence of ε0 > 0 and m ∈ N such that

inf
x∈Wα

|det(ĝε)ij(x)| = inf
x∈Wα

|det(ĝε)α(ψα(x))| =

inf
x∈Wα

|det(ĝα)ε(ψα(x))| = inf
x∈ψα(Wα)

|(det ĝα)ε(x)| ≥ εm ∀ε < ε0

and therefore (ĝε)ij(x) is invertible for all x ∈ W α and ε < ε0. In turn we
obtain the inverse matrix (ĝε)

ij(x) for all such x and ε. We can now define
a tensor (ĝ−1

ε )α ∈ Γ(Wα, T
2
0 (Wα)) in the obvious way by

(ĝ−1
ε )α(x)(aidxi, bjdxj) := (ĝε)

ij(x)aibj ∀x ∈ Wα ∀ε < ε0.

This net is moderate on Wα by the cofactor formula of matrix inversion,

(ĝε)
ij =

cof(ĝε)ij
det(ĝε)ij

,

and the (ĝ−1
ε )α form a coherent family of sections which, by Proposition

3.22, defines a unique element ĝ−1 ∈ G2
0(X). By the same reasoning, this

definition is independent of the specific representative ĝε of ĝ.

From now on we denote the components of the inverse metric by ĝij. The
following Lemma will prove to be useful for certain calculations.

Lemma 7.7. On a generalized pseudo-Riemannian manifold (X, ĝ), let ĝε
be a representative of ĝ. Then for every particular representative ĝ−1

ε of
the inverse metric ĝ−1 there exists an element n̂ε ∈ ΓN (X,T 2

0 (X) such that
(ĝ−1
ε )ij = ((ĝε)ij)

−1 + (n̂ε)
ij.

Proof. The statement follows at once from the cofactor formula of matrix
inversion above.

Remark 7.8. The previous Lemma in fact assures that in component-wise
calculation with a generalized metric and its inverse we need not worry too
much about different representatives and calculate as habitual in classical
theory - the error will be negligible. The proof of the next Proposition will
give an example of this.

Proposition 7.9. Let (X, ĝ) be a generalized pseudo-Riemannian manifold.
Then the following statements hold.
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7. Generalized Pseudo-Riemannian Geometry

(i) If for some ξ ∈ XG(X) the equality ĝ(ξ, η) = 0 holds for all η ∈ XG(X)
then ξ = 0 follows.

(ii) The mapping ξ 7→ ĝ(ξ, ·) is a G(X)-linear isomorphism from XG(X)
into X∗

G(X).

Proof. (i) Let the representatives of ĝ and ξ be ĝε and ξε, respectively. As
XG(X) is a sheaf it suffices to show ξ ∈ ΓN (Uα, T

1
0 (Uα)) for charts (Uα, ϕα)

coveringX. In local coordinates with respect to such a chart our assumption
reads

ĝ(ξ, η) = [ĝε(ξε, ηε)] = [(ĝε)ijξ
i
εη
j
ε] = 0 in G(Uα).

If we set ηjε =
∑

l ĝ
jl
ε ξ

l
ε this gives

∑
i(ξ

i
ε)

2 ∈ N (Uα) (Remark 7.8) and
therefore ξiε ∈ N (Uα) (Remark 3.26), which means ξ = 0.

(ii) By Theorem 3.24, ĝ(ξ, ·) is an element of X∗
G(X) and the assignment

is linear. Injectivity follows from (i), surjectivity remains to be shown.
Let thus a = [aε] ∈ X∗

G(X) with aε = aεidx
i in local coordinates. With

ξε = (ĝε)
kiaεk∂i we obtain for any η ∈ XG(X)

ĝ(ξ, η) = [ĝε(ξε, ηε)] = [(ĝε)ijξ
i
εη
j
ε]

= [(ĝε)ij(ĝε)
kiaεkη

j
ε] = [aεiη

i
ε] = [aε(ηε)] = a(η)

which concludes the proof by the sheaf property of X∗
G(X).

A generalized vector field is said to be metrically equivalent to a generalized
one-form if they correspond via the isomorphism between XG(X) and X∗

G(X)
introduced in Proposition 7.9.

The Levi-Civita Connection

Definition 7.10. A generalized connection on a manifold X is a mapping
D̂ : XG(X)× XG(X) → XG(X) satisfying

(D1) D̂ξη is R-linear in η,

(D2) D̂ξη is G(X)-linear in ξ, and

(D3) D̂ξ(uη) = uD̂ξη + ξ(u)η for all u ∈ G(X).

D̂ξη is called the covariant derivative of η with respect to ξ for the connec-

tion D̂.
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Theorem 7.11. Any generalized pseudo-Riemannian manifold (X, ĝ) ad-
mits a unique generalized connection D̂, called generalized Levi-Civita con-
nection of X, satisfying

(D4) [ξ, η] = D̂ξη − D̂ηξ and

(D5) ξ〈η, ζ〉 = 〈D̂ξη, ζ〉+ 〈η, D̂ξη〉

for all ξ, η, ζ ∈ XG(X). D̂ is characterized by the Koszul formula

(D6)

2〈D̂ξη, ζ〉 = ξ〈η, ζ〉+ η〈ζ, ξ〉 − ζ〈ξ, η〉
−〈ξ, [η, ζ]〉+ 〈η, [ζ, ξ]〉+ 〈ζ, [ξ, η]〉.

(7.2)

Proof. We commence with any generalized connection D̂ on X satisfying
(D4) and (D5). To show uniqueness we proceed precisely as in the classical
case and write

ξ〈η, ζ〉 = 〈D̂ζη, ζ〉+ 〈η, D̂ξζ〉
η〈ζ, ξ〉 = 〈D̂ηζ, ξ〉+ 〈ζ, D̂ηξ〉
ζ〈ξ, η〉 = 〈D̂ζξ, η〉+ 〈ζ, D̂ζη〉

which gives (D6) by adding the first two relations, subtracting the third
and using (D4). Therefore, if another connection D̂′ is given,

〈D̂ξ, η − D̂′
ξ, η, ζ〉 = 0 ∀ξ, η, ζ ∈ XG(X)

implies D̂ξη = D̂′
ξη ∀ξ, η ∈ XG(X) by Proposition 7.9 (i).

Now for existence, define F (ξ, η, ζ) to be 1/2 times the right hand side of
(7.2). For fixed ξ, ζ the mapping ξ 7→ F (ξ, η, ζ) is G(X)-linear and therefore
defines a generalized one-form by Theorem 3.24 which by Proposition 7.9
is metrically equivalent to a unique generalized vector field we denote by
D̂ξη. (D1)-(D5) are then routinely verified as in the classical proof.

Definition 7.12. Let (Uα, ϕα) be a chart and D̂ a generalized connection on
X. The Christoffel symbols of D̂ for this chart are the functions Γ̂kij ∈ G(Uα)
such that

D̂∂i
∂j =

∑
k

Γ̂kij∂k (1 ≤ i, j ≤ n).
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7. Generalized Pseudo-Riemannian Geometry

Proposition 7.13. With D̂ the generalized Levi-Civita connection on a
generalized pseudo-Riemannian manifold (X, ĝ), (Uα, ϕα) a chart on X with
coordinates xi and any vector field ξ ∈ XG(X) we have

D̂ξη =
(
ξi
∂ηk

∂xi
+ ξiηjΓ̂kij

)
∂k.

The generalized Christoffel symbols of D̂ are symmetric in the lower pair of
indices and are given by

Γ̂kij =
1

2
ĝkm

(∂ĝjm
∂xi

+
∂ĝim
∂xj

− ∂ĝij
∂xm

)
. (7.3)

Proof. Immediate from (D3), (D4) and (D6) as in the classical case.

Remark 7.14. Let (X, ĝ) be a generalized pseudo-Riemannian manifold with
a representative ĝε of ĝ as in Theorem 7.1 (iii). We may ask what the rela-
tionship between the generalized Christoffel symbols Γ̂kij of the generalized

Levi-Civita connection of (X, ĝ) and the Christoffel symbols (Γ̂ε)
k
ij of each

ĝε is. The latter clearly are moderate as nets, as the classical equivalent of
equation (7.3) shows. Now let (Γ̂kij)ε be a representative of Γ̂kij. We then
get [

(Γ̂kij)ε
]

=
[
(Γ̂ε)

k
ij

]
in G(Uα)

on each chart Uα as a direct consequence of Remark 7.8 and equation (7.3).

Covariant derivative

In order to be able to define geodesics in generalized pseudo-Riemannian
manifolds we need the notion of the induced covariant derivative of a gen-
eralized metric along a generalized curve.

Let γ : I → M be a curve in a semi-Riemannian manifold X. The induced
covariant derivative is the unique function ξ 7→ ξ′ from X(α) to X(α) such
that

(i) (rξ1 + sξ2)
′ = rξ′1 + sξ′2 ∀r, s ∈ R, ξ1, ξ2 ∈ X(γ),

(ii) (uξ)′ = du
dt
ξ + uξ′ ∀u ∈ C∞(J), ξ ∈ X(α), and

(iii) (ξ ◦ γ)′(t) = D̂γ′(t)ξ in XG(γ) ∀t ∈ J, ∀ξ ∈ X(X).

Moreover, it satisfies
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(iv) d
dt
〈ξ1, ξ2〉 = 〈ξ′1, ξ2〉+ 〈ξ1, ξ′2〉 ∀ξ1, ξ2 ∈ X(γ).

Proposition 7.15. Let J ⊆ R be an interval and γ ∈ G[J,X] a curve in a
generalized pseudo-Riemannian manifold (X, ĝ). Then there exists a unique
mapping ξ 7→ ξ′ from XG(γ) to XG(γ) such that

(i) (rξ1 + sξ2)
′ = rξ′1 + sξ′2 ∀r, s ∈ K, ξ1, ξ2 ∈ XG(γ),

(ii) (uξ)′ = du
dt
ξ + uξ′ ∀u ∈ G(J), ξ ∈ XG(α), and

(iii) (η ◦ γ)′ = D̂γ′ξ in XG(γ) ∀η ∈ XG(X).

Proof. For each K ⊂⊂ J we can choose ε0 > 0 and K ′ ⊂⊂ X such that
γε(K) ⊆ K ′ for small ε and therefore by Theorem 7.1 (iii) there exists
a representative ĝε of ĝ such that gε is a pseudo-Riemannian metric in a
neighborhood of K ′ for small ε. For fixed ε, let ξ′ε denote the induced
covariant derivative of ξε along γε|K . In local coordinates it is given by

ξ′ε =
∑
k

(dξkε
dt

+
∑
i,j

(Γ̂ε)
k
ij

dγiε
dt
ξjε

)
∂k (7.4)

where the (Γ̂ε)
k
ij denote the Christoffel symbols of ĝε. Moderateness of

ξ′ε follows easily from moderateness of ξε, (Γ̂ε)
k
ij and γε, independence of

representatives is seen in the same way.

We thus have a moderate net ξ′ε|K ∈ C∞(I × K,TX) with πX ◦ ξ′ε = γε
on K, i.e., its class is an element of XG(γ|K). If we cover J by relatively
compact (in J) subintervals we can patch together the nets obtained for
different choices of K and obtain a generalized vector field ξ′ε ∈ XG(γ)
along γ. Although ξ′ = [ξ′ε] is well-defined then, we still have to assure that
this map is characterized uniquely by (i)-(iii). This, however, follows as in
the classical case by employing these properties in order to show that the
induced covariant derivative is completely determined by the connection
D̂.

Definition 7.16. The induced covariant derivative of ξ ∈ XG(γ) along a
generalized curve γ ∈ G[J,X], J ⊆ R, is defined as ξ′ := [ξ′ε].

We now have all ingredients ready to define generalized geodesics. For an
interval J ⊆ R, the tangent bundle of J is J×R and there exists a canonical
section ι such that ι(t) = 1 for all t ∈ J . For a curve α ∈ C∞(J,X) the
velocity field of α then is defined as α′(t) = Tα ◦ ι(t).
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7. Generalized Pseudo-Riemannian Geometry

In the generalized case we start with a generalized curve γ ∈ G[J,X] and
obtain a well-defined γ′ := Tγ ◦ ι ∈ XG(γ) by Definition 3.41 and Theorem
5.6 (ii). Therefore, γ′′ is defined as the induced covariant derivative of γ′

along γ.

Definition 7.17. A geodesic in a generalized pseudo-Riemannian manifold
is a generalized curve γ ∈ G[J,X] satisfying γ′′ = 0 or, in local coordinates,[d2γkε

dt2
+

∑
i,j

(Γ̂kij)ε
γiε
dt

γjε
dt

]
= 0 in XG(γ).
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Chapter 8

Geodesics for impulsive
gravitational waves

8.1 Lyrical Introduction

Now with the theory laid out in front of our eyes we see
some applications in physics, namely this will be
a gravitational wave1, but not the general kind
plane fronted it shall be, consisting of parallel rays
but lest this physical stuff will clutter the reader’s mind
we’ll leave all physics behind and save it for future days.

ds2 = H(u, x, y)du2 − dudv + dx2 + dy2

u = t− z, v = t+ z
(8.1)

Here’s a Minkowski space-time, or rather its line element
u and v are special: ”null coordinates” they are called;
x and y are ”transverse”. With H we then have meant
some kind of profile function; this is the form it takes:

H(u, x, y) = f(x, y)δ(u), f ∈ C∞(R2)

We shall find geodesics in this Minkowski space
as they tell a story on what exactly takes place.
First the equations we need contain the Christoffel symbols

1See [Pen72] for more about impulsive plane fronted gravitational waves with parallel
rays.
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8. Geodesics for impulsive gravitational waves

Γvuu = −f(x, y)δ̇(u)

Γxuu = −1/2∂xf(x, y)δ, Γyuu = −1/2∂yf(x, y)δ

Γvux = −∂xfδ, Γvuy = −∂yf(x, y)δ/u)

and having them in our hand we list the equations then.

u′′(r) = 0

v′′(r) = f(x(r), y(r))δ̇(u(r)) + 2
(
∂xf(x(r), y(r))x′(r)

+ ∂yf(x(r), y(r))y′(r)
)
u′(r)δ(u(r))

x′′(r) =
1

2
∂xf

(
x(r), y(r)

)
(u′(r))2δ(u(r))

y′′(r) =
1

2
∂yf

(
x(r), y(r)

)
(u′(r))2δ(u(r))

u is a linear function of r so we cunningly may
– after we rule out the case of u being constant in R
which is the trivial case with nothing exciting to say –
use it to parametrize our curve and end up this far:

v̈(u) = f(x(u), y(u))δ̇(u) + 2
(
∂xf(x(u), y(u))ẋ(u)

+ ∂yf(x(u), y(u))ẏ(u)
)
δ(u)

ẍ(u) =
1

2
∂xf(x(u), y(u))δ(u) (8.2)

ÿ(u) =
1

2
∂yf(x(u), y(u))δ(u)

Alas! Solving these ODEs in D′ is bound to fail:
if we integrate twice the latter pair of equations

x(u) = x(0) + ẋ(0) +
1

2
∂xf(x(0), y(0))u+

y(u) = y(0) + ẏ(0) +
1

2
∂yf(x(0), y(0))u+

inserting this in the first shows our struggle to have no avail:
Heaviside is multiplied by delta. Congratulations!
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The Way to go

8.2 The Way to go

So there is a problem with ill-defined products of distributions. A rule of
thumb like θδ := 1

2
δ might somehow bring valid results in some situations,

but defies mathematical reasoning. Luckily the theory of Colombeau gener-
alized functions gives us the possibility to define products of distributions,
even if the result is, in general, no distribution anymore but lies in the space
of generalized functions. However, the notion of distributional convergence
is a valuable tool for interpreting the solution obtained in the space of gen-
eralized Colombeau functions. We will therefore embed the singularities in
system (8.2) above into G(R) and try to find solutions there which can then
be examined for association with distributions.

So how do we embed δ? Of course we strive for the most general way to
do this, as taking just any regularization of δ might leave us worrying if
the result was the same if a different regularization was used. Therefore we
consider all nets ρ ∈ C∞(I × Rn) satisfying

(i) supp ρε ⊆ [−ε, ε] ∀ε ∈ (0, 1],

(ii)
∫

supp ρε
ρε(x)dx→ 1 (ε→ 0), and

(iii) ∃η > 0 ∃C ≥ 0 :
∫

supp ρε
|ρε(x)|dx ≤ C ∀ε ∈ (0, η).

Any such net converges to δ distributionally. We call all elements of G(Rn)
satisfying (i)-(iii) above generalized delta functions. With ι the embedding
(2.1) of D′(Rn) into G(Rn), ι(δ) is such. Furthermore, every generalized
delta function is associated to δ.

8.3 Calculations

With δ replaced by any generalized delta function ρ = [ρε] we can now state
(8.2) as

v̈ε(u) = f
(
xε(u), yε(u)

)
ρ̇ε(u)+

2
(
∂xf(xε(u), yε(u))ẋε(u) + ∂yf(xε(u), yε(u))ẏε(u)

)
ρε(u)

ẍε(u) =
1

2
∂xf

(
xε(u), yε(u)

)
ρε(u)

ÿε(u) =
1

2
∂yf

(
xε(u), yε(u)

)
ρε(u)
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with initial conditions at u = −1:

vε(−1) = v0, xε(−1) = x0, yε(−1) = y0,

v̇ε(−1) = v̇0, ẋε(−1) = ẋ0, ẏε(−1) = ẏ0.

For the following calculations set

wε(u) =

(
xε(u)
yε(u)

)
, w0 =

(
x0

y0

)
, ẇ0 =

(
ẋ0

ẏ0

)
, and

g(x, y) =
1

2

(
∂xf(x, y)
∂yf(x, y)

)
for shorter notation. The system then reads

ẅε(u) = g(wε(u))ρε(u), wε(−1) = w0, ẇε(−1) = ẇ0 (8.3)

for all ε ∈ I which is equivalent to

wε(u) = (Awε)(u) := w0 + ẇ0(u+ 1) +

∫ u

−ε

∫ s

−ε
g(wε(r))ρε(r)drds. (8.4)

Solving this equation is trivial on (−∞,−ε) and (ε,∞) because ρε is zero
there. It will thus suffice to show existence of a solution in Jε := [−1,−ε+α]
for any α > 0 and all ε < ε0 with some constant ε0 > 0. For all ε smaller
than min(α, ε0) we will then have assured the existence of a solution of
(8.3) in the interval [−ε, ε]. The approach to do this is to show that the
operator A has a fixed point in some suitable space. Let ε remain fixed for
the moment. The space of functions we consider shall be

Fε :=
{
f ∈ C∞(Jε,R2)

∣∣ ‖f(u)− w0‖∞ ≤ c
}

where c, α ∈ R+ still need to be defined such that A is a contraction on Fε,
i.e.,

(i) Awε ∈ Fε ∀wε ∈ Fε and

(ii) ∃K ∈ [0, 1) : ‖Awε − Aw̃ε‖∞ ≤ K‖wε − w̃ε‖∞ ∀wε, w̃ε ∈ Fε.

Regarding condition (i) we set M := Bc(w0) and estimate

‖(Awε)(u)− w0‖ ≤ ‖ẇ0‖(1 + α− ε) +

∫ α−ε

−ε

∫ s

−ε
‖g|M‖∞‖ρε(r)‖drds

≤ ‖ẇ0‖(1 + α) + α‖g|M‖∞‖ρε‖1 ∀u ∈ Jε. (8.5)
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Calculations

Because c will be somewhere near ‖ẇ0‖, as a look at equation (8.4) suggests,
we assume that c = ‖ẇ0‖+ b for some b > 0. Estimate (8.5) then results in

‖(Awε)(u)− w0‖∞ ≤ α(‖ẇ0‖+ ‖g|M‖∞C) + ‖ẇ0‖ ≤ b+ ‖ẇ0‖

where for the last inequality to hold we must set

α ≤ b

‖ẇ0‖+ ‖g|M‖∞‖ρε‖1

.

This ensures that A maps Fε into itself.

For condition (ii) we assume g to be Lipschitz-continuous with constant L
on M in order to calculate

‖(Awε − Aw̃ε)(u)‖ ≤
∫ u

−ε

∫ s

−ε
‖g(wε(r))− g(w̃ε(r))‖ · ‖ρε(r)‖drds

≤ (ε+ u)L‖wε − w̃ε‖∞‖ρε‖1

≤ αL‖wε − w̃ε‖∞C ∀u ∈ Jε
and infer that α also has to satisfy

α <
1

LC
.

As the right-hand side of (8.3) vanishes for t 6∈ [−ε, ε] it suffices to restrict
α to be smaller than 1. Furthermore, a solution of (8.3) (which is smooth
by smoothness of g) exists for all t ∈ R, being linear outside of [−ε, ε] and
satisfying ‖wε(t) − w0‖ ≤ b + ‖ẇ0‖ on Jε. Thus wε clearly is bounded
uniformly in ε on compact sets for ε < min(ε0, α) and the same holds for
ẇε:

‖ẇε(t)‖ ≤ ‖ẇ0‖+
∫ t

−ε
‖g(wε(s))‖·‖ρε(t)‖ds ≤ ‖ẇ0‖·‖g|M‖∞C ∀t ∈ [−ε, ε].

Summing up we have proved the following theorem (the generalization from
R2 to Rn is straightforward).

Theorem 8.1. Consider the system

ẅε(u) = g(wε(u))ρε(u), wε(−1) = w0, ẇε(−1) = ẇ0 (8.6)

for ε ∈ I, w0, ẇ0 ∈ Rn, g : Rn → Rn a smooth function which is Lipschitz-
continuous with constant L on {x ∈ Rn : ‖x− w0‖ ≤ ‖ẇ0‖+ b} with ar-
bitrary b > 0, and ρε a net of smooth functions satisfying (i) and (iii)
above. Furthermore, let W =

{
u ∈ Rn

∣∣ ‖u − u0‖ ≤ b + ‖ẇ0‖
}

and
α = min {b/(C‖g|W‖∞ + ‖ẇε‖), 1/(2LC), 1}. Then (8.6) has a unique so-
lution on Jε = [−1, α − ε]. For ε < α, wε is globally defined and both wε
and ẇε are bounded uniformly in ε on compact sets.
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8. Geodesics for impulsive gravitational waves

By differentiating (8.3) one inductively obtains moderateness of wε, which
requires g to be infinitely differentiable. By the same reasoning moderate-
ness of vε follows. Now in order to assess what we reached so far, note that
a triple (V,X1, X2) ∈ G(R)3 can only be said to be a solution of the system

V̈ = (f ◦X i)ρ̇+ 2(∂if ◦X i)Ẋ iρ,

Ẍ i =
1

2
(∂if ◦X i)ρ in G(R),

V (−1) = v0, X i(−1) = xi0,

V̇ (−1) = v̇0, Ẋ i(−1) = ẋi0 in R,

(8.7)

if these equations hold for all representatives Vε, X
i
ε, ρε, i.e.,

V̈ε − (f ◦X i
ε)ρ̇ε − 2(∂if ◦X i

ε)Ẋ
i
ερε ∈ N (R), (8.8)

Ẍ i
ε −

1

2
(∂if ◦X i

ε)ρε ∈ N (R), (8.9)

Vε(−1)− v0 ∈ N , X i
ε(−1)− xi0 ∈ N ,

V̇ε(−1)− v̇0 ∈ N , Ẋ i
ε(−1)− ẋi0 ∈ N .

(8.10)

Now take the moderate solution (vε, xε, yε) we constructed for each ε and
set V = [vε], X

1 = [xε] and X2 = [yε]. In order to show that (V,X1, X2) is
a proper solution of (8.8) we take any representatives Vε, X

i
ε of V,X i, i.e.,

Vε = vε +Mε, X i
ε = xiε +N i

ε (8.11)

with Mε, N
i
ε ∈ N (R) and let ρ̃ε be a representative of ρ. We then have to

show that conditions (8.8) and (8.10) hold. Inserting (8.11) we get

Ẍ i
ε −

1

2
(∂if ◦X i

ε)ρ̃ε = ẍiε + N̈ i
ε −

1

2
(∂if ◦X i

ε)ρ̃ε

=
1

2
(∂if ◦ xiε)ρε −

1

2
(∂if ◦X i

ε)ρ̃ε + N̈ i
ε

=
1

2
(∂if ◦ xiε)(ρε − ρ̃ε) +

1

2

(
∂if ◦ xiε − ∂if ◦X i

ε

)
ρ̃ε + N̈ i

ε.

By assumption ∂if ◦ xiε is moderate, ρε − ρ̃ε and N̈ i
ε are negligible, and xiε

is bounded uniformly in ε on compact sets. Consequently, we can estimate
|(∂if ◦ xiε − ∂if ◦ X i

ε)(u)| ≤ C|(xiε − X i
ε)(u)| for all u in a compact set for

some C ≥ 0 by Lemma 3.33. Therefore, ρ̃ε is moderate and X i
ε satisfies

(8.9). For V̈ε we get the same result and the triple (V,X1, X2) ∈ G(R)3 is
a solution of (8.7).
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Calculations

Of course we ask if this solution is unique. Suppose that W = [Wε] and
Y i = [Y i

ε ] are solutions of (8.7), too. In order to show X i
ε − Y i

ε ∈ N (R) we
set

(nxi)ε := X i
ε(−1)− xi0 ∈ N

(nyi)ε := Y i
ε (−1)− yi0 ∈ N

(nẋi)ε := Ẋ i
ε(−1)− ẋi0 ∈ N

(nẏi)ε := Ẏ i
ε (−1)− ẏi0 ∈ N

N i
ε := Ẍ i

ε − Ÿ i
ε −

1

2
ρε(∂if ◦X i

ε − ∂if ◦ Y i
ε ) ∈ N (R)

as in conditions (8.9),(8.10) and write the difference X i
ε − Y i

ε (for any rep-
resentative ρε of ρ) as

(X i
ε − Y i

ε )(u) =(nxi)ε − (nyi)ε + (u+ 1)(nẋi)ε − (nẏi)ε

+
1

2

∫ u

−1

∫ s

−1

ρε(r)
(
(∂if)(X i

ε(r))− (∂if)(Y i
ε (r))

)
drds

−
∫ u

−1

∫ s

−1

N i
ε(r)drds

(8.12)

It suffices to show the negligibility estimate on [−T, T ] for each T > 0.
First, (nxi)ε, (nyi)ε, (nẋi)ε and (nẏi)ε grow like O(εm) for all m ∈ R. Then
we employ

(∂if)(X i
ε(r))− (∂if)(Y i

ε (r)) =∫ 1

0

(D∂if)
(
σX i

ε(r) + (1− σ)Y i
ε (r)

)
·
∣∣(X i

ε − Y i
ε )(r)

∣∣dσ
and can easily apply the Lemma of Gronwall on (8.12) which yields negli-
gible growth of Xε − Yε. The same procedure gives an identical result for
Ẋε − Ẏε, and as higher derivatives are seen to inductively satisfy the same
growth estimates, X i

ε−Y i
ε ∈ N (R) follows and consequently Vε−Wε ∈ N (R)

is verified by inserting into the integral equation for V . We thus have proved
the following theorem.

Theorem 8.2. Let D ∈ G(R) be a generalized delta-function, f ∈ C∞(R2)
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8. Geodesics for impulsive gravitational waves

and v0, v̇0, x
i
0, ẋ

i
0 ∈ R. Then the initial value problem

V̈ = (f ◦X i)ρ̇+ 2∂i(f ◦X i)Ẋ iρ,

Ẍ =
1

2
(∂if ◦X i)ρ,

V (−1) = v0, X i(−1) = xi0,

V̇ (−1) = v̇0, Ẋ i(−1) = ẋi0

(8.13)

has a unique solution (V,X1, X2) in G(R)3.

8.4 Distributional Limits

It can be shown (cf. [Ste98]) that the distributional limits of the unique
solutions to the initial value problem 8.13 are given by

vε(u) → v0 + v̇0(1 + u) + f(0)θ(u) + ∂if(0)(ẋi0 +
1

4
∂if(0))u+,

xiε(u) → xi0 + ẋi0(1 + u) +
1

2
∂if(0)u+,

which means that the geodesics of the space-time (8.1) are given by re-
fracted, broken straight lines. It is worthy of observation that these distri-
butional limits are independent of the regularization chosen. [KS99] treats
this problem in the context of full Colombeau algebras, as opposed to the
special Colombeau algebras used here.
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