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Abstract
The major goal of neuroscientists’ work is to explain specific behavior of living

beings, especially humans. However, human behavioral traits are complex and

difficult to comprehend. For this purpose, the researchers explore the anatomy

and morphology of neuronal circuits of simpler species to identify their meaning

and functionality. The fruit fly Drosophila melanogaster is a favorite organism

in neurobiology research because it facilitates studies of complex systems on a

simple model. For this purpose, large databases of neuronal structures acquired

by microscopy scans were built and adapted for computer-aided exploration and

visualization. Commodity products feature standard visualization techniques tai-

lored for exploration of biological structures. However, orientation in large collec-

tions of structures still poses a problem. Traditional table-view database interfaces

allow filtering of items and accessing known subsets of data, but do not support

selection based on spatial relationships.

In this thesis, we address this problem in the following way. We describe a sys-

tem which facilitates visual exploration of a large collection of neuroanatomical

structures. We combined standard visualization techniques with a novel visual

approach for exploration and queries. Our system provides three basic types of

queries. Path queries use an intuitive sketching interface and give access to struc-

tures located in the proximity of the sketched path. Object queries select objects

based on their mutual spatial distance. Semantic queries allow fast browsing using

semantic relationships stored in the database. The system was designed in an in-

terdisciplinary collaboration with domain experts, who affirmed that availability

of such a system would be very useful for their research.
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Kurzfassung
Das Hauptziel der Neurobiologen besteht darin, lebewesenspezifisches Verhalten,

insbesondere das des Menschen, zu erforschen und zu erklären. Allerdings sind

die menschlichen Verhaltenscharakteristika sehr komplex und daher auch schwer

zu verstehen. Aus diesem Grund wird versucht, die grundlegende Funktionswei-

se von neuronalen Schaltkreisen anhand der Anatomie und Morphologie einfa-

cherer Lebewesen zu analysieren. Die Fruchtfliege Drosophila melanogaster ist

ein in der neurobiologischen Forschung sehr beliebter Organismus, da er Studien

von komplexen Systemen auf einem vergleichsweise simplen Modell erlaubt. Aus

diesem Grund werden die neuronalen Strukturen der Fruchtfliege mikroskopisch

gescannt und in großen Datenbanken gespeichert, um sie datenverarbeitenden Sy-

stemen zugänglich zu machen. So sind neuartige Visualisierungsmethoden bereits

speziell an diesen biologischen Daten adaptiert und werden aktiv in der Forschung

eingesetzt. Allerdings bleibt die Orientierung in den großen Datenbanken proble-

matisch: Die traditionellen Tabellen-Interfaces erlauben zwar das Filtern und die

Selektion von ausgewählten Gruppen von Einträgen, aber die Selektion anhand

der räumlichen Lage bleibt weiterhin unmöglich.

Diese Diplomarbeit beschreibt ein neuartiges System, welches die visuelle Erfor-

schung einer großen Menge an neurobiologischen Daten wesentlich erleichtert.

Ermöglicht wird dies durch die Kombination der Standardvisualisierungstech-

niken mit einem visuellen Explorations- und Abfrageansatz für Datenbanken.

Unserer System stellt drei Grundtypen von Datenbankabfragen zur Verfügung.

Path queries liefern mit Hilfe einer intuitiven Skizzenschnittstelle alle Strukturen,

die sich in der Nähe eines gezeichneten Pfads befinden. Object queries erlauben

die Selektion von Strukturen anhand deren räumlicher Distanz. Semantic que-

ries ermöglichen schnelle Suche anhand von semantischen Zusammenhängen,

die in der Datenbank definiert sind. Das System wurde im Rahmen einer inter-

disziplinären Zusammenarbeit mit Experten aus dem Gebiet der Neurobiologie

entworfen, welche den hohen Nutzen eines solchen Systems für ihre Forschungs-

arbeit bestätigten.
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CHAPTER

1 Introduction

Nature and Nature’s laws lay

hid in night: God said, ’Let

Newton be!’ and all was light..

epitaph of Sir Isaac Newton by

Alexander Pope

A
MAJOR AMBITION of neuroscientists is to elucidate the complex behavior

of organisms. The neural organs trigger and coordinate actions based on

sensory perception, experience and circumstances. The exact mechanics of this

process are still being investigated. For this purpose, neuroscientists observe the

biochemical and physical actions in neuronal circuits and study the anatomy and

the morphology of the neuronal systems. The fruit fly Drosophila melanogaster

is a favorite model organism in the community of neurobiology, because it allows

studies of complex processes on a simple example. Our collaborators from the

Institute of Molecular Pathology at the Vienna University use molecular genetic

techniques to study the function of individual neural circuits in Drosophila to ex-

plain the information processing which conducts complex behavior [20]. For this

purpose, they build a database of microscopic images and segmented structures

which allows them to study and explore their data. However, orientation in large

collections of structures still poses a problem. Traditional table-view database

interfaces allow filtering items and accessing known subsets of data, but do not

1
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support selection based on spatial relationships. This thesis addresses this prob-

lem and describes visual queries as a method for accessing structures from the

database based on the spatial information. In this chapter we give an introduction

into the biological background in Section 1.1 and describe the workflow of our

collaborators in Section 1.2. In Section 1.3, we outline the scope of this thesis.

1.1 Background

Drosophila melanogaster

Drosophila melanogaster or fruit fly gathers and feeds on spoiled food. Figure 1.1

illustrates a male and a female Drosophilae. This about 3mm little insect is a

valuable model organism in genetics and development biology. This fact has been

proven by many researchers. Dr. Edward B. Lewis, Christiane Nüsslein-Volhard,

and Eric Wieschaus provided valuable information about human birth defects by

(a) (b)

Figure 1.1: Drawing of a male (a) and a female (b) Drosophila melanogaster.

Image courtesy of Flybase [21].
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Brain

VNC

Figure 1.2: Central neuronal system of Drosophilae - the brain and the VNC.

Image by the courtesy of Flybase [21]

studying the genetics of Drosophila melanogaster. They were awarded a Nobel

Prize in physiology and medicine in 1995 for their work in the fields of genetics

and development. The work of Mackay [43] highlights examples how studies of

the simple organism Drosophila melanogaster helps to demystify relevant com-

plex human traits such as sleep, alcohol dependency, and neurodegenerative dis-

eases such as Parkinson and Alzheimer.

Drosophila melanogaster is a favorite model for research because it facilitates

studies of intricate systems on a simple example. For example, human genet-

ics and environmental factors influencing traits and behavior are very complex.

Furthermore, accurate studies of the human genetics require large samples of in-

dividuals. Unlike humans, Drosophila melanogaster can be easily genetically

modified. Furthermore, large samples of genetically identical individuals can

be reared in laboratories under controlled environmental conditions and within

short time [43]. The shortest generation time, i.e., egg to adult of Drosophila

melanogaster takes 7 days under 28 °C [4]. The generation interval is an obstacle

even for small mammals used in laboratories such as mice [43].

Nervous System of Drosophilae

The central nervous system of Drosophila melanogaster consists of two major

organs - the brain and the ventral nerve cord (VNC), which is an important neural
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Synapses

Synapse

Myelin sheath

Axon

Neuron

Vesicles

Neurotransmitter

Receptor

Dendrite

Dendrite

Nucleus

Cell body

Figure 1.3: Structure of a neuron and the synapse. Figure inspired by the web of

the Faculty of Chemistry of USCA [22].

cluster or ganglion on the ventral part of the fly’s body. Figure 1.2 depicts the

brain and the VNC with their anatomical context.

Neuronal organs such as brain and VNC are composed by neuronal cells called

neurons. Figure 1.3 describes a neuron and its most important parts. Neurons

transmit excitements by electrochemical signaling. The communication between

individual neurons happens via connections called synapses as illustrated in Fig-

ure 1.3. The short processes called dendrites are excitement-receptive and lead the

signal into the cell body. The long process called axon transmits the excitement

from the cell body to other cells. The neuronal tissue is supported and nourished

by tissues called neuroglia. The network of dendrites, axon and glial branchings,

which form the bulk matter called neuropil, embeds the neuronal cell bodies [29].
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Confocal Microscope

Fruit flies have little bodies about 3mm long. Their heads correspond to one sixth

of their body length, so their brain does not exceed 0.5mm. With a spatial reso-

lution 0.25mm of the scanning device, the fly brain would appear as a single dot.

To observe structures in the fly brain, much higher spatial resolution is needed.

In this case, neurobiologists cannot use familiar imaging techniques such as com-

puter tomography or magnetic resonance imaging which have resolution about

0.5mm. Therefore, they use microscopical scanning methods, in particular confo-

cal microscopy, which uses fluroescence, to image the specimen.

Before we explain how a confocal microscope works, we recall some facts about

fluorescence. Some materials have the following property - they absorb light of

some wavelength and emit light of a different wavelength. Furthermore, these

materials still emit light, even if the light source is not present anymore. The

physical background of the fluorescence effect is as follows. Particles in the ma-

terial such as molecules and atoms absorb quanta of energy from the light of a

certain wavelength in the form of photons. After absorbing photons, they move

from the ground energy state to a higher energy state. The absorption of energy

triggers emission of photons at a longer and less energic wavelength as has been

Emitted light

Light source

Objective

Fluorescent sample

Dichromatic mirror

Viewer

Laser

(a)

Viewing plane
Pinhole P

Lenses

Focal point F

(b)

Figure 1.4: Optics of a confocal microscope - a dichromatic mirror (a) and a

scheme with a pinhole (b). Figure inspired by the work of Prasad et al. [52].
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Figure 1.5: A confocal microscope. Image courtesy of Carl Zeiss MicroImaging

Inc. [67].

emitted from the light source. After emission, the particle returns to its ground

energy state. The emission persists some time after exposure because not all par-

ticles emit absorbed energy immediately. Biologists know techniques to insert

foreign substances into target tissues of a specimen which gives the tissues this

property.

Figure 1.4 describes the optics of a confocal microscope. Fluorescent materi-

als are exposed to monochromatic light, such as laser. In monochromatic light,

only one wavelength is present. After exposure, fluorescent tissues emit light of a

known wavelength. Confocal microscopes employ a dichromatic mirror to sepa-

rate light going from the light source and light being emitted from the fluorescent

tissue as illustrated in Figure 1.4a. Dichromatic mirrors reflect all light of a wave-

length below a certain threshold. Light of wavelengths above this threshold passes

through the dichromatic mirror. Confocal microscopes use dichromatic mirrors

which reflect light going from the light source. The fluorescent tissue necessarily
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emits light of longer wavelengths and thus passes through the dichromatic mirror

of the microscope.

Normally, the whole sample is illuminated equally by the light source and thus

the whole fluorescent tissue emits light. But only the image of the object in the

focal point of the optical system F forms on the viewing plane as we show in

Figure 1.4b. The image of F forms with the highest intensity. Nevertheless, the

whole fluorescent tissue emits light and thus other parts of the fluorescent tissue

contribute to the image of F as background haze. A pinhole P in the viewing

plane where the image of F forms blocks the haze contribution. The focal point

F and the pinhole P are conjugates - so this kind of microscopy is called confocal

(conjugate-focal). The information about confocal microscopes sources from the

work of Prasad et al. [52, 63].

Understanding the fluorescence effect, the principle of dichromatic mirrors and

the lens optics is essential to comprehend the system of a confocal microscope.

In Figure 1.5, we illustrate the whole system. The pinhole model creates at once

only the image of the focal point representing one pixel in the scan. The adjoint

computer creates the image pixel-by-pixel. In practice, three images of 512×512

pixels can be build-up per second [52, 63].

Gal4/UAS

Originally, neuronal tissue of Drosophilae does not virtue natural fluorescence.

However, neurobiologists invented techniques, such as the Gal4/UAS system [51],

which allow them to manipulate the targeted subset of neuronal tissue so that it ex-

hibits fluorescence. We describe this technique as explained by Phelps et al. [51]

without going into deep detail of the underlying biochemical actions. To learn

more details, we direct the reader to the literature [51, 40, 58].

Genetic information of all living creatures from a virus to a human being is coded

in nucleic acids DNA or RNA. The molecules of these nucleic acids include bases

whose order codes genes. In Figure 1.6, we observe four types of bases in DNA

- adenine (A), guanine (G), cytosine (C) and thymine (T). The genes direct pro-

duction of proteins in cells, which geneticists call gene expression. However, not
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GuanineCytosineAdenine Thymine

Figure 1.6: Bases of the DNA.

every gene is expressed as this process depends on many chemical activators and

inhibitors. In genetics, a gene which is not expressed is called silent. Scientists

know techniques, e.g., the Gal4/UAS system, to manipulate this process. They

insert a target gene into the DNA which is expressed if and only if the activating

Gal4-protein is present in the cell. They create two groups of genetically iden-

tical flies, i.e., lines. One line carries an endogenous promoter Gal4 responsible

for the Gal4-protein production. The second line carries the target gene which is

silent because the Gal4-protein is missing. If these two lines cross, the progeny of

the cross expresses the Gal4-protein and also the target gene, because the Gal4-

protein is present.

With the Gal4/UAS system, biologists can use the UAS-GFP target gene. Fig-

ure 1.7 depicts the Gal4/UAS when the UAS-GFP serves as the target gene. If

a cell expresses UAS-GFP, a green fluorescent protein (GFP) is produced. Thus,

tissues which express UAS-GFP virtue natural fluorescence and can be scanned

using a confocal microscope.

1.2 Workflow

In this section, we outline the workflow of our collaborators. In particular, we fo-

cus on the preparation of their specimen, acquisition, registration and processing

of their data.
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Preparation of Specimen

Our collaborators use different techniques of injecting special fluorescent sub-

strates into the neuronal tissue: the Gal4/UAS system as described in Section 1.1

and neuropil staining. In contrast to the Gal4/UAS, neuropil staining is less intri-

cate - prepared tissues are washed in a staining (fluorescent) substrate. Our col-

laborators follow exact protocols while performing neuropil staining which are

irrelevant for this work. As the Gal4/UAS system serves to evoke fluorescence

in cells, they use it to label neuronal cell bodies and neuronal processes. In con-

X

Gal4-protein
produced

endogenous promoter

Progeny of cross

UAS-GFP binding site

GFP-protein
produced

Gal4-protein
produced

endogenous promoter

Gal4-expressing line

UAS-GFP gene silent
in absence of Gal4-protein

UAS-GFP binding site

UAS-GFP line

Figure 1.7: Gal4/UAS system. Image inspired by the article of Phelps [51]. The

images of the fruit flies by the courtesy of Flybase [21].
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trast to the Gal4/UAS system, neuropil staining is used to highlight extracellular

synapses. With these techniques, our collaborators aim to highlight the neural or-

gans entirely, or only some particular circuits and synapses. In this fashion, they

prepare their samples for confocal microscopy scanning.

Acquisition

Our collaborators use confocal microscopy techniques to obtain images of their

specimen at a spatial resolution 1μm using Carl Zeiss LSM 510 microscope with

25× magnification. With this technique they generate images from a thin section

of their samples. By acquiring many thin sections, they build-up a 3D image us-

ing volume reconstructions techniques. Our collaborators acquire a stack of 165

images of the brain and VNC at 1μm interval, both with resolution 768× 768

pixels.

Registration

After acquiring the images of individual slices, our collaborators register the data.

They use an additional staining of the neuropil which provides a stable morpho-

logical reference. The neuropil staining used for registration is independent from

the neuropil staining used for highlighting synapses. They apply non-rigid reg-

istration algorithms [57] to register the data. Although this process is automatic,

only manually verified scans are considered to have sufficient accuracy and are

used for further processing.

Processing

In the acquisition step, our collaborators produced stacks of images, i.e., volumes,

of the neural organs and registered them using a reference scan. The volumes of

the entire organs are called template volumes and serve as anatomical context.

Furthermore, our collaborators use them to segment important anatomical parts

of neural organs, i.e., template regions, such as lobes and cavities.
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In addition to the template volumes, scans of selected neuronal tissue have been

generated. In these scans, i.e., confocal images, only particular neurons and

synapses are highlighted. Our collaborators average them to reduce the interindi-

vidual variability and store the results as Gal4-volumes. For example, biologists

observe separately male and female flies with the same Gal4-staining scheme.

They aim to determine the differences between the male and female neuronal pat-

terns. The averaging procedure diminishes the interindividual variablity within

Table 1.1: Types of Neuronal Data

Database representation Representation Staining method Biological meaning

Cell body Geometry Gal4/UAS Cell body
Projection Skeleton graph Gal4/UAS Neuronal process

Arborization Geometry Neuropil Synapse
Template volume Volume Neuropil Brain or VNC
Template region Geometry Neuropil Region of brain or VNC
Confocal image Volume Gal4/UAS Selected neuronal tissue

Gal4-image Volume Gal4/UAS Average of confocal images

Neural projections

Arborization

Arborization

Cell body

Arborization

Template volume

Gal4-volume

Figure 1.8: A template volume in conjunction with a Gal4-volume and a neuronal

cluster consisting of three arborizations, two neuronal projections, and one cell

body.
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each gender group. The average scans contain only relevant features of each gen-

der.

Gal4-volumes serve as a basis for segmentation of neurons. Our collaborators

characterize neurons by the morphology of their cell body, the pattern of their

processes, and by their synapses. For this purpose, they use the Gal4-volumes to

segment neuronal cell bodies, processes and synapses. They refer to processes as

to neuronal projections and to synapses as arborizations. Overall, four different

objects are segmented: template regions, cell bodies, neuronal projections and

arborizations. Segmentations are conducted by an expert user in Amira [1]. Our

collaborators store the segmented surface of template regions, cell bodies and ar-

borization as triangular meshes. In contrast, neuronal projections are represented

as skeleton graphs generated by the skeletonizer plugin of Amira [62].

All acquired volumes and objects: template volumes, confocal images, Gal4-

volumes, template regions, cell bodies, neuronal projections and arborizations are

stored on a file server and their references are inserted into the relational database.

The database also facilitates storage of annotations of individual objects and al-

lows our collaborators to associate different objects into neural clusters. Table 1.1

gives an overview of different types of structures stored in the database. Fig-

ure 1.8 depicts a template volume of the brain which provides anatomical context

in conjunction with a Gal4-volume and a neural cluster which consists of three

arborizations, two neuronal projections and one cell body.

1.3 Scope of the Thesis

Our collaborators use the neuronal structures in their database for their research.

They explore above all their morphology, spatial position and mutual connections

to identify neuronal circuits responsible for specific behavior. However, the re-

trieving of objects from a database is difficult without a visual approach. For this

reason, we provide visual queries for efficient structure retrieval.

The structure of this thesis is as follows. In Chapter 2, we give an overview of

the state of the art in the fields of neuronal data exploration and visualization of

microscopic data. In Chapter 3, we explain in detail visual queries we employ for
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efficient structure retrieval. In Chapter 4, we provide additional implementation

details. In Chapter 5, we present results of our work and a typical scenario of

work with our system. We conclude the thesis in Chapter 6.



CHAPTER

2 State of the Art

Copy from one, it’s plagiarism;

copy from two, it’s research.

Wilson Mizner

T
HE RESEARCH WORK we discuss in this thesis builds-up on three major pil-

lars: databases of neurological data, visual and spatial queries, and visual-

ization of microscopy data. In this Chapter, we give an overview over existing

research in these fields. Among the numerous works we highlight only those

which are relevant for this thesis.

2.1 Atlases and Databases of Neurological Data

An introduction into the challenges of databasing the neurological data together

with a survey of the underlying techniques are given by Koslow and Subrama-

niam [38] and Chicurel [15]. In their book, Koslow and Subramaniam intro-

duce their reader to current issues, methods and tools in neurobiology. They also

present the state of the art in applications in clinical and basic research. This in-

cludes above all the new ways to acquire, store, visualize, analyze and share the

neurological data. Chicurel [15] discusses requirements for a brain database and

gives numerous examples.

Atlases offer illustrated and annotated descriptions of organs. They are essential

14
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for research and education. They help to localize neuronal structures and bring a

system and coherency into the nomenclature of anatomical structures. Coherency,

a logical system, and localization are crucial in computer-aided applications [10].

In neuroscience, the construction of such tools is necessary for easy and quick

localization, search and analysis of neurological structures. In their article, Maye

and al. [45] present an overview of methods for neurological data reconstruction

and visualization, creating atlases and registering the data. The latter should also

support a researcher in comparing individual structures imaged in his or her ex-

periment with structures in the atlas. At present, several atlases of neurological

structure are available online.

Abbreviations
ped pedunculus fb fan-shaped body

s l pr superior lateral 
protocerebrm v bo ventral body

s m pr superior medial 
protocerebrum trito tritocerebrum

s a superior arch ant gl 
t

antennoglomerular tract (a.k.a. antennocerebral tract 
[a c t])

e b ellipsoid body no nodulus
inf l 
deu

inferior lateral 
deutocerebrum lo lobula

me medulla ... ...

Figure 2.1: A typical illustration in the Flybrain on line atlas. Image courtesy of

Flybrain [2].
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The Lundeck Institute in Denmark provides a web interface to human brain called

Brain Explorer [31]. The tool enables visual browsing in the database of anno-

tated structures of a human brain. Concerning the neuronal system of flies, we

mention Flybrain [2] and FlyBase [21]. They offer a classical atlas describing the

brain of Drosophila melanogaster and an interactive navigation in the database of

images and sketches by clicking on their labels or structures themselves. How-

ever, these online tools use databases containing only 2D images.

Bertrand et al. [7] present an atlas of the mouse brain called Neuroterrain. Their

database consists of segmented 3D structures represented as geometry and a broad

set of confocal image stacks for 3D visualization. Nevertheless, they do not de-

scribe interaction with neurological structures. Bezgin et al. [9] described an inter-

active system for neurological data exploration. Their work focuses on collations

of connectivity data on the macaque brain (CoCoMac). Displaying connectiv-

ity is essential to understand the team work of individual structures in the brain.

Their system includes databases containing both - morphology and connectivity

data. Burns et al. [14] presented a framework NeuARt II for atlas-viewing. Users

can view, annotate and save their loaded data for later access. The application

supports also import, viewing and saving of copyrighted atlases.

2.2 Visual and Spatial Queries

Employing humans in data-mining often leads to better results, especially when

automated procedures fail. However, incorporating humans has disadvantages

when a huge amount of data has to be analyzed, which is often the case. Find-

ing valuable information without supporting tools is complicated and laborious.

Semi-automated visual analysis is faster than purely human-conducted. Visual-

ization of the working data helps the user to identify important trends and excep-

tions [17]. Thus, visual exploration techniques are highly on demand and often

come conjoined with automatic techniques. In Section 2.2 we give an overview

of existing visual approaches to queries and data-mining.
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Visual Queries and Data-mining

Dethrick el al. [19] discuss fundamental concepts of giving visual feedback for

queries. Their database models relationships of multidimensional data. Their sys-

tem supports queries created with drag and drop. Ahlberg et al. [3] presented and

evaluated a concept of queries using graphics widgets and sliders. This supports

direct filtering of the results and direct visual feedback.

Further prominent techniques comprise brushing, picking, and linking of multidi-

mensional data. Reina et al. [56] describe brushing in volumetric data which mod-

ifies the actual query. Becker describes [6] mapping the contents of a database to

a volume. His system implements brushing and picking as methods for interactive

filtering. Martin el al. [44] treat their multidimensional data with parallel coordi-

nates. Using interactive brushing over the visualization using parallel coordinates,

they achieve interactive filtering. Keim [36] classifies information visualization

techniques. He separates the user-interaction into three steps employing interac-

tive techniques such as zoom, filtering, linking and brushing. First, the user gets

an overview where he identifies important trends. Second, he or she focuses and

interacts with the data, e.g., zooms into interesting regions of data. Third, details

about selected regions are displayed on-demand.

Queries in Spatial Databases

An exhaustive surveys on multidimensional and metric data structures and query

methods for spatial databases are given in the works of Gaede et al. [24] and

Samet [61]. Spatial data are defined by an explicit information about their extent

and position in space. In their book, Gaede et al. discuss novel types of queries on

these types of data - point and region queries. A point query returns all objects in-

tersecting a selected point in space. A region query selects all objects intersecting

a selected region in space. Users can interact with the query results, e.g., make a

union or intersection.

There exists no linear mapping of a multidimensional space into 1D space which

fully preserves spatial locality. Voxels which are direct neighbors in a 3D volume,

might not be direct neighbors when serialized on a disk. However, there exist
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techniques which attempt to maximize locality. They are essential for fast search

operations in spatial databases and ensure database scalability. Among numer-

ous approaches to organization of spatial data on a disk, we highlight the most

prominent ones - Kd-trees, Octrees, BSP-trees and space-filling curves.

Kd-trees

Kd-trees belong to the most essential search data-structures. The tree represents

a recursive binary subdivision of a d-dimensional space. Every time, a (d-1)-

dimensional hyperplane splits the parent-space or parent-subspace is divided into

two child-subspaces. The subdividing hyperplanes are always orthogonal to each

other as illustrated in Figure 2.2. Similar to kd-trees are quadtrees and octrees,

where the 2D or 3D subspaces are represented as nodes. In each partitioning step,

the nodes are split into 4 quadrants or 8 octants. In practice, quadtrees and octrees

are used for effective storage of solid objects [27]. A post-order traversal (left,

right, root) of these trees produces an ordering of data well-preserving spatial

proximity of individual nodes.

A

B

C D

(a)

A

B C

D

(b)

Figure 2.2: Principle of a Kd-tree - a recursive space-subdivision (a) and a corre-

sponding tree (b).
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(b)

Figure 2.3: Principle of a BSP-tree in 2D- a recursive polyhedral (polygonal)

subdivision (a) and a corresponding tree (b).

BSP-trees

In contrast to Kd-trees which split space with orthogonal hyperplanes, BSP-trees

represent recursive subdivision using arbitrary hyperplanes. In each recursion

step, a (d-1)-hyperplane cuts a parent polyhedron into two child polyhedrons as

illustrated in Figure 2.3. This approach is commonly used in computer graphics

for scene subdivision to determine, e.g., visibility of objects [27].

Space-filling curves

Space-filling curves s(t) are fractal curves which provide one-to-one mapping be-

tween points in a multidimensional and a 1D space R
n → R and well-preserve

the spatial distance between points. A family of 2D space-filling curves was in-

troduces by the mathematician Giuseppe Peano in 1890. Figure 2.4 illustrates a

space-filling curve s(t) which maps a 2D square into a 1D curve R
2 → R.

A discrete representation of these curves can be computed using an L-System[54].

An L-System consists of an initial shape, alphabet and grammar building rules.

Iterative application of grammar rules transforms the initial shape and converges

to the solution. In Figure 2.5, we show building rules for different types of space-

filling curves - a Peano curve, Hilbert curve[28], and Z-order curve [49]. After

an infinite number of iterations on a 2D curve each point of a square belongs to
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Figure 2.4: A 2D Hilbert curve s(t) (a) maps of a 2D space onto a 1D curve (b).

the curve. Space-fillings curves are used to order discrete multidimensional data

on a disk. Figure 2.4 shows a serialization, i.e., a linear order, of a 2b ×2b matrix

of points. In the remainder of this thesis, we refer to linear ordering of discrete

multidimensional data as to a scan.

For linear ordering of multidimensional data on a disk, a Hilbert curve has proven

to be a good choice, because in the family of space-filling curves, it preserves the

proximity the best [32]. In his article [25], Gilbert describes construction of a

cube-filling Hilbert curve. There exist many algorithms for 3D Hilbert-scanning

- algorithms by Quinqueton [55], Sagan [59], Millar [48], and Kamata [33, 34].

However, they are restricted to cube regions of size 2b×2b×2b and use recursion.

The problem of Hilbert scanning of arbitrarily-sized cuboid regions is addressed

in the article by Zhang and Kamata [68]. The authors propose an efficient algo-

rithm for 3D Hilbert-scanning of such regions.

Hilbert’s curve provides a scanning order for multidimensional data which well

preserves locality. Thus, it is widely used in digital image processing. However,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: A Hilbert curve mapping of a 2D space onto a 1D curve. Initial shapes

of the Peano curve (a), the Z-order curve (d), and the Hilbert (g). The curves after

first (b), (e), (h) and second (c), (f), (i) iterations.

sampling of space-filling curves s(t) poses a difficulty. Given a cuboid region and

a point s(t) ∈ R
n, the deduction of t is very costly. There exists no formula for

direct computation of the curve s(t) or inversely s−1(s(t)). The whole curve s(t)

must be computed for the whole region using one of the proposed algorithms.
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Queries in Databases of Neurological Data

The exploration of neuronal databases has been investigated by several researchers.

Fredriksson et al. [23] describe an online accessible visual human brain database

system. Their framework provides direct queries on raster data such as visual

queries on images. User selects two rectangles in slice views and defines a vol-

ume of interest (VOI). These can be linked with different boolean operations.

Then, he or she queries images within the selected VOI using operations such as

thresholding. However, the authors do not use explicit representation of struc-

tures, i.e., geometry. Press et al. [53] focused on the graphical search within

neuroanatomical datasets. Their system called XANAT allows studies, analysis

and storage of neuroanatomical connections. Users perform searches by graphi-

cally defining a region of interest to display the connectivity information for this

region. Furthermore, their system supports also textual search using keywords

describing a particular region. Sherbondy et al. [64] describe a novel set of in-

teraction techniques that makes the exploration and interpretation of pathways in

brain easy. The queries in their approach are interactive - the user marks a box or

ellipse-shaped region and all pathways crossing this region are shown. Again, the

framework supports boolean operations on the regions of interest.

2.3 Visualization of Microscopy Data

Visualization techniques for microscopy data are being explored since computer-

aided microscopy is used in bioscience. Early work on microscopy data focused

on image processing techniques, notably noise reduction, because the early mi-

croscopy scans were of worse quality than today. The microscopy scanning de-

vices progressed in the last decade and the microscopy images of today are of

much higher quality. The evolution of computer and microscopy hardware solved

many of the problems addressed in the earliest works. Thus, we offer only a brief

survey of the early research in this field.

The early works [35, 5, 60] refer mostly to the visualization of cells. Kaufman

et al. [35] explored visualization of cells focusing on depth cues. They employed

gradient dependent shading and dynamic positioning of the light source to en-
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hance depth perception. The article by Avila et al. [5] focuses on visualization

of nerve cells. They used cutting planes to reveal inner structures which would

be otherwise occluded by the cell’s surface. Sakas et al. [60] provided a uni-

versal tool for visualization of both - static and dynamic structures of confocal

microscopy data.

More recent approaches employ modern and innovative user interfaces and state-

of-the art visualization techniques. Leeuw et al. [16] also work with time depen-

dent confocal microscopy data. They presented a tool tailored for analyzing of

chromosomes during the cell division. Their system supports a virtual environ-

ments, e.g., Cave. The VR setup includes shutter glasses with a head-tracker and

a projection plane. The tool provides volume and isosurface rendering and nu-

merous interaction and inspection methods. The VR-setup enables pointing and

interaction with a ”virtual hand”. Furthermore, their framework supports multi-

channel volume data where each color channel (RGBA) represents a concurrent

dataset.

O’Conor et al. [50] and Wang [65] used programmable graphics hardware to

achieve higher performance. O’Conor et al. implemented the marching cubes

algorithm [41] for isosurface generation, direct volume rendering techniques and

interactive transfer functions.

In numerous cases, researchers want to analyze and process a collection of datasets

simultaneously, e.g., to test their hypothesis. Processing each dataset individually

is time-consuming. On the other side, in fully-automated batch processing of the

whole collection of datasets, only final results are displayed, and the user cannot

intervene into the process. The article of Leeuw et al. [17] describes techniques

for visualization and analysis of large data collections applied on confocal mi-

croscopy data. The authors present a system using a hybrid approach - combining

the two processing approaches. Furthermore, they incorporated a plethora of vi-

sualization tools such as histograms, scatter plots and parallel coordinates [30].

Melek et al. [47] work with fibrous, thread-like data acquired with electron mi-

croscopy scanners [18] and knife-edge microscopy [46] invented at the Texas

A&M University. In their article, Melek et al. proved that photo-realistic ren-

dering using global illumination of the fibrous data leads to their better visual

perception. They applied a model for hair rendering to visualization of neuronal
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networks.

The visualization techniques highlighted in this survey employ elaborate tech-

niques of visualization and enhancement. Direct volume rendering techniques

were combined with shaded isosurfaces using techniques for mixing volumetric

images and geometry [13, 39], and even rendering of multichannel volumes [8].

The system described in this thesis uses the state-of-the-art visualization tech-

niques in conjunction with a novel approach of visual search in a database of

neurobiology structures using the spatial and semantic information.
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3 Visual Queries in Neuronal
Data Exploration

Pigmaei gigantum humeris

impositi plusquam ipsi gigantes

vident.

Sir Isaac Newton

O
UR SYSTEM demonstrates a compact computer-aided visualization tool tai-

lored for a neuroscientist. It supports user’s own relational database which

is connected to a file server. It includes powerful visualization techniques and

enables efficient querying of the individual structures from the database. In this

chapter, we give a general overview of our system and a detailed description of

its parts. Furthermore, we describe the used visualization techniques, and, in par-

ticular, the novel approach to visual queries.

3.1 System Overview

The core of our system is the open-source volume rendering framework Vol-

umeShop [11] where we smoothly integrated the specialized plugins. VolumeShop

has a flexible architecture which allowed us to rapidly integrate new functional-

ity. The architecture of the system consists of a relational database connected to

a file server, spatial indices of the data, and the visualization tools. The entities

communicate via interfaces. The latter are responsible for the construction of the

25
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Figure 3.1: Overview of the system.

visual queries. Figure 3.1 illustrates the connections of entities and concept of the

entire system. In this Section, we discuss each important part of the system in

greater detail.

File Server

All data provided by our collaborators are stored on a file server. The application

also supports offline access where the files are stored on a local medium and a

local relational database. However, the database and the server are intended for

access over a network and the datasets are transferred to the local machines on-

demand. In this manner, our collaborators are able to provide and maintain their

data on a server and their clients view and explore them at their local machines.

In the future, our collaborators plan to extend the collection of their datasets and

insert them onto the server. This requires our system to be scalable.

Our collaborators use Amira [1] for preprocessing and segmentation of their data.
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Thus, all data they provided were in the Amira’s native general-purpose file for-

mat called AmiraMesh. This file format is very flexible - it supports storage of

a variety of objects. We mention only object types relevant to us: volumetric

data, surface geometry including materials, and skeleton graphs. As we show

in Table 1.1, template volumes, confocal images, and Gal4-images are stored as

volumes. Arborizations, template regions, and cell bodies are represented as ge-

ometry and projections as skeleton graphs.

Unchecked → invisible

Figure 3.2: A screenshot of our system. The list of structures in the selection

panel is restricted by the keywords projection and only.
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Relational Database

The relational database stores additional information about the present neuronal

structures. This additional information comprises properties such as expert’s com-

ments, clusters, whether the structure was retreived from a brain or from a VNC,

and the gender of the organism it was retreived from. The user interface contains

a selection panel which shows a list of structures in the database. User selects in-

dividual structures from the file list to be added into the visualization, which then

also appear in the view panel. The file list in the selection panel can be filtered us-

ing the additional information stored in the database. In the search panel, the user

makes a set-up to display only the structures which were retrieved from a female

brain. The structures which were retreived from a VNC or from a male organism

do not appear in the list. The search panel also contains a field for keyword-based

search. Figure 3.2 depicts a typical screenshot of the user interface showing a

visualization window, a view panel, a search panel, and a selection panel. In the

search panel, we restricted the list with the keywords projection and only. The

restricted list in the selection panel contains only files containing both keywords

in their annotations. This feature easies the orientation in the long file listings

stored in the database.

(a) (b)

Figure 3.3: A path query - a sketched path with a tight region around (a) and a

neurons crossing this tight region (b).
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Visual Queries

The database provides context-based search. Users picks structures by their name

or by using filtering options. However, search and exploration based on the spatial

information is not supported. Users cannot automatically select structures cross-

ing particular points in the volume (point-based queries [24]), the closest objects

to an object of interest (object-based queries), and directly retrieve information

about objects by clicking on them in the visualization (semantic queries). How-

ever, these tasks are of the major interest of our collaborators. We extended the

idea of point-based queries to path-based queries. A path-based query provides

efficient retrieval of structures crossing a tight region around a path sketched over

the visualization. In Figure 3.3 we explain the concept of a path-query. First, the

user interactively sketches a path over the visualization as in Figure 3.3a. Con-

sequently, a list of available structure crossing this region appears in the menu.

Second, he or she loads, e.g., all projections from the list path as shown in Fig-

ure 3.3.

Our system provides the user with three types of visual queries - spatial queries,

object queries and semantic queries. In Figure 3.1, they are represented with the

entity visual query.

C1
C2

A1

A1C2 C11 2 2

A1 C2C11 3 3

A1 C2C11 4 4

(a)

C1
C2

A1

C1-1 1 A1

1 C2C10

A1C2-1 0

(b)

Figure 3.4: Distance tables simplified to 2D containing point ditances (a) and

object distances (b).
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Spatial indices

Spatial indices represent packed spatial information about individual objects stored

on the file server. They are necessary for efficient object and path queries. At run-

time, we must be able to rapidly calculate distances to n closest structures from

any point in the volume. Furthermore, we must be able to quickly provide a list of

n closest objects to any object of interest. Considering that our file server stores

several hundreds of structures, a runtime calculation is impossible. Thus, we

compute two tables containing point and object distances in a preprocessing step

using a separate tool. Figure 3.4a illustrates fields of the mentioned distance ta-

bles. Each row of this table refers to a point in space. The distances are measured

using the chamfer metric. In Figure 3.4b, each row refers to an object. When two

objects intersect, the corresponding value in the table is negative and its absolute

value indicates the intersection volume. The application accesses these precom-

puted tables for distance look-up at runtime which makes the distance calculation

fast.

Visualization

The central node of our system is the visualization entity as we indicated in Fig-

ure 3.1. The numerous featured visualization tools make our application a com-

pact toolbox for 3D data exploration. The toolbox includes standards for view-

point control such as rotation, zooming and panning, masking control such as

clipping planes and cropping boxes and different renderers. The latter provide

slice-rending, direct volume rendering with interactive transfer function and ge-

ometry rendering. Other utilities supporting user’s work comprise synchronized

viewing windows, image and video-capture and saving of the current session. Fig-

ure 3.5 presents some of the featured visualization techniques and utilities. We

describe applied visualization techniques in Section 3.2 without going into deep

detail as this thesis focuses on the novel visual queries and the featured visualiza-

tion techniques are state-of-the-art. The visualization entity is essential to concept

a visual query.
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3.2 Visualization techniques

One of the major requirements of our collaborators is the support for combined

visualization of geometry and volumes and concurrent rendering of multiple vol-

umes. A typical case is, e.g., locating more structures such as cell bodies and

arborizations inside a template volume, which provides an anatomical context.

At the same time, they want to explore additional volumes, e.g., Gal4-images

representing some stained neuronal tissue of interest. In this particular case, as

demonstrated in Figure 3.6, concurrent visualization of multiple volumes and ge-

ometry is necessary. Furthermore, exploration of numerous structures at the same

time leads to a visual clutter. Our aim is to maximize the information the user can

get from the visualization and to minimize the clutter. In this section, we discuss

our approaches to the concurrent visualization of volumes and to the geometry

rendering.

Figure 3.5: A screenshot of our system showing some of the featured visualization

techniques, notably direct volume rendering combined with geometry rendering

and slice rendering in multiple synchronized views.
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(a) (b) (c)

Figure 3.6: Visualization of VNC - a template volume of a VNC (a), concurrent

rendering of the VNC volume and three Gal4-volumes (b), concurrent rendering

of VNC volume, three Gal4-volumes with template regions and neuronal projec-

tions represented as geometry (c).

Volume Rendering

Maximum Intensity Projection (MIP) is often used in biomedical visualization.

This technique retains the highest values along the projection rays. Our collabora-

tors also preferred MIP over direct volume rendering (DVR). However, employing

visualization using MIP destroys the depth perception. On the other hand, using

(a) (b) (c)

Figure 3.7: Comparison of DVR (a), MIP (b) and MIDA (c).
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DVR instead of MIP leads to occlusion of important maxima. This is a significant

problem especially when a researcher explores several Gal4-volumes and the tem-

plate volume. The template volume should build an anatomical context but should

not occlude the important information provided by Gal4-volumes. Therefore, our

system uses a hybrid approach called Maximum Intensity Difference Accumula-

tion (MIDA) described by Bruckner et al. [12]. This technique ensures that the

strong features of the stained data remain unoccluded by the template volume.

Figure 3.7 compares visualizations using these three techniques.

Maximum Intensity Difference Accumulation

The article of Bruckner et al. [12] describes MIDA for mono-channel data. They

employed an additional modulation factor for the color and opacity composition

equation used for DVR. Equation 3.1 presents the color composition in DVR. The

color and opacity are accumulated along the rays. Ci and Ai denote the color

and opacity of the i-th sample along the ray-traversal. Ci and Ai represent the

accumulated color and opacity at the i-th step of the ray-traversal. The initial

values C0 and A0 are both zero.

Ai = Ai−1 +(1−Ai−1)Ai, i = 1..n

Ci =Ci−1 +(1−Ai−1)AiCi, i = 1..n
(3.1)

Equation 3.2 denotes a compositing method employed in MIDA. The additional

parameter Bi represents the modulation factor at the i-th step of the ray traversal.

Ai =BiAi−1 +(1−BiAi−1)Ai, i = 1..n

Ci =BiCi−1 +(1−BiAi−1)AiCi, i = 1..n
(3.2)

We calculate the modulation factors Bi at each sampling step as in Equation 3.3.

We introduced the parameter δi to make the later transition to multi-channel

MIDA easier. Parameter si denotes the density sampled at the i-th step and

maxi(sk) denotes the maximal density of samples taken at steps k = 0..i−1. We
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Figure 3.8: Ray traversal and calculation of B.

illustrate this procedure in Figure 3.8.

Bi =

⎧⎪⎨
⎪⎩

1−δi = 1− (si −maxi(sk)), if si > maxi(sk), k = 0..i−1

1, otherwise

(3.3)

This composition method strengths maxima changing from a lower to higher

value. This way, the maxima remain visible as in MIP. The other tissue along

the ray also contributes, but with subtler transparency as in DVR (see also Fig-

ure 3.7c).

MIDA and Multi-channel Data

Our application can handle up to four different volumes. Our volumetric data

are scalar fields, thus we are able to use four components (RGBA) to store four

different volumes. As we deal with multi-channel data, we adjusted the mono-

channel approach of MIDA [12] for multi-channel data as follows. For color

and opacity mixing of each channel, we used the composition scheme described

by Kniss et al. [37]. Assuming we have n volumes v j(x), j = 1..n, x ∈ R
3

and n transfer functions assigning color and opacity to samples - c j(v j(x)) and

α j(v j(x)), j = 1..n, x ∈R
3 or simply c j and α j. We calculate the opacity of each

sample Ai as the sum of opacities of each channel α ji. The color of each sam-

ple Ci equals the sum of all colors at each channel c ji weighted by opacities as

denoted in Equation 3.4.

Ai =
n
∑
j=1

α ji Ci =

n
∑

j=1
α jic ji

n
∑

j=1
α ji

(3.4)
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Even though the compositing equation (Equation 3.2) for multi-channel data

is the same as for mono-channel data, the computation of parameters Bi is more

complex. For each channel j and each sample along the ray i, we calculate δ ji as

in Equation 3.6 where s ji denotes the i-th sample of the channel j. We use the pa-

rameters δ ji for further calculations of the modulation factors Bi in Equation 3.6.

The additional weighting of δ ji by opacity suppresses contribution of invisible

samples.

δ ji =

⎧⎪⎨
⎪⎩

s ji −max ji(s jk), if s ji > max ji(s jk), k = 0..i−1

0, otherwise

(3.5)

Bi = 1−max(δ ji
α ji

max(α ji)
), j = 0..i−1 (3.6)

Geometry Rendering and Enhancement

We use standard geometry rendering techniques for all non-volumetric structures.

All of them except of neuronal projections are given as triangle meshes (see also

(a)

(b)

(c)

Figure 3.9: Contours in the slice view - 3D visualization providing the reference

(a), slice views with contours of different structures(b),(c).
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Figure 3.10: Tessellation of a skeleton graph representing a neuronal projection.

Table 3.4b). Geometry rendering has many advantages. First, the standard per-

pixel phong shading, we implemented, is a realistic smooth surface representa-

tion. Second, this method is fast because it is hardware-accelerated. Third, sur-

face representation with geometry allows easy rendering of outlines in the slice

views as illustrated in Figure 3.9. However, the neuronal projections are originally

stored as skeleton graphs. We created a tessellation using cylinder-like extrusion

of the graph. This allowed us to generate cylindric representation of the neuronal

projections as illustrated in Figure 3.10.

To improve the depth perception of numerous structures in the image, we enhance

strong depth discontinuities as described by Luft et al. [42]. The technique bases

on unsharp masking of the depth buffer. We compute the difference between the

original depth buffer of the rendered scene and its low-pass-filtered variant. This

operation corresponds to subtraction of the low frequencies. Thus, the difference

buffer retains the high frequencies which correspond to the high discontinuities

in the rendered scene. In this manner, we are able to find where to modulate

the opacity of the context volume to make the high depth discontinuities shine

through more.

3.3 Visual Queries

From Section 3.1 we understand the basics of visual queries. In this section, we

exhaustively describe the algorithmic concept of visual queries - path, object and

semantic queries, as implemented in our system. We describe in detail the in-

terface - how a user defines each type of query. Path and object queries require
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Sketched path

Point queries

Figure 3.11: Sketching Interface - path decomposition into points, where point

queries are applied.

precalculation of spatial indices. We especially focus on the algorithmic prepro-

cessing of datasets, the efficient storage, and merging of indices when new data is

inserted. Our system gives the user visual feedback about the spatial distribution

of the the objects in a form of a hypertext label and a proximity cloud in the case

of a path query.

Path Queries

Path queries are the most powerful searching method in our set of queries - they

enable search for structures crossing a defined region. This regions is user-defined

using an intuitive sketching interface. Defining a region of interest while sketch-

ing an arbitrary path is more flexible than selecting regions with some rectangular

or elliptical markers. The query provides all structures crossing an area tight to

the user-defined path. We restricted this area to the maximum radius of 40 voxels

around the path. In practice, each path query falls apart into a set of point queries

as we illustrated in Figure 3.11.

Individual point queries work as follows. For each point, we know the (x,y)-

coordinates in the screen space and retrieve the z-coordinate from the depth buffer.
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We transform the point from the screen space coordinates ps into the volume space

coordinates pv. As the coordinates of pv are rounded, pv refers also to a voxel in

the volume. With pv as input, the point query delivers a list of pairs < d, id >

with distance d and structure identifier id, sorted by d. The distance d refers to

the shortest distance from pv to the surface of the structure id. When pv lies inside

of a structure, d is negative. The distance restriction of 40 voxels does not apply

for negative distances, because we are interested in every object if pv lies inside.

Figure 3.12 shows the concept of the point query. In a preprocessing step, we

prepare the lists for each point in the volume, i.e., a distance table. The distance

table needs to be updated once we insert new data into the database. The size of

the distance table file grows with the number of objects on the server. As our col-

laborators plan to insert new files, we expect a significant growth of the distance

table file size. For these reasons, we keep this file in the off-core memory and not

in the runtime memory (RAM). We use a precomputed look-up table (LUT) to

efficiently retrieve rows of the distance table stored in the off-core memory. For

each point in the volume pv, the LUT provides, first, an offset of the row corre-

sponding to pv in the distance table. Second, the LUT provides the count of the

pairs < d, id > in each row. The size of the LUT is constant and independent from

the number of structures, so we keep it in the runtime memory. In Figure 3.13, we

demonstrate the concept of the distance table and LUT and their use for a query

on a 2D example. In the example, we restricted the distances d to maximum

of dmax = 3 voxels. In Figure 3.13a, we investigate every point, determine the

sorted list of pairs < d, id > and create the LUT. In Figure 3.13b, the user selects

a point. We retrieve the offset and count from the LUT. This is the key informa-

pv Point query

<−50 voxels, ‘object1’>
<−2 voxels, ‘object7’>
<5 voxels, ‘object3’>

...

Figure 3.12: Scheme showing the concept of a point query. The query takes the

volume coordinates of the point pv and outputs the sorted list of the < d, id >-

pairs.
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Figure 3.13: Calculation of the distance table and LUT in 2D (a) and the use of

the tables for a point query (b).

tion to read the row corresponding to the list of pairs < d, id > we created in the

preprocessing step. The disk read head skips o f f set = 24 pairs of the file and

reads subsequent count = 3 pairs. The distance table and the LUT are serialized,

i.e., by their ascending linear indirections lin(�p) as defined in Equation 3.7 with
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Figure 3.14: Calculation of the distance table and LUT using 2D Hilbert scan (a)

and the use of the tables for a point query (b).

x̂× ŷ× ẑ = volumesize. Under indirections we understand an ordering pattern of

voxels.

lin(�p) = px + pyx̂+ pzx̂ŷ (3.7)

While drawing a path, we call point queries for points located close to each other.

The point queries fetch the respective rows from the distance table. To improve
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the performance, we used neighborhood-preserving storage pattern of rows using

a 3D Hilbert scan. Thus, we store the rows of the distance table using 3D Hilbert

scan indirections as we demonstrate in Figure 3.14. The < d, id >-pairs inside

the rows are not permuted. The final LUT must be accessible using linear indirec-

tions. It contains the offset and count information with relation to the permuted

distance table. Comparing Figures 3.13 and 3.14, we see that the fetch of a row

from the distance table has the same logic if we use the permutation using 3D

Hilbert scan indirections. Using our sophisticated storage pattern enables us to

keep the easy look-up in the LUT and to gain performance while reading from the

distance table file.

The results of all point queries along the sketched path are merged together and

presented to the user in an in-window hypertext label. If there are more < d, id >

pairs for one object id, we keep only the pair with lowest distance d.

Preprocessing Pipeline

The preprocessing pipeline consists of six stages (see also Figure 3.15). In this

section, we describe each of them.

1. The structures in our database are represented as geometry or skeleton

graphs. In the first step, we gradually create distance field volumes for

each structure. As our files are provided in Amira’s native file format, we

generate the distance field volumes using Amira [1]. Amira features many

Distance table

Distance field
volumes

3D Hilbert
indices

LUT’

Inverse Hilbert
indices

LUT

Figure 3.15: Preprocessing pipeline.
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(a) (b) (c)

Figure 3.16: Slice of the distance field volume. Positive distances (outside) (a)

and negative distances (inside) (b) from the surface area. The slice combined

with a 3D rendering of the respective structure (c).

image processing tools and supports batch processing. For skeleton graphs,

we are able to extrude the graph with some radius and create the surface

geometry representation. For geometry, we compute signed distance fields

directly using image processing tools of Amira. We choose signed distance

fields using chamfer metric. Each voxel of the distance field volume stores

the distance to the surface in voxels. Signed distance fields enable us to dis-

tinguish between the inside and the outside regions of each structure. The

negative distances represent the inside area. Figure 3.16 illustrates slices

of the distance field volume. We record the mentioned steps and automate

the processing using batch files. This enables us to generate a distance field

volumes for each structure without our intervention.

2. We generate the 3D Hilbert scan for indirection indices. We scan the cuboid

region with the size of the volume x̂× ŷ× ẑ. Figure 3.17 illustrates a 3D

Hilbert scan of differently sized regions. In Table 3.1, we provide the indi-

rection indices corresponding to the scan shown in Figure 3.17a.

3. We prepare a distance table with n = x̂ × ŷ × ẑ empty rows and process

the distance field volumes voxel-by-voxel. For each voxel v with position

�v = (vx,vy,vz)
T , we investigate the distance d which is the voxel value. If

d ≤ 40, we insert the pair < d, id > into the r-th row of the distance table. In
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(a) (b) (c)

Figure 3.17: 3D Hilbert scans of different size - 2×2×2 voxels (a), 4×4×4 (b)

voxels and 8×8×8 voxels (c).

Table 3.1: Indirections for 3D Hilbert scan of size 2×2×2

3D Hilbert scan s(t) Volume coordinates �pv
T linear indirection lin(�pv)

s(0) (0,0,0) 0
s(1) (0,1,0) 2
s(2) (0,1,1) 6
s(3) (0,0,1) 4
s(4) (1,0,1) 5
s(5) (1,1,1) 7
s(6) (1,1,0) 3
s(7) (1,0,0) 1

this case, we use simple linear indirection of the volume where r = lin(�v).

The id is the identifier of the currently processed distance field volume.

After the last distance field volume has been processed, we sort the rows

of the distance table ascendingly with respect to the distance d of the pairs

< d, id >. We write the entire rows of the distance table on the disk obeying

3D Hilbert scan indirections. For example, the rows of a distance table of

a 2×2×2 volume would be stored in a permuted order (0,2,6,4,5,7,3,1)

as indicated in Table 3.1.

4. We generate the look-up table LUT’ corresponding to the permuted distance

table. Consequently, the LUT’ is also permuted and cannot be accessed via

simple linear indirections. However, we will need the permuted LUT’ for

later merging of tables discussed in Section 3.3. Thus, we write this table
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Figure 3.18: Indirections.

as temporary data.

5. The application must access the LUT using linear indirections which is not

possible to do with a permuted LUT’. Thus, we need to permute it back.

We need the inverse 3D Hilbert scan and inverse indirections to perform the

inverse permutation. The inverse indirections map the 3D Hilbert scan back

to the linear indirections. In Figure 3.18 we illustrate the mapping from

linear indirections to 2D Hilbert indirections and mapping from 2D Hilbert

indirections back to the linear indirections. Both mappings are represented

as permutations.

6. We use the inverse indirection to permute the LUT’ to obtain a valid look-up

table LUT which can be accessed using simple linear indirections.

After the last stage of the preprocessing procedure, we have generated two tables

- LUT and the distance table, ready to be used by the application. We keep in

mind, that we also have the temporary permuted LUT’ necessary for merging.

Merging of Tables

Expecting a significant growth of the database, we designed an efficient algorithm

for merging distance tables and LUTs. Furthermore, the preprocessing calculation
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LUT’a read i-th pair p   = <offset   , count   >ai ai ai LUT’b read i-th pair p   = <offset   , count   >bi bi bi

abiaabiLUT’ab write pair p      = <offset     + offset   , count    + count   >ai bi ai bi

DTa read i-th row r    using pai ai DTb read i-th row r    using pbi bi

DTab write merged row r      =  r       rabi biai

Is i < #voxels ?

i i = i +1

Y

finalizeLUT’abDT    ,ab
N

i start i = 1

(a)

LUTa read i-th pair p   = <offset   , count   >ai ai ai LUTb read i-th pair p   = <offset   , count   >bi bi bi

abiaabiLUTab write pair p      = <offset     + offset   , count    + count   >ai bi ai bi

Is i < #voxels ?

i i = i +1

Y

finalizeLUTab
N

i start i = 1

(b)

Figure 3.19: Schemes representing the merging of tables. Flowchart of merging

two distance tables DTa and DTb. We store also LUT ′
ab because in the future

we might need to merge DTab with some other distance table (a). Flowchart of

merging two look-up tables LUTa and LUTb (b).
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Figure 3.20: Example of merging using Hilbert indirection. We use element-

wise addition to concatenate look-up tables and union operation to concatenate

distance tables.

requires a lot of RAM. However, the amount of available RAM is limited, so we

cannot guarantee that all data can be successfully processed at once. We overcome

the RAM limitation as follows. We split the data into n disjoint groups, generate n

distance tables and LUTs, and merge them pairwise. Finally, we provide a single

distance table and LUT representing all structures. The major requirement for

the merging algorithm are handling of large data and requiring as low amount of

RAM.

Figure 3.19 illustrates the flowchart of merging two distance tables DTa and DTb

and two look-up tables LUTa and LUTb. Rows of the distance tables DTa and DTb
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Figure 3.21: Example of merging using Z-order indirections. We use element-

wise addition to concatenate look-up tables and union operation to concatenate

distance tables.

can be concatenated using a union operation because they refer to two disjoint set

of objects. The number of pairs in the new row equals the sum of the pairs in

the corresponding rows in DTa and DTb. This property makes merging of look-

up tables (LUT’ and LUT) easy. We simply add o f f sets and counts of two old

look-up tables and get a new valid look-up table. In Figures 3.20 and 3.21, we

give two examples of pairwise merging of tables. We show that addition of the

look-up tables and union of distance tables works also for different indirections.
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(a) (b)

Figure 3.22: Blending of proximity colds - average blending (a) and minimum

blending (b).

Advantages of the Storage Method

In our approach, we use a precomputed distance table to determine closest ob-

jects for each point which has the following advantages. We precompute the table

only once in a preprocessing step and merge the tables when new data are in-

serted. At runtime, we perform only one look-up per point of the sketched path.

Moreover, the distance table stores the < d, id >-pairs in a sorted order, so we

perform no sorting and no distance calculation at runtime. The knowledge of the

point distance d is essential as the key for sorting and for approximation of the

real distance. The performance of the application also benefits from the locality-

preserving storage pattern applied to the distance table using the 3D Hilbert scan

indirections.

We compared our approach to Fibonacci coding of the spatial data which bases

on the Zeckendorf theorem [66]. The theorem states that every positive integer

n can be uniquely represented as a sum of nonconsecutive Fibonacci numbers as

denoted in Equation 3.8.

n =
L

∑
k=0

εkFk | εkεk+1 = 0,ek ∈ {0,1} (3.8)
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We assign every object in our database an id = Fk. When objects i and j intersect,

and idi = Fk, then id j �= Fk+i. The voxels store n which is the sum of the ids of all

incident objects. This refrains us from storing the whole list of ids for each voxel.

However, the Fibonacci numbers increase rapidly - F48 exceeds the range of the

32-bit unsigned integer. As we foresee the number of objects to index L > 300,

this method becomes inconceivable regarding storage. Furthermore, this method

requires decomposition of the indices into Fks and calculation of the distances at

runtime which is a disadvantage.

In comparison to our method, approaches such as space-partitioning, e.g., kd-trees

or octrees have the following disadvantages. Many neuronal structures in our

database have intersections. Space-partitioning methods would represent them

as single tree-nodes. Consequently, for each node we must foresee saving a list

of id-pairs of all incident objects. In contrast, the distance table stores the lists

of < d, id >-pairs for every point in the volume. The storage requirements of

a kd-tree or of an octree are inferior to the storage requirements of our distance

table because the tree-nodes cover more than one voxel. If the tree-nodes store

< d, id >-pairs, the storage requirements are equal to our approach, so the space-

partitioning method brings no advantage. Assuming that the tree-nodes do not

implicitly store the distance information to the incident objects, the application

must determine them at runtime while performing computational costly opera-

tions. Therefore, the performance of the space-partitioning methods is inferior to

the performance of our method. As one of our goals is to implement an interac-

tive tool, the performance is the primary benchmark and storage the secondary.

Furthermore, the implementation of our method is intuitive and simpler as the

implementation of a space-partitioning method. Also, merging of two space-

partitioning trees is more complex and costly then merging of two distance tables

as proposed in this section.

Proximity Clouds

Giving users visual feedback while he or she performs tasks is important. Our

sketching interface offers immediate visual feedback in fashion of a proximity

cloud which forms around the path. The cloud enables the user to identify the



CHAPTER 3. VISUAL QUERIES IN NEURONAL DATA EXPLORATION 50

spatial distribution of structures in the region of search. By default, the radius

of the region is set to 0 voxels, i.e., we search only structures which intersect or

contain the path. User can lower or increase this value with a slider. In practice,

the underlying point queries always return the whole row of the distance table,

i.e., all structures with distance d up to 40 voxels. However, each row is sorted

by distances, so we can easily cut-off a part of it and retain only those structures

whose distances are less than some threshold.

The rendering of the cloud around a point pc works as follows. For each object i in

the point query result, we render a semi-transparent circle around pc with radius

equal to the distance to the object i. Circles with low radius indicate close objects

and are more important, so we render them with higher opacity. Rendering and

blending circles for every object at every point along the path forms a cloud of

variable opacity. The opacity accumulates more in areas where we rendered more

circles over each other, thus the cloud looks more dense around points with many

objects in the vicinity.

Blending We experimented with different blending options (see also Figure 3.22).

In Figure 3.22a we show circles using average blending modus. In the first

pass, we render to texture T - we write (d,1.0,0.0,0.0) to the fragment

color and use ADD as hardware blending modus. In the second pass, we

use T to fetch the color rgba. The ratio r
g signifies the average distance

and we use it to calculate opacity α and grayvalue γ of the fragment as in

Equation 3.9. The gray values and opacities have values in the range of the

interval [0.2,0.8].

α = γ = 0.8(1− r
g
)+0.2 (3.9)

However, proximity clouds rendered in average blending modus lead to

significant loss of information which worsens the orientation. On the other

hand, minimum blending is more comprehensive even if the clouds exhibit

discontinuities in color. Furthermore, we are able to render the cloud in a

single pass. We assign circles with lower normalized distance d
40 opacity as

in Equation 3.10 and use MAX hardware blending modus. Consequently,
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(a) (b)

Figure 3.23: Color coding of proximity clouds. Mixing of all colors (a). Only the

selected type, i.e., arborization, remains highlighted (b).

fragments with lower input distance always overwrite higher values in the

frame buffer. We keep the min blending modus in the remainder of this

work.

α = γ = 0.8(1− d
40

)+0.2 (3.10)

Color-coding Our visual queries handle four different subgroups of structures -

cell bodies, neuronal projections, arborizations and template regions. How-

ever, gray-scaled proximity clouds does not allow us to distinguish spatial

distribution of individual subgroups. We experimented with color-coding to

delimit between spatial locations of different subgroups as in Figure 3.23.

We chose matching but distinguishable color groups - orange, purple, blue

and green using on line tool Colorbrewer [26]. We assign a color to each

subgroup - to arborizations orange, to cell bodies green, to neuronal projec-

tions purple, and to template regions blue color. The color coding supports

two modi. In the first mode, all subgroups are active and clouds of different

colors are blended together as in Figure 3.23a. In the second mode, exactly

one subgroup is active, e.g., arborizations. Consequently, the cloud con-
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(a) (b)

Figure 3.24: Results of point query in a hypertext label for different search radii.

The green part of the slider indicates negative radii and thus, only green hyper-

text links are displayed. These links refer to structures which cross the sketched

path (a). The red part of the slider refers to positive search radii and the labels

displays red hyperlinks. These refer to structures which do not intersect the path

but lie in the proximity (b).

tains only tones of orange. Furthermore, we marked segments of the path

which enter inner regions of the selected type of structures with red spots

as in Figure 3.23b.

However, different colors make the point cloud unintuitive. Thus, we keep

one color and retain the possibility to activate a single subgroup. In this

case, the proximity cloud displays the spatial distribution only for the se-

lected subgroup.

Hypertext Labels

We use hypertext labels titled “Path query results” to present query results to

the user. They pop up in-window which enables the user to keep focus on the

visualization. The label appears in the corner of the window when user clicks

with the mouse button and starts sketching the path. We attached a color-coded



CHAPTER 3. VISUAL QUERIES IN NEURONAL DATA EXPLORATION 53

‘object4’ Object query

<−55864 voxels, ‘object1’>
<−2451 voxels, ‘object7’>
<15 voxels, ‘object3’>

...

Figure 3.25: Scheme showing the concept of an object query. The query takes the

object id of a selected object and outputs the sorted list of the < d, id >-pairs.

slider to the label which enables control over the search radius around the path.

The radius is by default set to 0 voxels. The label displays hyperlinks to whole

subgroups, and to individual structures within each subgroup, and also the number

of structures found for each subgroup. The hyperlinks use the same color-coding

scheme as the slider which enables the user to quickly associate the structure some

degree of proximity. This information is updated while the user keeps sketching.

When the user releases the mouse button, the path is finished, and the label moves

to the center of the window. The user can adjust the search radius and inspect the

results (see also Figure 3.24). Eventually, he or she clicks on hyperlinks to load

structures individually or a whole subgroup of structures at once.

Object Queries

In addition to path queries related to spatial distribution of objects around points in

the volume, our set includes also object queries. As opposed to path queries, they

are related to spatial distribution of objects around a selected object of interest. In

practice, this query provides a list of closest objects and their distances in voxels.

If two objects intersect, we provide the volume of their intersection instead of the

distance.

Object queries work as follows. We provide an id of the selected objects as input

and the query returns a list of object sorted by the distance (see also scheme in

Figure 3.25). The negative distances indicate intersection volumes. Similarly as

for the path queries, we create a table, i.e., object table, in a preprocessing step.
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Preprocessing

In practice, we start with an n× n-matrix M. Mi j stores the minimal distance

between objects i and j, or eventually their intersection volume. We initialize

all matrix elements Mi j to the highest distance which can occur, i.e., dmax =√
x̂2 + ŷ2 + ẑ2 with x̂ŷẑ = volumesize. We inspect each pair of distance field vol-

umes described in Section 3.3 voxel-by-voxel. The matrix M is symmetric, so

once we inspected the pair of distance fields i j, we do not inspect the pair ji. We

gradually investigate voxel pairs vp
i and vp

j , i.e., voxels of the object i and j at the

position p in the volume. We distinguish following cases (see also Figure 3.26).

• The value of vp
i = 0 so vp

i belongs to the surface of the object i. We modify

the matrix M as follows. If vp
j > 0 and vp

j < Mi j, we replace the value of

Mi j by vp
j . For example, the sampling position A in Figure 3.26a fulfills this

condition - it lies on the surface of the object i, but outside of the object j.

If vp
j ≤ 0 then p belongs to the intersection volume. For example, sampling

positions B and C in Figure 3.26a comply with this condition, because they

both belong to the surface of the object i and lie either on the surface or

inside of the object j. In this case, we set Mi j to −1 if Mi j ≥ 0 or decrement

Mi j otherwise.

i

j
B

C
A

(a)

i

j

A

(b)

i

j
A

B

(c)

Figure 3.26: Investigation of voxel pairs for the objects i and j - on the surface

of the object i (a), in the intersection of the objects i and j (b), and outside of the

object i (c).
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• The value of vp
i < 0, and vp

j < 0. Both voxels belong to the intersection of

the objects i and j, i.e., sampling position A in Figure 3.26b. We modify the

matrix M as follows. If Mi j ≥ 0 then we set Mi j to −1, else we decrement

Mi j.

• The value of vp
i > 0. Thus, vp

i belongs nor to the surface of the object i,

nor to its inside area, as it is the case of the sampling positions A and B in

Figure 3.26c. In this case, we do not modify the matrix M.

We fill elements of M̂i j above the diagonal (i > j) and use the symmetry to copy

M̂i j to elements below the diagonal M̌ji. From each row of the matrix M, we

generate a list L consisting of < d, id >-pairs where d = Mi j and id = j. We are

not interested in elements Mi j such that i = j, so we exclude them from L. In the

final step, we sort L by increasing distances d. The finalized object table stores

minimal distances between objects, or the total volume of their intersection. In

the case that objects have multiple disconnected intersections, we store the sum

of the volumes of their partial intersections.

Merging

The object table needs to be updated only when new objects are inserted into the

database. Let A be the set of old objects and B the set of inserted objects. Then

A
⋂

B = /0, |A|= n, and |B|= m. We proceed as follows.

• We initialize an (n+m)× (n+m)-matrix M and use the old object table to

fill the maximum of elements.

• For all objects ∈ B, we compute a m×m-matrix M′ of distances and inter-

section volumes. M′
i j stores a distance or an intersection volume between

the objects i and j, such that i, j ∈ B. We use M′ to fill the additional ele-

ments of M.

• For all objects ∈ B, we compute an m×n-matrix M′′. Matrix elements M′′
i j

store distances or intersection volumes between objects i and j, such that

i ∈ B and j ∈ A. We use M′′ to fill the remaining elements of M and proceed

to sorting as in Section 3.3.
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Hypertext Labels

Similarly to path queries, we also use hypertext labels to present the results of

object queries. When a user selects an object with a mouse click, a label titled

with the name of the selected object appears in-window. It can occur, that some

objects are occluded by other objects. In this case, the next click selects the next

object below. The selected object is highlighted with a contour. The pop-up label

contains object query results and semantic information retrieved by a semantic

query.

The object query results display closest objects and divides them into subgroups,

i.e., arborizations, cell bodies, neural projections and template regions. Only ob-

jects closer than some cut-off distance ε are listed. User can set ε with a color-

coded slider. The colors of the slider help to associate objects which appear in

hypertext label with their degree of proximity. Objects with intersections appear

Figure 3.27: A hypertext label displaying object and semantic query results for a

neuronal projection R mmcAL 73.
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(a) (b)

(c) (d)

Figure 3.28: Browsing through data using semantic query starting with an ar-

borization (a). In the second step, an associated cluster is loaded (b). Results after

the third (c) and the fourth iteration (d).

green and distant objects appear dark red. In Figure 3.27, we show a screenshot

with a selected neuronal projection and a corresponding hypertext label.

Semantic Queries

Our collaborators annotated some objects in the database and associated them to

clusters. Semantic queries retrieve this information and display it together with

the object query results in the hypertext label as denoted in Figure 3.27. As-

sociated structures are listed as hyperlinks. Activating them triggers loading of

the respective objects. This is a powerful method of browsing through the data.

Structures such as arborizations represent synapses which are often part of more
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clusters. Results of a semantic query allow the user to load them and explore the

further connections. In this manner, neuroscientist can follow neural paths. In

Figure 3.28, we show gradual exploration of associated neural clusters.
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4 Implementation

If I have ever made any

valuable discoveries, it has been

owing more to patient attention,

than to any other talent.

Sir Isaac Newton

O
UR APPLICATION is a proof-of-concept of the methods presented in this the-

sis. The whole system is implemented in C++, and uses OpenGL with

GLSL vertex and fragment programs. Furthermore, it uses Qt libraries for the

user interface and PostgreSQL for the database. It runs on Windows Vista/XP

machines equipped with an Intel processor operating at least at 2 GHz, and with

at least 1 GB of available RAM. The graphics hardware must support Shader

Model 3.0 or higher. The system has a very flexible architecture - the application

core, the user interface and plugins are not coupled. This enabled us to rapidly

implement and integrate new functionality. In this chapter, we refer to some im-

plementation specific details. In Section 4.1 we discuss the scripting in Amira [1]

and generation of distance fields. Section 4.2 focuses on methods we used to cre-

ate Hilbert indirections. Section 4.3 describes data types and compression of the

preprocessed tables, and the object-id generation.
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4.1 Amira Workflow

Workflow in Amira is based on creating networks. Data and functional modules

are represented as entities. The user places them with drag-and-drop and joins

them to define a network. Functional modules have adjustable parameters. These

can be set in a dialog which appears when the user clicks on the respective mod-

ule. Figure 4.1 shows an example of a network in Amira.

Amira allows to save the networks as text files. They include all functional calls,

set-up of modules and their properties. Thus, they are an excellent start-up for

writing scripts. We created a workflow network for one dataset and used it as a

basis for our script.

Neuronal projections in our data collection are stored as skeleton graphs. Origi-

nally, Amira does not support this format, and requires an installation of an ad-

ditional plugin [62]. However, this tool is supported only by the 4-th version of

Amira which does not allow to connect skeleton graphs with any of the compu-

tation modules we needed. For this reason, we exported the skeleton graphs into

the neuron format .hoc and proceeded with the 5-th version of Amira.

All objects in the database are registered to volumes of size 768×768×165 vox-

els. However, we downsampled our distance field volumes to the size 384×384×
82 voxels. The goal of the downsampling operation is to decrease the require-

ments on RAM while precomputing the distance table. Reduction by a factor of

freduce = 2 still allows us to determine the distances in the volume with a sufficient

precision of ±1 voxel. Our distance field volumes store the surface distances in

voxels corresponding to the original volumes, but with lower precision. However,

Figure 4.1: A network in Amira.
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we must consider that we downsampled the distance fields while calculating the

intersection volumes as described in Section 3.3. The volume calculation is in-

cremental, i.e., we count intersection voxels in downsampled volumes. One voxel

in the downsampled volume corresponds to ( freduce)
3 = 8 voxels in the original

volume. Consequently, we multiplied resulting intersection volumes by a factor

of ( freduce)
3 = 8.

4.2 Generation of Hilbert Indirections

For computation of the 3D Hilbert scan we use a recursive implementation of an

L-System. Our volumes have sizes of an arbitrary cuboid region (x̂, ŷ, ẑ). We

compute the Hilbert scan for a cube of the size next power of two for max(x̂, ŷ, ẑ)

and clip the unnecessary vertices. Consequently, the spatial proximity breaks for

vertices which lie on the surface of the cuboid region. However, this does not in-

fluence the performance of our tool. The cuboid region corresponds to the volume

and we barely access voxels located on the surface of the volume’s bounding box.

Therefore, our clipping method of scanning arbitrary cuboid regions is sufficient

for our system and thus, we do not need to implement the scanning algorithm

(a) (b)

Figure 4.2: 3D Hilbert scan of an cuboid region with the size (9 × 11 × 15).
Region where the Hilbert scan is broken is shown in red (a). The Hilbert scan

remains correct in the inside of the volume which is shown in color (b).
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introduced by Zhang et al. [68].

4.3 Object-ID Generation and Data types

In the preprocessing step, we generated two tables - a distance table storing

point distances and an object table storing object distances. In practice, they

store < d, id >-pairs with different interpretation. In both tables, the distance

d ∈ (−∞,40]. The size of the distance table is expected to be large, so we must

carefully chose the data type for the distance d and id. We used unsigned short

representation for both d and id for two reasons. First, even if d can be negative,

we can easily pack and unpack as denoted in Equation 4.1. Second, if all entries

in the distance table have the same data type, we are able to read a large chunk

from the disk at once. In many cases, one row of the distance table consists of

many < d, id >-pairs. Using the same data type for d and id enables us to read

the whole row at once.

dpacked =−(dunpacked −40), dunpacked ∈ (−∞,40], dpacked ∈ [0,∞) (4.1)

We dispose of seven different types of data (see also Table 1.1). Each file is

well-defined with a number n within its subgroup. Thus, to composite an overall

id, we need to consider both, subgroup and the number n. We used 8 most sig-

nificant bits of the unsigned short to code the subgroup and the remaining bits to

code the number n.
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5 Results

All you need is faith and trust...

and a little bit of pixie dust!

Peter Pan

W
E DESCRIBED a system for visual exploration of microscopy neurobiolog-

ical data which supports multi-channel volumetric data in combination

with segmented structures represented as geometry. In this chapter, we present

several typical use-case scenarios of exploration using visual queries. To evaluate

our system, we measured its performance and conducted an informal discussion

session with domain experts. In Section 5.2, we present the performance results,

and in Section 5.3, we summarize the discussion.

5.1 Use-case Scenarios

To demonstrate the results achievable with our system, we present four use-case

scenarios. We display the results obtained with the path, object and semantic

queries separately and in combination.
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(a)

(b)

(c)

Figure 5.1: Path-query scenarios: Template volume is shown in conjunction with

a blue average Gal4-volume. Search of structures crossing particular regions of

the average Gal4-volume: neuronal projections (a), the closest cell body (b) and

the closest arborization (c).
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Path-query Scenarios

To illustrate a typical scenario of using a path-query, we provide several screen

captures of the workflow (see Figure 5.1). First, the user explores an average

Gal4-volume in conjunction with a template volume which provides anatomical

context. The average Gal4-volume displayed in blue depicts a particular neuronal

tissue of interest which includes, e.g., neurons and synapses. An expert user is

able to recognize structures within the average Gal4-volume. Consequently, he or

she desires to further inspect these regions to exactly identify the structures. For

example, they sketch a path over the region which they identified as a bundle of

neuronal projections as in Figure 5.1a. The hypertext label shows the neuronal

projections which cross this region, and the user loads them all by clicking on

the neuronal projections label. In the same fashion, the user marks a region and

loads the closest cell body as in Figure 5.1b, and the closest arborization as in Fig-

ure 5.1c. In Figure 5.2, the search region is enlarged. Consequently, a proximity

cloud indicating the extent of the search region appears. Figure 5.2 depicts two

cell bodies from the list of the cell bodies displayed in the label - the closest and

the furthest.

The closest cell body

Figure 5.2: Structures with different distances from the sketched path.
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Object-query Scenarios

Object queries provide information about distances and intersections between ob-

jects which enables fast and simple browsing. For example, the user is able to

quickly determine which neurons cross a particular part of the brain as illustrated

in Figure 5.3. Regions of the brain which have been segmented from the template

image of the brain can be loaded via the table-view interface to the database and

selected with a mouse click on their visualization. The hypertext label displays

the object query results. The user adjusts the slider so that only structures which

(a)

(b)

Figure 5.3: An object-query scenario I.: Selection of a tissue region of the

brain (a). Selection of neuronal projections crossing a selected tissue region (b).
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(a)

(b)

(c)

Figure 5.4: An object-query scenario II.: Searching for tissue regions which in-

clude a particular structure (a). Removing of tissue regions in the view-panel (b).

Selecting one of the proposed tissue regions for further inspection (c).
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have intersections are shown. Thus, only green filtered structures appear in the

filtered list. To load all filtered structures, he or she clicks on the hyperlink neu-

ronal projections as shown in Figure 5.3a. Consequently, all neuronal projections

crossing the selected brain region appear in the visualization as illustrated in Fig-

ure 5.3b. Object queries also enable the user to quickly find a region of the brain

to which a particular structure belongs to as illustrated in Figure 5.4. He or she

clicks on the depicted structure in the visualization to prompt the object-query re-

sults label as in Figure 5.4a. The slider is adjusted to show only structures which

intersect the selected structure. Subsequently, the user loads all tissue regions

with intersections. In the view panel, he or she unchecks regions identified as not

appropriate as in Figure 5.4b. In Figure 5.4c, only one tissue region remains in

the visualization for further inspection.

Semantic-query Scenario

A typical case of applying a semantic-query is finding neural clusters which are

related to a particular structure. In particular, arborization are members of several

neural clusters. Semantic-query enables the user to view and compare the entire

clusters. In Figure 5.5, we illustrate this process step-by-step. First, the user

selects a particular arborization. The semantic-query displays all cluster to which

the selected arborization belongs to as illustrated in Figure 5.5a. Second, the

user selects one of the proposed clusters, which is consequently loaded into the

visualization as in Figure 5.5b.

Combined Query Scenarios

In practice, all three types of queries we presented in this thesis are used in con-

junction with each other. Figures 5.6, 5.7, and 5.8 give examples of combining

different types of queries for browsing in the database. In Figure 5.6a, the user

desires to identify a particular region of the brain. He or she uses the path-query to

find the closest tissue region which includes the sketched path. Consequently, they

load the tissue region displayed in the query results at the most left. By clicking

on the loaded region, they display all information which is stored in the database



CHAPTER 5. RESULTS 69

(a)

(b)

Figure 5.5: An semantic-query scenario: Selection of an arborization (a) and

subsequent loading of the associated neural cluster (b).



CHAPTER 5. RESULTS 70

(a)

(b)

Figure 5.6: A combined query scenario I.: Identifying a region using a path-

query (a). Selection of the closest region for further inspection and displaying the

annotation using a semantic-query (b).

about this region and the results of the object-query (see also Figure 5.6b). They

continue browsing by loading all neuronal projections crossing the selected tissue

region as indicated in Figure 5.7a. In Figure 5.7b, the highlighted neuronal projec-

tion is selected for further inspection. The user applies the semantic-query to load

the associated neuronal cluster as shown in Figure 5.7c. Further options while

browsing through the structures are as follows. The user observed a bundle in the

neuronal projections crossing the depicted tissue region (see also Figure 5.8a).

Consequently, he or she desires to search for other structures, e.g., synapses, con-
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(a)

(b)

(c)

Figure 5.7: A combined query scenario II.: Loading all neuronal projection which

cross the selected region (a). Selecting one of the loaded neuronal projections (b).

Loading the associated neural cluster (c).
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(a)

(b)

(c)

Figure 5.8: A combined query scenario III.: A bundle in the collection of neuronal

projections (a). Inspecting the bundle using a path-query (b). Loading the closest

arborization to the bundle (c).
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nected to the neuronal bundle. He or she marks the bundle using the path-query

which delivers the proximal structures as in Figure 5.8b and load the most closest

arborization as in Figure 5.8c. They continue browsing in a similar fashion or

save the current session and continue their work later.

5.2 Performance

We evaluated the performance of our system as follows. First, we measured the la-

tencies in millisecond (ms) while reading rows of the distance table from the disk.

To provide comparative values, we focused on the following criteria. First, we

compared the latencies while reading rows of the distance table which we employ

in practice (185MB) and while reading rows of a large distance table (2GB). For

this purpose, we generated an additional distance table with distance restriction of

256 voxels instead of 40 voxels. Second, we compared the latencies while reading

rows of the distance tables which use the 3D Hilbert indirections as in Figure 3.14

and the linear indirections as in Figure 3.13. Third, we inspected the latencies for

sketching done on the 3D visualization and on 2D slices. While the user sketches

a path on a 2D slice, the path becomes a plane curve. However, while sketching

Table 5.1: Latencies measured on the 185MB-large distance table

3D Hilbert indirections Linear indirections

Slice XY 0.86ms 0.6ms
Slice Y Z 1.09ms 1.6ms
Slice ZX 0.49ms 3.6ms

DVR 0.38ms 1.92ms

Table 5.2: Latencies measured on the 2GB-large distance table

3D Hilbert indirections Linear indirections

Slice XY 2.46ms 1.32ms
Slice Y Z 3.1ms 4.95ms
Slice ZX 1.3ms 2.97ms

DVR 3.04ms 4.15ms
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on the 3D visualization, e.g., DVR, the path defines a space curve. The results

of the latency measurements are summarized in Tables 5.1 and 5.2. Each com-

parative value presented in the tables is the average value over five independent

measurements. During sketching, the system processes path queries and renders

with frame rates up to 30Hz. All measurements were performed on a worksta-

tion equipped with an Intel� 6600 Core Duo™ CPU 2.4GHz, 2.0GB RAM, a

hard disk VelociRaptor 10000RPM with 16MB cache and 4.2ms seek time and a

NVIDIA� 8800 GTX GPU.

5.3 Discussion

To evaluate the usability of our system, we conducted an informal discussion

session with our collaborators. We received a positive and encouraging feedback

and suggestions. Based on their comments, we attached the color-coded distance

slider to the hypertext label to enable interactive filtering of the results. Also,

we displayed the hyperlinks to individual structures in the list of results using

the color scheme of the distance slider to allow an immediate association of the

displayed objects with their degree of proximity.

The neurobiologists affirm that availability of such a system would ease their

research and consider this direction of research to be promising. However, it

is difficult to assess all benefits and to foresee the impact of the system on the

neurobiology research at this stage, as its potential has not been exploited to its

full extent.
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6 Conclusion

When I examine myself and my

methods of thought, I come to

the conclusion that the gift of

fantasy has meant more to me

than any talent for abstract,

positive thinking.

Albert Einstein

T
HIS CHAPTER summarizes the main contributions and concludes this thesis.

Furthermore, it draws future perspectives of the research direction described

in this thesis.

6.1 Summary

In this thesis, we introduced a novel approach of efficient browsing in the database

of neuronal data using visual queries as a part of a visualization system. We de-

scribed three basic types of visual queries - path queries, object queries, and se-

mantic queries. Path queries display objects in a proximity of a sketched path

in an in-window label. The extent of the proximity region is defined interac-

tively with a slider. The user receives an immediate feedback concerning the

spatial distribution of objects around the path. In practice, each path decays into
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a discrete series of points which are reprojected into the volume space. For ev-

ery point of the series, the query delivers a sorted list of objects which cross the

neighborhood within the given extent. To enable interactivity, the query retrieves

the lists of objects from a preprocessed distance table. The table contains a list of

< distance,ob jectid >-pairs for every point of the volume within a neighborhood

with maximal extent of 40 voxels. We calculated the distances using precomputed

distance field volumes of each object. The sizes of the distance table depends on

the number of objects stored in the database. As we expect a significant growth

of the database, we designed the distance table for off-core storage. In our im-

plementation, we employed a storage pattern using a 3D Hilbert scan which has

good locality-preserving properties which decreases disk latency. Regarding the

scalability of the database, we proposed an effective merging algorithm which

allows us to merge two distance tables computed for two disjoint collections of

objects.

Object queries deliver a sorted list of < distance,ob jectid >-pairs for objects in

the vicinity. They are sorted in an ascending order with respect to the distance. If

two objects have an intersection, we provided the intersection volume instead of

the distance. To facilitate interactivity, we precomputed the table containing the

sorted lists of < distance,ob jectid >-pairs for every object stored in the database.

The results are displayed in a label which appears in-window and prompts further

inspection.

Semantic queries retrieve the contextual information about an object selected for

inspection. The selection is done by a simple mouse click on the object in the vi-

sualization. The results are displayed in a label which summarizes annotatations

made by neurobiologists and lists all neural clusters to which the selected object

belongs to.

We described a proof-of-concept system which features state-of-the-art visual-

ization techniques in 3D volume and geometry rendering and facilitates visual

queries. The system presents a compact tool for visualization and effective ex-

ploration of neurobiology data. The design process benefitted from a constant

input of neurobiologists. To evaluate the usability of the system, we performed

an informal discussion session with our collaborators. We received encouraging

feedback and suggestions for future work. However, it is difficult to foresee the
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thorough impact of the system on the neurobiology research at this stage, as the

potential of this direction in research has not been exploited to its full extent.

Future Work

In this thesis, we presented a system which couples state-of-the-art visualization

techniques and effective visual browsing in a database of neuronal data. However,

there are still possible extensions and enhancements worth to be explored. The

goal of our collaborators is to build an online of anatomy of frutfly’s neuronal sys-

tem and make if available for their research community. The future system aims

to facilitate collaborative research and intercommunal exchange of knowledge in

neurobiology. In this scope, it will support interactive insertion and modification

of the annotations and semantic relationships.

Furthermore, our collaborators proposed to include the average Gal4-volumes

into the visualization-aided browsing. The average Gal4-volumes depict high-

intensity stained structures immersed in a relatively homogenous tissue. This al-

lows us to represent the high-intensity structures with a not necessarily connected

skeleton graph and use it for generation of a ditance field volume. An alternative

is to find a threshold value which separates the high-intensity structures from the

homogenous tissue. The threshold value will be used for isosurface generation

which will allow us to generate the respective distance field volumes.

We incorporated visual feedback while executing path queries in a form of a prox-

imity cloud. The cloud allows the user to estimate the spatial distribution of all

objects in proximity, or alternatively the spatial distribution of objects which be-

long to one subgroup. It does not enable the user to estimate the spatial position

with relation to the sketched path for a single object. The further work might

support visual feedback about the position of individual objects. This would al-

low the user to recognize if a particular object has multiple intersections with the

sketched path, and if it its shape is prolonged in the sense of the path or not.
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