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Chapter 1

Introduction

And when I see you
I really see you upside down,
but my brain knows better
it picks you up and turns you around.

Benjamin Gibbard

The investigation of solitons began in the year 1834 when a Scottish engineer, John Scott–
Russell, observed a solitary wave in the Union Canal, near Edinburgh. He reproduced the
phenomenon in a wave tank, and named it the ”Wave of Translation”. In 1895, sixty years
after this first empirical study, Diederik Korteweg and Hendrik de Vries discovered a nonlinear
differential equation describing water waves, the so called KdV–equation, which possesses such
a solitary wave solution. However the significance of this discovery was realized only in the
1960s when N. J. Zabusky and M. D. Kruskal [1] did some research on different systems which
are subject to the KdV–equation. They figured out that the solutions, which they got by a
computational investigation using a finite difference approach, have very special properties
(listed in section 2.1) so that Zabusky and Kruskal coined the term soliton for this nonlinear
waves. These was more or less the starting shot for an intensive investigation of nonlinear
differential equations with solitonic solutions.

After this excursion in the ”early days” of the soliton research we now turn to (supersym-
metric) quantum field theories. If a model, not necessarily supersymmetric, possesses a soliton
or instanton, then one aspect of these extended objects is their non–perturbative effects on
the theory. Another reason explaining the enormous interest in topological solitons in super-
symmetric theories is the existence of a special class of solitons, which are called ”critical” or
”Bogomol’yni–Prasad–Sommerfield” saturated solitons [2, 3] (in the following abbreviated to
BPS saturated solitons). In the seminal paper [4] Witten and Olive noted that in many in-
stances topological charges associated with solitons coincide with the so–called central charge
of superalgebras. If the soliton is additionally BPS saturated, one half of the supersymmetry
generators vanishes and one is left with a ”shortened” multiplet containing only one half of
the states (as we will see section 3.1.1).

In this work we are interested in a special limit (the Higgs phase) of an abelian super-
symmetric gauge theory with background gauge fields, which reduces to a supersymmetric
CP 1 σ–model with twisted mass term [5, 6]. This model exhibits a solitonic solution which
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classically saturates the Bogomol’yni–bound. From general considerations, which are based
on the underlying gauge theory, it is clear that also quantum mechanically the Bogomol’yni–
bound should not be violated. But there exist quantum corrections to both, the mass and the
central charge of the soliton, as we will see. And the origin of this correction is anomalous in
nature.

This thesis is organised as follows. First we will describe the classical properties of soli-
tary waves [7] in chapter 2, including methods to derive the solitons via the Bogomol’yni–
Prasad–Sommerfield construction. We then introduce the topological index and the topolog-
ical charge [8, 7, 9] which later on in the supersymmetric case will be relevant. At the end of
chapter 2 we explain in a nutshell the collective coordinates and the moduli space [10].

According to references [11, 12, 4] we show how the central charge of extended super-
symmetries can be related to topological objects. Further we investigate the implication of a
quantum mechanical BPS saturation on the spectrum of the quantum theory. Although super-
fields will be important in chapter 5 we only define the representation of the supersymmetry
via the Poisson bracket. Thus, we have to refer the reader to the literature (e.g. [11, 13, 12])
for the details on superfields, supernumbers etc..

Chapter 4 presents the basic tools to calculate the quantum fluctuations in a solitonic
background. Following reference [14] we derive the Feynman–Kac formula and demonstrate
for the harmonic oscillator how one can use it to obtain the vacuum energy. Subsequently
we generalise the formulas to field theory and work out some details when the embedding of
solitons in higher dimensions is considered.

Then we come to the CP 1 σ–model (a particular nonlinear sigma model) with twisted
mass term, which is the model of interest (chapter 5). We will perform a more or less complete
classical treatment of the theory. We show that the model can also be obtain from a four
dimensional N = 1 theory by Kaluza–Klein reduction1. After this classical analysis we will
turn to the quantum theory of the nonlinear sigma model. One of the main goals will be to
work out the quantum corrections of the mass and the central charge. As a last step of this
chapter we investigate the quantisation of the effective Hamiltonian.

With exception of section A.1 which states the conventions used in this work, the ap-
pendix A primarily deals with symmetries and their implication on the classical and quantum
theory, respectively. Following closely reference [15] we will start from the Hamiltonian for-
malism after which we state Noether’s theorem. Subsequently we write down the ”axioms
of canonical quantisation” and investigate their effects on the symmetries. And, finally, ap-
pendix B summarises the details of the calculations of chapter 5.

1This fact is crucial as it allows a consistent supersymmetric treatment of the dimensional regularisation.



Chapter 2

Classical soliton solutions

In the introduction we presented some historical facts on solitary waves and the current
interest of research. But now comes an essential question: What is a soliton actually? There
are several definitions, one of them given by Drazin and Johnson [16] as follows:

2.1 Definition of a soliton

Drazin and Johnson describe solitons as solutions of nonlinear differential equations which
1. represent waves of permanent form;
2. are localised, so that they decay or approach a constant at infinity;
3. can interact strongly with other solitons, but they emerge from the collision unchanged

apart from a phase shift.
The second condition is sometimes a little bit overrestrictive and can be relaxed that not the
wave itself decays fast enough at infinity but the energy density ε(x) so that one can still
speak of a localised object.
To get a feeling for this abstract definition let us look at concrete example where we can easily
check all these properties.

2.2 The bosonic kink

Let us consider a φ4–theory in 1 + 1 dimensional space with the following Lagrange density

L = −1
2∂µφ∂

µφ− U(φ) and the potential U(φ) = λ
4

(
φ2 − µ2

λ

)2
(2.1)

which is sometimes also called mexican hat or ”sombrero” potential (Figure 2.1(a)). Since the
mass term is negative there are two distinct vacua1, one at φ = µ√

λ
= φvac1 and the other at

φ = − µ√
λ

= φvac2 . The equations of motion (EOM) are derived from the extremum condition
of the action. From this follows that if we search for a static solution (φst) we have to find a
field configuration which minimises the energy, or equivalently, the Hamiltonian H =

∫
dxH,

where the Hamilton density H is given by

H = 1
2 φ̇

2 + 1
2φ
′2 + U(φ) , (2.2)

1The Z2 symmetry of the Lagrangian is spontaneously broken.
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(a) (b)

Figure 2.1: (a) The Potential of the φ4-theory; (b) The kink which connects the two vacua.

where the first term vanishes for φst. As a consequence H has to vanish at least when x goes
to infinity. Hence, we get the following boundary conditions:

lim
x→±∞

φst = φvaci±

lim
x→±∞

φ′st = 0
(2.3)

Thus we can already guess that there may be a solution which interpolates between the two
vacua. But to convince ourselves let us have a look at the EOM, given by

∂µ∂
µφ =

∂U(φ)
∂φ

which for φst reduces to φ′′st =
∂U(φst)
∂φst

. (2.4)

The second equation can easily be rewritten as φ′dφ′ = dU and after integration it follows
that

φ′st = ±
√

2U(φst) . (2.5)

This equation is called Bogomol’yni equation (the nomenclature well become clear in section
2.3), it can be further integrated to

x− x0 = ±
∫ φ

φ0

dφ√
2U(φ)

. (2.6)

Inserting now the concrete potential from (2.1) and solving for φ yields the so–called kink
and antikink, respectively

φK(x) = ∓ µ√
λ

tanh
(
µ√
2
(x− x0)

)
(2.7)

where the + belongs to the kink (Figure 2.1(b)) and the − to the antikink (Figure 2.2(b)).

Let us now go over the definition of a soliton to see if the kink is really one.

ad 1 So far we have only a stationary field configuration, but since our theory is Lorentz
invariant, we just need to boost the coordinate system with velocity u, to get a kink
moving in the opposite direction with the same speed.

x→ x− ut√
1− u2

⇒ φu(x, t) =
µ√
λ

tanh

(
µ((x− x0)− ut)√

2(1− u2)

)
, u ∈ (−1, 1) (2.8)

Thus the kink is a wave of permanent form.X
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(a) (b)

Figure 2.2: (a) Energy density of a static kink; (b) The anti–kink

ad 2 To see that the kink is a localised object, we look at the energy density ε(x, t) of the
kink (Figure 2.2(a)), given by

ε(x, t) = H(φu) =
µ4

2λ(1− u2)
cosh−4

(
µ((x− x0)− ut)√

2(1− u2)

)
. (2.9)

Hence limx→±∞ ε(x, t) = O(
∣∣ 1
x

∣∣) and consequently also this condition is fulfilled.X

ad 3 For the third point there exists no analytical solution, at least to my knowledge, so one
has to do numerical calculations. But for a similar model, the sine–Gordon theory2,
one can write down the solution explicitly and verify that the solitons emerge from the
collision unchanged apart from a phase shift (x − u∆

2 → x + u∆
2 with the phase shift

∆ := ((1− u2)/u lnu). For a detailed treatment I refer to the literature [7, 8].X

Hence the kink is a soliton as we expected.

As a last step let us calculate the energy E(u) of the (moving) kink which is given by the
Hamiltonian,

E(u) = H[φu] =
1√

1− u2
E(u = 0) =

1√
1− u2

Mcl with Mcl =
2
√

2µ3

3λ
. (2.10)

Thus, we can interpret the static (or moving) soliton as a particle with rest mass Mcl.

2.3 Bogomol’nyi bound

If the EOM hadn’t been that easy to solve, we could have at least derived a lower bound for
the mass. This is done by introducing an angular parameter θ into the ”static” Hamilton
density (2.2),

Mcl =
∫
dx1

2φ
′2 + U(φ) =

∫
dx1

4 [φ′ − sin θ
√

4U(φ)]2 + 1
4 [φ′ − cos θ

√
4U(φ)]2+ (2.11)

+ sin θ
∫
dxφ′

√
U(φ) + cos θ

∫
dxφ′

√
U(φ) ≥ (sin θ + cos θ) Ξ

2One only hast to replace the potential in equation (2.1) by U(φ) = µ4

λ
(cos((

√
λ/µ)φ)−1). The kink/soliton

solution in this model is given by φK(x) = 4
√

λ
µ

arctan[exp(µ(x − x0))] + 4kπ , k ∈ Z, (one only has to redo
the calculation with the new potential).
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with Ξ given by

Ξ =
∫
dxφ′

√
U(φ) =

∫
dφ
√
U(φ) . (2.12)

Therefore for all angles θ we have the following bound on the mass:

M ≥ sin θΞ + cos θΞ ; (2.13)

The sharpest bound occurs when the right hand side is a maximum, which happens for
cos θ = sin θ. Thus we find the Bogomol’nyi bound for the kink:

M ≥ 2√
2

Ξ ; (2.14)

From equation (2.11) and cos θ = sin θ we see that the bound is saturated if the following
first order differential equation, the Bogomol’nyi equation, holds:

φ′ −
√

2U(φ) = 0 (2.15)

It was derived for the first time in [2] for the Georgi–Glashow model3. We will follow custom
and call the solutions to the Bogomol’nyi equation, if they exist, BPS-solitons.

2.4 Topological indices

It is often possible to make a topological classification of the solutions of a given system
of equations. Specifically, one can define a topological index which is conserved in time.
Like other conserved quantities it plays the important role of a ’quantum number’ for particle
states in the corresponding quantum field theory. It has, however, quite a different origin from
that of the other familiar conserved quantities and quantum numbers which are explained in
appendix A.

Let us look again at our 2D theory as defined in equation (2.1) but now with a generic
potential U(φ) which has a discrete (not necessarily finite) number of degenerate absolute
minima, where it vanishes. Thus we get the following set of vacuum field configurations:

{φvaci}i∈N = {φ ∈ F(R) : U(φ) = 0}

The same conclusions which led us to the boundary conditions (2.3) now lead us to:

lim
x→−∞

φ(x, t) := φ(−∞, t) = φvaci lim
x→∞

φ(x, t) := φ(∞, t) = φvacj , (2.16)

where i is not necessarily equal to j. φ(−∞, t) and φ(∞, t) are time independent because if
not we would get contributions to the energy density ε(x, t) with non–compact support and
hence leave the space of finite energy solutions.

Thus we can divide the space of all finite–energy non–singular solutions into sectors,
characterised by the values φ(−∞) and φ(∞). These sectors are topologically unconnected,
in the sense that fields from the one sector cannot be distorted continuously into another
without violating the requirement of finite energy. In particular, since time evolution is an
example of continuous distortion, a field configuration from any one sector stays within that
sector as time evolves.

3For some details on the Georgi–Glashow model and the calculation of the bound see also [10]
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2.4.1 Topological charge and current

Although the conserved topological indices do not come from a continuous symmetry, we
can write down the following off–shell conserved (topological) current4 and its corresponding
charge,

Jµtop := εµν∂νφ and T =
∫
dx J0

top , (2.17)

which has a very strong relation to the topological indices, since T = [φ(∞)− φ(−∞)]. T is
the analogue of the topological indices in more complicated systems—such as gauge theories
in four dimensions.

To classify the topological sector one needs φ(−∞) and φ(∞), so that the knowledge of T
is not enough, but for quantities which depend only on the difference of the boundary values
T is sufficient.
Example: Let us look again at the φ4–theory, the potential (see Figure 2.1(a)) has the two
vacua φvac1/2

. This gives rise to four topological sectors which are summarised in the following
index set

{(φ(∞), φ(−∞))} = {(φvac1 , φvac1), (φvac1 , φvac2), (φvac2 , φvac1), (φvac2 , φvac2)} ,

but only to three topological indices T ∈ {−1, 0, 1}, which we have divided by the factor 2φvac1 .

Solitary waves are called topological if T 6= 0, otherwise non–topological. Thus the
kink and antikink are topological.

2.5 Collective coordinates

The idea behind the collective coordinates is to parametrise the moduli space of BPS–
states, which is the space of physically different field configurations where the energy E
attains its minimum. In the case at hand, the collective coordinate is the position of the
kink5 which is parametrised by x0. Now any motion, however small, increases the kinetic
energy of the soliton and makes its total energy strictly greater than the Bogomol’nyi bound.
Nevertheless, if we keep the velocity small and if the motion starts off tangent to the space
of static BPS–states, energy conservation will prevent the motion from taking the solitons
very far away from this space. Much like a point–particle moving slowly near the bottom
of a potential well, the motion of slow BPS–solitons may be approximated by motion on
the space of static BPS–solitons (i.e., along the flat directions of the potential) and small
oscillations in the transverse directions. We can trade the limit of velocities going to zero, for
a limit in which the potential well becomes infinitely steep. This suppresses the oscillations
in the transverse directions (which become increasingly expensive energetically) and motion
is effectively constrained to take place along the flat directions, since this motion costs very
little energy. Expanding the action functional around a BPS–state gives rise to an effective
theory in terms of collective coordinates. For the kink this is achieved by inserting the kink

4∂µJ
µ
top vanishes since we contract a symmetric tensor with an antisymmetric one.

5A consequence of the translational symmetry of the theory
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solution into the Lagrangian (2.1) and making the moduli parameter (x0) time dependent

Leff =
∫
dxL(φK) =

∫
dx
[

1
2φ
′2
K ẋ

2
0 − 1

2φ
′2
K − U(φK)

]
.

The obtained effective action is then given by the following very familiar expression:

Leff = Mcl
ẋ2

0

2
−Mcl , (2.18)

which is the Lagrangian of a free particle with mass Mcl (except for the constant), so we see
once more the particle–like character of the kink.



Chapter 3

Supersymmetry

A wise person (Peter van Nieuwen-
huizen) once said that inside every no–
go theorem there is a ”yes–go” theorem
waiting to come out,

and a wise guy said that we should
call it a ”go–go” theorem.

unknown

In this chapter, we will briefly review some properties of supersymmetry which are es-
sential for the chapters 5. Originally supersymmetry was investigated to circumvent the
restrictions on the most general Lie algebra of symmetries of the S–matrix. Because Coleman
and Mandula showed in their celebrated ”no–go” theorem 1 [18] that the symmetry algebra
is a direct sum of the Poincaré algebra and a reductive compact Lie algebra if

1. the S–matrix is based on a local, relativistic quantum field theory in 4 dimensions,
2. there are only a finite number of particles associated with one particle states of a given

mass,
3. and there is mass gap between the vacuum and one–particle states.

So Haag,  Lopuszánski and Sohnius started to analyse the general structure of graded symmetry
algebras (they intertwine the fermionic and bosonic part of a theory). Their analysis led to
the following most general graded algebra which is compatible with the assumptions of the
Coleman–Mandula theorem2:

3.1 The supersymmetry algebra

{QAα , Q̄β̇ B} =2σm
αβ̇
Pmδ

A
B , {QAα , QBβ } =εαβZAB , [QLα, Tl] =SlLMQMα ,

[Tl, Tm] =iflmkTk , {Q̄α̇ A, Q̄β̇ B} =εα̇β̇Z
∗
AB , [T l, Q̄α̇ L] =S∗ lLM Q̄α̇M ;

(3.1)

where the Q’s are the supercharges, the Tl are the Lie algebra generators of the internal
symmetries, α and β are spinor indices, the indices I and J label the spinor representation

1For further details and the proof see chapter 24, Historical Introduction, of reference [17]
2Algebra (3.1) is valid for four dimensions; for SUSY algebras in D dimensions see reference [12].
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in case of extended SUSY (I, J = 1 . . .N ) and ZIJ , the central charges3, which are given by
ZIJ = al IJTl where the al’s intertwine the representations Sl and −S∗ l.

We are now interested in an integration of this symmetry algebra into a quantum theory.
So we will look for its unitary representation. The derivation of the rep. is not difficult but a
little bit lengthy, thus we will not go through all the algebraic details. The whole 2nd chapter
of reference [11] is devoted to it, but we summarise the results in which we are interested in.

3.1.1 Representations of algebras with central charges

We assume that P 2 = −M2 and study the algebra in the rest frame:

{QαL, (QβM )†} =2Mδα
βδLM {QαL, QβM} =εαβZLM

{(QαL)†, (QβM )†} =εαβZ∗LM ZLM =− ZML
(3.2)

The central charges ZLM commute with all the generators, so we may choose a basis in
which the central charges are diagonal with eigenvalues ZLM . These eigenvalues form an
antisymmetric N × N matrix. Any such matrix may be rotated into a standard form by
unitary transformation:

Z̃LM = ULKU
M
NZ

KN . (3.3)

The standard form is given by

Z̃ = ε⊗D and Z̃ =
(
ε⊗D 0

0 0

)
(3.4)

for N even and N odd, respectively, where D is diagonal with positive real eigenvalues Zm
and ε is the 2× 2 antisymmetric matrix with ε12 = 1.

We start by decomposing the indices L and M 4 in accord with (3.4), L = (a,m), M =
(b, n), where a, b = 1, 2 and n,m = 1, . . . , N2 . We then perform a unitary transformation on
the QαN ,

Q̃α
L = ULKQα

K . (3.5)

This allows us to write the algebra (3.1) in the following from:

{Q̃αam, (Q̃βbn)†} =2Mδα
βδabδ

m
n

{Q̃αam, Q̃βbn} =εαβεabδmnZn
{(Q̃αam)†, (Q̃βbn)†} =εαβεabδmnZn .

(3.6)

The operators Q̃αam and (Q̃αam)† may all be expressed as linear combinations of

aα
m = 1√

2
[Q̃1m

α + εαρ(Q̃ρ2m)†] , bα
m = 1√

2
[Q̃1m

α − εαρ(Q̃ρ2m)†] (3.7)

and their conjugates (aαm)† and (bαm)†. The operators a and b satisfy the following algebra:

{aαn, aβm} = {bαn, bβm} = {aαn, bβm} = 0 {aαn, (bβm)†} = 0

{aαn, (aβm)†} = δαβδ
mn(2M + Zn) {bαn, (bβm)†} = δαβδ

mn(2M − Zn) .
(3.8)

3The central charges are antisymmetric in I and J ;
4We shall study the case with N even, the case with N odd is analogous.
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From these relations we see that Zn ≤ 2M for all n.5 If a set of Zk = 2M , with k = 1, . . . , r,
the corresponding operators bi must vanish. With the nonvanishing operators we define the
following operators:

Γl := 1√
2
[a1

l + (a1
l)†] Γ

N
2

+l := 1√
2
[a2

l + (a2
l)†]

ΓN+l := i√
2
[a1

l − (a1
l)†] Γ

3N
2

+l := i√
2
[a2

l − (a2
l)†]

Γ2N+i := 1√
2
[b1i + (b1i)†] Γ

5N
2
−r+i := 1√

2
[b2i + (b2i)†]

Γ3N−2r+i := i√
2
[b1i − (b1i)†] Γ

7N
2
−3r+i := i√

2
[b2i − (b2i)†]

(3.9)

where the indices 1 and 2 refer to the SU(2) spinor indices and the indices l and i run from
1 to N

2 and (N2 − r), respectively. Thus we get the following Clifford algebra:

{ΓK ,ΓM} = δKM with N = 1, . . . , 4(N − r) ; (3.10)

The fundamental representation of this algebra is spanned by 22(N−r) states. Hence, if we
have a set of r central charges which fulfil 2M = Zk, the multiplet becomes shortened by
a factor of 22r. Witten and Olive [4] were the first who found an explicit realisation of
such a supersymmetry algebra in a theory. They noted that in many instances (supporting
topological solitons) topological charges coincide with the central charges of superalgebras.
Actually, this seminal paper opened the currently flourishing topic of BPS saturated solitons
for investigation. Thus we will briefly review it.

3.2 BPS saturation revisited

Witten and Olive showed in their work [4] that in supersymmetric theories with solitons the
usual supersymmetry algebra is not valid. It is modified to include the topological quantum
numbers as central charges. Further they used the corrected algebra to show that in the
Georgi-Glashow model, quantum corrections preserve the classical equality of the mass and
central charge spectrum. We will only summarise some details of the first part of their paper.

The supersymmetric form6 of a scalar field theory in two dimensions is

L =
∫
d2x

[
1
2(∂µφ)2 + 1

2 ψ̄i/∂ψ −
1
2V

2(ψ)− 1
2V
′(ψ)ψ̄ψ

]
, (3.11)

where ψ is a Majorana fermion, and V (φ) an arbitrary function. The conserved symmetry
current is

Jµsup = (∂νφ)γνγµψ + iV (φ)γµψ . (3.12)

Working with chiral components ψ± of the Fermi field, the chiral components Q± of the
supersymmetry charges can be written

Q± =
∫
dx [(∂0φ± ∂1φ)ψ± ∓ V (φ)ψ∓] . (3.13)

5For unitary representations it is necessary that
˙
ψ|{bαn, (bβ

m)†}|ψ
¸
≥ 0 ⇒ Zn ≤ 2M

6So far now we have only presented supersymmetry algebras, but from appendix A it should be clear that
a symmetry algebra is derived from the symmetries of the Lagrangian. Thus, for a supersymmetry algebra we
need first of all a Lagrangian which is invariant (up to a total derivative) under a certain transformation that
intertwines the bosons and the fermions
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In this notation, the standard supersymmetry algebra7 (3.1) gets changed a little

Q2
+ = P+ and Q2

− = P− , where P± = P0 ± P1 . (3.14)

The central charge Z is then given by

Z = {Q+ , Q−} =
∫
dx 2V (φ)∂φ∂x =

∫
dx ∂

∂x(2K(φ)) , (3.15)

where K(φ) is a function such that K ′(φ) = V (φ). Thus {Q+ , Q−} is the integral of a total
divergence, and naively would vanish. But in a soliton state, the right hand side of equation
(3.15) is not necessarily zero8.

For a typical example, we look at the supersymmetric extended φ4–theory9 for which we
get

Z =
∫ ∞
−∞

dx ∂
∂x

√
2λ(1

3φ
3 − µ2

λ φ) . (3.16)

Z vanishes in a topologically trivial state, and has a positive value in the kink state, a negative
value in the antikink state. Although apparently different from the usual topological charge∫∞
−∞ dx

∂φ
∂x , Z actually coincides with it, since both depend only on the topology.

Now let us again treat the algebra from equation (3.14). We see that the mass squared
operator M2 = P+P− = P−P+ can be written

M2 = 1
4(Z2 + (Q̄Q)2) , (3.17)

where Q̄Q is the Hermitian operator i(Q+Q− − Q−Q+). Since (Q̄Q)2 is positive, this es-
tablishes that M2 ≥ 1

4Z
2, and saturated only for states |α〉 such that Q̄Q |α〉 vanishes. In

the rest frame Q̄Q = i(Q+ − Q−)(Q+ + Q−) = −i(Q+ + Q−)(Q+ − Q−) and so annihilates
any state that is annihilated by (Q+ + Q−) or (Q+ −Q−). This condition may seem rather
exeptional, but actually it is satisfied, at least classically, for all the soliton and antisoliton
states that satisfy the Bogomol’nyi equation10

∂φ

∂x
= ±V (φ) = ±

√
2U(φ) . (3.18)

If the bound holds also quantum mechanically we get a shortened multiplet structure, as
shown above. The corresponding states |α〉 will be called BPS–states as in the classical
regime, see section 2.3.

7In equation (3.1) we used the Weyl representation. Now we use the Majorana representation since the real
boson under consideration has only one degree of freedom.

8In fact, in quantum theory, a matrix element of the operator Z is the difference between the expectation
values of 2K(φ) at x = ∞ and x = −∞.

9To get the Lagrangian for this theory we insert
p

2U(φ) of equation (2.1) into equation (3.11).
10Implies the saturation of the Bogomol’nyi bound, see section 2.3;



Chapter 4

Perturbation theory in non–trivial
backgrounds

4.1 Quantum energy levels for the static solitons

4.1.1 The Feynman–Kac formula

We briefly recall the elementary steps in the derivation of the path integral and apply it for
the case of non–trivial background fields. An in–depth discussion is given in [8] and [7].

In a quantum system the time evolution of a state vector |ψ(t)〉 is governed by the
Schrödinger equation1

Ĥ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 , (4.1)

where Ĥ is the Hamiltonian of the system. In principle it can by solved by the ansatz
|ψ(t)〉 = U(t, t0) |ψ(t0)〉 where U(t, t0) has to satisfy the composition law

U(t′′, t) = U(t′′, t′)U(t′, t)

and the initial condition U(t0, t0) = 1.
Of particular interest in the field theoretical context will be the propagating kernel K

which appears in the present context as the Green function of the Schrödinger equation.

(Ĥ − i~∂t)K(t, t0) =− i~δ(t− t0)1
lim
t→t+0

K(t, t0) =1 (4.2)

The solution to this problem is given by

K(t, t0) = θ(t− t0)T e−
i
~

R t
t0
Ĥ
, (4.3)

where the T is time–ordering symbol. For a time–independent Hamiltonian we can omit the
time–ordering and get

K(t, t0) = θ(t− t0)e−
i
~ Ĥ(t−t0) , (4.4)

1We are working in the Schrödinger picture and not in the Heisenberg picture as in appendix A.
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which then depends only on T := t− t0. The Fourier transformed kernel G(E) defined by

G(E) =
i

~

∫
dTe

i
~ (E+iε)TK =

1
Ĥ − E − iε

(4.5)

satisfies
(Ĥ − E)G(E) = 1 (4.6)

where we applied Feynman’s pole–prescription in order to guarantee convergence. For a
one–dimensional single particle theory with a single degree of freedom

Ĥ =
p̂

2m
+ V (q̂) (4.7)

we define the coordinate representation by

q̂ |q〉 = q |q〉 q ∈ R

and normalise 〈q| q′〉 = δ(q − q′). The retarded Feynman propagator or propagating kernel
reads

K(q′′, T |q′) = θ(T )
〈
q′′
∣∣ e− i

~ ĤT
∣∣q′〉 = θ(T )

〈
q′′, t′′

∣∣ q′, t′〉 with T = t′′ − t′ (4.8)

where in the last step we have changed to the familiar Heisenberg picture2,

AH(t) = e
i
~ ĤtASe

− i
~ Ĥt |ψ〉H = e

i
~ Ĥt |ψ〉S . (4.9)

The basic property of K in this basis is〈
q′′
∣∣ψ(t′′)

〉
=
∫
dq′K(q′′, T |q′)

〈
q′
∣∣ψ(t′)

〉
(4.10)

The famous trick of Feynman is to insert a sequence of identities written as completeness
relations 1 =

∫
dq(ti) |q(ti)〉 〈q(ti)| of eigenvectors of the (time–dependent) Heisenberg opera-

tor qH(T ) at a sequence of N different times {ti}. Absorbing the divergent prefactor in the
measure one recovers the useful formula

K(q′′, T |q′) =
∫ (q′′,t′′)

(q′,t′)
[Dq]e

i
~S[q,T ] (4.11)

which is now easily generalised to field theory.
If we insert 1 = P∫ |E〉 〈E| into (4.8) we find

K(q′′, T |q′) = θ(T )
∑∫ 〈

q′′
∣∣E〉 〈E| e− i

~ ĤT
∣∣q′〉 =

∑∫
θ(T )ψE(q′′)ψ∗E(q′)e−

i
~ET ,

where the |E〉’s are the eigenstates of the Hamiltonian Ĥ and the P∫ stands for integration
and summation over the discrete and continuous eigenvalue spectrum, respectively. The so–
called spectral function or partition function is obtained by setting q′′ = q′ = q0 and
integrating over q0, i.e. we investigate closed paths. Denoting this procedure by Tr one gets

K(T ) = Tr
[
e−

i
~ ĤT

]
=
∫
dq0K(q0, T |q0) =

∑∫
e−

i
~ET

∫
dq0 |ψE(q0)|2 . (4.12)

2In the Heisenberg picture the state vectors become time–independent and all the time information is now
carried by the operators, (their time evolution is given in appendix A).
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(q’,0)

(q’’,T)
t

x

Figure 4.1: All the path with fixed endpoints are considered in the path integral.

A Wick rotation τ = i
~T and sending T →∞ picks out e−E0τ times the degree k of degeneracy

of the ground state:

E0 =− lim
τ→∞

1
τ

ln
∫
dq0K(q0,−i~τ |q0) = − lim

τ→∞

1
τ

ln Tr
[
e−Ĥτ

]
k = lim

τ→∞
eE0τ

∫
dq0K(q0,−i~τ |q0)

(4.13)

This is the Feynman–Kac formula, it allows an evaluation of the ground state energy
without detailed knowledge of the propagating kernel. It will be a handy tool when it comes
to calculating quantum corrections to masses of topological objects.

4.1.2 Stationary phase approximation in non–trivial backgrounds

The stationary phase approximation when expanding around a non–trivial background is
slightly different from the usual vacuum case which is very well known from the ordinary
path integral formulation of quantum field theory. We again consider a system with a single
degree of freedom.

The classical path qcl(t) between the initial point q′ and end point p′′ is defined by the
extremal principle of the action

δS[q]
∣∣∣
qcl

= 0 with S[q] =
∫ T

0
dt
(

1
2 q̇

2 − V (q)
)
. (4.14)

Now we expand the action around this extremum and classical path, respectively, do a partial
integration, use the EOM of qcl and get

S[q] = S[qcl + η] = S[qcl] + q̇clη
∣∣∣T
0

+ 1
2ηη̇
∣∣∣T
0

+ 1
2

∫ T

0
dt η(−∂2

t − V ′′(qcl))η+

+
N∑
k=3

∫ T

0
dt 1

k!V
(k)(qcl)η3 ,

(4.15)

where the surface terms, q̇η
∣∣T
0

and 1
2ηη̇
∣∣T
0

, vanish if the classical path connects the initial
and final position3. Since this condition is not allways fulfilled one has to be very careful

3From Figure 4.1 one can easily see that the fluctuations at the starting (q′, 0) and end point (q′′, T ),
respectively, are set to zero, thus η(0) = η(T ) = 0 if qcl connects them.
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when dropping surface terms and further in the case of a solitonic background, for instance
in section 3.2, one may get topological quantum numbers from the surface terms.

We neglect the last sum which only gives corrections to order three or higher. The
important terms are the bilinear terms in the fluctuations that yield the determinant of the
operator Ô = −∂2

t − V ′′(qcl) and the classical action. With this in mind we get the so–called
semi–classical approximate of the kernel

K(q′′, T |q′) = N(T )e
i
~S[qcl,T ] 1√

det Ô
. (4.16)

Of course the determinate must not vanish so if there are zero modes in the spectrum we
have to exclude them from the determinate and treat them in a special manner. In quantum
field theory zero modes give scaleless integrals and hence do not contribute in dimensional
regularisation. However there is a one to one relation between the zero modes and the
collective coordinates and thus the gain importance when we quantise the moduli space (see
section 5.3.3).

Before considering quantum field theory let us study this approximation on a simpler
example (actually the following example, the harmonic oscillator, is exactly solvable).

4.1.3 The harmonic oscillator

We take the Lagrangian L = 1
2(q̇2 − ω2q) and consider closed paths, q(0) = q(T ) = q0. The

corresponding differential equation is easily solved and we find

qcl = q0

(
cos(ωt) +

2 sin2
(
ωT
2

)
sin(ωT )

sin(ωt)

)
. (4.17)

Now we expand the action as before and get

S[q] = S[qcl] + q̇η
∣∣T
0

+
1
2
ηη̇
∣∣T
0

+ 1
2

∫ T

0
dt η(t)(−∂2

t − ω2q2(t))η(t) . (4.18)

Because we are only interested in the spectral function, for which q(T ) = q(0) = q0, one can
choose the boundary conditions η(0) = η(T ) = 0 since ∀ q(T ) = q(0) = q0 ∧ T > 0 there
∃ qcl. A basis of eigenfunctions of this operator, compatible with the boundary conditions, is

ψn(t) =θ(T − t)
√

2
T

sin(knt) , with (−∂2
t − ω2)ψn = εnψn

ε =k2
n − ω2 kn =

nπ

T
n ∈ N

Expanding the fluctuations η(t) =
∑∞

n anψn(t) and inserting in (4.18), we find

S[q] = S[qcl] + 1
2

∑
n

εna
2
n , (4.19)

where the set {an}n∈N parameterises the fluctuations.
For the trace of the time evolution operator we get

Tr
[
e−

i
~ ĤT

]
= N [T ]

∫
dq0 dq0e

i
~S[qcl,T ]

∫ N∏
n=1

dane
i
~ εna

2
n (4.20)
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A rather tricky calculation, see chapter 1 of reference [15], shows that with a suitable nor-
malisation one finds

Tr
[
e−

i
~ ĤT

]
=
∞∑
n=0

e−iT (n+ 1
2
)ω =

i

2 sin
(
Tω
2

) . (4.21)

4.1.4 Generalisation to field theory

We again neglect the zero–mode problem and simply write down the straightforward gener-
alisation of the path integral representation of the propagation kernel (for T > 0) to bosonic
field theory4. “ts” indicates that the trace is evaluated in a certain topological sector. This
applies to the background of course, but also to the fluctuations.

K(T ) = Trts
[
e−

i
~ ĤT

]
=
∫

[Dφ0(x)]ts
∫ (φ0(x),T )

(φ0(x),0)
[Dφ(x)]tse

i
~S[φ] (4.22)

The boundary conditions of the one–particle problem translate into

φ(x, 0) = φ(x, T ) = φ0 → η(x, 0) = η(x, T ) = η0(x) (4.23)

when we split φ(x) into φcl(x) + η(x). Expanding the action and imposing the boundary
conditions (4.23) leads to

S[φ, T ] = S[φcl, T ]− 1
2

∫
D
d2x η

(
−2 + U ′′(φcl)

)
η − 1

2

∫
∂D

(2∂µφcl + ∂µη)η +O(η3) . (4.24)

Reinserting in equation (4.22) gives

K(T ) = e
i
~S[φcl]

∫
[Dη0]

∫ (η0,T )

(η0,0)
[Dη] exp

(
− i

2~

∫
D
dx η(−2 + U ′′(φcl))η +

∫
∂D

. . .

)
(4.25)

We again expand the fluctuations in eigenfunctions of the spatial part of the operator in the
exponent:

(−∂2
x + U ′′(φcl))ξn = ωnξn

∫
L
dx ξmξn = δnm (4.26)

with coefficients {cn}n∈N according to

η(x, t) =
∑
n

cn(t)ξn(x) and η0(x) =
∑
n

cn(0)ξn(x) . (4.27)

This yields for the first term of the exponent∫
dx η

(
−2 + U ′′(φcl)

)
η =

∑
k

ck(t)(∂2
t + ω2

k)ck(t) . (4.28)

4More precisely, we look at a two dimensional bosonic field theory for which the action is given by the space–
time integral of the Lagrangian density (2.1) (with a generic potential). Generalisations to D dimensional
theories can be found in the standard references (e.g. [19, 20]).
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Now we investigate the boundary term

−1
2

∫
D
d2x ∂µ(2∂µφcl+∂µη)η = 1

2

∫
D
dx (2∂tφcl + ∂tη)η

∣∣∣T
0
− 1

2

∫
D
dt (2∂xφcl + ∂xη)η

∣∣∣∞
−∞

= 1
2

∫
L
dx ηη̇

∣∣∣T
0

= 1
2

∑
l,k

∫
L
dx cl(0)(ċk(T )− ċk(0))ξl(x)ξk(x) =

= 1
2

∑
l

cl(0)(ċl(T )− ċl(0)) = 1
2

∑
l

∫
T
dt ∂t(cl(t)ċl(t)) , (4.29)

where we assumed a static soliton solution and natural boundary conditons. Putting the
pieces together

−1
2

∫
D
dx η(−2 + U ′′(φcl))η − 1

2

∫
∂D

. . . = 1
2

∑
l

∫
T
dt (ċ2l (t)− ω2

l c
2
l (t)) , (4.30)

the spectral function factorises into harmonic oscillators up to the accuracy of the stationary
phase approximation (SPA):

K(T ) SPA= e
i
~S[φcl]

∏
l

[∫
dc(0)n

∫ (c(0),T )

(c(0)l,0)
[Dcl]e

i
2~

R
T dt (ċ

2
l (t)−ω2

l c
2
l (t))

]
. (4.31)

We can now calculate the quantum corrections to non–perturbative objects when we plug

K(T ) = e
i
~S[φcl]

∏
l

∞∑
nl=0

e−iωlT (nl+
1
2
) = e

i
~S[φcl]

∏
l

1
2 sinh

(
iωl

2 T
) (4.32)

into the Feynman–Kac formula (4.13):

E(1) = E(0) + ~
∑
l

ωl
2
. (4.33)

This gives the first order correction to the mass of the ground state in this topological sector.
Possible contributions from the counter terms enter if the unrenormalised quantities in E(0)

are replaced in this procedure, E(0) → E(0) + δE.
As expected, the results of this chapter generalise to the fermionic oscillator if one treats

the boundary condition carefully, see [8] and the references given therein.

4.1.5 Embedding soliton solutions in higher dimensions

In the presence of solitons the EOM of the quantum fluctuations around the background
differ of course from the trivial case. In a static background, one can separate off the time–
dependence just as in the vacuum sector, but in directions where the background is non–trivial
one does not find a Helmholtz–type EOM. Typically, the solitons to the resulting eigenvalue
can not be given in closed form.

In this section we derive the Fourier decomposition of a quantum field in the presence of
a soliton in arbitrary dimensions. To this end we introduce some new notation. Let d be the
dimension of space–time and n the number of non–trivial directions (x1, . . . , xn) =: ~x. The
d−n− 1 trivial directions we denote by (xn+1, . . . , xd−1) =: ~y. The fluctuation eigenfunction
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for the n–component momentum ~p is given by φ(n)
~p (x) and the solution of the free field equation

by φ(d−n−1)
~l

(~y) = ei
~l~y and they are normalised according to∫

dd−n−1~y φ
(d−n−1)
~l

(~y)φ(d−n−1)
~l′

∗
(~y) =

1
(2π)d−n−1

δ(d−n−1)(~l −~l′)∫
dn~xφ

(n)
~p (~x)φ(n)

~p′
∗
(~x) =

1
(2π)n

δ(n)(~p− ~p′)
(4.34)

We get the following expansion of the bosonic fluctuation η

η(~x, ~y, t) =
∫

dd−n−1~l dn~p

(2π)
d−1
2

√
2ω

[
a
~p,~l
e−i(ωt−

~l~y)φ
(n)
~p (~x) + a†

~p,~l
ei(ωt−

~l~y)φ
(n)
~p

∗
(~x)
]
. (4.35)

The same problem for fermions is a bit more involved because one has to take into account
the Clifford algebra representation in different dimensions and for example by Schur’s lemma
we have in odd dimensions (n ∈ Nodd) γ0 · . . . · γn−1 ∝ 1. One can therefore not embed
the fermionic quantum field in such a general way as the bosonic one. For dimensional
regularisation of a d = 2, N = (2, 2) SUSY theory featuring a kink background one needs to
embed two–dimensional fermions into 2 + ε space–time. This is done by solving the d = 3
problem and then making the number of the extra dimension continuous. However, before we
tackle this problem we need to solve the corresponding d = 2 problem. The Dirac equation
resulting from dimensional reduction of the former problem has the following structure (see
reference [21, 14]) when the trivial direction is put to zero, i.e. ∂n ≡ 0:

Dψ+ − ∂tψ− = 0 D†ψ− − ∂tψ+ = 0 . (4.36)

With the ansatz ψ± = e−iωtχ± we find(
D iωk
iωk D†

)(
χ+
k

χ−k

)
= 0 (4.37)

and the decomposition

ψ(x, t) =
(
ψ+

ψ−

)
=
∑∫ dk√

2π
1√
2

[
a~k e

−iωkt

(
χ+
k

χ−k

)
+ b†~k

eiωkt

(
χ+
k

−χ−k

)]
. (4.38)

For the decomposition in the 2 + ε dimensional space we put the soliton into the spatial part
of the 1 + 1 dimensions and write down the three dimensional Dirac equation

Dψ+ − (∂t − ∂5)ψ− = 0 D†ψ− − (∂t + ∂5)ψ+ = 0 . (4.39)

Separating off the trivial momentum l we find

ψ(x, y, t) =
∫

dεl

(2π)
ε
2

∑∫ dk√
2π

1√
2ω

[
a~k,l e

−i(ωt−yl)
(
αχ+

k

βχ−k

)
+ b†~k,l

ei(ωt−yl)
(
γχ+

k

δχ−k

)]
. (4.40)

From the Dirac equation(
D i(ω − l)

i(ω + l) D†

)(
αχ+

k

βχ−k

)
= 0

(
D i(−ω + l)

i(−ω − l) D†

)(
γχ+

k

δχ−k

)
= 0 (4.41)
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we learn that for ω2 = ω2
k + l2 the coefficient determinant is zero and α, β, γ and δ are

parameterised by

α = ωkα̃ β = (ω + l)α̃ γ = ωkα̃ δ = −(ω + l)α̃ . (4.42)

The last input is the anti–commutation relation
{
ψ , ψ̄

}
and the energy of a mode, respec-

tively, it puts α2 + β2 = γ2 + δ2 = 2ω and thus α̃ = 1√
ωk(ω+l)

. We end up with

ψ(x, y, t) =
∫

dεl

(2π)
ε
2

∑∫ dk√
2π

1√
2ω

[
a~k,l e

−i(ωt−yl)
(√

ω + lχ+
k√

ω − lχ−k

)
+

+ b†~k,l
ei(ωt−yl)

( √
ω + lχ+

k

−
√
ω − lχ−k

)]
. (4.43)

It is remarkable that this embedding works entirely analogously for the central charge correc-
tion5 and subsequently allows an analogous derivation of quantum corrections from fermions.

5And also in the d = 3 + 1 monopole case as shown in reference [21, 14];



Chapter 5

The CP1 σ–model with twisted
mass

On ne comprend rien à la vie
tant qu’on n’a pas compris
que tout y est confusion

Henry de Montherlant

.

Two dimensional abelian gauge theories with N = (2, 2) supersymmetry exhibit duality,
see for instance Witten [22] and Hanany and Hori [6]. One side of this duality can be described
by the CPN σ–model, thus one can get a better understanding of duality, also for more
complicated theories, by investigating this toy model. In this work we will not study duality,
but we show how one may derive the CPN−1 σ–model with twisted mass in the limit of low
energy from the former theory and present some results from the dual sector of the theory
(for details see [5] and the references therein). Afterwards, in the special case of CP 1, we will
perform a classical and quantum analysis of the theory in this phase which is called the Higgs
phase of the theory.

5.1 The CPN−1 theory as a low energy limit

We start from the Lagrangian density of a superrenormalisable U(1) gauge theory

L =
∫
d4θ

[
Φ̄ie

2V Φi − 1
4e2

Σ̄Σ
]

+ LF , (5.1)

where V is the gauge superfield, the Φi’s, with i = 1, . . . , N , are the chiral superfields, each
of charge +1, and Σ is the basic gauge invariant field strength of the superspace gauge field.

Σ =
1

2
√

2

{
D̄+ , D−

}
(5.2)

is a twisted chiral superfield, a speciality which appears in two dimensions, as it does not
exist in four dimensions (for details see reference [23]). Twisted chiral superfields obey the
following twisted version of the ordinary chirality condition (D̄+Φ = D̄−Φ = 0):

D̄−Φ = D−Φ = 0 (5.3)
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where the plus and minus denotes the second and first spinor index, respectively.
The F–term LF which contains the Fayet–Iliopoulis term and a topological θ–term1, is

given by

LF = −rD +
θ

2π
v01 =

∫
d2ϑW(Σ) +

∫
d2ϑ̄W̄(Σ̄) (5.4)

with W = iτΣ/2, (ϑ1, ϑ2) = (θ−, θ̄+), (ϑ̄1̇, ϑ̄2̇) = (θ̄−, θ+) and τ = ir + θ
2π .

For the case e� Λ, where Λ denotes the dynamical scale, we can neglect the kinetic term
of the gauge field in equation (5.1) and derive from this new Lagrangian density the following
EOM2

2Φ̄ie
2V Φi − r = 0 ,

which is now an algebraic one. With this, one may integrate out the twisted chiral superfield,
and afterwards fix the gauge by gauging one of the nonvanishing fields to unity. Thus the
effective superspace Lagrangian with φj gauged to one becomes

Leff = r

∫
d4θ ln

(
1 +

N∑
i=1
i6=j

W̄
(j)
i W

(j)
i

)
+ θ–term ,

which is the Lagrangian density of a CPN−1 σ–model. The bosonic components w(j)
i = φi/φj

of the superfield W
(j)
i , with i 6= j, are the coordinates of the coordinate patch Pj (of the

projective space CPN−1) which describe the theory in the vacuum Vj .

5.1.1 Implementation of the twisted mass term

As noticed by Hanany and Hori [6], one may introduce a further relevant parameter for the
original gauge theory, namely a twisted mass for the chiral superfields, which corresponds to
the expectation value of a background twisted chiral multiplet:〈

V̂1 i

〉
= <(mi) ,

〈
V̂2 i

〉
= −=(mi) ,

〈
V̂0 i

〉
=
〈
V̂3 i

〉
= 0; (5.5)

With these background fields the Lagrangian (5.1) becomes

L =
∫
d4θ

[
Φ̄ie

2V+2〈V̂i〉Φi −
1

4e2
Σ̄Σ
]

+ LF . (5.6)

For the case e� |mi −mj | � Λ we can again integrate out the twisted chiral superfield and
use a suitable gauge to get the effective Lagrangian

Leff = r

∫
d4θ ln

(
1 +

N∑
i=1 i6=j

W̄
(j)
i exp(2〈V̂i〉 − 2〈V̂j〉)W (j)

i

)
+ θ–term , (5.7)

1It can be written as total derivative and hence contributes only in a topologically nontrivial sector of the
theory.

2The topological term does not change the EOM.
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for the vacuum Vj . The explicit form of this Lagrangian density for N = 2 in terms of the
component fields is given by the the following terms

L(0) =− r

ρ2

[
∂µw̄∂

µw + |m|2 |w|2 +
θ

r2πi
εµν∂µw̄∂νw

]
(5.8a)

L(2) =− ir

ρ2

[
ψ̄γµ

(←→∂µ
2
− 1
ρ

(w†
←→
∂µw)

)
ψ + iψ̄ m2×2 ψ(1− 2w†w

ρ
)
]

(5.8b)

L(4) =
r

ρ2

[(
F − w̄

ρ
ψψ

)
︸ ︷︷ ︸

=0 on shell

(
F̄ − w

ρ
ψ̄ψ̄

)
− 1

2ρ2
ψψψ̄ψ̄

]
(5.8c)

where ρ = 1+|w|2 and m2×2 =
(

0 m
m̄ 0

)
. The superscript (i) denotes the number of fermionic

fields involved.

5.1.2 The Coulomb phase in a nutshell

In the regime of e� Λ the theory consists of a light gauge multiplet weakly coupled to massive
chiral multiplets [22]. In particular the dimensionful gauge coupling is much smaller then the
other relevant mass scales and the model can be analysed using ordinary perturbation theory.

A one-loop calculation leads to the following effective twisted superpotential for the gauge
field Σ (see equation (110) of [5] and also equation (2.57) of [6])

Weff =
i

2

(
τΣ− 2πi

N∑
i=1

(Σ +mi) ln
(

2
µ

(Σ +mi)
))

, (5.9)

where µ is the renormalisation group subtraction scale. According to chapter 3 the cen-
tral charges of the supersymmetry algebra are the differences of the vacuum values of the
superpotental between which the soliton interpolates. Hence, we find

Zkl = 2[Weff(el)−Weff(ek)] =
1

2π

[
N(el − ek)−

N∑
i=1

mi ln
(
el −mi

ek +mi

)]
(5.10)

where the el for i = 1, . . . , N stand for the N supersymmetric vacuum values of the bosonic
component (σ) of the gauge superfield Σ. By the assumption of BPS saturation the soliton
mass is given by Mkl = |Zkl|

5.2 The classical CP1 theory

First of all we will deduce the two dimensional N = (2, 2) CP 1 theory from a four dimensional
N = (1, 1) CP 1 theory (by dimensional reduction). This will guarantee that later on in the
quantum case the dimensional regularisation by embedding can be applied without spoiling
supersymmetry. Subsequently we investigate the supersymmetries of the model and look for
the Bogomol’yni bound.
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5.2.1 Dimensional reduction

Our two dimensional supersymmetric CP 1 model with twisted mass term can be derived by
dimensional reduction from a four dimensional one. We will do this in an analogous way as in
reference [10], where dimensional reduction is done for super Yang–Mills theories, by making
the extra dimensions trivial.

To get the four–dimensional CP 1 theory we start from the Kähler potential

K(Φ̄i,Φi) = ln(Φ̄iΦi) with i = 1, 2 , (5.11)

and use the fact that isometries of a Kähler metric (which are characterised by the Killing
potential) can be used to introduce gauge fields (see chapter XX IV of reference [11] for the
details of ”gauging” a Kähler potential and deriving the component representation of the
Lagrangian) but without introducing a kinetic term for the gauge fields. Afterwards one fixes
the gauge as in the preceding section3 and as the final result of this procedure we get the
Lagrangian density4

L =
∫
d4θKm(Φ,Φ†, V ) = −gDmφDmφ† − igψσmDmψ̄ +

1
4
Rψψψ̄ψ̄ (5.12)

with

Dmφ = ∂mφ−AmX Dmψ = ∂mψ + ΓDmφψ −Am
∂X

∂φ
ψ ,

where g = ∂φ∂φ†K(φ, φ†) = r
ρ2

is the Kähler metric, Γ = g−1∂φg = −2φ
†

ρ the connection,
R = g∂φ†Γ = − 2r

ρ4
the curvature and X = −i1g∂φD = −iφ the Killing vector that follows from

the Killing potential (D = rφ
†φ
ρ ). Putting this into equation (5.12) we find

Lm =− r

ρ2

[
Dmφ

†Dmφ+ iψ̄γm
(
Dm − 2

φ†Dmφ

ρ

)
ψ +

1
2ρ2

ψψψ̄ψ̄
]

(5.13)

where Dm = ∂m + iAm and γn = σ̄n.
Now one would first introduce the twisted mass by fixing the values of the static back-

ground fields Am

A0 = 0 , A3 , Ax = <(m) , Ay = −=(m) (5.14)

and then dimensional reduce the Lagrangian by taking the fields independent of x and y. But
we do it a little bit differently, we introduce the twisted mass and then rotate the coordinate
system so that the x′–axis points into the mass direction, see Figure 5.1, and afterwards
we make the fields independent of the x′–coordinate but still keep the dependence on the
direction where the mass vanishes (y′–direction)5.

3Thus we reduce the target space from C
2 to its physical subspace CP 1 for which we need two patches

{P1 , P2} to cover it.
4And as in reference [24] we will use Φ to denote the superfield in CP 1–theory instead of W as in the

preceding section.
5This will be the ε–dimension when we use dimensional regularisation.
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Ax

Ay

m

0, 3

1’

2

2’

1

Figure 5.1: We rotate the coordinate system around the z–axe so that the x′–axe points
towards the mass direction.

Thus inserting the values of equation (5.14) into (5.13) and applying the following rotation

R(ϕ)nm =

 12×2 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 ϕ = arctan(Ay/Ax)

σ2′ =
(

0 sin(ϕ)− i cos(ϕ)
sin(ϕ) + i cos(ϕ) 0

)
ψ → ψ′ = S(ϕ)ψ

we get the Lagrangian density

L =− r

ρ2

[
∂µφ

†∂µφ+ |m|2 φ†φ+ iψ̄′γµ
(
∂µψ

′ − 2
ρ

(φ†∂µφ)ψ′
)

− ψ̄′m2×2 ψ
′(1− 2φ†φ

ρ
) +

1
2ρ2

ψ′ψ′ψ̄′ψ̄′
]

(5.15)

where the Greek indices run over the dimensions 0, 2′ and 3 and the matrix m2×2 is given by

m2×2 =
(

0 |m|
|m| 0

)
. (5.16)

If we add a suitable total derivative6 we finally find the hermitian Lagrangian density

L =− r

ρ2

[
∂µφ

†∂µφ+ |m|2 φ†φ+ iψ̄′γµ
(←→∂µ

2
ψ′ − 1

ρ
(φ†
←→
∂µφ)ψ′

)
− ψ̄′m2×2ψ

′(1− 2φ†φ
ρ

) +
1

2ρ2
ψ′ψ′ψ̄′ψ̄′

]
. (5.17)

5.2.2 Supercharges

We will again start in four dimensions, in order to derive the generators of the supersymmetry
transformation, the so–called supercharges. They can be calculated via at least two different
ways:

6A total derivative neither changes the EOM nor spoils supersymmetry.
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1. As a consequence of the algebra (3.1) the supercurrent can be derived by a supersym-
metry transformation of the U(1)-current:

Jµ =− r

ρ2

[
iφ†
←→
Dµφ− ψ̄γµψ(1− 2

φ†φ

ρ
)
]

(5.18)

2. By making the supersymmetry transformations x-dependent. If an x-independent trans-
formation (not necessarily a supersymmetry transformation) of any Lagrangian density
is given by δξL = ξ∂nK

n and L(ϕ, ∂ϕ) is only a function of the fields (ϕ) and their first
derivatives (∂ϕ) then we get for the x-dependent transformations:

δξL =
∂L
∂ϕ

ξ∆ϕ+
∂L
∂∂nϕ

∂n(ξ∆ϕ) =
∂L
∂ϕ

ξ∆ϕ+
∂L
∂∂nϕ

∂n(∆ϕ)ξ︸ ︷︷ ︸
ξ∂nKn

+
∂L
∂∂nϕ

∂n(ξ)∆ϕ =

= ∂n(ξKn) +
[
∂L
∂∂nϕ

∆ϕ−Kn

]
∂n(ξ) = J n∂n(ξ) +O(∂)

where J n is the conserved current of the symmetry transformation and hence the su-
percurrent.

We will use the second method7, so we have to vary the Lagrangian density (5.12) by the
supersymmetry transformations of the fields

δξL =δξ

{
− r

ρ2

[
Dmφ

†Dmφ+ iψ̄γm
(
Dm − 2

φ†Dmφ

ρ

)
ψ +

1
2ρ2

ψψψ̄ψ̄
]}

,

where the supersymmetry transformations are given by:

δξ+ξ̄φ =
√

2ξψ δξ+ξ̄ψ = i
√

2σmξ̄Dmφ+ 2
φ†

ρ

√
2(ξψ)ψ (5.19a)

δξ+ξ̄φ
† =
√

2ξ̄ψ̄ δξ+ξ̄ψ̄ = −i
√

2ξσmDmφ
† + 2

φ

ρ

√
2(ξ̄ψ̄)ψ̄ (5.19b)

After a lengthy calculation, the details of which are given in appendix B, we find

δξL =∂mξJm +O(∂)

with the supercurrent Jm given by:

Jm =
√

2r
ρ2

Dnφ
†σnγmψ (5.20)

Finally one obtains the supercharges by integrating the time–component of the supercurrent
J 0 over the space dimension(s)

Q =
∫
dvJ 0 . (5.21)

The dimensional reduction will be done in the next subsection together with the central
charge.

7The second method is preferable since it also allows to check the invariance of the Lagrangian density
under the supersymmetry transformations.
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5.2.3 Central charges

Looking again at the algebra (3.1) we see that the central charges are given by the anti–
commutators of the supercharges. Thus we have to calculate the supersymmetry transfor-
mations of the supercurrent to get the current of the central charge from which we find that

δξJm =0 (5.22a)

δξ̄Jm =
2r
ρ2
ξ̄Dnψ̄σ

nγmψ +
2r
ρ2
Dnφ

†σnγm
(
iσlξ̄Dlφ−

2
ρ
ξ̄ψ̄φψ

)
. (5.22b)

The outcome of (5.22a) is clear because we are still in four dimensions. Hence, we have aN = 1
supersymmetry8 which cannot have a central charge. However the RHS of equation (5.22b)
does not look like the energy–momentum density Tnm. Hence the algebra does not close off
shell but on shell (for the details see again appendix B):

δξ̄Jm = 2i
{
T ′mnσ

n − σnAnJm + /∂Λm + σkΞkm
}
ξ̄ (5.23)

with

Λm =
ir

2ρ2
ψ̄γmψ , Ξkm =

ir

ρ2
εnmlkDnφ

†Dlφ (5.24)

and the U(1)–current Jm which is given by equation (5.18). Since [ξQ, ·] = iδξ we only have
to multiply (5.23) by i and integrate its time–component over the space dimension(s) to get
the following expression of the super algebra:

{Q, Q̄} = 2σn
∫
dv
(
T ′0n −AnJ0 + ∂nΛ0 + ηnkΞk0

)
= 2σnPn

Our next step is the dimensional reduction of the previous relation so we rename/redefine
the momenta

2P1 =: Z1 and 2P2 =: Z2

since they cease to be momenta in two dimensions. Now we go from 3 + 1 dimensions (indes
m) down to ”1 + ε+ 1” dimensions (index µ). Without loss of generality we again choose our
coordinate system in such a way that the second dimension is ”trivial” and get

Znσn =2
∫
dv
(
T ′02σ

2 − σnAnJ0 + /∂Λ0 + σkΞk0
)

=

=2
∫
dv
(
T ′02σ

2 − σ1 |m|J0 + σk∂k

(
ir

2ρ2
ψ̄γ0ψ

)
+ ∂2

(
σ3
r |m|
ρ

)
− ∂3

(
σ2
r |m|
ρ

)
+

+ σ1 ir

ρ2

(
∂3φ

†∂2φ− ∂2φ
†∂3φ

))
with n = 1, 2 (5.25)

For the classical theory we need only the limit ε→ 0 in which the central charges reduce to

Znσn = 2
∫
dv
(
− σ1 |m|J0 − σ2 ∂3

r |m|
ρ

)
= εZ ′ with n = 1, 2 (5.26)

as is expected for a N = 2 supersymmetry algebra.
8This N = 1 supersymmetry in four dimensions will become a N = 2 supersymmetry in two dimensions.
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5.2.4 Classical BPS saturation

Starting from equation (5.8a) and replacing the fields w and φ, respectively, by the real fields
ϕ and α via the coordinate transformation

φ = tan
(ϕ

2

)
eiα (5.27)

which is a one–to–one mapping of CP 1 onto S2, we find

L(0) = −r
4

[
∂µϕ∂

µϕ+
(
|m|2 + ∂µα∂

µα
)

sin2(ϕ)
]

+
θ

4π
εµν∂µ(cosϕ) ∂να . (5.28)

Now we use the methods of section 2.3 to derive the Bogomol’yni bound. First we write down
the Hamiltonian for static solutions

H[φst] = −L[φst] =
r

4

∫
dz
[
(ϕ′)2 +

(
|m|2 + (α′)2

)
sin2(ϕ)

]
= Mcl (5.29)

where the last term of (5.28) vanishes for static solutions. Then we reorganise the Lagrangian
such that

Mcl =
r

4

∫
dz
[
~ξ2 + ~U2

]
where ~ξ =

(
α′ sin(ϕ)

ϕ′

)
and ~U =

(
0

|m| sin(ϕ)

)
. Afterwards we go through the remaining steps

of section 2.3 to get the following Bogomol’yni equation(s)

~ξ = ±~U ⇒ ∂ϕ

∂z
= ± |m| sinϕ and

∂α

∂z
= 0 . (5.30)

The solution to these equations

ϕK(z) = 2 arctan
(
e|m|(z−z0)

)
αK = const (5.31)

is a (anti–)kink like soliton that connects the two vacua of the theory, see Figure 5.2.
To get the classical mass of this soliton we have to insert φK(x) into (5.29) and find

Mcl = r |m| (5.32)

Having now the soliton solution and its classical mass we want to end this section by in-
vestigating whether this CP 1–kink causes multiplet shortening. As in section 3.2 we have
to calculate Z in the presence of a soliton. Thus we put φK(x) into (5.26) and after that
compare the result

Z = 2r |m| (5.33)

with Mcl. The saturation of the equation M2 ≥ 1
4Z

2 implies that we get BPS–states and a
shortened supersymmetry representation, respectively, at least at classical level9.

9At the end of the next section we will see that this is also true to one loop order.
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α

Vacuum II

Vacuum I

Soliton

Figure 5.2: The CP 1–soliton mapped to the sphere. (The two different vacua are situated on
the south and north pole, respectively)

5.3 Quantum theory of the supersymmetric CP1 σ–model

In this section we will consider how quantum corrections affect the analysis of the classical
theory given above, especially the BPS saturation. To deal with the non-trivial background
we must first renormalise the quantum theory in a flat background. (For the details of this
procedure we refer to the standard references, e.g. [19].) This will be the task of the following.
Then we will apply this theory with all its renormalisation constants to the solitonic sector.

5.3.1 Flat background

Rescaling all the bosonic and fermionic fields in the Lagrangian (5.8), e.g. φ = 1√
r
φ̃ and

expanding 1
ρ we find

L(0) =−
[
∂µ

¯̃
φ∂µφ̃+ |m|2

∣∣∣φ̃∣∣∣2 +
g2θ

i2π
εµν∂µ

¯̃
φ∂ν φ̃

]( ∞∑
n=0

(−1)ng2n
∣∣∣φ̃∣∣∣2n)2

L(2) =− i
[ ¯̃
ψγµ

←→
∂µ

2 ψ̃ + i
¯̃
ψm2×2 ψ̃

]( ∞∑
n=0

(−1)ng2n
∣∣∣φ̃∣∣∣2n)2

+

+ ig2
[ ¯̃
ψγµψ̃ ( ¯̃

φ
←→
∂µ φ̃) + i2 ¯̃

ψm2×2 ψ̃
¯̃
φφ̃
]( ∞∑

n=0

(−1)ng2n
∣∣∣φ̃∣∣∣2n)3

L(4) =− g2

2
ψ̃ψ̃

¯̃
ψ

¯̃
ψ

( ∞∑
n=0

(−1)ng2n
∣∣∣φ̃∣∣∣2n)4

(5.34)

where we have replaced 1
r by g2. With this redefinition of the fields we can now organise

the perturbation theory. We decompose the Lagrangian density into its free part and its
perturbation part up to O(g2) since we are only interested in its lowest loop corrections. In
our case it does not make sense to look at higher corrections in the flat background because
with the stationary phase approximation which we will apply in the solitonic background we
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can only handle one loop order corrections. But in the literatur there are also examples where
higher loop calculations have been performed (see e.g. [25] and the references therein).

From equation (5.34) we may read off the free part of the Lagrangian

L(0)
free =−

[
∂µ

¯̃
φ∂µφ̃+ |m|2 ¯̃

φφ̃
]

(5.35a)

L(2)
free =− i

[
1
2

¯̃
ψ
←→
/∂µ ψ̃ + i

¯̃
ψm2×2 ψ̃

]
(5.35b)

and the interaction part up to O(g2)

L(0)
O(g2)

=2g2 ¯̃
φφ̃[∂µ

¯̃
φ∂µφ̃+ |m|2 ¯̃

φφ̃] (5.36a)

L(2)
O(g2)

=2g2 ¯̃
φφ̃i
[

1
2

¯̃
ψ
←→
/∂µ ψ̃ + i

¯̃
ψm2×2 ψ̃

]
+

+ ig2
[ ¯̃
ψγµψ̃ ( ¯̃

φ
←→
∂µ φ̃) + i2 ¯̃

ψm2×2 ψ̃
¯̃
φφ̃
]

(5.36b)

L(4)
O(g2)

=− g2

2
ψ̃ψ̃

¯̃
ψ

¯̃
ψ . (5.36c)

Now we are ready to begin with the perturbation theory. In the following we omit the
tildes. As usual we derive first the free propagators and the vertices of the interaction and
afterwards we calculate the ”full” propagator up to one loop order. That means we are working
out its loop corrections. As we will see these loop corrections are divergent, so we have to
regularise the integrals10 to handle them systematically and finally get rid of divergences by
renormalising the Lagrangian density11. So let us start with the propagators.

5.3.1.1 Propagators:

From equation (5.35a) we find the following EOM for the free bosonic field

(∂µ∂µ − |m|2)φ = 0 .

Using the definition that the propagator is up to a factor i the Green’s function12 of the
differential operator that is given by the EOM we can immediately write down the Fourier
transform of the free boson propagator:

DF (p) =
i

p2 + |m|2 + iε
. (5.37)

We do now the same for the fermions. From equation (5.35b) we get the EOM

(−i/∂ +m2×2)ψ = 0

and the corresponding free fermion propagator

SF (p) =
−i

/p−m2×2
= −i σ

µpµ −m2×2

p2 + |m|2 + iε
. (5.38)

where we used that {σν , γµ} = {σν , σ̄µ} = −2ηνµ. Next we look at the (interaction) vertices.
10This done by introducing a regularisation parameter on which the integral continuously depends, e.g. ξ,

so that the integral is finite ∀ ξ 6= ξ0 and in the limit ξ → ξ0 it becomes the unparametrised one
11i.e. one introduces proper counter terms which are dependent on the regularisation parameter so that in

thelimit ξ → ξ0 they cancel the singularities of the loop–integrals
12We use the Feynman contour integral so that we get the factor iε in the denominators of the Fourier

transformed Green’s functions.
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= i
p2+|m|2+iε

= −iσ
νpν−m2×2

p2+|m|2+iε

= i2g2(4 |m|2 + (p4µ + p2µ)(p3
µ + p1

µ))

= −ig2((/p2
+ /p1

) + 4m2×2 + (/p4
+ /p3

))

= −2ig2εαγεβ̇δ̇

Table 5.1: The Feynman rules of the CP 1–theory up to 4–vertex interactions

5.3.1.2 Vertices (O(g2)):

From the interaction part of the Lagrangian one can derive all vertices in momentum space
by using the following formula

Vφ(k1)...φ(ki) φ̄(k′1)...φ̄(k′j)ψ(p1)...ψ(pl) ψ̄(p′1)...ψ̄(p′n) = (2π)(i+j+l+n)δ(k1 + · · · − k′1 · · ·+ p1 · · · − p′n)·

· i
δ(i+j+l+n)Lint

(
φ(x), φ̄(x), ψ(x), ψ̄(x)

)
δφ(k1) . . . δφ(ki) δφ̄(k1) . . . δφ̄(kj) δψ(k1) . . . δψ(kl) δψ̄(k1)δ . . . ψ̄(kn)

(5.39)

where the φ(k)’s and ψ(p)’s are the Fourier transformed fields.

This equation may now easily be applied to (5.36a) and one finds the following vertex

= i2g2(4 |m|2 + (p4µ + p2µ)(p3
µ + p1

µ)) . (5.40)

And analogously, from (5.36b) and (5.36c) we get

= −ig2((/p2
+ /p1

) + 4m2×2 + (/p4
+ /p3

)) and (5.41)

= −2ig2εαγεβ̇δ̇ (5.42)

where we have omitted all δ–functions.
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5.3.1.3 Loops and regularisation

With the Feynman rules, summarised in Table 5.1, we can calculate the one loop corrections
of the propagator. For the bosons we find the following:

+ =
∫

d2p

(2π)2
−2g2(4 |m|2 + (kµ + pµ)(kµ + pµ))

p2 + |m|2
−

−
∫

d2p

(2π)2
tr
[
σνpν −m2×2

p2 + |m|2
g2
(
2/p+ 4m2×2 + 2/k

)]
=

=− 8g2 |m|2
∫

d2p

(2π)2
1

p2 + |m|2
− 2g2

∫
d2p

(2π)2
p2

p2 + |m|2
− 2g2k2

∫
d2p

(2π)2
1

p2 + |m|2
−

− 2g2

∫
d2p

(2π)2
tr(σνpν/p)

p2 + |m|2
+ 4g2

∫
d2p

(2π)2
tr(|m|22×2)

p2 + |m|2
.

Now we extend the numerator of the second and fourth integral with |m|2 − |m|2 and apply
dimensional regularisation13. In the end of this straightforward calculation we obtain

+ = −i2g2(k2 + |m|2)

[
π1+ ε

2

(2π)2+ε
(|m|2)

ε
2 Γ
(
− ε

2

)]
(5.44)

where ε is the regularisation parameter. In our case it’s an extra dimension since we are using
dimensional regularisation. Notice that all the quadratic divergence contributions which one
would expect from a naive power counting vanish. This would not have been the case if we
had used cutoff regularisation.

For the loop corrections to the fermion propagator we find

+ =
∫

d2p

(2π)2
1

p2 + |m|2
g2(2/k + 4m2×2 + 2/p)−

− 2g2

∫
d2p

(2π)2
εαγεβ̇δ̇

[
σµpµ −m2×2

p2 + |m|2

]
αβ̇

= −2g2(/k +m2×2)
∫

d2p

(2π)2
1

p2 + |m|2
=

= −2ig2(/k +m2×2)

[
π1+ ε

2

(2π)2+ε
(|m|2)

ε
2 Γ
(
− ε

2

)]
. (5.45)

Again we get only a logarithmic divergence. The terms which could have led to a linear
divergence vanish because the integral of an antisymmetric function over a symmetric interval
is zero.

13A very useful equation for dimensional regularisation is

Z
ddlE
(2π)d

1

(l2E + ∆)n
=

1

(4π)d/2

Γ
`
n− d

2

´
Γ(n)

„
1

∆

«n− d
2

(5.43)

where lE is Euclidean momentum. From this equation one immediately sees that scaleless integrals vanish.
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5.3.1.4 Renormalisation

The divergences of the loops can be removed by renormalising the bare constants of the
Lagrangian and inserting counter terms into the Lagrangian, respectively. To do this in a
consistent way we have to fix the renormalisation conditions.

But first let us define something that we need to write down the renormalisation condi-
tions. A one–particle irreducible (1PI) diagram is any diagram that cannot be split in two by
removing a single line. Furthermore −iΣ(/p)

1PI =− iΣ(/p) (5.46)

denotes the sum of all 1PI diagrams with two external fermion lines and −iΞ(p) its bosonic
counterpart.

1PI =− iΞ(p) (5.47)

5.3.1.4.1 Renormalisation conditions: We use on shell renormalisation. Thus we have
the following two renormalisation conditions:

Ξ(p2 = |m|2) = 0 (5.48a)
Σ(/p = |m|) = 0 (5.48b)

To achieve this we renormalise r0, the first parameter of the theory.

r0 → r = r0 + δ 1

g2
0

Hence we get new terms in the Lagrangian which give two new Feynman rules:

=iδ 1

g2
0

(k2 +m2) (5.49a)

=iδ 1

g2
0

(/k +m2×2) (5.49b)

Thus the conditions (5.48a) and (5.48b) become up to one loop order:

+ + =0

+ + =0

From this now one can fix the value of δ 1

g2
0

which is given by

δ 1

g2
0

= −2

[
π1+ ε

2

(2π)2+ε
(|m|2)

ε
2 Γ
(
− ε

2

)]
. (5.50)

So we have derived the quantum theory in the flat background up to one loop order.
The result of the renormalisation of the coupling constant is well known in the literature

since the (supersymmetric) CP 1 σ–model is a toy model to study asymptotic freedom (see
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e.g. reference [26] and chapter 13 of reference [19]). From (5.50) it is quite difficult to see
that the supersymmetric CP 1 σ–model exhibits asymptotic freedom. But if we had used
Pauli–Villars renormalisation and µ as the subtraction point we would have ended up with
the following formula for the renormalised coupling constant g(µ) (see [26])

1
g2(µ)

=
1
g2
0

− 1
2π

ln
(
MUV

µ

)
, (5.51)

where MUV is the ultra-violet regulator of the Pauli–Villars regularisation. Now looking at
(5.51) we see that the model is asymptotically free.

5.3.2 Solitonic background

In this subsection we will derive the quantum corrections to the mass and central charge.
We do this by using the stationary phase approximation (SPA) (see also section 4.1.2), that
is we replace in the appropriate operators the field operators by their classical values plus
the operator valued fluctuations around the non–trivial background. Having the relevant
expressions in their expanded form we can use index techniques to calculate their vacuum
expectation value (VEV). As we will see these VEV are also divergent thus we use again
dimensional regularisation to obtain finite expressions. But to do this in a consistent way
we need all expressions in 1 + ε + 1 dimension as in section 5.2.1. We begin with the most
fundamental, the Lagrangian.

5.3.2.1 The bosonic Lagrangian

Since we use SPA we only treat quadratic fluctuations. The relevant bosonic part of the
Lagrangian density (5.17) is thus given by

L(0) = − r

ρ2
(∂µφ̄∂µφ+ |m|2|φ|2) (5.52)

where ρ = 1 + |φ|2 and the Greek indices run over t, y and z. To get a more convenient
Lagrangian we replace the field φ by ~n by making use of the following transformation (see
also [5])

φ =
n1 + in2

1− n3
with ~n · ~n = 1 ⇒ 1

ρ2
=

1
4

(1− n3)2

which maps the target space of the fields from CP 1 to O(3). Thus the Lagrangian becomes

L(0) =− r

4
(
∂µn · ∂µn+ |m|2 (n2

1 + n2
2)︸ ︷︷ ︸

=1−n2
3

)
.

Since we want to expand the fields around their solitonic values we also need the CP 1–
kink (5.31) in these new coordinates

ncl = (sin(ϕK) cos(αK), sin(ϕK) sin(αK),− cos(ϕK)) (5.53)
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where ϕK = 2 arctan
(
e|m|(z−z0)

)
and αk = const. Now we need a decomposition of the fields

into the solitonic parts and the fluctuations which still fulfils the constraint ~n ·~n = 1, at least
to lowest order. Such a decomposition is given by

n =ncl + δn = ncl + u1êθ (π − ϕK , αK) + u2êϕ (π − ϕK , αK) (5.54)

where êθ and êϕ are unit vectors of the spherical coordinate system. With this and equa-
tion (4.15) we find the following expansion of the Lagrangian density:

L(0) =L(0)[ϕK , αK ]− r

4
(u1, u2)︸ ︷︷ ︸

=~uT

·MB · ~u+ ∂µB +O(~u3) (5.55)

where B stands for the boundary terms. Without loss of generality we set αK to zero. To get
the concrete form of the matrix MB we need some relations for the fluctuations.

δn = (u1 cos(ϕK), u2, u1 sin(ϕK))

∂zδn = (∂zu1 cos(ϕ)− u1|m| sin2 ϕ, ∂zu2, ∂zu1 sin(ϕ) + u1|m| sinϕ cosϕ)

−∂tδn · ∂tδn+ ∂yδn · ∂yδn+ ∂zδn · ∂zδn+ |m|2(δn2
1 + δn2

2) = ui(−∂µ∂µ + |m|2)ui+
+ ∂µ(ui ∂µui)

Using these equations we easily find

MB =
(
−∂µ∂µ + |m|2 0

0 −∂µ∂µ + |m|2
)
,

which is quite different to equation (72) of reference [5]. So our result corrects the calculation
done in [5].

5.3.2.2 The fermionic Lagrangian

The relevant fermionic part of the Lagrangian density (5.17) is given by

L(2) =− r

ρ2

[
iψ̄γµ

(←→∂µ
2
− 1
ρ

(φ†
←→
∂µφ)

)
ψ − ψ̄m2×2ψ(1− 2φ†φ

ρ
)
]
. (5.56)

We again expand the Lagrangian into its classical value and its fluctuation part. With

ψ = ψ φ = φk + δφ (5.57)

we find

L(2) =− rψ̄MFψ +O(ô3) (5.58)

where ô represents the operators ψ and δφ. Using

φ†K
←→
∂µφK = 0 and 1− 2φ†φ

ρ
= cos(ϕK) (5.59)

we get

MF =

 −i
←→
∂t

2ρ2cl
− i
←→
∂ z

2ρ2cl
−
←→
∂y

2ρ2cl
− 1

ρ2cl
|m| cos(ϕ)

←→
∂y

2ρ2cl
− 1

ρ2cl
|m| cos(ϕ) −i

←→
∂t

2ρ2cl
+ i
←→
∂ z

2ρ2cl

 .
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Now we perform two transformations to get a more convenient form of the matrix MF .
First we replace ψ by ρcl√

2
ψ′. Hence we get rid of the z-dependent factor 1

ρ2cl
. Then we rotate

the spinors

ψ′′ = exp(−iπ
4
σ̄1)ψ′ . (5.60)

Thus the Lagrangian density becomes

LF = −rψ̄′′MFψ
′′ MF =

1
2

(
−i(

←→
∂t
2 +

←→
∂y

2 )
←→
∂z
2 − |m| cos(ϕK)

−
←→
∂z
2 − |m| cos(ϕK) −i(

←→
∂t
2 −

←→
∂y

2 )

)
. (5.61)

And as a last step we introduce the differential operators

D = ∂z + |m| cos(ϕK) and DT = −∂z + |m| cos(ϕK) (5.62)

which fulfil the following relations

DDT = −∂2
z + cos(2ϕK)|m|2 and DTD = −∂2

z + |m|2 , (5.63)

to get a more compact form for MF
14

MF =
1
2

(
−i(∂t + ∂y) −DT

−D −i(∂t − ∂y)

)
Having derived the stationary phase approximation of the Lagrangian density we tackle

the energy momentum tensor.

5.3.2.3 The energy–momentum tensor

The energy–momentum tensor is the current of the translational symmetry of the Lagrangian.
With the methods of appendix A.3 we can get its generic form for a flat space–time

Tµν =
∂L

∂∂µϕi
∂νϕ

i − ηµνL (5.64)

where the ϕi’s stand for all the fields on which the Lagrangian depends. For the energy
density we find the following fluctuation expansion:

T00 = T cl
00(φK) +

r

4

[
(u̇iu̇i + ui,xui,x + |m|2uiui)−

r

2
ψ̄

(
i∂y DT

D −i∂y

)
ψ

]
(5.65)

where the term from the fluctuations is denoted as T (1)
00 . If we use the EOM of the fluctuation

which can be derived from the Lagrangians (5.55) and (5.58) (see 5.3.2.5) we can rewrite it a
bit and find that

T
(1)
00 =

r

2

[
u̇iu̇i +

i

2
ψ̄
←→
∂ tψ

]
. (5.66)

To get the energy itself we only have to integrate T00 over the whole space.

E =
∫
dv T00 (5.67)

The last quantity which we calculate is the central charge.
14Since we are only interested in small fluctuations and not in global objects the final matrix MF is equal

modulo total derivatives to the previous MF .
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5.3.2.4 The central charge

Since the expansion of the central charge is a bit lenghty we will only give the result for
each term (the explicit calculations are given in appendix B.1.4.1). We start with the first
expression of 5.25 and then give the others:∫

dz T ′02 =− r

2

∫
dz
[
∂2ui∂

0ui + iψ̄′γ0∂2ψ
′ +O(ô3)

]
(5.68a)∫

dz J0 =
∫
dz
[
cos(φK)

(
ε3ijui∂0uj + ψ̄′γ0ψ′

)
+O(ô3)

]
(5.68b)∫

dz ∂k

(
ir

2ρ2
ψ̄γ0ψ

)
=
∫
dz ∂k

(
ir

4
ψ̄′γ0ψ′

)
(5.68c)∫

dz ∂2

(
r |m|
ρ

)
=− r |m|

2

∫
dz sin(φk)∂2u1 (5.68d)∫

dz ∂2

(
r |m|
ρ

)
=− r |m| 1

ρcl

∣∣∣∞
−∞

+
r |m|

2
uiui (5.68e)

where the ui and ψ′ are the bosonic and fermionic fluctuations from the previous section.

5.3.2.5 Quantum fluctuations with index techniques

In this section we finally want to calculate the quantum corrections of the mass and the
central charge. These corrections are nothing more than the VEV of the operators we just
derived. Supersymmetry will help us work out these VEV’s since we can use techniques of
index theorem calculations as we will see.

Using the Lagrangian’s (5.55) and (5.58) we get the EOM of the fluctuations ui and ψ.

Fermions: Bosons:
−DTψ− = i(∂t + ∂y)ψ+

−Dψ+ = i(∂t − ∂y)ψ−
(∂2
x − |m|2)ui = (∂2

t − ∂2
y)ui

(5.69)

Since the commutator [D, ∂t] vanishes, we can iterate the fermionic part and get the following
equations:

DTDψ+ = −(∂2
t − ∂2

y)ψ+ DDTψ− = −(∂2
t − ∂2

y)ψ− ; (5.70)

From (5.63) we see that the equation for ψ+ is the same as for u1 and u2.
Now we have all ingredients to follow step by step reference [21] to get the quantum fluc-
tuations in the soliton background. But first we briefly summarise the points which we will
process afterwards:

1. We make a separation ansatz for ψ± and ui so that the (iterated) EOM become eigen-
value equations.

2. We write down the the normalised eigen–mode expansion.

3. We insert the eigen–mode representation of ψ and ui into the operators for the mass
and central charge correction and calculate their VEV’s. We will find that some of them
are functions of the mode density difference.
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4. We will use index techniques to get this mode density difference ∆ρ (see references
[10, 27] for details on the calculations and reference [15] for index theorems in general).

ad 1. As in section 4.1.5 we separate off the time and y–dependence. To do this we use the
following ansatz:

ui(z, y, t) =
∫

dεl

(2π)ε/2
∑∫

ui k(z) exp(i(ωt− ly)) (5.71a)

ψ±(z, y, t) =
∫

dεl

(2π)ε/2
∑∫

χ±k (z) exp(i(ωt− ly)) (5.71b)

Putting this ansatz into (5.69) and (5.70), respectively, we get

DTDχ+
k = (ω2 − l2)χ+

k DTDui k = (ω2 − l2)ui k DDTχ−k = (ω2 − l2)χ−k . (5.72)

ad 2. Based on the fact that one may in principle solve these eigenvalue equations15 we can
write down the explicit mode representation for ψ

ψ(z, y, t) =
∫

dεl

(2π)ε/2
∑∫ dk√

2π
1√
2ω

[
bke
−i(ωt−ly)

(√
ω + lχ−k√
ω − lχ+

k

)
+

+ d†ke
i(ωt−ly)

( √
ω + lχ−k

−
√
ω − lχ+

k

)]
+ zero modes (5.73)

where the d†k’s and bk’s are the fermionic creation and annihilation operators (bk|0〉 =
dk|0〉 = ak|0〉 = 0), respectively. And analogously, we find for ui

ui(z, y, t) =
∫

dεl

(2π)ε/2
∑∫ dk√

2π
1√
2ω

(ai ke−i(ωt−ly) ui k︸︷︷︸
=χ+

k

+h.c.) + zero modes (5.74)

with the bosonic annihilation operators ai k.

ad 3. First we work out the energy corrections. We insert the results of equation (5.73)
and (5.74) into (5.66) and use the following commutator relations16

{bk, b†k′} = 2
r δ(k − k

′) {dk, d†k′} = 2
r δ(k − k

′) [a,a
†
k′ ] = 2

r δ(k − k
′) (5.75)

we get:

M (1)bulk = 〈T00〉 = M
(1)bulk
b +M

(1)bulk
f =

=
∫
dz

∫
dεl

(2π)ε

∫
dk

2π
ω

2
|ui k|2 −

∫
dz

∫
dεl

(2π)ε

∫
dk

2π
ω

2

[∣∣χ+
k

∣∣2 +
∣∣χ−k ∣∣2] =

=
∫
dz

∫
dεl

(2π)ε

∫
dk

2π
ω

2

[∣∣χ+
k

∣∣2 (z)−
∣∣χ−k ∣∣2 (z)

]
15Due to supersymmetry we do not have to solve them.
16From the canonical commutator relations follow that the energy operator has to be Ê =

P
k ωk(N̂k + 1

2
).

So we get the normalisation factor 2
r

for the (anti)commutation relations of the Fourier components.
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where we used that ui k = χ+
k . Defining the spectral density of M (1) bulk and mode

density difference, respectively, by

∆ρ(k2) :=
∫
dz
[∣∣χ+

k

∣∣2 (z)−
∣∣χ−k ∣∣2 (z)

]
(5.76)

we can write the previous result in a more compact form:

M (1) bulk =
∫

dεl

(2π)ε

∫
dk

2π
ω

2
∆ρ(k2) (5.77)

Now we come to the central charge. The calculations are again much longer than for
the mass so we present only the results and refer to appendix B.1.4.1 for the details.〈∫

dz T ′02

〉
=
∫
dz

∫
dk

2π

∫
dεl

(2π)ε
l2

2ω

[∣∣χ+
k

∣∣2 (z)−
∣∣χ−k ∣∣2 (z)

]
(5.78a)〈∫

dz J0

〉
= 0 (5.78b)〈∫

dz ∂k

(
ir

4
ψ̄′γ0ψ′

)〉
= 0 (5.78c)

− r |m|
2

〈∫
dz sin(φk)∂2u1

〉
= 0 (5.78d)

r |m|
2
〈uiui〉 = |m| I (5.78e)〈∫

dz
ir

ρ2

(
∂3φ

†∂2φ− ∂2φ
†∂3φ

)〉
= 0 (5.78f)

where I =
∫

d1+εk
(2π)1+ε

1√
k2+|m|2

. Using the spectral density of M (1) bulk we find that

〈Z〉 = Zcl + 2
[∫

dk

2π

∫
dεl

(2π)ε
l2

2ω
∆ρ(k2)− |m| I

]
(5.79)

where Zcl is given by equation (5.33).

ad 4. To calculate the mode density difference ∆ρ(k2) we define the quantity J (M2)

J (M2) := Tr
(

M2

DTD +M2
− M2

DDT +M2

)
(5.80)

which in the limit M2 → 0 gives the index of the operator D. Now we use the fact that
DTD and DDT exhibit the same non-zero eigenvalues. Hence, we find

J (M2)− J (0) = J∆(M2) =
∫
dk

2π
M2

ω2 +M2
∆ρ(k) . (5.81)

Introducing the operator

/D := iσ2

(
D 0
0 DT

)
=
(

0 DT

−D 0

)
with /D /D =

(
−DTD 0

0 −DDT

)
(5.82)
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we can rewrite J (M2) as

J (M2) = −Tr
(

M2

−/D2 +M2
γ5

)
with γ5 = −σ3 (5.83)

or, more explicitly, if we write out Tr

J (M2) = −
∫
dz tr

[〈
z

∣∣∣∣ M2

−/D2 +M2

∣∣∣∣ z〉 γ5

]
=
∫
dz J(z, z,M2) (5.84)

where J(z, z′,M2) is the kernel of the operator tr
[

M2

− /D2+M2 γ
5
]
.

Using that (−/D + M)(/D + M) = −/D2 + M2 and the fact that the trace of an odd
number of Pauli matrices vanishes, we can rewrite (5.84) slightly. We find

J(x, y,M2) = −tr
[
γ5

〈
x

∣∣∣∣ M

/D +M

∣∣∣∣ y〉] = −Mtr
[
γ5∆(x, y)

]
(5.85)

where we have introduced the propagator

∆(x, y) =
〈
x

∣∣∣∣ 1
/D +M

∣∣∣∣ y〉 . (5.86)

From the following identities[
/D(x) +M

]
∆(x, y) =δ(x− y) (5.87a)

∆(x, y)
[←−
/D (y) +M

]
=δ(x− y) (5.87b)

one deduces

J(x, y,M2) =
1
2

(
∂

∂x
+

∂

∂y

)
tr[γ5σ1∆(x, y)]− 1

2
tr[γ5(K(x)−K(y))∆(x, y)]

where K(x) = iσ2 |m| cos(φK). For the limit x → y the last term of the previous
equation vanishes. Putting this into (5.84) we find

J (M2) =
∫
dz J(z, z,M2) = 1

2

∫
dz

∂

∂z
tr
[
γ5σ1∆(z, z)

]
= 1

2tr
[
γ5σ1∆(z, z)

] ∣∣∣∞
−∞

=

=1
2

∫
dk

2π
tr
[
γ5σ1〈z|k〉〈k| 1

/D +M
|z〉
] ∣∣∣∣∣
∞

−∞

=

=1
2

∫
dk

2π
tr
[
γ5σ1 1

iσ1k + iσ2 |m| cos(2ϕ) +M

] ∣∣∣∣∣
∞

−∞

=

=1
2

∫
dk

2π
tr
[
γ5σ1 iσ

1k + iσ2 |m| cos(2ϕ)−M
−k2 − |m|2 cos2(2ϕ)−M2

] ∣∣∣∣∣
∞

−∞

=

= |m|
∫
dk

π

1
k2 + |m|2 +M2

=
|m|√

|m|2 +M2

.



45 5.3 Quantum theory of the supersymmetric CP1 σ–model

From equation (5.81) we immediately see that

|m|√
|m|2 +M2

− 1 =
∫
dk

2π
M2

ω2 +M2
∆ρ(k) . (5.88)

One can solve this integral equation by a Laplace transform, and the result is

∆ρ(k2) =
−2 |m|
k2 + |m|2

. (5.89)

Having derived the spectral density of the mass operator we can put it back into (5.77)
and get

M (1)bulk =
∫

dk

(2π)1+ε
ω

2
∆ρ =

∫
dkdεl

(2π)1+ε

√
k2 + l2 + |m|2

2
−2 |m|
k2 + |m|2

.

By twice using (5.43)

M (1) bulk =
∫

dk

(2π)1+ε
− |m|

k2 + |m|2
πε/2(k2 + |m|2)

ε
2
+ 1

2
Γ(− ε

2 −
1
2)

Γ(−1
2)

=

=
− |m|πε/2

(2π)1+ε
Γ(− ε

2 −
1
2)

Γ(−1
2)

∫
dk

1

(k2 + |m|2)
1
2
− ε

2

=

=
|m|πε/2

(2π)1+ε
2Γ(− ε

2 + 1
2)

(1 + ε)Γ(−1
2)
π

1
2

∣∣m2
∣∣ ε
2

Γ(−ε2 )
Γ(1

2 −
ε
2)

we find that

M (1) bulk = − |m| 1
1 + ε

I (5.90)

with I =
∫

d1+εk
(2π)1+ε

1√
k2+|m|2

. According to the end of section 4.1.4 and [21, 28] the energy of

the ground state and the mass of the CP 1–kink, respectively, is given by:

M = Mcl +M (1) bulk = r0 |m|+M (1) bulk = (r0 + δ 1

g2
0

) |m| − |m|
π

+O(ε) (5.91)

Thus, the correction of the mass is

Mcor = −|m|
π

+O(ε) . (5.92)

To get the quantum corrections of the central charge we insert (5.89) into (5.79). Working
out this equation we find that

〈Z〉 = 2
(
−|m|
π

+ r0 |m| − |m| I
)
. (5.93)

As expected we got also in the quantum regime that M2 = 1
4Z

2. Hence, the Bogomol’yni
bound saturation is preserved up to one loop order.
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5.3.3 Quantisation of the effective action

So far we have only discussed the nonzero modes of the CP 1–kink but in a semicassical
treatment we can also handle the zero modes. As the name suggests these fluctuations cost
no energy to excite, hence, these are flat directions of the potential. According to section 2.5
these flat directions parametrise the moduli space. And by making these moduli coordinates
time dependent we get an effective Lagrangian as for the kink.

So let us look at the solution of the CP 1–kink (5.31). We see that the bosonic moduli
parameter are given by z0, the kink position, and α which is the azimuth angle if we map the
CP 1 onto the sphere (see Figure 5.2). Finding the fermionic moduli parameter is a bit more
tricky. We will do it explicit along the lines of reference [10].

We break up the Lagrangian density (5.8) into kinetic minus potential terms L = T − V,
where

T =
r

ρ2

[
∂0φ

†∂0φ−
θ

r2πi
ε01∂[0φ

†∂1]φ− iψ̄γ0
(
∂0ψ −

2
ρ

(φ†∂0φ)ψ
)]

(5.94)

and

V =
r

ρ2

[
∂3φ

†∂3φ+ |m|2 φ†φ+ iψ̄γ3
(
∂3ψ −

2
ρ

(φ†∂3φ)ψ
)

− ψ̄ m2×2 ψ(1− 2φ†φ
ρ

) +
1

2ρ2
ψψψ̄ψ̄

]
(5.95)

The potential is then the integral V =
∫
dzV. For the BPS–solution (5.31) the potential is

given by

V = r |m|+
∫
dz

r

ρ2

[
iψ̄γ3

(
∂3 −

2 |m|
ρ

φ†φ
)
ψ − ψ̄ m2×2 ψ(1− 2φ†φ

ρ
)
]
, (5.96)

where we omitted the last term of (5.95). If we now can find a solution to the following Dirac
equation [

iγ3
(
∂3 −

2 |m|
ρ

φ†φ
)
−m2×2(1− 2φ†φ

ρ
)
]
ψ = 0 , (5.97)

the potential does not get changed, hence, the solution to this equation is a fermionic zero
mode. Using the facts that the supercharges commute with the Hamiltonian and that the
CP 1–kink is the solution to the bosonic counterpart of (5.97) we only have to apply the
supersymmetry transformations (5.19) on (5.31). We obtain

ψ = i
√

2 |m| (σ3 + iσ1)ξ̄ φK , (5.98)

where ξ̄ is (1, 0)T . Having this fermionic zero modes we may introduce the anticommuting
coordinates η (which parametrise the fermionic moduli space). We just multiply the ψ with η.
Putting now all our results into (5.94) we obtain the following expression for the kinetic term:

L =
Mcl

2
ż2
0 +

r

2 |m|
α̇2 +

θ

2π
α̇− ir2 |m| η̄η̇ −Mcl (5.99)

with Mcl = r |m|. To get the Hamiltonian of the system we perform a Legendre transformation
of the previous Lagrangian. The result is given by

H =
1

2Mcl
P 2
z0 +

|m|
2r

(
Pα −

θ

2π

)2

+Mcl (5.100)
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where Pz0 = Mclż0 and Pα = r
|m| α̇+ θ

2π . Since α is angular with period 2π, the eigenvalues n
of Pα are quantised in integer units, n ∈ Z, whence the spectrum looks like

Ek,n =
1

2Mcl
k2 +

|m|
2r

(
n− θ

2π

)2

+Mcl , (5.101)

where k ∈ R is the continuous impulse-eigenvalue of Pz0 . So we see that the fermionic zero
mode does not contribute to the energy spectrum of the CP 1–kink.

Bound states of minimum energy are given by those eigenstates of the Hamiltonian for
which k = 0. Hence, the states with n not very large should be BPS–states, but now they are
dyonic ones. The dyonic character can be seen from (5.18)17 which does not vanish for states
with n 6= 0 or θ 6= 0. To check the Bogomol’yni bound saturation we expand the square root√

(S + θ
2π )2 + r2 of equation (59) of reference [5] and replace −S by our quantum number n.

Comparing the result with (5.101) we find that the two expressions are equivalent, at least
up to first order. Thus the energy spectrum obtained from quantising the effective action
of the collective coordinates is a small-coupling approximation to the expected BPS energy
spectrum. However, even if their energy is only approximately correct, the multiplicity of the
bound states can be read of accurately from the effective action.

17In equation (5.18) there is no θ–contribution, since we derived the U(1)–current by a dimensional reduction.
So if one works with a θ–deformed theory one has to add it by hand.



Chapter 6

Conclusion and outlook

Prediction is very difficult,
especially about the future.

Niels Bohr

In this work we investigated classical and quantum mechanical properties of solitons of a
supersymmetric CP 1 σ–model with twisted mass term. We started from a gauge theory in
which one may implement a twisted mass term via a constant background gauge field. We
derived the CP 1 theory as the low energy limit of the gauge theory. In the literature this low
energy limit is usually denoted as Higgs phase and is one side of a duality (massive analog of
the mirror symmetry [5]). The other side of this duality is called the Higgs phase.

We then rederived our two dimensional CP 1 theory with N = 2 supersymmetry, however
in this case not from a gauge theory but from a four dimensional CP 1 theory with N = 1
supersymmetry. The reason is that we want to be sure that dimensional regularisation,
which we used in the quantum theory, does not spoil supersymmetry. We calculated the
supersymmetry algebra of the theory and found a static BPS saturating soliton, the CP 1–
kink. All this was done classically.

In the second part of chapter 5 we performed a quantum mechanical investigation of the
CP 1–kink. Starting with a flat background we calculated the counterterm and the renor-
malised coupling by making use of ordinary quantum field theory techniques. Thereafter we
discussed the solitonic sector. Due to supersymmetry and by using index techniques we could
derive the quantum corrections of the kink mass and of the central charge. We obtained an
anomalous contribution to the spectrum of the mass and the central charge (see also (5.92)
and (5.93))

Manomal = −|m|
π

Zanomal = −2
|m|
π
. (6.1)

Unlike reference [24], we derived these results by a direct calculation. In the course of the
derivation of these two anomalous contributions we also could correct an error in the literature
(see the end of section 5.3.2.1). Finally we quantised the moduli space of the CP 1–kink. This
semi-classical approach allowed us to extend the analysis of the spectrum to kinks which not
only carry topological charge but also Noether charge (called dyons).
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But as usual, there are still some open questions which have are left for future research.
In our case there are the following three points:

1. It is not clear how to include the θ–term in a dimensional reduction analysis. The
crucial element in the construction of the θ–term is the two dimensional ε–tensor which
makes this additional term (in two dimensions) a priori supersymmetric. Hence we have
to find a supersymmetric expression in 2 + ε dimensions which yields the θ–term in the
limit ε → 0. With a better understanding of the θ–term it also should become clear
why we did not obtain non–trivial monodromies in the mass as are predicted by duality
considerations.

2. How to calculate the quantum fluctuations in the presence of a dyonic soliton? For a
soliton carrying only topological charge the techniques of reference [21] are very well
suited to calculate the quantum corrections. But for dyonic states it is not yet clear how
we have to modify the tools. The primary problem in the dyonic sector is to separate
off the time dependence in the iterated fermionic EOM of the fluctuations (the dyonic
counterpart to (5.69)).
Once a solution for the dyonic CP 1–kink is found we think that by analogy we could
also derive the quantum fluctuations of dyons in four dimensional super–Yang–Mills
theories which still is an open problem in the literature.

3. According to duality considerations there should be an additional factor i
2 in the spectrum

of the mass and central charge. In section 5.1.2 we briefly presented the dual description
of the Higgs phase, the Coulomb phase. The spectrum of the mass and central charge
(see for example equation (4.2) of reference [24]) are well known in this phase and except
of the factor i

2 our results match perfectly with them. So if duality is valid it should
also appear in the low energy limit.

Recapitulating, we could show once more the power of the techniques of [21] to treat
quantum fluctuations in a very clear and consistent manner. By applying these methods
to the CP 1 σ–model we were able to present for the first time (at least to our knowledge)
a direct calculation to obtain the anomalous corrections to the mass and central charge of
the CP 1–kink (see above). In this way we gained an comprehensive understanding of the
CP 1–kink and its properties.



Appendix A

Symmetries and quantum theory

A.1 Conventions

Metric: We use the metric ηnm = (−,+, . . . ,+) throughout this work.

Pauli matrices: As a basis for the SL(2, C)–matices/group we use the following Pauli ma-
trices:

σ0 =
(
−1 0
0 −1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

) (A.1)

Spinors: With the basis (A.1) we can establish an isomorphism between the ”normal” rep-
resentation of the Lorentz group SO(1, 3) and SL(2, C)/Z2.

Pm → P ′m = Lm
jPj

σmPm → σmP ′m = S(Lij)σmPmS†(Lij)

Hence, we get a two dimensional irreducible representation over C (called Weyl spinors).
There is also a second one because (S†)−1 is not equivalent to S (@A ∈ SL(2, C) :
A(S†)−1 = SA). Thus we have the following two Weyl–representations:

ψ′α = S(Lij)αβψβ and ψ′α̇ = S(Lij)−1α̇
β̇ψ

β̇ . (A.2)

The representation with the undotted/dotted indices is labeled by (1
2 , 0)/(0, 1

2). To
raise and lower the indices we use the antisymmetric tensors εαβ and εαβ (ε12 = 1,
ε12 = ε21 = −1, ε11 = ε22 = 0)

ψα = εαβψβ ψα = εαβψ
β

We do this since because of the unimodularity of S and the skew–symmetry we only
have to contract the spinor indices to get a Lorentz invariant term, e.g. ψαψα.
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A.2 Hamiltonian formalism

The Lagrangian formalism1 yields second–order ordinary differential equation (ODE). In con-
trast, the Hamiltonian formalism gives EOM which are first order in the time derivative2 and,
more importantly, we can make the symplectic structure manifest in the Hamiltonian formal-
ism.

Suppose a Lagrangian L is given. Then the corresponding Hamiltonian is introduced
via a Legendre transformation of variables as

H(q, p) :=
∑
k

pkq̇k − L(q, q̇) , (A.3)

where q̇ is eliminated in the left hand side (LHS) in favour of p by making use of the definition
of the canonical momentum pk := ∂L(q,q̇)

∂q̇k
. For this transformation to be defined, the Jacobian

must satisfy3

det
(
∂pi
∂q̇j

)
= det

(
∂2L

∂q̇i∂q̇j

)
6= 0 . (A.4)

The space with coordinates (qk, pk) is called phase space.
Let us consider an infinitesimal change in the Hamiltonian induced by δqk and δpk,

δH =
∑
k

[
δpkq̇k −

∂L

∂qk
δqk

]
. (A.5)

It follows from this relation that
∂H

∂pk
= q̇k ,

∂H

∂qk
= − ∂L

∂qk
(A.6)

which are nothing more than the replacements of independent variables. Hamilton’s equa-
tions of motion are obtained from these equations if the Euler–Lagrange equation ( ∂L∂qk −
d
dt

∂L
∂q̇k

= 0) is employed to replace the LHS of the second equation,

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk
. (A.7)

One of the most important tools in the Hamiltonian Formalism is the Poisson bracket
(which will be replaced by the commutator in the quantum regime, see A.4.1), it is defined
as follows:

{A,B}
PB

:=
∑
k

(
∂A

∂qk

∂B

∂pk
− ∂B

∂qk

∂A

∂pk

)
, (A.8)

where A(q, p) and B(q.p) are functions defined on the phase space of the Hamiltonian H. The
Poisson bracket is a Lie bracket, namely it satisfies

{A, c1B1 + c2B2}PB
= c1 {A,B1}PB

+ c2 {A,B2}PB
linearity (A.9a)

{A,B}
PB

= −{B,A}
PB

skew–symmetry (A.9b)
{{A,B}

PB
, C}

PB
+ {{B,C}

PB
, A}

PB
+ {{C,A}

PB
, B}

PB
= 0 Jacobi identity. (A.9c)

1We assume that the reader is familiar with it, for details on it see reference [29, 30]
2Hence one may introduce flows in the phase space, see [30, 15]
3If this condition isn’t fulfilled we get constraints, for details on the treatment of constrainted (quantum)

systems see e.g. [31]
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The fundamental Poisson brackets are

{pi, pj}PB
= {qi, qj}PB

= 0 {qi, pj}PB
= δij . (A.10)

If a physical quantity depends only on the phase space coordinates, its time evolution is
expressed in terms of the Poisson bracket as

dA

dt
= {A,H}

PB
(A.11)

and consequently also the Hamiltonian EOM themselves are written as

dpk
dt

= {pk,H}PB

dqk
dt

= {qk,H}PB
. (A.12)

Since we have now derived/written down all the basics we can look for the implications of
symmetries

A.3 Symmetries

The most important consequence of a continuous4 symmetry of a physical system5 is stated
in the following theorem:

Theorem A.3.1 (Noether’s theorem) Let H(qk, pk) be a Hamiltonian which is invariant
under an infinitesimal coordinate transformation6 qk → q′k = T qQ(ε)qk = qk + εfk(q). Then

Q =
∑
k

pkfk(q) (A.13)

is conserved.

Proof One has H(qk, pk) = H(q′k, p
′
k) by definition. It follows from q′k = qk + εfk(q) that the

Jacobian associated with the coordinate change is

Λij =
∂q′i
∂qj

= δij + ε
∂fi(q)
∂qj

+O(ε2) .

The momentum transforms under this coordinate change as

pi → p′i = T pQ(ε)pi =
∑
j

pjΛ−1
ji = pi − ε

∑
j

pj
∂fj
∂qi

.

Then, it follows that

0 =H(q′j , p
′
j)−H(qj , pj) = ∂qjH εfk(q)− ∂pjH εpi∂qjfi =

=ε
[
∂qjH fk(q)− ∂pjHpi∂qjfi

]
= ε {H,Q}

PB
= ε

dQ

dt
,

which shows that Q is conserved. �

4Refers to a continuous parameter/symmetry group in contrast to a discrete symmetry (group);
5According to Herman Weyl, we denote a system as symmetric in terms of a transformation T , if we cannot

discern after the transformation if it was applied or not.
6The superscript q refers to the representation of the transformation group;
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This theorem shows that finding a conserved quantity is equivalent to finding a transformation
which leaves the Hamiltonian invariant.

A conserved quantity Q is the ‘generator’ of the transformation under discussion. In fact,

{qi, Q}PB
=
∑
k

(
∂qi
∂qk

∂Q

∂pk
− ∂qi
∂pk

∂Q

∂qk

)
=
∑

δikfk(q) = fi(q)

which shows that

δqi = εfi(q) = ε {qi, Q}PB
and similarly that δpi = ε {pi, Q}PB

= −εpj∂qifj(q) . (A.14)

Hence, the transformation for a generic function A of the canonical variables pi and qi looks
like

δA(q, p) = δqi
∂A(q, p)

qi
+ δpi

∂A(q, p)
pi

= ε {A,Q}
PB
, (A.15)

where we have used that ∂Q
pi

= {qi, Q}PB
and ∂Q

qi
= {Q, pi}PB

.
Since we now know the effects of symmetries classically we also want to see their conse-

quences in the quantum regime.

A.4 Canonical quantisation

First of all we have to ’define’ quantum theory before we can study symmetries in it, so we
have to outline here some ’rules’ on which quantum theory is based7.

A.4.1 Axioms of canonical quantisation

Given an isolated dynamical system such as a harmonic oscillator, we can construct a corre-
sponding quantum system following a set of axioms.

A1 There exists a Hilbert space H for a quantum system and the state of the system is
required to be described by a vector |ψ〉 ∈ H. In this sense, |ψ〉 is also called the state
or a state vector. Moreover, two states |ψ〉 and c |ψ〉 (c ∈ {C \ 0}) describe the same
state. The state can also be described as a ray representation8 of H.

A2 A physical quantity A in classical mechanics is replaced by a Hermitian operator Â acting
on H. The operator Â is often called an observable. The result obtained when A is
measured is one of the eigenvalues of Â.

A3 The Poisson bracket in classical mechanics is replaced by the commutator

[Â, B̂] ≡ ÂB̂ − B̂Â (A.16)

multiplied by −i/~. Units in which ~ = 1 will be employed hereafter. The fundamental
commutation relations are

[q̂i, q̂j ] = [p̂i, p̂j ] = 0 [q̂i, p̂j ] = iδij (A.17)

7For the a general treatment of quantum mechanics see the standard references [32, 33];
8For some details on ray representations see reference [34]
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Under this replacement, Hamilton’s equations of motion become

dq̂i
dt

=
1
i
[q̂i, Ĥ]

dp̂i
dt

=
1
i
[p̂i, Ĥ] . (A.18)

When a classical quantity A is independent of t explicitly, A satisfies the same equation
as Hamilton’s equation. By analogy, for Â which does not depend on t explicitly, one has
Heisenberg’s equation of motion:

dÂ

dt
=

1
i
[Â, Ĥ] (A.19)

A4 Let |ψ〉 ∈ H be an arbitrary state. Suppose one prepares many systems, each of which is
in this state. Then, observation of A in these system at time t yields random results in
general. Then the expectation value of the results is given by

〈A〉t =
〈ψ|Â(t)|ψ〉
〈ψ|ψ〉

(A.20)

A5 For any physical state |ψ〉 ∈ H, there exists an operator for which |ψ〉 is one of the
eigenstates.

A.4.2 Symmetries in quantum theory

Thus we see that the classical concept by describing particles of their trajectories is gone.
Physical systems are now classified by their state vectors and this it where symmetries come
in: If we have a transformation which leaves the Hamilton operator invariant9 we know that
its generator commutes with the Hamilton operator ([H,Q] = 0) so that we can find a basis
which simultaneously diagonalises10 both operators. Hence we can characterise the physical
state of system if we know the eigenvalues of its complete set of commuting observables
(CSCO)11. The eigenvalues of these operators are normally called ’quantum numbers’.
Example: In particle physics the Poincaré–invariance of free field theories allows one already
to do a first classification of the state by its mass (m), spin (s and σ) and three–momentum
(~p) for massive quantum field theories (QFT) and by its helicity (λ) and three–momentum
(~p) for QFT’s12.

A.4.3 Spontaneous symmetry breaking

If a symmetry of a theory (Lagrangian) is not realised in the ground state13, which means
that there is a transformation, continuously or discrete, that leaves the Lagrangian invariant

9From axiom 3 we know that we have to replace the poisson bracket by the commutator in equation A.15
to get the infinitesimal transformation TQ(ε) of an observable which depends only on the canonical variables,
thus the observable A isn’t affected by TQ(ε) if [A,Q] vanishes.

10Let B′ =
Lk

i=1 b
′
ai

be a basis which diagonalises the operator A (the ai are the eigenvalues of A). If
we have now a second operator C which commutes with A ([A,C] = 0) its representation concerning the
basis B′ will reduce to subspaces (C =

Lk
i=1 Ci) which are spanned by the subbases b′ai

(this is seen from
C |ai〉 ∈ b′ai

⇔ [A,C] = 0). Since every suboperator Ci itself is Hermitian we can diagonalise by changing the
basis B′ (B′ → B) without destroying the diagonal structure of A.

11These are clearly all the symmetry generators of the system (or observables which can be derived from
them); H for instance is the generator of time translations.

12For details see ref. [34];
13In QFT’s this state is called vacuum state or short vacuum and is denoted by |0〉;



55 A.4 Canonical quantisation

Figure A.1: The mexican hat potential

but not the ground state, one speaks of a spontaneously broken symmetry. Two examples
will make this clearer.
Example 1: The Lagrangian of the φ4–theory, see equation (2.1), is invariant under the
following discrete Z2 symmetry

φ→ Zφ = −φ , (A.21)

but not the vacuum. This can be easily seen as follows: Let the vacuum be invariant under
Z then14 〈

φ̂
〉

= 〈0|ZZφ̂ZZ |0〉 = −
〈
φ̂
〉

= 0 .

This is a contradiction to
〈
φ̂
〉

= φvac1 or φvac1 which are both non vanishing15. Hence, the
vacuum is not invariant under Z. Thus this symmetry is spontaneously broken.
Example 2: The Lagrangian for the Higgs model is equivalent to the following one

L =
∫
dnx

[
∂µφi∂

µφi − λ
4

(
φiφi − µ2

λ

)2
]

with i = 1, 2 and λ > 0 .

This Lagrangian has a continuous SO(2) symmetry which is again sponaneously broken.
Because if

R(ε)︸︷︷︸
1+iεQ

|0〉 = |0〉 ⇒ Q |0〉 = 0 ⇒ 〈φi〉 = 〈φi〉+ iε 〈0|Qφi |0〉 − iε 〈0|φiQ |0〉 =

= 〈φi + iε [φi , Q]〉 = Ri
j(ε) 〈φj〉

⇒ 〈φi〉 = 0

This is a contradiction to the assertion that φvac must not vanish which is enforced by the
mexican hat potential, see Figure A.1 and footnote 15. Thus the SO(2) symmetry is sponta-
neously broken.

14Notice that in quantum mechanics the transformation corresponding to A.21 becomes φ̂→ Zφ̂Z = −φ
15Actually one should be very careful when making the prediction that the vacuum expectation 〈φ̂〉 value

does not vanish. Since for instance in lattice QCD it happens that 〈φ̂〉 = 0 although classical it doesn’t. But
at least for an effective taction on can show that this is true (see chapter 11 of reference [19]).



Appendix B

On the CP 1 σ–model with twisted
mass

B.1 Details on some calculations

B.1.1 The equations of motion and canonical momenta

The EOM and the canonical momentum π for φ derived from the Lagrangian density (5.64):

2r∂k(φ†φ)
ρ3

Dkφ− r

ρ2
DkD

kφ− 2rφ
ρ3

[
Dkφ

†Dkφ+ iψ̄γk
(
Dk − 2

φ†Dkφ

ρ

)
ψ

]
− 2rφ

ρ5
ψψψ̄ψ̄ = 0

(B.1)

πφ = − r

ρ2

[
D0φ† − 2iψ̄γ0ψ

φ†

ρ

]
πφ† = − r

ρ2
D0φ (B.2)

And for ψ:

r

ρ2

[
iγk
(
Dk − 2

φ†Dkφ

ρ

)
ψ +

1
ρ2
ψψψ̄

]
= 0 ,

r

ρ2

[
− i
(
Dk − 2

φDkφ
†

ρ

)
ψ̄γk +

1
ρ2
ψ̄ψ̄ψ

]
= 0

(B.3)

πψ = −i r
ρ2
ψ̄γ0 (B.4)

B.1.2 The energy–momentum tensor

The energy–momentum tensor derived from (5.64) and (5.15) is given by

Tmn =− r

ρ2

[
∂nφ

†Dmφ+Dmφ†∂nφ+ iψ̄γm∂nψ − 2iψ̄γmψ
φ†∂nφ

ρ
−

− gmn
(
Dkφ

†Dkφ+ iψ̄γk
(
Dk − 2

φ†Dkφ

ρ

)
ψ +

1
2ρ2

ψψψ̄ψ̄

)]
. (B.5)
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By making use of the EOM (B.1) we get the following on shell expression for the energy–
momentum tensor:

Ton shell
m
n =− r

ρ2

[
∂nφ

†Dmφ+Dmφ†∂nφ+ iψ̄γm∂nψ − 2iψ̄γmψ
φ†∂nφ

ρ
−

− gmn
(
Dkφ

†Dkφ− 1
2ρ2

ψψψ̄ψ̄

)]
(B.6)

Since the Lagrangian from which we started was not Hermitian also the energy–momentum
tenser is not, but if we add ∂m

(
ir

2ρ2
ψ̄γmψ

)
we get a Hermitian one. This modification does

not change the supercharges.
From the new Lagrangian we obtain the following hermitian energy–momentum tensor:

T ′mn = Tmn + ∂n

(
ir

2ρ2
ψ̄γmψ

)
− gmn∂l

(
ir

2ρ2
ψ̄γlψ

)
(B.7)

T ′on shell
m
n = Ton shell

m
n + ∂n

(
ir

2ρ2
ψ̄γmψ

)
(B.8)

B.1.3 The superinvariance of the Lagrangian and the supercurrent

In the following calculation we show the invariance of (5.15) under the supersymmetry trans-
formations (5.19) and as a by-product we will derive the super charges.

δξL =δξ

{
− r

ρ2

[
Dmφ

†Dmφ+ iψ̄γm
(
Dm − 2

φ†Dmφ

ρ

)
ψ +

1
2ρ2

ψψψ̄ψ̄
]}

=

=
−2φ†

√
2ξψ

ρ
L − r

ρ2

[
Dmφ

†Dm(
√

2ξψ) +
√

2ξσnDnφ
†γm

(
Dm − 2

φ†Dmφ

ρ

)
ψ+

+ iψ̄γm
(
Dm − 2

φ†Dmφ

ρ

)
2
φ†

ρ

√
2(ξψ)ψ − 2iψ̄γmψ

(φ†Dm(
√

2ξψ)
ρ

− φ†Dmφ

ρ2
φ†
√

2ξψ
)
−

− i

ρ2
ψψ
√

2ξσnDnφ
†ψ̄
]

=

=
2r
ρ3
Dmφ

†Dmφ(φ†
√

2ξψ)− r

ρ2

[
Dmφ

†Dm(
√

2ξψ) +
√

2ξσnDnφ
†γm

(
Dm − 2

φ†Dmφ

ρ

)
ψ+

+ iψ̄γmψ∂m(2
φ†

ρ

√
2ξψ)− 2iψ̄γmψ

(∂m(φ†
√

2ξψ)−Dmφ
†√2ξψ

ρ
−

− ∂m(φ†φ)−Dmφ
†φ

ρ2
φ†
√

2ξψ
)
− i

ρ2
ψψ
√

2ξσnDnφ
†ψ̄
]

=

=
2r
ρ3
Dmφ

†Dmφ(φ†
√

2ξψ)− r

ρ2

[
Dmφ

†Dm(
√

2ξψ) +
√

2ξσnDnφ
†γm

(
Dm − 2

∂m(φ†φ)−Dm(φ†)φ︷ ︸︸ ︷
φ†Dmφ

ρ

)
ψ
]

=

=−Dmφ
†Dm

(√
2ξψ

r

ρ2

)
−
√

2ξσnDnφ
†γmDm

(
r

ρ2
ψ

)
= ∂mξ

√
2σnDnφ

†γm
r

ρ2
ψ +O(∂)
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B.1.4 The supersymmetry transformation of the supercurrent

The transformation of the supercurrent (5.20) under (5.19).

i
2r
ρ2
Dnφ

†σnγmσlξ̄Dlφ =i
2r
ρ2

[
σmDnφ

†Dnφ− σnDmφ†Dnφ− σnDnφ
†Dmφ+

+ iεnmlkσkDnφ
†Dlφ

]
2r
ρ2
ξ̄

(
Dnψ̄ −

2
ρ
φDnφ

†ψ̄

)
σnγmψ =

=
r

ρ2
ξ̄

(
i

ρ2
ψ̄ψ̄ψσn −

(
Dkψ̄ −

2
ρ
φDkφ

†ψ̄

)
γnσ

k

)
σnγmψ = − ir

ρ4
ψ̄ψ̄ψψσmξ̄−

− 2r
ρ2
σkξ̄

(
Dk −

2
ρ
φDkφ

†
)
ψ̄γmψ = − ir

ρ4
ψ̄ψ̄ψψσmξ̄ +

2r
ρ2
σkξ̄ψ̄γm

(
Dk −

2
ρ
φ†Dkφ

)
ψ−

− σkξ̄∂k
(

2r
ρ2
ψ̄γmψ

)

B.1.4.1 Vacuum expectation value of the central charge

From 5.2.3 we see that the central charge is given by :

Z ′ =
∫
dz
(
T ′02σ

2 − σ1 |m|J0 + σk∂k

(
ir

2ρ2
ψ̄γ0ψ

)
+ ∂2

(
σ3
r |m|
ρ

)
− ∂3

(
σ2
r |m|
ρ

)
+

+ σ1 ir

ρ2

(
∂3φ

†∂2φ− ∂2φ
†∂3φ

))
Now we derive for each term the vacuum expectation value:〈∫

dzT ′02

〉
=−

〈∫
dz

r

ρ2

[
∂2φ

†∂0φ+ ∂0φ†∂2φ+ iψ̄γ0∂2ψ − iψ̄γ0ψ
φ†
←→
∂2φ

ρ

]〉
=

=− r

2

〈∫
dz
[
∂2ni∂

0ni + iψ̄′γ0∂2ψ
′ + 2iψ̄′γ0ψ′∂2 ln(1− n3)

]〉
=

=− r

2

∫
dz〈∂2δni∂

0δni︸ ︷︷ ︸
∂2ui∂0ui→0

+iψ̄′γ0∂2ψ
′ +O(ô3)〉 = −r

2

∫
dz
〈
iψ̄′γ0∂2ψ

′〉 =

The integral with the term ∂2ui∂
0ui becomes zero because if we go to Fourier space integrals

over momenta with odd power vanish.

=
∫
dz

∫
dk

2π

∫
dεl

(2π)ε
l2

2ω

[∣∣χ+
k

∣∣2 (z)−
∣∣χ−k ∣∣2 (z)

]
= −

∫
dk

2π

∫
dεl

(2π)ε
l2

2ω

[
2 |m|

k2 + |m|

]
=

=− 2 |m|1+
ε
2

(4π)
1
2
+ ε

2

Γ
(
1− ε

2

)
√
π(1 + ε)

→ −|m|
π

This is the anomalous contribution to the central charge.
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The following three calculations should be self-explanatory.〈∫
dzJ0

〉
=
〈∫

dz
r

2
[
ε3ijni∂0nj − n3ψ̄

′γ0ψ′
]〉

=
〈∫

dz
r

2

[
ε3ij ncl i∂0ncl j︸ ︷︷ ︸

=0

+

+ ε3ijδni∂0δnj − ncl 3ψ̄′γ0ψ′
]

+O(ô3)
〉

= −
∫
dz
r

2
ncl 3

〈
ψ̄′γ0ψ′

〉
=

=−
∫
dz
(

ncl 3︸︷︷︸
odd func.

∫
dk

2π
1
2

[∣∣χ+
k

∣∣2 (z) +
∣∣χ−k ∣∣2 (z)

]
︸ ︷︷ ︸

even func.

)
= 0

〈∫
dz∂k

(
ir

2ρ2
ψ̄γ0ψ

)〉
=
∫
dz∂k

〈
ψ̄′γ0ψ′

〉
=
i

2

∫
dz∂k

∫
dk

2π
1
2

[∣∣χ+
k

∣∣2 (z) +
∣∣χ−k ∣∣2 (z)

]
=

=
i

2
δ3k

∫
dz∂3

∫
dk

2π
1
2

[∣∣χ+
k

∣∣2 (z) +
∣∣χ−k ∣∣2 (z)

]
=

=
i

2
δ3k

∫
dk

2π
1
2

[∣∣χ+
k

∣∣2 (z) +
∣∣χ−k ∣∣2 (z)

]∣∣∣∣∞
−∞

= 0

〈∫
dz∂2

(
r |m|
ρ

)〉
= −r |m|

2

∫
dz∂2 〈n3〉 = −r |m|

2

∫
dz∂2 (ncl 3 + 〈δn3〉) = 0

The next integral needs special care since the expansion of 1
ρ via the fluctuations ui is very

sensitive around the south pol.

〈∫
dz∂3

(
r |m|
ρ

)〉
= r |m|

〈
1
ρ

〉∣∣∣∣∞
−∞

= r |m|

〈
1

1 + n2
1+n2

2
(1−n3)2

〉∣∣∣∣∣∣
∞

−∞

=

= −r |m|

〈
1

1 + (ncl 1+δn1)2+(ncl 2+δn2)2

1−(ncl 3+δn3)2

〉∣∣∣∣∣∣
−∞

= −
〈
r |m|

(
1− uiui

2
+O(ô3)

)〉∣∣∣
−∞

=

= −r |m|
(
1− 〈u1u1〉|−∞

)
= −r |m|+ |m| I

I is given by I =
∫

d1+εk
(2π)1+ε

1√
k2+|m|2

.

〈∫
dz
ir

ρ2

(
∂3φ

†∂2φ− ∂2φ
†∂3φ

)〉
= 0

The last integral vanished because the integration over momenta (in Fourier space) with odd
power gives zero.
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