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Abstract

The grasping and classification of the objects play important role in visual system. For the grasping
and classification process, the shapes must be recognized which is based on matching the descriptors
of each shape to standard values representing typical shapes and choosing the closest match. The
previous works have been done on the neural control of the grasping and the autonomous operation of
hyper-redundant manipulators. The main tasks and aims of the thesis is dealing with tentacle case and
linear object scanner case problem. Subsequently, the Fourier descriptors are used for the shape
matching and the Fourier transformation of the shapes is used in order to perform the grasping
process. A special kind of neural network is used in classification problem. In a final manner, the

theoretical information are confirmed by MATLAB/SIMULINK simulations.
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1 Introduction

1 Introduction

1.1 Overview

This thesis is related with pattern recognitiorttia shade of neural networks using one dimensional
data arrays and several stages in classificatioogss of objects will be discussed.

A small number of links connected to seriadioB by joints are described as the hyper redundan
manipulators. In our application, 16 joints aredjsgnce these provide the sixteen degrees ofdraed
that are necessary to achieve the grasping proEess.ecognition, in this thesis is based on ar#fi
neural networks which are parallel computing systeerived from biological nervous systems.

In [Bus02], Busch has already taken a ste@tds/an autonomous control of the manipulator and
depicted the main purpose of a robot as the inieraevith the environment. The grasp planning
module developed there can be considered as ttestep towards the autonomous interaction of
hyper-redundant manipulators with their environmeei¥ith this work, the state of the art in neural
pattern recognition will be investigated, alonghwiheoretical information. The two main problem
tried to be solved are the investigating the “tel@@ase” and “linear object scanner case” problem.

In the work of [Ste97], the implemented vistmased robot system is introduced to arrange abject
in a 2D-scene. He also indicates that it is alspoirtant that recognition is invariant with scaling,
rotation and position of the objects, and actutly implies the generalization ability. The neecegs
information is given manually to represent the @sagvhich are classified for tentacle case and
nxnmatrices for linear object scanner case.

Furthermore, | will investigate the categotiza of objects and grasping process dealing with
neural object recognition and fourier Series. Arakaontrol for whole-arm grasping of objects with
the body of a hyper-redundant manipulator has bmdyect of previous work [Bus02]. As an
additional step towards, | provide an approach tdwehe result of recognition of objects with

tentacle case and linear object scanner case \ahéctlassified in a desired manner.



1 Introduction

1.2 Problem definition

The subject of this thesis is based on neural misvim implement the classification of objects in a
desired manner. In fig 1.1, we describe our firgibfem as the recognition of objects with one-
dimensional data arrays and the distance informatibich is necessary for the manipulator in order
to entwine. To solve the tentacle case problerst fif all, we need categorization of objects and
secondly with the help of fourier series the diseaimformation for grasping of objects. The input
vectors that are desired to be classified are bedcane-dimensional data arrays. Using these &ind
vectors, our system must be able to recognize #meesobject even it has different position
information. We will investigate it with a speckihd of neural network in chapter 3.

The benefits of turning functions and foudesscriptors methods are to scope with the probtfms
the recognition process. Firstly, the angles thrat manually given as input are used for turning
functions and with the help of fourier transformatithe fourier coefficients are received. The
coefficients of the object information through tlwaurier transformation are the key inputs for our
neural networks. In chapter 4, we will find outamswer to this question. The other stage of meithod

to classify the objects for entwinement which Wil used from the manipulator.

H
o000 o ¢ }
l_ &> arclenght l
N
Data-array
(input)

Figure 1.1: Tentacle case ,offset-problem”. Turniagction of an object€ is the position

information of the object according to the manipotta
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Sensor ™
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B ? b
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2-dimensional shape

—

Figure 1.2: Linear object scanner case.

Conveyor belt

The second problem, showed in fig 1.1, is relat@tl a conveyor belt that detects objects passing
through the belt. The objects could be partiallfedeed during the production process and must be
noticed from the system with the help of sensodsfillthese requirements, | used an approach which
the contours of the desired objects are takendrrtining phase and suitable classification resare
computed through classification process. The gbdit extracting the contour and derived features
recognize, localize and identify the objects autiicatly.

The aim of this work is to develop an approamkards an object recognition that is implemented
using artificial neural networks. The simulatiosults of the problems will be discussed in chapter
We will mainly concern with our problems listed lgar, that is the problem of recognizing the obgect

and the grasping process by the manipulator.

1.3 QOutline of thesis

In chapter 2, an overview of hyper-redundant mdaipus is given; especially the kinematics and
dynamic modelling of this type of robot will be dissed. A suitable artificial neural network
algorithm is the topic of the following chapter ®hich deals with the artificial neural network
algorithm; called Back-propagation algorithm aféebrief overview of the theoretical background, a
concept for neural object recognition is presenfdtkr a presentation of a method for the recogniti
and classification of the objects, the radial-bésigtions (RBF) is used and suitability is compglare
Chapter 4, is dedicated to the neural object ratiogn The shape-based recognition is based on two
techniques namely the fourier descriptors and mgrrfunctions descriptors are introduced and
concepts for a neural pattern recognition builtfrinese are developed. The next chapter, chapter 5,
gives an overview of simulation details and a déston of the results of recognition and grasping

process. Finally, implementation is discussed @ptér 6, followed by the future work.



2 Hyper-redundant manipulators

2 Hyper-redundant manipulators

In this chapter, we will give a short overview abbyper redundant manipulators which is a work of
[Bush02]. He presented a detailed information fdrole-arm grasping of objects. The work of
[Mar04] was to develop a neural sweeping pattemeggor searching for objects. Furthermore, he
provided an approach about recognition of objestsdun sensory capability of manipulators. Even
our work is more about pattern recognition for sifisation, it will be useful to have a basis
knowledge about the manipulators.

In the following we will give a short view ofur hyper redundant manipulator that has a 16 numbe
of rigid links which are connected with revoluteings as a serial chain manipulator using the
information from Planar Manipulators Toolbox. Iragis, Hyper redundant manipulators consist of a
small number of links connected to serial chainsjdipts and has fixed at the ground. In our

application, 16 joints are used, which provideesixt degrees of freedom (DOF).

Link )
& o Figure. 2.1: 9-DOF manipulator
performs with whole an grasping c
a planar object.
<— joints
Basc — 7

Hyper-redundant manipulator deals with the physitalcture of a planar serial chain manipulator. It
hasn degree-of-freedom—each with one degree of freedamap manipulators with revolute joints.
The manipulator is supposed to move in the vertjgahe x-y as shown in Fig.2.2. The task

coordinates are the positions i®-y plane and in the planar case whéene= 2 the vectorx is x =

[x, y]" [Leo0O].



2 Hyper-redundant manipulators

2.1 Joint positions defined as relative link angles

From this section on, we will deal with the mathép® derivation of manipulators that realize the
grasping of objects. The first manipulator typ&igen joint coordinates are defined as relativeesgl

between two links.

Figure 2.2: Structure of BOF plana
joint; | manipulator [eo00].

gravity l

joint;

X

2.2 Kinematics modeling

2.2.1 Direct Kinematics

The direct kinematics of the manipulator providmapping between the joint variables and the end-
effector position and orientation with respect t@ference frame.
With respect ta joint coordinateg) andm task coordinatex the kinematics of the manipulator

can be described with the following equations [L&oThe manipulator is callegdundant if n>m.

x = p(q) (2.1)
x=J(q)q (2.2)
x:a(q)du(q,qjq @3)

where pis am-dimensional vector function representing direciknatics, Js the Jacobian matrix and

J is its time derivative,J = dJ/dt. As we deal with redundant manipulatansy m and Jis mxn

matrix. Let @ be an-dimensional vector with components

¢, => q (2.4)



2 Hyper-redundant manipulators

for i =1,...,nand initial valueg,= 0 and|, be the length of thé" link. In the case of a planar

manipulator with revolute joints the end effectasjtions X, X= [xl,yl]T, can be expressed by the
following equations.

X =X, +l;cos@;) and vy =y, +I sin@,)

(2.5)
for i = n—1,...1and initial values
x, =1 codg,) (2.6)
y, =1, sin(g,) (2.7)

The pairs[xi Y ]T represent the position of the end of the manipulateasured from the joirit. In
the planar case the Jacobias d 2x n matrix

0%
dq, dq

J= 1. n 2.8
y, "oy, (28)
dq, dq,

to derivej, we have to differentiate J with respect to time

=Elw)

(2.9)

Since the hyper-redundant structure of the manipulitself is used to handle objects, there is 8@ u

for an end-effector. The end-effector frame thaeefonly represents the endpoint and orientation of
the last link.



2 Hyper-redundant manipulators

2.3 Dynamic modeling for hyper-redundant manipulators

Before we determine the components of the dynanadeai we have to derive expressions for the

position of the center-point of the mass and cgading Jacobian matrices for all segments. Using

equation (2.5) the position of the mass of tfielink can be defined by

X. =

Cl

(2.10)

(xl—xi +1, codg, )J

Y.~ Y+l Sin(¢i)

The Jacobian matrices related to the segmentsheredivided into two parts
'JL
J= (2.11)

where J, and J, are parts of J associated with linear and angask velocities. Furthermore,

0X, = X; + X% ~lgsinig,
axg (=X X (4,) 212)
daq, =Yty -l C05(¢i)
Next, the components of the vector of Coriolis aadtrifugal forcesh can be expressed by
h = z Py qj qk (2.13)
j=1 i=1
where
OH.. oH .
ik = At (2.14)
dq, 2 oq
The vector of gravitational forces can be computadting from the last link with
9 =9iu +G(m|d + kalijcoi¢i) (2.15)
k=i+1

whereG denotes acceleration of gravity.
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3 State of the art of neural networks

3.1 Overview

In this chapter, two of the popular neural netwar&hitectures particularly Multi Layer Perceptrons
(MLP) and Radial Basis Functions (RBF) are intragtlavith operational principles and specific
affairs. Perceptron characterizes a single neuruichvmakes arbitrary decisions based on data from
inputs and can determine input-output relationeasriing patterns. In the following, we will give an
overview and search suitable neural networks fersthitability. The advantages and disadvantages of
the networks are given in a comparative form. Tlagh@matical relations of the networks are quite

complex but are also shortly given to understaedttinciples of the functions of the neural netveork
3.2 Neural Network for object classification

Neural network consists of a large number of singpicessing units linked by weighted connections
and is powerful because of the combination of manits in a network and therefore describes
basically a nonlinear device and is itself nonlméghe purpose of finding an answer of a special
problem by varying the connection is to deal withogpetric configurations and values of the
connecting weights between units. Each unit in nétweceives inputs from many other units and
generates a single output as we will see in matheahalerivation of bp in detail. The output acss a
an input to other processing units and by this weeytraining process is executed. Once a neural
network has trained, it is able to make predictidos pattern recognition and categorization tlsat i
desired to be performed from the manipulator is thesis.

The purpose of this section is to provide ppraach with the help of neural networks, as early
mentioned, for the classification problem. Beingagnized of the shapes by our hyper redundant
manipulator is important, in order to attack gragpprocess. For this reason neural networks play
important role for the classification of the obgect

In the book of Simon Haykin [SIm88], it is awpnt that a neural network derives its computing
power through its massively parallel distributedisture and therefore produces reasonable outputs
for inputs during training. The problem is to intae the neural networks into a consistent system
engineering approach because they cannot provalsdhution working by themselves alone. There
must be inputs which have enough information alaotatsk or a situation which will be solved by the

neural networks. Using neural networks give goaliits specifically, for a complex problem, which

8



3 State of the art of neural networks

is separated into a number of relatively simplé&saand neural networks are assigned a subseg of th
tasks such pattern recognition, which we deal vaisociative memory and control.

In the work of our thesis, the neural netwatk be only used in order to make predictions whic
classify the object information of squares, rectasigtriangles and circles. As we discuss later in
chapter 5, rbf is used and involves the modificatid the synaptic weights of a neural network by
applying a set of labeled training samples as aessze of input arrays and gives sufficient redolts
our tentacle case problem that we will examine @tadl. For one-dimensional data arrays, each
example consists of a unique 16-data arrays caijma vectors and by this way the object boundary
information is introduced. Suzanna Becker [Bec%9bjeged the ability to form internal representations
for encoding features of the input and therebytere@w classes automatically. The reason why we
make use of 16-data arrays is the number of lifksuo manipulator which we used for grasping
process.

The network is presented by an example froenséit, and the synaptic weights of the network are
modified so as to minimize the difference betwe®s desired responde) and the actual response
(y) of the network produced by the input signal inadance with an suitable statistical criterion.

We will consider a pattern classification @skhere the requirement is to assign an input kigna
representing a physical object to one of severaispecified classes. In our simulation, basically 4
types of objects namely square, rectangle, triamagle circle were used in order to achieve the
classification procedure. The requirement is tomede arbitrary decision boundaries in the input
signal space for the pattern-classification taskgishese set of examples. It is clear that theemor
adaptive we make a system in a properly designgdda, the more robust its performance will likely
be when the system is required to operate, in astationary environment. That means, it is also

desirable that the network must work in noisy emwinent.

3.2.1 Learning Algorithm

If we deal with object classification, we can defimeural networks as work process by giving inputs
and as a training process by producing outputs hvisice used in categorization process. The
procedure used to perform the learning procesalisddearning algorithm, the function of which is

to modify the synaptic weights of the network ttast a desired design objective.

A neural network has three components, reptatien, learning and reasoning. We will shortly
indicate the importance of components which is degli in fig.3.1. In the representation process,
general knowledge about a problem is representedeligral symbol structures. In our work, the
numbers were used as input vectors indicating thglea between the joints of manipulator.
Explanations in the representation stage are irapbfor recognition, giving decisions and asking fo

the classes of examples.



3 State of the art of neural networks

Reasoning is the ability to solve problems givit necessary results. In classification proadss
objects, reasoning can be seen as deciding the mlesbership of patterns and learning is a process

of adapting the weights of neural network by theimmment in which the network is located.

learning

reasoning

Figure 3.1: lllustrating the three key componeritaroAl system.

The recognition process is related with thbsee components of artificial intelligience systand
actually based on the learning structure of hun&ngs. The important advantage of this system is to
computation and decision time.

Main interest in this thesis is confined ldyge an important class of neural networks thafqren
useful computations through a process of learnimyraaking decision rules for classification of the
objects by using pnn and then achieving the graspiacess by the manipulator. The learning process
in human beings is based on also training sets k&gef learning is to forget the old knowledge and
thus new relations between the neurons are créatad/e and to learn new information. Therefore we
can say that learning is a process of forgettimguthusual knowledge. Each second, neurons die and
the axons, which carry the information, disapp&ar.creating new contacts between neurons, the
learning process occurs and the knowledge is s@gadt. The number of neurons in the brain plays
significant role in learning process and the mefated links between the neurons validate the icerta
results.

The inputs are given where the informatiorkm®wn and would like to be derived unknown
information and it is known that there is a relasbip between the inputs and outputs. In chapter 5,
four types of inputs for each class is used tottlae neural network and at the end of the proghem
test set is used to give the desired results fercthssification. These inputs are the sets ofitrgi
data for our neural network. These training datat@io examples of inputs as a regular sequence of
vectors and the network learns to classify therddsibject boundary information using the vectars a
a statistical manner.

The important point in classification is thsetul interpretation to treat the network outputs a
probabilities which we used the neural networkhis thesis called pnn. With the other words, the
network learns the probability density functiontbé classes. Bishop [Bis95] showed out that it is
only valid under certain cases about the distrdsutf the data. For tentacle case problem, thdtgesu

are suitable for whole-armed grasped objects lunat sufficient for the other cases namely ndyful

10



3 State of the art of neural networks

grasped and more than one-time grasped objectscl@ssification results will be studied respectyvel

in chapter 5.

3.3 Back-Propagation
3.3.1 Multilayer Perceptrons (MLP)

This section describes an art of neural networkighwvis applied to solve some difficult problems by
training them in a supervised manner. Typicallg thips consist of a set of sensory units that make
up the input layer, one or more hidden layers ofijgatation nodes and an output layer of computation

nodes as depicted in fig 3.2.

= o—r
® ) Output
Input layer of source = |ayeF; of
nodes neurons
o O——»
O

Figure 3.2: Feed-forward network with a single lageneurons.

The input signal propagates through the network iforward direction, on a layer-by-layer basis.
These neural networks are commonly referred to afilayer perceptrons, which represent a
generalization of the single-layer perceptf8ma88].

A multilayer perceptron has three distinctive clotggstics:

1. The model of each neuron in the network includeson-linearity at the output end. A
commonly used form of non-linearity that satisfidés requirement is a sigmoidal non-linearity

defined by the logistic function:

1

Vi~ 1+exp(-vj)

wherev; is the net internal activity level of neurprand y; is the output of the neuron. The presence

of non-linearity is important because, otherwide input-output relation of the network could be

reduced to that of a single-layer perceptron.

11



3 State of the art of neural networks

2. The network contains one or more layers of éiddeurons that are not part of the input or
output of the network. These hidden neurons erthiel@etwork to learn complex tasks by extracting
progressively more meaningful features from thauingectors where we will see the same effect in
radial basis function networks with one hidden taye

3. The network shows a high degree of connectivéyolved by the synapses of the network.
A change in the connectivity of the network needfi@nge in the population of synaptic connections

or their weights.
3.3.2 Mathematical explanation of the Back-Propagation Algorithm

In the following, we will give an overview of Badkropagation (BP) learning algorithm and general
learning algorithms used in neural networks. Tylycthese mathematical explanations help us to
understand the process of learning paradigm wtscingpired from basics of the neurons. The
structure of an artificial intelligence machineasachieve the learning algorithm and producestinpu
output mapping.

In the book of Simon Haykin has given the reathtical explanations of mip. The error signal at

the output of neuropat iterationn, presentation of thé, training pattern, is defined by
e (n)=d;(n)-y,;(n), neuror is an output node (3.1)

Fig. 3.3 depicts neurgnbeing fed by a set of function signals producedbsyer of neurons to its

left. The net internal activity level, (n) produced at the input of the neurgis given as;

v, () = 3w, (), ) @2)

wherep is the total number of inputs applied to neujron
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3 State of the art of neural networks

Neuroni

d; (n)

v, (n) ¢>(-) >‘,—(n) ;1 > e (n)

Figure 3.3: Signal-flow graph highlighting the alié of output neuron j.

The synaptic weightv;, equals the thresholQ, , applied to neuron Hence the function signa (n)
appearing at the output of neurjoat iteratiom is

Yy, () = $(v, () (3.9
BN e (n) ¢, (v, (M) ¥, (n) (3.4
ow;; (n)

Aw;; (n) =77 9;(n)y; (n) (3.5)

According to Eq.(3.5) the learning parameteraffects the change of synaptic weights. The learni

parameter must be good chosen in order to have gemdts. If the learning parameter is small

chosen, then the synaptic weights of neural netwebidnges will be small. On the other hand, the

network will be unstable, namely oscillatory. Tlheal gradient J, (n)is itself defined by

__9E(n) de;(n) dy;(n)

0,(n)= 2e, (n) dy, (n) av, (n)

(3.6)

=6;(n) ¢, (v;(n))

The local gradient points to required changes maplic weights. According to Eg. (3.6), the local

gradientd; (n) for output neuroiis equal to the product of the corresponding esigmal €, (n) and

13



3 State of the art of neural networks

the derivative¢'j (v; (n)) of the associated activation function. If the clem@ the synaptic weights

are small, the learning process is said to be cet@pl
3.4 Pattern Recognition Task

The main point in recognizing process is that taégon classification task has important place in
vision-based systems. If a standard rbf networkksisd to perform a complex pattern classification
task, the problem is basically solved by transfognit into a high dimensional space in a nonlinear
manner provided by Cover’s theorem on the sepaiyabil patterns [Cov65]. From the work we did in
this thesis, we know that once we have linearlyas#pe patterns by the tentacle case problem, then
the classification problem is easy to solve. Butth® linear object scanner case object recognition
is hard to say that classification process is agueroperly. Accordingly, we may develop a great
deal of insight into the operation of a rbf netwarkpattern classifier depicted in this section.

For all our input data arrays there is a pBrd set of classes of patterns which might be
presented, and the aim of the object recognitiek ta to classify a given pattern as one of these
classes. The patterns that we used in this thesimahe form of numbers and are called as feature

which are measurements used as inputs to thefa@asisin system as shown below.

square =[000 pi/200 0 pi/200 0 pi/2]

Figure 3.4: One-dimensional data array and itsaggmtation as a shape.

The number of one-dimensional data arrays is eguidle number of links of our manipulator for the
whole-arm grasping. In the classification process, have a family of surfaces, each of which
naturally divides an input space into four regioasnely for squares, circles, triangles and recemngl
With the help of Cover’s theorem, s&ydenotes set dfl patternsx;, x,, x3,x, €ach of which is assigned
to one of four classes. For each patternx, define a vector made up of a set of real-valuedtfans

{#:(x) i = 1234} as shown by
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#(x) = [$1(x) 82(x) #3(x). 82 (X[ (3.7)

Suppose that the pattexiis a vector in @-dimensional input space. The vectar (x) maps points -

dimensional input space into corresponding points in a nevesmd 4-dimension. We refer ig(x) as

a hidden function, because it plays a similar thé of a hidden unit in a feed-forward neural retw
described previously.

To illustrate the significance of the idea @fseparability of patterns, we consider that theee a
four kind of patterns, namely, square, trianglecleiand rectangle. Basically, a nonlinear mapjsng
used to transform a nonlinearly separable clasdiin problem into a linearly separable one. We

define Gaussian hidden functions as follows for shapesy = square,t, =circle, t; =triangle and

t, = rectangle.

2
#(x) = el t, = [000pi/2 000pi/2 000 pi/2 000pi/2]"
2
#,(x)=e 17l t, = [pir8 pil8 pil8 pi/8 pi/8 pil8 pil8 pil8 pil8 pi/8 pi/8 pil8 pil8 pil8 pil8 pilg] "
2
(%) = el t; = [00000pi/3 0000pi/3 0000pi/3]"

2
pa(x) =Pl t, = [00000pi/20pi/2 00000pi/20pi/2]"

Accordingly, the input patterns are mapped into ﬁe‘ ¢2 - ¢3 - ¢4 plane.¢1 plane is depicted

for squares,¢2 for circles, ¢3 for triangles and¢4 for rectangles. For our work, there is no need to
increase the dimensionality of hidden units whiguses complexity in designing and the training
time. In other words, nonlinearity exemplified hetuse of Gaussian hidden functions is sufficient t

solve classification problem for tentacle case [mwb The results of the tentacle case problem

simulation have shown that, the object recognifioocess could not be achieved with rbf and the
results will be discussed later.

For the present thesis, derived from the bmi@g algorithm, we can say that, the activatibthe
rbf unit depends on the weights multiplied with Gsian function.

M
V()= wji () () +by (3.8)

i=1
where v, (n) is the activation function of neurom; (n) is the weight parameters; the bias term of.

The rbf technique consists of choosing a functidhdt has the following form
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N
FO) = we{lx-x]) (3.9)

i=1

weight of vectors angi| denotes a norm that is usually taken to be Euatiddistance measure).

#lx-xl)= exn[-—ux_)q" } (3.10)

20i2

where x is the centerg; indicates the width of clusters. By determiningtioése parameters, our

problem becomes linear. In the paper of [MicO4¢ possibilities of rbf has been shown as several
outputs. Euclidean distance is the square roothefsum of squared differences for each of the
variables describing the four objects whose sintylar dissimilarity is wished to express the quignt
[Cast04].

In this thesis, we have four outputs to resatle categorization problem to classify the olgjeltis
clear that the more examples and classes we Hawenore efficient results we carry out but the
important point in neural object classificationtasdetermine the shapes with small number of class
membership. The work of neural network architectar® find the optimum way for recognizing the
objects which are desired to be classified.

[IR=R 3

06

Output T

0.4

02F

Input p

Figure 3.5: Radial basis transfer function.

In the following we will give shortly the basfunction of radial basis neural networks using
Matlab help. The radial basis function has a maxinaf 1 when its input is O as depicted in fig 3.6.
As the distance betweemandt decreases, the output increases. Thus, a radied bauron acts as a
detector that produces 1 whenever the irtipsitidentical to its weight vectdr The bias allows the
sensitivity of the radbas neuron to be adjusted.e&xample, if a neuron haalbias of 0.1 it would

output 0.5 for any input vectomat vector distance of 8.326 (0.8326/b) from itsglievectorx.
16
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For the classification problem of tentacleecéiscan be said that it is adequate, but for iear
object scanner case, it could not be possibledeive the right classification results. It will better if
it could be achieved the recognition of objectd ev@ drawn by a user with a combination of other
neural network methods as a future work for theimadators because it will make the use of robots
flexible in the areas where the implementationsnatepossible by human-beings.

In [Smc00], the advantages of rbfns are dbedrias in implementation and with respect to
optimization of the training data. In his paper,rhentioned the implementation of the network that i
is mathematically simple while it uses only basieér algebra and iteration is not required for

computing on the input data.

3.4.1 Radial Basis Function Networks

In this section, we introduce notions related &dféorward networks, the second approach as alneura
network and the main method that we used in thesithis so called rbfns, which has two layer feed-
forward networks. The aim of this work can be disat as achieving the categorization problem
using rbfn.

Broomhead and Lowe were the first to make afsadial-basis functions in the design of neural
networks [Sim88]. As follow, we will give an oveew of rbf and then the pnn, which is a kind of rbf,
will be worked out dealing with implementation inrcsimulation. The construction of a rbf network
in its most basic form involves totally differeraykers, the input layer, the hidden layer with the r
non-linearity and a linear output layer as depidtedig 3.4. The input layer is made up of source
nodes. The second layer is a hidden layer of higlugh dimension, which serves a different purpose
from that in a mlp. When the input vectors are exjaal into the hidden-unit space, set of functions
called radial basis functions are provided. Theoultayer supplies the response of the networkeo t

activation patterns applied to the input layer.

d=1
W, =b
: %
: @)

Hidden layer Output

Input of radial- layer
layer basis
functions

Figure 3.6: Radiabasis function network structure. The transfornratrom the input space to |
hidden-unit space is non-linear, while on the camtrthe transformation from the hiddan

space to the output space is linear.
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where ¢ are the radial basis transfer functior@{ are the synaptic weights.

3.4.2 Probabilistic Neural Network (PNN)

| briefly mentioned that, in the context of clagsition problem, a useful interpretation of network
outputs was as estimates of probability of clasmbsship, in which case the network was actually
learning to estimate a probability density functi@he useful method, which was implemented in this
thesis, gives good results for pattern recognitibientacle case problem.

Pnn, which is a Bayesian classifier is usedunthesis and it provides a general solutionattbepn
classification problem by following an approach eleped in statistics, called Bayesian classifiers.
Because of the nature of Bayesian classificatios,pnn does not require iterative learning theeefor
faster than bp networks. The pnn does require [lon of a smoothing factor, which represents the
width of the calculated Gaussian curve for eaclbabdity density function. The pnn has exactly one
internal layer of neurons, with one neuron for ereiming pattern (circles, triangles, rectangled a
squares). The network output corresponds to thea&ist of the probability density function for each
possible outcome.

Bayesian decision theory [Bay] shows thatrghis an important relationship between neural
networks and pattern classification for the objemtognition. This theory takes into account the
relative likelihood of events and uses a prioriomfation to improve prediction. Estimating
probability density functions from data has a losigtistical history. More generally, Bayesian
statistics can estimate the probability densitynaddel parameters given the available data. To
minimize error, the model is then selected whoserpaters maximize this probability density

function.
Decide ,circle” if P(Circle)>P(triangle), otherwise, decide “triangle”

Speaking in the context of the above example, vied tto explain the idea of the deciding
classification from this model with the object infeation that was used. The probability distribusion
are important to achieve the decision rule. Therpnnformation is the probabilities of either aate

or a triangle that is given to network. If a deaisimust be made with little information, the ruke a
shown above is useB(Circle) is the probability of the object being a circldneTway that is used by
the neural network will classify the objects acaogdto the maximum probability. This example is
simple to understand the idea of a pattern reciogngroblem in Bayesian Theory. The task is torlear
the probabilities from the training set. Bayesiatidion theory is a classification problem as an

example of a decision problem given observed feataf an object which finds its class [LO2].
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In the classification problem, we will give amerview of the structure and discuss the advastag

and disadvantages of pnn.
net = newpnn (P,T)

This command creates a network and takes tvtbree argument® is the input vectors anflis
the target class vectors. The detail informatiooudlinput and target class vectors will be givethia
simulation chapter. From this point on, the netwodes the vectors and outputs values for the
classification and thus outputs are tested.

It is called a “neural network" because ohiggural mapping onto a two-layer feedforward nekwvo
[wpnn]. In the pnn, there are input, hidden ancatutayers as briefly mentioned in rbfn. The hidden
units are copied directly from the source nodes @ath model a Gaussian function placed in the
middle at the training case. There is one outpittpar class. In our thesis, there are four outpats
each kind of shape and each shape is connectéidhe sadial units belonging to its class. Herbe,
output units simply add up the responses of thésb@longing to their own class. The outputs are
each proportional to the kernel-based estimatethefprobability density functions of the various
classes, and by normalizing these to sum to lithatgs of class probability are produced.

The greatest advantages of pnns are thelfacthe output is probabilistic and allows it tok@an
interpretation of output and the training speedifling a pnn actually consists mostly of copying
training cases into the network, and so is as diosestantaneous as can be expected. Trainingeof t
pnn is much simpler than with back-propagation beeano training is involved prior to classification
Their design is straightforward and does not depenttaining. A pnn is guaranteed to converge to a
Bayesian classifier providing it is given enoughiniing data [MATLAB HELP]. For our tentacle case
object recognition problem, pnn performed quitdisignt results.

The necessity for storing the entire trainggj in memory which leads to higher computational
make use of the pnns hard because of the necessitgre neurons compared to back propagation,
but with several fast memories has eliminated phidolem.

We will now go into the description of pnn tinothe mathematical side using the work of

Maragoudakis [Mar]. If a pnn for classification i classes is considered, the probability density

function f;(x,) of each classis defined by equation (3.11)

M

1 1 1
fi (Xp) =WM—i;9XD(—§(Xp X )T(Xp = %)) (3.11)

where Xjj is thej-thtraining vector from class, Xp is thep-thinput vectord is the dimension of the

feature vectorsM; is the number of training patterns in clasndo acts is a smoothing factor to
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soften the surface defined by the multiple Gauskiator. Each training vecto¥j is assumed to be a

centre of a kernel function, and as a result theber of pattern units in the first hidden layertloé
neural network is given as a sum of the patterrisufur all the classes. The variance acts as a
smoothing factor, which softens the surface defingdhe multiple Gaussian functions. As seen in
equation (3.11), has the same value for all theepaunits.

The pnn classifier decides to which class tdst vector belongs, depending on the degree of
similarity of the input feature vector to the modékach class.

As depicted above, only two of our shapes given. To achieve more sufficient results of
classification, the learning rate parameter musgjbed chosen and the training time might be big
enough and it will give better results.

If we deal with tentacle case problem, it baneasily predicted that the sufficient resultsldde

taken only by using pnn for classification.

As we mentioned in section pattern classificatmsktwe know that once we have linearly separatitenps by
the tentacle case problem, then the classificapooblem is easy to be solved. It also gives adequat

consequences to our questions of positioning obbjects. This problem will be discussed in thetmbapter.

circle = [pi/8 pi/8 pil8 pi/8 pil8 pils pi/s pi/sifs pi/g | E2Ch Input data  shows
pi/8 pi/8 pi/8 pi/8 pi/8 pi/8] linearly separable patterns
and therefore the

classification of the

probability density

rectang|e = [0 0000 p|/2 0 p|/2 00000 pl/ﬁlD?] functions maps proper

<

input-output mapping.

triangle =[0 00 0 0 pi/3 00 0 0 pi/3 0 0 O G3pi/

D square =[000 pi/2000pi/200 0 pi/l2 0 0 Rpi

Figure 3.7: The classification results of one-disienal data arrays.
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The greatest disadvantage is the networkdineural network. Pnn network actually contains th
entire set of training cases, and is therefore stoexecute and are used for classification problem
Training of the probabilistic neural network is rhuigimple when it is compared with mlps. The detail

consequences of the classification can be sedmjpter 5 in the context of simulation results.

3.4.3 BP&RBF

As it will be described in this section, rbfns antps are compared which are examples of non-linear
feed-forward networks previously mentioned. Howeteese two networks differ from each other in
several important respects, as outlined here. Byystg the differences between mlp and rbf, we can
generate insights into the classification procedisnon Haykin described the difference of the

networks from five points of view.

1. An rbf network has a single hidden layer, wheraa mip may have one or two hidden
layers.

2. Typically the computation nodes of an mip isalied in a hidden or output layer, share a
common neuron model. On the other hand, the conipntaodes in the hidden layer of
an rbf network are quite different and serve aedéht purpose from those in the output
layer of the network.

3. The hidden layer of rbf network is nonlinear,aendms the output layer is linear as depicted
in fig 3.4. The hidden and the output layers of mfed as a classifier are usually all
nonlinear.

4. The argument of the activation function of ehiiden unit in a rbf network computes the
Euclidean normbetween the input vector and the center of that. urhe activation
function of each hidden unit in mlp computes theeinproducbf the input vector and the
synaptic weight vector of that unit.

5. Mlps construct globapproximations to nonlinear input-output mappingn€equently,
they are capable of generalization in regions efitiput space where little or no training
data are available. Rbf networks using exponemgtidécaying localized nonlinearities
namely Gaussian function construct local approxiomat to nonlinear input-output
mapping, with the result that these networks amgabke of fast learning and reduced

sensitivity to the order of presentation of tramuhata.

The activation of units in the hidden layeraof rbf network depends directly on the input patte
The output of a hidden unit depends on the distaftiee input vector to the center of the unitsibas
function in Gaussian function. This results in myaeero activations for distant units and high

activation for units close to the input; the repreation of a target function with rbf networkdasal.
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Due to a poor ability of generalization of new inpatterns from past data, the quantity of training
data needed to specify the mapping grows exporgnimarbf networks and this slows down the
speed of network. Therefore the number of traidaga must be optimal chosen to avoid for a long
time of waiting for the classification. In the comant section of Michel Verleysen’s work, it is also

indicated of easy learning of rbf compared to mip.

3.5 Conclusion

In this chapter, we tried to compare the two alfpons of mip and rbf. The state of the art in neural
pattern recognition of one-dimensional data waskemrout and in the context of the classification,
the results of the objects were shown. We haveerhtise variables from numerical variables that
were used for the training. A lot of cases are iregufor the correct results; the more variablbs, t
more cases. For the good classification resultsi@ezl more training data but in this thesis only fou
kinds of objects and for each object one kind aining sets are used in order to make prediction of
classification using small number of training set.

The reason of choosing rbf networks in thigknis the number of advantages over mip. First, as
previously stated, they can model any nonlineaction using a single hidden layer, which removes
some design-decisions about numbers of layers.n8etoe simple linear transformation in the output
layer can be optimized fully using traditional laretechniques, which is fast, rbf networks can
therefore be trained extremely quickly. Third, iemplentation of the network is mathematically simple
because it uses only basic linear algebra. Compuogbn the input data do not require iteration and
are therefore relatively cheap. These reasons reebénefits of choosing pnn in classification
problem. Typically, for our two problems, only blet tentacle case problem we could take the
sufficient results. For the linear object scanrese; the classification of defected objects coolde
achieved. Even we change the size of the matrig)sib possible to recognize different types of
objects.

In this chapter, we developed a theoretiaanwork based on neural networks that is concerned
with learning from examples. The most general fofrmeural network is called Probabilistic neural
networks, since it is related to the well-known Ra&8asis Functions, mainly used for classification
The results of classification with pnn for our tywooblems will be given in Simulation chapter.
Castleman [Cast04] implies that after the trainmmgcedure, the ann will be capable of estimating
previously unknown output values, given a set @uinvalues. The learning of a bp is done by an
example, processing a training file that contairseides of input vectors and the target outputorect
for each.

In the next chapter, the shape-based recognitchniques will be given and two of these

important methods will be the main information smas for the nerual network in order to make the
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classification and grasping process. The givenatbj®r not grasped, one-time grasped and more than

one-time grasped are classified with the help of pn
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4 Neural object recognition

4 Neural object recognition

4.1 Overview

In the following, we will discuss the object rec@tgpm problem with the help of shape-based
recognition methods using fourier transformation &mning functions. The shape of each object is
described using several number of descriptor valtgsically in our work 16 real numbers.
Furthermore, the ability of entwinement of the algeof the manipulator is examined in grasping
process.

The purpose of shape-based recognition isveothe necessary information to the neural network
for the classification and entwinement process ianelated with matching the descriptors of each
shape to standard values representing our shagaehansing the closest match. A variety of différen
algorithms have been developed to perform two-dsimeral object recognition with one-dimensional
data arrays, utilizing many different types of teas and matching methods. For the present thesis,
has not been practical to consider the other magamethods in detail but it is hoped that the d&lac
which follows in this section carries the importgminciples used and that any other algorithms are
simply variations on a theme. The objects usedliswork are two-dimensional which are assumed to
be flat so that the whole closed contours of therdd objects can be extracted. We will see thaildet

of the simulation of the objects which shall besgpied by the manipulator in the next chapter.
4.2 Pattern recognition

In this section, we will describe the recoigmitprocess of the objects and give an idea how the
feature of the objects are extracted and usedeimiitching procedure for the classification process

In neural object recognition, data represésmiaand decision making plays important role. These
terms will be examined detailed in the further mect The system collects the information of the
shapes, which are desired to be classified, ammligir the techniques that we previously mentioned,
gives the sufficient results for the classificatiothe numeric information of the objects and a
classification process that deals with recognitielies on the extracted features that are used as
manually in this work. In the thesis of Brazda [[4)}, the shape boundary points are determined from
the sensor data and the grasping process is adhtaveugh the distance sensors that detect the
minimum distance to the boundary. In our work @dis, the shape information is given manually and
the features are directly extracted form the setadterns. This set of patterns is called the iingiset

and the resulting learning strategy is charactérasesupervised.
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Shape
Feature Classificatior
extraction Decision Rule results
1 2 3 4

Figure 4.1: The feature extraction and classifaraproblem.

A shape matching for two-dimensional planajeots is a central problem in visual information
systems, computer vision, pattern recognition, rabtics [Velt99]. It will be useful if we dividéhe
neural object recognition problem into severalrmtediate stages, the process of starting with pesha
and ending with a decision of class-membershifaf shape. Each sub-problem is very important in
this recognition process. It must be rememberetlithéne end the optimality of the entire system is
only as optimal as the weakest link in the chaime Ppattern recognition problem is separated into a
series of sub-problems such as feature extradaiecision rule (see Fig.4.1). The purpose of a patte
recognition in this thesis is to analyze the dediomn of the shape. The first stage consists diufea
extraction or measuring the “shape” of the objette second stage is concerned with classifying the
object into four categories of the shapes. Decisitbe and grasping results are the topics of chidpte
that will be examined how these problems coulddbeesl and the difficulties will be discussed.

In the following, we will introduce the termadture by assuming thdtfeatures are observed on a

pattern or object related with the number of liok$he manipulator, then we can represent the patte

by a 1-dimensional vectoX = (xl, xz,...,xn) and usually refer t&X as afeature vector and the space

in which X lies as thdeature space. Patterns are thus transformed by the featuraetn process
into points in 1-dimensional feature space. In4fig (a), we see the 16-data arrays as an inptmeto t
network. A pattern class can then be represented bggion or sub-space of the feature space.
Classification then becomes a matter of determiiringhat region of the feature space an unknown
pattern falls into. For the classification procedsour work, the manipulator is characterized by
sixteen rotation joint so that the end detector banarbitrarily positioned and orientated in the
working space. The manipulator can be seen aspeghefiner (see. Fig 4.2 (b)) for our shapes and

therefore the feature vector consists of andigsk.---.tie in a two-dimensional planar. Fig 4.2 (a)

implies the shape square with 16-data arrays tiat she angles between two points.
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square =[000pi/2000 pi/200 0 pi/2 00 Rpi

(@)

(b)

Figure 4.2: (a) The feature explanation and illtstn of a shape. (b) The manipulator

as a shape definer.

The recognition of objects plays an importate in shape analysis for robotics. The patteoriset
classified are usually groups of measurements semitions, defining points in an appropriate
multidimensional space [Burks].

The data used for the simulation in chaptevas taken from the one-dimensional data arrays as
mentioned in fig 4.2.(a). Most applications usimgirier descriptors, moment invariants and scalar
descriptors for shape recognition deal with thesgifecation of the shapes but for our work we used
only fourier descriptors method for definite shgpesnely squares, circles, triangles and rectangles

Pattern recognition is concerned with makiagisions of complex patterns. In [Cast04], it iegi
an introduction for pattern recognition and undextl the classification as an important part of
automatic scene understanding.

It is assumed:
» that an image may contain one or more objectstefast

» that each object belongs to one of several preti@tedtypes or classes

Actually, our image can be viewed as one objedhtafrest and therefore easy to classify. Basically,

the input data set used in this thesis for thesdiaation and pattern recognition performs the
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conditions of this paper. Our feature vector fartéele case is one-dimensional vector and for finea
object scanner case is typicafix5 matrices and each data sets are introduced flaisa.c

In this chapter, we will deal with the fouridescriptors and turning functions which describe
shapes irrespective of position, scale and oriemtdbr the classification and grasping process. Fo
information of the other techniques, several papezpublished and discussed.

Before we go deep into the main idea, the tetmape” must be explained in order to understand
the classification of objects from the given bouwydaoints. The definition of shape can be donedf w

start with some properties that we agree on [Digd03

« A shape describes a spatial region and occupiesea in the space.

A shape consists of points and typically addre&de space.

Figure 4.3: Two-dimensional shape.

The shape examples reveal with the conditmina shape (see Fig. 4.3). We consider shape as
something geometrical and will use the term shapeafgeometrical pattern, consisting of a set of
points, curves and surfaces. The points on theeshapndary can be interpreted as the links of the

manipulator in order to determine the feature veatal turning function.

4.2.1 Process analysis and classification

There are two important points of views which vad discussed in the next section. In the following,
we will shortly describe the data representatioth decision making process and give an overview as

follows:

1. Data representation
. Feature extraction

. Descriptor

2. Decision Making

. Matching process
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The two important methods in pattern recognition lsa described as above. Data representation deals
with shape analysis and for the shape analysisl@@vent boundary scalar transform techniques,
turning functions and fourier transform of boundawill be examined. Feature extraction and
descriptors will be discussed in the next chapter.

Decision making is related with neural netvgottkat classify the patterns comparing with thegiv

inputs. As a result, decision making process casele@ as development and classification.

4.2.2 Feature Extraction

Feature extraction is the name given to a familypicedures for measuring the important shape
information contained in a pattern so that the @fsassifying the pattern is made easily by arialr
procedure [God05]. The term “feature” is describsda simple geometric characteristic of the object
and takes place in data representation. In [09,fgature extraction is explained as classification
which is carried out through the comparison of otgef interest with reference objects.

For the non-complexity of the feature extrattiove used the features of the shapes by giving the
manually and pre-defined classes of the objectg wersented. The features or variables, which were
measures of quantities considered to be relevarttaoacterising the objects of interest, were amaly

for purposes of the comparison.

square =[000 pi/200 0 pi/200 0 pi/2 0 0 Rpi

circle = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8if8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

triangle =[0 00 0 0 pi/3 0 0 0 O pi/3 0 0 O O3pi/

rectangle =[000 0 0 pi/2 0 pi/2 0 0 0 0 O pi/gif2]

Figure 4.4: The feature representation of the shéps are used for the classification.
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The idea is based on the angles between selyadgstributed points and 16-data points giveve-t
dimensional planar object. The objects are salietolosed shapes because the last vector meets with
the first vector. By this way, the shapes descailspatial region and occupy an area as 2D spaee (se
fig.4.4). The sum of angles between the pointeg®60 , which proves that the first vector and the

last vector meets and identify a closed-shape.

4.3 Fourier Analysis

4.3.1 Introduction

As we early mentioned, the most important poinblifect recognition is that the system has to cope
with the arbitrary position, orientation and scgliof the objects. To full these requirements, a @hod
based approach namely fourier descriptors andrgriunctions were used. The fourier descriptors
method is formed by applying fourier transform he toefficients of wavelet transform of the object
boundary. After transforming the turning functiana periodic signal, it will be possible to realthe

grasping process with the help of fourier transfation.
4.3.2 Fourier Descriptors

In the scope of this thesis, the fourier transfeeshnique is used for shape description in the fofm
fourier descriptors and for recognition techniqlibe shape descriptors generated from the fourier
coefficients numerically describe shapes and armalised to make them independent of translation,
scale and rotation. Once a function is obtaindduaer transform can be used to convert the famcti
from space domain to frequency domain. As depittdiy 4.5, the coefficients describe a given one-
dimensional function. These fourier descriptor eslproduced by the fourier transformation of a
given image represent the shape of the objeceifrdguency domain. With fourier descriptors, globa
shape features are captured by the first few leguency terms, while higher frequency terms capture
finer features of the shape. The lower frequencscdptors contain information about the general
features of the shape, and the higher frequencgrigésrs contain information about finer and the
small details of the shape. Therefore, the lowegudency components of the fourier descriptors defin
a rough shape of the original object.

Each fourier coefficient is calculated fromegwboundary points and therefore sensitive tohall
points of shape. Before applying fourier transfaymthe shape signature, shape is first sampled to

fixed number of points and the shape boundary eistrape signature of objects and models must be
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sampled to have the same number of data pointslarger the number, the more details the shape is
represented, consequently, the matching resulthgilmore exact. In contrast, a smaller number of
sampled points reduces the accuracy of the matchesglts, but improves the computational
efficiency. Spectral descriptors include fouriersclgptors and it is usually derived from spectral

transform on shape signatures.

feature vector of TRIANGLE

Figure 4.5: “Triangle” and its discrete fouriernigfiormation.

4.3.3 Fourier Series or Fourier Transformation

The necessary method for object entwinement prasesan be selected after the difference between

fourier series and fourier transformation is maee important point is if the signal of the grasped

objects is periodic or non-periodic. We will noweishortly the application areas of the two methods
The mathematical relationships between the titomain and frequency domain versions of the

same signal are termed transforms. We transforigraalsfrom one representation(t)to another
representationx(f). A signal's time and frequency domain represematiare uniquely related to

each other. In both the time and frequency domaimssignal exists and with the Fourier transform

we make relationship between the two.
4.3.3.1 Derivation of Fourier Series

We begin with a brief review of fourier series. @mlly, a fourier serie expansion for a functiormis

representation of any periodic function as sunmimdsand cosines.

The periodic signal ofX(t) can be expressed as sum of harmonically relatedvaives.[m0039]

xt)=a + i[ak co{gn + i[bk sin[@j] (4.1)

k=1 k=1
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The family of functions called basis functioms{@} and sin[@jform the foundation of the

fourier series. These functions are always presedtform the representation’s building blocks. They

depend on the signal's peridénd are indexed by k. The frequency of each tern-le(-i. For k=0, the

frequency is zero and the corresponding tegis a constant. The basic frequeani,ys called the

fundamental frequency because all other terms frageencies that are integer multiples of it. These

higher frequency terms are called harmonics. Theido coefficients,a, and b, depend on the

signal's waveform. Because frequency is linked rtdek, the coefficients implicitly depend on

frequency.

4.3.3.2 Derivation of Fourier Transform

As we mentioned early fourier series give the feggry domain as a respond to periodic signals. We
need a definition for the fourier spectrum of ansilg periodic or not. This spectrum is calculatgd b
the fourier transform. The method that we use faisging process requires the signals periodic and
non-periodic. If the manipulator entwines the objat least one time, it is clear that our signal
becomes periodic. For the non-entwinement conditiom signal is not periodic, therefore the fourier
transformation have advantage over fourier se¥és.need a definition for the fourier spectrum of a
signal, periodic or not. In the chapter 5 we wigkermine in detail the state of fourier transforiorat

in our implementation.

In the following, we will go deep in to the theoo§ the mathematical explanations. The
fourier transform theory can be applied in diffdremys for shape description by closed curves. The

fourier transform of a continuous functionsbbpe(n) is given by the equation:

shape(n) = i Fcexplj2mk/T) 4.2)

where F, is the fourier coefficients of the boundary.

The purpose of several entwinement processasiie related with the continuous representation o
the shape information. As we mentioned in the mrevisection, it is very important for the human eye
to recognize the coefficients of the fourier dgstmnis. This is necessary because of the interjpoatat
of this process and we need a periodical signdie@thapes which are grasped by the manipulator.

When dealing with the classification of shaphe discrete fourier transform (DFT) is usedthe
simulation of thesis, we see the results of clasgibn with the help of DFT. So equation (4.2)

transforms into:
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. 27K

= LK
Fk:?ZSHAPEn.e T (4.3)

n=0

yields the fourier coefficientdk of orderk = 0,.T -1, from a periodic sequence ®freal values

shape(n), assuming it is normalized opoints in the sampling stage, the discrete fouraarsform of
shape(n) is given by with the equation (4.3).

Shape(n) is called shape signature which is any one dimeasifunction that we represent shape
boundary. With this equation, the feature vectosladpes are transformed into fourier descriptods an
will be used in the neural network which is respblesfor the recognition of the objects.

The implementation of discrete fourier tramsfation is set up with the help of mip that prodiice
the necessary information using the periodic sighabjects. This kind of network has two layerslan
each layer outputs the real and imaginary partthefcoefficients. As a result it becomes a good
interpretation of the object grasping method. h b& easily understood if the objects are entwined
and also the distance information can be determifled results will be seen in the next chapter unde
the “Simulation results”.

Shape(n) indicates our input data for all our links n fr@to 16. All equations in shape analysis by
fourier theory are based on continuous curves. Thige reason why we need one dimensional
function that represent shape boundary. Howeveengihe nature of the image, the curve should be
described by a collection of points.The discretprapimation has two important effects on the
representation of the shape information. Firstiyiimits the number of frequencies in the fourier
expansion. Our 16-data-array shape is illustratédd m2 number of frequencies. Secondly, it forces

numerical approximation to the integral definingffiwients.
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4.3.4 Conclusion

Fourier descriptors are a good way to describerandgnize shapes of all kinds. To capture more
local features of the shape, higher frequency gascs must be added. To achieve effective andtexac
matching, the set of objects, that should be reizeghis required, since the matching-function and
the proper number of descriptors to use dependglran the given shapes. We see the best results
with feature vector that was given manually.

As the result, we have possibility to makeimterpretation of grasping objects with the help of
fourier transform. It is a practical way of desamidp the entwinement of objects with 16-arm

manipulator.

4.4 Turning function

In this section we will introduce a boundary scatansform technique called turning function. lais
popular method for polygon shape representatiok(®}, which is invariant to position, scale, and
rotation. The turning function represents the tamgd a point on the boundary with respect to a
reference axis of an arbitrary orientation. Thegeant angle functior®(n) can only assume values in a
range of lengtresz, usually in the interval ofo27] [GuoO1]. During the traversal of the boundary, the
tangent at each point is computed. The startingtpm the outline corresponds to the origin poimt o
the turning function. Turning function is suppodedexamine on all possible reference axes with

different degree from 0 to 360, and on all the chaif origin. The formula in our simulation is belo

vec = [[0;1],diff(x,1,2)]

len = [sgrt(sum(vec.”2,1))]

fori=1:n-1

cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(*1)) (4.4)

phi(i) = acos(cosphi)

t = cumsum(phi)

In this explanation each point on the object bompdcomputed in the space 6 n<16 where n
depicts the number of sampled points on the boyndgyr this way, every link of the manipulator
describes boundary information of the shape. Atdhd, the sum of the angles gives the turning

function of boundary.

33



4 Neural object recognition

4.4.1 Grasping of objects

As we previously mentioned, Arkin et al. publishad efficient method for comparing polygonal
shapes. They establish the notion of the turnimgtion that represents the shape of an object. This
algorithm has been applied out to be very fast. flinging function is easily extended from the unit
interval by adding or subtracting multiplies ofi2

The parametrization implies the invariancearstaling. The two important degrees of freedom of
the turning functions are that the choice of tteetstg pointQ and the orientation of the object. The
turning function does not change with the starppgt and this verifies a robust approach becafise o

the periodic signal.

Turning function of test

3*PI2

PU2

0 T T T T T L L L
\ 2 4 6 8 10 12 14 16 18

Q arc\engl*

Figure 4.6: Object and its turning function.

For the grasping process we need the turningtion as a periodic signal. Since it originatesr
the cumulation of the periodic sequence of relatiwaing angles, it is not periodic. However, the
relative turning angles of a polygon sum2a ; thus, the turning function can be transformed imt

periodic function with [Mar04].
S"‘Fjlpe(n)periodic = S’lape(n)—%-[.n (45)

where Shape(n) denotes the value of the turning function at tif& vertex andN is the number of

vertices in the polygonal shape. The use of thithemaatical derivation in Matlab program is written
as

n = length(shape) (4.6)
shape = shape - 2*pi/n * [1:n]
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Figure 4.7: The shape, its periodic signal anditgyfunction.

As we see above, the periodic signal and uhairtg function of a square is illustrated. Actyall
these results are received according to the whoheggiasping process. In the next chapter, we will
study the results for all cases of object positiand discuss the differences of coefficients wité t
help of fourier transformation. The turning functies restricted with the number of links of the

manipulator.

4.4.2 Conclusion

In this chapter, we have introduced turning funtsias a way of describing the shapes that are going
to be recognized during the grasping process. Tioéce of grasping point and orientation of the
objects do not effect the result of turning funotigith tentacle case object recognition. The défere
between the manipulator and the starting pointhpéat gives us the distance information. Also we
have knowledge of distance information by invediigathe periodic signal of turning function.

Rotation of the objects only cause a vertical shifurning function.
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4.5 Nyquist Theorem

In the following, we will discuss the importancetbe distance between the links in the recognition
and grasping process. Firstly, we will introduce tihheorem and then indicate the effects of the

frequency of the shape classification.

Figure 4.8: The different length of links in ent@iment process and its effect on recognition process

As we see in fig 4.8, the length of the links oé tmanipulator plays an important role in shape
entwinement and recognition process. The lengthefink in fig 4.8 (a) is smaller than in the link

fig 4.8 (b). The interpretation of the lengths loé finks can be assumed as follows:

* We indicated with fourier descriptors that, the éwwfrequency descriptors contain
information about the general features of the shape the higher frequency descriptors
contain information about finer and the small dstaf the shape. Here as we see, the longer
links the manipulator has, the smaller shape infdion we have. The purpose of the
manipulator must be good decided if several diffeshapes will be involved in recognition
process.

» If the length of the links are small, then we widled more links than we have and in this case,
the grasping process of the shapes can not bevadhiproperly. Due to the lack of
entwinement of objects, the shape information W@l incomplete and classification results
will be wrong.

The nyquist theorem says that, the samplitg maust be at leasf.2. If the sampling rate is less
than 2., some of the highest frequency components caudesirable condition that is a form of
distortion called aliasing. When this happens, dhginal signal cannot be uniquely reconstructed
from the sampled signal. B is the bandwidth an#s is the sampling rate, then the theorem can be

stated mathematically [Kor04].
2B < F, (4.7)
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Below, the implementation of function is illustrdtel his formula applies fourier transformation and

strip contents over nyquist frequency and statideat.

ftc = abs(fft(shape))) (4.8)
ftw = ftc(1,2:ceil(n/2)-1)

whereftw is the feature vector. The command ceil roundsetaments of (n/2) to the nearest integers
towards infinity. The following command plots theature vector of shape and the dimensionality of a
feature vector consisting of the fourier transfodrierning function is smaller that a feature vethat
includes the turning function itself which helpsremluce the effects of the curse of dimensionality.
Therefore the feature vector has to contain théficamnts k = N/2-1 where k denotes the band-with

andN denotes the sampling refte

k ®
31/2 2 I

@ (b) (©) (d)

Fig 4.9: The entwinement of square with differemtdth of links.

Fig 4.9 represents four types of grasped sgudm the cases of grasping process, we useddtitfe
length of links in order to realize the entwineme@nbcess properly. If we consider the length of
manipulator a$ and the length of square asit will be possible to write a relationship betmethese
two parameters. To realize the grasping resultecty, the length of manipulatbmust be equal or
smaller than the length of squaae In this case we need a second assumption in dodéave
sufficient results. In fig 4.9 (b), the lengthadfink (K) is half of the length of one side of squaaie (

We can generate a formula as follows:

The length of a link=2,2 . 2 (4.9)
2 4 n

The smaller length of link the better entwinemesduits. In the other hand, in casel of a, the

grasping results will be not sufficient (see fi§ 4c)).
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We have an interesting situation in fig 4.9 {The lengths of links in fig (a) and (d) are eldmat
the grasping results are different. We must makadaiition to the rule that we described in (4.9eT
joints of the links and the edge of the shape rooste together. It is clear that if the joint isqed in
the middle of the side of the square, the manipulatll not entwine the shape and this will not
prevent the true grasping results. On the edgethefsquare (see fig. 4.9 (d)) the shape of the
manipulator becomes like triangles and of coursmtgesired.

In the following we will continue to discussetihesults for the other class of shapes indiviguall

12 31/2

(@ (b) (©)

Fig 4.10: The entwinement of triangle with diffetéength of links.

As we previously for the square mentionedthadlconditions are also valid for the triangles ford
the rectangles. But we will denote a point for thetangles. In fig. 4.11 (b) and (c), we see thmeesa
result of having small triangles on the cornerthefshapes. To prevent this problem, the length of

link must be smaller than the smallest side ofrdmangle as shown in fig. 4.11 (a).

® ® ./T

k k

@ @ @
I3 112 |

.=

(@) (b) (c)

Fig 4.11: The entwinement of rectangle with diffareength of links.

In the following, we will deal with the shapgcle as a last shape in our training set. Thesssry

conditions for the entwinement is related with thdius of circles. The length of the sides of the
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shapes were important for squares, triangles arctdrrgles. In fig 4.12, we see three circles that ar

grasped by the manipulator that has different lengtinks.

! A 2l

@) (b) (c)

Fig 4.12: The entwinement of circles with differéemgth of links.

We assume two different cases for the cigchesping.
1. The length of the manipulator is constant amdrétulius of circle changes

2. The length of the manipulator changes and thieisaof circle changes

For the both cases, it is clear that the @itionit of adequate results of being grasped by th
manipulator is that the length of a lidk (nust be smaller than the radiu} ¢f circle (see fig. 4.12 (a)
and (b)).

I <r (4.10)
In fig. 4.12 (c), the length of the link is biggd#an the radius of circle and in this case our maator

gives out square instead of circle. Also, fromélgeation (4.7), it is known that the nyquist fregee

must be half or smaller than the half of the santptate f).

1
—

(4.11)

— Il

If the length of the link increases, the frequeatgampling rate will decrease. This can be reldase

by applying the equation (4.11) in (4.17) as fokow

1
2B <+ (4.12)

By increasing the length)( the bandwidth will decrease and the radius @ieiwill again increase in

order to yield sufficient grasping results.
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5 Simulation

In the following, we will discuss implementationtdiéss and the results of the simulations we carried
out. In the previous chapter, the theoretical bemlgd of neural object recognition was achieved to
be explained. For this purpose, a simulation wap@sed basing on the numerical software package
MATLAB/SIMULINK.

Neural Network Toolbox, Version 7.0
Intel Celeron M Processor 1.5 GHz. 992 Ram

5.1 Classification and Grasping

In this section, we will describe implementatiortalls and simulation results of the neural object
recognition and classification. Furthermore, we dilgpsize the object to be fully entwined, several
times entwined and even not entwined meaning theipukator covers the whole object boundary.
The objective of this thesis is to develop precsd efficient methods to identify the location and
orientation of a particularly object model. Secgndidaptive application of a selected feature and
limitation of a feature character under the concdtata representation were involved.

In this thesis, two different problems wersatdissed. The first problem is concerned with the
“tentacle case problem” with one-dimensional datays. The second problem tried to be solved is to
investigate the ,Linear object scanner case”. is thapter, we will discuss each problem separately

For the purpose of object recognition, the ipalator was assumed to have 16 links. Actuallg, th
more links in usage, the better the obtained resiihis is due to the high number of feature vexctor
that characterizes more information about the sh@ipe turning function in the training sets as well
as the test set used to verify the object recagnsystem was specified with the program. RBNN is
useful for classification and milp is suitable fertwinement for our objects. In the following, three
neural networks will be introduced separately ahd tesults will be given in the section of
“Simulation results”.

All of the simulations were performed in MATBAuUsing the Neural Networks Toolbox.

5.1.1 Classification process based on RBNN

In this section a PNN- (Probabilistic neuratworks) a kind of radial basis network suitable fo
classification problem- is implemented. The inpaotthe network is a 16-dimensional vector that

represents the periodical turning function.
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In the following, the structure of network ngiMatlab help is introduced. Newpnn creates a two-
layer-network. The first layer consists of radiasts transfer function neurons and calculates its
weighted inputs with the euclidean distance wefghttion. The weights are applied to an input with
the help of weight functions to get weighted inpiist input functions calculate a layer's net inpyut
combining its weighted inputs and biases. The sgdayer has neurons that uses transfer functions
which calculate a layer's output from its net in@urd calculates its weighted input dot producighei
function and its net inputs. Only the first layestbiases. The first layer includes sigmoidal uaits
the second layer holds a single linear unit.

RBNN (Radial Basis Neural Networks) is traingd classify objects to be either rectangular,

square, circular or a triangle

Figure 5.1: The grasping problem with a 16-DOF mpalator. Fully entwined and partially entwined alige
are illustrated.

5.1.1.1 PNN for classification

In this thesis, focus is laid on RBF-networks. features are extracted with the help of the neural
network introduced in the previous section. They ba classified by using a special type of the RBF
networks described in section 4.2.3.1.

Probabilistic neural networks are a kind afiahbasis network suitable for classification gesbs.
In chapter 3, several advantages of pnn over bagpagation (BP) networks are indicated, i.e. the
improvement of training effects. This is due te #nhanced network architecture. In case of enough
input data, the pnn will act as a Bayesian classifPnn allows true incremental learning by the
opportunity to add new training data at any timéhaut requiring retraining of the entire network.
Due to the statistical basis of the pnn, it caregan indication of the amount of evidence it has fo
basing its decision [pnn].

In pnn, probability density functions such &e Gaussian are used as a basis function and are

centred around the training cases. The weightsdmrtihe hidden and output units are set to the prio
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probabilities of the class that is represented pecific output unit alternatively. For each hidde
unit, a weight of 1 is used connected to the outpet current case belongs to, while all other
connections are set to zero.

The topology of the network is feed-forwardntmned with an unsupervised training paradigm.
The outputs of this network are derived from thebability of the input belonging to the class tlsat
represented by the output unit. There are 4 typdasisification results. Square, circle, rectaragid
triangle are used as training sets resulting indésired outputs. Here a classification problem is

defined with a set of inpuf and class indices.

y = sim(MLP, {circle'}) y = sim(MLP, {triangle'}) y =sim(MLP, {square}) y=sim(MLP, {rectangle'})
coeff = abs(y{1}+i*y{2}) coeff = abs(y{1}+i*y{2}) coeff = abs(y{1}+i*y{2}) coeff = abs(y{1}+i*y{2})
P =[P, coeff] P =[P, coeff] P =[P, coeff] P =[P, coeff]

The inputs are used in order to create a classhwigist set will be trained according to produced

feature vector shown above.

T =ind2vec([1 2 3 4])

Matlab help documents thatd2vec takes one argument and returns sparse matricesctdrs, with
one number in each column. As indicated abovegthee 4 types of classes. In order to show the
meaning of the numbers it can be stated that ltpoiat a “circle”, 2 a “triangle”, 3 a “square”,a4

“rectangle”.

net = newpnn (P,T)

This function creates a network and takes two asgumofP. P represents the input vectors being
compared with thd target class vectors. The classification procegseiformed on the basis of the
input arguments. The class indices are convertéarget vectors and a pnn is designed and tested. A
below described a new vector with the network éssified. First the desired object is given as tTes
to enable a comparison with the input vectors. By tvay, a MLP network is entrained to calculate
the euclidean length of a vector. This enablestoeae the classification independent of transigtio

scale and rotation.

class = sim(net, coeff’)
veczind(class)

test = vec2ind(class)

vec2ind transforms vectors to indices in order to show ftha different classification results. The
newpnn method is simulated with the sim (Simulairaulink model) command. Computed values

of fft are stored in newpnn and simulated accordintipe probabilistic neural network.
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5.1.1.2 Training

Normally, the training of the network is repeated many examples in the set until the network
reaches a steady state, lacking any further s@gmifichanges in the synaptic weights. In this dodi

of the learning process, complex problems were ggeed with several hidden units. The network
learns from examples by constructing an input-outpapping for the problem that is concerned with.
The choice of the number of hidden units and tlaenieg parameter plays a huge role in learning
paradigm. An optimal network structure has to henfbfor solving related tasks.

A set of input vectors are applied to a netwitrdt is updated at each step, until some stopping
criteria- for example maximum number of epochs,i@mum error gradient, an error goal are met.

As a training set, one kind of data input &2d for each object, the network is trained with 50
epochs and the learning rate is determined adr@j@asing number of epochs decelerates the network
speed. Obviously, the more training sets in usdge more absolute classification and recognition
results are received. It is not recommended to hange training sets, as these are decreasing the
speed of the processing.

For the examination of the tentacle and timedr object scanner case, different classification
methods were used. The classification of the témtease leads to adequate results. The training

parameters that are shown below were used in th@aion of all recognition problems.

net.trainParam.epochs = 50
net.trainParam.goal = 0.01

net = train(net,p,t)

As depicted above, the network is trainechwvtite optimal training number of 50 both for the
tentacle and object scanner case problem. For lilietlme weight matrix is determined analyticallg; n

need to perform an additional training on the net.

5.1.2 Grasping process based on MLP

In chapter 4, the concept of feature extracisodescribed. In the following, the representatd
shapes of the turning functions, which can be gadibwn through the mathematical explanations
describing them as angels will be discussed. Intuh@ing function, summation of the relative joint
angles results as coefficients. The length of liakes accepted equal and the arc length between the
vertices of the polygonal shape can easily be nlireshto unit length, which provides invariance
with respect to scaling of the object. The outpag two layers, each of them performing the real and

imaginary parts of the fourier coefficients beyaheé nyquist frequency with the exception of the
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zeroth order coefficient. The feature vector cosgsi the magnitudes of the complex fourier
coefficients.

Being of importance of this thesis, the enemment process is implemented with a kind of mlp
network. This network sets up a mlp network thatfqyens a discrete fourier transformation. It
computes onlyN/2 coefficients; both the static component and theffaments above the nyquist
frequency are stripped. The network uses one iapdtthe two layers in which the transfer functions
are selected as purelin. Purelin takes one inpditaltulates layer’s output from its net input.

The two layers that take part in the netwarkpat the real and imaginary parts of the coeffitse
The weight matrix is determined analytically sonaed to perform additional training on the net. The

fourier serie can be written as

18 27kn) . . (27kn
X =— shapeperiodi{co —j—lsm(—ﬂ
N & N N

The real and the imaginary part of the coedfits become apparent and the functions do not

change with the value of periodic sigrsibpe .. - They only depend on the period of sequeice

the order of the coefficiedtand the index n.

The fourier serie which is performed in mligwerk has real and imaginary parts. The input given
to the network is 64-dimensional data arrays toteeehigh frequencies in detail for the grasping
process. The output includes both the real anihiaginary part of the fourier coefficient of ordeof
the giventest data array. Only the absolute values are obsenvig: figures.

The method used in mlp is based on the perisidnal of depicted objects. The turning functdn
the angels describing the object boundary inforomats calculated and transformed to a periodic
signal as mentioned above. Depending on the grggpiobjects, the signals can not be even periodic.
The reason using the fourier transformation is thigt applicable to all signals if they are peimdr
not. In this way, the necessary information enabitesinterpretation for entwinement. The spectrum
of coefficients must give regularly descending ealtor the objects that are being entwined mone tha
one-time grasped objects. The reason is that fotraesformation is applicable both to periodic and
non-periodic signals. If the objects are not fughasped, the spectrum will have coefficient valaes
the high frequencies like a wavy form. Otherwidee spectrum will decrease to a constant value
periodically.

In the following, the details of the resultst were received by using mip in case of not-grdsp

whole-arm grasped and more than one-time graspjedtshwill be examined.
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5.2 Simulation results

In this section, we will introduce the simulationopess separately and show the results for each

problem. The different grasping process for thrieels of object cases is as follows;

1. Not fully grasped objects
2. One-time grasped objects

3. More than one-time grasped objects

(@)

(b)
Figure 5.2: Shapes in the training set (a) anddbeset (b).

The procedure of neural object classification h&s tnain process respectively classification of
objects and grasping process. This is necessamyeftiding if the other objects are entwined or not
entwined that have different position, rotation awéling information. Possible input data for the

neural network based on classifier consists oftjaimgle information. The neural network has to
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recognize the object’s shape and assign it to icedksses. For instance, circular, rectangular,
triangular and square shapes should be considered.

An overview of the training set and test sahp used to train is shown in fig. 5.2. For thegamt
work of thesis, the fourier series of the turninmdtion determines the several times of object
entwinement and the coefficients change rapidlyte&s set, several one-dimensional data arrays were

used with different distance information to the mparator.

o} _WW

= |[> || | > |RBF|»

>0

One-dimensional 1 2 3 4
data arrays

Figure 5.3: Investigating of the tentacle case lgmband the classification process.

Fig. 5.3 shows the method that was used in thisighé-irst, winkles are given manually to the
network. They are transformed into two dimensiafath arrays for the plotting of shapes. Then, the
turning function of the boundary points is computddwever, the computed function is not invariant
to rotation and the turning function is not suffici to represent a feature vector for making
classification from the classes of objects. Theqgake function is necessary for the fourier seribse
obtained turning function of the object which tloerfier transformation is applied, strip contenterov
nyquist frequency.

Except the zeroth fourier coefficient of tlhening function is invariant with respect to thetieal
shift coaused by rotation of shape. The magnituddbe fourier coefficients are also invariant with
starting vertex. The feature vector contains uprtterk = N/2 — 1, therefore the dimensionality of
periodicised turning function is smaller than tleatlire vector that containes the turning function
itself.

After implementation of fourier transformatitem the periodic signal of the object, the necegssar
coefficients are taken for deciding grasping precess a last step, the classification with pnn is

proceed and tested for the right results of theaibjas square, circle, triangle, rectangle.
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TURMING FUMNGSTION
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Figure 5.4: Tentacle case ,offset-problem®. Turniimgction of an object. £ is the posibn
information of the object according to the maniparia

The first problem that is concerned with in thisdls is about the objects that are placed away from
the manipulator. It is assumed that the objechisvimed or partially entwined. To solve the offset-
problem, the fourier transformation of the datauitspof the object information is used. It is veagsg

to predict that if the object is placed away frdra manipulator, the fully entwined process coultl no
be performed and the grasp information of the shaflegive false results. The offset-problem was
simulated with circles that have different locatioformation. The aim of the object recognitiortas

define the shape information if the object is entd or not.
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TEST OBJECT GRASPING RESULTS
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Figure 5.5: Based on tentacle case entwineprafilem. The test array is plotted in t@imrensione
plane and periodic signal of turning function, inhfunction and the fft coefficientsre shown (a). Tl

coefficients of periodisiced turning function allestriated (b).

The solution of problem with a simulation isrfprmed in order to achieve the grasping process
even recognized with human eye. It is importanteimgnize the results not only with mathematical
explanations also the figures must help to intérgne grasping process. More detailed searching
results will be founded in the next section.

The extraction of the feature vector con$tthree important points

1. The turning function of shapes which are giveenually and transformation to a periodic

signal that is necessary for the fourier transfdioma

2. fourier transformation of the periodic signal

3. computing of the feature vector that comprides magnitudes of the complex fourier
coefficients

After feature extraction of shapes, it is alolanake a classification with the help of two diéfat

mlp networks. In the following, we will deal withése two networks.
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5.2.1 Investigating tentacle case problem

The given test sets as an input are one-dimensaatal arrays and for the plotting of each set, they
must be converted into two-dimensional data armaysder to see how they look like. This is helpful
to recognize if the object is entwined or not withany mathematical explanation. Each specified

point is interpolated and the results are plottethe graphical user interface.

test = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 [@/pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

SHAFE

nurnber of LINKS

Fig 5.6: The test set and interpolated result efrjmusly specified points.

The shape transformed from the points is doitie tve help of a little program. The coordinates (
y) or each angle (pi/8) is computed and plottedrasva in fig. 5.6. As discussed later, the usage of

plotting a shape is important for the grasping sieai.

test=[0pi/2000pi/2000pi/l2000 pi/2100

4 TURMING FUNMCTION
=]

¥}
coeff

o Ty T 2 4 g g 10 12 14 16
-4 3 2 -1 u} anclength
nurnber of LINKS

The plotted shape The turning function of plotthde

Fig 5.7: The given test test and turning functibplotted shape.
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The turning function is not invariant to ratetx; rotation of the shapes causes a vertical shiftie
turning function. Additionally, the course of thenttion depends on the choice the cumulation of the
relative tangent angles namely the starting pdishapes. By plotting the test arrays into a shape,
possible to make an interpretation if the objectsgrasped or not.

One-dimensional data arrays are convertedtiedimensional data arrays and plotted to realize
the shape information of object. The turning fumctof a polygon gives the cumulative sum of angles

between the counterclockwise tangent to the sifléiseopolygon and thg-axis as a function of the
arc lengths.

test=[0 pi/l2000 pi/2000 pi/200 0 pi/2]10 0
g TURMIMNG FUNGTION oo . . periDcI:Iic: Signf‘al of SI—!AF’E
&l | 0.4
RN
= 4.8
41
1.2}
2 -1.4
2 3 6 5 10 12 14 18 "% 2 4 5 8 0 12 14 18
arclength
The turning function of plotted shape The pericignal of turning function

Fig 5.8: Turning function of shape and periodimsigwvhich is necessary for fourier serie.

The Fourier series as given in chapter 4 requiressequence turning functishape to be periodic.

Thus, the turning function of shagg ¢an be transformed into a periodic function.

n = length(t)
periodic signal =t - 2*pi/n * [1:n]

where n is the number of links and turning functi®eonverted to periodic signal that is necessary

apply fourier transformation and strip contentsrawguist frequency and static content.
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test=[0 pi/l2000pi/2000 pi/200 0 pi/2]10 0
periodic sighal of SHAFE feature vector of SHAPE
a2 . . . . 5 . . . . .
.41
4t
L.6F }g
i}
oaf 28
RS g ol
4.2t E
1F
1.4F
1.6 L L 1 . 0 1 1 .
0 2 4 5] 2 10 12 14 16 0 1 2 3 4 5 6 7
nurmber of coefficients
The periodic signal of turning function Applied fourier transformation and feature coeéiutis

Fig 5.9: Periodic signal of turning function anatiere coefficients.

Fourier transformation is applied to the péigosignal of turning function of shape and corgent

are striped over nyquist frequency and static aurde follows.

fta = abs(fftperiodic signg))
ft = fta(1,2:ceil(n/2)+1)

The absolute fourier transformation of periodisigs computed and return feature veetor

a=ft

The matching results will be exact by usingrendescriptors but on the other side the accuracy
reduces. Each coefficient is calculated from bouwngaints and sensitive to all the points of shape.
All of the objects assumed to be have differentatise information to the manipulator. The fully
entwined object, its turning function, feature wect periodic signal of object and fourier
transformation are given together with the restithe classification. The other kinds of trainirejs
have different distance information to the manipaiaand the objects are assumed to be fully
entwined, partially entwined or several times ent.

The training set of 4 types of square, cirtiangle and rectangle object information werdizdd.
The vectors that we gave manually for describing abjects consist of zero points that imply the
smooth, the angles that imply the break pointshenabjects. The fft coefficients of these vectors a
used for the classification results.

The training set used in the program for tlesgification is a 16 data-array that gives theeobj
boundary information. The classification procesaadlieved with the help of fft that is implemented

the training seti-ft computes the discrete fourier transform of abgect boundary for each points up
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to number of the links. The lower fft values sttiie general information of the shape and the higher
frequency the smaller details.

The discrete approximation has two importaffects on the representation of the shape
information. Firstly, it limits the number of freqaocies in the fourier expansion. Our 16-data-array
shape is illustrated wittV2 number of frequencies. Secondly, it forces theergal approximation to
the integral defining coefficients.

In the following, implementation details anchslation results of the neural object recognitvaii
be described. Furthermore, we claim the objectsetéully entwined, that is, the manipulator covers
the whole object boundary. In our simulation ofemtjrecognition, it is assumed that the manipulator
to have 16 links. Two different neural networks &ned in order to classify objects to be either
rectangular, square, circular or a triangle. Thieituy function in the training sets as well astia set
used to verify the object recognition system waecHjed manually. All of the simulations were done
in MATLAB using the Neural Networks Toolbox.

A linear mlp network that determines the feuricoefficients of the boundary function is
implemented. The input to the network is a 16-disi@mal vector is converted from the turning
function. The output is organized in two layersgteaf which holds the real respectively complex
parts of the fourier coefficients beyond the Nytjfiequency with the exception of the zeroth order
coefficient. The feature vector includes the magiaes of the complex fourier coefficients. Thus, a
two-layer mlp network is entrained to perform ttask. The first layer includes six sigmoidal units
and the second layer holds a single linear unit.tf® detailed spectrum of fft, 64-dimensional vect
set is used for the grasping process. By this weyform of spectrum can be observed and sufficient

results are interpreted. For the classificatiorcpss, a pnn is entrained.
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circle= [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/3#/32 pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pil32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pil32 pi/32 pi/32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 BH]

This circle is fully entwined and the coefficierdsnverge on a stationary valug.

Convergency shows that the grasping of objectsliraed.

x 102 GRASPING

0 5 10 15 20 25 30 35
The periodical signal "X' and the coefficients f

Figure 5.10: The 64-dimensional data arrays forsgirg process in mlp network. The discrete

approximations with the limited number of frequescin Fourier expansions are called “coefficients”.

Describing the results more detailed in fifj(b.the whole-arm grasped circle is introduced. The
value of each winkle is pi/82¢5°) and the perimeter of circle can be calculated s pi /8= 2.77.

All of the winkles of our objects that we usedhistthesis is proportional ta..

The MLP network for grasping process has tayefs consisting of the first layer {1} and the
second layer {2}. The first layer {1} maps the quart of plotted shape “E” and the coefficients tisat
implemented in Matlab program as “coeff”. The sattayer {2} maps the sin part of plotted shape
“E” and the imaginary part of coefficients. Thef82quencies are symbolized with “E” and taken after
the turning function is transformed to a periodignal. In Matlab the periodic signal and the

coefficients are taken as follows.

y =sim(MLP, {(E)'})
coeff = (abs(y{1}+i*y{2}))'
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First the periodic signal “E” is obtained frahe turning function. “y” outputs the sim('mipbatt
will simulate mlp model using all simulation paraeredialog settings including Workspace 1/O
options. The results of “y” are logged and the &ldsovalues of coefficients are taken. The last
command A” displays the parameters in the same window tdlen@ observe the results.

For the coefficients, the absolute valueseal and imaginary part of y are calculated in Igyér
and layer {2}.

As seen below, test object is a circle andledarm grasped. To observe the results of a plotte

test arrays, “x(1,:),x(2,:)"is written in the comnthwindow of Matlab.

SHAPE
S e
4 y ]
3.Quadrat 2.Quadrat
3 ]
2 1 X
i
4.Quadrat [ 1.Quadrat
o e
- 2 0
X: The value of plotted turning function of shapes.
The values of plotted shape on x-plane
0 0.7071 1.0898 1.0898 0.7071 -0.00009239 -1.9239 -2.8478 -3.5549 -3.937H9375 -3.5549 -2.8478 -1.9239 -0.9239
The values of plotted shape on y-plane
0 0.7071 1.6310 2.6310 3.5549 4.26206447 4.6447 4.2620 3.5549 2.63106310 0.7071 -0.0000 -0.3827 -0.3827

Fig 5.11: The plotted turning function “x” of shaperformed in MLP.

As shown above, the cos and sin of x aretitiisd to receive the shape information. The fiost
describing the cosines values of angle (pi/8) ahocteases in the first quadrat and reduces in the
second and third quadrat while the sin valuesrameeasing. In the fourth quadrat both the cos &nd s
values decrease. The value 0.7071 is the cos @) (fhie first angle. For each point of shape time si
and cos values are computed and added one anatiigha whole shape information is taken.

Fig 5.11 includes the necessary informationhef grasping process of a circle. It is also dasy

predict that the plotted shape give all the infdiorathat is needed.
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test = [pi/2 0 pi/2 00 0 0 pi/2 0 pi/2 0 0 0 0200

SHAFE

Ogs 1 The object boundary

points computed from

the turning function

-5 -4 3 2 -1 0
nurnber of LINKS

Fig 5.12: The plotted shape of one-time graspethngte.

Writing down the cos and sin values of plotted itognfunction of shape one under the other, the
coordinates can be computegyy.
The number of grasping process is obtaineddmnting the points on the object boundary. In fig

5.12 the number of boundary points (15) is smalian the number of links (16).

the number of points > 16 not fully grasped
the number of points < 16 more than one-timepgds
the number of points = 16 whole arm grasped

If the points are less than the number ofdjrtke object is assumed to be grasped more than on
time. If the object boundary (8) has as the hathber of links (16), in this case the object is saible
two-times grasped. The plotted turning functiorsbépe “x” includes the cos and sin information of
the angles between points.

In the next section, we will discuss the ghagpesults for different object cases and tryxplain

a general idea by using fourier transformation whith help of mip.

5.2.1.1 Not fully grasped objects

In the following, we will study the grasping resufor objects that are not entwined. The missing
grasping cases of all objects will be searchedtb@desults will be discussed.

Not fully grasping process is valid if the ebis are placed away from the manipulator. In e f
5.13, it will be searched the necessary paramttatplay important role to decide in which corwliti

our object is.
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RECTANGLE

test=[00000000000000000000MMVOO0O0O00O0O000000000000000MIWIOOOOO0O0O0000OPII2000 pi/
Classified aCIRCLE

:::::

!

EZAR.

number of cosficierts he per el ™ and he costicients

62.2025 28.5078 16.3591 9.8899 6.0992147 3.8211 4.0784 4.3193 4.3100M141 3.4654 2.7236 1.8594 0.9457 7@10
0.7630 1.4385 1.9402 2.2437 2134 2.2466 1.9900 1.63571.3056 1.2071 1.4560 1.8977 295 2.7386 2.986
3.0715

Fig. 5.13: Not-fully entwined object.

The real and imaginary parts of the coefficients aomputed from the plotted shape of turning

function of each shape. For the grasping proclssalbsolute value of the summation of coefficients

are taken. In case of not fully grasped object,ihegral defining coefficients of periodisicedriimg
function of shape do not decrease with the higgueacies showing the signal is not periodic and thu

the object is not fully grasped.

SQUARES

test=[000000000000000000000MOXOO0O0O0O0O00O0O000000000PI/200MMOO0O0PI/20000000000

pi/2]
Classified aIRCLE

oooooooooo

15 2 % £ 3
The peradcal signal X" and the coeficents

39.8039 8.634 10.3422 4.1597 10.4083 9.8530 $0192.7923 2.6510 2.4468 5.0947 31940.4759 1.6400 0.837
2.0005 3.1485 2.0566 0.4989 0.90921702 1.6392 2.2331 1.5144 8P%A 0.4649 0.3301 1.4301 1.9302 1.40
0.4754 0.3321

Fig. 5.14: Not-fully entwined object.
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The values of coefficients decrease up to sevamttjuéncy and begin to increase irregularly. This
condition continues after one after as the spectauges. As seen below, the spectrum gives irregula
coefficient values that a periodic data arrays wanbe observed. The periodic signal degrease with
the zero points in one-dimensional data array wingblies that there is “0” angle between the links

of the manipulator. The red-plotted array shows piteand the green arrays the peak points of
spectrum. The spectrums have wavy form of coefiicaggrays and in case of not fully grasped objects

these results are observed.

CIRCLES

test=[0000000000000000000 0000000000000 O0 pif32 pi/32 pil32 pi/32 RifH/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pil32 pil32 pi/32 pi/32 pi/32 BH pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/RA32 pi/32 pi/32 pi/32]
Classified aCIRCLE

swee  TURNING FUNCTION GRASPING
oy Py 40

35

30

25

20

E .

3 10| 10

i

The coefficients of periodisiced signal "E"

=3 e
o

0 5

60.9521 26.1909 13.3423 6.7743 3.9287453 4.1111 4.0701 3.6074 2.9467B8P8 2.1524 2.2192 2.3314 2.3]
2.1568 1.9208 1.7380 1.6992 127711.8440 1.8 1.7449 1.6148 1.5309 1.54286188 1.6829 1.681
1.6114 1.5203 1.4780

Fig. 5.15: Not-fully entwined circle

As mentioned above, the spectrum of not fully gealspircle has a wave form as the frequencies
increase. The data arrays are 64-dimensional leutdbults have 32-dimensional data information.
According nyquist theorem, the half of the coeffitis are used in order to decrease the effectseof t
curse of dimensionality and thus the feature vectmtains 32-dimensional data arrays. The absolute
value of coefficient that is performed with mip qoumes only the half of coefficients; both the stati
component and the coefficients above the nyquexiuency are removed. As mentioned in section
4.5, the classification of objects that are entdirseveral times is imperfectly if the nyquist

requirements are not satisfied.

57



5 Simulation

TRIANGLE
test=[000000000000000000000000000000000000000000000PPIDOO0O0O0O00O05*i60OP
0000]
Classified @sRCLE
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GRASPING

TR

5

10 15 20 25 30 35
The coefficients of periodisiced signal "E"

49.9383 10.5842 6.1651 4.6303 3.92073695 7.6384 4.9253 3.6258 4.7307 3301 2.3049 1.8908 1.7776 1.24
2.7137 3.6997 3.12821.5421 0.2643 0.6444 1.3206 2.238%4849 1.7575 0.8338 1.2596 1.74689196 1.8384

1.2823 0.6420

Fig. 5.16: Not-fully entwined triangle

Note that object grasping information is relateithwhe circumference of shapes. As depicted

before, our manipulator is a shape definer andadigtthe manipulator is interpreted as an object.

Grasping is to compute the circumference of relatgdct. The circumference of all kind of objeais t

be either square, rectangle, triangle and circkyigal t.n. Therefore, in case of whole-arm object

grasping, the last arm of manipulator sca@a8. Whole-arm grasping information of the object is th

sum of the angles which gives the edge informatibthe object and circumference results must be

equal to2.n.

If the product of the angles and the numbethefentwined links is higher that, the object is

said to be more than one-time grasped.

0 < the sum of angleg.x
the sum of angle2.#
2.7 < the sum of angles 4.7
the sum of angles z.n
4.n < the sum of angles &7

the sum of angles 8.7z
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5.2.1.2 One-time grasped objects

In following we will give the whole-arm grasped ebj results and at the end of this section, the
relation of the coefficientscéeff) is discussed with an example. As mentioned presho the
periodisiced turning functiong} carry the important information for the achievemef grasping
process. The edge-information is performed andrgbddn the periodic signal.

The spectrum of fourier coefficients in caseme-time grasped objects has important featues ov

not fully grasped objects. The periodic decreasialyies of coefficients are repeated every certain
values like 4.,8.,...28.,32. feature vector.

SQUARES

test=[pi/2000000000000000pi/20000000000000pi/200000000M0AOO0OPI/200000000|0

000000]
Classified aSQUARE

wwwwwwwwwwwww GRASPING
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perodc signal o SHAPE
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m
,,,,,,,,,,,,,,,,,,,, H 0 5 10 15 20 25 30 35
The coeflicients of periodisiced signal "E”

0.0000 0.0000 0.00006.1033 0.0000 0.0000 0.000(.2094 0.0000 0.0000 0.0000%.6547 00000 0.0000 0.000

4.4429 0.0000 0.0000 0.00003.7784 0.0000 0.0000 0.00003.4004 0.0000 0.0000 0.00003.2031 0.0000
0.0000 0.0000 3.1416

Fig. 5.17: The state of grasping process for wiaofe-grasped object of square with coefficients.

At the right side of the figure, the grasping réswre shown. The whole arm grasped square has a
periodic decreasing coefficient spectrum. The feattector of shape reaches a steady state as the
frequency increases. The spaces between coeffcemet equally distributed and related with the
periodic signal of shape.
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CIRCLES

test = [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/3RIR pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pRIPi/32 pi/32 pi/32 p32 pi/32

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 BE pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/PR32 pi/32 pi/32 pi/32 pi/3:

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/RY32 pi/32 [i/32 pi/32]
Classified aIRCLE

0.5259 0.2603 0.1469 0.1357 0.0977078 0.0715 0.0872 0.0984 0.0607 5810 0.0396 0.0729 0.0578 0.06

0.0587 0.0623 0.0373 0.0608 0.053BK0556 0.03 0.0996 0.0735 0.0469 0.06120587 0.0502 0.140
0.0480 0.0454 0.0570

Fig. 5.18: The state of grasping process for wlaote-grasped object of circle.

The periodic signal of whole-armed grasped cirslednstant and related with the angles between the
links of the manipulator.

RECTANGLES

test:[OO00OOOOOO0000OO000Omp.D’ZOOO0000pi/2000OOOOOOOGDGDOOOOOOOOd)
pi/200000 00 pil2]
Classified aRECTANGLE

QQQQQQ TURNING FUNCTION GRASPING
25

0.0000 9.3040 0.0000 13.3894 0.0000 8.3659 0.0000 3.1416 0.0000 6.6323 0.0000 1.1032 0.0000 4.3674
0.0000 3.1416 0.0000 1.9158 0.0000 3.7058 0.0000 0.3492 0.0000 3.1416 0.0000 2.0827 0.0000
1.7796 0.0000 3.0209  0.0000 0.0000

20

15

3
o

5 10 15 20 25 30 3

The coefficients of periodisiced signal "E"

Fig. 5.19: The state of grasping process for wiaote-grasped object of rectangle.

60



5 Simulation

As mentioned for squares, the whole arm graspethnigle has a periodic decreasing coefficient
spectrum. The spaces between coefficients are lgqglstributed and related with the periodic signal

of shape.

TRIANGLES

test=[00000000000000000000@20000000000000000000023WO000000000000000QO0
00 0 2*pi/3]
Classified ag RIANGLE

sHape TURNING FUNCTION i ‘ __oweme
s
ﬁ 10
0 K i - —
0
5
10

i g 0 (i3 il ]
number of LINKS arclangh

periodic signal of SHAPE feature vector of SHAPE

N/\/\/ »
215

JJ\FfJ ém

“o 0 o 31 w0 = e 7 5 0 5 1 15 20 25 3
umber of cosficient

3
4
2
0

1.2995 1.279921.3745 1.3154 1.254610.7452 1.3304 1.2230 7.2196 1.3487 1.1853 5.4622 1.3749 1.1429 4.4051
1.4145 1.0978 3.6927 1.4729 1.0532 3.1739 1.5549 1.0125 2.7747 1.6647 0.97972.4559 1.8056 0.9583 2.1955
1.9811 0.9509

Fig. 5.20: The state of grasping process for wlanla-grasped object of triangle with coefficients.

The results for triangles are the same with sqehepe. The coefficients decrease after increasing
periodic frequencies. As see in the next sectibrthe number of grasping process increase, the
periodic coefficient width wides. For one-time grad triangle, every third coefficient has the higthe

value but for the more than one-time grasped shapesspace between the periodicised highest

frequencies increases.

5.2.1.3 More than one-time grasped objects

In this section we will study the grasping restitisobjects that are more than one time entwinkd. |
compared with other situations of grasping procéiss, spectrum of coefficients gives always a
periodicised array and decreases to a constarg.valu

In the following, for each object, the resudi® illustriated and at the end of this sectidoriaf

summary of more than one-time grasping proceswéng
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SQUARES

test=[pi/20000000p/20000000®R00000pPI/20000000pi/200000@MR0O000000pPI/2000p
000pi/20000000]

GRASPING

sssss TURNING FUNCTION

70

60

20

10

m
wowo S el 2P ® L 5 10 15 20 25 30 35
‘The coefficients of periodisiced signal "E"

64.0257 32.0515 21.4106 16.1033 12.929282R5 9.325312.0975 7.3478 6.6644 6.1108 5.6547 5.27389521
4.6781 9.9346 4.2399 4.0641 3.9113 3.7784 63/ 3.5622  3.47539.5142 3.3366 3.2830 3.2387 3.20
3.1760 3.1568 3.14549.4248

Fig. 5.21: More than one-time grasped square. deéficient values decrease with the increasing
number of frequencies.
The spectrum of fourier coefficients in casenore than one-time grasped objects become more
linear and difference between the coefficients dovary sharply as seen in the spectrum of one-time

grasped object.

CIRCLES

test = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 @/pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/Bi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8
pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

GRASPING

200

arcingin 120}

100+

? 801

401

H 0 5 10 15 20 25 30 35
The coefficients of periodisiced signal "E"

192.0771 96.1544 64.2319 48.3098 38.7&4674 27.9758 24.6281 22.0434 19.993333R5 16.9642 15.8214 14.85
14.0342 138286 12.7198 12.1923 11.7339 11.33819881 10.6866 10.4258 10.2013 10.0098489 9.7160 9.609
9.5279 9.4704 9.4361 9.4248

Fig. 5.22: More than one-time grasped circle.
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TRIANGLES

test=[00000002"pi/3000000 0 2*pi/®BO 0000 2*pi/30000000 2*pi/300000 2*pi/30000 0 0
2*pi/l30000000 2*pi/300 0000 0 2*pi/3]

SHAPE TURNING FUNCTION GRASPING

- Y — 120
» rrrf
s o 100
H
Ea
1 \ a ’_,_,_,_’_,_r
o 0 5 80
/ 5 ’_,_l_r
BTN ST BT | I T ]
b of NKS aclonth .
/ §
© o =
fmd -
/ g
W &
5 \/\/\ T 20
f H
ofs~ £

] 0 s & 8, E w 0 5 10 15 20 25 30 35
it codcants The coefiicients of periodisiced signal “E”

106.7237 53.4474  35.7267 26.8950 21.61B8.1210 15.639126.0929 12.3691 11426 10.3320 9.5835 8.954
8.4346 7.9882 19.4522 7.2773 6.9930 6.7467 6.532834B2 6.1863 6.047310.7432 5.8264 5.741]
5.6708 5.6145 5.5714 5.5411 3(622.8606

Fig. 5.23: More than one-time grasped triangle.

RECTANGLES

test=[000000000000000 pi/200@®OP’2000000000000 000 pi/20@BO 0 pil200000000p
000000 pi2]

GRASPING
TURNING FUNCTION -

=3 oen

0 5 10 15 20 25 30 35
The coefficients of periodisiced signal "E"

,,,,,,,,,,,,,,,,,,

22.5923 15.6424 10.1999 4.7027 8.112(B186 3.130812.0800 2.5020 1.8049 6.2906 4.0808 5.82813869 2.118§
7.9111 2.1955 1.9647 4.2726 2.9879 3.68&/5577 2.51504.3271 2.6052 2.9747 1.7992 1.8614 1.16871863
2.7497 1.4995

Fig. 5.24: More than one-time grasped rectangle.

If we summarize the grasping process, theasitrat is transformed from the turning function of
the shapes is necessary for the fourier transfoomatVith the help of MLP network, the cosines and

the sinus values of plotted turning function, tlealrand the imaginary part of coefficients are
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computed using the two layers. The absolute vafumummation of sin and cos part carries the key
information for grasping process. Three differebject features are introduced and spectrums of
coefficients are performed. As a result, if theeabjis entwined the spectrum of fourier coefficgent
decrease and convergence to a constant valuet, fh@ospectrum gives a wave form of coefficients.
In case of several entwinement process, the vdloeasficients are bigger than the coefficients evhi

are observed with one-time entwined objects.

5.2.2 Investigating the ,Linear object scanner cas  e“

In this section of the thesis, we will study oug fhossibility of the recognizing the deformed prt
the objects passing through the conveyor belt usewgal networks as a recognizer of patterns which
is within the field known as quality control apg@tens that are designed to find that one in a heohd
or one in a thousand part that is defective. Liragect scanner case data inputs apen matrices.
The main problem which is desired to be solved feosensor system is that the sensor that lieseon th
conveyor-belt must recognize the faults on the sh#fpthere is a hole in the object or a part of is
destructed, the object must be noticed out by yhtem.

As shown below, the construction of conveyelt ks seen. In this procedure, the objects must be

recognized if they are deformed partially.

Sensor ‘*’ 2-dimensional
system shape
« Conveyor
belt
Figure 5.25: lllustration of ,Linear object scanmaise” problem.
0 1 1 1] W, | []
0011 5 lis = || |RBF| » | O
0111 - A
0 0 1 1 | W, | —
nxndimensional 1 2 3 L -

data arrays

Figure 5.26: The sub-problems of linear object searcase problem.
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square=11111;11111;11111;111311111]| circle=[00100;01110;11111;010;00100]

1 1 1 1 1 0 o|1]0 0
1 1 1 1 1 0|1 1 1|0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0|1 1 1|0
1 1 1 1 1 0 o|1]0 0

triangle=[00000;00000;00100;01@;11111] rectangle=[00000;11111;11111;101®11111]

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0|10 0 1 1 1 1 1
0|1 1 1|10 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Figure 5.27: Thenx ndata arrays shown as inputs and as two dimenséhiagle information.

Fig. 5.26 shows the method that was used in linbgact scanner case and fig. 5.27 reveals thesnput
as nxndata arrays that give the object boundary inforomati0” indicates the holes or the faults, “1”
indicates the actual boundary points on the shapadary that are given manually as a training set,
the inputs, are said to be one dimensional-dat@ysrThen, the fourier serie is computed for the
classification. After implementation of fourier serthe necessary coefficients are taken for theufe
vector. The classification, which here pnn usedjiven with the help of the coefficients of feature
vector. As a result, the objects are classifiedcamre, circle, triangle, rectangle.

The classification results in linear objecsiger case problem can be explained as follows;

1. The objects which are partially deformed carclassified correctly. The partially deformed
shapes which have different dimensions were reeednproperly. The dimension of shapes
that were recognized properly have smaller maitrixetision tharm x n matrix.

2. The holes on the shapes cause problems infatassin process and give false results.
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SHAPE
1 1 1 1 1 ojo|j1|0]0O0 o|O0| 0] O O o0l 0| O O
1 1 1 1 1 0] 1 1 110 0)0) 0| O O 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 o)jo0|j1|0/|O0 1 1 1 1 1
1 1 1 1 1 01 1 110 0|1 1 110 1 1 1 1 1
1 1 1 1 1 o|jo0|j1|0]|O0 1 1 1 1 1 1 1 1 1 1

SQUARE CIRCLE TRIANGLE RECTANGLE

Featuto Vector of RECTANGLE

Figure 5.28: Thenx ndata arrays with different object information. Tieature vectors of
two dimensional data arrays are shown.

As seen above, the objects hav& n dimensions that pass through the conveyor beks@&hnputs

are used as a training set and the classificasisnpervised according to thes& n data arrays.

TEST SHAPE
SHAPE Feature vector Comment Result
1111 1] 1 K
(1o ]1}| -
tl1]of1]1]l - Shape with a hole | Triangle
1l a] 1] 1] -
1111 1] 1

Figure 5.29: Thenxn shape with a hole in the center.
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The classification results of th@xndata arrays show that it is not possible to takerectd
classification results with the newpnn method fog tefected objects passing through the conveyor
belt.

TEST SHAPE
SHAPE Feature vector Comment Result
oT ol ol ol o
0| 0| 0| Ol O
1/11]1/01]0 Partially deformed | Square
1117 1,0]0 shape
1(1,1,0|0

Figure 5.30: Thenx ndata arrays with different object information.

We see that the classification procedure with deéar objects do not give the true results but on the
other hand the small shapes are recognized ansifiddsproperly by our neural network. Fig 5.30

shows actually a small square comparing with tla¢ skape value.

5.3 Conclusion

The fourier coefficients of turning functiotbat are performed in two mlp networks makes
possible an interpretation about grasping of araibj The zeroth order of fourier transformation is
the important key for grasping results.

The classification is realized with three netks, respectively two mip networks and pnn. A
probabilistic neural network structure is able tassify the objects with one dimensional data aray
but the results are not successful enough forigfin classification if the object is translatediated or
scaled. The reason of false results is the diftesigle lengths of objects.

The two dimensional data arrays can not besdlad with our pnn network correctly. The
defaulted shapes that are produced during the ptioduprocess must be recognized for the quality
work of a firm. Thus, instead of pnn, the otherna¢unetworks must be used.

In this chapter, we have shown turning funddicas a way to describe the shapes that are

recognized during the grasping process. We devdldap® neural networks in order to make a
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5 Simulation

classification of the objects that the feature @exfrom the turning function are extracted. Thapss
as test set which have different side lengths caoldbe classified correctly. The grasping progess
introduced with the help of plotted object and &icefnts performed in mip.
In case of not fully entwined objects, thectpam of coefficients gives a wavy form. For oneei
and more than one-time entwined objects, the aoeffis are observed as they decrease with the high

frequencies. Also the value of coefficients incesa the objects are several times grasped.
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6 Implementation in Matlab

6 Implementation in Matlab

This chapter describes implementation details witd help of MATLAB and the main results
obtained with neural object classification. Sectta starts with implementation details in neural
object classification and continues to describe MAB realizations of related neural networks based

algorithm.

6.1 Implementation in MATLAB

The MATLAB codes was written and tested with MATLARersion 7.0. The software package was
used with Windows XP on a Pentium Celeron M proaesgsth 1.5 Ghz clock frequency and 996 MB
RAM.

MATLAB code listings
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6 Implementation in Matlab

6.1.1 Tentacle case

%
% tentaclecase.m
%

% Classification with RBF and grasping with MLP

%

% input:

% SQUARE

% CIRCLE

% TRIANGLE
% RECTANGLE
%

% %%%%%%%%% %% %% % %% %% %% % %% %% % %%

The function uses inputs a

training set and outputs i

grasping process for each object
The maniplator has 16 numhb

of links and is used as a sh

definer.

Therefore onelimensional da

array has 16 values whi

describe the angles between

links.

[obj,n,t,ts]=DRAWTESTSET()

[t,coefficient,x,s]=turningfunction(obj,n)

[a,E]=periodic(t)

subplot(2,2,1);
plot(x(1,:),x(2,:),'ko-");

axis equal;

title('SHAPE");
Xlabel('number of LINKS);

subplot(2,2,2);
stairs(s(1:n-1),t);
title(TURNING FUNCTION?);
axis equal;
Xlabel(‘arclength');
Ylabel('coeff);
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Plotting the periodical signal
subplot(2,2,3);
shape
plot(E);
title('periodic signal of SHAPE')
subplot(2,2,4); Plotting the feature vector
bar([0:((n/2)-1)],a); periodical sigal over nyquis
title (‘feature vector of SHAPE); theorem
Xlabel('number of coefficients");
Ylabel(‘feature coefficients");
[A fig] = transformationX(E, fig) Implementing the periodisic
signal in mlp network
[circle,triangle,rectangle,square] = classify() Input sets of each object for
classificatiol
P=[l;

The periodical signal ar
y = sim(MLP, {circle});

coeff = abs(y{1}+i*y{2});
P =[P, coeff];

coefficients of each class
object performed in two m

networks respectively

y = sim(MLP, {triangle?});
coeff = abs(y{1}+i*y{2});
P =[P, coeff];

y = sim(MLP, {square'});
coeff = abs(y{1}+i*y{2});
P =[P, coeff];

y = sim(MLP, {rectangle?});
coeff = abs(y{1}+i*y{2});
P =[P, coeff];

T = ind2vec([1 2 3 4)); The classes of objects

performe

Pnn, A kind of radial bas

net = newpnn(P,T); network is create
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y = sim(MLP, {E});
coeff = (abs(y{1}+i*y{2}))";

fig = fig + 1,

figure(fig)

bar(A);

titte (GRASPING PROCESS)

Xlabel('The periodical signal "E" and the coeffitig);

Ylabel('numerical approximation to the integralidefg coefficients");

class = sim(net, coeff");
vec2ind(class)

yc_test = vec2ind(class)

%%%%%%%%% %% % %% %% % %% %% % %% %% % %% %% %

switch yc_test
case 1, display('SQUARE);

case 2, display('CIRCLE);

case 3, display(TRIANGLE");

case 4, display(RECTANGLE;
end
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6.1.2 Linear object scanner case problem

% twodimensional.m

%

% Classification with RBF
% input:

% SQUARE

% CIRCLE

% TRIANGLE

% RECTANGLE

% output:

clear
fig = 0;
n=>5;

% square

squarel=[11111;11111;11111;111111111];
square2=011110;11110;11110;110011111];
square3=[00000;01110;01110;010:00000];
square4=[00000;00110;00110;00000000];

%9%0%%%%% %% %% %% % %%

% circle
circlel=[00100;01110;11111;01%,D0100T7;
circle2=[00000;00100;01110;000,@0000T;
circle3=[01110;11111;11111;1113;,D1110T7;
circle4=[00000;00000;00100;000,@00007;

% triangle

trianglel =[00000;00000;00100;010Q;11111];
triangle2=711111;01110;00100;000;,00000];
triangle3=[10000;11000;11100;100;10000]};
triangle4 =[00000;00000;00000;000;01110];

% rectangle

rectanglel =[00000;11111;111121;1M2;11111],
rectangle2=011111;11111;11112;111;00000];
rectangle3=011110;11110;11110;110;11110];
rectangle4=[01100;01100;01100;0Q0;01100];
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% FFT

% computes the fast fourier transform of the dataya

% classification

% This function results the FFT of objects for slfisation
[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1,

norm_abs FFT_alpha_square_2,norm_abs_FFT_alphaes@ua
,norm_abs_FFT_alpha_square_4,norm_abs FFT_alpbke dir
norm_abs_ FFT_alpha_circle_2,norm_abs_ FFT_alphdecBc
,norm_abs_FFT_alpha_circle_4,norm_abs_FFT_alplagie 1,
norm_abs FFT_alpha_triangle _2,norm_abs_ FFT_ alphagte 3
,norm_abs_FFT_alpha_triangle_4,norm_abs FFT_ alpbtangle 1
,norm_abs_FFT_alpha_rectangle_2,norm_abs_FFT_akpttangle_3
,norm_abs_FFT_alpha_rectangle_4] =
FFTscanner(squarel,square2,square3,square4,anct&D, circle3
,circled trianglel,triangle2,triangle3,triangle4fanglel,rectangle2

,rectangle3,rectangle4)

fig = fig + 1,

figure(fig)
bar([0:n-1],norm_abs_FFT_alpha_square_1);
title('Feature Vector of SQUARE);

fig =fig + 1;

figure(fig)
bar([0:n-1],norm_abs_FFT_alpha_circle_1);
titte('Feature Vector of CIRCLE');

fig = fig + 1,

figure(fig)
bar([0:n-1],norm_abs_FFT_alpha_triangle 1);
titte('Feature Vector of TRIANGLE);

fig =fig + 1;

figure(fig)
bar([0:n-1],norm_abs_FFT_alpha_rectangle 1);
title('Feature Vector of RECTANGLE Y);
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% classifying a new vector with the network

%test=[00000;11011;11011;11111111];
%test=[11000;11000;11000;11Q0Q111];
Ytest=[11111;11011;11011;11111111];
Ytest=[11111;11001;11001;11111111];
%test=[00000;00111;00111;00%0Q000];
Ytest=[11111;11111;11111;11100000];
Ytest=[11111;11011;11011;11111111];
Ytest=[11111;11011;11011;11111111];

% The classification of TEST set with the help &R
[yc_test]= TESTFFT(test,net)

SWITCh yC_test
case 1, display('SQUARE);

case 2, display('CIRCLE");

case 3, display(TRIANGLE");

case 4, display(RECTANGLE;
end
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6.2 Functions

The functions which are briefly described belowglude the following main file and first level

subfunctions, respectively

TURNINGFUNCTION.m Computes turning function of gied shape

PERIODIC.m Returns turning function to periodigral

NEWPNN.m Computes the classification process

MLP.m Returns the fourier transformation of perc signals

TESTFFT.m Returns the fourier transformationest tobjects

CLASSIFY.m Classifies each object

FFTscanner.m Returns discrete fourier transfdomaif two-dimensional objects
TURNINGFUNCTION.m Computes turning function of piled shape

function [t,coefficient,x,s] = turningfunction(oh)),
%GRAPHS : plots of turning function and frequenopients
% obj : object boundary as spline in ppform

% n : number of points on object contour

% gather object pnts

%equally spaced

s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,0bj.breaks(en8));

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %Yabsolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %Ycorrect for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) =t(1) + 2*pi;
% end;
% fori=2:n
% %this condition certainly is not quite corretut it works as long as the differnces of
% %tangent angels are small => arclengths betwetnmust be small
% if (abs(t(i) - t(i-1)) >= pi)
%  t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not accourdrfthe last vector that closes the boundary!
len = [sgrt(sum(vec.”2,1))];
fori=1:n-1
cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * 1€h,i+1));
phi(i) = acos(cosphi);
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end;

t = cumsum(phi);
%
% compute frequency contents
%
coefficient = abs(fft(t));
%
% plots
%
return

PERIODIC.m Returns turning function to periodigrsal

function [a,E]=periodic(t)

%FEATURE extract feature vector from turning funaitfor classification
%

%requests:

% t: turning function of shape

%returns:

% a : feature vector

%transform turning function to periodic signal:

n = length(t);

E =t-2*pi/n *[1:n];

% where n is the number of links.

%apply fourier transformation and strip contenterawquist frequ. and
%static content

% compute frequency contents

fta = abs(fft(E));

ft = fta(1,2:ceil(n/2)+1);

%return feature vector:
a = ft;
return

GRASPING.m computes actual transformation

function [A,coeff,fig] = grasping(E,fig)

%MLP : the actual transformation

% E is the periodisiced signal of turning functmfrshapes.

% "coeff" results the absolute value of the rea te imaginary part of
% fft values of the shape that are computed diyine layer {1} and
% layer {2}.(see function MLP)

%the coefficients are determined with

A=

y = sim(MLP, {E%});

coeff = (abs(y{1}+*y{2}))’;

% A outputs the result

A = [coeff];

%The colors are set by the colormap.
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fig =fig + 1;

figure(fig)

bar(A);

title (GRASPING)

Xlabel('The coefficients of periodisiced signal "E"
Ylabel('numerical approximation to the integralidefg coefficients");

return

newpnn.m Computes the classification process

function [net] = newpnn(p,t,spread)

%NEWPNN Design a probabilistic neural network.

%

% Synopsis

%

% net = newpnn

% net = newpnn(P,T,SPREAD)

%

% Description

%

% Probabilistic neural networks are a kind afiah

% basis network suitable for classification peohs.

%

% NET = NEWPNN creates a new network with a djdox.

%

% NET = NEWPNN(P,T,SPREAD) takes two or threguanents,
% P - RxQ matrix of Q input vectors.

% T -SxQ matrix of Q target class vestor

%  SPREAD - Spread of radial basis functiorsadlt = 0.1.
% and returns a new probabilistic neural network

%

% If SPREAD is near zero the network will acteasearest

% neighbor classifier. As SPREAD becomes latigerdesigned
% network will take into account several neadbgign vectors.
%

% Examples

%

% Here a classification problem is defined veitbet of
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% inputs P and class indices Tc.

%

% P=[1234567];

% Tc=[1232231];

%

% Here the class indices are converted to tageors,

% and a PNN is designed and tested.

%

% T =ind2vec(Tc)

%  net=newpnn(P,T);

% Y =sim(net,P)

%  Yc =veczind(Y)

%

% Algorithm

%

% NEWPNN creates a two layer network. The fager has RADBAS
% RADBAS neurons, and calculates its weightguiis with DIST, and
% its net input with NETPROD. The second layas COMPET neurons,
% and calculates its weighted input with DOTPR&11 its net inputs
% with NETSUM. Only the first layer has biases.

%

% NEWPNN sets the first layer weights to P', #relfirst

% layer biases are all set to 0.8326/SPREADItiagun

% radial basis functions that cross 0.5 at weigfinputs

% of +/- SPREAD. The second layer weights W2sateto T.

%

% References

%

% P.D. Wasserman, Advanced Methods in Neuralgtoimy, New York:
% Van Nostrand Reinhold, pp. 35-55, 1993.

%

% See also SIM, IND2VEC, VEC2IND, NEWRB, NEWRBEEWGRNN.

% Mark Beale, 11-31-97
% Copyright 1992-2002 The MathWorks, Inc.
% $Revision: 1.9 $ $Date: 2002/03/25 16:53:29 $

if nargin < 2
net = newnet('newpnn’);
return

end
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% Defaults

if nargin < 3, spread = 0.1; end

% Error checks

if (~isa(p,'double’) & ~islogical(p)) | (~isrealjd)(length(p) == 0)
error('Inputs are not a non-empty real matrix.")

end

if (~isa(t,'double’) & ~islogical(t)) | (~isreal|t) (length(t) == 0)
error('Targets are not a non-empty real matrix.")

end

if (size(p,2) ~= size(t,2))
error('Inputs and Targets have different numbéilumns.")

end

if (~isa(spread,'double’)) | ~isreal(spread) | sizg(spread) ~= 1) | (spread < 0)
error('Spread is not a positive or zero real @dju

end

% Dimensions
[R.Q] = size(p);
[S,Q] = size(t);

% Architecture
net = network(1,2,[1;0],[1;0],[0 0;1 0],[0 1]);

% Simulation

net.inputs{1}.size = R;
net.inputWeights{1,1}.weightFcn = 'dist’;
net.layers{1}.netInputFcn = 'netprod’;
net.layers{1}.transferFcn = 'radbas’;
net.layers{1}.size = Q;
net.layers{2}.size = S;

net.layers{2}.transferFcn = 'compet’;

% Weight and Bias Values
net.b{1} = zeros(Q,1)+sqrt(-log(.5))/spread,;

net.iw{l1,1} = p’;
net.w{2,1} = t;
return
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function [net] = setWeightMatrix(net,W)
inputSizes = net.hint.inputSizes;
layerSizes = net.hint.layerSizes;
| = net.hint.totallnputSize;

U = net.hint.totalLayerSize;

% W(i,j) weights to layer unit i from input, layer bias unit j

for i=1:net.numLayers
indRow = sum(layerSizes(1:i-1)) + (1 : layek3i@));

for j=find(net.inputConnect(i,:))
indCol = sum(inputSizes(1:j-1)) + (1 : inpiat&s()));
net.IW{i,j} = W(indRow, indCol);

end

if net.biasConnect(i)

indCol =1 + 1;
net.b{i} = W(indRow, indCol);
end

for j=find(net.layerConnect(i,:))
indCol = | + 1 + sum(layerSizes(1:j-1)) +:(tayerSizes()));
net.LW{i,j} = W(indRow, indCol);

end

end

%function [net_new] = trainrtrl(net,P,T,epochs,stiow

% trainrtrl - encapsules the RTRL training algamitin rtrl.mex.

%

%function [net] = trainrtri(net,P,T,epochs,show,Ir)

%

% requests

% net : neural network structure (Netatwork toolbox)
% P : input signal (sequence of T §taps)

% T : teacher signal (sequence ofriesiteps)

% epochs :number of epochs

%  show : humber of epochs, after whichport of the training progress is output
% at the command line

% Ir : learning rate

%
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% returns

% net_new : neural network structure aftaintng

%

% remarks

% This function converts the neural network streetio the form the mex file demands, calls the
% mex file and reconverts the outcome of the tragjnd a neural network structure. In addition,

% it plots the training signal and the network aitat the end of the training.

net=network;
epochs = 50;
Ir=0,6;

Y%prepare weight matrix:
% w = getWeightMatrix(net);

net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net = train(net,p,t);

y2 = sim(net,p)
plot(p,t,'0',p,y1,’x',p,y2,™)

%

% utility fcns - conversion of neural network stiwre to and from the form the mex file

% demands
%

%function [W] = getWeightMatrix(net)
inputSizes = net.hint.inputSizes;
layerSizes = net.hint.layerSizes;
| = net.hint.totallnputSize;

U = net.hint.totalLayerSize;

% W(i,j) weights to layer unit i from input, layer bias unit j

W = zeros(U, U+I+1);

for i=1:net.numLayers
indRow = sum(layerSizes(1:i-1)) + (1 : layersif));

for j=find(net.inputConnect(i,:))
indCol = sum(inputSizes(1:j-1)) + (1 : inpiaSs()));
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W(indRow, indCol) = net.IW({i,j};

end

if net.biasConnect(i)

indCol =1 + 1;
W(indRow, indCol) = net.b{i};
end

for j=find(net.layerConnect(i,:))
indCol = | + 1 + sum(layerSizes(1:j-1)) +:(tayerSizes()));
W(indRow, indCol) = net.LW({i,j};

end

end

%prepare array with transfer fcn indices:
transferFcn = zeros(net.hint.totalLayerSize,1);
j=0;
for i = 1:net.numLayers
n = net.layers{i}.size;
switch (net.hint.transferFcn{i})
case 'logsig’
transferFcn(j+1:j+n,1) = 0*ones(n,1);
case 'tansig’
transferFcn(j+1:j+n,1) = 1*ones(n,1);
case 'purelin’
transferFcn(j+1:j+n,1) = 2*ones(n,1);
otherwise
transferFcn(j+1:j+n,1) = 0*ones(n,1);
end;
j=in;

end;

%target indices
targind = [J;
for i = net.hint.targetind
targind = [targind sum(net.hint.layerSizes(1)-t)1 : net.hint.layerSizes(i))];

end;

%pass inputs to mex file

w = rtrl(w, transferFcn, P, T, targind, epochs,shiv);
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%update net
net_new = net;

net_new = setWeightMatrix(net_new,w);

%simulation of net (initial state set to first sdenpf teacher signal)
%y = sim(net, con2seq(P), {}, {T(:,1)});

y = sim(net, con2seq(repmat(P,1,4)), {}, {T(:,1)});

y = seq2con(y);

y=y{}

%time - sequence
figure;

plot([T(:,1) y]','k-);

hold on;
plot(repmat(T,1,4)",'k--";
hold off;

%phase plane

figure;
plot([T(1,1),y(1,)L.[T(2,1).y(2,)].’k-);
hold on;

plot([T(1,), T(1,1)1.[T(2,),T(2,1)],'k--);
hold off;

return

MLP.m Returns the fourier transformation of pditsignals

function [net] = MLP(N);

%dftnet - set up a MLP network that performs disefeurier transformation
%

%requires:

% N : number of samples

%returns:

% net : Neural Network Toolbox network structure.

%remarks:

%MLP computes only ceil(N/2) coefficients; both #tatic component and the
%coefficients above the nyquist frequency are g&tib The two layers output
%the real and imaginary parts of the coefficients.

%the weight matrix is determined analytically; reed to perform additional
%training on the net.

N=16;

net = network;

net.numinputs = 1;

net.numLayers = 2;
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net.inputs{1}.size = N;

net.biasConnect = zeros(2,1);
net.outputConnect = ones(1,2);

%DFT layer (outputs complex fourier coefficients)
net.layers{1}.size = ceil(N/2);
net.layers{2}.size = ceil(N/2);

net.layers{1}.transferFcn = 'purelin’;
net.layers{2}.transferFcn = 'purelin’;

net.inputConnect = ones(2,1);

fori=1: ceil(N/2)

forj=1:N
kn(i,j) = i*(-1);
end;
end;

W1 = cos( 2*pi/N * kn );
W2 = - sin( 2*pi/N * kn );

net.IW{1,1} = W1,
net.IW{2,1} = W2;

net.inputWeights{1,1}.learn = 0;
net.inputWeights{2,1}.learn = 0;

return

CLASSIFY.m classifies each object

function [circle,triangle,rectangle,square] = ciBgs

%%%%%%%%%%%%%%%%

%Shapes in the training set

% square

%squarel =[0 0 0 pi/2 00 0 pi/2 0 0 0 pi/2 O@/AA];

squarel =[000000000000000pI/2000000000000000pPi/2000000000®MAO O PiI/200
0000000000000 pil2];

%%%%%%%%%%%%%%%%

% circle

%circlel = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/Bi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]";

circlel = [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32IR pi/32
pi/32 pi/32 pi/32 pif32 pi/32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/PR32 pi/32
pi/32 pi/32 pi/32 pif32 pi/32 pi/32 pi/32 pi/32 B pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/PR32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 BH]';

%%%%%%%%%%%%%%%%

% triangle

triangle1 =[00000000000000000@M®2*PiI/30000000000000000002HI/300000
0000000000000 O00 2*pi/3];

%%6%%%6%6%%%%%%%%%%
% rectangle

85



6 Implementation in Matlab

rectangle1 =[0 0000000000000 000000000 pi/20000000pi/20000000@OB®OO00000
00000pi/2000000 0 pil2];

test2=[];
L=[0;0];

n = length(circlel);
test2(1)= circlel(1);

fori=2:n
test2(i) = test2(i - 1) + circlel(i);
end
L(1,1) =0;
L(2,1) =0;
L(1,n+1
L(2,n+1
fori=2:n
L(1,i)= cos(test2(i)) + L(1,i-1);
L(2,i)= sin(test2(i)) + L(2,i-1);

)=0;
)=0;

end

n = length(L);

% Interpolate with a spline curve and finer spacing
t=1n;

ts=1:0.1: n;

obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(ghj
%GRAPHS : plots of turning function and frequenoyntents
% obj : object boundary as spline in ppform

% n : number of points on object contour

% gather object pnts

%equally spaced

s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,0bj.breaks(en8)r);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %Yabsolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end,;
%fori=2:n
% %this condition certainly is not quite corretiut it works as long as the differnces of
% %tangent angels are small => arclengths betywetnmust be small
% if (abs(t(i) - t(i-1)) >= pi)
%  t(i) = t(i) + 2*pi;
% end;
% end,;
vec = [[0;1],diff(x,1,2)]; %diff does not accourdrfthe last vector that closes the boundary!
len = [sgrt(sum(vec.”2,1))];
fori=1:n-1
cosphi = vec(:,i)' * vec(;,i+1) / (len(1,i) * I€h,i+1));
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phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%
%function [a,E]=periodic(t)

%FEATURE extract feature vector from turning funaitfor classification
%

%requests:

% t: turning function of shape

%returns:

% a : feature vector

%transform turning function to periodic signal:

n = length(t);

circle =t - 2*pi/n * [1:n];

%function [triangle] = trianglel1()

test2=[];
L=[0;0];

n = length(trianglel);
test2(1)= triangle1(1);

fori=2:n

test2(i) = test2(i - 1) + triangle1(i);
end
L(1,1) =0;

L(L,i)= cos(test2(i)) + L(L,i-1):
L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);

% Interpolate with a spline curve and finer spacing
t=1:n;

ts=1:0.1: n;

obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(ghj
%GRAPHS : plots of turning function and frequenopients
% obj : object boundary as spline in ppform

% n : number of points on object contour

% gather object pnts

%equally spaced

s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,0bj.breaks(eng));

x = fnval(obj, s);

% compute turning function

% df = fnval(fnder(obj),s);

%

% %first tangent's angel relative to y = const:
% %Yabsolute angels in [-pi,pi]
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% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) =t(1) + 2*pi;
% end;
%fori=2:n
% %this condition certainly is not quite corretiut it works as long as the differnces of
% %tangent angels are small => arclengths betwetnmust be small
% if (abs(t(i) - t(i-1)) >= pi)
%  t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not accourdrfthe last vector that closes the boundary!
len = [sgrt(sum(vec.”2,1))];
fori=1:n-1
cosphi = vec(:,i)' * vec(;,i+1) / (len(1,i) * 1€h,i+1));
phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%
%function [a,E]=periodic(t)

%FEATURE extract feature vector from turning funaitfor classification
%

%requests:

% t: turning function of shape

%returns:

% a : feature vector

%transform turning function to periodic signal:

n = length(t);

triangle =t - 2*pi/n * [1:n];

%function [square] = squarel()

test2=[];
L=[0:0];

n = length(squarel);
test2(1)= squarel(1);

fori=2:n
test2(i) = test2(i - 1) + squarel(i);
end
L(1,1) =0;
L(2,1) =0;
L(1,n+1
L(2,n+1
fori=2:n
L(1,i)= cos(test2(i)) + L(1,i-1);
L(2,i)= sin(test2(i)) + L(2,i-1);

)=0;
)=0;

end

n = length(L);

% Interpolate with a spline curve and finer spacing
t=1:n;

ts=1:0.1: n;

obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(ghj)
%GRAPHS : plots of turning function and frequenoptents
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% obj : object boundary as spline in ppform
% n : number of points on object contour

% gather object pnts

%equally spaced

s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,0bj.breaks(eng));

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %Yabsolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) =t(1) + 2*pi;
% end;
%fori=2:n
% %this condition certainly is not quite corretiut it works as long as the differnces of
% %tangent angels are small => arclengths betwetnmust be small
% if (abs(t(i) - t(i-1)) >= pi)
%  t(i) = t(i) + 2*pi;
% end,
% end,;
vec = [[0;1],diff(x,1,2)]; %diff does not accourdrfthe last vector that closes the boundary!
len = [sgrt(sum(vec.”2,1))];
fori=1:n-1
cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * 1€h,i+1));
phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%
%function [a,E]=periodic(t)

%FEATURE extract feature vector from turning funaitfor classification
%

%requests:

% t: turning function of shape

%returns:

% a : feature vector

%transform turning function to periodic signal:

n = length(t);

square =t - 2*pi/n * [1:n];

%function [rectangle] = rectanglel1()

test2=[];
L=[0;0];

n = length(rectanglel);
test2(1)= rectangle1(1);

fori=2:n
test2(i) = test2(i - 1) + rectanglel(i);
end
L(1,1) =0;
L(2,1) =0;
L(1,n+1) = 0;
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L(2,n+1) = 0;
fori=2:n
L(1,i)= cos(test2(i)) + L(1,i-1);
L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);

% Interpolate with a spline curve and finer spacing
t=1:n;

ts=1:0.1: n;

obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(ghj
%GRAPHS : plots of turning function and frequenoptents
% obj : object boundary as spline in ppform

% n : number of points on object contour

% gather object pnts

%equally spaced

s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,0bj.breaks(eng));

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %Yabsolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %Ycorrect for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) =t(1) + 2*pi;
% end;
%fori=2:n
% %this condition certainly is not quite corretiut it works as long as the differnces of
% %tangent angels are small => arclengths betwetnmust be small
% if (abs(t(i) - t(i-1)) >= pi)
%  t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not accourdrfthe last vector that closes the boundary!
len = [sgrt(sum(vec.”2,1))];
fori=1:n-1
cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * 1€h,i+1));
phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%
%function [a,E]=periodic(t)

%FEATURE extract feature vector from turning funaitfor classification
%

%requests:

% t: turning function of shape

%returns:

% a : feature vector

%transform turning function to periodic signal:

n = length(t);
rectangle =t - 2*pi/n * [1:n];
end
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TESTFFT.m Returns the fourier transformationest tobjects

function [yc_test]= TESTFFT(test,net)

% The classification of TEST set with the help &M This function

% computes the max absolute

% The maximum absolute value of FFT of test igntinesphase angle.

% The FFT value of TEST is normalized because tkentlaem independent of
% translation, scale and rotation.

FFT_test = fft(test);

abs FFT_test = abs(FFT_test);

max_abs_FFT_test = max(abs_FFT_test);
norm_abs_ FFT test = abs FFT test/max_abs FFT_test;
y_test = sim(net,norm_abs_FFT_test)

yc_test = vec2ind(y_test)

return

TESTTURNING.m Returns turning function to a perimdignal

function [n,X,fig] = TESTOBJECT(Test,fig)
%shape plot shape from the turning function square

n = length(Test);
X =[0;0];

forc=1:n-1
X(:,c+1) = X(:,c) + [cos(Test(c)); sin(Test(c))];
end;

fig = fig + 1,

figure(fig)
plot(X(1,:),X(2,:),'k-";
axis equal;
axis([-1,10,-1,10]);
Xlabel('arclength');
Ylabel(\theta");
axis([1,32,-pi/18,2*pi]);

label = {0','PI/2','PI','3*P1/2','2*PI'},

set(gca, 'YTick' ,2*pi/4*[0:4]);

set(gca, 'YTickLabel' ,label);

titte (‘'Turning function of Test')

%function [c,fig,X] = FEATUREsquare(X,fig)
%transform turning function to periodic signal:
n = length(X(1,:));
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X(1,:)= X(1,:) - 2*pi/n * [1:n];

%%%%%6%%% %% %% % %% %% % %% %%

%apply fourier transformation and strip contentsrawquist frequ. and
%static content

ftc = abs(fft(X(1,:)));

ftw = ftc(1,2:ceil(n/2)+1);

%return feature vector:

c = ftw;

% The figure of feature vector of TEST
fig =fig + 1;

figure(fig)

bar([0:(n-1)/2],c);

title(‘feature vector of Test");

% The figure of periodic signal of TEST
fig = fig + 1,

figure(fig)

plot(X(1,.));

title (PERIODIC SIGNAL of Test')

return

FFTscanner.m Returns discrete fourier transfoomati two-dimensional objects

% FFT
% computes the fast fourier transform of the datays

function

[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1,norm FBE_alpha_square_2,norm_abs_FFT_alpha_square_3
,norm_abs_FFT_alpha_square_4,norm_abs_FFT_alpbke_dirnorm_abs_FFT_alpha_circle_2,norm_abs_FFT
_alpha_circle_3,norm_abs_FFT_alpha_circle_4,nors BT _alpha_triangle_1,norm_abs_FFT_alpha_triang|
e_2,norm_abs_ FFT_alpha_triangle_3,norm_abs_FFTaalpangle 4,norm_abs_FFT_alpha_rectangle_1,norm
_abs_FFT_alpha_rectangle_2,norm_abs_FFT_alphangéet®,norm_abs_FFT_alpha_rectangle_4] =
FFTscanner(squarel,square2,square3,squared,anatl, circle3,circle4,trianglel,triangle2,triaagltriangle

4, rectanglel rectangle2,rectangle3,rectangle4)

FFT_alpha_square_1 = fft(squarel);

FFT _alpha_circle_1 = fft(circlel);
FFT_alpha_triangle 1 = fft(trianglel);
FFT_alpha_rectangle_1 = fft(rectanglel);

FFT_alpha_square_2 = fft(square?2);
FFT_alpha_circle_2 = fft(circle2);
FFT_alpha_triangle_2 = fft(triangle2);
FFT_alpha_rectangle_2 = fft(rectangle2);

FFT_alpha_square_3 = fft(square3);

FFT_alpha_circle_3 = fft(circle3);
FFT_alpha_triangle 3 = fft(triangle3);
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FFT_alpha_rectangle_3 = fft(rectangle3);

FFT_alpha_square_4 = fft(square4);

FFT _alpha_circle_4 = fft(circle4);
FFT_alpha_triangle 4 = fft(triangle4);
FFT_alpha_rectangle 4 = fft(rectangle4);

% takes the absolute value of the data arrays

abs FFT_alpha_square_1 = abs(FFT_alpha_square_1);
abs FFT_alpha_circle_1 = abs(FFT_alpha_circle_1);
abs FFT_alpha_triangle_1 = abs(FFT_alpha_triangje 1
abs FFT_alpha_rectangle 1 = abs(FFT_alpha_rectakgle

abs FFT_alpha_square 2 = abs(FFT_alpha_square_2);
abs FFT_alpha_circle_2 = abs(FFT_alpha_circle_2);
abs FFT_alpha_triangle_2 = abs(FFT_alpha_triangje 2
abs FFT_alpha_rectangle 2 = abs(FFT_alpha_rectatjgle

abs FFT_alpha_square_3 = abs(FFT_alpha_square_3);
abs FFT_alpha_circle_3 = abs(FFT_alpha_circle_3);
abs FFT_alpha_triangle_3 = abs(FFT_alpha_trianyle 3
abs FFT_alpha_rectangle 3 = abs(FFT_alpha_rectajgle

abs FFT_alpha_square_4 = abs(FFT_alpha_square_4);
abs FFT_alpha_circle_4 = abs(FFT_alpha_circle_4);
abs FFT_alpha_triangle_4 = abs(FFT_alpha_trianyje 4
abs FFT_alpha_rectangle 4 = abs(FFT_alpha_rectatjgle

% computes the maximal absolute value of the datys

max_abs_FFT_alpha_square_1 = max(abs_FFT_alphaesdla
max_abs_FFT_alpha_circle_1 = max(abs_FFT_alphdeci}
max_abs_FFT_alpha_triangle_1 = max(abs_FFT_alpghagte 1);
max_abs_FFT_alpha rectangle_1 = max(abs_FFT_alpttangle 1);

max_abs_FFT_alpha_square_2 = max(abs_FFT_alphaes@la
max_abs_FFT_alpha_circle_2 = max(abs_FFT_alphdecR};
max_abs_FFT_alpha_triangle_2 = max(abs_FFT_alpghagte 2);
max_abs_FFT_alpha rectangle_2 = max(abs_FFT_alpttangle 2);

max_abs_FFT_alpha_square_3 = max(abs_FFT_alphaes@)a
max_abs_FFT_alpha_circle_3 = max(abs_FFT_alphdecB}
max_abs_FFT_alpha_triangle_3 = max(abs_FFT_alpghagte 3);
max_abs_FFT_alpha_rectangle_3 = max(abs_FFT_alpttangle 3);

max_abs_FFT_alpha_square_4 = max(abs_FFT_alphaesdyia
max_abs_FFT_alpha_circle_4 = max(abs_FFT_alphdec#};
max_abs_FFT_alpha_triangle_4 = max(abs_FFT_alpghagte 4);
max_abs_FFT_alpha rectangle_4 = max(abs_FFT_alpttangle 4);

% the lower FFT values store the general infornmatibthe shape and the higher frequency
% the smaller details.The maximum absolute valueFdf of test ignores the phase angle.
% The FFT value of TEST is normalized because tkentlaem independent of

% translation, scale and rotation.

norm_abs FFT_alpha_square_1 = abs_FFT_alpha_squmaex_abs FFT_alpha_square 1
norm_abs FFT_alpha_circle_1 = abs FFT_alpha_citfteax_abs FFT_alpha_circle_1
norm_abs FFT_alpha_triangle 1 = abs_FFT_alphagtdafi/max_abs FFT_alpha_triangle 1
norm_abs FFT_alpha_rectangle 1 = abs FFT_alphagleial/max_abs FFT_alpha_rectangle 1

norm_abs FFT_alpha_square_2 = abs FFT_alpha_sqmax _abs FFT alpha_square 2
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norm_abs FFT_alpha_circle_2 = abs FFT_alpha_citfteax_abs FFT_alpha_circle_2
norm_abs FFT_alpha_triangle 2 = abs_FFT_alphagtdafi/max_abs FFT_alpha_triangle_ 2
norm_abs FFT_alpha_rectangle 2 = abs FFT_alphagleial/max_abs FFT_alpha_rectangle 2

norm_abs FFT_alpha_square_3 = abs_FFT_alpha_squmax abs FFT alpha_square 3
norm_abs FFT_alpha_circle_3 = abs FFT_alpha_citfteax _abs FFT_alpha_circle_3
norm_abs FFT_alpha_triangle_3 = abs_FFT_alphagtdafi/max_abs FFT_alpha_triangle_3
norm_abs_ FFT_alpha_rectangle_3 = abs_FFT_alphagleial/max_abs FFT_alpha_rectangle_3

norm_abs FFT_alpha_square_4 = abs_FFT_alpha_sqimex_abs FFT_alpha_square_4
norm_abs_ FFT_alpha_circle_4 = abs FFT_alpha_citfleax_abs FFT_alpha_circle_4
norm_abs FFT_alpha_triangle 4 = abs_FFT_alphagtdafi/max_abs FFT_alpha_triangle 4
norm_abs FFT_alpha_rectangle 4 = abs FFT_alphagleial/max_abs FFT_alpha_rectangle_4

%classificationHere a classification problem isinkedl with a set of inputs P and class indices T.

P =[norm_abs FFT_alpha_square_1, norm_abs_ FFTa aphare 2, norm_abs FFT_alpha_square_3,
norm_abs FFT_alpha_square_4, norm_abs_FFT_alpbke dir norm_abs_FFT_alpha_circle_2,
norm_abs_FFT_alpha_circle_3, norm_abs_FFT_alphdec#, norm_abs_FFT_alpha_triangle_1,
norm_abs_ FFT_alpha_triangle_2, norm_abs_ FFT_alghagte 3, norm_abs FFT_alpha_triangle_4,
norm_abs_FFT_alpha_rectangle_1, norm_abs_FFT_akpttangle_2, norm_abs_FFT_alpha_rectangle_3,
norm_abs_ FFT_alpha_rectangle_4];

% classes
% There are inclusive 4 classes of objects
T=ind2vec([1111222233334444));

% create a network. Probabilistic neural networkesaakind of radial

%basis network suitable for classification problems

net = newpnn(P,T)

%Here the class indices are converted to targebrseand a PNN is designed and tested.
Y=sim(net,P)

Yc=vec2ind(Y)
return
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6.3 Flow Diagram
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7 Discussion

7 Discussion

The one-dimensional data arrays performed with the help of newpnn does not give sufficient results
for the classification because of the extremely susceptible of the network to noise. It is alos possible to
make an interpretation of being grasped or not from the manipulator by looking at the plotted shape.
How many times it is entwined, could be only decided from the shape of the object and periodical
signal of turning funciton. The object distance information is also avaliable with the help of turning

function.

7.1 Future work

Being recognized and grasped from a manipulator were performed with the help of MLP network. The
other neural network methods must be used to overcome this recognition problem with the entwined
or not entwined objects that have not constant boundary point information.

The two-dimensional data arrays problem can not be solved with the help of radial basis functions.
The corrupted objects were not classified correctly. Therefore it will be useful to study out this
problem with the help of the other neural networks.

The future work could be the implementation of hand-drawn objects in recognizing and grasping
process. In order to make a sufficient classification, the other neural networks must be used
performing with pnn networks. Since classification is sensitive to object boundary and linearity of

spaces between drawn points.
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