

Wien, 25.Feb 2006 …….....…………..

Diploma Thesis

Neural Object Classification by Pattern

Recognition of One Dimensional Data

Arrays Which Represent Object Information

Transformed by Non-linear Functions

Written at the

ACIN - Automation and Control Institute

Thesis supervisor:

Univ. Prof. Dipl.-Ing. Dr.techn. Favre-Bulle, Bernard

Thesis Co-Advisor:

Dipl.-Ing. Fauaz Labadi

Submitted by

Kayhan Ince

ID-number: 0127059

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung

Ich erkläre, dass ich die Diplomarbeit selbstständig verfasst habe. Diese Diplomarbeit ist bisher weder

im In- noch im Ausland in irgend einer Form vorgelegt.

Wien, im Feb 2006

Acknowledgements

I would like to thank my advisor Univ.Prof. Dipl.-Ing. Dr.techn. Bernard Favre-Bulle for his arrangments

at ACIN and for his supervision on the thesis. I am very grateful to Dipl. Ing. Fauaz Labadi who

initialized the contact and lead the supervision and for reading and correcting my work on this thesis.

I also need to express my gratitude towards all the people who took time to make me feel guilty enough to

sit down and start working. It would also be unfair if I forget to mention my parents, my friends for their

great support through all phases of life.

Abstract

The grasping and classification of the objects play important role in visual system. For the grasping

and classification process, the shapes must be recognized which is based on matching the descriptors

of each shape to standard values representing typical shapes and choosing the closest match. The

previous works have been done on the neural control of the grasping and the autonomous operation of

hyper-redundant manipulators. The main tasks and aims of the thesis is dealing with tentacle case and

linear object scanner case problem. Subsequently, the Fourier descriptors are used for the shape

matching and the Fourier transformation of the shapes is used in order to perform the grasping

process. A special kind of neural network is used in classification problem. In a final manner, the

theoretical information are confirmed by MATLAB/SIMULINK simulations.

Contents

 v

Contents
1 Introduction

 1.1 Overview ………..………………………………………………………………………...

 1.2 Problem definition ………………………………………………………………………...

 1.3 Outline of Thesis ………………………………………………………………………….

2 Hyper-redundant manipulators

2.1 Joint positions defined as relative link angles ……………………………………………

2.2 Kinematics modeling ……………………………………………………………………...

2.2.1 Direct Kinematics ……………………………………………………………….….

 2.3 Dynamic modeling for hyper-redundant manipulators …………………………………..

3 State of the art of neural networks

 3.1 Overview…………………………………………………………………………………

 3.2 Neural network for object classification..

3.2.1 Learning algorithm ...

 3.3 Back-propagation ...

3.3.1 Multilayer perceptrons (MLP)..

3.3.2 Mathematical explanation of the Back-Propagation algorithm................................

 3.4 Pattern recognition task ..

3.4.1 Radial Basis Function Networks ..

3.4.2 Probabilistic neural network (PNN) ...

3.4.3 BP&RBF...

 3.5 Conclusion..

4. Neural object recognition

4.1. Overview ...

4.2 Pattern recognition...

 4.2.1 Process analysis and classification ...

 4.2.2 Feature Extraction...

4.3 Fourier Analysis ...

4.3.1 Introduction ...

 4.3.2 Fourier descriptors..

 4.3.3 Fourier series or fourier transformation..

 4.3.3.1 Derivation of fourier series...

 4.3.3.2 Derivation of fourier transform..

1

1

2

3

4

5

5

5

7

8

8

8

9

11

11

12

14

17

18

22

22

24

24

24

27

28

29

29

29

30

30

31

Contents

 vi

 4.3.4 Conclusion..

4.4 Turning function...

 4.4.1 Grasping of objects...

 4.4.2 Conclusion..

4.5 Nyquist theorem...

5. Simulation

 5.1 Classification and grasping ...

 5.1.1 Classification process based on RBNN..

 5.1.1.1 PNN for classification ..

 5.1.1.2 Training ..

 5.1.2 Grasping process based on MLP ...

5.2 Simulation results ...

 5.2.1 Investigating tentacle case problem ………………………………………………

 5.2.1.1 Not fully grasped objects…………….…..………………………………..

 5.2.1.2 One-time grasped objects…………….…..………………………………..

 5.2.1.3 More than one-time grasped objects…………….…..……………………..

 5.2.2 Investigating the „Linear object scanner case”…..………………………………..

5.3 Conclusion ...

6. Implementation in Matlab

6.1 Implementation in MATLAB ..

 6.1.1 Tentacle case...

 6.1.2 Linear object scanner case..

6.2 Functions..

6.3 Flow diagram ...

7. Discussion

 7.1 Future work ..

 Bibliography

33

33

34

35

36

40

40

40

41

43

43

45

49

55

59

61

64

67

69

69

70

73

76

95

96

96

97

List of Figures

 vii

List of Figures

1.1 Tentacle case „offset-problem“. Turning function of an object. ε is

 the position information of the object according to the manipulator.....................................

1.2 Linear object scanner case ...

2.1 9-DOF manipulator performs with whole arm grasping of a planar object...........................

2.2 Structure of n-DOF planar manipulator...

3.1 Illustrating the three key components of an Al system..

3.2 Feed-forward network with a single layer of neurons ..…………

3.3 Signal-flow graph highlighting the details of output neuron j ...

3.4 One-dimensional data array and its representation as a shape...

3.5 Radial basis transfer function ..

3.6 Radial-basis function network structure. The transformation from the input space to the

 Hidden-unit space is non-linear, while on the contrary the transformation from the hidden-

 unit space to the output space is linear...

3.7 The classification results of one-dimensional data arrays ...

4.1 The feature extraction and classification problem...

4.2 (a) The feature explanation and illustration of a shape

 (b) The manipulator as a shape definer…………………………………………………….

4.3 Two-dimensional shape ...

4.4 The feature representation of the shapes that are used for the classification.........................

4.5 “Triangle” and its discrete Fourier transformation ..

4.6 Object and its turning function ..

4.7 The shape, its periodic signal and turning function ...

4.8 The different length of links in entwinement process and its effect on recognition process .

4.9 The entwinement of square with different length of links ...

4.10 The entwinement of triangle with different length of links ...

4.11 The entwinement of rectangle with different length of links...

4.12 The entwinement of circles with different length of links ...

5.1 The grasping problem with 16-DOF manipulator. The fully-entwined and partially

 entwined objects are illustrated..

5.2 Shapes in the training set (a) and the test set (b)..

5.3 Investigating of the tentacle case problem and the classification process

2

3

4

5

10

11

13

14

16

17

20

25

26

27

28

30

34

35

36

37

38

38

39

41

45

46

List of Figures

 viii

5.4 Tentacle case „offset-problem“. Turning function of an object. ε is the position

 information of the object according to the manipulator...

5.5 Based on tentacle case entwinement problem. The test array is plotted in two-dimensional

 plane and periodic signal of turning function, turning function and the fft coefficients are

 shown (a). The real and imaginary part of the shape is computed with the help of mlp

 as layer {1} and layer {2}………………………………...

5.6 The test set and interpolated result of previously specified points ..

5.7 The given test test and turning function of plotted shape ..

5.8 Turning function of shape and periodic signal which is necessary for fourier serie..............

5.9 Periodic signal of turning function and feature coefficients..

5.10 The 64-dimensional data arrays for grasping process in mlp network. The discrete

approximations with the limited number of frequencies in Fourier expansions are called

“coefficients”……………………………………………………………………………….

5.11 The plotted turning function “x” of shape performed in MLP ...

5.12 The plotted shape of one-time grasped rectangle. ..

5.13 Not-fully entwined object. ..

5.14 Not-fully entwined object. ..

5.15 Not-fully entwined circle. ...

5.16 Not-fully entwined triangle...

5.17 The state of grasping process for whole-arm grasped object of square with coefficients. ...

5.18 The state of grasping process for whole-arm grasped object of circle..................................

5.19 The state of grasping process for whole-arm grasped object of rectangle............................

5.20 The state of grasping process for whole-arm grasped object of triangle with coefficients...

5.21 More than one-time grasped square. The coefficient values decrease with the increasing

 number of frequencies. ...

5.22 More than one-time grasped circle.. ...

5.23 More than one-time grasped triangle.. ..

5.24 More than one-time grasped rectangle..

5.25 Illustration of „Linear object scanner case“ problem. ..

5.26 The sub-problems of linear object scanner case problem. ..

5.27 The nn× data arrays shown as inputs and as two dimensional shape information.

5.28 The nn× data arrays with different object information. The feature vectors of

 the two dimensional data arrays are shown. ...

5.29 The nn× shape with a hole in the center. ..

5.30 The nn× data arrays with different object information. ..

47

48

49

49

50

51

53

54

55

56

56

57

58

59

60

60

61

62

62

63

63

64

64

65

66

66

67

1 Introduction

 1

1 Introduction

1.1 Overview

This thesis is related with pattern recognition in the shade of neural networks using one dimensional

data arrays and several stages in classification process of objects will be discussed.

 A small number of links connected to serial chains by joints are described as the hyper redundant

manipulators. In our application, 16 joints are used, since these provide the sixteen degrees of freedom

that are necessary to achieve the grasping process. The recognition, in this thesis is based on artificial

neural networks which are parallel computing systems derived from biological nervous systems.

 In [Bus02], Busch has already taken a step towards an autonomous control of the manipulator and

depicted the main purpose of a robot as the interaction with the environment. The grasp planning

module developed there can be considered as the first step towards the autonomous interaction of

hyper-redundant manipulators with their environments. With this work, the state of the art in neural

pattern recognition will be investigated, along with theoretical information. The two main problem

tried to be solved are the investigating the “tentacle case” and “linear object scanner case” problem.

 In the work of [Ste97], the implemented vision based robot system is introduced to arrange objects

in a 2D-scene. He also indicates that it is also important that recognition is invariant with scaling,

rotation and position of the objects, and actually this implies the generalization ability. The necessary

information is given manually to represent the shapes which are classified for tentacle case and

nn × matrices for linear object scanner case.

 Furthermore, I will investigate the categorization of objects and grasping process dealing with

neural object recognition and fourier Series. A neural control for whole-arm grasping of objects with

the body of a hyper-redundant manipulator has been subject of previous work [Bus02]. As an

additional step towards, I provide an approach towards the result of recognition of objects with

tentacle case and linear object scanner case which are classified in a desired manner.

1 Introduction

 2

1.2 Problem definition

The subject of this thesis is based on neural networks to implement the classification of objects in a

desired manner. In fig 1.1, we describe our first problem as the recognition of objects with one-

dimensional data arrays and the distance information which is necessary for the manipulator in order

to entwine. To solve the tentacle case problem, first of all, we need categorization of objects and

secondly with the help of fourier series the distance information for grasping of objects. The input

vectors that are desired to be classified are so called one-dimensional data arrays. Using these kind of

vectors, our system must be able to recognize the same object even it has different position

information. We will investigate it with a special kind of neural network in chapter 3.

 The benefits of turning functions and fourier descriptors methods are to scope with the problems of

the recognition process. Firstly, the angles that are manually given as input are used for turning

functions and with the help of fourier transformation the fourier coefficients are received. The

coefficients of the object information through the fourier transformation are the key inputs for our

neural networks. In chapter 4, we will find out an answer to this question. The other stage of method is

to classify the objects for entwinement which will be used from the manipulator.

i

α

ε

Data-array
(input)

Figure 1.1: Tentacle case „offset-problem“. Turning function of an object. ε is the position

information of the object according to the manipulator.

arclenght

1 Introduction

 3

 The second problem, showed in fig 1.1, is related with a conveyor belt that detects objects passing

through the belt. The objects could be partially defected during the production process and must be

noticed from the system with the help of sensors. To fill these requirements, I used an approach which

the contours of the desired objects are taken in the training phase and suitable classification results are

computed through classification process. The ability of extracting the contour and derived features

recognize, localize and identify the objects automatically.

 The aim of this work is to develop an approach towards an object recognition that is implemented

using artificial neural networks. The simulation results of the problems will be discussed in chapter 5.

We will mainly concern with our problems listed earlier, that is the problem of recognizing the objects

and the grasping process by the manipulator.

1.3 Outline of thesis

In chapter 2, an overview of hyper-redundant manipulators is given; especially the kinematics and

dynamic modelling of this type of robot will be discussed. A suitable artificial neural network

algorithm is the topic of the following chapter 3; which deals with the artificial neural network

algorithm; called Back-propagation algorithm after a brief overview of the theoretical background, a

concept for neural object recognition is presented. After a presentation of a method for the recognition

and classification of the objects, the radial-basis functions (RBF) is used and suitability is compared.

Chapter 4, is dedicated to the neural object recognition. The shape-based recognition is based on two

techniques namely the fourier descriptors and turning functions descriptors are introduced and

concepts for a neural pattern recognition built from these are developed. The next chapter, chapter 5,

gives an overview of simulation details and a discussion of the results of recognition and grasping

process. Finally, implementation is discussed in chapter 6, followed by the future work.

CCoonnvveeyyoorr bbeelltt

SSeennssoorr
ssyysstteemm

22--ddiimmeennssiioonnaall sshhaappee

Figure 1.2: Linear object scanner case.

2 Hyper-redundant manipulators

 4

2 Hyper-redundant manipulators

In this chapter, we will give a short overview about hyper redundant manipulators which is a work of

[Bush02]. He presented a detailed information for whole-arm grasping of objects. The work of

[Mar04] was to develop a neural sweeping pattern generator searching for objects. Furthermore, he

provided an approach about recognition of objects used in sensory capability of manipulators. Even

our work is more about pattern recognition for classification, it will be useful to have a basis

knowledge about the manipulators.

 In the following we will give a short view of our hyper redundant manipulator that has a 16 number

of rigid links which are connected with revolute joints as a serial chain manipulator using the

information from Planar Manipulators Toolbox. In praxis, Hyper redundant manipulators consist of a

small number of links connected to serial chains by joints and has fixed at the ground. In our

application, 16 joints are used, which provide sixteen degrees of freedom (DOF).

Hyper-redundant manipulator deals with the physical structure of a planar serial chain manipulator. It

has n degree-of-freedom–each with one degree of freedom-planar manipulators with revolute joints.

The manipulator is supposed to move in the vertical plane x-y as shown in Fig.2.2. The task

coordinates x are the positions in x-y plane and in the planar case where 2=m the vector x is x =

[]Tyx, [Leo00].

Figure. 2.1: 9-DOF manipulator

performs with whole arm grasping of

a planar object.

Base

joints

Link

2 Hyper-redundant manipulators

 5

2.1 Joint positions defined as relative link angles

From this section on, we will deal with the mathematical derivation of manipulators that realize the

grasping of objects. The first manipulator type is when joint coordinates are defined as relative angles

between two links.

2.2 Kinematics modeling

2.2.1 Direct Kinematics

The direct kinematics of the manipulator provide a mapping between the joint variables and the end-

effector position and orientation with respect to a reference frame.

 With respect to n joint coordinates q and m task coordinates x the kinematics of the manipulator

can be described with the following equations [Leo00]. The manipulator is called redundant if n > m .

()qpx = (2.1)

()
..

J qqx = (2.2)

()
.......

,JJ qqqqqx 






+= (2.3)

where p is a m-dimensional vector function representing direct kinematics, J is the Jacobian matrix and

.

J is its time derivative,
.

J= dtdJ / . As we deal with redundant manipulators, n > m and J is mxn

matrix. Let ϕ be a n-dimensional vector with components

 ∑
=

=
i

ij
ji qϕ (2.4)

Figure 2.2: Structure of n-DOF planar
manipulator [Leo00].

2 Hyper-redundant manipulators

 6

for ni ,...,1= and initial value 0ϕ = 0 and il be the length of the thi link. In the case of a planar

manipulator with revolute joints the end effector positions xx, = []Tyx 11, , can be expressed by the

following equations.

)cos(1 iiii lxx ϕ+= + and)sin(1 iiii lyy ϕ+= + (2.5)

for 1,...,1−= ni and initial values

()nnn lx ϕcos= (2.6)

()nnn ly ϕsin= (2.7)

The pairs []T
ii yx , represent the position of the end of the manipulator measured from the joint i . In

the planar case the Jacobian J is a 2x n matrix



















∂
∂
∂
∂

∂
∂
∂
∂

=

n

n

q

y
q

x

q

y
q

x

J
1

1

1

1

1

1

... (2.8)

to derive
.
J , we have to differentiate J with respect to time

.
J ∑

=









∂
∂=

n

i
iq

1

.

iq

J
 (2.9)

Since the hyper-redundant structure of the manipulator itself is used to handle objects, there is no use

for an end-effector. The end-effector frame therefore only represents the endpoint and orientation of

the last link.

2 Hyper-redundant manipulators

 7

2.3 Dynamic modeling for hyper-redundant manipulators

Before we determine the components of the dynamic model, we have to derive expressions for the

position of the center-point of the mass and corresponding Jacobian matrices for all segments. Using

equation (2.5) the position of the mass of the thi link can be defined by

()
()







+−
+−

=
icii

icii
ci lyy

lxx
x

ϕ
ϕ

sin

cos

1

1 (2.10)

The Jacobian matrices related to the segments have been divided into two parts









=

A

L

J

J
J (2.11)

where LJ and AJ are parts of J associated with linear and angular task velocities. Furthermore,

()
()








−+−
−+−

=
∂
∂

iciij

iciij

j

ci

lyy

lxx

q

x
ϕ
ϕ

cos

sin
 (2.12)

Next, the components of the vector of Coriolis and centrifugal forces h can be expressed by

∑∑
= =

=
n

j

n

i
kjijki qqhh

1 1

..

 (2.13)

where

i

jk

k

ij
ijk q

H

q

H
h

∂
∂

−
∂
∂

=
2

1
 (2.14)

The vector of gravitational forces can be computed starting from the last link with

()i

n

ik
ikciiii lmlmGgg ϕcos

1
1 







 ++= ∑
+=

+ (2.15)

where G denotes acceleration of gravity.

3 State of the art of neural networks

 8

3 State of the art of neural networks

3.1 Overview

In this chapter, two of the popular neural network architectures particularly Multi Layer Perceptrons

(MLP) and Radial Basis Functions (RBF) are introduced with operational principles and specific

affairs. Perceptron characterizes a single neuron which makes arbitrary decisions based on data from

inputs and can determine input-output relation as learning patterns. In the following, we will give an

overview and search suitable neural networks for the suitability. The advantages and disadvantages of

the networks are given in a comparative form. The mathematical relations of the networks are quite

complex but are also shortly given to understand the principles of the functions of the neural networks.

3.2 Neural Network for object classification

Neural network consists of a large number of simple processing units linked by weighted connections

and is powerful because of the combination of many units in a network and therefore describes

basically a nonlinear device and is itself nonlinear. The purpose of finding an answer of a special

problem by varying the connection is to deal with geometric configurations and values of the

connecting weights between units. Each unit in network receives inputs from many other units and

generates a single output as we will see in mathematical derivation of bp in detail. The output acts as

an input to other processing units and by this way the training process is executed. Once a neural

network has trained, it is able to make predictions, for pattern recognition and categorization that is

desired to be performed from the manipulator in this thesis.

 The purpose of this section is to provide an approach with the help of neural networks, as early

mentioned, for the classification problem. Being recognized of the shapes by our hyper redundant

manipulator is important, in order to attack grasping process. For this reason neural networks play

important role for the classification of the objects.

 In the book of Simon Haykin [Sim88], it is apparent that a neural network derives its computing

power through its massively parallel distributed structure and therefore produces reasonable outputs

for inputs during training. The problem is to integrate the neural networks into a consistent system

engineering approach because they cannot provide the solution working by themselves alone. There

must be inputs which have enough information about a task or a situation which will be solved by the

neural networks. Using neural networks give good results specifically, for a complex problem, which

3 State of the art of neural networks

 9

is separated into a number of relatively simple tasks, and neural networks are assigned a subset of the

tasks such pattern recognition, which we deal with, associative memory and control.

 In the work of our thesis, the neural network will be only used in order to make predictions which

classify the object information of squares, rectangles, triangles and circles. As we discuss later in

chapter 5, rbf is used and involves the modification of the synaptic weights of a neural network by

applying a set of labeled training samples as a sequence of input arrays and gives sufficient results for

our tentacle case problem that we will examine in detail. For one-dimensional data arrays, each

example consists of a unique 16-data arrays called input vectors and by this way the object boundary

information is introduced. Suzanna Becker [Bec91] showed the ability to form internal representations

for encoding features of the input and thereby create new classes automatically. The reason why we

make use of 16-data arrays is the number of links of our manipulator which we used for grasping

process.

 The network is presented by an example from the set, and the synaptic weights of the network are

modified so as to minimize the difference between the desired response ()d and the actual response

()y of the network produced by the input signal in accordance with an suitable statistical criterion.

 We will consider a pattern classification tasks where the requirement is to assign an input signal

representing a physical object to one of several pre-specified classes. In our simulation, basically 4

types of objects namely square, rectangle, triangle and circle were used in order to achieve the

classification procedure. The requirement is to estimate arbitrary decision boundaries in the input

signal space for the pattern-classification task using these set of examples. It is clear that the more

adaptive we make a system in a properly designed fashion, the more robust its performance will likely

be when the system is required to operate, in a non-stationary environment. That means, it is also

desirable that the network must work in noisy environment.

3.2.1 Learning Algorithm

If we deal with object classification, we can define neural networks as work process by giving inputs

and as a training process by producing outputs which are used in categorization process. The

procedure used to perform the learning process is called learning algorithm, the function of which is

to modify the synaptic weights of the network to attain a desired design objective.

 A neural network has three components, representation, learning and reasoning. We will shortly

indicate the importance of components which is depicted in fig.3.1. In the representation process,

general knowledge about a problem is represented by several symbol structures. In our work, the

numbers were used as input vectors indicating the angles between the joints of manipulator.

Explanations in the representation stage are important for recognition, giving decisions and asking for

the classes of examples.

3 State of the art of neural networks

 10

 Reasoning is the ability to solve problems and give necessary results. In classification process of

objects, reasoning can be seen as deciding the class membership of patterns and learning is a process

of adapting the weights of neural network by the environment in which the network is located.

Figure 3.1: Illustrating the three key components of an Al system.

 The recognition process is related with these three components of artificial intelligience system and

actually based on the learning structure of human beings. The important advantage of this system is to

computation and decision time.

 Main interest in this thesis is confined largely to an important class of neural networks that perform

useful computations through a process of learning and making decision rules for classification of the

objects by using pnn and then achieving the grasping process by the manipulator. The learning process

in human beings is based on also training sets. The key of learning is to forget the old knowledge and

thus new relations between the neurons are created to save and to learn new information. Therefore we

can say that learning is a process of forgetting the unusual knowledge. Each second, neurons die and

the axons, which carry the information, disappear. By creating new contacts between neurons, the

learning process occurs and the knowledge is stored again. The number of neurons in the brain plays

significant role in learning process and the more related links between the neurons validate the certain

results.

 The inputs are given where the information is known and would like to be derived unknown

information and it is known that there is a relationship between the inputs and outputs. In chapter 5,

four types of inputs for each class is used to train the neural network and at the end of the program the

test set is used to give the desired results for the classification. These inputs are the sets of training

data for our neural network. These training data contain examples of inputs as a regular sequence of

vectors and the network learns to classify the desired object boundary information using the vectors as

a statistical manner.

 The important point in classification is the useful interpretation to treat the network outputs as

probabilities which we used the neural network in this thesis called pnn. With the other words, the

network learns the probability density function of the classes. Bishop [Bis95] showed out that it is

only valid under certain cases about the distribution of the data. For tentacle case problem, the results

are suitable for whole-armed grasped objects but are not sufficient for the other cases namely not fully

reasoning representation

learning

3 State of the art of neural networks

 11

grasped and more than one-time grasped objects. The classification results will be studied respectively

in chapter 5.

3.3 Back-Propagation

3.3.1 Multilayer Perceptrons (MLP)

This section describes an art of neural networks which is applied to solve some difficult problems by

training them in a supervised manner. Typically, the mlps consist of a set of sensory units that make

up the input layer, one or more hidden layers of computation nodes and an output layer of computation

nodes as depicted in fig 3.2.

Figure 3.2: Feed-forward network with a single layer of neurons.

The input signal propagates through the network in a forward direction, on a layer-by-layer basis.

These neural networks are commonly referred to as multilayer perceptrons, which represent a

generalization of the single-layer perceptron [Sim88].

A multilayer perceptron has three distinctive characteristics:

1. The model of each neuron in the network includes a non-linearity at the output end. A

commonly used form of non-linearity that satisfies this requirement is a sigmoidal non-linearity

defined by the logistic function:

)exp(1

1

j
j v

y
−+

=

where jv is the net internal activity level of neuron j, and jy is the output of the neuron. The presence

of non-linearity is important because, otherwise, the input-output relation of the network could be

reduced to that of a single-layer perceptron.

Output
layer of
neurons

Input layer of source

nodes

3 State of the art of neural networks

 12

2. The network contains one or more layers of hidden neurons that are not part of the input or

output of the network. These hidden neurons enable the network to learn complex tasks by extracting

progressively more meaningful features from the input vectors where we will see the same effect in

radial basis function networks with one hidden layer.

3. The network shows a high degree of connectivity, resolved by the synapses of the network.

A change in the connectivity of the network needs a change in the population of synaptic connections

or their weights.

3.3.2 Mathematical explanation of the Back-Propagation Algorithm

In the following, we will give an overview of Back-Propagation (BP) learning algorithm and general

learning algorithms used in neural networks. Typically these mathematical explanations help us to

understand the process of learning paradigm which is inspired from basics of the neurons. The

structure of an artificial intelligence machine is to achieve the learning algorithm and produces input-

output mapping.

 In the book of Simon Haykin has given the mathematical explanations of mlp. The error signal at

the output of neuron j at iteration n, presentation of the thn training pattern, is defined by

)()()(nyndne jjj −= , neuron j is an output node (3.1)

Fig. 3.3 depicts neuron j being fed by a set of function signals produced by a layer of neurons to its

left. The net internal activity level)(nv j produced at the input of the neuron j is given as;

∑
=

=
p

i
ijij nynwnv

0

)()()((3.2)

where p is the total number of inputs applied to neuron j.

3 State of the art of neural networks

 13

 Figure 3.3: Signal-flow graph highlighting the details of output neuron j.

The synaptic weight jow equals the threshold jQ , applied to neuron j. Hence the function signal ()ny j

appearing at the output of neuron j at iteration n is

))(()(nvny jj ϕ= (3.3)

)(

)(

nw

nE

ji∂
∂

=)(ne j−))((' nv jjϕ)(nyi (3.4)

)(nw ji∆ =η)()(nyn ijδ (3.5)

According to Eq.(3.5) the learning parameter η affects the change of synaptic weights. The learning

parameter must be good chosen in order to have good results. If the learning parameter is small

chosen, then the synaptic weights of neural network changes will be small. On the other hand, the

network will be unstable, namely oscillatory. The local gradient)(njδ is itself defined by

)(njδ =-
)(

)(

)(

)(

)(

)(

nv

ny

ny

ne

ne

nE

j

j

j

j

j ∂
∂

∂
∂

∂
∂

 (3.6)

=)(ne j))((' nv jjϕ

The local gradient points to required changes in synaptic weights. According to Eq. (3.6), the local

gradient)(njδ for output neuron j is equal to the product of the corresponding error signal)(ne j and

10 −=y

Neuron j

)()(nnw jjo θ=

)(nyi

)(nw ji
)(nv j

(.)ϕ)(ny j 1−

)(nd j

)(ne j

3 State of the art of neural networks

 14

the derivative))((' nv jjϕ of the associated activation function. If the changes in the synaptic weights

are small, the learning process is said to be complete.

3.4 Pattern Recognition Task

The main point in recognizing process is that the pattern classification task has important place in

vision-based systems. If a standard rbf network is used to perform a complex pattern classification

task, the problem is basically solved by transforming it into a high dimensional space in a nonlinear

manner provided by Cover’s theorem on the separability of patterns [Cov65]. From the work we did in

this thesis, we know that once we have linearly separable patterns by the tentacle case problem, then

the classification problem is easy to solve. But for the linear object scanner case object recognition, it

is hard to say that classification process is achieved properly. Accordingly, we may develop a great

deal of insight into the operation of a rbf network as pattern classifier depicted in this section.

 For all our input data arrays there is a pre-defined set of classes of patterns which might be

presented, and the aim of the object recognition task is to classify a given pattern as one of these

classes. The patterns that we used in this thesis are in the form of numbers and are called as features,

which are measurements used as inputs to the classification system as shown below.

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]

Figure 3.4: One-dimensional data array and its representation as a shape.

The number of one-dimensional data arrays is equal to the number of links of our manipulator for the

whole-arm grasping. In the classification process, we have a family of surfaces, each of which

naturally divides an input space into four regions namely for squares, circles, triangles and rectangles.

With the help of Cover’s theorem, say X denotes set of N patterns 4321 ,,, xxxx each of which is assigned

to one of four classes. For each pattern ,Xx ∈ define a vector made up of a set of real-valued functions

(){ }4,3,2,1=ixiϕ as shown by

3 State of the art of neural networks

 15

() () () () ()[]Txxxxx 4321 ,,, ϕϕϕϕϕ = (3.7)

Suppose that the pattern x is a vector in a p-dimensional input space. The vector ()xϕ maps points in p-

dimensional input space into corresponding points in a new space of 4-dimension. We refer to ()x1ϕ as

a hidden function, because it plays a similar role that of a hidden unit in a feed-forward neural network

described previously.

 To illustrate the significance of the idea of ϕ -separability of patterns, we consider that there are

four kind of patterns, namely, square, triangle, circle and rectangle. Basically, a nonlinear mapping is

used to transform a nonlinearly separable classification problem into a linearly separable one. We

define Gaussian hidden functions as follows for our shapes =1t square, =2t circle, =3t triangle and

=4t rectangle.

() ,
2

1
1

txex −−=ϕ Tt]pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0[1 =

() ,
2

2
2

txex −−=ϕ Tt]pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8[2 =

() ,
2

3
3

txex −−=ϕ Tt]pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 0[3 =

() ,
2

4
4

txex −−=ϕ Tt]pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0[4 =

Accordingly, the input patterns are mapped into the 4321 ϕϕϕϕ −−− plane. 1ϕ plane is depicted

for squares, 2ϕ for circles, 3ϕ for triangles and 4ϕ for rectangles. For our work, there is no need to

increase the dimensionality of hidden units which causes complexity in designing and the training

time. In other words, nonlinearity exemplified by the use of Gaussian hidden functions is sufficient to

solve classification problem for tentacle case problem. The results of the tentacle case problem

simulation have shown that, the object recognition process could not be achieved with rbf and the

results will be discussed later.

 For the present thesis, derived from the bp learning algorithm, we can say that, the activation of the

rbf unit depends on the weights multiplied with Gaussian function.

∑
=

+=
M

i

jijij bnnwnv
1

)().()(ϕ (3.8)

where)(nv j is the activation function of neuron,)(nw ji is the weight parameters, jb the bias term of j.

The rbf technique consists of choosing a function F that has the following form

3 State of the art of neural networks

 16

()∑
=

−=
N

i

ii xxwxF
1

)(ϕ (3.9)

where (){ }Nixx i ,...,2,1=−ϕ is a set of N nonlinear functions, known as radial-basis functions, iw is the

weight of vectors and . denotes a norm that is usually taken to be Euclidean (distance measure).

()












 −
−=−

2

2

2
exp

i

i
i

xx
xx

σ
ϕ (3.10)

where ix is the center, iσ indicates the width of clusters. By determining of these parameters, our

problem becomes linear. In the paper of [Mic04], the possibilities of rbf has been shown as several

outputs. Euclidean distance is the square root of the sum of squared differences for each of the

variables describing the four objects whose similarity or dissimilarity is wished to express the quantity

[Cast04].

 In this thesis, we have four outputs to realize the categorization problem to classify the objects. It is

clear that the more examples and classes we have, the more efficient results we carry out but the

important point in neural object classification is to determine the shapes with small number of class

membership. The work of neural network architecture is to find the optimum way for recognizing the

objects which are desired to be classified.

Figure 3.5: Radial basis transfer function.

 In the following we will give shortly the basis function of radial basis neural networks using

Matlab help. The radial basis function has a maximum of 1 when its input is 0 as depicted in fig 3.6.

As the distance between x and t decreases, the output increases. Thus, a radial basis neuron acts as a

detector that produces 1 whenever the input t is identical to its weight vector t. The bias b allows the

sensitivity of the radbas neuron to be adjusted. For example, if a neuron had a bias of 0.1 it would

output 0.5 for any input vector t at vector distance of 8.326 (0.8326/b) from its weight vector x.

Input p

O
u

tp
u

t T

u

3 State of the art of neural networks

 17

 For the classification problem of tentacle case it can be said that it is adequate, but for the linear

object scanner case, it could not be possible to receive the right classification results. It will be better if

it could be achieved the recognition of objects that are drawn by a user with a combination of other

neural network methods as a future work for the manipulators because it will make the use of robots

flexible in the areas where the implementations are not possible by human-beings.

 In [Smc00], the advantages of rbfns are described as in implementation and with respect to

optimization of the training data. In his paper, he mentioned the implementation of the network that it

is mathematically simple while it uses only basic linear algebra and iteration is not required for

computing on the input data.

3.4.1 Radial Basis Function Networks

In this section, we introduce notions related to feed-forward networks, the second approach as a neural

network and the main method that we used in this thesis is so called rbfns, which has two layer feed-

forward networks. The aim of this work can be described as achieving the categorization problem

using rbfn.

 Broomhead and Lowe were the first to make use of radial-basis functions in the design of neural

networks [Sim88]. As follow, we will give an overview of rbf and then the pnn, which is a kind of rbf,

will be worked out dealing with implementation in our simulation. The construction of a rbf network

in its most basic form involves totally different layers, the input layer, the hidden layer with the rbf

non-linearity and a linear output layer as depicted in fig 3.4. The input layer is made up of source

nodes. The second layer is a hidden layer of high enough dimension, which serves a different purpose

from that in a mlp. When the input vectors are expanded into the hidden-unit space, set of functions

called radial basis functions are provided. The output layer supplies the response of the network to the

activation patterns applied to the input layer.

Figure 3.6: Radial-basis function network structure. The transformation from the input space to the

hidden-unit space is non-linear, while on the contrary the transformation from the hidden-unit

space to the output space is linear.

.

.

Hidden layer
of radial-

basis
functions

1W

NW

Input
layer

Output
layer

Φ

bW =0

1=Φ

.

.

.

Φ

3 State of the art of neural networks

 18

where φ are the radial basis transfer functions, ω are the synaptic weights.

3.4.2 Probabilistic Neural Network (PNN)

I briefly mentioned that, in the context of classification problem, a useful interpretation of network

outputs was as estimates of probability of class membership, in which case the network was actually

learning to estimate a probability density function. The useful method, which was implemented in this

thesis, gives good results for pattern recognition of tentacle case problem.

 Pnn, which is a Bayesian classifier is used in our thesis and it provides a general solution to pattern

classification problem by following an approach developed in statistics, called Bayesian classifiers.

Because of the nature of Bayesian classification, the pnn does not require iterative learning therefore

faster than bp networks. The pnn does require calculation of a smoothing factor, which represents the

width of the calculated Gaussian curve for each probability density function. The pnn has exactly one

internal layer of neurons, with one neuron for each training pattern (circles, triangles, rectangles and

squares). The network output corresponds to the estimate of the probability density function for each

possible outcome.

 Bayesian decision theory [Bay] shows that there is an important relationship between neural

networks and pattern classification for the object recognition. This theory takes into account the

relative likelihood of events and uses a priori information to improve prediction. Estimating

probability density functions from data has a long statistical history. More generally, Bayesian

statistics can estimate the probability density of model parameters given the available data. To

minimize error, the model is then selected whose parameters maximize this probability density

function.

Decide „circle“ if P(Circle)>P(triangle), otherwise, decide “triangle“

Speaking in the context of the above example, we tried to explain the idea of the deciding

classification from this model with the object information that was used. The probability distributions

are important to achieve the decision rule. The priori information is the probabilities of either a circle

or a triangle that is given to network. If a decision must be made with little information, the rule as

shown above is used. P(Circle) is the probability of the object being a circle. The way that is used by

the neural network will classify the objects according to the maximum probability. This example is

simple to understand the idea of a pattern recognition problem in Bayesian Theory. The task is to learn

the probabilities from the training set. Bayesian decision theory is a classification problem as an

example of a decision problem given observed features of an object which finds its class [L02].

3 State of the art of neural networks

 19

 In the classification problem, we will give an overview of the structure and discuss the advantages

and disadvantages of pnn.

net = newpnn (P,T)

 This command creates a network and takes two or three arguments. P is the input vectors and T is

the target class vectors. The detail information about input and target class vectors will be given in the

simulation chapter. From this point on, the network uses the vectors and outputs values for the

classification and thus outputs are tested.

 It is called a “neural network" because of its natural mapping onto a two-layer feedforward network

[wpnn]. In the pnn, there are input, hidden and output layers as briefly mentioned in rbfn. The hidden

units are copied directly from the source nodes and each model a Gaussian function placed in the

middle at the training case. There is one output unit per class. In our thesis, there are four outputs for

each kind of shape and each shape is connected to all the radial units belonging to its class. Hence, the

output units simply add up the responses of the units belonging to their own class. The outputs are

each proportional to the kernel-based estimates of the probability density functions of the various

classes, and by normalizing these to sum to 1.0 estimates of class probability are produced.

 The greatest advantages of pnns are the fact that the output is probabilistic and allows it to make an

interpretation of output and the training speed. Training a pnn actually consists mostly of copying

training cases into the network, and so is as close to instantaneous as can be expected. Training of the

pnn is much simpler than with back-propagation because no training is involved prior to classification.

Their design is straightforward and does not depend on training. A pnn is guaranteed to converge to a

Bayesian classifier providing it is given enough training data [MATLAB HELP]. For our tentacle case

object recognition problem, pnn performed quite sufficient results.

 The necessity for storing the entire training set in memory which leads to higher computational

make use of the pnns hard because of the necessity of more neurons compared to back propagation,

but with several fast memories has eliminated this problem.

 We will now go into the description of pnn from the mathematical side using the work of

Maragoudakis [Mar]. If a pnn for classification in K classes is considered, the probability density

function)(pi xf of each class i is defined by equation (3.11)

∑
=

−−−=
iM

j

ijp
T

ijp
i

ddpi xxxx
M

xf
1

22/
))()(

2

1
exp(

1

)2(

1
)(

σσπ
 (3.11)

where ijx is the j- th training vector from class i , px is the p- th input vector, d is the dimension of the

feature vectors, iM is the number of training patterns in class i and σ acts is a smoothing factor to

3 State of the art of neural networks

 20

soften the surface defined by the multiple Gaussian factor. Each training vector ijx is assumed to be a

centre of a kernel function, and as a result the number of pattern units in the first hidden layer of the

neural network is given as a sum of the pattern units for all the classes. The variance acts as a

smoothing factor, which softens the surface defined by the multiple Gaussian functions. As seen in

equation (3.11), has the same value for all the pattern units.

 The pnn classifier decides to which class the test vector belongs, depending on the degree of

similarity of the input feature vector to the model of each class.

 As depicted above, only two of our shapes are given. To achieve more sufficient results of

classification, the learning rate parameter must be good chosen and the training time might be big

enough and it will give better results.

 If we deal with tentacle case problem, it can be easily predicted that the sufficient results could be

taken only by using pnn for classification.

As we mentioned in section pattern classification task we know that once we have linearly separable patterns by

the tentacle case problem, then the classification problem is easy to be solved. It also gives adequate

consequences to our questions of positioning of the objects. This problem will be discussed in the next chapter.

circle = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8
pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

rectangle = [0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2]

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]

triangle = [0 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3]

Each input data shows

linearly separable patterns

and therefore the

classification of the

probability density

functions maps properly

input-output mapping.

Figure 3.7: The classification results of one-dimensional data arrays.

3 State of the art of neural networks

 21

 The greatest disadvantage is the network size of neural network. Pnn network actually contains the

entire set of training cases, and is therefore slow to execute and are used for classification problems.

Training of the probabilistic neural network is much simple when it is compared with mlps. The detail

consequences of the classification can be seen in chapter 5 in the context of simulation results.

3.4.3 BP&RBF

As it will be described in this section, rbfns and mlps are compared which are examples of non-linear

feed-forward networks previously mentioned. However, these two networks differ from each other in

several important respects, as outlined here. By studying the differences between mlp and rbf, we can

generate insights into the classification process. Simon Haykin described the difference of the

networks from five points of view.

1. An rbf network has a single hidden layer, whereas an mlp may have one or two hidden

layers.

2. Typically the computation nodes of an mlp is located in a hidden or output layer, share a

common neuron model. On the other hand, the computation nodes in the hidden layer of

an rbf network are quite different and serve a different purpose from those in the output

layer of the network.

3. The hidden layer of rbf network is nonlinear, whereas the output layer is linear as depicted

in fig 3.4. The hidden and the output layers of mlp used as a classifier are usually all

nonlinear.

4. The argument of the activation function of each hidden unit in a rbf network computes the

Euclidean norm between the input vector and the center of that unit. The activation

function of each hidden unit in mlp computes the inner product of the input vector and the

synaptic weight vector of that unit.

5. Mlps construct global approximations to nonlinear input-output mapping. Consequently,

they are capable of generalization in regions of the input space where little or no training

data are available. Rbf networks using exponentially decaying localized nonlinearities

namely Gaussian function construct local approximations to nonlinear input-output

mapping, with the result that these networks are capable of fast learning and reduced

sensitivity to the order of presentation of training data.

 The activation of units in the hidden layer of an rbf network depends directly on the input pattern.

The output of a hidden unit depends on the distance of the input vector to the center of the units basis

function in Gaussian function. This results in nearby zero activations for distant units and high

activation for units close to the input; the representation of a target function with rbf networks is local.

3 State of the art of neural networks

 22

Due to a poor ability of generalization of new input patterns from past data, the quantity of training

data needed to specify the mapping grows exponentially in rbf networks and this slows down the

speed of network. Therefore the number of training data must be optimal chosen to avoid for a long

time of waiting for the classification. In the comment section of Michel Verleysen’s work, it is also

indicated of easy learning of rbf compared to mlp.

3.5 Conclusion

In this chapter, we tried to compare the two algorithms of mlp and rbf. The state of the art in neural

pattern recognition of one-dimensional data was worked out and in the context of the classification,

the results of the objects were shown. We have chosen the variables from numerical variables that

were used for the training. A lot of cases are required for the correct results; the more variables, the

more cases. For the good classification results we need more training data but in this thesis only four

kinds of objects and for each object one kind of training sets are used in order to make prediction of

classification using small number of training set.

 The reason of choosing rbf networks in this work is the number of advantages over mlp. First, as

previously stated, they can model any nonlinear function using a single hidden layer, which removes

some design-decisions about numbers of layers. Second, the simple linear transformation in the output

layer can be optimized fully using traditional linear techniques, which is fast, rbf networks can

therefore be trained extremely quickly. Third, implementation of the network is mathematically simple

because it uses only basic linear algebra. Computations on the input data do not require iteration and

are therefore relatively cheap. These reasons are the benefits of choosing pnn in classification

problem. Typically, for our two problems, only by the tentacle case problem we could take the

sufficient results. For the linear object scanner case, the classification of defected objects could not be

achieved. Even we change the size of the matrix, it also possible to recognize different types of

objects.

 In this chapter, we developed a theoretical framework based on neural networks that is concerned

with learning from examples. The most general form of neural network is called Probabilistic neural

networks, since it is related to the well-known Radial Basis Functions, mainly used for classification.

The results of classification with pnn for our two problems will be given in Simulation chapter.

Castleman [Cast04] implies that after the training procedure, the ann will be capable of estimating

previously unknown output values, given a set of input values. The learning of a bp is done by an

example, processing a training file that contains a series of input vectors and the target output vector

for each.

 In the next chapter, the shape-based recognition techniques will be given and two of these

important methods will be the main information sources for the nerual network in order to make the

3 State of the art of neural networks

 23

classification and grasping process. The given objects for not grasped, one-time grasped and more than

one-time grasped are classified with the help of pnn

4 Neural object recognition

 24

4 Neural object recognition

4.1 Overview

In the following, we will discuss the object recognition problem with the help of shape-based

recognition methods using fourier transformation and turning functions. The shape of each object is

described using several number of descriptor values, typically in our work 16 real numbers.

Furthermore, the ability of entwinement of the objects of the manipulator is examined in grasping

process.

 The purpose of shape-based recognition is to give the necessary information to the neural network

for the classification and entwinement process and is related with matching the descriptors of each

shape to standard values representing our shapes and choosing the closest match. A variety of different

algorithms have been developed to perform two-dimensional object recognition with one-dimensional

data arrays, utilizing many different types of features and matching methods. For the present thesis, it

has not been practical to consider the other matching methods in detail but it is hoped that the selection

which follows in this section carries the important principles used and that any other algorithms are

simply variations on a theme. The objects used in this work are two-dimensional which are assumed to

be flat so that the whole closed contours of the desired objects can be extracted. We will see the details

of the simulation of the objects which shall be grasped by the manipulator in the next chapter.

4.2 Pattern recognition

 In this section, we will describe the recognition process of the objects and give an idea how the

feature of the objects are extracted and used in the matching procedure for the classification process.

 In neural object recognition, data representation and decision making plays important role. These

terms will be examined detailed in the further section. The system collects the information of the

shapes, which are desired to be classified, and through the techniques that we previously mentioned,

gives the sufficient results for the classification. The numeric information of the objects and a

classification process that deals with recognition relies on the extracted features that are used as

manually in this work. In the thesis of Brazda [Mar04], the shape boundary points are determined from

the sensor data and the grasping process is achieved through the distance sensors that detect the

minimum distance to the boundary. In our work of thesis, the shape information is given manually and

the features are directly extracted form the set of patterns. This set of patterns is called the training set

and the resulting learning strategy is characterised as supervised.

4 Neural object recognition

 25

Figure 4.1: The feature extraction and classification problem.

 A shape matching for two-dimensional planar objects is a central problem in visual information

systems, computer vision, pattern recognition, and robotics [Velt99]. It will be useful if we divide the

neural object recognition problem into several intermediate stages, the process of starting with a shape

and ending with a decision of class-membership of that shape. Each sub-problem is very important in

this recognition process. It must be remembered that in the end the optimality of the entire system is

only as optimal as the weakest link in the chain. The pattern recognition problem is separated into a

series of sub-problems such as feature extraction, decision rule (see Fig.4.1). The purpose of a pattern

recognition in this thesis is to analyze the description of the shape. The first stage consists of feature

extraction or measuring the “shape” of the objects. The second stage is concerned with classifying the

object into four categories of the shapes. Decision rule and grasping results are the topics of chapter 5

that will be examined how these problems could be solved and the difficulties will be discussed.

 In the following, we will introduce the term feature by assuming that d features are observed on a

pattern or object related with the number of links of the manipulator, then we can represent the pattern

by a 1-dimensional vector ()nxxxX ,...,, 21= and usually refer to X as a feature vector and the space

in which X lies as the feature space. Patterns are thus transformed by the feature extraction process

into points in 1-dimensional feature space. In fig 4.2 (a), we see the 16-data arrays as an input to the

network. A pattern class can then be represented by a region or sub-space of the feature space.

Classification then becomes a matter of determining in what region of the feature space an unknown

pattern falls into. For the classification process of our work, the manipulator is characterized by

sixteen rotation joint so that the end detector can be arbitrarily positioned and orientated in the

working space. The manipulator can be seen as a shape definer (see. Fig 4.2 (b)) for our shapes and

therefore the feature vector consists of angles 1621 ,...,, qqq in a two-dimensional planar. Fig 4.2 (a)

implies the shape square with 16-data arrays that show the angles between two points.

Shape

0.5 1 1.5 2 2.5 3 3.5 4 4.5

1.5

2

2.5

3

3.5

4

4.5

SHAPE

Feature

extraction

Decision Rule

Classification

results

 1 2 3 4

4 Neural object recognition

 26

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]

Figure 4.2: (a) The feature explanation and illustration of a shape. (b) The manipulator

as a shape definer.

 The recognition of objects plays an important role in shape analysis for robotics. The patterns to be

classified are usually groups of measurements or observations, defining points in an appropriate

multidimensional space [Burks].

 The data used for the simulation in chapter 5 was taken from the one-dimensional data arrays as

mentioned in fig 4.2.(a). Most applications using fourier descriptors, moment invariants and scalar

descriptors for shape recognition deal with the classification of the shapes but for our work we used

only fourier descriptors method for definite shapes, namely squares, circles, triangles and rectangles.

 Pattern recognition is concerned with making decisions of complex patterns. In [Cast04], it is given

an introduction for pattern recognition and underlined the classification as an important part of

automatic scene understanding.

It is assumed:

• that an image may contain one or more objects of interest

• that each object belongs to one of several predetermined types or classes

Actually, our image can be viewed as one object of interest and therefore easy to classify. Basically,

the input data set used in this thesis for the classification and pattern recognition performs the

(b)

(a)

4 Neural object recognition

 27

conditions of this paper. Our feature vector for tentacle case is one-dimensional vector and for linear

object scanner case is typically 55x matrices and each data sets are introduced for a class.

 In this chapter, we will deal with the fourier descriptors and turning functions which describe

shapes irrespective of position, scale and orientation for the classification and grasping process. For

information of the other techniques, several papers are published and discussed.

 Before we go deep into the main idea, the term “shape” must be explained in order to understand

the classification of objects from the given boundary points. The definition of shape can be done if we

start with some properties that we agree on [Died03].

• A shape describes a spatial region and occupies an area in the space.

• A shape consists of points and typically addresses 2D space.

0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SHAPE

Figure 4.3: Two-dimensional shape.

 The shape examples reveal with the conditions of a shape (see Fig. 4.3). We consider shape as

something geometrical and will use the term shape for a geometrical pattern, consisting of a set of

points, curves and surfaces. The points on the shape boundary can be interpreted as the links of the

manipulator in order to determine the feature vector and turning function.

4.2.1 Process analysis and classification

There are two important points of views which will be discussed in the next section. In the following,

we will shortly describe the data representation and decision making process and give an overview as

follows:

1. Data representation

• Feature extraction

• Descriptor

2. Decision Making

• Matching process

4 Neural object recognition

 28

The two important methods in pattern recognition can be described as above. Data representation deals

with shape analysis and for the shape analysis development boundary scalar transform techniques,

turning functions and fourier transform of boundary, will be examined. Feature extraction and

descriptors will be discussed in the next chapter.

 Decision making is related with neural networks that classify the patterns comparing with the given

inputs. As a result, decision making process can be seen as development and classification.

4.2.2 Feature Extraction

Feature extraction is the name given to a family of procedures for measuring the important shape

information contained in a pattern so that the task of classifying the pattern is made easily by a formal

procedure [God05]. The term “feature” is described as a simple geometric characteristic of the object

and takes place in data representation. In [09], the feature extraction is explained as classification

which is carried out through the comparison of objects of interest with reference objects.

 For the non-complexity of the feature extraction, we used the features of the shapes by giving them

manually and pre-defined classes of the objects were presented. The features or variables, which were

measures of quantities considered to be relevant to characterising the objects of interest, were analysed

for purposes of the comparison.

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]

circle = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

triangle = [0 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3]

rectangle = [0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2]

Figure 4.4: The feature representation of the shapes that are used for the classification.

4 Neural object recognition

 29

 The idea is based on the angles between separately distributed points and 16-data points give a two-

dimensional planar object. The objects are said to be closed shapes because the last vector meets with

the first vector. By this way, the shapes describe a spatial region and occupy an area as 2D space (see

fig.4.4). The sum of angles between the points gives 360° , which proves that the first vector and the

last vector meets and identify a closed-shape.

4.3 Fourier Analysis

4.3.1 Introduction

As we early mentioned, the most important point in object recognition is that the system has to cope

with the arbitrary position, orientation and scaling of the objects. To full these requirements, a model

based approach namely fourier descriptors and turning functions were used. The fourier descriptors

method is formed by applying fourier transform to the coefficients of wavelet transform of the object

boundary. After transforming the turning function to a periodic signal, it will be possible to realize the

grasping process with the help of fourier transformation.

4.3.2 Fourier Descriptors

In the scope of this thesis, the fourier transform technique is used for shape description in the form of

fourier descriptors and for recognition technique. The shape descriptors generated from the fourier

coefficients numerically describe shapes and are normalised to make them independent of translation,

scale and rotation. Once a function is obtained, a fourier transform can be used to convert the function

from space domain to frequency domain. As depicted in fig 4.5, the coefficients describe a given one-

dimensional function. These fourier descriptor values produced by the fourier transformation of a

given image represent the shape of the object in the frequency domain. With fourier descriptors, global

shape features are captured by the first few low frequency terms, while higher frequency terms capture

finer features of the shape. The lower frequency descriptors contain information about the general

features of the shape, and the higher frequency descriptors contain information about finer and the

small details of the shape. Therefore, the lower frequency components of the fourier descriptors define

a rough shape of the original object.

 Each fourier coefficient is calculated from every boundary points and therefore sensitive to all the

points of shape. Before applying fourier transform on the shape signature, shape is first sampled to

fixed number of points and the shape boundary or the shape signature of objects and models must be

4 Neural object recognition

 30

sampled to have the same number of data points. The larger the number, the more details the shape is

represented, consequently, the matching result will be more exact. In contrast, a smaller number of

sampled points reduces the accuracy of the matching results, but improves the computational

efficiency. Spectral descriptors include fourier descriptors and it is usually derived from spectral

transform on shape signatures.

Figure 4.5: “Triangle” and its discrete fourier transformation.

4.3.3 Fourier Series or Fourier Transformation

The necessary method for object entwinement process is can be selected after the difference between

fourier series and fourier transformation is made. The important point is if the signal of the grasped

objects is periodic or non-periodic. We will now give shortly the application areas of the two methods.

 The mathematical relationships between the time domain and frequency domain versions of the

same signal are termed transforms. We transform a signal from one representation, ()tx to another

representation)(fX . A signal's time and frequency domain representations are uniquely related to

each other. In both the time and frequency domains our signal exists and with the Fourier transform

we make relationship between the two.

4.3.3.1 Derivation of Fourier Series

We begin with a brief review of fourier series. Generally, a fourier serie expansion for a function is a

representation of any periodic function as sum of sines and cosines.

The periodic signal of ()tx can be expressed as sum of harmonically related sine waves.[m0039]

() ∑∑
∞

=

∞

=















+














+=
11

2
sin

2
cos

k

k

k

k T

kt
b

T

kt
aatx

ππ (4.1)

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14
feature vector of TRIANGLE

4 Neural object recognition

 31

The family of functions called basis functions 








T

ktπ2
cos and 









T

ktπ2
sin form the foundation of the

fourier series. These functions are always present and form the representation's building blocks. They

depend on the signal's period T and are indexed by k. The frequency of each term is
T

k . For k = 0, the

frequency is zero and the corresponding term 0a is a constant. The basic frequency
T

1 is called the

fundamental frequency because all other terms have frequencies that are integer multiples of it. These

higher frequency terms are called harmonics. The fourier coefficients, ka and kb , depend on the

signal's waveform. Because frequency is linked to index, the coefficients implicitly depend on

frequency.

4.3.3.2 Derivation of Fourier Transform

As we mentioned early fourier series give the frequency domain as a respond to periodic signals. We

need a definition for the fourier spectrum of a signal, periodic or not. This spectrum is calculated by

the fourier transform. The method that we use for grasping process requires the signals periodic and

non-periodic. If the manipulator entwines the object at least one time, it is clear that our signal

becomes periodic. For the non-entwinement condition, the signal is not periodic, therefore the fourier

transformation have advantage over fourier series. We need a definition for the fourier spectrum of a

signal, periodic or not. In the chapter 5 we will determine in detail the state of fourier transformation

in our implementation.

In the following, we will go deep in to the theory of the mathematical explanations. The

fourier transform theory can be applied in different ways for shape description by closed curves. The

fourier transform of a continuous function of shape(n) is given by the equation:

() ()∑
∞

∞−

= TnkjFnshape k /2exp π (4.2)

where kF is the fourier coefficients of the boundary.

 The purpose of several entwinement processes is more related with the continuous representation of

the shape information. As we mentioned in the previous section, it is very important for the human eye

to recognize the coefficients of the fourier descriptors. This is necessary because of the interpretation

of this process and we need a periodical signal of the shapes which are grasped by the manipulator.

 When dealing with the classification of shapes, the discrete fourier transform (DFT) is used. In the

simulation of thesis, we see the results of classification with the help of DFT. So equation (4.2)

transforms into:

4 Neural object recognition

 32

∑
−

=

−
=

1

0

.
2

.
.

1
T

n

n
T

k
i

k eSHAPE
T

F
n

π

 (4.3)

yields the fourier coefficients kF of order k = 1,..0 −T , from a periodic sequence of T real values

shape(n), assuming it is normalized to T points in the sampling stage, the discrete fourier transform of

shape(n) is given by with the equation (4.3).

 Shape(n) is called shape signature which is any one dimensional function that we represent shape

boundary. With this equation, the feature vector of shapes are transformed into fourier descriptors and

will be used in the neural network which is responsible for the recognition of the objects.

 The implementation of discrete fourier transformation is set up with the help of mlp that produces

the necessary information using the periodic signal of objects. This kind of network has two layers and

each layer outputs the real and imaginary parts of the coefficients. As a result it becomes a good

interpretation of the object grasping method. It can be easily understood if the objects are entwined

and also the distance information can be determined. The results will be seen in the next chapter under

the “Simulation results”.

 Shape(n) indicates our input data for all our links n from 0 to 16. All equations in shape analysis by

fourier theory are based on continuous curves. This is the reason why we need one dimensional

function that represent shape boundary. However, given the nature of the image, the curve should be

described by a collection of points.The discrete approximation has two important effects on the

representation of the shape information. Firstly, it limits the number of frequencies in the fourier

expansion. Our 16-data-array shape is illustrated with n/2 number of frequencies. Secondly, it forces

numerical approximation to the integral defining coefficients.

4 Neural object recognition

 33

4.3.4 Conclusion

Fourier descriptors are a good way to describe and recognize shapes of all kinds. To capture more

local features of the shape, higher frequency descriptors must be added. To achieve effective and exact

matching, the set of objects, that should be recognized, is required, since the matching-function and

the proper number of descriptors to use depend strongly on the given shapes. We see the best results

with feature vector that was given manually.

 As the result, we have possibility to make an interpretation of grasping objects with the help of

fourier transform. It is a practical way of describing the entwinement of objects with 16-arm

manipulator.

4.4 Turning function

In this section we will introduce a boundary scalar transform technique called turning function. It is a

popular method for polygon shape representation [Ark00], which is invariant to position, scale, and

rotation. The turning function represents the tangent of a point on the boundary with respect to a

reference axis of an arbitrary orientation. The tangent angle function ()nΘ can only assume values in a

range of length π2 , usually in the interval of []π2,0 [Guo01]. During the traversal of the boundary, the

tangent at each point is computed. The starting point on the outline corresponds to the origin point on

the turning function. Turning function is supposed to examine on all possible reference axes with

different degree from 0 to 360, and on all the choice of origin. The formula in our simulation is below.

In this explanation each point on the object boundary is computed in the space of 160 ≤≤ n where n

depicts the number of sampled points on the boundary. By this way, every link of the manipulator

describes boundary information of the shape. At the end, the sum of the angles gives the turning

function of boundary.

vec = [[0;1],diff(x,1,2)]
len = [sqrt(sum(vec.^2,1))]
for i = 1 : n - 1
cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)) (4.4)

phi(i) = acos(cosphi)

t = cumsum(phi)

4 Neural object recognition

 34

4.4.1 Grasping of objects

As we previously mentioned, Arkin et al. published an efficient method for comparing polygonal

shapes. They establish the notion of the turning function that represents the shape of an object. This

algorithm has been applied out to be very fast. The turning function is easily extended from the unit

interval by adding or subtracting multiplies of 2π .

 The parametrization implies the invariance under scaling. The two important degrees of freedom of

the turning functions are that the choice of the starting point Q and the orientation of the object. The

turning function does not change with the starting point and this verifies a robust approach because of

the periodic signal.

Figure 4.6: Object and its turning function.

 For the grasping process we need the turning function as a periodic signal. Since it originates from

the cumulation of the periodic sequence of relative turning angles, it is not periodic. However, the

relative turning angles of a polygon sum to π2 ; thus, the turning function can be transformed into a

periodic function with [Mar04].

() () n
N

nShapenShape periodic .
2π−= (4.5)

where ()nShape denotes the value of the turning function at the thn vertex and N is the number of

vertices in the polygonal shape. The use of this mathematical derivation in Matlab program is written

as

n = length(shape) (4.6)

shape = shape - 2*pi/n * [1:n]

2 4 6 8 10 12 14 16 18
0

PI/2

PI

3*PI/2

2*PI

arclength

θ
Turning function of test

Q

4 Neural object recognition

 35

Figure 4.7: The shape, its periodic signal and turning function.

 As we see above, the periodic signal and the turning function of a square is illustrated. Actually,

these results are received according to the whole-arm grasping process. In the next chapter, we will

study the results for all cases of object positions and discuss the differences of coefficients with the

help of fourier transformation. The turning function is restricted with the number of links of the

manipulator.

4.4.2 Conclusion

In this chapter, we have introduced turning functions as a way of describing the shapes that are going

to be recognized during the grasping process. The choice of grasping point and orientation of the

objects do not effect the result of turning function with tentacle case object recognition. The difference

between the manipulator and the starting point of object gives us the distance information. Also we

have knowledge of distance information by investigating the periodic signal of turning function.

Rotation of the objects only cause a vertical shift in turning function.

4 Neural object recognition

 36

4.5 Nyquist Theorem

In the following, we will discuss the importance of the distance between the links in the recognition

and grasping process. Firstly, we will introduce the theorem and then indicate the effects of the

frequency of the shape classification.

Figure 4.8: The different length of links in entwinement process and its effect on recognition process.

As we see in fig 4.8, the length of the links of the manipulator plays an important role in shape

entwinement and recognition process. The length of the link in fig 4.8 (a) is smaller than in the link in

fig 4.8 (b). The interpretation of the lengths of the links can be assumed as follows:

• We indicated with fourier descriptors that, the lower frequency descriptors contain

information about the general features of the shape, and the higher frequency descriptors

contain information about finer and the small details of the shape. Here as we see, the longer

links the manipulator has, the smaller shape information we have. The purpose of the

manipulator must be good decided if several different shapes will be involved in recognition

process.

• If the length of the links are small, then we will need more links than we have and in this case,

the grasping process of the shapes can not be achieved properly. Due to the lack of

entwinement of objects, the shape information will be incomplete and classification results

will be wrong.

 The nyquist theorem says that, the sampling rate must be at least 2fmax. If the sampling rate is less

than 2fmax, some of the highest frequency components cause undesirable condition that is a form of

distortion called aliasing. When this happens, the original signal cannot be uniquely reconstructed

from the sampled signal. If B is the bandwidth and Fs is the sampling rate, then the theorem can be

stated mathematically [Kor04].

sFB <2 (4.7)

4 Neural object recognition

 37

Below, the implementation of function is illustrated. This formula applies fourier transformation and

strip contents over nyquist frequency and static content.

ftc = abs(fft(shape))) (4.8)

ftw = ftc(1,2:ceil(n/2)-1)

where ftw is the feature vector. The command ceil rounds the elements of (n/2) to the nearest integers

towards infinity. The following command plots the feature vector of shape and the dimensionality of a

feature vector consisting of the fourier transformed turning function is smaller that a feature vector that

includes the turning function itself which helps to reduce the effects of the curse of dimensionality.

Therefore the feature vector has to contain the coefficients 12/ −= Nk where k denotes the band-with

and N denotes the sampling rate Fs

(a)

(b)

(c)

(d)

Fig 4.9: The entwinement of square with different length of links.

 Fig 4.9 represents four types of grasped squares. In the cases of grasping process, we used different

length of links in order to realize the entwinement process properly. If we consider the length of

manipulator as l and the length of square as a, it will be possible to write a relationship between these

two parameters. To realize the grasping results correctly, the length of manipulator l must be equal or

smaller than the length of square a. In this case we need a second assumption in order to have

sufficient results. In fig 4.9 (b), the length of a link (k) is half of the length of one side of square (a).

We can generate a formula as follows:

The length of a link
n

aaa
,...,

4
,

2
= (4.9)

The smaller length of link the better entwinement results. In the other hand, in case of l > a, the

grasping results will be not sufficient (see fig 4.9 (c)).

l

a

k
l 3l/2

4 Neural object recognition

 38

 We have an interesting situation in fig 4.9 (d). The lengths of links in fig (a) and (d) are equal but

the grasping results are different. We must make an addition to the rule that we described in (4.9). The

joints of the links and the edge of the shape must come together. It is clear that if the joint is placed in

the middle of the side of the square, the manipulator will not entwine the shape and this will not

prevent the true grasping results. On the edges of the square (see fig. 4.9 (d)) the shape of the

manipulator becomes like triangles and of course is not desired.

 In the following we will continue to discuss the results for the other class of shapes individually.

(a)

(b)

(c)

Fig 4.10: The entwinement of triangle with different length of links.

 As we previously for the square mentioned, all the conditions are also valid for the triangles and for

the rectangles. But we will denote a point for the rectangles. In fig. 4.11 (b) and (c), we see the same

result of having small triangles on the corners of the shapes. To prevent this problem, the length of a

link must be smaller than the smallest side of the rectangle as shown in fig. 4.11 (a).

(a) (b) (c)

Fig 4.11: The entwinement of rectangle with different length of links.

 In the following, we will deal with the shape circle as a last shape in our training set. The necessary

conditions for the entwinement is related with the radius of circles. The length of the sides of the

l

b

l/2 3l/2

b
b

l/3 l/2
l

b b

b

4 Neural object recognition

 39

shapes were important for squares, triangles and rectangles. In fig 4.12, we see three circles that are

grasped by the manipulator that has different length of links.

(a) (b) (c)

Fig 4.12: The entwinement of circles with different length of links.

 We assume two different cases for the circle grasping.

1. The length of the manipulator is constant and the radius of circle changes

2. The length of the manipulator changes and the radius of circle changes

 For the both cases, it is clear that the critical limit of adequate results of being grasped by the

manipulator is that the length of a link (l) must be smaller than the radius (r) of circle (see fig. 4.12 (a)

and (b)).

l < r (4.10)

In fig. 4.12 (c), the length of the link is bigger than the radius of circle and in this case our manipulator

gives out square instead of circle. Also, from the equation (4.7), it is known that the nyquist frequency

must be half or smaller than the half of the sampling rate (f).

f
l

=1
 (4.11)

If the length of the link increases, the frequency of sampling rate will decrease. This can be released

by applying the equation (4.11) in (4.17) as follows

l
B

1
2 < (4.12)

By increasing the length (l), the bandwidth will decrease and the radius of circle will again increase in

order to yield sufficient grasping results.

l

r r

2l

5 Simulation

 40

5 Simulation

In the following, we will discuss implementation details and the results of the simulations we carried

out. In the previous chapter, the theoretical background of neural object recognition was achieved to

be explained. For this purpose, a simulation was proposed basing on the numerical software package

MATLAB/SIMULINK.

Neural Network Toolbox, Version 7.0

Intel Celeron M Processor 1.5 GHz. 992 Ram

5.1 Classification and Grasping

In this section, we will describe implementation details and simulation results of the neural object

recognition and classification. Furthermore, we hypothesize the object to be fully entwined, several

times entwined and even not entwined meaning the manipulator covers the whole object boundary.

The objective of this thesis is to develop precise and efficient methods to identify the location and

orientation of a particularly object model. Secondly, adaptive application of a selected feature and

limitation of a feature character under the concept of data representation were involved.

 In this thesis, two different problems were discussed. The first problem is concerned with the

“tentacle case problem” with one-dimensional data arrays. The second problem tried to be solved is to

investigate the „Linear object scanner case“. In this chapter, we will discuss each problem separately.

 For the purpose of object recognition, the manipulator was assumed to have 16 links. Actually, the

more links in usage, the better the obtained results. This is due to the high number of feature vectors

that characterizes more information about the shape. The turning function in the training sets as well

as the test set used to verify the object recognition system was specified with the program. RBNN is

useful for classification and mlp is suitable for entwinement for our objects. In the following, three

neural networks will be introduced separately and the results will be given in the section of

“Simulation results”.

 All of the simulations were performed in MATLAB using the Neural Networks Toolbox.

5.1.1 Classification process based on RBNN

 In this section a PNN- (Probabilistic neural networks) a kind of radial basis network suitable for

classification problem- is implemented. The input to the network is a 16-dimensional vector that

represents the periodical turning function.

5 Simulation

 41

 In the following, the structure of network using Matlab help is introduced. Newpnn creates a two-

layer-network. The first layer consists of radial basis transfer function neurons and calculates its

weighted inputs with the euclidean distance weight function. The weights are applied to an input with

the help of weight functions to get weighted inputs. Net input functions calculate a layer's net input by

combining its weighted inputs and biases. The second layer has neurons that uses transfer functions

which calculate a layer's output from its net input, and calculates its weighted input dot product weight

function and its net inputs. Only the first layer has biases. The first layer includes sigmoidal units and

the second layer holds a single linear unit.

 RBNN (Radial Basis Neural Networks) is trained to classify objects to be either rectangular,

square, circular or a triangle

5.1.1.1 PNN for classification

In this thesis, focus is laid on RBF-networks. Its features are extracted with the help of the neural

network introduced in the previous section. They can be classified by using a special type of the RBF

networks described in section 4.2.3.1.

 Probabilistic neural networks are a kind of radial basis network suitable for classification problems.

In chapter 3, several advantages of pnn over back propagation (BP) networks are indicated, i.e. the

improvement of training effects. This is due to the enhanced network architecture. In case of enough

input data, the pnn will act as a Bayesian classifier. Pnn allows true incremental learning by the

opportunity to add new training data at any time without requiring retraining of the entire network.

Due to the statistical basis of the pnn, it can give an indication of the amount of evidence it has for

basing its decision [pnn].

 In pnn, probability density functions such as the Gaussian are used as a basis function and are

centred around the training cases. The weights between the hidden and output units are set to the prior

Figure 5.1: The grasping problem with a 16-DOF manipulator. Fully entwined and partially entwined objects
are illustrated.

5 Simulation

 42

probabilities of the class that is represented by a specific output unit alternatively. For each hidden

unit, a weight of 1 is used connected to the output the current case belongs to, while all other

connections are set to zero.

 The topology of the network is feed-forward combined with an unsupervised training paradigm.

The outputs of this network are derived from the probability of the input belonging to the class that is

represented by the output unit. There are 4 type of classification results. Square, circle, rectangle and

triangle are used as training sets resulting in the desired outputs. Here a classification problem is

defined with a set of inputs P and class indices T.

The inputs are used in order to create a class which test set will be trained according to produced

feature vector shown above.

T = ind2vec([1 2 3 4])

Matlab help documents that ind2vec takes one argument and returns sparse matrices of vectors, with

one number in each column. As indicated above, there are 4 types of classes. In order to show the

meaning of the numbers it can be stated that 1 points out a “circle”, 2 a “triangle”, 3 a “square”, 4 a

“rectangle”.

net = newpnn (P,T)

This function creates a network and takes two arguments of P. P represents the input vectors being

compared with the T target class vectors. The classification process is performed on the basis of the

input arguments. The class indices are converted to target vectors and a pnn is designed and tested. As

below described a new vector with the network is classified. First the desired object is given as “Test”

to enable a comparison with the input vectors. By this way, a MLP network is entrained to calculate

the euclidean length of a vector. This enables to achieve the classification independent of translation,

scale and rotation.

class = sim(net, coeff')

vec2ind(class)

test = vec2ind(class)

vec2ind transforms vectors to indices in order to show the four different classification results. The

newpnn method is simulated with the sim (Simulate a Simulink model) command. Computed values

of fft are stored in newpnn and simulated according to the probabilistic neural network.

y = sim(MLP, {triangle'})

coeff = abs(y{1}+i*y{2})

P = [P, coeff]

y = sim(MLP, {square'})

coeff = abs(y{1}+i*y{2})

P = [P, coeff]

y = sim(MLP, {rectangle'})

coeff = abs(y{1}+i*y{2})

P = [P, coeff]

y = sim(MLP, {circle'})

coeff = abs(y{1}+i*y{2})

P = [P, coeff]

5 Simulation

 43

5.1.1.2 Training

Normally, the training of the network is repeated for many examples in the set until the network

reaches a steady state, lacking any further significant changes in the synaptic weights. In this condition

of the learning process, complex problems were processed with several hidden units. The network

learns from examples by constructing an input-output mapping for the problem that is concerned with.

The choice of the number of hidden units and the learning parameter plays a huge role in learning

paradigm. An optimal network structure has to be found for solving related tasks.

 A set of input vectors are applied to a network that is updated at each step, until some stopping

criteria- for example maximum number of epochs, a minimum error gradient, an error goal are met.

 As a training set, one kind of data input is used for each object, the network is trained with 50

epochs and the learning rate is determined as 0,6. Increasing number of epochs decelerates the network

speed. Obviously, the more training sets in usage, the more absolute classification and recognition

results are received. It is not recommended to have large training sets, as these are decreasing the

speed of the processing.

 For the examination of the tentacle and the linear object scanner case, different classification

methods were used. The classification of the tentacle case leads to adequate results. The training

parameters that are shown below were used in the simulation of all recognition problems.

net.trainParam.epochs = 50

net.trainParam.goal = 0.01

net = train(net,p,t)

 As depicted above, the network is trained with the optimal training number of 50 both for the

tentacle and object scanner case problem. For the mlp, the weight matrix is determined analytically; no

need to perform an additional training on the net.

5.1.2 Grasping process based on MLP

 In chapter 4, the concept of feature extraction is described. In the following, the representation of

shapes of the turning functions, which can be easily shown through the mathematical explanations

describing them as angels will be discussed. In the turning function, summation of the relative joint

angles results as coefficients. The length of links are accepted equal and the arc length between the

vertices of the polygonal shape can easily be normalized to unit length, which provides invariance

with respect to scaling of the object. The output has two layers, each of them performing the real and

imaginary parts of the fourier coefficients beyond the nyquist frequency with the exception of the

5 Simulation

 44

zeroth order coefficient. The feature vector comprises the magnitudes of the complex fourier

coefficients.

 Being of importance of this thesis, the entwinement process is implemented with a kind of mlp

network. This network sets up a mlp network that performs a discrete fourier transformation. It

computes only 2/N coefficients; both the static component and the coefficients above the nyquist

frequency are stripped. The network uses one input and the two layers in which the transfer functions

are selected as purelin. Purelin takes one input and calculates layer’s output from its net input.

 The two layers that take part in the network output the real and imaginary parts of the coefficients.

The weight matrix is determined analytically so no need to perform additional training on the net. The

fourier serie can be written as

∑
−

=















−






=
1

0

2
sin

2
cos

1 N

n
periodick N

kn
i

N

kn
shape

N
X

ππ

 The real and the imaginary part of the coefficients become apparent and the functions do not

change with the value of periodic signal periodicshape . They only depend on the period of sequence N,

the order of the coefficient k and the index n.

 The fourier serie which is performed in mlp network has real and imaginary parts. The input given

to the network is 64-dimensional data arrays to see the high frequencies in detail for the grasping

process. The output includes both the real and the imaginary part of the fourier coefficient of order k of

the given test data array. Only the absolute values are observed in the figures.

 The method used in mlp is based on the periodic signal of depicted objects. The turning function of

the angels describing the object boundary information is calculated and transformed to a periodic

signal as mentioned above. Depending on the grasping of objects, the signals can not be even periodic.

The reason using the fourier transformation is that it is applicable to all signals if they are periodic or

not. In this way, the necessary information enables the interpretation for entwinement. The spectrum

of coefficients must give regularly descending values for the objects that are being entwined more than

one-time grasped objects. The reason is that fourier transformation is applicable both to periodic and

non-periodic signals. If the objects are not fully grasped, the spectrum will have coefficient values at

the high frequencies like a wavy form. Otherwise, the spectrum will decrease to a constant value

periodically.

 In the following, the details of the results that were received by using mlp in case of not-grasped,

whole-arm grasped and more than one-time grasped objects will be examined.

5 Simulation

 45

5.2 Simulation results

In this section, we will introduce the simulation process separately and show the results for each

problem. The different grasping process for three kinds of object cases is as follows;

1. Not fully grasped objects

2. One-time grasped objects

3. More than one-time grasped objects

(a)

(b)

Figure 5.2: Shapes in the training set (a) and the test set (b).

The procedure of neural object classification has two main process respectively classification of

objects and grasping process. This is necessary for deciding if the other objects are entwined or not

entwined that have different position, rotation and scaling information. Possible input data for the

neural network based on classifier consists of joint angle information. The neural network has to

5 Simulation

 46

recognize the object’s shape and assign it to certain classes. For instance, circular, rectangular,

triangular and square shapes should be considered.

 An overview of the training set and test set being used to train is shown in fig. 5.2. For the present

work of thesis, the fourier series of the turning function determines the several times of object

entwinement and the coefficients change rapidly. As test set, several one-dimensional data arrays were

used with different distance information to the manipulator.

Fig. 5.3 shows the method that was used in this thesis. First, winkles are given manually to the

network. They are transformed into two dimensional data arrays for the plotting of shapes. Then, the

turning function of the boundary points is computed. However, the computed function is not invariant

to rotation and the turning function is not sufficient to represent a feature vector for making

classification from the classes of objects. The periodic function is necessary for the fourier series. The

obtained turning function of the object which the fourier transformation is applied, strip contents over

nyquist frequency.

 Except the zeroth fourier coefficient of the turning function is invariant with respect to the vertical

shift coaused by rotation of shape. The magnitudes of the fourier coefficients are also invariant with

starting vertex. The feature vector contains up to order k = N/2 – 1, therefore the dimensionality of

periodicised turning function is smaller than the feature vector that containes the turning function

itself.

 After implementation of fourier transformation to the periodic signal of the object, the necessary

coefficients are taken for deciding grasping process. As a last step, the classification with pnn is

proceed and tested for the right results of the objects as square, circle, triangle, rectangle.























nq

q

.

.

.
1

















∫∑



















nw

w

.

.
1

















RBF

 

















One-dimensional

data arrays

Figure 5.3: Investigating of the tentacle case problem and the classification process.

1 2 3 4

5 Simulation

 47

The first problem that is concerned with in this thesis is about the objects that are placed away from

the manipulator. It is assumed that the object is entwined or partially entwined. To solve the offset-

problem, the fourier transformation of the data inputs of the object information is used. It is very easy

to predict that if the object is placed away from the manipulator, the fully entwined process could not

be performed and the grasp information of the shape will give false results. The offset-problem was

simulated with circles that have different location information. The aim of the object recognition is to

define the shape information if the object is entwined or not.

ε

Data-array
(input)

Figure 5.4: Tentacle case „offset-problem“. Turning function of an object. ε is the position
information of the object according to the manipulator.

5 Simulation

 48

TEST OBJECT GRASPING RESULTS

-5 -4 -3 -2 -1 0 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3
SHAPE

number of LINKS
2 4 6 8 10 12 14 16

-1

0

1

2

3

4

5

6

7

TURNING FUNCTION

arclength

co
ef
f

0 2 4 6 8 10 12 14 16
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
periodic signal of SHAPE

0 1 2 3 4 5 6 7
0

1

2

3

4

5
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18
GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 th
e
in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

(a) (b)

 The solution of problem with a simulation is performed in order to achieve the grasping process

even recognized with human eye. It is important to recognize the results not only with mathematical

explanations also the figures must help to interpret the grasping process. More detailed searching

results will be founded in the next section.

 The extraction of the feature vector consists of three important points

1. The turning function of shapes which are given manually and transformation to a periodic

signal that is necessary for the fourier transformation

2. fourier transformation of the periodic signal

3. computing of the feature vector that comprises the magnitudes of the complex fourier

coefficients

 After feature extraction of shapes, it is able to make a classification with the help of two different

mlp networks. In the following, we will deal with these two networks.

 Figure 5.5: Based on tentacle case entwinement problem. The test array is plotted in two-dimensional

plane and periodic signal of turning function, turning function and the fft coefficients are shown (a). The

coefficients of periodisiced turning function are illustriated (b).

5 Simulation

 49

5.2.1 Investigating tentacle case problem

The given test sets as an input are one-dimensional data arrays and for the plotting of each set, they

must be converted into two-dimensional data arrays in order to see how they look like. This is helpful

to recognize if the object is entwined or not without any mathematical explanation. Each specified

point is interpolated and the results are plotted in the graphical user interface.

test = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

Fig 5.6: The test set and interpolated result of previously specified points.

 The shape transformed from the points is done with the help of a little program. The coordinates (x,

y) or each angle (pi/8) is computed and plotted as shown in fig. 5.6. As discussed later, the usage of

plotting a shape is important for the grasping decision.

test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0]

The plotted shape The turning function of plotted shape

Fig 5.7: The given test test and turning function of plotted shape.

x

y

5 Simulation

 50

 The turning function is not invariant to rotation; rotation of the shapes causes a vertical shift of the

turning function. Additionally, the course of the function depends on the choice the cumulation of the

relative tangent angles namely the starting point of shapes. By plotting the test arrays into a shape, it is

possible to make an interpretation if the objects are grasped or not.

 One-dimensional data arrays are converted into two-dimensional data arrays and plotted to realize

the shape information of object. The turning function of a polygon gives the cumulative sum of angles

between the counterclockwise tangent to the sides of the polygon and the x-axis as a function of the

arc length s.

test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0]

The turning function of plotted shape The periodic signal of turning function

Fig 5.8: Turning function of shape and periodic signal which is necessary for fourier serie.

The Fourier series as given in chapter 4 requires the sequence turning function shape to be periodic.

Thus, the turning function of shape (t) can be transformed into a periodic function.

n = length(t)

periodic signal = t - 2*pi/n * [1:n]

where n is the number of links and turning function is converted to periodic signal that is necessary to

apply fourier transformation and strip contents over nyquist frequency and static content.

5 Simulation

 51

test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0]

The periodic signal of turning function Applied fourier transformation and feature coefficients

Fig 5.9: Periodic signal of turning function and feature coefficients.

 Fourier transformation is applied to the periodic signal of turning function of shape and contents

are striped over nyquist frequency and static content as follows.

fta = abs(fft(periodic signal))

ft = fta(1,2:ceil(n/2)+1)

The absolute fourier transformation of periodic signal is computed and return feature vector a.

a = ft

 The matching results will be exact by using more descriptors but on the other side the accuracy

reduces. Each coefficient is calculated from boundary points and sensitive to all the points of shape.

All of the objects assumed to be have different distance information to the manipulator. The fully

entwined object, its turning function, feature vector, periodic signal of object and fourier

transformation are given together with the result of the classification. The other kinds of training sets

have different distance information to the manipulator and the objects are assumed to be fully

entwined, partially entwined or several times entwined.

 The training set of 4 types of square, circle, triangle and rectangle object information were utilized.

The vectors that we gave manually for describing the objects consist of zero points that imply the

smooth, the angles that imply the break points on the objects. The fft coefficients of these vectors are

used for the classification results.

 The training set used in the program for the classification is a 16 data-array that gives the object

boundary information. The classification process is achieved with the help of fft that is implemented to

the training set. Fft computes the discrete fourier transform of the object boundary for each points up

5 Simulation

 52

to number of the links. The lower fft values store the general information of the shape and the higher

frequency the smaller details.

 The discrete approximation has two important effects on the representation of the shape

information. Firstly, it limits the number of frequencies in the fourier expansion. Our 16-data-array

shape is illustrated with n/2 number of frequencies. Secondly, it forces the numerical approximation to

the integral defining coefficients.

 In the following, implementation details and simulation results of the neural object recognition will

be described. Furthermore, we claim the objects to be fully entwined, that is, the manipulator covers

the whole object boundary. In our simulation of object recognition, it is assumed that the manipulator

to have 16 links. Two different neural networks are trained in order to classify objects to be either

rectangular, square, circular or a triangle. The turning function in the training sets as well as the test set

used to verify the object recognition system was specified manually. All of the simulations were done

in MATLAB using the Neural Networks Toolbox.

 A linear mlp network that determines the fourier coefficients of the boundary function is

implemented. The input to the network is a 16-dimensional vector is converted from the turning

function. The output is organized in two layers, each of which holds the real respectively complex

parts of the fourier coefficients beyond the Nyquist frequency with the exception of the zeroth order

coefficient. The feature vector includes the magnitudes of the complex fourier coefficients. Thus, a

two-layer mlp network is entrained to perform this task. The first layer includes six sigmoidal units

and the second layer holds a single linear unit. For the detailed spectrum of fft, 64-dimensional vector

set is used for the grasping process. By this way, the form of spectrum can be observed and sufficient

results are interpreted. For the classification process, a pnn is entrained.

5 Simulation

 53

 circle= [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32]

This circle is fully entwined and the coefficients converge on a stationary value.

Convergency shows that the grasping of objects is achieved.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 10

-13 GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

Figure 5.10: The 64-dimensional data arrays for grasping process in mlp network. The discrete

approximations with the limited number of frequencies in Fourier expansions are called “coefficients”.

 Describing the results more detailed in fig 5.10. the whole-arm grasped circle is introduced. The

value of each winkle is pi/8 (°5.22) and the perimeter of circle can be calculated as π.28/16 =× pi .

All of the winkles of our objects that we used in this thesis is proportional to π.2 .

 The MLP network for grasping process has two layers consisting of the first layer {1} and the

second layer {2}. The first layer {1} maps the cos part of plotted shape “E” and the coefficients that is

implemented in Matlab program as “coeff”. The second layer {2} maps the sin part of plotted shape

“E” and the imaginary part of coefficients. The 32 frequencies are symbolized with “E” and taken after

the turning function is transformed to a periodic signal. In Matlab the periodic signal and the

coefficients are taken as follows.

y = sim(MLP, {(E)'})

coeff = (abs(y{1}+i*y{2}))'

f

5 Simulation

 54

 First the periodic signal “E” is obtained from the turning function. “y” outputs the sim('mlp') that

will simulate mlp model using all simulation parameter dialog settings including Workspace I/O

options. The results of “y” are logged and the absolute values of coefficients are taken. The last

command “A” displays the parameters in the same window to enable to observe the results.

 For the coefficients, the absolute values of real and imaginary part of y are calculated in layer {1}

and layer {2}.

 As seen below, test object is a circle and whole-arm grasped. To observe the results of a plotted

test arrays, “x(1,:),x(2,:)”is written in the command window of Matlab.

X: The value of plotted turning function of shapes.

The values of plotted shape on x-plane

0 0.7071 1.0898 1.0898 0.7071 -0.0000 -0.9239 -1.9239 -2.8478 -3.5549 -3.9375 -3.9375 -3.5549 -2.8478 -1.9239 -0.9239

The values of plotted shape on y-plane

0 0.7071 1.6310 2.6310 3.5549 4.2620 4.6447 4.6447 4.2620 3.5549 2.6310 1.6310 0.7071 -0.0000 -0.3827 -0.3827

Fig 5.11: The plotted turning function “x” of shape performed in MLP.

 As shown above, the cos and sin of x are illustrated to receive the shape information. The first row

describing the cosines values of angle (pi/8) of x increases in the first quadrat and reduces in the

second and third quadrat while the sin values are increasing. In the fourth quadrat both the cos and sin

values decrease. The value 0.7071 is the cos of (pi/8) the first angle. For each point of shape the sin

and cos values are computed and added one another until the whole shape information is taken.

 Fig 5.11 includes the necessary information of the grasping process of a circle. It is also easy to

predict that the plotted shape give all the information that is needed.

x

y

1.Quadrat

2.Quadrat 3.Quadrat

4.Quadrat

5 Simulation

 55

test = [pi/2 0 pi/2 0 0 0 0 pi/2 0 pi/2 0 0 0 0 pi/2 0]

Fig 5.12: The plotted shape of one-time grasped rectangle.

Writing down the cos and sin values of plotted turning function of shape one under the other, the

coordinates can be computed (x,y).

 The number of grasping process is obtained by counting the points on the object boundary. In fig

5.12 the number of boundary points (15) is smaller than the number of links (16).

the number of points > 16 not fully grasped

the number of points < 16 more than one-time grasped

the number of points = 16 whole arm grasped

 If the points are less than the number of links, the object is assumed to be grasped more than one-

time. If the object boundary (8) has as the half number of links (16), in this case the object is said to be

two-times grasped. The plotted turning function of shape “x” includes the cos and sin information of

the angles between points.

 In the next section, we will discuss the grasping results for different object cases and try to explain

a general idea by using fourier transformation with the help of mlp.

5.2.1.1 Not fully grasped objects

In the following, we will study the grasping results for objects that are not entwined. The missing

grasping cases of all objects will be searched and the results will be discussed.

 Not fully grasping process is valid if the objects are placed away from the manipulator. In the fig.

5.13, it will be searched the necessary parameters that play important role to decide in which condition

our object is.

The object boundary

points computed from

the turning function

5 Simulation

 56

RECTANGLE

test = [0 pi/2 0 0 0 pi/2]

Classified as CIRCLE

0 10 20 30 40 50

-10

-5

0

5

10

15

SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-5

-4

-3

-2

-1

0

1

2
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70
GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

62.2025 28.5078 16.3591 9.8899 6.0995 4.2147 3.8211 4.0784 4.3193 4.3100 4.0141 3.4654 2.7236 1.8594 0.9457 0.0701

0.7630 1.4385 1.9402 2.2437 2.3421 2.2466 1.9900 1.6357 1.3056 1.2071 1.4560 1.8977 2.3579 2.7386 2.9860

3.0715

Fig. 5.13: Not-fully entwined object.

The real and imaginary parts of the coefficients are computed from the plotted shape of turning

function of each shape. For the grasping process, the absolute value of the summation of coefficients

are taken. In case of not fully grasped object, the integral defining coefficients of periodisiced turning

function of shape do not decrease with the high frequencies showing the signal is not periodic and thus

the object is not fully grasped.

SQUARES

test = [0 pi/2 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0

pi/2]

Classified as CIRCLE

0 5 10 15 20 25 30 35 40

-5

0

5

10

15

SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40
GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

39.8039 8.6634 10.3422 4.1597 10.4083 9.8530 3.1959 2.7923 2.6510 2.4468 5.0947 3.9461 0.4759 1.6400 0.8374

2.0005 3.1485 2.0566 0.4989 0.9092 0.1702 1.6392 2.2331 1.5144 0.5827 0.4649 0.3301 1.4301 1.9302 1.4083

0.4754 0.3321

Fig. 5.14: Not-fully entwined object.

5 Simulation

 57

The values of coefficients decrease up to seventh frequency and begin to increase irregularly. This

condition continues after one after as the spectrum larges. As seen below, the spectrum gives irregular

coefficient values that a periodic data arrays can not be observed. The periodic signal degrease with

the zero points in one-dimensional data array which implies that there is “0” angle between the links

of the manipulator. The red-plotted array shows the pit and the green arrays the peak points of

spectrum. The spectrums have wavy form of coefficient arrays and in case of not fully grasped objects

these results are observed.

CIRCLES

test = [0 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32

pi/32 pi/32]

Classified as CIRCLE

0 5 10 15 20 25 30 35 40

0

5

10

15

20

SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-2

-1.5

-1

-0.5

0

0.5

1

1.5
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

40
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

60.9521 26.1909 13.3423 6.7743 3.9242 3.7453 4.1111 4.0701 3.6074 2.9467 2.3818 2.1524 2.2192 2.3314 2.3190

2.1568 1.9208 1.7380 1.6992 1.7712 1.8440 1.8385 1.7449 1.6148 1.5309 1.5428 1.6188 1.6829 1.6813

1.6114 1.5203 1.4780

Fig. 5.15: Not-fully entwined circle

As mentioned above, the spectrum of not fully grasped circle has a wave form as the frequencies

increase. The data arrays are 64-dimensional but the results have 32-dimensional data information.

According nyquist theorem, the half of the coefficients are used in order to decrease the effects of the

curse of dimensionality and thus the feature vector contains 32-dimensional data arrays. The absolute

value of coefficient that is performed with mlp computes only the half of coefficients; both the static

component and the coefficients above the nyquist frequency are removed. As mentioned in section

4.5, the classification of objects that are entwined several times is imperfectly if the nyquist

requirements are not satisfied.

5 Simulation

 58

TRIANGLE

test = [0 pi/2 0 0 0 0 0 0 0 0 0 0 5*pi/6 0 0

0 0 0 0]

 Classified as CIRCLE

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

49.9383 10.5842 6.1651 4.6303 3.9207 7.3695 7.6384 4.9253 3.6258 4.7307 4.1359 2.3049 1.8908 1.7776 1.2451

2.7137 3.6997 3.1282 1.5421 0.2643 0.6444 1.3206 2.2385 2.4849 1.7575 0.8338 1.2596 1.7468 1.9196 1.8384

1.2823 0.6420

Fig. 5.16: Not-fully entwined triangle

 Note that object grasping information is related with the circumference of shapes. As depicted

before, our manipulator is a shape definer and actually the manipulator is interpreted as an object.

Grasping is to compute the circumference of related object. The circumference of all kind of objects to

be either square, rectangle, triangle and circle is equal to π.2 . Therefore, in case of whole-arm object

grasping, the last arm of manipulator scans .360° Whole-arm grasping information of the object is the

sum of the angles which gives the edge information of the object and circumference results must be

equal to ..2π

 If the product of the angles and the number of the entwined links is higher than π.2 , the object is

said to be more than one-time grasped.

 0 < the sum of angles < π.2 not fully grasped

 the sum of angles = π.2 whole arm grasped

π.2 < the sum of angles < π.4 more than one-time grasped

the sum of angles = π.4 two times grasped

π.4 < the sum of angles < π.6 more than two times grasped

the sum of angles = π.6 three times grasped

5 Simulation

 59

5.2.1.2 One-time grasped objects

In following we will give the whole-arm grasped object results and at the end of this section, the

relation of the coefficients (coeff) is discussed with an example. As mentioned previously, the

periodisiced turning function (E) carry the important information for the achievement of grasping

process. The edge-information is performed and observed in the periodic signal.

 The spectrum of fourier coefficients in case of one-time grasped objects has important feature over

not fully grasped objects. The periodic decreasing values of coefficients are repeated every certain

values like 4.,8.,…28.,32. feature vector.

SQUARES

test = [pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0]

Classified as SQUARE

-20 -15 -10 -5 0 5

0

5

10

15
SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

5

10

15

20
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

0.0000 0.0000 0.0000 16.1033 0.0000 0.0000 0.0000 8.2094 0.0000 0.0000 0.0000 5.6547 0.0000 0.0000 0.0000

4.4429 0.0000 0.0000 0.0000 3.7784 0.0000 0.0000 0.0000 3.4004 0.0000 0.0000 0.0000 3.2031 0.0000

0.0000 0.0000 3.1416

Fig. 5.17: The state of grasping process for whole-arm grasped object of square with coefficients.

At the right side of the figure, the grasping results are shown. The whole arm grasped square has a

periodic decreasing coefficient spectrum. The feature vector of shape reaches a steady state as the

frequency increases. The spaces between coefficients are equally distributed and related with the

periodic signal of shape.

5 Simulation

 60

CIRCLES

test = [pi/32

pi/32

pi/32 pi/32]

Classified as CIRCLE

-15 -10 -5 0 5 10 15
0

5

10

15

20
SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
1.2763

1.2763

1.2763

1.2763

1.2763

1.2763

1.2763

1.2763

1.2763
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 10-13 feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7
x 10

-13 GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

0.5259 0.2603 0.1469 0.1357 0.0977 0.0778 0.0715 0.0872 0.0984 0.0607 0.0551 0.0396 0.0729 0.0578 0.0606

0.0587 0.0623 0.0373 0.0608 0.0535 0.0556 0.0395 0.0996 0.0735 0.0469 0.0612 0.0527 0.0502 0.1404

0.0480 0.0454 0.0570

Fig. 5.18: The state of grasping process for whole-arm grasped object of circle.

The periodic signal of whole-armed grasped circle is constant and related with the angles between the

links of the manipulator.

RECTANGLES

test = [0 pi/2 0 0 0 0 0 0 0 pi/2 0

pi/2 0 0 0 0 0 0 0 pi/2]

Classified as RECTANGLE

0 5 10 15 20

-2

0

2

4

6

8

10

SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1

1.5

2
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

5

10

15

20

25
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

0.0000 9.3040 0.0000 13.3894 0.0000 8.3659 0.0000 3.1416 0.0000 6.6323 0.0000 1.1032 0.0000 4.3674

0.0000 3.1416 0.0000 1.9158 0.0000 3.7058 0.0000 0.3492 0.0000 3.1416 0.0000 2.0827 0.0000

1.7796 0.0000 3.0209 0.0000 0.0000

Fig. 5.19: The state of grasping process for whole-arm grasped object of rectangle.

5 Simulation

 61

As mentioned for squares, the whole arm grasped rectangle has a periodic decreasing coefficient

spectrum. The spaces between coefficients are equally distributed and related with the periodic signal

of shape.

TRIANGLES

test = [0 2*pi/3 0 2*pi/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2*pi/3]

Classified as TRIANGLE

0 5 10 15 20 25 30 35
0

5

10

15

20

25
GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

1.2995 1.2799 21.3745 1.3154 1.2546 10.7452 1.3304 1.2230 7.2196 1.3487 1.1853 5.4622 1.3749 1.1429 4.4051

1.4145 1.0978 3.6927 1.4729 1.0532 3.1739 1.5549 1.0125 2.7747 1.6647 0.9797 2.4559 1.8056 0.9583 2.1955

1.9811 0.9509

Fig. 5.20: The state of grasping process for whole-arm grasped object of triangle with coefficients.

The results for triangles are the same with square shape. The coefficients decrease after increasing

periodic frequencies. As see in the next section, if the number of grasping process increase, the

periodic coefficient width wides. For one-time grasped triangle, every third coefficient has the highest

value but for the more than one-time grasped shapes, the space between the periodicised highest

frequencies increases.

5.2.1.3 More than one-time grasped objects

In this section we will study the grasping results for objects that are more than one time entwined. If

compared with other situations of grasping process, the spectrum of coefficients gives always a

periodicised array and decreases to a constant value.

 In the following, for each object, the results are illustriated and at the end of this section a brief

summary of more than one-time grasping process is given.

5 Simulation

 62

SQUARES

test = [pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0

0 0 0 pi/2 0 0 0 0 0 0 0]

-10 -8 -6 -4 -2 0 2
-1

0

1

2

3

4

5

6

7
SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
-1

0

1

2

3

4

5

6

7
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

64.0257 32.0515 21.4106 16.1033 12.9294 10.8225 9.3253 12.0975 7.3478 6.6644 6.1108 5.6547 5.2738 4.9521

4.6781 9.9346 4.2399 4.0641 3.9113 3.7784 3.6627 3.5622 3.4753 9.5142 3.3366 3.2830 3.2387 3.2031

3.1760 3.1568 3.1454 9.4248

Fig. 5.21: More than one-time grasped square. The coefficient values decrease with the increasing

number of frequencies.

 The spectrum of fourier coefficients in case of more than one-time grasped objects become more

linear and difference between the coefficients do not vary sharply as seen in the spectrum of one-time

grasped object.

CIRCLES

test = [pi/8

pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]

-5 -4 -3 -2 -1 0 1 2 3

0

1

2

3

4

SHAPE

number of LINKS
10 20 30 40 50 60

0

5

10

15

20

25

30

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
0

5

10

15

20
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

50

100

150

200
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

140

160

180

200
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

192.0771 96.1544 64.2319 48.3098 38.7883 32.4674 27.9758 24.6281 22.0434 19.9933 18.3325 16.9642 15.8214 14.8564

14.0342 13.3286 12.7198 12.1923 11.7339 11.3351 10.9881 10.6866 10.4258 10.2013 10.0099 9.8489 9.7160 9.6094

9.5279 9.4704 9.4361 9.4248

Fig. 5.22: More than one-time grasped circle.

5 Simulation

 63

TRIANGLES

test = [0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0

2*pi/3 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 2*pi/3]

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

106.7237 53.4474 35.7267 26.8950 21.6190 18.1210 15.6391 26.0929 12.3691 11.2426 10.3320 9.5835 8.9599

8.4346 7.9882 19.4522 7.2773 6.9930 6.7467 6.5328 6.3472 6.1863 6.0473 10.7432 5.8264 5.7411

5.6708 5.6145 5.5714 5.5411 5.5230 2.8606

Fig. 5.23: More than one-time grasped triangle.

RECTANGLES

test = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 pi/2]

-2 0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

7

8

SHAPE

number of LINKS
10 20 30 40 50 60

-10

-5

0

5

10

15

20

TURNING FUNCTION

arclength

co
ef
f

0 10 20 30 40 50 60 70
0

1

2

3

4

5
periodic signal of SHAPE

-5 0 5 10 15 20 25 30 35
0

5

10

15

20

25
feature vector of SHAPE

number of coefficients

fe
at
ur
e
co
ef
fic
ie
nt
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25
GRASPING

The coefficients of periodisiced signal "E"

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

22.5923 15.6424 10.1999 4.7027 8.1120 4.3186 3.1308 12.0800 2.5020 1.8049 6.2906 4.0808 5.8281 1.3869 2.1188

7.9111 2.1955 1.9647 4.2726 2.9879 3.6887 2.5577 2.5150 4.3271 2.6052 2.9747 1.7992 1.8614 1.1657 3.1863

2.7497 1.4995

Fig. 5.24: More than one-time grasped rectangle.

 If we summarize the grasping process, the signal that is transformed from the turning function of

the shapes is necessary for the fourier transformation. With the help of MLP network, the cosines and

the sinus values of plotted turning function, the real and the imaginary part of coefficients are

5 Simulation

 64

computed using the two layers. The absolute value of summation of sin and cos part carries the key

information for grasping process. Three different object features are introduced and spectrums of

coefficients are performed. As a result, if the object is entwined the spectrum of fourier coefficients

decrease and convergence to a constant value. If not, the spectrum gives a wave form of coefficients.

In case of several entwinement process, the value of coefficients are bigger than the coefficients which

are observed with one-time entwined objects.

5.2.2 Investigating the „Linear object scanner cas e“

In this section of the thesis, we will study out the possibility of the recognizing the deformed part of

the objects passing through the conveyor belt using neural networks as a recognizer of patterns which

is within the field known as quality control applications that are designed to find that one in a hundred

or one in a thousand part that is defective. Linear object scanner case data inputs are nn× matrices.

The main problem which is desired to be solved from a sensor system is that the sensor that lies on the

conveyor-belt must recognize the faults on the shape. If there is a hole in the object or a part of is

destructed, the object must be noticed out by the system.

 As shown below, the construction of conveyor belt is seen. In this procedure, the objects must be

recognized if they are deformed partially.

CCoonnvveeyyoorr
bbeell tt

SSeennssoorr
ssyysstteemm

22--ddiimmeennssiioonnaall
sshhaappee



































RBF



















nw

w

.

.
1

















∫∑



















1100

1110

1100

1110

 nn × dimensional
data arrays

 1 2 3

Figure 5.26: The sub-problems of linear object scanner case problem.

Figure 5.25: Illustration of „Linear object scanner case“ problem.

5 Simulation

 65

square = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]

circle = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0]

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

triangle = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1]

rectangle = [0 0 0 0 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Figure 5.27: The nn× data arrays shown as inputs and as two dimensional shape information.

Fig. 5.26 shows the method that was used in linear object scanner case and fig. 5.27 reveals the inputs

as nn× data arrays that give the object boundary information. “0” indicates the holes or the faults, “1”

indicates the actual boundary points on the shape boundary that are given manually as a training set,

the inputs, are said to be one dimensional-data arrays. Then, the fourier serie is computed for the

classification. After implementation of fourier serie, the necessary coefficients are taken for the feature

vector. The classification, which here pnn used, is given with the help of the coefficients of feature

vector. As a result, the objects are classified as square, circle, triangle, rectangle.

 The classification results in linear object scanner case problem can be explained as follows;

1. The objects which are partially deformed can be classified correctly. The partially deformed

shapes which have different dimensions were recognized properly. The dimension of shapes

that were recognized properly have smaller matrix dimension than nn× matrix.

2. The holes on the shapes cause problems in classification process and give false results.

5 Simulation

 66

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

SQUARE

CIRCLE

TRIANGLE

RECTANGLE

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Feature Vector of SQUARE

 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Feature Vector of CIRCLE

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Feature Vector of TRIANGLE

0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Feature Vector of RECTANGLE

As seen above, the objects have nn× dimensions that pass through the conveyor belt. These inputs

are used as a training set and the classification is supervised according to these nn× data arrays.

SHAPE

Feature vector

Comment

Result

1 1 1 1 1

1 1 0 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Feature Vector of TEST

Shape with a hole

Triangle

SHAPE

TEST SHAPE

Figure 5.28: The nn× data arrays with different object information. The feature vectors of
 two dimensional data arrays are shown.

Figure 5.29: The nn × shape with a hole in the center.

5 Simulation

 67

The classification results of the nn× data arrays show that it is not possible to take correct

classification results with the newpnn method for the defected objects passing through the conveyor

belt.

SHAPE

Feature vector

Comment

Result

0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Feature Vector of TEST

Partially deformed

shape

Square

We see that the classification procedure with deformed objects do not give the true results but on the

other hand the small shapes are recognized and classified properly by our neural network. Fig 5.30

shows actually a small square comparing with the real shape value.

5.3 Conclusion

 The fourier coefficients of turning functions that are performed in two mlp networks makes

possible an interpretation about grasping of an object. The zeroth order of fourier transformation is

the important key for grasping results.

 The classification is realized with three networks, respectively two mlp networks and pnn. A

probabilistic neural network structure is able to classify the objects with one dimensional data arrays

but the results are not successful enough for the right classification if the object is translated, rotated or

scaled. The reason of false results is the different side lengths of objects.

 The two dimensional data arrays can not be classified with our pnn network correctly. The

defaulted shapes that are produced during the production process must be recognized for the quality

work of a firm. Thus, instead of pnn, the other neural networks must be used.

 In this chapter, we have shown turning functions as a way to describe the shapes that are

recognized during the grasping process. We developed two neural networks in order to make a

TEST SHAPE

Figure 5.30: The nn× data arrays with different object information.

5 Simulation

 68

classification of the objects that the feature vectors from the turning function are extracted. The shapes

as test set which have different side lengths could not be classified correctly. The grasping process is

introduced with the help of plotted object and coefficients performed in mlp.

 In case of not fully entwined objects, the spectrum of coefficients gives a wavy form. For one-time

and more than one-time entwined objects, the coefficients are observed as they decrease with the high

frequencies. Also the value of coefficients increases if the objects are several times grasped.

6 Implementation in Matlab

 69

6 Implementation in Matlab

This chapter describes implementation details with the help of MATLAB and the main results

obtained with neural object classification. Section 6.1 starts with implementation details in neural

object classification and continues to describe MATLAB realizations of related neural networks based

algorithm.

6.1 Implementation in MATLAB

The MATLAB codes was written and tested with MATLAB Version 7.0. The software package was

used with Windows XP on a Pentium Celeron M processor with 1.5 Ghz clock frequency and 996 MB

RAM.

MATLAB code listings

6 Implementation in Matlab

 70

6.1.1 Tentacle case

%

% tentaclecase.m

%

% Classification with RBF and grasping with MLP

%

% input:

% SQUARE

% CIRCLE

% TRIANGLE

% RECTANGLE

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%

[obj,n,t,ts]=DRAWTESTSET()

[t,coefficient,x,s]=turningfunction(obj,n)

[a,E]=periodic(t)

subplot(2,2,1);

plot(x(1,:),x(2,:),'ko-');

axis equal;

title('SHAPE');

Xlabel('number of LINKS');

subplot(2,2,2);

stairs(s(1:n-1),t);

title('TURNING FUNCTION');

axis equal;

Xlabel('arclength');

Ylabel('coeff');

The function uses inputs as a

training set and outputs the

grasping process for each object.

The manipulator has 16 number

of links and is used as a shape

definer.

Therefore one-dimensional data

array has 16 values which

describe the angles between the

links.

One-dimensional data arrays

are converted into two-

dimensional data arrays and

plotted

Performing the turning function

of plotted object

Transforming the turning

function into periodical signal

“E”

Plotting the shape of one-

dimensional data arrays

Plotting the turning function in

respect with arclength

6 Implementation in Matlab

 71

subplot(2,2,3);

plot(E);

title('periodic signal of SHAPE')

subplot(2,2,4);

bar([0:((n/2)-1)],a);

title ('feature vector of SHAPE');

Xlabel('number of coefficients');

Ylabel('feature coefficients');

[A,fig] = transformationX(E,fig)

[circle,triangle,rectangle,square] = classify()

P=[];

y = sim(MLP, {circle'});

coeff = abs(y{1}+i*y{2});

P = [P, coeff];

y = sim(MLP, {triangle'});

coeff = abs(y{1}+i*y{2});

P = [P, coeff];

y = sim(MLP, {square'});

coeff = abs(y{1}+i*y{2});

P = [P, coeff];

y = sim(MLP, {rectangle'});

coeff = abs(y{1}+i*y{2});

P = [P, coeff];

T = ind2vec([1 2 3 4]);

net = newpnn(P,T);

Plotting the periodical signal of

shape

Plotting the feature vector of

periodical signal over nyquist

theorem

Implementing the periodisiced

signal in mlp network

Input sets of each object for the

classification

The periodical signal and

coefficients of each class of

object performed in two mlp

networks respectively

The classes of objects are

performed

Pnn, A kind of radial basis

network is created

6 Implementation in Matlab

 72

y = sim(MLP, {E'});

coeff = (abs(y{1}+i*y{2}))';

fig = fig + 1;

figure(fig)

bar(A);

title ('GRASPING PROCESS')

Xlabel('The periodical signal "E" and the coefficients');

Ylabel('numerical approximation to the integral defining coefficients');

class = sim(net, coeff');

vec2ind(class)

yc_test = vec2ind(class)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

switch yc_test

case 1, display('SQUARE');

case 2, display('CIRCLE');

case 3, display('TRIANGLE');

case 4, display('RECTANGLE');

end

This small program is written in

C program language to see the

classification results with words

instead of the numbers. A little

C program outputs the

classification results.

Note, that the PNN will always

output circle if there is no

match.

The grasping results performed

in mlp networks are plotted.

Here the turning function of

shapes and coefficients are

figured

Test object is given to mlp

networks in order to make

classification

The class indices are converted

into target vectors and a Pnn

network is designed and tested

6 Implementation in Matlab

 73

6.1.2 Linear object scanner case problem

% twodimensional.m

%

% Classification with RBF

% input:

% SQUARE

% CIRCLE

% TRIANGLE

% RECTANGLE

% output:

clear

fig = 0;

n = 5;

% square

square1 = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]';

square2 = [1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 1]';

square3 = [0 0 0 0 0; 0 1 1 1 0; 0 1 1 1 0; 0 1 1 1 0; 0 0 0 0 0]';

square4 = [0 0 0 0 0; 0 0 1 1 0; 0 0 1 1 0; 0 0 0 0 0; 0 0 0 0 0]';

%%%%%%%%%%%%%%%%

% circle

circle1 = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0]';

circle2 = [0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 0 0 1 0 0; 0 0 0 0 0]';

circle3 = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0]';

circle4 = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 0 0 0 0; 0 0 0 0 0]';

% triangle

triangle1 = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1]';

triangle2 = [1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0; 0 0 0 0 0; 0 0 0 0 0]';

triangle3 = [1 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0; 1 1 0 0 0; 1 0 0 0 0]';

triangle4 = [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0]';

% rectangle

rectangle1 = [0 0 0 0 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]';

rectangle2 = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 0 0 0 0]';

rectangle3 = [1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0]';

rectangle4 = [0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0]';

Two-dimensional data arrays

were used describing the objects

as input.

The dimension of matrix is

55x and also as test set the

matrixes which have small

dimensions were used.

Four type of objects that have

different bigness are used.

6 Implementation in Matlab

 74

% FFT

% computes the fast fourier transform of the data arrays

% classification

% This function results the FFT of objects for classification

[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1,

norm_abs_FFT_alpha_square_2,norm_abs_FFT_alpha_square_3

,norm_abs_FFT_alpha_square_4,norm_abs_FFT_alpha_circle_1,

norm_abs_FFT_alpha_circle_2,norm_abs_FFT_alpha_circle_3

,norm_abs_FFT_alpha_circle_4,norm_abs_FFT_alpha_triangle_1,

norm_abs_FFT_alpha_triangle_2,norm_abs_FFT_alpha_triangle_3

,norm_abs_FFT_alpha_triangle_4,norm_abs_FFT_alpha_rectangle_1

,norm_abs_FFT_alpha_rectangle_2,norm_abs_FFT_alpha_rectangle_3

,norm_abs_FFT_alpha_rectangle_4] =

FFTscanner(square1,square2,square3,square4,circle1,circle2,circle3

,circle4,triangle1,triangle2,triangle3,triangle4,rectangle1,rectangle2

,rectangle3,rectangle4)

fig = fig + 1;

figure(fig)

bar([0:n-1],norm_abs_FFT_alpha_square_1);

title('Feature Vector of SQUARE');

fig = fig + 1;

figure(fig)

bar([0:n-1],norm_abs_FFT_alpha_circle_1);

title('Feature Vector of CIRCLE');

fig = fig + 1;

figure(fig)

bar([0:n-1],norm_abs_FFT_alpha_triangle_1);

title('Feature Vector of TRIANGLE');

fig = fig + 1;

figure(fig)

bar([0:n-1],norm_abs_FFT_alpha_rectangle_1);

title('Feature Vector of RECTANGLE ');

Discrete Fourier Transformation of the
objects are computed with this function.
Classification of the input vectors is
computed with the help of this neural
network function.
Indices are converted into vectors to
create the number of classes.
Here there are 4 type of classes.

A neural network is created for the
classification.
The input arrays are tested with the help
of neural network in order to give out
the results of the classification.

6 Implementation in Matlab

 75

% classifying a new vector with the network

%test = [0 0 0 0 0; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';

%test = [1 1 0 0 0; 1 1 0 0 0; 1 1 0 0 0; 1 1 0 0 0; 1 1 1 1 1]';

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';

%test = [1 1 1 1 1; 1 1 0 0 1; 1 1 0 0 1; 1 1 1 1 1; 1 1 1 1 1]';

%test = [0 0 0 0 0; 0 0 1 1 1; 0 0 1 1 1; 0 0 1 1 1; 0 0 0 0 0]';

%test = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 0 0 0 0]';

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';

% The classification of TEST set with the help of RBF.

[yc_test]= TESTFFT(test,net)

switch yc_test

case 1, display('SQUARE');

case 2, display('CIRCLE');

case 3, display('TRIANGLE');

case 4, display('RECTANGLE');

end

This small program is written in

C program language to see the

classification results with words

instead of the numbers. A little

C program outputs the

classification results.

Note, that the PNN will always

output circle if there is no

match.

The classification of TEST set

with the help of RBF.

The objects being defaulted are

used as test set in order to

achieve the classification

process.

6 Implementation in Matlab

 76

6.2 Functions
The functions which are briefly described below, include the following main file and first level

subfunctions, respectively

TURNINGFUNCTION.m Computes turning function of plotted shape

PERIODIC.m Returns turning function to periodic signal

NEWPNN.m Computes the classification process

MLP.m Returns the fourier transformation of periodic signals

TESTFFT.m Returns the fourier transformation of test objects

CLASSIFY.m Classifies each object

FFTscanner.m Returns discrete fourier transformation of two-dimensional objects

TURNINGFUNCTION.m Computes turning function of plotted shape

function [t,coefficient,x,s] = turningfunction(obj,n)
%GRAPHS : plots of turning function and frequency contents
% obj : object boundary as spline in ppform
% n : number of points on object contour
% gather object pnts
%equally spaced
s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %absolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end;
% for i = 2 : n
% %this condition certainly is not quite correct - but it works as long as the differnces of
% %tangent angels are small => arclengths between pnts must be small
% if (abs(t(i) - t(i-1)) >= pi)
% t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary!
len = [sqrt(sum(vec.^2,1))];
for i = 1 : n - 1
 cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1));
 phi(i) = acos(cosphi);

6 Implementation in Matlab

 77

end;

t = cumsum(phi);
%---
% compute frequency contents
%---
coefficient = abs(fft(t));
%---
% plots
%---
return

PERIODIC.m Returns turning function to periodic signal

function [a,E]=periodic(t)
%FEATURE extract feature vector from turning funciton for classification
%
%requests:
% t : turning function of shape
%returns:
% a : feature vector
%transform turning function to periodic signal:
n = length(t);
E = t - 2*pi/n * [1:n];
% where n is the number of links.
%apply fourier transformation and strip contents over nyquist frequ. and
%static content
% compute frequency contents
fta = abs(fft(E));
ft = fta(1,2:ceil(n/2)+1);

%return feature vector:
a = ft;
return

GRASPING.m computes actual transformation

function [A,coeff,fig] = grasping(E,fig)

%MLP : the actual transformation
% E is the periodisiced signal of turning function of shapes.
% "coeff" results the absolute value of the real and the imaginary part of
% fft values of the shape that are computed distinctly in layer {1} and
% layer {2}.(see function MLP)
%the coefficients are determined with
A = [];
y = sim(MLP, {E'});
coeff = (abs(y{1}+i*y{2}))';
% A outputs the result
A = [coeff];

%The colors are set by the colormap.

6 Implementation in Matlab

 78

fig = fig + 1;
figure(fig)
bar(A);
title ('GRASPING')
Xlabel('The coefficients of periodisiced signal "E"');
Ylabel('numerical approximation to the integral defining coefficients');

return

newpnn.m Computes the classification process

function [net] = newpnn(p,t,spread)

%NEWPNN Design a probabilistic neural network.

%

% Synopsis

%

% net = newpnn

% net = newpnn(P,T,SPREAD)

%

% Description

%

% Probabilistic neural networks are a kind of radial

% basis network suitable for classification problems.

%

% NET = NEWPNN creates a new network with a dialog box.

%

% NET = NEWPNN(P,T,SPREAD) takes two or three arguments,

% P - RxQ matrix of Q input vectors.

% T - SxQ matrix of Q target class vectors.

% SPREAD - Spread of radial basis functions, default = 0.1.

% and returns a new probabilistic neural network.

%

% If SPREAD is near zero the network will act as a nearest

% neighbor classifier. As SPREAD becomes larger the designed

% network will take into account several nearby design vectors.

%

% Examples

%

% Here a classification problem is defined with a set of

6 Implementation in Matlab

 79

% inputs P and class indices Tc.

%

% P = [1 2 3 4 5 6 7];

% Tc = [1 2 3 2 2 3 1];

%

% Here the class indices are converted to target vectors,

% and a PNN is designed and tested.

%

% T = ind2vec(Tc)

% net = newpnn(P,T);

% Y = sim(net,P)

% Yc = vec2ind(Y)

%

% Algorithm

%

% NEWPNN creates a two layer network. The first layer has RADBAS

% RADBAS neurons, and calculates its weighted inputs with DIST, and

% its net input with NETPROD. The second layer has COMPET neurons,

% and calculates its weighted input with DOTPROD and its net inputs

% with NETSUM. Only the first layer has biases.

%

% NEWPNN sets the first layer weights to P', and the first

% layer biases are all set to 0.8326/SPREAD resulting in

% radial basis functions that cross 0.5 at weighted inputs

% of +/- SPREAD. The second layer weights W2 are set to T.

%

% References

%

% P.D. Wasserman, Advanced Methods in Neural Computing, New York:

% Van Nostrand Reinhold, pp. 35-55, 1993.

%

% See also SIM, IND2VEC, VEC2IND, NEWRB, NEWRBE, NEWGRNN.

% Mark Beale, 11-31-97

% Copyright 1992-2002 The MathWorks, Inc.

% $Revision: 1.9 $ $Date: 2002/03/25 16:53:29 $

if nargin < 2

 net = newnet('newpnn');

 return

end

6 Implementation in Matlab

 80

% Defaults

if nargin < 3, spread = 0.1; end

% Error checks

if (~isa(p,'double') & ~islogical(p)) | (~isreal(p)) | (length(p) == 0)

 error('Inputs are not a non-empty real matrix.')

end

if (~isa(t,'double') & ~islogical(t)) | (~isreal(t)) | (length(t) == 0)

 error('Targets are not a non-empty real matrix.')

end

if (size(p,2) ~= size(t,2))

 error('Inputs and Targets have different numbers of columns.')

end

if (~isa(spread,'double')) | ~isreal(spread) | any(size(spread) ~= 1) | (spread < 0)

 error('Spread is not a positive or zero real value.')

end

% Dimensions

[R,Q] = size(p);

[S,Q] = size(t);

% Architecture

net = network(1,2,[1;0],[1;0],[0 0;1 0],[0 1]);

% Simulation

net.inputs{1}.size = R;

net.inputWeights{1,1}.weightFcn = 'dist';

net.layers{1}.netInputFcn = 'netprod';

net.layers{1}.transferFcn = 'radbas';

net.layers{1}.size = Q;

net.layers{2}.size = S;

net.layers{2}.transferFcn = 'compet';

% Weight and Bias Values

net.b{1} = zeros(Q,1)+sqrt(-log(.5))/spread;

net.iw{1,1} = p';

net.lw{2,1} = t;

return

6 Implementation in Matlab

 81

function [net] = setWeightMatrix(net,W)

 inputSizes = net.hint.inputSizes;

 layerSizes = net.hint.layerSizes;

 I = net.hint.totalInputSize;

 U = net.hint.totalLayerSize;

 % W(i,j) weights to layer unit i from input, layer or bias unit j

 for i=1:net.numLayers

 indRow = sum(layerSizes(1:i-1)) + (1 : layerSizes(i));

 for j=find(net.inputConnect(i,:))

 indCol = sum(inputSizes(1:j-1)) + (1 : inputSizes(j));

 net.IW{i,j} = W(indRow, indCol);

 end

 if net.biasConnect(i)

 indCol = I + 1;

 net.b{i} = W(indRow, indCol);

 end

 for j=find(net.layerConnect(i,:))

 indCol = I + 1 + sum(layerSizes(1:j-1)) + (1 : layerSizes(j));

 net.LW{i,j} = W(indRow, indCol);

 end

 end

%function [net_new] = trainrtrl(net,P,T,epochs,show,lr)

% trainrtrl - encapsules the RTRL training algorithm in rtrl.mex.

%

%function [net] = trainrtrl(net,P,T,epochs,show,lr)

%

% requests

% net : neural network structure (Neural Network toolbox)

% P : input signal (sequence of T timesteps)

% T : teacher signal (sequence of T timesteps)

% epochs : number of epochs

% show : number of epochs, after which a report of the training progress is output

% at the command line

% lr : learning rate

%

6 Implementation in Matlab

 82

% returns

% net_new : neural network structure after training

%

% remarks

% This function converts the neural network structure to the form the mex file demands, calls the

% mex file and reconverts the outcome of the training to a neural network structure. In addition,

% it plots the training signal and the network output at the end of the training.

net=network;

epochs = 50;

lr = 0,6;

%prepare weight matrix:

 % w = getWeightMatrix(net);

net.trainParam.epochs = 50;

net.trainParam.goal = 0.01;

net = train(net,p,t);

y2 = sim(net,p)

plot(p,t,'o',p,y1,'x',p,y2,'*')

%--

% utility fcns - conversion of neural network structure to and from the form the mex file

% demands

%--

%function [W] = getWeightMatrix(net)

 inputSizes = net.hint.inputSizes;

 layerSizes = net.hint.layerSizes;

 I = net.hint.totalInputSize;

 U = net.hint.totalLayerSize;

 % W(i,j) weights to layer unit i from input, layer or bias unit j

 W = zeros(U, U+I+1);

 for i=1:net.numLayers

 indRow = sum(layerSizes(1:i-1)) + (1 : layerSizes(i));

 for j=find(net.inputConnect(i,:))

 indCol = sum(inputSizes(1:j-1)) + (1 : inputSizes(j));

6 Implementation in Matlab

 83

 W(indRow, indCol) = net.IW{i,j};

 end

 if net.biasConnect(i)

 indCol = I + 1;

 W(indRow, indCol) = net.b{i};

 end

 for j=find(net.layerConnect(i,:))

 indCol = I + 1 + sum(layerSizes(1:j-1)) + (1 : layerSizes(j));

 W(indRow, indCol) = net.LW{i,j};

 end

 end

%prepare array with transfer fcn indices:

transferFcn = zeros(net.hint.totalLayerSize,1);

j = 0;

for i = 1:net.numLayers

 n = net.layers{i}.size;

 switch (net.hint.transferFcn{i})

 case 'logsig'

 transferFcn(j+1:j+n,1) = 0*ones(n,1);

 case 'tansig'

 transferFcn(j+1:j+n,1) = 1*ones(n,1);

 case 'purelin'

 transferFcn(j+1:j+n,1) = 2*ones(n,1);

 otherwise

 transferFcn(j+1:j+n,1) = 0*ones(n,1);

 end;

 j = j+n;

end;

%target indices

targInd = [];

for i = net.hint.targetInd

 targInd = [targInd sum(net.hint.layerSizes(1:i-1)) + (1 : net.hint.layerSizes(i))];

end;

%pass inputs to mex file

w = rtrl(w, transferFcn, P, T, targInd, epochs, show, lr);

6 Implementation in Matlab

 84

%update net

net_new = net;

net_new = setWeightMatrix(net_new,w);

%simulation of net (initial state set to first sample of teacher signal)

%y = sim(net, con2seq(P), {}, {T(:,1)});

y = sim(net, con2seq(repmat(P,1,4)), {}, {T(:,1)});

y = seq2con(y);

y = y{:};

%time - sequence

figure;

plot([T(:,1) y]','k-');

hold on;

plot(repmat(T,1,4)','k--');

hold off;

%phase plane

figure;

plot([T(1,1),y(1,:)],[T(2,1),y(2,:)],'k-');

hold on;

plot([T(1,:),T(1,1)],[T(2,:),T(2,1)],'k--');

hold off;

return

MLP.m Returns the fourier transformation of periodic signals

function [net] = MLP(N);
%dftnet - set up a MLP network that performs discrete fourier transformation
%
%requires:
% N : number of samples
%returns:
% net : Neural Network Toolbox network structure.
%remarks:
%MLP computes only ceil(N/2) coefficients; both the static component and the
%coefficients above the nyquist frequency are stripped. The two layers output
%the real and imaginary parts of the coefficients.
%the weight matrix is determined analytically; no need to perform additional
%training on the net.
N=16;
net = network;
net.numInputs = 1;
net.numLayers = 2;

6 Implementation in Matlab

 85

net.inputs{1}.size = N;

net.biasConnect = zeros(2,1);
net.outputConnect = ones(1,2);

%DFT layer (outputs complex fourier coefficients)
net.layers{1}.size = ceil(N/2);
net.layers{2}.size = ceil(N/2);

net.layers{1}.transferFcn = 'purelin';
net.layers{2}.transferFcn = 'purelin';

net.inputConnect = ones(2,1);

for i = 1 : ceil(N/2)
 for j = 1 : N
 kn(i,j) = i*(j-1);
 end;
end;

W1 = cos(2*pi/N * kn);
W2 = - sin(2*pi/N * kn);

net.IW{1,1} = W1;
net.IW{2,1} = W2;

net.inputWeights{1,1}.learn = 0;
net.inputWeights{2,1}.learn = 0;

return

CLASSIFY.m classifies each object

function [circle,triangle,rectangle,square] = classify()

%%%%%%%%%%%%%%%%
%Shapes in the training set
% square
%square1 = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]';
square1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2]';

%%%%%%%%%%%%%%%%
% circle
%circle1 = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]';
circle1 = [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32]';
%%%%%%%%%%%%%%%%
% triangle
triangle1 = [0 2*pi/3 0 2*pi/3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2*pi/3]';

%%%%%%%%%%%%%%%%
% rectangle

6 Implementation in Matlab

 86

rectangle1 = [0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2]';

test2= [];
L=[0;0];

n = length(circle1);

test2(1)= circle1(1);

for i = 2:n
 test2(i) = test2(i - 1) + circle1(i);
end
L(1,1) = 0;
L(2,1) = 0;
L(1,n+1) = 0;
L(2,n+1) = 0;
for i = 2 : n
 L(1,i)= cos(test2(i)) + L(1,i-1);
 L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(obj,n)
%GRAPHS : plots of turning function and frequency contents
% obj : object boundary as spline in ppform
% n : number of points on object contour
% gather object pnts
%equally spaced
s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %absolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end;
% for i = 2 : n
% %this condition certainly is not quite correct - but it works as long as the differnces of
% %tangent angels are small => arclengths between pnts must be small
% if (abs(t(i) - t(i-1)) >= pi)
% t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary!
len = [sqrt(sum(vec.^2,1))];
for i = 1 : n - 1
 cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1));

6 Implementation in Matlab

 87

 phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%---
%function [a,E]=periodic(t)
%FEATURE extract feature vector from turning funciton for classification
%
%requests:
% t : turning function of shape
%returns:
% a : feature vector
%transform turning function to periodic signal:
n = length(t);
circle = t - 2*pi/n * [1:n];

%function [triangle] = triangle1()

test2= [];
L=[0;0];

n = length(triangle1);

test2(1)= triangle1(1);

for i = 2:n
 test2(i) = test2(i - 1) + triangle1(i);
end
L(1,1) = 0;
L(2,1) = 0;
L(1,n+1) = 0;
L(2,n+1) = 0;
for i = 2 : n
 L(1,i)= cos(test2(i)) + L(1,i-1);
 L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(obj,n)
%GRAPHS : plots of turning function and frequency contents
% obj : object boundary as spline in ppform
% n : number of points on object contour
% gather object pnts
%equally spaced
s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %absolute angels in [-pi,pi]

6 Implementation in Matlab

 88

% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end;
% for i = 2 : n
% %this condition certainly is not quite correct - but it works as long as the differnces of
% %tangent angels are small => arclengths between pnts must be small
% if (abs(t(i) - t(i-1)) >= pi)
% t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary!
len = [sqrt(sum(vec.^2,1))];
for i = 1 : n - 1
 cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1));
 phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%---
%function [a,E]=periodic(t)
%FEATURE extract feature vector from turning funciton for classification
%
%requests:
% t : turning function of shape
%returns:
% a : feature vector
%transform turning function to periodic signal:
n = length(t);
triangle = t - 2*pi/n * [1:n];

%function [square] = square1()

test2= [];
L=[0;0];

n = length(square1);

test2(1)= square1(1);

for i = 2:n
 test2(i) = test2(i - 1) + square1(i);
end
L(1,1) = 0;
L(2,1) = 0;
L(1,n+1) = 0;
L(2,n+1) = 0;
for i = 2 : n
 L(1,i)= cos(test2(i)) + L(1,i-1);
 L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(obj,n)
%GRAPHS : plots of turning function and frequency contents

6 Implementation in Matlab

 89

% obj : object boundary as spline in ppform
% n : number of points on object contour
% gather object pnts
%equally spaced
s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %absolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end;
% for i = 2 : n
% %this condition certainly is not quite correct - but it works as long as the differnces of
% %tangent angels are small => arclengths between pnts must be small
% if (abs(t(i) - t(i-1)) >= pi)
% t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary!
len = [sqrt(sum(vec.^2,1))];
for i = 1 : n - 1
 cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1));
 phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%---
%function [a,E]=periodic(t)
%FEATURE extract feature vector from turning funciton for classification
%
%requests:
% t : turning function of shape
%returns:
% a : feature vector
%transform turning function to periodic signal:
n = length(t);
square = t - 2*pi/n * [1:n];

%function [rectangle] = rectangle1()

test2= [];
L=[0;0];

n = length(rectangle1);

test2(1)= rectangle1(1);

for i = 2:n
 test2(i) = test2(i - 1) + rectangle1(i);
end
L(1,1) = 0;
L(2,1) = 0;
L(1,n+1) = 0;

6 Implementation in Matlab

 90

L(2,n+1) = 0;
for i = 2 : n
 L(1,i)= cos(test2(i)) + L(1,i-1);
 L(2,i)= sin(test2(i)) + L(2,i-1);
end

n = length(L);
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
obj = csapi(t, L);

%function [t,coefficient,x,s] = turningfunction(obj,n)
%GRAPHS : plots of turning function and frequency contents
% obj : object boundary as spline in ppform
% n : number of points on object contour
% gather object pnts
%equally spaced
s = linspace(obj.breaks(1),obj.breaks(end),n);

%equally spaced, partially occluded:
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n);

x = fnval(obj, s);
% compute turning function
% df = fnval(fnder(obj),s);
%
% %first tangent's angel relative to y = const:
% %absolute angels in [-pi,pi]
% t = atan2(df(2,:), df(1,:));
% %correct for pi -jumps
% if (abs(t(1) - t(n)) >= pi)
% t(1) = t(1) + 2*pi;
% end;
% for i = 2 : n
% %this condition certainly is not quite correct - but it works as long as the differnces of
% %tangent angels are small => arclengths between pnts must be small
% if (abs(t(i) - t(i-1)) >= pi)
% t(i) = t(i) + 2*pi;
% end;
% end;
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary!
len = [sqrt(sum(vec.^2,1))];
for i = 1 : n - 1
 cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1));
 phi(i) = acos(cosphi);
end;

t = cumsum(phi);
%---
%function [a,E]=periodic(t)
%FEATURE extract feature vector from turning funciton for classification
%
%requests:
% t : turning function of shape
%returns:
% a : feature vector
%transform turning function to periodic signal:
n = length(t);
rectangle = t - 2*pi/n * [1:n];
end

6 Implementation in Matlab

 91

 TESTFFT.m Returns the fourier transformation of test objects

function [yc_test]= TESTFFT(test,net)
% The classification of TEST set with the help of RBF. This function
% computes the max absolute
% The maximum absolute value of FFT of test ignores the phase angle.
% The FFT value of TEST is normalized because to make them independent of
% translation, scale and rotation.

FFT_test = fft(test);
abs_FFT_test = abs(FFT_test);
max_abs_FFT_test = max(abs_FFT_test);
norm_abs_FFT_test = abs_FFT_test/max_abs_FFT_test;
y_test = sim(net,norm_abs_FFT_test)
yc_test = vec2ind(y_test)

return

TESTTURNING.m Returns turning function to a periodic signal

function [n,X,fig] = TESTOBJECT(Test,fig)
%shape plot shape from the turning function square

n = length(Test);

X = [0;0];

for c = 1 : n - 1
 X(:,c+1) = X(:,c) + [cos(Test(c)); sin(Test(c))];
end;

fig = fig + 1;
figure(fig)
plot(X(1,:),X(2,:),'k-');
axis equal;
axis([-1,10,-1,10]);
Xlabel('arclength');
Ylabel('\theta');
axis([1,32,-pi/18,2*pi]);

label = {'0','PI/2','PI','3*PI/2','2*PI'};
set(gca, 'YTick' ,2*pi/4*[0:4]);
set(gca, 'YTickLabel' ,label);
title ('Turning function of Test')

%function [c,fig,X] = FEATUREsquare(X,fig)

%transform turning function to periodic signal:
n = length(X(1,:));

6 Implementation in Matlab

 92

X(1,:)= X(1,:) - 2*pi/n * [1:n];

%%%%%%%%%%%%%%%%%%%%%%
%apply fourier transformation and strip contents over nyquist frequ. and
%static content
ftc = abs(fft(X(1,:)));
ftw = ftc(1,2:ceil(n/2)+1);

%return feature vector:
c = ftw;
% The figure of feature vector of TEST
fig = fig + 1;
figure(fig)
bar([0:(n-1)/2],c);
title('feature vector of Test');

% The figure of periodic signal of TEST
fig = fig + 1;
figure(fig)
plot(X(1,:));
title ('PERIODIC SIGNAL of Test')

return

FFTscanner.m Returns discrete fourier transformation of two-dimensional objects

% FFT
% computes the fast fourier transform of the data arrays

function
[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1,norm_abs_FFT_alpha_square_2,norm_abs_FFT_alpha_square_3
,norm_abs_FFT_alpha_square_4,norm_abs_FFT_alpha_circle_1,norm_abs_FFT_alpha_circle_2,norm_abs_FFT
_alpha_circle_3,norm_abs_FFT_alpha_circle_4,norm_abs_FFT_alpha_triangle_1,norm_abs_FFT_alpha_triangl
e_2,norm_abs_FFT_alpha_triangle_3,norm_abs_FFT_alpha_triangle_4,norm_abs_FFT_alpha_rectangle_1,norm
_abs_FFT_alpha_rectangle_2,norm_abs_FFT_alpha_rectangle_3,norm_abs_FFT_alpha_rectangle_4] =
FFTscanner(square1,square2,square3,square4,circle1,circle2,circle3,circle4,triangle1,triangle2,triangle3,triangle
4,rectangle1,rectangle2,rectangle3,rectangle4)

FFT_alpha_square_1 = fft(square1);
FFT_alpha_circle_1 = fft(circle1);
FFT_alpha_triangle_1 = fft(triangle1);
FFT_alpha_rectangle_1 = fft(rectangle1);

FFT_alpha_square_2 = fft(square2);
FFT_alpha_circle_2 = fft(circle2);
FFT_alpha_triangle_2 = fft(triangle2);
FFT_alpha_rectangle_2 = fft(rectangle2);

FFT_alpha_square_3 = fft(square3);
FFT_alpha_circle_3 = fft(circle3);
FFT_alpha_triangle_3 = fft(triangle3);

6 Implementation in Matlab

 93

FFT_alpha_rectangle_3 = fft(rectangle3);

FFT_alpha_square_4 = fft(square4);
FFT_alpha_circle_4 = fft(circle4);
FFT_alpha_triangle_4 = fft(triangle4);
FFT_alpha_rectangle_4 = fft(rectangle4);

% takes the absolute value of the data arrays

abs_FFT_alpha_square_1 = abs(FFT_alpha_square_1);
abs_FFT_alpha_circle_1 = abs(FFT_alpha_circle_1);
abs_FFT_alpha_triangle_1 = abs(FFT_alpha_triangle_1);
abs_FFT_alpha_rectangle_1 = abs(FFT_alpha_rectangle_1);

abs_FFT_alpha_square_2 = abs(FFT_alpha_square_2);
abs_FFT_alpha_circle_2 = abs(FFT_alpha_circle_2);
abs_FFT_alpha_triangle_2 = abs(FFT_alpha_triangle_2);
abs_FFT_alpha_rectangle_2 = abs(FFT_alpha_rectangle_2);

abs_FFT_alpha_square_3 = abs(FFT_alpha_square_3);
abs_FFT_alpha_circle_3 = abs(FFT_alpha_circle_3);
abs_FFT_alpha_triangle_3 = abs(FFT_alpha_triangle_3);
abs_FFT_alpha_rectangle_3 = abs(FFT_alpha_rectangle_3);

abs_FFT_alpha_square_4 = abs(FFT_alpha_square_4);
abs_FFT_alpha_circle_4 = abs(FFT_alpha_circle_4);
abs_FFT_alpha_triangle_4 = abs(FFT_alpha_triangle_4);
abs_FFT_alpha_rectangle_4 = abs(FFT_alpha_rectangle_4);

% computes the maximal absolute value of the data arrays

max_abs_FFT_alpha_square_1 = max(abs_FFT_alpha_square_1);
max_abs_FFT_alpha_circle_1 = max(abs_FFT_alpha_circle_1);
max_abs_FFT_alpha_triangle_1 = max(abs_FFT_alpha_triangle_1);
max_abs_FFT_alpha_rectangle_1 = max(abs_FFT_alpha_rectangle_1);

max_abs_FFT_alpha_square_2 = max(abs_FFT_alpha_square_2);
max_abs_FFT_alpha_circle_2 = max(abs_FFT_alpha_circle_2);
max_abs_FFT_alpha_triangle_2 = max(abs_FFT_alpha_triangle_2);
max_abs_FFT_alpha_rectangle_2 = max(abs_FFT_alpha_rectangle_2);

max_abs_FFT_alpha_square_3 = max(abs_FFT_alpha_square_3);
max_abs_FFT_alpha_circle_3 = max(abs_FFT_alpha_circle_3);
max_abs_FFT_alpha_triangle_3 = max(abs_FFT_alpha_triangle_3);
max_abs_FFT_alpha_rectangle_3 = max(abs_FFT_alpha_rectangle_3);

max_abs_FFT_alpha_square_4 = max(abs_FFT_alpha_square_4);
max_abs_FFT_alpha_circle_4 = max(abs_FFT_alpha_circle_4);
max_abs_FFT_alpha_triangle_4 = max(abs_FFT_alpha_triangle_4);
max_abs_FFT_alpha_rectangle_4 = max(abs_FFT_alpha_rectangle_4);

% the lower FFT values store the general information of the shape and the higher frequency
% the smaller details.The maximum absolute value of FFT of test ignores the phase angle.
% The FFT value of TEST is normalized because to make them independent of
% translation, scale and rotation.

norm_abs_FFT_alpha_square_1 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_1
norm_abs_FFT_alpha_circle_1 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_1
norm_abs_FFT_alpha_triangle_1 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_1
norm_abs_FFT_alpha_rectangle_1 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_1

norm_abs_FFT_alpha_square_2 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_2

6 Implementation in Matlab

 94

norm_abs_FFT_alpha_circle_2 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_2
norm_abs_FFT_alpha_triangle_2 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_2
norm_abs_FFT_alpha_rectangle_2 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_2

norm_abs_FFT_alpha_square_3 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_3
norm_abs_FFT_alpha_circle_3 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_3
norm_abs_FFT_alpha_triangle_3 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_3
norm_abs_FFT_alpha_rectangle_3 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_3

norm_abs_FFT_alpha_square_4 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_4
norm_abs_FFT_alpha_circle_4 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_4
norm_abs_FFT_alpha_triangle_4 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_4
norm_abs_FFT_alpha_rectangle_4 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_4

%classificationHere a classification problem is defined with a set of inputs P and class indices T.
P = [norm_abs_FFT_alpha_square_1, norm_abs_FFT_alpha_square_2, norm_abs_FFT_alpha_square_3,
norm_abs_FFT_alpha_square_4, norm_abs_FFT_alpha_circle_1, norm_abs_FFT_alpha_circle_2,
norm_abs_FFT_alpha_circle_3, norm_abs_FFT_alpha_circle_4, norm_abs_FFT_alpha_triangle_1,
norm_abs_FFT_alpha_triangle_2, norm_abs_FFT_alpha_triangle_3, norm_abs_FFT_alpha_triangle_4,
norm_abs_FFT_alpha_rectangle_1, norm_abs_FFT_alpha_rectangle_2, norm_abs_FFT_alpha_rectangle_3,
norm_abs_FFT_alpha_rectangle_4];

% classes
% There are inclusive 4 classes of objects
T = ind2vec([1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4]);

% create a network. Probabilistic neural networks are a kind of radial
%basis network suitable for classification problems.
net = newpnn(P,T)

%Here the class indices are converted to target vectors,and a PNN is designed and tested.

Y=sim(net,P)
Yc=vec2ind(Y)
return

6 Implementation in Matlab

 95

6.3 Flow Diagram

CLASSIFICATION
RESULTS

TESTSHAPE

CLASSIFY

GRASPING

START

DRAWTESTSET

TURNINGFUNCTION

PERIODIC

FEATURE VECTOR

GRASPING
PROCESS

CLASSIFICATION
PROCESS

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18
GRASPING

The periodical signal "X" and the coefficients

nu
m
er
ic
al
 a
pp
ro
xi
m
at
io
n
to
 t
he
 in
te
gr
al
 d
ef
in
in
g
co
ef
fic
ie
nt
s

FEATURE
EXTRACTION

7 Discussion

 96

7 Discussion

 The one-dimensional data arrays performed with the help of newpnn does not give sufficient results

for the classification because of the extremely susceptible of the network to noise. It is alos possible to

make an interpretation of being grasped or not from the manipulator by looking at the plotted shape.

How many times it is entwined, could be only decided from the shape of the object and periodical

signal of turning funciton. The object distance information is also avaliable with the help of turning

function.

7.1 Future work

Being recognized and grasped from a manipulator were performed with the help of MLP network. The

other neural network methods must be used to overcome this recognition problem with the entwined

or not entwined objects that have not constant boundary point information.

 The two-dimensional data arrays problem can not be solved with the help of radial basis functions.

The corrupted objects were not classified correctly. Therefore it will be useful to study out this

problem with the help of the other neural networks.

 The future work could be the implementation of hand-drawn objects in recognizing and grasping

process. In order to make a sufficient classification, the other neural networks must be used

performing with pnn networks. Since classification is sensitive to object boundary and linearity of

spaces between drawn points.

Bibliography

 97

Bibliography

[Ark00] E.M.Arkin. Efficiently computable metric for comparing polygonal shapes.

IEEE transaction on Pattern Analysis and Machine Intelligence, Vo1.13,

no.3, 209-216, 2000.

[Bay] http://www.cs.mcgill.ca/~mcleish/644/main.html.

[Bec91] Suzanna Becker. Unsupervised learning procedures for neural networks.

International Journal of Neural Systems, Vols 1&2, p 17-33, 1991.

[Bis95] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University

Press, Oxford, UK 1995.

[Burks] http://burks.brighton.ac.uk/burks/foldoc/30/87.htm.

[Bus02] Christian Busch. Whole-arm grasping with hyper-redundant planar

manipulators using neural networks. Wien, 2002.

[Cast04] Castleman ch. Pattern Recognition: Object Measurement & Classification, 2004.

[Comp422] Mengjie Zhang. Neural Networks for Object Recognition Applications,1999.

[Cov65] T. Cover. Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition . In IEEE Transactions on Electronic

Computers EC-14,326-334, June 1965.

[Died03] Diedrich Wolter. Shape: Representation & Recognition, 2003.

[Guo01] Dengsheng Zhang and Guojun Lu Gippsland. A Comparative Study on Shape

Retrieval Using Fourier Descriptors with Different Shape Signatures. School

of Computing and Information Technology Monash University, 2001.

[Leo00] Leon Zlajpah. Planar Manipulators Toolbox For Use with Matlab/Simulink,

2000.

Bibliography

 98

[L02] Irina Rish. Bayesian Decision Theory. BM T.J. Watson Research Center, 2003.

[Lec98] Bryan S. Morse, Shape Description (Regions) Brigham Young University,

1998–2000.

[Mar] Manolis Maragoudakis, Todor Ganchev and Nikos Fakotakis. Bayesian

Reinforcement for a Probabilistic Neural Net Part-Of-Speech Tagger,

Intelligent Systems Group, University of Patras Rion 26500, Patras, Greece,

2004.

[Mar04] Martin Brazda. Neural Net Controlled Autonomous Hyper-Redundant

Manipulator Systems, diploma thesis, Institut für Handhabungsgeräte und

Robotertechnik der Technischen Universität Wien, 2004.

[Meh97] B.M. Mehtre, M.S. Kankanhalli, and W.F. Lee, “Shape Measures for Content

Based Image Retrieval: A Comparison,” Information Processing &

Management, Vol. 33, No 3, pp. 319-337, 1997.

[m0039] Don Johnson. Fourier Series version 2.20, 2004.

[Mic04] Michel Verleysen. Radial-Basis Function Networks, 2004.

[pnn] http://www.netnam.vn/unescocourse/knowlegde/63.htm.

[Rip96] Pattern Recognition via Neural Networks, 1998.

[Sim88] Simon Haykin. Neural Networks: A comprehensive foundation 2nd

International Ed. Prentice Hall, 1999.

[Smc00] Brian David Maciel and Richard Alan Peters. A Comparison of Neural and

Statistical Techniques in Object Recognition. Center for Intelligent Systems

Vanderbilt University School of Engineering, 2000.

[Sta] http://www.dcs.ex.ac.uk/ica/icapp/chapters.html

[Ste97] Stefan Kunze, Dr.Josef Pauli. A Vision Based Robot System for Arranging

Technical Objects.1997.

Bibliography

 99

[Velt99] Remco C. Veltkamp and Michiel Hagedoorn. State of the art in Shape matching.

Utrecht University, Department of Computing Science Padualaan, 1999.

[wpnn] David Montana. A Weighted Probabilistic Neural Network,2002.

	Title.pdf
	Erklärung.pdf
	Acknowledgements.pdf
	Abstract.pdf
	Contents.pdf
	ListofFigures.pdf
	1introduction.pdf
	2Hyper.pdf
	3Stateoftheart.pdf
	4Neuralobjectrecognition.pdf
	5Simulation.pdf
	6Implementation.pdf
	7Futurework.pdf
	bibliography.pdf

