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Abstract 

 

The grasping and classification of the objects play important role in visual system.  For the grasping 

and classification process, the shapes must be recognized which is based on matching the descriptors 

of each shape to standard values representing typical shapes and choosing the closest match. The 

previous works have been done on the neural control of the grasping and the autonomous operation of 

hyper-redundant manipulators. The main tasks and aims of the thesis is dealing with tentacle case and 

linear object scanner case problem. Subsequently, the Fourier descriptors are used for the shape 

matching and the Fourier transformation of the shapes is used in order to perform the grasping 

process. A special kind of neural network is used in classification problem. In a final manner, the 

theoretical information are confirmed by MATLAB/SIMULINK simulations. 
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1 Introduction  
 

 

 

1.1 Overview 

 

This thesis is related with pattern recognition in the shade of neural networks using one dimensional 

data arrays and several stages in classification process of objects will be discussed. 

     A small number of links connected to serial chains by joints are described as  the hyper redundant 

manipulators. In our application, 16 joints are used, since these provide the sixteen degrees of freedom 

that are necessary to achieve the grasping process. The recognition, in this thesis is based on artificial 

neural networks which are parallel computing systems derived from biological nervous systems. 

     In [Bus02], Busch has already taken a step towards an autonomous control of the manipulator and 

depicted the main purpose of a robot as the interaction with the environment. The grasp planning 

module developed there can be considered as the first step towards the autonomous interaction of 

hyper-redundant manipulators with their environments. With this work, the state of the art in neural 

pattern recognition will be investigated, along with theoretical information. The two main problem 

tried to be solved are the investigating the “tentacle case” and “linear object scanner case” problem. 

     In the work of [Ste97], the implemented vision based robot system is introduced to arrange objects 

in a 2D-scene. He also indicates that it is also important that recognition is invariant with scaling, 

rotation and position of the objects, and actually this implies the generalization ability. The necessary 

information is given manually to represent the shapes which are classified for tentacle case and 

nn × matrices for linear object scanner case. 

     Furthermore, I will investigate the categorization of objects and grasping process dealing with 

neural object recognition and fourier Series. A neural control for whole-arm grasping of objects with 

the body of a hyper-redundant manipulator has been subject of previous work [Bus02]. As an 

additional step towards, I provide an approach towards the result of recognition of objects with  

tentacle case and linear object scanner case which are classified in a desired manner. 
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1.2 Problem definition 
 

The subject of this thesis is based on neural networks to implement the classification of objects in a 

desired manner. In fig 1.1, we describe our first problem as the recognition of objects with one-

dimensional data arrays and the distance information which is necessary for the manipulator in order 

to entwine. To solve the tentacle case problem, first of all, we need categorization of objects and 

secondly with the help of fourier series the distance information for grasping of objects. The input 

vectors that are desired to be classified are so called one-dimensional data arrays. Using these kind of 

vectors, our system must be able to recognize the same object even it has different position 

information. We will investigate it with a special kind of neural network in chapter 3.   

     The benefits of turning functions and fourier descriptors methods are to scope with the problems of 

the recognition process. Firstly, the angles that are manually given as input are used for turning 

functions and with the help of fourier transformation the fourier coefficients are received. The 

coefficients of the object information through the fourier transformation are the key inputs for our 

neural networks. In chapter 4, we will find out an answer to this question. The other stage of method is 

to classify the objects for entwinement which will be used from the manipulator.  
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Figure 1.1: Tentacle case „offset-problem“. Turning function of an object. ε  is the position                         

information of the object according to the manipulator. 
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  The second problem, showed in fig 1.1, is related with a conveyor belt that detects objects passing 

through the belt. The objects could be partially defected during the production process and must be 

noticed from the system with the help of sensors. To fill these requirements, I used an approach which 

the contours of the desired objects are taken in the training phase and suitable classification results are 

computed through classification process. The ability of extracting the contour and derived features 

recognize, localize and identify the objects automatically.  

     The aim of this work is to develop an approach towards an object recognition that is implemented 

using artificial neural networks. The simulation results of the problems will be discussed in chapter 5. 

We will mainly concern with our problems listed earlier, that is the problem of recognizing the objects 

and the grasping process by the manipulator. 

 

1.3 Outline of thesis 
 

In chapter 2, an overview of hyper-redundant manipulators is given; especially the kinematics and 

dynamic modelling of this type of robot will be discussed. A suitable artificial neural network 

algorithm is the topic of the following chapter 3; which deals with the artificial neural network 

algorithm; called Back-propagation algorithm after a brief overview of the theoretical background, a 

concept for neural object recognition is presented. After a presentation of a method for the recognition 

and classification of the objects, the radial-basis functions (RBF) is used and suitability is compared. 

Chapter 4, is dedicated to the neural object recognition. The shape-based recognition is based on two 

techniques namely the fourier descriptors and turning functions descriptors are introduced and 

concepts for a neural pattern recognition built from these are developed. The next chapter, chapter 5, 

gives an overview of simulation details and a discussion of the results of recognition and grasping 

process. Finally, implementation is discussed in chapter 6, followed by the future work. 

CCoonnvveeyyoorr  bbeelltt

SSeennssoorr
ssyysstteemm

22--ddiimmeennssiioonnaall  sshhaappee

Figure 1.2: Linear object scanner case. 
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2 Hyper-redundant manipulators 
 
 
In this chapter, we will give a short overview about hyper redundant manipulators which is a work of 

[Bush02]. He presented a detailed information for whole-arm grasping of objects. The work of 

[Mar04] was to develop a neural sweeping pattern generator searching for objects. Furthermore, he 

provided an approach about recognition of objects used in sensory capability of manipulators. Even 

our work is more about pattern recognition for classification, it will be useful to have a basis 

knowledge about the manipulators.   

     In the following we will give a short view of our hyper redundant manipulator that has a 16 number 

of rigid links which are connected with revolute joints as a serial chain manipulator using the 

information from Planar Manipulators Toolbox. In praxis, Hyper redundant manipulators consist of a 

small number of links connected to serial chains by joints and has fixed at the ground. In our 

application, 16 joints are used, which provide sixteen degrees of freedom (DOF). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Hyper-redundant manipulator deals with the physical structure of a planar serial chain manipulator. It 

has n degree-of-freedom–each with one degree of freedom-planar manipulators with revolute joints. 

The manipulator is supposed to move in the vertical plane x-y as shown in Fig.2.2. The task 

coordinates x are the positions in x-y plane and in the planar case where 2=m  the vector x is x = 

[ ]Tyx, [Leo00]. 

 

Figure. 2.1: 9-DOF manipulator 

performs with whole arm grasping of 

a planar object.  

 

 
Base 

joints 

Link 
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2.1 Joint positions defined as relative link angles 

From this section on, we will deal with the mathematical derivation of manipulators that realize the 

grasping of objects. The first manipulator type is when joint coordinates are defined as relative angles 

between two links. 

 

 

 

 

 

 

 

 

 

 

2.2 Kinematics modeling 
 

2.2.1 Direct Kinematics 

 

The direct kinematics of the manipulator provide a mapping between the joint variables and the end-

effector position and orientation with respect to a reference frame.  

     With respect to n joint coordinates q and m task coordinates x the kinematics of the manipulator 

can be described with the following equations [Leo00]. The manipulator is called redundant if n > m . 

 

( )qpx =       (2.1) 

( )
..

J qqx =       (2.2) 

( )
.......

,JJ qqqqqx 






+=       (2.3) 

 

where p is a m-dimensional vector function representing direct kinematics, J is the Jacobian matrix and 

.

J  is its time derivative, 
.

J= dtdJ / . As we deal with redundant manipulators, n > m and J is mxn  

matrix. Let ϕ  be a n-dimensional vector with components 

 

                                                        ∑
=

=
i

ij
ji qϕ       (2.4) 

 

Figure 2.2: Structure of n-DOF planar 
manipulator [Leo00]. 
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for ni ,...,1= and initial value 0ϕ = 0 and il  be the length of the thi link. In the case of a planar 

manipulator with revolute joints the end effector positions xx, = [ ]Tyx 11, , can be expressed by the 

following equations.  

 

)cos(1 iiii lxx ϕ+= +    and    )sin(1 iiii lyy ϕ+= +    (2.5) 

 

for 1,...,1−= ni and initial values  

( )nnn lx ϕcos=      (2.6) 

( )nnn ly ϕsin=      (2.7) 

 

The pairs [ ]T
ii yx , represent the position of the end of the manipulator measured from the joint i .  In 

the planar case the Jacobian J is a 2x n matrix 
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
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∂

∂
∂
∂
∂

=

n

n

q

y
q

x

q

y
q

x

J
1

1

1

1

1

1

...      (2.8) 

 

 

to derive 
.
J , we have to differentiate J with respect to time 

 

.
J ∑

=









∂
∂=

n

i
iq

1

.

iq

J
     (2.9) 

 

 

Since the hyper-redundant structure of the manipulator itself is used to handle objects, there is no use 

for an end-effector. The end-effector frame therefore only represents the endpoint and orientation of 

the last link. 
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2.3 Dynamic modeling for hyper-redundant manipulators 

 

Before we determine the components of the dynamic model, we have to derive expressions for the 

position of the center-point of the mass and corresponding Jacobian matrices for all segments.  Using 

equation (2.5) the position of the mass of the thi  link can be defined by  

 

( )
( )







+−
+−

=
icii

icii
ci lyy

lxx
x

ϕ
ϕ

sin

cos

1

1     (2.10) 

 

The Jacobian matrices related to the segments have been divided into two parts 

 









=

A

L

J

J
J                   (2.11) 

 

where LJ and AJ  are parts of J associated with linear and angular task velocities. Furthermore, 

 

( )
( )




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

−+−
−+−

=
∂
∂

iciij

iciij

j

ci
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q

x
ϕ
ϕ

cos

sin
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Next, the components of the vector of Coriolis and centrifugal forces h can be expressed by  

 

∑∑
= =

=
n

j

n

i
kjijki qqhh

1 1

..

    (2.13) 

 

where 

 

i

jk

k

ij
ijk q

H

q

H
h

∂
∂

−
∂
∂

=
2

1
    (2.14) 

 

The vector of gravitational forces can be computed starting from the last link with 

 

( )i

n

ik
ikciiii lmlmGgg ϕcos

1
1 







 ++= ∑
+=

+   (2.15) 

where G denotes acceleration of gravity. 
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3 State of the art of neural networks 
 
 
 
 

3.1 Overview 

 

In this chapter, two of the popular neural network architectures particularly Multi Layer Perceptrons 

(MLP) and Radial Basis Functions (RBF) are introduced with operational principles and specific 

affairs. Perceptron characterizes a single neuron which makes arbitrary decisions based on data from 

inputs and can determine input-output relation as learning patterns. In the following, we will give an 

overview and search suitable neural networks for the suitability. The advantages and disadvantages of 

the networks are given in a comparative form. The mathematical relations of the networks are quite 

complex but are also shortly given to understand the principles of the functions of the neural networks.  

 

3.2 Neural Network for object classification 
 

Neural network consists of a large number of simple processing units linked by weighted connections 

and is powerful because of the combination of many units in a network and therefore describes 

basically a nonlinear device and is itself nonlinear. The purpose of finding an answer of a special 

problem by varying the connection is to deal with geometric configurations and values of the 

connecting weights between units. Each unit in network receives inputs from many other units and 

generates a single output as we will see in mathematical derivation of bp in detail. The output acts as 

an input to other processing units and by this way the training process is executed. Once a neural 

network has trained, it is able to make predictions, for pattern recognition and categorization that is 

desired to be performed from the manipulator in this thesis. 

     The purpose of this section is to provide an approach with the help of neural networks, as early 

mentioned, for the classification problem. Being recognized of the shapes by our hyper redundant 

manipulator is important, in order to attack grasping process. For this reason neural networks play 

important role for the classification of the objects.    

     In the book of Simon Haykin [Sim88], it is apparent that a neural network derives its computing 

power through its massively parallel distributed structure and therefore produces reasonable outputs 

for inputs during training. The problem is to integrate the neural networks into a consistent system 

engineering approach because they cannot provide the solution working by themselves alone. There 

must be inputs which have enough information about a task or a situation which will be solved by the 

neural networks. Using neural networks give good results specifically, for a complex problem, which 
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is separated into a number of relatively simple tasks, and neural networks are assigned a subset of the 

tasks such pattern recognition, which we deal with, associative memory and control.   

     In the work of our thesis, the neural network will be only used in order to make predictions which 

classify the object information of squares, rectangles, triangles and circles. As we discuss later in 

chapter 5, rbf is used and involves the modification of the synaptic weights of a neural network by 

applying a set of labeled training samples as a sequence of input arrays and gives sufficient results for 

our tentacle case problem that we will examine in detail. For one-dimensional data arrays, each 

example consists of a unique 16-data arrays called input vectors and by this way the object boundary 

information is introduced. Suzanna Becker [Bec91] showed the ability to form internal representations 

for encoding features of the input and thereby create new classes automatically. The reason why we 

make use of 16-data arrays is the number of links of our manipulator which we used for grasping 

process.   

     The network is presented by an example from the set, and the synaptic weights of the network are 

modified so as to minimize the difference between the desired response ( )d  and the actual response 

( )y   of the network produced by the input signal in accordance with an suitable statistical criterion.   

     We will consider a pattern classification tasks where the requirement is to assign an input signal 

representing a physical object to one of several pre-specified classes. In our simulation, basically 4 

types of objects namely square, rectangle, triangle and circle were used in order to achieve the 

classification procedure. The requirement is to estimate arbitrary decision boundaries in the input 

signal space for the pattern-classification task using these set of examples. It is clear that the more 

adaptive we make a system in a properly designed fashion, the more robust its performance will likely 

be when the system is required to operate, in a non-stationary environment. That means, it is also 

desirable that the network must work in noisy environment.   

 

3.2.1 Learning Algorithm 

 

If we deal with object classification, we can define neural networks as work process by giving inputs 

and as a training process by producing outputs which are used in categorization process. The 

procedure used to perform the learning process is called learning algorithm, the function of which is 

to modify the synaptic weights of the network to attain a desired design objective.   

     A neural network has three components, representation, learning and reasoning. We will shortly 

indicate the importance of components which is depicted in fig.3.1. In the representation process, 

general knowledge about a problem is represented by several symbol structures. In our work, the 

numbers were used as input vectors indicating the angles between the joints of manipulator. 

Explanations in the representation stage are important for recognition, giving decisions and asking for 

the classes of examples. 
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     Reasoning is the ability to solve problems and give necessary results. In classification process of 

objects, reasoning can be seen as deciding the class membership of patterns and learning is a process 

of adapting the weights of neural network by the environment in which the network is located. 

 

 

 

 

 

 

 

Figure 3.1: Illustrating the three key components of an Al system. 

 

     The recognition process is related with these three components of artificial intelligience system and 

actually based on the learning structure of human beings. The important advantage of this system is to 

computation and decision time.      

     Main interest in this thesis is confined largely to an important class of neural networks that perform 

useful computations through a process of learning and making decision rules for classification of the 

objects by using pnn and then achieving the grasping process by the manipulator. The learning process 

in human beings is based on also training sets. The key of learning is to forget the old knowledge and 

thus new relations between the neurons are created to save and to learn new information. Therefore we 

can say that learning is a process of forgetting the unusual knowledge. Each second, neurons die and 

the axons, which carry the information, disappear. By creating new contacts between neurons, the 

learning process occurs and the knowledge is stored again. The number of neurons in the brain plays 

significant role in learning process and the more related links between the neurons validate the certain 

results.  

     The inputs are given where the information is known and would like to be derived unknown 

information and it is known that there is a relationship between the inputs and outputs. In chapter 5, 

four types of inputs for each class is used to train the neural network and at the end of the program the 

test set is used to give the desired results for the classification. These inputs are the sets of training 

data for our neural network. These training data contain examples of inputs as a regular sequence of 

vectors and the network learns to classify the desired object boundary information using the vectors as 

a statistical manner. 

     The important point in classification is the useful interpretation to treat the network outputs as 

probabilities which we used the neural network in this thesis called pnn. With the other words, the 

network learns the probability density function of the classes. Bishop [Bis95] showed out that it is 

only valid under certain cases about the distribution of the data. For tentacle case problem, the results 

are suitable for whole-armed grasped objects but are not sufficient for the other cases namely not fully 

reasoning representation 

learning 
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grasped and more than one-time grasped objects. The classification results will be studied respectively 

in chapter 5.  

 

3.3 Back-Propagation 
 
 
3.3.1 Multilayer Perceptrons (MLP) 

 

This section describes an art of neural networks which is applied to solve some difficult problems by 

training them in a supervised manner. Typically, the mlps consist of a set of sensory units that make 

up the input layer, one or more hidden layers of computation nodes and an output layer of computation 

nodes as depicted in fig 3.2.  

 

 

 

 

 

 

 
 
 

Figure 3.2: Feed-forward network with a single layer of neurons. 
 

The input signal propagates through the network in a forward direction, on a layer-by-layer basis. 

These neural networks are commonly referred to as multilayer perceptrons, which represent a 

generalization of the single-layer perceptron [Sim88]. 

A multilayer perceptron has three distinctive characteristics: 

 

1. The model of each neuron in the network includes a non-linearity at the output end. A 

commonly used form of non-linearity that satisfies this requirement is a sigmoidal non-linearity 

defined by the logistic function: 

 

)exp(1

1

j
j v

y
−+

=  

 

where jv  is the net internal activity level of neuron j, and jy  is the output of the neuron. The presence 

of non-linearity is important because, otherwise, the input-output relation of the network could be 

reduced to that of a single-layer perceptron.   

Output 
layer of 
neurons 

Input layer of source 

nodes 
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2.  The network contains one or more layers of hidden neurons that are not part of the input or 

output of the network. These hidden neurons enable the network to learn complex tasks by extracting 

progressively more meaningful features from the input vectors where we will see the same effect in 

radial basis function networks with one hidden layer. 

3.  The network shows a high degree of connectivity, resolved by the synapses of the network.  

A change in the connectivity of the network needs a change in the population of synaptic connections 

or their weights. 

 

3.3.2 Mathematical explanation of the Back-Propagation Algorithm 

 

In the following, we will give an overview of Back-Propagation (BP) learning algorithm and general 

learning algorithms used in neural networks. Typically these mathematical explanations help us to 

understand the process of learning paradigm which is inspired from basics of the neurons. The 

structure of an artificial intelligence machine is to achieve the learning algorithm and produces input-

output mapping. 

     In the book of Simon Haykin has given the mathematical explanations of mlp. The error signal at 

the output of neuron j at iteration n, presentation of the thn  training pattern, is defined by 

 

)()()( nyndne jjj −= ,      neuron j is an output node            (3.1) 

 

Fig. 3.3 depicts neuron j being fed by a set of function signals produced by a layer of neurons to its 

left. The net internal activity level )(nv j  produced at the input of the neuron  j is given as; 

∑
=

=
p

i
ijij nynwnv

0

)()()(      (3.2) 

 

where p is the total number of inputs applied to neuron j. 
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 Figure 3.3: Signal-flow graph highlighting the details of output neuron j. 

 

The synaptic weight jow  equals the threshold jQ , applied to neuron j. Hence the function signal ( )ny j  

appearing at the output of neuron j at iteration n is 
 

))(()( nvny jj ϕ=                               (3.3) 
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According to Eq.(3.5) the learning parameter η  affects the change of synaptic weights. The learning 

parameter must be good chosen in order to have good results. If the learning parameter is small 

chosen, then the synaptic weights of neural network changes will be small. On the other hand, the 

network will be unstable, namely oscillatory. The local gradient )(njδ is itself defined by  
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The local gradient points to required changes in synaptic weights. According to Eq. (3.6), the local 

gradient )(njδ  for output neuron j is equal to the product of the corresponding error signal )(ne j and 
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the derivative ))((' nv jjϕ of the associated activation function. If the changes in the synaptic weights 

are small, the learning process is said to be complete. 

 

3.4 Pattern Recognition Task 
 

The main point in recognizing process is that the pattern classification task has important place in 

vision-based systems. If a standard rbf network is used to perform a complex pattern classification 

task, the problem is basically solved by transforming it into a high dimensional space in a nonlinear 

manner provided by Cover’s theorem on the separability of patterns [Cov65]. From the work we did in 

this thesis, we know that once we have linearly separable patterns by the tentacle case problem, then 

the classification problem is easy to solve. But for the linear object scanner case object recognition, it 

is hard to say that classification process is achieved properly. Accordingly, we may develop a great 

deal of insight into the operation of a rbf network as pattern classifier depicted in this section. 

     For all our input data arrays there is a pre-defined set of classes of patterns which might be 

presented, and the aim of the object recognition task is to classify a given pattern as one of these 

classes. The patterns that we used in this thesis are in the form of numbers and are called as features, 

which are measurements used as inputs to the classification system as shown below. 

 

 

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2] 

 

 

  

 

Figure 3.4:  One-dimensional data array and its representation as a shape. 
 
 
The number of one-dimensional data arrays is equal to the number of links of our manipulator for the 

whole-arm grasping. In the classification process, we have a family of surfaces, each of which 

naturally divides an input space into four regions namely for squares, circles, triangles and rectangles.  

With the help of Cover’s theorem, say X denotes set of N patterns 4321 ,,, xxxx each of which is assigned 

to one of four classes.  For each pattern ,Xx ∈ define a vector made up of a set of real-valued functions 

( ){ }4,3,2,1=ixiϕ as shown by 
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( ) ( ) ( ) ( ) ( )[ ]Txxxxx 4321 ,,, ϕϕϕϕϕ =      (3.7) 

 

Suppose that the pattern x is a vector in a p-dimensional input space. The vector ( )xϕ maps points in p-

dimensional input space into corresponding points in a new space of 4-dimension. We refer to ( )x1ϕ as 

a hidden function, because it plays a similar role that of a hidden unit in a feed-forward neural network 

described previously. 

     To illustrate the significance of the idea of ϕ -separability of patterns, we consider that there are 

four kind of patterns, namely, square, triangle, circle and rectangle. Basically, a nonlinear mapping is 

used to transform a nonlinearly separable classification problem into a linearly separable one. We 

define Gaussian hidden functions as follows for our shapes =1t square, =2t circle, =3t triangle and 

=4t rectangle. 

 

( ) ,
2

1
1

txex −−=ϕ        Tt ]pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0[1 =  

( ) ,
2

2
2

txex −−=ϕ Tt ]pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8[2 =  

( ) ,
2

3
3

txex −−=ϕ           Tt ]pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 0[3 =  

( ) ,
2

4
4

txex −−=ϕ       Tt ]pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0[4 =  

 

Accordingly, the input patterns are mapped into the 4321 ϕϕϕϕ −−−  plane. 1ϕ plane is depicted 

for squares, 2ϕ for circles, 3ϕ  for triangles and 4ϕ  for rectangles. For our work, there is no need to 

increase the dimensionality of hidden units which causes complexity in designing and the training 

time. In other words, nonlinearity exemplified by the use of Gaussian hidden functions is sufficient to 

solve classification problem for tentacle case problem. The results of the tentacle case problem 

simulation have shown that, the object recognition process could not be achieved with rbf and the 

results will be discussed later. 

     For the present thesis, derived from the bp learning algorithm, we can say that, the activation of the 

rbf unit depends on the weights multiplied with Gaussian function. 

 

∑
=

+=
M

i

jijij bnnwnv
1

)().()( ϕ         (3.8) 

where )(nv j is the activation function of neuron, )(nw ji is the weight parameters, jb  the bias term of j. 

The rbf technique consists of choosing a function F that has the following form  
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where ( ){ }Nixx i ,...,2,1=−ϕ  is a set of N nonlinear functions, known as radial-basis functions, iw is the 

weight of vectors and .  denotes a norm that is usually taken to be Euclidean (distance measure). 
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where ix  is the center, iσ indicates the width of clusters. By determining of these parameters, our 

problem becomes linear. In the paper of [Mic04], the possibilities of rbf has been shown as several 

outputs. Euclidean distance is the square root of the sum of squared differences for each of the 

variables describing the four objects whose similarity or dissimilarity is wished to express the quantity 

[Cast04]. 

     In this thesis, we have four outputs to realize the categorization problem to classify the objects. It is 

clear that the more examples and classes we have, the more efficient results we carry out but the 

important point in neural object classification is to determine the shapes with small number of class 

membership. The work of neural network architecture is to find the optimum way for recognizing the 

objects which are desired to be classified. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Radial basis transfer function. 

 

     In the following we will give shortly the basis function of radial basis neural networks using 

Matlab help. The radial basis function has a maximum of 1 when its input is 0 as depicted in fig 3.6. 

As the distance between x and t decreases, the output increases. Thus, a radial basis neuron acts as a 

detector that produces 1 whenever the input t is identical to its weight vector t. The bias b allows the 

sensitivity of the radbas neuron to be adjusted. For example, if a neuron had a bias of 0.1 it would 

output 0.5 for any input vector t at vector distance of 8.326 (0.8326/b) from its weight vector x. 
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     For the classification problem of tentacle case it can be said that it is adequate, but for the linear 

object scanner case, it could not be possible to receive the right classification results. It will be better if 

it could be achieved the recognition of objects that are drawn by a user with a combination of other 

neural network methods as a future work for the manipulators because it will make the use of robots 

flexible in the areas where the implementations are not possible by human-beings. 

     In [Smc00], the advantages of rbfns are described as in implementation and with respect to 

optimization of the training data. In his paper, he mentioned the implementation of the network that it 

is mathematically simple while it uses only basic linear algebra and iteration is not required for 

computing on the input data.  

 

3.4.1 Radial Basis Function Networks  

 

In this section, we introduce notions related to feed-forward networks, the second approach as a neural 

network and the main method that we used in this thesis is so called rbfns, which has two layer feed-

forward networks. The aim of this work can be described as achieving the categorization problem 

using rbfn. 

     Broomhead and Lowe were the first to make use of radial-basis functions in the design of neural 

networks [Sim88]. As follow, we will give an overview of rbf and then the pnn, which is a kind of rbf, 

will be worked out dealing with implementation in our simulation. The construction of a rbf network 

in its most basic form involves totally different layers, the input layer, the hidden layer with the rbf 

non-linearity and a linear output layer as depicted in fig 3.4. The input layer is made up of source 

nodes. The second layer is a hidden layer of high enough dimension, which serves a different purpose 

from that in a mlp. When the input vectors are expanded into the hidden-unit space, set of functions 

called radial basis functions are provided. The output layer supplies the response of the network to the 

activation patterns applied to the input layer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Radial-basis function network structure. The transformation from the input space to the 

hidden-unit space is non-linear, while on the contrary the transformation from the hidden-unit 

space to the output space is linear.   
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where φ are the radial basis transfer functions, ω are the synaptic weights. 

 

3.4.2 Probabilistic Neural Network (PNN) 

 

I briefly mentioned that, in the context of classification problem, a useful interpretation of network 

outputs was as estimates of probability of class membership, in which case the network was actually 

learning to estimate a probability density function. The useful method, which was implemented in this 

thesis, gives good results for pattern recognition of  tentacle case problem. 

     Pnn, which is a Bayesian classifier is used in our thesis and it provides a general solution to pattern 

classification problem by following an approach developed in statistics, called Bayesian classifiers. 

Because of the nature of Bayesian classification, the pnn does not require iterative learning therefore 

faster than bp networks. The pnn does require calculation of a smoothing factor, which represents the 

width of the calculated Gaussian curve for each probability density function. The pnn has exactly one 

internal layer of neurons, with one neuron for each training pattern (circles, triangles, rectangles and 

squares). The network output corresponds to the estimate of the probability density function for each 

possible outcome. 

      Bayesian decision theory [Bay] shows that there is an important relationship between neural 

networks and pattern classification for the object recognition. This theory takes into account the 

relative likelihood of events and uses a priori information to improve prediction. Estimating 

probability density functions from data has a long statistical history. More generally, Bayesian 

statistics can estimate the probability density of model parameters given the available data. To 

minimize error, the model is then selected whose parameters maximize this probability density 

function. 

 

Decide „circle“ if P(Circle)>P(triangle), otherwise, decide “triangle“ 

 

Speaking in the context of the above example, we tried to explain the idea of the deciding 

classification from this model with the object information that was used. The probability distributions 

are important to achieve the decision rule. The priori information is the probabilities of either a circle 

or a triangle that is given to network. If a decision must be made with little information, the rule as 

shown above is used. P(Circle) is the probability of the object being a circle. The way that is used by 

the neural network will classify the objects according to the maximum probability. This example is 

simple to understand the idea of a pattern recognition problem in Bayesian Theory. The task is to learn 

the probabilities from the training set. Bayesian decision theory is a classification problem as an 

example of a decision problem given observed features of an object which finds its class [L02]. 
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     In the classification problem, we will give an overview of the structure and discuss the advantages 

and disadvantages of pnn.  

 

net = newpnn (P,T) 

 

    This command creates a network and takes two or three arguments. P is the input vectors and T is 

the target class vectors. The detail information about input and target class vectors will be given in the 

simulation chapter. From this point on, the network uses the vectors and outputs values for the 

classification and thus outputs are tested. 

     It is called a “neural network" because of its natural mapping onto a two-layer feedforward network 

[wpnn]. In the pnn, there are input, hidden and output layers as briefly mentioned in rbfn. The hidden 

units are copied directly from the source nodes and each model a Gaussian function placed in the 

middle at the training case. There is one output unit per class. In our thesis, there are four outputs for 

each kind of shape and each shape is connected to all the radial units belonging to its class. Hence, the 

output units simply add up the responses of the units belonging to their own class. The outputs are 

each proportional to the kernel-based estimates of the probability density functions of the various 

classes, and by normalizing these to sum to 1.0 estimates of class probability are produced.  

     The greatest advantages of pnns are the fact that the output is probabilistic and allows it to make an 

interpretation of output and the training speed. Training a pnn actually consists mostly of copying 

training cases into the network, and so is as close to instantaneous as can be expected. Training of the 

pnn is much simpler than with back-propagation because no training is involved prior to classification. 

Their design is straightforward and does not depend on training. A pnn is guaranteed to converge to a 

Bayesian classifier providing it is given enough training data [MATLAB HELP]. For our tentacle case 

object recognition problem, pnn performed quite sufficient results.  

     The necessity for storing the entire training set in memory which leads to higher computational 

make use of the pnns hard because of the necessity of more neurons compared to back propagation, 

but with several fast memories has eliminated this problem. 

     We will now go into the description of pnn from the mathematical side using the work of 

Maragoudakis [Mar]. If a pnn for classification in K classes is considered, the probability density 

function )( pi xf  of each class i is defined by equation (3.11) 
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where ijx  is the j- th training vector from class i , px  is the p- th input vector, d is the dimension of the 

feature vectors, iM  is the number of training patterns in class i and σ acts is a smoothing factor to 
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soften the surface defined by the multiple Gaussian factor. Each training vector ijx  is assumed to be a 

centre of a kernel function, and as a result the number of pattern units in the first hidden layer of the 

neural network is given as a sum of the pattern units for all the classes. The variance acts as a 

smoothing factor, which softens the surface defined by the multiple Gaussian functions. As seen in 

equation (3.11), has the same value for all the pattern units. 

     The pnn classifier decides to which class the test vector belongs, depending on the degree of 

similarity of the input feature vector to the model of each class. 

     As depicted above, only two of our shapes are given. To achieve more sufficient results of 

classification, the learning rate parameter must be good chosen and the training time might be big 

enough and it will give better results. 

     If we deal with tentacle case problem, it can be easily predicted that the sufficient results could be 

taken only by using pnn for classification.  

 

 

 

As we mentioned in section pattern classification task we know that once we have linearly separable patterns by 

the tentacle case problem, then the classification problem is easy to be solved. It also gives adequate 

consequences to our questions of positioning of the objects.  This problem will be discussed in the next chapter. 

 

 
 
circle = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 
pi/8 pi/8 pi/8 pi/8 pi/8 pi/8] 
 

 

 
 
rectangle = [0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2] 
 

 

 

 

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2] 

 

 

 

triangle = [0 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3] 

 

Each input data shows 

linearly separable patterns 

and therefore the 

classification of the 

probability density 

functions maps properly 

input-output mapping.  

 

Figure 3.7: The classification results of one-dimensional data arrays.   
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     The greatest disadvantage is the network size of neural network. Pnn network actually contains the 

entire set of training cases, and is therefore slow to execute and are used for classification problems. 

Training of the probabilistic neural network is much simple when it is compared with mlps. The detail 

consequences of the classification can be seen in chapter 5 in the context of simulation results. 

 

3.4.3 BP&RBF 

 

As it will be described in this section, rbfns and mlps are compared which are examples of non-linear 

feed-forward networks previously mentioned. However, these two networks differ from each other in 

several important respects, as outlined here. By studying the differences between mlp and rbf, we can 

generate insights into the classification process. Simon Haykin described the difference of the 

networks from five points of view.    

      

1. An rbf network has a single hidden layer, whereas an mlp may have one or two hidden 

layers. 

2. Typically the computation nodes of an mlp is located in a hidden or output layer, share a 

common neuron model. On the other hand, the computation nodes in the hidden layer of 

an rbf network are quite different and serve a different purpose from those in the output 

layer of the network. 

3. The hidden layer of rbf network is nonlinear, whereas the output layer is linear as depicted 

in fig 3.4. The hidden and the output layers of mlp used as a classifier are usually all 

nonlinear. 

4. The argument of the activation function of each hidden unit in a rbf network computes the 

Euclidean norm between the input vector and the center of that unit. The activation 

function of each hidden unit in mlp computes the inner product of the input vector and the 

synaptic weight vector of that unit. 

5. Mlps construct global approximations to nonlinear input-output mapping. Consequently, 

they are capable of generalization in regions of the input space where little or no training 

data are available. Rbf networks using exponentially decaying localized nonlinearities 

namely Gaussian function construct local approximations to nonlinear input-output 

mapping, with the result that these networks are capable of fast learning and reduced 

sensitivity to the order of presentation of training data. 

  

     The activation of units in the hidden layer of an rbf network depends directly on the input pattern. 

The output of a hidden unit depends on the distance of the input vector to the center of the units basis 

function in Gaussian function. This results in nearby zero activations for distant units and high 

activation for units close to the input; the representation of a target function with rbf networks is local. 
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Due to a poor ability of generalization of new input patterns from past data, the quantity of training 

data needed to specify the mapping grows exponentially in rbf networks and this slows down the 

speed of network. Therefore the number of training data must be optimal chosen to avoid for a long 

time of waiting for the classification. In the comment section of Michel Verleysen’s work, it is also 

indicated of easy learning of rbf compared to mlp. 

 

3.5 Conclusion 
 

In this chapter, we tried to compare the two algorithms of mlp and rbf. The state of the art in neural 

pattern recognition of one-dimensional data was worked out and in the context of the classification, 

the results of the objects were shown. We have chosen the variables from numerical variables that 

were used for the training. A lot of cases are required for the correct results; the more variables, the 

more cases. For the good classification results we need more training data but in this thesis only four 

kinds of objects and for each object one kind of training sets are used in order to make prediction of 

classification using small number of training set. 

     The reason of choosing rbf networks in this work is the number of advantages over mlp. First, as 

previously stated, they can model any nonlinear function using a single hidden layer, which removes 

some design-decisions about numbers of layers. Second, the simple linear transformation in the output 

layer can be optimized fully using traditional linear techniques, which is fast, rbf networks can 

therefore be trained extremely quickly. Third, implementation of the network is mathematically simple 

because it uses only basic linear algebra. Computations on the input data do not require iteration and 

are therefore relatively cheap. These reasons are the benefits of choosing pnn in classification 

problem. Typically, for our two problems, only by the tentacle case problem we could take the 

sufficient results. For the linear object scanner case, the classification of defected objects could not be 

achieved. Even we change the size of the matrix, it also possible to recognize different types of 

objects.   

     In this chapter, we developed a theoretical framework based on neural networks that is concerned 

with learning from examples. The most general form of neural network is called Probabilistic neural 

networks, since it is related to the well-known Radial Basis Functions, mainly used for classification.  

The results of classification with pnn for our two problems will be given in Simulation chapter.  

Castleman [Cast04] implies that after the training procedure, the ann will be capable of estimating 

previously unknown output values, given a set of input values. The learning of a bp is done by an 

example, processing a training file that contains a series of input vectors and the target output vector 

for each. 

     In the next chapter, the shape-based recognition techniques will be given and two of these 

important methods will be the main information sources for the nerual network in order to make the 



3 State of the art of neural networks 

 23 
 

classification and grasping process. The given objects for not grasped, one-time grasped and more than 

one-time grasped are classified with the help of pnn 
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4 Neural object recognition 
 

 
 

4.1 Overview 
 
In the following, we will discuss the object recognition problem with the help of shape-based 

recognition methods using fourier transformation and turning functions. The shape of each object is 

described using several number of descriptor values, typically in our work 16 real numbers. 

Furthermore, the ability of entwinement of the objects of the manipulator is examined in grasping 

process.  

     The purpose of shape-based recognition is to give the necessary information to the neural network 

for the classification and entwinement process and is related with matching the descriptors of each 

shape to standard values representing our shapes and choosing the closest match. A variety of different 

algorithms have been developed to perform two-dimensional object recognition with one-dimensional 

data arrays, utilizing many different types of features and matching methods. For the present thesis, it 

has not been practical to consider the other matching methods in detail but it is hoped that the selection 

which follows in this section carries the important principles used and that any other algorithms are 

simply variations on a theme. The objects used in this work are two-dimensional which are assumed to 

be flat so that the whole closed contours of the desired objects can be extracted. We will see the details 

of the simulation of the objects which shall be grasped by the manipulator in the next chapter. 

 

4.2 Pattern recognition 
 

     In this section, we will describe the recognition process of the objects and give an idea how the 

feature of the objects are extracted and used in the matching procedure for the classification process.   

     In neural object recognition, data representation and decision making plays important role. These 

terms will be examined detailed in the further section. The system collects the information of the 

shapes, which are desired to be classified, and through the techniques that we previously mentioned, 

gives the sufficient results for the classification. The numeric information of the objects and a 

classification process that deals with recognition relies on the extracted features that are used as 

manually in this work. In the thesis of Brazda [Mar04], the shape boundary points are determined from 

the sensor data and the grasping process is achieved through the distance sensors that detect the 

minimum distance to the boundary. In our work of thesis, the shape information is given manually and 

the features are directly extracted form the set of patterns. This set of patterns is called the training set 

and the resulting learning strategy is characterised as supervised.  
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Figure 4.1: The feature extraction and classification problem. 

 

     A shape matching for two-dimensional planar objects is a central problem in visual information 

systems, computer vision, pattern recognition, and robotics [Velt99]. It will be useful if we divide the 

neural object recognition problem into several intermediate stages, the process of starting with a shape 

and ending with a decision of class-membership of that shape. Each sub-problem is very important in 

this recognition process. It must be remembered that in the end the optimality of the entire system is 

only as optimal as the weakest link in the chain. The pattern recognition problem is separated into a 

series of sub-problems such as feature extraction, decision rule (see Fig.4.1). The purpose of a pattern 

recognition in this thesis is to analyze the description of the shape. The first stage consists of feature 

extraction or measuring the “shape” of the objects. The second stage is concerned with classifying the 

object into four categories of the shapes. Decision rule and grasping results are the topics of chapter 5 

that will be examined how these problems could be solved and the difficulties will be discussed. 

     In the following, we will introduce the term feature by assuming that d features are observed on a 

pattern or object related with the number of links of the manipulator, then we can represent the pattern 

by a 1-dimensional vector ( )nxxxX ,...,, 21=  and usually refer to X as a feature vector and the space 

in which X lies as the feature space. Patterns are thus transformed by the feature extraction process 

into points in 1-dimensional feature space. In fig 4.2 (a), we see the 16-data arrays as an input to the 

network. A pattern class can then be represented by a region or sub-space of the feature space. 

Classification then becomes a matter of determining in what region of the feature space an unknown 

pattern falls into. For the classification process of our work, the manipulator is characterized by 

sixteen rotation joint so that the end detector can be arbitrarily positioned and orientated in the 

working space. The manipulator can be seen as a shape definer (see. Fig 4.2 (b)) for our shapes and 

therefore the feature vector consists of angles 1621 ,...,, qqq  in a two-dimensional planar. Fig 4.2 (a) 

implies the shape square with 16-data arrays that show the angles between two points.   
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square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2] 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: (a) The feature explanation and illustration of a shape. (b) The manipulator  

as a shape definer. 

 

     The recognition of objects plays an important role in shape analysis for robotics. The patterns to be 

classified are usually groups of measurements or observations, defining points in an appropriate 

multidimensional space [Burks].  

     The data used for the simulation in chapter 5 was taken from the one-dimensional data arrays as 

mentioned in fig 4.2.(a). Most applications using fourier descriptors, moment invariants and scalar 

descriptors for shape recognition deal with the classification of the shapes but for our work we used 

only fourier descriptors method for definite shapes, namely squares, circles, triangles and rectangles.   

     Pattern recognition is concerned with making decisions of complex patterns. In [Cast04], it is given 

an introduction for pattern recognition and underlined the classification as an important part of 

automatic scene understanding. 

It is assumed: 

• that an image may contain one or more objects of interest 

• that each object belongs to one of several predetermined types or classes 

 

Actually, our image can be viewed as one object of interest and therefore easy to classify. Basically, 

the input data set used in this thesis for the classification and pattern recognition performs the 

 

 

(b) 

(a) 
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conditions of this paper. Our feature vector for tentacle case is one-dimensional vector and for linear 

object scanner case is typically 55x  matrices and each data sets are introduced for a class.    

     In this chapter, we will deal with the fourier descriptors and turning functions which describe 

shapes irrespective of position, scale and orientation for the classification and grasping process. For 

information of the other techniques, several papers are published and discussed.   

     Before we go deep into the main idea, the term “shape” must be explained in order to understand 

the classification of objects from the given boundary points. The definition of shape can be done if we 

start with some properties that we agree on [Died03]. 

   

• A shape describes a spatial region and occupies an area in the space.  

• A shape consists of points and typically addresses 2D space. 
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Figure 4.3: Two-dimensional shape. 

 

     The shape examples reveal with the conditions of a shape (see Fig. 4.3). We consider shape as 

something geometrical and will use the term shape for a geometrical pattern, consisting of a set of 

points, curves and surfaces. The points on the shape boundary can be interpreted as the links of the 

manipulator in order to determine the feature vector and turning function. 

      

4.2.1 Process analysis and classification 

 

There are two important points of views which will be discussed in the next section. In the following, 

we will shortly describe the data representation and decision making process and give an overview as 

follows: 

 

1. Data representation 

• Feature extraction 

• Descriptor 

 

2. Decision Making 

• Matching process 
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The two important methods in pattern recognition can be described as above. Data representation deals 

with shape analysis and for the shape analysis development boundary scalar transform techniques, 

turning functions and fourier transform of boundary, will be examined. Feature extraction and 

descriptors will be discussed in the next chapter.   

     Decision making is related with neural networks that classify the patterns comparing with the given 

inputs. As a result, decision making process can be seen as development and classification.   

 

4.2.2 Feature Extraction 

 

Feature extraction is the name given to a family of procedures for measuring the important shape 

information contained in a pattern so that the task of classifying the pattern is made easily by a formal 

procedure [God05]. The term “feature” is described as a simple geometric characteristic of the object 

and takes place in data representation. In [09], the feature extraction is explained as classification 

which is carried out through the comparison of objects of interest with reference objects.   

    For the non-complexity of the feature extraction, we used the features of the shapes by giving them 

manually and pre-defined classes of the objects were presented. The features or variables, which were 

measures of quantities considered to be relevant to characterising the objects of interest, were analysed 

for purposes of the comparison.   

 

square = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2] 

 
circle = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8] 

 
triangle = [0 0 0 0 0 pi/3 0 0 0 0 pi/3 0 0 0 0 pi/3] 

 
rectangle = [0 0 0 0 0 pi/2 0 pi/2 0 0 0 0 0 pi/2 0 pi/2] 

 
 

Figure 4.4: The feature representation of the shapes that are used for the classification. 
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     The idea is based on the angles between separately distributed points and 16-data points give a two-

dimensional planar object. The objects are said to be closed shapes because the last vector meets with 

the first vector. By this way, the shapes describe a spatial region and occupy an area as 2D space (see 

fig.4.4).  The sum of angles between the points gives 360° , which proves that the first vector and the 

last vector meets and identify a closed-shape.  

   

4.3 Fourier Analysis 
 
 
4.3.1 Introduction 
 

As we early mentioned, the most important point in object recognition is that the system has to cope 

with the arbitrary position, orientation and scaling of the objects. To full these requirements, a model 

based approach namely fourier descriptors and turning functions were used. The fourier descriptors 

method is formed by applying fourier transform to the coefficients of wavelet transform of the object 

boundary. After transforming the turning function to a periodic signal, it will be possible to realize the 

grasping process with the help of fourier transformation.  

     

4.3.2 Fourier Descriptors 

 

In the scope of this thesis, the fourier transform technique is used for shape description in the form of 

fourier descriptors and for recognition technique. The shape descriptors generated from the fourier 

coefficients numerically describe shapes and are normalised to make them independent of translation, 

scale and rotation. Once a function is obtained, a fourier transform can be used to convert the function 

from space domain to frequency domain. As depicted in fig 4.5, the coefficients describe a given one-

dimensional function. These fourier descriptor values produced by the fourier transformation of a 

given image represent the shape of the object in the frequency domain. With fourier descriptors, global 

shape features are captured by the first few low frequency terms, while higher frequency terms capture 

finer features of the shape. The lower frequency descriptors contain information about the general 

features of the shape, and the higher frequency descriptors contain information about finer and the 

small details of the shape. Therefore, the lower frequency components of the fourier descriptors define 

a rough shape of the original object. 

     Each fourier coefficient is calculated from every boundary points and therefore sensitive to all the 

points of shape. Before applying fourier transform on the shape signature, shape is first sampled to 

fixed number of points and the shape boundary or the shape signature of objects and models must be 
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sampled to have the same number of data points. The larger the number, the more details the shape is 

represented, consequently, the matching result will be more exact. In contrast, a smaller number of 

sampled points reduces the accuracy of the matching results, but improves the computational 

efficiency. Spectral descriptors include fourier descriptors and it is usually derived from spectral 

transform on shape signatures.  

 

 

 
 

 

 

 

 

Figure 4.5: “Triangle” and its discrete fourier transformation. 

       

            

4.3.3 Fourier Series or Fourier Transformation 

 

The necessary method for object entwinement process is can be selected after the difference between 

fourier series and fourier transformation is made. The important point is if the signal of the grasped 

objects is periodic or non-periodic. We will now give shortly the application areas of the two methods.  

     The mathematical relationships between the time domain and frequency domain versions of the 

same signal are termed transforms. We transform a signal from one representation, ( )tx to another 

representation )( fX . A signal's time and frequency domain representations are uniquely related to 

each other. In both the time and frequency domains our signal exists and with the Fourier transform 

we make relationship between the two. 

 

4.3.3.1 Derivation of Fourier Series 

 

We begin with a brief review of fourier series. Generally, a fourier serie expansion for a function is a 

representation of any periodic function as sum of sines and cosines. 

The periodic signal of ( )tx can be expressed as sum of harmonically related sine waves.[m0039] 
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The family of functions called basis functions 








T

ktπ2
cos  and 









T

ktπ2
sin form the foundation of the 

fourier series. These functions are always present and form the representation's building blocks. They 

depend on the signal's period T and are indexed by k. The frequency of each term is
T

k . For k = 0, the 

frequency is zero and the corresponding term 0a  is a constant. The basic frequency 
T

1 is called the 

fundamental frequency because all other terms have frequencies that are integer multiples of it. These 

higher frequency terms are called harmonics. The fourier coefficients, ka  and kb , depend on the 

signal's waveform. Because frequency is linked to index, the coefficients implicitly depend on 

frequency. 

 

4.3.3.2 Derivation of Fourier Transform 

 

As we mentioned early fourier series give the frequency domain as a respond to periodic signals. We 

need a definition for the fourier spectrum of a signal, periodic or not. This spectrum is calculated by 

the fourier transform. The method that we use for grasping process requires the signals periodic and 

non-periodic. If the manipulator entwines the object at least one time, it is clear that our signal 

becomes periodic. For the non-entwinement condition, the signal is not periodic, therefore the fourier 

transformation have advantage over fourier series. We need a definition for the fourier spectrum of a 

signal, periodic or not. In the chapter 5 we will determine in detail the state of fourier transformation 

in our implementation.  

 
In the following, we will go deep in to the theory of the mathematical explanations. The 

fourier transform theory can be applied in different ways for shape description by closed curves. The 

fourier transform of a continuous function of shape(n) is given by the equation:  

 

( ) ( )∑
∞

∞−

= TnkjFnshape k /2exp π      (4.2) 

where kF  is the fourier coefficients of the boundary.  

     The purpose of several entwinement processes is more related with the continuous representation of 

the shape information. As we mentioned in the previous section, it is very important for the human eye 

to recognize the coefficients of the fourier descriptors. This is necessary because of the interpretation 

of this process and we need a periodical signal of the shapes which are grasped by the manipulator.   

     When dealing with the classification of shapes, the discrete fourier transform (DFT) is used. In the 

simulation of thesis, we see the results of classification with the help of DFT. So equation (4.2) 

transforms into: 
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yields the fourier coefficients kF  of order k = 1,..0 −T , from a periodic sequence of T real values 

shape(n), assuming it is normalized to T points in the sampling stage, the discrete fourier transform of 

shape(n) is given by with the equation (4.3).  

     Shape(n) is called shape signature which is any one dimensional function that we represent shape 

boundary. With this equation, the feature vector of shapes are transformed into fourier descriptors and 

will be used in the neural network which is responsible for the recognition of the objects.  

     The implementation of discrete fourier transformation is set up with the help of mlp that produces 

the necessary information using the periodic signal of objects. This kind of network has two layers and 

each layer outputs the real and imaginary parts of the coefficients. As a result it becomes a good 

interpretation of the object grasping method. It can be easily understood if the objects are entwined 

and also the distance information can be determined. The results will be seen in the next chapter under 

the “Simulation results”.  

     Shape(n) indicates our input data for all our links n from 0 to 16. All equations in shape analysis by 

fourier theory are based on continuous curves. This is the reason why we need one dimensional 

function that represent shape boundary. However, given the nature of the image, the curve should be 

described by a collection of points.The discrete approximation has two important effects on the 

representation of the shape information. Firstly, it limits the number of frequencies in the fourier 

expansion. Our 16-data-array shape is illustrated with n/2 number of frequencies. Secondly, it forces 

numerical approximation to the integral defining coefficients. 
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4.3.4 Conclusion 

 

Fourier descriptors are a good way to describe and recognize shapes of all kinds. To capture more 

local features of the shape, higher frequency descriptors must be added. To achieve effective and exact 

matching, the set of objects, that should be recognized, is required, since the matching-function and 

the proper number of descriptors to use depend strongly on the given shapes. We see the best results 

with feature vector that was given manually.    

     As the result, we have possibility to make an interpretation of grasping objects with the help of 

fourier transform. It is a practical way of describing the entwinement of objects with 16-arm 

manipulator. 

 

4.4 Turning function 
 

In this section we will introduce a boundary scalar transform technique called turning function. It is a 

popular method for polygon shape representation [Ark00], which is invariant to position, scale, and 

rotation. The turning function represents the tangent of a point on the boundary with respect to a 

reference axis of an arbitrary orientation. The tangent angle function ( )nΘ  can only assume values in a 

range of length π2 , usually in the interval of [ ]π2,0  [Guo01]. During the traversal of the boundary, the 

tangent at each point is computed. The starting point on the outline corresponds to the origin point on 

the turning function. Turning function is supposed to examine on all possible reference axes with 

different degree from 0 to 360, and on all the choice of origin. The formula in our simulation is below. 

 

  
  
 

        
 

 

 

 

In this explanation each point on the object boundary is computed in the space of 160 ≤≤ n  where n 

depicts the number of sampled points on the boundary. By this way, every link of the manipulator 

describes boundary information of the shape. At the end, the sum of the angles gives the turning 

function of boundary. 

      

 

 

vec = [[0;1],diff(x,1,2)] 
len = [sqrt(sum(vec.^2,1))] 
for i = 1 : n - 1 
cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1))                                      (4.4)

phi(i) = acos(cosphi) 

t = cumsum(phi) 
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4.4.1 Grasping of objects 

 

As we previously mentioned, Arkin et al. published an efficient method for comparing polygonal 

shapes. They establish the notion of the turning function that represents the shape of an object. This 

algorithm has been applied out to be very fast. The turning function is easily extended from the unit 

interval by adding or subtracting multiplies of 2π .  

     The parametrization implies the invariance under scaling. The two important degrees of freedom of 

the turning functions are that the choice of the starting point Q and the orientation of the object. The 

turning function does not change with the starting point and this verifies a robust approach because of 

the periodic signal.   

 

 

 

 

 

 

 

 

Figure 4.6: Object and its turning function. 

 

     For the grasping process we need the turning function as a periodic signal. Since it originates from 

the cumulation of the periodic sequence of relative turning angles, it is not periodic. However, the 

relative turning angles of a polygon sum to π2 ; thus, the turning function can be transformed into a 

periodic function with [Mar04]. 

 

( ) ( ) n
N

nShapenShape periodic .
2π−=     (4.5) 

 

where ( )nShape  denotes the value of the turning function at the thn  vertex and N is the number of 

vertices in the polygonal shape. The use of this mathematical derivation in Matlab program is written 

as 

 

n = length(shape)     (4.6) 

shape = shape - 2*pi/n * [1:n] 
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Figure 4.7: The shape, its periodic signal and turning function. 

 

     As we see above, the periodic signal and the turning function of a square is illustrated. Actually, 

these results are received according to the whole-arm grasping process. In the next chapter, we will 

study the results for all cases of object positions and discuss the differences of coefficients with the 

help of fourier transformation. The turning function is restricted with the number of links of the 

manipulator.  

 

4.4.2 Conclusion 
 
In this chapter, we have introduced turning functions as a way of describing the shapes that are going 

to be recognized during the grasping process. The choice of grasping point and orientation of the 

objects do not effect the result of turning function with tentacle case object recognition. The difference 

between the manipulator and the starting point of object gives us the distance information. Also we 

have knowledge of distance information by investigating the periodic signal of turning function. 

Rotation of the objects only cause a vertical shift in turning function. 
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4.5 Nyquist Theorem 

 

In the following, we will discuss the importance of the distance between the links in the recognition 

and grasping process. Firstly, we will introduce the theorem and then indicate the effects of the 

frequency of the shape classification. 

 

 

 

 

 

 

 

 

Figure 4.8: The different length of links in entwinement process and its effect on recognition process. 

 

As we see in fig 4.8, the length of the links of the manipulator plays an important role in shape 

entwinement and recognition process. The length of the link in fig 4.8 (a) is smaller than in the link in 

fig 4.8 (b). The interpretation of the lengths of the links can be assumed as follows: 

 

• We indicated with fourier descriptors that, the lower frequency descriptors contain 

information about the general features of the shape, and the higher frequency descriptors 

contain information about finer and the small details of the shape. Here as we see, the longer 

links the manipulator has, the smaller shape information we have. The purpose of the 

manipulator must be good decided if several different shapes will be involved in recognition 

process. 

• If the length of the links are small, then we will need more links than we have and in this case, 

the grasping process of the shapes can not be achieved properly. Due to the lack of 

entwinement of objects, the shape information will be incomplete and classification results 

will be wrong. 

     The nyquist theorem says that, the sampling rate must be at least 2fmax. If the sampling rate is less 

than 2fmax, some of the highest frequency components cause undesirable condition that is a form of 

distortion called aliasing. When this happens, the original signal cannot be uniquely reconstructed 

from the sampled signal. If B is the bandwidth and Fs is the sampling rate, then the theorem can be 

stated mathematically [Kor04]. 

 

sFB <2       (4.7) 
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Below, the implementation of function is illustrated. This formula applies fourier transformation and 

strip contents over nyquist frequency and static content. 

 

ftc = abs(fft(shape)))     (4.8) 

ftw = ftc(1,2:ceil(n/2)-1) 

 

where ftw is the feature vector. The command ceil rounds the elements of (n/2) to the nearest integers 

towards infinity. The following command plots the feature vector of shape and the dimensionality of a 

feature vector consisting of the fourier transformed turning function is smaller that a feature vector that 

includes the turning function itself which helps to reduce the effects of the curse of dimensionality. 

Therefore the feature vector has to contain the coefficients 12/ −= Nk  where k denotes the band-with 

and N denotes the sampling rate Fs 

 

 

 

 

 

 

 

 

                                                 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig 4.9: The entwinement of square with different length of links. 

 

     Fig 4.9 represents four types of grasped squares. In the cases of grasping process, we used different 

length of links in order to realize the entwinement process properly. If we consider the length of 

manipulator as l and the length of square as a, it will be possible to write a relationship between these 

two parameters. To realize the grasping results correctly, the length of manipulator l must be equal or 

smaller than the length of square a. In this case we need a second assumption in order to have 

sufficient results. In fig 4.9 (b),  the length of a link (k) is half of the length of one side of square (a).  

We can generate a formula as follows: 

The length of a link 
n

aaa
,...,

4
,

2
=      (4.9) 

The smaller length of link the better entwinement results. In the other hand, in case of l > a, the 

grasping results will be not sufficient (see fig 4.9 (c)).  

l 

a

k
l 3l/2 
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     We have an interesting situation in fig 4.9 (d). The lengths of links in fig (a) and (d) are equal but 

the grasping results are different. We must make an addition to the rule that we described in (4.9). The 

joints of the links and the edge of the shape must come together. It is clear that if the joint is placed in 

the middle of the side of the square, the manipulator will not entwine the shape and this will not 

prevent the true grasping results. On the edges of the square (see fig. 4.9 (d)) the shape of the 

manipulator becomes like triangles and of course is not desired.  

    In the following we will continue to discuss the results for the other class of shapes individually. 

           

 

 

 

 

 

 

                                                               

 

(a) 

 

(b) 

 

(c) 

 

Fig 4.10: The entwinement of triangle with different length of links. 

 

    As we previously for the square mentioned, all the conditions are also valid for the triangles and for 

the rectangles. But we will denote a point for the rectangles. In fig. 4.11 (b) and (c), we see the same 

result of having small triangles on the corners of the shapes. To prevent this problem, the length of a 

link must be smaller than the smallest side of the rectangle as shown in fig. 4.11 (a).  

 

 

 

 

 

 

 

  

(a) (b) (c) 

 

Fig 4.11: The entwinement of rectangle with different length of links. 

 

     In the following, we will deal with the shape circle as a last shape in our training set. The necessary 

conditions for the entwinement is related with the radius of circles. The length of the sides of the 
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shapes were important for squares, triangles and rectangles. In fig 4.12, we see three circles that are 

grasped by the manipulator that has different length of links. 

 

 

 

 

 

 

 

  

(a) (b) (c) 

 

Fig 4.12: The entwinement of circles with different length of links. 

 

     We  assume two different cases for the circle grasping.  

1. The length of the manipulator is constant and the radius of circle changes 

2. The length of the manipulator changes and the radius of circle changes 

 

    For the both cases, it is clear that the critical limit of adequate results of being grasped by the 

manipulator is that the length of a link (l) must be smaller than the radius (r) of circle (see fig. 4.12 (a) 

and (b)). 

 

l < r      (4.10) 

 

In fig. 4.12 (c), the length of the link is bigger than the radius of circle and in this case our manipulator 

gives out square instead of circle. Also, from the equation (4.7), it is known that the nyquist frequency 

must be half or smaller than the half of the sampling rate (f). 

 

f
l

=1
      (4.11) 

 

If the length of the link increases, the frequency of sampling rate will decrease. This can be released 

by applying the equation (4.11) in (4.17) as follows 

 

l
B

1
2 <       (4.12) 

By increasing the length (l), the bandwidth will decrease and the radius of circle will again increase in 

order to yield sufficient grasping results. 

l 

r r 

2l 
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5 Simulation 
 

In the following, we will discuss implementation details and the results of the simulations we carried 

out. In the previous chapter, the theoretical background of neural object recognition was achieved to 

be explained. For this purpose, a simulation was proposed basing on the numerical software package 

MATLAB/SIMULINK. 

 

Neural Network Toolbox, Version 7.0 

Intel Celeron M Processor 1.5 GHz. 992 Ram 

 

5.1 Classification and Grasping 
 

In this section, we will describe implementation details and simulation results of the neural object 

recognition and classification. Furthermore, we hypothesize the object to be fully entwined, several 

times entwined and even not entwined meaning the manipulator covers the whole object boundary. 

The objective of this thesis is to develop precise and efficient methods to identify the location and 

orientation of a particularly object model. Secondly, adaptive application of a selected feature and 

limitation of a feature character under the concept of data representation were involved.  

     In this thesis, two different problems were discussed. The first problem is concerned with the 

“tentacle case problem” with one-dimensional data arrays. The second problem tried to be solved is to 

investigate the „Linear object scanner case“. In this chapter, we will discuss each problem separately. 

     For the purpose of object recognition, the manipulator was assumed to have 16 links. Actually, the 

more links in usage, the better the obtained results. This is due to the high number of feature vectors 

that characterizes more information about the shape. The turning function in the training sets as well 

as the test set used to verify the object recognition system was specified with the program. RBNN is 

useful for classification and mlp is suitable for entwinement for our objects. In the following, three 

neural networks will be introduced separately and the results will be given in the section of  

“Simulation results”.  

     All of the simulations were performed in MATLAB using the Neural Networks Toolbox. 

 

5.1.1 Classification process based on RBNN  

 

     In this section a PNN- (Probabilistic neural networks) a kind of radial basis network suitable for 

classification problem- is implemented. The input to the network is a 16-dimensional vector that 

represents the periodical turning function.  
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     In the following, the structure of network using Matlab help is introduced. Newpnn creates a two-

layer-network. The first layer consists of radial basis transfer function neurons and calculates its 

weighted inputs with the euclidean distance weight function. The weights are applied to an input with 

the help of weight functions to get weighted inputs. Net input functions calculate a layer's net input by 

combining its weighted inputs and biases. The second layer has neurons that uses transfer functions 

which calculate a layer's output from its net input, and calculates its weighted input dot product weight 

function and its net inputs. Only the first layer has biases. The first layer includes sigmoidal units and 

the second layer holds a single linear unit.  

     RBNN (Radial Basis Neural Networks) is trained to classify objects to be either rectangular, 

square, circular or a triangle 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1.1 PNN for classification 

 

In this thesis, focus is laid on RBF-networks. Its features are extracted with the help of the neural 

network introduced in the previous section. They can be classified by using a special type of the RBF 

networks described in section 4.2.3.1.  

     Probabilistic neural networks are a kind of radial basis network suitable for classification problems. 

In chapter 3, several advantages of pnn over back propagation (BP) networks are indicated, i.e. the 

improvement of training effects.  This is due to the enhanced network architecture. In case of enough 

input data, the pnn will act as a Bayesian classifier. Pnn allows true incremental learning by the 

opportunity to add new training data at any time without requiring retraining of the entire network. 

Due to the statistical basis of the pnn, it can give an indication of the amount of evidence it has for 

basing its decision [pnn].   

    In pnn, probability density functions such as the Gaussian are used as a basis function and are 

centred around the training cases. The weights between the hidden and output units are set to the prior 

 

 

Figure 5.1: The grasping problem with a 16-DOF manipulator. Fully entwined and partially entwined objects 
are illustrated. 
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probabilities of the class that is represented by a specific output unit alternatively. For each hidden 

unit, a weight of 1 is used connected to the output the current case belongs to, while all other 

connections are set to zero. 

     The topology of the network is feed-forward combined with an unsupervised training paradigm. 

The outputs of this network are derived from the probability of the input belonging to the class that is 

represented by the output unit. There are 4 type of classification results. Square, circle, rectangle and 

triangle are used as training sets resulting in the desired outputs. Here a classification problem is 

defined with a set of inputs P and class indices T.  

      

 

 

 

The inputs are used in order to create a class which test set will be trained according to produced 

feature vector shown above. 

 

T = ind2vec([1 2 3 4]) 

 

Matlab help documents that ind2vec takes one argument and returns sparse matrices of vectors, with 

one number in each column. As indicated above, there are 4 types of classes. In order to show the 

meaning of the numbers it can be stated that 1 points out a “circle”, 2 a “triangle”, 3 a “square”, 4 a 

“rectangle”.  

 

net = newpnn (P,T) 

 

This function creates a network and takes two arguments of P. P represents the input vectors being 

compared with the T target class vectors. The classification process is performed on the basis of the 

input arguments. The class indices are converted to target vectors and a pnn is designed and tested. As 

below described a new vector with the network is classified. First the desired object is given as “Test” 

to enable a comparison with the input vectors. By this way, a MLP network is entrained to calculate 

the euclidean length of a vector. This enables to achieve the classification independent of translation, 

scale and rotation. 

 

class = sim(net, coeff') 

vec2ind(class) 

test = vec2ind(class) 

 

vec2ind transforms vectors to indices in order to show the four different classification results. The 

newpnn method is simulated with the sim (Simulate a Simulink model) command. Computed values 

of fft are stored in newpnn and simulated according to the probabilistic neural network. 

y = sim(MLP, {triangle'}) 

coeff = abs(y{1}+i*y{2}) 

P = [P, coeff] 

y = sim(MLP, {square'}) 

coeff = abs(y{1}+i*y{2}) 

P = [P, coeff] 

y = sim(MLP, {rectangle'}) 

coeff = abs(y{1}+i*y{2}) 

P = [P, coeff] 

y = sim(MLP, {circle'}) 

coeff = abs(y{1}+i*y{2}) 

P = [P, coeff] 
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5.1.1.2 Training 

 

Normally, the training of the network is repeated for many examples in the set until the network 

reaches a steady state, lacking any further significant changes in the synaptic weights. In this condition 

of the learning process, complex problems were processed with several hidden units. The network 

learns from examples by constructing an input-output mapping for the problem that is concerned with. 

The choice of the number of hidden units and the learning parameter plays a huge role in learning 

paradigm. An optimal network structure has to be found for solving related tasks.  

    A set of input vectors are applied to a network that is updated at each step, until some stopping 

criteria- for example maximum number of epochs, a minimum error gradient, an error goal are met.  

     As a training set, one kind of data input is used for each object, the network is trained with 50 

epochs and the learning rate is determined as 0,6. Increasing number of epochs decelerates the network 

speed. Obviously, the more training sets in usage, the more absolute classification and recognition 

results are received. It is not recommended to have large training sets, as these are decreasing the 

speed of the processing.   

     For the examination of the tentacle and the linear object scanner case, different classification 

methods were used. The classification of the tentacle case leads to adequate results. The training 

parameters that are shown below were used in the simulation of all recognition problems. 

 

net.trainParam.epochs = 50 

net.trainParam.goal = 0.01 

net = train(net,p,t) 

  

      As depicted above, the network is trained with the optimal training number of 50 both for the 

tentacle and object scanner case problem. For the mlp, the weight matrix is determined analytically; no 

need to perform an additional training on the net. 

 

5.1.2 Grasping process based on MLP 

 

     In chapter 4, the concept of feature extraction is described. In the following, the representation of 

shapes of the turning functions, which can be easily shown through the mathematical explanations 

describing them as angels will be discussed. In the turning function, summation of the relative joint 

angles results as coefficients. The length of links are accepted equal and the arc length between the 

vertices of the polygonal shape can easily be normalized to unit length, which provides invariance 

with respect to scaling of the object. The output has two layers, each of them performing the real and 

imaginary parts of the fourier coefficients beyond the nyquist frequency with the exception of the 
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zeroth order coefficient. The feature vector comprises the magnitudes of the complex fourier 

coefficients. 

     Being of importance of this thesis, the entwinement process is implemented with a kind of mlp 

network. This network sets up a mlp network that performs a discrete fourier transformation. It 

computes only 2/N  coefficients; both the static component and the coefficients above the nyquist 

frequency are stripped. The network uses one input and the two layers in which the transfer functions 

are selected as purelin. Purelin takes one input and calculates layer’s output from its net input.  

     The two layers that take part in the network output the real and imaginary parts of the coefficients. 

The weight matrix is determined analytically so no need to perform additional training on the net. The 

fourier serie can be written as 
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     The real and the imaginary part of the coefficients become apparent and the functions do not 

change with the value of periodic signal periodicshape  . They only depend on the period of sequence N, 

the order of the coefficient k and the index n.  

     The fourier serie which is performed in mlp network has real and imaginary parts. The input given 

to the network is 64-dimensional data arrays to see the high frequencies in detail for the grasping 

process. The output includes both the real and the imaginary part of the fourier coefficient of order k of 

the given test data array. Only the absolute values are observed in the figures. 

     The method used in mlp is based on the periodic signal of depicted objects. The turning function of 

the angels describing the object boundary information is calculated and transformed to a periodic 

signal as mentioned above. Depending on the grasping of objects, the signals can not be even periodic. 

The reason using the fourier transformation is that it is applicable to all signals if they are periodic or 

not. In this way, the necessary information enables the interpretation for entwinement. The spectrum 

of coefficients must give regularly descending values for the objects that are being entwined more than 

one-time grasped objects. The reason is that fourier transformation is applicable both to periodic and 

non-periodic signals. If the objects are not fully grasped, the spectrum will have coefficient values at 

the high frequencies like a wavy form. Otherwise, the spectrum will decrease to a constant value 

periodically. 

     In the following, the details of the results that were received by using mlp in case of not-grasped, 

whole-arm grasped and more than one-time grasped objects will be examined. 
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5.2 Simulation results 
 

In this section, we will introduce the simulation process separately and show the results for each 

problem. The different grasping process for three kinds of object cases is as follows; 

 

1. Not fully grasped objects 

2. One-time grasped objects 

3. More than one-time grasped objects 

      

      

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

  

 

 

(b) 

Figure 5.2: Shapes in the training set (a) and the test set (b). 
 

 

The procedure of neural object classification has two main process respectively classification of 

objects and grasping process. This is necessary for deciding if the other objects are entwined or not 

entwined that have different position, rotation and scaling information. Possible input data for the 

neural network based on classifier consists of joint angle information. The neural network has to 
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recognize the object’s shape and assign it to certain classes. For instance, circular, rectangular, 

triangular and square shapes should be considered. 

     An overview of the training set and test set being used to train is shown in fig. 5.2. For the present 

work of thesis, the fourier series of the turning function determines the several times of object 

entwinement and the coefficients change rapidly. As test set, several one-dimensional data arrays were 

used with different distance information to the manipulator. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 shows the method that was used in this thesis. First, winkles are given manually to the 

network. They are transformed into two dimensional data arrays for the plotting of shapes. Then, the 

turning function of the boundary points is computed. However, the computed function is not invariant 

to rotation and the turning function is not sufficient to represent a feature vector for making 

classification from the classes of objects. The periodic function is necessary for the fourier series. The 

obtained turning function of the object which the fourier transformation is applied, strip contents over 

nyquist frequency. 

     Except the zeroth fourier coefficient of the turning function is invariant with respect to the vertical 

shift coaused by rotation of shape. The magnitudes of the fourier coefficients are also invariant with 

starting vertex. The feature vector contains up to order k = N/2 – 1, therefore the dimensionality of 

periodicised turning function is smaller than the feature vector that containes the turning function 

itself. 

     After implementation of fourier transformation to the periodic signal of the object, the necessary 

coefficients are taken for deciding grasping process. As a last step, the classification with pnn is 

proceed and tested for the right results of the objects as square, circle, triangle, rectangle. 
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Figure 5.3: Investigating of the tentacle case problem and the classification process. 

1       2     3      4             
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The first problem that is concerned with in this thesis is about the objects that are placed away from 

the manipulator. It is assumed that the object is entwined or partially entwined. To solve the offset-

problem, the fourier transformation of the data inputs of the object information is used. It is very easy 

to predict that if the object is placed away from the manipulator, the fully entwined process could not 

be performed and the grasp information of the shape will give false results. The offset-problem was 

simulated with circles that have different location information. The aim of the object recognition is to 

define the shape information if the object is entwined or not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε  

Data-array 
(input) 

Figure 5.4: Tentacle case „offset-problem“. Turning function of an object.  ε  is the position 
information of the object according to the manipulator. 
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(a) (b) 

 

   

 

 

 

 

     The solution of problem with a simulation is performed in order to achieve the grasping process 

even recognized with human eye. It is important to recognize the results not only with mathematical 

explanations also the figures must help to interpret the grasping process. More detailed searching 

results will be founded in the next section. 

     The extraction of the feature vector consists of three important points 

 

1. The turning function of shapes which are given manually and transformation to a periodic 

signal that is necessary for the fourier transformation 

 

2. fourier transformation of the periodic signal 

 

3. computing of the feature vector that comprises the magnitudes of the complex fourier 

coefficients 

     

    After feature extraction of shapes, it is able to make a classification with the help of two different 

mlp networks. In the following, we will deal with these two networks. 

 

 

 

 

 

     Figure 5.5: Based on tentacle case entwinement problem. The test array is plotted in two-dimensional 

plane and periodic signal of turning function, turning function and the fft coefficients are shown (a). The 

coefficients of periodisiced turning function are illustriated (b). 
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5.2.1  Investigating tentacle case problem 

 

The given test sets as an input are one-dimensional data arrays and for the plotting of each set, they 

must be converted into two-dimensional data arrays in order to see how they look like. This is helpful 

to recognize if the object is entwined or not without any mathematical explanation. Each specified 

point is interpolated and the results are plotted in the graphical user interface.  

 

test = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8] 

 

 

Fig 5.6: The test set and interpolated result of previously specified points. 

 

    The shape transformed from the points is done with the help of a little program. The coordinates (x, 

y) or each angle (pi/8) is computed and plotted as shown in fig. 5.6. As discussed later, the usage of 

plotting a shape is important for the grasping decision.  

 

test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0] 

 
 

The plotted shape The turning function of plotted shape 

 

Fig 5.7: The given test test and turning function of plotted shape. 

 

 

 

x 

y 
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     The turning function is not invariant to rotation; rotation of the shapes causes a vertical shift of the 

turning function. Additionally, the course of the function depends on the choice the cumulation of the 

relative tangent angles namely the starting point of shapes. By plotting the test arrays into a shape, it is 

possible to make an interpretation if the objects are grasped or not.     

     One-dimensional data arrays are converted into two-dimensional data arrays and plotted to realize 

the shape information of object. The turning function of a polygon gives the cumulative sum of angles 

between the counterclockwise tangent to the sides of the polygon and the x-axis as a function of the 

arc length s. 

 

test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0] 

 
 

The turning function of plotted shape The periodic signal of turning function 

 

Fig 5.8: Turning function of shape and periodic signal which is necessary for fourier serie. 

 

The Fourier series as given in chapter 4 requires the sequence turning function shape to be periodic. 

Thus, the turning function of shape (t) can be transformed into a periodic function. 

 

n = length(t) 

periodic signal = t - 2*pi/n * [1:n] 

 

where n is the number of links and turning function is converted to periodic signal that is necessary to 

apply fourier transformation and strip contents over nyquist frequency and static content.  
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test = [0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0] 

 
 

The periodic signal of turning function Applied fourier transformation and feature coefficients  

 

Fig 5.9: Periodic signal of turning function and feature coefficients. 

 

     Fourier transformation is applied to the periodic signal of turning function of shape and contents 

are striped over nyquist frequency and static content as follows. 

 

fta = abs(fft(periodic signal)) 

ft = fta(1,2:ceil(n/2)+1) 

 

The absolute fourier transformation of periodic signal is computed and return feature vector a. 

 

a = ft 

 

     The matching results will be exact by using more descriptors but on the other side the accuracy 

reduces. Each coefficient is calculated from boundary points and sensitive to all the points of shape.       

All of the objects assumed to be have different distance information to the manipulator. The fully 

entwined object, its turning function, feature vector, periodic signal of object and fourier 

transformation are given together with the result of the classification. The other kinds of training sets 

have different distance information to the manipulator and the objects are assumed to be fully 

entwined, partially entwined or several times entwined. 

     The training set of 4 types of square, circle, triangle and rectangle object information were utilized.     

The vectors that we gave manually for describing the objects consist of zero points that imply the 

smooth, the angles that imply the break points on the objects. The fft coefficients of these vectors are 

used for the classification results. 

     The training set used in the program for the classification is a 16 data-array that gives the object 

boundary information. The classification process is achieved with the help of fft that is implemented to 

the training set. Fft computes the discrete fourier transform of the object boundary for each points up 
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to number of the links. The lower fft values store the general information of the shape and the higher 

frequency the smaller details.   

     The discrete approximation has two important effects on the representation of the shape 

information. Firstly, it limits the number of frequencies in the fourier expansion. Our 16-data-array 

shape is illustrated with n/2 number of frequencies. Secondly, it forces the numerical approximation to 

the integral defining coefficients.  

     In the following, implementation details and simulation results of the neural object recognition will 

be described. Furthermore, we claim the objects to be fully entwined, that is, the manipulator covers 

the whole object boundary. In our simulation of object recognition, it is assumed that the manipulator 

to have 16 links. Two different neural networks are trained in order to classify objects to be either 

rectangular, square, circular or a triangle. The turning function in the training sets as well as the test set 

used to verify the object recognition system was specified manually. All of the simulations were done 

in MATLAB using the Neural Networks Toolbox. 

     A linear mlp network that determines the fourier coefficients of the boundary function is 

implemented. The input to the network is a 16-dimensional vector is converted from the turning 

function. The output is organized in two layers, each of which holds the real respectively complex 

parts of the fourier coefficients beyond the Nyquist frequency with the exception of the zeroth order 

coefficient. The feature vector includes the magnitudes of the complex fourier coefficients. Thus, a 

two-layer mlp network is entrained to perform this task. The first layer includes six sigmoidal units 

and the second layer holds a single linear unit. For the detailed spectrum of fft, 64-dimensional vector 

set is used for the grasping process. By this way, the form of spectrum can be observed and sufficient 

results are interpreted. For the classification process, a pnn is entrained. 
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 circle= [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 

pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32] 

 

This circle is fully entwined and the coefficients converge on a stationary value. 

Convergency shows that the grasping of objects is achieved. 
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Figure 5.10: The 64-dimensional data arrays for grasping process in mlp network. The discrete 

approximations with the limited number of frequencies in Fourier expansions are called “coefficients”.  

 
     Describing the results more detailed in fig 5.10. the whole-arm grasped circle is introduced. The 

value of each winkle is pi/8 ( °5.22 ) and the perimeter of circle can be calculated as π.28/16 =× pi . 

All of the winkles of our objects that we used in this thesis is proportional to π.2 .  

     The MLP network for grasping process has two layers consisting of the first layer {1} and the 

second layer {2}. The first layer {1} maps the cos part of plotted shape “E” and the coefficients that is 

implemented in Matlab program as “coeff”. The second layer {2} maps the sin part of plotted shape 

“E” and the imaginary part of coefficients. The 32 frequencies are symbolized with “E” and taken after 

the turning function is transformed to a periodic signal. In Matlab the periodic signal and the 

coefficients are taken as follows. 

 

y = sim(MLP, {(E)'}) 

coeff = (abs(y{1}+i*y{2}))' 

 

f 
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     First the periodic signal “E” is obtained from the turning function. “y” outputs the sim('mlp') that 

will simulate mlp model using all simulation parameter dialog settings including Workspace I/O 

options. The results of “y” are logged and the absolute values of coefficients are taken. The last 

command “A” displays the parameters in the same window to enable to observe the results.  

     For the coefficients, the absolute values of real and imaginary part of y are calculated in layer {1} 

and layer {2}.  

      As seen below, test object is a circle and whole-arm grasped. To observe the results of a plotted 

test arrays, “x(1,:),x(2,:)”is written in the command window of Matlab.  

 

 

X: The value of plotted turning function of shapes. 

The values of plotted shape on x-plane 

0    0.7071  1.0898   1.0898   0.7071   -0.0000   -0.9239    -1.9239   -2.8478   -3.5549   -3.9375   -3.9375   -3.5549   -2.8478  -1.9239   -0.9239 

The values of plotted shape on y-plane 

0    0.7071  1.6310   2.6310   3.5549    4.2620    4.6447     4.6447    4.2620    3.5549    2.6310    1.6310    0.7071   -0.0000  -0.3827   -0.3827 

 

Fig 5.11: The plotted turning function “x” of shape performed in MLP. 

 

     As shown above, the cos and sin of x are illustrated to receive the shape information. The first row 

describing the cosines values of angle (pi/8) of x increases in the first quadrat and reduces in the 

second and third quadrat while the sin values are increasing. In the fourth quadrat both the cos and sin 

values decrease. The value 0.7071 is the cos of (pi/8) the first angle. For each point of shape the sin 

and cos values are computed and added one another until the whole shape information is taken.  

     Fig 5.11 includes the necessary information of the grasping process of a circle. It is also easy to 

predict that the plotted shape give all the information that is needed.  

 

     

 

 

 

 

x 

y 

1.Quadrat 

2.Quadrat 3.Quadrat 

4.Quadrat 
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test = [pi/2 0 pi/2 0 0 0 0 pi/2 0 pi/2 0 0 0 0 pi/2 0] 

 

 

Fig 5.12: The plotted shape of one-time grasped rectangle. 

      

Writing down the cos and sin values of plotted turning function of shape one under the other, the 

coordinates can be computed (x,y). 

     The number of grasping process is obtained by counting the points on the object boundary. In fig 

5.12 the number of boundary points (15) is smaller than the number of links (16).  

 

the number of points > 16         not fully grasped  

the number of points < 16   more than one-time grasped  

the number of points = 16     whole arm grasped 

 

     If the points are less than the number of links, the object is assumed to be grasped more than one-

time. If the object boundary (8) has as the half number of links (16), in this case the object is said to be 

two-times grasped. The plotted turning function of shape “x” includes the cos and sin information of 

the angles between points. 

     In the next section, we will discuss the grasping results for different object cases and try to explain 

a general idea by using fourier transformation with the help of mlp. 

 

5.2.1.1 Not fully grasped objects 

 

In the following, we will study the grasping results for objects that are not entwined. The missing 

grasping cases of all objects will be searched and the results will be discussed. 

     Not fully grasping process is valid if the objects are placed away from the manipulator. In the fig. 

5.13, it will be searched the necessary parameters that play important role to decide in which condition 

our object is.  

 

 

The object boundary 

points computed from 

the turning function 
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Fig. 5.13: Not-fully entwined object. 

 

The real and imaginary parts of the coefficients are computed from the plotted shape of turning 

function of each shape. For the grasping process, the absolute value of the summation of coefficients 

are taken. In case of not fully grasped object, the integral defining coefficients of periodisiced turning 

function of shape do not decrease with the high frequencies showing the signal is not periodic and thus 

the object is not fully grasped.    
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Fig. 5.14: Not-fully entwined object.  
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The values of coefficients decrease up to seventh frequency and begin to increase irregularly. This 

condition continues after one after as the spectrum larges. As seen below, the spectrum gives irregular 

coefficient values that a periodic data arrays can not be observed. The periodic signal degrease with 

the zero points in one-dimensional data array which implies that there is “0” angle between the links 

of the manipulator. The red-plotted array shows the pit and the green arrays the peak points of 

spectrum. The spectrums have wavy form of coefficient arrays and in case of not fully grasped objects 

these results are observed. 
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Fig. 5.15: Not-fully entwined circle 

 

As mentioned above, the spectrum of not fully grasped circle has a wave form as the frequencies 

increase. The data arrays are 64-dimensional but the results have 32-dimensional data information. 

According nyquist theorem, the half of the coefficients are used in order to decrease the effects of the 

curse of dimensionality and thus the feature vector contains 32-dimensional data arrays. The absolute 

value of coefficient that is performed with mlp computes only the half of coefficients; both the static 

component and the coefficients above the nyquist frequency are removed. As mentioned in section 

4.5, the classification of objects that are entwined several times is imperfectly if the nyquist 

requirements are not satisfied. 
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Fig. 5.16: Not-fully entwined triangle 

 

       Note that object grasping information is related with the circumference of shapes. As depicted 

before, our manipulator is a shape definer and actually the manipulator is interpreted as an object. 

Grasping is to compute the circumference of related object. The circumference of all kind of objects to 

be either square, rectangle, triangle and circle is equal to π.2 . Therefore, in case of whole-arm object 

grasping, the last arm of manipulator scans .360°  Whole-arm grasping information of the object is the 

sum of the angles which gives the edge information of the object and circumference results must be 

equal to ..2π   

     If the product of the angles and the number of the entwined links is higher than π.2 , the object is 

said to be more than one-time grasped.  

  

                           0 < the sum of angles < π.2               not fully grasped 

                          the sum of angles = π.2        whole arm grasped 

π.2  < the sum of angles < π.4                  more than one-time grasped 

the sum of angles = π.4              two times grasped 

π.4  < the sum of angles < π.6    more than two times grasped 

the sum of angles = π.6       three times grasped 
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5.2.1.2 One-time grasped objects 

 

In following we will give the whole-arm grasped object results and at the end of this section, the 

relation of the coefficients (coeff) is discussed with an example. As mentioned previously, the 

periodisiced turning function (E) carry the important information for the achievement of grasping 

process. The edge-information is performed and observed in the periodic signal.  

     The spectrum of fourier coefficients in case of one-time grasped objects has important feature over 

not fully grasped objects. The periodic decreasing values of coefficients are repeated every certain 

values like 4.,8.,…28.,32. feature vector.  
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Fig. 5.17: The state of grasping process for whole-arm grasped object of square with coefficients. 

 

At the right side of the figure, the grasping results are shown. The whole arm grasped square has a 

periodic decreasing coefficient spectrum. The feature vector of shape reaches a steady state as the 

frequency increases. The spaces between coefficients are equally distributed and related with the 

periodic signal of shape.  
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Fig. 5.18: The state of grasping process for whole-arm grasped object of circle. 

 

The periodic signal of whole-armed grasped circle is constant and related with the angles between the 

links of the manipulator. 
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Fig. 5.19: The state of grasping process for whole-arm grasped object of rectangle. 
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As mentioned for squares, the whole arm grasped rectangle has a periodic decreasing coefficient 

spectrum. The spaces between coefficients are equally distributed and related with the periodic signal 

of shape.  
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Fig. 5.20: The state of grasping process for whole-arm grasped object of triangle with coefficients. 

 

The results for triangles are the same with square shape. The coefficients decrease after increasing 

periodic frequencies. As see in the next section, if the number of grasping process increase, the 

periodic coefficient width wides. For one-time grasped triangle, every third coefficient has the highest 

value but for the more than one-time grasped shapes, the space between the periodicised highest 

frequencies increases.   

 

5.2.1.3 More than one-time grasped objects 

 

In this section we will study the grasping results for objects that are more than one time entwined. If 

compared with other situations of grasping process, the spectrum of coefficients gives always a 

periodicised array and decreases to a constant value.  

     In the following, for each object, the results are illustriated and at the end of this section a brief 

summary of more than one-time grasping process is given. 
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Fig. 5.21: More than one-time grasped square. The coefficient values decrease with the increasing 

number of frequencies.  

     The spectrum of fourier coefficients in case of more than one-time grasped objects become more 

linear and difference between the coefficients do not vary sharply as seen in the spectrum of one-time 

grasped object.  
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Fig. 5.22: More than one-time grasped circle. 
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Fig. 5.23: More than one-time grasped triangle. 
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Fig. 5.24: More than one-time grasped rectangle.  

 

     If we summarize the grasping process, the signal that is transformed from the turning function of 

the shapes is necessary for the fourier transformation. With the help of MLP network, the cosines and 

the sinus values of plotted turning function, the real and the imaginary part of coefficients are 
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computed using the two layers. The absolute value of summation of sin and cos part carries the key 

information for grasping process. Three different object features are introduced and spectrums of 

coefficients are performed. As a result, if the object is entwined the spectrum of fourier coefficients 

decrease and convergence to a constant value. If not, the spectrum gives a wave form of coefficients. 

In case of several entwinement process, the value of coefficients are bigger than the coefficients which 

are observed with one-time entwined objects. 

      

5.2.2  Investigating the „Linear object scanner cas e“ 

 

In this section of the thesis, we will study out the possibility of the recognizing the deformed part of 

the objects passing through the conveyor belt using neural networks as a recognizer of patterns which  

is within the field known as quality control applications that are designed to find that one in a hundred 

or one in a thousand part that is defective. Linear object scanner case data inputs are nn× matrices.  

The main problem which is desired to be solved from a sensor system is that the sensor that lies on the 

conveyor-belt must recognize the faults on the shape. If there is a hole in the object or a part of is 

destructed, the object must be noticed out by the system. 

     As shown below, the construction of conveyor belt is seen. In this procedure, the objects must be 

recognized if they are deformed partially.  

 

 

 

 

 

            

            

            

            

            

       

 

           

 

 

CCoonnvveeyyoorr
bbeell tt

SSeennssoorr
ssyysstteemm

22--ddiimmeennssiioonnaall
sshhaappee



















 

















RBF

 


















nw

w

.

.
1

 

















∫∑



















1100

1110

1100

1110

 nn × dimensional  
data arrays 

        1       2         3  
 

Figure 5.26: The sub-problems of linear object scanner case problem. 

Figure 5.25: Illustration of „Linear object scanner case“ problem. 
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square = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1] 

 

 

circle = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0 ] 

 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 
 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 1 0 0 
 

 

triangle = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1] 

 

 

rectangle = [0 0 0 0 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1] 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 
 

0 0 0 0 0 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 
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Figure 5.27: The nn× data arrays shown as inputs and as two dimensional shape information. 

 

Fig. 5.26 shows the method that was used in linear object scanner case and fig. 5.27 reveals the inputs 

as nn× data arrays that give the object boundary information. “0” indicates the holes or the faults, “1” 

indicates the actual boundary points on the shape boundary that are given manually as a training set, 

the inputs, are said to be one dimensional-data arrays. Then, the fourier serie is computed for the 

classification. After implementation of fourier serie, the necessary coefficients are taken for the feature 

vector. The classification, which here pnn used, is given with the help of the coefficients of feature 

vector. As a result, the objects are classified as square, circle, triangle, rectangle.   

     The classification results in linear object scanner case problem can be explained as follows; 

 

1. The objects which are partially deformed can be classified correctly. The partially deformed 

shapes which have different dimensions were recognized properly. The dimension of shapes 

that were recognized properly have smaller matrix dimension than nn× matrix.   

2. The holes on the shapes cause problems in classification process and give false results. 
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As seen above, the objects have nn×  dimensions that pass through the conveyor belt. These inputs 

are used as a training set and the classification is supervised according to these nn× data arrays. 
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Figure 5.28: The nn× data arrays with different object information. The feature vectors of  
 two dimensional data arrays are shown. 

Figure 5.29: The nn × shape with a hole in the center. 
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The classification results of the nn× data arrays show that it is not possible to take correct 

classification results with the newpnn method for the defected objects passing through the conveyor 

belt. 
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We see that the classification procedure with deformed objects do not give the true results but on the 

other hand the small shapes are recognized and classified properly by our neural network. Fig 5.30 

shows actually a small square comparing with the real shape value. 

 

5.3 Conclusion  
 

     The fourier coefficients of turning functions that are performed in two mlp networks makes 

possible an interpretation about grasping of an object.  The zeroth order of fourier transformation is 

the important key for grasping results. 

     The classification is realized with three networks, respectively two mlp networks and pnn. A 

probabilistic neural network structure is able to classify the objects with one dimensional data arrays 

but the results are not successful enough for the right classification if the object is translated, rotated or 

scaled. The reason of false results is the different side lengths of objects. 

     The two dimensional data arrays can not be classified with our pnn network correctly. The 

defaulted shapes that are produced during the production process must be recognized for the quality 

work of a firm. Thus, instead of pnn, the other neural networks must be used. 

     In this chapter, we have shown turning functions as a way to describe the shapes that are 

recognized during the grasping process. We developed two neural networks in order to make a 

TEST SHAPE 

Figure 5.30: The nn× data arrays with different object information. 
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classification of the objects that the feature vectors from the turning function are extracted. The shapes 

as test set which have different side lengths could not be classified correctly. The grasping process is 

introduced with the help of plotted object and coefficients performed in mlp.  

     In case of not fully entwined objects, the spectrum of coefficients gives a wavy form. For one-time 

and more than one-time entwined objects, the coefficients are observed as they decrease with the high 

frequencies. Also the value of coefficients increases if the objects are several times grasped. 
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6 Implementation in Matlab 
 

This chapter describes implementation details with the help of MATLAB and the main results 

obtained with neural object classification. Section 6.1 starts with implementation details in neural 

object classification and continues to describe MATLAB realizations of related neural networks based 

algorithm. 

 

6.1 Implementation in MATLAB 
 

The MATLAB codes was written and tested with MATLAB Version 7.0. The software package was 

used with Windows XP on a Pentium Celeron M processor with 1.5 Ghz clock frequency and 996 MB 

RAM. 

 

MATLAB code listings 
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6.1.1 Tentacle case 
 

% 

% tentaclecase.m 

% 

% Classification with RBF and grasping with MLP 

% 

% input: 

%   SQUARE 

%   CIRCLE 

%   TRIANGLE 

%   RECTANGLE 

%    

% %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

[obj,n,t,ts]=DRAWTESTSET() 

 

 

 

 

[t,coefficient,x,s]=turningfunction(obj,n) 

 

 

 

[a,E]=periodic(t) 

 

 

subplot(2,2,1); 

plot(x(1,:),x(2,:),'ko-'); 

axis equal; 

title('SHAPE'); 

Xlabel('number of LINKS');  

 

subplot(2,2,2); 

stairs(s(1:n-1),t); 

title('TURNING FUNCTION'); 

axis equal; 

Xlabel('arclength');  

Ylabel('coeff'); 

 

The function uses inputs  as a 

training set and outputs the 

grasping process for each object.  

The manipulator has 16 number 

of links and is used as a shape 

definer. 

Therefore one-dimensional data 

array has 16 values which 

describe the angles between the 

links. 

One-dimensional data arrays 

are converted into two-

dimensional data arrays and 

plotted 

Performing the turning function 

of plotted object 

 

Transforming the turning 

function into periodical signal 

“E” 

Plotting the shape of one-

dimensional data arrays 

Plotting the turning function in 

respect with arclength 
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subplot(2,2,3); 

plot(E); 

title('periodic signal of SHAPE') 

  

subplot(2,2,4); 

bar([0:((n/2)-1)],a); 

title ('feature vector of SHAPE'); 

Xlabel('number of coefficients');  

Ylabel('feature coefficients'); 

 

 

[A,fig] = transformationX(E,fig) 

 

 

[circle,triangle,rectangle,square] = classify() 

 

 

P=[]; 

y = sim(MLP, {circle'}); 

coeff = abs(y{1}+i*y{2}); 

P = [P, coeff]; 

 

y = sim(MLP, {triangle'}); 

coeff = abs(y{1}+i*y{2}); 

P = [P, coeff]; 

 

y = sim(MLP, {square'}); 

coeff = abs(y{1}+i*y{2}); 

P = [P, coeff]; 

 

y = sim(MLP, {rectangle'}); 

coeff = abs(y{1}+i*y{2}); 

P = [P, coeff]; 

 

T = ind2vec([1 2 3 4]); 

 

 

net = newpnn(P,T); 

 

 

Plotting the periodical signal of 

shape 

Plotting the feature vector of 

periodical signal over nyquist 

theorem 

Implementing the periodisiced 

signal in mlp network 

Input sets of each object for the 

classification 

The periodical signal and 

coefficients of each class of 

object performed in two mlp 

networks respectively 

The classes of objects are 

performed 

Pnn, A kind of radial basis 

network is created 
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y = sim(MLP, {E'}); 

coeff = (abs(y{1}+i*y{2}))'; 

 

 

fig = fig + 1; 

figure(fig) 

bar(A); 

title ('GRASPING PROCESS') 

Xlabel('The periodical signal "E" and the coefficients');  

Ylabel('numerical approximation to the integral defining coefficients');  

 

class = sim(net, coeff'); 

vec2ind(class) 

yc_test = vec2ind(class) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

switch yc_test 

case 1, display('SQUARE'); 

         

case 2, display('CIRCLE'); 

      

case 3, display('TRIANGLE'); 

      

case 4, display('RECTANGLE'); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This small program is written in 

C program language to see the 

classification results with words 

instead of the numbers. A little 

C program outputs the 

classification results. 

Note, that the PNN will always 

output circle if there is no 

match. 

The grasping results performed 

in mlp networks are plotted. 

Here the turning function of 

shapes and coefficients are 

figured 

Test object is given to mlp 

networks in order to make 

classification 

The class indices are converted 

into target vectors and a Pnn 

network is designed and tested 
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6.1.2 Linear object scanner case problem 
 
 

% twodimensional.m 

% 

% Classification with RBF 

% input: 

%   SQUARE 

%   CIRCLE 

%   TRIANGLE 

%   RECTANGLE 

% output: 

 

clear 

fig = 0; 

n = 5; 

 

% square 

square1 = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]'; 

square2 = [1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 1]';  

square3 = [0 0 0 0 0; 0 1 1 1 0; 0 1 1 1 0; 0 1 1 1 0; 0 0 0 0 0]';  

square4 = [0 0 0 0 0; 0 0 1 1 0; 0 0 1 1 0; 0 0 0 0 0; 0 0 0 0 0]';  

 

%%%%%%%%%%%%%%%% 

% circle 

circle1 = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0 ]'; 

circle2 = [0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 0 0 1 0 0; 0 0 0 0 0 ]'; 

circle3 = [0 1 1 1 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 1 1 1 0 ]'; 

circle4 = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 0 0 0 0; 0 0 0 0 0 ]'; 

 

% triangle 

triangle1 = [0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1]';  

triangle2 = [1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0; 0 0 0 0 0; 0 0 0 0 0]';  

triangle3 = [1 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0; 1 1 0 0 0; 1 0 0 0 0]';  

triangle4 = [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 1 0 0; 0 1 1 1 0]';  

 

% rectangle 

rectangle1 = [0 0 0 0 0; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]';  

rectangle2 = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 0 0 0 0]';  

rectangle3 = [1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0; 1 1 1 1 0]';  

rectangle4 = [0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0; 0 1 1 0 0]';  

 

Two-dimensional data arrays 

were used describing the objects 

as input.  

The dimension of matrix is 

55x and also as test set the 

matrixes which have small 

dimensions were used. 

Four type of objects that have 

different bigness are used. 
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% FFT 

% computes the fast fourier transform of the data arrays 

% classification 

% This function results the FFT of objects for classification 

[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1, 

norm_abs_FFT_alpha_square_2,norm_abs_FFT_alpha_square_3 

,norm_abs_FFT_alpha_square_4,norm_abs_FFT_alpha_circle_1, 

norm_abs_FFT_alpha_circle_2,norm_abs_FFT_alpha_circle_3 

,norm_abs_FFT_alpha_circle_4,norm_abs_FFT_alpha_triangle_1, 

norm_abs_FFT_alpha_triangle_2,norm_abs_FFT_alpha_triangle_3 

,norm_abs_FFT_alpha_triangle_4,norm_abs_FFT_alpha_rectangle_1 

,norm_abs_FFT_alpha_rectangle_2,norm_abs_FFT_alpha_rectangle_3 

,norm_abs_FFT_alpha_rectangle_4] =  

FFTscanner(square1,square2,square3,square4,circle1,circle2,circle3 

,circle4,triangle1,triangle2,triangle3,triangle4,rectangle1,rectangle2 

,rectangle3,rectangle4) 

 

 

fig = fig + 1; 

figure(fig) 

bar([0:n-1],norm_abs_FFT_alpha_square_1); 

title('Feature Vector of SQUARE'); 

 

fig = fig + 1; 

figure(fig) 

bar([0:n-1],norm_abs_FFT_alpha_circle_1); 

title('Feature Vector of CIRCLE'); 

 

fig = fig + 1; 

figure(fig) 

bar([0:n-1],norm_abs_FFT_alpha_triangle_1); 

title('Feature Vector of TRIANGLE'); 

 

fig = fig + 1; 

figure(fig) 

bar([0:n-1],norm_abs_FFT_alpha_rectangle_1); 

title('Feature Vector of RECTANGLE '); 

 

 

 

Discrete Fourier Transformation of the 
objects are computed with this function. 
Classification of the input vectors is 
computed with the help of this neural 
network function.  
Indices are converted into vectors to 
create the number of classes.   
Here there are 4 type of classes. 
 
A neural network is created for the 
classification. 
The input arrays are tested with the help 
of neural network in order to give out 
the results of the classification. 
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% classifying a new vector with the network 

 

%test = [0 0 0 0 0; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';  

%test = [1 1 0 0 0; 1 1 0 0 0; 1 1 0 0 0; 1 1 0 0 0; 1 1 1 1 1]';  

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';  

%test = [1 1 1 1 1; 1 1 0 0 1; 1 1 0 0 1; 1 1 1 1 1; 1 1 1 1 1]';  

%test = [0 0 0 0 0; 0 0 1 1 1; 0 0 1 1 1; 0 0 1 1 1; 0 0 0 0 0]';  

%test = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 0 0 0 0 0]';  

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';  

%test = [1 1 1 1 1; 1 1 0 1 1; 1 1 0 1 1; 1 1 1 1 1; 1 1 1 1 1]';  

 

 

% The classification of TEST set with the help of RBF. 

[yc_test]= TESTFFT(test,net) 

 

switch yc_test 

case 1, display('SQUARE'); 

         

case 2, display('CIRCLE'); 

      

case 3, display('TRIANGLE'); 

      

case 4, display('RECTANGLE'); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This small program is written in 

C program language to see the 

classification results with words 

instead of the numbers. A little 

C program outputs the 

classification results. 

Note, that the PNN will always 

output circle if there is no 

match. 

The classification of TEST set 

with the help of RBF. 

 

The objects being defaulted are 

used as test set in order to 

achieve the classification 

process. 
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6.2 Functions 
The functions which are briefly described below, include the following main file and first level 

subfunctions, respectively 

 

TURNINGFUNCTION.m Computes turning function of plotted shape 

PERIODIC.m   Returns turning function to periodic signal 

NEWPNN.m   Computes the classification process 

MLP.m    Returns the fourier transformation of periodic signals 

TESTFFT.m   Returns the fourier transformation of test objects 

CLASSIFY.m   Classifies each object 

FFTscanner.m   Returns discrete fourier transformation of two-dimensional objects 

 

 

TURNINGFUNCTION.m  Computes turning function of plotted shape 

 

 

function [t,coefficient,x,s] = turningfunction(obj,n) 
%GRAPHS : plots of turning function and frequency contents  
%  obj : object boundary as spline in ppform 
%  n   : number of points on object contour 
% gather object pnts 
%equally spaced 
s = linspace(obj.breaks(1),obj.breaks(end),n); 
 
%equally spaced, partially occluded: 
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n); 
 
x = fnval(obj, s); 
% compute turning function 
% df = fnval(fnder(obj),s); 
%  
% %first tangent's angel relative to y = const: 
% %absolute angels in [-pi,pi] 
% t = atan2(df(2,:), df(1,:)); 
% %correct for pi -jumps 
% if (abs(t(1) - t(n)) >= pi) 
%   t(1) = t(1) + 2*pi; 
% end; 
% for i = 2 : n 
%   %this condition certainly is not quite correct - but it works as long as the differnces of  
%   %tangent angels are small => arclengths between pnts must be small  
%   if (abs(t(i) - t(i-1)) >= pi) 
%     t(i) = t(i) + 2*pi; 
%   end; 
% end;   
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary! 
len = [sqrt(sum(vec.^2,1))]; 
for i = 1 : n - 1 
  cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)); 
  phi(i) = acos(cosphi); 
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end; 
 
t = cumsum(phi); 
%----------------------------------------------------------------------- 
% compute frequency contents 
%----------------------------------------------------------------------- 
coefficient = abs(fft(t)); 
%----------------------------------------------------------------------- 
% plots 
%----------------------------------------------------------------------- 
return 
 

 

PERIODIC.m  Returns turning function to periodic signal 

 

 

function [a,E]=periodic(t) 
%FEATURE extract feature vector from turning funciton for classification 
%  
%requests: 
%  t : turning function of shape 
%returns: 
%  a  : feature vector 
%transform turning function to periodic signal: 
n = length(t); 
E = t - 2*pi/n * [1:n]; 
% where n is the number of links. 
%apply fourier transformation and strip contents over nyquist frequ. and 
%static content 
% compute frequency contents 
fta = abs(fft(E)); 
ft = fta(1,2:ceil(n/2)+1); 
 
%return feature vector: 
a = ft; 
return 
 

 

GRASPING.m  computes actual transformation 

 

 

function [A,coeff,fig] = grasping(E,fig) 
 
%MLP : the actual transformation 
% E is the periodisiced signal of turning function of shapes. 
% "coeff" results the absolute value of the real and the imaginary part of 
% fft values of the shape that are computed distinctly in layer {1} and 
% layer {2}.(see function MLP) 
%the coefficients are determined with 
A = []; 
y = sim(MLP, {E'}); 
coeff = (abs(y{1}+i*y{2}))'; 
% A outputs the result  
A = [coeff]; 
 
%The colors are set by the colormap. 
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fig = fig + 1; 
figure(fig) 
bar(A); 
title ('GRASPING') 
Xlabel('The coefficients of periodisiced signal "E"');  
Ylabel('numerical approximation to the integral defining coefficients');  
 
return 
 

 

 

 

 

 

newpnn.m  Computes the classification process 

 

function [net] = newpnn(p,t,spread) 

%NEWPNN Design a probabilistic neural network. 

% 

%  Synopsis 

% 

%    net = newpnn 

%    net = newpnn(P,T,SPREAD) 

% 

%  Description 

% 

%    Probabilistic neural networks are a kind of radial 

%    basis network suitable for classification problems. 

% 

%   NET = NEWPNN creates a new network with a dialog box. 

% 

%    NET = NEWPNN(P,T,SPREAD) takes two or three arguments, 

%      P      - RxQ matrix of Q input vectors. 

%      T      - SxQ matrix of Q target class vectors. 

%      SPREAD - Spread of radial basis functions, default = 0.1. 

%    and returns a new probabilistic neural network. 

% 

%    If SPREAD is near zero the network will act as a nearest 

%    neighbor classifier.  As SPREAD becomes larger the designed 

%    network will take into account several nearby design vectors. 

% 

%  Examples 

% 

%    Here a classification problem is defined with a set of 
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%    inputs P and class indices Tc. 

% 

%      P = [1 2 3 4 5 6 7]; 

%      Tc = [1 2 3 2 2 3 1]; 

% 

%    Here the class indices are converted to target vectors, 

%    and a PNN is designed and tested. 

% 

%      T = ind2vec(Tc) 

%      net = newpnn(P,T); 

%      Y = sim(net,P) 

%      Yc = vec2ind(Y) 

% 

%  Algorithm 

% 

%    NEWPNN creates a two layer network. The first layer has RADBAS 

%    RADBAS neurons, and calculates its weighted inputs with DIST, and 

%    its net input with NETPROD.  The second layer has COMPET neurons, 

%    and calculates its weighted input with DOTPROD and its net inputs 

%    with NETSUM. Only the first layer has biases. 

% 

%    NEWPNN sets the first layer weights to P', and the first 

%    layer biases are all set to 0.8326/SPREAD resulting in 

%    radial basis functions that cross 0.5 at weighted inputs 

%    of +/- SPREAD. The second layer weights W2 are set to T. 

% 

%  References 

% 

%    P.D. Wasserman, Advanced Methods in Neural Computing, New York: 

%       Van Nostrand Reinhold, pp. 35-55, 1993. 

% 

%  See also SIM, IND2VEC, VEC2IND, NEWRB, NEWRBE, NEWGRNN. 

 

% Mark Beale, 11-31-97 

% Copyright 1992-2002 The MathWorks, Inc. 

% $Revision: 1.9 $ $Date: 2002/03/25 16:53:29 $ 

 

if nargin < 2 

  net = newnet('newpnn'); 

  return 

end 
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% Defaults 

if nargin < 3, spread = 0.1; end 

 

% Error checks 

if (~isa(p,'double') & ~islogical(p)) | (~isreal(p)) | (length(p) == 0) 

  error('Inputs are not a non-empty real matrix.') 

end 

if (~isa(t,'double') & ~islogical(t)) | (~isreal(t)) | (length(t) == 0) 

  error('Targets are not a non-empty real matrix.') 

end 

if (size(p,2) ~= size(t,2)) 

  error('Inputs and Targets have different numbers of columns.') 

end 

if (~isa(spread,'double')) | ~isreal(spread) | any(size(spread) ~= 1) | (spread < 0) 

  error('Spread is not a positive or zero real value.') 

end 

 

% Dimensions 

[R,Q] = size(p); 

[S,Q] = size(t); 

 

% Architecture 

net = network(1,2,[1;0],[1;0],[0 0;1 0],[0 1]); 

 

% Simulation 

net.inputs{1}.size = R; 

net.inputWeights{1,1}.weightFcn = 'dist'; 

net.layers{1}.netInputFcn = 'netprod'; 

net.layers{1}.transferFcn = 'radbas'; 

net.layers{1}.size = Q; 

net.layers{2}.size = S; 

net.layers{2}.transferFcn = 'compet'; 

 

% Weight and Bias Values 

net.b{1} = zeros(Q,1)+sqrt(-log(.5))/spread; 

net.iw{1,1} = p'; 

net.lw{2,1} = t; 

 

return 
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function [net] = setWeightMatrix(net,W) 

  inputSizes = net.hint.inputSizes; 

  layerSizes = net.hint.layerSizes; 

  I = net.hint.totalInputSize; 

  U = net.hint.totalLayerSize; 

     

  % W(i,j) weights to layer unit i from input, layer or bias unit j      

   

  for i=1:net.numLayers 

    indRow = sum(layerSizes(1:i-1)) + (1 : layerSizes(i)); 

     

    for j=find(net.inputConnect(i,:)) 

      indCol = sum(inputSizes(1:j-1)) + (1 : inputSizes(j)); 

      net.IW{i,j} = W(indRow, indCol); 

    end 

     

    if net.biasConnect(i) 

      indCol = I + 1; 

      net.b{i} = W(indRow, indCol); 

    end 

     

    for j=find(net.layerConnect(i,:)) 

      indCol = I + 1 + sum(layerSizes(1:j-1)) + (1 : layerSizes(j)); 

      net.LW{i,j} = W(indRow, indCol); 

    end 

  end 

   

%function [net_new] = trainrtrl(net,P,T,epochs,show,lr) 

% trainrtrl - encapsules the RTRL training algorithm in rtrl.mex. 

% 

%function [net] = trainrtrl(net,P,T,epochs,show,lr) 

% 

% requests 

%     net        : neural network structure (Neural Network toolbox) 

%     P          : input signal (sequence of T timesteps) 

%     T          : teacher signal (sequence of T timesteps) 

%     epochs     : number of epochs 

%     show       : number of epochs, after which a report of the training progress is output 

%                  at the command line 

%     lr         : learning rate 

% 
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% returns 

%     net_new    : neural network structure after training 

%   

% remarks 

% This function converts the neural network structure to the form the mex file demands, calls the 

% mex file and reconverts the outcome of the training to a neural network structure. In addition, 

% it plots the training signal and the network output at the end of the training. 

 

net=network; 

 

epochs = 50; 

lr = 0,6; 

%prepare weight matrix: 

 % w = getWeightMatrix(net); 

  

 

net.trainParam.epochs = 50; 

net.trainParam.goal = 0.01; 

net = train(net,p,t); 

y2 = sim(net,p) 

plot(p,t,'o',p,y1,'x',p,y2,'*') 

%---------------------------------------------------------------------------------------------- 

% utility fcns - conversion of neural network structure to and from the form the mex file  

% demands 

%---------------------------------------------------------------------------------------------- 

 

%function [W] = getWeightMatrix(net) 

  inputSizes = net.hint.inputSizes; 

  layerSizes = net.hint.layerSizes; 

  I = net.hint.totalInputSize; 

  U = net.hint.totalLayerSize; 

     

  % W(i,j) weights to layer unit i from input, layer or bias unit j      

   

  W = zeros(U, U+I+1); 

   

  for i=1:net.numLayers 

    indRow = sum(layerSizes(1:i-1)) + (1 : layerSizes(i)); 

     

    for j=find(net.inputConnect(i,:)) 

      indCol = sum(inputSizes(1:j-1)) + (1 : inputSizes(j)); 
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      W(indRow, indCol) = net.IW{i,j}; 

    end 

     

    if net.biasConnect(i) 

      indCol = I + 1; 

      W(indRow, indCol) = net.b{i}; 

    end 

     

    for j=find(net.layerConnect(i,:)) 

      indCol = I + 1 + sum(layerSizes(1:j-1)) + (1 : layerSizes(j)); 

      W(indRow, indCol) = net.LW{i,j}; 

    end 

  end 

 

%prepare array with transfer fcn indices:  

transferFcn = zeros(net.hint.totalLayerSize,1); 

j = 0; 

for i = 1:net.numLayers 

  n = net.layers{i}.size; 

  switch (net.hint.transferFcn{i}) 

      case 'logsig'  

        transferFcn(j+1:j+n,1) = 0*ones(n,1); 

      case 'tansig' 

        transferFcn(j+1:j+n,1) = 1*ones(n,1); 

      case 'purelin' 

        transferFcn(j+1:j+n,1) = 2*ones(n,1); 

      otherwise 

        transferFcn(j+1:j+n,1) = 0*ones(n,1); 

  end;   

  j = j+n; 

end; 

 

%target indices 

targInd = []; 

for i = net.hint.targetInd 

  targInd = [targInd sum(net.hint.layerSizes(1:i-1)) + (1 : net.hint.layerSizes(i))]; 

end; 

 

%pass inputs to mex file 

w = rtrl(w, transferFcn, P, T, targInd, epochs, show, lr); 
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%update net 

net_new = net; 

net_new = setWeightMatrix(net_new,w); 

 

%simulation of net (initial state set to first sample of teacher signal) 

%y = sim(net, con2seq(P), {}, {T(:,1)}); 

y = sim(net, con2seq(repmat(P,1,4)), {}, {T(:,1)});  

y = seq2con(y); 

y = y{:}; 

 

 

%time - sequence 

figure; 

plot([T(:,1) y]','k-'); 

hold on; 

plot(repmat(T,1,4)','k--'); 

hold off; 

 

%phase plane 

figure; 

plot([T(1,1),y(1,:)],[T(2,1),y(2,:)],'k-'); 

hold on; 

plot([T(1,:),T(1,1)],[T(2,:),T(2,1)],'k--'); 

hold off; 

 

return 

 

MLP.m   Returns the fourier transformation of periodic signals 

 
 
function [net] = MLP(N); 
%dftnet - set up a MLP network that performs discrete fourier transformation 
% 
%requires: 
%  N  : number of samples 
%returns: 
%  net : Neural Network Toolbox network structure. 
%remarks: 
%MLP computes only ceil(N/2) coefficients; both the static component and the  
%coefficients above the nyquist frequency are stripped. The two layers output 
%the real and imaginary parts of the coefficients. 
%the weight matrix is determined analytically; no need to perform additional  
%training on the net. 
N=16; 
net = network; 
net.numInputs = 1; 
net.numLayers = 2; 
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net.inputs{1}.size = N; 
 
net.biasConnect = zeros(2,1); 
net.outputConnect = ones(1,2); 
 
%DFT layer (outputs complex fourier coefficients) 
net.layers{1}.size = ceil(N/2); 
net.layers{2}.size = ceil(N/2); 
 
net.layers{1}.transferFcn = 'purelin'; 
net.layers{2}.transferFcn = 'purelin'; 
 
net.inputConnect = ones(2,1); 
 
for i = 1 : ceil(N/2)  
  for j = 1 : N 
    kn(i,j) = i*(j-1); 
  end; 
end;   
     
W1 = cos( 2*pi/N * kn ); 
W2 = - sin( 2*pi/N * kn ); 
 
net.IW{1,1} = W1; 
net.IW{2,1} = W2; 
 
net.inputWeights{1,1}.learn = 0; 
net.inputWeights{2,1}.learn = 0; 
 
return 
 
 
 

CLASSIFY.m   classifies each object 

 
 
function [circle,triangle,rectangle,square] = classify() 
 
%%%%%%%%%%%%%%%% 
%Shapes in the training set 
% square 
%square1 = [0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2 0 0 0 pi/2]'; 
square1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2]'; 
 
%%%%%%%%%%%%%%%% 
% circle 
%circle1 = [pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8 pi/8]'; 
circle1 = [pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 
pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32 pi/32]'; 
%%%%%%%%%%%%%%%% 
% triangle 
triangle1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2*pi/3 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2*pi/3]'; 
 
%%%%%%%%%%%%%%%% 
% rectangle 
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rectangle1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 pi/2 0 0 0 0 0 0 0 pi/2]';  
 
test2= []; 
L=[0;0]; 
 
n = length(circle1); 
 
test2(1)= circle1(1); 
 
for i = 2:n 
    test2(i) = test2(i - 1) + circle1(i); 
end 
L(1,1) = 0;  
L(2,1) = 0; 
L(1,n+1) = 0;  
L(2,n+1) = 0; 
for i = 2 : n 
            L(1,i)= cos(test2(i)) + L(1,i-1); 
            L(2,i)= sin(test2(i)) + L(2,i-1); 
end 
 
n = length(L); 
% Interpolate with a spline curve and finer spacing. 
t = 1:n; 
ts = 1: 0.1: n; 
obj = csapi(t, L); 
 
 
%function [t,coefficient,x,s] = turningfunction(obj,n) 
%GRAPHS : plots of turning function and frequency contents  
%  obj : object boundary as spline in ppform 
%  n   : number of points on object contour 
% gather object pnts 
%equally spaced 
s = linspace(obj.breaks(1),obj.breaks(end),n); 
 
%equally spaced, partially occluded: 
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n); 
 
x = fnval(obj, s); 
% compute turning function 
% df = fnval(fnder(obj),s); 
%  
% %first tangent's angel relative to y = const: 
% %absolute angels in [-pi,pi] 
% t = atan2(df(2,:), df(1,:)); 
% %correct for pi -jumps 
% if (abs(t(1) - t(n)) >= pi) 
%   t(1) = t(1) + 2*pi; 
% end; 
% for i = 2 : n 
%   %this condition certainly is not quite correct - but it works as long as the differnces of  
%   %tangent angels are small => arclengths between pnts must be small  
%   if (abs(t(i) - t(i-1)) >= pi) 
%     t(i) = t(i) + 2*pi; 
%   end; 
% end;   
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary! 
len = [sqrt(sum(vec.^2,1))]; 
for i = 1 : n - 1 
  cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)); 



6 Implementation in Matlab 
 

 87 

  phi(i) = acos(cosphi); 
end; 
 
t = cumsum(phi); 
%----------------------------------------------------------------------- 
%function [a,E]=periodic(t) 
%FEATURE extract feature vector from turning funciton for classification 
%  
%requests: 
%  t : turning function of shape 
%returns: 
%  a  : feature vector 
%transform turning function to periodic signal: 
n = length(t); 
circle = t - 2*pi/n * [1:n]; 
 
 
%function [triangle] = triangle1() 
 
test2= []; 
L=[0;0]; 
 
n = length(triangle1); 
 
test2(1)= triangle1(1); 
 
for i = 2:n 
    test2(i) = test2(i - 1) + triangle1(i); 
end 
L(1,1) = 0;  
L(2,1) = 0; 
L(1,n+1) = 0;  
L(2,n+1) = 0; 
for i = 2 : n 
            L(1,i)= cos(test2(i)) + L(1,i-1); 
            L(2,i)= sin(test2(i)) + L(2,i-1); 
end 
 
n = length(L); 
% Interpolate with a spline curve and finer spacing. 
t = 1:n; 
ts = 1: 0.1: n; 
obj = csapi(t, L); 
 
 
%function [t,coefficient,x,s] = turningfunction(obj,n) 
%GRAPHS : plots of turning function and frequency contents  
%  obj : object boundary as spline in ppform 
%  n   : number of points on object contour 
% gather object pnts 
%equally spaced 
s = linspace(obj.breaks(1),obj.breaks(end),n); 
 
%equally spaced, partially occluded: 
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n); 
 
x = fnval(obj, s); 
% compute turning function 
% df = fnval(fnder(obj),s); 
%  
% %first tangent's angel relative to y = const: 
% %absolute angels in [-pi,pi] 
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% t = atan2(df(2,:), df(1,:)); 
% %correct for pi -jumps 
% if (abs(t(1) - t(n)) >= pi) 
%   t(1) = t(1) + 2*pi; 
% end; 
% for i = 2 : n 
%   %this condition certainly is not quite correct - but it works as long as the differnces of  
%   %tangent angels are small => arclengths between pnts must be small  
%   if (abs(t(i) - t(i-1)) >= pi) 
%     t(i) = t(i) + 2*pi; 
%   end; 
% end;   
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary! 
len = [sqrt(sum(vec.^2,1))]; 
for i = 1 : n - 1 
  cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)); 
  phi(i) = acos(cosphi); 
end; 
 
t = cumsum(phi); 
%----------------------------------------------------------------------- 
%function [a,E]=periodic(t) 
%FEATURE extract feature vector from turning funciton for classification 
%  
%requests: 
%  t : turning function of shape 
%returns: 
%  a  : feature vector 
%transform turning function to periodic signal: 
n = length(t); 
triangle = t - 2*pi/n * [1:n]; 
 
%function [square] = square1() 
 
test2= []; 
L=[0;0]; 
 
n = length(square1); 
 
test2(1)= square1(1); 
 
for i = 2:n 
    test2(i) = test2(i - 1) + square1(i); 
end 
L(1,1) = 0;  
L(2,1) = 0; 
L(1,n+1) = 0;  
L(2,n+1) = 0; 
for i = 2 : n 
            L(1,i)= cos(test2(i)) + L(1,i-1); 
            L(2,i)= sin(test2(i)) + L(2,i-1); 
end 
 
n = length(L); 
% Interpolate with a spline curve and finer spacing. 
t = 1:n; 
ts = 1: 0.1: n; 
obj = csapi(t, L); 
 
 
%function [t,coefficient,x,s] = turningfunction(obj,n) 
%GRAPHS : plots of turning function and frequency contents  
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%  obj : object boundary as spline in ppform 
%  n   : number of points on object contour 
% gather object pnts 
%equally spaced 
s = linspace(obj.breaks(1),obj.breaks(end),n); 
 
%equally spaced, partially occluded: 
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n); 
 
x = fnval(obj, s); 
% compute turning function 
% df = fnval(fnder(obj),s); 
%  
% %first tangent's angel relative to y = const: 
% %absolute angels in [-pi,pi] 
% t = atan2(df(2,:), df(1,:)); 
% %correct for pi -jumps 
% if (abs(t(1) - t(n)) >= pi) 
%   t(1) = t(1) + 2*pi; 
% end; 
% for i = 2 : n 
%   %this condition certainly is not quite correct - but it works as long as the differnces of  
%   %tangent angels are small => arclengths between pnts must be small  
%   if (abs(t(i) - t(i-1)) >= pi) 
%     t(i) = t(i) + 2*pi; 
%   end; 
% end;   
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary! 
len = [sqrt(sum(vec.^2,1))]; 
for i = 1 : n - 1 
  cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)); 
  phi(i) = acos(cosphi); 
end; 
 
t = cumsum(phi); 
%----------------------------------------------------------------------- 
%function [a,E]=periodic(t) 
%FEATURE extract feature vector from turning funciton for classification 
%  
%requests: 
%  t : turning function of shape 
%returns: 
%  a  : feature vector 
%transform turning function to periodic signal: 
n = length(t); 
square = t - 2*pi/n * [1:n]; 
 
%function [rectangle] = rectangle1() 
 
test2= []; 
L=[0;0]; 
 
n = length(rectangle1); 
 
test2(1)= rectangle1(1); 
 
for i = 2:n 
    test2(i) = test2(i - 1) + rectangle1(i); 
end 
L(1,1) = 0;  
L(2,1) = 0; 
L(1,n+1) = 0;  
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L(2,n+1) = 0; 
for i = 2 : n 
            L(1,i)= cos(test2(i)) + L(1,i-1); 
            L(2,i)= sin(test2(i)) + L(2,i-1); 
end 
 
n = length(L); 
% Interpolate with a spline curve and finer spacing. 
t = 1:n; 
ts = 1: 0.1: n; 
obj = csapi(t, L); 
 
 
%function [t,coefficient,x,s] = turningfunction(obj,n) 
%GRAPHS : plots of turning function and frequency contents  
%  obj : object boundary as spline in ppform 
%  n   : number of points on object contour 
% gather object pnts 
%equally spaced 
s = linspace(obj.breaks(1),obj.breaks(end),n); 
 
%equally spaced, partially occluded: 
%s = linspace(obj.breaks(end)*0.2,obj.breaks(end)*0.8,n); 
 
x = fnval(obj, s); 
% compute turning function 
% df = fnval(fnder(obj),s); 
%  
% %first tangent's angel relative to y = const: 
% %absolute angels in [-pi,pi] 
% t = atan2(df(2,:), df(1,:)); 
% %correct for pi -jumps 
% if (abs(t(1) - t(n)) >= pi) 
%   t(1) = t(1) + 2*pi; 
% end; 
% for i = 2 : n 
%   %this condition certainly is not quite correct - but it works as long as the differnces of  
%   %tangent angels are small => arclengths between pnts must be small  
%   if (abs(t(i) - t(i-1)) >= pi) 
%     t(i) = t(i) + 2*pi; 
%   end; 
% end;   
vec = [[0;1],diff(x,1,2)]; %diff does not account for the last vector that closes the boundary! 
len = [sqrt(sum(vec.^2,1))]; 
for i = 1 : n - 1 
  cosphi = vec(:,i)' * vec(:,i+1) / (len(1,i) * len(1,i+1)); 
  phi(i) = acos(cosphi); 
end; 
 
t = cumsum(phi); 
%----------------------------------------------------------------------- 
%function [a,E]=periodic(t) 
%FEATURE extract feature vector from turning funciton for classification 
%  
%requests: 
%  t : turning function of shape 
%returns: 
%  a  : feature vector 
%transform turning function to periodic signal: 
n = length(t); 
rectangle = t - 2*pi/n * [1:n]; 
end 
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 TESTFFT.m  Returns the fourier transformation of test objects 

 
 
 
 
function [yc_test]= TESTFFT(test,net) 
% The classification of TEST set with the help of RBF. This function 
% computes the max absolute 
% The maximum absolute value of FFT of test ignores the phase angle. 
% The FFT value of TEST is normalized because to make them independent of 
% translation, scale and rotation. 
 
FFT_test = fft(test); 
abs_FFT_test = abs(FFT_test); 
max_abs_FFT_test = max(abs_FFT_test); 
norm_abs_FFT_test = abs_FFT_test/max_abs_FFT_test; 
y_test = sim(net,norm_abs_FFT_test) 
yc_test = vec2ind(y_test) 
 
return 
 
 
 
 
TESTTURNING.m Returns turning function to a periodic signal 

 
function [n,X,fig] = TESTOBJECT(Test,fig) 
%shape plot shape from the turning function square 
 
n = length(Test); 
 
X = [0;0]; 
 
for c = 1 : n - 1 
  X(:,c+1) = X(:,c) + [cos(Test(c)); sin(Test(c))]; 
end; 
 
fig = fig + 1; 
figure(fig) 
plot(X(1,:),X(2,:),'k-'); 
axis equal; 
axis([-1,10,-1,10]); 
Xlabel('arclength');  
Ylabel('\theta');  
axis([1,32,-pi/18,2*pi]);  
 
label = {'0','PI/2','PI','3*PI/2','2*PI'};   
set(gca, 'YTick' ,2*pi/4*[0:4]); 
set(gca, 'YTickLabel' ,label); 
title ('Turning function of Test') 
 
%function [c,fig,X] = FEATUREsquare(X,fig) 
 
%transform turning function to periodic signal: 
n = length(X(1,:)); 
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X(1,:)= X(1,:) - 2*pi/n * [1:n]; 
 
 
%%%%%%%%%%%%%%%%%%%%%% 
%apply fourier transformation and strip contents over nyquist frequ. and 
%static content 
ftc = abs(fft(X(1,:))); 
ftw = ftc(1,2:ceil(n/2)+1); 
 
%return feature vector: 
c = ftw; 
% The figure of feature vector of TEST 
fig = fig + 1; 
figure(fig) 
bar([0:(n-1)/2],c); 
title('feature vector of Test'); 
 
% The figure of periodic signal of TEST 
fig = fig + 1; 
figure(fig) 
plot(X(1,:)); 
title ('PERIODIC SIGNAL of Test') 
 
 
return 
 
 
 
 
 
 

FFTscanner.m  Returns discrete fourier transformation of two-dimensional objects 

 

             
 
% FFT 
% computes the fast fourier transform of the data arrays 
 
function 
[net,Y,Yc,T,P,norm_abs_FFT_alpha_square_1,norm_abs_FFT_alpha_square_2,norm_abs_FFT_alpha_square_3
,norm_abs_FFT_alpha_square_4,norm_abs_FFT_alpha_circle_1,norm_abs_FFT_alpha_circle_2,norm_abs_FFT
_alpha_circle_3,norm_abs_FFT_alpha_circle_4,norm_abs_FFT_alpha_triangle_1,norm_abs_FFT_alpha_triangl
e_2,norm_abs_FFT_alpha_triangle_3,norm_abs_FFT_alpha_triangle_4,norm_abs_FFT_alpha_rectangle_1,norm
_abs_FFT_alpha_rectangle_2,norm_abs_FFT_alpha_rectangle_3,norm_abs_FFT_alpha_rectangle_4] = 
FFTscanner(square1,square2,square3,square4,circle1,circle2,circle3,circle4,triangle1,triangle2,triangle3,triangle
4,rectangle1,rectangle2,rectangle3,rectangle4) 
 
FFT_alpha_square_1 = fft(square1); 
FFT_alpha_circle_1 = fft(circle1); 
FFT_alpha_triangle_1 = fft(triangle1); 
FFT_alpha_rectangle_1 = fft(rectangle1); 
 
FFT_alpha_square_2 = fft(square2); 
FFT_alpha_circle_2 = fft(circle2); 
FFT_alpha_triangle_2 = fft(triangle2); 
FFT_alpha_rectangle_2 = fft(rectangle2); 
 
FFT_alpha_square_3 = fft(square3); 
FFT_alpha_circle_3 = fft(circle3); 
FFT_alpha_triangle_3 = fft(triangle3); 
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FFT_alpha_rectangle_3 = fft(rectangle3); 
 
FFT_alpha_square_4 = fft(square4); 
FFT_alpha_circle_4 = fft(circle4); 
FFT_alpha_triangle_4 = fft(triangle4); 
FFT_alpha_rectangle_4 = fft(rectangle4); 
 
% takes the absolute value of the data arrays 
 
abs_FFT_alpha_square_1 = abs(FFT_alpha_square_1); 
abs_FFT_alpha_circle_1 = abs(FFT_alpha_circle_1); 
abs_FFT_alpha_triangle_1 = abs(FFT_alpha_triangle_1); 
abs_FFT_alpha_rectangle_1 = abs(FFT_alpha_rectangle_1); 
 
abs_FFT_alpha_square_2 = abs(FFT_alpha_square_2); 
abs_FFT_alpha_circle_2 = abs(FFT_alpha_circle_2); 
abs_FFT_alpha_triangle_2 = abs(FFT_alpha_triangle_2); 
abs_FFT_alpha_rectangle_2 = abs(FFT_alpha_rectangle_2); 
 
abs_FFT_alpha_square_3 = abs(FFT_alpha_square_3); 
abs_FFT_alpha_circle_3 = abs(FFT_alpha_circle_3); 
abs_FFT_alpha_triangle_3 = abs(FFT_alpha_triangle_3); 
abs_FFT_alpha_rectangle_3 = abs(FFT_alpha_rectangle_3); 
 
abs_FFT_alpha_square_4 = abs(FFT_alpha_square_4); 
abs_FFT_alpha_circle_4 = abs(FFT_alpha_circle_4); 
abs_FFT_alpha_triangle_4 = abs(FFT_alpha_triangle_4); 
abs_FFT_alpha_rectangle_4 = abs(FFT_alpha_rectangle_4); 
 
% computes the maximal absolute value of the data arrays 
 
max_abs_FFT_alpha_square_1 = max(abs_FFT_alpha_square_1); 
max_abs_FFT_alpha_circle_1 = max(abs_FFT_alpha_circle_1); 
max_abs_FFT_alpha_triangle_1 = max(abs_FFT_alpha_triangle_1); 
max_abs_FFT_alpha_rectangle_1 = max(abs_FFT_alpha_rectangle_1); 
 
max_abs_FFT_alpha_square_2 = max(abs_FFT_alpha_square_2); 
max_abs_FFT_alpha_circle_2 = max(abs_FFT_alpha_circle_2); 
max_abs_FFT_alpha_triangle_2 = max(abs_FFT_alpha_triangle_2); 
max_abs_FFT_alpha_rectangle_2 = max(abs_FFT_alpha_rectangle_2); 
 
max_abs_FFT_alpha_square_3 = max(abs_FFT_alpha_square_3); 
max_abs_FFT_alpha_circle_3 = max(abs_FFT_alpha_circle_3); 
max_abs_FFT_alpha_triangle_3 = max(abs_FFT_alpha_triangle_3); 
max_abs_FFT_alpha_rectangle_3 = max(abs_FFT_alpha_rectangle_3); 
 
max_abs_FFT_alpha_square_4 = max(abs_FFT_alpha_square_4); 
max_abs_FFT_alpha_circle_4 = max(abs_FFT_alpha_circle_4); 
max_abs_FFT_alpha_triangle_4 = max(abs_FFT_alpha_triangle_4); 
max_abs_FFT_alpha_rectangle_4 = max(abs_FFT_alpha_rectangle_4); 
 
% the lower FFT values store the general information of the shape and the higher frequency 
% the smaller details.The maximum absolute value of FFT of test ignores the phase angle. 
% The FFT value of TEST is normalized because to make them independent of 
% translation, scale and rotation. 
 
norm_abs_FFT_alpha_square_1 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_1 
norm_abs_FFT_alpha_circle_1 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_1 
norm_abs_FFT_alpha_triangle_1 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_1 
norm_abs_FFT_alpha_rectangle_1 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_1 
 
norm_abs_FFT_alpha_square_2 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_2 
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norm_abs_FFT_alpha_circle_2 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_2 
norm_abs_FFT_alpha_triangle_2 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_2 
norm_abs_FFT_alpha_rectangle_2 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_2 
 
norm_abs_FFT_alpha_square_3 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_3 
norm_abs_FFT_alpha_circle_3 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_3 
norm_abs_FFT_alpha_triangle_3 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_3 
norm_abs_FFT_alpha_rectangle_3 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_3 
 
norm_abs_FFT_alpha_square_4 = abs_FFT_alpha_square_1/max_abs_FFT_alpha_square_4 
norm_abs_FFT_alpha_circle_4 = abs_FFT_alpha_circle_1/max_abs_FFT_alpha_circle_4 
norm_abs_FFT_alpha_triangle_4 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_triangle_4 
norm_abs_FFT_alpha_rectangle_4 = abs_FFT_alpha_triangle_1/max_abs_FFT_alpha_rectangle_4 
 
%classificationHere a classification problem is defined with a set of inputs P and class indices T. 
P = [norm_abs_FFT_alpha_square_1, norm_abs_FFT_alpha_square_2, norm_abs_FFT_alpha_square_3, 
norm_abs_FFT_alpha_square_4, norm_abs_FFT_alpha_circle_1, norm_abs_FFT_alpha_circle_2, 
norm_abs_FFT_alpha_circle_3, norm_abs_FFT_alpha_circle_4, norm_abs_FFT_alpha_triangle_1, 
norm_abs_FFT_alpha_triangle_2, norm_abs_FFT_alpha_triangle_3, norm_abs_FFT_alpha_triangle_4, 
norm_abs_FFT_alpha_rectangle_1, norm_abs_FFT_alpha_rectangle_2, norm_abs_FFT_alpha_rectangle_3, 
norm_abs_FFT_alpha_rectangle_4]; 
 
% classes 
% There are inclusive 4 classes of objects 
T = ind2vec([1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4]); 
 
% create a network. Probabilistic neural networks are a kind of radial 
%basis network suitable for classification problems.  
net = newpnn(P,T) 
 
%Here the class indices are converted to target vectors,and a PNN is designed and tested. 
 
Y=sim(net,P) 
Yc=vec2ind(Y) 
return  
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6.3 Flow Diagram 
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7 Discussion 
 

     The one-dimensional data arrays performed with the help of newpnn does not give sufficient results 

for the classification because of the extremely susceptible of the network to noise. It is alos possible to 

make an interpretation of being grasped or not from the manipulator by looking at the plotted shape. 

How many times it is entwined, could be only decided from the shape of the object and periodical 

signal of turning funciton. The object distance information is also avaliable with the help of turning 

function. 

 

7.1 Future work 

 

Being recognized and grasped from a manipulator were performed with the help of MLP network. The 

other neural network methods must be used to overcome this recognition problem with the entwined 

or not entwined objects that have not constant boundary point information.  

     The two-dimensional data arrays problem can not be solved with the help of radial basis functions. 

The corrupted objects were not classified correctly. Therefore it will be useful to study out this 

problem with the help of the other neural networks.  

     The future work could be the implementation of hand-drawn objects in recognizing and grasping 

process. In order to make a sufficient classification, the other neural networks must be used 

performing with pnn networks. Since classification is sensitive to object boundary and linearity of 

spaces between drawn points. 
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