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Kurzfassung
Der durch Elektromigration verursachte Ausfall von Bauteilen ist eines der größten Probleme
bei Zuverlässigkeitfragen in der Mikroelektronik. Die fortwährende Miniaturisierung der
Verdrahtungsstrukturen führt zu größeren Stromdichten und höheren Temperaturen, welche
schlussendlich einen elektromigrationsbedingten Ausfall einleiten. Als Folge dessen stellt die
Elektromigration nach wie vor eine Herausforderung für die Entwicklung neuer Technologie-
stufen dar.

Mathematische Modellierung kann wesentlich zum Verständnis der durch Elektromigra-
tion bedingten Versagensmechanismen beitragen. Sie dient als wichtiges Werkzeug zur Er-
klärung verschiedener experimenteller Beobachtungen und bildet letztlich eine solide Grund-
lage für den Entwurf und die Herstellung zuverlässigerer Metallisierungen. Der Fokus dieser
Arbeit liegt in der Entwicklung eines für numerische Simulationen geeigneten, vollständig
dreidimensionalen Elektromigrationsmodells. Zur Erfüllung dieser Aufgabe wird eine detail-
lierte Studie früherer Modelle durchgeführt und deren wichtigsten Stärken und Schwächen
werden identifiziert. Basierend auf dieser Studie ist ein vollständiges Modell entwickelt
worden, das den elektromigrationsbedingten Materialtransport mit elektrothermischen und
mechanischen Fragestellungen in einem allgemeinen Rahmen verbindet. Material- und Korn-
grenzen werden dabei als unabhängige Pfade hoher Diffusivität behandelt. Eine sorgfältige
Analyse der Fehlstellendynamik an Korngrenzen wird durchgeführt und ein neues Modell für
Korngrenzen vorgeschlagen. Die Modellgleichungen werden mit Hilfe der Finiten Elemente
Methode numerisch gelöst. Die Diskretisierung wird detailliert erläutert und die Softwareim-
plementierung des zugehörigen Systems algebraischer Gleichungen in systematischer Weise
beschrieben.

Elektromigration wird für realistische, dreidimensionale Dual-Damascene-Verdrahtungs-
strukturen aus Kupfer simuliert. Zuerst wird die Korrektheit der Implementierung durch
Vergleich der Simulationsergebnisse mit den zur Verfügung stehenden analytischen Lösungen
sichergestellt. Danach werden die Auswirkungen mechanischer Belastung auf den durch Elek-
tromigration hervorgerufenen Materialtransport präsentiert und deren Einfluss auf die ex-
trapolierte Lebensdauer diskutiert. Zusätzlich hat auch die Mikrostruktur große Auswirkun-
gen auf die elektromigrationsbedingte Verteilung der Bauteillebensdauer, weshalb diese Ab-
hängigkeit ebenfalls analysiert wird. Schließlich werden mehrere Simulationen durchgeführt,
um die statistischen Eigenschaften der Lebensdauerverteilung als Funktion der Kupferkorn-
größe zu erhalten. Dabei stellt sich heraus, dass die Berücksichtigung der Pfade hoher Dif-
fusivität und der Mikrostruktur im Rahmen der Modellierung eine signifikante Verbesserung
der Modellqualität erlaubt. Die Simulationsergebnisse zeigen, dass das vorgeschlagene Modell
in der Lage ist, einige der häufigsten experimentellen Beobachtungen der elektromigrations-
bedingten Materialverarmung zu erklären und zu reproduzieren, was die Vorhersagequalität
des entwickelten Werkzeugs untermauert.
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Abstract

Electromigration induced failure is one of the main reliability issues for the microelectronics
industry. The continuous scaling of the interconnect dimensions leads to higher operating
current densities and temperatures, which accentuates the electromigration failure. As a con-
sequence, electromigration still poses challenges for the development of the new technological
nodes.

Mathematical modeling can significantly contribute to the understanding of the electro-
migration failure mechanisms. It has become an important tool for explaining several exper-
imental observations and, ultimately, can provide a stronger basis for design and fabrication
of reliable metallizations. In the scope of this work the focus is put on the development of
a fully three-dimensional electromigration model which is suitable for numerical simulations.
To accomplish this task, a detailed study of previous models is carried out, and their main
strengths and shortcomings are identified. Based on this study, a complete model which con-
nects electromigration induced material transport with the electro-themal and the mechanical
problem in a general framework has been developed. Material interfaces and grain boundaries
are treated as independent fast diffusivity paths. A careful analysis of the vacancy dynamics
in grain boundaries is performed, and a new grain boundary model is proposed. The model
equations are numerically solved using the finite element method. Their discretization is pre-
sented in detail, and the implementation of the corresponding system of algebraic equations
in a software tool is described in a systematic way.

Electromigration simulations are carried out in realistic three-dimensional copper dual-
damascene interconnect structures. The correctness of the implementation is verified by
comparing the simulation results with the available analytical solutions. The effect of me-
chanical stress on electromigration induced material transport is presented, and its impact
on the lifetime extrapolation is discussed. Since the microstructure has a major influence
on the electromigration failure, its effect on the electromigration lifetimes’ distribution is
analyzed. Several simulations are carried out in order to obtain the statistical properties of
the electromigration lifetimes as a function of the the copper grain size statistics. The intro-
duction of fast diffusivity paths and microstructure into the modeling framework represents
a significant improvement of the model capabilities. The simulations results show that the
proposed model is able to explain and reproduce some of the most common experimental
observations of electromigration induced voiding, and demonstrate the predictive capability
of the developed tool.
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Resumo

As falhas causadas por eletromigração são um dos principais problemas de confiabilidade para
a indústria de microeletrônica. A cont́ınua redução das dimensões das interconexões resulta
em elevadas densidades de corrente e temperaturas de operação, acentuando a ocorrência de
tais falhas. Consequentemente, o fenômeno da eletromigração ainda impõe desafios para o
desenvolvimento dos novos nós tecnológicos.

A modelagem matemática pode contribuir de maneira significante para o entendimento
dos mecanismos que levam às falhas por eletromigração. Ela tem se tornado uma ferramenta
importante para explicar diversas observações experimentais, gerando um ńıvel de conheci-
mento melhor para o projeto e fabricação de metalizações mais confiáveis. O objetivo deste
trabalho é desenvolver um modelo tridimensional de eletromigração apropriado para simu-
lações numéricas. Para alcançar este objetivo, foi realizado um estudo detalhado dos modelos
existentes e suas principais vantagens e desvantagens foram identificadas. Baseando-se neste
estudo, um modelo completo, o qual conecta o transporte de material devido à eletromigração
com os problemas elétrico, térmico e mecânico, foi desenvolvido. As interfaces formadas entre
os diferentes materiais e contornos de grão foram independentemente tratadas como regiões
de rápida difusão. Além disso, uma análise detalhada da dinâmica das vacâncias nos con-
tornos de grão foi conduzida. Dessa forma, um novo modelo para os contornos de grão foi
proposto. As equações do modelo foram resolvidas numericamente usando-se o método dos
elementos finitos. A discretização das equações foi apresentada detalhadamente e a imple-
mentação do sistema de equações resultante em um software de simulação foi descrita de
maneira sistemática.

Simulações tridimensionais de eletromigração foram conduzidas em interconexões que
representam de forma satisfatória as interconexões de cobre reais. A implementação foi veri-
ficada comparando-se os resultados obtidos através das simulações numéricas com as soluções
anaĺıticas existentes. O efeito do estresse mecânico no transporte de material causado pela
eletromigração e seu impacto na extrapolação do tempo de vida das interconexões foi discu-
tido. Uma vez que a microestrutura tem grande influência nas falhas devido à eletromigração,
o seu efeito na distribuição estat́ıstica dos tempos de vida foi analisado. Por isso, várias simu-
lações foram executadas para se obter as propriedades estat́ısticas dos tempos de vida em
função da distribuição estat́ıstica dos tamanhos dos grãos de cobre. A introdução das regiões
de rápida difusão e da microestrutura representa uma melhoria significante do modelo. Os
resultados das simulações mostram que o modelo proposto é capaz de explicar e reproduzir
algumas das observações experimentais mais comuns no que se refere à formação de cavidades
e demonstram a capacidade de predição do sofware desenvolvido.
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Chapter 1

Introduction

When a sufficiently strong electric current passes through an interconnect metal, a diffusive
motion of atoms and/or vacancies takes place in a direction along or opposite to the current
flow. This phenomenon is called electromigration (EM) [1]. Although it had already been
observed, EM became of practical interest in the late 1960’s, when semiconductor companies
observed EM failures in integrated circuits (ICs). Since then, failure due to EM has been one
of the key issues regarding reliability in ICs.

The main goal of device scaling is to increase the operating speed. However, the inter-
connects pose a significant delay to signal propagation in a chip [2]. Therefore, device scaling
should be accompanied by improvements in the interconnect operation. In order to reduce the
delay, low interconnect resistance and capacitance is necessary, which demands high conduc-
tivity metals and interlayer materials with low permittivity. At the same time, efforts have
been made in developing new integration processes and investigating materials which produce
adequate characteristics and, ultimately, reduce the EM effect. These factors contributed to
the substitution of aluminum as interconnect metal to aluminum–copper alloys, and later
to pure copper [3]. Copper has a much higher electrical conductivity than aluminum and,
moreover, is more resistant against EM failures. The introduction of copper metallizations
posed several challenges which ultimately resulted in the damascene fabrication process [4].

According to the International Technology Roadmap for Semiconductors (ITRS) 2010 [5],
the copper dual-damascene technology process will continue to be used for fabrication of on-
chip interconnects for the next technological nodes. The metal wiring pitch in integrated
logic circuits is 64 nm for the 32 nm node, and will be 44 nm for the 22 nm node. At the same
time, the expected operating current densities can reach 2.11 MA/cm2 and 2.80 MA/cm2,
respectively.

The interconnect structure is arranged in several levels of metallization with thousands
of interlevel connections such as vias, so that the density of on-chip interconnects has in-
creased from generation to generation of modern integrated circuits. This requires a decrease
in both interconnect width and thickness and, consequently, the operating current densities
increase. Due to the continuous shrinking of interconnect dimensions, high current densi-
ties and temperatures are unavoidable. Therefore, electromigration failure is likely to be
even more problematic for the next generations of ICs, and the prediction of the long term
interconnect behavior is a major necessity.
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1.1 Dual-Damascene Fabrication Process

In a damascene process the dielectric is first deposited onto the substrate, which is then
patterned and filled by metal deposition. The dual-damascene process is characterized by
patterning the vias and trenches, in such a way that the metal deposition fills both at the
same time [4, 6]. Figure 1.1 depicts the process steps for fabricating a typical copper dual-
damascene interconnect.

First, the dielectric is deposited and patterned using standard lithography and etching
techniques to form the via and trench. This is followed by the deposition of a diffusion barrier
which is typically a Ta-based layer. The diffusion barrier layer has two major functions. First,
it avoids that Cu atoms migrate into the interlevel dielectric (ILD), and second, it provides

(a) (b)

(c) (d)

(e)

Figure 1.1: Copper dual-damascene fabrication process. (a) Via patterning. (b) Via and
trench patterning. (c) Barrier layer deposition and Cu seed deposition. (d)
Cu electroplating and excess removal by chemical mechanical polishing. (e)
Capping layer deposition.
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good adhesion to Cu [6]. After the deposition of the diffusion barrier, a thin Cu seed is
deposited by physical vapor deposition (PVD) followed by the electroplating of Cu, which
fills the via and trench. The excess Cu is removed by a chemical mechanical polishing process
(CMP) and an etch stop layer (also called capping layer), typically SiN based, is deposited.
In this way, the complete interconnect structure can be produced by repeating these process
steps for each level of metallization.

1.2 The Electromigration Failure

When an electric current passes in a conductor, atoms are driven towards the anode due to
the momentum transfer from the electrons to the atoms [1]. Due to the blocking boundary
imposed by the barrier layer in Cu dual-damascene lines, there is an accumulation of atoms
at the anode side and, at the same time, a depletion at the cathode end. Atom accumulation
at the anode leads to the development of a compressive stress, while the depletion of atom at
the cathode yields a tensile stress. This stress development can results in two distinct failures.
If the compressive stress is sufficiently high and the surrounding dielectrics are weak, metal
extrusion may form, causing short circuits [7]. On the other hand, a sufficiently high tensile
stress leads to void formation, which can grow and span the line or via, so that the line
resistance significantly increases and the interconnect fails [8]. Normally, the critical stress
for extrusion formation is larger than that for void formation, and the latter is the dominant
failure mechanism.

Electromigration induced failures normally present two distinctive phases. In the first one
no electromigration generated voids can be observed in the interconnect and no significant
resistance change of the line is detected [9]. This phase lasts until a void is nucleated and
is visible in scanning electron microscopy (SEM) pictures. Then, the second phase starts,
where the void can evolve in several different ways, until it finally grows to a critical size
causing a significant resistance increase or completely severing the interconnect line [10, 11].
Thus, the total electromigration lifetime is the sum of the time for a void to nucleate plus
the time for the void to develop.

Figure 1.2 shows two typical failures in a copper dual-damascene line [12]. In the first case
the void nucleates right under the via, so that the failure tends to occur soon after nucleation.
Thus, the time to failure is dominated by the nucleation period. In turn, if the void nucleates
away from the via, the void has first to migrate towards the via, where it then grows to cause
the failure. Therefore, the lifetime is dominated by the void evolution phase [12].

Figure 1.3 shows the electromigration lifetime, normalized to the expected lifetime for
the 1µm technology node, as a function of the interconnect cross sectional area [13, 14]. As
the dimensions of the interconnects decrease, the electromigration lifetime also decreases,
because the reduction of via and line dimensions requires a smaller critical void to cause the
failure [13]. Moreover, as the line width is reduced beyond 100 nm, the growth of copper
grains during the line fabrication is also reduced, leading to smaller grain sizes [15, 16, 17].
Consequently, the interconnect line changes from a bamboo-like to polycrystalline structure,
so that grain boundary diffusion provides an additional path for mass transport [18]. An-
other contribution for shorter electromigration lifetimes comes from the introduction of low-k
interlevel dielectrics [2, 12].
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(a)

(b)

Figure 1.2: Failures in a damascene line. (a) Failure dominated by the void nucleation
phase. (b) Failure dominated by void nucleation migration and growth.
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Figure 1.3: EM lifetime variation as a function of the interconnect dimensions. This curve
is calculated based on equation (1.13).
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1.2.1 Experimental Lifetime Estimation

EM tests are carried out using simple structures and stress conditions which accelerate the EM
failure. This can be performed by stressing an interconnect line at significantly higher current
density and temperature than those found at use condition. Typically, current densities in
the order of 1 to 10 MA/cm2 are used, and the test temperature lies in the range from 170
to 350 ◦C [19]. Under such conditions, interconnect failure is obtained much faster than it
would be possible at use conditions. An important issue here is that the results from the
EM experiments have to be related to the real operating conditions, which means that the
lifetimes obtained from the accelerated tests have to be extrapolated to the use conditions. In
addition, only a limited number of interconnect structures are tested, whereas often hundreds
of millions of interconnects exist on a chip. Therefore, the extrapolation needs to take into
account, how to assess on-chip reliability from the EM sample structures.

In copper interconnects EM failures are primarily caused by void growth at the cathode
end of the line [20]. As the void grows, the electric current is forced to pass through the
highly resistive barrier layer, which leads to an increase of the line resistance. When this
increase reaches a given threshold value, the line is considered to have failed. In this way,
the EM lifetime of a given interconnect structure is determined by monitoring its resistance
change.

Due to the statistical character of EM lifetimes, it is necessary to carry out EM exper-
iments on a number of test structures. The lifetimes obtained from these experiments are
statistically analyzed and regularly presented in probability plots following a certain distribu-
tion which is characterized by a mean time to failure (MTF) and standard deviation (σ) [21].

EM lifetimes are normally described using a lognormal distribution [22]. However, it has
been discussed whether this choice is the most appropriate one [23], and it is argued that
EM lifetimes are more correctly described by a multi-lognormal distribution. This has been
recently confirmed by several EM experiments [8, 24, 25]. It should be pointed out that the
understanding of the electromigration lifetime distribution is crucial for the extrapolation of
the times to failure obtained empirically from accelerated tests to real operating conditions,
as performed by a modified form of the Black equation [19, 22].

1.2.2 The Impact of Material Interfaces

As show in Figure 1.1, the copper line is completely embedded in a barrier layer and in a
capping layer in the dual-damascene technology. EM tests have shown that the quality of
these interfaces is of crucial importance for the EM lifetimes [26, 27, 28, 29]. Therefore, since
the introduction of copper interconnects, their surface and interface EM properties have been
extensively studied.

The adhesion between the copper and the surrounding layers is significantly influenced by
the choice of processes and materials, so that several combinations have been investigated [30].
Good adhesion is characterized by a tightly bonded interface, which reduces the diffusion
along this path and, consequently, increases EM lifetimes. In contrast, the weak bonding
between the copper and surrounding layers forms a poorly adhering interface, which leads to
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higher diffusivities. This increases material transport prior to void nucleation and also speeds-
up void evolution and growth, resulting in shorter EM lifetimes. Moreover, the critical stress
for void nucleation can be significantly lower at sites of weak adhesion.

The interface between copper and the capping layer is considered to be the dominant
diffusivity path in dual-damascene interconnects. This has been confirmed by in situ SEM
experiments which have shown that void nucleation, migration, and growth occur mainly
along the copper/capping layer interface [31, 32, 33]. The properties of this particular inter-
face play, therefore, a key role for the electromigration failure.

SiN and SiC based films are widely used as capping materials for copper interconnects.
One of the major tasks during process development is to find capping layer materials, as
well as pre-clean and deposition techniques that yield good interface adhesion to obtain
adequate EM performance. Recently, Zschech et al. showed that the bonding strength of the
copper/capping layer interface can be increased by using a metallic coating, such as CoWP,
before the SiN capping layer deposition [28]. For such a structure they measured an EM
activation energy of 1.9 – 2.4 eV, which is much higher than the 0.9 – 1.2 eV typically obtained
for the standard SiN capping layers. This significant reduction in material transport, and also
reduced void growth rates, is explained by a Cu/CoWP interface presenting an epitaxy-like
transition (i.e. non-interrupted array of parallel lattice planes) between the copper and the
capping layer, formed by metallic Cu-Co bonding and a highly ordered interface. Similar
results were obtained by Yan et al. using Cu3Sn coatings [27].

Strengthening the copper/capping layer interface is especially valuable in narrow lines,
where due to the bamboo copper grain structure the activation energy for failure is close to
the bulk value. This results in a very large EM lifetime. However, as the copper grain size
decreases with the line width beyond the 65 nm node, and the lines present again polycrys-
talline structure, grain boundary diffusion becomes more important and is likely to dominate
the failure mechanism [18].

Regarding the barrier layer, tantalum is the most commonly used material. A good
adhesion has been observed between copper and tantalum, so that a high activation energy,
about 2.1 eV has been reported [19]. Nevertheless, some works have found relatively low
activation energies, approximately 1.0 eV, for this interface [13, 34]. This can be explained
by the oxidation of the copper surface, so that the adhesion between the oxidized copper and
tantalum layer is reduced, becoming a path for rapid diffusion.

From these observations, one can see that the quality of interfaces in copper interconnects
is very sensitive to process variations. Any oxygen which is allowed to diffuse to the copper
surface will reduce the adhesion and lead to increased diffusion, consequently, reducing the
EM lifetime. Poor cleaning practice prior to the application of the capping layer has also
been found to degrade the interconnect lifetime [35].

1.2.3 Effect of Microstructure

The microstructure of conductor lines depends on many parameters, such as the core material
deposition technique, the barrier layer material and its deposition technique, the copper seed
layer deposition technique and thickness, and the line width. As an example, for a given line
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width, the grain size may differ significantly, when the copper deposition technique changes
from chemical vapor deposition (CVD) to electroplating [36].

In polycrystalline lines the network of grains provides grain boundaries running parallel to
the electric current, so that grain boundary diffusion may significantly contribute to material
diffusion. Moreover, the microstructure provides grain boundary triple points, which are sites
of flux divergence, where voids are seen to nucleate. Grain boundary diffusion was certainly
the dominant transport mechanism in Al interconnects. For Cu lines, however, this is not so
evident, because diffusion along interfaces appears as the dominant mechanism. Nevertheless,
it has been shown that larger Cu grains lead to longer EM lifetimes compared to lines with
smaller grains [36].

The microstructure influence on EM failure tends to be reduced as the copper grain
sizes are comparable to the line width. In this case, the interconnect presents a bamboo-like
structure and, therefore, grain boundaries cannot provide a continuous path for fast diffusion.
However, local variations of the microstructure affect Cu diffusivity along the copper/capping
layer interface, which dependens on the orientation of individual grains. In this way, the
difference in interfacial diffusion of neighboring grains leads to flux divergences located at the
intersection of the copper/capping layer interface with the grain boundary formed by these
grains.

From the above observation, it is argued that the texture of the line can have a significant
impact on the electromigration behavior [37]. It was observed that lines with a stronger
(111) texture have longer EM lifetimes [36, 38]. This is attributed to the lower Cu diffusiv-
ity at (111) oriented grains in comparison to (100) and (110) surfaces [39]. Moreover, the
texture distribution is seen to have an important effect for both void nucleation [40, 41] and
evolution [42].

Fayad et al.[43] showed that the lognormal standard deviation of EM lifetimes can be
explained by the dependence of the diffusion along the copper/capping layer interface on the
orientation of the grains. Moreover, copper grain sizes seem to follow lognormal distributions
in typical dual-damascene process technology [20]. Therefore, it has been argued that the
lognormal distribution of EM lifetimes is related to microstructure features [44].

1.3 Empirical and Semi-Empirical Models

As already mentioned EM lifetimes obtained under accelerated tests have to be extrapolated
to operating conditions. This extrapolation has to properly take into account relevant EM
physical parameters and, therefore, it is normally carried out based on empirical and semi-
empirical expressions.

1.3.1 Black’s Equation

Based on a very simple model, Black [45, 46, 47] was the first to derive an expression for the
time to failure of a metal line subjected to electromigration. He considered that the mean
time to failure, MTF , is inversely proportional to the rate of mass transport, Rm,

MTF ∝ 1

Rm
, (1.1)
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and that the rate of mass transport is proportional to the momentum transfer between
thermally activated ions and conducting electrons,

Rm ∝ ne∆pNa, (1.2)

where ne is the density of conducting electrons, ∆p is the momentum transfer from the
electrons to the metal atoms, and Na is the density of thermally activated ions. Furthermore,
assuming that both the electron density as well as the momentum transfer are proportional
to the current density, j,

ne ∝ j, ∆p ∝ j, (1.3)

and that the activated ions follow an Arrhenius law

Na ∝ exp (−Ea/kT ) , (1.4)

the mean time to failure is modeled as

MTF =
A

j2
exp

(

Ea

kT

)

, (1.5)

where A is a constant which comprises the material properties and the geometry of the
interconnect [45, 47], Ea is the activation energy, T is the temperature, and k is Boltzmann’s
constant. It was observed that not all experimental results followed (1.5), but they could
be fitted by allowing a variable current density exponent, n, which can be experimentally
determined. Therefore, Black’s equation was modified to [48]

MTF =
A

jn
exp

(

Ea

kT

)

. (1.6)

It is interesting to note that the original equation (1.5) predicted a failure time propor-
tional to the inverse square of the current density, even though mass transport due to elec-
tromigration had been shown to be linearly dependent on the current density [1]. This issue
was discussed by several authors [48, 49], however, the explanation for the square dependence
was elucidated only several years later, when various theoretical works [50, 51, 52, 53, 54, 55]
considerably contributed to a better understanding of the electromigration behavior. An
exponent close to 1 indicates that the lifetime is dominated by the void growth mechanisms,
i.e. the time for a void to grow and lead to failure represents the major portion of the life-
time [51, 52], while a value close to 2 indicates that void nucleation is the dominant phase of
the electromigration lifetime [50, 53, 54, 55].

Since equation (1.6) connects the EM time to failure with the material transport mech-
anism via the activation energy parameter, and the current density dependence via the ex-
ponent n. Thus, these parameters can be experimentally determined from the accelerated
tests. Taking the logarithm of (1.6) yields

lnMTF = lnA− n ln j +
Ea

kT
. (1.7)

Testing an interconnect at several temperatures, the mean time to failure can be plotted as
a function of the temperature, as shown in Figure 1.4(a). For a constant current density,
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Figure 1.4: Extraction of activation energy and current density exponent from EM tests.
(a) Activation energy calculation. (b) Current density exponent determination.

(1.7) shows that the logarithm of the mean time to failure varies linearly with the inverse of
temperature, therefore, the activation energy can be extracted from the measurement of the
angular coefficient in Figure 1.4(a). The current density exponent n can be determined in
a similar way. Varying the current density and keeping the test temperature constant, the
coefficient angular of the plot lnMTF versus ln j determines the current density exponent,
as shown in Figure 1.4(b).

This method of parameter extraction together with equation (1.6) has been used for
lifetime estimation and extrapolation to operating conditions for 40 years now. However, in
a recent publication Lloyd [56] discussed this application of the modified equation (1.6) and
concluded that it may lead to significant errors in the lifetime extrapolation. These errors arise
from the assumption that the fitting parameters A, Ea, and n obtained under accelerated tests
are also valid at real operating conditions, so that they can be directly applied for the lifetime
extrapolation. As Lloyd [56] shows, the experimental determination of the above parameters
does not consider important additional temperature and also pre-existing stress dependences,
which yields incorrect parameter values and, consequently, lifetime extrapolation.

Black’s equation provides useful insight into electromigration failure, however, it does
not allow a thorough understanding of the underlying physics related to the electromigration
behavior for which more sophisticated physically based models are required.

1.3.2 Resistance Increase and Void Growth

EM experiments normally use a given resistance increase as failure criterion. For a void
spanning the entire cross sectional area of a line, the total resistance of a damascene line, as
shown in Figure 1.5, is given by

R =
ρbarrier∆l

Abarrier
+
ρCu(L− ∆l)

ACu
, (1.8)

where ρbarrier is the electrical resistivity and Abarrier is the cross sectional area of the barrier
layer, ρCu is the electrical resistivity and ACu is the cross sectional area of the copper line,
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Figure 1.5: Void growth in a single-damascene copper interconnect.

L is the line length, and ∆l is the length of the void. Thus, this equation relates resistance
increase with void size. In turn, void size is connected to mass transport, which is expressed
in the form [57]

Ja = Cavd = Ca
δ

h

Da

kT
Z∗eρj, (1.9)

where Ca is the atomic concentration, vd = ∆l/∆t is the drift velocity, δ is the width of the
interface which controls mass transport, h is the line height, Da is the atomic diffusivity of the
interface which dominates the EM transport, Z∗ is the effective valence, e is the elementary
charge, ρ is the electrical resistivity, and j is the current density.

The atomic flux can also be written as [22]

Ja =
Ca∆V

ACu∆t
, (1.10)

where ∆V is the change of the void volume in a time ∆t. Combining (1.9) and (1.10) yields

∆t =
hkT

δDaZ∗eρjACu
∆V, (1.11)

so that a given test time t is related to the void volume Vvoid,

t =
hkT

δDaZ∗eρjACu
Vvoid. (1.12)

Equation (1.12) is commonly used for estimation of the void growth time. In turn, a
critical void volume is related to the line resistance according to (1.8). Thus, the time to
failure for a given resistance increase criterion can be determined.

An interesting application of such an approach was performed by Hauschildt et al. [20, 22].
For a void spanning the entire line width, w, and assuming a rectangular void shape, the void
volume becomes Vvoid = wAvoid, and (1.12) yields

t =
whkT

δDaZ∗eρjACu
Avoid, (1.13)

where Avoid is the area of the void, which can be measured using SEM pictures. EM tests
were then carried out and stopped after a given test time (called t-based by the authors) or
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after a certain resistance increase (R-based). In both cases, the void area mean value and
standard deviation were determined. For the R-based tests the mean time to failure MTF
can be determined which, in turn, can be used for the t-based experiments. Finally, using
the void area statistical distribution of both tests and applying (1.13) a new distribution is
obtained following [20, 22]

t =
AR−based

At−based
MTF. (1.14)

Hence, once the statistics of the void area distribution for both test types is known, the
distribution of the EM lifetimes can be estimated.

Equation (1.9) is also commonly used to extract the diffusivity from void drift experi-
ments [57]. The drift velocity of the void boundary in Figure 1.5 is

vd =
δ

h

Z∗Da

kT
eρj =

∆l

∆t
, (1.15)

which for a given test time ttest with a corresponding void length lvoid can be rearranged as

Z∗Da =
hkT

δeρj

lvoid

ttest
. (1.16)

Since Da can be expressed by an Arrhenius relationship, the activation energy for diffusion
can be extracted from a plot ln(Z∗Da) versus 1/kT [38].

1.3.3 EM Lifetime Extrapolation

As already pointed out, the lognormal distribution generally provides a good fit to EM
lifetimes [22]. The mean time to failure and the standard deviation of a lognormal distribution
are calculated, respectively, by

lnMTF =
1

N

N
∑

i=1

lnTTFi, (1.17)

and

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(lnTTFi − lnMTF )2, (1.18)

where TTFi is the time to failure of the i-th test structure and N is the number of test
structures. The cumulative failure frequency of the i-th structure is given by [19]

hi =
i− 0.3

N + 0.4
, (1.19)

which is then sorted in ascending order of failure times and presented in a probability plot.

The probability density function (PDF ) of the logonormal distribution has the form

PDF (t) =
1

σt
√

2π
exp

[

−(ln t− lnMTF )2

2σ2

]

, (1.20)
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and the corresponding cumulative distribution function CDF ,

CDF (t) =

∫ t

0
PDF (τ) dτ = Φ

(

ln t− lnMTF

σ

)

, (1.21)

which represents the probability of failure until some defined time t. Here, Φ is the integral
of the Gaussian function,

Φ(x) =
1√
2π

∫ x

−∞

exp(−y
2

2
) dy. (1.22)

The EM lifetime extrapolation from accelerated tests to operating conditions is based on
Black’s equation (1.6), and is given by [19, 22]

TTFoper = MTFtest

(

jtest
joper

)n

exp

[

Ea

k

(

1

Toper
− 1

Ttest

)

+ Φ−1(s)σ

]

, (1.23)

where s is the cumulative failure percentage accepted at the real operating condition and
Φ−1 is the inverse function of Φ. The last term in (1.23) is necessary to extrapolate the 50%
cumulative failure of the accelerated test to the very small failure percentiles (about 0.01%)
allowed under operating conditions [20].

Note that this extrapolation procedure has an exponential dependence on the standard
deviation of accelerated lifetimes, which might dominate the failure extrapolation over the
mean time to failure. Therefore, in order to increase the interconnect lifetime at use condi-
tions, it is necessary to increase the mean time to failure as well as to reduce the standard
deviation (Φ(s)−1 < 0 for very small failure percentiles s).

1.4 TCAD for Electromigration Simulation

Since the late 1960s, several models have been proposed to describe electromigration. Mathe-
matical modeling can significantly contribute to the understanding of EM failure mechanisms.
It is an important tool for explaining several experimental observations and, ultimately, it
can provide an improved basis for design and fabrication of reliable metallizations. The main
problem is that EM is influenced by a wide diversity of physical phenomena and depends on
a large number of intrinsic and extrinsic effects. Moreover, the complex interconnect geome-
tries and technological process related features of modern interconnects, such as a typical
dual-damascene line, make modeling even more challenging.

Several of the available models are based on simplifying assumptions, so that analyti-
cal solutions can be obtained. However, as the development and improvement of different
experimental techniques has allowed a deeper analysis of the EM failure, the complexity
of the models has gradually increased, in order to be able to reproduce these experimental
observations. Such complex models cannot be analytically solved and, therefore, numerical
solutions are now required. At the same time, the development of computational methods
and resources has allowed to model complex systems and carry out numerical simulations in
an efficient way. Thus, the use of TCAD (Technology Computer-Aided Design) tools for EM
simulation in interconnect lines has become more popular.
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As already mentioned, EM failures can normally be described by a void nucleation and a
void evolution phase. Since each of these phases are related to different physical phenomena,
it is convenient to treat them separately. A schematic design of such a TCAD tool for EM
simulation is then shown in Figure 1.6.

Void Nuclation

No Yes

No

Yes

Void Evolution

Mesh Readaptation

Failure Criterion?

Simulation Start

Electro−thermal Problem

Mechanical Stress Problem

Initial Mesh Adaptation

Void Evolution Model

Electric Resistance Calculation

Simulation End

Void is Nucleated?

Electro−thermal Problem

Vacancy Dynamics Problem

Figure 1.6: Schematic design of a TCAD tool for EM simulation.

1.5 Outline of this Work

In the scope of this work, the focus is put on the development of a fully three-dimensional
continuum EM model which is suitable for implementation in a TCAD tool and for numerical
simulations. In this way, it is possible to study the EM behavior in realistic three-dimensional
interconnect structures. This demands a careful study of the available models, so that their
main strengths and, at the same time, their main shortcomings can be identified. Based on
this analysis, one is able to extend and further improve these models by taking into account
the most relevant effects for EM simulation.

In Chapter 2 the physical phenomena related to electromigration are discussed, start-
ing with a basic derivation of the EM driving force based on a quantum mechanical theory.
Next, a general description of the available material transport paths along an interconnect
line is given. Then, a detailed analysis of several EM models is presented. First, the sim-
ple one-dimensional models are presented, which are followed by more advanced models as
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their complexity gradually increases. Then, the void nucleation condition followed by a void
evolution model is discussed.

In Chapter 3 the developed EM model is presented. First, the calculation of the electric
potential and temperature distribution in an interconnect line is described. This is followed by
a discussion of the material transport equations, where emphasis is put on the importance of
fast diffusivity paths on the EM induced transport. Also, a detailed derivation of the influence
of mechanical stress on the vacancy diffusivity is presented. Next, the connection between
EM induced transport and production of mechanical stress is discussed, which is followed by
the derivation of a new grain boundary and interface model. The mechanical deformation
equations are then presented. Finally, an overview of the complete set of equations, which
composes the EM model, is given.

Chapter 4 is devoted to the description of the numerical discretization of the physical
model. It starts with the presentation of basic concepts of the finite element method and
gives a general formulation for discretization of a three-dimensional domain with tetrahedrons.
Then, the numerical discretization of the set of equations which form the EM model derived
in Chapter 3 is presented in some detail. This is followed by the description of the TCAD
tool developed for EM simulations. Here, the implementation of the algebraic system of
equations is described, and all calculations are presented, which are performed during the
assembly process of the system of equations for each set of equations composing the model.

In Chapter 5 several simulation studies of electromigration are carried out, starting with
the presention of the set of material and simulation parameters which are required in the
simulation examples. The developed model and its implementation is verified by simulating
the EM transport in a simple interconnect line and comparing it with some of the analytical
solution of the models described in Chapter 2. This is then repeated with the inclusion of
mechanical stress into the calculations. Next, an original study of the effect of the mechanical
stress on the vacancy diffusivity and its effect on the total EM transport is performed. This
is followed by a discussion of the importance of fast diffusivity paths regarding the EM
failure development. Here, emphasis is put on the role of material interfaces as fast paths for
diffusion. Following, the effect of redundant vias in dual-damascene interconnect structures
is analyzed. Then, a detail discussion of the impact of the microstructure on EM failure is
given.

Finally, conclusions and suggestions for future works are presented in Chapter 6.
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Chapter 2

Physics of Electromigration

In this chapter the main physical phenomena related to electromigration are described. First,
the electromigration driving force as a result of the action of the “wind force” is derived.
Next, the role of the several paths for atomic migration in an interconnect line is discussed
and the material transport equations are presented. Several earlier continuum models of
electromigration are then described. Here, the impact of mechanical stress is explained. The
void nucleation condition is discussed in detail and, finally, the basic void evolution equations
and associated numerical methods are briefly presented.

2.1 The Electromigration Driving Force

Electromigration is the atomic migration caused by the action of microscopic forces on mobile
defects. These microscopic forces arise due to the local electric field and electron transport
in a conductor [58].

Typically, atomic diffusion is a random process, in the sense that there is no preference in
the direction of atomic jumps [59]. However, in the process of making an atomic jump, when
the atom is in the saddle point and it is out of the lattice equilibrium position, it is subject
to a larger electron scattering, in such a way that the momentum transfer from the electron
to the atom biases the atomic jump in the direction of the electron flow [60, 61]. The force
caused by this momentum transfer from the electron to the atom ion is the so-called “wind
force”.

Using a semiclassical ballistic model of scattering, Huntington and Grone [1] derived for
the wind force

~Fwind = −nρd

ndρ

m0

m∗
e ~E, (2.1)

where n is the density of conduction electrons, nd is the density of defects, ρd is the defect
resistivity, ρ is the metal resistivity, m0 and m∗ are the free-electron mass and effective
electron mass, respectively, e is the elementary charge, and ~E is the macroscopic electric
field. Upon deriving this equation, Huntington and Grone [1] assumed that the electrons are
scattered by the atomic defects alone and that the defects are decoupled from the lattice. A
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more general expression for the wind force is given by quantum mechanics theory [62]

~Fwind = −
∑

~k

δf(~k)

∫

|ψ(~k)|2∇~RV d~r, (2.2)

where V is the electron-point defect interaction potential and ψ(~k) is the electron scattering
wave function for an electron incident upon the defect complex. δf(~k) is the perturbed
electron distribution function caused by the applied field, which has the form [62]

δf(~k) = eτ ~E · ~v ∂f(ε)

∂ε
, (2.3)

where τ is the transport relaxation time, ~v = ~~k/m0 is the velocity, and ε is the energy of an
electron.

In addition to the wind force, there is a second contribution to the force acting on an atom
due to the direct action of the macroscopic electric field on the migration ion, the so-called
“direct force” [63]. Therefore, the total driving force acting on a metal ion can be written as
the sum of the direct force and the wind force,

~F = ~Fdirect + ~Fwind = (Zdirect + Zwind)e ~E, (2.4)

where Zdirect is the direct valence, Zwind is the wind valence. The direct valence Zdirect

is the nominal valence of the metal, when screening effects are neglected. However, much
controversy has appeared, when screening effects are taken into account [63]. In turn, Zwind

accounts for the magnitude and direction of the momentum exchange between the conducting
electrons and the metal ions.

It is convenient to write equation (2.4) as

~F = Z∗e ~E, (2.5)

where Z∗ = (Zdirect+Zwind) is called effective valence. In this way, the microscopic, quantum
mechanical effects of the electromigration phenomenon are comprised in the effective valence
parameter, which can be theoretically calculated and experimentally measured [1, 61, 62,
64, 65, 66, 67]. Table 2.1 shows the effective valence values for metals commonly used in
interconnect structures close to their melting temperature [67].

Table 2.1: Wind and effective valence values.

Metal Calculated Zwind Measured Z∗

Al -3.11 -3.4

Al(Cu) -5.29 -6.8

Cu -3.87 -5.0

Ag -3.51 -8.0

Ta 0.35 -
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Using the Nernst-Einstein relation, the drift velocity, ~vd, of metal atoms and the atomic
flux due to electromigration are calculated, respectively, by

~vd =
Da

kT
~F =

Da

kT
Z∗e ~E, (2.6)

and
~Ja = Ca ~vd =

DaCa

kT
Z∗e ~E =

DaCa

kT
Z∗eρ~j, (2.7)

where Da is the atomic diffusivity, Ca is the atomic concentration, k is Boltzmann’s constant,
and T is the temperature. The last equality in (2.7) is written in terms of the current density
~j, since ~E = ρ~j.

From (2.6) and (2.7) one can see that the sign of the effective valence determines the
direction of atomic migration. A negative value means that the atoms diffuse in a direction
opposite to the external electric field, or current density, i.e. in the same direction of the elec-
tron flow. Also, the mass flow is directly proportional to the current density and to the atomic
diffusion coefficient. This means that the total material transport due to electromigration is
a function of the available atomic diffusivity paths.

2.2 Diffusivity Paths

There are several possible diffusivity paths in an interconnect line, so the total material
transport is determined by the sum of the mass transport taking place along each of these
paths. Typically, the material flux through these paths is taken into account by setting an
effective diffusion coefficient of the form [4, 21]

Deff = Dl + fgbDgb + fiDi + fcDc, (2.8)

where Deff is the effective diffusivity, Dl, Dgb, Di, Dc are the diffusion coefficients for dif-
fusion through the lattice, grain boundary, material interfaces and dislocation cores (“pipe
diffusion”), respectively, and fgb, fi, fc denote the corresponding fractions of atoms diffusing
along these paths.

For a typical dual-damascene interconnect the effective diffusivity is given by [68, 69]

Deff = Dl + δgb
(w − d)

wd
Dgb + δi

2(w + h)

wh
Di + ρcacDc, (2.9)

where δgb, δi are the grain boundary and interfaces thicknesses, respectively, d is the average
grain diameter, ρc is the dislocation density, ac is the cross sectional area of a dislocation
core, w is the line width, and h is the line height. The diffusion coefficients are expressed by
the Arrhenius law

D = D0 exp

(

−Ea

kT

)

, (2.10)

where D0 is the pre-exponential factor and Ea is the activation energy. From these equations
one can see that the effective diffusivity is determined by the dominant diffusion mechanism,
i.e. by the fastest diffusivity path. The fastest diffusivity path depends on several factors, like
the temperature, the microstructure, and the quality of the interface between the metal and
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adjacent layers. Typically, lattice diffusion has the highest activation energy, being the slowest
path for mass transport, while the activation energy for diffusion along grain boundaries and
interfaces is somewhat lower. In general, surfaces have the lowest values, being the fastest
diffusivity paths.

Equation (2.9) allows to examine the relative influence of each path on the material
transport due to electromigration. For example, when the linewidth is larger than the grain
size, w > d, it is expected that grain boundaries form a continuous path in such a way that
grain boundary diffusion might significantly contribute to the total mass transport along the
line. On the other hand, interfacial diffusion becomes more and more important when the
linewidth is less than the average grain size, w < d (“bamboo-like structures”), since there is
no continuous path for atomic transport along grain boundaries.

For aluminum based interconnects, the activation energy for grain boundary diffusion is
significantly lower than that for interfacial diffusion. This is attributed to the formation of
a stable native oxide on the aluminum surface, which reduces the interfacial diffusivity [3].
Thus, for polycrystalline lines diffusion along grain boundaries is expected to be the dominant
transport mechanism. For a bamboo-like structure the interfacial diffusion becomes the
dominant path, as mentioned above.

In turn, the activation energy for interfacial diffusion in copper seems to be lower than
for diffusion along the grain boundary [13, 70]. Consequently, the interface between copper
and surrounding layers is the main diffusivity path, for both polycrystalline and bamboo
lines. Nevertheless, it has been suggested that there should be a significant contribution
of grain boundary diffusion to the total electromigration induced mass transport in copper
polycrystalline lines [18, 71]. This may become a key issue for the new technological nodes
(32 nm and below), since the copper lines are expected to have polycrystalline structures at
such small dimensions [18].

2.3 Electromigration Induced Material Transport

Although electromigration refers to the transport of material caused by the momentum trans-
fer from conducting electrons to metal atoms [1], the total atomic migration is influenced
by other physical mechanisms. Electromigration constitutes a diffusion-convection problem,
where atomic transport along the interconnect line occurs due to a combination of several
driving forces. Since the atomic migration occurs via a vacancy exchange mechanism, the
material transport can be, in general, described in terms of vacancies as

~Jv =
DvCv

kT

(

∇µv + |Z∗|eρ~j
)

. (2.11)

~Jv is the vacancy flux, Dv is the vacancy diffusivity, Cv is the vacancy concentration, and µv

is the chemical potential of vacancies.

In sites of flux divergence vacancies can accumulate or vanish depending on the sign of
the divergence, and the material balance is given by the usual continuity equation

∂Cv

∂t
= −∇ · ~Jv +G, (2.12)
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where G represents a generation or annihilation term.

Equations (2.11) and (2.12) are the basic continuum equations which describe the total
mass transport along an interconnect line due to electromigration and accompanying driving
forces.

The model proposed by Shatzkes and Lloyd [50] was the first that rigorously derived the
interconnect lifetime with an inverse square dependence on current density. Considering only
the influence of diffusion and electromigration on the vacancy flux, the continuity equation
(2.12) along the interconnect length direction can be written as

∂Cv

∂t
= Dv

∂2Cv

∂x2
− Dv |Z∗|eρj

kT

∂Cv

∂x
, (2.13)

where Dv is the vacancy diffusivity, Z∗ is the effective charge number, e is the elementary
charge, ~E is the electric field, Q∗ is the heat of transport, f is the vacancy relaxation factor,
Ω is the atomic volume, σ is the hydrostatic stress, k is Boltzmann’s constant, and T is the
temperature. Here, the source term G = 0 is used.

For a semi-infinite line under the boundary conditions

Cv(−∞, t) = Cv0 and Jv(0, t) = 0, (2.14)

which means that the vacancy concentration at x = −∞ is fixed at an initial equilibrium
value, Cv0, and that there is a perfect blocking boundary (Jv = 0) at x = 0, the solution of
(2.13) at the blocking boundary is given by Laplace transformation [50]

Cv(0, t)

Cv0
= 1 + erf(β) + 2

{

β2[1 + erf(β)] +
β√
π

exp(−β2)

}

, (2.15)

where

β =
|Z∗|eρj

2kT

√

Dvt, (2.16)

and

erf(x) =
2√
π

∫ x

0
exp(−x2) dt, (2.17)

is the error function.

Assuming that the failure occurs, when the vacancy concentration reaches a given critical
value Cvf significantly higher than the initial equilibrium value Cv0, and that β ≫ 0, then
(2.15) is approximated [50] by

Cvf/Cv0 ≈ 4β2 =

( |Z∗|eρj
kT

)2

Dvtf . (2.18)

Since the diffusion coefficient is expressed by the Arrhenius law

Dv = Dv0 exp

(

−Ea

kT

)

, (2.19)

where Dv0 is the pre-exponential factor for vacancy diffusivity, (2.18) yields the mean time
to failure of the form

MTF =
AT 2

j2
exp

(

Ea

kT

)

. (2.20)
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Note that this equation is similar to the original Black’s equation (1.5), except for the
multiplying term T 2, and it also predicts a mean time to failure with an inverse square current
density dependence. This is a result of the assumption that the failure takes place, when the
vacancy concentration reaches a given critical value, which corresponds, in fact, to a void
nucleation condition.

A similar model to (2.13) had already been proposed by Rosenberg and Ohring [72]
including a source term, so that

∂Cv

∂t
= Dv

∂2Cv

∂x2
−Dv

|Z∗|eE
kT

∂Cv

∂x
− Cv − Cv0

τ
, (2.21)

where Cv0 is the equilibrium vacancy concentration and τ is the characteristic vacancy relax-
ation time. The last term of the right-hand side of this equation represents a source function
which models vacancy annihilation and generation. It means that vacancies are annihilated,
if their concentration is larger than the equilibrium value, or produced, if their concentra-
tion is smaller than the equilibrium one. The vacancy relaxation time, τ , characterizes the
efficiency of the sites acting as sinks/sources, in such a way that smaller values of τ result
in shorter times for the vacancy concentration to reach the steady state condition, and vice
versa. As a consequence, high vacancy supersaturation cannot be reached near vacancy sinks,
since vacancies are annihilated as soon as the local vacancy concentration becomes higher
than its equilibrium value.

The aforementioned models, where material transport only due to gradients of concen-
tration and due to electromigration itself is considered, have two main shortcomings: first,
the time scale to reach the steady state vacancy supersaturation lies, at most, in the order
of minutes, which is too short compared to the typical failure times. Second, the maximum
vacancy supersaturation is very low, in such a way that the energy barrier for void formation
would be extremely high. This hinders void formation by means of vacancy condensation
and, therefore, a critical vacancy concentration cannot be used to determine the failure of
the interconnect. As will be shown in the next sections, these shortcomings can only be
resolved with the introduction of mechanical stress in the model equations.

2.4 Electromigration and Mechanical Stress

There are three major sources of mechanical stress in passivated interconnect lines. The first is
the thermal stress, resulting from the difference in thermal expansion between the passivation
and metal upon cooling from high deposition temperatures. Metalization processing can
expose an integrated circuit to temperatures of more than 500 ◦C. The second source of
stress is nonequilibrium film growth. As wafer curvature measurements have shown, this
source of stress is even more important than the thermal stress. The third major source of
stress is the electromigration itself. Although the measurements significantly contribute to the
understanding of thin film stresses, they are, in most cases, limited to simple test structures.
Furthermore, the detailed stress distribution within a material cannot be experimentally
determined. For the dual-damascene technology high tensile stresses at interfaces, such as
in the metal/capping layer interface, are generally critical, and electromigration can either
increase or reduce this local tensile stress.
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The choice of passivating film material and corresponding process technology causes ten-
sile or compressive stress in the interface between the passivating film and the interconnect
metal. Interfacial compressive stress diminishes electromigration along interfaces by reducing
the diffusivity [73]. However, numerous experimental observations have shown that tensile
stress in the interface increases the possibility of failure [74]. Increased thickness and rigidity
of the capping layer prevent relaxation of both thermal and electromigration induced stress,
which results in dielectric cracking and metal extrusion.

The evolution of mechanical stress in interconnect lines depends on whether or not vacan-
cies can be created or annihilated such that their equilibrium is maintained. For mechanical
stresses to develop, there must be both a volume expansion or contraction of the line with
respect to the surrounding material and a mechanical constraint applied by the surround-
ing material. As atoms exchange place with vacancies and travel towards the anode end of
the line, there is a flow of vacancies towards the cathode end. In the absence of vacancy
sources and sinks, this would result in a vacancy supersaturation on the cathode end and a
deficiency at the anode end. Since there is a small relaxation of the lattice surrounding a
vacancy, vacancy accumulation would produce volume contraction at the cathode. In turn,
the depletion of vacancies would produce volume expansion at the anode end. However, due
to the constraints imposed by the surrounding layers, namely, the capping layer, the barrier
layer, and the passivation in copper dual-damascene interconnects, these volumetric changes
cannot be accommodated, which results in the development of mechanical stress in the line.
At the cathode end tensile stress is produced, while compressive stress develops at the anode
end of the line. As will be shown below, this stress gradient acts as an additional driving
force for material transport and must be taken into account in the vacancy flux equation.
Moreover, mechanical stress is a key parameter for the void nucleation condition.

2.4.1 The Blech Effect

Blech [75, 76, 77] designed an experiment where conductor islands were deposited onto a
titanium nitride (TiN) film and stressed at a high current density. As the conductor resistivity
was much lower than that of the TiN layer, the conductor stripe would carry most of the
current and the resulting movement of the ends of the stripe could be measured. In this way,
the electromigration induced drift velocity is determined by

vd =
Da|Z∗|eρj

kT
. (2.22)

Blech observed that only the upstream end (in relation to the electron flow) of the line
moved according to (2.22), and that the upstream end stopped moving, when the stripe
was reduced to a certain length. Also, he observed that no drift could be detected below a
threshold current density.

These observations can be explained by considering the flux due to electromigration and
the gradient of the chemical potential via a gradient of mechanical stress [75, 76, 77, 78]
according to

Jv =
DvCv

kT

(

|Z∗|eρj − Ω
∂σ

∂x

)

, (2.23)
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where Ω is the atomic volume, and σ is the hydrostatic stress. This equation shows that a
gradient of mechanical stress acts as driving force against electromigration. Thus, electro-
migration stops, when the opposing stress gradient, commonly referred to as “back stress”,
equals the electromigration driving force, so that Jv = 0. This steady-state condition is the
so-called “Blech Condition”, given by

∂σ

∂x
=

|Z∗|eρj
Ω

. (2.24)

Integrating (2.24) over the length of the interconnect line yields

σ(x) = σ0 +
|Z∗|eρj

Ω
x, (2.25)

where σ0 is the stress at x = 0. This equation shows that the stress varies linearly along the
line, when the backflow flux equals the electromigration flux.

Given that the maximum stress the conductor line can withstand is σth, a critical product
for electromigration failure can be stated as

(jL)c =
Ω(σth − σ0)

|Z∗|eρ . (2.26)

This is the so-called “Blech Product”. The critical product provides a measure of the in-
terconnect resistance against electromigration failure and several experimental works have
reported that the critical product for modern copper interconnects is in the range from 2000
to 10000 A/cm [79, 80, 81, 82].

From the above expression, for a given current density, j, a critical line length can be
determined, so that shorter lines will not fail due to electromigration. This is known as
“Blech Length”, given by

lB =
Ω(σth − σ0)

|Z∗|eρj . (2.27)

Similarly, for a given line length, L, the maximum current density that can be applied for
which electromigration failure does not occur is

jc =
Ω(σth − σ0)

|Z∗|eρL . (2.28)

An important consequence of the Blech effect is that the jL product during electromigra-
tion tests has to be significantly higher than the critical product (jL)c for the corresponding
test structure. Otherwise, the test structure might fail at a later time than it would normally
do, giving a false sense of safety [83]. Another point to be mentioned is that the presence
of residual stresses from the fabrication process reduces the stress which has to be produced
by electromigration in order to reach the maximum value a line can withstand. This results
in smaller values for the Blech length and for the maximum operating current density than
that given by (2.27) and (2.28), respectively [83].
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2.4.2 Models of Stress Build-up due to Electromigration

Although Blech had shown that electromigration transport was closely related to mechanical
stress development, the first model that connected the rate of stress generation to electro-
migration was proposed by Kirchheim [53]. He added the gradient of mechanical stress as a
driving force in the total vacancy flux equation, so that

Jv = −Dv

(

∂Cv

∂x
− |Z∗|eρj

kT
Cv +

fΩ

kT
Cv
∂σ

∂x

)

, (2.29)

where f = Ωv/Ω. Thus, the continuity equation can be written as

∂Cv

∂t
= − ∂

∂x

[

−Dv

(

∂Cv

∂x
− |Z∗|eρj

kT
Cv +

fΩ

kT
Cv
∂σ

∂x

)]

− Cv −Cveq

τ
. (2.30)

The last term is a generation/annihilation function similar to that proposed by Rosen-
berg and Ohring [72], as shown in Section 2.3. However, Kirchheim used the more general
expression for the equilibrium vacancy concentration in a grain boundary [84]

Cveq = Cv0 exp

[

(1 − f)Ωσ

kT

]

, (2.31)

which connects the equilibrium vacancy concentration with mechanical stress.

The volumetric strain in a grain produced by the generation of vacancies is [53]

∆V

V
= (1 − f)Ω

δ

d
∆Cv, (2.32)

where (1 − f)Ω is the volume change due to lattice relaxation, when a vacancy is treated as
a substitutional atom with smaller volume (0 < f < 1), δ is the grain boundary thickness,
d is the grain diameter, and ∆Cv is the generated vacancy concentration. Thus, the strain
rate is given by [53]

1

V

∂V

∂t
= (1 − f)Ω

δ

d

Cv − Cveq

τ
, (2.33)

which together with Hooke’s law yields [53]

∂σ

∂t
= B(1 − f)Ω

δ

d

Cv − Cveq

τ
, (2.34)

where B is the appropriate modulus.

This equation shows that the stress build-up is related to the deviation of the vacancy
concentration from its equilibrium value and that τ can have a significant impact on the
stress development. It is important to note that this model allows different mechanisms of
vacancy annihilation or generation to be described, such as annihilation/production in the
grain boundary itself, in adjacent grain boundaries or at dislocations within the grain bulk.
These lead to smaller, median, and larger values of the characteristic vacancy relaxation time
τ , respectively.

Equations (2.30) and (2.34) compose a non-linear system of differential equations, which
has to be solved numerically. Nevertheless, Kirchheim derived analytical solutions for some
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limiting cases and identified three main phases for vacancy and stress evolution [53]. The first
phase corresponds to a short period of time, where the initial stress is very low. Therefore,
the equilibrium vacancy concentration remains unaffected and the vacancy concentration
develops until a quasi steady-state condition is reached. The quasi steady-state phase is
quite long, and the vacancy concentration does not change very much, while the stress grows
linearly with time. It lasts until the stress becomes large enough to affect the equilibrium
vacancy concentration. Then, a non-linear increase of stress with time is observed and the
vacancy concentration approximately follows the development of the equilibrium vacancy
concentration, which means that vacancies and stresses are in equilibrium and the true steady-
state condition has been reached.

Moreover, Kirchheim [53] showed that, if the electromigration lifetime is determined by
the time to reach a certain critical stress, the current density exponent of Black’s equation
varies from n = 1 at low stresses (the time to failure is determined by the quasi steady-state
period) to n = 2 for higher critical stresses (the time to reach the true steady-state condition
determines the lifetime).

A somewhat simplified model for the stress development in a line subject to electromigra-
tion was derived by Korhonen et al. [54]. They consider that the generation/recombination
of vacancies by dislocation climb mechanisms either in grain boundaries or at lattice dislo-
cations changes the concentration of lattice sites, CL, producing stress according to Hooke’s
law

dCL

CL
= −dσ

B
. (2.35)

Using the source term [55, 85]

G =
∂CL

∂t
, (2.36)

the vacancy continuity equation can be written as

∂Cv

∂t
= −∂Jv

∂x
− CL

B

∂σ

∂t
. (2.37)

Assuming that the vacancy concentration is in equilibrium with the mechanical stress via [84]

Cv = Cveq = Cv0 exp

(

Ωσ

kT

)

, (2.38)

(2.37) becomes

(

CvBΩ

CLkT
+ 1

)

CL

B

∂σ

∂t
=

∂

∂x

[

DvCv

kT

(

Ω
∂σ

∂x
− |Z∗|eρj

)]

, (2.39)

when Jv given by (2.23) is used.

Korhonen et al. observed that (Cv/CL)(BΩ/kT ) ≪ 1 at typical electromigration test
conditions. This means that most of the transported vacancies initiate climbing dislocation
processes which produce mechanical stress, while just a very small number of vacancies is
needed to maintain the local equilibrium concentration [54]. Thus, the above approximation
leads to

∂σ

∂t
=

∂

∂x

[

DaBΩ

kT

(

∂σ

∂x
− |Z∗|eρj

Ω

)]

, (2.40)
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where Da = DvCv/CL [86].

For a line of length L with blocking boundary conditions

Jv(0, t) = Jv(−L, t) = 0, (2.41)

and assuming a constant Da, the solution of (2.40) is given by [54, 87]

σ(x, t) =
|Z∗|eρjL

Ω

[

1

2
+
x

L
− 4

∞
∑

n=0

m−2
n exp

(

−m2
n

κ

L2
t
)

cos
(

mn
x

L

)

]

, (2.42)

where

κ =
DaBΩ

kT
, (2.43)

and mn = (2n+ 1)π.

Following the same approach as Korhonen et al., Clement et al. [55, 85] derived an equiv-
alent equation in terms of vacancies,

∂Cv

∂t
=
DaBΩ

kT

(

∂2Cv

∂x2
− |Z∗|eρj

kT

∂Cv

∂x

)

. (2.44)

This equation has the same form as (2.13) from the Shatzkes and Lloyd formulation, but
with Dv replaced by DaBΩ/kT . Since it was assumed that vacancies are in equilibrium with
stress, the stress can be calculated from (2.38) as

σ(x, t) =
kT

Ω
ln

[

Cv(x, t)

Cv0

]

, (2.45)

where Cv(x, t) is determined by the solution of (2.44).

Assuming that the electromigration failure is determined by the time to reach a given
stress magnitude, the above models predict a mean time to failure of the form

MTF =
B(T )

j2
exp

(

Ea

kT

)

, (2.46)

where an inverse square dependence of the current density is again obtained. The coefficient
B(T ) is temperature dependent, so that B(T ) ∝ T 2 for Korhonen’s formulation [54] and
B(T ) ∝ T 3 according to Clement’s formulation [85].

Figure 2.1 shows the stress development with time at x = 0 according to Korhonen’s solu-
tion, (2.42). Note that the time scale of stress build-up is in the order of several hours, rather
than a few minutes as predicted by the models of Section 2.3. This shows the importance
of taking into account the mechanical stress in the model, including the stress dependence
in the sink/source term of the continuity equation. The stress distribution along the line for
several times is presented in Figure 2.2. At steady-state the stress varies linearly, as predicted
by Blech [75, 76, 77]. One can see that high stress can develop in the interconnect line, which
is a critical requirement for void nucleation [88, 89].

These models were very successful in explaining the origin of mechanical stress and calcu-
lating the hydrostatic stress which develops in a metal line due to electromigration. However,
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Figure 2.1: Stress build-up at x = 0 according to Korhonen’s model.

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
 x/L

-1200

-800

-400

0

400

800

1200

σ
 (

M
P

a)

20 h
50 h
100 h
500 h
2000 h

Figure 2.2: Stress build-up along the interconnect at different times.
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they are based on several simplifying assumptions and are applicable to simple interconnect
lines only. For example, the mechanical properties of the line and the effect of the constraints
imposed by the surrounding materials are all taken into account by the modulus B in the
equations above. Therefore, a more general description of the problem is required, in order
to better understand the mechanical stress distribution and its effects on the interconnect
structures.

The connection between material transport with mechanical stress in a general framework
was first proposed by Povirk [90] and Rzepka et al. [91]. In these works mass accumulation
or depletion in the metal line leads to an inelastic strain rate of the form

∂εvij
∂t

= Ω
(

∇ · ~Jv

)

δij , (2.47)

where δij is Kronecker’s symbol.

Sarychev et al. [92] extended this formulation considering that the total inelastic strain
rate has a contribution from vacancy accumulation/depletion and a contribution from vacancy
generation/annihilation, yielding

∂εvij
∂t

=
1

3
Ω
[

f∇ · ~Jv + (1 − f)G
]

δij . (2.48)

Assuming that the metal line deforms elastically, that is

σij =
∑

kl

Cijklεkl, (2.49)

where Cijkl is the stiffness tensor, and using the small displacement approximation,

εij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, i, j = 1, 2, 3, (2.50)

from the mechanical equilibrium equation,

3
∑

j=1

∂σij

∂xj
= 0, i = 1, 2, 3, (2.51)

the deformation of the line as a function of the inelastic strain produced by electromigration
can be calculated by [92]

µ∇2ui + (λ+ µ)
∂

∂xi
(∇ · ~u) = B

∂

∂xi
tr(εvij), i = 1, 2, 3, (2.52)

where ~u = (u1, u2, u3) is the displacement vector, λ and µ are the Lamé constants, B is the
bulk modulus, and tr(εvij) refers to the trace of the electromigration induced strain.

The key characteristic of Sarychev’s approach is that it forms a three-dimensional self-
consistent model which connects material balance with line deformation. In this way, the
impact of the complete interconnect geometry and imposed boundary conditions on the stress
evolution can be described. Furthermore, all components of the stress tensor can be deter-
mined. Sarychev’s model was the basis of several works on simulation of stress evolution due
to electromigration [93, 94, 95, 96] in two-dimensional lines.
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A different approach was proposed by Sukharev et al. [97, 98, 99, 100], who introduced
the concept of plated atoms to describe the atom exchange between bulk and interfaces. He
suggested that the event of vacancy generation or annihilation is simultaneously accompanied
by atom plating or removal from the grain boundary region, respectively. Therefore, the rate
of atom plating/removal is given by the same source function as for vacancies,

Gint = −C
int
v −Cveq

τ
. (2.53)

However, considering the plated atoms to be immobile (the atomic mobility is far smaller
than the vacancy mobility), the plated atom continuity equations for bulk and interfaces,
respectively, are given by [97]

∂Cbulk
pl

∂t
= 0,

∂Cint
pl

∂t
+Gint = 0,

(2.54)

where Cpl is the plated atom concentration.

Using this concept, the electromigration induced strain is written as [97]

εvij = Ω [−(1 − f)(Cv − Cv0) + (Cpl − Cpl0)] δij , (2.55)

where Cpl0 is the plated atom concentration at zero stress. This equation shows a close
connection between the local strain with the vacancy concentration and the plated atom
concentration. However, Sukharev et al. observed that the increment of the plated atom
concentration is the major responsible cause for stress build-up [97].

2.5 Void Nucleation

Initially, void nucleation was attributed to the accumulation of vacancies at sites of flux
divergence caused by their drift due to electromigration. As the vacancy concentration at
a particular site reached a certain critical magnitude, vacancy condensation would lead to
the formation of a void [50, 51, 52, 98, 101, 102, 103, 104]. However, an unrealistically
high vacancy supersaturation would be necessary for spontaneous void formation by vacancy
condensation [72, 105]. Therefore, according to classical thermodynamics homogeneous void
nucleation by a vacancy condensation mechanism cannot be supported under electromigra-
tion.

Meanwhile, several works investigated the impact of mechanical stress on void nucleation
at various conditions [106, 107, 108, 109]. The importance of mechanical stress build-up in an
interconnect line under electromigration was recognized, so that the development of a critical
stress became the major criterion for void formation [53, 54, 85, 95, 110]. Nevertheless, the
stress threshold value is still an open issue, varying from work to work.

Gleixner et al. [89] carried out a thorough analysis of the nucleation rates at various
locations within an interconnect line. For a copper dual-damascene interconnect, the free
energy change upon creation of an embryo of volume Ve is given, in general, by
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∆F = −σVe + γsACu + (γcap − γi)Ai − γgbAgb, (2.56)

where ∆F is the Helmholtz free energy per unit volume of the embryo, σ is the stress, γs,
γcap, γcap, and γgb are the surface free energies of the metal, capping layer, Cu/capping layer
interface, and grain boundary, respectively, and the A′s are the areas of the surfaces created
or destroyed upon formation of the embryo. The energy barrier for void nucleation, ∆F ∗, is
then given by the condition

∆F ∗ = ∆F |∂(∆F ) = 0, (2.57)

which determines a critical embryo volume. For homogeneous nucleation the barrier is given
by [89]

∆F ∗ =
16πγ3

s

3σ2
. (2.58)

According to Backer-Döring nucleation theory a nucleation event takes place when a
vacancy sticks to a critical embryo. In this way, the nucleation can be expressed as [111]

I = RnsZ, (2.59)

where R is the sticking rate of vacancies, ns is the number of vacancies in the matrix at the
surface of a critical embryo, and Z represents the number of critical embryos. The number
of critical embryos per unit volume is a function of the energy barrier, [111]

Z =
1

Ωn

( ∆F ∗

3πkT

)1/2
exp

(

−∆F ∗

kT

)

, (2.60)

where n is the number of vacancies in a critical embryo. The sticking rate of vacancies can
be related to the exchange frequency of the diffusive process [89],

R = ν exp

(

−Ud

kT

)

, (2.61)

where ν is the frequency of vibration of the atoms, and Ud is the activation energy of the
jump process. Combining (2.59), (2.60), and (2.61) yields

I = ν exp

(

−Ud

kT

)

1

Ωn

( ∆F ∗

3πkT

)1/2
exp

(

−∆F ∗

kT

)

ns. (2.62)

Figure 2.3 shows the rate of homogeneous nucleation as function of the temperature for
different levels of stress. One can see that the nucleation rate is very small, and even a very
high temperature and a high stress cannot significantly increase the nucleation rate. Gleixner
et al. obtained small rates for nucleation at grain boundaries, at the metal/capping layer
interface, and even at the metal/capping layer interface intersected by a grain boundary [89].
Therefore, none of these mechanisms can lead to void formation.

The small rate for nucleation at the metal/capping layer interface intersected by a grain
boundary is particularly interesting, since voids are frequently observed to nucleate at such
locations [10]. This apparent discrepancy was solved by Flinn [88], who suggested that a
void could form at a pre-existing free surface. Free surfaces can result from contamination
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Figure 2.3: Homogeneous nucleation rate dependence on temperature and hydrostatic
stress. The nucleation rate is small, even at high temperatures and stresses.

during the line fabrication process, which hinders the bounding of the surrounding layer to
the metal surface. In this way, assuming a circular flaw of radius Rp the critical stress for
void nucleation is given by [88]

σth =
2γs

Rp
. (2.63)

Clemens et al. [112] showed that the above equation is valid as long as the void grows in
the contaminated region. However, it is possible that the void extends beyond the flaw area,
as shown by Figure 2.4, once the equilibrium contact angle, θc, is reached. The equilibrium
contact angle is determined by interfacial energy balance, and lies in the range 0 < θc < 90◦.
In this case, the threshold stress is given by [89, 112]

σth =
2γs sin θc

Rp
, (2.64)

which may represent a small decrease in the nucleation energy barrier compared to (2.63).

The critical stress is significantly reduced as the flaw area increases. For instance, for
a flaw radius as small as 10 nm the critical stress is σth ≈ 340 MPa [110], which can be
certainly reached by thermal stresses alone. Considering that the contaminated region can
extend trough the whole line width, for a 100 nm wide line the critical stress becomes σth ≈ 70
MPa. Experimental works have reported values of critical stress for void nucleation of about
the same order of magnitude [82, 113]. Such a stress value is quite low and can be easily
obtained in an interconnect line under electromigration.
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Figure 2.4: Schematic void nucleation at an interface site of weak adhesion.

2.6 On the Void Evolution

The development of fatal voids, i.e. voids that trigger the line failure, is the ultimate cause
for the electromigration induced interconnect failure [22, 81]. The failure criterion is typically
set as a maximum resistance increase tolerated for the corresponding interconnect line. Once
a void is nucleated it can evolve, until it causes a significant resistance increase or even
completely severs the line.

The void evolution phase can encompass several processes: a void can migrate along the
interconnect [10, 114], interact with the local microstructure [10, 38, 71] and grow, or even
heal [10, 11], undergo morphologic changes, assuming wedge-like shape or slit-like shape [27],
before it definitely triggers interconnect failure. Furthermore, multiple voids can form in a
line, so that their migration and agglomeration at a specific critical site can be the mechanism
responsible for the interconnect failure [31, 32, 114].

The void surface acts as an additional path for atomic migration. The chemical potential
of an atom on the void surface is given by [115, 116, 117]

µs = µ0 + Ω (w − γsκ) , (2.65)

where µ0 is a reference chemical potential, w = (σ : ε) /2 is the elastic energy density of the
material adjacent to the void, γs is the surface free energy, and κ is the curvature of the void
surface. Thus, the atomic flux along the void surface due to gradients in chemical potential
plus electromigration has the form

~Js = −Dsδs
kT

(

∇sµs + e|Z∗| ~Es

)

, (2.66)
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where Ds is the surface diffusivity, δs is the surface thickness, ~Es is the electric field tangential
to the void surface, and ∇s denotes the gradient along the surface. By mass conservation the
normal velocity at any point on the surface is given by [116, 117]

vn = −∇s · ~Js. (2.67)

Void evolution due to electromigration is a complex dynamic process, for which modeling
is a challenging task and, moreover, represents a moving boundary problem. Analytical
solutions can only describe the asymptotic behavior of the moving boundary [105, 118, 119,
120, 121, 122, 123], since, in general, the shape changes which the void experiences cannot
be analytically resolved. Therefore, a more general treatment demands the application of
numerical methods and special techniques for tracking the void.

The most commonly used numerical method is based on sharp interface models [124, 125,
126, 127, 128], which requires an explicit tracking of the void surface and, consequently, a
continuous remeshing procedure. As the void migrates, grows, and changes shape this explicit
tracking becomes very demanding. Therefore, it can be satisfactorily applied only for simple
two-dimensional cases and cannot be further extended. This shortcoming can be overcome
with the introduction of the so-called diffuse interface model (or phase field model) [116, 117,
129, 130, 131, 132, 133] or the level set method [134, 135, 136, 137, 138]. The main advantage
of these approaches is that the void is implicitly represented by a field parameter or level set
function, so that void evolution is implicitly determined by the calculation of these functions.
Thus, the demanding explicit void surface tracking can be avoided.
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Chapter 3

A General TCAD Electromigration
Model

In the previous chapter the various physical phenomena related to electromigration were
described and several physically based models were presented. Most of these models, however,
are either based on several simplifying assumptions in order to obtain analytical expressions
or can only be applied for simulation of simple interconnect geometries. Thus, they cannot
cope with the complex modern interconnect structures, as that shown in Figure 3.1. Thus,
in this chapter a general electromigration model for implementation in a TCAD tool for
simulation of realistic three-dimensional interconnect structures is developed.

Figure 3.1: Dual-damascene interconnect structure.
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Since the electromigration simulation requires a multiphysics approach, the model equa-
tions can be most conveniently separated in smaller blocks. Starting with the description of
the electro-thermal problem, the distributions of electric potential, electric field, current den-
sity, and temperature in the interconnect can be determined. Then, the material transport
equations are presented. Here, an approach for taking into account the effect of grain bound-
aries and material interfaces as fast diffusivity paths is described. Moreover, the influence of
the mechanical stress on the diffusivity is discussed and the equation for the strain evolution
as a result of material transport is derived. The dynamic behavior of grain boundary and
material interfaces acting as sites for vacancy generation and annihilation is treated in detail.
Then, the mechanical equations which describe the line deformation and the corresponding
stress build-up are explained. Finally, a brief model overview is given, where the blocks of
equations are presented, which have to be numerically solved for electromigration simulations.

3.1 Electro-Thermal Problem

Denoting the electric potential at any point in the line by ϕ and the electrical conductivity
by γE , the current density can be calculated from Ohm’s law as

~j = γE
~E = −γE∇ϕ, (3.1)

where the electric field is related to the electric potential by

~E = −∇ϕ. (3.2)

Since the electric charge should obviously be conserved, one can write

∇ ·~j = 0, (3.3)

which together with (3.1) yields an equation written for the electric potential,

∇ · (γE∇ϕ) = 0. (3.4)

Note that (3.4) reduces to the Laplace equation,

∇2ϕ = 0, (3.5)

if the electrical conductivity is constant along the line.

The temperature distribution is determined by the solution of the thermal problem

∇ · (γT∇T ) = ρmcp
∂T

∂t
− p, (3.6)

where γT is the material thermal conductivity, ρm is the mass density, and cp is the specific
heat. Here, p is the electrical power loss density, given by

p = γEE
2 = γE (∇ϕ)2 , (3.7)

which accounts for the Joule heating and couples the electrical with the thermal problem.
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Both, the electrical and thermal conductivity are treated as temperature dependent pa-
rameters, following the form

γ(T ) =
γ0

1 + α(T − T0) + β(T − T0)2
, (3.8)

where γ0 is the conductivity for a given reference temperature T0. Here, α and β are the
linear and quadratic temperature coefficients, respectively.

The equations (3.4) and (3.6), together with (3.7) and (3.8), compose a non-linear system
of equations, whose solution provides the voltage, electric field, current density, and temper-
ature distributions in an interconnect line. It should be pointed out that special attention
must be taken in setting the thermal boundary conditions. In order to properly consider the
effect of Joule heating, a sufficient big portion of dielectric surrounding must be included in
the simulation. A thermal reservoir can be implemented by a Dirichlet boundary condition
for the temperature.

3.2 Material Transport Equations

For a proper analysis of the total material transport which occurs in an interconnect line
during electromigration, the various driving forces for atomic migration have to be consid-
ered. As in copper metallizations atomic migration occurs via vacancy diffusion mechanisms,
the total material transport can be equivalently written in terms of vacancies. Thus, the
combination of the driving forces leads to the total vacancy flux of the form [53, 92]

~Jv = −Dv

(

∇Cv +
|Z∗|e
kT

Cv∇ϕ− Q∗

kT 2
Cv∇T +

fΩ

kT
Cv∇σ

)

. (3.9)

In this equation the first term describes a diffusional effect, the second term represents
electromigration, the third term represents the material transport which occurs due to ther-
mal gradients in the interconnect, and the last term accounts for the atomic migration caused
by gradients of mechanical stress.

Two mechanisms contribute to a local change in vacancy concentration. In the first
one vacancies accumulate or vanish due to the existence of flux divergences. In the second,
the vacancy concentration is altered by the production or recombination of vacancies in the
presence of source/sink mechanisms. Thus, material balance is described by the continuity
equation

∂Cv

∂t
= −∇ · ~Jv +G, (3.10)

where G is a function which models vacancy generation and annihilation processes. Vacancy
generation or annihilation is related to the change of lattice sites. Therefore, this term is
active only at the appropriate interfaces, like grain boundaries and material interfaces [139].

3.2.1 Fast Diffusivity Paths

In Chapter 2 the role of diffusivity paths for material transport was discussed. It is clear that
diffusion occurs along the various available paths and must be taken into account. Using the
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simple effective diffusion model is rather inconvenient for TCAD analysis, since one is not able
to completely separate and understand the effect of each path on the distribution of material
in the interconnect line. Consequently, a realistic picture of the mechanical stress distribution
is not possible either. Moreover, each path has also a different effective valence [21, 140], since
the wind force depends on the electronic configuration surrounding an atom [58].

Thus, for generality of the model, the diffusion coefficient, Dv , and the effective valence,
Z∗, in (3.9) must be independently set for each region of the interconnet. In this way,
combining (3.9) and (3.10) one obtains

∂Cbulk
v

∂t
= ∇ ·

[

Dbulk
v

(

∇Cbulk
v +

|Z∗

bulk|e
kT

Cbulk
v ∇ϕ− Q∗

kT 2
Cbulk

v ∇T +
fΩ

kT
Cbulk

v ∇σ
)]

, (3.11)

for the bulk and

∂Cint
v

∂t
= ∇ ·

[

Dint
v

(

∇Cint
v +

|Z∗

int|e
kT

Cint
v ∇ϕ− Q∗

kT 2
Cint

v ∇T +
fΩ

kT
Cint

v ∇σ
)]

+Gint, (3.12)

for interfaces which for copper dual-damascene interconnects can be either grain boundaries,
the copper/capping layer interface or the copper/barrier layer interface.

3.2.2 Anisotropic Diffusivity: Diffusion Dependence on Stress

Residual mechanical stresses are introduced on interconnect lines as a result of the fabrica-
tion process flow [141]. These stresses can be very high, significantly affecting the diffusion
coefficient of the interconnect metal atoms [142].

Typically, the diffusion dependence on stress is taken into account through a simple
modification of the usual diffusion coefficient expression (2.10) to [54, 97]

D(σ) = D0 exp

(−Ea + Ωσ

kT

)

. (3.13)

In this way, (3.13) describes the effect of a scalar hydrostatic stress on the scalar diffusion
coefficient. However, Flynn [143] pointed out that, for a homogeneously deformed cubic
crystal with strain field εkl, there is an additional contribution proportional to εkl to the
diffusion of the form

Dij = D(0)δij +
∑

kl

dijklεkl, (3.14)

where dijkl is the elastodiffusion tensor, which can be experimentally determined. Here, the
simple scalar diffusivity is replaced by a tensorial quantity. Consequently, in the presence of
a stress field the diffusivity can now become anisotropic, depending on the properties of dijkl.

Based on microscopic lattice theory, Dederichs and Schroeder [142] showed that the dif-
fusivity in a simple face-centered cubic crystal (fcc) follows

Dij =
1

2

∑

h

Rh
i R

h
j Γh, (3.15)
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where ~Rh is the jump vector for a hop h and Γh is the corresponding jump rate. From
classical thermodynamics the jump rate is given by [59, 144]

Γh = ν exp

[

−E
h
m(ε)

kT

]

, (3.16)

where ν is the Debye frequency (∼ 1013 s−1 for metals [144]) and Eh
m is the migration

energy barrier. The presence of an external strain field affects the jump rate by changing the
migration energy barrier according to [145]

Eh
m (ε) = Em(0) + Ωεh

I · (Cε) , (3.17)

where Em(0) is the migration energy barrier in the absence of an external field, εh
I is the

induced strain, C is the elasticity tensor, and ε is the applied external strain. For a fcc
crystal the elasticity tensor has the form [146]

C =



















C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



















. (3.18)

Combining (3.16) and (3.17) one obtains

Γh = Γ0 exp

[

−Ωεh
I · (Cε)

kT

]

, (3.19)

with

Γ0 = ν exp

[

−Em(0)

kT

]

. (3.20)

Considering a single vacant point defect in a crystal lattice, the local volumetric strain
induced by the presence of this vacancy is given by

Ωv − Ω

Ω
= f − 1 = εI11 + εI22 + εI33, (3.21)

where Ωv is the vacancy volume and εI11, ε
I
22, and εI33 are the induced strains in the given

directions. Due to the symmetry of a vacant point defect

εI11 + εI22 + εI33 = 3εI , (3.22)

which together with (3.21) yields

εI = −1 − f

3
. (3.23)

Thus, the induced strain tensor becomes

εI =







εI
εI

εI






(3.24)
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and the induced strain vector is determined by

εh
I = |εI · ~rh|, (3.25)

where ~rh is a jump unit vector for a hop h.

Normalizing (3.15) with the jump distance λ and summing over the z nearest neighbors
(z = 12 for fcc crystals) one obtains

Dij =
1

2
λ2

z
∑

h=1

Rh
i

λ

Rh
j

λ
Γh =

1

2
λ2

z
∑

h=1

rh
i r

h
j Γh. (3.26)

Substituting (3.19) in this equation, the diffusivity tensor in the presence of a external stress
field is determined through the expression

Dij =
3

Z
D0

z
∑

h=1

rh
i r

h
j exp

[

−Ωεh
I · (Cε)

kT

]

, (3.27)

where D0 is given by [144]

D0 =
1

6
λ2zΓ0. (3.28)

In order to take into account the anisotropy of diffusion, the scalar diffusivity, Dv, in the
flux equation (3.9) is replaced by the stress dependent diffusivity tensor D yielding

~Jv = −D

(

∇Cv +
|Z∗|e
kT

Cv∇ϕ− Q∗

kT 2
Cv∇T +

fΩ

kT
Cv∇σ

)

, (3.29)

with D calculated via (3.27). In this way, the development of mechanical stress can lead to
anisotropic diffusion in the interconnect line, therefore, affecting the material transport along
the line under electromigration.

3.3 Electromigration Induced Stress

Given an ideal crystal lattice as shown in Figure 3.2(a), the effect of introducing a vacancy
which replaces an atom is schematically presented in Figure 3.2(b). It shows that, if the
volume of a vacancy is different from the atom one, a change in vacancy concentration induces
strain in the lattice due to its relaxation. Since in a typical interconnect structure the metal
line is fully embedded in a passivation layer, this strain field cannot be accommodated, thus,
leading to the development of mechanical stress.

As previously described in Section 3.2, the change in vacancy concentration at any point
of an interconnect occurs either by a vacancy-atom exchange mechanism or, at interfaces,
also by the production or annihilation of vacancies by a source/sink mechanism. This means
that the strain induced by electromigration has two contributions: a migration component
associated with the vacancy-atom exchange process, and a component related to vacancy
production/annihilation.
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(a) (b)

Figure 3.2: Effect of a vacancy in an ideal crystal lattice. (a) Initial lattice. (b) Deformed
lattice.

3.3.1 Strain due to Vacancy Migration

When an atom is exchanged for a vacancy, the neighboring atoms relax, leading to a total
volume change given by

∆V = Ωv − Ω = −(1 − f)Ω. (3.30)

Given a test volume V , the relative volume change associated with a change in vacancy
concentration ∆Cv is [147]

∆V

V
= −(1 − f)Ω∆Cv, (3.31)

so that the volumetric strain has the form

∆V

V
= εm11 + εm22 + εm33 = 3εm = −(1 − f)Ω∆Cv, (3.32)

where εm refers to the migration strain.

Taking the time derivative of the above equation one gets

∂εm

∂t
= −1

3
(1 − f)Ω

∂Cv

∂t
, (3.33)

and, since for the test volume the atom-vacancy exchange is governed by the continuity
equation

∂Cv

∂t
= −∇ · ~Jv, (3.34)

the components of the migration strain rate is given by

∂εmij
∂t

=

[

1

3
(1 − f)Ω∇ · ~Jv

]

δij . (3.35)
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3.3.2 Strain due to Vacancy Generation/Annihilation

The generation or annihilation of vacancies is accompanied by a change in the concentration
of lattice sites, so that ∆Cv = ∆CL [139]. Thus, the relative volume change of a given test
volume due to the addition or removal of lattice sites through a change in the local vacancy
concentration ∆Cv by means of generation/annihilation processes is [147]

∆V

V
= fΩ∆Cv, (3.36)

where fΩ accounts for the vacancy volume. Following the same procedure as described above,
the strain rate is given by

∂εg

∂t
=

1

3
fΩ

∂Cv

∂t
, (3.37)

where εg refers to the strain produced due to vacancy generation/annihilation processes.

Since the change in vacancy concentration is given by generation or annihilation processes

∂Cv

∂t
= G, (3.38)

which leads to the generation/annihilation strain rate components

∂εgij
∂t

=

[

1

3
fΩG

]

δij . (3.39)

3.3.3 Total Electromigration Strain

The total strain induced by electromigration is given by the sum of the vacancy migration
and vacancy generation/annihilation components,

εvij = εmij + εgij . (3.40)

Taking the time derivative of (3.40), and using (3.35) and (3.39), the total strain rate produced
by electromigration is given by

∂εvij
∂t

=
1

3
Ω
[

(1 − f)∇ · ~Jv + fG
]

δij . (3.41)

Since εvij is a diagonal tensor with equal entries, one can write (3.41) in terms of the trace of
the strain tensor

∂εv

∂t
= Ω

[

(1 − f)∇ · ~Jv + fG
]

. (3.42)

Given the dependence of the electromigration induced strain on the source function G,
the modeling approach for mechanisms of generation and annihilation of vacancies becomes
of crucial importance.
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3.4 Vacancy Sinks and Sources

Grain boundaries, dislocations and interfaces can act as sinks and sources for vacancies in
metals [148]. Given the importance of the vacancy generation and annihilation processes
for material transport and mechanical stress build-up in the interconnect lines, a detailed
model for treating grain boundaries and material interfaces as sites of vacancy generation or
annihilation is presented.

3.4.1 Grain Boundary Model

The grain boundary is modeled as a separate medium of width δ embedded in a bulk, as
depicted in Figure 3.3. Following the work of Fisher [149], the model takes into account two
main mechanisms: vacancy diffusion along the grain boundary, which is considered a path
of high diffusivity, and material exchange between the grain boundary and the grain bulk.
Therefore, the vacancy dynamics inside the grain boundary can be described by

∂Cgb
v

∂t
= −∂J

gb
v

∂l
− 1

δ

(

Jv,2 − Jv,1

)

, (3.43)

where Cgb
v is the grain boundary vacancy concentration, Jgb

v is the vacancy flux along the
grain boundary distance l, and Jv,1, Jv,2 are the fluxes from both sides of the grain boundary.

The last term in (3.43) connects the change in grain boundary vacancy concentration
to the diffusing flux from/to the bulk. The difference Jv,2 − Jv,1 corresponds to an actual
loss/gain of vacancies, which is localized at the region representing the grain boundary. Thus,

Figure 3.3: Grain boundary model.
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the vacancy generation/annihilation rate is given by

G = −Jv,2 − Jv,1

δ
. (3.44)

This loss/gain of vacancies can be described by a trapped vacancy concentration in the
grain boundary, defined as Cim, in such a way that the generation/annihilation rate can be
expressed as a function of the rate change of the trapped vacancy concentration as

G =
∂Cim

∂t
. (3.45)

By treating the grain boundary as a region with the capability of absorbing or releasing
vacancies, the fluxes in equation (3.44) can be expressed in terms of trapping and releasing
events in a similar way to [150]. This yields [110]

Jv,1 = ωT (Cveq − Cim)C1
v − ωRCim, (3.46)

Jv,2 = −ωT (Cveq − Cim)C2
v + ωRCim, (3.47)

where ωT is the trapping rate of vacancies, ωR is the release rate, C1
v , C

2
v are the vacancy

concentration in each grain section, and Cveq is the equilibrium vacancy concentration inside
the grain boundary, given by

Cveq = Cv0 exp

(

σnnΩ

kT

)

. (3.48)

Cv0 is the equilibrium vacancy concentration in the absence of stress and σnn is the stress
component normal to the grain boundary.

Substituting (3.46) and (3.47) in (3.44) and (3.45) one obtains

G =
∂Cim

∂t
=
ωT (C1

v + C2
v )

δ

{

Cveq − Cim

[

1 +
2ωR

ωT (C1
v + C2

v )

]}

. (3.49)

For convenience, (3.49) is rewritten

∂Cim

∂t
=

1

τgb

{

Cveq − Cim

[

1 +
2ωR

ωT (C1
v + C2

v )

]}

, (3.50)

with
1

τgb
=
ωT (C1

v + C2
v )

δ
. (3.51)

τgb represents the characteristic time of a vacancy annihilation or generation process and
it characterizes the efficiency of the grain boundary acting as a vacancy sink/source. The
smaller the value of τgb, the more efficient is the source/sink mechanism and, according to
(3.10), the faster the steady state condition for the vacancy concentration is reached.

As in the numerical implementation the grain boundary is represented by the interface
between two grains (δ → 0), the approximation C1

v ∼ C2
v = Cv can be used, so that (3.50)

and (3.51) is further simplified to

∂Cim

∂t
=

1

τgb

[

Cveq − Cim

(

1 +
ωR

ωTCv

)]

, (3.52)
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and
1

τgb
=

2ωTCv

δ
. (3.53)

Note that under the condition
ωR

ωTCv
≪ 1, (3.54)

equation (3.52) reduces to the Rosenberg-Ohring generation/annihilation function given in
(2.21).

3.4.2 Material Interfaces

Using the same concept to that described above for the grain boundary model, one can derive
a similar expression for the source function for the material interfaces of a dual-damascene
interconnect. A schematic representation of a material interface is shown in Figure 3.4.

Since the copper/capping layer and the copper/barrier layer interface act as blocking
boundaries for copper diffusion, the flux Jv,2 vanishes, so that (3.44) becomes

G =
Jv,1

δ
. (3.55)

Applying (3.46) in the above equation yields an expression similar to (3.52),

G =
∂Cim

∂t
=

1

τi

[

Cveq − Cim

(

1 +
ωR

ωTCv

)]

, (3.56)

Figure 3.4: Interface model.
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but the characteristic generation/annihilation time is now given by

1

τi
=
ωTCv

δ
. (3.57)

The grain boundary and material interface model presented here is quite general and can
be used for every interface of an interconnect structure.

3.5 Mechanical Deformation

It has been shown that material transport due to electromigration produces local strain,
which leads to the deformation of the interconnect line. This deformation is described by
the displacement field, ~u, of points in the line with respect to a stress-free initial configura-
tion. Assuming that the displacements from the reference configuration are small, the line
deformation is characterized by the total strain [151]

εij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, i, j = 1, 2, 3 (3.58)

which can be written in matrix notation as

ε = Su, (3.59)

with

ε =
[

ε11 ε22 ε33 γ12 γ23 γ31

]T
, (3.60)

where symmetry of the strain tensor is assumed and the engineering shear strains [151]

γij = 2εij , i 6= j (3.61)

are used. The strain operator S is given by [151]

S =





































∂

∂x1
0 0

0
∂

∂x2
0

0 0
∂

∂x3
∂

∂x2

∂

∂x1
0

0
∂

∂x3

∂

∂x2
∂

∂x3
0

∂

∂x1





































. (3.62)

The total strain has contributions from different sources: the elastic distortion of the line,
the thermal strain, and the strain induced by variations in vacancy concentration. Thus, one
can write, respectively,

ε = εe + εth + εv, (3.63)
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where
εth = α(T − T0)I, (3.64)

is the thermal strain, and

εv =
1

3
εvI, (3.65)

is the electromigration induced strain, with εv determined from equation (3.42).

Assuming an elastic deformation of the interconnect, which means that Hooke’s law ap-
plies, the stress is related to the elastic strain by

σ = Cεe, (3.66)

which together with (3.63) yields
σ = C(ε − ε0), (3.67)

where
ε0 = εth + εv, (3.68)

represents the total inelastic strain. Here, the stresses should satisfy the mechanical equilib-
rium equations [151]

∂σ11

∂x1
+
∂σ21

∂x2
+
∂σ31

∂x3
= 0,

∂σ12

∂x1
+
∂σ22

∂x2
+
∂σ32

∂x3
= 0, (3.69)

∂σ13

∂x1
+
∂σ23

∂x2
+
∂σ33

∂x3
= 0,

since it is assumed that there are no external forces acting on the line during electromigration.
Equation (3.69) can be conveniently expressed by the form

∇ · σ = 0. (3.70)

3.6 Model Summary

The developed electromigration model consists of several submodels. The electrical and
temperature distribution in the interconnect is determined by the system of equations

∇ · (γE∇ϕ) = 0, (3.71)

∇ · (γT∇T ) = ρmcp
∂T

∂t
− γE (∇ϕ)2 , (3.72)

with temperature dependent conductivities

γ(T ) =
γ0

1 + α(T − T0) + β(T − T0)2
. (3.73)

The vacancy flux is given by

~Jv = −D

(

∇Cv +
|Z∗|e
kT

Cv∇ϕ− Q∗

kT 2
Cv∇T +

fΩ

kT
Cv∇σ

)

, (3.74)
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which takes into account all driving forces for vacancy transport. The vacancy dynamics is
then described by the equations

∂Cv

∂t
= −∇ · ~Jv +G, (3.75)

G =
∂Cim

∂t
=

1

τ

[

Cveq − Cim

(

1 +
ωR

ωTCv

)]

=
1

τ
(Cveq − qCim) , (3.76)

where the latter is calculated at grain boundaries and interfaces only.

The trace of the total electromigration strain is calculated by

∂εv

∂t
= Ω

[

(1 − f)∇ · ~Jv + fG
]

, (3.77)

which together with (3.75) and (3.76) can be conveniently expressed as

∂εv

∂t
= −Ω(1 − f)

∂Cv

∂t
+ Ω

∂Cim

∂t
. (3.78)

The resultant line deformation and mechanical stress is determined by the set of equations

ε = Su, (3.79)

∇ · σ = 0, (3.80)

σ = C(ε − ε0), (3.81)

where

ε0 =
1

3
εvI. (3.82)

The solution of these equations allows a complete cycle of simulation of electromigration
in general three-dimensional interconnet structures.
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Numerical Implementation

The mathematical description of physical phenomena very frequently consits of partial dif-
ferential equations (PDE’s) defined in a given domain of interest. Usually, these equations
can be analytically solved only for very simple problems. Thus, for complex geometries and
problems, involving variable material properties and general boundary conditions, numerical
methods have to be applied.

Considering the model proposed in Chapter 3, the finite element method (FEM) has
been chosen as numerical solving procedure. It presents a solid mathematical formulation
for solving several types of PDE’s and can handle complex geometries with different types
of boundary conditions. Moreover, since it was originally devised for solving mechanical
problems, it is rather convenient for the model implementation.

This chapter begins with a brief introduction to the finite element method, where the basic
ideas are presented. A rigorous mathematical treatment is beyond the scope of this work and
can be found elsewhere [151, 152, 153, 154]. Then, the discretization of the model equations
given in Chapter 3 is presented, followed by the description of the numerical implementation
in a TCAD simulation tool.

4.1 The Finite Element Method

Consider the PDE
L[u(~r)] = f(~r), (4.1)

defined in a domain Ω, where L[·] represents a linear differential operator, u(~r) is the unknown
function to be determined, and f(~r) is a given source function. The finite element method
consists in discretizing the continuum problem (4.1), so that an approximate solution can be
found by solving an algebraic system of equations.

Two main approaches for obtaining the approximate solution are the Ritz method and
Galerkin’s method [152]. The Ritz method is based on a variational formulation of the PDE,
which corresponds to a minimization problem of a functional [152]. Since Galerkin’s method
allows for more general variational formulations [152], Galerkin’s approach is used throughout
this work.
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4.1.1 Galerkin’s Method

Multiplying (4.1) by a function v(~r), which is called test or trial function, and integrating
over the simulation domain gives the variational formulation

∫

Ω
v(~r)L[u(~r)]dΩ =

∫

Ω
v(~r)f(~r)dΩ. (4.2)

Using the notation

(a, b) =

∫

Ω
a(~r)b(~r)dΩ, (4.3)

(4.2) can be written as
(L[u], v) = (f, v) . (4.4)

In order to obtain the corresponding discrete problem, the simulation domain, Ω, is
divided in a set of m elements, T1, T2, ..., Tm, which do not overlap, i.e. ∀i 6= j : Ti ∩ Tj = 0.
The mesh obtained by such a domain discretization is represented by

Th(Ω) =

m
⋃

i=1

Ti. (4.5)

Further, one defines a set P of grid points, also called nodes, with each point pk ∈ P being
described by a unique global index k = 1, 2, ..., N , where N is the total number of grid points
in the mesh.

The approximate solution, uh(~r), for the unknown function, u(~r), is given by [152]

uh(~r) =

N
∑

i=1

uiNi(~r), (4.6)

where Ni(~r) are the so-called basis (or shape) functions. The approximate solution of (4.4)
is determined by the coefficients ui, which represent the value of the unknown function at
the node i. At the node i, where the point is given by the coordinates ~ri, the basis functions
must satisfy the condition

Nj(~ri) = δij , i, j = 1, ..., N. (4.7)

Typically, the basis functions are chosen to be low order polynomials.

Substituting (4.6) in (4.4), and choosing v = Nj(~r) one obtains

(

L[
N
∑

i=1

uiNi], Nj

)

= (f,Nj) , j = 1, ..., N, (4.8)

and since L[·] is a linear operator and the coefficients ui are constants one can write

N
∑

i=1

ui (L[Ni], Nj) = (f,Nj) , j = 1, ..., N. (4.9)
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Equation (4.9) is, in fact, a linear system of N equations with N unknowns, u1, u2, ..., uN .
Thus, it can be written in matrix notation as

Ax = b, (4.10)

where A = (aij) is called stiffness matrix, given by the elements

aij = (L[Ni], Nj) =

∫

Ω
L[Ni(~r)]Nj(~r)dΩ, i, j = 1, ..., N, (4.11)

x = (u1, ..., uN )T is the vector of unknown coefficients, and b = (b1, ..., bN )T is the load
vector, given by

bj = (f,Nj) =

∫

Ω
f(~r)Nj(~r)dΩ, j = 1, ..., N. (4.12)

4.1.2 Assembly

Applying the finite element method to solve a given PDE leads to an algebraic system of
equations. In order to solve this system of equations, the global stiffness matrix, A, and the
load vector, b, have to be determined. However, instead of computing them using directly
(4.11) and (4.12), in practice they are computed by summing the contributions from the
different elements [152, 153, 154] according to

aij =
∑

T∈Th(Ω)

(L[Ni], Nj)T =
∑

T∈Th(Ω)

∫

T
L[Ni(~r)]Nj(~r)dΩ, i, j = 1, ..., N (4.13)

bj =
∑

T∈Th(Ω)

(f,Nj)T =
∑

T∈Th(Ω)

∫

T
f(~r)Nj(~r)dΩ, j = 1, ..., N. (4.14)

Note that (L[Ni], Nj)T = 0 unless both Ni and Nj belong to the same element T . Thus,
the calculations (4.13) and (4.14) can be limited to the nodes of the element T , so that
i, j = 1, ..., NV , where NV is the number of vertices of the element. In this way, for each
element T ∈ Th(Ω), a NV × NV matrix is obtained, which is called element stiffness or
nucleus matrix. Thus, the general system matrix, A, can be computed by first computing
the nucleus matrices for each T ∈ Th(Ω) and then summing the contributions from each
element according to (4.13) [152]. The right-hand side vector, b, is computed in the same
way. This process of constructing the general system matrix is called assembly [152]. The
main advantage of this assembly process is that it greatly simplifies the computation of the
system matrix and right-hand side vector, since (4.11) and (4.12) can be easily calculated for
each element of the domain discretization.

4.1.3 Shape Function

The shape function is the function which interpolates the solution between the discrete values
obtained at the mesh nodes. Therefore, appropriate functions have to be used and, as already
mentioned, low order polynomials are typically chosen as shape functions. In this work linear
shape functions are used.
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For three-dimensional finite element simulations it is convenient to discretize the simula-
tion domain using tetrahedrons, as depicted in Figure 4.1. Thus, linear shape functions must
be defined for each tetrahedron of the mesh, in order to apply the Galerkin method described
in Section 4.1.1.

Figure 4.1: Finite element mesh of a three-dimensional interconnect structure discretized
with tetrahedrons.

Consider a tetrahedron in a cartesian system as depicted in Figure 4.2(a). The linear
shape function of the node i has the form [153]

Ni(x, y, z) = ai + bix+ ciy + diz, (4.15)

where i = 1, ..., 4. The coefficients, ai, bi, ci, and di for each nodal basis function of the
tetrahedral element can be calculated considering the condition [152]

Nj(~ri) = δij , i, j = 1, ..., 4. (4.16)

As a result, a system of 4 equations for the 4 unknown coefficients is obtained. This procedure
has to be repeated for all tetrahedrons of the mesh, so that the basis functions of all grid
nodes are determined. Furthermore, in order to obtain the discrete system of equations (4.9),
the shape functions have to be derived and integrated, as shown by (4.11) and (4.12).

The calculations can be significantly simplified by carring out a coordinate transformation.
A tetrahedron in a transformed coordinate system is shown in Figure 4.2(b). Each point
(x, y, z) of the tetrahedron in the original coordinate system can be mapped to a corresponding
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point (ξ, η, ζ) in the transformed coordinate system [155]

x = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ,

y = y1 + (y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ, (4.17)

z = z1 + (z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ,

which in matrix form leads to the Jacobian matrix

J =







x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1






. (4.18)

In this way, the nodal basis functions for the tetrahedron in the transformed coordinate
system are given by [155]

N t
1(ξ, η, ζ) = 1 − ξ − η − ζ,

N t
2(ξ, η, ζ) = ξ,

N t
3(ξ, η, ζ) = η,

N t
4(ξ, η, ζ) = ζ.

(4.19)

These shape functions are rather simple, so that the derivatives and integrals required for
the finite element formulation can be readily evaluated in the transformed coordinate system.
Given a function f(x, y, z), the gradient in the transformed coordinates is of the form

∇tf =

[

∂f

∂ξ

∂f

∂η

∂f

∂ζ

]T

, (4.20)

(a) (b)

Figure 4.2: Tetrahedral finite element. (a) Original coordinate system. (b) Transformed
coordinate system.
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where the derivatives are calculated via the chain rule by

∂f

∂ξ
=
∂f

∂x

∂x

∂ξ
+
∂f

∂y

∂y

∂ξ
+
∂f

∂z

∂z

∂ξ
,

∂f

∂η
=
∂f

∂x

∂x

∂η
+
∂f

∂y

∂y

∂η
+
∂f

∂z

∂z

∂η
,

∂f

∂ζ
=
∂f

∂x

∂x

∂ζ
+
∂f

∂y

∂y

∂ζ
+
∂f

∂z

∂z

∂ζ
.

(4.21)

These equations can be expressed in matrix notation as

















∂f

∂ξ
∂f

∂η
∂f

∂ζ

















=

















∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

















·

















∂f

∂x
∂f

∂y

∂f

∂z

















, (4.22)

or
∇tf = JT∇f, (4.23)

where JT is the transpose of the Jacobian matrix. Thus, the gradient in the original coordi-
nate system can be calculated using the transformed coordinate gradient by

∇f =
(

JT
)−1 ∇tf = Λ∇tf, (4.24)

where Λ =
(

JT
)

−1
.

Performing such a coordinate transformation significantly simplifies the practical imple-
mentation of the FEM. The nodal shape functions in the transformed coordinates are fixed
and known in advance, thus, it is not necessary to solve the system of equations formed
by (4.15) and (4.16) for each element of the mesh. Only the Jacobian matrix has to be
determined, and the required calculations for the finite element formulation can be easily
evaluated.

4.2 Discretization of the Model Equations

In this section the discretization of the equations to be solved during electromigration simu-
lation is presented. The corresponding set of equations is summarized in Section 3.6.

4.2.1 Discretization of Laplace’s Equation

The electric potential is calculated from equation (3.71). Multiplying it by a test function
Np = Np(~r), and integrating over the domain Ω one obtains

∫

Ω
[∇ · (γE∇ϕ)]Np dΩ = 0, p = 1, ..., N. (4.25)
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Using Green’s formula [152]

∫

Ω
v∇2w dΩ +

∫

Ω
∇v · ∇w dΩ =

∫

Γ
v
∂w

∂~n
dΓ, (4.26)

where ∂w/∂~n represents the normal derivative in the outward normal direction to the bound-
ary Γ, and assuming a Neumann boundary condition, i.e. vanishing normal derivatives, on
Γ, equation (4.25) can be written as

−
∫

Ω
γE∇ϕ · ∇Np dΩ = 0, p = 1, ..., N. (4.27)

Since the electrical conductivity γE depends on the temperature according to (3.73) and
varies along the simulation domain, it is part of the integrand in (4.27). However, in a single
element the conductivity is assumed to be constant, being determined by the average of the
temperature on the element nodes, i.e. γE = γE(T̄ ) with

T̄ =
T1 + T2 + T3 + T4

4
, (4.28)

for a tetrahedral element. Applying the discretization for the electric potential as in (4.6),

ϕ(~r, t = tn) = ϕn =

4
∑

i=1

ϕn
i Ni(~r), (4.29)

where ϕn
i is the electric potential of the node i at a time tn, equation (4.27) for a single

element becomes

− γE

4
∑

i=1

ϕn
i

∫

T
∇Ni · ∇Np dΩ = 0, p = 1, ..., 4. (4.30)

Using the shorthand notation

Kip =

∫

T
∇Ni · ∇Np dΩ

= det(J)

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0
Λ∇tN t

i · Λ∇tN t
p dζdηdξ, (4.31)

where the last term is the calculation in the transformed coordinate system, (4.30) is rewritten
as

− γE

4
∑

i=1

ϕn
i Kip = 0, p = 1, ..., 4, (4.32)

which corresponds to a discrete system of 4 equations with 4 unknowns, i.e. the electric
potential at each node of the tetrahedral element.
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4.2.2 Discretization of the Thermal Equation

For convenience, the thermal equation (3.72) is rewritten here as

ρmcpṪ −∇ · (γT∇T ) − γE (∇ϕ)2 = 0, (4.33)

where the notation Ṫ = ∂T/∂t is used. Following the same procedure as for Laplace’s
equation, one multiplies (4.33) by Np(~r) and integrates over the domain Ω, which together
with Green’s formula (4.26) and a Neumann boundary condition yields the weak formulation

∫

Ω
ρmcpṪNp dΩ +

∫

Ω
γT∇T · ∇Np dΩ −

∫

Ω
γE (∇ϕ)2Np dΩ = 0, p = 1, ..., N. (4.34)

The thermal equation (4.33) corresponds to a parabolic problem. Besides the spatial
discretization, a discretization in time has also to be performed. A simple choice is the
backward Euler method

Ṫ =
T n − T n−1

∆tn
, (4.35)

where ∆tn = tn − tn−1 is the time step. Applying now the spatial discretization for the
temperature variable

T n =
4
∑

j=1

T n
j Nj(~r), (4.36)

and the electric potential discretization (4.29), equation (4.34) is written for a single element
as

ρmcp

4
∑

j=1

T n
j

∫

T
NjNp dΩ − ρmcp

4
∑

j=1

T n−1
j

∫

T
NjNp dΩ + ∆tnγT

4
∑

j=1

T n
j

∫

T
∇Nj · ∇Np dΩ

− ∆tnγE

4
∑

i=1

4
∑

q=1

ϕn
i ϕ

n
q

∫

T
(∇Ni · ∇Nq)Np dΩ = 0, p = 1, ..., 4. (4.37)

Using the integral notations (4.31),

Mjp =

∫

T
NjNp dΩ = det(J)

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0
N t

jN
t
p dζdηdξ, (4.38)

and

Θiqp =

∫

T
(∇Ni · ∇Nq)Np dΩ

= det(J)

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

(

Λ∇tN t
i ·Λ∇tN t

q

)

N t
p dζdηdξ, (4.39)

(4.37) can be expressed as

ρmcp

4
∑

j=1

T n
j Mjp − ρmcp

4
∑

j=1

T n−1
j Mjp + ∆tnγT

4
∑

j=1

T n
j Kjp

−∆tnγE

4
∑

i=1

4
∑

q=1

ϕn
i ϕ

n
q Θiqp = 0, p = 1, ..., 4. (4.40)
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This is the discrete system of equations, which has to be solved each time step in order
to obtain the temperature at each node of the element.

4.2.3 Discretization of the Vacancy Balance Equation

The combination of (3.74) with (3.75) and (3.76) yields the vacancy balance equation

∂Cv

∂t
+ ∇ ·

[

−Dv

(

∇Cv +
|Z∗|e
kT

Cv∇ϕ− Q∗

kT 2
Cv∇T +

fΩ

kT
Cv∇σ

)]

+
1

τ
(qCim − Cveq) = 0, (4.41)

for which the weak formulation of the form
∫

Ω

∂Cv

∂t
Np dΩ +Dv

[
∫

Ω
∇Cv · ∇Np dΩ +

|Z∗|e
kT̄

∫

Ω
Cv (∇ϕ · ∇Np) dΩ

− Q∗

kT̄ 2

∫

Ω
Cv (∇T · ∇Np) dΩ +

fΩ

kT̄

∫

Ω
Cv (∇σ · ∇Np) dΩ

]

(4.42)

+

∫

Ω

1

τ
(qCim −Cveq)Np dΩ = 0, p = 1, ..., N,

is obtained under the assumption of a Neumann boundary condition. Applying the electric
potential and the temperature discretization, (4.29) and (4.36), respectively, together with

Cn
v =

4
∑

k=1

Cn
v,kNk(~r), (4.43)

σn =
4
∑

l=1

σn
l Nl(~r), (4.44)

Cn
im =

4
∑

m=1

Cn
im,mNm(~r), (4.45)

and the backward Euler time discretization, the vacancy balance equation discretized in a
single element is given by

4
∑

k=1

Cn
v,k

∫

T
NkNp dΩ −

4
∑

k=1

Cn−1
v,k

∫

T
NkNp dΩ + ∆tnDv

[

4
∑

k=1

Cn
v,k

∫

T
∇Nk · ∇Np dΩ

+
|Z∗|e
kT̄

4
∑

i=1

4
∑

k=1

ϕn
i C

n
v,k

∫

T
(∇Ni · ∇Np)Nk dΩ

− Q∗

kT̄ 2

4
∑

j=1

4
∑

k=1

T n
j C

n
v,k

∫

T
(∇Nj · ∇Np)Nk dΩ (4.46)

+
fΩ

kT̄

4
∑

l=1

4
∑

k=1

σn
l C

n
v,k

∫

T
(∇Nl · ∇Np)Nk dΩ

]

+
∆tn
τ

(

q

4
∑

m=1

Cn
im,m

∫

T
NmNp dΩ − Cveq

∫

T
Np dΩ

)

= 0, p = 1, ..., 4
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under the assumption that τ , q, and Cveq are constant inside an element.

Using the shorthand notation (4.31), (4.38), (4.39), and

Vp =

∫

T
Np dΩ = det(J)

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0
N t

p dζdηdξ, (4.47)

(4.46) is written as

4
∑

k=1

Cn
v,kMkp −

4
∑

k=1

Cn−1
v,k Mkp + ∆tnDv

[

4
∑

k=1

Cn
v,kKkp +

|Z∗|e
kT̄

4
∑

i=1

4
∑

k=1

ϕn
i C

n
v,kΘipk

− Q∗

kT̄ 2

4
∑

j=1

4
∑

k=1

T n
j C

n
v,kΘjpk +

fΩ

kT̄

4
∑

l=1

4
∑

k=1

σn
l C

n
v,kΘlpk



 (4.48)

+
∆tn
τ

(

q
4
∑

m=1

Cn
im,mMmp − CveqVp

)

= 0, p = 1, ..., 4.

In the above derivation the vacancy diffusivity is treated as a scalar diffusion coefficient.
In order to take into account the anisotropy of diffusivity due to the mechanical stress,
as presented in Section 3.2.2, a diffusivity tensor must be applied. This requires a slight
modification of (4.48) to

4
∑

k=1

Cn
v,kMkp −

4
∑

k=1

Cn−1
v,k Mkp + ∆tn

[

4
∑

k=1

Cn
v,kKkp +

|Z∗|e
kT̄

4
∑

i=1

4
∑

k=1

ϕn
i C

n
v,kΘipk

− Q∗

kT̄ 2

4
∑

j=1

4
∑

k=1

T n
j C

n
v,kΘjpk +

fΩ

kT̄

4
∑

l=1

4
∑

k=1

σn
l C

n
v,kΘlpk



 (4.49)

+
∆tn
τ

(

q
4
∑

m=1

Cn
im,mMmp − CveqVp

)

= 0, p = 1, ..., 4.

where the diffusivity tensor D is now incorporated into Kkp and Θipk, given by

Kip =

∫

T
D∇Ni · ∇Np dΩ, (4.50)

and

Θipk =

∫

T
(D∇Ni · ∇Np)Nk dΩ. (4.51)

At material interfaces and grain boundaries the trapped vacancy concentration is governed
by (3.76), rewritten here as

∂Cim

∂t
− 1

τ
(Cveq − qCim) = 0. (4.52)

56



CHAPTER 4. NUMERICAL IMPLEMENTATION

The finite element formulation of this equation follows the same procedure described above,
which yields the discretization

4
∑

m=1

Cn
im,mMmp −

4
∑

m=1

Cn−1
im,mMmp

+ q
∆tn
τ

4
∑

m=1

Cn
im,mMmp −

∆tn
τ
CveqVp = 0, p = 1, ..., 4. (4.53)

4.2.4 Discretization of the Mechanical Equations

The deformation in a three-dimensional body is expressed by the displacement field

~d(~r) =







u(~r)

v(~r)

w(~r)






, (4.54)

where u(~r), v(~r), and w(~r) are the displacements in the x, y, and z direction, respectively.
The displacement is discretized on a tetrahedral element as [151]

~d(~r) =

4
∑

i=1

~diNi(~r), (4.55)

which leads to the components discretization

u(~r) =
4
∑

i=1

un
i Ni(~r), v(~r) =

4
∑

i=1

vn
i Ni(~r), w(~r) =

4
∑

i=1

wn
i Ni(~r). (4.56)

Applying this discretization in the strain-displacement relationship (3.79), the components
of the strain tensor can be written as

ε = Bd =
[

B1 B2 B3 B4

]

d, (4.57)

where Bi is the matrix of the derivatives of the shape functions for the node i [151]

Bi =



































∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y

∂Ni

∂x
0

0
∂Ni

∂z

∂Ni

∂y
∂Ni

∂z
0

∂Ni

∂x



































, i = 1, . . . , 4, (4.58)
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and the displacement matrix

d =











~d1

~d2

~d3

~d4











. (4.59)

Using (4.57), the stress-strain equation (3.81) can written as a function of the displacements
according to

σ = C(ε − ε0) = CBd− Cε0. (4.60)

Applying the principle of virtual work, the work of internal stresses on a continuous elastic
body is given by [151]

Win =

∫

Ω
εT σ dΩ, (4.61)

where εT is the transposed strain tensor. Combining (4.57), (4.60), and (4.61) the work on
a finite element is written as

W el
in = dT

∫

T

(

BT CBd− BTCε0

)

dΩ. (4.62)

From energy balance the internal work should be equal to the work done by external forces,
i.e. Win = Wext, and, since during electromigration there are no external forces (Wext = 0),
one obtains

∫

T

(

BT CBd− BTCε0

)

dΩ = 0, (4.63)

or
∫

T
BTCBd dΩ =

∫

T
BTCε0 dΩ, (4.64)

which can be conveniently expressed as

Kd = fin, (4.65)

where

K =

∫

T
BTCB dΩ, (4.66)

is the so-called stiffness matrix, and

fin =

∫

T
BT Cε0 dΩ, (4.67)

is the internal force vector.

Equation (4.65) forms a linear system of equations of 12 equations with 12 unknowns (the
three displacement components u, v, and w for each tetrahedron node). The inelastic strain
ε0 determines the internal force vector according to the electromigration induced strain given
by (3.78).
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4.3 Simulation in FEDOS

FEDOS (Finite Element Diffusion and Oxidation Simulator) is a finite element based frame-
work for simulating fabrication processes to be used in the microelectronics industry [155,
156]. It integrates the basic functionality required for finite element analysis, namely, as-
sembly routines, linear and non-linear solvers, input and output operations, etc, so that the
equations derived in Section 4.2 can be conveniently implemented.

Since electromigration constitutes a multi-physics problem, it is convenient to divide it
into smaller subproblems and to solve each one separately. The resulting simulation scheme
is depicted in Figure 4.3. The electro-thermal problem is governed by partial differential
equations for the electric potential, ϕ, and for the temperature, T . The variables of interest
for the vacancy dynamics are the vacancy concentration, Cv, and the trapped vacancy con-
centration at grain boundaries and interfaces, Cim. The mechanical problem is formulated in
terms of the displacement field, ~d, however, the mechanical stress obtained from the solution
of the mechanical problem is the variable of interest here. Each subproblem is solved for the
corresponding variable, while the variables of the other subproblems are fixed.

Figure 4.3: Simulation procedure of electromigration in FEDOS.
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First, the solution of the electro-thermal problem determines the electric potential and
temperature distribution in the interconnect. These quantities are then used to compute
the vacancy concentration change due to the total mass transport occurring under electro-
migration and accompanying driving forces. The rate of change of the trapped vacancy
concentration at grain boundaries and other interfaces due to generation/annihilation pro-
cesses is obtained. The change in vacancy concentration determines the induced strain which
loads the mechanical problem. The solution of the mechanical system yields the deformation
of the interconnect line, so that the mechanical stress can be calculated. If the magnitude of
the developed stress reaches the threshold value for void nucleation, the simulation procedure
is terminated and the corresponding time for void nucleation, and eventually interconnect
failure, can be estimated. Otherwise, the time is updated and the cycle described above is
repeated. Since the electric potential and temperature distribution reach a steady state con-
dition in a time scale much shorter than that for the vacancy concentration and mechanical
stress, the electro-thermal problem is typically solved only for a few initial time steps.

All subproblems are solved on the same finite element mesh. An initial mesh refinement
routine may be executed in the beginning of the simulation procedure in order to appropriately
solve the material transport equations at grain boundaries and material interfaces.

4.3.1 Newton’s Method

The non-linear system of equations, which results from the discretization described in Sec-
tion 4.2, is solved in FEDOS using the conventional Newton method [153, 154]. Generally, a
non-linear system of N equations is expressed as

f1(x1, x2, ..., xN ) = 0

f2(x1, x2, ..., xN ) = 0

...

fN(x1, x2, ..., xN ) = 0

. (4.68)

If a given solution xn−1
j , j = 1, ..., N , is known, these equations can expanded in the vicinity

of xn−1
j using Taylor’s series, which to the first order are approximated by

fi(x1, ..., xN ) ≈ fi(x
n−1
1 , ..., xn−1

N ) +

N
∑

j=1

∂fi

(

xn−1
1 , ..., xn−1

N

)

∂xj

(

xj − xn−1
j

)

= 0, (4.69)

for i = 1, . . . , N . The system of equations (4.69) is written in matrix form as

F(xn−1) + JN

(

x− xn−1
)

= 0, (4.70)

where JN is the so-called Jacobian matrix, for which the entries are given by

Jij =
∂fi

(

xn−1
1 , ..., xn−1

N

)

∂xj
. (4.71)

Thus, the solution of (4.70) is

xn = xn−1 − JN
−1 F(xn−1). (4.72)
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In FEDOS, instead of using (4.72), the linear system of equations

JN (∆xn) = R(xn−1), (4.73)

is assembled and solved, so that the increments ∆xn = xn − xn−1 are determined. Here,
R(xn−1) = −F(xn−1) is called residual. In this way, the new approximate solution xn is
updated according to

xn = xn−1 + ∆xn. (4.74)

These calculations are performed as an iterative process, where the solution of the n− 1
iteration is used to compute the new solution. The accuracy of the new approximate solution
is controlled by the conditions

‖xn − xn−1‖ ≤ ǫer, (4.75)

where ǫer is a given tolerance for the solution error, and

‖R(xn)‖ ≤ ǫres, (4.76)

where ǫres is a given tolerance for the residual and ‖ · ‖ represents the Euclidean norm. The
iterative procedure is terminated, if both criteria are fulfilled.

4.3.2 Assembly of the Electro-Thermal Problem

The discretization of the electrical and the thermal problem, (4.32) and (4.40), respectively,
forms a non-linear system of equations for a tetrahedral element given by

F(ϕ,T ) = 0

G(ϕ,T ) = 0
(4.77)

where F(ϕ,T ) corresponds to

fp = −γE(T̄ )

4
∑

i=1

ϕn
i Kip = 0, (4.78)

and G(ϕ,T ) to

gp+4 = ρmcp

4
∑

i=1

T n
i Mip − ρmcp

4
∑

i=1

T n−1
i Mip + ∆tnγT (T̄ )

4
∑

i=1

T n
i Kip

− ∆tnγE(T̄ )

4
∑

i=1

4
∑

q=1

ϕn
i ϕ

n
q Θiqp = 0, (4.79)

for p = 1, . . . , 4.
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Applying Newton’s method, the element Jacobian matrix for the electro-thermal problem
has the form

JN =



































∂f1

∂ϕn
1

· · · ∂f1

∂ϕn
4

∂f1

∂T n
1

· · · ∂f1

∂T n
4

...
...

...
...

∂f4

∂ϕn
1

· · · ∂f4

∂ϕn
4

∂f4

∂T n
1

· · · ∂f4

∂T n
4

∂g5
∂ϕn

1

· · · ∂g5
∂ϕn

4

∂g5
∂T n

1

· · · ∂g5
∂T4

...
...

...
...

∂g8
∂ϕn

1

· · · ∂g8
∂ϕn

4

∂g8
∂T n

1

· · · ∂g8
∂T n

4



































. (4.80)

Since the global system for the electro-thermal problem is constructed following the assembly
procedure described in Section 4.1.2, the Jacobian matrix is the nucleus matrix to be com-
puted for each element of the mesh. The matrix entries for the electrical equation (4.78) are
given, in general, by

∂fp

∂ϕn
i

= γE(T̄ )Kip, (4.81)

∂fp

∂T n
i

= −∂γE(T̄ )

∂Ti

4
∑

k=1

ϕn
kKkp =

1

4

γE0[αE + 2βE(T̄ − T0)]

[1 + αE(T̄ − T0) + βE(T̄ − T0)2]2

4
∑

k=1

ϕn
kKkp, (4.82)

and the entries for the thermal equation (4.79) are computed by

∂gp+4

∂ϕn
i

= −2∆tnγE(T̄ )

4
∑

q=1

ϕn
q Θiqp, (4.83)

∂gp+4

∂T n
i

= ρmcpMip + ∆tnγT (T̄ )Kip −
1

4
∆tn

γT0[αT + 2βT (T̄ − T0)]

[1 + αT (T̄ − T0) + βT (T̄ − T0)2]2

4
∑

k=1

T n
k Kkp

+
1

4
∆tn

γE0[αE + 2βE(T̄ − T0)]

[1 + αE(T̄ − T0) + βE(T̄ − T0)2]2

4
∑

k=1

4
∑

l=1

ϕkϕlΘklp, i, p = 1, . . . , 4. (4.84)

The right-hand side of the linear system (4.73) is assembled by the residuals

Rp = γE(T̄ )

4
∑

i=1

ϕn−1
i Kip, (4.85)

Rp+4 = −ρmcp

4
∑

i=1

T n−1
i Mip + ρmcp

4
∑

i=1

T n−2
i Mip − ∆tnγT (T̄ )

4
∑

i=1

T n−1
i Kip

+ ∆tnγE(T̄ )

4
∑

i=1

4
∑

q=1

ϕn−1
i ϕn−1

q Θiqp, p = 1, . . . , 4. (4.86)
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4.3.3 Assembly of the Vacancy Dynamics Problem

The vacancy dynamics problem requires the solution of

fp =

4
∑

k=1

Cn
v,kMkp −

4
∑

k=1

Cn−1
v,k Mkp + ∆tnDv

[

4
∑

k=1

Cn
v,kKkp +

|Z∗|e
kT̄

4
∑

i=1

4
∑

k=1

ϕn
i C

n
v,kΘipk

− Q∗

kT̄ 2

4
∑

j=1

4
∑

k=1

T n
j C

n
v,kΘjpk +

fΩ

kT̄

4
∑

l=1

4
∑

k=1

σn
l C

n
v,kΘlpk



 (4.87)

+
∆tn
τ

(

q
4
∑

m=1

Cn
im,mMmp − CveqVp

)

= 0,

and

gp+4 =
4
∑

m=1

Cn
im,mMmp −

4
∑

m=1

Cn−1
im,mMmp + q

∆tn
τ

4
∑

m=1

Cn
im,mMmp −

∆tn
τ
CveqVp = 0, (4.88)

for p = 1, ..., 4.

Applying Newton’s method the Jacobian matrix has the form

JN =
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, (4.89)

where the entries are computed by

∂fp

∂Cn
v,i

= Mip + ∆tnDv



Kip +
|Z∗|e
kT̄

4
∑

j=1

ϕn
j Θjpi

− Q∗

kT̄ 2

4
∑

j=1

TjΘjpi +
fΩ

kT̄

4
∑

j=1

σn
j Θjpi



 , (4.90)

∂fp

∂Cn
im,i

= q
∆tn
τ
Mip, (4.91)

and

∂gp+4

∂Cn
v,i

= 0 (4.92)

∂gp+4

∂Cn
im,i

=

(

1 + q
∆tn
τ

)

Mip, i, p = 1, . . . , 4. (4.93)
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The corresponding residuals are given by

Rp = −
4
∑

k=1

Cn−1
v,k Mkp +

4
∑

k=1

Cn−2
v,k Mkp − ∆tnDv

[

4
∑

k=1

Cn−1
v,k Kkp

+
|Z∗|e
kT̄

4
∑

i=1

4
∑

k=1

ϕn
i C

n−1
v,k Θipk −

Q∗

kT̄ 2

4
∑

j=1

4
∑

k=1

T n
j C

n−1
v,k Θjpk (4.94)

+
fΩ

kT̄

4
∑

l=1

4
∑

k=1

σn−1
l Cn−1

v,k Θlpk

]

+ χ
∆tn
τ

(

q
4
∑

m=1

Cn
im,mMmp −CveqVp

)

,

Rp+4 = −
4
∑

m=1

Cn−1
im,mMmp +

4
∑

m=1

Cn−2
im,mMmp − q

∆tn
τ

4
∑

m=1

Cn−1
im,mMmp +

∆tn
τ
CveqVp, (4.95)

p = 1, . . . , 4.

4.3.4 Calculation of the Mechanical Stress

The discretization of the mechanical problem presented in Section 4.2.4 yields the linear
system of equations

Kd = fin, (4.96)

with

K =

∫

T
BTCB dΩ, (4.97)

fin =

∫

T
BT Cε0 dΩ, (4.98)

Since B, C, and ε0 are constant within an element, the assembly of (4.96) is performed in
FEDOS using

K = BT CB, (4.99)

and
fin = BTCε0. (4.100)

The mechanical problem has to be solved each time step after the solution of the vacancy
dynamics problem, as shown in Figure 4.3. Thus, for the time step n, the internal force
vector is determined by the electromigration induced strain given in (3.82), so that

ε0 =
1

3
εv,nI. (4.101)

From (3.78), the trace of the electromigration strain for each node of the tetrahedron is
calculated by

εv,n
i = εv,n−1

i − Ω(1 − f)
(

Cn
v,i − Cn−1

v,i

)

+ Ω
(

Cn
im,i − Cn−1

im,i

)

, i = 1, . . . , 4, (4.102)

resulting in the element strain which is set in (4.101),

εv,n =

4
∑

i=1

εv,n
i . (4.103)
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The solution of (4.96) yields the interconnect line deformation due to electromigration.
Once the displacement field d is determined, the electromigration induced stress vector for
an element is obtained using (4.60),

σ = CBd− Cε0. (4.104)

The mechanical stress at each node is obtained by an extrapolation from the stress calculated
for the elements, given by (4.104). The stress at a particular node is calculated by performing
a weighted average of the stress on all elements connected to the node. Considering a node
p ∈ Th(Ω) and defining the set of all elements which contain the node as T (p), the mechanical
stress at the node p is given by

σp =
1

∑

T∈T (p)

VT

∑

T∈T (p)

VT σT , (4.105)

where VT is the volume, and σT is the stress calculated by (4.104) for the element T .

4.3.5 Mesh Refinement at Material Interfaces and Grain Boundaries

In order to obtain an appropriate resolution for the local vacancy dynamics at grain bound-
aries and interfaces formed by the interconnect metal with the surrounding layers, an ap-
propriately fine FEM mesh has to be provided at these locations. Therefore, a simple local
mesh refinement procedure was implemented. The procedure first detects the elements with
nodes connected to more than one segment. If the tetrahedron volume is larger than a given
value, the corresponding tetrahedron is refined. This procedure can be executed recursively,
until all tetrahedrons connected to the interface have a volume smaller than the specified one.
Figure 4.4 shows the mesh refinement obtained at a grain boundary and at the metal/capping
layer interface of a typical dual-damascene interconnect.

Figure 4.4: Mesh refinement at a grain boundary and at a material interface.
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Chapter 5

Simulation Studies of
Electromigration

In this chapter several electromigration simulation examples according to the model discussed
in Chapter 3 are presented. First, the materials considered in the simulations are introduced
and the corresponding set of parameters used by the models are defined. Then, the model
calibration and verification by comparing it to the models described in Chapter 2 is presented.
The vacancy dynamics behavior is analyzed, neglecting first the mechanical stress, which is
incorporated later to clearly show the importance of the stress effect on the electromigration
failure development. Also, the influence of the mechanical stress in producing anisotropic
diffusivity and its effect on material transport in a dual-damascene interconnect structure
is studied. Then, the importance of introducing the fast diffusivity paths into the modeling
framework is shown. This enables to explain several features of failure development commonly
observed in experiments, for which the simple effective diffusion models cannot cope with.
Finally, the role of the copper grain distribution on electromigration lifetimes of bamboo-like
interconnect lines is investigated.

5.1 Material and Simulation Parameters

The following simulations are focused on contemporary copper dual-damascene interconnect
structures of the 65 nm and 45 nm technology nodes. The typical materials used in such
interconnects are: copper (Cu) as conductor metal, tantalum based (TaN/Ta) barrier layers
at the bottom and sides of the lines, silicon nitride based (SiN/SiCN) capping layers, and
low-k interlevel dielectrics, such as SiCOH.

The tables below present the materials’ parameters for the electro-thermal, vacancy dy-
namics and mechanical deformation problem. These parameters were chosen from the recent
literature, where they were obtained either by experimental or theoretical studies. Since elec-
tromigration just takes place in the conductor line, the parameters related to the material
transport equations are presented for copper only.

Electromigration experiments are carried out under accelerated test conditions, which
means that the interconnect lines are normally tested at a higher current density and at
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a higher temperature than that found at use conditions. Therefore, the simulation results
presented in the following sections follow this trend, and were obtained for a current density
of 2 MA/cm2 and temperature of 300 ◦C, unless otherwise stated.

Table 5.1: Parameters of the electro-thermal equations.

Parameter Cu Ta SiN SiCOH Reference

γE0 (Ωm) 4.0 × 107 3.3 × 105 - - [81]

αE (K−1) 0.0043 0 0 0 [157]

βE (K−2) 0 0 0 0 -

γT0 (W/mK) 379 53.65 0.8 0.35 [158, 12]

αT (K−1) 0 0 0 0 -

βT (K−2) 0 0 0 0 -

ρm (kg/m3) 8920 16690 3100 2200 [158, 12]

cp (J/kgK) 385 140.15 170 1000 [158, 12]

Table 5.2: Parameters of the mechanical equations.

Parameter Cu Ta SiN SiCOH Reference

E (GPa) 130 186 265 9.2 [97, 12]

ν 0.34 0.35 0.27 0.16 [158]

α (K−1) 16.5 × 10−6 6.50 × 10−6 1.50 × 10−6 0.68 × 10−6 [158]

Table 5.3: Parameters of the vacancy dynamics equations.

Parameter Cu Reference

Dv0 (cm2/s) 0.52 [97]

Ea (eV) 0.89 [159]

Z∗ -5.0 [67]

Q∗ (J) 1.2 × 10−20 -

f 0.4 -

Ω (cm3) 1.18 × 10−23 -

Cv0 (cm−3) 1.0 × 1016 -

τ (s) 1.0 [97]

Table 5.4: Simulation conditions.

Parameter Value

j (MA/cm2) 2.0

T (◦C) 300
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5.2 Model Calibration and Verification

In this section, the developed electromigration model is calibrated and verified by compar-
ing simulation results with analytical solutions which are available for the simple models
presented in Chapter 2.

5.2.1 Vacancy Dynamics

Consider the simple model of Shatzkes and Lloyd, expressed by the equation (2.13). Given a
finite line of length L, with blocking boundary conditions at both ends of the line, that is

Jv(0, t) = Jv(−L, t) = 0, (5.1)

the solution of (2.13) under such boundary conditions is of the form [160]

Cv(x, t)

Cv0
= A0 −

∞
∑

n=1

An exp

(

−Bn
Dv

L2
t+

α

2

x

L

)

, (5.2)

where

α =
|Z∗|eρjL
kT

. (5.3)

The steady-state solution is determined by the term

A0 =
α

1 − exp(−α)
exp

(

α
x

L

)

, (5.4)

and the coefficients An and Bn are given, respectively, by

An =
16nπα2[1 − (−1)n exp(α/2)]

(α2 + 4n2π2)2

[

sin
(

nπ
x

L

)

+
2nπ

α
cos
(

nπ
x

L

)

]

, (5.5)

Bn = n2π2 + α2/4. (5.6)

In order to compare the numerical implementation with this analytical solution, it is set
G = 0 in (3.75) and f = 0 in (3.74). This makes the proposed model equivalent to equation
(2.13) by removing the generation/recombination term and also neglecting the mechanical
stress effects. Figure 5.1 shows the vacancy distribution next to the blocking boundary at
x = 0 of a simple copper line of length L = 50 µm after a time t = 1 h, obtained from a
numerical simulation.

The current flows from left to right, so that vacancy accumulates at the cathode end of
the line. At the same time, vacancy depletion takes place at the anode side at x = −L. This
can be seen by the vacancy concentration at the center of the line along the x direction, as
shown in Figure 5.2 for different time periods. The curve for t = 3600 s shows the vacancy
concentration distribution after the steady state is already reached. The symbols correspond
to the numerical simulation results, while the solid lines correspond to the analytical solution
given in (5.2). It should be pointed out that the agreement between the numerical and the
analytical solution is excellent.
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Figure 5.1: Detail of the vacancy distribution next to the cathode end of the line after
t = 3600 s (in cm−3).
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Figure 5.2: Vacancy concentration along the line at different times for j = 2.0 MA/cm2.
The symbols are the numerical simulation results and the solid lines are obtained
by (5.2).
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The accumulation of vacancies at the cathode and depletion at the anode creates a gradi-
ent of vacancy concentration along the line, which counters the electromigration flux. Once
the vacancy gradient produces a back flux that equals the electromigration flux, the steady
state condition is reached. The vacancy build-up with time at the boundary x = 0 is shown in
Figure 5.3. The simulation results are presented for three values of current density, j = 1.0,
2.0, and 5.0 MA/cm2. The increase of current density is accompanied by the increase of the
electromigration flux, which leads to a higher vacancy concentration at the cathode end of
the line. It is interesting to note that the time to reach the steady state lies in the order
of minutes. After about 10 min the vacancy concentration already saturates. As it will be
shown later, this is a major shortcoming of this model. Figure 5.3 shows that an excellent
agreement between the numerical and the analytical solution is again observed.

Consider now the intersection of two metal grains forming a grain boundary, as shown in
Figure 5.4. The model of Rosenberg and Ohring, given by equation (2.21), is used to analyze
the vacancy supersaturation that can develop at such a grain boundary. The magnitude of
vacancy supersaturation at the grain boundary is a function of the transport characteristics
of both grains. Thus, depending on the difference of the diffusion coefficients in each grain,
or on the available paths for atomic transport, different supersaturation values are expected.
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Figure 5.3: Vacancy concentration development at x = 0 for different magnitudes of current
density. The symbols are the numerical simulation results and the solid lines
are obtained by (5.2).
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Figure 5.4: The intersection of two copper grains with different properties forming a grain
boundary.

At steady state (∂Cv/∂t = 0) both, the vacancy concentration and the flux are continuous
along the grain boundary interface,

C1
v (x = 0) = C2

v (x = 0) and Jv
1(x = 0) = Jv

2(x = 0), (5.7)

so that the solution of (2.21) yields for each grain [72]

S1(x) =
C1

v (x)

Cv0
− 1 = S(0) exp(−λ1x), x < 0,

S2(x) =
C2

v (x)

Cv0
− 1 = S(0) exp(−λ2x), x > 0,

(5.8)

where S(0) is the vacancy supersaturation at x = 0, given by

S(0) =

[(

λ1D
1
v − λ2D

2
v

D2
vE2 −D1

vE1

)

kT

|Z∗|e − 1

]−1

, (5.9)

and

λ1 = −|Z∗|eE1

2kT
−
[

( |Z∗|eE1

2kT

)2

+
1

D1
vτ1

]1/2

,

λ2 = −|Z∗|eE2

2kT
+

[

( |Z∗|eE2

2kT

)2

+
1

D2
vτ2

]1/2

.

(5.10)

It is assumed that the diffusion coefficient in each grain is different, so that E1
a = 0.89 eV

is set for the left grain, and E2
a = 1.1 eV is set for the right grain of the line. The other

paremeters are considered to be the same for both grains. The electric current flows from
the left to the right grain, and since the activation energy for diffusion is smaller in the first
grain, vacancies arrive at the grain boundary at a higher rate than they leave. As a result,
vacancy accumulation takes place at the grain boundary, as shown in Figure 5.5.
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Figure 5.5: Detail of the vacancy concentration at the grain boundary formed by the inter-
section of two grains with different diffusion coefficients (in cm−3).

The vacancy supersaturation along the grains for different vacancy relaxation times is
shown in Figure 5.6. One can see that the vacancy concentration profile in each grain is quite
different. The bigger diffusion coefficient leads to a smaller concentration gradient in the
left grain. In turn, the smaller diffusivity in the right grain leads to a larger concentration
gradient near the grain boundary. The comparison between the numerical simulations and
the analytical solution, given by equation (5.8), is remarkably good.

An important observation is that the supersaturation significantly decreases as the va-
cancy relaxation time decreases. Furthermore, the maximum supersaturation is rather small,
even for longer vacancy relaxation times. This means that the maximum supersaturation is
significantly dependent on τ , that is, it is significantly dependent on the effectiveness of the
vacancy sink/source. As a consequence, a high vacancy supersaturation cannot be obtained
near vacancy sinks, since vacancies are annihilated as soon as the local vacancy concentration
becomes higher than its equilibrium value.

The time development of the vacancy supersaturation at the grain boundary obtained
from the numerical simulations is presented in Figure 5.7. Besides the aforementioned strong
influence on the supersaturation magnitude, the vacancy relaxation time has a significant
impact on the time to reach the steady state condition. Here again, the shorter the relaxation
time is, the faster vacancy annihilation or generation processes occur, and the faster the
system tends to the equilibrium condition. Moreover, the steady state is reached in a time
range which lies in the order of seconds. Even for much larger vacancy relaxation times the
time to reach the steady state is, at most, in the order of minutes.
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Figure 5.6: Vacancy concentration at the grain boundary for different vacancy relaxation
times. The symbols are the numerical simulation results and the solid lines are
obtained by (5.8).
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Figure 5.7: Vacancy concentration at the grain boundary as a function of time. The vacancy
relaxation time, τ , is a key parameter in determining the magnitude of vacancy
supersaturation and the time to reach the steady state.
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These results show that the numerical simulations consistently recover the analytical
solutions for the limiting cases studied above. At the same time, their most important
features are presented. However, two critical issues appear here: first, the magnitudes of
vacancy supersaturation are quite small, and second, the time to reach the steady state is
too short. The first issue hinders a satisfying explanation for void nucleation observed during
electromigration tests, while the latter is inconsistent with the typical time of electromigration
failure development, which is in the order of several hours. As already pointed out, the
introduction of the mechanical stress effect is crucial to resolve the above inconsistencies, as
it is shown below.

5.2.2 The Role of Mechanical Stress

Consider a simple 50 µm Cu long line, where the mechanical deformation, and consequently
mechanical stress, accompanying electromigration is determined by the solution of (3.78)–
(3.82). Here, the effect of vacancy annihilation/production on the strain rate is determined
by

G = −Cv − Cveq

τ
, (5.11)

with Cveq given by (2.38). It is assumed that the line is encapsulated by a rigid passivation
layer, in such a way that the displacement components of the line surfaces are set to zero
as boundary condition. Applying the parameters given in Section 5.1, the hydrostatic stress
distribution at the anode and cathode end of the line for a time t = 100h is depicted in
Figure 5.8.

(a)

0.00  0.00  
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-95.8 -95.8 

(b)

Figure 5.8: Hydrostatic stress distribution in a 50 µm long line at t = 100h (in MPa). (a)
Tensile stress (positive) develops at the cathode end of the line. (b) At the
anode end compressive stress (negative) develops.

At the anode end (x = −L) there is a depletion of vacancies, or an excess of Cu atoms,
which leads to a compressive stress (negative). In turn, accumulation of vacancies at the
cathode (x = 0) driven by electromigration results in a tensile stress (positive). The stress
profile along the center of the line is shown in Figure 5.9. The magnitude of the stress
at the ends of the line gradually increases with time, developing the stress gradient which
counters electromigration. In steady state, the stress varies linearly along the line, and the
electromigration flux is totally compensated by the back flux driven by the gradient of stress.
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Figure 5.9: Stress profile along the line at different periods in time.
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Figure 5.10: Vacancy concentration as a function of time at the cathode end of the line.
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Figure 5.10 shows the development of the vacancy concentration at the cathode end with
time. This curve can be divided into three regions. The first corresponds to the initial
period of time, where a rapid increase in the vacancy concentration is observed. It is a
quite short period and lasts about 1 s only. By this time the second period starts, where the
vacancy concentration remains practically constant. This period lasts until about t = 104 s.
Kirchheim [53] called this period a quasi steady state period. Finally, in the third period, the
vacancy concentration increases at a low rate until the true steady state is reached. Typically,
this is the longest period, lasting from hundreds until thousands of hours.

The initial stress build-up closely follows the first period of increase of the vacancy con-
centration. As the quasi steady state is reached, the stress grows approximately linearly with
time, shown in Figure 5.11. It corresponds to a period of transition from lower to higher
values of stress. At first, the low stress does not affect the equilibrium vacancy concentra-
tion. However, as the stress magnitude increases, the equilibrium vacancy concentration also
increases, which, in turn, affects the stress build-up due to the generation/recombination
term given in (5.11). As a consequence, the third period is characterized by a non-linear
increase of the stress until the true steady state is reached, as can be seen in Figure 5.12.
The correspondence between these periods of vacancy development with mechanical stress
build-up was already observed by Kirchheim [53].
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Figure 5.11: Stress evolution during the quasi steady state period. In this period the stress
grows linearly with time.
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Figure 5.12: Stress build-up with time. A non-linear increase of stress is observed at longer
times.

To sum up, high mechanical stresses can develop in a conductor line under electromigra-
tion. The stress build-up with time is a slow process, where high stresses develop after several
hours, in contrast to the fast vacancy build-up observed in the results of Section 5.2.1. More-
over, the numerical simulation results reproduce the same characteristic behavior described
by Kirchheim [53].

5.3 Stress Effect on Diffusivity

The effect of mechanical stress on the diffusivity and, consequently, on the material transport
due to electromigration is analyzed. Consider the copper dual-damascene interconnect struc-
ture shown in Figure 5.13. The structure is initially at a temperature of 500 ◦C and then
cools down to about 100 ◦C. Upon cooling from such a high temperature, mechanical stress
develops in the copper line due to the large difference of the thermal expansion coefficients
between the copper and the surrounding materials (Table 5.2). The three stress components,
σxx, σyy, and σzz along the upper line, via, and lower line are shown in Figure 5.14. Here, the
boundary at the bottom of the passivation is assumed to be fixed, simulating the mechanical
constraint imposed by a thick substrate.
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Figure 5.13: Complete dual-damascene interconnect via.
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Figure 5.14: Stress components along the upper line, via, and lower line.
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One can see that the stress state in the line strip and in the via are rather different. In the
line strip, the σxx component has a magnitude of about 1 GPa and is much larger than the
other components, where σzz is about 360 MPa, and σyy about 120 MPa. The lower stress
level for σyy is due to the small dimension of the line in this direction, so that the mechanical
constraint imposed by the boundary condition at the bottom of the passivation is small [161].
In the via region σxx is reduced to 600 MPa, while the σzz component significantly increases,
reaching 1.2 GPa. This behavior was already observed by Paik et al. [161] and Suzuki et

al. [162]. A high value of σzz develops due to the small dimensions of the via in the x and
y directions in combination with the constraints imposed in the z direction by the boundary
condition at the bottom surface of the passivation, and by the barrier and capping layer,
since both have larger elastic modulus than the copper.

Figure 5.15 shows the hydrostatic stress in the metal lines. The hydrostatic stress distribu-
tion has an important influence on the total material transport, as the gradient of hydrostatic

(a)

(b)

Figure 5.15: Hydrostatic stress distribution in an interconnect via after cooling from 500 ◦C
to 100 ◦C (in MPa). (a) Distribution on the mesh nodes. (b) Profile in a cut
through the structure.
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stress is an additional driving force for atom migration. The hydrostatic stress is not uniform
throughout the copper lines. High stresses develop at the bottom of the via in the top line
and at the edge of the via intersecting with the capping layer in the bottom line.

The interconnect is now subjected to an electromigration test at 100 ◦C and 2 MA/cm2,
where the current flows from the upper to the lower line. The Ta barrier layer at the bottom
of the via acts as a blocking boundary for diffusion, so that the electromigration flux leads
to a build-up of vacancies at this site, as shown in Figure 5.16. An interesting observation
is that the peak of the vacancy concentration is higher at the outer interfaces than in the
bulk of the via. This is a consequence of the non-uniform hydrostatic stress distribution, as
vacancies are driven by the high stress gradients present in the via region.

Figure 5.16: Vacancy distribution at the upper line. Vacancies concentrate at the bottom
of the via, which is a blocking boundary for vacancy diffusion (in cm−3).

In order to show the effect of the stress components (Figure 5.14) on the vacancy transport,
three cases are considered. First, it is assumed that the vacancy diffusivity is a constant scalar
quantity independent of stress, following the usual Arrhenius law (2.10), with pre-exponential
factor and activation energy given in Table 5.3. Then, the diffusivity is treated as a scalar
quantity which is affected by the hydrostatic stress according to equation (3.13). In the third
case, the effect of the individual stress components is taken into account, yielding a tensorial
diffusivity, as derived in Section 3.2.2. The vacancy build-up at the bottom of the via is
shown in Figure 5.17. The simulations are carried out at a temperature commonly used
in accelerated tests, 300 ◦C, and at a temperature close to that found at typical operating
conditions, 100 ◦C.

One can see that, at the elevated temperature, the vacancy build-up is practically identical
for all cases, that is, vacancy transport is not affected by the stress distribution. This means
that the diffusivity dependence on stress is weak. Thus, the diffusivity can be considered to be
isotropic and can be well described by a scalar quantity. On the other hand, at real operating
conditions a clear distinction in vacancy evolution is observed. In this case, the tensile stress
originated from the thermal process leads to an increased diffusivity, which, in turn leads to a
higher vacancy flux along the conductor lines and a higher vacancy concentration at the via.
Thus, the diffusivity dependence on stress becomes an important factor to be considered. The
addition of the hydrostatic stress dependence on the scalar diffusivity represents already an
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improvement in the diffusivity description. Nevertheless, the large difference in magnitudes
of the individual components of the stress, as shown in Figure 5.14, certainly leads to an
anisotropic diffusion process which can only be described by the tensorial diffusivity, as
derived in Section 3.2.2.

The different behavior at the different temperatures is a consequence of the stress mag-
nitude which develops in the structure after the thermal cycle. At an elevated temperature,
the stresses which result from the cooling process are smaller, since the difference between
the initial temperature and the test temperature is smaller. Therefore, the stress level pro-
duced at elevated temperature tests is unlikely to cause a significant variation of the diffusion
coefficient. However, it is shown that a different behavior is expected as soon as the test
temperature approaches the use condition, where the residual stresses from the fabrication
process become large enough to influence the vacancy diffusivity.

These results have an important consequence for the extrapolation of lifetimes obtained
from accelerated tests to use conditions. They indicate that the activation energy for the
diffusion process obtained from accelerated tests is likely to be wrong, since the stress effect
on diffusion has a different impact at the accelerated tests and at the use conditions. This
situation can be partially improved by introducing a hydrostatic stress dependence on the
diffusion coefficient. However, the anisotropic effect cannot be estimated, since a detailed
picture of the stress components cannot be experimentally determined. Thus, the developed
model provides a useful insight into this problem.
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Figure 5.17: Vacancy evolution at the bottom of the via. Three cases are studied: constant
diffusivity, hydrostatic stress dependent diffusivity, and stress tensor depen-
dent diffusivity.
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5.4 Fast Diffusivity Paths

Numerical simulations of electromigration are normally carried out on simple two-dimensional
lines, in such a way that the effects of interfaces formed by the metal with the surrounding
materials are frequently neglected. The most common example of such a case is the use of a
single effective diffusion coefficient for the entire metal line, namely, for bulk, grain boundaries
and interfaces.

Consider the interconnect via shown in Figure 5.18, where 0.01 V is applied at the left
boundary of the upper line (M2) and 0.0 V at the right boundary of the lower line (M1). This
yields a current density of 2 MA/cm2 passing through the interconnect, and the electrons
move from M1 to M2 (upstream electron flow). Figure 5.19 shows the current density in the
line and via region. In this case, the electromigration development in the M2 line is studied.

Figure 5.18: Electric potential along the interconnect line (in V).

Figure 5.19: Current density distribution next to the via region (in MA/cm2). The current
density magnitude is larger in the via than in the line, since the cross section
of the via is smaller than that of the line.
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The current density is larger in the via than in the line, because the via has a smaller
cross section than the line. This larger current density yields a higher joule heating in the via,
which, in turn, leads to an increase of the temperature in this region, as shown in Figure 5.20.
However, the external boundaries of the passivation are kept at the test temperature, 573 K, so
that the temperature increase in the via is very small, and the entire interconnect practically
remains at the same temperature. In fact, the temperature increase in the via is so small
that it cannot significantly affect the vacancy transport.

Given the conditions above, vacancies are driven by electromigration from the left to
the right end of the line. Since the bottom of the via is a blocking boundary, vacancies
accumulate at this region, as shown in Figure 5.21. The increase in vacancy concentration at
the via bottom is accompanied by the build-up of a tensile stress, shown in Figure 5.22.

Figure 5.20: Detail of the temperature distribution in the via region through a cut along
the x coordinate. A very small temperature increase in the via is caused by a
higher joule heating in this region (in K).

Figure 5.21: Vacancy distribution in the M2 line and via after 100 h of electromigration
test (in cm−3).
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Figure 5.22: Stress distribution in the via region through a cut along the x coordinate after
100 h of electromigration test (in MPa).

From these observations one can infer that void nucleation takes place at the bottom of
the via. This void can further develop and span the via bottom, which certainly leads to a
significant increase of the line resistance, thus triggering the interconnect failure. This failure
mechanism has been observed in electromigration experiments of copper dual-damascene
interconnects [8, 114, 163], where it is frequently called via failure.

Although such a failure mechanism has been experimentally detected, several other mech-
anisms have been identified. For example, in a group of papers, Vairagar et al. [27, 31, 32,
114, 164] showed that most of the failures occurred due to growth of a void initially located
at the copper/capping layer interface at the cathode end of the line. In fact, they observed
that a void initially nucleates at the copper/capping layer interface at a site away from the
cathode end and migrates towards the cathode end. There, this void grows by coalescence
with other incoming voids. Therefore, via failure corresponds to just a fraction of an entire
failure population.

A similar situation appears, when the direction of current flow (downstream electron
flow) is reversed and the EM behavior in the M1 line is investigated. In this case vacancies
accumulate through the whole line thickness under the via and, consequently, a high tensile
stress develops, as shown in Figure 5.23 and in Figure 5.24, respectively. Thus, void nucleation
is expected to occur at this site, right underneath the via. Here again, a similar trend as
that for the upstream case appears. Although void nucleation at such a location has been
experimentally observed [24], voids are more often seen to nucleate at a site away from the
via [31, 32, 114] and also adjacent to the via [24].

From the discussion above one can see that using a single effective diffusivity value for
the whole line can eventually explain some experimental findings. Nevertheless, several other
observations cannot be described. For that purpose, a more meaningful and, at the same
time, more realistic approach is required.
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Figure 5.23: Vacancy distribution in the M1 line (downstream case) at t = 100h (in cm−3).
Vacancies concentrate right underneath the via.

Figure 5.24: Hydrostatic stress due to downstream electromigration at t = 100h (in MPa).
The maximum stress is located right under the via.

It is widely accepted that the interfaces between the copper and the typical SiN based
capping layers are the dominant paths for diffusion in copper interconnects [3, 13, 70]. There-
fore, it will be shown that it is extremely important to discriminate the diffusivities for each
path along the interconnect, instead of using a single effective value as done in the previous
section.

For a copper dual-damascene line the activation energy for diffusion is about 0.89 eV [13,
159] along the copper/capping layer, about 1.2 eV [3, 158] for diffusion along the cop-
per/barrier interface, and 2.1 eV [3, 158] for bulk diffusion. Applying these values in the
simulations, the vacancy concentration and the stress distribution in the M2 line are shown
in Figure 5.25 and in Figure 5.26, respectively.

There is a small vacancy concentration build-up at the bottom of the via, however, the
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Figure 5.25: Vacancy concentration, when the copper/capping layer interface is treated as
a fast diffusivity path (in cm−3). Vacancies concentrate at the copper/capping
layer interface at the cathode end of the line.

Figure 5.26: The peak of hydrostatic stress is located at the copper/capping layer interface,
when this interface acts as a fast diffusivity path (in MPa).

highest vacancy concentration is now located at the copper/capping layer interface at the
cathode end of M2. The stress development follows the same trend. This is quite different
compared to the results shown in the previous section, and is clearly a consequence of the
higher diffusivity at the copper/capping layer interface. The high stress magnitude located at
the copper/capping layer interface above the via can now explain the common experimental
observation of void nucleation at such sites [8, 31, 32, 114, 164].

The vacancy concentration and the stress distribution for the downstream case are shown
in Figure 5.27 and Figure 5.28, respectively. The main difference here is that the peak of the
hydrostatic stress is not located right underneath the via, but is shifted to its edge, where
there is an intersection between the copper, the capping layer, and the barrier layer. Since
this intersection is likely to be a site of weak adhesion, void nucleation should occur at this
edge, instead right underneath the via. This is in agreement with the observations commonly
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Figure 5.27: Vacancy distribution for the downstream case (in cm−3).

Figure 5.28: Hydrostatic stress distribution (in MPa). The peak of the stress is shifted to
the left edge of the via, where copper, capping, and barrier layer intersect.

made in electromigration experiments [24].

These simulation results show the importance of incorporating the fast diffusivity paths
into the modeling approach, which can be conveniently carried out by setting the correct
diffusion coefficient for the copper/capping layer interface, for the copper/barrier layer in-
terface, and for the bulk. In this way, it is demonstrated that the simulation results match
some typical experimental observations regarding the void nucleation sites and, consequently,
failure development. Specifically, the failure triggered by void growth at the bottom of the
via, as well as by void growth at the copper/capping layer interface at the cathode end of
the line can be explained. Nevertheless, the common observation of void nucleation taking
place away from the cathode end of the line still cannot be reproduced. The introduction
of material interfaces as fast diffusivity paths alone does not suffice. These observations can
only be explained by taking into account the effect of the microstructure on electromigration,
as will be shown later.

87



CHAPTER 5. SIMULATION STUDIES OF ELECTROMIGRATION

5.5 Redundant Via Structure

In order to design reliable interconnects against electromigration, a big effort has been put
into investigating materials which produce preferable properties. However, another strategy
which is commonly used to improve the interconnect resistance against electromigration is
the introduction of specific geometrical features, such as material reservoirs [21, 165, 166]
and redundant vias [19, 167]. Using two or more via contacts between interconnect levels has
shown to be a very promising strategy for preventing stressmigration [19, 167] and electro-
migration [19]. Therefore, in this section some simulation results for interconnect structures
containing two vias, as shown in Figure 5.29, are presented. In this way, the impact of the
redundant via on the interconnect behavior regarding electromigration can be analyzed.

Figure 5.29: Interconnect structure with redundant via.

Figure 5.30 shows the vacancy distribution in a double via structure. Here, the simulations
are carried out for a current density of 8 MA/cm2, and the equilibrium vacancy concentration
is 9.0 × 1015 cm−3. The vacancy concentration is higher underneath the vias, as expected,
since the electric current drives vacancies towards the vias (the current flows from right to
left). Also, vacancies are concentrated at the interface between the copper and the capping
layer, as this interface is the fastest diffusivity path. The vacancy concentration located under
the outer (left) via is somewhat higher than the concentration under the inner (right) via,
where current crowding occurs. These results indicate that, in this case, current crowding
does not suffice to induce a higher vacancy flux divergence at the inner via. The higher
vacancy concentration at the outer via is a consequence of a lower resistance for current flow
along this path.

The corresponding stress development is shown in Figure 5.31. Note that a peak of
hydrostatic stress develops at the outer via, as well as at the innermost via. The stress
magnitude under the outer via is, however, somewhat higher, which is a consequence of the
higher vacancy concentration at this region, as seen in Figure 5.30. These peaks are exactly
located at the intersection of the copper with the capping and the barrier layer. Since the
stress magnitude under both vias is similar, a void can nucleate under any of them. Void
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Figure 5.30: Vacancy distribution in the double via structure (in cm−3).
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Figure 5.31: Hydrostatic stress under the vias in a double via structure (in MPa). The
stress peak is located under the outer via at the intersection between copper,
capping layer, and barrier layer.
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nucleation will take place, wherever the proper conditions are found, that is, at the site having
the weakest adhesion between copper, capping, and barrier layer.

The impact of the distance between the vias on the maximum stress build-up is shown in
Figure 5.32. The stress developed in the interconnect with redundant via is higher than that
developed in the single via structure. The introduction of a second via reduces the overall
interconnect resistance. As the voltage applied at the terminals of the interconnect is the
same, the reduction of the interconnect resistance leads to an increase of the electric current.
Consequently, the driving force for material transport along the line is increased, and more
vacancies concentrate under the outer via of the redundant via structure, producing a higher
stress. Another observation is that the stress also increases as the distance between the vias
becomes larger. This is explained by the same argument as above. The larger is the distance
between the vias, the smaller is the total line resistance, so that a higher current flows.

In order to avoid the current change, a constant current is applied to the interconnect
structures. The stress build-up for the single and for the redundant via structures is presented
in Figure 5.33. The second via provides an additional path for current conduction, so that
the current flow through each via is smaller than the current flow through the single via.
Therefore, the developed stress is smaller for the structures with the redundant via. Moreover,
the stress magnitude is reduced as the distance between the vias increases. The increase of
the distance between the vias corresponds to a decrease of the length between the innermost
via and the end of the line, so that a smaller stress is needed to produce a gradient which
counters the electromigration flux.
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Figure 5.32: Maximum hydrostatic stress build-up under the outer via as a function of the
distance between the vias for a constant voltage applied at the terminals of
the interconnect.
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Figure 5.33: Stress development under the outer via for a constant current applied to the
interconnect.
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One can see that increasing the distance between the vias leads to significant changes in
the stress distribution. Particularly, it is remarkable that the stress change under the inner
via is more pronounced than the change of stress under the outer via, as shown in Figure 5.34.
This behavior is observed for the constant voltage case, as well as for the constant current
case. The main consequence of such a behavior is a change in the probable sites of void
nucleation. As for small distances the stress magnitudes under both vias are likely to be
similar, a void could nucleate in either the outer or innermost via, as already pointed out.
However, increasing the distance the stress under the inner via is significantly reduced, which
prevents void nucleation at this site. Therefore, it can be expected that a void nucleates only
under the outer via.
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Figure 5.34: Maximum hydrostatic stress under the outer and inner via as a function of
the distance between the vias. The stress for the single via case is given at
zero distance between the vias.

These results indicate that the redundant via design offers only a limited ability in im-
proving the interconnect lifetime. When a void nucleates under the inner via, it can grow
through the line and span the entire cross section of the line, which interrupts the current
flow along the metal. This certainly leads to an undesirable increase of the interconnect
resistance and, consequently, interconnect failure. In this case, the redundancy for current
flow provided by the outer via cannot help. In turn, a small increase in the distance between
the vias allows void nucleation only in the outer via. Thus, even if the void grows and spans
the line section, the resistance increase may not be critical, since the inner via still serves as
a path for current conduction. This strategy requires, however, a larger metallization area
which is not always available.

To sum up, the simulation results suggest that geometric features can have an important
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impact on the ability of the interconnect to cope with electromigration, and the adequate
design of a redundant via structure is crucial to effectively enhance the interconnect reliability
regarding electromigration failure.

5.6 Effect of Microstructure on the Electromigration Lifetime
Distribution

It has been shown that the microstructure plays a key role regarding the failure mechanisms
in copper dual-damascene interconnects [71]. It affects electromigration in different ways.
Grain boundaries are natural locations of atomic flux divergence, they act as fast diffusivity
paths for vacancy diffusion [168], and they act as sites of annihilation and production of
vacancies [148].

Electromigration data have been described by lognormal distributions [22]. Although
the origin of the lognormal distribution of electromigration lifetimes is not entirely clear, it
has been argued that the diffusion process in connection with the effect of microstructure
on electromigration provides the basis for the lognormal distribution [20]. In copper dual-
damascene interconnects the main diffusivity path is along the copper/capping layer interface.
This interfacial diffusion is affected by the orientation of the grains. As the copper grain sizes
seem to follow lognormal distributions in typical dual-damascene process technology [20],
and due to the influence of microstructure on the electromigration process, the lognormal
distribution has been used as the underlying statistics for electromigration lifetimes.

Understanding the electromigration lifetime distribution is crucial for the extrapolation
of the times to failure obtained empirically from accelerated tests to real operating condi-
tions, as performed by equation (1.23). Therefore, in this section the statistical distribution
of electromigration times to failure as a function of the distribution of copper grain sizes is
investigated. The discussion is focused on the impact that the variation of the standard devi-
ation of the grain size distribution has on the electromigration lifetimes, and the consequences
of the latter for reliability assessment of interconnects.

5.6.1 Microstructure Generation

In order to include the grain distribution into the numerical simulations, a microstructure
generation tool has been developed. Given a specific interconnect structure and providing
the tool with a median grain size, x0, and corresponding standard deviation, σ, it generates
a lognormal distribution of grain sizes according to

pdf(x) =
1

xσ
√

2π
exp

[

−(lnx− lnx0)
2

2σ2

]

. (5.12)

The angles between the grain boundaries’ planes and the line surface at the top follow a
normal distribution,

pdf(x) =
1

σ
√

2π
exp

[

−(x− x0)
2

2σ2

]

, (5.13)

92



CHAPTER 5. SIMULATION STUDIES OF ELECTROMIGRATION

where x0 = 90◦ is the median value of the angles. Taking a radom number, y ∈ [0, 1],
uniformly distributed, the grain sizes and grain boundary angles are determined by calculating
z, so that the inverse relation,

y =

∫ z

−∞

pdf(x) dx, (5.14)

holds. Once the grain sizes and angles are determined, the interconnect line is cut along its
length by the planes which form the grain boundaries. A typical microstructure generated
by such a procedure is shown in Figure 5.35. In this way, the microstructure generation tool
yields a simple bamboo-like line.

Figure 5.35: Typical microstructure generated from the procedure described above. The
grain sizes follow a lognormal distribution, and the angles of the grain bound-
aries in relation to the top line surface follow a normal distribution.

5.6.2 Simulation Approach

In Figure 5.36 a schema of the simulation procedure used to determine the distribution of
electromigration lifetimes is presented. First, several interconnects are generated, each one
having a different microstructure which is produced by the microstructure generator (see Sec-
tion 5.6.1). The structures are simulated and the electromigration lifetimes are determined.
The lifetimes are then used for statistical analysis, from where the corresponding distribution,
specified by the mean time to failure and standard deviation, is obtained.

Three standard deviations for the distribution of grain sizes are considered, namely 0.1,
0.3 and 0.6. For each of them 20 dual-damascene interconnect structures are created. As
the interconnect line is assumed to present a bamboo-like structure, the median grain size
is equal to the line width, 0.10 µm. The barrier, capping and interlayer dielectric layers are
Ta, SiN, and SiO2, respectively. The applied current density is 1.5 MA/cm2, and the test
temperature is 300 ◦C. A stress threshold value as failure criterion is used, which means that
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the electromigration time to failure represents the time for a void nucleation to occur. Thus,
the time to failure is determined by the time for the stress to reach a given threshold value
at some intersection between a grain boundary and the capping layer.

It should be pointed out that the model parameters are equal for all simulated structures.
Grain boundaries, and generally, every interface of the structure have to be supplied with an
appropriately fine mesh. Therefore, the mesh refinement procedure described in Section 4.3.5
is used. This is necessary in order to provide sufficient resolution for the results along the
grain boundaries and other interfaces.

Figure 5.36: Schematic simulation procedure.

5.6.3 Sites of Void Nucleation

Figure 5.37 shows the vacancy distribution in a bamboo-like interconnect via. The current
flows from right to left, driving vacancies towards the via. Vacancies concentrate at this site,
because the barrier layer blocks further vacancy diffusion into the upper metal line. Thus, the
maximum vacancy concentration is located underneath the via. However, as already pointed
out, grain boundaries also act as fast diffusivity paths. Consequently, vacancy diffusion
along grain boundaries is an important transport mechanism, which leads to higher vacancy
concentration along the grain boundary planes, as shown in Figure 5.37.

According to the grain boundary model presented in Section 3.4.1, once the vacancy con-
centration within a grain boundary exceeds the equilibrium concentration, the grain boundary
is able to trap the excess vacancies. Therefore, the trapped vacancy concentration within the
grain boundaries increases, as shown in Figure 5.38.

The rate at which vacancies are trapped/released from the grain boundary corresponds to
an annihilation/generation term, as given in equation (3.50). In turn, generation/annihilation
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Figure 5.37: Vacancy distribution in a bamboo-like interconnect line (in cm−3).

Figure 5.38: Trapped vacancy concentration (in cm−3). Vacancies are trapped at grain
boundaries, once the vacancy concentration within a grain boundary exceeds
the equilibrium value.

processes lead to production of mechanical stress, according to (3.42). Thus, the stress build-
up closely follows the trapped vacancy concentration and develops at grain boundaries, as
can be seen in Figure 5.39.

These results are crucial in order to explain the void nucleation at sites away from the
cathode end of the line [27]. Void nucleation observed at the copper/capping layer away from
the cathode end is only possible provided there is an available site where flux divergence
occurs and, at the same time, is a site of weak adhesion. Grain boundaries are the only
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Figure 5.39: Hydrostatic stress distribution in a simulated interconnect (in MPa). Mechan-
ical stress develops at grain boundaries as a result of vacancy trapping/release
events.

features which can provide such sites. Since triple points formed by the intersection of grain
boundaries with the copper/capping layer interface are natural places of flux divergence
and weak adhesion [31], the development of mechanical stress at these sites, as shown in
Figure 5.39, can explain void nucleation in the middle of the line.

The introduction of the grain boundary network into the simulations, together with the
consideration of material interfaces as fast diffusivity paths, represents a significant improve-
ment of the developed model, so that the most common experimental observations regarding
electromigration induced void nucleation can be explained.

5.6.4 Electromigration Lifetimes Distribution

Figure 5.40 shows the hydrostatic tensile stress development for the structures with a grain
size standard deviation of 0.3. The stress peak value follows the peak of the trapped vacancy
concentration and is located at the intersection of grain boundaries with the capping layer,
as shown in Figure 5.39.

Collecting the times to failure from Figure 5.40 and calculating the cumulative failure
percentages results in the distributions of electromigration lifetimes shown in Figure 5.41.
The lifetimes are fitted by lognormal distributions. The mean time to failure is determined
by the 50% cumulative failure mark, and the slope of the curves corresponds to the inverse of
the standard deviation of lifetimes. The obtained standard deviations are 0.0065, 0.0080, and
0.0085 for the grain size distributions with standard deviation of 0.1, 0.3, and 0.6, respectively.

When the grain size distribution exhibits a smaller standard deviation the corresponding
interconnect lines have a more uniform distribution of the grains. As a consequence, the stress
build-up has smaller variations yielding a smaller standard deviation of the electromigration
lifetimes. On the other hand, increasing the grain size standard deviation, the lines exhibit
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Figure 5.40: Peak of hydrostatic stress development for the set with grain size standard
deviation of 0.3.

Figure 5.41: Electromigration lifetime distributions.
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significant differences in the grain structures. This leads to larger variations of stress devel-
opment. Thus, a bigger standard deviation of electromigration lifetimes is expected. The
increase of the standard deviation of the electromigration lifetime distribution as a function
of the standard deviation of the distribution of grain sizes is shown in Figure 5.42.
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Figure 5.42: Electromigration lifetime standard deviation for different standard deviations
of grain size.

The standard deviations of the electromigration lifetimes are very small compared to those
frequently observed in experiments [22]. Several factors can explain this behavior. First, for
convenience, a small value of stress threshold as failure criterion is used to determine the
interconnect lifetime. The complexity of the physical model associated with the numerical
features posed by the microstructure makes the simulations inconveniently demanding. As
can be seen from Figure 5.40, the variation of the lifetimes can be more pronounced for higher
stress thresholds. Second, the simulation parameters and material properties are independent
of the grain distribution. This means that mechanical properties and diffusivities, for exam-
ple, are equal and constant for all simulated structures. This is clearly not the case in real
experiments, as it is well known that material properties vary according to the grain network.
It is expected that atomic diffusion along the copper/capping layer interface changes from
grain to grain, inducing a flux divergence at the corresponding grain boundary. Moreover,
the diffusivities are different from line to line as the grain distribution varies. Therefore,
given the above simplifications, the small standard deviations obtained from the simulations
should be expected.

Nevertheless, these results present important features which are worth a careful analysis.
As a consequence of the larger lifetime standard deviation for the lines with σ = 0.6, the early
failures (failure percentages lower than 1% in Figure 5.41) occur at shorter times, even though
the median lifetime is higher for these lines. This observation is of great importance to the
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extrapolation of accelerated test results to normal use conditions. This can be readily seen
from an inspection of equation (1.23), which shows that the estimation of the real lifetimes has
an exponential dependence on the standard deviation of lifetimes obtained by the accelerated
tests.

Considering that the reliability assessment of a given technology is determined by the early
failures, the understanding of the lifetime distribution becomes crucial. This means that the
improvement of processes, and the choice of adequate materials, aiming the improvement of
a given interconnect technology requires not only the increase of the median lifetime of an
interconnect structure, but also the reduction of the corresponding standard deviation.
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Chapter 6

Conclusion and Outlook

Electromigration induced failure has been one of the major reliability issues for the micro-
electronic industry since its detection as a potential damage mechanism in metallization of
integrated circuits. Since then, efforts have been made in order to design more resistant
interconnects against electromigration damage. This has encompassed the development of
new fabrication processes, the research of materials which yield adequate properties, and the
design of specific geometrical features.

The continuous scaling of devices demands a continuous reduction of the metal line di-
mensions, which is accompanied by an increase in the density of interconnections in modern
integrated circuits. Therefore, the interconnect lines have to operate at high temperatures
and conduct high current densities, accentuating the electromigration transport. As a conse-
quence, electromigration continues to be a challenge for the development of the new techno-
logical nodes, and the lifetime of interconnects have decreased from generation to generation,
despite all the knowledge gained and efforts performed in the last 40 years.

The investigation of the physical phenomena behind the electromigration damage has
become more and more important, because it can provide a stronger knowledge basis to
counter the electromigration effect. In this context, mathematical modeling becomes an
important tool which can significantly help to understand the electromigration failure. In
the last decades, several continuum models have been proposed, and they have been able
to partially explain several features of the electromigration damage. At the same time, the
development of computational methods and resources has allowed to model complex systems
and carry out numerical simulations in an efficient way.

In the scope of this work, the focus was put on developing a mathematical model suitable
for implementation in a TCAD tool for numerical simulations. Electromigration modeling
constitutes a complex problem due to the wide variety of physical effects which must be
considered. A detailed study of the previous available models was carried out, identifying
their main strengths and, at the same time, their main problems. Based on this analysis, these
models were extended and further developed by taking into account the most relevant effects
for electromigration simulation. As a result, a fully three-dimensional model is proposed,
which connects the electromigration material transport problem with the electro-themal and
mechanical problem in a general framework. The model equations were numerically described
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using the finite element method. The corresponding system of algebraic equations was derived
and implemented in a TCAD tool.

In order to verify the developed model and numerical implementation, simulations in a
simple interconnect line were carried out and compared with the available analytical solu-
tions. The agreement between the numerical simulation results and the analytical solutions is
remarkably good. Also, the importance of taking into account the effects of mechanical stress
for electromigration modeling was demonstrated. The mechanical stress significantly affects
the diffusivity of vacancies and, consequently, the electromigration induced transport. The
non-uniform stress distribution which appears in the interconnect structure due to thermal
processes leads to an anisotropic diffusivity. This effect is not readily visible under accelerated
test conditions, however, it becomes much more important at real use conditions. Therefore,
the activation energies for diffusion obtained from the accelerated tests are likely to be incor-
rect, posing a problem for the extrapolation of lifetimes to normal operating conditions.

A key feature of the proposed model is the inclusion of material interfaces and grain bound-
aries as paths of higher vacancy diffusion. Instead of considering a simple effective diffusion
as valid for the entire interconnect, the correct diffusion coefficient can be independently
set for each path, namely, the copper/capping layer interface, the copper/barrier interface,
grain boundaries and bulk. In this way, it was shown that the most common experimental
observations of electromigration induced voiding can be explained. Since the copper/capping
layer interface is known to be the fastest path, it was shown that void nucleation typically
occurs at this interface, at the cathode end of the line.

The model was further developed by considering grain boundaries as sites capable of
trapping and releasing vacancies. This allowed the connection of the local dynamics of the
grain boundary with the corresponding line deformation, and consequent mechanical stress
build-up. Grain boundaries are introduced by a simple microstructure generator. In this way,
it was shown that the combination of material interfaces as fast diffusivity paths together
with the grain boundary model can explain void nucleation away from the cathode end.
Voids nucleate at triple points formed by the intersection between the copper/capping layer
interface with grain boundaries.

The microstructure has a major impact on the electromigration lifetime distribution. The
simulation results indicate that the lognormal distribution of copper grain sizes is a primary
cause for the lognormal distribution of the electromigration lifetimes. The increase of the
standard deviation of the copper grain size distribution leads not only to longer mean times
to failure, but also to larger variations of lifetimes. The first is naturally a beneficial effect,
the latter, however, can be harmful for the interconnect reliability assessment. The increase
of the standard deviation of lifetimes has a significant impact on correct lifetime estimation,
since the increase of the standard deviation of lifetimes may indicate that a given interconnect
technology fails earlier than expected, even if it shows a longer median lifetime.

To sum up, a complex and robust TCAD electromigration model which takes into account
a wide diversity of physical phenomena was developed. Several numerical simulations of
realistic three-dimensional interconnect structures were carried out, and several features of
the electromigration failure were explained.

Nevertheless, there are still several points which should be improved, and they are sug-
gestions for future work. From the physical modeling point of view a natural extension of
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this work is to develop a void evolution model also suitable for TCAD implementation and
for three-dimensional simulations. This is a challenging task, since the void evolution prob-
lem requires the consideration of additional physical phenomena and, moreover, represents a
moving boundary problem. This demands special numerical techniques for tracking the void
surface as it evolves. Also, further investigations regarding the microstructure impact on
the electromigration distribution are required. For that purpose, the use of a more realistic
microstructure is needed. This will provide a more complete understanding of the underly-
ing statistics of the electromigration lifetime distribution, which, in turn, can significantly
contribute to the practical lifetime estimation and interconnect design.
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