
M A S T E R A R B E I T

Integrating Electronic Institutions
with 3D Virtual Worlds

Ausgeführt am Institut für

Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Anleitung von

ao. Univ. Prof. Dr. Dieter Merkl

und

Dipl.–Ing. Dr. Helmut Berger

durch

Ingo Seidel

Wehlistrasse 195/17

A–1020 Wien

Wien, am 19. März 2007
. Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Diese Arbeit ist im Zuge eines Forschungsprojektes, welches sich mit der Um-
setzung einer 3D e-Tourismus Umgebung beschäftigt, entstanden. Das Ziel dieses
Projekts ist die Entwicklung eines Instruments, um die komplexen Interaktions-
muster von Anbietern und Konsumenten im e-Tourismus zu unterstützen. Diese
Anbieter und Konsumenten sind TeilnehmerInnen in einer heterogenen Gesellschaft
von Menschen und Software-Agenten, die gemeinschaftlich in einer 3D Umgebung
basierend auf einem Multi Agenten System zusammenleben. Im konkreten besteht
das System aus drei Ebenen: einer 3D Visualisierungs-, einer Middleware- und ei-
ner Multi Agenten System Ebene. Diese Arbeit beschäftigt sich mit der praktischen
Umsetzung eines solchen Systems. Der Fokus ist dabei auf das Design und die Er-
stellung der Middleware Komponente, sowie auf die Visualisierung in der 3D Welt
gelegt. Die Middleware verbindet das Multi Agenten System mit der 3D Welt und
leitet Nachrichten in beiden Richtungen weiter. Sie garantiert damit ein konsistentes
Verhältnis zwischen diesen beiden Komponenten, indem jeder Zustandswechsel in
der einen Komponente in der anderen Komponente propagiert wird. Die 3D Welt
dient einerseits als User Interface für Benutzer und wird andererseits für die Vi-
sualisierung von Softwareagenten verwendet. Die Steuerung dieser Agenten, sowie
die Interaktionsmechanismen mit dem Benutzer werden ebenfalls in dieser Arbeit
vorgestellt.

Abstract

This master thesis is embedded within a research project that has the princi-
pal goal of developing an instrument to support the complex interaction patterns
of providers and consumers in an e-Tourism setting. In particular, these providers
and consumers, either humans or software agents, are members of a heterogeneous
society cohabiting in a multi-agent based 3D virtual environment. Conceptually
speaking, the environment is designed according to a three-layered architecture
comprising a Multi Agent System layer, a middleware layer and a 3D visualization
layer. The major contribution of this master thesis lies in the design and implemen-
tation of the middleware connecting the two other layers. The middleware mediates
the communication between the Multi Agent System layer and the 3D visualization
layer and guarantees a consistent relationship between these components. The 3D
virtual world serves as user interface for human users and is used to visualize the
actions of agents in the Multi Agent System. Thus, it becomes possible for users to
interact with software agents in an immersive 3D environment. We utilize a game
engine for the creation of the 3D virtual world. The framework specific function-
alities of the 3D virtual world such as agent control or user interaction are also
established in this thesis.

Contents

1 Introduction 6

2 Related Works 12

2.1 Short History Of 3D Computer Games . 12

2.2 Game Engines Used As 3D Worlds . 13

2.3 Agents and Multi Agent Systems . 17

2.3.1 Overview of MAS components . 17

2.3.2 MAS Examples . 19

2.4 Integrating Agents in 3D Virtual Worlds 21

3 Background and Foundations 26

3.1 Electronic Institutions Introduction . 29

3.1.1 Specification of Electronic Institutions 30

3.1.2 An Auction Example . 33

3.1.3 The Electronic Institutions Development Environment 36

3.2 Game Engine Introduction . 37

3.2.1 The Torque Game Engine . 37

4 The Middleware Architecture 39

4.1 Information Mapping . 40

4.1.1 Formalizing the Mapping . 42

4.1.2 Design Considerations . 44

4.2 Messaging . 44

4.2.1 Connection Server and Ameli . 45

4.2.2 The Message Protocol . 46

4.2.3 Communication Patterns - Autonomous Agents 47

4.2.4 Communication Patterns - 3D User Controlled Agents 48

4.2.5 Specification of the Message Protocol 49

5 Implementation 53

5.1 The Connection Server . 53

5.2 MAS and Connection Server . 53

5.2.1 Monitoring . 54

5.2.2 Event handling . 55

5.3 Connection Server Message Structure . 57

5.3.1 Message Parsing . 59

5.3.2 Message Handling . 61

5.3.3 Message Transmission . 64

5.4 Agent Control in the Connection Server . 65

5.5 The Game Engine . 66

5.6 Game Engine Managers . 68

5.7 Game Engine Message Structure . 69

5.7.1 Message Parsing . 69

5.7.2 Message Handling . 72

5.8 Testing . 73

6 Verifying the Interplay of the Components 74

7 Conclusion & Future Work 76

A The Message Protocol 78

1 INTRODUCTION

1 Introduction

Tourism is an important economic sector of each country and is the leading market in

business to costumer (B2C) commerce (Werthner and Ricci, 2004). The World Travel &

Tourism Council (WTTC) publishes forecasts for the development of the tourism sector

and according to their forecast for 2007, 10.4% of the worldwide gross domestic product

(GDP) is obtained in the tourism domain. In Austria the figures are above this value

with tourism contributing 16.7% to the GDP. This illustrates the importance of tourism

for the Austrian economy.

An important aspect for tourism is the Internet and its online booking systems.

30 years ago Airline companies started to use reservation systems to control the booking

of airplanes. In the USA, for example, there are four major reservation systems and in the

year 2000, 98% of all airline reservations where booked using these systems. Travel agents,

tour operators, hotels or car rentals use such reservation systems as well (Gratzer et al.,

2004). In the same work it is pointed out that the Internet is going to change tourism

business. Online markets provide new opportunities and threats for tourism providers.

They evaluated those opportunities for several tourism players by conducting an expert

survey. Some experts had to estimate the value of the Internet for tourism providers on a

scale from 1 to 7 (where 1 represents strong opportunities and 7 represents strong threat).

The overall score of 2.39 demonstrates the great importance of the Internet in this sector.

Airlines, IT&T companies, hotel chains and hotels with more than 50 beds had the best

scores, whereas travel agents and tour operates did not profit that much from these new

technologies (with values of 4.7 and 3.6 respectively).

So far we have only been highlighting the importance of the Internet for the suppliers.

The individual tourist is also effected by this new trend. Over the last years a vast

number of online booking platforms have emerged and millions of tourists are using these

services every day (UsageStats). A survey which compared online booking with booking at

traditional travel agents gives insights on the booking behavior of tourists (Bogdanovych

et al., 2006). The survey showed that people are using online booking services preferably

to book domestic trips whereas international trips are still more likely to be booked with

a travel agent. Note that these results were obtained in Australia and may not apply

to each country. The main advantages of travel agents are their expertise, the social

interaction when making difficult decisions and the help when making impulse decisions.

Also people have more trust in travel agents than in Web sites, but those figures may

change in the future. Interestingly, tourists also distrust unknown travel agents as they

have a fear of being pushed towards more expensive products. In contrast online booking

systems are more convenient, have lower response times and provide answers to inquiries

in an environment familiar to users.

Besides the actual booking process, the Internet is increasingly used by customers as

a source of valuable information. A tourism product has some special properties that

6

1 INTRODUCTION

require a good knowledge of the product prior to purchase. Usually it is not possible for

the tourist to experience the product in advance - it is a confidence product (Gratzer et al.,

2004). Traditionally the impression of a destination is based on high quality photos in

travel catalogs and information from the travel agent. In addition, information gathering

on the Internet has become more and more important in the last years. There is an

ever increasing number of Web sites where offers can be compared, there are forums,

newsgroups and Wikis where all kinds of topics are discussed and there are blogs where

travelers report on their experiences. The interested tourist can get a very good picture

of his travel destination up front and even specific concerns can be discussed and cleared

in discussion forums. When relying on the Internet as information source, the quality of

this information is a major issue.

To get insights on the quality of information posted on forums, travel blogs, etc.,

Schwabe and Prestipino (2005) compared the information quality of such online tourism

communities against traditional guidebooks. They investigated the information quality of

virtual communities from the viewpoint of the members, by asking travel related questions

and assessing the quality of the answer. They compared a traditional guide book (Rough

Guide) with an online forum by asking 18 questions and the answers where evaluated by

four judges. The quality factors were timeliness, completeness, structure and personal-

ization. The authors analyzed which medium has the best performance for each factor.

They found out that online communities have more timely information since new content

can be added at any time. In general they have an update cycle of a few weeks - the time

that passes between the visit of the location and the return. In contrast, a guide book

has an update cycle of several months or even years. The quantity of information that

can be stored electronically in a forum is higher than in a guide book. Thus, information

requests can be answered more completely. Concerning the structure, the guide book

performs better because the outline of a book is better structured than the threads in

an information forum or the entries in a blog. Another important aspect of online com-

munities is, that a person can ask any question she wants to be clarified and, therefore,

personal requests and personalization can be better served in online communities. This

leads to the conclusion that information provided on the Internet can be of high quality

and can even be superior to traditional information sources.

The next step after gathering information on the different travel locations is to book the

trip. There are lots of online booking platforms on the Internet. Most offer a conservative

user interface where customers need to specify preferences via drop down lists, option

buttons or selection lists. Such interfaces neglect the social needs of customers (Preece

and Maloney-Krichmar, 2003).

To overcome these disadvantages, new interface metaphors have been developed. There

are a number of different approaches in this area covering a wide variety of new interaction

mechanisms. One such approach that, however, relies on a traditional interface element,

7

1 INTRODUCTION

a textbox, tries to address this issue by means of natural language interaction. Berger

et al. (2004) developed a system where users can formulate a query in natural language.

The advantages of this approach are the same as with online discussion forums - users

can express more complex queries when using their natural language and will get more

appropriate results for their search. Furthermore, they do not have to learn a special

query language or to structure their request in a way the computer understands.

A field trial was carried out to test the system. Within a period of 10 days 1333

queries where posted. The first interesting aspect hereby is that the average query length

was much higher than in traditional search engines. This shows that users post more

complex and detailed queries when they are able to use the natural language. The next

result concerns the complexity of sentence constructs. Although users are not limited in

the complexity of their requests, most of the queries were simple in reference to language

constructs. The acceptance of the interface was evaluated with a usability study. Most of

the participants considered the language interface more comfortable in contrast to stan-

dard interfaces. They explicitly stated their preference for this kind of interface and they

were more satisfied with the obtained results.

Another approach is to employ virtual 3D worlds as user interfaces. They resemble

the natural environment, allowing users to quickly become acquainted with the interface

metaphors. Users navigate in the same manner as they do in the real world. They walk

around with their avatar (Damer, 1997), enter a house through a door and are restricted

in their movement by the shape of the world. Furthermore, social interaction is implicitly

addressed in virtual 3D worlds. Users see each other in the world, can walk towards other

users and can start talking with them.

It is especially interesting how such virtual 3D places evolved (Castronova, 2005).

In contrast to other areas their advancement was driven by th commercial market than

by research labs. Research mainly concentrated on virtual reality - researchers tried to

rebuild the real world as accurate as possible. The user should not be able to differentiate

the simulated environment from the real world. This required tremendous amounts of

computing power and special hardware equipment. The user is equipped with goggles

displaying the environment onto her complete field of vision. Wired gloves are used to

transmit the user’s motions into the virtual space. While the research concentrated on

developing these sensory input devices, the commercial market approached the problem

from another direction. The focus was laid on the software rather than the hardware

and on the community rather than the individual. The first applications in this domain

were 3D computer games. Although the computer graphics were simple and could not

resemble the real world, users were immersed through the content. In the 1980s and 1990s

3D computer games began to attract millions of people - the 3D shooter Doom, released

in 1993, was sold 1 million times and was estimated to have been installed on more than

10 million computers (DoomStats). This success continues until now. Many 3D games

8

1 INTRODUCTION

have become popular selling millions of copies. Some examples are Half Life (HL), Quake

(Quake) or Myst (Myst).

Similar to the tourism sector, the Internet had a big influence on 3D computer games.

In the 1990s online 3D virtual worlds such as The Realm Online (RO) or Ultima Online

(UO) were born. Castronova (2005) investigates the economic and social impacts of online

3D games. Based on a conservative view he estimates the number of people who regularly

spend time in online 3D games to be about 10 million. His research efforts are focused

on the economic markets in such online 3D games. He shows that a value-and-demand

market, based on item trade, exists and estimates the annual trade to be US$ 1 Billion.

Although Castronova concentrates on 3D games, there are non game worlds as well. One

such world that became extremely popular at the beginning of 2007 was Second Life (SL).

In contrast to online 3D games, the content in Second Life is user generated. There exists

no story line or goal like in traditional games. Users entertain themselves by means of

content creation or simply socialize with others. This approach is widely accepted as

there are about 2 million users in Second Life as of March 2007 (SLUsage).

Summarizing the above, a list of facts that motivate this research project is obtained:

• Tourism is an important economic factor throughout the whole world.

• Information technology and the Internet are of great importance in the tourism

domain.

• Online communities are used to exchange up-to-date and personalized travel related

information.

• New interface metaphors are needed and accepted by the users.

• 3D worlds are popular and provide familiar and intuitive environments for users.

• Online 3D worlds are virtual market places.

The overarching goal of the project “A 3D e-Tourism environment” is to provide

a platform for tourism providers and consumers that supports the complex interaction

patterns between those parties. It is anticipated to achieve this goal by providing an

instrument to foster the development of a sustainable tourism community in an online

3D virtual world. Users should feel comfortable in this environment, should be able to

socialize and should have access to a wide variety of information. Tourism providers

should be able to present their products to many people interested in tourism. This

materializes in three sub goals:

• Provide a 3D e-Tourism environment for providers and consumers that enables ver-

satile interaction between participants including the trade of tourism products.

9

1 INTRODUCTION

• Provide a 3D e-Tourism environment that becomes a community facilitator to create

and establish a lively and sustainable community involving both, providers and

consumers.

• Provide a 3D e-Tourism environment that is information-rich and multimedia-based

to offer transparent and unified access to disparate information sources.

To achieve this, the application of a 3D game engine for the creation of an immersive

3D virtual world is proposed. To enrich the environment with information and to allow

versatile interaction between participants, agent technology will be used. According to

Woolridge (2001), agent based solutions should be employed whenever the information

is spread across several sources. This applies to the tourism sector since information

is spread over the Internet and stored in databases on different organizational levels (re-

gional, national, international). Agents and humans are the participants in the 3D virtual

world. They work together to cooperatively achieve their goals.

The first major contribution of this master thesis lies in the design of the middleware

connecting the 3D game engine with the Multi Agent System. This includes considera-

tions regarding the design of the middleware, protocol definitions, as well as the concep-

tualization of the middleware architecture. The second major contribution is the actual

implementation of the middleware based on the architecture presented herein. In order

to test the functionality of the system and, thus, to verify the smooth interplay of the

components, a prototypical 3D visualization has been designed and implemented.

Figure 1: Architecture.

In general, the architecture of the system consists of three layers (cf. Figure 1). The

bottom layer contains a Multi Agent System controlling the interactions between soft-

ware agents. The top layer contains the 3D virtual world used to visualize the actions

of agents in the Multi Agent System and to provide an interface for human users. The

middleware connects the bottom layer with the top layer. This connection materializes

in two directions. Events happening in the Multi Agent System are represented in the

10

1 INTRODUCTION

3D virtual world. Such events include the visualization of agents as avatars, the move-

ment of these avatars and the communication between users and agent avatars. The 3D

virtual world displays a view of the Multi Agent System. Users, participating in the 3D

virtual world, must act according to the rules of the Multi Agent System. Therefore

the direction, from the 3D virtual world to the Multi Agent System, is used to verify

all user actions with the Multi Agent System. The middleware forwards events and ac-

tions in both directions and guarantees a consistent relationship between the two systems.

The remainder of this thesis is organized as follows. In Chapter 2 we introduce works

that are related to our framework. Starting with 3D virtual worlds we move on to Multi

Agent Systems and applications in this area and finally describe research efforts that aim

at connecting 3D virtual worlds with Multi Agent Systems. Then in Chapter 3 the project

setting and background are presented. This is followed by an introduction of Electronic

Institutions that are employed as the Multi Agent System and the Torque Game Engine

which is used for the visualization. Chapter 4 gives insights on the architecture of the

middleware that connects the Multi Agent System with the 3D virtual world. The message

protocols are introduced and the relationship between the Multi Agent System and the

3D virtual world is highlighted. The implementation of the Middleware is presented in

Chapter 5. The interplay of the components is illustrated by means of a prototypical

showcase in Chapter 6. Finally, in Chapter 7, we summarize the conducted work and

provide an overview of future work.

11

2 RELATED WORKS

2 Related Works

2.1 Short History Of 3D Computer Games

The earliest sources for 3D computer games date back to the year 1974, when a space sim-

ulation called Spasim was created (Spasim). It was developed for an educational network

named PLATO and included network support. It could be played by up to 32 players

simultaneously. Although it is not certain that Spasim was the first 3D game ever, it is

most certainly the first 3D multi player game. The author of Spasim, Jim Bowery, offers

a reward of 500 US$ for any documentation of an earlier 3D game. Since Spasim was

developed for a particular domain, only a few people had access to this game.

A game having had high impact on computer games was the maze game 3D Monster

Maze (3DMaze). It was released in 1981 on the ZX81 and the home computer and reached

more people than Spasim. The game is played from the first person perspective and the

objective is to find the exit of a maze without getting eaten by a Tyrannosaurus Rex, see

Figure 2.

(a) 3D Monster Maze. (b) Wolfenstein 3D.

Figure 2: First examples of 3D computer games.

Another 11 years later the next landmark in 3D computer gaming was reached. Wolfen-

stein 3D was released by id Software in 1992 (WS3D). In Wolfenstein 3D the player is

an American soldier in World War Two, trying to escape from a Nazi stronghold (Figure

2). The player was able to move freely in the game world but was restricted to one axis

(left/right movement, the player could not look up and down). Wolfenstein 3D was the

first game that used textures and all objects were drawn with the billboarding technique.

A billboard is a 2D image that always faces the player, giving the impression of acting in

a 3 dimensional environment. These innovations, despite its plot, made the game visually

appealing and contributed to the great success of Wolfenstein 3D.

12

2.2 Game Engines Used As 3D Worlds 2 RELATED WORKS

One year later, in 1993, id Software published the game Doom (Doom) which enabled

the player to look in any direction, since rotation around a second axis (up/down) was

introduced. Moreover, the resolution of all objects was increased, floor and ceiling were

textured and the concept of height was established, i.e. players were able to jump on

platforms or to fall into death pits. This time the player is a space marine and has to

fight against zombies and creatures from hell which came into existence due to a failed

teleportation experiment, see Figure 3. Doom was a great success and was downloaded

about 10 million times (DoomStats). Another feature which made Doom the reference

product for the next several years was its network functionality. It was the first game that

introduced multiplayer features such as deathmatch and connected thousands of people

all around the world.

(a) Doom. (b) Descent.

Figure 3: 3D computer games in the 1990s.

In the following years all newly released games were compared against Doom. The term

“doom clone” was coined in newsgroups as a synonym for 3D games until the term “first

person shooter” was established. Many games were released in the 1990s that became

popular and introduced new features and new ideas. One of the most outstanding among

them was Descent (Descent). In this game the player controls a space ship allowing

movement around all three axes (Figure 3). Furthermore, the game provides a fully 3D

polygonal graphics engine. Due to its steep learning curve, Descent became not as popular

as other games, but contributed to the technical advancement of 3D games.

2.2 Game Engines Used As 3D Worlds

One of the first examples of a game engine being used for a serious task was the work

of Chao (2001). He used the Doom engine (its source code was released in 1997) as an

interface for process management in a Unix system. Chao’s intention was to explore new

interface metaphors that provide a more intuitive access to computers for non-technical

people. The desktop metaphor, for example, stems from the times where computers

13

2.2 Game Engines Used As 3D Worlds 2 RELATED WORKS

Figure 4: PSDoom. Every “enemy” process has its id and name displayed in front of him
(Chao, 2001).

where mainly used by business people to do business work. In this context the desktop

metaphor worked well because those people spent most of their time at desks and were

familiar with this environment. Other people such as children or non office workers need

other metaphors that make the interfaces more appropriate for them. Chao suggests to

use the computer world’s and popular culture vocabulary to access ordinary people more

easily. Especially children are now growing up with computer games and are used to this

type of interface. Another advantage of such interfaces is their playful character. Instead

of having forms with buttons, game interfaces are simply more appealing and make work

more fun.

The program, Chao developed, is called PSDoom and works as follows. Each process

currently running on the system is represented as a monster in a dungeon. The system

administrator may enter the dungeon and start shooting at processes. This is depicted in

Figure 4. When a monster is hit, the priority of this process is lowered. If the monster

is killed its corresponding process is killed respectively. This may seem violent but re-

flects the common terminology in Unix process management where “daemons” (processes

running in the background) are “killed” (shut down) with the kill command on the

command line. Another reason to use Doom was the fact that it was a popular game

among system administrators at that time.

The benefits of PSDoom can be summarized as follows: The system load is expressed

by the number of monsters in the room. The user is not omnipotent anymore, it takes

time to kill all processes because every single monster has to be defeated. The power

of the user can be regulated by giving him different weapons. Otherwise the program

14

2.2 Game Engines Used As 3D Worlds 2 RELATED WORKS

is also very unpredictable because monsters can attack each other. This can be seen as

advantage because crowded systems would regulate themselves. In the original version,

however, each process had the same power. Thus, important processes could be killed

resulting in system failure. Furthermore, processes were not aware of self-preservation and

kept attacking until all enemies were eliminated. Chao suggested improvements by giving

important processes more power or let them only attack others when needed. Apparently

those enhancements have never been implemented, because there is no information on

this issue available on the Web page (PSDoom). The most recent version of the software

dates back to the year 2000.

Using open source game engines to realize virtual 3D environments has another major

advantage - they are affordable compared to commercial game engines. Today, a vast

selection of different game engines for every budget exists. There are open source engines

that are entirely free, there are some engines that cost moderate amounts of money and

there are high-end game engines which are hardly affordable. These costs were one of the

driving motives for our next example, a design critique tool for architects (Moloney et al.,

2003).

In the field of architecture, computer aided design (CAD) software is mainly used for

designing and building architectural models. Such software systems offer accurate and

precise representations of 3D models but are not designed for model presentation or quick

alteration of the model. This is the point where Collaborative Virtual Environments

(CVE) come into play. According to the authors, the two major advantages of CVE

systems over CAD systems are the support of an iterative working approach and a better

instrument for design critique. Such systems are iterative in a sense that students can

change their models and directly perceive these changes in a real context. In the process

of reviewing a model, reviewers can experience the model from any desired angle and can,

therefore, get a better impression of the work. Game engines are perfectly suited for these

tasks since these systems offer multi-player support (multiple reviewers), realistic and real-

time rendering (good impression of the model) and network support (different geographical

locations of reviewers and students). The authors have chosen the Torque game engine

from GarageGames because of its low cost and the great freedom of development.

Next we will discuss this program and its features in more detail. Architectural models

are presented to reviewers by means of creating pre-recorded tours or by performing live

tours. Pre-recorded tours can be compiled by the designer and may then be watched by

the reviewers at any point in time. The functionality of creating demos is an implicit

feature of the Torque game engine. Pragmatically speaking, live tours resemble the core

functionality of a game engine. Another feature is the possibility to comment the model.

Reviewers can place a comment at any desired spot, can mark areas and can record the

angle and position when they were writing the comment. This makes it easier for the

designer and other reviewers to understand the critique and they can react to it more

15

2.2 Game Engines Used As 3D Worlds 2 RELATED WORKS

accurate. The comments are stored in a forum structure which can also be accessed

outside the 3D world and may further encourage discussion. Other functionalities that

are incorporated in the program are a sun placement tool (for precise lighting conditions)

and functions to bundle, select and download designs. A screenshot of the system is

depicted in Figure 5.

Figure 5: The Design Critique tool in action. On the left you can see a marked area, on
the right is the discussion forum (Moloney et al., 2003).

Another example for the use of game engines as working environments is the work

of Kot et al. (2005). Their motivation is to use a 3D game engine for improved data

visualization in the context of source code comprehension. They provide a tool that

allows developers to quickly perceive the structure of source code and the relation between

different source code files. To this end, source code files are visualized as 3D objects in a

3D virtual world. The size of the object is determined by the size of the source code file,

i.e. the more lines of code the larger the object. To identify different files, the file names

are displayed above the visualized objects. There is no restriction on the placement of

the file object in the 3D world.

The 3D environment contains an accumulation of 3D file objects that can be explored

by the user. The user is able to pick these objects up and carry them around. If the

user walks into an object, the view changes to a 2D editor displaying the content of the

file. Invocations of functions and variables are displayed as hyperlinks in this editor. If a

16

2.3 Agents and Multi Agent Systems 2 RELATED WORKS

user clicks on one of these links, the editor scrolls to the definition of the symbol. If the

symbol is defined in a different file, the editor is closed and the user gets slid towards the

file in question. Each file the user recently opened is saved in a history. Similar to the

navigation in a Web browser this history can be traversed back and forth.

The intended audience of this program are unexperienced developers and employees

at a company that need to be introduced to the code base of a project. A member of the

team will then give a guided tour that can be attended by the newcomers. For this reason

a user can synchronize his view with the view of another person. Furthermore, the guide

has the possibility to mark certain areas in the code. This usage scenario defines the

most important properties that the game engine needs to offer. This includes multiuser

support, stability and reliability. The authors have chosen the Quake 3 game engine

because it is well-tested, provides the required functionality and offers the possibility to

extend this functionality. In contrast to the Torque engine, the source code of the Quake

3 engine was not publicly available for the implementation. This led to problems related

to debugging and the message protocol used by the engine could not be altered.

They evaluated the tool with voluntary participants in the course of the development.

This evaluation identified some problems like overlapping labels or users dropping files

onto other users but gives no information on the performance of the program in a real

world setting.

2.3 Agents and Multi Agent Systems

Several definitions of software agents and Multi Agent Systems exist. However, some

principles and properties found wide acceptance in the research community. According to

Woolridge (2001) “an agent is a software component that is situated in some environment

and is capable of autonomous action in this environment in order to meet its design

objectives”. Multi Agent Systems, abbreviated as MAS, provide an infrastructure for

multiple agents. One such MAS system, called RETSINA (Reusable Environment for

Task Structured Intelligent Network Agents) was developed by Sycara et al. (2003). In

the same paper the authors also propose a general MAS structure. We will use their

definition to present the general components of a Multi Agent System. Another, more

comprehensive overview of the needs and definitions of MAS systems can be found in

Gasser (2001).

2.3.1 Overview of MAS components

Figure 6 shows the MAS infrastructure as proposed in Sycara et al. (2003). The infras-

tructure is based on a hierarchy where the upper layers depend on the functionalities

implemented in the lower layers. In order to allow heterogeneous agents to participate in

the MAS, the infrastructure does not make any assumptions on the problem solving be-

17

2.3 Agents and Multi Agent Systems 2 RELATED WORKS
L �������	�
������	�����������������	���������
��� ��!"�#�	$&%��	%��

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

MAS INFRASTRUCTURE

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

INDIVIDUAL AGENT INFRASTRUCTURE

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

SECURITY
Certificate Authority Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
Performance Services Modules

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
ACL Parser Private Ontology Protocol Engine

COMMUNICATION MODULES
Discovery Component Message Tranfer Module

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING
ANS

NAME TO LOCATION MAPPING
ANS Component

�=~�}4�Ey�| ��� ¿Û´�°�²g¸�É�Ê{·Q¶s½ËÊ�ÁaÌv½�Á�Ê�¼G·4¸ ¾�²g¸ ¾�µ�Ð�µ�¾�Á ·4»L´�Å«¼I¸2½Í²g¸�É�Ê{·4¶s½ËÊ�Á�Ìv½�Á�Ê�¼�½�Îa·Q½�·4»�»�ÑeØ±¶�·Q¸
·4Å4¼I¸2½�½�Ñ�ÏP¼dº ·�ÊË½±Ñ4ÉL·$¿Û´�°

� OeTA12+S(PXSXS/ß(��(3�c��pm:3�TPýP34(PRWO��Ú*�n:(*ã1�T&RWR�YL_:+S12(*ecPMÆ+,_!*ec23Q(P1�*ã(PRUT&_%ýp*�n%cER �OecEXS`PcEO±(P_:j �¥+S*�nq*�n%cÒ+S_^�g3Q(POe*e34Y:1�*�Y%3�cd1�T&RUmÔT&_%cE_�*�O2M�(P_:j��¥n%T&OecÒþÔcEn:(�`0+STP3±1�T&_ ��gTP3QRWO�*eTÛ*�n%c�3QY:X�cEOÆT��L*�n:c$Npüq- � üÂ_Ú(ýPcE_!*���OÒm:3�TPþLX�cERóOeT&X�`A+S_%ýÛ12(mL(þL+,XS+�*�+�cEO2M
n%TH��c2`Pc23�M=(3�c)(Uþ=XS(P1H4àþÔT �*eTW*�n%c)+S_ �83Q(PO�*e3QY:1�*�Y%3�c��

)C+�ý&Y:3�c ?¥O�n:T��¥O�n%T�� *�n%c¥j:+�MÔc23�cE_�*ÍOec23�`A+S1�cEOÍm:3�T�`A+Sj%cEjWþ�/U(ÜNpüÛ-W+S_^�g3Q(PO �*e3QYL1�*�Y%3�cÛ(3�cÛTP3�ý&(P_:+/.2cEj	+S_à(P_�(þLOe*e3Q(P1�*�+ST&_ànL+�c23Q(3Q14n!/PM%+S_ �¥n:+S14nà*�n%cÂnL+�ý&n%c23
X�c2`PcEX,OÍ3�cEXS/UT&_.*�n%c��sY:_:1�*�+�T&_:(PX,+�*�+�cEOÒ+SRWmLX�cERUcE_�*ecEjWþ0/W*�n%cÛX�T��c23$X�c2`PcEXSO
	��1'Gn%c
+S_ �83Q(PO�*e3QY:1�*�Y%3�cÀj:+S(ýP3Q(PR n:(PO�*0�TUmL(3�*�O2ÿ�*�n%c)N6üq-W+,_^�834(POe*e3QY:1�*�Y%3QcPM�(P_:j *�n%c
O�+,_%ý&X�c�(ýPcE_�*)+S_^�g3Q(POe*e34Y:1�*�Y%3�c�*�n:(*q(PXSX�T��ÀOÂ(P_�(ýPcE_�*q*eT	þÔc�mL(3Q*ÂT��(�N6üq-@�
� �ã¼�·�Ê�¼Ò³ !C¯6¾�¼vÓa¸aµ�¸aÅ$·QÅ«¼I¸2½�¶�·4¶�¶ËÑ2ÌvµÕ·Q»�»�ÇÜ·IØÔ·QÊ�¼Íº�Ê�Ñ«ÅQÊ{·4¹$¶I×�ØÔ¼Í¶�·eÇÀ½�Î ·�½�½�Î�¼vÇÂ·QÊ�¼

¶ËÁaÌ{ÎdÉ�Ê�Ñ«¹p½�Îa¼LºPÑ«µ�¸2½%Ñ4É�ÐEµ�¼^ØWÑ4É�½�Îa¼�¿Û´�°Cµ�¸�É�Ê{·Q¶s½ËÊ�ÁaÌv½�Á�Ê�¼«Ö4®=·QÌ^Î�·4Å4¼I¸2½A½{·4á�¼v¸Íµ�¸a¾�µ�ÐEµÕ¾�Á ·Q»�»ÃÇ
¹G·IÇ$Î ·eÐ�¼�·4¸Û·�Ê�Ì^Î�µÃ½�¼IÌv½�Á�Ê�¼�½�Î ·�½±¶�·Q½�µ�¶sÓ ¼I¶�¾�µ�â&¼^Ê�¼I¸2½�º�Ê�µ�¸aÌvµ�º�»�¼I¶��É�ÑQÊ±µ�¸�¶s½{·4¸�ÌI¼«×�µ�½ÔÌIÑ«Á�»Õ¾¥ÏP¼
Ï ·Q¶Ë¼e¾ÀÑ4¸Â½�Îa¼då 2C²Ô¹$ÑE¾�¼v»��^×�Ï�Á�½±µ�¸ÂÑQÊ{¾�¼vÊ±½�Ñ�ÏP¼dºa·QÊË½±Ñ4É%½�Î�¼Ò¿Û´C°P×aµÃ½±¶ËÎ�Ñ«Áa»�¾���¼^Ù�º�»�µ�Ìvµ�½�»ÃÇ
Ñ4Ê�µ�¹$ºa»�µ�ÌIµÃ½�»ÃÇ��]µ�¹$º�»�¼v¹$¼I¸2½Ô½�Îa¼C¹$ÑE¾�Áa»�¼I¶Ô½�Îa·Q½�ØÔ¼Í¾�¼I¶ËÌvÊ�µ�ÏP¼dÎa¼vÊ�¼4Ö
� �ã¼±¾�ÑC¸�Ñ4½LÌI»�·4µ�¹�½�Î ·�½=Ñ4Á�ÊL»�µ�¶s½]ÑQÉ&ÌIÑ«¹$ºPÑ4¸a¼I¸2½�¶:µ�¶LÌvÑ«¹$ºa»�¼v½�¼��4Ê{·�½�Îa¼vÊ=µÃ½=¼v¹$¼vÊ�Å«¼I¶%ÉÕÊ�Ñ«¹

Ñ«Á�Ê±¼vÙ�ºP¼vÊ�µ�¼I¸aÌI¼dµ�¸q¾�¼IÐ�¼I»�Ñ4ºaµ�¸aÅ�¿Û´C°Â·Qºaºa»�µ�Ìe·�½�µ�Ñ4¸a¶IÖ

N�N(O�N�P�Q&R�S(T�UWV/X�Y(Z�X�Y�[(Z�Z�V�U\V:Z^]8Z�_�U3`<Q��

Figure 6: MAS components as proposed in Sycara et al. (2003)

havior of the agent. However, agents participating in the MAS must implement functions

for the interaction with the MAS services. This is illustrated on the right side of Figure 6.

The bottom layer constitutes the physical operating environment. Both models, MAS

and agent, may run on the same host. So, this layer stretches over both infrastructures.

The Communication Infrastructure provides services for the message transportation be-

tween agents. This layer defines supported transportation media (wireless, wired) and is

provided by both infrastructures separately. In order to enable agent communication, a

common language has to be chosen. The ACL (Agent Communication Languages) layer

describes the syntactic form and the semantic interpretation of messages. Agents par-

ticipating in the system need to be able to compose and process such messages. The

Multiagent Management Services are used to observe and record the execution of the

system. Services that help to configure and start the infrastructure are also contained at

that level. The Performance Service layer provides facilities to measure the performance

of individual agents. This measurement is used to judge the reliability and integrity of

agents. Security Services are needed to provide trust in the heterogeneous society of

agents. Those services include authentication and certification mechanisms. Agents in

the MAS must be able to locate each other. Such services are provided on the Location

Mapping layer. Naming services abstract the physical location of agents enabling agents

to communicate seamless across machine and network boundaries. The next layer, Ca-

pability Mapping, also provides facilities to locate agents. On this level, however, agents

18

2.3 Agents and Multi Agent Systems 2 RELATED WORKS

are located by their functionalities or capabilities rather than on their location. The last

layer, Interoperation, is used for the interaction with other MAS architectures.

2.3.2 MAS Examples

The first example is situated in the domain of aircraft maintenance. The process of main-

taining and repairing aircrafts is a complicated task. In the U.S. Army this process follows

a standard procedure, covering expert consulting and information gathering. When a me-

chanic detects a discrepancy at an airplane, he must consult an engineer to decide the

required repair procedure. The mechanic fills in a 202a form and may attach additional

graphics and sketches that help to illustrate the problem. The engineer receives the form

and suggests a repair procedure based on several information sources. He may consult

historical repair data, manuals or experts at another air base. Most of this data is not

available in electronic form and can thus not be searched easily. Remote experts have to

be contacted via voice mail or fax. Their answers are usually delayed for hours or days,

prolonging the repair process even more. After the engineer has decided which repair

procedure to follow, he fills in a 202b form. This form is passed on to the mechanic who

carries out the repair.

The work of Shehory et al. (1999) aims to overcome the problems in this procedure

with Multi Agent Systems. Agents are used to assist engineers in the task of information

retrieval. They use the RETSINA infrastructure and propose three different agent types

to solve the problem:

• The form agent analyzes the 202a form received from the mechanic and characterizes

the problem. It searches for relevant information and presents the filtered results in

a comprehensive manner to the engineer.

• The history agent receives information requests and searches the historical data for

problem relevant information.

• The manual agent is similar to the history agent. Upon request it searches the

manuals for problem relevant data.

The organization of the Multi Agent System is depicted in Figure 7. Mechanics are

equipped with a wearable computer and when a problem is encountered, they fill in an

electronic 202a form. They may further attach audio or video content to illustrate the

problem. The form is forwarded to a form agent, whereas multiple mechanics may access

the same form agent. The form agent queries history and manual agents at different service

centers. Those agents have access to historical information, stored as electronic 202 forms,

and manual information, stored in databases. The replied information is merged by the

form agent and presented to the engineer. Based on this information the engineer decides

upon the repair procedure and fills in an electronic 202b form which is then sent to the

wearable computer of the mechanic.

19

2.3 Agents and Multi Agent Systems 2 RELATED WORKS

Form Form Form
202a

Form
202a

Form
202a

Form
202b

Form

202a

Form
202b

Form

202a

202b 202b202b
Form

forms

Form
agent

Form
agent

Form
agent

Manuals
agent

History
agent

202

Manuals Manuals

202
forms

Manuals
agent agent

Engineer

Mechanic Mechanic Mechanic Mechanic

Engineer Engineer

WearableWearable Wearable WearableWearable

Service center computer networkService center computer network

WorkstationWorkstation

History

Workstation

Mechanic

Figure 8: The multi-agent system organization.

system facilitates the automatic addition of new agents; as
new resources5 become available, agents can be created to
exploit them, without modifying the existing system. This
openness also allows for dynamic appearance and disappear-
ance of agents and information sources without hamper-
ing the overall system performance, since RETSINA agents
know how to �nd alternative agents when their initial choice
is not available. We believe that multi-agent systems, and
in particular the RETSINA infrastructure, provide a good
solution to this type of decision support problem, as demon-
strated by our prototype of agent-aided aircraft maintenance
system.

6 Acknowledgement

This work could not have been performed without the coop-
eration and support of Dan Siewiorek, Dick Martin and Jane
Siegel from the Wearable Computing project at Carnegie
Mellon university and the Warner Robins Air Force Base,
Georgia. Funding for this work has been provided by the
ONR grant #N00014-96-1-1222.

References

[1] K. Decker, K. Sycara, and M. Williamson. Middle-agents
for the internet. In Proceeding of IJCAI-97, pages 578{
583, Nagoya, Japan, 1997.

5Examples of such resources include: information sources; meth-
ods for processing information; user preference learning.

[2] Michael N. Huhns and Munindar P. Singh, editors. Read-
ings in Agents. Morgan Kaufmann, San Francisco, 1998.

[3] N. Jennings and M. Wooldridge (editors). Agent tech-
nology. Springer, 1998.

[4] N. Jennings, K. Sycara, and M. Wooldridge. A roadmap
of agent research and development. Autonomous agents

and multi-agent systems, 1(1):7{38, 1998.

[5] H. Nwana and N. Azarmi (editors). Lecture notes in
arti�cial intelligence vol. 1198: Software agents and soft

computing. Springer, 1997.

[6] K. Sycara, K. Decker, A. Pannu, and M. Williamson. De-
signing behaviors for information agents. In Proceeding
of Agents-97, pages 404{412, Los Angeles, 1997.

[7] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert {

Inteligent Systems and Their Applications, 11(6):36{45,
1996.

[8] K. Sycara and D. Zeng. Coordination of multiple intelli-
gent software agents. International Journal of Intelligent
and Cooperative Information Systems, 5(2 & 3):181{211,
1996.

Figure 7: Organization of the MAS for Aircraft Maintenance

This system provides advantages such as automated retrieval of relevant information.

Historical forms and manuals are stored electronically making an index based search pos-

sible. This increases the search efficiency and the retrieved information is more accurate

and complete. The average repair time is reduced, due to the better organization and

structure of the data.

The second example deals with coalition creation among customers when purchasing

products. A coalition is a group of customers interested in buying the same product.

Depending on the number of customers purchasing this particular product, a supplier will

usually grant a discount. A supplier has an incentive to sell his products at wholesale,

because above some quantity his utility will be larger than selling the same amount of

products at retail. A customer also has an incentive to buy his products in a coalition,

because he will get the product at a lower price. However, the formation and management

of the coalition requires additional expenses. A coalition is, therefore, only viable if the

utility of buying wholesale is greater than the expenses of forming a coalition. When

forming coalitions two different protocol types can be distinguished: pre negotiation and

post negotiation. In a pre negotiation protocol, the number of participants is determined

beforehand and the coalition leader collects the money of all customers. The leader then

negotiates a contract with the supplier and distributes the products to the customers.

In a post negotiation protocol, the coalition leader estimates the size of interested cus-

tomers and buys the products from the supplier at wholesale. The leader then advertises

the products and customers can join the coalition. The products are then sold to the

20

2.4 Integrating Agents in 3D Virtual Worlds 2 RELATED WORKS

Figure 8: MAS structure of the coalition example (Tsvetovat and Sycara, 2000).

customers at the advertised price.

Tsvetovat and Sycara (2000) use an agent system to implement such coalition for-

mations in the domain of book purchasing. An overview of the system can be seen in

Figure 8. It consists of coalition leader agents, an auctioneer agent, a coalition server

and supplier agents. The coalition server is used by the coalition leaders to advertise

their coalitions. Customers can search and join the available coalitions through a Web

based interface. They implemented a pre negotiation protocol which works as follows.

The coalition leader specifies the book to be bought and submits a request for bids to the

auctioneer agent. The auctioneer informs the supplier agents of the request. The supplier

agents query information agents and compute a bid price for different quantities of the

item in question. The bid is then submitted to the auctioneer agent who collects all bids

that are submitted within a specified time period. After the auction time has expired, the

auctioneer reveals the bids to the coalition leader. The coalition leader then chooses one

supplier and informs the winner of the tentative accept. The leader opens the coalition for

a specified amount of time and new members can join the coalition within this interval.

After the time period has finished, the final price of the product is determined (depending

on the number of participants). The coalition leader notifies the supplier of the order size

and provides a delivery date. The supplier then executes the transaction.

2.4 Integrating Agents in 3D Virtual Worlds

In the following Section we describe approaches that aim at combining agents with 3D

virtual worlds. We start off with an approach where much of the agent logic is incorporated

in the 3D environment and which has been developed by Smith et al. (2003). The main

motivation of their work was the introduction of dynamic behavior into 3D virtual worlds.

According to the authors, most worlds are largely static and objects are used to trigger

21

2.4 Integrating Agents in 3D Virtual Worlds 2 RELATED WORKS

pre-programmed behavior. Agents are supposed to enrich the world and act according

to their goals and the current state of the world. The framework consists of a society of

agents. As illustrated in Figure 9, each agent can perceive the world through sensors and

is able to change the world or to issue messages through effectors.

Designing 3D Virtual Worlds as a Society of Agents

4

reflective action. The Action Activator is responsible for triggering the effectors to
make changes to the virtual world environment. Further details of the agent model
underlying this can be found in (Gero and Fujii 2000; Smith and Gero 2002; Maher
and Gero 2002).

Our framework for designing a 3D virtual world as illustrated in Figure 3 is based
around a set of abstract classes that form the generic architecture for constructing a
society of agents. Central to the framework are the Society1 and the Agent. A Society
is an aggregation of Agents that share a common connection with a virtual world.
Normally these share some ontological connection, such as a Room agent plus a set
of Wall agents that collectively comprise a virtual conference room. The Society
manages computational resources, such as the connection to the virtual world, on
behalf of the Agents. Agents within one Society communicate by sending messages
from the Effector of one Agent to the Sensor of another without such messages
necessarily going through the virtual world server. This allows such agents within a
society to self-organize without flooding the world with indecipherable chat. An
Agent communicates with an Agent from another Society or with citizens of the
world by sending messages through the world server.

Figure 3. A society of agents for a 3D virtual world (Maher and Gero 2002)

Our framework assumes that an agent server and a 3D world server act as distinct
components of an agent-based virtual world. The philosophy is the same as that
underlying distributed operating systems: each server does one thing and does it

1 In this paper, Society in an italic font refers to a computational entity such as a java class. Society in a
normal font refers to a concept.

Society of Agents

Agent Element

Sensation
Perception
Conception
Hypothesizer

Action

Sensors Effectors

Events initiated by
other agents

Current state of
the world Changes to the world

Messages to other
agents

Agent
Element Agent

Element

Agent
Element

Agent
ElementAgent

Element

Agent
Element

Figure 9: The society of agents as proposed in Smith et al. (2003).

The behavior of an agent is determined by its internal model that is composed of

several layers. Messages are perceived by the agent through its sensors and are processed

by the Sensation process. The output of this process is sense-data that can directly be

used by the agent. The agent is able to react to this raw data with its reflexive behavior.

If the agent does not react on this level, the data is further processed by the Perception

process. This process recognizes patterns as percepts and the agent can react to it with

its reactive behavior. The percepts can then be further processed by the Conception

process that assigns further meaning to each percept. Finally, the Hypothesizer uses

the processed percepts to reason about the current state and the goals of the agent. It

proposes an Action that will assist the agent to achieve its goals. This behavior is called

reflective behavior.

In order to enable agents to communicate with each other, a common language has

to be defined. In this particular case, the Contract Net negotiation protocol was chosen

(Smith, 1981). The Contract Net protocol is based on proposals and each agent having

a request sends out a proposal to other agents. If an agent believes that it can fulfill

the proposal, it replies with another proposal. The initiator then collects all proposals,

chooses the best proposal and makes a contract with the winner about his proposal.

As example, a conference room consisting of wall agents and one room agent is pre-

sented. The room agent is responsible for providing an appropriate room size. If too

many avatars enter the room, the room agent will sense this and will try to expand the

room. The room agent sends a proposal to the wall agents requesting to increase the size

of the wall. One wall agent may then get a contract and start to expand itself. This wall

22

2.4 Integrating Agents in 3D Virtual Worlds 2 RELATED WORKS

agent, in turn, sends proposals to the other wall agents that they should also grow in

size. Since the agents are autonomous and act on their behalf, some wall agents may get

larger but others may stay the same and leave a gap behind. This clearly is an undesired

situation, but the authors do not present any solution to this problem - they just state

that it can happen. Future work will be needed to resolve such inconsistencies.

The conference room was implemented in Active Worlds (AW). Active Worlds is a

virtual 3D world reality platform. It offers a SDK that can be used to interface the world

by controlling the movement and behavior of bots. The agents can be written in any

language and only the sensors and effectors themselves are exposed to the virtual envi-

ronment. One downside of their approach is the strict architecture they enforce. When

using their framework you have to stick to the communication language they use and the

agents will have to implement effectors and sensors. The internal agent model could vary

from their proposed model as this information is encapsulated behind the effector/sensor

interface. Nevertheless you cannot switch agent systems on the fly and have to adapt

your agents according to their rules.

The next project abstracts the Multi Agent System and provides a uniform interface

to the 3D world. The project called GameBots (GameBots) was developed by Adobbati

et al. (2001). The intention of their work was to create a new multi agent research test bed

that is not tailored to a specific kind of task in a fixed environment and supports human

testing and interaction. They proposed GameBots as a 3D test bed that supports humans-

as-agents, is easily customizable (due to a scripting language) and supports multiple

environments and tasks. Their criteria for a suitable game engine included client/server

model, large user base (i.e. well tested, reliable code) and easy modification. They decided

to use the Unreal Tournament (UT) engine and implemented GameBots as a module that

communicates with the UT server and bot clients, see Figure 10.

The module works bidirectional. It provides sensory information to the bot clients and

controls the bots in the game. Based on the information a client receives, it computes the

appropriate actions and issues the commands back to the module that, in return, causes

the bot to move, jump, shoot, etc.

The communication between the client and the module is defined by a simple protocol.

The initial handshake determines the type of game played at this server and the conditions

for a win. After that, sensory information is sent to each client in a specified interval (10

times per seconds in the current implementation). These messages contain information

about the game status and agent specific information such as viewpoint of the agent

or state of the agent. For example, a map can contain a set of navigation points and

each message will tell the agent, which point is reachable from its current position. This

information can then be used to navigate the map. The second type of messages are

messages that refer to immediate events and are triggered when the bot hits a wall or

hears a noise.

23

2.4 Integrating Agents in 3D Virtual Worlds 2 RELATED WORKS

system is not broadly available which has prevented a larger
participation by the research community.

More recently, the RoboCup initiative [7] has served as a growing
software infrastructure for a wide variety of research in multi-
agent systems. The main component of this framework is the
RoboCup Soccer Server, a multi-agent environment that supports
two teams of simulated soccer agents playing against each other in
real time (with each agent running a client connected to the
server) [6]. The rules of the game and the main task (score more
goals than the opponent) cannot be changed, which can lead to the
development of soccer-specific techniques that may not be
reusable for other tasks or environments.

The agent “Quakebot” [9] is designed to play the popular first-
person shooter video game Quake against human players. This
agent (or “bot”) is based on Soar [10], and uses dynamical
hierarchical task decomposition to organize its knowledge and
actions. It incorporates predictive capabilities and learning [8].
The Quakebot agent is currently limited to single agent tasks.

Figure 1: A screenshot of Gamebots’
wizards and bubble wands.

At the Gamebots project, we are seeking to turn an interactive
multi-player video game into a domain for a variety of research in
artificial intelligence. The project aims to construct a new
standard test-bed for research in multi-agent systems. When
deciding on what particular video game implementation to use for
the multi-agent framework, we required that the game be
client/server based (allowing users be able to connect remotely)
and that it support several players (either human or agent) playing
individually or in teams. We needed the game to be easily
modifiable in order to add different types of tasks or change the
API, and that it have already a large user base. Our choice was a
commercial game engine, Epic’s Unreal Tournament (UT):

• UT consists of a fast, dynamic, and complex 3D simulation
engine, widely available at little or no cost (a stand-alone
server -- http://www.unrealtournament.com/downloads), and
with a large user base.

• It is a robust environment, stress tested by thousands of
people everyday, and under continued support at Epic. It is
not uncommon for servers to stay online for extended periods
(weeks or even months).

• It includes a broad set of game tasks, such as Domination
and Capture the Flag, as well as 35 different world maps
varied both in size and semblance [4]. Additionally, the
active online gaming community has constantly added to this
library with new maps and new game types. This gives
researchers a wealth of environments for testing their agents.

• It provides a variety of ways for developing new game types
and world objects, primarily through its integrated scripting
environment UnrealScript. Agent developers can take
advantage of this in order to create new and varied tasks for
their agents.

• Unreal Tournament’s wide popularity provides a familiar
environment for students to explore agents and artificial
intelligence research.

3. THE GAMEBOTS SYSTEM
The core of the Gamebots project is a module for UT that allows
characters in the game to be controlled via network sockets
connected to bot clients (see figure 2). The Gamebots server feeds
sensory information for the characters over the network
connections. Based on this information, the client (bot or human
player) can decide what actions the character should take and
issues commands back over the network to the game to have the
character move, shoot, or talk. Agents must display advanced AI
and MAS capabilities to play successfully, such as planning paths,
learning a map of their 3D environment, using resources available
to them, coordinating with their teammates, and engaging in
strategic planning which takes their adversaries into account.
Unlike other standard test-beds, the Gamebots system allows
human players to play with the agents, thus providing opportunity
to study human team behavior, and to construct agents that play
collaboratively with humans.

UT
Client

socket

socket

socket

Unreal
Tournament

Server

Gamebots
Module

socket

socket

1

2

3

4

16

..

.

Gamebots Server

Bot
Client

UT
Client

Bot
Client

Bot
Clientbot

player
alone

human
and bot
players

Network

human
player
alone

Figure 2: Gamebots architecture (note that human players
connect directly to the UT server, and bots connect through

the Gamebots Module).

3.1 Unreal Tournament System
Unreal Tournament falls into a category of video games known as
first-person shooters, where all real time players (currently a
maximum of 32) exist in a 3D virtual world with simulated
physics and a variety of tools that give the players additional
abilities. As implied by ‘first person’ in the genre’s name, every

Figure 10: The GameBots architecture (Adobbati et al., 2001)

In the other direction (client to module) bot action commands are sent. Such com-

mands tell the bot in the 3D world what to do and include the following: STOP - stops

all movement and action, RUNTO - run towards a navigation point or a specified location

(the command is only executed if the target is in sight), JUMP - causes the bot to jump.

GameBots also provides monitoring facilities. A logging tool allows the developer to

log the events that are happening in the 3D virtual world. There are visualization tools

that offer bird’s eye view of the map including real-time movement of the bots. Fur-

thermore, all recorded actions can be replayed and studied at a later point in time. The

advantage of their approach is the loose coupling between the agent system and the 3D

world. Of course the agent must be able to deal with the bot interaction protocol but

there is no restriction on the communication between the agents.

Although the GameBots project seems not be to developed any further1 there are

other projects that use the GameBots module. In the following we will present one

work that is based upon GameBots. The project is called UTSAF and was developed

by Manojlovich et al. (2003). UTSAF stands for Unreal Tournament Semi Automated

Force and is a framework that connects military simulations with a 3D visualization.

As the name implies they use the Semi Automated Force (SAF) environment for the

simulations and the Unreal Tournament (UT) engine to visualize the simulation space. As

there have been several problems in creating visualizations for such distributed interactive

simulations (DIS) in the past, the goal of their work was to create a framework that scales

1According to the Web page (GameBots) the last news stem from 2002.

24

2.4 Integrating Agents in 3D Virtual Worlds 2 RELATED WORKS

well on large and heterogeneous simulation environments. To this end, they propose a

new approach in which they use an agent system as the mediating component between

the two layers. The architecture of UTSAF is depicted in Figure 11.

Figure 11: The UTSAF architecture (Manojlovich et al., 2003).

Several agents are used to establish a connection between the entities in the SAF envi-

ronment and the bots in the UT world. Each of these agents has a specific task that will

be summarized in the following. The SAF environment uses a standardized protocol (DIS

protocol) for the communication between the entities in the environment. The task of the

SAF Broker agent is to listen to the communication on one such node and to parse the

messages it observers. The traffic is encoded in Protocol Data Units (PDU) that can be

parsed with the help of the PDU parser. The heart of the architecture is the SAF Manager

agent that manages the traffic between SAF Broker and GameBot agents. The database

is used to update the status of entities in the SAF environment and changes are forwarded

to the GameBot agents. The GameBot agents are used to control the GameBots in the

3D virtual world. Every time they receive an update via the SAF Manager they update

the location and status of the corresponding GameBot in the Unreal Tournament.

25

3 BACKGROUND AND FOUNDATIONS

3 Background and Foundations

The work reported herein is embedded within a research project that aims at the devel-

opment of a radically new environment for e-tourism applications (Berger et al., 2007).

In a nutshell, 3D virtual worlds will provide a familiar and intuitive environment for

both, tourism suppliers and consumers. The system is intended to become a community

facilitator allowing users to socialize with others and to establish new contacts. The envi-

ronment is enriched with information by means of agent technology. Agents and humans

are the participants in the 3D virtual world and work together to cooperatively achieve

their goals. This can be summarized as follows:

• Provide a 3D e-Tourism environment for providers and consumers that enables ver-

satile interaction between participants including the trade of tourism products.

• Provide a 3D e-Tourism environment that becomes a community facilitator to create

and establish a lively and sustainable community involving both, providers and

consumers.

• Provide a 3D e-Tourism environment that is information-rich and multimedia-based

to offer transparent and unified access to disparate information sources.

These goals will materialize as an integrated, game-like e-Business application where

each participant is impersonated as an avatar. Users are able to interact with each other

in a familiar environment and have access to a wide variety of information. With this

environment it will become possible to study the human-agent relationship and researchers

will be able to get insights on the needs and requirements of human users concerning agent

technology. The application of agent technology is especially promising in the tourism

domain, since such information is usually spread over the Internet and agents are able to

aid users in the collection of such information.

In this 3D e-Tourism environment two types of participants need to be considered:

humans and agents. Agents are either autonomous or controlled by a human user. In

the latter case, the couple human/agent is represented as an avatar in the 3D virtual

world. The visualization of autonomous agents depends on their task and can range

from the visualization as avatar to the visualization as information monitor. Humans

and agents learn from each other and work together to collaboratively achieve certain

goals. The user delegates tasks such as information gathering or product purchasing to

the agent and learns from the agent which rules and restrictions apply in the environment.

These agents participate in a Multi Agent System (cf. Figure 12). The connection

between the Multi Agent System and its visualization is realized in a causal manner. The

term causality or causal connection refers to the connection between a system and the

representation of this system. We will use the definition of Maes and Nardi (1988), where

26

3 BACKGROUND AND FOUNDATIONS

a system and its representation are causally connected when the following two criteria are

met:

• Whenever the representation of a system is changed, the system itself has to change

as well.

• Whenever the system evolves, its representation has to be modified in order to

maintain a consistent relationship.

In our case the Multi Agent System is the system and the 3D virtual world is the

representation of this system. The middleware causally connects both components. This

connection, including the couple human/agent, is visualized in Figure 12. In this Figure,

a user named Elaine is logged into the 3D virtual world. She is represented as an avatar

and is the principal of an agent in the Multi Agent System. All actions Elaine is per-

forming in the 3D virtual world are verified by the Multi Agent System. In this example

Elaine is standing in front of a door and wants to enter the room behind it. The mid-

dleware forwards the request to her agent that checks whether this action is permitted in

the current state of the Multi Agent System. The agent sends back a reply message that

is forwarded to Elaine via the middleware. Depending on the state of the Multi Agent

System, the door is opened or remains closed.

However, in the course of implementation we realized that we will not be able to

enforce causality in this strict manner. The problem lies in the fact that we are using the

Multi Agent System like a black box and cannot change its state arbitrarily. We can run

into a situation in which an action has been permitted in the Multi Agent System, but

at the time the action is executed, it is no longer permitted. Suppose that in the last

example Elaine’s action was permitted and the door had been opened. It takes several

seconds until Elaine enters the room. According to the causality definition, Elaine’s agent

must also execute this action in the Multi Agent System. Meanwhile, however, the state

of the Multi Agent System has changed and the agent is no longer permitted to perform

the action. Since we are using the Multi Agent System like a black box, we cannot alter

the state of the system and are not able to enforce causality in this direction.

We solve this problem in the following way. The components of the 3D virtual world,

which are used to interact with the framework, are implemented by us. We therefore have

complete control of the state in the 3D virtual world. Thus, it is possible to change the

state of the representation whenever the system state changes. Since Elaine’s agent could

not perform the action in the Multi Agent System, the current state of the system has

to be enforced in the 3D virtual world. This is achieved by teleporting Elaine’s avatar to

the room where she came from.

Although we cannot provide a causal connection in both directions, we still achieve a

consistent relation between the two components. The causal connection between the Multi

Agent System and the 3D virtual world is used to resolve any inconsistencies. Whenever

27

3 BACKGROUND AND FOUNDATIONS

Middleware

Multi Agent System

Visualization

Elaine
Agent

p
ar

ti
ci

p
at

es

collaborate

Legend
1) Elaine attempts to open the door
2) Requests action: „open door“
3) Corresponding message is forwarded for validation
4) Agent is informed about the requested action
5) Validation response: „action permitted“
6) Response is forwarded
7) Action is performed and perceived by Elaine,
 i.e. the door opens

1 7

2

6

5

3

4

Figure 12: The Human-Agent relationship.

the system and its representation are in different states, the 3D virtual world is modified

to maintain the consistent relationship.

Another important aspect of this project is the establishment of a lively tourism com-

munity. In order to realize this vision, our system has to provide community and social

interaction features. A 3D virtual world implicitly addresses some of these requirements.

Users are aware of each other, they see what other users are doing and perceive the

environment as a community place. Furthermore, such environments have to provide

mechanisms that enable users to communicate and encourage social interactions (Smith

et al., 2003). To this end, we provide communication facilities such as chat tools, instant

messaging or voice communication. To encourage users in social interactions we plan to

implement reward mechanisms and try to establish a social status within the community.

Users should be able to express themselves and their social status should be visible to

other users. In Second Life (SL), for example, users can alter any aspect of their appear-

ance. These modifications range from the seamless alteration of the body shape, to the

adjustment of the eyelash size. A great deal of the success of Second Life is based on this

28

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

feature. There are clothing stores, tattoo studios and barber shops where the appearance

of avatars can be perfected. Users are frequenting these locations, spend real money and

invest lots of time into the looks of their avatar.

Besides the implementation of such an avatar customization tool, the 3D e-Tourism

environment provides avatar representation codes. Such a code defines visual clues for the

representation of agents. It specifies how agents are visualized and if their visualization

must contain certain elements. For example, seller agents may be required to wear a

special outfit such that they can easily be distinguished from other avatars. The visual

representation of an agent is not restricted to an avatar object, any 3D entity can be used.

An information agent might be visualized as screen presenting pictures and videos to the

users.

To realize the proposed system, we have to choose concrete components for the visu-

alization and the Multi Agent System layer. Electronic Institutions are a proven multi

agent methodology and provide a system for the interaction of agents (Esteva et al.,

2004). They define which actions each agent is permitted to perform and control the

correct behavior of the agents. Like in other works on agent technology, the research ef-

forts for Electronic Institutions are placed on the software side and the society of agents.

We follow the approach of Berger et al. (2007) who propose 3D Electronic Institutions

as a combination of Electronic Institutions and 3D virtual worlds. While retaining the

advantages of both systems, 3D Electronic Institutions open new dimensions allowing to

study humans and agents from a new perspective. A game engine is used to provide an

immersive 3D virtual world. We chose the Torque game engine for this task, because it is

a well tested, industry proven and popular engine. Electronic Institutions and the Torque

game engine are presented in more detail in the next two Sections.

3.1 Electronic Institutions Introduction

The concept of Electronic Institutions was developed at the Artificial Intelligence Research

Institute (IIIA) in Spain. The main concept of Electronic Institutions is the application of

real life institutions for Multi Agent Systems. In our life we have to deal with institutional

processes all the time. Those processes define how we are supposed to behave and what

we are allowed to do. Consider, for example, a traditional auction in an auction house

like Sotheby’s. An auctioneer tries to sell one good at a time and a group of buyers can

bid for the product. Every new bid must be higher than the previous bid. If no new bids

are put in, the auctioneer announces the person who stated the last bid as the winner.

According to the institutional rules, this person is then obliged to buy the product. If the

buyer cancels the purchase after this point, she has violated the rules of the institution

and has to pay a fine.

An Electronic Institution defines rules and norms for the interaction and behavior of

agents. It specifies the actions an agent can perform in the current state of the institution

29

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

and how the agent can move in the institution. The structure of an Electronic Institution

can be described along three dimensions:

• Conventions on Language, the Dialogical Framework. Electronic Institutions are

open systems in which heterogeneous agents are participating. The Dialogical

Framework defines the organizational structure of the agent society and is com-

posed of agent roles. A role identifies the permitted actions of an agent. To facili-

tate information exchange between heterogeneous agents, the Dialogical Framework

also defines a common language. The vocabulary of this language is specified in an

ontology.

• Conventions on activities, the Performative Structure. Agent communication in

Electronic Institutions is defined through scenes. A scene contains a scene protocol

specifying the messages that may be sent between agents. Those scenes are inter

connected with each other through transitions, forming the Performative Structure.

A transition is restricted to a set of agent roles, identifying the possible movements

of an agent in the Performative Structure.

• Conventions on behavior, the Norms. The Norms can be split into inter-scene and

intra-scene roles. The inter-scene norms are essentially the scene protocols and

describe which role is permitted to send which message to which agents in a scene.

The intra-scene norms specify the movement of agents between scenes.

3.1.1 Specification of Electronic Institutions

This Section presents the different elements of an Electronic Institutions and how they

are specified in more detail.

Dialogical Framework

One aspect of institutions is the fact that every participant adopts a specific role. In the

auction example, for example, the participants adopted either the buyer or the auctioneer

role. Agents are the players in an Electronic Institution and each agent adopts a role

when acting in an Electronic Institution. Basically roles are the main elements for the

communication and movement in an Electronic Institution. All oncoming specifications

are based on the type of role the agent currently inhabits.

It is possible to switch roles over time, so an auctioneer might be a buyer in another

auction. It is even possible for an agent to play several roles at the same time. For

this reason relationships between roles need to be defined. Roles can be specified being

mutually exclusive, meaning that a single agent cannot play those roles at the same time.

This would be the case in the auction example. A person cannot be an auctioneer and

a buyer at the same time, since this would violate the concept of an auction (the person

30

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

could purchase the product at any price, because she decides who will get it). Moreover

there is a distinction between internal and external roles. Internal roles are responsible

for the execution of the Electronic Institution and can only be adopted by internal agents.

External agents, participating in the system, can only adopt external roles. In the auction

example, the auctioneer role is an internal role whereas the buyer role is an external role.

External agents are not allowed to play the auctioneer role.

In order to allow heterogeneous agents to communicate with each other, it is necessary

to provide a common language. The messages that can be exchanged between agents are

based on their current role type. Within the Dialogical Framework an ontology, describing

the vocabulary that can be used by the agents, is defined. The communication language

is defined by expressions of the following form:

(i, (αi, ρi), (β), π, τ)

where:

• i is an illocutionary particle.

• αi, ρi is a term which can be either an agent variable or an agent identifier.

• β represents the addressee(s) of the message which can be an agent or a group of

agents.

• π is an expression of the ontology.

• τ is a term which can be either a time variable or a time constant.

The definition of this expression is related to speech act theory. The variables have

the following meaning. The illocutionary particle defines which type this expression has -

examples of illocutionary particles are: request, inform, failure. The pair (αi, ρi) describes

the sender of this message. αi can be an agent variable or an agent identifier and ρi can

be a role variable or a role identifier. The same applies for the β identifier. This is the

receiver of the message and can also be described as a pair (αj, ρj). This is the case if the

message is addressed to a single receiver. The message can also be addressed to all the

agents of a specific role. In this case β is only of the form ρj. Furthermore the message

can be addressed to all agents. Then β is of the form all. If such a language expression

contains unbound variables it is called an illocution scheme, otherwise it is called illocu-

tion.

Scenes

Scenes are the heart of each Electronic Institution. They define communication patterns

between roles that allow agents to interact with each other. A scene is composed of several

31

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

states that are interconnected with directed edges. This state automaton describes the

different conversations that may take place in the scene. Each scene has an initial and a

final state, describing in which states a new scene instance can be generated and closed. It

is possible to instantiate multiple instances of the same scene. Scenes are usually created

and closed by internal agents. We can draw an analogy with the auction example: the

creation of a scene refers to the start of the auction and when the auction has finished

the scene is closed. For each scene state it is possible to define the roles that may enter

and exit the scene in the current state. Usually roles, eligible to participate in a scene,

are able to enter it through the initial state and can exit it through the final state. The

enter and exit schemes in other states depend on the specification of the scene.

Communication in a scene is defined by the edges that connect the single states. Each

edge is labeled with illocution schemes defining the possible messages that can be said. In

a scene state all illocution schemes on outgoing edges might be said in that state. Since

an illocution scheme may also restrict the sender and receiver role of the illocution, an

agent can only utter those illocutions that match its role. When uttering an illocution, the

illocution is matched against the illocution scheme and unbound variables are replaced

with concrete values. If a variable is prefixed with a ’?’, this means that the variable

is unbound and can be bound to any new value. If the variable is prefixed with a ’ !’,

this means that the variable is bound and has to be replaced with the last value of this

variable. Whenever an illocution is uttered, the scene evolves and the state of the scene

changes. This is how the communication takes place. Agents utter illocutions and the

scene changes from one state to another.

The Performative Structure

The Performative Structure describes how the scenes are interconnected and is a specifi-

cation of the composition of the institution. Considering the auction example the Perfor-

mative Structure describes the auction house, where the auctions take place and who is

allowed to enter which auction.

The Performative Structure can be specified by means of a graph. In this graph each

node represents a scene that is interconnected through transitions. A transition is special

node called transition node. Several outgoing scene edges can end in a transition node

and the outgoing edges of the transition nodes lead to other scene nodes. Those edges are

labeled with role identifiers, specifying which role can enter/exit a scene over this edge. A

transition node describes how agents can move between the scenes. There are two types

of transitions in general: and and or transitions. Whenever an agent leaves a scene over

an outgoing edge, it enters the subsequent transition. If this transition is of type or, the

agent can enter any scene that is reachable from this transition for its role type. If the

32

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

transition is of type and, the agent has to enter all scenes connected to this transition.

Each incoming edge is labeled with one of the following: 1, some, all and new. The

first type, a 1-edge, expresses that the agent has to enter exactly one instance of the target

scene. The some label defines that the agent can enter any subset of instances. When the

edge is labeled with the all symbol the agent must enter all current instances of the scene.

The new label describes that a new instance of the scene must be generated. Those new

edges are usually restricted to internal agents who use them to create new scene instances.

3.1.2 An Auction Example

In order to get a better understanding of these concepts, we now examine a concrete Elec-

tronic Institution. This institution is described in (EIDE) and defines an auction house

where agents can buy and sell items using auction mechanisms.

Role structure

In Figure 13 the different roles of this example are depicted.

Figure 13: Role structure.

The different colors of the roles refer to internal and exter-

nal roles. The institution is run by internal staff agents who

may also adopt the auctioneer role.

External agents can inhabit the guest role which is mu-

tually exclusive with the internal roles - no agent can adopt

an internal and an external role at the same time (ssd stands

for static separation of duty). Agents inhabiting the guest

role must also have two properties, namely an admitted and

a credit property. The admitted property identifies if they

are permitted to attend an auction and the credit property

defines the credit limit of the agent. An external agent can

further act as a buyer or as a seller in an auction. Again those two roles mutually exclude

each other.

Ontology

We will only present some of the possible functions and data types of the ontology that

are relevant for the example.

• item. This is a data type used to describe the items in the auction. It simply

contains the name of the item and a textual description of this object.

• login. Agents can use this function to log in the institution. The function has two

parameters the name and the e-mail address of the agent.

33

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

• accept. If a login request has been accepted by the internal agents, the agent in

question is informed via this accept function. This function also informs the agent

of its credit limit.

• close. This function is used by the internal agents to end the execution of a scene.

Scenes

The Performative Structure of the auction house contains several scenes. The relation-

ship between scenes and the Performative Structure is detailed in the next section. As

an example, the Admission scene is presented in Figure 14. This scene defines a login

procedure allowing agents to participate in the auction house. The core of a scene is a

state machine. The Admission scene contains four states whereof W0 is the initial state

and W3 is the final state. The numbers along the connecting edges correspond to the

messages detailed in Table 1.

Label Message Actions

1 request (?x guest) (?y staff) (login ?user ?email)
2 inform (!y staff) (!x guest) (accept ?credit) x.admitted = true

x.credit = !credit
3 failure (!y staff) (!x guest) (login !user !email) x.admitted = false
4 request (?x guest) (!y staff) (login ?user ?email)
5 inform (!y staff) (all guest) (close)
6 inform (?y staff) (all guest) (close)

Table 1: Messages of the Admission scene.

The signature of each message is

Illocutionary Particle (Sender Role) (Receiver Role) (Function FunctionParameters)

The variables x and y refer to the agents involved in the conversation. The ’?’ preced-

ing the variable identifies unbound variables, not being bound to a specific agent, whereas

the ’ !’ identifies variables that are already bound to a particular agent. Consider, for

example, the messages 1 and 2. Each agent playing the guest role (?x) can send a login

request to a staff agent. After the staff agent has evaluated the request, it returns the

accept message to the particular agent (!x) that sent the request.

The Admission scene might be accessed by guest and staff agents via state W0. Guest

agents are permitted to leave the scene in this state, whereas staff agents can only leave

the scene in the final state W3. In state W0 two possible messages can be said. The

staff agent can close the scene by issuing a close message (label 6) to all guests that are

currently participating in the scene. The scene will then evolve to the final state W3 and

all agents have to leave the scene because its execution has ended. The second message

that can be said in state W0 is a login request. The guest agent can make a login request

34

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

Figure 14: The Admission scene of the Auction House.

(label 1) and the scene evolves to state W1 in which the request is processed by the staff

agent. If the login request is negatively evaluated by the staff agent, a failure message

(label 3) containing the original login function request is returned. If the request was

successful, the staff agent replies with an accept message (label 2). This message sets the

property admitted=true and credit to the value specified in the accept function. In either

case the scene evolves to state W2. In this state the guest agent may leave the scene

and new guest agents may enter the scene. Guest agents can state new login requests by

traversing the edge with label 4. The scene then alternates between the states W2 and

W1 until the staff agent closes the scene with a close message as indicated by the edge

labeled 5.

Performative Structure

The Performative Structure of the institution is shown in Figure 15. Each Electronic

Institution has an Initial scene where agents may enter it. The Final scene is used to

leave the Electronic Institution. These scenes are marked with a special coloring. All

other scenes are blue in color.

After entering the institution through the Initial scene, the agents automatically ac-

cess the first transition. This transition is of type and. An agent must access all following

scenes for his role type. So, the staff agent is obliged to create new instances of the Ad-

mission, the ItemRegister and the AuctionInfo scenes. A guest agent can only enter the

Admission scene. The scene protocol of this scene was presented in the previous section.

After registering itself in the institution, the guest agent may move to the ItemRegister or

the AuctionInfo scene. In the ItemRegister scene it is possible to register an item for an

auction and in the AuctionInfo scene an agent may request information on current auc-

tions. Note that the agent must change its role from guest to seller or buyer respectively.

After registering an item, the staff agent will open a new Auction scene and changes its

role to auctioneer. There may exist several Auction scene instances at the same time. An

agent, inhabiting the buyer role in the AuctionInfo scene, may enter the Auction scene.

35

3.1 Electronic Institutions Introduction 3 BACKGROUND AND FOUNDATIONS

Figure 15: The Performative Structure of the auction house.

This agent may enter several instances of this scene at the same time. The Auction scene

is used to execute an auction. The protocol of the scene is not fixed, thus, several types

of auctions can be held in this scene. The buyer can then circle between the Auction and

the AuctionInfo scenes. Agents leave the institution via the Final scene.

3.1.3 The Electronic Institutions Development Environment

To support the development of Electronic Institutions, a framework was developed by re-

searchers at IIIA. This framework introduces programs that allow designers and program-

mers to specify, implement, verify and run Electronic Institutions (Arcos et al., 2005). It

is called Electronic Institutions Development Environment (EIDE) and is freely available

(GNU license) from the project Web page (EIDE). It includes the following tools.

• Islander is used to create specifications for Electronic Institutions (Esteva et al.,

2002). It consists of a graphical editor where the entities of a structure can be

arranged and connected. All images of the auction house example (cf. Section 3.1.2)

are specifications made with Islander. Furthermore, specifications can be statically

verified, helping the designer to avoid errors. The output of Islander is a XML

document containing specifications of all components of an Electronic Institution.

• Ameli is the runtime environment allowing the execution of Electronic Institutions.

It is started with a set of Electronic Institution specifications. Agents can then join

the system and participate in Electronic Institutions. The behavior and movement

of all agents is controlled by Ameli.

36

3.2 Game Engine Introduction 3 BACKGROUND AND FOUNDATIONS

• The Agent Builder simplifies the development of agents. Similar to Islander,

it contains a graphical editor where agents and their attributes can be specified.

This specification is stored in XML and transformed to source code by another

component of the Agent Builder. The generated source code can then be refined by

the developer.

• Simdei. Since Electronic Institutions are open systems where heterogeneous agents

can participate, the dynamics of the system can hardly be estimated at design time.

Simdei (Simulation and Dynamics of Electronic Institutions) is used to simulate the

dynamic behavior of Electronic Institutions.

The tool that is incorporated in our framework is the Ameli runtime environment.

Electronic Institutions that are executed in Ameli are organized by a specific structure.

Each Electronic Institution runs within the context of a Federation which in turn runs in

the context of a Platform. Ameli executes exactly one Platform. A Platform can contain

an arbitrary number of Federations and a Federation can contain an arbitrary number of

Electronic Institutions.

3.2 Game Engine Introduction

The choice for the game engine was supported by a software evaluation report (Seidel,

2005). In this work four different 3D virtual worlds were evaluated - two game engines, the

Q Engine (Q) and the Torque Engine (Torque), one 3D virtual browser, Active Worlds

(AW) and one 3D API, Java 3D (Java3D). As a result the Torque game engine was

selected.

3.2.1 The Torque Game Engine

The Torque game engine is an open source game engine developed by GarageGames

(Torque). The feature list includes seamless indoor/outdoor rendering, animation sup-

port, a lighting engine, powerful editors, a scripting language and an award-winning

network code. Furthermore, the complete source code is provided, making any desired

modifications possible. The engine can be purchased as Indie license or as Commercial

license, depending on the yearly income of the developer or his company. In both versions

the royalty free licensing model allows developers to distribute and publish their games

without further costs.

Torque applications can be developed on three different levels, depending on how much

control the developer needs:

• The first level is used for content creation. Several in-game editors allow the designer

to position objects in the 3D world and to modify the landscape. The World Editor

37

3.2 Game Engine Introduction 3 BACKGROUND AND FOUNDATIONS

is used to place, resize and name 3D objects. The Terrain Builder and Terrain

Editor are used to generate, shape and texture the terrain. The GUI Editor is used

to design the graphical user interface of the game.

• The behavior of a game can be programmed using the Torque Scripting Language

(TSL). It is a dynamic language and based on function definitions that can be

grouped in namespaces. The source code is compiled on-demand to a binary code

which is interpreted during the execution of the application. The Torque package

includes many script functions that facilitate the development and even functions

in the engine code can be called from the scripts. On the contrary, the dynamic

behavior and the poor structuring make it hard to develop complex constructs with

the scripting language.

• The game engine itself is written in C++. Since Torque is distributed under an

open source policy, this source code is accessible. This allows the developer to alter

the game engine according to his own’s wishes. Furthermore new features can be

implemented and compiled into the game engine executable.

38

4 THE MIDDLEWARE ARCHITECTURE

4 The Middleware Architecture

An overview of the architecture of the 3D e-Tourism environment is depicted in Figure 16.

Each layer is named after the concrete application running on this layer. The enclosing

rectangles define self-contained execution environments in which each program is running.

Those environments may run on the same computer or can be distributed across several

machines. The communication between the layers is based on the TCP protocol. The

components within each layer listen to network traffic and send messages on predefined

ports.

Remote Server

Connection Server

Torque Server

Agent Manager

Agent Agent

JVM

JVM

Torque Client Torque Client

Auton. AgentAmeli

Auton. Agent
TCP Port

Execution Environment

Torque Layer

Middleware
Layer

Ameli Layer

Figure 16: Overview of the framework architecture.

The bottom layer contains Ameli, the multi agent runtime environment. The TCP

port in the Ameli component is used to send all events to the middleware. Another com-

ponent of the Ameli system is emphasized, because it is also responsible for the message

exchange with the middleware. The Remote Server allows external agents to participate

in the Ameli system. A predefined communication protocol (which is specified in the

EIDE package) is used to facilitate the communication with external agents. Agents state

action requests to the Remote Server which are then validated in the Ameli system. De-

pending on the current state of the Ameli system, the server sends back a reply message

to the agent.

39

4.1 Information Mapping 4 THE MIDDLEWARE ARCHITECTURE

The middleware, henceforth referred to as Connection Server or CS, connects these

two layers. The connection to the Ameli system is used to listen to events that happen in

this system. The connection with the Torque layer is used to exchange messages with the

Torque system. The Agent Manager component of the Connection Server is highlighted

because it also establishes a connection with the Ameli layer. Remember that each user

is the principal of one agent (cf. Section 3). The Connection Server controls these agents

and is responsible to transfer the user actions in the 3D virtual world to actions in the

Ameli system. The agents act as external agents and communicate with the Ameli system

through the Remote Server.

Torque is running on the top layer which is further split into a sever and client com-

ponents. The server is running as a dedicated server that displays the 3D virtual world,

controls the visualization and observers the actions of the users. The server guarantees

the consistent relationship with the Ameli system and changes the state of the 3D virtual

world if necessary. The connection between the Torque server and the Connection Sever

is used to exchange messages between these two layers.

The Torque client is running on the computer of the user. It is used to connect to one

of several servers (there may be more than one server visualizing different Ameli systems).

The server and client components run in different execution environments and can also

be split across several machines (the connection is based on TCP).

4.1 Information Mapping

In this Section we outline the connection of an Electronic Institution with a 3D virtual

world and deploy the protocols that are needed to achieve this connection. We start off

with a conceptual mapping of the Performative Structure of the Electronic Institution.

The first part of a mapping specification is the generation of a floor plan for the Perfor-

mative Structure. A straight forward approach is to map scenes on rooms and transitions

on doors (Berger et al., 2007). A simple example is illustrated in Figures 17 and 18.

The Electronic Institution described in Figure 17 is a simple institution that is placed in

the tourism domain. The Electronic Institution depicted in Figure 17 resembles a simple

tourism scenario and is taken from Berger et al. (2007):

• The Traveler’s Lounge: A meeting scene where travelers can meet and discuss topics

of interest.

• In the Travel Advisory a tourist can get professional information on destinations

she is interested in.

• The Travel Agency can be used to gather information on different offers and to

finally book a trip.

40

4.1 Information Mapping 4 THE MIDDLEWARE ARCHITECTURE

Entry Point Travelers’ Lounge

Travel Advisory Service

Travel Agency

Exit

Figure 17: Performative Structure of a Travel Electronic Institution

For the generation of the floor plan we employ a straight forward and intuitive map-

ping. The Traveler’s Lounge scene is mapped onto one room, the Travel Advisory scene

is mapped onto another room and the Travel Agency scene is also mapped onto a room.

Similar to the specification in the Performative Structure, the Travel Electronic Institu-

tion is entered and exited through the Traveler’s Lounge. The Entry and Exit scenes

are mapped onto the doors of the Traveler’s Lounge. The Travel Agency and the Travel

Advisory are accessible from the Traveler’s Lounge. The transitions between the scenes

are mapped onto the doors connecting those rooms. In the remainder of this thesis we

will refer to the definition of this institution and its floor plan.

Travelers’ LoungeTravel Agency
Travel Advisory

Service

Figure 18: A possible floor plan for the Travel Electronic Institution.

So far we have been talking about the mapping of single Electronic Institutions. Re-

member that Ameli is organized according to three different levels - Platform, Federation,

Electronic Institution (cf. Section 3.1.3). These organizational levels must also be mapped

onto the 3D virtual world. We deployed the following approach. A Federation is mapped

onto one 3D virtual world. The Electronic Institutions within this Federation are visu-

alized as buildings in the 3D virtual world. Therefore, each 3D virtual world visualizes

exactly one Federation and (possibly) multiple Electronic Institutions. The Platform con-

cept is not mapped onto the 3D virtual world. Autonomous agents participating in the

Ameli system are only visualized if they are acting on the Federation or Electronic Insti-

tution level.

The implementation of the 3D virtual world is based on a client/server model (cf.

Section 4). The server is running as a dedicated server and visualizes exactly one Fed-

41

4.1 Information Mapping 4 THE MIDDLEWARE ARCHITECTURE

eration. The Federation to be visualized is specified at startup of the server and cannot

be changed during runtime. The server “knows” how the Federation and its Electronic

Institutions are mapped onto the 3D virtual world and guarantees a consistent relation-

ship with the Ameli system. A user who is running the Torque client on his computer

can query all accessible servers over the network (LAN or Internet). When the user has

decided to which server she would like to connect, a connection will be established. The

user agent automatically passes the Platform level and enters the Federation in the Ameli

system. The user is spawned as a new avatar in the 3D virtual world and can act on the

Federation and Electronic Institution level by entering and leaving buildings. When the

user disconnects from the server, his agent leaves the Ameli system.

4.1.1 Formalizing the Mapping

The mapping concepts of the previous Section are formalized by means of a specification.

This specification is used to define which scene is mapped onto which room and which

transition is mapped onto which door. Furthermore, this specification provides additional

features allowing the developer to specify the EI-3D virtual world relationship in more

detail. Thus it is possible

• to map more than one scene onto one room. One scene will then be the primary

scene and the other scenes are called “virtual”. The user can then participate in

different scenes without leaving the room. It would, for example, be possible to

map the Traveler’s Lounge and the Travel Advisory scene to the same room. The

Traveler’s Lounge could be the primary scene and the Travel Advisory scene could

be visualized as information desk in this room.

• to map more than one transition onto one door and to also map scenes onto doors.

These entities are henceforth referred to as “subsumed entities” - a transition or

scene is subsumed in a door. The choice for the scene/door mapping has one vital

reason: the initial and final scenes (that must be specified for each Electronic Insti-

tution) are automatically passed. When an agent enters an Electronic Institution

it automatically passes through the initial scene. The same happens when it exits

the Electronic Institution through the final scene. As we cannot abandon those

scenes and it makes no sense to model them as a room, we decided to allow a multi

mapping onto doors. The initial scene will then be mapped onto the entrance door

of the Electronic Institution building, and the final scene onto the exit door.

• to define visual clues for an agent role. With this approach agents with the same role

will look the same way, making it easier for users to distinguish the responsibilities

of them. This is just the same as in real life, where, for example, a seller can be

identified by his dress or a name tag.

42

4.1 Information Mapping 4 THE MIDDLEWARE ARCHITECTURE

All these properties are covered in a mapping file that consists of the elements specified

in the Tables 2, 3 and 4. The first part is the agent mapping that allows developers to

specify the role name and the 3D shape that will be used for agents with this role. It is

also possible to visualize a role in a static manner (information screen). In this case the

room in which the object is placed must also be specified.

Element Name Element Description

Role Name The name of the role as specified in Ameli
Avatar Path The path to the avatar model for this role
Static True if this role will be statically visualized, otherwise false
Room Name The room in which this role will be visualized (only needed if

the Static field is true)

Table 2: Agent Mapping.

The room mapping contains the name of the room in the 3D world and all scenes that

are mapped onto this room2. Each scene is specified by its name, its mapping “mode”

(virtual or non virtual) and the maximum number of agents that are allowed to enter this

scene (this is mainly a hint for the designer when considering the room size). Note that

at least one scene in each room has to be non virtual.

Element Name Element Description

Room Name The name of the room in the 3D world
Scenes All scenes that will be visualized in this room

Scene Name The name of the scene
Virtual True if the scene is a virtual scene, otherwise false
Max Users The maximum number of users that can participate in this

scene

Table 3: Room Mapping.

Element Name Element Description

Door Name The name of the door in the 3D world
First Room The first room this door connects
Second Room The second room this door connects
Subsumed Entities Entities that are subsumed in this door

Name The name of the entity
Type The type of the entity (either transition or scene)

Table 4: Door Mapping.

2It is assumed that the 3D virtual world supports the creation of named areas. In Torque, for example,
there are Trigger areas which are invisible for the user and report whenever an avatar enter or leaves the
area. Such areas are used to specify the extent of the room in a Torque world.

43

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

The door mapping consists of a door name (the name used in the 3D world), the rooms

this door is connecting and the entities (scenes and transitions) that are subsumed in this

door. Each entity is specified by its name and its type.

4.1.2 Design Considerations

In the course of developing this framework we had to make one essential design decision:

where should the mapping of information be placed? There are two possible locations

where this information can be placed - either in the Connection Server or in the 3D

virtual world. Both locations have their pros and cons. When we put this information

into the Connection Server, no MAS specific properties are exposed to the 3D virtual

world. From the viewpoint of the 3D virtual world it would then be possible to switch

agent systems without changing the code on the 3D side. However, the disadvantage is,

that the middleware must have knowledge of all 3D virtual worlds. It must know the

structure and layout of each building in each virtual world. The middleware becomes a

fat component that must be synchronized with the 3D layer. Every time a 3D virtual

world is changed or a new one is created, the middleware and the mapping information in

the middleware must be adjusted. Clearly, the system does not scale very well and may

become a bottleneck.

These are mainly the reasons why we did not put the mapping information in the

middleware. We decided to implement the mapping on the 3D side. The advantages of

this approach are:

• Better separation of duty. The mapping information contains attributes of the 3D

virtual world and the middleware should not have knowledge of this information -

3D information is placed on the 3D side.

• Thin middleware component. Most of the world logic is incorporated in the 3D

virtual worlds making the middleware smaller and more flexible.

• The system scales better. When new 3D virtual worlds are added, the middle-

ware only has to process some more messages. The computationally intensive tasks

(mapping computation) are split across the single 3D virtual worlds.

4.2 Messaging

From an implementation viewpoint the middleware runs in accordance with the Multi

Agent System. This means that each running middleware instance mediates the events

and messages of one particular Multi Agent System instance. We therefore have a tight

coupling between the middleware and the Multi Agent System. The connection between

those two layers is implementation specific and cannot be specified in a general message

protocol. Thus, we only provide a brief overview in Section 4.2.1, the full details can be

44

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

found in Section 5.

On the other hand the middleware and the 3D layer are loosely coupled. Therefore

we need a general message protocol that is not bound to one particular 3D virtual world.

The message protocol is used to synchronize the state between the Multi Agent System

and the 3D virtual world and only contains messages that are relevant for the 3D virtual

world and the Multi Agent System. The Multi Agent System does not have to know

about all actions that happen in the 3D virtual world and the 3D virtual world is not

interested in all events that happen in the Multi Agent System. The middleware forwards

only those messages that are relevant for the respective layer. This message protocol is

introduced in the Sections 4.2.2 to 4.2.5.

4.2.1 Connection Server and Ameli

There are two different connections between those two layers (cf. Figure 16). There is the

connection which is used to transmit the Ameli events and there is the connection used

by external agents. In the first connection messages are only sent in one direction, namely

from the Ameli system to the Connection Server. The possibility to monitor all Ameli

events is a feature of the Ameli system. The user can define a format (XML, text) and a

medium (file, TCP socket, console) to which the events are written. We use this function

to send all events to a specified TCP port. The Connection Server listens on this port for

new events and processes them. The detailed mechanism is presented in Chapter 5.2.

The second connection between the Remote Server and the Connection Server is used

by the external agents. These agents must be able to understand the predefined message

protocol used for the interaction with the Remote Server. We reused one component of

the Ameli system for this purpose. The EIDE package defines a so called DummyAgent

package which is a graphical interface for human users. With the help of this interface a

user can participate in the Ameli system. The user controls the movement of one agent

and can engage in scene protocols. We use parts of the DummyAgent code to control the

user agents in the Connection Server. We extracted the GUI functionality of the original

DummyAgent and reuse its internal message structure and message handling procedures.

The functionality of these components includes the parsing, construction and handling of

messages that are exchanged with the Remote Server. The remaining code was rewritten

to provide an interface for the Connection Server. The new DummyAgent can therefore

be controlled from the source code. More information on this aspect can be found in

Section 5.4.

45

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

4.2.2 The Message Protocol

In general, we aim at a loose coupling between the middleware and the 3D virtual world.

It should be possible to replace the 3D virtual world relatively easy and we therefore

abstract all necessary messages in a common message protocol. The message protocol

can be grouped along two dimensions: The direction and the message type. Messages are

either sent from the Connection Server to the 3D virtual world or from the 3D virtual

world to the Connection Server. When distinguishing the messages by their types, each

message can be placed in one of the following groups:

• Status Messages: Status messages are used to query Ameli about the current

state of the system. These messages do not change the state of Ameli nor the 3D

virtual world.

• Ameli Action Messages: These messages are sent by the Connection Server to

inform the 3D virtual world that something changed in the Ameli system.

• 3D Action Messages: These messages are used by the 3D virtual world to inform

Ameli that an action in the took place in the 3D virtual world.

• Error Messages: This type of messages refers to a failure that occurred.

Every message contains a header and a content section. The header is used like

an address field to correctly deliver the message to the receiver. Since Ameli’s internal

structure is organized in three levels: Platform, Federation and Electronic Institution

level, every message header contains a Platform, Federation and Electronic Institution

field. The message is then handled by the middleware and the 3D virtual world according

to this information. Some messages do not require Platform, Federation and Electronic

Institution information. The header fields in those messages are all empty. Such a message

would, for example, be an askPlatforms message, which is used by the 3D virtual world

to query the middleware which Platforms are connected. In a valid message header the

fields are filled according to one of four possible combinations, listed in Table 5.

Platform Field Federation Field EI Field

empty empty empty Messages on a higher level
than the Platform level like
enterPlatform

nonempty empty empty Messages on the Platform level
like enterFederation

nonempty nonempty empty Messages on the Federation level
like enterEI

nonempty nonempty nonempty Messages on the Electronic Insti-
tution level like enterScene

Table 5: Possible field assignments in the message header.

46

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

We will now present some messages of each category by example. This is done in the

next two Sections 4.2.3 and 4.2.4. The complete message protocol, including all possible

messages, can be found in Appendix A. Note that the header information is omitted in

the message descriptions since the same information is contained in every message and

this would only clutter the message description. Therefore in all message tables only the

content of each message is listed.

4.2.3 Communication Patterns - Autonomous Agents

As previously mentioned, we distinguish two types of agents: autonomous agents and

user controlled agents. Autonomous agents operate in Ameli on their behalf and are not

controlled by a human through the 3D virtual world. This makes the agent autonomous

from the perspective of the 3D virtual world. However, it is possible that a human

is connected to Ameli via a different interface and not the 3D virtual world. In that

particular case, the agent controlled by the human is seen as an autonomous agent by the

3D virtual world. The 3D virtual world is responsible for the visualization of this agent

but is not used to control the agent.

Message Name Parameters Purpose

enterFederation id The avatar identifier An agent entered a
Federation, visualize
it in the 3D virtual
world.

enterScene id The avatar identifier
name The name of the scene

The avatar with
identifier id moved
to a scene in Ameli.
Move the avatar to
the mapped room.

Table 6: Ameli Action Messages

The task of the 3D virtual world is to visualize the actions of the autonomous agents.

To this end, the message protocol contains messages that are used to inform the 3D

virtual world about the movement of agents (cf. Table 6). Whenever an agent enters a

Federation, the enterFederation message is sent to the 3D virtual world. The 3D virtual

world is now responsible to spawn a new avatar for this agent. If the agent moves within

the Electronic Institution, the 3D virtual world has to move the avatar correspondingly.

The other message, enterScene, states that an agent entered a scene in an Electronic

Institution. The 3D virtual world must move the corresponding avatar to the mapped

room. It receives an enterScene message, looks up in which room the scene is visualized

and moves the avatar to this room. In which way the movement is carried out is decided

by the 3D virtual world. It is possible to simply teleport the avatar to the room or the

avatar may walk along a predefined path to the destination.

47

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

4.2.4 Communication Patterns - 3D User Controlled Agents

Communication initiated by the 3D virtual world is more complicated. The 3D virtual

world makes a request and receives a response for this request. Consider the status mes-

sages in Table 7. The 3D virtual world is able to visualize several Electronic Institutions.

In order to identify which Electronic Institutions are connected through the middleware,

the 3D virtual world sends an askEInstituions message to the Connection Server. The

request is validated by Ameli and the middleware responds with an informEInstitutions

message.

Message Name Parameters Purpose

askEInstiutions none Used to determine
which Electronic
Institutions are avail-
able.

informEInstitutions names A list of available
Electronic Institutions

Used to retrieve avail-
able Electronic Insti-
tutions.

Table 7: Status Messages

Message Name Parameters Purpose

tryEnterScene id The avatar identifier
name The name of the scene

the avatar moved in

The avatar with iden-
tifier id moved to a
room in the 3D virtual
world. Its agent must
move to the corre-
sponding scene in the
Electronic Institution.

informEnterScene id The avatar identifier
name The name of the scene
successful Boolean Variable in-

dicating whether the
avatar’s agent entered
the scene

reason The reason if it could
not be entered

Informs the 3D vir-
tual world whether
the agent was success-
ful in entering a scene.

Table 8: 3D Action Messages

All actions that are performed by the user must be validated on the Multi Agent

System level. The messages in the 3D Action Messages Table (Table 8) are used for this

purpose. Suppose a user has entered a room in the 3D virtual world. His corresponding

agent must enter a scene in the Ameli system. First, the 3D virtual world checks which

48

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

scene is visualized in this room and sends a tryEnterScene message to the Connection

Server. The message has the prefix try since it cannot be guaranteed that the Ameli

system is in a state where the agent is permitted to enter the scene. Then, the middle-

ware validates the request with Ameli. If the agent is permitted to enter the scene, the

3D virtual world is informed through an informEnterScene message. In this case, the

successful parameter of the message is set true. If the agent is not permitted to enter

the scene, the successful parameter is set false and the error field indicates the reason.

4.2.5 Specification of the Message Protocol

XML was used for the implementation of the message protocol (XML). It is widely rec-

ognized as a data exchange language and many programming languages provide native

support for it. Another advantage of XML is XMLSchema (XMLSchema). It is used to

formalize the structure and content of an XML document. This has two major implica-

tions:

• We can use this schema to verify all messages that are sent/received by the mid-

dleware. This guarantees that the middleware will always send valid messages and

that only valid messages are processed.

• The schema definition defines an exact contract between the middleware and the

3D virtual world. It is exactly defined how a message has to look. This provides

guidance for a 3D world developer on how to represent each message.

The schema definition is exemplified by means of the askEInstituions and inform-

EInstitutions messages (cf. Table 8). These are used by the 3D virtual world to query

the middleware about connected Electronic Institutions. The schema definition is shown

in Listing 1.

Listing 1: XML schema definition for askEInstitutions and informEInstitutions messages

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

< !−− Pos s i b l e Direc t ion Types (which way the message i s in tended to
t r a v e l) −−>

<xsd:s impleType name="DirectionType">
<x s d : r e s t r i c t i o n base="xsd:string">

<xsd:enumerat ion value="cs-3d"/>
<xsd:enumerat ion value="3d-cs"/>

</ x s d : r e s t r i c t i o n>
</ xsd:s impleType>

< !−− The header o f a CS3DMessage conta ins the Platform , Federat ion
and E l e c t r on i c I n s t i t u t i o n −−>

49

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

<xsd:complexType name="HeaderElement">
<xsd : sequence>
<xsd :e l ement name="platform" type="xsd:string"/>
<xsd :e l ement name="federation" type="xsd:string"/>
<xsd :e l ement name="ei" type="xsd:string"/>
</ xsd : s equence>

</xsd:complexType>

< !−− a s kE In s t i t u t i o n s Messages are used f o r query ing the a c c e s s i b l e
E l e c t r on i c I n s t i t u t i o n s in a Federat ion −−>

<xsd:complexType name="askEInstitutionsType">
<x s d : a t t r i b u t e f i x e d="3d-cs" name="direction" type="DirectionType

"/>
</xsd:complexType>

< !−− i n f o rmEIns t i t u t i on s Messages are sen t in r ep l y to
a s kE In s t i t u t i o n s messages and inc l ude the connected E l e c t r on i c
I n s t i t u t i o n s in the quer i ed Federat ion −−>

<xsd:complexType name="informEInstitutionsType">
<xsd : sequence>

<xsd :e l ement maxOccurs="unbounded" name="ei" type="xsd:string"/
>

</ xsd : s equence>
<x s d : a t t r i b u t e f i x e d="cs-3d" name="direction" type="DirectionType

"/>
</xsd:complexType>

< !−− The CS3DMessage conta ins a header and a content f i e l d wi th the
p o s s i b l e message con ten t s −−>

<xsd:complexType name="CS3DMessageType">
<xsd : sequence>

<xsd :e l ement name="header" type="HeaderElement"/>
<xsd :e l ement name="content">

<xsd:complexType>
<x s d : c h o i c e maxOccurs="1" minOccurs="1">

<xsd :e l ement name="askEInstitutions" type="
askEInstitutionsType"/>

<xsd :e l ement name="informEInstitutions" type="
informEInstitutionsType"/>

</ x s d : c h o i c e>
</xsd:complexType>

</ xsd :e l ement>
</ xsd : s equence>

<x s d : a t t r i b u t e name="in-reply-to" type="xsd:integer" use="
optional"/>

<x s d : a t t r i b u t e name="id" type="xsd:integer" use="required"/>
</xsd:complexType>

< !−− The ac tua l d e f i n i t i o n o f CS3DMessage −−>
<xsd :e l ement name="CS3DMessage" type="CS3DMessageType"/>

50

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

</ xsd:schema>

The CS3DMessageType defines the complete message protocol. It has two integer at-

tributes id and in-reply-to respectively. Every message must contain an id attribute

and the Connection Server is responsible to generate unique message numbers for all con-

nected 3D virtual worlds. The in-reply-to field is optional. It can be used in conversa-

tions where messages are exchanged based on a request/reply pattern. The in-reply-to

attribute can be set in the reply message and refers to the message number of the request

message.

The body of the message is split into a header and a content section. The header sec-

tion contains three elements indicating the context (Platform, Federation and Electronic

Institution) in which this message is sent. The content section contains all applicable

messages that can be sent. It is restricted by a choice element with one occurrence, de-

scribing that exactly one message type is present in a message. The askEInstitutions

message does not contain any content and only has one attribute - the direction. The

DirectionType identifies the direction a message is supposed to be sent (either from the

CS to the 3D virtual world or vice versa) and can be used as meta information when

processing messages. The informEInstitutions message contains a list of Electronic

Institutions that are accessible in the current Platform and Federation respectively. The

body is made up of an unbound list of ei elements that contain the names of the Electronic

Institutions. Note that the values of the direction attribute are different in both messages.

Instances of these message types (askEInstitutions and informEInstitutions) are

shown in Listing 2. Note how the message context is specified in the header section.

Furthermore the in-reply-to information only makes sense in the informEInstitutions

message, where the previous message is referenced. However, the in-reply-to field is

not restricted to message types and will be ignored by the Connection Server in those

messages that do not need this information.

Listing 2: Instances of the askEInstitutions and informEInstitutions message

<CS3DMessage id="29">
<header>

<plat form>platform−malls</ plat form>
<f e d e r a t i o n>federation−travel</ f e d e r a t i o n>
<e i />

</ header>
<content>

<a s k E I n s t i t u t i o n s d i r e c t i o n="3d-cs"/>
</ content>

</CS3DMessage>

51

4.2 Messaging 4 THE MIDDLEWARE ARCHITECTURE

<CS3DMessage in−rep ly−to="29" id="30">
<header>

<plat form>platform−malls</ plat form>
<f e d e r a t i o n>federation−travel</ f e d e r a t i o n>
<e i />

</ header>
<content>

<i n f o r m E I n s t i t u t i o n s d i r e c t i o n="cs-3d">
<e i>ei−itchy−feet</ e i>
<e i>ei−neckermann</ e i>

</ i n f o r m E I n s t i t u t i o n s>
</ content>

</CS3DMessage>

52

5 IMPLEMENTATION

5 Implementation

In this chapter the implementation of the middleware components is described. In Sections

5.1 to 5.4 the implementation of the Connection Server is described. The implementation

of the Torque related components is presented in Sections 5.5 - 5.7. In these Sections the

class diagrams are tailored to the respective components, only the relevant methods and

fields are shown.

5.1 The Connection Server

Connector

ParserMessage

Manager

Monitor

handle Event

Agent Control
execute Action

send Message

parse Message

create Message

build Message

handle Message

Figure 19: Component diagram of the Connection Server.

The Connection Server is implemented in Java. The different components of the Con-

nection Server are shown in Figure 19. The Manager component is the heart of the

application and has two major purposes. First, events received from the Ameli infras-

tructure (monitored by the Monitor component) are handled by the Manager component

and forwarded to the 3D virtual world through the Connector component. Second, mes-

sages from the 3D virtual world are handled by the manager component and forwarded

to the agents that are controlled by the Agent Control component. Incoming messages

are received by the Connector component and parsed by the Parser component. The

Parser uses the Message component to instantiate new message objects and to fill them

with values received in the incoming stream. When the message has been parsed, it is

forwarded to the Manager component.

5.2 MAS and Connection Server

The Connection Server must be informed of all events that occur in Ameli and has to

decide how to handle each event. More precisely, the Connection Server applies one of

the following approaches:

• Forward the event. The 3D virtual world must be informed of this event, so it has

to be forwarded to the 3D layer. This includes, for example, the movement events

53

5.2 MAS and Connection Server 5 IMPLEMENTATION

of autonomous agents. The 3D virtual world is notified by means of the messages

in the Ameli Action Message Table (cf. Appendix A, Table 10). These include

enterFederation, enterScene or enterTransition messages.

• Only use it internally. The event has no relevance for the 3D virtual world, but

the Connection Server needs to update its internal data structures. The event is

processed by the Connection Server and not forwarded. This includes events on the

Platform level. Since the 3D virtual world resembles a Federation (see Section 3.1.3),

it does not have to know about events on this level. Examples of such events are

EnteredAgentPlatformEvent or StartedPlatformEvent. The Connection Server,

however, has to process these events to update its internal data structures.

• Ignore it. If an event just contains information that is not needed by the Connection

Server nor the 3D virtual world, the event is simply ignored. This, for example,

would be a FederatedPlatformEvent, which occurs shortly after a StartedPlat-

formEvent and contains no additional information.

5.2.1 Monitoring

The Ameli infrastructure offers the possibility to monitor events that occur in the MAS.

These events can be written to a file, can be sent over a network socket or can be written

to the console. Furthermore, the output format of events can be adjusted, namely to a

simple text format or an XML format. In order to avoid the development of an XML

or text parser, we implemented our own formatter. The standard event formatters (text

and XML) can be easily substituted with other formatters. So, a formatter that serial-

izes3 each event and sends it to the specified channel was developed. Serialization can

be easily achieved in Java, by implementing the Serializable interface. Any object, that

implements this interface, can then be written on an ObjectOutputStream and retrieved

via the ObjectInputStream. Since Ameli and the Connection Server are connected via

TCP, we use a network socket to transmit events. Every time an event occurs in Ameli,

it is serialized and is sent over the TCP connection to the Connection Server where it is

deserialized and finally handled accordingly.

This mechanism resembles a very tight coupling between these two components. The

Connection Server must possess knowledge of the implementation of each event. It must

have access to the event class structure of the Ameli package and has to import all the

necessary events. However, this tight coupling has already been introduced in the con-

ceptual design, when we decided to use the Ameli system. No matter how we implement

the Ameli event handling in the Connection Server, this always requires knowledge of the

Ameli system.

3Serialization converts an object into a persistent form that can be stored and later retrieved by
deserializing it.

54

5.2 MAS and Connection Server 5 IMPLEMENTATION

5.2.2 Event handling

When retrieving a serialized object via an ObjectInputStream, we do not have any

information on the class of this object. Java has to support serialization for all possible

Java classes and, therefore, the read method of the ObjectInputStream can only return

the most common class. Since all classes in Java are sub classes of the class Object, the

read method of the ObjectInputStream returns this type.

How is it now possible to distinguish between different event types? The obvious

solution is to query the object type and to type cast the object to a more specific type.

This, however, is a dirty solution since such tasks should be delegated to the compiler

(dynamic method dispatch). Meyers (1998) puts it this way: “Anytime you find yourself

writing code of the form ’If the object is of type T1 do something and if it is of type T2

do something else,’ slap yourself”. It would be preferable to avoid this mechanism but in

our situation we had no other choice. Over all, we are bound to it because we are using

serialization. But there are other reasons as well that justify our decision:

• The interface to retrieve serialized objects is fixed to the common Object type. As

long as we are using serialization we clearly have to use casts because the interface

enforces it.

• Meyers gives an exception for his above statement: you should use downcasting in

class hierarchies if the definition of these classes is beyond your scope of control.

This applies in our case as we cannot change the class structure of Ameli events.

• In the Gang of Four (GoF) book a design pattern named Chain of Responsibility

is presented (Gamma et al., 1995). This pattern can be used to pass a request

along several handlers, giving each handler the chance to handle the request. To

support an open range of requests they suggest to use a single handler function that

accepts a request code as parameter. Depending on the request code, the request

object is then cast to its type and handled. The only requirement is, that sender

and receiver must agree on the type of request. This exactly fits our situation. The

sender (Ameli) and the receiver (Connection Server) agree on the type of requests

(Ameli events) and the Connection Server checks the event type, casts the event

and forwards it.

• The last point represents not directly a reason for this design pattern, but should

definitely be mentioned. The Ameli framework makes extensive use of this pattern.

Events are passed between components in their most common form. Every time the

runtime information of an object is needed, its type is tested and the object is cast

to this type.

55

5.2 MAS and Connection Server 5 IMPLEMENTATION

The Implementation

+getName() : String

-name : String

AManager

+informEvent(in event : PlatformMonitorEvent) : void
-informEvent(in event : StartedPlatformEvent) : void

-platformManagers : Hashtable<String,PlatformManager>

ConnectionServer

+informEvent(in event : PlatformMonitorEvent) : void
-informEvent(in event : StartedFederationEvent) : void
-informEvent(in event : AgentEnteredPlatformEvent) : void

-federationManagers : Hashtable<String,FederationManager>

PlatformManager

+informEvent(in event : FederationMonitorEvent) : void
-informEvent(in event : StartedEInstitutionEvent) : void
-informEvent(in event : AgentEnteredFederationEvent) : void

-eiManagers : Hashtable<String,EIManager>

FederationManager

+informEvent(in event : EInstitutionMonitorEvent) : void
-informEvent(in event : AgentEnteredEInstitutionEvent) : void

EIManager

1

*

1

*

1

*
+run() : void

PlatformMonitor

1

1 Runnable

Figure 20: Event handling in the Connection Server.

The class structure of the event handling component of the Connection Server is de-

picted in Figure 20. In Section 3.1 it was pointed out that Ameli is organized ac-

cording to three levels - Platform, Federation and Electronic Institution level. The

classes in the Connection Server are also organized according to this scheme. For ev-

ery different level there are managers that handle the connection on this level. For

each started Platform a PlatformManager is launched, for each started Federation a

FederationManager is launched and for each started Electronic Institution an EIManager

is launched. The level above the Platform managers is represented by the main control

class of the Connection Server, the ConnectionServer4 class. The event reception is

done by the PlatformMonitor class. The Ameli system is configured in such a way that

it sends all Platform events to a specified host and port. The PlatformMonitor listens for

connections on the same host and port. When the Ameli infrastructure is started it estab-

lishes a connection with the PlatformMonitor. The PlatformMonitor receives all events

as serialized objects, deserializes them and passes them on to the ConnectionServer class.

The event is then examined by each manager. First the event type is checked. If the

event can be handled by the manager it is cast to its runtime type and handled by the

manager. Otherwise the Platform, Federation or Electronic Institution information of the

event is examined. If there exists a manager on the next level for this Platform,Federation

or Electronic Institution, the event is forwarded to this manager. Otherwise the event

cannot be handled and a warning message5 is issued.

4Henceforth the term Connection Server refers to the whole middleware component, whereas the term
ConnectionServer refers to the concrete class in the implementation.

5As stated before, the Connection Server must not be able to process all events. Some events may be
ignored. This is why we only issue a warning and do not raise an error.

56

5.3 Connection Server Message Structure 5 IMPLEMENTATION

The following example is used to clarify this mechanism. Suppose an EnteredFedera-

tion event occurs in Ameli. All this happens in the Platform “ShoppingMall” and the

Federation that was entered is called “TouristShops”. The ConnectionServer receives

the event, realizes that it cannot handle it, searches for a link to a PlatformManager

named “ShoppingMall” and forwards the event to this manager. The PlatformManager

does the same and forwards the event to the FederationManager named “TouristShops”.

Finally the FederationManager handles the event.

The implementation of this message handling process is based on the Chain of Respon-

sibility pattern in the GoF book (Gamma et al., 1995). The process is exemplified by the

Federation level event handling in the Platform manager (cf. Figure 20). The instanceof

operator of the Java language is used to query the runtime type of the event. All events

that can be handled by the PlatformManager are cast to their type and handled by over-

loaded methods in the PlatformManager. The FederationMonitorEvent is especially in-

teresting, because the PlatformManager cannot directly pass all these events to the Feder-

ation managers. If the event is of type StartedFederationEvent, the PlatformManager

has to handle this event because it has to spawn a new FederationManager for the new

Federation. The RegisteredFederationEvent can be ignored because it contains no ad-

ditional information than the StartedFederationEvent. All other FederationMonitor-

Events are passed on to the FederationManager in question.

5.3 Connection Server Message Structure

The connection between the Connection Server and Torque is based on the message pro-

tocol that was specified in Section4.2.5. The message protocol allows to abstract the

connected 3D virtual world. Communication between the Connection Server and Torque

is realized by means of a TCP connection.

The message structures are basically the same in both systems (Connection Server

and Torque). The Torque message structure, however, is somehow a mirrored version of

the Connection Server message structure. For this reason we do not cover both structures

in one Section and present them separately. The Torque message structure is presented

in Section 5.7. The class hierarchy of the Connection Server is displayed in Figure 21.

The abstract class AMessage is at the top of the hierarchy. It contains attributes and

functions that all messages have in common. The MessageContext is a simple container

class that essentially stores the header information of each message. The name “context”

was chosen because the message header identifies the context (Platform, Federation or

Electronic Institution) in which this message is placed.

The next two child classes differentiate the messages by communication direction. The

A3DCSMessage is the base class for all messages that are received from the 3D virtual world

57

5.3 Connection Server Message Structure 5 IMPLEMENTATION

+getPlatform() : String
+getFederation() : String
+getEI() : String
+setPlatform(in platform : String) : void
+setFederation(in federation : String) : void
+setEI(in ei : String) : void

-platform : String
-federation : String
-ei : String

MessageContext

+getPlatformContext() : String
+getFederationContext() : String
+getEIContext() : String
+getDirection() : String
+getMessageName() : String

#context : MessageContext
#msgName : String
#id : Long
#inReplyTo : Long

AMessage

IMessage

+createXML() : String
#createXMLContent() : String
-createXMLHeader() : String
-createPreXMLContent() : String
-createPostXMLContent() : String

ACS3DMessage

ICS3DMessage

+setPlatformContext(in platformContext : String) : void
+setFederationContext(in federationContext : String) : void
+setEIContext(in eiContext : String) : void
+setId(in msgId : Long) : void
+handleXMLEvent(in name : String, in content : String) : void

A3DCSMessage

+AskEInstitutionsMessage()

AskEInstitutionsMessage

+InformEInstitutionsMessage(in context : MessageContext, in eis : List<String>)
+createXMLContent() : void

-eis : List<String>

InformEInstitutionsMessage

+InformEnterSceneMessage(in context : MessageContext, in sceneName : String, in avatarid : String, in successful : boolean, in errorReason : String)
+createXMLContent() : void

-sceneName : String
-avatarid : String
-successful : boolean
-errorReason : String

InformEnterSceneMessage

+TryEnterSceneMessage()
+handleXMLElement(in name : String, in content : String) : void

-sceneName : String
-avatarid : String

TryEnterSceneMessage

1 1

Figure 21: Message structure in the Connection Server.

and the ACS3DMessage is the base class for all messages that are sent by the Connection

Server to the 3D virtual world. As can be seen in the diagram, their interfaces are

completely different because they are processed in different ways.

A3DCSMessages are received from the 3D virtual world and need to be parsed by the

Connection Server. The detailed procedure for this task is presented in the next sec-

tion. During the parsing, message objects are constructed and their attributes have to be

filled with values from the XML stream. For this reason the A3DCSMessage class contains

setter methods for setting the context and id information. Note that those setters are

only relevant for this message type and do not need to be placed in the ACS3DMessage

class. The handleXMLElement method is used to handle message specific XML elements.

It can be overwritten by subclasses for the implementation of individual parsing proce-

dures. The parameters of the method contain the name of the element and its content.

Consider, for example, a message of type tryEnterScene6 which includes an avatar iden-

tifier and a scene name. In the implementation the TryEnterSceneMessage overrides the

6tryEnterScene messages are used whenever an avatar in the 3D virtual world attempts to enter a
room (that is mapped onto a scene). The message contains the identifier of this avatar and the scene the
avatar wants to enter.

58

5.3 Connection Server Message Structure 5 IMPLEMENTATION

handleXMLElement method and can set its internal variables sceneName and avatarid

to the values that are specified in the avtarid and scene XML elements. Note that it is

not required for a message to override this method. The AskEInstitutionsMessage does

not contain any content. It must therefore not implement any specific element handling

procedures and does not need to override the handleXMLElement method.

The other message type, ACS3DMessage, represents messages that are sent by the

Connection Server. The Connection Server must, therefore, be capable of constructing an

XML string for these messages. The public interface contains just the createXML method,

which creates and returns the XML string of this message. It can be used by the sender

class to get the XML code that needs to be sent. The only part of an XML message that

is specified by subclasses of ACS3DMessage is the content of the message. For this reason

the createXMLContent is declared protected and can be overwritten by subclasses.

Consider, for example, the InformEInstitutionsMessage which contains a list of

currently available Electronic Institutions. In order to transfer this information into the

XML string, the class overwrites the createXMLContent method where it creates a String

containing this information. So, each message class is responsible for the creation of the

correct XML content string. The other message in Figure 21, InformEnterSceneMessage,

contains four internal variables. These variables are used to store information that is sent

via this message. In the overwritten createXMLContent method it is specified how this

information is mapped onto the XML string.

5.3.1 Message Parsing

Parsing XML data with Java is straight forward. Sun provides the Java API for XML

processing (JAXP) that defines an API specification for the parsing and processing of

XML documents. The API is widespread and many different implementations exist. It is,

therefore, possible to change the parser without modifying the client code. Nevertheless,

the designer of the XML data processing structure must decide between two different

modes of operation that are supported by JAXP. These two modes are called SAX and

DOM and are reviewed in the following.

The SAX API is one of the most complete and correct XML APIs so far. It is based on

an event driven approach - every time an element is encountered, a callback function for

processing the element is called. This makes SAX very fast and memory efficient since no

data structures for storing the XML document are needed. SAX is suitable for streaming

applications where the elements of an XML document are processed one after another.

If the application needs to access different sections of the XML document, SAX is the

wrong choice.

The Document Object Model is contrary to the SAX approach. As the name implies

59

5.3 Connection Server Message Structure 5 IMPLEMENTATION

this API builds a complete model of the XML document. The document is stored in a

tree structure where the single XML elements are represented as nodes of this tree. The

structure can then be traversed by the client. With this approach arbitrary sections of

a document can be accessed and the document can be modified. In contrast to SAX,

these features require higher memory usage and longer processing times. Every time a

new XML document is encountered the tree must be build internally and kept in memory.

The Implementation

In our application the choice for the right parser was fairly easy. We receive the XML

data via a network stream and it is sufficient to process one element after another (we do

not need arbitrary access to the message). So, the SAX API is the right choice for the

Connection Server. As stated above the SAX API is event driven and provides a callback

interface that is used to implement application specific callback handlers.

1 1

+startElement(in uri : String, in localName : String, in qName : String, in atts : Attributes)
+endElement(in uri : String, in localName : String, in qName : String)
+characters(in ch : char[], in start : int, in length : int)

-currMessage : A3DCSMessage

ThreeDMessageContentHandler

ContentHandler

+createMessage(in msgname : String) : A3DCSMessage

ThreeDCSMessageFactory

-incoming : IncomingThread

VWCommunicator

+run() : void

-contentHandler : ThreeDMessageContentHandler

IncomingThread

Runnable

1

1

«uses»

+setPlatformContext(in platformContext : String) : void
+setFederationContext(in federationContext : String) : void
+setEIContext(in eiContext : String) : void
+setId(in msgId : Long) : void
+handleXMLEvent(in name : String, in content : String) : void

A3DCSMessage

«uses»

Figure 22: Message construction in the Connection Server.

The callback interface is implemented in the ThreeDMessageContentHandler shown in

Figure 22. The content handler is connected to the incoming XML stream by means of the

IncomingThread class. Depending on the current information in the XML stream, call-

back methods are called in the ThreeDMessageContentHandler. The whole parsing pro-

cedure is implemented in three callback methods. As the name implies, the startElement

method is called each time a new element is encountered, the endElement is called when

the end of an element is reached and the characters callback is used to process data in

the elements. In our case this works as follows: when a new message is received a new

message object is instantiated. The several fields of the object are set using the setter

methods specified in the A3DCSMessage class. When the content section of the message

is reached, the overloaded handleXMLContent method is called and message specific at-

60

5.3 Connection Server Message Structure 5 IMPLEMENTATION

tributes are set. When the end of the message is reached, the message object is forwarded

to the message handler (which will be explained in the next section). During this proce-

dure the startElement and endElement methods are used to switch the different parser

states and to call the appropriate setters. The characters method simply records the

data in the elements.

One question remains in this mechanism - how are the different message instances gen-

erated? As we are using Java we can take advantage of a very powerful feature, namely

Reflection. Reflection allows a computer program to observe its own state and behavior

and to access different parts of the control structure. So, it is possible to discover infor-

mation about the fields, methods and constructors of loaded classes. We are interested

in the access to constructors during runtime, since this gives us the possibility to create

object instances based on some parameters. We can instantiate any class based on a

string representation of the classes name.

The createMessage method of the ThreeDCSMessageFactory is used by the message

parser to create new message instances. The message name provided as parameter is

simply the name of the message in the XML string. We have decided to name the Java

message classes according to the names in the protocol definition. Since Java class names

have to start with an upper case letter, the naming in the protocol and in the imple-

mentation differ in the first letter. For this reason we have to adapt the received XML

message name. To instantiate an object we then have to get the class information for this

object. This class information is loaded at the startup of the Java virtual machine and

can be accessed through the class Class. A call to the newInstance method returns an

instance of the respective message class. Since we use the same construction procedure

for all message classes, we have to cast the returned type to the A3DCSMessage class (as

this represents the base class that all implementing message classes must be a subclass of).

5.3.2 Message Handling

Now that we have seen how the messages are constructed, the Connection Server needs to

handle these messages and take proper actions. We could incorporate the same mechanism

as we did with the events (Section 5.2) but this approach is not the best one. Our main

goal for the message handling component was to avoid this pattern and to find a better

solution.

The main problem in developing a better a solution than the casting approach is the in-

terface of the message creator. We have seen in Figure 22 that the createMessage method

returns the super class of all concrete 3DCS message classes, namely the A3DCSMessage

class. This has two reasons:

• We do not want to adapt the message factory each time we add a new message

type. This implies that we can only return the common super class, which must be

inherited by all message classes.

61

5.3 Connection Server Message Structure 5 IMPLEMENTATION

• The content handler (ThreeDMessageContentHandler) should not need any infor-

mation of the message classes. We do not want to modify this class every time we

create new message classes and it is simply not necessary that the parsing procedure

has access to the message specific functions. The parser only needs those methods

that are defined in the abstract class A3DCSMessage.

After the message parsing has finished we run into the following situation: The parser

forwards the message to the message handlers but those message handlers (in our case

the managers) want to access the individual fields and methods of each message class

(the managers have information of the message class implementations). Since the mes-

sage parser “only knows” of the A3DCSMessage, it can only forward this type. In order

to provide access for the managers to the runtime types, one solution would be the type

checking and casting approach we wanted to avoid. We will now show how we could avoid

this situation with a different design.

This solution does not rely on runtime object type checking and casting and is based

on the Visitor pattern (Gamma et al., 1995). The design can be seen in Figure 23. It is

essentially a combination of the last two class diagrams of Figures 20 and 21. Again only

the relevant methods and fields are displayed.

With the help of the Visitor pattern we delay the casting procedure to each concrete

message class implementation. This is done with the accept method in the A3DCSMessage

class. This method is declared abstract, meaning that every sub class must implement

this method. The parameter of the method is the IMessageHandler interface which

defines message handling methods and can be compared with the IVisitor interface of

the Visitor pattern. The code in the accept method is the same for every message class:

public void accept (IMessageHandler handler) {
handler . handleMessage (this) ;

}

With these methods we can get the runtime type of the message object without cast-

ing. The accept method can be called on objects with type A3DCSMessage and due to

polymorphism, the appropriate method is then called in the respective message object.

The object then hands itself to the IMessageHandler interface.

In our implementation the message handling is statically defined. We know at compile

time which message types are handled by which manager type. What we do not know

is which manager instance will handle which concrete message instance. This informa-

tion is only available at runtime. Consider, for example, the TryEnterSceneMessage

which must be handled by the EIManager class. This information is available at com-

pile time, but we do not know in advance which EIManager instance will handle which

62

5.3 Connection Server Message Structure 5 IMPLEMENTATION

+getName() : String

-name : String

AManager

+getPManager(in context : MessageContext) : PlatformManager
+getFManager(in context : MessageContext) : FederationManager
+getEIManager(in context : MessageContext) : EIManager

-platformManagers : Hashtable<String,PlatformManager>

ConnectionServer

+getFManager(in context : MessageContext) : FederationManager
+getEIManager(in context : MessageContext) : EIManager

-federationManagers : Hashtable<String,FederationManager>

PlatformManager

+handleMessage(in message : AskEInstitutionsMessage) : void
-getEIManager(in context : MessageContext) : EIManager

-eiManagers : Hashtable<String,EIManager>

FederationManager

+handleMessage(in message : TryEnterSceneMessage) : void

EIManager

1

*

1

*

1

*

IMessageHandler

+handleMessage(in message : AskEInstitutionsMessage) : void
+handleMessage(in message : TryEnterSceneMessage) : void
#getPManager(in context : MessageContext) : PlatformManager
#getFManager(in context : MessageContext) : FederationManager
#getEIManager(in context : MessageContext) : EIManager

MessageDispatcher

«uses»

+setPlatformContext(in platformContext : String) : void
+setFederationContext(in federationContext : String) : void
+setEIContext(in eiContext : String) : void
+handleXMLEvent(in name : String, in content : String) : void
+accept(in handler : IMessageHandler) : void
+setId(in id : Long) : void

A3DCSMessage

+accept(in handler : IMessageHandler) : void

AskEInstitutionsMessage

+handleXMLElement(in name : String, in content : String) : void
+accept(in handler : IMessageHandler) : void

-sceneName : String
-avatarid : String

TryEnterSceneMessage

+handleMessage() : void

-currMessage : A3DCSMessage
-messageHandler : IMessageHandler

ThreeDMessageContentHandler

«uses»

«uses»

Figure 23: Message handling in the Connection Server.

TryEnterSceneMessage instance during runtime. This information is contained in the

message context and only available at runtime.

For this reason we have developed a MessageDispatcher that implements the IMes-

sageHandler interface and dispatches the messages to the concrete managers. The

MessageDispatcher contains a handling method for each message type which is called

by the message objects in the accept method. The MessageDispatcher then needs to

pass on the message to the concrete manager. It must therefore have knowledge of all

running managers. In the current implementation the manager hierarchy is queried each

time a message needs to be dispatched. This is done with the getPManager, getFManager

and getEIManager methods that return a PlatformManager, a FederationManager and

an EIManager respectively. Those methods are implemented in the ConnectionServer

and in the managers. Depending on the message type, the dispatcher calls one of these

methods to get the appropriate manager instance (this can be done due to the compile

time knowledge of the message type⇔ manager type relation). The appropriate manager

is identified through the message context and returned to the MessageDispatcher. The

message is then forwarded to this manager.

63

5.3 Connection Server Message Structure 5 IMPLEMENTATION

Finally, we want to summarize the advantages of this approach: we do not need to rely on

type checking (instanceof) and we do not need to cast objects anymore. Furthermore,

we obtain compile time safety when adding new message types. This is achieved in the

following way:

• When we add a new message type we have to implement the accept method (com-

pile time error otherwise).

• When we implement the accept method correctly we have to extend the IMessage-

Handler interface (compile time error otherwise).

• When we extend the interface we have to adapt the MessageDispatcher (compile

time error otherwise).

• When we implement the handling method correctly we must implement the handling

method in the appropriate manager type also (compile time error otherwise).

In the casting solution this is not guaranteed, since we could forget to add the handler

code inside the informEvent methods. This error can only be detected at runtime and

may lead to confusion when testing the program.

5.3.3 Message Transmission

Subclasses of the ACS3DMessage class are used to inform the 3D virtual world of state

changes in Ameli. Whenever an Ameli event is monitored in the Connection Server, it is

forwarded to the respective manager and handled by it (cf. Section 5.2.2). If the 3D virtual

world needs to be informed of this event, the manager constructs a new message object and

sends it to 3D virtual world. Consider, for example, the EnteredAgentFederationEvent.

Such an event occurs when an agent entered a Federation in Ameli. If the respective

agent is an autonomous agent, the Connection Server needs to construct and send an

EnterFederationMessage to the 3D virtual world. The action is then visualized in the

3D virtual world by spawning a new avatar for this agent.

The message transmission is achieved with the help of the VWCommunicator class, see

Figure 24. The VWCommunicator provides an interface for the transmission of ACS3DMes-

sages. The createXML method of the ACS3DMessage is used by the VWCommunicator to

retrieve the XML string that needs to be sent to the 3D virtual world. Figure 24 shows

that a VWCommunicator is either associated with the ConnectionServer class or with one

FederationManager. This is due to the fact that one 3D virtual world visualizes one Fed-

eration (cf. Section 4.1). When a new 3D virtual world is launched, it establishes a connec-

tion with the Connection Server via the VWCommunicator class. As long as the 3D virtual

world has not decided which Federation it will visualize, the respective VWCommunicator

is associated with the ConnectionServer class. The launchedVirtualWorldMessage (cf.

64

5.4 Agent Control in the Connection Server 5 IMPLEMENTATION

+send(in message : ACS3DMessage) : void
+handleMessage(in message : LaunchedVirtualWorldMessage) : void
+informEvent(in event : PlatformMonitorEvent) : void

-platformManagers : Hashtable<String,PlatformManager>

ConnectionServer

+informEvent(in event : PlatformMonitorEvent) : void

-federationManagers : Hashtable<String,FederationManager>

PlatformManager

+send(in message : ACS3DMessage) : void
+informEvent(in event : FederationMonitorEvent) : void
-informEvent(in event : AgentEnteredFederationEvent) : void

-eiManagers : Hashtable<String,EIManager>

FederationManager

+informEvent(in event : EInstitutionMonitorEvent) : void

EIManager

1

*

1

*

1

*
+run() : void

PlatformMonitor

1

1 Runnable

+send(in message : A3DCSMessage) : void

-output : DataOutputStream

VWCommunicator

+createXML() : String

ACS3DMessage

ICS3DMessage

«uses»

1

*

1 *

{XOR}

+EnterFederationMessage(in context : MessageContext, in avatarid : String, in federation : String)

-avatarid : String
-federation : String

EnterFederationMessage

«uses»

Figure 24: Message Transmission in the Connection Server.

Appendix A, Table 9) is used to inform the Connection Server that a 3D virtual world

is now visualizing a particular Federation. When such an event arrives in the Connec-

tion Server, the VWCommunicator is handed to the respective FederationManager. From

this moment on, the message transmission to this 3D virtual world is executed through

the FederationManager. The EIManagers within this FederationManager use the send

method to forward Electronic Institution level messages to the 3D virtual world.

5.4 Agent Control in the Connection Server

Human users participating in the framework via the 3D virtual world must be represented

as agents in the Ameli system. The Agent Control component defines an interface for the

creation of new agents and the control of these agents. It is based on the DummyAgent

package from the EIDE environment (cf. Section 4.2.1) and is used by the Manager com-

ponent. In Figure 25 the relationship between the classes is shown.

The AgentManager provides the interface for the control of the agents and is used by all

manager types. Whenever a new user connects to the 3D virtual world a TryEnterPlat-

formMessage is triggered and sent to the Connection Server. The message is handled

by the ConnectionServer class which calls the launchNewAgent and enterPlatform

methods. The PlatforManager and FederationManager call the enterFederation and

enterEI methods when a tryEnterFederation or tryEnterEI message is received. The

EIManager calls the enterScene method whenever a TryEnterScene message arrives.

The DummyAgentController is the interface to the reused parts of the DummyAgent

package. The AgentManager uses this interface to forward the requests (stated by the

managers) to the particular agents. The AgentManager essentially hides the agent infor-

65

5.5 The Game Engine 5 IMPLEMENTATION

«uses»

«uses»

+launchNewAgent(in proxy : Proxy) : void
+enterPlatform(in agentName : String, in platform : String) : void
+enterFederation(in agentName : String, in federation : String) : void
+enterEI(in agentName : String, in federation : String, in ei : String, in role : String) : void
+enterScene(in agentName : String, in scene : String) : void

-agents : Hashtable<String, DummyAgentController>

AgentManager

+enterPlatform(in platform : String)
+enterFederation(in federation : String)
+enterEI(in federation : String, in ei : String, in role : String)
+enterScene(in scene : String)

DummyAgentController

1 *

-proxies : List<Proxy>

AManager

+handleMessage(in message : TryEnterPlatformMessage) : void

-platformManagers : Hashtable<String,PlatformManager>

ConnectionServer

+handleMessage(in message : TryEnterFederationMessage) : void

-federationManagers : Hashtable<String,FederationManager>

PlatformManager

+handleMessage(in message : TryEnterEIMessage) : void

-eiManagers : Hashtable<String,EIManager>

FederationManager

+handleMessage(in message : TryEnterSceneMessage) : void

EIManager

1

*
1

*
1

*

+getAvatarName() : String
+getAgentName() : String
+informEnterPlatformFailed(in platform : String, in error : String) : void
+informEnterSceneFailed(in scene : String, in error : String) : void

-avatarName : String
-agentName : String

Proxy

*

0..*

«uses»

«uses»

+send(in message : A3DCSMessage) : void

-output : DataOutputStream

VWCommunicator

1

0..1 *

Figure 25: Agent Control in the Connection Server.

mation from the Platform-, Federation- and EIManagers. As can be seen by the func-

tion signatures, the managers only provide the name of the agent and the AgentManager

dispatches the requests to the particular agents.

The Proxy class facilitates the mapping between avatars and agents. The managers

use this class to store the avatar/agent couples that are currently acting in the Platform,

Federation or Electronic Institution in question. Furthermore, the Proxy also severs

another purpose. In the original version all Ameli events were intended to be processed

over the Monitor component. During the course of implementation we realized that not all

events are sent to this monitor. Some events, such as failed enter attempts, are only sent

to the particular agent that stated the request. Therefore, the Agent Control component

must also be able to send messages to the 3D virtual world. To this end, the Proxy class

provides functions for the transmission of messages. The DummyAgentController uses

these functions to inform the 3D virtual world of failed requests.

5.5 The Game Engine

In Section 3.2.1 the Torque Game Engine was introduced. Remember that the editors

are used to create the content of the 3D virtual world, the scripting language is used

for simple tasks and more complex structures and behavior are implemented in C++. A

Torque application is usually split into the game engine executable (the compiled C++

code) and a script language code base. The examples on the Web page are based on

this structure (Torque). The script language code base and the executable are strongly

66

5.5 The Game Engine 5 IMPLEMENTATION

coupled: the script code invokes functions in the game engine executable and the C++

code invokes functions that are defined in the script code.

The script code is compiled and evaluated at runtime. This makes script code devel-

opment fast compared to the development in C++ (where the code has to be compiled

and linked after modification). The main disadvantage is the dynamic binding of the

scripting language. Variable types are not specified in the code and all type errors are

detected at runtime when the code is processed. Furthermore, the scripting language

does not provide object oriented features. In contrast, C++ offers compile time safety

and provides powerful language constructs. Thus, most of our code is implemented in

C++.

Similar to the official examples, our implementation is split into a C++ code base

(which is compiled into the game engine executable) and a script code base (which is

evaluated during runtime). The 3D virtual world runs on a dedicated server and users

connect to it through clients that are executed on their machines (cf. Section 3.2.1).

The dedicated server is responsible for the message exchange with the Connection

Server and guarantees consistency in terms of visualizing all the Ameli system. The code

on the client side is responsible for the interaction with the users. The dedicated server

and some functions on the client side are implemented in C++. The remaining code on

the client side is implemented in Torque Script. The components of the C++ code base

are displayed in Figure 26.

Connector

Manager

Message

Parser

send Message

handle Messages

create Message

build Message

parse Message

Figure 26: Torque Components of the C++ code base.

The Message component is similar to its counterpart in the Connection Server. It

provides a message structure to represent messages that are exchanged with the Connec-

tion Server. Two interfaces, one for the creation of new message instances and one for

the message building are provided. The Parser component uses these two interfaces to

instantiate new message objects and to fill the objects with values received in the XML

stream. The Manager component represents the main control structure on the Torque

side. It is responsible for the message exchange with the Connection Server. Incoming

messages are received through the Connector component, parsed by the Parser compo-

67

5.6 Game Engine Managers 5 IMPLEMENTATION

nent and handled by the Manager component. Outgoing messages are constructed by the

Manager component and sent to the Connection Server through the Connector compo-

nent. Moreover, the Manager component also controls the state of the 3D virtual world,

moves avatars in the world and verifies the movement of the users.

5.6 Game Engine Managers

The Manager component is split into two different types of managers, see Figure 27.

The Manager is responsible for messages exchanged on the Platform and Federation level

and provides an interface for the script code base. The EIManager defines an abstract

base class for the implementation of Electronic Institution managers. For each visualized

Electronic Institution one such manager must be implemented. This class is then respon-

sible for the messages that are sent within this Electronic Institution and for the actions

that are performed in the visualized building. In Figure 27 there exists one concrete

manager implementation, named TravelManager, which handles all messages concerning

the Travel Electronic Institution (cf. Section 4.1). This manager is responsible for the

consistent relationship of the Travel Electronic Institution with the Ameli system.

1

1

1

*

-Manager()
+getInstance() : Manager *
+tryEnterPlatformFederation(in avatarName : const string&) : void
+tryEnterRoom(in avatarName : const string&, in role : const string&, in eiName : const string&, in roomName : const string&) : void
+send(in message : A3DCSMessage) : void
+handleMessage(in message : const char*) : void
+handleMessage(in message : EnterEIMessage*) : void

-eiManagers : map<mystring,EIManager *>
-instance : Manager * = 0
-aiAvatars : vector<AIAvatar *>
-avatarMap : map<mystring,AIAvatar *>
-connector : CSConnector

Manager

+handleMessage(in msg : EnterEIMessage*, in avatar : AIAvatar*)
+tryEnterRoom(in avatarName : const string&, in role : const string&, in roomName : const string&)
+EIManager(in name : const string&, in ei3dMappingFile : const string&, in manager : Manager*)

#rooms : vector<Room>
#doors : vector<Door>
#avatars : vector<AIAvatar *>

EIManager

+handleMessage(in msg : EnterEIMessage*, in avatar : AIAvatar*)
+tryEnterRoom(in avatarName : const string&, in role : const string&, in roomName : const string&)

TravelManager

-CSConnector()
+getInstance() : CSConnector*
+handleMessage(in message : const char*)
+send(in message : const char*)

-instance : CSConnector* = 0
-manager : Manager*
-connection : MyTCPObject*

CSConnector

Figure 27: Torque Managers.

When an autonomous agent enters the Ameli system, the Manager spawns a new avatar

in the 3D virtual world. It further controls the movement of this avatar in the 3D virtual

68

5.7 Game Engine Message Structure 5 IMPLEMENTATION

world. The script code, running on the client side, uses the Manager to state requests to the

Ameli system. Consider, for example, a user trying to connect to a 3D virtual world. The

script code contacts the dedicated server and the tryEnterPlatformFederation method

is called. The Manager states the request to the middleware. The reply is processed by

the Manager which in turn informs the client by calling a function in the script code. If

the user’s agent was allowed to enter the Ameli system on both levels, the user is actually

logged in the 3D virtual world.

Actions that happen on the Electronic Institution level, such as entering a scene, are

forwarded to the appropriate Electronic Institution manager. Consider, for example, a

user that is standing inside a building that represents the Travel Electronic Institution.

The user wants to enter a room and presses the appropriate key that triggers this action.

The request is posted to the TravelManager (via the interface defined in the EIManager)

and handled in the overloaded tryEnterRoom function. Then the request is forwarded to

the middleware and the response is again processed by the TravelManager. Message re-

ception and transmission is achieved through the CSConnector class used by the Manager.

The concrete managers use the Manager to send messages to the middleware. Incoming

messages are also received by the Manager object and forwarded to the appropriate man-

ager implementation.

5.7 Game Engine Message Structure

The message structure in Torque is based on the same model as the message structure in

the Connection Server (cf. Section 5.3 and Figure 21). As can be seen in Figure 28, the

mechanism remains the same, but this time the A3DCSMessage provides the interface for

message construction and the ACS3DMessage provides the interface for message building.

Another difference is the representation of the message context. In the Connection Server

the message context is encapsulated in its own class (class MessageContext in Figure

21). In the Torque code this information is directly encoded into the AMessage class.

The functionality remains the same, but the signatures of the message class constructors

differ.

5.7.1 Message Parsing

Conceptually, the message parsing is accomplished similar to the procedure used in the

Connection Server (cf. Section 5.3.1). The actual process is depicted in Figure 29. The

Manager receives new messages through the CSConnector and uses the CS3DMessagePar-

ser to parse these messages. The MessageFactory creates new message objects and the

interface of the ACS3DMessage is used by the parser to build the messages. There are two

main differences compared to the process in the Connection Server which are presented

in the following.

69

5.7 Game Engine Message Structure 5 IMPLEMENTATION

+AMessage()
+getPlatform() : const char*
+getFederation() : const char*
+getEI() : const char*
+getName() : const char*
+getId() : long
+getDirection() : const DirectionType &
+getMessageType() : const MessageType &

#msgname : string
#platform : string
#federation : string
#ei : string
#id : long
#inReplyTo : long
#direction : DirectionType
#msgtype : MessageType

AMessage
+INFORMEINSTITUTIONS
+INFORMENTERSCENE
+UNKNOWN

«enumeration»
MessageType

+A3DCSMessage(in platform : const string& = "", in federation : const string& = "", in ei : const string& = "")
+getXML() : const char*
#createXMLContent() : const char*
-createXML() : const char*
-createXMLHeader() : const char*
-createPreXMLContent() : const char*
-createPostXMLContent() : const char*

#mContent : string

A3DCSMessage

+ACS3DMessage()
+setPlatform(in platform : const char*)
+setFederation(in federation : const char*)
+setEI(in ei : const char*)
+setId(in id : long)
+setInReplyTo(in inReply : long)
+handleXMLElement(in element : const TiXmlNode*, in text : const char*)

ACS3DMessage

+InformEInstitutionsMessage()
+getEInstitutions() : const vector<mystring>*

InformEInstitutionsMessage

+AskEInstitutionsMessage(in platform : const string&, in federation : const string&)

AskEInstitutionsMessage

+TryEnterSceneMessage(in platform : const string&, in federation : const string&, in ei : const string&, in avatarid : const string&, in scene : const string&)
#createXMLContent() : const char*

#scene : string
#avatarid : string

TryEnterSceneMessage

+InformEnterSceneMessage()
+handleXMLElement(in element : const TiXmlNode*, in text : const char*)
+getAvatarId() : const string&
+getErrorReason() : const string&
+getSuccessful() : bool

-avatarid : string
-entityName : string
-successful : bool
-reason : string

InformEnterSceneMessage

+CS3D
+THREEDCS
+UNDEF

«enumeration»
DirectionType

Figure 28: Message structure on the Torque level.

In the Connection Server message objects are instantiated with the reflection mech-

anism of the Java language. The C++ language does not provide such a feature and

we solved this task with the Factory pattern (Gamma et al., 1995). A straightforward

implementation assigns each object type a unique ID. A factory method is then used to

instantiate new objects based on the ID provided as parameter. This is exemplified in

Listing 3.

Listing 3: A straight forward implementation of the Factory pattern

enum ObjectType { SPRODUCT ; CPRODUCT }

Product
Factory : : create (ObjectType id)
{

switch (id)
{
case SPRODUCT :

return new SimpleProduct () ;

70

5.7 Game Engine Message Structure 5 IMPLEMENTATION

break ;
case CPRODUCT :

return new ComplexProduct () ;
break ;

default :
// error unknown o b j e c t type

}
}

Alexandrescu (2001) points out the disadvantages of this approach: All knowledge

about product classes is stored in one source file. This leads to compile time dependencies

because all header files of all products must be included. Furthermore, it is difficult to

extend the factory, because every time a new product class is created, a new unique ID

must be assigned and the switch statement must be extended.

Alexandrescu provides an implementation of the Factory pattern that overcomes these

problems. Instead of having a single switch statement for the creation of new objects,

this code is deferred to the implementation of each product class. Each product class

implements a method for the creation of new product objects and registers this method

in the factory. When the factory creates a new product object, it dispatches the creation

method of this product type and calls it.

-MessageFactory()
+getInstance() : MessageFactory*
+registerMessage(in msgType : MessageType, in createFn : ACS3DMessage *(*)(void)) : bool
+unregisterMessage(in msgType : MessageType) : bool
+createMessage(in msgType : MessageType) : ACS3DMessage*

-instance : MessageFactory* = 0
-callbacks : map<MessagType, ACS3DMessage *(*)(void)>

MessageFactory

-recurseOverChildren(in parent : const TiXmlNode*)
+parseMessage(in xmlString : const char*) : ACS3DMessage*

-xmlDoc : TiXmlDocument*
-msg : ACS3DMessage*

CS3DMessageBuilder

-Manager()
+getInstance() : Manager*
+handleMessage(in message : const char*)

-instance : Manager* = 0
-msgFactory : CS3DMessageBuilder*
-connector : CSConnector*

Manager

-CSConnector()
+getInstance() : CSConnector*
+handleMessage(in message : const char*)

-instance : CSConnector* = 0
-manager : Manager*
-connection : MyTCPObject*

CSConnector

+ACS3DMessage()
+setPlatform(in platform : const char*)
+setFederation(in federation : const char*)
+setEI(in ei : const char*)
+setId(in id : long)
+setInReplyTo(in inReply : long)
+handleXMLElement(in element : const TiXmlNode*, in text : const char*)

ACS3DMessage

1 1

1

1

1

1

«uses»

Figure 29: Message parsing on the Torque level.

We use this approach for the creation of new message objects. The MessageFactory

is used to register new creation methods and to call these methods. Every message

class (subclasses of ACS3DMessage) defines a function for the creation of new message

objects of this type. At startup this function is registered in the MessageFactory via

71

5.7 Game Engine Message Structure 5 IMPLEMENTATION

the registerMessage method. The registration adds a new function pointer for this

MessageType to the callbacks map. New message objects can then be created by calling

the createMessage function. Using the callback map, the appropriate creation function

for the passed MessageType is called.

The second difference is the XML processor. In the Connection Server we use the SAX

API to process XML documents. On the Torque side we use the TinyXml library for XML

parsing (TXML). It is a simple, small and minimal C++ XML parser that can be easily

integrated into other programs. Similar to the DOM API, the TinyXml library represents

each XML document in a tree like structure. This structure is stored in C++ objects and

can be traversed by the client code. As shown in Figure 29 we use the TiXmlNode class

to traverse the XML document and to retrieve the element information.

5.7.2 Message Handling

The message handling procedure is completely different to the approach used in the Con-

nection Server. The approach is similar to the Ameli event handling in Section 5.2.2 -

message objects are distinguished based on their type and cast to the appropriate runtime

type.

+handleMessage(in message : const char*)
-handleMessage(in msg : InformEInstitutionsMessage*)
-handleMessage(in msg : InformEnterSceneMessage*)

-eiManagers : map<string, EIManager*>

Manager

+handleMessage(in msg : InformEnterSceneMessage*)

#eiName : string

EIManager

+getAvatarId() : const string&
+getErrorReason() : const string&
+getSuccessful() : bool

InformEnterSceneMessage

«uses»

«uses»

1 *

+handleMessage(in msg : InformEnterSceneMessage*)

TravelManager

+getEInstitutions() : const vector<string>*

InformEInstitutionsMessage

Figure 30: Message handling on the Torque side.

The process of message handling in the current implementation is displayed in Fig-

ure 30. Messages are handled as follows. First, the Manager creates a new message ob-

ject using the CS3DMessageBuilder (cf. Figure 29). Then, the handleMessage method

detects the object type at runtime via the MessageType information. The message ob-

ject is cast to its runtime type and the appropriate overloaded handleMessage method

is called. In the case of the InformEInstitutionsMessage the Manager handles the

message itself (the contained information is stored in an internal data structure). The

72

5.8 Testing 5 IMPLEMENTATION

InformEnterSceneMessage (sent in the context of an Electronic Institution) cannot be

handled by the Manager and is forwarded to the appropriate EIManager. If a user tries to

enter a scene in the Travel Electronic Institution a TryEnterSceneMessage is sent to the

Connection Server. The Connection Server replies with an InformEnterInstitutionMes-

sage which is handled by the TravelManager. Finally, the TravelManager informs the

user of the outcome of the request by calling a function in the script code on the client

side.

5.8 Testing

In order to assess the reliability of the system, we employed a couple of tests. In the context

of the Connection Server, these tests are realized as Unit tests. We only implemented

tests for the Parser and the Message component, because writing tests for the other

components would have been too time consuming - testing the core components (Manager,

Agent Control) requires to simulate the Ameli system and the 3D virtual world. The

functionality of those components was verified during an estimated 100 hours of system

execution.

The functionality of the Parser and the Message component was tested through func-

tional unit tests. The message construction is tested by comparing the produced XML

code with predefined XML messages. The Parser component is tested in the same way:

predefined XML messages act as input to the parser and the attributes of the constructed

messages are compared with the values in the XML messages.

Integrating unit tests in the Torque code was not possible as there exists no built in

Unit testing framework. However, we used an approach that is encouraged by the Torque

developer community. To verify the correct functionality of the code, assert statements

are inserted into it. The assert statement allows the developer to compare the runtime

value of a variable with a predefined value. If those values are unequal, an error is

raised. We extensively use assertions in the Parser component and in the XML processing

routines. All incoming messages must correspond to the proposed message structure and

the correct structure of XML configuration files is also verified. In the other components

assertions are mainly used to check the proper initialization of data structures or the

values of function parameters. In analogy to the Connection Server, the functionality of

the Torque components was tested through execution of the system.

73

6 VERIFYING THE INTERPLAY OF THE COMPONENTS

6 Verifying the Interplay of the Components

Figure 31: The User Interface of the Torque client.

In order to test the functionality of the system and, thus, to verify the smooth interplay

of the components, a prototypical 3D visualization has been designed and implemented.

Figure 31 depicts the graphical user interface that is displayed after starting the Torque

client. The user is able to query available servers and to connect to them. In this particular

case there is one server available. This server visualizes the Travel Electronic Institution

that was presented in Section 4.1. The user can choose a login name and is able to connect

to this server by clicking on the “Connect” button.

Figure 32: The user entered the Federation.

74

6 VERIFYING THE INTERPLAY OF THE COMPONENTS

After the user has clicked the “Connect” button, a series of events are happening in

the background. The Torque Server contacts the middleware which spawns a new agent.

The agent then tries to enter the Ameli system on the Platform and Federation level. If

the agent has successfully entered the Federation level, the user is allowed to enter the 3D

virtual world. Otherwise the user will not be able to participate in this world. Figure 32

shows the screen of the user after he successfully entered the 3D virtual world. The right

side of this figure displays an agent monitoring tool of the Ameli system. The tool shows

which agents are currently playing in the system. As can be seen in this screenshot, a

new agent, representing the user, has been entered in the “itchyfeet” Federation.

Figure 33: The user entered the Travel Electronic Institution.

The user is now standing in front of a building. This building is used to visualize the

Travel Electronic Institution and consists of three rooms that are arranged according to

the floor plan in Figure 18. The user can enter the Travel Electronic Institution and the

Traveler’s Lounge through the door. If he states the request to open the door, a series of

events is triggered. The user’s agent tries to enter the Electronic Institution, the Initial

scene, the first transition and the Traveler’s Lounge scene. The user is only allowed to

enter the room if all those entities could successfully be entered by his agent. This is

the case in the next screenshot, displayed in Figure 33. The agent entered the Traveler’s

Lounge scene in the Travel Electronic Institution and the user is standing in the mapped

room in the 3D virtual world. The doors on the left and right side lead to the other two

scenes Travel Advisory and Travel Agency respectively.

In the same Figure an autonomous agent can also be seen. This agent entered the

Ameli system via another interface and is now playing in the Electronic Institution. The

monitoring tool shows that the agent entered the Travel Electronic Institution, moved to

the Travel Advisory and then came back to the Traveler’s Lounge. The 3D virtual world

visualizes this agent with a blue avatar and is responsible for the movement of this avatar

in the 3D world.

75

7 CONCLUSION & FUTURE WORK

7 Conclusion & Future Work

This master thesis is embedded within a research project that has the principal goal

of developing an instrument to support the complex interaction patterns of providers

and consumers in an e-Tourism setting. In particular, these providers and consumers,

either humans or software agents, are members of a heterogeneous society cohabiting in

a multi-agent based 3D virtual environment. Conceptually speaking, the environment is

designed according to a three-layered architecture comprising a Multi Agent System layer,

a middleware layer and a 3D visualization layer.

The first major contribution of this master thesis was the design of the middleware con-

necting the 3D game engine with the Multi Agent System. This included considerations

regarding the design of the middleware, protocol definitions, as well as the conceptual-

ization of the middleware architecture. The second major contribution was the actual

implementation of the middleware and the design and prototypical implementation of a

3D virtual world. We were able to test the functionality of the middleware with this 3D

virtual world and could verify the smooth interplay of the components. The system be-

haved as expected and the interplay between the Multi Agent System and the 3D virtual

world could directly be observed. The correct visualization of agents could be verified in

the 3D virtual world and the correct representation of users in the Multi Agent System

was verified with the help of monitoring tools.

The future work can be split into conceptual design considerations and implementation

improvements. Causality, for example, is one of these conceptual design considerations.

In the current version we only guarantee a consistent relationship, but do not enforce

causality in its strict manner. At the moment, inconsistencies are resolved by teleporting

avatars to other locations. Although this approach might be annoying to users, we think

that such situations will not occur frequently in practice. This claim, however, needs to

be investigated by testing the system in a real world setting. Another approach would be

to aim at the implementation of a causal connection which can be achieved by modifying

the Ameli system.

The next design consideration deals with the coupling between the 3D virtual world

and the Multi Agent System. Currently, these components are strongly coupled - the 3D

virtual world has knowledge of the organization of the Multi Agent System. The message

protocol reflects this relationship and messages such as tryEnterScene or enterTransi-

tion must be understood by the 3D virtual world. In Section 4.1 we mentioned that this

situation is caused by the placement of the mapping information. In future research we

aim at abstracting this message protocol, in order to make the 3D virtual world indepen-

dent from the used Multi Agent System. With this approach it will be possible to switch

Multi Agent Systems.

Considering the implementation, future work is also required. First of all the system

76

7 CONCLUSION & FUTURE WORK

needs to be tested more thoroughly. At present, the system was only executed by a few

people who did not test the functionality. We will define testing procedures and test cases

that are executed by testers who never run the system before. These tests will reveal

hidden errors and will detect further requirements that are desired by the users.

The message handling in the Torque component, which is currently based on type

checking, will be improved in future versions. We plan to implement the same message

handling procedure that is used in the Connection Server.

In Section 5.4 we pointed out that not all events are sent to the Connection Server

over the Monitor component. As we discovered this problem during the implementation,

additional functions had to be added and the event processing was split up into several

components. Some events are processed by the Manager component, others by the Agent

Control component. This processing behavior needs to be harmonized in future versions.

77

A THE MESSAGE PROTOCOL

A The Message Protocol

Message Name Parameters Purpose
askPlatforms
askFederations
askEInstitutions

None Ask which Platforms, Fed-
erations or Electronic In-
stitutions are available

informPlatforms
informFederations
informEInstitutions

names A list of available Plat-
forms, Federations or
Electronic Institutions

Inform which Platforms,
Federations or Electronic
Institutions are available

askEnterTransition
askEnterScene

id The avatar identifier
name The name of the transition

or scene

Ask if the avatar with
identifier id is allowed to
enter a transition or scene.

informEnterTransition
informEnterScene

id The avatar identifier
transition The name of the transition

or scene
allowed Boolean (true/false) indi-

cating weather the agent
is allowed to enter

reason The reason if it is not al-
lowed to enter

The avatar with identifier
id is allowed/not allowed
to enter a transition or
scene.

askPossibleMessages id The avatar identifier
scene The name of the scene in

which the avatar resides

Ask which messages may
be uttered by the avatar
with identifier id in a
scene.

informPossibleMessages id The avatar identifier
scene The name of the scene
messages The messages that may be

uttered by the avatar

Inform which messages
may be uttered by the
avatar with identifier id.

launchedVirtualWorld federation Which federation the vir-
tual world is visualizing

Inform the Connection
Server that a 3D virtual
world is now visualizing a
particular Federation.

Table 9: Status Messages

Message Name Parameters Purpose
enterFederation
enterEI

id The avatar identifier An agent entered a Feder-
ation or Electronic Insti-
tution, visualize it in the
3D virtual world.

enterTransition
enterScene

id The avatar identifier
name The name of the transition

or scene

The avatar with identifier
id must move to a tran-
sition or scene in the 3D
virtual world.

joinToScene ids The avatar identifiers
scene The name of the scene

The specified avatars with
identifiers in list ids must
move together to a scene
in the 3D virtual world.

sayMessage message The message to be said A scene message was ut-
tered in the Electronic In-
stitution and the 3D vir-
tual world must visualize
it.

78

A THE MESSAGE PROTOCOL

exitFederation id The avatar identifier
federation The name of the Federa-

tion

An agent exited a Federa-
tion, visualize it in the 3D
virtual world.

Table 10: Ameli Action Messages

Message Name Parameters Purpose
tryEnterTransition
tryEnterScene

id The avatar identifier
transition The name of the transition

The avatar with identifier
id wants to move to a
transition or scene.

informEnterTransition
informEnterScene

id The avatar identifier
name The name of the transition

or scene
successful Boolean Variable indicat-

ing whether the avatar
entered the transition or
scene

reason The reason if it could not
be entered

Inform the 3D virtual
world whether the avatar
could successfully enter
the transition or scene.

trySayMessage id The avatar identifier
scene The name of the scene
message The message that was said

The avatar with identifier
id wants to say a mes-
sage in a scene. Inform
the Electronic Institution
of it.

informMessage id The avatar identifier
scene The name of the scene
message The message that was said
successful Boolean variable indicat-

ing whether the message
could be uttered

reason The reason if it was not
possible to say this mes-
sage

Inform the 3D world
whether the avatar’s
agent uttered the mes-
sage in the Electronic
Institution or not.

tryEnterPlatform
tryEnterFederation
tryEnterEI

id The avatar identifier
name The name of the Platform,

Federation or Electronic
Institution

The avatar with identifier
id wants to enter a Plat-
form, Federation or Elec-
tronic Institution.

informEnterPlatform
informEnterFederation
informEnterEI

id The avatar identifier
name The name of the Platform,

Federation or Electronic
Institution

successful Boolean Variable indicat-
ing whether the avatar’s
agent could be entered

reason The reason if it could not
be entered

Inform the 3D world
whether the avatar’s
agent could successfully
enter a Platform, Fed-
eration or Electronic
Institution.

exitPlatform
exitFederation
exitEI

id The avatar identifier
name The name of the Platform,

Federation or Electronic
Institution

Tell Ameli that the avatar
with ID id did exit a Plat-
form, Federation or Elec-
tronic Institution.

Table 11: 3D Action Messages

79

A THE MESSAGE PROTOCOL

Message Name Parameters Purpose
invalidMessage message The invalid message

reason The reason why this mes-
sage is invalid

Whenever an invalid mes-
sage is sent by the 3D vir-
tual world, this is the re-
ply.

Table 12: Error Messages

80

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Architecture. 10

2 First examples of 3D computer games. 12

3 3D computer games in the 1990s. 13

4 PSDoom. Every “enemy” process has its id and name displayed in front of

him (Chao, 2001). 14

5 The Design Critique tool in action. On the left you can see a marked area,

on the right is the discussion forum (Moloney et al., 2003). 16

6 MAS components as proposed in Sycara et al. (2003) 18

7 Organization of the MAS for Aircraft Maintenance 20

8 MAS structure of the coalition example (Tsvetovat and Sycara, 2000). . . 21

9 The society of agents as proposed in Smith et al. (2003). 22

10 The GameBots architecture (Adobbati et al., 2001) 24

11 The UTSAF architecture (Manojlovich et al., 2003). 25

12 The Human-Agent relationship. 28

13 Role structure. 33

14 The Admission scene of the Auction House. 35

15 The Performative Structure of the auction house. 36

16 Overview of the framework architecture. 39

17 Performative Structure of a Travel Electronic Institution 41

18 A possible floor plan for the Travel Electronic Institution. 41

19 Component diagram of the Connection Server. 53

20 Event handling in the Connection Server. 56

21 Message structure in the Connection Server. 58

22 Message construction in the Connection Server. 60

23 Message handling in the Connection Server. 63

24 Message Transmission in the Connection Server. 65

25 Agent Control in the Connection Server. 66

26 Torque Components of the C++ code base. 67

27 Torque Managers. 68

28 Message structure on the Torque level. 70

29 Message parsing on the Torque level. 71

30 Message handling on the Torque side. 72

31 The User Interface of the Torque client. 74

32 The user entered the Federation. 74

33 The user entered the Travel Electronic Institution. 75

81

LIST OF TABLES LIST OF TABLES

List of Tables

1 Messages of the Admission scene. 34

2 Agent Mapping. 43

3 Room Mapping. 43

4 Door Mapping. 43

5 Possible field assignments in the message header. 46

6 Ameli Action Messages . 47

7 Status Messages . 48

8 3D Action Messages . 48

9 Status Messages . 78

10 Ameli Action Messages . 79

11 3D Action Messages . 79

12 Error Messages . 80

82

REFERENCES REFERENCES

References

3DMaze. http://en.wikipedia.org/wiki/3d_monster_maze

Adobbati, R., Marshall, A. N., Scholer, A., Tejada, S., Kaminka, G. A., Schaffer, S. and

Sollitto, C. (2001). Gamebots: a 3d virtual world test-bed for multi-agent research,

Proceedings of the Second International Workshop on Infrastructure, MAS and MAS

Scalability, Montreal, Canada.

Alexandrescu, A. (2001). Modern C++ design: Generic Programming and Design Pat-

terns Applied, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Arcos, J. L., Esteva, M., Noriega, P., Rodrguez-Aguilar, J. A. and Sierra, C. (2005).

An integrated developing environment for electronic institutions, Software Agent based

Applications. Platforms and Development Kits, Birkhäuser Publisher, pp. 121–142.

AW. http://www.activeworlds.com/

Berger, H., Dittenbach, M. and Merkl, D. (2004). User-oriented evaluation of a natural

language tourism information system, Information Technology and Tourism 6(3): 167–

180.

Berger, H., Dittenbach, M., Merkl, D., Bogdanovych, A., Simoff, S. and Sierra, C. (2007).

Opening new dimensions for e-tourism, Virtual Reality. Accepted for publication.

Bogdanovych, A., Berger, H., Simoff, S. and Sierra, C. (2006). Travel agents vs. online

booking: Tackling the shortcomings of nowadays online tourism portals, Proceedings

of the 13th International Conference on Information Technologies in Tourism (EN-

TER’06), Springer, Lausanne, Switzerland, pp. 418–428.

Castronova, E. (2005). Synthetic Worlds: The Business and Culture of Online Games,

University Of Chicago Press.

Chao, D. L. (2001). Doom as an interface for process management, Proceedings of the

SIGCHI Conference on Human factors in Computing Systems, ACM Press, New York,

pp. 152–157.

Damer, B. (1997). Avatars: Exploring and Building Virtual Worlds on the Internet,

Peachpit Press, Berkeley, CA, USA.

Descent. http://en.wikipedia.org/wiki/descent_(computer_game)

Doom. http://www.idsoftware.com/games/doom/

DoomStats. http://en.wikipedia.org/wiki/doom

EIDE. http://e-institutor.iiia.csic.es

83

REFERENCES REFERENCES

Esteva, M., de la Cruz, D. and Sierra, C. (2002). Islander: an electronic institutions

editor, Proceedings of the first International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS’02), ACM Press, New York, NY, USA, pp. 1045–

1052.

Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A. and Arcos, J. L. (2004). Ameli: An

agent-based middleware for electronic institutions, Proceedings of the 3rd International

Conference on Autonomous Agents and Multi Agent Systems, Vol. 01, IEEE Computer

Society, Los Alamitos, CA, USA, pp. 236–243.

GameBots. http://www.planetunreal.com/gamebots/

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns, Elements

of Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series.

Gasser, L. (2001). Mas infrastructure: Definitions, needs and prospects, Revised Papers

from the International Workshop on Infrastructure for Multi-Agent Systems, Springer-

Verlag, London, UK, pp. 1–11.

Gratzer, M., Werthner, H. and Winiwarter, W. (2004). Electronic business in tourism,

International Journal of Electronic Business 2(5): 450–459.

HL. http://www.half-life.com/

IIIA. http://www.iiia.csic.es/

Java3D. http://java3d.dev.java.net/

JAXP. http://java.sun.com/xml/downloads/jaxp.html

Kot, B., Wuensche, B., Grundy, J. and Hosking, J. (2005). Information visualisation

utilising 3d computer game engines case study: a source code comprehension tool, Pro-

ceedings of the 6th ACM SIGCHI New Zealand chapter’s International Conference on

Computer-Human Interaction (CHINZ’05), ACM Press, New York, NY, USA, pp. 53–

60.

Maes, P. and Nardi, D. (eds) (1988). Meta-Level Architectures and Reflection, Elsevier

Science Inc., New York, NY, USA.

Manojlovich, J., Prasithsangaree, P., Hughes, S., Chen, J. and Lewis, M. (2003). Utsaf:

A multiagent-based framework for supporting military-based distributed interactive

simulations in 3d virtual environments, Proceedings of the 35th Conference on Winter

Simulation (WSC’03), New Orleans, LA, pp. 960–968.

Meyers, S. (1998). Effective C++ (2nd ed.): 50 specific ways to improve your programs

and designs, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

84

REFERENCES REFERENCES

Moloney, J., Amor, R., Furness, J. and Moores, B. (2003). Design critique inside a multi-

player game engine, Proceedings of the CIB W78 Conference on IT in Construction,

Waiheke Island, New Zealand, pp. 255–262.

Myst. http://www.mystworlds.com/us/

Preece, J. and Maloney-Krichmar, D. (2003). Online communities: focusing on sociability

and usability, The Human-Computer Interaction Handbook: Fundamentals, evolving

Technologies and emerging Applications, Lawrence Erlbaum Associates, Inc., Mahwah,

NJ, USA, pp. 596–620.

PSDoom. http://www.cs.unm.edu/~dlchao/flake/doom

Q. http://qdn.qubesoft.com/

Quake. http://www.quake.com/

RO. http://www.realmserver.com/

Schwabe, G. and Prestipino, M. (2005). How tourism communities can change travel

information quality, Proceedings of the 13th European Conference on Information Sys-

tems, Information Systems in a Rapidly Changing Economy, (ECIS’05), Regensburg,

Germany.

Seidel, I. (2005). Evaluating game engines for the use with 3d electronic institutions,

Technical report, Institute for Software Technology and Interactive Systems, Vienna

University of Technology, Vienna.

Shehory, O., Sycara, K., Sukthankar, G. and Mukherjee, V. (1999). Agent aided air-

craft maintenance, Proceedings of the Third Annual Conference on Autonomous Agents

(AGENTS ’99), ACM Press, New York, NY, USA, pp. 306–312.

SL. http://www.secondlife.com

SLUsage. http://s3.amazonaws.com/static-secondlife-com/_files/xls/sl_vir

tual_economy_metrics_02-02-07.xls

Smith, G., Maher, M. and Gero, J. (2003). Designing 3d virtual worlds as a society of

agents, Proceedings of the 10th International Conference on Computer Aided Architec-

tural Design Futures (CAADFutures03), Tainan, Taiwan, pp. 105–114.

Smith, R. G. (1981). The contract net protocol: High-level communication and control in

a distributed problem solver, IEEE Transactions on Computers C-29(12): 1104–1113.

Spasim. http://www.geocities.com/jim_bowery/spasim.html

85

REFERENCES REFERENCES

Sycara, K., Paolucci, M., Velsen, M. V. and Giampapa, J. A. (2003). The retsina mas

infrastructure, Autonomous Agents and Multi-Agent Systems 7(1/2): 29–48.

Torque. http://www.garagegames.com

Tsvetovat, M. and Sycara, K. (2000). Customer coalitions in the electronic marketplace,

Proceedings of the Fourth International Conference on Autonomous Agents, ACM Press,

New York, NY, USA, pp. 263–264.

TXML. http://sourceforge.net/projects/tinyxml/

UO. http://www.uoherald.com/news/

UsageStats. http://www.alexaholic.com/tiscover.at+smartertravel.com+hotwire

.com+expedia.com

UT. http://www.unrealtournament.com/

Werthner, H. and Ricci, F. (2004). E-commerce and tourism, Communications of the

ACM 47(12): 101–105.

Woolridge, M. J. (2001). An Introduction to Multiagent Systems, John Wiley & Sons,

Inc., New York, NY, USA.

WS3D. http://www.3drealms.com/wolf3d/

WTTC. http://www.wttc.org

XML. http://www.w3.org/xml/

XMLSchema. http://www.w3.org/xml/schema

86

