
DISSERTATION

Fault-Tolerant Distributed Algorithms

for On-Chip Tick Generation: Concepts,

Implementations and Evaluations

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

A.o.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Institut für Technische Informatik

Embedded Computing Systems Group
Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Mag.rer.soc.oec. Gottfried Fuchs

gottfried.fuchs@inode.at

Matrikelnummer: 9825939
Canavesegasse 14/4

A-1230 Wien, Österreich

Wien, August 2009

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Im Zuge dieser Dissertation wird ein neuartiger Ansatz zur On-Chip Generierung eines
fehlertoleranten Taktes entwickelt und im Detail vorgestellt. Die Relevanz der Forschungs-
arbeiten wird dabei mit den immer kleiner werdenden Strukturgrößen im Chip-Design und
dem damit einhergehenden Anstieg der Fehlerraten motiviert. Um zukünftige Schaltungen
ausreichend robust gestalten zu können, muss in Anbetracht der erhöhten Fehlerraten unter
anderem auch das Taktsignal, welches einen kritischen “single point of failure” von syn-
chronen Schaltungen darstellt, durch Fehlertoleranz-Mechanismen geschützt oder durch
fehlertolerante Alternativen ersetzt werden. In der vorliegenden Arbeit wird daher eine
solche Alternative zu herkömmlichen zentral getakteten Schaltungen erarbeitet.

Der in dieser Arbeit vorgestellte Taktgenerierungsansatz basiert auf der Hardware-
Implementierung eines bekannten verteilten Algorithmus. Das Besondere an dieser Imple-
mentierung ist, dass in einem System von n ≥ 3f + 2 Knoten f dieser Einheiten beliebig
(byzantinisch) fehlerhaft sein dürfen. Einen weiteren wichtigen Vorteil stellt die Tatsa-
che dar, dass im Gegensatz zu herkömmlichen Verfahren keine Taktquellen (Oszillatoren)
benötigt werden. Die asynchrone Implementierung des präsentierten Ansatzes ermöglicht
es, die Taktsignale synchron zu generieren statt auf die Synchronisation von exisitieren-
den Taktquellen zurückzugreifen. Desweiteren, und noch viel wichtiger, werden durch die
vorgeschlagene Architektur Metastabilitätsprobleme an den Schnittstellen zwischen ver-
schiedenen Taktdomänen gänzlich vermieden.

Die Transformation des im Bereich der Software angesiedelten Algorithmus in die Welt
des asynchronen Schaltungsentwurfs stellte sich als nicht trivialer Prozess heraus und
repräsentiert einen wichtigen Teil der durchgeführten Arbeiten. Um den aus den zuvor
erwähnten Transformationen schlußendlich hervorgehenden VLSI (Very Large Scale Inte-
gration) Chip und die darauf aufbauende fehlertolerante Taktgenerierungsarchitektur cha-
rakterisieren zu können, wurden umfangreiche Messreihen durchgeführt und ausgewertet.
Die Evaluierungen umfassen dabei sowohl die Validierung der aus formalen Modellen des
Ansatzes hervorgehenden Verhaltensweisen unter möglichst ungünstigen Randbedingungen
(worst-case Szenarien), als auch die detailierte Charakterisierung unter Normalbedingun-
gen. Die durchgeführten Messreihen wurden zusätzlich durch Simulationen unterstützt, um
einzelne Betriebsmodi genauer zu analysieren.

Im abschließenden Teil dieser Arbeit werden vorliegende Forschungsergebnisse kurz
zusammengefasst. Desweiteren werden Limitierungen des Ansatzes aufgezeigt und mögliche
Verbesserungen erwähnt.

Abstract

In the course of this thesis a novel approach for the on-chip generation of a fault-tolerant
clock is developed. At first this is motivated by the fact that with shrinking feature sizes
and the accompanying increase of transient failure rates it is more and more desirable to
provide VLSI (Very Large Scale Integration) circuits that incorporate mechanisms for fault
tolerance. In particular, the conducted research concentrates on the most prominent single
point of failure of modern chip design, namely, the clock signal of synchronous circuits.
After surveying alternative design approaches and existing schemes for achieving fault
tolerance a novel fault-tolerant clocking scheme is introduced.

The proposed clock generation method is based on the hardware implementation of a
well known distributed clock synchronization algorithm. Most notably, it provides scal-
able fault tolerance for up to f arbitrary (Byzantine) failures in a system of n ≥ 3f + 2
tick generation nodes. Additionally, the clocking scheme’s operation does not rely on the
synchronization of clock sources, like quartz oscillators; in fact, the distributed clock sig-
nals are generated in a synchronized way. This unique property relieves the design from
metastability issues at clock boundaries.

The transformation of the original software-based algorithm to the peculiarities of chip
design proved to be an intricate task. Therefore, the major part of the work deals with the
design and development process of the algorithm’s hardware equivalent finally resulting in
a fully operational VLSI chip design. To assess the properties of the novel fault-tolerant
clocking approach and to show its feasibility exhaustive evaluations have been performed.
The presented assessments aim at a thorough characterization of (i) the developed chip
design and (ii) the distributed clock generation scheme on which these chips are based.
Additionally, the conducted measurements allowed to validate worst-case measures which
were derived in advance from the formal analysis of the clocking approach. In order
to attain a more comprehensive characterization of the design, the presented worst-case
evaluations have been supported by measurements and simulations for typical operating
scenarios.

The presented work concludes with a short summary and a brief treatment of the most
notable topics for ongoing and future research.

Acknowledgements

My personal thanks go to Andreas Steininger, for asking me to join his team and the
excellent supervision of this thesis as well as the mentoring during the different phases of
work. To Matthias Függer I am especially grateful for the perfect teamwork in the DARTS
project1, the numerous discussions leading to new insights and publications, and last but
not least the detailed feedback on an earlier version of this thesis. In the context of the
DARTS project I also want to thank Sigrid Heubeck, Gerald Kempf, Manfred Sust, Franz
Zangerl and Roman Zangl from RUAG Aerospace Austria for the fruitful cooperation. For
the initial project idea and the strength and endurance which finally led to the DARTS
project I want to thank Ulrich Schmid. I also want to thank Thomas Handl for conceiving
the standard node’s test infrastructure. The discussions with my colleagues Josef Widder
and Martin Biely— mostly starting in the evening and lasting half the night— have on the
one hand been very exhausting, but on the other hand also helped to broaden my horizon.
For her professional proofreading I am once again in deep debt to Angela Schörgendorfer.

Sincere thanks to my family, especially my parents and Sandra. Without your help, all
of this would not have been possible.

Gottfried Fuchs
Vienna, Austria, August 25, 2009

1The work received funding from the FIT-IT program of the Austrian bm:vit (contract 809456-
SCK/SAI).

For Anna Fennesz (1922-2006) and Susanna Fuchs (1915-2008)

Contents

1 Preface 1

1.1 Motivation . 2

1.2 Design principles . 3

1.2.1 Synchronous design . 4

1.2.2 Asynchronous design . 5

1.3 Related design approaches . 6

1.3.1 Globally asynchronous, locally synchronous 6

1.3.2 Interconnected rings and oscillators 7

1.3.3 The distributed clock generator . 8

1.3.4 Purely asynchronous design . 8

1.3.5 Discussion . 9

1.4 Fault tolerance . 10

1.4.1 Fault models in VLSI design . 11

1.5 Distributed systems and algorithms . 12

1.5.1 Modeling distributed systems . 13

1.5.2 Distributed systems failure models 15

1.6 Fault-tolerant clocking . 16

1.7 Problem definition and contribution . 17

1.8 Structure of the thesis . 19

2 Distributed Fault-Tolerant Clocking 21

2.1 Definitions and common terms . 22

2.2 Clock synchronization . 23

2.3 Tick generation . 28

2.3.1 Algorithms for weaker failure models 32

2.4 Hardware implementation challenges . 35

i

ii Contents

3 Hardware Implemented Fault-Tolerant Tick Generation 39

3.1 Constraints, requirements and characteristics 40

3.2 Identifying building blocks for an asynchronous hardware implementation . 42

3.3 Hardware design considerations . 44

3.3.1 Combining fault tolerance and transition signaling 46

3.3.2 Glitch avoidance . 46

3.3.3 Ensuring non-interference of subsequent ticks 47

3.3.4 Count and compare . 48

3.4 Refined tick generation algorithm . 49

3.4.1 Signals and zero-bit message channels 50

3.4.2 Component and architecture specification 51

3.4.3 Timing constraints . 56

3.4.4 Correctness and performance measures 58

4 The DARTS ASIC Implementation 61

4.1 The big picture . 62

4.2 Queueing ticks . 63

4.2.1 Muller C-Element . 64

4.2.2 Elastic pipeline . 66

4.3 Counting ticks . 68

4.3.1 Difference Module . 68

4.3.2 Pipeline compare signal generation 70

4.4 Generating ticks . 72

4.4.1 Threshold Modules . 72

4.4.2 Tick generation . 74

4.5 TG-Alg implementation characteristics . 75

4.6 Discussion on algorithm implementations for weaker failure models 78

4.6.1 Failure transformation . 80

5 On-chip Evaluation and Measurement Setup 87

5.1 Standard node . 88

5.1.1 Test support . 89

5.2 Experimental node . 89

5.2.1 Test support . 90

5.2.2 Reset/set scan chain . 91

5.2.3 Freeze logic . 91

5.2.4 Pipeline extension and overflow detection 93

Contents iii

6 Experiment Specifications and Theoretical Foundation 97

6.1 Worst-case properties . 98

6.1.1 Precision . 98

6.1.2 Accuracy . 100

6.1.3 Slowest and fastest progress . 103

6.1.4 Queue size . 104

6.1.5 Booting . 105

6.2 Average case properties . 106

6.2.1 Operating condition dependence . 106

6.2.2 Start-up behavior . 107

6.2.3 Effects of faults . 107

6.3 Supportive simulation model . 108

7 Evaluation and Measurement Results 111

7.1 Assessing and validating the standard node HITS design 112

7.1.1 Delay validation . 112

7.1.2 Operating condition dependence . 113

7.1.3 Jitter and stability . 115

7.1.4 Fault tolerance properties . 118

7.2 Assessing and validating the experimental node HITS design 119

7.2.1 Delay validation . 120

7.2.2 Elastic pipeline assessment . 120

7.2.3 Operating condition dependence . 122

7.2.4 Precision . 122

7.2.5 Accuracy . 124

7.2.6 Queue size . 126

7.2.7 Oscillations and start-up behavior 128

8 Conclusions and Future Work 131

Bibliography 133

iv Contents

List of Figures

1.1 Generic design block . 3

1.2 Logic design block . 4

1.3 Synchronous logic design block . 4

1.4 Bounded delay (BD) and delay insensitive (DI) asynchronous approach . . 5

1.5 Globally asynchronous locally synchronous (GALS) architecture 7

1.6 Interconnected ring oscillator architectures 8

1.7 Execution of a synchronous message-passing algorithm 14

1.8 Example for de-synchronized clocks . 17

1.9 Replacing synchronous clocking by fault-tolerant distributed tick generation 18

2.1 Accuracy and precision . 22

2.2 Phase-locked loop hardware clock synchronization 27

2.3 Non-authenticated broadcast execution at node p 29

2.4 Hardware clock signal vs. tick numbers . 35

3.1 Schemes for conveying tick number k . 41

3.2 Basic hardware architecture of Algorithm 7 43

3.3 Tick generation architecture handling relative tick numbers 44

3.4 Transition processing of (a) XOR-gate and (b) OR-gate 45

3.5 Tick generation design with separate treatment of even and odd ticks . . . 47

3.6 TG-Alg architecture including observation points 51

3.7 Timing paths of the interlocking constraint 56

3.8 Timing paths of the synchronization constraint 57

4.1 TG-Alg ASIC design architecture . 63

4.2 Muller C-Element implementation on (a) gate level (b) transistor level . . . 64

4.3 Customized ASIC Muller C-Element . 65

v

vi List of Figures

4.4 Elastic pipeline design . 66

4.5 TG-Alg ASIC elastic pipeline design . 67

4.6 TG-Alg ASIC Difference Module and elastic pipelines 69

4.7 TG-Alg ASIC +/− Counter Module . 71

4.8 TG-Alg ASIC Threshold Modules and Tick Generation 73

4.9 3-out-of-4 threshold circuit (a) Karnaugh-Veitsch diagram and (b) sum of
products implementation based on standard gates 74

4.10 Example trace of the tick generation signals q1, q2, q3 and q4 76

4.11 Simulation of an omission-tolerant system 82

4.12 Implementation of a single vnode of the transformation algorithm. 82

4.13 Implementation complexities for (a) single Byzantine- and omission-tolerant
node and (b) respective systems . 84

5.1 Interfaces to the HITS standard node design 88

5.2 Standard node scan chain overview . 90

5.3 Interfaces to the HITS experimental node design 91

5.4 Experimental node scan chain overview . 92

5.5 TG-Alg halting mechanism via Muller C-Element freeze logic enhancement 93

5.6 Pipeline extension and overflow detection circuit 94

6.1 Evaluation scenario to attain worst-case precision π 99

6.2 Evaluation setup to attain worst-case lower bound for accuracy 101

6.3 Example trace for lower bound for accuracy 102

6.4 Evaluation setup to attain worst-case upper bound for accuracy 103

6.5 Example trace for upper bound for accuracy 103

6.6 Evaluation scenario to assess local queue size constraint 104

6.7 Evaluation scenario to assess remote queue size constraint 105

6.8 Two-node wait-for-all system (a) graph representation (b) execution trace . 108

6.9 <min,max,+> system (a) whole graph (b) first projection (c) second pro-
jection . 109

7.1 DARTS prototype board, comprising 8 interconnected HITS chips 114

7.2 DARTS cluster’s mean clock frequency core voltage dependence 115

7.3 Statistical single clock evaluation of a running standard node cluster 116

7.4 Long term clock stability (a) 17 hours run, (b) hour four at higher resolution 117

7.5 Frequency and voltage trace showing power supply variations 118

List of Figures vii

7.6 Mean frequency (a) trend and (b) histogram of all 8 nodes 119

7.7 Mean Frequency (o) pre and (x) post reset of 1 or 2 nodes 120

7.8 Ring oscillator implementation via pipeline pair and Difference-Module . . 121

7.9 Trace of a ring oscillator with uninitialized pipelines 122

7.10 Trace of a ring oscillator with initially full pipelines 123

7.11 Precision vs. fastest to slowest path controlled via the maximum remote delay124

7.12 Verification measurement for accuracy lower bound 126

7.13 Local queue size bound verification . 127

7.14 DARTS cluster with unbalanced delays (a) oscillations of tick generation
periods (b) simulation of settling . 128

viii List of Figures

List of Tables

1.1 Comparison of design methodologies . 10

4.1 Activation patterns for fill-level signals . 72

4.2 Hardware effort for queueing and counting ticks 77

4.3 Hardware effort for Threshold Modules . 77

4.4 Hardware effort of a single TG-Alg and its components 78

4.5 Comparison of Byzantine-, omission- and crash-tolerant algorithms, i.e., Al-
gorithms 8, 6 and 5 in a system with f = 3 79

4.6 Implementation complexities of Byzantine- and omission-tolerant system . 83

5.1 Threshold configuration for (a) 2f + 1 and (b) f + 1 circuits 88

5.2 Reset-selector configuration patterns . 92

7.1 Cluster of 8 standard nodes: voltage scaling 113

7.2 Cluster of 8 experimental nodes: voltage scaling 123

7.3 Characteristics of HITS tick generation . 130

ix

x List of Algorithms

List of Algorithms

1 Non-authenticated algorithm for clock synchronization at node p [81] . . . 29

2 Acceptance function selecting valid clock ticks [81] 30

3 Consistent broadcast primitive without local clock source 31

4 Modified version of Srikanth & Toueg’s Byzantine-tolerant tick generation [93] 32

5 Crash-tolerant tick generation . 33

6 Omission-tolerant tick generation . 34

7 Byzantine-tolerant tick generation [93] suitable for bounded tick numbers . 36

8 Refined TG-Alg reflecting the asynchronous VLSI building blocks 55

9 Transformation algorithm at subnode p.i 81

xi

xii List of Algorithms

Chapter 1

Preface

First things first, but not necessarily in that order.

Doctor Who

AS THE title of the thesis already suggests, the presented research follows a multi dis-
ciplinary approach. While on one side having VLSI (Very Large Scale Integration)

design with electronic circuits and computer chips, the other aspect is given by the area
of distributed algorithms and systems. At first sight both topics appear to be completely
orthogonal to each other. A closer look at both worlds, however, reveals fundamental sim-
ilarities, i.e., modern VLSI chips can be seen as microscopically small distributed systems.
As a consequence it seems to be quite natural to combine both worlds and for instance use
solutions from the distributed systems community to solve current and upcoming problems
of VLSI design. High level approaches from distributed systems might be able to alleviate
some of the challenging issues and burdens when dealing with modern VLSI circuits. As
an example, coping with pronounced parameter variations due to difficulties related to
the manufacturing process is a burning issue. Additionally, the increased susceptibility to
radiation-induced soft-errors enabled by shrinking transistor feature sizes is also consid-
ered a major VLSI design problem [47]. These adverse effects of circuit miniaturization,
together with concepts to overcome some of the involved challenges are used as foundation
for the problem definition of the thesis. More specifically, the main effort of the conducted
research is directed towards the important field of digital circuit clocking. In particu-
lar, reliability under variations in manufacturing and operation as well as faults is taken
into account, thus leading to the core topic of the work, namely, fault-tolerant clocking
(FT-clocking).

1

2 1.1 Motivation

1.1 Motivation

Advancement in digital electronics is stated to be the most prominent driving force behind
technological progress. Electronic devices are omnipresent and almost any innovation in-
volves computer chips in one way or another. In everyday life we are surrounded by and
accustomed to electronic devices like cell phones, personal computers, satellite technology,
medical imaging, etc. The key enabler for the fact that computer chips are omnipresent
is given by the ever increasing processing power and speed of modern digital circuits and
the accompanied possibilities for new applications. Over the past 30+ years the increase
of digital circuit complexity as well as their performance gain followed Moore’s Law [65]
quite well, which essentially predicts that the amount of transistors on a chip double about
every two years. The miniaturization of transistors which allows Moore’s law to persist not
only enables the above mentioned performance increase, but also introduces adverse effects.
Transistor feature sizes of recent and future computer chips are approaching the dimension
of a few dozens of atom diameters. As shown in the recent version of International Roadmap
for Semiconductors (ITRS07) [47] it is increasingly difficult to manufacture these extremely
small structures in a reliable way. Additionally, process variations in the manufacturing
process may lead to severe fluctuations of the processing speed of a chip’s components [9].
Furthermore, the diminishingly small electrical charges present in modern transistors are
susceptible to different sources of disturbance, e.g., electrical discharge induced by particle
hits [5,75,94], crosstalk or electromagnetic interference [60] might yield multiple faults. To
maintain reliable computing technological and/or architectural measures have to be taken.

An issue with current circuit design related to the problems described above arises
from the fact that the greater part of modern digital circuits follow the synchronous design
paradigm. Proper operation of a circuit following this design style utterly relies on a single
source— the clock signal. The globally synchronous design with its one large isochronous
region1 is hard to maintain as clock periods are less than the time a signal needs to
traverse the whole chip. The distribution of the clock signal from a single source (typically
a quartz/crystal oscillator) all over a chip has become an art of its own given the die size
of a modern VLSI chip with millions of transistors and its operating frequency in the GHz-
range. Tremendous design effort has to be made to distribute the clock signal in such a way
that it arrives with minimal skew at every component to guarantee the correct behavior of
the synchronous circuit. Facilitated approaches use H-tree and X-tree clock distribution
networks combined with mesh and grid interconnects. Additionally, large numbers of clock
buffers and de-skewing units have to be placed at carefully chosen positions to guarantee
minimal skew between any two clock sinks [31, 70, 74]. An issue arising with these large
efforts necessary to achieve proper clock distribution is power consumption. Modern VLSI
chips’ clock distribution adds up to 25 to 50% of the overall power budget of a chip [21,68].
Referring to the design challenges presented in the previous paragraph the question arises
whether or not the apparently strong, but critical clock signal suffers from any of the

1“The maximum distance that a switching signal can travel across a region, in which the time of flight
does not limit the signal propagation, circumscribes a region known as the isochronous region.” [61]

Chapter 1: Preface 3

adverse effects of technology scaling mentioned above. Despite the fact that the clock
tree is driven by strong buffers, in [76] radiation-induced errors have been reported for
the clock distribution network of classic synchronous chips using recent semiconductor
technology. Moreover, the mechanical properties of clock sources like quartz oscillators are
severely limiting system reliability, since sensitivity to vibration, temperature and shock
as well as problematic cold start-up behavior have to be noted. One could argue the
globally synchronous design style with its single clock source should be replaced by a more
promising alternative. In light of the current technology trends global clock distribution
with reasonable synchrony is hard to attain, and comes at the price of great effort to
properly design the sophisticated clock distribution with its power consuming buffers, grids,
meshes and other more complex de-skewing circuits [31, 71].

To give a sound introduction to the research topic and the involved application fields
of this thesis the reader is successively introduced to the underlying principles and tech-
nologies. In this context the concepts of logic design in general, fault tolerance, as well
as distributed systems and algorithms are established to provide common terms for the
rest of the thesis. Moreover, design alternatives as possible remedies for the hard-pushed
synchronous approach will be surveyed.

1.2 Design principles

Electronic circuits in general comprise a multitude of (different) components to implement
a desired functionality. Signal processing in such components follows a scheme similar to
the one shown in Figure 1.1. A producer/source block generates a data item x that is
further processed by a functional unit f(). The end of such a generic processing stage is
given by a consumer/sink, operating on the results f(x) of the previous blocks.

Producer/

Source
Function

Consumer/

Sink

x f() f(x)

Figure 1.1: Generic design block

Typical design components for producer/source and consumer/sink blocks are given by
storage elements (registers), whereas the function f() may comprise simple logic gates like
AND-, OR-gate, inverter, register, and the like. The processing of these design units has
to be controlled in a way such that old and new data cannot interfere with each other in
an unintended way. Hence, in general, data is first read from a producer/source-register,
afterwards processed by some logic elements and in the end stored in a consumer/sink-
registers as depicted in Figure 1.2. However, what is missing in Figure 1.2 as well as

4 1.2 Design principles

Figure 1.1 is the mechanism which ensures the above demanded non-interference of different
data waves. In other words, the issuing of data items and their consumption has to be
coordinated somehow.

S
o

u
rc

e
R

eg
is

te
r

S
in

k
 R

eg
is

te
r

Figure 1.2: Logic design block

This fundamental kind of flow-control/data synchronization can be achieved by different
means, the approaches typically being grouped into design styles following the synchronous
or asynchronous design paradigm. It further has to be noted that the better part of
currently available computer chips (processors, micro-controllers, FPGAs, etc.) are built
to work according to the synchronous design paradigm. However, asynchronous design
has its niche application fields, e.g., ultra low power circuits [56] and seems to provide
superior properties when dealing with large parameter variations of current and future deep
sub-micron and nanoscale devices [9, 10]. Furthermore, specialized designs, for instance
high-speed random access memory (RAM) [17], field programmable gate arrays (FPGAs)
operating at GHz speed [84] as well as terabit network routers [86], may also rely on
asynchronous design styles to achieve elevated performance goals.

1.2.1 Synchronous design

A synchronous design is characterized by the centralized mechanism controlling the instants
when data is stored into registers, i.e., the combinatorial logic has finished its computations

S
o

u
rc

e
R

eg
is

te
r

S
in

k
 R

eg
is

te
r

clock

Figure 1.3: Synchronous logic design block

Chapter 1: Preface 5

S
o

u
rc

e
R

eg
is

te
r

S
in

k
 R

eg
is

te
r

REQ

ACK

delay element

S
o

u
rc

e
R

eg
is

te
r

S
in

k
 R

eg
is

te
r

ACK

multi-rail encoding

Figure 1.4: Bounded delay (BD) and delay insensitive (DI) asynchronous approach

and is ready for new data. As shown in Figure 1.3 each register is controlled by the same
clock signal which originates from one single clock source (e.g., a quartz oscillator) and
provides a global time base. All registers simultaneously store the currently available data
as soon as a clock transition (for instance low-to-high) occurs at the registers’ clock inputs.
For proper operation of the synchronous approach it is of utmost importance that clock
transitions are received and processed nearly at the same time at all registers (with only
small timing margins). To ensure this global isochronous behavior clock distribution with
minimal skew is the most critical and challenging part of synchronous circuit design [31].

1.2.2 Asynchronous design

In contrast to the global/centralized time base of the synchronous design approach, asyn-
chronous methodologies rely on local handshakes between any source/sink pair. This hand-
shake is partitioned into two parts, (i) the request (REQ) generated by the source indicating
the sink that new data is available and (ii) the acknowledge (ACK) indicating that the
sink has already stored the data and is ready to process new one. Unlike the synchronous
approach, in asynchronous circuit design there is no single generally adopted methodology,
but there are rather a few different design styles to solve the fundamental data synchro-
nization problem.

By picking two popular asynchronous design methodologies the manifoldness of asyn-
chronous data processing is illustrated. The bounded delay (BD) approach [80] depicted
in Figure 1.4 (left panel) and the delay insensitive (DI) approach [26] shown in Figure 1.4
(right panel) are the chosen representatives. Both the bounded delay and the delay insensi-
tive approach have in common that the generation of the ACK signal is typically triggered
together with the storage of data into the sink register. The difference of the BD and DI
methodology is in the way the REQ signal— indicating new valid data— is generated. In
BD methodology the data source issues an explicit REQ signal together with the data.
Correct circuit behavior is achieved by the insertion of individual matched delay elements
into the signal-path of every REQ signal, cf. Figure 1.4. The delay elements have to be
configured in a way that ensures that data— after its actual processing via some combina-

6 1.3 Related design approaches

torial logic— is already valid when REQ arrives. In contrast to BD, the delay insensitive
approach has no explicit request signal. The information that valid data is available is
directly encoded into the data itself— there is no need to know timing parameters of the
design or to insert matching delays2. To be able to convey this validity information to
the sink some sort of extended signal encoding has to be used. For example in Four State
Logic (FSL) [63] or Null Convention Logic (NCL) [26] two signal rails are used to be able
to sufficiently encode every data bit. In essence there must be a coding for invalid data
in addition to HI and LO. Independent of timings and delays a completion detection unit
at the sink decodes the dual-rail data signal, extracts the validity information and decides
accordingly if the data is valid and can be consumed.

A more thorough introduction to asynchronous design principles and methodologies
can be found in Hauck [43] as well as the textbooks by Myers [67] and Sparsø/Furber [80].

1.3 Related design approaches

1.3.1 Globally asynchronous, locally synchronous

The Globally Asynchronous Locally Synchronous (GALS) approach provides an alternative
alleviating the stringent clock distribution issues of the purely synchronous design style [12].
Systems following the GALS design style are based on the generic architecture depicted in
Figure 1.5. Small (local) synchronous islands implement functions (sub-tasks) of the whole
system. Each local island’s function is executed using the traditional synchronous design
style, whereas global interaction follows an asynchronous communication style. Each island
is provided with its own oscillator as clock source for the locally synchronous computations.
Compared to the high effort for global clocking of a purely synchronous system in local
synchronous islands skew optimization of the clock signal is much easier to attain. Although
GALS simplifies the clock distribution to some extent, some other issues are still left. The
need for a particular oscillator for each synchronous island adds additional mechanical
components (quartz oscillators) to a system which clearly decreases reliability of the whole
design. As an alternative to the error-prone quartz oscillators (which are sensitive to, e.g.,
vibration, temperature, shock, etc.) on-chip RC-oscillators could be used. However, RC-
oscillators are known for their strong dependence on operating conditions like temperature
and supply voltage which leads to frequency changes in the range of 10 to 30%. There are
several issues in the context of the local clocking of GALS systems. On the one hand the
extremely unstable clock signal of RC-oscillators might be a problem for many applications.
On the other hand, there are mechanical issues with quartz-oscillators which are known to
be problematic in harsh environments like the aero-space domain. In general, if compared
to a synchronous system the GALS concept has two major disadvantages. First of all, a

2To be more precise, strict DI circuits offer only very limited functionality. Therefore, implementations
typically follow the quasi delay insensitive (QDI) approach which, however, introduces a constraint for
forking paths [58].

Chapter 1: Preface 7

oscillator
synchronous

island Fu1

synchronous

island Fu2

synchronous

island Fu3

synchronous

island Fu4

globally

asynchronous

interconnect

oscillator

oscillator

oscillator

Figure 1.5: Globally asynchronous locally synchronous (GALS) architecture

GALS design does not implicitly provide the convenient common notion of time within
the system which most hardware designers are used to and design tools are made for.
All clock sources are free running— no synchronization precision among the clocks can be
assumed as they may drift arbitrarily apart from each other. As long as communication
only affects a local island there is no problem and everything stays the same way as
in a synchronous design. However, with communication leaving the bounds of a local
island’s clock domain and asynchronously traversing the chip to another island introduces
the need for synchronization. The fact that the interface between globally asynchronous
communication and locally synchronous data processing has to incorporate some sort of
synchronizer circuits poses the second, probably the most severe disadvantage of GALS.
Unfortunately, synchronizing clock domains with arbitrary, possibly changing, relation to
each other, cannot be solved in a safe way. Metastability issues might even upset the
synchronizer circuits [41] and can only be made more unlikely by adding synchronizer
stages. Taking parameter variations and clock jitter into account synchronizers have to be
designed very conservatively, thus introducing significant performance penalties into the
asynchronous/synchronous interfaces.

Recent synchronizer implementations incorporate sophisticated designs using stoppable
(pausable) and/or stretchable clocks [22, 66] to reduce performance loss due to synchro-
nization.

1.3.2 Interconnected rings and oscillators

This concept proposed by Maza and Aranda in [61, 62] also addresses the difficulties of
synchronous clock distribution in GHz designs and presents an alternative approach for
generating and distributing clocks. The design relies on the self-oscillation property when
interconnecting an odd number of inverters in a ring topology (shown in Figure 1.6) and
achieves high clock frequencies due to the simplicity of the design. Inverter and buffer
placement of the proposed architecture determines wiring costs (in terms of wire length),
speed and skew of the generated clocks. The design especially fits as on-chip clocking

8 1.3 Related design approaches

Figure 1.6: Interconnected ring oscillator architectures

scheme for the previously introduced GALS systems. It can be seen as a refinement of the
GALS, RC-oscillator clocking. Due to the fact that all inverters of the clock generation
scheme are interconnected directly (locally) or indirectly (globally, through some additional
inverter stages) with each other, the local islands of a GALS system cannot arbitrarily de-
synchronize (at least in the fault-free case). This property severely eases synchronization
within the GALS design since the synchronizers can take advantage of the fact that the
local clocks are not entirely unrelated.

1.3.3 The distributed clock generator

The scheme of a distributed clock generator (DCG) introduced by Fairbanks and Moore
[24, 25] represents a special form of asynchronous FIFO implementation for the purpose
of on-chip generation and distribution of a synchronized clock. Similarly to the approach
by Maza and Aranda, interconnected clock generation hardware is distributed in a grid
all over the chip, but the locally generated clocks are generated at approximately the
same instant having only small skew. Every DCG instance is interconnected with its
four neighbors and half of the DCG units are initialized with a clock token. Due to the
asynchronous FIFO implementation of each DCG the so-called Charlie effect [25] ensures
that clock tokens are passed over to neighboring nodes in a synchronous way, generating a
chip wide synchronized clock signal (the Charlie effect describes the force that slows down
a subsequent token within a FIFO if it is closing in on a previous one).

1.3.4 Purely asynchronous design

Asynchronous design styles [43] are considered a viable alternative for synchronous design
in the future. This is at least true for special application fields like low power circuits [56].
Moreover, some recent work [17, 86] shows the general applicability in high-speed design.
With asynchronous design the burden of clock distribution can be entirely eliminated and
the clock tree be substituted by far less timing critical local handshake signals. Param-
eter variations are much less problematic in the context of, e.g., quasi delay-insensitive

Chapter 1: Preface 9

circuits [59] since only performance but not the correct function is influenced by varia-
tions. Furthermore, the inherent robustness of asynchronous design styles allows to ad-
dress the issue of increased failure rates in future VLSI technology [32,48] to some extent.
On the downside of asynchronous design the manifoldness of design styles (bounded de-
lay, quasi delay-insensitive, scalable delay-insensitive, etc.) prevent a generally accepted
methodology. The huge diversity in asynchronous design styles additionally leads to lack-
ing design and verification tools which further handicaps the wide-spread usage. Moreover,
non-negligible area overhead, higher design complexity and the more intricate circuit test-
ing also have to be mentioned. Despite the fact that a certain robustness is inherent to
asynchronous designs, established techniques, like the majority voting of triple modular
redundancy schemes (TMR), for implementing fault tolerance cannot be directly applied
to asynchronous systems. This limitation is based on the fact that sometimes it might not
be clear if data to be voted is faulty, e.g., missing due to a crashed sender, or if it simply
is late [18].

1.3.5 Discussion

In summary, none of the above described alternatives to globally synchronous clocking
sufficiently addresses the reliability issues of multiple transient and permanent faults that
are upcoming with current and future technology scaling. In the presented methodologies
the incorporation of mechanisms for fault tolerance and a special focus on robustness
to cope with faults as well as parameter variations is mostly lacking. GALS in general
has issues with interfacing multiple uncorrelated clock domains (synchronizer problem),
furthermore, the lacking global time severely complicates the design process (which is also
the case for purely asynchronous approaches). The interconnected rings and oscillators as
well as the distributed clock generator approach are not able to cope with failures. To
be able to tolerate arbitrary failures in a clock synchronization process theory shows that
almost fully connected networks are needed [23] which is clearly not fulfilled by these two
approaches. Therefore, a transient fault might lead to major clock deviation, over-clocking
phenomena or could even stop the whole clock generation process. Table 1.1 summarizes
the characteristics of the discussed design methodologies.

In the face of the challenges introduced at the beginning of this section and trends
in semiconductor technology which lead to more powerful but also potentially less robust
designs, the work described in this thesis focuses on the development of a robust clocking
scheme for future dependable systems. Therefore an approach is employed which provides
local synchrony similar to GALS. Compared to GALS the distinctive feature given by
the enhancement that a globally distributed fault-tolerant time base (with slightly relaxed
synchrony assumptions) is maintained also. The ongoing miniaturization and the speed-up
of digital circuits in conjunction with accompanied adverse effects of technology scaling,
suggest to incorporate mechanisms for fault tolerance to attain reliable systems. Especially
in— but not limited to— safety- and mission-critical environments like in the automotive
and aerospace domain robustness against faults is of utmost importance.

10 1.4 Fault tolerance

Table 1.1: Comparison of design methodologies

variation fault design/area established
robustness tolerance overhead design method

purely synchronous no no none yes

GALS partially no
small

somewhat
(synchronizer)

interconnected rings partially no
small no

(inverter chains)
distributed clock

partially partially
small

no
generator (DCG units)

purely asynchronous yes no
large

somewhat(multi-rail coding and
REQ/ACK scheme)

1.4 Fault tolerance

Technological advancements, especially in the domain of computer design, introduce in-
creasingly complex systems into everyday life. Cell phones, personal computers, cars,
airplanes, (nuclear) power plants or even microwave ovens, for instance, are equipped with
at least one, but more often a set of interacting electronic processing unit(s) executing com-
prehensive program code. As systems get more and more complex, the chance of failure
of a single component— affecting the proper operation of the whole system— increases
steadily. A failing cell phone would at least be annoying but usually not dramatic. In
contrast, if the brakes of a car or the controls of an airplane fail due to a glitch in the
control system lives are at stake. Therefore, fault tolerance is an important design aspect,
at least in modern safety-critical systems. Further, it has to be noted that in the face of
increasing failure rates of modern VLSI technology even non-critical, e.g., multimedia de-
vices, will soon be augmented by fault tolerance mechanisms to allow for proper operation
with reasonable failure rates [15, 77].

In the previous paragraph two important terms, failure and fault have been used with-
out clear distinction. To treat these important items in more detail a short definition for
fault, error and failure will be given below. The definitions (following [3]) will be used
throughout the rest of this thesis.

Definitions of failures, errors, faults: If a system fails, its output behavior deviates
from the specified characteristics— a failure can be observed at the interface. The
cause of a failure can usually be traced back to an erroneous state within the system
itself which led to the incorrect output. An error can therefore be defined as an
unintended/corrupted internal state of the considered system. The cause for an error

Chapter 1: Preface 11

is called fault which may indirectly lead to a failure if it is not masked in some way.
The origin of faults can be manifold ranging from physical effects, e.g., broken wires,
EMI, etc., over handling faults to design faults.

Many different definitions for fault tolerance and fault-tolerant computing can be found
in literature, but the essential part is similar for most of them [3,50,78]. A system can be
considered fault tolerant if it continues proper operation even after a fault has occurred—
the fault does not lead to a failure. In other words, a fault that would affect the system’s
interface behavior is handled before it can propagate to the output.

Fault tolerance usually relies on error detection and some form of redundancy to cope
with the erroneous data— via replicated components and/or repeated computation. An
example for an approach using hardware replication is given by the widely used Triple
Modular Redundancy (TMR) scheme. In TMR processing units are triplicated and the
outputs are compared via a special voter circuit which is able to mask the failure of one
component if both other replicas operate properly. Time diversity is also a method for
achieving fault tolerance, e.g., repeated processing of data on the same hardware can mask
short noise effects (at the price of decreased overall throughput) as long as no permanent
faults are present. An important point regarding fault tolerance which has been neglected
so far is concerned with the fault hypothesis. The fault hypothesis specifies assumptions
about number and types of faults that a fault-tolerant system must be able to tolerate
[50]. These assumptions have major impact on the fault tolerance concept of the system.
Therefore, the fault hypothesis has to be thoroughly defined during the design phase,
because faults not covered by the assumptions, but which may occur in real world scenarios,
may bring the whole system fail.

Assumptions on the nature and type of failing components in the context of VLSI
hardware design are usually classified using several different types of fault models.

1.4.1 Fault models in VLSI design

Fault models typically applied in VLSI consider faults on the abstraction level of single
gates or transistors. Where a set of interconnected gates forms a circuit. If a gate or
interconnect stops to work in its intended way a fault has occurred. It has to be noted
that in the context of this fault classification only static fault scenarios are considered, i.e.,
once a component is affected by a fault, it will stay faulty. The most commonly treated
faults are introduced below.

stuck-at fault There are two types of stuck-at faults, the stuck-at-0/LO and stuck-at-
1/HI. A stuck-at-X fault occurring at time tF at signal S manifests itself in a way
that S takes on logic level X at time tF and is no longer able to change its value after
tF . Note that, if for example signal S is currently LO and a stuck-at-HI occurs, the
fault will generate one last erroneous transition to HI and remain there.

12 1.5 Distributed systems and algorithms

stuck-open fault A stuck-open fault appearing at tF disconnects the affected signal S
from its driving buffer which leads to an undefined voltage level, the signal is “float-
ing”. This floating state may lead to inconsistent perception of the logic level when
read by multiple inputs.

delay fault A delay fault increases or decreases the time a signal change needs to propa-
gate through the respective signal or gate. The altered timing behavior of the affected
component may lead to the violation of timing constraints in subsequent circuits.

bit-flip fault A bit-flip fault changes the logic level of a component to the opposite value.
This type of fault is usually treated with state-holding devices only, i.e., sequential
logic. A bit-flip fault occurring at time tF at a single bit storage component C
manifests itself in a way that component C takes on the inverted state of C prior
time tF .

1.5 Distributed systems and algorithms

Distributed systems are typically defined as a set of autonomous computer/computing
systems— often called nodes— that communicate and cooperate in some way with each
other [2, 85]. This definition includes wide-area networks (e.g., the internet), local-area
networks, multiprocessor computers as well as single VLSI chips. In general, this wide
range of very different distributed systems can be subdivided and classified by the node’s
grade of coupling. For instance, a multiprocessor system is coupled much tighter than the
internet. Another classification usually considers the purpose for building a system in a
distributed way. Here the reasons are manifold, spanning from simple resource sharing
over aiming at increased performance to the improvement of system reliability. As already
sketched at the beginning of this chapter, as well as in Section 1.4 on fault tolerance, the
improvement of system reliability is the main driving force for considerations within this
thesis.

If a stand-alone component fails, the whole computing task is affected. By replication of
computing nodes the overall reliability of a distributed system can be increased compared
to a stand-alone component. This enhanced resilience against failures is usually provided
by replicas performing the same tasks as the failed component augmented by some kind
of voting mechanism(s) to mask faulty outputs, hence compensating for failed nodes. In
contrast to the straight forward way of a single (stand-alone) component which performs
a computation task, this distributed processing of and voting on data has to be enabled
by incorporating elaborate algorithms coordinating all actions.

Algorithms operating in a distributed system have to cope with at least three main
difficulties if compared to traditional centralized algorithms. In centralized systems al-
gorithms usually have access to the global state of the system. This cannot be assumed
for distributed algorithms, which only have direct access to their own local state. Even
though state information can be exchanged between nodes, the state of other units may

Chapter 1: Preface 13

have already changed and therefore be invalid when the information arrives. The second
issue with distributed algorithms is related to synchronization or global time. Temporal
ordering of computations is provided naturally in a centralized system by their sequential
execution of tasks. In contrast, total ordering of events in distributed systems is sometimes
not possible, e.g., it cannot be determined which of two events occurred first, given timing
uncertainties incorporated with sending and receiving of data in a distributed system [51].
Another difficulty when dealing with distributed systems is given by non-determinism of
executions (e.g., due to failures). A centralized processing node’s operation sequence and
global state can usually be determined exactly. In contrast, a node of a distributed system
may process the same set of input data in a different way, for example by starting at a
different time depending on the current state of all other nodes.

1.5.1 Modeling distributed systems

When taking a closer look at the modeling of distributed systems, different computation
models can be identified. The main distinctive features are specified by the way nodes
communicate with each other and whether or not and what kind of timing assumptions
(e.g., synchronous, partially synchronous, asynchronous, etc.) are considered. Another di-
mension for distinction is given by the considered failures modes. However, the distributed
system models presented in the following paragraphs are at first introduced for systems
free of faults. Nevertheless, these models can be augmented for the faulty case by adapting
them for certain failure models.

A widely-used system model operates on message-passing [2]. In message-passing sys-
tems, n nodes p0, . . . , pn−1 communicate with each other by sending messages over com-
munication channels. Typically a communication channel is modeled as bidirectional link
between two nodes and the specific interconnections of nodes define the topology of the sys-
tem. An algorithm in a message-passing system is specified by its program code executed
on the system’s set of n nodes, whereas each node can be modeled as state machine with a
set of states Qi. A node may perform actions like receiving from and sending messages to
neighboring nodes as well as executing local computations. Each node contains as many
input and output buffers as it has incoming connections from and outgoing links to other
nodes, respectively. The outgoing buffers store messages already sent by the node that
have not yet been delivered to the receiving node, similarly input buffers hold messages
until they are processed. Transitioning from one state of a node to the next involves the
processing of all messages stored in the input buffers, performing computation events, up-
dating the local state and sending at most one message to neighboring nodes (by placing
the message(s) into the respective output buffers). The behavior of a message-passing
system over time is modeled as an execution, with an execution defined as an alternating
sequence of events (computation and sending) and configurations, where configurations C
are given by the states of the nodes C = (q0, q1, . . . , qn−1) with qi being the state of pi.
What is usually demanded from a correct distributed algorithm is that some conditions
are valid for its execution. The safety condition has to hold for any reachable sequence

14 1.5 Distributed systems and algorithms

of configurations and events, and states that “nothing bad ever happens”. Additionally, a
liveness condition has to hold at least several times and can be translated to, “eventually
something good happens”. To illustrate these two conditions consider a street crossing
with two traffic lights as an example. A safety condition has to ensure that both traffic
lights will never show green at the same time, while a possible liveness condition states
that the a traffic light eventually changes from red to green. So far no assumptions on
the timing of messages have been made. However, as initially stated, asynchronous, syn-
chronous and some systems between can be distinguished. Asynchronous message-passing
systems can be characterized by the fact that there is no fixed upper bound on message
delivery and computation time. Therefore, algorithms designed for this kind of model have
to operate without knowledge of such bounds. In contrast to the asynchronous model, a
synchronous system works in a lock-step manner, that is, executions are partitioned into
rounds. Relying on this round scheme, depicted in Figure 1.7, where every node can send
one message to each neighbor and may perform a computing step on received messages,
gives a convenient model with only little uncertainty. A problem that in the context of
an asynchronous model is initially quite intricate may be substantially simplified by map-
ping it to synchronous lock-step rounds. However, from this the challenge of establishing
this synchronous round scheme emerges. Unfortunately, for most distributed systems in
practice a truly synchronous system cannot be achieved. On the other hand some dis-
tributed computing problems might not be solvable in a purely asynchronous framework,
e.g., distributed consensus in the presence of faults [30].

node p0

node pi

node pn-1

round k-1 round k+1round k

..
.

..
.

send(msgs)

receive

compute

receive

compute

receive

compute

send(msgs)

Figure 1.7: Execution of a synchronous message-passing algorithm

Shared memory [2] based distributed systems rely on communication via a set of shared
variables. Various types of variables can usually be distinguished, where a characterization
can be given by the values returned from and the operations allowed on these variables.
Typically applied types of shared variables allow operations like read and write, however,
several more complex functions can be employed. Similarly to the message-passing, sys-
tems of n nodes p0, . . . , pn−1 are treated as state machines with executions represented by
alternating sequence of configurations and events. Input and output buffers are not needed

Chapter 1: Preface 15

for shared memory systems, however, m registers R0, . . . , Rm−1 representing shared vari-
ables are employed. Typical operations on registers are for instance reading a value v from
register R, returning v and leaving R unchanged, or writing a new value v to R, whereas
this operation does not return a value. In contrast to the message-passing approach, the
configuration C in a shared memory system is defined by C = (q0, . . . , qn−1, r0, . . . , rm−1)
with qi again denoting node i’s state and rj being the value of register j. The events
within an execution are computations which follow a specific scheme starting with node
pi issuing an operation on a variable determined by pi’s actual state qi. Afterwards, pi’s
state changes according to pi’s current state and the return value of the shared memory
access. Analogous to the message-passing approach, executions of a correct algorithm have
to fulfill safety and liveness conditions.

1.5.2 Distributed systems failure models

To augment the modeling techniques presented above by the notion and effects of faulty be-
havior various established component failure models may be applied. The most commonly
used component failure models for distributed systems research are introduced below.

clean crash failures A node p is said to have cleanly crashed at time t if all messages sent
by p before time t are correctly received by all other non-faulty nodes. Furthermore,
all messages from node p sent at time t or later are not received by any node.

crash failures These type of failures are also called unclean crash. Crashes are charac-
terized by scenarios where node p is said to have crashed at time t if all messages sent
by p before time t are correctly received by all other non-faulty nodes. Furthermore,
a message from node p sent exactly at time t is received only by a subset of the
distributed system’s nodes and messages sent by p later than t are not received by
any node.

omission failures A node p is called omissive at time t, if messages sent by this node
later than t are only received by a subset of the remaining non-faulty nodes of the
distributed system. Hence, the omission failure model allows that messages are per-
ceived asymmetrically for an unbounded number of times.

Byzantine failures represents an unrestricted failure type. Therefore, a node p affected
by a Byzantine failure at time t may show arbitrary malicious behavior. This behavior
mainly extends the crash and omission failure models by the threat of artificially
generated additional and/or inconsistent faulty messages.

The failure models presented so-far are within the typically applied group of static fail-
ure models, that is, a component once faulty will stay faulty forever. However, sometimes a
more detailed failure analysis of real-world scenarios is necessary, treating temporary fault
effects as well as repair & recovery strategies. The formal analysis algorithms in conjunc-
tion with dynamic failure models, however, is much more complex than the treatment of
the (classical) static case [1, 4, 7].

16 1.6 Fault-tolerant clocking

1.6 Fault-tolerant clocking

In the synchronous design paradigm introduced in Section 1.2.1 the global time is provided
by the clock signal which originates from a single source. This clearly forms a single point of
failure. To maintain the convenient because well established synchronous design paradigm,
but also to get rid of its single point of failure, some kind of fault-tolerant clock has to be
supplied— for example derived from multiple clock sources. Taking a look at processing
nodes of distributed systems reveals that they usually have no access to a central clock.
However, some common notion of time is often crucial for, or at least eases solving several
types of distributed problems. Similar to the synchronous logic design, multiple clock
sources, for instance one at each node, augmented by clock synchronization techniques can
be used to obtain a globally synchronized clock (among all non-faulty nodes). Admittedly,
synchronizing autonomous local clocks in the presence of faults and varying operation
conditions can be quite problematic and hast at least some constraints and restrictions
due to changing and/or unknown interconnection delays which have to be dealt with.
Nevertheless, having the local clocks synchronized to each other improves the resilience
of the whole distributed system against faulty processes (synchronous algorithms operate
in rounds, hence a fault of, e.g., a crashed process can immediately be detected when an
expected message is missing in the round schedule).

A closer look on the oscillators which actually form the local clock sources reveals two
types of unintended effects:

clock shift denotes the effect of a certain offset between clocks despite the fact that the
clocks might run at exactly the same frequency

clock drift refers to the effect that a clock does not operate at its designated speed (it
might be slightly off the nominal frequency if compared to a reference clock)

For example, the adverse impact of parameter variations in crystal oscillators might
lead to drifting clock frequencies. The typical drift rate— that is the deviation from a
perfect reference clock— of e.g., a quartz oscillator, is in the range of 10−6 (one second
offset in a period of about 277 hours). Whenever clock shift or drift is observed it leads
to inhomogeneous advancement of the clock among a set of oscillators and therefore to
different progress compared to real time, cf. Figure 1.8. The fact that physical clocks
drift apart, and additionally the possibility for clock sources being faulty, make it evident
that even an initially perfectly synchronized system will deteriorate after some time if no
countermeasures are provided.

Clock synchronization schemes counteract the adverse effects of shift and drift in spite
of faults by applying different strategies. The synchronization algorithms usually employed
can coarsely be classified by the way they derive the local adjustments for the involved
clocks. Within the class of deterministic approaches many of the convergence algorithms
follow, for instance, a fault-tolerant averaging strategy over clock values, while consistency

Chapter 1: Preface 17

clocking

network

Figure 1.8: Example for de-synchronized clocks

schemes use a distributed agreement approach (more details on the clock adjustment strate-
gies will be presented in Section 2.2). A common part for both approaches is the fact that
clock adjustments are performed periodically following so-called resynchronization inter-
vals. In contrast to the mentioned deterministic (convergence and consistency) schemes,
there are also probabilistic algorithms for clock synchronization which rely on knowledge
about delay distributions.

A more thorough examination of the vast variety of fault-tolerant clock synchronization
approaches, ranging from pure software over hybrid to pure hardware schemes, analyzing
their properties and special features will follow in Chapter 2.

1.7 Problem definition and contribution

Existing clocking approaches do not, or do not sufficiently address fault tolerance and ro-
bustness issues as they seem to be necessary for modern chip design. Hence, the mainline
of the conducted research is to design and implement a distributed fault-tolerant hardware
clocking scheme without single point of failure. Furthermore, evaluations and measure-
ments to characterize the prototype ASIC and relating this data to properties derived
in advance should be used to validate the proof-of-concept implementation of the fault-
tolerant clocking scheme. In addition, a set of general conditions and prerequisites have to
be taken into account for the development process following the research topic.

• The target technology is given by an 180nm ASIC fabrication process which is par-
ticularly suited for radiation hardened design.

• A single instance of a distributed clock generation unit is implemented per ASIC to
keep the die size and thus manufacturing costs as low as possible3.

• The ASICs have to be configurable for different numbers of active nodes in the clock
generation system.

3The whole distributed system comprising several nodes could have been implemented on a single die,
but the improved accessibility of a single node per chip better facilitated the prototype design.

18 1.7 Problem definition and contribution

• Improved access to internals of the design have to be provided to facilitate detailed
evaluations and measurements.

• The design has to follow a fully asynchronous implementation since neither external
clock sources (e.g., quartz) nor internal (on-chip RC-) oscillators should be used due
to their already stated problems and limitations.

The main contribution of the research conducted in the course of this thesis is closely
related to the research project Distributed Algorithms for Robust Tick-Synchronization
(DARTS)4 in whose context a novel fault-tolerant clocking scheme has been designed,
formally proven, simulated, implemented and evaluated. The described approach, depicted
in Figure 1.9, of a hardware implemented distributed algorithm as fault-tolerant alternative
to common global clocking represents the foundation of the proposed approach. The focus
of the work in this thesis is mainly concerned with hardware design issues and treats the
development and the evaluation of the clocking approach. In particular, the mapping
of software-based algorithms to an appropriate asynchronous hardware implementation
presents a major part of the contribution. Furthermore, the assessment of the resulting
tick generation scheme and the validation of formally derived performance and correctness
measures represent other important parts of the conducted work.

C
lo

ck

T
re

e

Oscillator

Fu1
Data Bus Fu3

Fu2

TG-Algs

Fu1 Data Bus

Fu3

Fu2
TG-Net

Figure 1.9: Replacing synchronous clocking by fault-tolerant distributed tick generation

As Figure 1.9 suggests, the elaborate global clock-tree of the purely synchronous ap-
proach with its single (external) oscillator as well as the strong and power consuming
buffers is replaced by dedicated tick generation units. In more detail, a tick generation
network (TG-Net) provides a less critical as well as less power-hungry replacement for the
synchronous clock rails. Reduced power consumption is expected as no tight synchrony
has to be achieved— there is no need for strong buffers, while enhanced robustness is pro-
vided due to the fact that single rails of the TG-Net might fail arbitrarily. Tick generation
hardware modules (TG-Alg) attached to local functional units (Fui) and interconnected
via the TG-Net implement a clock/tick generation algorithm. This distributed algorithm
for generating a mutually synchronized clock that is tolerant to multiple Byzantine faulty

4The project DARTS received funding from the Austrian bm:vit (FIT-IT, contract no. 809456-
SCK/SAI). DARTS web-page: http://ti.tuwien.ac.at/ecs/research/projects/darts/

Chapter 1: Preface 19

nodes and links has been implemented in asynchronous hardware and fabricated using a
recent 0.18µm ASIC manufacturing process which is radiation-hardened by design. Fur-
thermore, the algorithm has been validated and characterized by extensive simulations and
measurements of single nodes as well as the whole ensemble of eight nodes. Each node
of the DARTS clocking scheme is implemented by a single chip holding an instance of
the (same) distributed clock synchronization (in fact, clock generation) algorithm. The
tick-generation ASICs have been designed to be operated in a configurable cluster of up
to eleven nodes forming a synchronized clock resilient against up to three Byzantine-faulty
components. Note that, as already mentioned above, in the scope of this thesis a cluster
of eight nodes has been utilized for the experiments and measurements— a design of eight
nodes is able to tolerate up to two Byzantine faults which is sufficient, less costly and
more cost and hardware efficient to provide the targeted proof of concept of a multiple
Byzantine fault-tolerant clocking scheme. Investigations as to which extent failure models
other than the Byzantine model are appropriate when dealing with hardware faults are
also covered within this work. Especially savings in terms of design costs— particularly
the gain in chip area and lower system complexity— are addressed in this context. An-
other valuable insight gained while investigating robustness and stability characteristics of
the DARTS clocks, namely conditions and properties for stable and oscillating behavior in
asynchronous systems respectively, is addressed within this thesis.

1.8 Structure of the thesis

After an introductory motivation for this work a brief treatment of the basics of syn-
chronous and asynchronous logic design has been given. The survey on related design
approaches pointing out their deficiencies is followed by an explicit presentation of the
research problem, as well as an overview of the contribution of this thesis concludes the
preface. The remainder of this thesis is organized as follows:

Chapter 2 gives a general overview on distributed clock synchronization starting with
the introduction of the most important terms. Furthermore, established clock synchroniza-
tion approaches are presented, classified and related to the research topic. The special class
of tick generation schemes and algorithms are surveyed more thoroughly in the context of
different failure models. Moreover, the challenges arising with the targeted fully asyn-
chronous hardware tick generation scheme are discussed. In Chapter 3 the architecture of
the chosen tick generation algorithm is developed. In particular, the design considerations
yielding the building blocks of the asynchronous hardware implementation are treated in
detail. The chapter concludes with the presentation of the formal modeling framework and
its application to deriving the refined algorithm’s correctness and performance measures.
After the identification and partitioning of the algorithm’s building blocks shown before,
Chapter 4 presents the implementation of the HITS ASIC design. Additionally, compar-
isons to alternative tick generation implementations are provided. In order to enhance
testability and to provide improved evaluation capabilities, the hardware components pre-

20 1.8 Structure of the thesis

sented in Chapter 5 have been added to the tick generation design. Exhaustive assessments
of the tick generation prototype’s properties has been a crucial task, therefore Chapter 6
provides the theoretical and operational background for the measurements and validations
conducted in Chapter 7. In the final Chapter the presented work is concluded by giving
an outlook on open issues and related research topics.

Chapter 2

Distributed Fault-Tolerant
Clocking

The only reason for time is so that everything doesn’t happen at once.

Albert Einstein

THE ABILITY to reliably order events within a distributed system, even in the pres-
ence of faults and unreliable communication and components, is a prerequisite for the

correct operation of many critical applications, e.g., real-time factory control, drive/fly-by-
wire, accounting systems, etc. To provide each distributed component with the required
time base that allows for a consistent view of events and states of the distributed system,
some underlying coordinating technique has to be created.

The synchronization of distributed clock sources with the objective to achieve a common
notion of time has been an active research topic in computer science from the late 1970s up
to now. A wealth of existing research deals with theoretical results for clock synchroniza-
tion in general and also transforms these results with respect to faults and distinct features
and peculiarities of the underlying system models, as well as requirements given by the
implementation technology. The features of existing schemes for fault-tolerant clocking are
multifaceted and can be classified as ranging from deterministic to probabilistic approaches,
dealing with different kinds of fault models (e.g., crash, omission, and Byzantine), aiming
at different implementation platforms (hardware, software, hybrid). The variety in clock
synchronization schemes leads to a broad spectrum of synchronization and fault-tolerance
properties achieved by the individual approaches. For instance, the number of faults that
can be tolerated largely depends on the fault type as well as the overall number of compo-
nents involved. Similarly, the quality of synchronization depends on measures like system
topology, implementation technique (e.g., hardware, software) and several other properties.

21

22 2.1 Definitions and common terms

Overall this variety may easily lead to a difference in synchronization quality of distinct
approaches by a factor of 100 and even more.

The following subsections are devoted to the introduction of a set of clock synchro-
nization algorithms to develop the most important terms, features and properties of fault-
tolerant clock synchronization. Furthermore, the distinct class of tick-generation algo-
rithms will be stressed in more detail, since they form the algorithmic foundation of the
novel clocking scheme presented in this thesis. Moreover, the challenges that arise when
implementing an algorithm entirely in (asynchronous) hardware, while it has primarily
been designed as software approach, are discussed.

2.1 Definitions and common terms

A distributed system as it is considered further on, is defined by a set of n nodes (processing
units/processors) that are interconnected by communications links. If not stated otherwise,
each node has access to a dedicated local clock source (e.g., a count register that is advanced
by the oscillations of a quartz). Without going into details of the physical implementation
of the local clocks, it is assumed that no global time is available to the processing nodes.
The high-speed hardware clock (operating at micro-tick level) artificially relates real-time t
to a discrete logical clock time Cp(t) = T with a certain time granularity (makro-tick level)
and bounded drift ρp (bounding the deviation from its nominal frequency). As already
roughly sketched in Section 1.6, crystal-based oscillators which generate the local clocks
for each node are not flawless in the way that their speed may drift. In detail, bounded
drift means that within an interval ∆t clock time deviates from real-time by a certain
amount specified by the drift rate ρ. For crystal oscillators ρ typically ranges from 10−5 to
10−6.

t

perfect clock

tclock

(a)

t

p

q

tclock

(b)

Figure 2.1: Accuracy and precision

Figure 2.1(a) depicts the deviation of a single clock from real-time. Moreover, a bound
for this divergence, further called accuracy, is shown. Considering that a clock’s speed typ-
ically deviates from the nominal value illustrates that even the synchronization of initially

Chapter 2: Distributed Fault-Tolerant Clocking 23

perfect synchronized clocks might deteriorate over time. The reasons for the desynchro-
nization are given by variations in the clocks’ physical structure as well as effects of power
supply and temperature fluctuations. To maintain bounded precision π (cf. Figure 2.1(b))
for all non-faulty clocks of nodes p, q and all real-times t, explicit synchronization measures
(e.g., following a periodic resynchronization strategy) have to be taken. The precision can
be defined as the smallest bound such that

| Cp(t) − Cq(t) | ≤ π (2.1)

holds, with Cp and Cq being the logical clock values of node p and q, respectively, i.e.,
the clock values of any two clocks is never off by more than π ticks. This synchronization
problem can generally be defined as a set of constraints on the sending order of clock
events/messages. Following Lamport’s definition [52, 53], an algorithm solves a synchro-
nization problem, if and only if constraints like precision π and accuracy are fulfilled. A
further typically applied confinement, known as causality, is that a producer node has to
send data before a consumer node may process the same portion of data.

A restriction to the general framework to better represent typical implementation
topologies is that the only way for p to obtain q’s clock value is by (direct or indirect)
communication with q, e.g., by virtue of exchanging clock ticks or timing messages. For
this kind of synchronization data, end-to-end send/receive delays within an interval [d, d+ε]
with a delay uncertainty ε— or alternatively, probability distributions of these delays—
have to be assumed to be able to reflect meaningful real-world conditions. Furthermore,
the end-to-end delay of message m is denoted by δ(m). The uncertainty in the message de-
livery time yields that only approximate time values can be obtained with respect to other
nodes in a system. Theoretical results on clock synchronization reveal that the worst-case
precision largely depends on the delay uncertainty ε, the drift rate ρ, the severity and
number of failures f , as well as the resynchronization period and granularity of the un-
derlying hardware clock [23, 55]. Furthermore, it is shown by impossibility results that no
(deterministic) clock synchronization algorithm can achieve a precision

π ≤

(

1 −
1

n

)

ε (2.2)

Moreover, it has been proven in [29] that building a system tolerant to f Byzantine failures
requires at least n ≥ 3f + 1 nodes and a 2f + 1-connected network.

2.2 Clock synchronization

Several approaches for clock synchronization algorithms have been proposed in scientific
literature, a general overview can be found in [73] and [79]. In general, two approaches for
synchronizing clocks can be employed:

• free running high-speed clock (micro-tick) with adjustable clock divider generating
synchronized makro-ticks

24 2.2 Clock synchronization

• direct modification of the (primary) physical clock source (voltage controlled oscilla-
tor)

The synchronization schemes are usually classified according to the way the clock correction
values are derived. Consistency-based and convergence averaging plus non-averaging as
well as probabilistic and phased-locked loop (PLL) approaches are distinguished.

Consistency-based algorithms like the COM algorithm presented in [54] or the clock
synchronization algorithm of the SIFT (Software Implemented Fault Tolerance) com-
puter [90] are targeted at achieving agreement on clock values among non-faulty nodes
by the application of an interactive consistency algorithm. The concept behind this
approach is that every node dispatches its private clock value in a round-based man-
ner throughout the system. This is achieved by direct communication as well as for-
warding of clock values by other nodes, taking several rounds of message exchange.
For example, in a setup of four nodes every node would get three messages with node
p’s clock value (one direct message and two forwarded by the remaining nodes). The
agreement process has to ensure that all correct nodes decide on the same private
clock values for every node— in the case that a correct node sent its clock value, it
clearly has to agree on the initially dispatched value. At the end of each resynchro-
nization interval, after the application of the message exchange and the agreement
function, each node estimates its median skew with respect to the other nodes and
makes appropriate adjustments to the local clock before initiating the next resyn-
chronization process. Note that the number of message exchange rounds to achieve
consistency in a system that allows for f Byzantine faults is given with f + 1 which
considerably limits synchronization performance.

Convergence averaging algorithms are similar to the consistency-based scheme in the
way that every node broadcasts resynchronization information at a predefined
algorithm-specific time. After collecting and time-stamping the incoming resynchro-
nization messages over some given period of time, each node computes a correction
value for the local clock according to its own clock and the time values obtained from
the other nodes. The actual correction is usually performed at the end of the resyn-
chronization period by setting the local clock to the previously computed value. The
fault-tolerant average function that is applied to derive the clock correction value
essentially constitutes the difference among the convergence averaging approaches.
In [54] the arithmetic mean— augmented by a threshold function to limit the impact
of excessive faulty clocks— is used to compute the fault-tolerant average. In contrast
to that, in [55] the f largest and f smallest values (where f is the maximum number
of faulty clocks to be tolerated) are discarded before deriving the actual average for
the clock correction. This fault-tolerant mid-point algorithm has also been used in
the MAFT (Multi-Computer Architecture for Fault-Tolerance) design [49]. In gen-
eral, the most severe limitation of convergence averaging algorithms is given by the
need for a known upper bound on the clock read error (message uncertainty ε) since

Chapter 2: Distributed Fault-Tolerant Clocking 25

this directly influences the attainable precision, however, this value is (at least in
large distributed systems) hard to obtain.

Convergence non-averaging clock synchronization algorithms also follow a round-based
resynchronization strategy. However, instead of computing the averages of clock val-
ues and applying corrective measures at fixed intervals, each node updates its clock
either if the underlying hardware clock has reached a predefined resynchronization
time, or if a valid resynchronization message from another node has arrived. In the
case of the algorithm by Srikanth and Toueg [81] each node considers all messages
suspicious and only re-synchronizes after receiving messages from at least f +1 other
nodes indicating that they have already re-synchronized. This ensures that the clock
of at least one non-faulty node has reached the time for resynchronization (f again
represents the maximum number of Byzantine faulty nodes in the system). The worst
case precision π of convergence non-averaging algorithms is a strong function of the
maximum message delivery time between any pair of non-faulty nodes. Therefore,
algorithms of this class are not particularly suitable for large networks with multiple
message hops if tight synchronization has to be achieved.

Probabilistic clock synchronization algorithms are targeted to provide a remedy for the
most restricting limitation of the deterministic approaches presented so far, namely
the clock read error (which is directly related to the message uncertainty ε and
therefore limits precision π). The algorithm introduced by Cristian [16] is based on
the idea that the message delay’s probability distribution is known and that each node
can take numerous readings of the other nodes’ clocks to estimate the clock read error.
This scheme allows to achieve arbitrarily small worst-case skew, however, it comes at
the price of high computational effort and increased message count. Furthermore, the
algorithm cannot guarantee synchronization, in fact there is a non-zero probability
that synchronization is lost. Moreover, since the approach follows a master/slave
architecture it is not fault-tolerant unless additional measures for fault-detection and
a process for electing a new master clock are provided. A strategy for this purpose
proposed by Cristian is the introduction of master groups instead of a single master
clock.

Almost all of the algorithms presented above are usually implemented in software with
no, or rather little hardware support. Nevertheless, some hardware implementations as
well as pure hybrid approaches are noteworthy:

The four-clock design in [64] essentially presents a hardware implementation of the
convergence averaging algorithm of [55] using the fault-tolerant midpoint as averaging
function. Like other algorithms of this class initially synchronized clocks are required to
circumvent the formation of cliques at startup. In contrast to the underlying provable
correct clock synchronization algorithm which is able to tolerate Byzantine faults, some
restrictions apply for the hardware implementation. The skew between different clocks is
limited to a small number of ticks, furthermore, excessive clock jitter of the local clock in

26 2.2 Clock synchronization

the range of 10% of the period can upset the whole synchronization approach. Another
critical issue is given by the fact that interconnection delays among the four nodes adversely
affect the fault-detection capabilities.

A hybrid design incorporating a mostly software-based approach with some hardware
support for the time-stamping of incoming synchronization messages was presented in [45].
The distinctive features of this clock synchronization scheme are given by the hardware
supported time-stamping and a high resolution adder-based clock. The hardware assisted
time-stamping feature ensures that the clock read error is kept to a minimum. Additionally,
the adder-based clock, instead of just increasing the clock-register with every oscillation,
adds some adjustable value. Following this scheme allows the implementation of state as
well as rate correction abilities in an elegant way.

Phase-Locked loop clock synchronization aims at the direct adjustment of the oscilla-
tion frequency of the involved hardware clocks. For this purpose a voltage-controlled
oscillator, representing the clock source at its respective node, is controlled in a way
that it always stays tightly synchronized with all other nodes’ clock sources. In con-
trast to the clock synchronization schemes introduced above no clock-register and
counting mechanism is needed. All operations and adjustments directly influence
the up and down transitions of the oscillator. The common setup for the PLL ap-
proach is depicted in Figure 2.2. All clock signals originating in different nodes are
processed via an input logic block which essentially selects one of its inputs to be
the active reference clock. The subsequent phase detector uses the reference signal
in conjunction with its local clock to generate the voltage controlling the local os-
cillator’s frequency. As long as every node selects the same clock and adjusts its
local oscillator to this reference signal, the whole set of (non-faulty) clocks will stay
synchronized to each other. The condition that the same clock has to be chosen as
reference at all nodes denotes the most critical point, its violation can yield globally
unsynchronized cliques of clocks. However, even slightly skewed clock arrivals, e.g.,
due to crosstalk [27] might lead to inconsistencies among the nodes. Unfortunately,
when implementing a PLL-based clocking scheme in large network topologies or when
using modern clocking technology, delay jitter in relation to clock period might not
be negligible. The second limitation of PLL-based fault-tolerant clocking is given by
the fact that most approaches need fully connected networks, which i) can be very
costly in large topologies and ii) aggravates the issue of erroneously selecting different
reference clocks. Last but not least, the limited pulling range of every PLL, when
switching from one reference clock to another, has to be considered, too.

Several implementations presenting a wide difference in clock speed and synchro-
nization precision can be found in literature. The Fault-Tolerant Micro-Processor
(FTMP) [46] uses a four clock approach capable of tolerating one Byzantine failure.
However, due to the selection of the reference clock on the basis of the median this
scheme is not easily extendable to cope with multiple Byzantine faults. Another
implementation using four clocks and a digitally controlled oscillator was proposed

Chapter 2: Distributed Fault-Tolerant Clocking 27

input

logic

phase

detector

voltage

controlled

oscillator

clock

output

clock

inputs

...
...

Figure 2.2: Phase-locked loop hardware clock synchronization

in [88]. Again the selection of the reference clock (implemented by a voter circuit)
forms the most critical design component. The case of input signals experiencing
various skew at different nodes may lead to discrepancies in the voter inputs and
outputs with the possibility of de-synchronization of the system. Clocking schemes
able to tolerate multiple faults are presented in [14, 89] with both designs relying
on enhanced methods for selecting a reference. In [89] the whole clock network, the
input voting circuit as well as the phase detector are duplicated. This additional
redundancy in conjunction with an extra unit averaging the correction values pro-
vided by both phase detectors aims at increased robustness against delay variations.
The implementation proposed in [14] uses elaborate reference clock voting employ-
ing a local high-speed clock for sequencing and preselecting incoming remote clock
signals. Naturally, this capturing of signals across clock domains introduces the risk
of generating metastability issues in the voter/phase detector circuits.

Given all the presented algorithms and schemes for the generation of a fault-tolerant
time-base within a distributed system— with the dimension of this system ranging from
a single chip to the size of a worldwide computer network — it is obvious that no single
approach will be a feasible solution for all imaginable application fields. For instance, when
summarizing the presented schemes it has to be noted that, despite some mentioned issues
both, the hardware implementations of convergence as well as PLL-based clock synchro-
nization yield substantially better synchronization precision than software schemes. In fact,
the presented hardware approaches’ precisions are in the range of some ten nanoseconds
in contrast to several hundreds of microseconds of software-based designs.

In the light of the targeted research of this thesis, namely, the provision of a fault-
tolerant alternative to global clocking for VLSI computer chips, some of the clocking ap-
proaches presented so far can generally be ruled out due to various shortcomings. Recalling
the design requirements described in Section 1.7, following a software-based approach is
no viable option since the targeted solution is to directly provide a reliable high speed
clock to synchronous circuits. Consistency and convergence-based schemes and even more
demanding probabilistic algorithms require rather complicated computations and there-
fore are far too complex and costly to be directly built in hardware. Taking a closer look
at existing hardware implementations like the convergence-averaging approach in [64], or
PLL-based designs as [14, 89] reveals two major problems. At first, all of the presented

28 2.3 Tick generation

schemes require multiple clock sources, e.g., crystal oscillators as foundation of their oper-
ation. Again the requirements from Section 1.7 do not allow external clock sources due to
their limited reliability and question the stability of commonly used on-chip RC-oscillators.
Moreover, synchronizing multiple clock domains automatically introduces metastability is-
sues. Another limitation is given by the excessive skew expected for future VLSI chips
clock network, since it has the potential to create havoc within the above presented syn-
chronization schemes.

Unlike the schemes presented above a new strategy incorporating algorithms which are
computationally affordable and especially suitable for hardware implementation has to be
found. Moreover, the particular class of investigated algorithms has to ensure that the
troublesome local clock sources (oscillators) are no longer needed, while still being able to
provide a globally available synchronized clock. These requirements directly lead to the
class of tick generation algorithms which are presented in the subsequent section.

2.3 Tick generation

A distributed system implementing message passing can be classified as a tick generation
scheme if it satisfies a particular set of properties. In a tick generation system the char-
acteristics of each node’s message passing algorithm (with all nodes executing identical
copies) are the following. The algorithm consists of a set of rules which are triggered
whenever a message arrives at a node. These rules may possibly update the respective
node’s local memory as well as send messages to other nodes. Additionally, to represent a
tick generation approach the class of distributed systems is restricted to those which send
only messages of ascending natural numbers at each node, i.e., it is demanded that every
node p sends messages 〈0〉, 〈1〉, 〈2〉, . . . in the given order during its executions. However,
the properties presented so far are not necessarily sufficient to achieve synchronization
among all non-faulty nodes of a distributed system. A tick generation algorithm solves the
initially sketched synchronization problem if precision π and accuracy hold. Furthermore,
it is called a fault-tolerant algorithm if it maintains the conditions described above even
in the presence of faults. To give a distinct relation of tick generation to the hardware
clock synchronization methods presented in detail, the natural numbers of tick generation
messages tick(k) mod 2 can be seen as discrete up and down transitions of a PLL-based
clock synchronization approach.

An algorithm by Srikanth and Toueg [81] that actually fulfils all criteria for tick gener-
ation has already been mentioned in the context of non-averaging clock synchronization.
A detailed introduction of this approach is presented in Algorithm 1 and Algorithm 2.
Moreover, an in-depth description of the algorithms, which in conjunction with each other
implement a fault-tolerant tick generation approach, follows next.

Algorithm 1, the so-called non-authenticated clock synchronization part works in a way
that node p broadcasts message tick(k) as soon as its clock counter Ck−1(t) reaches the
value indicating that the next tick has to be issued. The internal clock counter is directly

Chapter 2: Distributed Fault-Tolerant Clocking 29

Algorithm 1 Non-authenticated algorithm for clock synchronization at node p [81]

1: variables
2: k : integer := 0
3: end variables
4: if Ck−1(t) = kP then //ready to start Ck

5: → broadcast(tick(k))
6: end if
7: if accepted the message(tick(k)) then //according to a selection/voting function
8: → Ck(t) := kP + α
9: end if

driven by a local oscillator. The round-based threshold value is given by kP , where P
denotes the predefined resynchronization interval. Due to the fact that a faulty local clock
source could, for example, erroneously speed up node p, the clock counter Ck(t) is set to
tick(k) (re-synchronized), only if an accepted tick(k) message has already been received
from another node (actually, Ck(t) is adjusted to kP + α where α denotes a constant
ensuring that the clock always steps forward in time). The execution described above is
also depicted in Figure 2.3.

t

r o u n d k - 1

C
k-1

C
k
=kP+

broadcast(k) accept(k)

=kP

r o u n d k

Figure 2.3: Non-authenticated broadcast execution at node p

The function responsible for “accepting” tick(k) messages, whose activation in return
leads to resynchronization and progress of the clock, is shown in Algorithm 2 and comprises
three parallel rules for message processing. In response to the reception of particular
tick(k) messages from at least f +1 distinct nodes, either via init or echo messages, each
node relays a echo tick(k) message to all other nodes (Relay rules). The actual generation
of an “acceptance event” for advancing the clock, however, requires the reception of at least
2f + 1 distinct echo tick(k) messages (Accept rules). It has been shown by Srikanth and
Toueg that in a system of n ≥ 3f +1 nodes Algorithm 1 in cooperation with the consistent
broadcast primitive of Algorithm 2 solves the clock synchronization problem, even in the

30 2.3 Tick generation

presence of up to f Byzantine faulty nodes if the conditions hold that:

• the local clocks’ maximum drift rate is known and bounded by ρ.

• message end-to-end delays are within a certain known bound of [d, d + ε].

• two specific timing assumptions are ensured by properly chosen values for P and α.

Algorithm 2 Acceptance function selecting valid clock ticks [81]

1: variables
2: k : integer := 0
3: end variables
4: for each correct process do
5: if received(init,tick(k)) from at least f + 1 distinct nodes then //Init Relay Rule
6: → send(echo,tick(k)) to all
7: end if
8: if received(echo,tick(k)) from at least f + 1 distinct nodes then //Echo Relay
9: → send(echo,tick(k)) to all
10: end if
11: if received(echo,tick(k)) from at least 2f + 1 distinct nodes then //Accept Rule
12: → accept(tick(k))
13: end if
14: end for

Let us reconsider the initial motivation for taking a closer look at tick generation algo-
rithms, namely, getting synchronized clocks without the need for local clock sources. As
described above, the non-authenticated algorithm for clock synchronization, presented in
Algorithm 1, still requires a local clock source at each node to be able to assess the instant
of time (= kP) when, from a local point of view, the next tick(k) message has to be
broadcast— the next resynchronization event has to be triggered. Fortunately, a minor
modification of Algorithm 1 yields a solution which does no longer rely on local clocks. In
Algorithm 3 node p starts issuing tick(k+1) immediately after tick(k) has been broad-
cast. Similarly to the acceptance function of the original consistent broadcast scheme of
Algorithm 2, Algorithm 3 responds to init tick(t) with echo tick(k) messages and relays
echo tick(k) messages if sufficiently many (= f + 1) distinct nodes issued those tick(k)
messages. In contrast to the clocked consistent broadcast primitive, Algorithm 3 broad-
casts a new tick(k+1) message to all other nodes as soon as it has received echo tick(k)
from at least 2f +1 distinct nodes, instead of waiting for a timed resynchronization interval
P to elapse.

A further simplification of Algorithm 3 has been presented by Widder and Schmid [93]
and yields Algorithm 4. This algorithm, besides its operation without a local clock source,
no longer requires the distinction of init and echo events, which severely eases message

Chapter 2: Distributed Fault-Tolerant Clocking 31

Algorithm 3 Consistent broadcast primitive without local clock source

1: variables
2: k : integer := 0
3: end variables
4: for each correct process do
5: if received(init,tick(k)) from at least f + 1 distinct nodes then //Init Relay Rule
6: → send(echo,tick(k)) to all
7: end if
8: if received(echo,tick(k)) from at least f + 1 distinct nodes then //Echo Relay
9: → send(echo,tick(k)) to all
10: end if
11: if received(echo,tick(k)) from at least 2f + 1 distinct nodes then //Accept Rule
12: → broadcast(tick(k+1))
13: end if
14: end for

handling. Furthermore, the previously used assumption on message delays [d, d + ε] can
be weakened to the one that for any two messages in transit m1, m2 it has to hold that,

δ(m1)

δ(m2)
≤ Θ (2.3)

with δ(m1) and δ(m2) being the respective message delays of m1 and m2, and Θ being
constant. The analyses in [93] show that despite the presented substantial simplifications,
Algorithm 4 still solves the clock synchronization problem— in this particular case, this
is maintaining precision π as well as accuracy even in the presence of Byzantine faults.
The “Relay Rule” of a correct node fires as soon as tick(ℓ) messages from at least f + 1
distinct nodes have been received — this way it is ensured that at least one of these tick(ℓ)
messages has been issued by a correct node. A property making this algorithm extremely
suitable for hardware implementation is the fact that it does not immediately set its local
clock k to ℓ in the case of triggering the “Relay Rule” since this could possibly lead to
skipping some values of k if the respective node is lagging more than one tick behind. The
strategy followed in Algorithm 4 explicitly ensures that all messages tick(k), . . . , tick(ℓ)
are issued when catching up with faster nodes, resulting in a continuous progression of
the clock without potentially troublesome leaping effects. Especially when recalling the
targeted application of clocking synchronous circuits, skipped clock ticks might result in
varying progression of distributed circuit blocks leading to inconsistent state information.
As an example for the catch up scenario, consider a slow node p with its local clock value
k = 3. If this node, for instance, receives at least f + 1 tick(ℓ) messages with ℓ = 6, node
p will consecutively broadcast tick(3), tick(4), tick(5) and tick(6) and set its local
counter to k = ℓ = 6.

32 2.3 Tick generation

Algorithm 4 Modified version of Srikanth & Toueg’s Byzantine-tolerant tick genera-
tion [93]

1: variables
2: k : integer := 0
3: end variables
4: initially send tick(0) to all
5: if received tick(ℓ) from at least f + 1 rem. processes with ℓ ≥ k then //Relay Rule
6: send tick(k), . . . , tick(ℓ) to all

k := ℓ
7: end if
8: if received tick(k) from at least 2f + 1 remote processes then //Increment Rule
9: send tick(k+1) to all

k := k + 1
10: end if

2.3.1 Algorithms for weaker failure models

The tick generation algorithms presented above are designed for worst case failure assump-
tions, i.e., the Byzantine faulty case. However, the resilience to arbitrary failure scenarios
comes at a price. The theoretical results by Dolev, Halpern and Strong [23], giving lower
bounds on the connectivity as well as the number of nodes in a distributed system, also
apply to tick generation. Therefore, being able to deal with up to f Byzantine faulty
components requires n ≥ 3f + 1 nodes and at least 2f + 1 connectivity. It has to be
noted that the connectivity constraint can be reduced to f + 1. This reduction applies if,
for example, authentication schemes ensure that messages cannot be altered or completely
faked in an undetected way. However, implementing authentication is far too costly in
terms of hardware resources and hence does not provide a viable solution in the targeted
application domain. The resulting (almost) fully connected point-to-point network of a
Byzantine-tolerant scheme hence implies a quadratic growth of the number of links with
the number of nodes n of a distributed system and thus with the number of tolerable
failures f , i.e., is in O(f 2).

Another possibly troublesome part in tick generation is given by the implementation of
the rules responsible for the fault-tolerant distribution of tick() messages. In the case of
Algorithm 4 these are the “Relay Rule” (triggering as soon as f +1 tick(k) messages have
arrived) and the “Increment Rule” (broadcasting tick(k+1) after the 2f + 1st tick(k)
message has been received). These m-out-of-n threshold functions (f +1-out-of-3f +1 and
2f + 1-out-of-3f + 1 in the case of Algorithm 4) can result in rather complex and costly
implementations. A detailed analysis of the implementation complexity is presented in
Chapter 4.

In contrast to Byzantine faults, benign failure modes are more restricted. When deal-
ing with benign failures, node p receiving tick(k) from node q can be sure that q sent
this message and that it also arrived timely (within an interval bounded by Θ). These

Chapter 2: Distributed Fault-Tolerant Clocking 33

restrictions to the allowed failure modes lead to weaker failure semantics but also yield
simpler algorithms.

Clean crash Recalling the definitions in Section 1.5.1, a node p is said to have cleanly
crashed at time t if all messages sent by p before time t are correctly received by all
other non-faulty nodes. Furthermore, all messages from node p sent at time t or later
are not received by any node. Algorithm 5, presented together with a proof in [92],
solves the clock (tick) synchronization problem in the presence of clean crashes. To
be able to tolerate up to f clean crashes, n ≥ f +1 nodes are required. The presented
algorithm only comprises a single rule, substantially simplifying an implementation.
Furthermore, this rule is rather elementary since it has to trigger as soon as a single
tick(k) message has arrived.

Algorithm 5 Crash-tolerant tick generation

1: variables
2: k : integer := 0
3: end variables
4: initially send tick(0) to all
5: if received tick(ℓ) from at least 1 remote processes with ℓ ≥ k then
6: send tick(k), . . . , tick(ℓ + 1) to all

k := ℓ + 1
7: end if

Crash failures, also called potentially unclean crashes, are characterized by scenarios
where node p is said to have crashed at time t if all messages sent by p before time t
are correctly received by all other non-faulty nodes. Furthermore, a tick() message
from node p sent exactly at time t is received only by a subset of the distributed sys-
tem’s nodes. Messages sent by p later than t are not received by any node. In other
words, when node p crashes the last tick() message may be inconsistently received
by some of the nodes. Interestingly, the approach presented in Algorithm 5 not only
tolerates clean crashes, but also unclean ones. However, the algorithm’s precision π
becomes dependent on f when used in the presence of unclean crashes [92].

Omission failure semantics are much less restrictive than crash scenarios since asymmetric
behavior is permitted an unbounded number of times. In more detail, a node p
is called omissive if a message sent by this node is only received by a subset of
the remaining non-faulty nodes of the distributed system. This condition renders
the previously presented crash-resilient Algorithm 5 useless. Algorithm 6 has been
presented in [92] to tolerate unclean crashes. This algorithm, however, is also able
to handle up to f omissive nodes in a system of n ≥ 2f + 1 nodes

In contrast to the (unclean) crash-tolerant algorithm presented above, Algorithm 6
provides a precision independent of f in the presence of up to f omissive nodes. Given

34 2.3 Tick generation

Algorithm 6 Omission-tolerant tick generation

1: variables
2: k : integer := 0
3: end variables
4: initially send tick(0) to all
5: if received tick(ℓ) from at least 1 remote processes with ℓ ≥ k then //Relay Rule
6: send tick(k), . . . , tick(ℓ) to all

k := ℓ
7: end if
8: if received tick(k) from at least f + 1 remote processes then //Increment Rule
9: send tick(k+1) to all

k := k + 1
10: end if

that crashes can always be modeled as omissions, Algorithm 6 can be used to achieve
a precision π independent of f in the case of unclean crashes. However, the price for
being able to tolerate an unbounded number of asymmetric message receptions yields
a significant increase in the algorithm’s complexity if compared to the crash-tolerant
version presented in Algorithm 5. Similarly to the Byzantine-tolerant Algorithm 4,
the omission-tolerant version has to rely on two rules to be able cope with asymmetric
behavior. However, it has to be noted that the “Relay Rule” of the omission-tolerant
algorithm is as simple as the crash tolerant algorithm’s rule, since it triggers as soon
as a single tick(k) message has arrived. On the downside, the “Increment Rule”
responsible for advancing the clock, incorporates a rather complex n-out-of-m rule,
actually f + 1-out-of-2f + 1, like the ones presented with the Byzantine-tolerant
schemes.

In addition to the static failure models presented above and suitable algorithms for
achieving clock synchronization, more elaborate dynamic failure models, as already men-
tioned in Section 1.5.1, can be utilized. For instance, a crash-tolerant system applying a
dynamic failure model could be characterized by the following conditions:

• Any node may crash and later recover in time as long as at least one process stays
up during a sliding time window.

• The rate of (unclean) node crashes has to be bounded.

It has been shown in [7] that Algorithm 5, which was initially introduced as crash resilient
for the case of static crashes, also solves clock synchronization in a dynamic failure model.
However, its precision π is dependent on the rate of unclean crashes.

Chapter 2: Distributed Fault-Tolerant Clocking 35

2.4 Hardware implementation challenges

All presented tick generation algorithms have initially been designed for software imple-
mentation purposes, therefore they are innately not particularly suitable to implement a
hardware clock signal. A tick generation algorithm, as it has been defined in Section 2.3,
operates on unbounded natural numbers, whereas a hardware clock signal simply transits
between the two logic values high and low. An appropriate mapping between these two
representations of clock ticks, shown in Figure 2.4, has to be implemented to build the
demanded fault-tolerant hardware clock.

TICK(k)

TICK(k-1)

...

TICK(k+1)

...

TICK(1)

TICK(0)
high

low

Figure 2.4: Hardware clock signal vs. tick numbers

Clock frequencies in state of the art VLSI design typically range into hundreds of
MHz or even some GHz. This incredible clock speed directly translates to the fact that
hundreds of millions tick() messages have to be transferred every second to implement
tick generation. This huge amount of data, of additionally ever increasing values of k,
transmitted via tick(k) messages poses a severe implementation challenge. To enable
a reasonable hardware implementation of the Byzantine-tolerant tick generation scheme
of Algorithm 4, further adaptations will be necessary. The transmission of unbounded
size tick(k) messages clearly cannot be implemented, thus the tick numbers k have to
be bounded. The restriction of bounding k has to be accounted for in the algorithmic
design since it leads to wrap-around effects in the numerical representation of the tick(k)
numbers, i.e., after sending the largest value of k in the chosen integer representation,
follows the smallest one, e.g., tick(0). Hence, it is important that:

• it is ensured that no tick(k) messages of different wrap-around phases interfere with
each other, and a bound on the maximum offset of any two clocks holds.

• both parallel rules (Increment- and Relay-Rule) of a node p never generate and
sequentially transmit the same tick(k) message, since this might erroneously trigger
an extra tick generation at remote nodes due to above described ambiguity of tick(k)
messages.

To account for these effects, Algorithm 7 comprises a minor augmentation to better ac-
commodate for bounded values of k — it requires that every tick(k) message is only sent
[once] regardless of the fact that multiple rules might be eligible to generate this partic-
ular tick(k) message. Guaranteeing this mutual exclusiveness of actions in the case of

36 2.4 Hardware implementation challenges

parallel computations, however, poses another implementation challenge, especially when
considering the required asynchronous implementation approach.

Algorithm 7 Byzantine-tolerant tick generation [93] suitable for bounded tick numbers

1: variables
2: k : integer := 0
3: end variables
4: initially send tick(0) to all [once]
5: if received tick(ℓ) from at least f + 1 rem. processes with ℓ ≥ k then //Relay Rule
6: send tick(k), . . . , tick(ℓ) to all [once]

k := ℓ
7: end if
8: if received tick(k) from at least 2f + 1 remote processes then //Increment Rule
9: send tick(k+1) to all [once]

k := k + 1
10: end if

The shown algorithmic feasibility of a fully asynchronous implementation for tick gen-
eration, following the refinements presented in this chapter, clears the path for the de-
sired design which does no longer need additional clock sources. Thus the next chapter
is mainly devoted to finding a suitable mapping of algorithmic statements to hardware
building blocks

Chapter notes

This chapter presented extensive introduction to the concepts, algorithms and implemen-
tation of distributed clock synchronization. Software, hardware, as well as hybrid solutions
have been surveyed and compared to the requirements developed in Section 1. Tick gen-
eration algorithms, especially the one based on Srikanth and Toueg’s consistent broadcast
primitive have been treated in more detail, since an adaptation by Widder and Schmid
proved to be attractive for the targeted design of a distributed fault-tolerant hardware
clock. To get a rough sense for the complexity coming along with Byzantine-tolerant
tick generation, algorithms for weaker failure models (crash- and omission-tolerant, re-
spectively) have been compared to the Byzantine-tolerant scheme. In the context of the
examinations on weaker failure models two own publications can be noted: in [33] the differ-
ences of hardware fault models to distributed failure models are discussed. More precisely,
the complexity of algorithms following different failure models is analyzed and resulting
hardware implementations are compared to each other. As a result, the appropriateness of
usually used distributed systems models are questioned for application in hardware design.
The second publication in this context [34] is also concerned with hardware implemen-
tations considering different failure models. However, failure transformation methods to

Chapter 2: Distributed Fault-Tolerant Clocking 37

emulate less restrictive failure models are additionally presented. This failure transforma-
tion relies on the usage of multiple nodes following weaker failure models. For instance, an
omission-tolerant algorithm could be replicated and augmented by a transformation algo-
rithm to implement the less restrictive Byzantine failure model. By following this strategy,
a set of rather simple omission-tolerant nodes together with its transformation algorithm
form a so-called “super-node” which enables Byzantine fault-tolerant operation among the
group of “super-nodes” (failure transformation will be treated in more detail in Chapter 4).
Additionally, in the technical report [7] Algorithm 5 has been analyzed in the context of
the dynamic crash/recovery failure model. Yielding a synchronization precision π which
depends on the rate of unclean crashes.

38 2.4 Hardware implementation challenges

Chapter 3

Hardware Implemented
Fault-Tolerant Tick Generation

Even a stopped clock is right twice a day.

Marie Von Ebner-Eschenbach

FAULT-TOLERANT TICK generation schemes in general, despite their origin in the
software-based realm, seem to be implementable in hardware with reasonable effort.

The main part of this chapter is therefore devoted to going into more detail regarding the
algorithmic assumptions as well as hardware related peculiarities. The in-depth analysis
is aimed at revealing requirements and constraints involved with the asynchronous nature
of the targeted tick generation implementation. Furthermore, it will be shown that the
high-level description of the algorithms presented so far has to be substituted by one that
more precisely models asynchronous hardware design blocks. This specific mapping from
algorithmic high-level description to hardware design elements, which finally can be im-
plemented by following an asynchronous design style, shows the huge gap between the two
design spaces. In particular, abstractions for simple operations are assumed to be available
to and employed by distributed algorithms. However, at gate-level hardware design these
abstractions have to be explicitly created by employing some more or less complicated
implementations, e.g., the atomic receive-compute steps usually assumed in distributed
systems pose an intricate problem for asynchronous hardware design. In this context, the
main difficulty originates from the fact that data items are concurrently processed by a
large number of independent hardware units.

39

40 3.1 Constraints, requirements and characteristics

3.1 Constraints, requirements and characteristics

High-level requirements for the hardware implementation of the fault-tolerant tick gener-
ation approach have already been introduced in Section 1.1. Targeting a CMOS ASIC
fabrication process and allowing that the number of nodes in a system is configurable,
as well as including augmented measurement support, has no direct impact on the ar-
chitectural design of the tick generation algorithm. Considering that wiring in distributed
systems is among the most costly and error-prone components, multiple clock rails per com-
munication link (introducing additional skew issues) are not considered a feasible option.
Even for the targeted rather localized implementations of systems-on-chip or board-level
designs the above mentioned issues cannot be neglected. Moreover, it has to be consid-
ered that the chosen tick generation algorithm assumes a fully connected tick generation
network (TG-Net) leading to the generally high amount of n2 links. Given the restrictions
and requirements stated above, multiple rails per clock line have to be avoided whenever
possible.

To meet this requirement, serialization of tick(k) messages has to be implemented,
or alternatively, tick numbers need to be maintained at the receiving side of the clock
network. Unfortunately, serialization and de-serialization of tick numbers stands in serious
contrast to the main design requirement in clock design, which is to achieve high speed.
On the other hand, maintaining tick values at the receiver side and using simple up/down
transitions to convey the clock information will require additional hardware resources at
every node. Additionally, this strategy is challenging from an algorithmic point of view too,
since no state information can be conveyed over the clock network. The only information
available at the receiving node implementing such a scheme would be the respective arrival
times of up/↑ or down/↓ transitions. The first approach, in which entire tick(k) mes-
sages are conveyed, is schematically depicted in Figure 3.1(a), whereas Figure 3.1(b) shows
the alternative scheme that relies on receiver-sided tick counters and the transmission of
up/down transitions only.

The most demanding design requirement is certainly given by the need for an entirely
asynchronous hardware implementation, since this restriction completely rules out the us-
age of the well established synchronous design methods. The tick generation design has to
follow a handshake-based flow control of asynchronous design styles (like the one presented
in Section 1.2.2) which ensures that no old data interferes with new one— it provides in-
terlocking between subsequent data waves. However, in the context of fault-tolerant design
a fundamental problem arises for the request (REQ) and acknowledge (ACK) schemes of
asynchronous design methodologies. If a design is waiting until all request signals have
arrived before broadcasting the next acknowledge, this would allow a single faulty unit to
inhibit any further processing. Hence, a strategy has to be followed where processing is
halted until an algorithm-dependent threshold of request signals has been reached. While
such an approach now enables the incorporation of fault tolerance, it necessarily breaks
the implementation’s REQ/ACK feedback loops for the slowest paths. Without additional
measures or constraints such open loops tend to run out of sync, endangering the correct

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 41

sender

Tick

counter

rules

tick. gen

receiver

tick. gen

...

rules

receiver

tick. gen

...

TICK(k)

(a)

sender

tick. gen
receiver

...

receiver

rules

rules
Tick counter 1

...
Tick counter n

..
.

...

TICK(k)

TICK(k)

rules
Tick counter 1

...
Tick counter n

..
.

TICK(k)

TICK(k)

(b)

Figure 3.1: Schemes for conveying tick number k

operation of the whole system. In order to obtain a fault-tolerant asynchronous design
the traditional closed REQ/ACK control loops have to be augmented by explicit timing
constraints, this way supporting an interlocking scheme for consecutive data waves. In
addition to the fault tolerance issue, another argument against acknowledging all requests
is closely related to the above discussion on the method for conveying tick(k) messages:
acknowledging every single clock signal would yield additional globally distributed signal
rails for every link of the clock distribution network which clearly is uneconomic in the
particular case of clocking.

In summary, the most important design requirements and challenges for the tick gen-
eration hardware can be itemized as the following:

tick generation network: Integer tick(k) messages have to be conveyed in a way to
keep the clock network as simple as possible without jeopardizing clock speed. There-
fore, strategies having more than a single wire per clock signal are assumed too costly.

tick messages: Simple tick(k) messages have to be used to enable highest possible speed
while still operating on a single rail per clock signal— clock transitions (up/down)
on a single signal rail, as depicted in Figure 2.4, appear to be the only viable imple-
mentation option.

42 3.2 Identifying building blocks for an asynchronous hardware implementation

asynchronous design: In the context of this work no clock sources are allowed in the
implementation of the tick generation scheme— a fully asynchronous approach has to
be followed. However, rigorous closed-loop operation of typical asynchronous design
styles is not applicable due to the demanded fault tolerance properties.

atomicity of actions: For any distributed computing model that the author is aware
of, atomic computing steps at the level of a single node are assumed. However,
this abstraction cannot be adopted when an algorithm is implemented directly in
hardware, since all computations are performed by numerous concurrently operating
digital logic gates. The challenging part in this case is given by the parallel pro-
cessing of multiple algorithmic rules (e.g., “Relay Rule” and “Increment Rule” of
Algorithm 7) in conjunction with concurrently arriving tick() messages. To handle
this issue explicitly, synchronization of local computations is needed. In a fully asyn-
chronous design atomicity of actions— non-interference of subsequent data waves—
in the absence of handshaking can only be guaranteed by the introduction of timing
constraints1.

3.2 Identifying building blocks for an

asynchronous hardware implementation

Refining the software-based tick generation approach by Srikanth and Toueg, presented in
Algorithm 3, to make it conform with the needs of an asynchronous hardware implementa-
tion, led to Algorithm 7 by Widder and Schmid. However, the conducted adaptations only
denoted a few first steps in the process of transforming the fault-tolerant tick generation
scheme to a hardware implementation. The mapping of algorithmic statements to design
units and the identification of appropriate implementation techniques to achieve provably
correct hardware with reasonable speed, proved to be an intricate task. As elaborated
later on in this section, several adaptations to Algorithm 7 have been necessary to make
it conform to the constraints and requirements presented in Section 2.4 and Section 3.1.
Figure 3.2 shows the basic architecture of a single tick generation node’s hardware design
resulting from the above described specifications.

The most notable peculiarity of the design depicted in Figure 3.2 is given by the dissem-
ination strategy for tick(k) messages which follows the approach depicted in Figure 3.1(b).
That is, no explicit tick numbers are transmitted over the tick generation network (TG-
Net). Anonymous up and down signal transitions (zero-bit messages) are used instead of
conveying integer values. As indicated in the previous section and shown in Figure 3.1(b),
this scheme requires that the actual tick number k is maintained at every receiver. For
this purpose the major hardware building blocks of a single tick generation algorithm
(TG-Alg), following the basic design of Algorithm 7, are given by the remote counters in

1The implementation of fault tolerance in general as well as constraints on the clock network inhibit
that all signals may be handshaked.

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 43

TG-Alg i

Clock

output i

+Clocks from

n-1 other

TG-Algs

 Counter 1

..
.

+
GR GEQ Counter n-1

THGEQ

THGR

remote

remote

local
Counter
+

2f+1

f+1

GR GEQ

Comparator 1

Comparator n-1

Tick

Gen

Figure 3.2: Basic hardware architecture of Algorithm 7

conjunction with the local counter unit. Each TG-Alg instance has to incorporate n− 1 of
these remote counters, one for every of the n−1 other tick generation nodes in the system.
To indicate whether or not a remote clock has generated more or at least as many ticks
as the local node, every remote counter i has to be augmented with a comparator which
provides two binary status signals, GR and GEQ. With GR being set to true when the
remote node’s tick number is greater than that of the local node, i.e., the difference of the
actual counter values is greater zero. GEQ becomes active with the remote counter’s value
greater or equal to the local counter, thus representing the condition that at least as many
ticks have been issued locally as the number of ticks already received from the respective
remote node. The “Relay Rule” (line 5) and “Increment Rule” (line 8) in Algorithm 7,
evaluate these “greater” and “greater or equal” conditions. The respective design units,
representing the evaluation of the GR and GEQ signals are given by the ≥ f + 1 and
≥ 2f + 1 circuit blocks. These threshold circuits prepare the generation of the next ticks
in a fault-tolerant manner by masking faulty inputs. The actual and ultimate generation
of clock ticks is controlled by the device named “Tick Gen” in the architectural TG-Alg
schematic. This tick generation unit has to ensure that the concurrently evaluated rules
(“Relay Rule” and “Increment Rule”) do not interfere with each other in an unintended
way during tick generation. In fact, correct execution has to be ensured even though “old”
clock ticks are still arriving asynchronously and possibly influence the remote counters’
values.

The architecture described above and represented in Figure 3.2 handles incoming ticks
by increasing a counter value with every clock transition. The strategy of counting absolute
tick numbers for every tick received from a remote node would thus require maintaining
infinitely large numbers. To get rid of this demanding requirement, Figure 3.3 presents
an enhancement of the counter design. The characteristic of the new counting approach

44 3.3 Hardware design considerations

–

2f+1

f+1

TG-Alg i

Clock

output i
+Clocks from

n-1 other

TG-Algs

GR GEQ

+/– Counter 1

..
.

–+
GR GEQ

+/– Counter n-1

THGEQ

THGR

Tick

Gen

Figure 3.3: Tick generation architecture handling relative tick numbers

is that only the difference of locally and remotely issued tick(↑)/tick(↓) transitions is
handled for every remote node. Hence, rather than working on absolute numbers only the
difference of received and generated ticks has to be stored. This functionality is achieved by
employing up/down counters, further referred to as +/− Counters, instead of the previously
used incrementer2. Fortunately, taking a closer look at Algorithm 7 reveals that proper
operation of the algorithm only requires the difference for the deviation of received and
generated tick messages. Thus, each +/− Counter simply derives the difference of,

• the number of clock ticks seen from the respective remote node, and

• the number of clock ticks generated locally so far,

with the difference being bounded by precision π.

3.3 Hardware design considerations

The architecture described above and shown in Figure 3.3 appears to be quite simple and
easy to map to a suitable hardware implementation. However, major challenges arise again
when trying to find an appropriate asynchronous design for all presented modules. This is
mainly due to the lack of a common control mechanism that could be used for the sepa-
ration of actions not allowed to interfere with each other. In contrast to the synchronous
approach with its single control signal— namely, the global clock— control mechanisms in
asynchronous designs are known to be much more complicated. The asynchronous design

2For simplicity of the illustration the comparator blocks are not explicitly shown, but are considered
to be part of the +/− Counters.

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 45

style of (quasi) delay insensitive circuits (recall Section 1.2.2) was preferred because of
its inherent robustness against varying parameters and its conceptual elegance. However,
a thorough examination of the algorithmic statements in conjunction with the hardware
building blocks has to be performed to be able to come up with a suitable implementation
for the architecture of Algorithm 7 depicted in Figure 3.3. Considering the requirement
that the tick generation design should only convey simple, zero-bit tick(↑)/tick(↓) transi-
tions, the natural and most appealing asynchronous design approach is given by transition
signaling [43].

In transition signaling information is solely conveyed via signal transitions, rather than
by issuing discrete state updates like in conventional logic. Hence, the expressiveness
of transition signaling is limited to the causal ordering of events in a basically time-free
system. However, to retain its delay insensitiveness the class of allowed circuit elements is
fairly restricted. Permitted elementary units are for instance Muller C-Elements, inverters,
XOR gates and a few rather complicated and quite exotic building blocks like the toggle
unit [8, 57, 83]. Even simple logic operations have to be treated in a different way in the
scope of transition signaling. As an example, an equivalent to the state logic’s elementary
two-input AND function in the context of transition signaling is represented by the Muller
C-Element (in Chapter 4 a detailed description of the Muller C-Element is presented). In
contrast to the logic AND, no direct equivalent for the logic OR function can be identified.
This fact is of particular interest because it highlights the concept of only handling events
instead of states in an asynchronous closed loop system. When considering the case of
a two-input gate with either one or the other input being able to issue a transition, an
XOR (exclusive OR) gate can be used to safely process this transition— as depicted in
Figure 3.4(a), every input transition on the XOR gate leads to a transition on output
z, thereby maintaining causality. On the contrary, it cannot be handled in a meaningful
way in transition signaling if both inputs might be able— but do not need— to produce a
related transition. The behavior of a logic OR, that is generating an output as soon as the
first input event has occurred would thus destroy the causality relation of the late input
with the issued output transition of the OR gate (cf. Figure 3.4(b)).

a

b

z

(a)

a

b

z

(b)

Figure 3.4: Transition processing of (a) XOR-gate and (b) OR-gate

46 3.3 Hardware design considerations

3.3.1 Combining fault tolerance and transition signaling

When recalling the demand for fault tolerance it becomes evident that an OR-like behav-
ior as it has been described above is required. The strategy to achieve fault tolerance
incorporated by the previously introduced threshold circuits (f + 1 and 2f + 1 block in
Figure 3.3) is to ignore late inputs and issue new signals as soon as a sufficient number of
signals have arrived. By applying this n-out-of-m voting it is ensured that erroneously late
nodes cannot block the entire tick generation process. However, this concept clearly breaks
the important causality relation for non-faulty, but late, nodes with the early generated
output transitions. To allow for fault tolerance without ruining the causal relations of the
asynchronous circuits, a switch back and forth from transition signaling and state logic has
to be performed. The counting of tick(k) (tick(↑)/tick(↓)) messages and the generation
and transmission of exactly one tick(k) event for any k can be handled in transition logic.
On the other hand the comparators inside the +/− Counters and threshold functions,
which evaluate the current state of the counters, have to be implemented in state logic.
An intricate design problem of the different building blocks is given by the clean switch
between transition signaling and state logic. Asynchronous state logic tends to produce
glitches on the outputs while processing its inputs (at least as long as no strict restriction
on the input sequence is ensured [69]). Unfortunately, in transition signaling every signal
change is treated as meaningful data. Therefore, hazardous input sequences of the GR and
GEQ signals at the threshold circuits (≥ f +1 and ≥ 2f +1 units) have to be circumvented
by all means.

3.3.2 Glitch avoidance

The required glitch-free circuit behavior can be achieved by exploiting the strictly alter-
nating sequence of the binary-valued tick(↑) and tick(↓) messages. In more detail, the
distinction of GR and GEQ signals that already contributed to the generation of tick(k),
from GR and GEQ signals being conducive to create the consecutive tick(k+1) message is
necessary. The separate treatment of low-to-high tick(↑) and high-to-low tick(↓) transi-
tions is enabled by the introduction of two independent sets of GR and GEQ signals. One
set is responsible for tick(↑) transitions— further called odd clock ticks— while the other
set of GR and GEQ signals treats tick(↓) messages which are referred to as even clock
ticks. Consequently, the independent signals represent the fill levels of the +/− Counters
for odd (k ∈ Nodd := 2N + 1) and even (k ∈ Neven := 2N) clock ticks and are evalu-
ated separately by distinct threshold circuits. Figure 3.5 depicts the resulting architecture
with the individual signals GRe, GEQe and GRo, GEQo for handling even and odd ticks,
respectively.

The presented separation of even and odd ticks enables that output glitches due to asyn-
chronously arriving input signals of the asynchronous threshold circuits can be masked. As
stated before, this glitch-free behavior is mandatory to protect the subsequent transition
signaling building blocks from spurious transitions. The actual masking operation is per-

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 47

–

TG-Alg i

Clock

output i
+Clocks from

n-1 other

TG-Algs

GR
e
GEQ

e

+/– Counter 1

..
.

+ +/– Counter n-1

f+1

f+1

2f+1

GR
e
GEQ

e

GR
o
GEQ

o

GR
o
GEQ

o

2f+1
even

even

odd

odd

TH
o

THGR

THoTHGEQ

THeTHGEQ

THeTHGR

– Tick

Gen

Figure 3.5: Tick generation design with separate treatment of even and odd ticks

formed by simply ignoring the outputs of the threshold circuits which have generated the
last clock tick. For example the signals THo

GR and THo
GEQ which initiated the generation

of the even tick(k) can be safely ignored when the next tick to be generated, tick(k+1),
is odd. However, as soon as this odd tick(k+1) has been issued, glitches in the signals
THo

GR and THo
GEQ are prohibited again. This “gap” in the significance of the THo

GR and
THo

GEQ signals allows all underlying GRo and GEQo signals to become inactive again.
Note that the GRo and GEQo signals which activated THo

GR and/or THo
GEQ to generate

tick(k) have to get inactive during tick(k+1) and will afterwards become active again
to trigger the generation of tick(k+2). This masking functionality is implemented by the
tick generation (tick-gen) block in Figure 3.5. Moreover, the tick generation unit performs
the switch from asynchronous state logic (the threshold circuits) back to transition signal-
ing. Of course, due to symmetry of even and odd ticks the presented strategy for treating
THo

GR and THo
GEQ which generated the even tick(k), can be applied also for threshold

circuit outputs THe
GR and THe

GEQ.

3.3.3 Ensuring non-interference of subsequent ticks

The architecture for avoiding glitches also enables to cope with the ambiguity of the GR
and GEQ signals for generating successive clock ticks and hence ensures that no spurious
tick(k) messages are generated. The modifications to the basic architecture introduced
above and depicted in Figure 3.3 enhanced the initially (in Section 3.2) presented operation
of the tick generation process to the one described below:

odd ticks: The generation of an odd tick k + 1 ∈ Nodd := 2N + 1 is triggered only if the
last tick generated was even (k ∈ Neven := 2N). Furthermore, it has to hold that the
respective node has either received (i) the same or a greater number of ticks from at

48 3.3 Hardware design considerations

least 2f +1 TG-Algs (GEQe true via “Relay Rule”), or (ii) a greater number of ticks
have been received from at least f + 1 TG-Algs (GRe true via “Increment Rule”).
Note that (i) ensures that the even tick(k) has in any case been seen from at least
2f + 1 TG-Algs, whereas (ii) guarantees that the odd tick(k+1) has already been
seen from at least f + 1 nodes.

The treatment of even/tick(↓) and odd/tick(↑) is symmetric. Hence, analogous
rules involving GEQo and GRo instead of GEQe and GRe can be applied for generating
the even tick k + 1 ∈ Neven.

even ticks: The generation of an even tick k + 1 ∈ Neven is triggered only if the last tick
generated was odd (k ∈ Nodd). Furthermore, it has to hold that the respective node
has either received (i) the same or a greater number of ticks from at least 2f + 1
TG-Algs (GEQo true via “Relay Rule”), or (ii) a greater number of ticks have been
seen from at least f +1 TG-Algs (GRo true via “Increment Rule”). Again, condition
(i) ensures that the odd tick(k) has been seen from at least 2f +1 TG-Algs, whereas
(ii) guarantees that the even tick(k+1) has already been received by at least f + 1
nodes.

A thorough analysis of the described tick generation process, conducted in the context
of the DARTS project and published in [39], shows that the presented approach is suffi-
cient to avoid that old and new instances of GRo and GEQo get mixed up. Parts of this
formal analysis— deriving timing constraints for the hardware implementations— will be
introduced later on in this chapter in Section 3.4.3 and 3.4.4.

3.3.4 Count and compare

The considerations above treated the glitch-free tick generation via state logic threshold
circuits and involved the switch from state logic back to transition signaling. What is still
missing in the detailed analysis of the tick generation algorithm’s refined architecture is
a more thorough analysis of the +/− Counters. The fact that all issued clock tick(↑)
and tick(↓) transitions are processed by +/− Counters emphasizes the importance of the
counters as vital parts of the architecture. The purpose of the +/− Counters as depicted
in Figure 3.5 is twofold. At first, each up/down counter stores incoming ticks and derives
the difference of the number of clock ticks received from its respective remote node, and
the number of clock ticks generated locally so far. The second part of the +/− Counter
design is devoted to the generation of individual signals for even and odd clock ticks in-
dicating the counter fill levels. Therefore, this part of the design performs the translation
from transition signaling to state logic. More precisely, the +/− Counters have to create
the threshold circuit’s state input signals GRo, GEQo and GRe, GEQe. The challenging
part of designing an asynchronous up/down counter is given by the fact that the tick(↑)
and the tick(↓) transitions can occur arbitrarily close to each other. Fortunately, an
implementation based on the well-known transition signaling elastic pipeline approach by

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 49

Sutherland [83] can be employed here. The resulting +/− Counter design uses two elastic
pipelines per remote node to buffer clock transitions. Additionally, the pipelines have to be
augmented by interconnecting logic to provide the needed up/down counting functionality.
In fact it has to enable the removal of already processed clock ticks. Following this strat-
egy provides a suitable approach for the counting part of the +/− Counter. Most notably,
metastability problems inside the counters where local and remote clock ticks encounter
each other are circumvented by this design. The avoidance of metastability issues relies
on the employed tick removal process which follows a strict execution sequence. At first
a tick is removed from the remote pipeline and only after its removal has been acknowl-
edged enables tick processing at the local side. The second part of every +/− Counter is
responsible for creating the counter’s status signals GRo, GEQo and GRe, GEQe. Hence,
it has to provide correct counter fill level, at least during times when they are used by the
respective threshold circuits. For instance, GRo and GEQo have to be valid if the last tick
generated has been odd, since the next even tick to be issued will be triggered by THo

GR or
THo

GEQ. Of course the same applies for GRe, GEQe in conjunction with THe
GR or THe

GEQ

for generating an odd tick. The generation of the counter fill level signals benefits from the
above introduced remote-before-local tick removal because the immediate decrementing of
the remote counter avoids wrongly activated GRo, GEQo and GRe, GEQe signals due to
local clock ticks arriving late.

3.4 Refined tick generation algorithm

The quite extensive adaptations to the underlying tick generation approach of Algorithm 7
with the reduction of integer tick numbers to zero-bit tick(↑)/tick(↓) messages led to
the architecture depicted in Figure 3.3. Further refinements to this architecture have been
conducted by separating the status signals provided by the +/− Counters for even and odd
(tick(↓)/tick(↑)) clock ticks. As a consequence, the threshold circuits (“Relay Rule” and
“Increment Rule”) had to be duplicated to be able to separately evaluate the GRo, GEQo

and GRe, GEQe signals, respectively. The adaptations of the hardware architecture yielded
the design depicted in Figure 3.5. To reassess whether or not the derived architecture still
implements the demanded fault-tolerant tick generation, an algorithm more detailed than
Algorithm 7 has to be derived for the analysis. However, first of all, a system model
suitable of reflecting the asynchronous transition signaling and state logic design units has
to be defined. For this purpose the respective system model has to account for the fact that
even the simplest sequential control flow comes with some delay, since it actually involves
sending a signal over a wire. Thus, a wire can for instance be treated as a zero-bit first-in-
first-out (FIFO) message channel. Relying on this more elaborate system model allows to
derive and analyze an algorithm that more accurately reflects the TG-Alg’s asynchronous
hardware design units. Moreover, this formal treatment allows to derive conditions and
properties under which the correctness of the implementation can be guaranteed.

50 3.4 Refined tick generation algorithm

3.4.1 Signals and zero-bit message channels

To reflect the design decisions made so far, all components of the tick generation algorithm
considered from here on are solely implemented in asynchronous digital logic and deal with
binary signals only. Such a signal S may represent the possible values ⊥ and ⊤, denoting
logical low (=false, inactive) and logical high (=true, active), respectively. An event on
signal S, for instance, a state transition S−↑ (t∗), occurs when S changes its state from ⊥
to ⊤ at time t∗. Similarly, an S−↓ (t∗) state transition happens when S changes its state
from ⊤ to ⊥ at time t∗. The status S(t) of a signal S at time t ≥ t∗ is S(t) = ⊥ if, and
only if, the last event at or before t was S−↓ (t∗). Again, by analogous means the status
S(t) of a signal S at time t ≥ t∗ is S(t) = ⊤ if, and only if, the last event at or before t
was S−↑ (t∗).

In the treatment of the refined tick generation approach events/transitions on, and the
status/state of, binary signals will be used. To keep the notation as simple and clear as
possible the convention is employed that depending on the respective context S(t) will
denote either:

• the status of signal S with S(t) ∈ {⊥,⊤}, where t denotes the observation time, or

• the event on signal S with either S−↑ (t) or S−↓ (t), where t denotes the time of
the last transition to the active state ⊤ or ⊥, respectively.

As indicated before, all components of the tick generation system are interconnected
by simple signal wires. The wires are modeled as reliable FIFO channels with finite delay
that carry zero-bit messages. The semantics of a zero-bit message channel X is as follows:
Let Xs be the channel’s input signal, which is controlled by a single sender component.
The sender generates the events/transitions Xs−↑ (t) and Xs−↓ (t), where t denotes
the sending time. The content of these messages is defined by the symbols ↑ and ↓.
Additionally, the associated input state Xs(t) can be viewed as the information content of
the last message sent into X. Furthermore, the output of channel X is fed into a receiver,
which perceives the respective messages for every sent transition. In more detail, every
message Xs−↑ (t) and Xs−↓ (t) transmitted by a sender via channel X is received within
finite time t′ ≥ t as Xr−↑ (t′) and Xr−↓ (t′), respectively. Analogous to the input state
Xs(t), the receiving state Xr(t) at time t can be viewed as the message content of the last
received transition. To provide the basis for a clean startup (time t0) the channel state
Xr(t0) is initialized to ⊥.

Obviously, the zero-bit message channels employed here can only convey messages with
strictly alternating content. Nevertheless, this type of communication is sufficient for
analyzing the developed tick generation approach. It can be further noted that zero-bit
channels are compatible with Lamport’s happened-before → relation [51]. That is, for
matching send and receive events, it holds that Xs−↑ (t) → Xr−↑ (t′) and Xs−↓ (t) →
Xr−↓ (t′). However, to simplify the notation when using a channel X, the employed
notation is adapted in the way that X−↑ (t) and X−↓ (t) abbreviate the send events

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 51

Xs−↑ (t) and Xs−↓ (t), respectively, whereas X(t) abbreviates the state Xr(t) at the
receiving side of the channel.

3.4.2 Component and architecture specification

A last refinement step applying the system model presented above to the tick generation
architecture derived in Section 3.3 and depicted in Figure 3.5 will be conducted in this
section. This further detailing of the design components has the purpose to finally yield:

• a fault-tolerant tick generation architecture being fully implementable in asyn-
chronous hardware, and

• an algorithmic representation of this architecture that models with sufficient accu-
racy the hardware’s peculiarities to be able to derive correctness and performance
measures for the design.

TG-Alg node r

...
remote pipeline 1

+/ Counter 1

rr,p(t)

Tick ge

TG-Alg node p

Diff 1
remote pipeline 1 local pipeline 1

PCSG 1GR
e
GEQ

e
GR

o
GEQ

o

+/ Counter 1

Diff n-1
remote pipeline n-1 local pipeline n-1

PCSG n-1

+/ Counter n-1

p,1 p,1 p,1 p,1

GR
e
GEQ

e
GR

o
GEQ

o
p,n-1 p,n-1 p,n-1 p,n-1

f+1
even even

2f+1 f+1
odd odd

2f+1

THGEQ
e THGEQ

oTHGR
e THGR

o

Thresholds

Tick generation

bp(t)

clocks from

n-1 other

TG-Algs

..
.

rp,q (t)
1

rp,q (t)
n-1

rp,q (t),
n-1

s sp,q (t)
n-1

rp,q (t),
1

s sp,q (t)
1

TG-Alg node q

...
remote pipeline 1

+/ Counter 1

rq,p(t)

Tick ge

Thres

...

Figure 3.6: TG-Alg architecture including observation points

The schematics in Figure 3.6 present the components of a refined TG-Alg instance.
Moreover, important observation points for the formal analysis and the computation of
performance measures are also shown in these schematics. In this more detailed treatment

52 3.4 Refined tick generation algorithm

the +/− Counters of Figure 3.5 are partitioned into several submodules. The respective
building blocks of the +/− Counter are the remote pipeline, local pipeline, Diff and PCSG
design units. These modules together with the Thresholds block are accurately character-
ized below using the previously introduced modeling approach of Section 3.4.1.

Pairs of remote and local pipelines: In a set P of n distributed nodes, every TG-Alg
node p incorporates n − 1 pairs of elastic pipelines where each of these pipes can be
seen as a FIFO shift register for signal transitions [83]. Moreover, every pair of remote
and local pipelines corresponds to a dedicated remote TG-Alg node q ∈ P \ {p}. The
remote pipeline can store up to Srem messages tick(↑)/tick(↓) sent by node q, and
similarly the local pipeline can hold up to Sloc messages tick(↑)/tick(↓) generated
and sent by node p locally. The numbers Srem and Sloc represent implementation-
dependent parameters that have to be chosen in accordance with some bounds derived
from the formal analysis of the algorithm (presented in Section 3.4.4).

To enable an accurate description of the TG-Alg’s architecture and to be able to
build and analyze a detailed algorithm, some additional terms have to be defined:
rp,q(t) and rs

p,q(t) denote the number of messages that arrived at the end of the remote
and local pipe by time t, respectively. Moreover, sp,q(t) represents the number of tick
messages stored in the local pipeline at time t. However, from the algorithm’s point
of view those quantities are not directly available. Therefore, the algorithm uses the
respective binary status signals which are generated following the rules given below:

• rp,q(t) ≥ rs
p,q(t): more than or at least as many ticks as locally generated have

been received from the remote side (this enables the activation of GEQ signals),
and

• rp,q(t) > rs
p,q(t): more ticks than locally generated have been received from

the corresponding remote node (corresponding to the GR signals), and these
conditions are treated in conjunction with the clause that,

• sp,q(t) = 1: all stages of the local pipeline hold the same value.

Additionally, all pipelines are initialized in a way that each contains exactly one
single even tick(↓) message upon startup/reset. It is further assumed that the tick
counting variables rp,q(t0,p) and rs

p,q(t0,p) are initialized to 0 and the local pipeline’s
fill level indicator sp,q(t0,p) = 1 at reset time t0,p

Difference Module: A Diff block of Figure 3.6 represents the design unit that rests in-
between every pair of remote and local pipelines and interconnects both with each
other. The purpose of this interconnecting block is to detect whether or not matching
tick(↑)/tick(↓) messages are in both pipelines and to remove such ticks from both.
This is necessary to avoid the need for infinite storage for local and remote pipelines.
The exact behavior of a Difference Module is as follows:

If rp,q(t) ≥ rs
p,q(t) ∧ sp,q(t) > 1, there is some t′ ∈ t + [τ−

Diff, τ+

Diff] such that sp,q(t
′) =

sp,q(t
′ − dt) − 1, for some infinitesimally small dt > 0. In other words, the removal

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 53

of a matching tick from the local as well as the remote pipeline is issued after the
condition holds that more than (“Relay Rule”) or at least as many (“Increment
Rule”) tick(↑)/tick(↓) messages have been remotely received as locally generated.
It has to hold further that at least one tick(↑)/tick(↓) message is stored inside
the local pipeline. Note that due to this removal of “common” tick messages no
information is lost, since the underlying tick generation algorithm is only interested
in the difference of the number of messages received so far. It is important to notice
that ticks can only be removed successively, i.e., one after another and following the
before introduced remote-before-local strategy. This subsequent tick removal might,
however, lead to malicious queueing effects in a node’s pipelines if ticks arrive at a
higher rate than the Difference Module’s removal speed.

Pipeline Compare Signal Generation Modules (PCSGs): The remaining part of
the +/− Counters is given by the PCSG units which are directly connected to each
pair of remote and local pipelines.

The Pipeline Compare Signal Generation Module’s function can be partitioned in the
processing of even and odd ticks. The PCSG part treating incoming even ticks ulti-
mately triggers the generation of odd ticks by issuing GEQe,GRe signals. Similarly,
the circuit concerned with odd ticks and controlling GEQo and GRo is responsible for
generating even clock ticks. In more detail, the PCSG’s detection circuit generates
the status signals GEQo

p,q(t), GRo
p,q(t) and GEQe

p,q(t), GRe
p,q(t) for odd and even

clock ticks, respectively.

In particular, GEQo
p,q(t

′) becomes active, that is, GEQo
p,q(t

′) = ⊤, thereby generating
the event GEQo

p,q−↑ at t′ at some time t′ ∈ t+[τ−

GEQ; τ+

GEQ] (if the previous state was
⊥) when

• rs
p,q(t) ∈ Nodd: the number of locally received tick messages is odd, and

• [rp,q(t) ≥ rs
p,q(t)] ∧ [sp,q(t) = 1]: at least as many tick(↑)/tick(↓) messages

have been remotely received as locally generated and additionally, exactly one
tick is left inside the local pipeline.

Similarly, GRo
p,q(t

′) becomes active at time t′ ∈ t + [τ−

GR; τ+

GR] when

• rs
p,q(t) ∈ Nodd: the number of locally received tick messages is odd, and

• [rp,q(t) > rs
p,q(t)] ∧ [sp,q(t) = 1]: more tick(↑)/tick(↓) messages have been

remotely received than locally generated and again, only a single tick message
is left inside the local pipeline.

The signals GEQe
p,q(t) and GRe

p,q(t) for handling even tick() messages have the same
definition, except that the first condition is given by rs

p,q(t) ∈ Neven denoting the case
of even ticks.

Threshold Module: If the number of active GEQo
p,q(t) or GRo

p,q(t) signals exceeds the
respective 2f + 1 or f + 1 threshold, the corresponding threshold output signal

54 3.4 Refined tick generation algorithm

THo
GEQ(t), THo

GR(t) will become activated within [τ−

TH; τ+

TH]. By analogous means
the activation of a sufficient number of GEQe

p,q(t) or GRe
p,q(t) signals will trigger

THe
GEQ(t), respectively THe

GR(t), to become active within [τ−

TH; τ+

TH]. Due to the
fact that THe

GEQ(t), THe
GR(t) and THo

GEQ(t), THo
GR(t) will be deactivated as soon

as the number of active inputs is below the respective threshold value the threshold
functions can rely on a purely combinatorial design, i.e., no hysteresis is required.

Tick Generation Module: As part of the Thresholds block in Figure 3.6, the Tick Gen-
eration Module is responsible for ultimately generating and broadcasting tick(↑)/
tick(↓) messages if indicated by the THo

GR(t)/THo
GEQ(t) and THe

GR(t)/THe
GEQ(t)

signals with bp(t) denoting the number of ticks generated by node p by time t. In
the context of the tick generation it has to be noted again that potential glitch phe-
nomena of asynchronous state logic as it is used for the threshold circuits cannot
be entirely avoided in an asynchronous implementation. Hence, a strict activation
pattern for generating and broadcasting ticks has to be followed. The generation of
an odd tick(↑) is triggered only if,

• both threshold signals for the previously generated tick tick(↓), THo
GEQ and

THo
GR are inactive again, and

• at least one threshold signal THe
GEQ or THe

GR for the current tick becomes
active.

The generation of the even tick(↓) follows by analogous means and rests upon the
deactivation of THe

GEQ and THe
GR. It further requires that at least one signal THo

GEQ

or THo
GR gets activated.

The refinement process applied to the initial tick generation approach of Algorithm 7
led to the architecture depicted in Figure 3.5 and Figure 3.6. Furthermore, the detailed
description of the algorithm’s building blocks given above and the application of the system
model from Section 3.4.1 allows to introduce Algorithm 8. This algorithm further narrows
down the gap between the abstraction of hardware modeling and algorithmic design. Hence,
this algorithm is used as a basis for both the asynchronous hardware design as well as the
formal analysis of the tick generation approach.

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 55

Algorithm 8 Refined TG-Alg reflecting the asynchronous VLSI building blocks
1: variables

2: ∀q : rp,q(t0,p) = rs
p,q(t0,p) = 0; sp,q(t0,p) = 1; ∀channels X : Xr(t0,p) = ⊥

3: end variables

//Generation of comparison signals (PCSG) for remote process q
4: if [rp,q(t) ≥ rs

p,q(t)] ∧ [rs
p,q(t) ∈ Nodd] ∧ [sp,q(t) = 1] then //treatment of odd ticks

5: → send GEQo
p,qi

(t)−↑
6: else

7: → send GEQo
p,qi

(t)−↓
8: end if

9: if [rp,q(t) > rs
p,q(t)] ∧ [rs

p,q(t) ∈ Nodd] ∧ [sp,q(t) = 1] then //treatment of odd ticks
10: → send GRo

p,qi
(t)−↑

11: else

12: → send GRo
p,qi

(t)−↓
13: end if

14: if [rp,q(t) ≥ rs
p,q(t)] ∧ [rs

p,q(t) ∈ Neven] ∧ [sp,q(t) = 1] then //treatment of even ticks
15: → send GEQe

p,qi
(t)−↑

16: else

17: → send GEQe
p,qi

(t)−↓
18: end if

19: if [rp,q(t) > rs
p,q(t)] ∧ [rs

p,q(t) ∈ Neven] ∧ [sp,q(t) = 1] then //treatment of even ticks
20: → send GRe

p,qi
(t)−↑

21: else

22: → send GRe
p,qi

(t)−↓
23: end if

24: if GEQo
p,qi

(t) for at least 2f + 1 remote processes qi then //odd Increment Rule
25: → send THo

GEQ−↑
26: else

27: → send THo
GEQ−↓

28: end if

29: if GRo
p,qi

(t) for at least f + 1 remote processes qi then //odd Relay Rule
30: → send THo

GR−↑
31: else

32: → send THo
GR−↓

33: end if

34: if GEQe
p,qi

(t) for at least 2f + 1 remote processes qi then //even Increment Rule
35: → send THe

GEQ−↑
36: else

37: → send THe
GEQ−↓

38: end if

39: if GRe
p,qi

(t) for at least f + 1 remote processes qi then //even Relay Rule
40: → send THe

GR−↑
41: else

42: → send THe
GR−↓

43: end if

44: if [THo
GR(t) ∨ THo

GEQ(t)] ∧ ¬[THe
GR(t) ∨ THe

GEQ(t)] then //generate tick−↓ messages
45: → send tick−↓
46: end if

47: if [THe
GR(t) ∨ THe

GEQ(t)] ∧ ¬[THo
GR(t) ∨ THo

GEQ(t)] then //generate tick−↑ messages
48: → send tick−↑
49: end if

56 3.4 Refined tick generation algorithm

3.4.3 Timing constraints

As already noted above, the correct behavior of the tick generation approach of Algorithm 8
relies on some particular timing constraints. In fact, implementation-specific constraints on
path delays have to hold. The most important one is given by the Interlocking Constraint
that ensures that tick(k) and tick(k+2) messages do not interfere with each other.

Constraint 3.4.1 (Interlocking) Tmax,dis ≤ Tmin + Tmin,dis must hold.

With the delay paths:

Tmax,dis := τ+

TH + max(τ+

GR, τ+

GEQ) + τ+

loc

Tmin := τ−

TH + min(τ−

GR, τ−

GEQ) + τ−

loc + τ−

Diff (3.1)

Tmin,dis := τ−

TH + min(τ−

GR, τ−

GEQ) + τ−

loc

Tmax,dis represents the slowest disabling path starting and ending at the tick generation
output of the respective node. The second part of Constraint 3.4.1 is defined by Tmin and
Tmin,dis. Tmin corresponds to the fastest path for generating a clock tick, whereas Tmin,dis,
analogously to Tmax,dis, accounts for the minimum deactivation time of the previous clock
tick which in turn enables the generation of the next clock tick. Figure 3.7 graphically
presents a TG-Alg node’s opposing interlocking delay paths at the architectural abstraction
level of Figure 3.6. Note that the involved paths only include design units at a local node.
This locality of Constraint 3.4.1 considerably facilites to design the path delays accordingly.

TG-Alg node r

...
remote pipeline 1

+/ Counter 1

rr,p(t)

Tick ge

Thres

TG-Alg node p

Diff 1
remote pipeline 1 local pipeline 1

PCSG 1GR
e
GEQ

e
GR

o
GEQ

o

+/ Counter 1

Diff n-1
remote pipeline n-1 local pipeline n-1

PCSG n-1

+/ Counter n-1

p,1 p,1 p,1 p,1

GR
e
GEQ

e
GR

o
GEQ

o
p,n-1 p,n-1 p,n-1 p,n-1

f+1
even even

2f+1 f+1
odd odd

2f+1

THGEQ
e THGEQ

oTHGR
e THGR

o

Thresholds

Tick generation

bp(t)

clocks from

n-1 other

TG-Algs

..
.

rp,q (t)
1

rp,q (t)
n-1

rp,q (t),
n-1

s sp,q (t)
n-1

rp,q (t),
1

s sp,q (t)
1

Tmax,dis

Tmin+Tmin,dis

TG-Alg node q

...
remote pipeline 1

+/ Counter 1

rq,p(t)

Tick ge

Thres

...

Figure 3.7: Timing paths of the interlocking constraint

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 57

Constraint 3.4.2 (Tick removal) τ+

Diff ≤ Tmin

Recall the functionality of the Difference Module which is to remove matching ticks from
both related pipelines, i.e., the remote as well as local one. To ensure that the speed of this
tick removal does not influence the rate of tick generation, Constraint 3.4.2 has to hold.
Informally speaking, the slowest Difference Module’s processing of tick(k) (determined
by the delay τ+

Diff) has to be at least as fast as the fastest generation of the subsequent
tick(k+1) and its propagation to the respective Difference Module (given by Tmin). In
other words, the Difference Module is not allowed to cause malicious queueing of ticks.

Constraint 3.4.3 (Fastest progress) T−

first ≥ T+

loc

The involved paths are depicted in Figure 3.8 and defined as follows:

T+

loc := τ+

loc + max{τ+

Diff + τ+

GR, τ+

GEQ} + τ+

TH

T−

first := τ−

rem + τ−

Diff + τ−

GEQ + τ−

TH

The condition of Constraint 3.4.3 expresses the requirement that the fastest correct
node of the tick generation ensemble is not allowed to issue ticks arbitrarily fast. To
be able to achieve and retain synchrony, the above constraint on the fastest remote tick
generation and the slowest local processing of ticks has to hold. The constraint on the
fastest progress denotes, besides the restrictions for booting, the only non-local constraint
of the tick generation approach.

TG-Alg node r

...
remote pipeline 1

+/ Counter 1

rr,p(t)

Tick ge

Thres

TG-Alg node p

TG-Alg node q

Diff 1
remote pipeline 1 local pipeline 1

PCSG 1GR
e
GEQ

e
GR

o
GEQ

o

+/ Counter 1

Diff n-1
remote pipeline n-1 local pipeline n-1

PCSG n-1

+/ Counter n-1

p,1 p,1 p,1 p,1

GR
e
GEQ

e
GR

o
GEQ

o
p,n-1 p,n-1 p,n-1 p,n-1

...
remote pipeline 1

+/ Counter 1

f+1
even even

2f+1 f+1
odd odd

2f+1

THGEQ
e THGEQ

oTHGR
e THGR

o

Thresholds

Tick generation

rq,p(t)

bp(t)

clocks from

n-1 other

TG-Algs

..
.

rp,q (t)
1

rp,q (t)
n-1

rp,q (t),
n-1

s sp,q (t)
n-1

rp,q (t),
1

s sp,q (t)
1

Tick ge

Thres

Tfirst Tloc
+

...

Figure 3.8: Timing paths of the synchronization constraint

58 3.4 Refined tick generation algorithm

Constraint 3.4.4 (Booting) B ≤ τ−

rem

All correct nodes have to complete booting until time tp,b where tp,b is in the interval
[0, B] with B ≤ τ−

rem. This constraint ensures that no clock tick is lost at start-up since no
correct tick may arrive earlier than the fastest remote interconnection delay τ−

rem.

3.4.4 Correctness and performance measures

As indicated above, the correct behavior of the tick generation approach relies on sev-
eral path delay conditions. These constraints have been retrieved by formal proofs3. To
be able to conveniently compute general synchronization characteristics like precision π
and accuracy, the underlying synchronization properties Progress, Unforgeability, Quasi-
Simultaneity and Booting-Simultaneity have been derived.

Progress (P): If all correct processes send tick(k) by time t, then every correct process
sends at least tick(k+1) by time t + TP, with

TP := max{τ+

loc + τ+

Diff + τ+

GEQ, τ+

loc + τ+

GR, τ+

rem + τ+

Diff + τ+

GEQ} + τ+

TH.

Unforgeability (U): If no correct process sends tick(k) by time t, then no correct pro-
cess sends tick(k+1) by time t + T−

first or earlier.

Quasi-Simultaneity (QS): If some correct process p sends tick(k+1) by time t, then
every correct process (including p) sends at least tick(k) by time t + TQS, with

TQS := max

{

(τ+
rem − τ−

rem) + (τ+

GR − τ−

GEQ − τ−

Diff),

B + (max{τ+

GEQ, τ+

GR} − min{τ−

GEQ, τ−

GR}) − T−

first

}

+ (τ+

TH − τ−

TH).

Booting-Simultaneity (BS): If some correct node sends tick(k) by time t with k ≥ 1,
then every correct node sends at least tick(k) by time t + TBS(k), with

TBS(k) := B + max{τ+

GEQ, τ+

GR} − min{τ−

GEQ, τ−

GR}+

+(τ+

TH − τ−

TH) + (TP − T−

first)(k − 1). (3.2)

Based on these four properties, bounds for the synchronization characteristics precision
π and accuracy can be given. Additionally, the queue sizes Sloc and Srem of the local and
remote pipelines can be computed.

Precision π among all correct nodes may not exceed

π :=

⌈

TQS

T−

first

⌉

+ 1 (3.3)

3The detailed proofs have been published in [39].

Chapter 3: Hardware Implemented Fault-Tolerant Tick Generation 59

Accuracy For a time interval given by t1 and t2 with t2 > t1, the accuracy (number of
ticks generated in the given interval) bp(t2)− bp(t1), of any correct node p is bounded
by

max

{

0,

⌊

t2 − t1 − max {TBS(1), min {TBS(k), TQS + TP} | k ≥ 2}

TP

⌋}

≤ bp(t2) − bp(t1) ≤

min

{⌈

t2 − t1
T−

first

⌉

+ π,

⌈

t2 − t1
Tmin

⌉

}

. (3.4)

Queue size The bound for the local and remote queue size of correct nodes can be derived
by

Sloc := max

{⌈

Tdel − τ−

loc

T−

first

⌉

+ 2,

⌊

Tdel − τ−

loc

T−

first

⌋

+ 3

}

. (3.5)

Srem := max

{⌈

T loc
del − τ−

rem

T−

first

⌉

+ 2,

⌊

T loc
del − τ−

rem

T−

first

⌋

+ 3,

⌊

τ+
rem + τ+

Diff − T loc
del − τ−

rem

Tmin

⌋

+ 1

}

.

(3.6)

with

Tdel := TQS + max{τ+

loc, τ
+

rem} + τ+

Diff

T loc
del := TQS + τ+

loc + τ+

Diff.

The presented treatment of the correctness and performance measures concludes the
formal analysis of the tick generation algorithms within this thesis. The following chapters
are concerned with the detailed presentation of the hardware design and the experimental
evaluations. However, it is self-evident that the insights gained from the formal analysis
will contribute to the design decisions of the hardware design and will also form the basis
for the evaluations.

Chapter notes

Within this chapter the mapping from algorithmic statements to design units imple-
mentable in asynchronous hardware has been presented. In the course of the translation
process several challenging problems regarding the asynchronous handling of ticks had to
be resolved which finally yielded a provably correct hardware architecture. For achieving
and maintaining correct operation of the tick generation system several implementation

60 3.4 Refined tick generation algorithm

constraints have been identified. In this context the formally interested reader is referred
to [39] where a proof outline of the presented correctness and performance measures can
be found together with some results of the hardware implementation. A more detailed
formal treatment of the tick generation approach can be found in [40]. This work includes
the introduction of a novel, hardware-related system model and its application for proving
correctness and performance characteristics. In [36] alternative approaches for convey-
ing tick(k) messages have been discussed quite extensively. In addition, limitations and
constraints for the different schemes are pointed out in the course of this work. A de-
tailed presentation of the hardware implementation resulting from the considerations of
this chapter will be given subsequently.

Chapter 4

The DARTS ASIC Implementation

All truths are easy to understand once they are discovered;

the point is to discover them.

Galileo Galilei

The algorithmic design considerations regarding hardware outlined in Chapter 2 yielded
a tick generation algorithm which is further detailed in Chapter 3 and finally presented
as Algorithm 8. The development process which led to the architecture depicted in Fig-
ure 3.6 appears to be a straightforward approach taking into account predefined algorithmic
and hardware design requirements and constraints. Unfortunately, the situation is much
more complicated. The presumed sequential design refinements which finally resulted in
the aforementioned algorithm and architecture had to follow a recurrent design approach
with several iterations. More precisely the design on the formal/algorithmic level and
on the layer of asynchronous hardware had to be iterated several times on both levels
of abstraction. On the one hand, design requirements on the algorithmic level did not
always allow for a suitable hardware implementation. On the other hand, asynchronous
circuits being implementable with reasonable effort and performance required adaptations
on the algorithmic level and recalculations of the formal analysis. Due to these tight mu-
tual dependencies the mentioned feedback and refinement strategy between hardware and
algorithm design had to be employed. The main focus in this chapter is on presenting
the development process of the asynchronous hardware blocks of the TG-Alg ASIC imple-
mentation. Therefore, basic building blocks for composition of more complex parts of the
circuit are introduced and characterized. Moreover, design alternatives for the TG-Alg’s
components are analyzed yielding the hardware blocks for the final ASIC implementation.
Additionally, as already sketched in Chapter 2, failure models following weaker assump-
tions than the Byzantine case may provide substantial potential for simplifications and
thus savings in terms of hardware resources. Implementations of weaker failure models

61

62 4.1 The big picture

are studied to provide a quantitative assessment of the different approaches, but the main
direction of the conducted research still focuses on Byzantine fault-tolerant design. In par-
ticular, a strategy relying on the duplication of nodes implementing weaker failure models
together with some additional transformation schemes is presented in more detail, since
this approach might be able to provide a viable implementation alternative to the purely
Byzantine-tolerant approach.

4.1 The big picture

As the title of this section suggests the presentation of the TG-Alg’s hardware design starts
on a big scale before going into details of the respective sub-designs. The development pro-
cess treated in Chapter 3 resulted in the architecture shown in Figure 3.6. This schematic
representation was found to be sufficiently accurate to allow for a thorough formal analysis
of the TG-Alg design, yielding several implementation constraints. Nevertheless, from a
hardware designer’s point of view the abstraction of the TG-Alg design has to undergo fur-
ther steps of detailing to enable a successful mapping to an ASIC manufacturing process.
Therefore, Figure 4.1 presents a more accurate architecture of a single TG-Alg node. The
given schematic further details the architecture’s representations of Figure 3.5 and Fig-
ure 3.6 by showing substantial implementation details. In particular, the transition-logic
based remote and local elastic pipelines as well as the Difference Module are presented in
detail. Additionally, the Pipe Compare Signal Generation (PCSG) block which translates
the transition signaling events into state based counter fill-levels and the Tick Generation
block which conversely performs the back transition to transition signaling are also shown
on a more fine-grained level than before.

An important characteristic of the given TG-Alg design that has not been addressed
so far is given by the fact that local clock ticks are compared only to remote ticks, i.e.,
no self-reception is included. This design decision is based on the fact that remote links
are expected to incorporate much higher propagation delays than the local clock feedback.
However, when recalling Section 2.3 it becomes evident that the synchronization precision
largely depends on a constant Θ which is derived from the ratio of the fastest and slowest
feedback delays within the tick generation scheme. Hence, an approach incorporating self-
reception would lead to much more unbalanced delays and thus to precision degradation.
As a consequence of omitting the self-reception path, the presented tick generation system
has to comprise at least 3f + 2 TG-Algs instead of the usually applied (lower bound of)
at least 3f + 1 nodes to attain the targeted degree of fault tolerance. In the schematic of
Figure 4.1 the above argumentation is accounted for by providing input ports for 3f + 1
remote TG-Algs. To give some real numbers for the ASIC design, a resilience for up to
3 Byzantine faults is demanded which results in a tick generation system of at least 11
TG-Alg nodes. The above presented architecture of the TG-Alg ASIC— in the context
of the entire distributed tick generation system— is subsequently followed by a detailed
description of the underlying submodules.

Chapter 4: The DARTS ASIC Implementation 63

C

C

C

C

Reset

Rremote,in

C

C

C

C

Rlocal,in

NAND2

NOR2

NOR1

NAND3

NAND4

NAND5

GEQe

GRe

GEQo

GR
o

Counter Module 3f+1 of 3f+1

Local Pipeline
Diff

Module
Remote Pipeline

Pipe Compare Signal Generation

...

...

2f+1 2f+1

f+1 f+1

...
...

...
...

Threshold Modules

GEQe

GRe

GEQo

GRo

...

3f+1

...

Ctop

LocalClk

s0

s1

i0 i1 i2 i3 i4 i5 i6
i7 i8 i9

Set

RemoteClk

r s

r

s

r

s

r

s

r

s

r

s
r

s

r

s

r

s

r s

Pipe Compare Signal Generation

Diff Module

Local PipelineRemote Pipeline

Counter Module 1 of 3f+1

C

Tick

Generation

r s

LocalClk_self

Figure 4.1: TG-Alg ASIC design architecture

4.2 Queueing ticks

Let the detailed analysis start with the design block responsible for processing locally and
remotely incoming clock signals, namely the elastic pipeline. As already mentioned in
Section 3.3, elastic pipelines can be viewed as FIFO buffers for transitions. This type of
pipeline was first introduced by Ivan Sutherland in [83] and in that context implemented
the control path of his asynchronous micropipelines communication approach. As shown
in Figure 4.1, the better part of an elastic pipeline consists of Muller C-Elements which are
characterized in more detail in the following. This in-depth treatment and analysis of the
Muller C-Element and other basic building blocks is crucial since the whole, generally delay
insensitive, implementation of the TG-Alg rests on the properties of its subcomponents.

64 4.2 Queueing ticks

4.2.1 Muller C-Element

The Muller C-Element has already been mentioned as fundamental building block during
the introduction of transition signalling in Section 3.3 where it was presented as a logic
AND equivalent for signal transitions. The exact functionality of a two-input Muller C-
Element can informally be described as the following: the output c is assigned with the
same logic value as the inputs a and b whenever both inputs are equal (c=a=b=0 or
c=a=b=1). On the contrary, if the inputs have different logic values the output c retains
its previous value c=c old. As a Boolean function this can be expressed as:

c = cold · (a + b) + a · b = cold · a + cold · b + a · b

The Muller C-Element’s behavior of retaining the old value of output c even if one of the
two inputs changes its value to a contrary logic level clearly demands some sort of storage
loop. However, the imperfectness of any real world design implementing a storage loop
implies that some constraints on the input sequence have to hold to guarantee that the
value of the storage loop can settle before a further input change occurs. Figure 4.2(a)
illustrates one storage loop of a Muller C-Element in the example of an implementation
which is based on NAND gates. From the schematic it becomes evident that the inputs a

a

b
c

t loop

(a) (b)

Figure 4.2: Muller C-Element implementation on (a) gate level (b) transistor level

and b have to stay stable for at least tloop, which is defined by the propagation delay through
two NAND gates plus some wiring delays. More precisely defined a Muller C-Element’s
correct behavior rests upon the assumptions that:

Chapter 4: The DARTS ASIC Implementation 65

reset

set

a b

cc
_

(a)

a b reset set c c

0 0 1 0 0 1
0 1 1 0 cold cold

1 0 1 0 cold cold

1 1 1 0 1 0
X X 0 X 0 1
X X 1 1 1 0

(b)

a

b

c ? ?

< tloop < tloop

(c)

Figure 4.3: Customized ASIC Muller C-Element

• a single input is not allowed to toggle faster than tloop if the initial transition would
cause output c to change its value. For example, if input a = 0, b = 1 and output c =
1, input b is not allowed to toggle faster than tloop since the output preserving feedback
loop needs time to settle the new value of c = 0 (see left part of Figure 4.3(c)).

• input a and b never change their logic level to the opposite value too close to each
other. For instance, again starting with a = 0 and b = 1 both inputs must not change
to the opposite polarity a = 1 and b = 0 within an interval smaller than tloop (right
part of Figure 4.3(c)).

The presented NAND implementation of the Muller C-Element only represents one of
several implementation variants. Nevertheless, a storage loop with respective timing re-
strictions is common to all designs. However, the extent of the timing loop’s delay tloop as
well as the overall speed, chip area and power consumption among different implementa-
tions are subject to large design-dependent variations. Due to the fact that the TG-Alg
implementation aims at high speed combined with high reliability, it was decided to employ
a transistor implementation following the design of Van Berkel [87]. Figure 4.2(b) presents
the schematic of a Van Berkel-type Muller C-Element which takes the above considerations
into account. Note that the storage loop in this design comprises of three transistors only,
which, compared to the NAND-based Muller C-Element, considerably shrinks the critical
time window for input changes. The actual Muller C-Element as it is employed in the
TG-Alg ASIC design additionally incorporates some extensions to the Van Berkel scheme.
First of all, a set and a reset input allow to bring the C-Element into a predefined initial
state. Furthermore, for improved performance of the Muller C-Element (when it is used for
implementing the elastic pipelines described below) two output signals, c and its inverted
equivalent c are provided. The specialized Muller C-Element’s circuit symbol is shown in
Figure 4.3(a). Note that this Muller C-Element has already been used in the schematic of
Figure 4.1. The exact functional description of the customized Muller C-Element is given
by the truth table of Figure 4.3(b).

66 4.2 Queueing ticks

C C

C C

Rin Rout

Aout

t lo
o
p
,s

ta
g
e

tcgate

twire

tinverter

twire

Ain S0

S1

S2

S3

Figure 4.4: Elastic pipeline design

4.2.2 Elastic pipeline

Figure 4.4 shows a four-stage implementation of an elastic pipeline that mainly consists of
Muller C-Elements. The pipeline’s regular structure consisting of a Muller C-Element and
one inverter per stage allows for effortless configuration of the FIFO’s buffer depth. Ivan
Sutherland described the functionality of a single stage of the micropipeline approach as
the following: “if the predecessor and the successor differ in state then copy predecessor’s
state else hold present state” [83]. To illustrate the exact behavior of the elastic pipeline
assume that the Muller C-Elements of all stages S0 to S3 hold the same value, e.g., all
stages are at logic 0, i.e., the pipeline is empty. As an example, assume an incoming rising
transition -↑ at Rin leading to Rin = 1. This logic value is propagated by the Muller C-
Element of stage S0 to the subsequent pipeline stage only if stage S1 has different polarity
than S0 which is the case because the Muller C-Element at stage S1 was initialized to a
value of logic 0. This logic 0 which is inverted and fed back to the Muller C-Element of
stage S0 enables Rin = 1 to pass through stage S0 and establishes a stable 1 at this Muller
C-Element. Likewise, the propagation of the initial Rin = 1 transition continues until stage
S3 is reached. As long as the acknowledge signal Aout is inactive, stages S0 to S2 are at the
same logic value of 1. Further input transitions may propagate in a similar manner through
the elastic pipeline until the pipeline is entirely filled (a full pipeline is characterized by
alternating logic values among all pipeline stages). It has to be further noted that the
input transition that led to Rin = 1 also changes the feedback path of every stage. This
feedback mechanism forms the elastic pipeline’s implicit flow control scheme. Hence, a
pipeline stage is ready for processing the next input transition if the subsequent stage has
also acknowledged the previous input. Applied to the above example, this translates to
the fact that a new Rin = 0 transition can be handled by stage S0 as soon as the previous
Rin input transition propagated through S1 (and the respective feedback inverter).

Similar to storing transitions into the pipeline, emptying the elastic pipeline starts as
soon as the acknowledge signal Aout is issued. Aout triggers the removal of the elastic
pipeline’s rightmost transition. In the above mentioned example, Aout = 1 will remove

Chapter 4: The DARTS ASIC Implementation 67

C

C

C

C

Rin

r

s

r

s

r

s

r

s

reset
set

Rout

Aout

Figure 4.5: TG-Alg ASIC elastic pipeline design

the logic 0 from S3, resulting in the fact that the value logic 1 of S2 propagates to S3,
the content of S1 moves on to S2 and so on. In other words, the “empty slot” generated
by issuing Aout moves upstream stage by stage until it reaches stage S0. Sutherland used
the metaphor of “air bubbles that rise through water” to illustrate this effect of data value
progression.

In general, the elastic pipeline’s way of transition processing provides a very elegant
flow control and buffering mechanism as long as some basic timing constraints are main-
tained. The involved timing paths are depicted in Figure 4.4. Similar to the Muller
C-Element itself, the feedback loops of the elastic pipeline introduce additional tim-
ing condition restricting the input sequence. The path delay tloop,stage limits the dis-
tance between two subsequent input transitions on Rin. Compared to the Muller C-
Element’s input constraints which are characterized by tloop and have been presented in
Section 4.2.1, tloop,stage ≈ 2tcgate + 2twire + tinverter is obviously the more restricting fac-
tor since tloop,stage ≫ tcgate ≈ tloop, with tcgate being the determining variable of tloop,stage’s
value1.

As already indicated in the elastic pipeline schematic of Figure 4.1, some characteristic
features of the design used in the TG-Alg design have to be mentioned. Figure 4.5 depicts
the implemented four-stage elastic pipeline in detail. The first distinction to the previously
presented typical elastic pipeline architecture is given by the fact that the customized
Muller C-Element of Figure 4.3(a) is employed. This version of the Muller C-Element
provides its output signal via an inverted and a non-inverted port and hence allows to
remove the additional inverter of the elastic pipeline’s feedback path. Furthermore, the
reset and set inputs allow to bring the elastic pipeline in a predefined state. In the case
of a TG-Alg an empty pipeline is usually used as starting point, i.e., all stages hold a
value of logic 0 forced by the reset signal. Another peculiarity of the TG-Alg-specific
elastic pipeline is given by the fact that only the input signal Rin is used and output Ain

is not connected. Again a closer look at Figure 4.1 reveals that Rin corresponds to the

1Note that, assuming the feedback loop’s tloop,stage delay components tcgate and twire being identical
for all stages clearly poses a simplification. However, this assumption seems to be reasonable for the
comparison to the propagation delay of a single Muller C-Element.

68 4.3 Counting ticks

clock input signal (remote or local). In turn the feedback output Ain would correspond
to an acknowledge signal for the incoming clock signal transitions. However, a strategy
including Ain cannot be reasonably employed in the TG-Alg design for the reason (already
discussed in Section 3.1) that the clock network has to be as small as possible, i.e., only one
rail is allowed per node-to-node synchronization communication. Moreover, the explicit
generation of an acknowledge signal would require some coordinating measures in the
receiving pipelines to jointly acknowledge a sender’s clock transitions. In contrast to the
clock input side of the elastic pipeline, the far end interconnection to the Difference Module
includes the entire pipeline interface Rout and Aout. As long Rout = Aout, the pipeline is
empty and waiting for input transitions and no tick can be removed by the Difference
Module. However, as soon as Rout 6= Aout the pipeline holds at least one clock tick which
can be consumed by altering Aout to the value of Rout. A more detailed description of
the Difference Module’s tick removal operation in conjunction with the local and remote
elastic pipelines will be given in the following paragraphs.

4.3 Counting ticks

Each of the elastic pipelines presented above manages to buffer incoming clock transi-
tions— four clock transitions in the particular case of the proposed TG-Alg ASIC stan-
dard node design2. This buffering scheme is essential because compared to the local tick
generation, remote clock signals may arrive at (slightly) different instants. Therefore,
to prevent these FIFO pipelines from overflowing, a tick removal strategy incorporating
both remote and local pipelines has to be employed. Based on the clock ticks propagat-
ing through the pipelines, conditions have to be derived indicating for each pipeline pair
whether or not the remote or the local pipeline has seen more clock ticks (remote ≥ local
and remote > local). This essentially describes computations performed by the block in-
troduced as +/− Counter. Additionally, it can be seen as the necessary translation from
the scope of transition signaling (clock ticks and elastic pipelines) to common asynchronous
state logic (Pipe Compare Signal Generation and Threshold Modules).

4.3.1 Difference Module

As already mentioned before, the used tick generation algorithm is only interested in the
difference of locally generated and remotely received ticks. The required difference com-
putation is enabled by removing matching clock ticks from both the remote and the cor-
responding local pipelines. Note that the employed removal strategy is necessary due to
the fact that a reasonable implementation of elastic pipelines can only store a very limited
number of ticks. This constraint on the buffer capacity however is sufficient for the under-
lying tick generation algorithm since its proper operation solely relies on the relative offset

2The number can be easily adapted by adding more buffer stages.

Chapter 4: The DARTS ASIC Implementation 69

S
R

e
m

o
te

2
_

N

S
R

e
m

o
te

2

S
R

e
m

o
te

3
_
N

S
R

e
m

o
te

3

S
0

S
1

S
2

S
3

S
0

S
1

S
2

S
3

S
L

o
c
a

l3

S
L

o
c
a
l3

_
N

S
L

o
c
a

l2

S
L

o
c
a
l2

_
N

S
L

o
c
a

l1

S
L

o
c
a
l1

_
N

Figure 4.6: TG-Alg ASIC Difference Module and elastic pipelines

of remotely and locally generated clock ticks (recall Section 3.4.2). The so-called Difference
Module which forms the core part of the previously introduced +/− Counter implements
the removal strategy by interconnecting remote and local pipeline in a special way. A
schematic showing the Difference Module (which is essentially a Muller C-Element) in con-
junction with the corresponding remote and local elastic pipeline is given in Figure 4.6. It
should be noted that on reset the Muller C-Element of the Difference Module Ctop is initial-
ized to logic 1 while all other C-Elements of the pipelines are set to 0. This initialization is
crucial for the tick removal strategy since it has to follow a strict sequence. The restrictions
of the tick processing have to guarantee that the fill-level signals which are derived by the
subsequent Pipe Compare Signal Generation Modules always show valid information. Due
to the facts that the fill-level computation is performed continuously and that in practice
removing remote and local ticks simultaneously cannot be implemented, another method
has to be used to ensure correct fill-level values. In detail, a strategy has to be followed
securing that if two matching ticks are present in corresponding pipelines the tick is first
removed from the local pipeline and then from the remote side. This ensures that the
conditions remote ≥ local and remote > local, which directly translate to the fill-level
signals GEQe,GRe and GEQo,GRo are never falsely activated. To illustrate the restricted
tick removal process, assume an example starting directly after reset, that is, remote and
local Muller C-Elements are initialized to 0 while the Difference Module’s Ctop is set to
logic 1, i.e., its inverted output also displays 0. This initialization allows a clock tick-↑
message from the local side to propagate through S0, S1 and S2. The Muller C-Element
at stage local S3, however is not ready to process the tick-↑ until a corresponding tick-↑ at
the remote side has propagated down to S2 (where it is also halted). As soon as remote S2
has processed the tick-↑, Ctop enables S3 at the local side to propagate the pending tick-↑.
This in turn allows remote S3 to process the waiting tick-↑. Tick processing follows this
“local before remote” strategy continuously for every arriving clock transition.

70 4.3 Counting ticks

4.3.2 Pipeline compare signal generation

The circuit blocks presented so far, i.e., elastic pipelines and Difference Module, which
mainly consist of Muller C-Elements, are operating in the scope of transition signaling.
In contrast to that, the Pipeline Compare Signal Generation (PCSG) Modules are im-
plemented in asynchronous state logic since fill-levels, i.e., states, have to be assessed.
Unfortunately, state logic circuits tend to produce glitches if input changes occur. How-
ever, such unintended glitches are catastrophic when later reverting back to transition
signaling. Hence, as already mentioned in the previous subsection, it is crucial for the
tick generation process that the respective fill-level signals never switch to the active state
if remote ≥ local and remote > local conditions, respectively, do not hold3. A hard-
ware design optimized for the targeted ASIC manufacturing and implementing the whole
+/− Counter Module is presented in Figure 4.7. The PCSG part of this circuit block com-
prises fundamental logic elements like NAND and NOR gates and generates the fill-level
indicator signals GEQe,GRe and GEQo,GRo. As introduced in Section 3.3, even clock
ticks are tick-↓ transitions while tick-↑ messages denote odd clocks. The description of the
Pipeline Compare Signal Generation Module’s function can be partitioned in the process-
ing of even and odd ticks. Hence, the PCSG part treating incoming even ticks ultimately
triggers the generation of odd ticks by issuing GEQe,GRe signals. Similarly, the circuit
concerned with odd ticks and controlling GEQo and GRo is responsible for generating even
clock ticks.

The exact behavior of the PCSG unit in conjunction with the elastic pipelines and
the Difference Module will be described in the following. In general it should be noted
that all output signals of the Pipeline Compare Signal Generation Module (GEQe,GRe,
GEQo,GRo) as well as all internal logic operations are active low, i.e., a value of logic 0
indicates that the respective signal is activated. This peculiarity of active low outputs
and the fact that exclusively inverting basic gates (NAND instead of AND, NOR instead
of OR) are used within the PCSG design, originates from optimizing the circuits for a
fast ASIC implementation. Retrieving state information from the transition-logic-based
elastic pipelines has to be designed carefully since it obviously does not follow the elastic
pipeline’s original design goal. Three taps of the local pipeline are combined to ensure that
no dynamic effects during tick arrival or removal can compromise the fill level signal. In
detail, the signals SLocal1, SLocal2 and SLocal3 in conjunction with the NOR1 gate are
used to indicate whether or not the pipeline holds a single even tick. Likewise, the inverted
local pipeline signals SLocal1 N , SLocal2 N , SLocal3 N together with the NOR2 are
used to determine if an individual odd tick is stored inside the pipeline. The fill-level
indicators on the remote side (SRemote2, SRemote3 and SRemote2 N , SRemote3 N)
are responsible for checking if one or more clock ticks are currently stored in the pipeline.
An appropriate combination of local and remote side fill-level signals allows to generate the
output signals GEQe, GEQo and GRe,GRo which represent the conditions remote ≥ local
and remote > local, respectively (see Table 4.1(a) and 4.1(b)). To attain an active fill-level

3However, signals may stay active even if the above conditions are no longer fulfilled.

Chapter 4: The DARTS ASIC Implementation 71

C

C

C

C

C

C

C

C

Ctop

S
R

e
m

o
te

2
_
N

r s

r
s

r
s

r
s

r
s

r
s

r
s

r
s

r
s

Difference Module Local PipelineRemote Pipelinereset

set

RemoteClk LocalClk_self

S
R

e
m

o
te

2

S
R

e
m

o
te

3
_

N

S
R

e
m

o
te

3

S
0

S
1

S
2

S
3

S
0

S
1

S
2

S
3

RemoteRout

LocalRout

LocalAout

RemoteAout

RemoteS2Rout_N

NAND2

NOR2

NOR1

NAND3

NAND4

NAND5

GEQe

GRe

GEQo

GRo

S
L

o
c
a

l3

S
L
o

c
a
l3

_
N

S
L
o

c
a
l2

S
L
o

c
a
l2

_
N

S
L
o

c
a
l1

S
L
o

c
a
l1

_
N

Pipeline Compare Signal Generation

Figure 4.7: TG-Alg ASIC +/− Counter Module

signal GEQe, corresponding to remote ≥ local it has to hold that:

• only one even (tick-↓) clock transition is stored inside the local pipeline, which is
indicated by NOR1

• at least one even clock tick is present in the remote pipeline, indicated by signal
SRemote3 N

These two conditions are combined in a final step via NAND2, generating the output
GEQe. Similarly, for the activation of the low active signal GRe implementing the condition
remote > local the following constraints have to be fulfilled:

• again only one even (tick-↓) clock transition is allowed inside the local pipeline, which
is assessed by the NOR1 gate

• more than one clock tick has to be present in the remote pipeline, an even clock tick
in pipeline stage S3 and additionally an odd tick in stage S2.

These conditions are evaluated by the gate NAND3 via signals SRemote2 N and
SRemote3 N in conjunction with the output of NOR1. The activation of the signals
GEQo and GRo follows by analogous means, simply treating odd instead of even input
signals. Table 4.1(a) gives the detailed signal conditions for activating GEQe and GRe,
whereas Table 4.1(b) presents the respective signal conditions for treating odd ticks and
generating GEQo as well as GRo.

72 4.4 Generating ticks

Table 4.1: Activation patterns for fill-level signals

(a)

remote local
S2 S3 S3 S2 S1

GEQe 0 0
0 0 0

1 0
GRe 1 0 0 0 0

(b)

remote local
S2 S3 S3 S2 S1

GEQo 1 1
1 1 1

0 1
GRo 0 1 1 1 1

4.4 Generating ticks

The final processing step of every TG-Alg node is concerned with the evaluation of the
counter fill-levels and has to generate new clock ticks according to the tick generation
algorithm’s rules. The application of threshold functions to the GEQe, GEQo and GRe,GRo

signals corresponds to evaluating the conditions of the “Relay Rule” and “Increment Rule”
from Algorithm 8 for even and odd ticks, respectively. Similarly to the Pipe Compare Signal
Generation, the threshold functions are implemented in asynchronous state logic, while the
actual tick generation process performs a back-transformation to transition signaling.

4.4.1 Threshold Modules

Four distinct threshold circuits allow to separately evaluate all output signals of a node’s
(3f + 1) +/− Counter Modules. As depicted in Figure 4.8, two threshold circuits are
responsible for processing the fill-level signals GEQe and GRe for even ticks. This way
they implement the tick generation algorithm’s “Relay Rule” and “Increment Rule” by
virtue of f + 1 and 2f + 1 threshold circuits, respectively. Similarly to the even PCSG
output signals, the odd counterparts GEQo and GRo are treated by distinct threshold
circuits. This separation of even and odd ticks has already been motivated in Section 3.3
and originates in the problems that threshold circuits (m-out-of-k, e.g., 2f+1-out-of-3f+1)
cannot be implemented glitch-free in asynchronous logic and the fact that non-interference
of subsequent data waves (ticks) has to be ensured. The interleaved operation of threshold
circuits responsible for even and odd ticks allows to mask interfering glitch phenomena.
More precisely, the special properties of the TG-Alg implementation as a whole allow that
every threshold circuit might produce glitches within a certain portion of its “inactive”
phase. This inactive phase denotes the time interval in which this threshold circuit does not
contribute to the generation of the next clock tick. Thus, for example the input sequence
and therefore the output of the 2f + 1 threshold circuit might change its value several
times after a new odd clock tick has been triggered according to the status of the GEQe

signals. This toggling does not pose a threat as long the GEQe signals and the respective
threshold circuit output finally stabilize to enable the generation of the subsequent tick.

Chapter 4: The DARTS ASIC Implementation 73

2f+1 2f+1

f+1 f+1

...
...

...
...

r s

C

Tick Generation

r s

q1

q3

q2

q4

r

s

LocalClk

GEQ
e

GR
o

GEQo

GR
e

Figure 4.8: TG-Alg ASIC Threshold Modules and Tick Generation

The implementation constraint which ensures that all threshold circuits stabilize in a timely
manner has already been introduced by Constraint 3.4.1 in Section 3.4.3.

The implementation of a single threshold circuit relies on a conventional sum of products
scheme consisting of simple standard cell gates only. Figure 4.9 illustrates the design
and basic structure of a 3-out-of-4 sum of products threshold circuit. The four product
terms marked in Figure 4.9(a) represent all valid three-input combinations in the 3-out-
of-4 example. When considering a more general m-out-of-k design it can be derived that
(

k
m

)

product terms have to be computed and then summed up. The threshold circuits of
the ASIC TG-Alg implementation have been designed for 11 input signals. The resulting
4-out-of-11 implementation of the f + 1 threshold circuit yields 330 product terms. These
product terms clearly have to be summed up in a tree-like cascaded architecture since
no elementary gates with a fan-in of 330 are available in the ASIC target technology. A
notable peculiarity of the sum of products implementation is the fact that the 2f + 1
threshold function requires exactly the same amount of product terms as the f +1 design.
A closer look at both designs reveals that for the given configuration of n − 1 inputs with
n − 1 = 3f + 1 = 11, the required threshold functions f + 1 = 4 and 2f + 1 = 7 lead to
the same complexity of the threshold circuit

(

11

4

)

=
(

11

7

)

= 330. In general, this fact allows
that only one threshold function, either the f + 1 or the 2f + 1 circuit, has to be designed
since both threshold circuits can be converted into each other by simply inverting all input
and output signals.

Even though the sum of products scheme has exponential scaling with the number of
inputs n− 1, in [37] the approach has been identified to be the best match with respect to
the given implementation constraints and requirements. Beside the aim for high-speed the
most stringent requirement that led to the selection of the sum of products scheme was the
design for low propagation delay variations. This demand for low delay jitter reflects that
the proposed tick generation algorithm’s correctness and performance ultimately rely on
the ratio Θ of different timing paths within the TG-Alg design (cf. Section 2.3). Detailed
constraints on path delay relations which have to hold to guarantee correct algorithm ex-

74 4.4 Generating ticks

(a)

a
b
c

a
b
d

a
c
d

b
c
d

o

(b)

Figure 4.9: 3-out-of-4 threshold circuit (a) Karnaugh-Veitsch diagram and (b) sum of
products implementation based on standard gates

ecution have already been presented as Constraints 3.4.1, 3.4.2 and 3.4.3. In addition,
Equation 3.3 (Precision π) revealed that matching path delays to attain low jitter directly
translates to performance increase in terms of enhanced precision. Among the system-level
requirements presented in Section 1.7 it has been defined that the number of nodes n and
thus the thresholds f + 1 and 2f + 1 have to be configurable for different numbers of f .
This demand is accounted for by enhancing each threshold circuit input with additional
two-stage masking logic. Even though the extra logic adds delay to the threshold circuits,
it increases the delay for all paths, which does not worsen the critical delay jitter. The
requirement to provide a configurable threshold m, i.e., 7, 5, 3 for the 2f +1 and 4, 3, 2 for
the f +1 circuit, however, led to distinct 2f +1 and f +1 designs. The reason for this opti-
mization is based on the observation that max{

(

11

7

)

,
(

11

5

)

,
(

11

3

)

} = max{330, 462, 165} = 462

while max{
(

11

4

)

,
(

11

3

)

,
(

11

2

)

} = max{330, 165, 55} = 330 which leads to substantial savings if
a separate f + 1 threshold circuit design is used.

4.4.2 Tick generation

The threshold circuits described above individually process even and odd ticks and provide
output signals to indicate when the next tick message has to be generated according to the
algorithm’s rules. The actual generation and broadcasting of a tick, however, is handled
by the design unit labeled Tick Generation in Figure 4.8. In the Tick Generation Module
the four threshold circuit outputs q1, q2, q3 and q4 are combined by simple logic gates in a
way such that only valid clock ticks are generated, in essence it handles the concurrency
of the two rules of the algorithm. Furthermore, the Tick Generation Module has to ensure
that after generating a clock tick the TG-Alg’s clock output remains stable despite the
fact that the outputs of the threshold circuits might toggle due to glitches. This retention
of the clock output is enabled mainly by the final Muller C-Element which only issues a

Chapter 4: The DARTS ASIC Implementation 75

new tick if both inputs indicate to do so. However, since the storage loop of the Muller
C-Element needs stable inputs during its settling time (cf. Section 4.2.1) the outputs of the
threshold circuits have to be stable for a small time interval before and after a new tick is
generated. This safety window is ensured by the already presented so-called Interlocking
constraint (Constraint 3.4.1). Assuming that all implementation constraints are fulfilled
and taking the above mentioned considerations into account, a new tick is generated only
if:

• the threshold circuits responsible for the generation of the previous tick (by providing
enabled input signals GEQ, GR) have become inactive again

• at least one of both threshold circuits concerned with evaluation of the last tick, and
hence responsible for the generation of the subsequent tick, gets activated

To illustrate the operation of the tick generation circuit shown in Figure 4.8, an example
trace of the activation and deactivation patterns of q1, q2, q3 and q4 indicating the tick
generation instants is depicted in Figure 4.10. Note that signals q1 and q4 are active low,
while q2 and q3 are high when activated. In the example trace it can be observed that a
new odd tick is triggered as soon as both q2 and q3 are inactive again and one of the signals
q1 or q4 gets activated (in the example trace q4 triggers the tick generation). In detail,
the trace shows that � the active signals q2 and q3, one of which previously triggered the
generation of the currently active even tick, will start to get deactivated � as soon as the
generated even tick propagates to sufficiently many of the GRo and GEQo signals to get
below the respective threshold. Due to activations arriving late near the threshold while
other paths have already started the deactivation process, q2 and q3 may toggle several
times before finally being stable deactivated . The activation of q1 or q4, indicating that
the threshold of GEQe or GRe has been reached Æ , will in turn immediately trigger the
generation of the subsequent odd tick.

4.5 TG-Alg implementation characteristics

After the detailed component descriptions of a TG-Alg this section proceeds with the
presentation of implementation properties and deficiencies. The analysis of the whole TG-
Alg design is conducted by putting together the characteristics of all sub-units. For this
purpose exact numbers for the hardware effort in terms of gate equivalents and die size will
also be assessed. Taking a closer look at the basic architecture of a cluster of TG-Alg nodes
reveals that an almost fully connected point-to-point network is assumed (it is not fully
connected because no self-reception loops are present, cf. the discussion on the number of
nodes in Section 4.1). This network topology clearly implies a quadratic growth of the
TG-Net’s number of links with node count n and thus also with f , i.e., O(f 2) and has
direct impact on the complexity of a TG-Alg’s implementation.

76 4.5 TG-Alg implementation characteristics

q1

q2

q3

q4

inactive

active

TICK- / even TICK- / odd

starting

deactivations

stable

inactive

tick

generation

stable

inactive

tick

generation

TICK-

1

2
3

4

starting

deactivations

Figure 4.10: Example trace of the tick generation signals q1, q2, q3 and q4

Staying with the flow of the previously presented sub-blocks the tick queueing and
tick counting mechanisms are treated first. The hardware effort for building a TG-Alg’s
queueing and counting blocks is for a considerable part determined by the amount of
incorporated Muller C-Elements. Considering the remote and local elastic pipelines as
well as the Difference Module, the Muller C-Element presents the only relevant building
block, whereas the Pipeline Compare Signal Generation module is assembled using a few
basic gates with two and three inputs, respectively. To assess a TG-Alg’s hardware effort
for tick queueing and counting it has to be taken into account that the implementation of a
single node consists of n− 1 = 11 individual +/− Counter Modules— one for each remote
TG-Alg. Table 4.2 presents numbers for gate count and silicon area (in the 0.18µm ASIC
target technology) treating sub-modules as well as the whole design of a +/− Counter.
Furthermore, the hardware effort is added up to account for the 11 +/− Counters of
the actual TG-Alg implementation. It can be observed that the elastic pipelines are the
main contributors to the chip area of each +/− Counter. Investigating the reason for
this circumstance reveals the Muller C-Element’s responsibility due to its rather complex
structure and the resulting high area effort when compared to other basic gates of the
+/− Counter (NAND and NOR gates). It has to be noted that the used custom cell
transistor-level Muller C-Element already substantially reduced the Muller C-Elements
impact on hardware effort. In case of a gate-level implementation (e.g., the NAND gate
design of Figure 4.2(a)) the even more pronounced complexity and hardware effort of the
Muller C-Element would have additionally resulted in notable loss of performance.

In contrast to the queueing and counting blocks (+/− Counter) every TG-Alg holds

Chapter 4: The DARTS ASIC Implementation 77

Table 4.2: Hardware effort for queueing and counting ticks

of basic gates # of C-Elements area in [µm2]
Remote Pipeline - 4 944
Local Pipeline - 4 944

Difference Module 2 1 270
PCSG 6 - 395

+/− Counter 8 9 2,553
11 +/− Counters

88 99 28,083
(for an entire TG-Alg)

Table 4.3: Hardware effort for Threshold Modules

of basic gates # of C-Elements area in [µm2]
f + 1 circuit 550 - 51,641
2f + 1 circuit 1,013 - 176,083

Tick Generation 2 1 303

Threshold Modules:
3,128 1 455,7512 × f + 1, 2 × 2f + 1

and Tick Generation

only one Threshold Module— incorporating four threshold circuit units and the Tick Gen-
eration Module. As thoroughly described in Section 4.4.1, threshold circuits are purely
combinatorial blocks following a sum of products implementation. Given an input width
of n − 1 = 11, the presented complexity growth with the number of inputs yields 330
and 462 product terms for each of the f + 1 and 2f + 1 threshold circuits, respectively.
Therefore the exponential increase with approximately

(

3f+1

f+1

)

is one of the prominent cost

driving factors when scaling the tick generation system’s resilience f ≤
⌊

n−2

3

⌋

and hence
the number of nodes n. Due to the fact that basic standard cell gates like NAND and NOR,
which are used in the sum of products implementation, are typically available only with
two and three inputs, hardware effort is additionally increased with increasing number of n.
This is true for the product terms as well as for the terminal sum term because increasing
numbers n and m result in the need for cascading basic gates. In contrast to the threshold
circuits the Tick Generation Module does not suffer from scaling effects since it consists
of two basic gates and a single Muller C-Element only. Similarly to the elastic pipelines
it benefits from the transistor-level implementation of the Muller C-Element. Table 4.3
lists gate count and area numbers for the involved design units and the Threshold Module
block overall.

The comparison of a TG-Alg’s components in terms of hardware effort, shown in Ta-

78 4.6 Discussion on algorithm implementations for weaker failure models

Table 4.4: Hardware effort of a single TG-Alg and its components

of basic gates # of C-Elements area in [µm2] area in %
Remote Pipeline - 4 944 0.20
Local Pipeline - 4 944 0.20

Difference Module 2 1 270 0.06
PCSG 6 - 395 0.08

+/− Counter 8 9 2,553 0.05
11 +/− Counters 88 99 28,083 5.80

f + 1 circuit 550 - 51,641 10.67
2f + 1 circuit 1,013 - 176,083 36.39

Tick Generation 2 1 303 0.06
Threshold Modules 3,128 1 455,751 94.19

single TG-Alg 3,218 100 483,862 100.00

ble 4.4, reveals that the sum of product threshold circuit implementation accounts for a
substantial part of the entire design. Almost 95% of a TG-Alg’s chip area is devoted to the
Threshold Modules. The enormous hardware effort reflects the threshold circuits’ unfavor-
able scaling with f and n. In general, the Threshold Modules’ predominance in hardware
effort allows to give an estimate for the scaling of a TG-Alg’s chip area following ≈

(

3f+1

f+1

)

.
This scaling obviously only applies for the used sum of products approach and would be
completely different for other implementation technologies. Analogously to the customized
Muller C-Element, an applicable enhancement to reduce the sum of products area effort
might be given by an optimized transistor-level implementation. Furthermore, the design
alternatives presented in [37] might also provide reasonable options.

4.6 Discussion on algorithm implementations for

weaker failure models

In the context of the numbers for gate count and chip area of the Byzantine-tolerant tick
generation implementation, a comparison to alternative, less complex approaches seems to
be indicated. Algorithms able to cope with (clean/unclean) crashes as well as omission
failures have already been introduced in Section 2.3.1. The properties of these algorithms
in terms of how many nodes a distributed system has to comprise to be resilient against
f failures of a specific type has been shown. Furthermore, the algorithms’ complexity has
been analyzed in terms of assessing the number of rules and estimating their intricacy.
However, what is missing in the treatment of the algorithms for weaker failure models up
to this point is an analysis of the underlying distributed system failure model’s appro-

Chapter 4: The DARTS ASIC Implementation 79

Table 4.5: Comparison of Byzantine-, omission- and crash-tolerant algorithms, i.e., Algo-
rithms 8, 6 and 5 in a system with f = 3

Byzantine Omission Crash

nodes n ≥
3f + 2 2f + 2 f + 2

11 8 5

links
9f 2 + 9f + 2 4f 2 + 6f + 2 f 2 + 3f + 2
11 × 10 = 110 8 × 7 = 56 5 × 4 = 20

Threshold Modules per node 4 2+2 (simple) 2 (simple)
Chip area per node in µm2 483,862 33,188 9,810

Chip area per node normalized
100% 7% 2%

with Byzantine-tolerant design
Chip area entire system in µm2 5,322,482 265,504 49,050

Chip area entire system normalized
100% 5% 0.9%

with Byzantine-tolerant design

priateness for real hardware faults. Furthermore, a comparison of the implementation’s
hardware effort for different approaches might additionally be able to provide valuable
insights.

The algorithm analysis of Section 2.3.1 shows that substantial savings in chip area/hard-
ware effort can be expected by relaxing the underlying failure model. More precisely, the
reduction of the adverse power of the allowed failures has major impact on the number n
of TG-Algs needed to be able to tolerate a fixed number f of failures. Moreover, it has
to be noted that less restrictive failure models also result in weaker requirements for node
connectivity. Additionally, the number and complexity of the algorithm’s rules also profits
from the changed failure semantics. Table 4.5 presents the implementation complexity
and hardware effort of the omission- and crash-tolerant algorithms (Algorithm 6 and 5)
together with the numbers for the Byzantine-tolerant Algorithm 8. This comparison con-
firms the expected savings when dealing with less restrictive failure models. Considering
the analyzed systems which are resilient to f = 3 faults the omission-tolerant approach
achieves a reduction in hardware effort by a factor of 20 while the crash-tolerant system
uses less than 1

100
of the Byzantine-tolerant design’s chip area. As one would expect from

Table 4.4, the significant savings are mostly due to the reduced complexity and number
of threshold circuits4. Especially the implementation of the rules indicated as “simple”,
representing the algorithm’s at least 1 conditions, can be performed very hardware effi-
ciently since the functionality translates to a simple OR gate. In addition to the hardware
efficiency of the omission and crash algorithms, the appropriateness of the underlying dis-
tributed systems’ failure models for typically encountered hardware faults is of increased
interest. As developed in the following, a severe mismatch between hardware faults like
stuck-at or stuck-open faults (cf. Section 1.4.1) and the implemented failure models can be

4Using a different implementation technology with improved, e.g., linear, scaling in n like threshold
logic [6] would radically change the picture.

80 4.6 Discussion on algorithm implementations for weaker failure models

identified. A clean crash in the setting of a TG-Alg, for instance, can be translated into
two main requirements:

(i) Causality: A fault must not produce any extra transitions, or move them ahead in
time— every transition experienced by a receiving node must be the result of the
algorithm’s proper operation.

(ii) Symmetry: The perception of a fault must be the same for all receivers.

When translating requirement (i) to effects on hardware level it can be shown that it is
easily violated, e.g., by transients on a communication link which generate extra transitions.
Even a stuck-at fault may produce one extra (early) clock transition, thus invalidating
condition (i). Requirement (ii) is obviously not fulfilled if the perception of a fault depends
on a receiver’s specific properties like physical location, threshold or speed. Marginal effects
like short glitches or undefined voltage levels created by a fault can be noted as problematic
conditions. An open defect in a logic gate or communication link may not only produce
both of these, but will definitely cause asymmetric perception if it affects only a branch of
the network. These examples make it evident that the assumption of clean crashes is very
optimistic in a typical hardware setting, since it rules out many commonly encountered
fault scenarios. Unfortunately, relaxing the assumptions to unclean crash failures does not
help much since requirement (i) remains unchanged, while with respect to (ii) asymmetric
perception is now allowed once before a faulty link finally turns mute.

The assumption of omission failures clearly disburdens of requirement (ii), but it is
still hard to argue that even (i) alone can be maintained in a realistic setting. In summary,
employing a failure model more restricted than the Byzantine model can generally not
be justified for a hardware implementation in practice. To be able to give at least a
probabilistic estimation of a system’s resilience, a thorough coverage analysis with respect
to the used (weak) failure model and expected hardware faults seems to be necessary.
Nonetheless, as indicated in Table 4.5, relaxing failure semantics shows the potential for
significant savings in terms of chip area and system complexity. The above presented
difference in system complexity by a factor of 100 of the Byzantine- and crash-tolerant
system suggests that it might be worthwhile to invest in hardening weaker failure models
for typically encountered hardware faults. Again a concept from the distributed community
might be of help to enforce requirements (i) and (ii). The approach of “simulation” and
“failure transformation” for example presented in [81] might provide appropriate means to
attain a system tolerant of typical hardware faults on the basis of a failure model weaker
than the Byzantine.

4.6.1 Failure transformation

Assume that up to f failures of a certain type A (e.g., Byzantine) might occur in a given
distributed system. Then there exist failure transformation algorithms, which provide

Chapter 4: The DARTS ASIC Implementation 81

services (e.g., broadcast) to an upper layer that are proven to fail in a more restricted way
B (e.g., by clean crashes only). Unfortunately generic failure transformation algorithms
for turning Byzantine failures into weaker failures typically need to communicate multiple
times between distinct nodes p and q to provide a simulation of a single message from p to q
at the upper layer. However, analogously to the arguments for conveying only simple zero-
bit ↑ / ↓ transitions in the Byzantine-tolerant tick generation approach (cf. Section 3.1),
the same criteria apply for clock and tick synchronization in general. Thus, a multi-round
transformation is definitely not acceptable from a performance point of view. Fortunately,
there exists a transformation scheme which turns f Byzantine failures at a lower level of
abstraction into f omission failures at the upper level. To be precise, the Byzantine failures
are transformed into late timing failures. However, Algorithm 6 introduced in Section 2.3.1
to be omission-tolerant can cope with late timing failures as well. The basic concept of the
Byzantine-tolerant tick synchronization approach which is based on failure transformation
is depicted in Figure 4.11 and has the following properties:

• the system comprises 2f + 2 virtual supernodes representing the upper layer—
omission-tolerant system

• each of the 2f + 1 supernodes consists of f + 1 omission-tolerant subnodes

• at the lower layer each single subnode p.i, where p denotes the supernode and
i ∈ {1, . . . , f + 1} the subnode number, executes the transformation algorithm, i.e.,
Algorithm 9, together with an instance of Algorithm 6.

Figure 4.11 shows an enlarged view of virtual supernode p with identifier 2f + 2, with
three of its subnodes p.1, p.f and p.f + 1. It can be seen that p.1 is composed of the
omission-tolerant algorithm together with an instance of the transformation algorithm—
depicted as a set of voters vnode 1, . . . , vnode 2f + 1.

The actual mapping of Byzantine failures to omissions/late timings is enabled by the
2f+1 vnode voting functions each of which is fed by f+1 distinct omission-tolerant subnode
outputs of a supernode. In general, the failure transformation Algorithm 9 located at node
p.i waits until tick(k) has been received from all subnodes q.1, . . . , q.f + 1 of a supernode
q before it delivers tick(k) to the omission-tolerant algorithm running at p.i. This way
each subnode p.i may fail arbitrarily without violating the restrictions of the omission
failure model. Moreover the failure mode assumption allows that up to f subnodes may
suffer from a fault. By waiting for all f + 1 subnodes of a supernode, Algorithm 9 ensures

Algorithm 9 Transformation algorithm at subnode p.i

for all supernodes q 6= p execute task:
vnode q:
1: if received tick(k) from all nodes q.j, 1 ≤ j ≤ f + 1 then
2: deliver tick(k) from supernode q to node p.i;
3: end if

82 4.6 Discussion on algorithm implementations for weaker failure models

virtual supernode 2f+2

omission

tol. node

1

omission

tol. node

f+1omission

tol. node

f

vnode

1

vnode

2f+1

..
.

vnode

1

vnode

2f+1

v
n

o
d

e

1

v
n

o
d

e

2
f+

1

vnode

2f

..
.

vnode

2f

...

v
n

o
d

e

2
f

virtual supernode 2f+1

1

f+1

f

virtual supernode 1

1

f+1

f

...

Figure 4.11: Simulation of an omission-tolerant system

that tick(k) is not delivered to the tick synchronization algorithm running at p.i before
it was sent by at least one correct subnode, which makes it compliant to Algorithm 6’s
assumptions.

While Algorithm 6 can be implemented in hardware by analogous means as the in detail
presented Byzantine-tolerant Algorithm 8, it is not self-evident that a feasible implementa-
tion exists for the transformation algorithm. A possible implementation of a single vnode

q process is depicted in Figure 4.12. Analogously to the design of the Byzantine-tolerant
algorithm the asynchronous vnode implementation has to overcome the problem of voting
over unsynchronized subnodes sending anonymous transitions only. Therefore the transfor-
mation algorithm needs the possibility to store and align matching ticks with each other.
Again, elastic pipelines can be used for this purpose. The actual voting is performed by
an f + 1-input Muller C-Element which only generates a new tick if it has received the

r s

C

elastic pipeline 1

elastic pipeline k

elastic pipeline f+1

to
 o

m
is

s
io

n
 t

o
le

ra
n
t

n
o
d
e
 i

fr
o
m

 s
u
p
e
rn

o
d
e
 q

..
.

..
.

vnode q

Figure 4.12: Implementation of a single vnode of the transformation algorithm.

Chapter 4: The DARTS ASIC Implementation 83

Table 4.6: Implementation complexities of Byzantine- and omission-tolerant system

nodes n links ℓ
SByz 3f + 2 9f 2 + 9f + 2
SOm 2f 2 + 4f + 2 4f 4 + 14f 3 + 18f 2 + 10f + 2

respective tick in all of its preceding pipelines. The pipeline size for this approach can be
bounded by the difference of the number of ticks received from two correct subnodes of the
same supernode, i.e., by the precision π.

The characteristics of the presented failure transformation approach can be summa-
rized by the fact that the advantage of a simpler tick generation algorithm has been traded
against an increased number of nodes which have to be augmented by a (simple) transfor-
mation algorithm. Recalling the omission-tolerant algorithm’s substantial savings in chip
area (presented in Table 4.5) an assessment in order to evaluate whether the transforma-
tion approach pays off has to be performed. Therefore the two Byzantine tick generation
solutions:

• a distributed system running instances of Algorithm 8, further denoted by SByz, and

• the failure transformation based solution with Algorithm 6 and Algorithm 9, abbre-
viated by SOm,

are compared with respect to implementation complexity and overall performance.

To be able to tolerate f Byzantine failures, SByz requires n ≥ 3f +2 nodes. The number
of links ℓ is, as already presented in Table 4.5, given by ℓ = n(n − 1) ≥ 9f 2 + 9f + 2. In
case of the transformation-based solution SOm, n′ ≥ 2f + 2 must hold for the number of
(virtual) supernodes n′, from which it follows that the number of subnodes needs to be
n ≥ (2f +2)(f +1) = 2f 2+4f +2. The interconnecting network complexity arises from the
requirement that every subnode receives ticks from the subnodes of all supernodes except
its own, that is, (n′−1)(f +1) ≥ 2f 2 +3f +1 incoming links yielding an overall link count
of ℓ ≥ (2f 2 + 3f + 1)(2f 2 + 4f + 2) = 4f 4 + 14f 3 + 18f 2 + 10f + 2. These results are also
summarized in Table 4.6.

At first sight with increasing f SByz scales far better than SOm. A closer look, how-
ever, reveals that dismissing SOm at this point is not necessarily the optimal choice since
the nodes have quite different internal complexity. In the following let AByz and AOm be
a measure for the implementation complexity of a single node of solution SByz and SOm,
respectively. Let’s further denote the complexity of distributed system SByz and SOm tol-
erating f Byzantine failures with Asys

Byz(f) and Asys
Om(f), respectively. In this context it

has to be noted that different implementation techniques will require different complex-
ity measures. For instance, in the case of the proposed hardware implementations the
die size is a natural choice for complexity comparison. Obviously this measure is not
suitable for measuring the effort of a software implementation. Thus a comparison can

84 4.6 Discussion on algorithm implementations for weaker failure models

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5 6 7 8 9 10

AOm

AByz

(a)

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5 6 7 8 9 10

Asys
Om

Asys
Byz

(b)

Figure 4.13: Implementation complexities for (a) single Byzantine- and omission-tolerant
node and (b) respective systems

only be made with respect to a given target technology. Recalling the implementation
complexities of the algorithms presented in Table 4.5, hardware costs of the different im-
plementations for f = 3 can be estimated as Asys

Byz(3) = (3f + 2)AByz = 11AByz ≈ 5mm2

and Asys
Om(3) = (2f 2 +4f +2)AOm = 32AOm ≈ 1mm2 which shows that Asys

Om(3) < Asys
Byz(3).

The outcome that a system consisting of far more (however, omission-tolerant and hence
less complex) nodes5 is smaller than the Byzantine-tolerant design clearly contradicts the
system complexity one would expect from Table 4.6. Hence, the question arises whether
the break-even point expected from the analysis above has not been reached at f = 3, such
that Asys

Byz(f) scales better for larger f . It turns out that this is not the case. The reason for
this is hidden in the fact that the implementation complexity AByz and AOm for the differ-
ent tick generation algorithms depend on f and that AOm(f) ≪ AByz(f). This relation will
become more explicit when the implementation characteristics of the Byzantine-tolerant
TG-Alg (presented above in Table 4.4) are considered. From Section 4.5 it is known that
the Threshold Modules are the main driving force for the implementation complexity of a
TG-Alg node. The sum of products’ scaling which follows

(

n−1

m

)

, e.g.,
(

3f+1

f+1

)

outweighs all
other building blocks by far. Hence the complexity of the omission- and Byzantine-tolerant
node implementations can be approximated by AOm(f) ∝

(

2f+1

f+1

)

and AByz(f) ∝
(

3f+1

f+1

)

,

respectively. Figure 4.13 depicts the trends of Asys
Byz(f) and Asys

Om(f) for f ∈ {1, . . . , 10}.

Note that for the complexity trends presented graphs, i.e., Asys
Byz = (3f + 2)

(

3f+1

f+1

)

multi-
plicative factors are set to 1. Since the implementation complexity scale is logarithmic, a
multiplication by a factor would result in a translation of the curve only. Thus, one can
clearly see that Asys

Om(f) scales far better than Asys
Byz(f).

5Augmenting each of the 2f2+4f +2 omission-tolerant nodes by 2f+1 vnode instances only contributes
minimal extra hardware for added elastic pipelines and the voting Muller C-Elements.

Chapter 4: The DARTS ASIC Implementation 85

The proof that AByz(f) overwhelms AOm(f) by a factor of (1 + 1

3
)f+1 was presented in

[34]. When both approaches Asys
Byz(f) = (3f+2)AByz(f) and Asys

Om(f) = (2f 2+4f+2)AOm(f)

are compared, the factor of (1+ 1

3
)f+1 in algorithm complexity per node outweighs the factor

of f in the number of nodes by far. This fact renders solution SOm more scalable than SByz,
i.e., Asys

Byz(f) ≥ Asys
Om(f). In other words, the savings obtained by the simplification of the

algorithm outweigh the overheads of the node replication required to justify the simpler
algorithm.

Note, however, that although this result is representative for the standard CMOS im-
plementations of the two presented algorithms, very different results are obtained if non-
standard technologies or software implementations are used. As an example Threshold
Module implementations following a design style based on “Threshold Logic” [6] would
lead to linear scaling of threshold circuits, completely changing the system complexities.
In case of software implementation an appropriate complexity measure is code size together
with memory usage. The code size of the Byzantine-tolerant and the omission-tolerant al-
gorithm is constant (with respect to n and f) and both only have to store the difference of
ticks generated locally and remotely. Hence AByz(f) = AOm(f) ∈ O(n) = O(f). Thus, in
both alternative cases clearly Asys

Byz(f) ≤ Asys
Om(f). On the other hand it also has to be taken

into account that connectivity (link count) or performance might be the main measures for
complexity and performance. In the light of these different assessment criteria clearly SByz

will be the solution of choice. SByz might also produce ticks at a higher frequency since the
frequency is determined by the minimum interconnection delay δ between remote nodes.
In case of SOm, ticks sent by p and received by q have to pass through the vnode design
with an additional pipeline (in front of the voting Muller C-Element) of length π, which
increases this delay. In general, an implementation following SOm might be a viable option
for larger values of f and/or n.

Chapter notes

The main focus of this chapter has been on the description of the Byzantine-tolerant tick
generation algorithm’s functional hardware architecture— corresponding to the algorith-
mic statements of Algorithm 8. Each of the underlying building blocks have therefore
been treated in detail. The hardware implementations introduced in this chapter represent
the final results obtained via several design iterations. Each iteration involved hardware
adaptations, i.e., redesign of a building block, followed by subsequent algorithmic analyses
of the new design. In [39] the basic architecture including a first formal treatment has
been presented, while [28] focuses on the hardware implementation aspects of the design.
Both papers present early results of the DARTS project. Especially during the mapping to
the ASIC library and the subsequent design validation phase some minor adaptations have
been made to the hardware design. In addition, it is noteworthy that in the implemen-
tation concept phase focus had already been laid on the design of components considered
critical. One of these components is the Muller C-Element which is omnipresent in the tick

86 4.6 Discussion on algorithm implementations for weaker failure models

counters and therefore has significant impact on the performance. Another critical building
block is given by the threshold circuits which are considered to be a vital component for all
implementations of fault-tolerant algorithms and therefore have been separately assessed
in [37].

The substantial area effort of the Byzantine-tolerant tick generation implementation
raised the question whether or not weaker failure models— resulting in less complex de-
sign— might provide reasonable fault tolerance. In [33] the author analyzed this particular
subject yielding the conclusion that a substantial mismatch of distributed systems failure
models and hardware related fault models exists. Due to this gap between the two “worlds”
of fault and failure modeling, algorithms designed for weak failure assumptions cannot be
directly applied in hardware implementations. However, using the Byzantine fault-tolerant
implementation’s building blocks as a starting point, feasible tick generation alternatives
might be derived based on carefully simplified algorithms. The analysis presented in [34]
reveals that the threshold circuits’ unfavorable scaling in number of nodes n might render
transformations of weaker algorithms more efficient than an innately Byzantine-tolerant
implementation. However, it has to be considered that the appropriateness of an approach
strongly depends on the underlying implementation technology and cost function (e.g., a
threshold circuit implementation different to the employed sum of products design might
completely change the above presented picture).

Chapter 5

On-chip Evaluation and
Measurement Setup

Measure what is measurable, and make measurable what is not so.

Galileo Galilei

THE PROTOTYPE ASIC implementation of the Byzantine-tolerant tick generation
approach is partitioned in a way that every TG-Alg node is mapped to a single

ASIC— the so-called Hardware Implemented Tick Synchronization (HITS) chip. Thus, a
tick generation system comprising several TG-Algs, e.g., 8 nodes, consists of a set of 8
chips interconnected on a printed circuit board (PCB). This architecture allows that all
links between TG-Alg instances (=TG-Net) can be accessed easily. However, to be able to
assess all relevant properties and characteristics of the tick generation approach, additional
measurement support has to be added on-chip. When following this strategy it certainly
has to be ensured that adding auxiliary hardware and measurement access does not spoil
function and/or performance of the tick generation process itself. Any kind of unwanted
probing effects have to be minimized by all means to allow for reasonable evaluations of
the tick generation approach. Clearly, making internals of a chip accessible from outside
has some (at best only minor) influence on the whole design. Therefore the strategy for the
prototype evaluation is twofold in the sense that every HITS chip comprises two completely
independent TG-Alg instances. One of these TG-Alg designs, further called standard node
(stdnode), only provides the bare minimum of interaction with the environment, while the
second instance, referred to as experimental node (expnode), is augmented with evaluation
specific circuitry and allows enhanced access to TG-Alg internals. This way function and
performance of the standard node design are not influenced by probing effects and should
therefore deliver unaltered TG-Alg behavior, while the experimental node can be used to
artificially generate special operating conditions within a TG-Alg to enable more elaborate
investigations.

87

88 5.1 Standard node

reset
set

remote_clk[0]

remote_clk[10]

local_clk
local_clk_self

thm_config_GEQ[1]
thm_config_GR[0]

sdi

tve
S0sdo
S1sdo

thm_config_GEQ[0]

thm_config_GR[1]

..
.

11 12 22

HITS

standard

node
S1sck
S0sck

Figure 5.1: Interfaces to the HITS standard node design

5.1 Standard node

As indicated above, the standard node design is targeted at implementing the tick gen-
eration core functionality only. That is, as few additional interfaces and/or hardware as
possible should be added to the core design since this could possibly influence performance
and/or proper operation. Thus, in essence the stdnode implements the circuit blocks
presented in Figure 4.1 which have been described in detail in Chapter 4. A few aug-
mentations to the schematic of Figure 4.1, however, had to be made to fully implement
all design requirements. At first, input signals enabling the configuration of the Thresh-
old Modules for different threshold values had to be added. Signals thm config GEQ and
thm config GR implement the switching between different threshold values for the 2f + 1
and f + 1 threshold circuits, respectively. The configuration patterns for these signals
are given in Table 5.1. Further enhancements to the standard node design are given by
hardware blocks which allow for convenient factory testing of the asynchronous TG-Alg.
These test facilities may also be used for evaluation purposes and are therefore treated
in more detail in Section 5.1.1. The input and output ports of the standard node design
are depicted in Figure 5.1. The reset and set signals as well as the factory test signals
are the only additional interfaces besides the obviously mandatory local clk output and
the remote clk, local clk self, thm config GEQ/GR inputs. The peculiarity of dedi-
cated reset and set inputs originates in the ASIC library cell of the Muller C-Element
(introduced in Section 4.2.1) and allows to choose whether the tick generation starts with
tick(↓) or tick(↑) messages.

Table 5.1: Threshold configuration for (a) 2f + 1 and (b) f + 1 circuits

(a)

thm config GEQ[0] 0 1 0 1
thm config GEQ[1] 0 0 1 1

threshold - 3 5 7

(b)

thm config GR[0] 0 1 0 1
thm config GR[1] 0 0 1 1

threshold - 2 3 4

Chapter 5: On-chip Evaluation and Measurement Setup 89

5.1.1 Test support

Factory test facilities have been added at several points of the standard node design to
enable a high test coverage for single stuck-at faults. This test circuitry, however, can also
be used for measurement purposes like the evaluation of propagation delays of a TG-Alg’s
internal units. The strategy of the test approach follows the commonly used scan chain
based design. In this context it has to be noticed that as a consequence of the asynchronous
(mostly transition signaling based) implementation of the TG-Alg design, no flip-flop reg-
isters are available for the use in the scan chain. Hence, to implement the scan approach
registers together with the necessary scan logic had to be added artificially. Figure 5.2
depicts the placement of the scan chains S0 and S1 within the standard node design. To
satisfy the demanded minimal interference with the core TG-Alg design, different types of
scan chain elements (scan cells) have been added. The scan cell types are distinguished
by their interfacing capabilities. Three types can be identified in the standard node design
ranging from a straight observe function, over the possibility to control/alter signals, to a
design able to observe as well as control signals. Observe-only scan cells will clearly have
the least impact on the TG-Alg design since observe cells do not add additional delays to
the signal paths. However, facilitating reasonable test coverage of the factory test requires
control over several TG-Alg internal signals. Therefore, scan chain S1 comprises control
scan cells to provide the Pipe Compare Signal Generation circuit with test data. Further-
more, S0 holds observe/control cells which can in one case be used to observe the operation
of the PCSG, while for other test scenarios controlling the input to the threshold circuits.
The observe-only scan cells of the S0 and the S1 scan chains allow to record the outputs
of the remote pipeline and the threshold circuits, respectively. Of special interest for the
evaluations and measurements is the fact that in both cases the scan data output signals
(sdo0 and sdo1) can be used to assess the respective propagation delays of the remote
pipeline as well as the threshold circuits.

5.2 Experimental node

The experimental node TG-Alg design essentially implements the same architecture as
the standard node. However, several adaptations have been made, facilitating advanced
experiment and measurement support. One of the most noticeable changes is given by
the fact that in contrast to the standard node design the local clock feedback is split up
into dedicated signals for each of the elastic pipeline pairs— this way enabling full control
over the local clock feedback path with the possibility to use distinct propagation delays
for each pipeline pair. An example application is the matching of local clock delays with
propagation delay of the respective remote clocks. Figure 5.3 gives an overview on all
input/output ports of the experimental node design. To improve readability and prevent
confusion with the standard node design, all experimental node signal names have a leading
x, e.g., xlocal clk denotes the local clock output of the expnode design. The remote clock
inputs, reset, set and the configuration signals of the threshold circuits share the same

90 5.2 Experimental node

EP EPDM

PCSG

EP EPDM

PCSG

Threshold Modules

Tick-Gen.S1

S0

S1

1444555

110

1114

remote_clk[0..10] local_clk_self

local_clk

observe only

control only

observe/control

observe only

Figure 5.2: Standard node scan chain overview

function as in the standard node. Likewise, the splitting of the xlocal clk self signal,
another general adaptation to the TG-Alg architecture of Figure 4.1, is given by the fact
that eight pipeline stages have been used for both the remote and local elastic pipelines.
This augmented buffering depth may be used for enhanced precision experiments, dragging
TG-Alg clocks artificially apart without losing ticks. Furthermore, in conjunction with
the reset/set scan chain presented below (Section 5.2.2) special start-up scenarios can
be implemented. Clearly, adding four additional stages per elastic pipeline increases the
propagation delay through the TG-Alg, thus performance and correctness constraints had
to be reassessed for the modified expnode design timings. Besides the general changes to
the TG-Alg design presented above more specific ones, especially facilitating evaluation
and measurement access, have also been made. The following sections will introduce and
describe the experimental node’s special on-chip evaluation support hardware blocks.

5.2.1 Test support

Analogously to the standard node, support for factory testing has also been added to the
expnode design. However, due to the fact that non-interference with the TG-Alg design,
especially with respect to performance, is not as critical as in the standard node, several
adaptations could be applied. Figure 5.4 depicts the resulting scan chain architecture.
The previously employed observe-only and control-only scan cells have been replaced by
observe/control cells. On the one hand this introduces small delays in the TG-Alg’s signal
paths, but on the other hand it also enables improved access to the internals of the design.
Scan chain S0 allows to observe and control the fill-level signals GEQe/GEQo as well as
the GRe/GRo, while S1 is able to evaluate and set the threshold gate outputs q1, q2, q3

and q4 (note that these signals are also mapped to the output ports xthm q1, xthm q2,

xthm q3, xthm q4). Furthermore, scan chain S1 also has read and write access to all

Chapter 5: On-chip Evaluation and Measurement Setup 91

xremote_clk[0]

xremote_clk[10]

xlocal_clk
xlocal_clk_self[0]

xsdi

xtve0

xS0sdo
xS1sdo

xthm_q4
xthm_q3
xthm_q2
xthm_q1

xtve1

RS0sdi
RS0sck
RS0tve

xremote_err_ack[10]

xlocal_err_ack[0]

xlocal_err_ack[10]

xremote_err_ack[0] ...
...

xfreeze

xerr_ack_sel

11 12 22

HITS

experimental

node

xS1sck
xS0sck

... xlocal_clk_self[10]

...

xdiff_out

xreset_sel[0]

xreset_sel[3]

...

xreset
xset

xthm_config_GEQ[1]
xthm_config_GR[0]

xthm_config_GEQ[0]

xthm_config_GR[1]

Figure 5.3: Interfaces to the HITS experimental node design

input signals of the PCSG units. This enhanced access to TG-Alg internals becomes very
handy when assessing component delays under varying operating conditions. The RS0
scan chain which is also depicted in Figure 5.4 has a special purpose and is not related to
factory testing. In fact this design is responsible for generating customized reset patterns
for the Counter Modules and will be further described in the next section.

5.2.2 Reset/set scan chain

As indicated above the reset/set scan chain allows to configure user defined reset/set pat-
terns for the remote and local elastic pipeline as well as the Difference Module initialization.
By virtue of these patterns the expnode TG-Alg’s +/− Counters can be preloaded with
up to eight clock ticks which is especially interesting for speed tests.

A building block closely related to the reset/set scan chain is the reset-selector block.
This design unit is responsible for choosing the pipeline pair(s) to be initialized by the re-
set/set scan chain. In addition, the reset-selector’s Counter Module selection also maps the
respective SRemote3 signal to the xdiff out port. The remote pipelines’ SRemote3 signals
can be of special interest since the toggling indicates that a tick has been removed from
both the local and the respective remote pipelines. Table 5.2 summarizes the configuration
patterns for the reset-selector.

5.2.3 Freeze logic

The fact that the whole TG-Alg node is implemented in asynchronous logic makes it hard
to obtain a node’s current state since it cannot easily be stopped. In a synchronous design
one would delay/halt the global clock signal to gather a node’s state information. In order

92 5.2 Experimental node

PCSG

EP EPDMEP EPDM

PCSG

Threshold Modules

Tick-Gen

S0

S1

RS0

remote_clk[0..10] local_clk_self[0..10]

local_clk

S1
14

5114

0 33

144

control only

observe/control

observe/control

observe/control

Figure 5.4: Experimental node scan chain overview

Table 5.2: Reset-selector configuration patterns

xreset sel[0 . . . 3] active
[3] [2] [1] [0] Counter Module
0 0 0 0 unused
0 0 0 1 Counter 1
0 0 1 0 Counter 2
0 0 1 1 Counter 3
0 1 0 0 Counter 4
0 1 0 1 Counter 5
0 1 1 0 Counter 6
0 1 1 1 Counter 7
1 0 0 0 Counter 8
1 0 0 1 Counter 9
1 0 1 0 Counter 10
1 0 1 1 Counter 11
1 1 0 0 unused
1 1 0 1 unused
1 1 1 0 unused
1 1 1 1 all counters

Chapter 5: On-chip Evaluation and Measurement Setup 93

C
r s

a

b

c

c_N

reset

set

0

0

1

1

freeze

descriptive schematic implementation

A
O

2
2

A1

A2

B1

B2

C
r s

a

b

c

c_N

reset

set

freeze

A
O

2
2

A1

A2

B1

B2

AO22: Z=(B1&B2)|(A1&A2)

Z

Z

Figure 5.5: TG-Alg halting mechanism via Muller C-Element freeze logic enhancement

to achieve observability and controllability in asynchronous design, the design’s self-timed
loop has to be broken. To implement such a mechanism able to stop all further processing
within the TG-Alg, the expnode design’s state holding elements had to be enhanced.
The vast majority of a TG-Alg’s components are stateless, i.e., pure combinatorial logic.
The only state information is held by Muller C-Elements1. Hence, to inhibit further tick
processing the Muller C-Elements have to be kept in their current state until the state
has been gathered. Figure 5.5 shows the circuit which augments all C-Elements of the
expnode design, i.e., the Muller C-Elements of the Counter Modules and the one in the
Tick Generation Module. The halting mechanism is implemented by taking advantage of
the Muller C-Elements’ set and reset inputs. On activation of the freeze signal (active
high), a logic high at the output of the C-Element is fed back to the set and reset inputs,
this way retaining the high value regardless of input changes. Analogously, a logic low will
also be safely stored until the freeze signal is deactivated again.

In conjunction with the reset/set scan chain presented before the freeze logic, for in-
stance, allows to force the tick generation system into an otherwise transient state, thus
allowing to assess the circuits correctness and general behavior in detail.

5.2.4 Pipeline extension and overflow detection

As mentioned above, the remote and local elastic pipelines have been enlarged to eight
stages in contrast to the four stages of the standard node design. These additional stages
can be used to evaluate the tick generation approach with (artificially) exceedingly in-
creased jitter. Furthermore, the expnode design provides the possibility to externally
extend the pipeline depths, e.g., via an FPGA design. To enable this pipeline exten-

1The scan chain flip-flops are not accounted for since they are not part of the tick generation process.

94 5.2 Experimental node

ack

D

D Q

data

err_ack_sel

err_ack

err

ack

=inverted output of

input C-Element

=clock input

Q

0

1

Figure 5.6: Pipeline extension and overflow detection circuit

sion the acknowledge signals of the elastic pipeline inputs— which are not used in the
standard node design— are connected to output pins of the HITS experimental node
(xremote err ack[0 . . . 10] and xlocal err ack[0 . . . 10]). The specific feature of these
output signals is given by the fact that they can be configured to implement two different
modes. One configuration maps the input Muller C-Element’s acknowledge signal to the
output and enables the above described external pipeline extension. In contrast, the other
operation mode allows to detect whether or not the respective pipeline has encountered an
overflow, i.e., the de-synchronization of the corresponding local and remote clocks is greater
than the pipeline depth. The schematic of the pipe-extension/overflow-detection circuit is
shown in Figure 5.6. The expnode’s xerr ack sel signal determines whether the pipeline
extension or the overflow detection mode is activated. While the pipeline extension is im-
plemented by handing the acknowledge signal to the output port, the overflow detection is
more intricate. To illustrate the operation of the overflow detection, the following example
execution will be considered. At first it is assumed that the clock input Muller C-Element
of the elastic pipeline stores a logic low state and that its pipeline internal input is high,
thus enabling the propagation of a ↑-transition at the clock input. If a rising transition
arrives at the clock input, the inverted ack signal (=low) will get latched into the upper
latch leaving the error signal deactivated. In case the pipeline is full after this ↑-transition
has arrived, a subsequent tick(↓) will not be able to pass the Muller C-Element. However,
this does not pose a threat since no clock transition has been lost so far. The last low pulse
will however be lost if another tick(↑) arrives at the pipeline input. This pipeline overflow
is immediately detected due to the fact that the inverted ack signal, which is high, will be
latched with the rising edge of the input transition.

Chapter 5: On-chip Evaluation and Measurement Setup 95

Chapter notes

It can be a quite intricate problem to assess whether or not an asynchronous design is
operating properly. To enable a high degree of testability and by the same means addi-
tionally gain access to vital internals of the HITS chip, an elaborate scan chain approach,
presented in detail in [82], has been employed. In the standard node design the intro-
duced test infrastructure provides minimally invasive access to some internals. As a result
the standard node design directly reflects the pure tick generation algorithm’s operation.
Experiments for validation of characteristics predicted by theory do not benefit from the
restrictive design. Consequently, to enable the assessment of critical operating conditions of
a running DARTS tick generation architecture the experimental node had to be enhanced
by dedicated on-chip evaluation support units.

96 5.2 Experimental node

Chapter 6

Experiment Specifications and
Theoretical Foundation

A theory is something nobody believes, except the person who made it.

An experiment is something everybody believes, except the person who made it.

Albert Einstein

THE IMPLEMENTATION of the Byzantine-tolerant tick generation approach led to
the previously presented HITS (Hardware Implemented Tick Synchronization) ASIC.

Until now the characteristics of this design have only be assessed regarding hardware effort
of the mentioned TG-Alg implementation. Therefore, the assessment strategies presented
in this chapter aim at thoroughly characterizing the properties of a running tick genera-
tion system. In general, the evaluations of the proposed tick generation scheme have to
cover many different aspects and properties of the design. For instance, it starts with the
above mentioned validation of worst-case properties and ranges over average case operation
modes, to scenarios with varying operating conditions. Given this huge area of interest
which has to be covered it is apparent that no single evaluation approach, but rather dif-
ferent specialized schemes have to be employed. Therefore, the experimental assessment of
the DARTS tick generation design will be divided into the three main segments: worst-case
measurements, average-case measurements and supportive simulations. The worst-case as-
sessments allow to validate bounds for the tick generation system’s correctness as well
as performance measures via accurately defined measurement scenarios. In the average-
case measurements typical operating conditions which might also vary are used for system
characterization. Complementary to the first two assessment strategies, the supportive
simulations conveniently allow to estimate the tick generation system’s behavior under
operating conditions which are under full control of the user.

97

98 6.1 Worst-case properties

Following the introduced partitioning, confirmation whether or not the theoretical pre-
dictions for critical performance and correctness measures (introduced in Section 3.4.3)
hold can for instance be performed via measurements. In the context of average-case
experiments the assessment of implementation and operation characteristics might be of
interest. In particular, stability considerations arise when recalling that the primary goal
of the DARTS clocking scheme is to provide conventional synchronous circuits with a fault
tolerant clock. On the one hand the asynchronous nature of the TG-Alg implementation
allows the design to adapt its operation to varying conditions, thus increasing its robust-
ness. On the other hand this flexibility might be problematic from the synchronous unit’s
point of view since it is controlled by the adaptive, thus varying TG-Alg clock. Therefore
the evaluation of properties which reflect the dynamic behavior of single TG-Algs as well
as the whole ensemble of nodes seems to be indicated. In addition, special cases like the
booting of the tick generation process as well as numerous fault scenarios must also be
covered by measurements and compared to theoretical results and simulations. As a con-
sequence of the broad spectrum of evaluations all relevant properties of the tick generation
scheme have to be properly defined in advance, thus enabling systematic measurements of
the tick generation’s key characteristics.

6.1 Worst-case properties

The employed evaluation strategy for worst-case conditions quite naturally follows the for-
mal analysis of the tick generation approach. Section 3.4.3 introduced the most relevant
timing constraints as well as correctness and performance measures. In the subsequent
paragraphs scenarios are derived which explicitly force the tick generation system into
worst-case operation modes for the parameter under evaluation. This enables a compari-
son of the theoretically predicted and actually measured parameters. As a consequence of
the tick generation scheme’s fault-tolerant architecture, i.e., masking of exceedingly slow
and/or fast nodes, worst-case conditions, however, can only be attained in scenarios com-
prising faults. The main purpose of the conducted experiments is to validate certain prop-
erties of the hardware design which a priori have been derived by formal proofs. Clearly,
the evaluations cannot be exhaustive, however, selected critical points can be assessed in
detail and compared to the theoretical results.

6.1.1 Precision

The synchronization precision π of the tick generation system may simply be assessed
by measuring the clocks’ relative offset (cf. Figure 2.1(b)). However, this evaluation is
unlikely to reflect worst-case conditions, thus an appropriate scenario has to be derived and
established. Figure 6.1(a) shows the generic setup to statically force a system of 3f +2 TG-
Alg nodes into an operation mode with worst-case precision. The only relevant parameters
for this scenario are given by the interconnecting remote delays τrem. As depicted, a set of

Chapter 6: Experiment Specifications and Theoretical Foundation 99

f+2
fast

f

faulty

f

slow

rem
rem

rem

rem

rem

(a)

f+2 fast

f slow
0

0

1 2

1 2 3 4

f-1

f+2 f+2

f-1

(I) (I)

f+2

3
(R)

f+2 f+2

4
(R)

2f+1 2f+1 2f+1 2f+1
...

2f+1

5

(b)

Figure 6.1: Evaluation scenario to attain worst-case precision π

f nodes have to be faulty in the way that no tick(k) messages are delivered to a second
set of f slow TG-Algs. It further has to be ensured that ticks sent among the set of slow
nodes as well as those received from the group of f + 2 fast TG-Algs are issued with the
maximum remote delay τ+

rem. Connections not explicitly shown in Figure 6.1(a) can be
assumed to have delay τ−

rem. More formally speaking, in a system where P denotes the set
of all nodes there are three distinct sets of TG-Algs with A comprising the fast nodes, B
the slow, and the F faulty ones. The remote delays from p to q in this setup are given by:

τrem(p ∈ A, q ∈ B) = τ+

rem

τrem(p ∈ F, q ∈ B) = +∞

τrem(p ∈ B, q ∈ B) = τ+

rem

τrem(p ∈ P, q ∈ A) = τ−

rem

τrem(p ∈ P, q ∈ F) = τ−

rem

To get a better understanding for the reasons why this static evaluation setup represents
a valid worst-case scenario for the tick generation system, Figure 6.1(b) depicts an execution
trace of the relevant (non-faulty) nodes. As indicated in the trace, it is assumed that all
nodes start at approximately the same time by issuing tick(0). For the example, it is
assumed that τrem alone determines the processing speed of the tick generation system1.
In the given setup, set A comprises f + 2 fast TG-Algs. Together with f fast, but faulty
nodes ∈ F , ticks are generated continuously at a rate determined by τ−

rem and according to
the algorithm’s “Increment Rule” (=2f + 1 threshold). Analogously, the f slow TG-Algs
∈ B also start to issue clock ticks triggered by the “Increment Rule” (I), however, at a

1Recall from Section 4.1 that only the ratio Θ of fastest to slowest path determines the algorithm’s
properties, thus it makes no difference if τrem or the whole delay of the tick generation path are considered
in the experiment scenarios.

100 6.1 Worst-case properties

period determined by τ+
rem. Thus, group A starts “running away” with τ−

rem while the slow
group B “runs behind” with period τ+

rem. Further examining this setup reveals that the
slow nodes’ flow of issuing ticks at some point changes to the operation mode where the
“Relay Rule” (R) takes over tick generation. This switching point is reached when tick(k)
messages arrive at the slow nodes, indicating that the fast remote nodes are ahead by at
least one tick, i.e., k > ℓ, with ℓ being the current local tick number. This way the “Relay
Rule” ensures that the system stays in a synchronized state. The maximum offset in time
between the first sending of tick(k) at tk and the last sending of tick(k) at t′k for any
pair of correct nodes p, q can be bounded by:

|tk − t′k| ≤ τ+

rem, if f ≤ 1

|tk − t′k| ≤ (τ+

rem − τ−

rem) + τ+

rem, if f > 1

These bounds are obviously only estimates based on the simplification that τrem forms the
only relevant timing parameter. For more precise calculations of the maximum clock skew
of correct nodes it has to hold that,

|tk − t′k| ≤ TP + TQS

with TP and TQS being timing parameters derived from the formal analysis of the synchro-
nization properties Progress and Quasi-Simultaneity (cf. Section 3.4.4 and [39,40]). Finally,
by relating the appropriate timing paths to each other the clock skew considerations can
be transformed to attain the tick generation system’s precision π.

π =

⌈

TQS

T−

first

⌉

+ 1

6.1.2 Accuracy

In the context of clock synchronization the property named accuracy represents the linear
envelope function for the progression of a single clock (cf. Figure 2.1(a)). In other words, it
bounds a correct node’s minimum and maximum offset in time between the generation of
subsequent local ticks. Thus the difference |tk+1 − tk| is bounded by accuracy, with tk and
tk+1 denoting the generation instants of tick(k) and tick(k+1) messages, respectively. In
contrast to precision π, accuracy denotes an individual local property of every correct TG-
Alg. To be able to assess the predictions based on theory for the lower and the upper bound
of accuracy (presented in Section 3.4.4) once again appropriate evaluation scenarios have
to be identified. However, unlike the assessment of precision π, the accuracy evaluations
require dynamic setup configurations to enable worst-case conditions. Analogously to
the precision scenario, the accuracy considerations rely on the simplification that τrem

denotes the only parameter influencing the tick generation process. The measurement
of the lowest possible rate for generating consecutive ticks, that is, the maximum offset
between local tick(k) and tick(k+1) messages, follows a strategy depicted in Figure 6.2.

Chapter 6: Experiment Specifications and Theoretical Foundation 101

f+2

fast
f

faulty

f
slow

rem
rem

rem

rem

rem

f+2
fast

f
faulty

f
slow

rem
rem

rem

rem

rem
rem

Figure 6.2: Evaluation setup to attain worst-case lower bound for accuracy

Again, similarly to the precision experiment, three disjoint sets of nodes can be identified.
Set A consisting of f + 2 fast TG-Algs, group B comprising f slow nodes and the third
set F denoting f faulty nodes (which never send messages to TG-Algs of set B, but apart
from that execute the tick generation algorithm). The remote delays of this setup are given
below:

τrem(p ∈ A, q ∈ A) = τ−

rem

τrem(p ∈ A, q ∈ B) = τ+

rem

τrem(p ∈ B, q ∈ B) = τ+

rem

τrem(p ∈ B, q ∈ A) = τ+

rem

τrem(p ∈ P, q ∈ F) = τ−

rem

τrem(p ∈ F, q ∈ B) = +∞

τrem(p ∈ F, q ∈ A) = τ−

rem ⇒ +∞

An important detail in this setup is given by the fact that τrem(p ∈ F, q ∈ A) changes its
value from τ−

rem to +∞ during operation, i.e., the faulty nodes of set F stop contributing
to the f + 2 fast nodes’ tick generation process. Taking a look at the example shown in
Figure 6.3 reveals that at first the tick generation acts similarly to the worst-case preci-
sion experiment, leading to the maximum offset between TG-Alg nodes of set A and B.
However, when changing the aforementioned delay τrem(p ∈ F, q ∈ A) from τ−

rem to +∞,
the f + 2 fast nodes from set A cannot make any further progress for the moment. This is
because the required 2f + 1 threshold of the “Increment Rule” can no longer be reached
without the assistance of the f slow nodes from group B. Thus tick generation in set A is
stalled until the slow nodes of set B catch up with the formerly fast nodes. This halting
period for TG-Algs in group A starts with tick(k) being the last tick generated on the
fast track (driven by the faulty nodes). The end of the interval is given by the time when

102 6.1 Worst-case properties

all tick(k) messages have arrived via the slow links τrem(p ∈ B, q ∈ A) = τ+
rem, since this

enables the generation of the subsequent tick(k+1).

The assessment of the minimum offset between two consecutive ticks, i.e., the upper
bound for the tick generation rate of a single TG-Alg in the system, can be obtained
analogously to the lower bound experiments. The setup for a scenario able to force a node
of the tick generation system into this worst case is depicted in Figure 6.4, the corresponding
example trace is presented in Figure 6.5. As in the above lower bound scenario, the tick
generation process first starts to diverge until the maximum offset π between the groups
of fast and slow nodes is reached. To facilitate this behavior, a setup identical to the
precision experiment forms the starting point of this assessment. A switch to the other set
of delays (presented below) can be made once the maximum tick offset is reached, i.e., the
slow nodes of set B are lagging behind and generate ticks on behalf of the “Relay Rule”
only.

τrem(p ∈ A, q ∈ B) = τ+

rem ⇒ τ−

rem

τrem(p ∈ F, q ∈ B) = +∞ ⇒ τ−

rem

τrem(p ∈ B, q ∈ B) = τ+

rem

τrem(p ∈ P, q ∈ A) = τ−

rem

τrem(p ∈ P, q ∈ F) = τ−

rem

Changing τrem(p ∈ A, q ∈ B) from τ+
rem to τ−

rem and τrem(p ∈ F, q ∈ B) from at first being
not connected (= +∞) to τ−

rem provides the formerly slow nodes with tick() messages
arriving at a higher rate. In fact, the switching to fast links almost immediately reduces
the clock offset between nodes of set A and B. Moreover, TG-Algs of set B are enabled to
generate ticks via the algorithm’s “Increment Rule” at a pace determined by the incoming
links’ delay τ−

rem.

From the theoretical analysis the lower and upper bounds for accuracy can be derived
via Equation 3.4. The lower bound part is specified by the slowest possible correct path
for generating a tick, i.e., essentially timing path TP according to the synchrony prop-
erty Progress (cf. Section 3.4.4). In contrast, the upper bound is based on the fastest

f+2 fast

f slow
0

0

1 2

1 2 3 4

f-1

f+2 f+2

f-1

(I) (I)

f+2

3
(R)

f+2 f+2

4
(R)

2f+1 2f+1 2f+1 2f+1 2f+1

5

f+1

6

5
(R) (I)

6
(I)
7

7

f+2 f

f-1 f-1

f

f+1

2f+1

...

Figure 6.3: Example trace for lower bound for accuracy

Chapter 6: Experiment Specifications and Theoretical Foundation 103

f+2
fast

f

faulty

f

slow

rem
rem

rem

rem

rem

f+2
fast

f

faulty

f

slow

rem
rem

rem

rem

rem

rem

Figure 6.4: Evaluation setup to attain worst-case upper bound for accuracy

f+2 fast

f slow
0

0

1 2

1 2 3 4

f-1

f+2 f+2

f-1

(I) (I)

f+2

3
(R)

f+2
f+2

4
(R)

2f+1 2f+1 2f+1 2f+1
...

2f+1

5

2f+2

2f+1

5,6
(I)

6 7

7
(I)

2f+2

8

8
(I)

2f+2

2f+1 2f+1

Figure 6.5: Example trace for upper bound for accuracy

remote (T−

first) respectively local (Tmin) tick generation path, with the smaller of the two
determining the bound.

6.1.3 Slowest and fastest progress

After the assessment of the local accuracy characteristics this section is concerned with
somewhat similar, but global properties. The slowest and fastest progress give system wide
bounds for the time between the generation of subsequent ticks tick(k) and tick(k+1).
In detail, the slowest progress among correct TG-Algs is given by the maximum offset
in time between local and global ticks. To further clarify this, let p be the last correct
process to send tick(k) (at time tk) and q (possibly p = q) the last correct process to
send tick(j) (at time tj), with j = k + N and N ≥ 0. Then theory in [40] predicts that
tj − tk ≤ NTP which for the simplified case of predominant remote delays translates to
(τ+

rem − τ−

rem) + (k − j + 1)τ+
rem. Analogous to the slowest progress, the minimum offset in

time between global ticks corresponds to the term fastest progress. For the assessment
of the fastest progress let p be the first correct process to send tick(k) (at time tk) and

104 6.1 Worst-case properties

f+2
fast

f

faulty

f

slow

rem
rem

rem

rem

rem

rem

(a)

f+2 fast

f slow
0

0

1 2

1 2 3 4

f-1

f+2 f+2

f-1

(I) (I)

f+2

3
(R)

f+2 f+2

4
(R)

2f+1 2f+1 2f+1 2f+1
...

2f+1

5

2f+1 2f+1 2f+1

f

lo
c

lo
c

lo
c

diffre
m

5
(R)

2f+1

lo
c

2f+1

lo
c

queue at

fast process

corresponding

to slow process

S

(b)

Figure 6.6: Evaluation scenario to assess local queue size constraint

q the first correct process to send tick(k+1) (at time tk+1). Then it has to hold that
tk+1 − tk ≥ T−

first (for the simple case tk+1 − tk ≥ τ−

rem).

It should be noted that in the context of the proposed tick generation scheme the
considerations regarding slowest and fastest progress for the case of p = q correspond to
the above presented accuracy treatment, i.e., the same experiment scenarios apply. In
essence the derived accuracy denotes an upper and lower limit for the slowest and fastest
progress, i.e., p = q represents the worst case for these properties. In the general case of
p 6= q the linear envelope given by the slowest and fastest progress might be significantly
smaller than the one defined by accuracy.

6.1.4 Queue size

It is essential for the tick generation process that no clock ticks are ever lost at correct
nodes. The remote and local elastic pipelines with their capability to store a fixed number
of ticks have to guarantee this property. In Section 3.4.4 bounds for the required pipeline
depths depending on several path delays have already been presented. The assessment of
these bounds can be performed by artificially forcing TG-Alg nodes into different worst-
case conditions. Figure 6.6 presents the setup and an example trace for the evaluation
of the local queue size. In this static configuration the fast nodes’ local queues which
correspond to the slow nodes are filled to a maximum. The delay configuration ensures
that set B of f slow TG-Algs lags behind group A of f + 2 fast nodes by the maximum
precision π. Moreover, for the delivery and processing of tick() messages from TG-Algs
of the slow set B to the fast group A an additional delay of τ+

rem + τ+

Diff is added. This
delay represents the time from tick generation at the slow node until the removal of the
corresponding tick at the fast node’s local pipeline.

Chapter 6: Experiment Specifications and Theoretical Foundation 105

To be able to evaluate the correctness of theoretical predictions of the remote pipeline
size, the setup and scenario shown in Figure 6.7 can be applied. In this configuration a
distinctive fast node w with slightly different delay paths than the other fast TG-Algs has
to be assumed. In the given setup the f slow nodes’ remote pipelines corresponding to
node w are filled at the highest possible rate. At the same time these nodes’ slow local
feedback τ+

loc results in the fact that they lag the maximum precision π behind TG-Alg w.

To assess the exact border case beyond which the queue size will no longer be sufficient
the described experiments can be performed iteratively with increased values of Θ, e.g., by
step-wise increasing τ+

rem.

f+1
fast

f
faulty

f
slow

rem
rem

rem

rem

rem

1
fast (w)

rem

rem

rem

(a)

f+2 fast

f slow

0

0

1 2

1 2 3 4

f-1

f+2 f+2

f-1

(I) (I)

f+2

3
(R)

f+2 f+2

4
(R)

2f+1 2f+1 2f+1 2f+1
...

2f+1

5

2f+1 2f+1 2f+1

f

re
m

diff

lo
c

5
(R)

2f+1 2f+1

queue at

slow process

corresponding

to node w

S

re
m

re
m

re
m

re
m

(b)

Figure 6.7: Evaluation scenario to assess remote queue size constraint

6.1.5 Booting

The booting constraint has been introduced in Section 3.4.3 and forms a crucial condition
for the correct behavior of the tick generation scheme. If a node starts up later than τ−

rem

it might have already missed ticks from fast remote nodes. Unfortunately, the anonymous
tick(↓)/tick(↑) messages hide the information of lost ticks. Thus, once a message is lost
the corresponding node has to be considered faulty and hence consumes part of the fault
tolerance budget. Therefore, partial or substantially skewed booting of the tick generation
system’s TG-Algs has to be prevented.

Considering the assessment scenarios described in the previous subsections, it can be
noticed that all tick(0) messages are issued at exactly the same instant. If this simplifi-
cation is removed and nodes start within the admissible interval [0, τ−

rem] a small shift in
some executions has to be accounted for. However, beyond this no additional effect on
correctness and performance bounds has to be expected.

106 6.2 Average case properties

6.2 Average case properties

The above presented evaluation scenarios of conservative worst-case considerations are im-
portant to verify the predictions from theory with the chip implementation. Nevertheless,
the clocking scheme will mostly be operated under less malicious conditions. Thus the as-
sessment of average-case properties of a single TG-Alg as well as the whole tick generation
system seems to be reasonable. Especially the evaluation of the normal operation mode,
i.e., fault-free and under nominal operating conditions, with focus on the asynchronous
implementation’s sensitivity to parameter variations are of increased interest. Considering
the application field of the tick generation scheme, e.g., clocking of replicated synchronous
circuits, the main parameters of interest will be the attainable frequency and the respective
short and long term stability (jitter).

6.2.1 Operating condition dependence

As indicated above, the TG-Alg implementation follows a fully asynchronous CMOS im-
plementation. Due to this fact a certain degree of operation parameter sensitivity can be
expected. In particular, the switching speed of the circuits is likely to be a function of sup-
ply voltage. Moreover, digital CMOS circuits are also known to be sensitive to temperature
variations. Both effects are typically encountered in normal operation modes. Therefore a
thorough characterization of the tick generation scheme regarding voltage and temperature
effects seems to be reasonable. The mentioned voltage dependence of a CMOS circuit can
be approximated by deriving the delay times for a single gate and essentially boils down
to

tgate ≈
CL

β VDD

, (6.1)

with CL being the load capacitance, β and VDD representing the CMOS transistors’ gain and
supply voltage, respectively [91]. Note that the above mentioned temperature dependence
of CMOS circuits is hidden inside β. The carrier mobility (electrons and holes) decreases
with increasing temperature, thus β decreases, yielding a slowing down of the circuit as
temperature rises.

Average frequency: The attainable clock frequency solely relies on switching delays of
the asynchronous circuits and interconnection delays of the remote and local clock
lines. Using predictions from theory the tick generation scheme’s average frequency
can be bounded by the earlier introduced synchronization property Progress (P)
together with the tick generation path T−

first.

faverage =
[

1/2TP, 1/2T−

first

]

(6.2)

The path given by TP denotes the slowest possible generation of a subsequent tick,
while T−

first represents the fast remotely triggered tick generation. The required delay

Chapter 6: Experiment Specifications and Theoretical Foundation 107

parameters can be extracted from the ASIC design files. Together with delays for
the chip interconnect this is sufficient to give a sound estimation of the average clock
frequency. For the standard HITS design, T−

first ≈ 6ns and Tmin ≈ 6ns with an
assumed interconnect delay of 1ns lead to an expected faverage ≈ 71MHz.

Short term jitter: Short term fluctuations of the frequency and discontinuities in the
clock periods are expected from at least two sources. At first, the fact that ↑-
transitions and ↓-clock ticks are partially processed via distinct logic blocks results
in different propagation delays. Moreover, the above mentioned supply voltage de-
pendence might also introduce additional jitter. Temperature changes are considered
to be too slow to yield perceivable short-time effects.

Long term jitter: In the tick generation system’s long term operation especially the
effect of varying temperature is expected to be noticeable. Self-heating of the TG-Alg
chips is anticipated to continuously slow down the tick generation process, although
cross-correlation of the measured frequencies with corresponding temperature should
allow to mask such effects. This way it might be possible to identify systematic jitter
components.

6.2.2 Start-up behavior

As already mentioned in the treatment of the worst case, presented in Section 6.1, the
start-up of the tick generation process denotes a very critical point. As long as all nodes
boot close enough to each other (≤ τ−

rem) theory predicts no consequences to worst-case
characteristics. However, in certain configurations it can be expected that varied booting
delays result in different clock periods (at least for a few clock ticks). Effects like this
might be visible in scenarios similar to the worst-case precision assessment presented in
Section 6.1.1. Taking a closer look at the execution trace reveals that the fast nodes
continuously operate at the same clock period determined by τ−

rem. In contrast to that the
group of slow nodes starts with a period depending on τ+

rem, generating the first ticks by
virtue of the “Increment Rule”. After precision π is reached subsequent ticks are triggered
via the “Relay Rule” at rate dictated by the fast nodes. Thus the clock periods of some
TG-Alg nodes might stabilize only after a settling time which depends on the relation of
delay paths and a node’s respective start-up time.

6.2.3 Effects of faults

Another obviously critical point in operation of the tick generation is given by the moment
in which a fault occurs. Fault effects are likely to lead to perceivable fluctuations in the
TG-Algs’ frequency. Such fault-induced changes in clock rate might be short term effects
only, i.e., increased short term jitter. However, a fault might also be able to influence the
mean frequency of a TG-Alg or the whole ensemble, although the effect is bounded by

108 6.3 Supportive simulation model

the worst-case measures for slowest and fastest progress as well as accuracy. To illustrate
the effect of failing links, consider the assessment scenario for the lower accuracy bound
presented in Figure 6.2. In this setup set F of faulty nodes initially provides group A of
fast nodes with tick messages at a high rate determined by τ−

rem. Later on these connections
are cut (τrem = +∞) which yields a large delay before the next tick is generated among
the previously fast nodes. Moreover, the mean frequency of the TG-Algs of set A does no
longer rely on τ−

rem but on τ+
rem. This can lead to substantial frequency changes depending

on the ratio of τ−

rem and τ+
rem.

6.3 Supportive simulation model

In general the proposed tick generation approach’s behavior has been assessed in two ways.
At first, formal proofs cover worst-case conditions, while secondly, measurements aim at
the characterization of typical operation modes. However, for a sound evaluation of the tick
generation system this twofold assessment approach still leaves some questions unanswered.
The formal analysis cannot provide predictions for average performance measures like the
mean frequency. In addition, measurements cannot be performed without environmental
influences such as disturbances in the power supply. As a remedy the simulation scheme
described below combines reasonable observability with enhanced controllability. This
way the simulation framework allows to model and assess the tick generation system with
sufficient accuracy to reflect all algorithmic properties. Additionally, in contrast to real
measurements, the simulation still provides full control over the tick generation system’s
environment. To generally introduce the simulation approach consider the following set of
example equations:

A(k) = max(A(k − 1) + 1, B(k − 1) + 3)

B(k) = max(A(k − 1) + 5)

These kinds of non-linear difference equations which are heavily used in non-linear control
theory [44] can quite easily be mapped to message-driven distributed systems. In the

BA

1

5

3max max

(a)

A

B

t0 3 5 8 11 13

(b)

Figure 6.8: Two-node wait-for-all system (a) graph representation (b) execution trace

Chapter 6: Experiment Specifications and Theoretical Foundation 109

particular case of the above presented equations A and B correspond to the nodes of a
“wait-for-all” system (the max function ensures that a new message k +1 is only triggered
if message k has been received on all incoming links). As depicted in Figure 6.8(a), the
weights of the graph’s edges represent the communication delay of the respective link, e.g.,
every message from node B takes three time units until it arrives at node A. In order to
obtain the mean rate for the generation of messages in the presented example, the largest
(max) value for the mean cycle weight ξ of all elementary cycles has to be derived. For the
graph given above elementary cycles are A − A and A − B − A. The mean cycle weight
is computed as the sum of the respective cycle’s weights divided by the cycle length, e.g.,
ξA-A = 1

1
= 1 and ξA-B-A = 3+5

2
= 4. In the considered system comprising two nodes and

three edges only, the resulting mean rate can quite easily be determined. Figure 6.8(b)
presents an execution trace corresponding to the system graph and reveals that at time 8
the initial phase between A and B (from time 0) is reached again. Hence, the length of the
cycle leading to this point in time is obviously two, yielding a mean message generation
rate of 8

2
= 4. Interestingly this equals the above presented cycle A − B − A of the

graph. This match is not by chance, but follows from a general theorem in <max,+>
algebra. However, to be suitable for the DARTS tick generation scheme, the modeling
of the above presented “wait-for-all” system— comprising max and + functions only—
has to be enhanced further. This enhancement is inevitable due to the fact that the fault
tolerance properties of the DARTS tick generation algorithm relies on threshold functions,
i.e., f + 1-out-of-3f + 1 and 2f + 1-out-of-3f + 1 instead of “wait-for-all”. The sum of
product implementation of the threshold circuits (cf. Section 4.4.1) can quite naturally be
translated into a framework of <min,max,+> functions, with min corresponding to the
products and max representing the final sum term. In the <min,max,+> representation of
the DARTS tick generation approach both the min and the max terms affect mean message
generation rate. Thus the previously presented scheme for deriving this rate also needs to
be extended. In literature the Duality Conjecture [42] has been proposed for solving the
problem of computing the mean cycle weight of <min,max,+> systems. The underlying
concept is illustrated via the example described below and depicted in Figure 6.9.

B

A

C

1 1

2

2

3 5

max

min min

(a)

B

A

C

1 1

2

2

3

min

min min

(b)

B

A

C

1 1

2

2

5

min

min min

(c)

Figure 6.9: <min,max,+> system (a) whole graph (b) first projection (c) second projection

110 6.3 Supportive simulation model

1. All possible projections Pj for the given graph are generated by choosing exactly one
incoming edge for each max-node while all other incoming links are dismissed. After
this the 1-input max nodes can be replaced by min nodes.

2. For each of these projections the minimum mean cycle weight ξPj
is determined.

3. The original <min,max,+> graph’s mean cycle weight is derived by computing the
maximum over the mean cycle weights of all projections.

Unfortunately, this simple algorithm suffers from combinatorial explosion as the number of
max-nodes increase. There exist other algorithms for computing ξ, for instance presented
in [13], however, their time complexity is still unknown.

In the context of the evaluation of the DARTS tick generation scheme the combinatorial
explosion of the before presented algorithm can be handled, at least if the evaluations are
limited to a system comprising 5 nodes only. The main interest in these kinds of simulations
is given by the fact that it allows to conveniently analyze the tick generation process with
configurable properties at a resolution of 1 tick period. Additionally, considering different
delay configurations estimates for a system’s mean frequency can be easily derived by
following the above described <min,max,+> computations.

Chapter notes

In this chapter the most important qualitative and quantitative properties of the DARTS
tick generation approach have been pointed out in order to derive appropriate evaluation
scenarios for the hardware design presented in Chapter 4. Especially the assessment scenar-
ios for the characterization of the DARTS tick generation approach’s worst-case behavior
have been presented in detail. Another important area of interest is given by the eval-
uation of typically encountered / average case characteristics of the DARTS clocks (e.g.,
mean frequency and jitter). The simulation-based assessment of properties neither covered
by formal analysis nor easily accessible by measurements presents a complementary ap-
proach to increase the coverage of the evaluations. Additional details to the <min,max,+>
simulations of the DARTS clocking scheme have been recently published in [38].

Chapter 7

Evaluation and Measurement
Results

There is no such thing as a failed experiment,

only experiments with unexpected outcomes.

Richard Buckminster Fuller

THE INITIAL quote in fact reflects a small, but quite interesting part of the conducted
evaluations. Most of the tick generation chips’ behavior has been a priori anticipated.

However, a few peculiarities of the chip design in conjunction with the measurement setup
manifested themselves at first glance as “failed experiments”. Most of these unexpected
evaluation outcomes later on provided valuable information on the tick generation scheme’s
characteristics. In general, the measurements of the HITS chips, assembled into a cluster
of interacting TG-Alg units, can be seen as the final design validation step. After formal
proofs on the algorithm level, followed by simulations on different hardware description
levels, the measurements conclude the chain of validation and characterization efforts.
Given this integrated assessment approach, the better part of the measurements aimed at
the confirmation of properties predicted from theory and simulations. Nevertheless, there
have been several characteristics which have not been covered in the aforementioned assess-
ment methodologies. Especially long-term behavior under real-world operating conditions
cannot easily be simulated, nor exactly predicted by theory. Therefore, the evaluations
provide a holistic approach for assessing worst-case properties— under realistic, thus vary-
ing, operation conditions— together with the broad field of typical executions. Last but
not least, the insights gained from the detailed assessment may be used as a starting-point
for optimizations and enhancements of the tick generation approach.

111

112 7.1 Assessing and validating the standard node HITS design

7.1 Assessing and validating the standard node

HITS design

Before going into details with a cluster of tick generation nodes, the initial evaluations are
aimed to provide a general view on the HITS ASIC’s properties and were therefore made
on a single chip. The subsequently presented measurements are, unless stated otherwise,
performed at nominal core voltage of 1.8V, room temperature, i.e., 26 to 30◦C and the
threshold circuits configured for f = 2, with all nodes working properly.

7.1.1 Delay validation

From the design verification of the ASIC it is known that all local timing constraints are
fulfilled and starting with the assessment of a single chip the global constraints do not pose
a threat. Due to the fact that the operation speed of a DARTS tick generation cluster
obviously depends on the processing speed of the participating nodes, the assessment of
propagation delays and the validation with the numbers obtained from design files is among
the most important characterization steps.

In general, there are two distinct paths to initiate the generation of a new tick at the
highest possible speed. Either the local pipeline already holds one or more ticks, i.e., is
waiting for the corresponding remote tick, or the opposite is true, i.e., the remote pipeline
is filled and the next local tick will trigger the generation of a new tick. These paths have
already been introduced in Section 3.4.3 with the first one in essence corresponding to
T−

first and the second one to Tmin.

Waiting for remote tick: Post-place and route design files for typical operating condi-
tions predict T−

first to be approximately 6ns. Measurements of a similar path showed
a delay of 7ns. This path involves remote clk[.] input pin, next 6 Muller C-
Elements1, the PCSG unit, the Threshold Modules including tick generation and
finally local clk output pin.

Waiting for local tick: For the Tmin path again a delay of 6ns has been extracted from
the design files. Analogously to the above examination the measured delay is 7ns.
The path is also quite similar comprising the local clk self input pin followed by
5 Muller C-Elements, the PCSG unit, the Threshold Modules and Tick generation
block, ending at the local clk output pin.

The difference of 1ns between measurements and design files is mainly due to the fact that
the measurement setup does not, unlike the evaluation of the design files, use the shortest
path through the threshold circuits.

1At first the tick can only propagate through 3 remote Muller C-Elements. Only after the Difference
Module has acknowledged the already waiting local tick with the newly arrived one, the remote tick can
move on to the final pipeline stage, thus enabling the generation of the next tick.

Chapter 7: Evaluation and Measurement Results 113

Table 7.1: Cluster of 8 standard nodes: voltage scaling

core voltage avg. frequency current ASIC U6 current all
in [V] in [MHz] in [mA] in [mA]
1.3 38 11.7 100
1.4 43 15.1 126
1.5 47 17.6 150
1.6 50 20.6 178
1.7 52 23.8 204
1.8 54 27.2 233

Based on these path delays the maximum rate of clock signals generated by a HITS stan-
dard node can be bounded with 1/2T−

first and 1/2Tmin, respectively, yielding a frequency
of ≈ 71MHz. From theory, however, it is clear that this rate can only be maintained for
a short period, i.e., either the remote or the local pipeline has to be full while ticks at the
opposite side arrive at T−

first or Tmin, respectively. As soon as the previously filled pipeline
gets emptied the clock rate will notably slow down.

7.1.2 Operating condition dependence

After the initial delay considerations using a single chip, a tick generation system composed
of 8 fully interconnected standard nodes was assembled (while the experimental nodes were
held in a reset state). The customized evaluation board, depicted in Figure 7.1, provides
extensive measurement support in order to allow a detailed assessment. It comprises 8
HITS ASICs (U1 to U8) including individual configuration circuitry, pattern generator and
logic analyzer interfaces for test and evaluation purposes as well as additional status and
control ports. To have as little influence as possible on the standard nodes’ tick generation
process in this setup, the central FPGA is not used for signal routing. Thus, all links
of the tick generation network (TG-Net) are implemented as point-to-point connections
on the printed circuit board (PCB). The first characterization steps for this cluster are
targeted to provide insights on the operation condition dependence. Table 7.1 shows the
average frequency and the corresponding current drawn by the design. As expected from
Equation 6.1 the achieved clock frequency scales proportional to the supplied core voltage.
Figure 7.2(a) presents results of detailed measurements in which the applied core voltage
has been changed in 10mV steps in an interval starting with 1.30V and ending at the
nominal voltage of 1.80V . An improved illustration of the measurement data which makes
the correlation of voltage and clock frequency more evident is given in Figure 7.2(b). Core
voltage and frequency are given in percentages of their respective maximum value. This
way it can be observed that a voltage change of 1% yields approximately 1% variation in
clock frequency (red line in Figure 7.2(b)). The strong impact of the core voltage on the

114 7.1 Assessing and validating the standard node HITS design

Figure 7.1: DARTS prototype board, comprising 8 interconnected HITS chips

Chapter 7: Evaluation and Measurement Results 115

1.3 1.4 1.5 1.6 1.7 1.8
36

38

40

42

44

46

48

50

52

Core voltage in [V] (nominal 1.8V)

M
ea

n
fr

eq
ue

nc
y

in
 [M

H
z]

(a)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Core voltage change in [%] of nominal voltage (1.8V)

F
re

qu
en

cy
 c

ha
ng

e
in

 [%
] o

f f
m

ax
 (

53
 M

H
z)

(b)

Figure 7.2: DARTS cluster’s mean clock frequency core voltage dependence

operating frequency of the asynchronous tick generation implementation was expected. A
second important factor for the design’s speed is given by temperature. Again, according to
Equation 6.1 the switching speed and propagation delay of CMOS circuits scales indirectly
proportional to temperature. This anticipated dependency has also been confirmed by the
measurements conducted.

7.1.3 Jitter and stability

The mean frequency and its dependence on core voltage and temperature have already
been discussed before. Taking into account that DARTS clocks are designed to provide
synchronous circuits with a suitable clock signal, not only the mean frequency but also short
term jitter and long term stability are of special interest. Even if the average clock rate of
a DARTS clock signal might conform to the specifications of the associated synchronous
design there is still potential for problems. A heavily unbalanced duty cycle, for instance,
might not be tolerable for synchronous memory interfaces.

The first jitter and stability evaluations are based on short-time measurements with very
high resolution (up to 10GS/s) including approximately 40, 000 clock transitions. These
measurements aim at characterizing a single node’s clock signal of a running DARTS clus-
ter. The obtained results are summarized in Figure 7.3 and described in the following. The
clock’s measured half periods are presented in the histogram plots shown in Figure 7.3(a),
(b) and (c). In the first histogram two cluster points can be identified one at ≈ 8.7ns
and the other at ≈ 9.8ns. A separate examination of the HI and LO clock periods (see
Figure 7.3(b) and (c), respectively) reveals the source for the accumulation points in Fig-
ure 7.3(a). In general the distributions of the HI and LO periods correspond with the
expected behavior. The difference of the HI and LO periods’ mean values of almost 1ns

116 7.1 Assessing and validating the standard node HITS design

8.5 9 9.5 10 10.5
0

2000

4000

6000

8000

10000

12000
(a) half periods

in [ns]

8.5 9 9.5 10 10.5
0

2000

4000

6000

8000

10000

12000
(b) LO time

in [ns]

8.5 9 9.5 10 10.5
0

2000

4000

6000

8000

10000

12000
(c) HI time

in [ns]

18.5 18.6 18.7 18.8
0

5000

10000

15000
(d) clock period

in [ns]

53 53.5 54
0

5000

10000

15000
(e) clock frequency

in [MHz]

45.5 47 47.5 48
0

2000

4000

6000

8000
(f) duty cycle

HI time:LO time in [%]

Figure 7.3: Statistical single clock evaluation of a running standard node cluster

can be traced back to slightly different processing speed of the respective clock signals, in
particular, the employed Muller C-Elements have different propagation delays for rising
and falling transitions. Figure 7.3(d) and (e) present the distribution of clock period and
frequency with a mean frequency of 53.4MHz and a standard deviation of 0.153MHz.
Again a distinct accumulation point can be identified. As motivated above, the stability of
a clock signal’s duty cycle might be vital for synchronous circuits. The histogram depicted
in Figure 7.3(f) shows that the duty cycle jitters less than 1% point with a mean value of
≈ 47.3% and a standard deviation of 0.28%. The measurements conducted in Section 7.1.2
show that the stability of the clock frequency heavily depends on the stability of the op-
erating conditions. Figure 7.4(a) presents a long term assessment of a node’s mean clock
frequency with an evaluation interval of more than 17 hours. It can be observed that clock
frequency noticeably decreases over time by about 250kHz. The operating conditions,
i.e., core voltage and ambient temperature were not varied in this experiment setup. The
measurements start with all nodes in reset state with no activity. Thus no mentionable
current is drawn by the HITS chips. As soon as the reset gets deactivated the designs start
to draw substantial current which depends on the applied core voltage (cf. Table 7.1). This
current contributes to self heating of the running HITS chips and causes the asymptotic de-
crease of the mean clock frequency depicted in Figure 7.4(a). Figure 7.4(b) shows the same

Chapter 7: Evaluation and Measurement Results 117

0 2 4 6 8 10 12 14 16 18
53.15

53.2

53.25

53.3

53.35

53.4

53.45

time in [hours]

fr
eq

ue
nc

y
in

 [M
H

z]

(a)

4 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 5
53.21

53.21

53.22

53.22

53.23

53.23

53.24

53.24

53.25

Time in [hours]

F
re

qu
en

cy
 in

 [M
H

z]

(b)

Figure 7.4: Long term clock stability (a) 17 hours run, (b) hour four at higher resolution

measurement data where only a time interval of one hour is analyzed more closely. The
source for the observed discrete frequency jumps of approximately 10 − 20kHz occurring
every few minutes could not be pinpointed at first. Even a thorough reassessment of the
algorithm and the hardware design was unable to give any explanation for the frequency
jumps. However, a closer look at the experiment environment was able to resolve this mys-
tery. A 15-minute snapshot of another frequency measurement including a high resolution
trace of the core voltage is presented in Figure 7.5. In this figure it can be observed that a
discrete jump of the core voltage is directly followed by a frequency jump. This behavior
perfectly fits into the HITS design’s voltage dependence presented earlier. In the depicted
measurement the voltage changed by ≈ 0.5mVrms which led to the aforementioned shift of
average frequency by 10 − 20kHz. The initial cause for the minor voltage change notice-
able in the frequency assessment is hidden in the digital power supply (Agilent E3648A)
which has quantization steps of 0.5mVrms. The correctness of this interpretation for the
frequency jumps has additionally been confirmed by crosscheck measurements with analog
power supplies. In these evaluations overall increased frequency jitter was observed due to
the higher level of voltage noise. However, neither discrete steps in the voltage level nor in
the mean frequency were encountered.

In addition to the above presented assessment of a single clock signal, the clock signals
of the whole ensemble are evaluated in the subsequent paragraphs2. The main interest
clearly resides in the synchronization of the clock ensemble. Detailed short-term mea-
surement showed that for the fault-free case the ensemble starts with tight synchrony and
remains closely synchronized (the small initial offset is due to differences in the propagation
of the reset signal). Under normal conditions, i.e., nominal core voltage and room temper-
ature, evaluations yielded initial offsets in the range of 1ns to 1.5ns. In these short-term

2Note that evaluations involving the whole cluster of 8 nodes are performed via logic analyzer measure-
ments having a time resolution of 250ps.

118 7.1 Assessing and validating the standard node HITS design

0 5 10 15
51.94

51.96

51.98

52.0

time in [min]

fr
e

q
u

e
n

c
y
 i
n

 [
M

H
z
]

0 5 10 15
1.7968

1.7970

1.7972

1.7974 c
o

re
 v

o
lt
a

g
e

 i
n

 [
V

]

Figure 7.5: Frequency and voltage trace showing power supply variations

measurements the maximum skew among any two tick(k) clock transitions never exceeded
its initial offset of 1.5ns. Hence, a fault-free clock ensemble running under nominal oper-
ating conditions has precision π = 1. In Figure 7.6(a) all 8 nodes’ frequencies of a DARTS
cluster (starting from reset state) are depicted3. It can be observed that the frequencies
of all DARTS clocks change jointly, thus yielding close synchronization. Figure 7.6(b)
presents the DARTS clocks’ frequency distribution of this short term measurement.

7.1.4 Fault tolerance properties

Up to now all evaluations have assumed TG-Alg nodes operating according to their spec-
ification. In contrast, the evaluations presented in this paragraph consider scenarios with
faults artificially introduced into a running cluster of 8 standard nodes (which by design
should be resilient to f = 2 Byzantine faults). In the conducted experiments the conse-
quences of crashing TG-Alg nodes are examined in particular. The node crash scenarios
are implemented by resetting one or two nodes of the DARTS cluster. Note that these
scenarios do not necessarily have the benign properties of crashes like they are assumed
in distributed systems. To substantiate this, recall the discussions from Section 4.6 where
it has been pointed out that even stuck-at faults can be outside the scope of the crash
fault scenario. An early clock transition, i.e., by changing a clock rail from HI to LOW
(stuck-at-0) generated by the activation of a node’s reset is already within the class of ma-
licious/Byzantine failures. All combinations of scenarios with one or two nodes crashing
yielded Figure 7.7. For each of the reset scenarios the mean frequency before and after

3To enhance the expressiveness of the graph the data values actually have been smoothed to compensate
for the limited resolution of the logic analyzer. Note that this did NOT affect the general trend but only
the magnitude of the frequency changes

Chapter 7: Evaluation and Measurement Results 119

0 200 400 600 800
52

53

54

55

56

A
ve

ra
ge

 fr
eq

ue
nc

y
tr

en
d

in
 [M

H
z]

Tick #

(a)

51 52 53 54 55 56 57
0

50

100

150

200

250

300

350

Frequency in [MHz]

T
ic

k
#

(b)

Figure 7.6: Mean frequency (a) trend and (b) histogram of all 8 nodes

the crash has been derived from measurement data. The lines interconnecting these two
mean frequency values illustrate the actual drop of the clock frequency. As anticipated,
in all 36 reset scenarios the deactivation of nodes leads to a decrease of the mean clock
frequency. This slowing down is quite natural since for the non-faulty nodes of the cluster
the crashing of nodes implies that one or two of the previously 2f +1 first node(s) has/have
been deactivated. Hence the correct nodes have to wait until tick messages are received
from slower nodes which are still up and running, consequently leading to additional delay
before the next tick can be generated4.

7.2 Assessing and validating the experimental node

HITS design

As already known from Chapter 5, the experimental node implementation comprises several
enhancements for measurement support. This additional circuitry, however, increases the
propagation delay of the design. The changes with the most notable impact on the propa-
gation delay are given by the enlarged local and remote pipelines (eight Muller C-Elements
each, in contrast to four C-Elements at the standard node), the pipeline extension/overflow
detection block and the extensive use of scan cells throughout the design.

4Due to small differences in propagation delays and the close synchronization of all clocks, each node’s
set of 2f + 1 fastest neighbors might be different. This leads to the fact that the reset of each node at
least slightly influences the clock overall clock frequency.

120 7.2 Assessing and validating the experimental node HITS design

0 5 10 15 20 25 30 35
50

51

52

53

54

55

Reset scenarios

F
re

qu
en

cy
 in

 [M
H

z]

Figure 7.7: Mean Frequency (o) pre and (x) post reset of 1 or 2 nodes

7.2.1 Delay validation

Analogously to Section 7.1.1, the first validation step for the experimental node design
is to assess the design’s maximum operation speed. Again measurements for delay paths
corresponding to T−

first and Tmin have been conducted. These evaluations yielded similar,
but certainly increased delay results if compared to the assessment of the standard nodes
delays. In detail, the measured delay for the remote path accounts for 9ns, which is also
the case for the local path. The delay values from the design files predicted delays of 7ns.
This mismatch is once again due to the fact that the measured paths did not represent
the fastest ones. In contrast to the standard node design, the enhanced accessibility of the
expnode design additionally allowed to directly evaluate the disabling path Tmin,dis, which
is part of the Interlocking Constraint. The propagation delay of the disabling path is 1ns
smaller than the enabling path Tmin, yielding a value of 8ns. The reason for the decreased
delay is given by the involved circuit path which only comprises 6 Muller C-Elements in
contrast to the 9 C-Element delays of the enabling path (cf. Figure 3.7). Extracted from
the design files, Tmin,dis adds up to 6ns which is also consistent with the analysis of Tmin.

7.2.2 Elastic pipeline assessment

It is obvious that the elastic pipelines employed for the local and remote tick queueing
are important components of the tick generation path. Therefore a closer look at the
performance of these components seems to be indicated. The increased pipeline depth
of the experimental node not only allows larger deviation of the nodes’ synchrony, but
also introduces additional propagation delays for arriving ticks. To assess the maximum

Chapter 7: Evaluation and Measurement Results 121

Figure 7.8: Ring oscillator implementation via pipeline pair and Difference-Module

performance of the pipelines— more precisely, the maximum rate for tick queueing and
removal— a set of experiments was performed. The experiment setup takes advantage
of two special features of the experimental node. First of all, local and remote pipeline
extension ports are used to automatically generate new ticks, while secondly, the reset
scan chains allow to initialize the elastic pipelines with a certain amount of ticks. For both
subsequently described evaluations a single experimental node was used with the remote
pipeline’s clock input shorted to the respective xremote err ack signal. Likewise, the
corresponding local clk self signal was also shorted to its respective xlocal err ack

port. Furthermore, the reset-selector unit was configured in a way that xdiff out toggles
whenever a tick has been removed from both of the selected pipelines. The setup is depicted
in Figure 7.8.

Empty pipelines: In the first experiment both the remote and the local pipeline are
empty, i.e., all Muller C-Elements (except the one in the Difference-Module) are ini-
tialized to 0. In the logic analyzer trace shown in Figure 7.9 it can be observed that
ticks are removed continuously about every 4.5ns. This delay essentially represents
the propagation through 10 Muller C-Elements (8 remote, 1 in the Difference-Module
and 1 local) added up with the delays of the clock input driver and the xdiff out

buffer. Putting it all together we get a ring oscillator design being capable of gener-
ating a sort of clock signal running at a rate of approximately 108MHz.

Filled pipelines: The second evaluation using the pipelines in a self-feedback configura-
tion takes advantage of the reset/set scan chains to pre-load ticks into the pipelines.
The Muller C-Elements of the selected remote/local pipeline pair are initialized with
an alternating sequence of tick(↑)/tick(↓), i.e., both pipelines are completely filled.
The resulting logic analyzer trace of this setup is depicted in Figure 7.10. In contrast
to Figure 7.9, the removal of ticks starts as soon as reset (xRS0TVE in the case where
the reset scan chains are used) is released. The first tick is already removed after 1ns
while the next transitions are processed at approximately 1.75ns per tick. Recalling
the operation of the Difference-Module from Section 4.3.1, the value of 1.75ns ac-
counts for the propagation through the Difference-Module added up with the delays
of the 3 Muller C-Elements which directly interact with the Diff-Module’s C-Element.
Due to the fact that tick generation involves rather slow input and output buffers,
the pipelines will get emptied quickly. In this particular case the pipelines are empty

122 7.2 Assessing and validating the experimental node HITS design

Figure 7.9: Trace of a ring oscillator with uninitialized pipelines

after processing 10 ticks. This circumstance substantially slows down operation to
a rate similar to the one presented in the above experiment with initially empty
pipelines.

7.2.3 Operating condition dependence

For all system assessments of the experimental node design the demonstrator board pre-
sented in Figure 7.1 was used again. However, in contrast to the measurement setup for the
standard node, the central Virtex-5 FPGA played a major role for the HITS expnode evalu-
ations. All TG-Net links were routed through the FPGA to provide enhanced observability
and control of these clock signals. Additionally, the FPGA enabled the implementation
of dedicated high-speed evaluation circuity to more precisely analyze the distributed tick
generation system’s current operations.

Similar to the analysis of the standard node design, the mean frequency of the exper-
imental node also scales the way that a 1% voltage change leads to a 1% change in clock
frequency. The results of these measurements are summarized in Table 7.2.

7.2.4 Precision

The worst-case precision π represents one of the most important synchronization properties
of the DARTS tick generation approach. One possible scenario to force a tick generation
cluster into this worst case has been introduced in Section 6.1.1. Due to the fact that com-
putation and interconnect delays of the DARTS cluster are almost perfectly matched—

Chapter 7: Evaluation and Measurement Results 123

Figure 7.10: Trace of a ring oscillator with initially full pipelines

Table 7.2: Cluster of 8 experimental nodes: voltage scaling

core voltage avg. frequency current ASIC U6 current all
in [V] in [MHz] in [mA] in [mA]
1.3 25 8.8 75
1.4 27 10.9 92
1.5 29 12.7 108
1.6 30 14.5 123
1.7 31 16.4 139
1.8 32 18.3 156

which yields a precision π = 1— artificially increased τ+
rem delays had to be introduced for

selected paths of this scenario. The central FPGA which is already in use for intercon-
necting the TG-Alg nodes was utilized for the implementation of controllable delay lines
for τ+

rem. This way multiple measurements with different parameters for τ+
rem could be per-

formed. Note that, unless stated otherwise, for all expnode measurements τ−

loc = τ+

loc = τ−

rem

are approximately equal to 6ns (this delay is determined by the input/output buffer and
routing delay of the FPGA). As introduced in Equation 3.3, the worst-case precision is
mainly based on the proportion of TQS and T−

first. Recall that TQS identifies the time when

the last tick(k-1) is generated, while T−

first represents the instant of generation of the first

tick(k). Thus, precision π can be easily validated by measuring the delay TQS and T−

first.

Figure 7.11 presents the resulting evaluation results for T−

first ≈ 15ns and TQS being scaled
step-wise via τ+

rem from 17ns to 113ns. The assessments confirm the predictions based on

theory. Additionally it could be observed that due to the fixed delays for τ
+/−
rem and τ

+/−
loc

124 7.2 Assessing and validating the experimental node HITS design

0 1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

T
QS

 / T
first
−

P
re

ci
si

on
 π

Figure 7.11: Precision vs. fastest to slowest path controlled via the maximum remote delay

the worst case for π manifested itself after only a few clock cycles. As a side note it has
to be stated that delays leading to a precision of 9 are outside of the experimental node’s
specification5. The expnode design with elastic pipeline depths of 8 is designed for π ≤ 8.
More details on the pipeline depths are given in Section 7.2.6.

7.2.5 Accuracy

The synchronization property accuracy bounds the minimum and maximum tick generation
rate for each correct node. Analogously to precision, formally derived bounds for accu-
racy have already been introduced in Section 3.4.4, Equation 3.4, while the corresponding
assessment scenarios for the lower and upper worst-case bounds have been presented in
Section 6.1.2. In essence, the implementation of the accuracy assessment followed the same
approach as the one employed for the precision experiment. Thus, delays were added for
the τ+

rem paths to attain improved observability of the worst case. The main difference to the
precision measurements is given by the fact that worst-case accuracy can only be achieved
by dynamic scenarios, i.e., at a certain point of operation (when maximum precision has
already been reached) delays have to be changed according to the scenario’s specifications.
From Equation 3.4 it is known that TP and TQS are the relevant terms for deriving the
accuracy’s lower bound, with TP denoting the largest time interval between the sending of
tick(k) and tick(k+1) among all correct nodes. In essence, the tick generation’s lower

5At π = 9 slow nodes lose a clock tick. Apart from that, tick generation proceeds at a pace forced by
the fast nodes, however, the slow nodes have to be considered faulty after a tick was lost.

Chapter 7: Evaluation and Measurement Results 125

bound δ is predicted to be 2TP + TQS. A closer look at the formal analysis is given below.

⌊

δ − (TQS + TP)

TP

⌋

= number of ticks generated in δ

The scenario for achieving this lower bound aims at maximizing the time interval δ in
which no tick is generated by a correct node with

⌊

δ − (TQS + TP)

TP

⌋

= 0

by substituting

δ = 2TP + TQS − ε.

yields

⌊

2TP + TQS − ε − TQS − TP)

TP

⌋

= 0

⌊

TP − ε

TP

⌋

= 0

which is obviously true for ε in (0, TP] with δ being the maximum time value where no tick
is generated.

In the evaluations the initially fast nodes U1, U2, U3 and U4 are running precision π
ticks ahead until the faulty nodes U5 and U6 stop contributing to the fast tick generation
process. As a consequence the fast nodes are stalled until the slow nodes U7 and U8 have
finally caught up (cf. Figure 6.3 and Figure 7.12). This catch-up yields a close synchro-
nization of all nodes. However, the new mean frequency of all nodes is now determined
by τ+

rem in contrast to τ−

rem as it was before the faulty nodes entirely stopped operation
(the slow processing rate is not shown in the trace of Figure 7.12 but was observed in the
experiment). The time interval in which no tick is generated by the previously fast nodes
was measured to be not larger than δ = 120ns. In the depicted measurement scenario τ+

rem

was tuned to 48ns, in conjunction with τ−

rem = 6ns this led to TQS = 42ns. The assessment
of TP yielded 62ns, thus, δ = 2 ·62ns+42ns = 168ns. Comparing the measurement results
to the calculations of δ, a notable mismatch can be observed. The predicted bound of
168ns holds but is not necessarily tight for the measured scenario.

The assessment of the accuracy’s upper bound followed a strategy similar to the one
presented above. However, in contrast to the longest time interval without generating a tick
this evaluation is concerned with a correct node’s fastest generation of successive tick(k)
and tick(k+1) transitions. The measurement setup again relies on a dynamic switching
between two different delay configurations (cf. Figure 6.4). For enhanced observability for
all remote clock interconnections, τ−

rem was artificially increased to ≈ 41ns, while τ−

loc = τ+

loc

still remained at 6ns. In this evaluation setup it is ensured that the fastest remotely driven

126 7.2 Assessing and validating the experimental node HITS design

Figure 7.12: Verification measurement for accuracy lower bound

generation of a tick, given by T−

first, and the fastest local generation Tmin are spread apart.

In particular, T−

first = 41ns, while Tmin is still in the range of 15ns. From Equation 3.4 it
is known that the accuracy’s upper bound is given by

min

{⌈

δ

T−

first

⌉

+ π,

⌈

δ

Tmin

⌉

}

(7.1)

with δ being the observed interval. For the given measurement setup, obviously Tmin will
be the crucial term for generating ticks at maximum speed which was also observed in
several evaluation runs with different settings for τ−

rem and τ+
rem. Thus, in the above given

setup the time between two ticks is never smaller than Tmin = 15ns, i.e., a clock frequency
of approximately 33MHz represents the upper bound for the given delay configuration.

7.2.6 Queue size

The local and remote elastic pipelines’ queue size of 8 stages has already been mentioned
in the context of the precision assessment presented in Section 7.2.4. The evaluation
setup to generate worst-case conditions for the local pipeline is identical to the initial
setup of the lower bound accuracy experiment, however, no delay switching has to be
employed. Equation 3.5 gives the formal bound for the local pipeline size, while the
respective evaluation scenario has been detailed in Section 6.1.4. The paths between fast
and slow nodes in both directions suffer a delay of τ+

rem. Thus, tick removal from the fast
nodes’ local pipelines (corresponding to slow nodes) starts at an instant determined by the
delays TQS and τ+

rem, while the fast nodes’ tick generation inserts ticks into these pipelines
at a rate given by T−

first. The required local pipeline depth for given values of TQS, τ
+
rem and

Chapter 7: Evaluation and Measurement Results 127

Figure 7.13: Local queue size bound verification

T−

first can therefore be computed by

Sloc ≈

⌈

TQS + τ+
rem − τ−

loc

T−

first

⌉

+ 2.

The logic analyzer trace shown in Figure 7.13 presents a configuration where the overflow
detection unit of a fast node’s local pipeline indicates (via the active low
localpipeoverflow N signal) that a tick has been lost. In a series of measurement cam-
paigns the particular experiment represents the case with τ+

rem = 59ns, which denotes the
smallest delay where overflowing local pipelines were observed. The relevant time delay
values extracted from the experiment trace are τ+

rem = 59ns, TQS = 50ns, τ−

rem = τ−

loc = 6ns
and T−

first = 15ns yielding,

Sloc ≈

⌈

50ns + 59ns − 6ns

15ns

⌉

+ 2 = 9.

According to the evaluation results the required local queue size of 9 perfectly matches the
prediction based on theory.

The delay measurements as well as the validation of the computed bound for the remote
queue size have been performed similarly to the previously presented local queue size
treatment. The main difference is given by the slightly modified evaluation setup already
introduced in Figure 6.7(a). Additionally, it should be noted that in the implemented tick
removal strategy the remote elastic pipelines may only buffer one transition less than the

128 7.2 Assessing and validating the experimental node HITS design

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Tick number

In
te

r
tic

k
tim

es

Figure 7.14: DARTS cluster with unbalanced delays (a) oscillations of tick generation
periods (b) simulation of settling

number of Muller C-Elements in the pipeline, i.e., 7 instead of 8 ticks may be stored6.
This reduction in pipeline depth is due to the fact that the remote pipeline’s Muller C-
Element next to the Difference Module can be seen as part of the Difference Module since
it only propagates ticks if they have already been acknowledged by the local side. Taking
into account the remote pipeline’s decreased size the predictions based on theory have
been validated again. The evaluations of the before presented worst-case scenario for the
remote pipeline size showed by stepwise increasing TQS that a pipeline depth of 7 Muller
C-Elements is sufficient for TQS < 105ns with τ−

rem = 6ns and T−

first = 15.5ns.

7.2.7 Oscillations and start-up behavior

After the assessment of several average- and worst-case properties, the evaluations conclude
with the analysis of the DARTS ensemble’s sensitivity to unbalanced interconnection de-
lays, i.e., τ+

rem 6= τ−

rem. It is well known that asynchronous circuits in general may exhibit
varying processing delays in the execution of repetitive tasks. Figure 7.14(a) presents
this kind of oscillation in tick generation speed in the example of an unbalanced 5-node
DARTS cluster (6 out of the 20 remote links have been configured to suffer from excessive
τ+
rem delays).

In the context of delay-insensitive circuits (=“wait-for-all” systems) Burns [11] modeled
these oscillation effects using a suitable <max,+> representation of the circuit components.
In the fault-tolerant DARTS framework, however, <max,+> is not sufficient since f + 1
and 2f + 1 threshold functions cannot be represented. As a consequence, <min,max,+>
algebra (cf. Section 6.3) has been used as foundation for the conducted simulations. The

6This implementation specific peculiarity is not covered by Equation 3.6 and thus has to be explicitly
taken into account in the pipeline size assessment.

Chapter 7: Evaluation and Measurement Results 129

resulting MATLAB-models allow to predict the duration of every single clock period of
a 5-node DARTS cluster. Measurements with different delay configurations confirmed
the appropriateness and validity of the <min,max,+> representation. Furthermore, the
simulations enabled a detailed analysis of a DARTS cluster’s start-up behavior.

In the numerous measurements with initially all nodes in a reset state the DARTS nodes
start generating the first tick closely synchronized to each other (maximum measured
skew of 1.5ns). In scenarios where no artificial delays had been added into the TG-
Net all nodes stayed in tight synchrony with each other. However, in static scenarios
with unbalanced interconnection delays (delays and operating conditions assumed to be
constant during operation) it could be observed that the tick generation rate varied before
it finally stabilized after a few ticks, cf. the local queue size measurement scenario presented
in Figure 7.13. The particularly interesting observation is that the length of the settling
period in which the DARTS system stabilizes, as well as potential oscillations of the clocks’
periods only depend on the system’s interconnection and processing delays. In order to get
quantitative and qualitative estimations for the settling time and the characteristics of the
oscillations, the <min,max,+> simulation model could be used again. Simulation results
for a 5-node system are presented in Figure 7.14(b). The simulation trace reveals that after
the concurrent generation of the first transitions the nodes split up into two groups. After
some initial settling time (in the given example at tick(3)) these two cliques further on
operate with stable but phase shifted clock periods. If compared to the measurement results
shown in Figure 7.14(a) it can be observed that simulations match the real-world behavior
of DARTS clocks quite well. The oscilloscope snapshot confirms the two aforementioned
clock cliques shown at channel 1 and 4, as well as channel 2 and 3. It should be mentioned
that in addition to the presented scenarios with (small) initial prefix (=settling time) and
oscillation of the clock period, setups without continuously oscillating periods are most
likely to be encountered. In fact, setups where the mismatch of the propagation delay will
only be small represents the typical case, which provides stable clock periods.

130 7.2 Assessing and validating the experimental node HITS design

Table 7.3: Characteristics of HITS tick generation

parameter value comment equation

technology 180nm
radiation tolerant process

-
with custom Muller C-Element

average frequency
53MHz standard node

6.2
33MHz experimental node

precision π
1

measured typical configuration

3.3
with balanced intercon. delays

up to 8
expnode design with
heavily unbalanced delays

voltage dependence
1% voltage change yields

6.1
1% freq. change

fault tolerance 2 Byzantines in a system of 8 nodes n ≥ 3f + 2

Chapter notes

The assessment of the most important characteristics of the HITS ASICs has been the
main focus of this chapter and parts of the results are presented in Table 7.3. Besides the
measurements of DARTS clocks’ operating condition dependence, high effort has been put
into the verification of the system’s bounds predicted by theory. Regarding synchronization
properties and queue size bounds, it can be concluded that none of the computed theoretical
bounds have been violated, however, the tightness of some predictions could be further
improved. In general, the tick generation scheme complies with the expected characteristics
and therefore emphasizes the feasibility of the fault-tolerant clocking approach. However,
some of the measured properties, e.g., the non-perfect stability under varying operating
conditions, will require enhancements before synchronous circuits may be reliably clocked
with DARTS clocks. As a consequence the evaluation of the DARTS tick generation
scheme not only constitutes the final design validation step, it also provides the foundation
for adaptations and improvements.

Chapter 8

Conclusions and Future Work

A conclusion is the place where you got tired of thinking.

Harold Fricklestein

THE WORK presented in this thesis ranges from nanoscale VLSI chip considerations
to high-level distributed algorithm design. In the light of the continuous downsiz-

ing in chip technology and the accompanied reliability issues, the two at first glance very
dissimilar fields of computer engineering have been identified to have several properties in
common. In order to cope with robustness issues of modern VLSI circuits— in particular
focusing on the clock signal— a fault-tolerant clocking scheme based on distributed algo-
rithms has been designed. Thereby, the development process of the HITS ASICs greatly
benefited from theoretical results provided by the distributed systems community. The
focus of this thesis is placed on the design and implementation of the hardware block re-
quired to implement the underlying tick generation algorithm. Additionally, great efforts
have been made to assess the implementation’s properties and to validate the synchroniza-
tion properties and implementation characteristics predicted by theory. The main, tangible
result of the conducted work is given by the operational tick generation scheme which re-
lies on a set of 8 interconnected HITS ASICs. Furthermore, the output from extensive
evaluation campaigns provides valuable characterization data for the HITS chips as well
as the whole DARTS clocking scheme.

The achievements presented in this thesis can be seen as proof of concept for successfully
adopting certain results from the distributed systems community to solve problems in VLSI
design. However, besides the general feasibility of the DARTS clocking scheme, a large
potential for improvements has to be mentioned. Furthermore, the applicability of bounded
but none-standard synchrony of the DARTS clocks still has to be shown. A list of the most
important topics for further improvements and investigations is presented below.

131

132

Scaling with number of nodes n: The clocking scheme’s requirement of fully con-
nected TG-Algs yields a quadratic growth of the number of links with n. For large
systems, e.g., n > 20, the interconnection effort might no longer be feasible. Ad-
ditionally, increasing numbers of n have substantial impact on complexity of the
hardware design. In particular, the employed sum of products threshold circuit ar-
chitecture does not facilitate upscaling the number of nodes. Hence, both issues, but
most importantly the ASIC design’s unfavorable scaling with n should be considered
in future generations of the DARTS clocking scheme.

Recovery after transient failures: As soon as a node has suffered from a fault it is
considered faulty until the whole DARTS system is restarted. Obviously, this implicit
mapping of transient fault effects to permanent failures is a non-ideal property of the
clocking scheme. Hence, measures for fault detection and online reintegration of
nodes seem to be crucial to be able to achieve reasonable mission times.

Increasing clock speed: The maximum clock speed of the presented first generation
HITS chip of ≈ 55MHz can be considered quite good as it has not been exten-
sively optimized and involves board-level communication. However, besides minor
improvements due to design optimizations, e.g., of the threshold circuit implemen-
tation, more pronounced speed-up can be expected from conceptional refinements.
Recent work [19,20] on this topic yielded promising results for increasing clock speed.
The proposed enhancements rely on the pipelined execution of the tick generation
algorithms, i.e., circuit and wire delays are used as pipeline for clock transitions thus
allowing multiple ticks being in transition at the same time.

Metastability considerations: It has been ensured by design that correct DARTS nodes
will never suffer from metastability issues. However, a fault might be able upset a
Muller C-Element. The non-zero probability of metastability propagation has been
investigated in [35]. This metastability analysis accounts for the fact that metasta-
bility theoretically has the potential for catastrophic fault propagation throughout
the DARTS system. Fortunately, the analysis confirmed the expectation that Muller
C-Elements have synchronizing properties and therefore lead to metastability decay.
However, besides the qualitative evidence of the metastability decay a quantitative
assessment still has to be conducted for the DARTS clocking scheme.

Reliable communication scheme: In order to fully benefit from the fault-tolerant
clocks provided by DARTS, a suitable communication framework has to be employed.
This framework has to be capable of coping with potentially substantial offsets be-
tween clocks, without losing clock speed due to synchronization approaches like clock
dividers. A suitable communication scheme achieving operation at the full DARTS
clock speed has recently been proposed in [72].

Bibliography

[1] E. Anceaume, C. Delporte-Gallet, H. Fauconnier, M. Hurfin, and J. Widder. Clock
synchronization in the byzantine-recovery failure model. In International Conference
On Principles Of DIstributed Systems OPODIS 2007, LNCS, pages 90–104, Guade-
loupe, French West Indies, Dec. 2007. Springer Verlag.

[2] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd ed.). John Wiley & Sons, Inc., Apr. 2004.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, Jan.-March 2004.

[4] B. Barak, S. Halevi, A. Herzberg, and D. Naor. Clock synchronization with faults
and recoveries (extended abstract). In Proceedings of the nineteenth annual ACM
symposium on Principles of distributed computing, pages 133–142, Portland, Oregon,
United States, 2000. ACM Press.

[5] R. Baumann. Soft errors in advanced computer systems. IEEE Design & Test of
Computers, 22(3):258–266, May-June 2005.

[6] V. Beiu, J. M. Quintana, and M. J. Avedillo. VLSI Implementations of Threshold
Logic – A Comprehensive Survey. IEEE Transactions on Neural Networks, 14(5):1217–
1243, Sept. 2003.

[7] M. Biely, G. Fuchs, and M. Fuegger. Clock synchronization in the crash-recovery
failure model. Research Report 1/2008, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria, 2008.

[8] D. L. Black. On the existince of delay-insensitive fair arbiters: Trace theory and its
limitations. Distributed Computing, 1:205–225, 1986.

[9] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter
variations and impact on circuits and microarchitecture. Proceedings of the Design
Automation Conference, 2003, pages 338–342, June 2003.

133

134 Bibliography

[10] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration.
IEEE Journal of Solid-State Circuits, 37(2):183–190, Feb 2002.

[11] S. M. Burns. Performance analysis and optimization of asynchronous circuits. PhD
thesis, Pasadena, CA, USA, 1991.

[12] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, Oct. 1984.

[13] Y. Cheng and D.-Z. Zheng. A cycle time computing algorithm and its application
in the structural analysis of min-max systems. Discrete Event Dynamic Systems,
14(1):5–30, 2004.

[14] B.-R. Choi, K. Park, and M. Kim. An improved hardware implementation of the
fault-tolerant clock synchronization algorithm for large multiprocessor systems. IEEE
Transactions on Computers, 39(3):404–407, Mar. 1990.

[15] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,
23(4):14–19, July 2003.

[16] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146–158,
1989.

[17] J. Dama and A. Lines. GHz asynchronous SRAM in 65nm. In 15th IEEE Symposium
on Asynchronous Circuits and Systems, 2009. ASYNC ’09, pages 85–94, May 2009.

[18] M. Delvai. Design of an Asynchronous Processor Based on Code Alternation Logic
– Treatment of Non-Linear Data Paths. PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, 2005.

[19] A. Dielacher, M. Fuegger, and U. Schmid. How to speed-up fault-
tolerant clock generation in VLSI systems-on-chip via pipelining. In Pro-
ceedings of the 27th ACM Symposium on Principles of Distributed Comput-
ing (PODC’08), page 423. ACM Press, Aug. 2008. An extended version
is available as RR 15/2009, Institut für Technische Informatik, TU-Wien,
http://www.vmars.tuwien.ac.at/documents/extern/2571/techreport.pdf.

[20] A. Dielacher, M. Fuegger, and U. Schmid. How to speed-up fault-
tolerant clock generation in VLSI systems-on-chip via pipelining. Re-
search Report 15/2009, Technische Universität Wien, Institut für Tech-
nische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2009.
http://www.vmars.tuwien.ac.at/documents/extern/2571/techreport.pdf.

[21] D. Dobberpuhl et al. A 200-MHz 64-bit dual-issue CMOS microprocessor. IEEE J.
Solid-State Circuits, 27(11):1555–1567, Nov. 1992.

Bibliography 135

[22] R. Dobkin, R. Ginosar, and C. Sotiriou. Data synchronization issues in GALS SoCs.
pages 170–179, April 2004.

[23] D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impossibility of
achieving clock synchronization. Journal of Computer and System Sciences, 32:230–
250, 1986.

[24] S. Fairbanks. Method and apparatus for a distributed clock generator, 2004. US
patent no. US2004108876.

[25] S. Fairbanks and S. Moore. Self-timed circuitry for global clocking. In Proceedings of
the Eleventh International IEEE Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 86–96, Mar. 2005.

[26] K. Fant and S. Brandt. Null convention logic(tm): a complete and consistent logic for
asynchronous digital circuit synthesis. In Proceedings of the International Conference
on Application Specific Systems, Architectures and Processors, pages 261–273, Aug.
1996.

[27] M. Favalli and C. Metra. TMR voting in the presence of crosstalk faults at the voter
inputs. IEEE Transactions on Reliability, 53(3):342–348, Sept. 2004.

[28] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf. VLSI Implementation of a Fault-
Tolerant Distributed Clock Generation. IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT2006), pages 563–571, Oct. 2006.

[29] M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for the distributed
consensus problem. Distributed Computing, 1(1):26–39, 1986.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[31] E. G. Friedman. Clock distribution networks in synchronous digital integrated circuits.
Proceedings of the IEEE, 89(5):665–692, May 2001.

[32] W. Friesenbichler, T. Panhofer, and M. Delvai. Improving fault tolerance by using
reconfigurable asynchronous circuits. IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, Apr. 2008.

[33] G. Fuchs. Implications of VLSI fault models and distributed systems failure mod-
els – a hardware designer’s view. In B. Charron-Bost, S. Dolev, J. Ebergen, and
U. Schmid, editors, Fault-Tolerant Distributed Algorithms on VLSI Chips, number
08371 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany.

136 Bibliography

[34] G. Fuchs, M. Fuegger, U. Schmid, and A. Steininger. Mapping a fault-tolerant dis-
tributed algorithm to systems on chip. In 11th Euromicro conference on Digital Sys-
tem Design Architectures, Methods and Tools (DSD’08), pages 242–249, Parma, Italy,
September 2008.

[35] G. Fuchs, M. Fuegger, and A. Steininger. On the threat of metastability in an asyn-
chronous fault-tolerant clock generation scheme. In 15th IEEE International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC’09), Chapel Hill, N. Carolina,
USA, May 2009.

[36] G. Fuchs, M. Fuegger, A. Steininger, and F. Zangerl. Analysis of constraints in a
fault-tolerant distributed clock generation scheme. 3rd International Workshop on
Dependable Embedded Systems (WDES’06), Oct. 2006.

[37] G. Fuchs, J. Grahsl, U. Schmid, A. Steininger, and G. Kempf. Threshold Modules –
Die Schlüsselelemente zur Verteilten Generierung eines Fehlertoleranten Taktes. In
Proceedings of the Austrian National Conference on the Design of Integrated Circuits
and Systems (Austrochip 2006), pages 149–156, Vienna, Oct. 2006.

[38] M. Fuegger, G. Fuchs, U. Schmid, and A. Steininger. On the stability and robustness of
non-synchronous circuits with timing loops. 3rd Workshop on Dependable and Secure
Nanocomputing, Jun. 2009.

[39] M. Fuegger, U. Schmid, G. Fuchs, and G. Kempf. Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In Proceedings of the Sixth European Dependable
Computing Conference (EDCC-6), pages 87–96. IEEE Computer Society Press, Oct.
2006.

[40] M. Fuegger, U. Schmid, G. Fuchs, A. Steininger, G. Kempf, and M. Sust. Fault-
tolerant distributed tick generation in VLSI systems-on-chip. Research Report
53/2009, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-2, 1040 Vienna, Austria, 2009.

[41] R. Ginosar. Fourteen ways to fool your synchronizer. International Symposium on
Asynchronous Circuits and Systems, page 89, 2003.

[42] J. Gunawardena. Cycle times and fixed points of min-max functions. In 11th Interna-
tional Conference on Analysis and Optimization of Systems, pages 266–272. Springer,
1994.

[43] S. Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, Jan. 1995.

[44] B. Heidergott, G. J. Olsder, and J. von der Woude. Max plus at work. Princeton
Univ. Press, 2006.

Bibliography 137

[45] R. Höller, M. Horauer, G. Gridling, N. Kerö, U. Schmid, and K. Schossmaier. SynUTC
- high precision time synchronization over Ethernet networks. In Proceedings of the 8th
Workshop on Electronics for LHC Experiments (LECC’02), pages 428–432, Colmar,
France, Sept. 9–13, 2002.

[46] A. Hopkins, I. Jr. Smith, T.B., and J. Lala. FTMP – a highly reliable fault-tolerant
multiprocess for aircraft. In Proceedings of the IEEE, volume 66, pages 1221–1239,
Oct. 1978.

[47] International technology roadmap for semiconductors, 2007.

[48] W. Jang and A. J. Martin. SEU-tolerant QDI circuits. In Proceedings 11th Int’l
Symposium on Asynchronous Circuits and Systems (ASYNC’05), pages 156–165, 2005.

[49] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. The MAFT
architecture for distributed fault tolerance. IEEE Transactions on Computers, 37:398–
405, Apr. 1988.

[50] H. Kopetz. Real-Time Systems, Design Pinciples for Distributed Embedded Applica-
tions. Kluwer Academic Publishers, 1997.

[51] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21(7):558–565, 1978.

[52] L. Lamport. The mutual exclusion problem: Part I–the theory of interprocess com-
munication. Journal of the ACM, 33(2):313–326, 1986.

[53] L. Lamport. Arbitration-free synchronization. Distributed Computing, 16(2/3):219–
237, September 2003.

[54] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM, 32(1):52–78, Jan. 1985.

[55] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
In Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC), pages
75–88, August 1984.

[56] A. Martin, M. Nystrom, K. Papadantonakis, P. Penzes, P. Prakash, C. Wong,
J. Chang, K. Ko, B. Lee, E. Ou, J. Pugh, E.-V. Talvala, J. Tong, and A. Tura.
The lutonium: a sub-nanojoule asynchronous 8051 microcontroller. pages 14–23, May
2003.

[57] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits.
Distributed Computing, 1:226–234, 1986.

[58] A. J. Martin. Limitations to delay-insensitivity in asynchronous circuits. Technical
report, California Institute of Technology, Pasadena, CA, USA, 1990.

138 Bibliography

[59] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
AUSCRYPT ’90: Proceedings of the sixth MIT conference on Advanced research in
VLSI, pages 263–278, Cambridge, MA, USA, 1990. MIT Press.

[60] M. S. Maza and M. L. Aranda. Analysis of clock distribution networks in the presence
of crosstalk and groundbounce. In Proceedings International IEEE Conference on
Electronics, Circuits, and Systems (ICECS), pages 773–776, 2001.

[61] M. S. Maza and M. L. Aranda. Interconnected rings and oscillators as gigahertz
clock distribution nets. In GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes
symposium on VLSI, pages 41–44. ACM Press, 2003.

[62] M. S. Maza and M. L. Aranda. Analysis and verification of interconnected rings as
clock distribution networks. In GLSVLSI ’04: Proceedings of the 13th ACM Great
Lakes symposium on VLSI, pages 312–315. ACM Press, 2004.

[63] A. McAuley. Four state asynchronous architectures. IEEE Transactions on Comput-
ers, 41(2):129–142, Feb 1992.

[64] P. Miner, P. Padilla, and W. Torres. A provably correct design of a fault-tolerant
clock synchronization circuit. pages 341–346, Oct 1992.

[65] G. Moore. Progress in digital integrated electronics. Technical Digest IEEE Interna-
tional Electron Devices Meeting, pages 11–13, 1975.

[66] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-
asynchronous locally-synchronous systems. pages 52–59, 2000.

[67] C. J. Myers. Asynchronous Circuit Design. John Wiley & Sons, Inc., 2001.

[68] S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J. Sullivan, and
T. Grutkowski. The Implementation of the Itanium 2 Microprocessor. IEEE Journal
of Solid-State Circuits, 37(11):1448–1460, Nov. 2002.

[69] S. M. Nowick and C. W. O. Donnell. On the existence of hazard-free multi-level logic.
In Proc. International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 109–120. IEEE Computer Society Press, May 2003.

[70] M. Omana, D. Rossi, and C. Metra. Fast and low-cost clock deskew buffer. In 19th
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT
2004), pages 202–210, Oct. 2004.

[71] M. Omana, D. Rossi, and C. Metra. Low Cost Scheme for On-Line Clock Skew
Compensation. In Proceedings of the IEEE VLSI Test Symposium, pages 90–95, May
2005.

Bibliography 139

[72] T. Polzer, T. Handl, and A. Steininger. A metastability-free multi-synchronous com-
munication scheme for fault-tolerant SoCs. Research Report 10/2009, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna,
Austria, 2009.

[73] P. Ramanathan, K. Shin, and R. Butler. Fault-tolerant clock synchronization in
distributed systems. Computer. IEEE Computer Society Press, 23(10):30–42, Oct.
1990.

[74] Restle et al. The clock distribution of the power4 microprocessor. In IEEE Interna-
tional Solid-State Circuits Conference ISSCC, Digest of Technical Papers., volume 2.
IEEE, 2002.

[75] D. Rossi, M. Omana, F. Toma, and C. Metra. Multiple transient faults in logic: an
issue for next generation ICs? In 20th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT 2005), pages 352–360, Oct. 2005.

[76] N. Seifert, P. Shipley, M. Pant, V. Ambrose, and B. GiII. Radiation-induced clock
jitter and race. In Proceedings 43rd Annual IEEE International Reliability Physics
Symposium, pages 215–222, 17-21, 2005.

[77] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the effect
of technology trends on the soft error rate of combinational logic. Proceedings of
International Conference on Dependable Systems and Networks, DSN, pages 389–398,
2002.

[78] M. L. Shooman. Reliability of Computer Systems and Networks. Wiley, 2002.

[79] B. Simons, J. Lundelius-Welch, and N. Lynch. An overview of clock synchronization.
In B. Simons and A. Spector, editors, Fault-Tolerant Distributed Computing, LNCS
448, pages 84–96. Springer Verlag, 1990.

[80] J. Sparsø and S. Furber. Principles of Asynchronous Circuit Design. Dimes, 2001.

[81] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM,
34(3):626–645, Apr. 1987.

[82] A. Steininger, T. Handl, G. Fuchs, and F. Zangerl. Testing the hardware implemen-
tation of a distributed clock generation algorithm for SoCs. IEEE East-West Design
and Test International Workshop, pages 59–64, Sept. 2006.

[83] I. E. Sutherland. Micropipelines. Communications of the ACM, Turing Award,
32(6):720–738, June 1989. ISSN:0001-0782.

[84] J. Teifel and R. Manohar. Highly pipelined asynchronous FPGAs. In FPGA ’04:
Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field pro-
grammable gate arrays, pages 133–142, New York, NY, USA, 2004. ACM.

140 Bibliography

[85] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000.

[86] C. Uri. Terabit crossbar switch core for multi-clock-domain SoCs. In Proceedings of
the 15th Symposium on High Performance Chips (HOT CHIPS), page 102ff, 2003.

[87] K. van Berkel. Beware the isochronic fork. Integr. VLSI J., 13(2):103–128, 1992.

[88] D. VanAlen and A. Somani. An all digital phase locked loop fault tolerant clock.
In Proceedings of the IEEE International Symposium on Circuits and Systems, pages
3170–3173, June 1991.

[89] N. Vasanthavada and P. Marinos. Synchronization of fault-tolerant clocks in the
presence of malicious failures. IEEE Transactions on Computers, 37(4):440–448, Apr.
1988.

[90] J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-Smith,
R. Shostak, and C. Weinstock. Sift: Design and analysis of a fault-tolerant com-
puter for aircraft control. Proceedings of the IEEE, 66(10):1240–1255, Oct. 1978.

[91] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI design: a systems
perspective. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[92] J. Widder. Distributed Computing in the Presence of Bounded Asynchrony. PhD
thesis, Vienna University of Technology, Fakultät für Informatik, May 2004.

[93] J. Widder and U. Schmid. The Theta-Model: Achieving synchrony without clocks.
Distributed Computing, 2009. (to appear).

[94] L. Wissel, S. Pheasant, R. Loughran, C. LeBlanc, and B. Klaasen. Managing soft
errors in ASICs. Proceedings of the IEEE Custom Integrated Circuits Conference,
pages 85–88, 2002.

Curriculum Vitae
Gottfried Fuchs

Date of Birth: March, 15th, 1978
Place of Birth: Oberpullendorf, Austria

1984–1988 Elementary school Deutschkreutz
1988–1991 Secondary school Oberpullendorf
1991–1992 Secondary school BRG Wien XXIII
1992–1998 Technical High School Mödling, Curriculumn Electronic

and Telecommunication Engineering with focus
on Computer Engineering

1998–2004 Master Curriculum Computer Science
at the Vienna University of Technology,
with focus on Computer Engineering
Graduation with distinction

2004–2005 Bachelor Curriculum Computer Science Management
at the Vienna University of Technology

2004–2009 PhD Curriculum Computer Engineering
at the Vienna University of Technology

2004–2009 Research assistant at the Vienna University of Technology,
Institute for Computer Engineering,
Embedded Computing Systems Group

2005 Master Curriculum Computer Science Management
at the Vienna University of Technology
Graduation with distinction

141

