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Abstract
Ultrasonics is a well-established method for the determination of elastic properties of solids. De-
pending on the application, it may have advantages over classical quasi-static tests, in terms of its
non-destructive nature, of simpler specimen preparation, of easy and fast experimental realization,
and of high precision measurements of normal and shear (‘diagonal’) elasticity tensor components.
These advantages, however, rely on the appropriate application of the method within specific ranges,
the elucidation of which is the primary focus of this thesis. The application ranges concern specimen
geometry and microstructure (Publication 1), Poisson’s ratios and off-diagonal elasticity tensor com-
ponents (Publication 2), and different dense and porous glass-ceramic, biological, and metal-based
materials from the engineering and biomedical fields (Publication 1 – 5).

Publication 1 covers the influence of specimen shape and porosity on elastic wave velocity and stiffness
determination through ultrasonic contact pulse transmission. It turns out that bar-shaped specimens
with a slenderness ratio larger than ten, excited by low-frequency signals, transmit (1D) extensional
or bar waves, whereby the specimen needs to be the more slender the higher the signal frequency to be
transmitted as extensional wave. Beyond a quite narrow extensional-bulk-wave transition regime, less
slender bar-type specimens excited by higher frequency signals transmit (3D) bulk waves, whereby
specimens need to be the less slender the lower the frequency to be transmitted as bulk waves. As
for porous non-slender specimens, the wave propagation type depends on the ‘pore-diameter-over-
wavelength’ ratio and on the porosity. Cube-shaped porous specimens excited by low frequency
signals transmit bulk waves relating to the effective porous medium (long-wavelength-limit), whereby
the specimen needs to be the more porous, the higher the frequency to be transmitted as effective wave
‘feeling’ the porous medium. Beyond a long-to-short wavelength transition period, which is increasing
with increasing porosity and with decreasing direction-dependent wave propagation velocity, cube-
shaped porous specimens excited by higher frequencies transmit bulk waves relating to the solid matrix
(short-wavelength-limit). Thereby, specimens need to be the less porous, the lower the frequencies to
be transmitted as waves ‘feeling’ the solid matrix.

Publication 2 deals with the determination of Poisson’s ratios in isotropic, transversely isotropic,
and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses.
Poisson’s ratios of isotropic, transversely isotropic, and orthotropic non-axially auxetic materials are
expressed as functions of normal elastic stiffnesses, considering the positive definiteness of the stiffness
and compliance tensors. The relevance of our method is shown by comparing Poisson’s ratios computed
from normal elastic stiffnesses given in the literature, to experimentally given Poisson’s ratios, for a
range of materials including (isotropic) aluminum, (transversely isotropic) aluminum matrix-fiber
composite and (orthotropic) stainless-steel weld metal. Finally, the method is applied to (orthotropic)
wood (namely spruce), by measuring four normal stiffnesses, and relying on a spruce-specific universal
constant involving longitudinal Poisson’s ratios and on reasonable estimates for the radial Young’s
modulus. Resulting ranges of Poisson’s ratios agree well with ranges of Poisson’s ratios obtained from
direct mechanical measurements on spruce.

In porous materials, especially such with very high porosity, the determination of material stiffness

may be strongly biased by inelastic deformations occurring in the material specimens. In contrast,

ultrasonic waves propagating through a material generate very small stresses and strains (and also

strain rates lying in the quasi-static regime). Therefore, elastic properties of such materials can be re-

liably accessed through ultrasonics, which we used for multiple-scale elastic characterization of porous

biomaterials (Publication 3) and of titanium scaffolds for biomedical applications (Publication 4).

Ultrasonically determined elastic properties finally helped us to understand the micromechanics of

bioresorbable porous CEL2 glass ceramic scaffolds for bone tissue engineering (Publication 5). Inter-

esting details on various aspects of ultrasonic testing are collected in Appendices A – H.





Kurzfassung
Ultraschall ist eine etablierte Methode zur Bestimmung der elastischen Eigenschaften von Festkör-
pern. Abhängig von der Anwendung hat sie Vorteile gegenüber klassischen quasi-statischen Tests
in Bezug auf ihre zerstörungsfreie Durchführbarkeit, die einfachere Prüfkörpervorbereitung, die ein-
fache und schnelle experimentelle Umsetzung und die hohe Präzision der Messung von Normal- und
Schubkomponenten (Diagonalkomponenten) des Elastizitätstensors. Diese Vorteile sind jedoch auf
die korrekte Durchführung dieser Methode innerhalb bestimmter Anwendungsbereiche angewiesen,
deren Bestimmung die Zielsetzung dieser Arbeit ist. Die Anwendungsbereiche betreffen Aspekte, die
von der Probengeometrie und -mikrostruktur (Publikation 1), über Poissonzahlen und nicht-diagonale
Elastizitätstensorkomponenten (Publikation 2), bis hin zu verschiedenen dichten und porösen biolog-
ischen und metallischen Materialien und Glas-Keramiken aus Technik und Medizin (Publikation 1 – 5)
reichen.

Publikation 1 behandelt den Einfluss der Probengeometrie und -porosität auf die Bestimmung elastis-
cher Wellengeschwindigkeiten und Steifigkeit durch Kontaktübertragung von Ultraschallimpulsen. Es
stellt sich heraus, dass stabförmige Probekörper mit einer Schlankheit größer zehn bei Anregung
durch niederfrequente Signale (1D) Dehn- oder Stabwellen übertragen, wobei der Probekörper umso
schlanker sein muss, je höher die als Stabwelle zu übertragende Signalfrequenz ist. Jenseits eines
recht schmalen Übergangsbereichs zwischen Stab- und Volumenwellen übertragen weniger schlanke,
von höherfrequenten Signalen angeregte, stabförmige Probekörper (3D) Volumenwellen, wobei der
Probekörper umso gedrungener sein muss, je geringer die als Volumenwelle zu übertragende Signalfre-
quenz ist. Bei porösen gedrungenen Probekörpern hängt die Art der Wellenausbreitung vom Verhältnis
‘Porendurchmesser-zu-Wellenlänge’ und der Porosität ab. Würfelförmige poröse Probekörper, die von
niederfrequenten Signalen angeregt werden, übertragen dem effektiven porösen Medium zugehörige
Volumenwellen (langerwelliger Grenzwert), wobei der Probekörper umso poröser sein muss, je höher
die als Effektivwelle zu übertragende Frequenz ist, die das poröse Medium ‘spürt’. Jenseits eines
Übergangsbereichs von Lang- auf Kurzwellen, der mit zunehmender Porosität und mit abnehmender,
richtungsabhängiger Wellenausbreitunggeschwindigkeit zunimmt, übertragen von höheren Frequenzen
angeregte würfelförmige poröse Probekörper Volumenwellen in der festen Grundmasse oder Matrix
(kurzwelliger Grenzwert). Dabei müssen die Probekörper umso weniger porös sein, je geringer die als
eine die feste Matrix ‘spürende’ Welle zu übertragende Frequenz ist.

Publikation 2 befasst sich mit der Bestimmung von Querdehungszahlen in isotropen, transversal
isotropen und orthotropen Materialien mittels Kombination von aus quasistatischen Messungen und
Ultraschallversuchen gewonnenen Normalsteifigkeiten. Die Querdehungszahlen von isotropen, transver-
sal isotropen und orthotropen, axial nicht auxetischen Materialien werden als Funktionen der Normal-
steifigkeiten angegeben, wobei die positive Definitheit der Steifigkeits- und Nachgiebigkeitstensoren
berücksichtigt wird. Die Bedeutung der Methode wird durch den Vergleich von Querdehungszahlen,
welche mittels aus der Literatur entnommener Normalsteifigkeiten berechnet werden, mit direkt ex-
perimentell bestimmten Querdehungszahlen gezeigt, und zwar für (isotropes) Aluminium, (transversal
isotrope) Aluminium-Matrix Faserverbundmaterial und (orthotropes) Edelstahl-Schweißgut. Schließ-
lich wird die Methode auf (orthotropes) Holz (genauer Fichte) angewandt, durch Messung von vier
Normalsteifigkeiten und auf Basis einer durch Längs-Querdehungszahlen definierten fichtenspezifischen
universellen Konstanten sowie vernünftiger Abschätzungen für den radialen Elastizitätsmodul. Die
sich daraus ergebenden Querdehnungszahlen passen gut mit solchen aus quasistatischen Messungen
an Fichte überein.

In porösen Materialien, insbesondere in hochporösen, kann die Qualität der quasistatischen Steifigkeits-

bestimmung durch Auftreten lokaler Inelastizitäten stark beeinträchtigt werden. Im Gegensatz dazu

erzeugen die sich in einem solchen Material fortpflanzenden Ultraschallwellen sehr kleine Spannungen

und Verzerrungen (und auch Verzerrungsraten, die im quasistatischen Bereich liegen). Daher können

die elastischen Eigenschaften solcher Materialien zuverlässig mittels Ultraschall bestimmt werden. Auf

diese Weise charakterisierten wir die Mehrskalen-Elastizität poröser Biomaterialien (Publikation 3)

und poröser Titanproben für biomedizinische Anwendungen (Publikation 4). Mittels Ultraschall be-

stimmte elastische Eigenschaften halfen uns schließlich, die Mikromechanik von Knochenersatzmaterial



aus bioresorbierbaren porösen CEL2 Glas-Keramiken zu verstehen (Publikation 5). Interessante In-

formationen zu verschiedenen Aspekten der Elastizitätsbestimmung mittels Ultraschall sind in den

Anhängen A – H zusammengefasst.
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Introduction

The term ultrasound denominates waves of certain frequency. The second part of the word
refers to the type of waves. Sound waves propagate in solid, liquid and gaseous media. The
word ultra refers to the frequency range of this sound waves. Human sensitivity of eyes and
ears are used as reference for denominating certain ranges. Light waves with wavelength below
and above the visible range of light are called infrared and ultraviolet, respectively. Analog,
sound waves below and above the hearable range of sound are called infrasonic (< 10 Hz)
and ultrasonic (> 20 kHz), respectively. Ultrasound is classified according to its frequency as
either (a) low frequency ultrasound: 0.02 – 0.5 MHz, (b) conventional or industrial ultrasound:
0.5 – 100 MHz, or (c) high frequency ultrasound: > 100 MHz. Ultrasonic frequencies applied
in this work range from 50 kHz to 20 MHz.

Waves are an accumulation of ‘particle’ motions and these displacement of particles causes (very
small) stresses in the propagation medium. Thus, sound waves are also called stress waves if
they propagate in solid media. The stresses originated by an ultrasonic wave are so small that a
linear relationship between the strains and stresses (linear material law) can be assumed. This
implies that elastic waves are propagated.

As in the understanding of continuum micromechanics a ‘particle’ can be understood as a
material volume, also called the representative volume element (RVE). In the case of elastic
waves, the corresponding strain rate related to these material volumes is sufficiently low, as
to be considered as quasi-static and the resulting stresses are small enough, such that linear
elasticity is valid. Under these conditions, relationships between the velocity of ultrasonic waves
(i.e. plane elastic stress waves) and the elastic stiffness of the material can be derived.

The wavelength, i.e. the distance of two particles at the same position or moving state, for
elastic waves must be much larger than the atom or molecule distance. The frequency of a
wave gives a value of how often a particle is in the same position within a second. The material
sound velocity, wave velocity, or phase velocity is a measure of the velocity of a certain state
(phase) of a particle. Elastic waves exhibit a wave velocity (order of magnitude [km/s]) that is
much larger than the particle velocity (order of magnitude [mm/s]), as oppose to shock waves,
where both are approximately equal.

Ultrasonic waves can freely propagate in solids and liquids and are reflected at boundaries of
internal flaws or change of medium. Propagation distances in air or gases are very limited
due to the high attenuation of ultrasound in such media. Ultrasound can be focused and is
suitable for real-time processing. One of the most important properties of ultrasound is, that
it is non-destructive to the propagation medium. Therefore, ultrasonic waves are harmless to
the human body.

Usually, relationships between wave velocities and stiffnesses are derived for an ideal medium,
i.e. an elastic, isotropic and single-phase material. The study of deformation of real media,
i.e. an anelastic, anisotropic and multi-phase materials, under applied external stresses, e.g.
waves, is called rheology. Here, we consider anisotropy of materials and two phase materials.
Despite the fact that the theoretical knowledge of wave propagation in anisotropic media has
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been developed for several decades, there are still uncertainties about the interpredation of mea-
surements performed in such materials. Ultrasonic wave pulses in solids can be characterized
by different velocities. Phase velocity, energy velocity, group velocity, and envelope velocity
may all be different and may not point in propagation direction of the wave. In anisotropic
elastic materials the wave propagation direction (wave vector; direction of phase velocity) and
the direction of energy propagation (ray direction; direction of group velocity) do in general not
coincide. Here, the focuses is on the difference of phase and group velocity vectors in anisotropic
media.

This work deals with the measurement of velocities of ultrasound pulses and the experimental
and theoretical considerations necessary for establishing these measurements as an experimen-
tal method for material characterization in engineering material science. Even though using
ultrasonic waves for measuring elasticity tensor components is not a new method for quanti-
tative material characterization, it was rarely used in structural engineering for this purpose.
Mostly, ultrasonic waves were usually used for qualitative characterizations, such as position
determination of faults in metals and welds or of knots in wood. Here, the focus is on the appli-
cation of this method for determination of stiffness properties, in particular for materials with
a lower symmetry class and heterogeneous microstructure. Development of ultrasonic stiffness
measurements was pushed forward in crystal physics and for the investigation of composites.
These have been also the main application areas of this method.

Ultrasonic contact pulse-transmission is a well-established method to determine elastic stiffness
of materials and the broad application range has proven the effectiveness of determining elastic
stiffness constants when quasi-static methods cannot be applied or do not yield the demanded
accuracy of measurements. Problems related with conventional quasi-static mechanical tests
may occur with small specimen sizes, with the need to determine several elastic constants of an
anisotropic material, or when the applied forces induce mechanical damage in the samples. Ap-
plication of ultrasound is especially of interest for porous materials, because mechanical testing
may be strongly biased by inelastic deformations within the microstructure of such materials.
The relative simple pulse methods (pulse-transmission method, pulse-echo method) are rough
in the sense that the beginning and the end of the pulse are not well characterized, but with im-
provements (e.g. pulse-superposition method, sing around method) relative variations of 10−7

can be measured (Authier and Zarembowitch 2006). For usual accuracies generally accepted
in the determination of elastic stiffnesses of engineering materials, the pulse-transmission pro-
vides very accurate and relatively easy realizable and deployable measurements. The limits
of application ranges of ultrasonic contact pulse-transmission are not well quantified. Little
work has been done on experimentally investigating transition of (pulse) wave propagation to
certain theoretically well-known special cases (extensional wave). In transition regions of wave
propagation modes, known relations between ultrasonic wave velocities and elastic stiffnesses
for ‘regular’ wave propagation are not valid.

The growing use of (anisotropic) materials in complex structural applications, resulting in
multiaxial straining of the material, increases the necessity for knowing the full elasticity tensor.
Measuring the sound velocity of an induced ultrasonic waves and applying the physical laws
for acoustic wave propagation in solids yields the components of the elastic stiffness tensor of
this material as a function of its mass density. Depending on the polarization and propagation
direction of the stress wave certain stiffness components are measured. A sufficient number of
experiments with different polarization and propagation directions allows for the classification
of the elastic material symmetry and for identification of all components of the stiffness tensor
and, thus, of all independent engineering elastic constants. Even for materials with the lowest
elastic symmetry, namely triclinc materials with 21 independent elastic constants, all elasticity
stiffness components can be determined.

The ability to characterize also materials of low symmetry classes is among the most appealing
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advantages of ultrasonic tests. Quasi-static (destructive) methods for material characterization
at the macroscale, as well as nanoindentation for measurements of material properties at the
nanoscale, allow only for determination of a limited number of elastic constants on a single
specimen. Mostly, it is necessary to conduct experiments on several differently prepared speci-
men when using these methods, which are particularly suited for isotropic materials. However,
for materials with lower elastic symmetry, e.g. orthotropic materials like bone or wood, with
more than two independent elasticity constants, they may fail to measure the full set of elastic
stiffness constants.

Furthermore, these methods are restricted to determination of material properties of a certain
lengthscale. Ultrasonic tests, on the contrary, allow to determine material characteristics over
a range of different lengthscales. By changing the frequency of the propagating wave the
corresponding wavelength changes according to the quotient of the ultrasonic sound velocity
and the frequency. Higher frequencies and smaller wavelength thus yield material properties
at a lower material length scale. Thus, the ultrasonic method covers all length scales in a
range starting from the centimeter down to the nanometer. Another benefit of the ultrasonic
method is its nondestructive nature. The identification of temperature and moisture content
dependency of mechanical properties can be accomplished with all the aforementioned methods.
The ultrasonic method can be applied to solid, viscous, and fluid materials, e.g. wood, bone,
plastics, composite materials, ice, and bitumen.

Preceding a short outline and the publications of this work, the mathematical framework for
describing propagation of ultrasound in solids — space-independent oscillation of ‘particles’,
and the propagation of this movements through space, i.e. waves — and the connection between
ultrasonic waves and material stiffness is elucitaded in the following two sections.

Oscillation

Oscillation, the motion of a single particle in space, is characterized solely by a kinematic nature.
Oscillation can be started by various means (force or displacement), but no matter how it is
started, it always exhibits the same oscillation frequency (Hirose 2009). Waves always evolve
from oscillation of particles (mechanical waves or sound waves) or charges (electromagnetic
waves). This leads to mechanic considerations in terms of interaction of several particles with
each other (see following Section on one-dimensional wave propagation).

Oscillation (of a single particle) can be modeled by an ideal, i.e. frictionless and lossless, mass-
spring system (see Figure 1). Such a model comprises the basic components of mechanical
oscillation (and thus mechanical waves), namely inertia (mass m [kg]) and elasticity (spring
constant c [N/m]). Writing the equation of motion for a ‘particle’ or a ‘material volume’ of
mass m yields

m
dv

dt
= −cu, where v =

du

dt
(1)

is the velocity [m/s], u(t) [m] is the displacement of the mass from the equilibrium position and
t [s] is an arbitrary time. The right term of the first equation in (1) is the restoring force of the
spring acting on the mass. Rewriting Eqs. (1) yields the oscillation differential equation

d2u(t)

dt2
+

c

m
u(t) = 0 or ü(t) + ω2u(t) = 0 (2)

with the oscillation angular frequency

ω =

√
c

m
, (3)
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[ω] =

√
[
N/m

kg

]

=

√
[
kg · m/s2

kg · m

]

=

√
[

1

s2

]

=

[
rad

s

]

. (4)

The homogeneous second order differential equation (2) has the general oscillatory solution

u(t) = A sin ωt + B cos ωt. (5)

From this solution one can see, that an oscillation must always be sinusoidal in nature (Hirose
2009), as plotting the displacement versus the time yields a sinus curve. This is only the case
if the driving force is proportional to the displacement, i.e. for linear elastic deformations.
Because the unit [rad] corresponds to 2π one can introduce the relationship

ω = 2 π f , (6)

where the frequency of sinusoidal perturbation f has units of [Hz = 1/s], yielding again
[ω] = [rad/s] (see Figure 1 for the sinusoidal oscillation curve and the graphical interpreta-
tion of the angular frequency ω).

Figure 1: Oscillation of a single mass with respect to time t.

The oscillation differential equation (2) can also be derived from the condition of energy con-
servation, which states that the sum of the potential energy P and kinetic energy K, the total
energy E [Nm = J], must be constant, i.e.

E = P + K =
1

2
c u2 +

1

2
m v2 = const. (7)

Differentiation of (7) with respect to time and using the definition of the velocity (1)2 yields
Eq. (2). The progression of the energy with respect to time can be elucidated by analyzing the
oscillation due to an initial displacement u(t = 0) = u0. The total energy E at t = 0 is the
potential energy stored in the spring, i.e.

E0 =
1

2
c u2

0. (8)

From (5) one finds A = 0 and B = u0 and thus unique solutions for displacement and velocity
are given as

u(t) = u0 cos ωt and v(t) = u̇(t) = −ωu0 sin ωt . (9)

Hence the kinetic energy and potential energy with respect to time are

K =
1

2
mv(t)2 =

1

2
cu2

0 sin2 ωt and P =
1

2
cu(t)2 =

1

2
cu2

0 cos2 ωt , (10)
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respectively. The sum yields the (constant) total energy E, which is, as expected, equal to the
initial energy (8). One can observe, that P is maximum, when K is zero, and vice versa, i.e.
the kinetic and potential energy are mutually exclusive.

Waves

A wave is a phenomenon whereby energy (or a displacement, a signal, or information), but not
mass, is transferred through a medium. The source of a wave are the oscillations of particles of
the medium in which the wave travels. Through radiation of waves, the oscillators lose energy
to waves which carry this energy through space. What is moving in a wave is the state (or
phase), e.g. the state of compaction and rarefaction in an elastic wave. The particles themselves
remain at the same position and oscillate only about their equilibrium state (Krautkrämer and
Krautkrämer 1986). In contrast to oscillations, which only depend on time, waves propagate
in space. Thus spatial coordinates in addition to time enter as independent variables the
mathematical formulation for wave motion.

A spatial sinusoidal wave (see Figure 2) can be written as

u(x) = A sin

(
2 π

λ
x

)

= A sin(k x), (11)

where x [m] is the spatial coordinate, A [m] is the size of the transported deformation or
wave amplitude and λ [m] the spatial period, the so-called wavelength. We will see later that
the wavelength λ depends on the frequency f . The wavenumber k [rad/m] is related to the
wavelength λ by

k =
2π

λ
(12)

and is a measure for the number of waves per unit distance for a given wavelength. Note that
this wave is only depending on the spatial coordinate x and not on time t (see also Figure 2).
Evaluation of Eq. (11) for different values of the spatial coordinate x = {λ, λ/4, λ/2, 3/4 λ}
yields the corresponding displacements u = A {0, 1, 0, −1} (see also Figure 2).

Figure 2: Spatial sinusoidal wave with respect to spatial coordinate x.

A (sinusoidal) wave is periodic in both time and spatial coordinate. Eq. (11) and Figure 2
can also be regarded as a snapshot of a sinusoidal wave at time t = 0. At another snapshot
after t seconds in which the wave propagated to the right, it will have moved according to its
propagation velocity vp and thus will be shifted by a distance of vp t. Infinite snapshots would
create a moving wave motion as a function of time t. A snapshot can be understood as display
of an oscilloscope that is used to observe the wave.

Parallel shift a of a function f(x) to the right, i.e. wave motion in a positive x direction is
obtained by f(x − a), whereas a ‘+’ sign yields motion in the negative x direction. Therefore
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the mathematical form of a sinusoidal wave at an arbitrary time t is given by

u(x, t) = A sin

(
2π

λ
(x − vp t)

)

= A sin(k x − ω t). (13)

The coefficient of t must be equal to ω since time dependence is periodic with the frequency ω.
This yields the relationship

vp = λ · f or vp =
ω

k
, (14)

where vp [m/s] is the rate of propagation of a point of constant phase, the so-called wave
or phase velocity of the wave. The fact that the wavelength is inversely proportional to the
frequency and their product is constant and equal to the wave velocity was first mentioned by
Newton (1687) in his Principia (Carcione 2001). Eq. (14) relates Figure 1 and 2, and Eqs. (6)
and (12).

The mathematical description of oscillation, u(t) [see Eq. (5)], satisfied the oscillation differen-
tial equation (2) with derivatives only with respect to t, as this is the only independent variable.
A similar equation must exist for the mathematical description of a wave, u(x, t) [see Eq. (13)],
with second order partial derivatives of t and x. Comparing

∂2u(x, t)

∂x2
= u′′(x, t) = −k2 A sin(k x − ω t) (15)

and
∂2u(x, t)

∂t2
= ü(x, t) = −ω2 A sin(k x − ω t) (16)

and using (14), one can see that Eq. (13) satisfies the equation

ü(x, t) = v2
p u′′(x, t). (17)

This wave differential equation is satisfied for all arbitrary functional wave shapes in the form

u(x, t) = u(x ∓ vp t). (18)

This becomes clear by substituting X = x ∓ vp t, with X ′ = 1 and Ẋ = ∓vp, which yields

u′′(x, t) =
d2u(X)

dX2
and ü(x, t) = v2

p

d2u(X)

dX2
(19)

which again satisfy Eq. (17). Therefore in contrast to oscillations waves do not have to be
sinusoidal or harmonic.

A single wave can not transmit a signal or information. To transfer a signal with a wave, it as to
be turned on and off in some pattern, i.e. wave pulses have to be generated. Any arbitrary wave
shape can be constructed by superposing several harmonic waves (Fourier analysis). Thus, also
a (wave) pulse can be generated by several sinusoidal waves. Three examples for superposition
of sinusoidal waves with equal amplitudes are given below. In all of them, use of the relationship

sin x + sin y = 2 sin
x + y

2
cos

x − y

2
(20)

is made.

1. Two waves with equal wavelength, and therefore equal frequency, propagating in opposite
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directions create a standing wave,

A/2 [sin(k x − ω t) + sin(k x + ω t)] = A sin kx cos ω t . (21)

2. Superposition of two waves with equal wavelength but phase difference Φ [rad],

A [sin(k x − ω t) + sin(k x − ω t + Φ)] = 2A sin(k x − ω t + Φ/2) cos(Φ/2) (22)

can cause constructive (doubled amplitude) or destructive (zero amplitude) interference,
if the phase difference is an even or odd factor of π, respectively.

3. Superposition of two waves with slightly different wavelengths (frequencies) when mea-
sured as a function of time only (observing position arbitrary, e.g. x = 0) yields

−A [sin(ω t) + sin((ω + ∆ω) t)] = −2A sin[(ω + ∆ω/2) t] cos(∆ω/2 t) . (23)

For small ∆ω this equation describes a harmonic wave sin(ω t) confined between slowly
varying envelopes ±2A cos(∆ωt/2). ∆ω is called the beat frequency, because the ampli-
tude is modulated at this frequency.

Observing the last example, Eq. (23), in the time and space domain and considering that, for
small frequency differences ∆k ≪ k and ∆ω ≪ ω, one can reduced as follows

A sin(k x − ω t) + A sin[(k + ∆k) x − (ω + ∆ω) t)]

= 2A sin[(k + ∆k/2) x − (ω + ∆ω/2) t] cos(∆k/2 x − ∆ω/2 t) (24)

≈ 2A sin(kx − ωt) cos(∆k/2 x − ∆ω/2 t).

This equation specify spatial and temporal beats. Again, the last function in (24) describes
a rapidly oscillating sinusoidal function propagating at the phase velocity vp = ω/k. These
wavelets are modulated by the envelopes ± cos(∆k/2 x − ∆ω/2 t). The modulation pattern
propagates at a speed such that the argument of the cosine function stays at a constant value,
∆k/2 x − ∆ω/2 t = const. Differentiation with respect to the time yields the envelope speed

venv =
dx

dt
=

∆ω

∆k
. (25)

In the limit ∆k → 0, ∆ω → 0, the envelope speed defines the group velocity

vg =
dω

dk
. (26)

The group velocity is the speed of transmission of information and the speed of energy in a
wave packet. Phase velocity [see Eq. (14)] and group velocity [see Eq. (26)] define an important
property of waves:

• Nondispersive waves are characterized by vp = vg, i.e.

ω

k
=

dω

dk
= const. ⇒ ω = vp k = vg k = v k. (27)

Such waves propagate without changing their wave form. The wave equation (17) is only
valid for nondispersive waves.
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• For dispersive waves the wave or phase velocity vp depends on ω or k and thus vp 6= vg,
i.e.

ω

k
6= dω

dk
⇒ ω = ω(k). (28)

The last equation in (28) is called the dispersion relation, which can be found for any
given wave differential equation. Dispersive waves are deformed and become spatially
spread (i.e. dispersed) as they propagate. A wave pulse or wave packet will hence not
maintain its shape during propagation.

One-dimensional mechanical waves and their relation to the (elastic) material properties of the
propagation media can be modeled by a mass-spring transmission line. Such a line consists of
many mass-spring units connected in series. Only the mass motion along the transmission line
is used in the following derivation. This coincides with the direction of wave propagation, i.e.
with longitudinal waves. Nevertheless, the results are valid for all mechanical waves.

Each unit consists of a mass m [kg] and a spring with spring constant c [N/m] and an equilibrium
length ∆x [m]. A wave traveling through the transmission line will cause the masses to move
from their equilibrium positions. These displacements u(x, t) depend on the position x of the
mass in the line, and on the time t at which the line is observed. To write the equation of
motion for the mass at position x, the spring forces to the left Fl and to the right Fr have to
be considered. From position changes of masses at x and x±∆x the lengths of the springs and
thus the forces follow to

Fr = c [u(x + ∆x, t) − u(x, t)] and Fl = c [u(x, t) − u(x − ∆x, t)] . (29)

With the net force F acting on the mass at x, F = Fr − Fl, the equation of motion reads

m
∂u(x, t)

∂t
= c [u(x + ∆x, t) + u(x − ∆x, t) − 2 u(x, t)] . (30)

The discrete transmission line can be considered continuous if the distance between the masses
∆x is small compared to the wavelength λ. Using the Taylor expansion for the displacements

u(x ± ∆x, t) = u(x, t) ± ∆x
∂u

∂x
+

1

2
(∆x)2∂2u

∂x2
+ . . . , (31)

Eq. (30) becomes the same form as wave equation (17)

m ü(x, t) = c (∆x)2 u′′(x, t) if ∆x ≪ λ. (32)

Therefore, the wave velocity can be identified to

v2
p =

c (∆x)2

m
=

c ∆x

m/∆x
=

C

ρl

, (33)

where C [N] is the elastic modulus of the spring (a material constant) and ρl [kg/m] is the linear
mass density. The square root of the elastic modulus divided by the mass density is the general
form of wave velocity of all mechanical waves. Therefore, a wave travels faster the greater the
resistance of the medium to the deformation is.

The velocity of the mass can also be written as the differential of the displacement v(x, t) =
∂u(x, t)/∂t = u̇ and thus the kinetic energy of the mass can be computed to

K =
1

2
m u̇2. (34)
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Neglecting quadratic and higher order terms in the Taylor expansion of the displacement u(x+
∆x, t) [see Eq. (31)] the potential energy in the spring to the right of the mass is

P =
1

2
c [u(x + ∆x, t) − u(x, t)]2 ≈ 1

2
c (∆x)2 (u′)2. (35)

By definition u(x, t) describes a wave motion and thus can be an arbitrary function in the
form u(X) = u(x − vp t). Using the first derivation equivalent of the Eqs. (19) the kinetic and
potential energy follow to

K =
1

2
m v2

p

(
∂u(X)

∂X

)2

and P ≈ 1

2
c (∆x)2

(
∂u(X)

∂X

)2

, (36)

respectively. Recalling Eq. (33) it becomes clear that — in contrast to oscillations — for
mechanical waves with arbitrary wave shapes, the kinetic energy and the potential energy are
identical everywhere, at anytime, i.e. they are in phase. This is not true for standing waves,
which are more similar to oscillations as for both the kinetic and potential energy are mutually
exclusive.

The total energy E [J] and the total energy density e [J/m] in a mass-spring unit thus follow
from E = 2K to

E = m v2
p

(
∂u(X)

∂X

)2

and e = ρl v
2
p

(
∂u(X)

∂X

)2

, (37)

respectively. Substituting the linear mass density with the volume mass density ρ [kg/m3]
yields the intensity of a three-dimensional wave in [W/m2].

Assuming a sinusoidal wave form according to Eq. (13) yields

e = ρl v
2
p k2 A2 cos2(kx − ωt). (38)

The spatial average of the cos function at a snapshot at t = 0 is 1/2. Using (14), the average
energy density 〈e〉 [J/m] of the wave becomes

〈e〉 = ρl ω
2 A2. (39)

Since in nondispersive waves (vp = vg) energy travels at the phase velocity, the energy carried
by a wave per time, i.e. the rate of energy transfer (RMS power) follows to

RMS =
1

2
ρl vp ω2 A2. (40)

Substituting again the linear with the volume mass density yields the rate of energy transfer
per area [J/s/m2 = W/m2], i.e. the intensity.

Outline

Several different types of waves can propagate in solids (see Table 1). Here we focus on elastic
wave propagation in (quasi-)infinite media and in bar-like media.

The theory applied to describe the relation between elastic wave propagation and material
stiffness is based on the concept of a plane elastic wave propagating in an infinite medium
(this wave is called bulk wave). While the assumption of a plane wave is justified for most
experimental situations, this is not true for the assumption of an infinite medium, which does
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Table 1: Different types of stress waves in solids related to material behavior and geometry.

stress-strain function type of wave

m
a
te

ri
a
l linear elastic

rate-dependent visco-elastic
concarve plastic
convex shock

infinte spacial dimensions type of elastic wave

g
eo

m
et

ry

3 longitudinal, transversal
2, 1 semi-infinite longitudinal, transversal, surface

2 (plate) symmetrical, antisymmetrical plate
1 (bar) extensional, torsional, flexural

not hold for specimens of all sizes and forms. Determination of stiffness tensor components,
i.e. measurement of ultrasonic velocities is usually performed on relatively small specimens,
e.g. single crystals of solids and samples of biomaterials and biological materials. Due to the
availability of only small samples, in combination with the need of using low frequencies (i.e.
large wavelength compared to the sample size) for porous materials, the boundaries often have
considerable effect on the characteristics of wave propagation. Ideally the side boundaries have
no or little influence and the physics of propagation can be considered to be as in an unbounded
infinite medium, where longitudinal and transversal waves propagate independenly.

Here, we want to answer the question: ‘What are the necessary parameters (and their ranges
for bulk wave propagation) to evaluate the type of wave propagation?’.

Voids or solid inclusions embedded in an homogeneous medium influence elastic wave prop-
agation dependending on their size, geometry, and elastic stiffness properties. Scattering of
ultrasonic waves, i.e. reflection and refraction of the wave at inclusion boundaries, is, in ad-
dition to attenuation due to direct absorbtion through internal friction by the material itself,
the main source for energy loss and thus amplitude reduction. Moreover, wave propagation
in an inhomogeneous medium leads to frequency dependency of attenuation and velocity, i.e.
such heterogeneous materials are dispersive. In ultrasonic stiffness determination wave velocity
measurements are of importance and thus influences on the amplitude (i.e. influence of attenu-
ation) are only so far of interest as they reduce the signal to noise ratio and thus the confidence
of the measured velocities.

In continuum (micro)mechanics details of a (macroscopically or statistically homogeneous)
microstructure are not considered directly, as this would be specimen-specific, tantamount to
extensive computational efforts (for complex microstructures), and it would be difficult to elicit
general information from it (Drugan and Willis 1996). Instead, material volumes are defined,
such that the respective material can be accurately considered homogeneous with spatially
constant, ‘average’ or ‘effective’ (elastic) properties. Such a material volume (representative
volume element, RVE) must be considerably larger than the inhomogeneities (inclusions) d
inside the RVE, and the RVE must be subjected to homogeneous stress and strain states.
Hence, the characteristic length of the RVE, ℓRV E, needs to be much smaller than the scale
of the characteristic loading of the medium L. In ultrasonic measurements the wavelength
λ of the propagating wave, dependent on the frequency of the wave, defines the scale of the
characteristic loading of the structure built up by the considered material, i.e. L = λ, and thus
d ≪ ℓRV E ≪ λ. Hence, waves ‘detect’ materials at different length scales.
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Here, we want to answer the question: ‘What are the necessary parameters (and their ranges
for effective wave propagation) to evaluate the material volume which is measured by a wave?’.

These two major problems — encountered when using ultrasonic pulse propagation for elas-
tic stiffness determination — namely (a) the bulk wave propagation for finite geometries of
specimens, including the transition to extensional wave propagation (see Figure 3) and (b) the
principle of separation of scales for bulk wave propagation in multi-phase (porous) materials
related to the wavelength and the definition of material properties (see Figure 4) will be covered
in this work.
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Figure 3: Wave propagation — bulk and extensional wave.
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Figure 4: Wave propagation — separation of scales of inhomogeneity and wavelength.

This work consists of five publications in peer-reviewed journals and eight appendices cov-
ering unpublished results. The following five publications deal with (i) the ultrasonic contact
pulse-transmission technique and its application range in terms of wavelength, specimen dimen-
sions, and microstructure [Publication 1 — Kohlhauser and Hellmich (2009b)], (ii) with the
determination of off-diagonal stiffness components (Poisson’s ratios) of anisotropic materials
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with a combined ultrasonic-mechanical technique [Publication 2 — Kohlhauser and Hellmich
(2009a)], (iii) with the investigation of different porous materials across different ultrasonic fre-
quencies [Publication 3 — Kohlhauser et al. (2008)], and with the application of the ultrasonic
pulse-transmission technique in combination with micromechanical modelling to (iv) metallic
[Publication 4 — Müllner et al. (2007)] and (v) bioresorbable glass ceramic [Publication 5 —
Malasoma et al. (2008)] scaffolds for biomedical applications. Publications 1 and 2 were at
the time of submission of this work in the review process. The publications are followed by
eight appendices. A literature review on wave propagation in bars and on wave scattering in
multi-phase media (Appendix A) is followed by a dimensional analysis of wave propagation in
two-phase materials (Appendix B), a detailed solution of the Kelvin-Christoffel equation (Ap-
pendix C), the matrix noation of forth order elasticity tensors (Appendix D), and the single
crystal and polycrystal material properties of aluminum (Appendix E). An alternative rep-
resentation of sample-specific wave propagation results given in Publication 1 (Appendix F),
graphical representation of Poisson’s ratio ranges of different materials investigated in Publica-
tion 2 (Appendix G), and group velocities and energy deviation angles in different anisotropic
materials (Appendix H) are covered in the last three appendices.



Publication1
Ultrasonic contact pulse transmission
for elastic wave velocity and stiffness
determination: Influence of specimen
geometry and porosity (Kohlhauser
and Hellmich 2009b)

Authored by Christoph Kohlhauser and Christian Hellmich
Submitted to Ultrasonics

Isotropic solid and transversal isotropic porous aluminum specimens with shapes ranging from
plates, via cubes, to bars, were transmitted by ultrasonic waves of frequencies between 50 kHz
and 20 MHz. As for the solid specimens, the longitudinal wave propagation type depends the
ratios ‘cross-sectional-length-over-height’ and the ‘height-over-wavelength’. Bar-shaped speci-
mens with a slenderness ratio larger than ten, excited by low-frequency signals, transmit (1D)
extensional or bar waves, whereby the specimen needs to be the more slender the higher the
signal frequency to be transmitted as extensional wave. Beyond a quite narrow extensional-
bulk-wave transition regime, less slender bar-type specimens excited by higher frequency sig-
nals transmit (3D) bulk waves, whereby specimens need to be the less slender the lower the
frequency to be transmitted as bulk waves. All non-slender bar-, cube-, and plate-shaped spec-
imens are transmitted by bulk waves; however, thin plates exhibit large measurement errors.
Transversal (or shear) wave propagation is not affected by specimen shape, except for mea-
surement errors. As for porous non-slender specimens, the wave propagation type depends on
the ‘pore-diameter-over-wavelength’ ratio and on the porosity. Cube-shaped porous specimens
excited by low frequency signals transmit bulk waves relating to the effective porous medium
(long-wavelength-limit), whereby the specimen needs to be the more porous, the higher the
frequency to be transmitted as effective wave ‘feeling’ the porous medium. Beyond a long-
to-short wavelength transition period, which is increasing with increasing porosity and with
decreasing direction-dependent wave propagation velocity, cube-shaped porous specimens ex-
cited by higher frequencies transmit bulk waves relating to the solid aluminum matrix (short-
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wavelength-limit). Thereby, specimens need to be the less porous, the lower the frequencies to
be transmitted as waves ‘feeling’ the solid matrix. Long-limit wave velocities and stiffnesses in
transversal isotropic porous media are well predicted by the Mori-Tanaka, Hashin-Rosen, and
unit cell micromechanical methods.

1.1 Introduction

According to Kolsky (1964) ultrasonics relates to the wave propagation of high frequency pulses
of sinusoidal oscillations with very small amplitudes. Generally, frequencies above the human
audibility limit (≈ 20 kHz) are considered ultrasonic.

The ultrasonic (contact) pulse technique was developed during the second World War by Fire-
stone and Frederick (1946) for the detection of flaws in metals (Lazarus 1949). Elasticity de-
termination through ultrasonics has been applied to a wide range of materials, including single
crystals (Huntington 1947; Lazarus 1949), polycrystalline materials (Hearmon 1946; Markham
1962), polymers (Ivey et al. 1949; Hartmann and Jarzynski 1974), metals and metal alloys
(Markham 1957; Ledbetter et al. 1980), composite materials (Markham 1970; Dean and Turner
1973; Kriz and Stinchcomb 1979), geomaterials (Helbig 1994; Carcione 2001; Karki et al. 2001),
biological materials such as bone (Ashman et al. 1984) and wood (Bucur and Archer 1984),
as well as biomaterials such as porous titanium and glass-ceramic scaffolds (Kohlhauser et al.
2008).

Different types of waves can propagate in solid materials. If no energy is dissipated upon
wave propagation, the corresponding wave is called elastic (Kolsky 1964). Such waves typically
occur for small wave amplitudes (and correspondingly small strains in the material) and high
frequencies. In contrast, larger amplitudes may lead to irrecoverable (plastic) strains in the
material, the propagation of which is related to plastic waves — in this case, energy is dissipated
upon wave propagation (Kolsky 1964). Another type of dissipative wave propagation relates
to viscoelasticity, where stresses lead not only to instantaneous, but also to delayed strains (in
a material said to have ‘memory’). Viscoelastic waves typically occur at low frequencies when
dissipative ‘relaxation’ processes within the material are allowed to result in an effectively
lower stiffness behavior of the material (Carcione 2001). Finally, very large strains travel
faster than small strains, and related waves are called shock waves (Kolsky 1964). However,
the remainder of this paper will be devoted to small strain-related acoustic pulses at high
(ultrasonic) frequencies, provoking the propagation of elastic waves. [More precisely, we will
deal with elastic deformations (‘small strains’) where the atomic displacements are small with
respect to the interatomic spacing. Hence, so-called higher-order elastic constants (Hiki 1981;
Holt and Ford 1967; Thomas 1968), introduced for quantification of elastic wave propagation
involving large strains — with atomic displacements being in the order of the atomic spacing
— are beyond the scope of the manuscript.]

Ultrasonic wave propagation of elastic waves is associated with (small) temperature rises in
the compressive regions and (small) temperature falls in the tensile regions of the excited solid.
Given the short characteristic times of these stress fluctuations, related temperature differences
cannot be equilibrated through heat conduction. Therefore, ultrasonic wave propagation is,
strictly speaking, associated with adiabatic (also called entropic) elasticity. Accordingly, only
at zero absolute temperature, adiabatic and isothermal properties (the latter measured under
conditions where temperature differences are equilibrated) are identical. However (in partic-
ular in the small strain regime), the difference between adiabatic and isothermal elasticity is
negligible, i.e. typically below 1% (Authier and Zarembowitch 2006). Therefore, in various
situations, ultrasonic tests deliver practically the same results as quasi-static tests (Ledbetter
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et al. 1980). However, the latter are often challenged by the occurrence of inelastic strains, so
that ultrasonic tests are an expressedly suitable tool for arriving at elastic properties of solids.

Still, it is crucial to know the type of elastic wave travelling through the solid, when determining
elastic properties ultrasonically. The following wave types are standardly distinguished:

• Bulk waves are travelling through infinite elastic media (Kolsky 1964). Thereby, displace-
ments of material points and wave propagation velocities do generally not point into the
same direction. In the special case where they do so, longitudinal (also called dilatational,
irrotational, compressional, P- or L-) waves are encountered. In case the material point
displacement is oriented perpendicular to the wave propagation velocity, transversal (also
called distortional, equivoluminal, shear, S- or T-) waves are encountered (Love 1906;
Kolsky 1953; Kino 1987; Auld 1990; Carcione 2001). In situations tending towards one
or the other of the aforementioned special cases, quasi-longitudinal or quasi-transversal
waves are encountered.

• Rayleigh surface waves may propagate along the free surface of a semi-infinite solid, or
also through an infinite plate (if the wavelength is much smaller than the plate thickness).

• If the wavelength is much larger than the thickness, a symmetrical (longitudinal) and an
antisymmetrical (flexural) Lamb wave can propagate in an infinite plate (Kolsky 1964).

• In cylindrical infinite bars extensional (bar), torsional and flexural (bending) waves may
propagate in infinitely different modes with velocities depending on the wavelength (Thurston
1978).

• Guided waves appear in bounded media, i.e. bars and plates of finite dimensions, and
resonate between the boundaries of their cross-section and propagate in the longitudinal
direction (Redwood 1963).

Based on earlier work of Christoffel (1877b,a), Love (1906) was the first to mathematically
capture the propagation of elastic waves in infinite three dimensional solids, be they isotropic
or anisotropic, as will be shortly reviewed in Section 1.2. This theory of elastic (‘bulk’) wave
propagation in infinite solids still holds for the pulse propagation of waves through finite bars —
provided the wavelength is small compared to the characteristic cross-sectional length of the bar.
On the other hand, for wavelengths which are very large as compared to the bar’s cross-sectional
length, appropriate wave velocities (of so-called ‘extensional’ or ‘bar’ waves, being always slower
than the ‘bulk’ waves) follow from combining the constitutive theory of longitudinally deformed
bars with Newton’s second law (also reviewed in more detail in Section 1.2). The transition
between these two limit cases have kept the scientific community busy for decades. Various
experimental and theoretical studies were inspired by the analytical solutions of Pochhammer
(1876) and Chree (1889) for (3D) wave propagation in (infinite) cylindrical rods, based on
ansatz functions for harmonic waves fulfilling the (zero) stress boundary conditions at the rod
surface. Pochhammer’s solution predicts that decreasing wavelengths of such harmonic waves
would lead to decreasing wave velocities, with the Rayleigh (surface) wave as the limit case for
very small wavelenghts. Based on standing wave techniques (Morse 1948, 1950) the transition
from extensional to Rayleigh waves could be experimentally reproduced. However, a certain
portion of energy is always transported in form of a bulk (‘precursor’) wave emanating from
a ‘point’ source (Northwood 1947; Kolsky 1964). Accordingly, this energy does not travel
slower, but faster than the extensional wave, and reaching the bulk wave speed at very small
wavelengths. While numerous studies (Hueter 1950; McSkimin 1956; Redwood 1959; Thurston
1978; Hayashi et al. 2003, 2006) were devoted to the dispersion (i.e. the frequency dependence)
of waves fulfilling Pochhammer’s boundary conditions, the frequency-dependent transition of
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pulse (‘precursor’-type) signals, from bulk wave propagation to extensional wave propagation
has been quite rarely studied (Tu et al. 1955; Ashman et al. 1984). However, this type of
signals lies at the very foundation for ultrasonic measurements of elasticity properties of solids
by means of the pulse-transmission(-through) technique — in this context, it needs to be known
whether the ultrasonic signal would travel through a specific sample as extensional or bulk wave.
Accordingly, the focus of the present paper is the identification of finite sample shapes which
would be related to one of the two limit cases interesting for ultrasonic elasticity determination:
The extensional wave propagation and the bulk wave propagation.

Both of the aforementioned wave types relate to the long-wavelength-limit, referring to wave-
lengths being considerably larger than the characteristic length of the material volumes [also
called representative volume elements (Zaoui 2002)] building up the medium through which the
waves travel. If the wavelength attains the size of the material volume, the wave starts to ‘feel’
the material microstructure, e.g. they may be scattered at inhomogeneities (e.g. inclusions)
inside the material volume. The transition from the long-wavelength-limit to waves scattered
by microstructural elements has been the topic of various theoretical investigations, be it in the
framework of random homogenization theory (Mason and McSkimin 1948; Huntington 1950;
Berryman 1980; Sabina and Willis 1988; Stanke and Kino 1984; Yang and Mal 1994; Yang 2003;
Wei and Huang 2004) or of periodic homogenization technique (Foldy 1945; Lax 1952; Water-
man and Truell 1961; Bose and Mal 1973, 1974; Datta 1977; Varadan et al. 1978; Murakami
et al. 1979a,b; Willis 1980; Gubernatis and Domany 1984; Ledbetter and Datta 1986; Parnell
and Abrahams 2008). We here do not concentrate so much on this transition, but rather focus
on experimental revelation of two limit cases: The aformentioned long-wavelength-limit (how
large needs a wave to be in order to feel the ‘homogenized medium’ rather than microstructural
details?), and also the ‘short-wavelength-limit’ (how small needs a wave to be to ‘feel’ the mate-
rial components themselves, rather than their microstructural interaction?), which was beyond
the aforementioned theoretical investigations, relating to the question: How short needs a wave
to be in order to find an unscattered path between the microstructural inhomogeneities? Ob-
viously, the answers depend on the type of chosen microstructures. We here choose an extreme
case: Zero-stiffness, cylindrical pore inclusions.

Accordingly, the paper is organized as follows: After recalling some foundations of plane wave
propagation theory (Section 1.2), we present the ultrasonic measurement system used for the
present study (Section 1.3) and the investigated specimens (Section 1.4), together with a pre-
cision check of our measurement system (Section 1.5). On this basis, we study the transition
from bulk to extensional waves (Section 1.6), and from the long-wavelength-limit to the short-
wavelength-limit (Section 1.7), both from a dimensional analysis viewpoint. After discussing
the experimental results from a micromechanics viewpoint (Section 1.8), we conclude the paper
in Section 1.9.

1.2 Wave propagation in 3D and 1D linear elastic solids

— theoretical basics

We focus on wave propagation in continua — where the basic property of a continuum solid is
that its deformations can be described at the basis of representative volume elements (RVEs)
‘labelled’ on the continuum and staying neighbours during deformation (Salençon 2001). The
characteristic lengths ℓ of such RVEs need to be smaller than those of the body made up of
the RVEs or than the excitation lengths of that body [such as wavelengths λ, see Eq. (1.9)] —
then use of differential calculus is admissible; and the RVE-length ℓ needs to be larger than
the microheterogeneities with characterisitc length d within the RVE (e.g. the void diameter
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in Figure 1.4) — then material properties such as stiffness [see Eq. (1.5)] can be introduced.
Mathematically, this is expressed by means of the separation-of-scales requirement (Zaoui 2002),

d ≪ ℓ ≪ λ . (1.1)

In the absence of body forces (Carcione 2001), the (local) conservation law of linear momentum
in such a 3D continuum reads in each material point (‘representative volume element’ — RVE)
as

∇ · σ = ρb , (1.2)

with the nabla operator ∇ reading, in a Cartesian base frame e1, e2, e3, as ∇ = (∂/∂x1 e1,
∂/∂x2 e2, ∂/∂x3 e3), with x = x1 e1 + x2 e2 + x3 e3 as the location vector, with the second-
order symmetric stress tensor σ, with the mass density ρ, and with the acceleration vector b,
measured in a Galilean (i.e. ‘totally remote’) frame (Salençon 2001). b equals to the twofold
temporal derivative of the location-specific displacement vector u(x),

b =
∂2u

∂t2
. (1.3)

In a linear elastic body, the stresses evoke deformations in the form of linearized strains ε (being
a symmetric tensor of second order),

ε = ∇Su =
1

2

(
∇u + ∇Tu

)
, (1.4)

through the so-called generalized Hooke’s law,

σ = C : ε , (1.5)

with the (symmetric) fourth-order elasticity tensor C. Insertion of (1.3) to (1.5) into (1.2)
results in the so-called wave equation,

C : ∇2u = ρ
∂2u

∂t2
. (1.6)

In the following, we shorty recall two solutions of (1.6): (i) a 3D solution in the form of a
plane wave propagating through an infinite 3D elastic medium, (ii) a 1D solution relating to
plane waves propapating through a bar, i.e. through a structure where one spatial dimension
is orders of magnitude larger than the other two.

1.2.1 Bulk waves

One solution of the partial differential equation (1.6) is the equation of a plane wave in a 3D
medium, given through

u(x, t) = u0 exp[i (k · x − ω t)] , (1.7)

with the amplitude u0, i =
√
−1, the wave vector k = k n (n being the wave direction and

k being the wave number), and the angular frequency ω = 2 π f (f being the frequency of
sinusoidal pertubation). Insertion of (1.7) into (1.6) yields

(C · n · n k2 − ρ ω2 1) · p = 0 , (1.8)

with the second-order unity tensor 1, having δij (Kronecker delta — δij = 1 for i = j, and zero
otherwise) as components, and with p = u0/|u0| as the normalized displacement or polarization
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vector. Based on the definition of the phase velocity (Newton 1687; Carcione 2001)

vp ≡
ω

k
= λ f , (1.9)

with the wavelength λ, and of the acoustic tensor [also called ‘Kelvin-Christoffel matrix’ (Car-
cione 2001)]

Γ = C · n · n , (1.10)

(1.8) can be recast in the form
(Γ − ρ v2

p 1) · p = 0 , (1.11)

which constitutes an eigenproblem with eigenvalues ρ v2
p and eigenvectors p. Due to the reality

and symmetry of the acoustic tensor Γ, the three eigenvalues are real and the three polarization
vectors are orthogonal. While this holds for any stiffness tensor C (including general anisotropy
with 21 independent tensor components), we here restrict ourselves to the cases of transversely
isotropic and isotropic elasticity tensors. In addition, we are interested solely in wave propa-
gation along the principal axes of a transversely isotropic material (coinciding then with wave
propagation direction n). For the respective solution of the eigenproblem (1.11), we adopt an
orthogonal base frame coinciding with these principal directions, where e1 and e2 span the
plane of isotropy, and e3 is oriented perpendicular to that plane. For wave propagation within
the plane of isotropy (e.g. n = e1), the three eigenvalues give access to the following phase
velocities:

v1,1 =

√

C1111

ρ
, v1,2 =

√

C1212

ρ
, v1,3 =

√

C1313

ρ
. (1.12)

The corresponding polarization (eigen)vectors are e1, e2, and e3, so that the first phase velocity
in (1.12) is identified as longitudinal wave (v1,1 = vL,iso, ‘iso’ refers to the isotropic plane), while
the second and third one relate to transversal (or shear) waves (v1,2 = vT,iso; v1,3 = vT,aniso,
‘aniso’ indicates that either the polarization direction or the wave direction or both point out
of the isotropic plane). Also n = e2 relates to wave propagation within the plane of isotropy,
so that

v2,2 = v1,1 = vL,iso , v2,1 = v1,2 = vT,iso , v2,3 = v1,3 = vT,aniso . (1.13)

For wave properties orthogonal to the plane of isotropy (n = e3), the phase velocities read as

v3,1 = vT,aniso =

√

C1313

ρ
, v3,2 = vT,aniso =

√

C1313

ρ
, v3,3 = vL,aniso =

√

C3333

ρ
. (1.14)

In case of isotropy, wave propagation velocities are independent of the propagation direction,
and in all directions, the wave velocities follow from specification of (1.12) and (1.14) for
C3333 = C1111 and C1313 = C1212 so that we have

vL =

√

C1111

ρ
and vT =

√

C1212

ρ
, (1.15)

with vL and vT as the longitudinal and transversal (shear) wave velocities in isotropic elastic
media. Since isotropic solids are completely described by two elastic constant, e.g. C1111 and
C1212 (shear modulus is equal to shear stiffness component, i.e. G = C1212), the two velocities vL

and vT can also be used to determine two engineering elastic constants, e.g. Young’s modulus
and Poisson’s ratio, in the form

E = ρ
v2

T (3 v2
L − 4 v2

T )

v2
L − v2

T

and ν =
v2

L/2 − v2
T

v2
L − v2

T

. (1.16)
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1.2.2 Extensional waves or bar waves

Bars are characterized by a one-dimensional state of normal stress, σ = σ11 e1⊗e1, e1 pointing
into the direction of the bar axis, so that the wave equation (1.6) reduces to (Kolsky 1953)

E∇u1 = ρ
∂2u1

∂t2
, (1.17)

E being Young’s modulus of the (isotropic or anisotropic) bar material in the bar axis direction.
Accordingly, there is one (extensional or bar) wave propagating through the considered bar,
with wave velocity

vE =

√

E

ρ
. (1.18)

1.3 Ultrasonic measurement system

1.3.1 Equipment

The employed equipment consists of an ultrasonic pulser and a signal receiver built into a single
unit [PR 5077, Panametrics Inc., Waltham, MA, USA; see Figure 1.5 (a)], a digital oscilloscope
[WaveRunner 62Xi, Lecroy Corporation, Chestnut Ridge, NY, USA; see Figure 1.5 (a)], 17
pairs of ultrasonic, single-element, untuned contact transducers for longitudinal and transversal
pulses (Panametrics Inc., Waltham, MA, USA; see Table 1.1 and Figure 1.1), an ultrasonic
signal preamplifier (5676, Panametrics Inc., Waltham, MA, USA), a coupling medium, and an
auxiliary testing device [see Figure 1.5 (a)].

Piezoelectric elements built into the ultrasonic transducers transform electrical signals into
mechanical signals, or they transform mechanical signals into electrical signals, depending on
whether the transducers are used as senders or receivers. The piezoelectric elements are tailored
to the frequency and the polarization of the employed mechanical signal, e.g. the higher the
frequency, the smaller the element and the smaller the corresponding transducer (see element
diameter de of the transducers in columns four and eight of Table 1.1). Depending on the
cut and orientation of the element, a longitudinal wave (X-cut) or a transversal wave [Y-cut
or AT-cut, Firestone and Frederick (1946); Markham (1957); ANSI/IEEE-Std-176 (1987)] is
emitted. Most of the used transducers (see labels with letter V in Table 1.1) are heavily
damped, with a short signal typically stretching one and a half oscillation periods, with a
broad frequency bandwidth and with a center frequency according to column one in Table 1.1.
Some transducer (see labels with letter C in Table 1.1) are made of piezocomposite elements (i.e.
the piezoelectric element is subdivided into a grid of small cuboidal pieces) that provide better
sensitivity to signals passing highly attenuating materials, due to a high signal-to-noise ratio.
Low frequency transducers (labeled with letter X in Table 1.1) are less heavily damped. Thus,
they exhibit a pulse with a signal consisting of several oscillation periods. The polarization
direction of transversal wave transducers is in line with the electricity cable connector. A wear
plate protects the piezoelectric elements, and at the same time provides an acoustic impedance
which matches approximately that of the material under investigation.

A coupling medium is necessary to provide energy transmission between the ultrasonic trans-
ducer and the specimen. Water or another suitable liquid may be used as coupling medium for
longitudinal waves. Since the medium needs to be highly viscous for transversal wave trans-
mission, we used honey for both longitudinal and transversal waves. Thereby, the influence of
the type of honey on measurement results is very small. The higher the viscosity, the better
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Table 1.1: Ultrasonic longitudinal and transversal transducers (frequency f , aluminum-related
wavelength λi, element diameter de, system and transducer delay time td).

longitudinal transversal

f λL label de td λT label de td

[MHz] [mm] [-] [mm] [µs] [mm] [-] [mm] [µs]

0.05 127 X1021 32 3.988 – – – –
0.1 64 V1011 38 3.667 32 V1548 25 0.339
0.25 25 V1012 38 3.355 13 V150-RB 25 0.351
0.5 13 V101-RB 25 2.464 6.4 V151-RB 25 0.390
1.0 6.4 C602-RB 25 2.828 3.2 V152-RB 25 0.320
2.25 2.8 C604-RB 25 2.555 1.4 V154-RM 13 0.211
5.0 1.3 C109-RM 13 2.426 0.6 V155-RM 13 0.147
10 0.6 V112-RM 6 2.343 0.3 V221-BA-RM 6 6.939
20 0.3 V116-RM 3 2.346 0.16 V222-BA-RM 6 6.928

the transversal wave transmission, as less damping of the ultrasonic beam occurs. Avoidance
of any air inclusions within the coupling layer had high priority, as to achieve a maximum of
ultrasonic energy transfer.

The pulser unit of the ultrasonic pulser-receiver emits electrical (negative) square-pulses of 100,
200, 300 or 400 V pulse voltage and fixed pulse widths from 0.1 to 20 MHz (at −3 dB), with
fine vernier tuning (± 25%). The pulse energy of a square-pulses is by up to 12 dB higher
as compared to a spike excitation. The rise time of the pulse is typically below 10 ns (max.
20 ns) and its repetition rate is adjustable from 0.1 to 5 kHz. The receiver unit of the ultrasonic
pulser-receiver has a bandwidth of 1 kHz to 35 MHz, a voltage gain of up to 59 dB and an
attenuator range up to 49 dB. It amplifies and conditions the received electrical signal into
a radio frequency output, which is to be processed by the oscilloscope. The receiver unit is
able to filter frequencies below 1 MHz and/or above 10 MHz from the received signal, e.g. to
decrease the signal noise.

Figure 1.1: Examples for used ultrasonic longitudinal (L) and transversal (T ) transducers.
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If the amplitude of the ultrasonic signal is too weak, an additional low noise preamplifier with a
fixed voltage gain of 40 dB (bandwidth 0.05 – 20 MHz) is used, which is interconnected between
receiving transducer and the receiver.

The amplified signal is displayed on an digital oscilloscope with a bandwidth of 600 MHz and
a sample rate of 10 GS/s (gigasamples per second).

1.3.2 Set-up

The most common ultrasonic (contact) measurement techniques are the pulse-transmission(-
through) and the pulse-echo technique. With the first technique, two transducers are used, one
sending a signal into the specimen and one receiving the sent signal at the opposite side of
the specimen (Figure 1.2); with the second technique, only one ultrasonic transducer is used,
sending the signal into the specimen, and also receiving the signal after having been reflected
at the backside of the specimen.

ULTRASONIC
TRANSDUCER:

SENDER

ULTRASONIC

RECEIVER
TRANSDUCER:

SYNCHRONIZATION

OUTPUT
SIGNAL

RECEIVER
PULSER-

SPECIMEN

OSCILLOSCOPE

a

h

Figure 1.2: Set-up of ultrasonic equipment for pulse-transmission technique.

We here use the pulse-transmission technique, because of its major advantage over the pulse-
echo technique, which is that the ultrasonic beam is only travelling once through the specimen
and that no beam reflection is necessary. Thus, the influence of signal attenuation is minimized
and problems emanating from reflection of waves, like beam divergence and mode conver-
sion, are avoided. This is especially of interest when investigating porous materials (as dealt
with in Section 1.7) or other highly attenuating materials like organic materials, e.g. plastics
and rubber. Such materials attenuate the signal and/or scatter the signal at reflection, to a
marginal amplitude that disappears within the signal noise. Reflections of the ultrasonic pulse
from boundaries of the specimen are less likely to interfere with measurements in the pulse-
transmission technique, as compared to the pulse-echo technique. Application of the pulse-echo
technique is only possible in materials where a clear reflected signal is available, e.g. in met-
als. A potential drawback when using the pulse-transmission technique is that two transducers
need to be coupled with the specimen, which may increase measurement errors related to wave
velocity. An auxilliary testing device [see Figure 1.5 (a)] made of aluminum and steel was used
to hold the two transducers in a parallel position and to apply a uniform pressure (with a
micrometer screw). In this way, coupling was improved, and consistent test conditions were
achieved.
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The time of flight of the ultrasonic wave through the specimen, tf , provides, together with the
travel distance through the specimen, h, the phase velocity of the longitudinal (L) or transversal
(T ) wave, vi i = {L, T},

vi =
h

tf
. (1.19)

tf is determined by the difference of the total time of flight measured between the transducers,
ttot, and the wave transit time without the specimen, called system and transducer delay time
td (see Table 1.1, columns five and nine). td includes the time delay caused by the transducers,
by the coupling medium, by additional delay lines, and by the measurement system itself.
The benchmark for the time of flight measurements is a reference signal sent by the ultrasonic
pulser-receiver, on which the trigger of the oscilloscope is set. Since we are interested in the first
arrival of the ultrasonic wave (even in case the pulse is strongly attenuated and consequently,
the wave form is changed, i.e. broadened), we use the first apparent deviation of the received
signal from constancy with time (i.e. the time instant when the signal rises beyond noise
level) as the arrival time of the ultrasonic wave. This reference point is insensitive to wave
attenuation, which is not the case for other, often automated reference points, such as the first
or the highest crest of the signal (Nicholson and Strelitzki 1999). Transversal wave propagation
is usually accompanied by a precursor longitudinal wave [see e.g. Papadakis et al. (1991); Rao
and Prasanna Lakshmi (2003)]. In cases where the precursor longitudinal wave interferes with
the first arrival of the transversal wave, the wave trough preceding the main transversal wave
crest is used to determine the wave arrival time.

The time readings on the oscilloscope are performed manually. The deviation of the reveived
pulse from the time constancy axis develops smoothly. Therefore, the signal amplitude and
frequency (of both pulser-receiver and transducer), as well as the amplitude and time range
chosen for display of the pulse on the oscilloscope, influence the time readings of signal arrival.
In order to obtain comparable results, measurements were performed, as a rule, at fixed pulse
voltage (100 V) and gain settings (30 dB) on the pulser-receiver, which was set to 100 Hz pulse
repetition rate. Only in case a higher pulse energy was necessary to penetrate the specimen with
a signal amplitude that allowed for precise time readings, a gain of 40 dB was used, together
with a higher pulse voltage, namely 400 V for transducers with frequencies lower than 5 MHz,
and 300 V for all other transducers (in order to protect the smaller piezolelectric crystals of the
latter from overheating and depoling). In order to smoothen the wave signal at pulse frequencies
below 5 MHz, the low pass filter was used, which inhibits frequencies higher than 10 Mhz.

Also the display settings on the oscilloscope were fixed, namely at a sample rate of 10 GS/s,
at a time range of 5 µs, and at an amplitude range of ±0.4 V. The bandwidth was limited to
20 MHz for transducers below 5 MHz, and to 200 MHz for higher frequency transducers, as to
minimize signal noise. For the arrival time reading the first arrival part of the pulse was diplayed
in an additional zoom window, covering 1 µs and ±0.4 V in time and amplitude dimensions,
respectively. The accuracy of cursor positioning was 0.1 ns, but reliable measurements were
only possible up to an accuracy of 10 ns = 0.01 µs.

The exact identification of the signal arrival time is the major source of measurement inac-
curacies. Especially for small thicknesses of the specimens and corresponding short times of
flight and/or low transducer frequencies, this error may be essential. In order to minimize this
error (as well as other sources of inaccuracies), delay lines have been used since the beginning
of ultrasonic research (Arenberg 1948). Such delay lines may fulfill two purposes: (i) the near
field of the transducer, located directly adjacent to the wear plate and characterized by an
oscillating amplitude, is relocated out of the investigated specimen (Williams 1992); and (ii)
the received pulse (arrival signal) is relocated out of the time range of receiver disturbances
stemming from the electrical ignition of the pulser. The latter purpose is relevant here, since
our present focus is on arrival times rather than on amplitude measurements. We used as delay
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lines cylinders made of aluminum alloy 5083 with diameters 1.5 mm larger than the diameter
of the transducers (≈ de in Table 1.1), as to leave room for a notch that prevents the delay line
from slipping between the transducer and the specimen. The heights of the delay lines were
15 mm and 20 mm, respectively, referring to a time delay of 2.35 µs and 3.14 µs, respectively.
They were coupled to the sending transducers with honey (Figure 1.3). The longer time delay
was used for the longitudinal transducers with the three lowest frequencies (f = 0.05, 0.1,
0.25 MHz), while the shorter time delay was used for the rest of the longitudinal transducers.
Implementation of the delay lines led to higher accuracy over all frequencies when sending longi-
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Figure 1.3: Measurement without and with delay line.

tudinal waves through thin specimens. Such a positive effect was not observed with transversal
waves. On the contrary, delay lines even impaired the measurement results of low frequency
transversal waves, due to the more complicated experimental setup (including a third coupling
layer), which makes the discrimination of the correct wave crest more difficult. Thus, with
transversal transducers no delay lines were used, except for the two transversal transducers
with the highest frequencies, which have a built-in silica delay line (delay time ≈ 6.8 µs; see
Table 1.1).

In order to minimize errors in time of flight measurements, we standardly employed two trans-
ducers of identical architecture and center frequency for the pulse-transmission measurements.
As exception to that rule, the longitudinal and transversal transducers with center frequencies
of 20 MHz were used in combination with the equivalent 10 MHz-transducers as receivers; the
0.05 MHz- and 0.1 MHz-longitudinal transducers were used in combination with a 0.1 MHz-
longitudinal transducer (X1020, de = 16 mm) as receiver; and the 0.25 MHz-longitudinal
transducer was used in combination with the 0.5 MHz-longitudinal transducer as receiver (see
Table 1.1). These exceptions were allowed since shifting the center frequency of the receiving
transducer did not remarkably change the test results on one and the same specimen.

When combining ultrasonic longitudinal and transversal velocity measurements, e.g. for the
computation of engineering elastic constants [see Eq. (1.16)], only values related to compara-
ble wavelengths should be used, referring to the same scale of mechanical investigation [see
Eq. (1.1)]. The transversal wave velocity is approximately half of the longitudinal one, over
most (isotropic) materials. From Eq. (1.9) it follows that, in order to achieve equal wavelengths
λL = λT , a longitudinal frequency transducer should be combined with a transversal transducer
exhibiting half the frequency of the longitudinal one, i.e. fT = fL/2 (see also Table 1.1, columns
two and six).

Other sources of measurement errors include the flatness of the specimen surfaces where the
transducers are applied, if these surfaces are not strictly parallel; and the character of the
coupling layer. It is important to realize an evenly distributed coupling layer of constant
thickness, without (air) inclusions. Measurements were performed near room temperature (i.e.
≈ 300 K ≈ 25◦C). According to Ledbetter (1980) a ten-degree-kelvin temperatur change alters
(copper) ultrasonic velocities by only 0.05%, implying that the expected temperature variations
in laboratories do not significantly affect corresponding results.
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1.3.3 Error propagation

All spatial dimensions of specimens were determined from the average of five measurements
with a micrometer gauge characterized by a precision of ±10 µm. Masses were measured on a
digital balance, with a precision of ±1 mg. Then the apparent density ρapp was determined, as
the ratio of mass m and volume V

ρapp =
m

V
, (1.20)

whereby our cuboidal specimens (see Section 1.4 for more details) are characterized by height
h and quadratic cross-section with edge length a, so that

V = h a2 . (1.21)

In the sequel, we discuss how measurement errors in fundamental quantities, such as length (h,
a), mass (m), and time of flight (tf ) affect errors in the following derived quantities (Rossi 2007):
volume V [Eq. (1.21)], density ρapp [Eq. (1.20)], velocity vi [Eq. (1.19)], and stiffnesses Cijkl or
E [Eqs. (1.12), (1.14), (1.15), (1.18)]. Therefore, we recall the law of error propagation (Müller
1979)

s2
y ≈

∑

i

(
∂F
∂xi

si

)2

+ 2
∑

i<j

∂F
∂xi

∂F
∂xj

sij i , j = 1 , 2 , . . . , n , (1.22)

where sy is the standard deviation of a random variable y, which is generated by evaluating a
deterministic function F of n random variables xi characterized by variances s2

i and covariances
sij. Depending on the investigated quantity, F is chosen as V , ρapp, vi, Cijkl, or E [according
to Eqs. (1.21), (1.20), (1.19), (1.12), (1.14), (1.15), (1.18)], and the variables xi are chosen as
h, a, m, V , tf , ρapp, and/or vi. If the variables xi are uncorrelated, the last term in (1.22)
vanishes. Approximation (1.22) is valid for small random alterations of the variables xi, and
implies that all errors are random, i.e. systematic errors are assumed to be zero. Thus, strictly
speaking, we give precisions (reproducibility) rather than accuracies of measurements. The
standard deviations si [also referred to as uncertainties or as errors (Müller 1979)] give access
to the relative standard deviations (relative errors) δi, via

δi =
si

xi

. (1.23)

Using this definition and the definition of the correlation coefficient δij = sij/(si sj), specifica-
tions of F according to (1.21), (1.20), (1.19), and (1.12) [or (1.14), (1.15), (1.18)] yields

δV =
√

δ2
h + 2 δ2

a , (1.24)

δρ =
√

δ2
m + δ2

V − 2 δm δV δmV , (1.25)

δv =
√

δ2
h + δ2

t − 2 δh δt δht , (1.26)

δC =
√

4 δ2
v + δ2

ρ + 4 δρ δv δρv , (1.27)

whereby δh is the relative error in h, and so forth. Based on (absolute) errors of sh = sa =
0.01 mm (precision of the micrometer gauge), Eqs. (1.23) and (1.24) give access to the relative
errors in h, a, and V , see columns four to six in Table 1.2. Considering additionally sm = 0.001 g
(precision of the digital balance) and δmV = 1.00 (as obtained from a statistical analysis of the
measurements on all dense aluminum samples of Section 1.4, see Table 1.3, column three),
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Eqs. (1.23) and (1.25) give access to the relative errors in m and ρ, see columns seven and eight
of Table 1.2. The latter value was checked by computing δρ directly from the measurements
on all plate-type, cubic, and bar-type dense specimens, yielding 0.187%, which underlines the
relevance of error propagation law (1.22) for our purposes (see Table 1.2, column eight, rows
four to six).

Table 1.2: Geometrical dimensions of specimens, with corresponding relative errors δh, δa, δV ,
δm, and δρ, and times of flight tf related to longitudinal waves.

geometry h a δh δa δV δm δρ tf

[mm] [mm] [%] [%] [%] [%] [%] [µs]

thin plate 0.5 30 2.00 0.03 2.001 0.084 1.917 0.078
plate 5 30 0.20 0.03 0.205 0.008 0.197 0.785
cube 30 30 0.03 0.03 0.058 0.001 0.056 4.708
bar 30 1 0.03 1.00 1.415 1.255 0.160 4.708
long bar 100 1 0.01 1.00 1.414 0.376 1.038 15.69

Table 1.3: Standard deviations in the time of flight, st, as well as correlation coefficients δmV ,
δht, and δρv, given for different frequencies.

f st δmV δht δρv

[MHz] [µs] [-] [-] [-]

0.05, 0.1 0.10 1.000 0.995 0.249
0.25, 0.5, 1.0 0.05 1.000 0.996 0.029
2.25, 5 0.02 1.000 0.997 0.127
10, 20 0.01 1.000 0.998 0.122

The uncertainties in time of flight, st, are (conservatively) estimated, for each frequency, from
the range of time instants in which the first deviation of the signal from the time constancy axis
can be discerned (see Table 1.3, column two). This value for st gives access to the corresponding
relative errors according to Eq. (1.23), δt = st/t, based on the times of flight of longitudinal
(bulk) waves, observed at different geometries (see Table 1.4, column three). Because of vT ≈
vL/2, transversal waves exhibit double times of flight and half relative errors δt, when compared
to those of longitudinal waves. Relative errors of velocity δv are determined via (1.26), with
δh according to column four in Table 1.2, with δt according to column three in Table 1.4, and
with the correlation coefficient of δht according to column four in Table 1.3. Thereby, δht is
obtained from length and time of flight measurements on all (dense) specimens belonging to
one of the frequency groups given in Table 1.3. Significant relative errors δv occur for low
frequency measurements in thin specimens (see Table 1.4). The relative velocity errors for
high frequencies are in accordance with Ledbetter (1980), who gives δv < 0.1% for box-shaped
copper specimens (h = 19 mm, t ≈ 4 µs, f = 3 – 10 MHz). The relative error in stiffnesses,
δC , (see column five in Table 1.4) is estimated through Eq. (1.27), with δρ according to column
eight in Table 1.2, δv according to column four in Table 1.4, and δρv according to column five
in Table 1.3. Thereby, δρv is obtained from density and velocity measurements on all (dense)
specimens belonging to one of the frequency groups of Table 1.3. In case δρ ≪ δv (e.g. at lower
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Table 1.4: Relative errors δi in time of flight, velocity and stiffnesses, given for different specimen
geometries and different frequencies.

f δt δv δC

[MHz] [%] [%] [%]

th
in

p
la

te 0.05, 0.1 127 126 251
0.25, 0.5, 1.0 64 62 124
2.25, 5 25 24 47
10, 20 13 11 22

p
la

te

0.05, 0.1 12.7 12.5 25.1
0.25, 0.5, 1.0 6.4 6.2 12.4
2.25, 5 2.5 2.3 4.7
10, 20 1.3 1.1 2.2

cu
b
e

0.05, 0.1 2.12 2.09 4.20
0.25, 0.5, 1.0 1.06 1.03 2.06
2.25, 5 0.42 0.39 0.79
10, 20 0.21 0.18 0.37

b
ar

0.05, 0.1 2.12 2.09 4.22
0.25, 0.5, 1.0 1.06 1.03 2.07
2.25, 5 0.42 0.39 0.82
10, 20 0.21 0.18 0.41

lo
n
g

b
ar 0.05, 0.1 0.64 0.63 1.82

0.25, 0.5, 1.0 0.32 0.31 1.22
2.25, 5 0.13 0.12 1.09
10, 20 0.06 0.05 1.06

frequencies, i.e. higher δv), or if ρ is a precisely known quantity, Eq. (1.27) reduces to

δC = 2 δv , (1.28)

i.e. the relative error doubles when deriving stiffness tensor components from measured ul-
trasonic velocities. This was approximately observed when computing relative errors δv and
δC directly from (bulk) velocity measurements on dense specimens A-5 to A-12 (see following
Section) and from the density measurements discussed below Eq. (1.27). We re-iterate that the
errors given in Table 1.4 are due to measurement uncertainties and that they do not include
other error sources, such as uneven surfaces. From the results in Table 1.4 it is evident that very
high errors are only to be expected if very thin samples, characterized by short times of flight,
are investigated at low frequencies. Conclusively, when considering all sources for inaccuracies,
the ultrasonic contact pulse-transmission technique is in general satisfactorily exact.

1.4 Specimens for ultrasonic tests

All specimens were made of commercial aluminum alloy EN AW-5083-H111, produced according
to the European standards EN-485-1 (2007) and EN-485-2 (2006), a material that is insensitive
to temperature changes in the room temperature regime (Weston et al. 1975). The specimens
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are subdivided into five sets. Set A1, A2, B, and R are used to investigate the effect of
specimen geometry and size on ultrasonic wave propagation (see Table 1.5), and set C is
used to investigate the effect of specimen microstructure (see Table 1.6). All specimens are
box-shaped with characteristic cross-sectional dimension a (edge length of the two specimen
surfaces having the shape of a square) and height h; except for specimens R-2 and R-3, which
are of cylinder-type; there, a equals the diameter.

In addition, an aluminum cube with an edge length of a = h = 100 mm (cut from a 100 mm
thick plate) was used to obtain reference bulk wave velocitites (even for lower frequencies, as
will be verified in Section 1.6).

Table 1.5: Aluminum specimen set A1, A2, B, and R — influence of geometry on wave propa-
gation (dimensions in [mm]).

set A1 set A2 set B

# a h # a h # a h

1 1 30 1 3 30 1 30 0.5
2 2 30 2 3 40 2 30 1
3 3 30 3 3 60 3 30 2
4 5 30 4 3 70 4 30 3
5 10 30 5 3 90 5 30 4
6 15 30 6 3 110 6 30 5
7 20 30 7 30 7.3
8 30 30 8 30 10
9 40 30 set R 9 30 15
10 50 30 1 1 100 10 30 20
11 75 30 2 9 14 11 30 25
12 100 30 3 18 4 12 30 30

A2-1 = A1-3 B-12 = A1-8

The twelve specimens of set A1 have a constant height h = 30 mm, but varying characteristic
cross-sectional dimensions a ranging from 1 to 100 mm, therefore covering shapes ranging from
bars, via cubes, to (thick) plates. Set A2 consists of six specimens with a constant cross-
sectional dimension of a = 3 mm, but with varying heights h from 30 to 110 mm, i.e. these
specimens are bars of different slenderness. Set B consists of twelve specimens with constant
a = 30 mm and h varying from 0.5 to 30 mm, i.e. covering shapes ranging from (thin) plates to
cubes. Set R consists of a bar with the lowest ratio a/h, namely 0.01, and of two cylindcrical
specimens.

Set C consists of four box-type aluminum specimens with cylindrical voids of different diameters
d, in a hexagonal arrangement with different distances e between the cylinder axes, resulting
in different porosities [see Figure 1.4 (a) (b) and columns four and five in Table 1.6]. Hexagonal
symmetry is characterized by a six-fold axis, i.e. a rotation by π/3 about axis 3 [longitudinal
cylinder direction, see Figure 1.4 (a)] does not change the elastic stiffness, which — in turn
— implies invariance against rotation by any angle (Helbig 1994). Materials with one axis
of complete rotational invariance are termed transversely isotropic. Four different drill bit
diameters, namely d = 1, 1.5, 2, 3.2 mm were used to produce four specimens (termed C-1,
C-2, C-3, and C-4 ), with 247, 161, 60, and 52 boreholes, respectively [see Figure 1.4 (b)], and
with three different porosities (specimens C-1 and C-3 have approximately the same porosities,
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Figure 1.4: Specimens for investigation of microstructure (porosity) on wave propagation ve-
locity: (a) Porous cylinders in hexagonal arrangement (and definition of principle material
directions), (b) arrangements of voids in specimens of set C, (c) unit cell.

see column three in Table 1.6). Specimens C-2, C-3, and C-4 are cubes with an edge length of
a = h = 30 mm. The height of specimen C-1 was reduced to h = 20 mm, in order to reduce
problems in the deep drilling regime (characterized by drilling depth larger than ten times the
drill bit diameter, i.e. 10 mm in case of the 1 mm boreholes). The wall thickness t = e− d [see
Figure 1.4 (a)], i.e. the thinnest part of solid matrix between the boreholes, is approximately
0.9 mm in specimens C-1, C-2 and C-4, and 1.8 mm in specimen C-3 [see Figure 1.4 (b)].

The geometrical properties of set C in Table 1.6 are determined by measuring the mass m and
volume V for each specimen, and by computing the apparent density ρapp according to (1.20).
Knowing the apparent density ρapp and the density of the solid, ρs = 2.656 g/cm3 (see Table 1.7),
the porosity ϕ [-] is given by

ϕ =
ρs − ρapp

ρs

. (1.29)

For an exactly (infinite) hexagonal arrangement of cylindrical voids, the porosity is propotional
to the square of the ratio of the diameter of the voids d to their distance e,

ϕ =
π

2
√

3

d2

e2
. (1.30)

Knowing ϕ from measurements of the actual specimen (1.29) and d from the diameter of
the drill bit, an average value for the actual size of e follows from (1.30) assuming an exact
(infinite) hexagonal structure. The deviation of this actual (average) borehole distance e from
its theoretical analogon related to an exact (finite) hexagonal structure according to Figure 1.4,
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Table 1.6: Aluminum specimen set C — influence of microstructure on wave propagation.

# ρ ϕ d e a h

[g/cm3] [%] [mm] [mm] [mm] [mm]

1 2.07 21.9 1.0 2.03 30 20
2 1.79 32.7 1.5 2.50 30 30
3 2.05 22.8 2.0 3.99 30 30
4 1.36 48.7 3.2 4.37 30 30

amounts to about 5% for all considered specimens. This is due to the inaccuracies in the
borehole pattern, to the deviation of the borehole from the longitudinal direction, and to lack
of boreholes in the borderarea (the realization of which was beyond the scope of this work, and
would also have complicated the coupling of transducer and specimen). The actual porosity (see
column three in Table 1.6) deviates from the infinite hexagonal structure porosity by around
10% for each specimen, so that our specimens can be regarded as decent approximation of
quasi-infinite porous hexagonal patterns.

1.5 Bulk wave propagation: precision check

In order to check the precision of our ultrasonic measurement system, we compare bulk wave
velocities measured on a cube of aluminum alloy 5083 with a = h = 100 mm [Figure 1.5 (a)],
with wave velocities found in the literature, and with wave velocities back-calculated from quasi-
static tests performed in our laboratory [Figure 1.5 (b)]. Corresponding results are collected
into Table 1.7.

In our ultrasonic tests (see column two of Table 1.7), the wave velocity was measured with
all nine longitudinal and eight transversal contact transducers, both with and without delay
line. Each of these velocity values was determined from an average of at least three (actually
three or four) independent time of flight measurements, i.e. a total of more than 100 data
points were available. The longitudinal and transversal bulk wave velocities were determined
from 18 and 16 average results, respectively. The extensional velocity and the elastic constants
were determined from the 14 average results, each one corresponding to equal longitudinal and
transversal wavelengths (see Table 1.7, column two).

When taking the average of eight values from four different literature sources (Weston et al.
1975; Naimon et al. 1975; Benck and Filbey 1976; Matweb 2009), we observe that the off-
diagonal component C1122 shows by far the highest standard deviation of all, but that the
average stiffness values agree very well with our own measurements (Table 1.7).

The mass density ρs = 2.656 g/cm3 was determined on an aluminum cube with an edge length
of 100 mm, according to Eq. (1.20) with ρs = ρapp; this measurement was repeated twice.

Quasi-static load-controlled tensile tests were performed on a uniaxial electromechanical uni-
versal testing machine [LFM 150, Wille Geotechnik, Germany, see Figure 1.5 (b)]. Three dog
bone-shaped specimens with constant rectangular cross-section of 30×10 mm over the measure-
ment range of 150 mm (gradually broadened, over 10 mm, up to a cross-section of 50× 10 mm
in the clamping area) were made from the same aluminum alloy plate as was used for the pro-
duction of the specimens for ultrasonic tests. The load was applied up to a stress σj of 75 MPa,
with a stress rate of 0.17 MPa/s. The axial normal strains εj (those in direction of tensile
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Table 1.7: Elastic stiffnesses and ultrasonic bulk velocities of aluminum alloy 5083, from litera-
ture (Weston et al. 1975; Naimon et al. 1975; Benck and Filbey 1976; Matweb 2009) (lit), and
from our own quasi-static (qs) and ultrasonic (us) tests [average values ± standard deviation
in percent of average; bold values measured or from literature, remaining derived from these
via Eqs. (1.15), (1.16), and (1.18)].

ultrasonic ultrasonic quasi-static deviation us

quantity [unit] (own experiment) (literature) (own experiment) lit qs

n [-] 14 8 3 – –
ρ [g/cm3±%] 2.656 2.663±0.1 2.656 0.3 –

vL [km/s±%] 6.372±0.2 6.349±2.6 6.301±1.5 −0.4 −1.1
vT [km/s±%] 3.205±0.7 3.170±0.6 3.263±1.4 −1.1 1.8
vE [km/s±%] 5.229±0.6 5.176±0.3 5.295±1.4 −1.0 1.3

C1111 [GPa±%] 107.86±0.3 107.47±5.2 105.49±3.0 −0.4 −2.2
C1212 [GPa±%] 27.29±1.4 26.78±1.2 28.29±2.9 −1.9 3.6
C1122 [GPa±%] 53.36±1.8 53.91±11.2 48.92±3.2 1.0 −8.3

E [GPa±%] 72.63±1.2 71.40±0.7 74.49±2.9 −1.7 2.6
ν [-±%] 0.331±1.1 0.333±3.8 0.317±0.3 0.8 −4.2

C1111/E [-±%] 1.486±1.3 1.505±5.1 1.416±0.3 1.3 −4.7

force) and the lateral normal strains εi (those in direction perpendicular to tensile force) were
measured by means of two separate Wheatstone bridge circuits of strain gauges (3/350XY13,
Hottinger Baldwin Messtechnik GmbH, Germany) for compensation of any bending moment
influences, yielding Young’s modulus and Poisson’s ratio according to

Eqs =
σj

εj

and νqs =
εi

εj

, (1.31)

respectively. The average of the results from the loading and the unloading path, respectively,
was taken for each test (the corresponding differences amounted to less than 0.5%), and each of
the three specimens was tested twice (the differences resulting from test repetition amounted
to less than 0.5‰). For each set of Eqs and νqs, the other elastic constants and ultrasonic wave
velocities were determined (average values and standard deviations in percent of average given

(a) ultrasonic velocity measurements (b) quasi-static mechanical tests

Figure 1.5: Determination of stiffness constants of aluminum alloy 5083.
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in Table 1.7, column four).

The results from both measurement methods, quasi-static and ultrasonic, show good agreement
with average literature values (compare Table 1.7, columns two to four). The ultrasonic stiffness
measurements differ by at most 2% from literature values (see Table 1.7, column five). Ultra-
sonic wave velocities agree even better, with a deviation of only 1%. Excellent agreement is
also found between the two different experimental setups, i.e. quasi-static and ultrasonic mea-
surements (see Table 1.7, column six). Again the off-diagonal component exhibits the highest
discrepancy between test methods (8%), for all other values, the difference is at most 4%.

1.6 Sample-specific wave propagation — bulk waves and

extensional waves

According to the theory of elastic waves in infinite isotropic solids (built up by material volumes
which are far smaller than the wavelengths λ), the longitudinal wave velocity is given through
(Love 1906; Kolsky 1953; Auld 1990; Carcione 2001), see also (1.15)1,

vL =

√

C1111

ρ
, (1.32)

with C1111 as the normal stiffness component of the material, and ρ as its mass density. For
bounded solids, such as the box-type samples with square-shaped cross sections investigated in
the present study, vL additionally depends on sample height h, edge length a, and (longitudinal)
wavelength λL,

vL,exp = F (C1111, ρ, a, h, λL) . (1.33)

Thanks to the dimensional independence of C1111, ρ, and h, dimensional analysis (Buckingham
1914; Barenblatt 1996) allows for reducing the function F of four dimensional arguments [see
(1.33)] to a (dimensionless) function of only two dimensionless arguments, reading as

vL,exp
√

C1111/ρ
= F

(
a

h
,

h

λL

)

, (1.34)

which, according to Eq. (1.32), is equivalent to

vL,exp

vL

= F
(

a

h
,

h

λL

)

. (1.35)

In principal, Eq. (1.34) and (1.35) describe classes of similar problems defined through the same
dimensionless quantities, being not restricted to a specific material, but valid for all materials
with RVEs significantly smaller than the encountered wavelengths [compare Eq. (1.1)]. We are
left with determination of F from our test series A1, A2, B, and R (performed on a specific
material, aluminum alloy 5083):

Tests on sample set A1 (solid aluminum boxes characterized by constant heights of 30 mm, and
by square-shaped cross sections with edge lengths varying from 1 mm and 100 mm, passing all
the shapes from plate-like, via cubic, to bar-like, see Table 1.5) reveal that longitudinal wave
velocities increase with increasing cross section, unless they reach a constant value, which coin-
cides with the bulk velocity of aluminum, vL =

√

C1111/ρ, see Figure 1.6 (a). The smallest cross
sections are always related to the lowest wave velocities, but only at low frequencies, the exten-
sional or bar velocity of aluminum, given through Eq. (1.18) as vE =

√

E/ρ = 0.821× vL, with
E as the isotropic Young’s modulus of the transmitted material (here aluminum), is reached,
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Figure 1.6: Specimen set A1, R-2 (according to Table 1.5): Dependency of dimensionless longi-
tudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL), on (a) edge-length-over-height parameter
(a/h), and on (b) height-over-wavelength parameter (h/λL); data points relating to the same
h/λL-ratio are connected by solid lines.

see Figure 1.6 (a). The bulk velocity is reached the earlier, the higher the used frequency, i.e.
the lower the wavelength of the pulses sent through the samples, see Figure 1.6 (b).

Tests on sample set A2 (solid ‘bar-like’ aluminum boxes characterized by constant square-
shaped cross sections with edge length of 3 mm, and by heights varying from 30 mm to 110 mm,
see Table 1.5) reveal that longitudinal wave velocities increase with increasing frequency, unless
they even reach, for f = 10 MHz and f = 20 MHz, the constant value of the bulk velocity
of aluminum, vL =

√

C1111/ρ, see Figure 1.7. At frequencies below 10 MHz, the longitudinal
wave velocities increase with decreasing height, i.e. with decreasing slenderness of the bar-
like specimens. Only at the lower frequencies, the most slender samples are transmitted by
extensional waves (also called bar waves), and only at the higher frequencies, the least slender
samples are transmitted by bulk waves, see Figure 1.7 (a).

Tests on sample set B (solid ‘plate-like’ aluminum boxes characterized by constant square-
shaped cross sections with edge length of 30 mm, and by heights/thicknesses varying from
0.5 mm to 30 mm, passing from plate-type to cubic shape, Table 1.5) reveal that propagation
velocities are independent on height or thickness, being equal to the bulk velocity, and that
they undergo large errors in case of small thicknesses in particular in combination with small
frequencies (i.e. large wavelengths), see Figure 1.8. These errors are in perfect agreement
with our estimation of Section 1.3.3; i.e. for small thicknesses, the precision of the ultrasonic
measurement system is lost.

The aforementioned test results referring to samples sets A1, A2, B, and R, can be cast into
a consistent whole, by considering the normalized longitudinal wave velocities as ‘altitudes’
related to locations in the plane spanned by the dimensionless variables ‘edge-length-over-
height (a/h)’ and ‘height-over-wavelength (h/λL)’, see Figures 1.9 and 1.10. Figure 1.9 refers
to a 3D representation of the function (1.35), covering a range of the dimensionless variables a/h
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Figure 1.7: Specimen set A2, R-1 (according to Table 1.5): Dependency of dimensionless longi-
tudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL), on (a) edge-length-over-height parameter
(a/h), and on (b) height-over-wavelength parameter (h/λL); data points relating to the same
a/λL-ratio are connected by solid lines — remarkably, these lines are nearly parallel, even if a
changes.

and h/λL, over four orders of magnitude. The lowest longitudinal wave velocities, matching
the extensional velocity, are reached for slender samples (small a/h) when excited through
relatively long wavelengths (large h/λL). Shorter wavelenghts (smaller h/λL) seem to induce
deformational constraints in the bar, being therefore transmitted by waves faster than the
extensional wave. For less slender specimens (larger a/h) the bulk velocity is reached the earlier,
the smaller the relative wavelengths h/λL, i.e. the more of the aforementioned deformational
constraints are imposed onto the sample. The corresponding boundary of the ‘high plateau’ in
Figure 1.9, related to bulk wave propagation, can be quantified by a linear relation in log (a/h)
and log (h/λL), so that

bulk wave propagation ∀
(a

h

)

,

(
h

λL

)

with A log
(a

h

)

+ B log

(
h

λL

)

≤ 1 , (1.36)

where A = −1.426 and B = −0.530 (see solid bold lines in Figures 1.9 and 1.10). The boundary
for extensional wave propagation (with up to 5% error) is approximately parallel to this line
(see dashed bold lines in Figures 1.9 and 1.10). Beyond that boundary when tending towards
h/λL → 0, a/h → 0 (i.e. for bar-shaped specimens excited by low-frequency signals), the
bar-shaped specimens are transmitted by extensional waves,

extensional wave propagation ∀
(a

h

)

,

(
h

λL

)

with C log
(a

h

)

+ D log

(
h

λL

)

≥ 1 ,

(1.37)
with C = −0.776 and D = −0.282. However, it is interesting to note that bar-shaped specimens
(see vertical line at a/h ≈ 0.015 in Figure 1.10) may well be transmitted by bulk waves rather
than by extensional waves. This is the case for wavelengths being smaller than the cross
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Figure 1.8: Specimen set B, R-3 (according to Table 1.5): Dependency of dimensionless longi-
tudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL), on (a) edge-length-over-height parameter
(a/h), and on (b) height-over-wavelength parameter (h/λL); data points relating to the same
a/λL-ratio are connected by solid lines.

sectional length a (see h/λL ≈ 300, λL = 0.22 a, in Figure 1.10), i.e. for high frequency signals
propagating through our bar-type specimens. Our finding is consistent with that of Kolsky
(1964) who stated that the transition from extensional to bulk wave propagation through bar-
type specimens starts at λL ≈ a (h/λL ≈ 100, a/h ≈ 0.01, in Figure 1.10). For λL ≤ a, the
stress distribution across the specimen cross section is not any more uniform. This uniformity,
however, would be the prerequisite for the validity of beam theory, here in the sense of Eq. (1.18).
On the other side of the ‘bulk velocity plateau’ in Figures 1.9 and 1.10, measurements of
longitudinal waves through thin plates (large values of a/h) may become increasingly awkward
and afflicted with errors, reflected by steep peaks and valleys adjacent to the ‘high plateau’
towards large edge-length-over-height ratios. Figures 1.9 and 1.10 also suggest cubes to be an
appropriate specimen shape for bulk wave velocity determination, especially for high frequencies
(a/h = 1, h/λL → ∞, see dash-dotted line in Figures 1.9 and 1.10) when the wave is ‘detecting’
RVEs being much smaller than the specimen, while at low frequencies (a/h = 1, h/λL → 0, see
dash-dotted line in Figures 1.9 and 1.10) specimens and RVEs are not well separated by scale
and the bulk wave plateau in Figure 1.9 becomes a little ‘wavy’. The limit case h/λL → ∞ is
also preferable when aiming at bulk wave determination on platy specimens, see Figure 1.10
for a/h ≈ 10 – 100, while, for h/λL < 1, measurements on platy specimens may be afflicted
with large measurement errors (see Figure 1.10). This is consistent with the theoretical error
propagation analysis in Section 1.3.3, Table 1.4.

The elastodynamic analogon to (1.32) for shear waves reads as

vT =

√

C1212

ρ
, (1.38)

with vT as the (‘bulk’) shear wave velocity, and with C1212 as the shear stiffness component of
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Figure 1.9: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless longi-
tudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL), on specimen geometry (edge-length-over-
height parameter a/h), and on wave frequency (in terms of height-over-wavelength parameter
h/λL).

the elasticity tensor (being equal to the shear modulus G), compare (1.15)2. Considerations
analogous to (1.33) – (1.35) yield the dimensionless shear wave velocity as

vT,exp
√

C1212/ρ
=

vT,exp

vT

= G
(

a

h
,

h

λT

)

. (1.39)

Function G is a ‘high plateau’ at altitude ‘1’ (reflecting the fact that there do not exist ‘bar-type’
shear waves), and is only bounded by ‘peaks’ and ‘valleys’ related to the technical limitations
of the employed measurement system (described in Section 1.3.2), see Figures 1.11 and 1.12.

1.7 Microstructure-specific wave propagation

While the last section was devoted to the case of the long-wavelength-limit, where the wave-
lengths are significantly larger than the material volumes [see right-hand side of Eq. (1.1)], we
now discuss propagation velocities of waves spanning the entire range from wavelengths being
much larger than the material volumes of porous media, via such being of the size of such porous
material volumes or of the size of the microstructural entities (pores), to finally such being even
smaller than the microstructural entities (pores). As described in Section 1.4, we study the
microstructure ‘cylindrical pores in solid (isotropic) aluminum matrix’ [with hexagonal (and
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Figure 1.10: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless
longitudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL), on specimen geometry (edge-length-
over-height parameter a/h), and on wave frequency (in terms of height-over-wavelength param-
eter h/λL) — top view.

hence transversely isotropic) instead of isotropic properties], which, according to Drugan and
Willis (1996), is an extreme case where the microstructural entities start to have a discernable
influence already at relatively large wavelengths. Accordingly, Eq. (1.35) now refers to very
small waves traveling directly through the isotropic aluminum matrix, without interference with
the cylindrical pores. However, the experimentally determined velocities are now functions of
two additional arguments, pore diameter d and porosity ϕ, so that the dimensionless function
(1.35) needs to be extended to the format

vL,exp

vL

= H
(

a

λL

,
h

λL

,
d

λL

, ϕ

)

. (1.40)

In order to keep the discussions in a tractable size, we now consider only ranges where our
previous study on sample sizes did not suggest influences of a/h and h/λL on vexp/vL, i.e. we
restrict ourselves to the ‘high plateau’-regions of Figures 1.9 and 1.10. In other words, we
study microstructure-specific wave propagation, independent of sample geometry-specific wave
propagation. Accordingly, we consider the dimensionless functions

vL,exp
√

C1111/ρ
=

vL,exp

vL

= I
(

d

λL

, ϕ

)

and
vT,exp

√

C1212/ρ
=

vT,exp

vT

= J
(

d

λT

, ϕ

)

, (1.41)
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Figure 1.11: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless
transversal wave velocity (vT,exp/

√

C1212/ρ = vT,exp/vT ), on specimen geometry (edge-length-
over-height parameter a/h), and on wave frequency (in terms of height-over-wavelength param-
eter h/λT ).

where (1.41)2 relates to transversal waves through specimens which do not evoke measurement
errors (see ‘high plateau’-regions in Figures 1.11 and 1.12). In order to elucidate the features
of I and J , we evaluate the test results of sample set C (mainly cubic samples with cylindrical
pores in different configurations, defined in Figure 1.4 (b) and Table 1.6). Because of the trans-
versely isotropic nature of the specimen with the principle material directions 1, 2, and 3 (see
Figure 1.4), functions I and J additionally depend on the propagation direction. Accordingly,
we discuss in the following three functions I, I1, I2, I3, related to longitudinal wave propaga-
tion velocities v1,1,exp, v2,2,exp, and v3,3,exp, respectively (the repeated index indicates coincidence
of the propagation and polarization directions in longitudinal waves), and six functions J , Ji,j,
i 6= j, i, j = 1, 2, 3, related to transversal wave velocities vi,j,exp with propagation direction
i and polarization direction j, i 6= j. 3D representations of functions I1 [see Figure 1.13 (a);
velocity referring to longitudinal normal stiffness], average of I2 and I3 [see Figure 1.13 (b);
velocities referring to (transverse) normal stiffness in isotropic plane], average of functions J1,3,
J3,1, J2,3, and J3,2 [see Figure 1.14 (a); velocities referring to longitudinal shear stiffness], and
average of functions J1,2, J2,1 [see Figure 1.14 (b); velocities referring to (transverse) shear stiff-
ness in the isotropic plane] show the dependency of the bulk wave velocity on both the porosity
ϕ and the pore-diameter-over-wavelength parameter d/λi.

Generally, longitudinal wave velocities increase with increasing pore diameter-over-wavelength
ratio d/λL, with two limit cases:



38 Publication 1 — Kohlhauser and Hellmich (2009b) Doctoral Thesis

Figure 1.12: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless
transversal wave velocity (vT,exp/

√

C1212/ρ = vT,exp/vT ), on specimen geometry (edge-length-
over-height parameter a/h), and on wave frequency (in terms of height-over-wavelength param-
eter h/λT ) — top view.

1. For large values of this ratio d/λL, the longitudinal waves travelling in the cylindrical pore
direction reach the bulk velocity related to pure aluminium alloy [see Figure 1.15 (a)];
in other words, the waves [with wavelengths shorter than the pore diameters, i.e. for
d/λL ≈ 2 at higher porosities, but even for d/λL ≈ 0.04 at low porosities] propagate
through the solid aluminium matrix, while not interacting with the cylindrical pores [see
Figure 1.15 (a)]. This is also true for the longitudinal waves travelling perpendicular to the
cylindrical pore direction, within the specimens which exhibit the lower porosity [see lines
labeled by circles and squares in Figures 1.15 (b) (c) (d)]. At higher porosities, the latter
waves have to circumvent the pores, resulting in a more tortuous path through the solid
aluminium matrix — this leads to longer times of flight and to a lower velocity measured
along the shortest distance between the opposite faces of the considered specimen [see
lines labeled by diamonds and triangles in Figures 1.15 (b) (c) (d)]. This tortuosity effect is
more pronounced in the direction 2 (characterized by a zig-zag-type positioning of pores)
than in the direction 1 [where straight (but only very thin) wall paths exist between
the specimen faces, which, inspite of their straightness, cannot provide a tortuosity-free
propagation of longitudinal waves, see Figure 1.4 (a) and compare Figures 1.15 (d) and
(c)]. The tortuosity effect may be also enhanced by diffusive wave scattering and/or
geometry-induced attenuation.
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Figure 1.13: Dependency of normalized longitudinal ultrasonic velocities in transversal isotropic
media in (a) longitudinal [v1,1,exp/vL] and (b) transverse [(v2,2,exp + v3,3,exp)/2/vL] direction on
d/λL and ϕ [model predictions according to Hashin and Rosen (1964) and Hlavacek (1975),
respectively, shown for reference in (a) and (b), respectively (surfaces without gridlines); for
details see Section 1.8 and the Appendix].

2. For small values of d/λL, the waves reach the bulk velocity related to the porous media
through which they travel. These bulk velocities can be reasonably predicted by ran-
dom homogenization theory (continuum micromechanics), corresponding predictions are
indicated in Figure 1.15 (while we refer to the next section for mathematical expressions
related to different micromechanical models). This good predictability shows that the
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Figure 1.14: Dependency of normalized transversal ultrasonic velocities in transversal isotropic
media in (a) longitudinal [(v3,1,exp + v3,2,exp + v1,3,exp + v2,3,exp)/4/vT ] and (b) transverse
[(v1,2,exp+v2,1,exp)/2/vT ] direction on d/λT and ϕ [predictions of Mori-Tanaka-type model shown
for reference (surfaces without gridlines); for details see Section 1.8 and the Appendix].



40 Publication 1 — Kohlhauser and Hellmich (2009b) Doctoral Thesis

waves (with wavelengths being considerably larger than the pore diameter, i.e. tending
towards the long-wavelength-limit) ‘feel’ the entire porous medium, consisting of both
the solid aluminium matrix and the cylindrical air pores. In accordance with theoretical
micromechanics, the bulk velocities through the considered specimens are the smaller the
higher the porosity, and they are smaller in the transversely isotropic directions than in
the anisotropic direction (that of the cylindrical pores). Still, it should be noted that
for constant pore diameter d and constant frequency f , λL is smaller in the transverse
directions (due to lower propagation velocities in these directions). At higher porosi-
ties, this smaller λL may not feel any more the porous medium in the sense of theoretical
micromechanics, see Figure 1.15 (b) (c) (d), for ϕ = 48.7%. Also, the implication of hexag-
onal microstructures exhibiting transversely isotropic material behaviour (Helbig 1994),
i.e. v2,2 = v3,3 in Figures 1.15 (c) (d), is experimentally reflected only at sufficiently large
wavelengths. Otherwise, the continuous straight paths between the pores, oriented in
direction 1 (see Figure 1.4), lead to overestimation of the effective porous medium-related
longitudinal wave velocity.
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Figure 1.15: Specimen set C (transversely isotropic, porous specimens): Influence of pore
diameter-over-wavelength ratio (d/λL), on longitudinal dimensionless wave velocities in (a)
anisotropic direction 3 (orientation of cylindrical pores), v3,3,exp, and in (b, c, d) directions
within isotropic plane, v1,1,exp, v2,2,exp, (v1,1,exp + v2,2,exp)/2 (for definition of directions 1 and 2,
see Figure 1.4; micromechanical models are detailed in Section 1.8 and the Appendix).

Similar trends are observed for transversal waves travelling through the porous specimens of set
C (see Figure 1.16). However, two major differences with respect to the longitudinal waves are
noted: (i) the ‘tortuosity effect’ for short wavelengths is negligible, so that all waves reach, for
large d/λT , the shear wave velocity related to the aluminum matrix (see Figure 1.16), (ii) for
diminishing d/λT below 1, the effective (long-wavelength-limit-related) transversal velocities
related to the porous medium are reached significantly faster than it is the case for longitudinal
waves. This effect is particulary characteristic for transversal velocities in the cylindrical pore
direction, v3,1 and v1,3 [see Figure 1.16 (a) (b)]. For small d/λT , when the separation-of-scales
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Figure 1.16: Specimen set C (transversely isotropic, porous specimens): Influence of pore
diameter-over-wavelength ratio (d/λT ), on transversal dimensionless wave velocities in (a, b)
anisotropic direction 3 (orientation of cylindrical pores), v3,1,exp and v3,2,exp, in propagation
directions within the isotropic plane with (c, d) polarization directions perpendicular to this
plane, v1,3,exp and v2,3,exp, and with (e, f) polarization directions within this plane, v1,2,exp and
v2,1,exp, (for definition of directions 1 and 2, see Figure 1.4; micromechanical models are detailed
in Section 1.8 and the Appendix).

requirement (1.1) is fulfilled, the experimental measurements show the theoretically expected
symmetries v1,3 = v3,1 = v2,3 = v3,2 and v1,2 = v2,1 (Figure 1.16). When leaving this limit,
wave propagation is less influenced by a change of polarization direction only [compare Fig-
ures 1.16 (a) and (b)], as compared to a change in both polarization and propagation directions
[compare Figures 1.16 (a) and (c) as well as Figures 1.16 (b) and (d)].
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1.8 Waves characterizing representative material volumes

— comparison to theoretical micromechanics

For small d/λ, the separation-of-scales requirement (1.1) is fulfilled and the ultrasonic waves
characterize a representative volume element of the transversely isotropic porous aluminum ma-
terial of specimen set C. It is instructive to compare these experimental results (Figures 1.13
to 1.16) to mathematical models from the micromechanics field, as to elucidate the relevance
of both the employed experimental technique and the theories developed over half a century.
For this purpose we have evaluated the theoretical predictions of four different mathemati-
cal models relating pore morphology and volume fraction to elastic stiffness tensors of the
investigated porous materials (which are related, via (1.12), (1.13), and (1.14), to the long-
wavelength-limit-related propagation velocities vi,j, i, j = 1, 2, 3): (i) Hashin & Rosen’s 1964
variational method for effective elastic properties of a (isotropic) solid matrix perforated by ran-
domly distributed cylindrical pores (Hashin and Rosen 1964), (ii) Hlavacek’s 1975 Hamilton’s
principle-based method for effective elastic properties of a (isotropic) solid matrix perforated by
hexagonally arranged pores (Hlavacek 1975), (iii) Eshelby (1957) problem-based, Mori-Tanaka-
type estimation of effective elastic properties of a solid matrix with randomly distributed pores,
in the context or random homogenization theory (mean field homogenization) or continuum
micromechanics (Mori and Tanaka 1973; Benveniste 1987; Zaoui 2002), and (iv) the unit cell
method for effective elastic properties of periodic media (Suquet 1987; Böhm 2004; Li 2000),
applied to an array of periodically arranged cylindrical pores in a solid matrix. Details on these
micromechanical models can be found in Appendix 1.10. For discussion of these models with
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Figure 1.17: Normal stiffness tensor components (C3333, C1111 = C2222) as function of volume
fraction of pores ϕ — comparison of ultrasonic measurements (f = 50 kHz) with hexagonal
array models [Hlavacek (1975) and unit cell according to Figure 1.4 (c)] and random array
models (Hashin and Rosen 1964; Mori and Tanaka 1973).
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respect to our experiments, we employ the following error measures

δ =
1

k

k∑

n=1

Chom
ijij (n) − Cexp

ijij(n)

Cexp
ijij(n)

=
1

k

k∑

n=1

δn and s =

√
√
√
√ 1

k − 1

k∑

n=1

(δn − δ)2 (1.42)

where k = 4 for C3333 and C1212, k = 8 for C1111 and C1313, δn is the relative error of each
model stiffness prediction, and δ and s are the mean and standard deviations of these errors,
respectively.
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Figure 1.18: Shear stiffness tensor components (C1313 = C2323, C1212) as function of volume
fraction of pores ϕ — comparison of ultrasonic measurements (average of results from f = 100,
250, and 500 kHz were used) with hexagonal array models [Hlavacek (1975) and unit cell
according to Figure 1.4 (c)] and random array models (Hashin and Rosen 1964; Mori and
Tanaka 1973).

As regards normal stiffnesses (Figure 1.17), the experimental values for the longitudinal stiffness
component C3333 agrees almost perfectly with Hashin and Rosen’s micromechanical estimates
(relative error of 0.1 ± 1.1%, see thin dash-dotted line and upright triangular marker in Fig-
ure 1.17), while these values lie slightly above the micromechanical predictions of the Hlavacek
model, the Mori-Tanaka-type random homogenization result, and our unit cell approach (rel-
ative errors of −4.5 ± 0.6%, −5.5 ± 0.6%, and −5.3 ± 0.7%, respectively; see thin dotted and
thick dashed lines, as well as square and upright triangular markers in Figure 1.17), and they
are larger for the tests in specimen C-3 (with ϕ = 22.8% and larger pores) than for C-1 (with
ϕ = 21.9% and smaller pores). The latter observation reflects the effectively larger RVE of
C-3, when compared to that of C-1. The experimental values for the transverse normal stiff-
ness component C1111 lie slightly above the predictions of the Hlavacek model (relative error of
−9.6 ± 6.3%, see thin dashed line and horizontal triangles in Figure 1.17), and are even more
distant from the Mori-Tanaka-type and unit cell predictions (relative errors of −18.9 ± 6.1%
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and −20.0 ± 7.4%, respectively; see thick solid line, as well as circular and horizontal trian-
gular markers in Figure 1.17). The aforementioned deviations between experimental values
and micromechanical model predictions are the more pronounced the higher the porosity of
the investigated specimens. The experimental values for the plane strain bulk modulus in the
isotropic transverse plane, K12 = C1111−C1212, almost perfectly agree with Hashin and Rosen’s
micromechanical estimates (relative error of −3.4 ± 8.2%, see thin solid line and diamond as
well as upside-down triangle markers in Figure 1.17).

As regards shear stiffnesses (Figure 1.18), the experimental values for the longitudinal shear
stiffness component C1313 agree almost perfectly with the Mori-Tanaka-type micromechanical
estimates (relative error of −1.5±3.0%, see thick dashed line and horizontal triangular markers
in Figure 1.18), as well as with those of our unit cell models (relative error −1.3 ± 3.1%,
see circular and horizontal triangular markers in Figure 1.18), with those of Hlavacek’s 1975
model (relative error of −0.2 ± 3.3%, see thin dotted line and horizontal triangular markers in
Figure 1.18), and with those of Hashin and Rosen’s 1964 model (relative error of −1.5± 3.0%,
see thin dash-dotted line and horizontal triangular markers in Figure 1.18). The experimental
values for the transverse inplane shear stiffness C1212 agree almost perfectly with the Mori-
Tanaka-type stiffness estimate (relative error of 2.5 ± 2.0%, see thick solid line and upright
triangular markers in Figure 1.18), and almost as well with the predictions from our unit
cell approach (relative error of −3.2 ± 7.1%, see square and upright triangular markers in
Figure 1.18), while Hlavacek’s 1975 model grossly overestimates the experimentally determined
shear stiffnesses (relative error of 29.7 ± 10.1%, see thin dashed line and upright triangular
markers in Figure 1.18).

1.9 Discussion and conclusion

Our experimental and theoretical results allow for a number of conclusions:

– concerning measurement errors: Ultrasonic measurements are a very precise means to
determine diagonal (normal and shear) stiffness components, while they give (by a factor
of two) less precise values for off-diagonal (Poisson-effect-related) stiffness components
(Section 1.5). Ultrasonic measurements are satisfactorily precise on bar-type, cubic and
thick plate-type specimens, while they may exhibit large measurement erros on thin plates,
especially at low frequencies (Section 1.5 and 1.6).

– concerning specimen shape (extensional-bulk-wave transition): Bar-shaped specimens
with slenderness ratio larger than ten excited by low-frequency signals transmit (1D)
extensional or bar waves, whereby the specimen needs to be the more slender the higher
the signal frequency to be transmitted as extensional wave. Beyond a quite narrow
extensional-bulk-wave transition regime, less slender bar-type specimens excited by higher
frequency signals transmit (3D) bulk waves whereby specimens need to be the less slender
the lower the frequency to be transmitted as bulk waves. All non-slender bar-, cube-, and
plate-shaped specimens are transmitted by bulk waves. Transversal wave propagation is
not affected by specimen shape, except for measurement errors (Section 1.6).

– concerning porosity: For porous non-slender specimens, the wave propagation type de-
pends on the ‘pore-diameter-over-wavelength’ ratio and on the porosity. Cube-shaped
porous specimens excited by low frequency signals transmit bulk waves relating to the
effective porous medium (long-wavelength-limit), whereby the specimen needs to be the
more porous, the higher the frequency to be transmitted as effective wave ‘feeling’ the
porous medium. Beyond a long-to-short wavelength transition period, the size of which
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is comparable to transition regions in other (two-phase) materials (Mason and McSkimin
1948; Kinra and Anand 1982; Stanke and Kino 1984; Gubernatis and Domany 1984) and
which is increasing with increasing porosity and with decreasing direction-dependent wave
propagation velocity, cube-shaped porous specimens excited by higher frequencies trans-
mit bulk waves relating to the solid aluminum matrix (short-wavelength-limit). Thereby,
specimens need to be the less porous, the lower the frequencies to be transmitted as waves
‘feeling’ the solid matrix (Section 1.7).

– concerning micromechanic predictions: Long-limit wave velocities and stiffnesses in transver-
sal isotropic porous media are well predicited by the Mori-Tanaka, Hashin-Rosen, and unit
cell micromechanical methods. This is particularly true for shear stiffnesses, for normal
stiffnesses in cylindrical pore direction, and for plain strain bulk moduli. While experi-
mentally determined normal stiffnesses perpendicular to the cylindrical pore direction are
better predicted by Hlavacek’s micromechanical model (Section 1.8).
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1.10 Appendix: Micromechanics models — background

1.10.1 Variational method for effective elastic properties of a solid
matrix perforated by randomly distributed parallel cylindri-
cal pores — Hashin and Rosen (1964)

Hashin and Rosen (1964) aim at estimating the elastic behaviour of a porous material consisting
of a solid matrix perforated by parallel, randomly distributed, coated cylindrical pores — which
we here specialize for non-coated pores. Therefore, a representative volume element of such
a porous material is considered, and subjected to homogeneous boundary conditions, be it in
terms of macroscopic stresses or strains. In order to estimate the elastic response of such an RVE
to these boundary conditions, single cylinders (‘composite cylinders’) consisting of a cylindrical
pore and surrounding material are subjected to homogeneous stress boundary conditions [this
leads to a lower bound for the effective (homogenized) stiffness], and to homogeneous strain
boundary conditions [this leads to an upper bound for the effective (homogenized) stiffness]. In
case of a random arrangement of pores, the entire material space is filled up with the composite
cylinders, so that the upper and the lower bounds coincide. Then, the effective (homogenized)
Young’s modulus Ehom

3 and the plain strain bulk modulus in the isotropic transverse plane
Khom

12 = Chom
1111 − Chom

1212 are given as

Ehom
3 = E (1 − ϕ) and Khom

12 = (C1111 − C1212)
2 ν (1 − ϕ)

2 ν + ϕ
, (1.43)
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respectively, where E, ν, C1111, and C1212 are the elastic constants of the isotropic matrix (in
our case aluminum alloy, see Table 1.7), and ϕ denotes the porosity (see Table 1.6). The
corresponding longitudinal (normal and shear) stiffness components, Chom

3333 and Chom
1313 = Chom

2323

read as

Chom
3333 = Ehom

3 + 4 ν2 Khom
12 and Chom

1313 = C1212
1 − ϕ

1 + ϕ
. (1.44)

1.10.2 Hamilton’s principle-based method for effective elastic prop-
erties of a solid matrix perforated by hexagonally arranged,
parallel cylindrical pores — Hlavacek (1975)

Hlavacek (1975) developed an effective stiffness theory for a hexagonal array of (isotropic)
cylindrical inclusions embedded in a (isotropic) matrix (which we here specialize for pore inclu-
sions), by assuming specific (continous) displacement distributions within the composite, and
by relating them to some ‘gross-displacements’, which, via Hamilton’s principle in combination
with the elastic and mass properties of the solid matrix and with the porosity, gives access to
phase velocities of waves propagating in the lowest mode through the porous medium. Com-
paring these expressions for the phase velocities with those obtained from elastodynamics of
the homogenized medium, yields the effective (homogenized) elastic properties of the porous
medium as

Chom
1111 =

(

q + p (3 q + 1)

− p2 2 p q (3 q + 1) (q + 1) − ϕ (3 q + 1) (q − 1) − ϕ q (q + 1)2

[p (q + 1) − ϕ] [2 p q − ϕ (q − 1)]

)

C1212 , (1.45)

Chom
3333 =

(

q (1 − ϕ) − ϕ2 r2

2 p q − ϕ (q − 1)

)

C1212 , (1.46)

Chom
1212 =

(

1 + p (q + 1) − p2 (q + 1)2

p (q + 1) − ϕ

)

C1212 , (1.47)

Chom
1313 =

(
4 p − ϕ (4 p + 1)

4 p − ϕ

)

C1212 , (1.48)

with the abbreviations p, q, and r being defined as

p = − ϕ log(ϕ)

8 (1 −√
ϕ)2

, q = 2
1 − ν

1 − 2 ν
, and r = 2

ν

1 − 2 ν
. (1.49)

1.10.3 Mean-field homogenization method (Mori-Tanaka estimate)
for effective elastic properties of a solid matrix perforated by
randomly distributed, parallel cylindrical pores — Eshelby
(1957); Mori and Tanaka (1973); Benveniste (1987)

A representative volume element (RVE) of the above mentioned porous material is considered,
and subjected to homogeneous boundary conditions, be it in terms of macroscopic stresses
or strains. These boundary conditions imply that the spatial average of the equilibrated mi-
crostresses within the RVE are equal to the homogeneous (macroscopic) strains (strain average
rule), and the spatial average of the kinematically admissible microstrains within the RVE
are equal to the homogeneous (macroscopic) stresses (stress average rule). Then, the strain
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average rule is combined with Eshelby’s 1957 matrix inclusion problem relating the strains in
a cylindrical pore to those subjected to the remote boundary of an infinite matrix surround-
ing this pore, yielding relations between the remote auxiliary strains and the macroscopic,
RVE-related strains. The resulting concentration relations between RVE-related homogeneous
strains and pore and matrix strains, together with the stress average rule, give finally access to
the homogenized elastic properties, in the form (Zaoui 2002)

C
hom = (1 − ϕ) C :

[
(1 − ϕ) I + ϕ [I − Pcyl : C]−1]−1

, (1.50)

where I, Iijkl = (δik δjl +δilδjk), is the fourth-order unity tensor, and where Pcyl is a fourth-order
(symmetric) tensor depending on the shape of cylindrical inclusions and on the stiffness tensor
C of the (herein isotropic) matrix (components see Table 1.7, column two). The non-zero tensor
components of Pcyl read as [see e.g. Hellmich et al. (2004)]

P1111 = P2222 = P (5 C1111 − 3 C1122) , P1122 = −P (C1111 + C1122) ,
P1313 = P2323 = 2 P C1111 , and P1212 = P (3 C1111 − C1122) ,

(1.51)

with P = 1/(8 C1111 (C1111 − C1122)).

1.10.4 Unit cell method for effective elastic properties of a solid ma-
trix perforated by hexagonally arranged, parallel cylindrical
pores

The unit cell is subjected to periodic (symmetric or antisymmetric) boundary conditions for the
displacements (Böhm 2004), such that the spatial averages of the corresponding strains are equal
to the macroscopic strains related to the porous material. Linking these macroscopic strains to
the spatial average of the periodic microstresses they provoke, i.e. to the macroscopic stresses,
yields the homogenized effective stiffness of the porous material. In detail, four independent
displacement configurations are imposed on the boundary of the unit cell to provoke unit values
of macroscopic strain components. More specifically, the spatial averages of the corresponding
periodic (normal and shear) microstresses are equal to the components of the homogenized
stiffness tensor of the porous material.

Four finite element models of unit cells (consisting of 6550, 8690, 13104, and 19750 eight-node
linear brick elements, respectively) were built in ABAQUS according to Figure 1.4 (c) [see
Table 1.6 and Eq. (1.30) for pore-diameter-over-pore-distance ratios d/e related to different
porosities], in order to represent the microstructure of the specimens making up set C. No
significant changes in elastic stiffnesses were observed when (almost 200000) elements half the
size of the aforementioned elements were used for representation of specimen C-4, so that the
numerical results indicated by circles and squares in Figures 1.17 and 1.18 can be considered
as converged in the sense of a sufficiently fine Finite Element discretization (Zienkiewicz and
Taylor 2000).
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Poisson’s ratios (and thus off-diagonal stiffnesses) of materials exhibiting different symmetries
can be directly determined by means of mechanical tests. However, this is sometimes not pos-
sible or too complex, due to low material symmetries or awkward specimen preparation. An
alternative approach, using ultrasonic wave propagation, is very sensitive to errors in the deter-
mination of off-diagonal stiffness tensor components. As a remedy, we here propose to obtain
Poisson’s ratios from the normal (diagonal) elasticity tensor components and the Young’s mod-
uli. Thereby, Young’s moduli are determined from quasi-static mechanical tests, and normal
stiffness tensor components are determined from ultrasonic tests with the pulse transmission
technique. In this context, we review the notions of energy, group, and phase velocity.

Poisson’s ratios of isotropic, transversely isotropic, and orthotropic non-axially auxetic materi-
als are expressed as functions of normal elastic stiffnesses, considering the positive definiteness of
the stiffness and compliance tensors. The relevance of our method is shown by comparing Pois-
son’s ratios computed from normal elastic stiffnesses given in the literature, to experimentally
given Poisson’s ratios, for a range of materials including (isotropic) aluminum, (transversely
isotropic) aluminum matrix-fiber composite and (orthotropic) stainless-steel weld metal. Fi-
nally, the method is applied to (orthotropic) wood (namely spruce), by measuring four normal
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stiffnesses, and relying on a spruce-specific universal constant involving longitudinal Poisson’s
ratios and on reasonable estimates for the radial Young’s modulus. Resulting ranges of Poisson’s
ratios agree well with ranges of Poisson’s ratios obtained from direct mechanical measurements
on spruce.

2.1 Introduction

In a linear elastic solid, Poisson’s ratio for one pair of orthogonal directions is the ratio of
the lateral (or transverse) contraction in one of these directions, to the axial extension in
the other direction, due to a uniaxial tension applied along this (axial) direction (Ting and
Barnett 2005). Knowledge of Poisson’s ratios (defining the off-diagonal components of the
compliance tensor) or of the off-diagonal components of the elasticity tensor is necessary for
the complete description of the elastic behavior of materials, e.g. for use in finite element
simulations or other spatial modeling approaches. Especially for anisotropic materials, where
all Poisson’s ratios cannot be anymore computed from the Young’s and shear moduli (as it is
the case for isotropic materials), their exact experimental determination is necessary. Besides
stiffness and strength of a material, the complexity of experimental determination of Poisson’s
ratios strongly depends on material anisotropy. Symmetry properties of anisotropic materials
are usually described by symmetry classes used to characterize crystal symmetry (the lowest
symmetry to be considered in this work is the orthorhombic one). Materials with orthorhombic
symmetry imply three mutually perpendicular two-fold symmetry axes, i.e. three orthogonal
symmetry planes [for a classification of orthotropic materials based on normal stiffnesses, see
(Musgrave 1981)].

While Poisson’s ratio of isotropic materials is bounded by −1 and 0.5 (stemming from the
necessary positive definiteness of the strain energy density), Poisson’s ratios of anisotropic
materials do not exhibit any bounds (Ting and Chen 2005). Materials with at least one negative
Poisson’s ratio for a pair of orthogonal directions are called auxetic; and if all Poisson’s ratios
are positive, the material is nonauxetic. Materials are axially auxetic or axially nonauxetic,
depending on whether or not a negative Poisson’s ratio arises for principal material directions
(Baughman et al. 1998). Negative Poisson’s ratios have been observed experimentally for
isotropic materials (Lakes 1987) and cubic materials (Baughman et al. 1998), and negative
Poisson’s ratios have been predicted numerically for orthotropic, physical reasonable materials
(Boulanger and Hayes 1998; Rovati 2003). Still, negative Poisson’s ratios are not common in the
principle directions of most materials. Ting and Barnett (2005) gave simple necessary conditions
for compliance tensor components of general anisotropic materials (and sufficient conditions for
isotropic, cubic, and hexagonal symmetry), as to identify if the material is nonauxetic (or
completely auxetic). In this paper, we shall restrict ourself to the most common case of axially
nonauxetic materials.

Determination of Poisson’s ratios is, in most cases, either performed using standard mechanical
(tensile) tests or via inversion of the elasticity tensor measured in ultrasonic tests. While
in the former methods Poisson’s ratios are determined directly from strain measurements,
the latter methods use wave propagation in different directions to obtain the elastic stiffness
tensor components. In order to obtain orthotropic elasticity tensor components in the principle
material directions, wave propagation in symmetry planes, more precisely in all principle and
three non-principle directions, is necessary. Ultrasonic measurements in non-principle directions
(for off-diagonal stiffnesses) are very sensitive to errors in velocity measurements. Errors of 0.1%
in velocity can yield errors in off-diagonal stiffness components of 35% (Kriz and Stinchcomb
1979), and errors higher than 25% were expected by several researchers (Papadakis et al. 1991;
Every and Sachse 1992). Measurements (in particular such involving off-diagonal elasticity
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tensor components) are also extremely sensitive to the angle of incidence with respect to the
principle material directions. Wooh and Daniel (1991) showed (for a fiber composite) that a
change of 20◦ can yield values for Poisson’s ratios that are ten times larger than the correct
values, and Turner and Cowin (1988) showed that a 5◦ off-axis angle in bone yields 10% errors in
Poisson’s ratios. Ultrasound may even suggest negative Poisson’s ratios in materials not showing
such behavior, like composites or wood (Mouchtachi et al. 2004; Kazemi-Najafi et al. 2005). All
these errors might not be obvious when comparing ultrasonic-derived Young’s moduli to results
from mechanical tests, where deviations may be attributed to the difference in experimental
methods, or may be simply considered non-relevant.

Our approach to overcome these problems is to measure (normal) stiffnesses rather than Pois-
son’s ratios, and determine the latter analytically from the former. In this context, Kim (1994)
gave analytical expressions for off-diagonal elastic stiffnesses of orthotropic materials in terms
of diagonal normal stiffnesses. Lei et al. (1994) used the product of the stiffness and compliance
tensors to numerically solve for off-diagonal stiffness tensor components. Thereby, ultrasonic
wave propagation was employed as to obtain normal stiffnesses, and a resonance method was
used to obtain Young’s moduli. Application on a weakly orthotropic composite of boron fibers
in an aluminum matrix showed good agreement between measured and computed shear and
off-diagonal elasticity tensors. In the sequel, we give analytical expressions for Poisson’s ratios
of orthotropic, transversely isotropic, and isotropic materials, in terms of (diagonal) normal
stiffnesses. The expressions are applied to three metallic materials (isotropic aluminum alloy,
transversely isotropic aluminum matrix-silica fiber composite, and orthotropic stainless-steel
weld metal) and to the biological orthotropic material wood (softwood spruce). Thereby, we
take normal stiffnesses from literature or from our own experiments (for spruce) and com-
pare the obtained Poisson’s ratios with results from direct mechanical measurements and/or
ultrasonic measurements in non-principal directions of anisotropic materials.

The paper is organized as follows: First, the direct measurement of Poisson’s ratios in me-
chanical tests is described (Section 2.2), followed by their determination from ultrasonic tests
(Section 2.3). Section 2.4 gives the analytical relationships between Poisson’s ratios and nor-
mal elastic stiffnesses. In Section 2.5, Poisson’s ratios of three different materials (aluminum,
aluminum matrix-silica fiber composite, stainless-steel weld metal) are determined from nor-
mal stiffnesses, and compared to literature values. In Section 2.6 the combined ultrasonic-
mechanical method is applied to softwood spruce, before the paper is concluded in Section 2.7.

2.2 Poisson’s ratios from uniaxial mechanical tests: mea-

surement of axial and lateral strain

Mechanical testing is performed by applying stresses (tensile, pressure, bending) to the material,
and by measuring the resulting deformation in terms of displacements and strains. The most
common mechanical test is the uniaxial tensile test, in which a tensile stress σ = σjj ej ⊗ ej,
σjj > 0, is applied in axial direction ej; and the resulting strain state ε = εjj ej⊗ej +2 εii ei⊗ei

is measured, in terms of the axial (active) normal strain εjj in direction of the tensile force,
and the normal strain εii perpendicular to this direction, i.e. the transverse (passive) or lateral
strain. This is done with extensometers or non-contact full-field measurement methods. Young’s
modulus Ej in the direction of the applied tensile stress is given by

Ej =
σjj

εjj

. (2.1)
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Poisson’s ratios (see also Section 2.1) are defined according to

νij = − εii

εjj

. (2.2)

It is seen from (2.2) that Poisson’s ratios are determined from directly measured quantities.
Eqs. (2.1) and (2.2) are valid in any direction in an anisotropic material. In this context,
we refer to Zhang et al. (2008) for general expressions for orthotropic symmetry for Young’s
modulus and Poisson’s ratios in terms of Ej and νij (with principle axes i, j = {1, 2, 3}).

2.3 Poisson’s ratios from ultrasonic tests: measurement

of (quasi-)longitudinal and (quasi-)transversal wave

velocities

Our developments focus on the ultrasonic pulse transmission(-through) technique where a trans-
mitter sends an acoustic signal of a specific frequency f through a sample, and a receiver records
the arrival of the signal at the opposite side of the sample. In this case, the distance ℓp be-
tween the interfaces between the sample and the transmitter, and between the sample and the
receiver, together with the time of flight of the signal through this distance, tf , gives access to
the phase velocity vp of the traveling wave, via

vp =
ℓp

tf
, (2.3)

see Appendix 2.8 for more general deliberations on ultrasonic wave velocity measurements with
emphasis on the differences between phase velocity and group or energy velocity.

Combination of the conservation law of linear momentum in a 3D continuum, the generalized
Hooke’s law, the linearised strain tensor, and the general plane wave solution for the displace-
ments inside an infinite solid medium

u(x, t) = u0 exp[i (k · x − ω t)] , (2.4)

with the amplitude u0, the wave vector k = k n (n being the wave direction and k being
the wave number), and the angular frequency ω = 2 π f (f being the frequency of sinusoidal
pertubation) yields the so-called Kelvin-Christoffel equations

(Γ − ρ v2
p 1) · p = 0 , (2.5)

with the acoustic tensor [also called ‘Kelvin-Christoffel matrix’ (Carcione 2001)],

Γ = C · n · n , (2.6)

the phase velocity vp (also often referred to as wave or material sound velocity) of this so-called
bulk wave, defined as (Newton 1687; Carcione 2001)

vp ≡
ω

k
= λ f , (2.7)

the wavelength λ, the (apparent) mass density ρ, the (symmetric) fourth-order elasticity tensor
C [of a material defined on a representative volume element being much smaller than the
wavelength λ, Zaoui (2002), see also Section 2.6] and the second-order unity tensor 1, having



Christoph Kohlhauser 53

δij (Kronecker delta — δij = 1 for i = j, and zero otherwise) as components. p = u0/|u0|
is the normalized displacement or polarization vector, which defines the motion direction of a
material point (‘representative volume element’) and thus defines the mode of the wave. Pure
longitudinal (n · p = 1) and pure transversal (n · p = 0) modes travel in isotropic materials
and along principle material directions of anisotropic materials, while in all other cases, mixed
modes (0 < n · p < 1) occur (Ledbetter and Kriz 1982). If the larger component of p is along
n, one speaks of quasi-longitudinal waves; if the larger component is along a direction normal
to n one speaks of quasi-transversal waves.

By restricting ourselves to materials of orthorhombic or higher symmetries and to wave prop-
agation within the symmetry plane 1 − 2, more precisely in any direction within this plane,
n1−2 = {n1, n2, 0}T , the three eigenvalues v

(i)
p,1−2 of (2.5), i = {1, 2, 3}, give access to the

following (frequency-independent, i.e. non-dispersive) phase velocities

v
(1,2)
p,1−2 =

√

C1111 n2
1 + C2222 n2

2 + C1212 ± c

2 ρ
with

c =

√

[(C2222 − C1212) n2
2 − (C1111 − C1212) n2

1]
2
+ 4 [(C1122 + C1212) n1 n2]

2 (2.8)

and

v
(3)
p,1−2 =

√

C1313 n2
1 + C2323 n2

2

ρ
. (2.9)

The plus sign in the solutions v
(1,2)
p,1−2 [Eq. (2.8)] corresponds to the (quasi-)longitudinal velocity

v
(1)
p,1−2, and the minus sign corresponds to the (quasi-)transversal solution v

(2)
p,1−2. v

(3)
p,1−2 given

in (2.9), is a pure out-of-plane transversal mode, i.e. the polarization vector is oriented per-
pendicular on the propagation plane 1 − 2. Analogous solutions of the eigenvalue problem
(2.5) for waves propagating in the symmetry planes 1 − 3 (n1−3 = {n1, 0, n3}T ) and 2 − 3

(n2−3 = {0, n2, n3}T ) yield v
(i)
p,1−3 and v

(i)
p,2−3, respectively. Specializing these nine solutions

for wave propagation in the principle material directions (n1 = {1, 0, 0}T , n2 = {0, 1, 0}T ,
n3 = {0, 0, 1}T ), yields 18 solutions for ultrasonic phase velocities (each solution is obtained
twice). These solutions, in turn, define the six (diagonal) normal and shear stiffness compo-
nents,

C1111 = ρ v2
1,1 , C2222 = ρ v2

2,2 , C3333 = ρ v2
3,3,

C2323 = ρ v2
2,3 = ρ v2

3,2 , C1313 = ρ v2
1,3 = ρ v2

3,1 , C1212 = ρ v2
1,2 = ρ v2

2,1 ,
(2.10)

where the first index i of the velocities vi,j designates the wave propagation direction, and
the second index j designates the direction of the particle motion induced by the wave, i.e.
the polarization direction (i = j for a longitudinal wave; i 6= j for a transversal wave). The
condition

vi,j = vj,i (2.11)

implies perfect orthorhombic symmetry of the material. Thus, the diagonal components of
the elasticity tensor follow from phase velocities measured in principal directions (two-fold
symmetry axes) of a material with orthotropic or higher symmetry. More precisely, normal
stiffnesses are related to purely longitudinal phase velocities, and shear stiffnesses are related
to purely transversal phase velocities.

For the determination of off-diagonal terms Ciijj, the propagation of ultrasonic waves along

non-principal directions in symmetry planes is necessary. When specializing solutions v
(1,2)
p,1−2
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[Eq. (2.8)], and analogous solutions for other symmetry planes, namely v
(1,2)
p,1−3 and v

(1,2)
p,2−3, for

propagation directions in symmetry planes inclined by 45◦ to the principle material directions
(i.e. n = {1/

√
2, 1/

√
2, 0}T in symmetry plane 1 − 2, n = {1/

√
2, 0, 1/

√
2}T in symmetry

plane 1− 3, and n = {0, 1/
√

2, 1/
√

2}T in symmetry plane 2− 3), the off-diagonal terms turn
out to be

C1122 =

√
(

C1111 + C1212 − 2 ρ
(

vqL,qT
12,12

)2
) (

C1212 + C2222 − 2 ρ
(

vqL,qT
12,12

)2
)

− C1212 , (2.12)

C1133 =

√
(

C1111 + C1313 − 2 ρ
(

vqL,qT
13,13

)2
) (

C1313 + C3333 − 2 ρ
(

vqL,qT
13,13

)2
)

− C1313 , and (2.13)

C2233 =

√
(

C2222 + C2323 − 2 ρ
(

vqL,qT
23,23

)2
) (

C2323 + C3333 − 2 ρ
(

vqL,qT
23,23

)2
)

− C2323 , (2.14)

where vqL,qT
ij,ij are wave velocities corresponding to both, one quasi-longitudinal wave vqL

ij,ij and

one quasi-transversal wave vqT
ij,ij, propagating in the direction in the i − j plane enclosing an

angle of 45◦ with both the i-th and j-th symmetry axis, with particle motion in the i− j plane.
Hence, the off-diagonal elasticity components Ciijj of (2.12), (2.13), or (2.14) can be determined

from wave velocity vqL
ij,ij, and this result can be checked by inserting the measurements for vqT

ij,ij

into (2.12), (2.13), or (2.14), or vice versa — always provided the normal and shear elasticity
components, Ciiii and Cijij, were experimentally accessed through (2.10). The out-of-plane

purely transversal waves propagating in the same plane as vqL
ij,ij and vqT

ij,ij do [vT
ij,k = v

(3)
p,i−j, see

Eq. (2.9)], can be used to cross-check the shear components of the last of Eqs. (2.10), according
to

C1313 + C2323 = 2 ρ
(
vT

12,3

)2
,

C1212 + C2323 = 2 ρ
(
vT

13,2

)2
, and (2.15)

C1212 + C1313 = 2 ρ
(
vT

23,1

)2
.

Inversion of the elasticity tensor C delivers the compliance tensor D = C−1, which reads for an
orthotropic material in Kelvin- or Mandel-notation as (Cowin and Mehrabadi 1992; Helnwein
2001; Cowin 2003)

{Dijkl} =











1/E1 −ν12/E2 −ν13/E3 0 0 0
−ν21/E1 1/E2 −ν23/E3 0 0 0
−ν31/E1 −ν32/E2 1/E3 0 0 0

0 0 0 2/G23 0 0
0 0 0 0 2/G13 0
0 0 0 0 0 2/G12











, (2.16)

with three Young’s moduli Ei (i = 1, 2, 3) referring to the principle material directions, three
shear moduli Gij = Gji (i 6= j = 1, 2, 3) referring to principal material (symmetry) planes, and
six Poisson’s ratios νij (i 6= j = 1, 2, 3) [according to (2.2), the first index of Poisson’s ratio
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refers to the (passive) strain and the second index refers to the stress direction]. In this way,
the compliance tensor (2.16) gives access to six Poisson’s ratios, as part of twelve engineering
constants E1, E2, E3, G12, G13, G23, ν12, ν13, ν23, ν21, ν31, ν32, nine of which are independent
(see also Section 2.4).

In case of transversal isotropy, the elasticity tensor components follow from specification of
(2.10), (2.12), (2.13), and (2.14) for v3,3 = v2,2, v3,1 = v2,1, v1,3 = v1,2, and v13,13 = v12,12, yielding
C3333 = C2222, C1313 = C1212, and C1133 = C1122. This reduces the number of independent
elasticity components to five. As stated before, the compliance tensor gives access to seven
engineering constants [two Young’s moduli E1, E2; two shear moduli G12(= G21), G23 = G13(=
G32 = G31); and three Poisson’s ratios ν32 = ν23, ν21 = ν31, ν12 = ν13], five of which are
independent (see also Section 2.4).

In case of isotropy, wave propagation velocities are independent of the propagation direction. In
all directions, the wave velocities follow from specification of (2.8) for C3333 = C2222 = C1111, and
C2323 = C1313 = C1212 so that we have one longitudinal wave velocity vL =

√

C1111/ρ and two

transversal wave velocities of equal magnitude vT =
√

C1212/ρ, from which the elasticity tensor
components can easily be computed [C1111 and C1212 in (2.10) yield the isotropic off-diagonal
component C1122 = C1111 − 2 C1212 = C2233 = C1133]. Isotropic solids are completely described
by two elastic constant, e.g. C1111 and C1212, therefore also engineering elastic constants can
be given as a function of the two velocities, e.g. Young’s modulus and shear modulus,

E = ρ
v2

T (3 v2
L − 4 v2

T )

v2
L − v2

T

and G = C1212 = ρ v2
T , (2.17)

respectively. Also Poisson’s ratio can be given as a closed-form function of the wave velocities
in an isotropic material,

ν =
v2

L/2 − v2
T

v2
L − v2

T

. (2.18)

2.4 Poisson’s ratios from combined ultrasonic and me-

chanical tests: Measurement of axial strain and lon-

gitudinal wave velocities

Since the lateral (passive) strain measurements in uniaxial mechanical tests are often compli-
cated to perform (see Section 2.2) and since the off-(principle-)axis wave velocities in ultrasonic
tests (see Section 2.3) are frequently characterized by significant measurement errors, we here
present a combined ultrasonic-mechanical method, doing without the aforementioned mea-
surements, but relying solely on quasi-static uniaxial stress measurements in the (orthotropic)
principle material directions (yielding, together with strain measurements in the same direc-
tion, orthotropic Young’s moduli Ei) and longitudinal wave velocities (yielding normal stiffness
components Ciiii). In order to get access to Poisson’s ratios, a few mathematical transforma-
tions are due: The symmetry requirement of the orthotropic compliance tensor (2.16) implies
a relationship between the Poisson’s ratios, reading as

νij = νji
Ej

Ei

(i 6= j, i, j = 1 , 2 , 3) , (2.19)

involving nine independent engineering material constants. Inversion of the positive definite
compliance tensor (2.16) and comparing the resulting diagonal components to the diagonal
components of the stiffness tensor, yields (omit Einstein summation, i.e. do not sum over equal
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indices) (Itskov and Aksel 2002)

Ciiii = Ei
1 − νjk νkj

∆
, and (2.20)

Ciijj = Cjjii = Ei
νij + νkj νik

∆
, (i 6= j 6= k, i, j, k = 1 , 2 , 3) , (2.21)

where
∆ = 1 − ν23 ν32 − ν13 ν31 − ν12 ν21 − 2 ν32 ν13 ν21 . (2.22)

Insertion of (2.19) into (2.20), and solving the resulting equation for ν21, ν31, and ν32, yields

ν21 =
1

2
√

2 E2 E3

√
n21

C1111 C2222

,

ν31 =
1

2
√

2 E2 E3

√
n31

C1111 C3333

, (2.23)

ν32 =
n32

f g12 g32

√

n21 n31
C2222

C3333

,

where

n21 = n12 − h ,

n31 = c2
3 − 2 E3 c3 d31 + E2

3 e31 − h , (2.24)

n32 = c2
3 − 2 E3 c3 d32 + E2

3 e32 + h ,

and

f = −16 c1 c2 E2
3 ,

g12 = c3 − E3 d12 ,

g32 = c3 − E3 d32 , (2.25)

n12 = c2
3 − 2 E3 c3 d21 + E2

3 e21 ,

h =
√

f g2
12 + n2

12 ,

with

e21 = c2
2 − 2 E2 c2 b2 + E2

2 a2
2 ,

e31 = c2
2 − 2 E2 c2 a1 + E2

2 a2
2 , (2.26)

e32 = c2
2 − 2 E2 c2 a2 + E2

2 a2 b1 ,

d12 = c2 − E2 a2 ,

d21 = c2 + E2 a1 , (2.27)

d31 = c2 + E1 E2 − 3 c1 ,

d32 = c2 + E1 E2 − c1 ,
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c1 = C1111 E2 , c2 = C2222 E1 , c3 = C3333 E1 E2 , (2.28)

a1 = E1 + C1111 , a2 = E1 − C1111 , b1 = E1 + 3 C1111 , b2 = E1 − 3 C1111 . (2.29)

(2.23) – (2.29) constitute one of eight solutions for ν21, ν31, and ν32, namely the only solution
that gives exclusively positive Poisson’s ratios, i.e. that relates to axially nonauxetic materials.
The remaining three Poisson’s ratios are then determined from Eq. (2.19).

Specialization of Eqs. (2.23) – (2.29) for the transversely isotropic symmetry class, i.e. for
E3 = E2 and C3333 = C2222 (see Section 2.3), yields

ν32 = ν23 =
a2 E2

4 c2

+

√

1 − a1 E2

2 c2

+

(
a2 E2

4 c2

)2

,

ν21 = ν31 =

√
√
√
√ a2

2

c12

− a2 E1

2 c1

−
√
(

a2 E1

2 c1

)2

− a1 a2
2 E1

c1 c12

+

(
a2

2

c12

)2

, (2.30)

ν12 = ν13 = ν21
E2

E1

,

with a1, a2, c1, and c2 according to (2.28) and (2.29), and with c12 = 8 C1111 C2222. For the
plane of isotropy 2 − 3, we have

G23 = C2323 =
1

2
(C2222 − C2233) =

E2

2 (1 + ν23)
, (2.31)

so that the shear modulus in the isotropic plane can be determined from normal stiffnesses,
once Poisson’s ratios are known.

Specialization of (2.30) for isotropic materials, i.e. for E2 = E1 = E and C2222 = C1111 (see
Section 2.3), yields

ν =
1

4

(√

9 − 10
E

C1111

+
E2

C2
1111

+
E

C1111

− 1

)

, (2.32)

i.e. Poisson’s ratio for an isotropic material is a function of only one argument, the ratio
C1111/E,

ν = Fiso

(
C1111

E

)

(2.33)

(see Figure 2.1). For C1111/E → ∞, Poisson’s ratio tends to the upper bound for ν in isotropic
materials, i.e. to ν = 0.5 (related to a so-called incompressible material). Already at C1111/E =
10, ν deviates by only 3.5% from the aforementioned bound. Eq. (2.32) can also be obtained
from the well-known relationship between the isotropic normal stiffness tensor C component
and the isotropic engineering constants E and ν, reading as

C1111

E
=

1 − ν

(1 + ν) (1 − 2 ν)
. (2.34)
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Figure 2.1: Poisson’s ratio for isotropic materials, as a function of C1111/E (normal stiffness
tensor component over Young’s modulus).

2.5 Validity check of combined mechanical-ultrasonic me-

thod: Application to metals

2.5.1 Isotropic aluminum alloy

First, we check the reliability of the combined ultrasonic-mechanical method for a well-known,
homogeneous and isotropic material, namely the aluminum alloy EN AW-5083-H111. Therefore,
the elastic constants were determined by means of both uniaxial mechanical tests and ultrasonic
tests. The mechanical tests were performed with an LFM 150 uniaxial testing machine of
Wille Geotechnik (Germany) and 3/350XY13 strain gauges of Hottinger Baldwin Messtechnik
(Germany), on three dog-bone shaped specimens with 30× 10 mm rectangular cross-section in
the strain measurement region. The results according to Eqs. (2.1) and (2.2) are shown in the
third line of Table 2.1.

Table 2.1: Elastic constants of isotropic aluminum from mechanical (me), ultrasonic (us) and
combined (co) tests (bold values from direct measurements).

aluminum C1111 C1122 E G C1111/E ν

alloy 5083 [GPa] [GPa] [GPa] [GPa] [-] [-]

mechanical 105.5 48.99 74.49 28.28 1.42 0.317
ultrasonic 107.9 53.36 72.63 27.29 1.49 0.331
combined 107.9 51.58 74.49 28.14 1.45 0.323

deviation us/me [%] 2.2 8.9 −2.5 −3.5 4.9 4.3
deviation co/me [%] 2.2 5.3 0.0 −0.5 2.2 2.0
deviation co/us [%] 0.0 −3.3 2.6 3.1 −2.5 −2.2

The ultrasonic pulse transmission tests were performed by a pulser-receiver unit of Panametrics
Inc. (USA), a digital oscilloscope of Lecroy (USA), and 17 transducers of Panametrics Inc., with
frequencies ranging from 0.05 to 20 MHz, on a cube with an edge length of 100 mm [for more
equipment details, see Kohlhauser and Hellmich (2009b)]. The results according to Eqs. (2.10)
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specialized for C1111 and C1212 = G, are shown in the fourth line of Table 2.1. In order to
compare the purely mechanical and purely ultrasonic methods with the combined method of
Section 2.4, Poisson’s ratio is calculated according to Eq. (2.32) from normal stiffness C1111

and Young’s modulus E, see fifth line of Table 2.1. It lies well between the Poisson’s ratios
determined purely ultrasonically and purely mechanically (see last column of Table 2.1), which
underlines the significance of Eq. (2.32) for reliable determination of Poisson’s ratio.

More generally, one observes that deviations between purely ultrasonic and purely mechanical
test results (see row six of Table 2.1) are higher than those between the results from the
combined ultrasonic-mechanical method and from purely mechanical or purely ultrasonic tests
(see rows seven and eight in Table 2.1). As a rule, the highest deviations in values from different
methods concern the off-diagonal stiffness C1122 and Poisson’s ratio ν (columns three and seven
of Table 2.1).

2.5.2 Transversely isotropic aluminum-silica fiber composite

Next, we apply the combined ultrasonic-mechanical method to the experiments of Mouchtachi
et al. (2004), on transversely isotropic fiber composites, consisting of aluminum-silica (Al2O3-
SiO2) fibers embedded into a matrix made of aluminum alloy AS7G0.3; characterized by a fiber
diameter dF = 15 µm and by a fiber volume fracion fF = 0.35. Elasticity tensor components
related to normal strains and stresses (see row three of Table 2.2) and to shear strains and
stresses (see row eight, columns five to seven, in Table 2.2) were measured on plate-like spec-
imens, by means of an automated, computer-assisted immersion device, based on longitudinal
and transversal waves propagating in the principle material directions as well as in several
different angles to these directions.

Longitudinal and transversal Young’s moduli, E1 and E2 = E3, were determined by means of
mechanical tension tests (see row seven of Table 2.2). While the inversion of the ultrasonically
determined stiffness tensor components Cijkl yields, according to (2.16), a longitudinal Young’s
modulus E1, which differs by only 3% from that obtained from mechanical tests, the aforemen-
tioned inversion suggests negative Poisson’s ratios ν21 and ν12 (see row 16 in Table 2.2). This
results most probably from errors in determining the off-diagonal terms of the stiffness tensor,
i.e. from measurement errors in the velocities of waves propagating off the principle material
directions.

In order to overcome this problem, we employ the combined ultrasonic-mechanical method of
Section 2.4, Eqs. (2.30), together with (2.29) and (2.28), to the experimentally determined
values for the normal stiffnesses E1, E2, C1111, and C2222 (the latter was determined as the
average of the normal stiffnesses C2222 and C3333, which differ by only 2%): This procedure,
which does not depend on the unreliable measurements of wave velocities off the principle
material directions, yields positive Poisson’s ratios (see row 17 of Table 2.2). This underlines
the relevance of the combined ultrasonic-mechanical testing method.

2.5.3 Orthotropic stainless-steel weld metal

The last validity test of the normal stiffness-based, combined ultrasonic-mechanical method for
determination of Poisson’s ratios, relates to an austenitic 308 stainless steel electroslag weld,
tested both mechanically and ultrasonically by Dewey et al. (1977). Solidification processes in
welds cause local preferred crystallographic orientation, resulting in orthotropic material behav-
ior (Dewey et al. 1977). Tensile tests were performed on cylindrical dog-bone shaped specimens
with a measurement length of 25 mm and a diameter of 3.2 mm, six of these specimens were cut
along the principle material directions, while another 15 specimen were cut in orientations off
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Table 2.2: Elastic constants of (approximately transversely isotropic) fiber composite Al-
Al2O3 from mechanical, ultrasonic and combined tests [bold values from direct measure-
ments; L = (C1111/C2222) / (E1/E2) = (C1111/E1) / (C2222/E2), T = (C2222/C3333) / (E2/E3) =
(C2222/E2) / (C3333/E3)].

elastic stiffness C1111 C2222 C3333 C1122 C1133 C2233

tensor constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

ultrasonic 135.30 128.90 126.20 15.50 51.80 58.30
combined 135.30 127.55 127.55 45.62 45.62 37.00

engineering E1 E2 E3 G23 G13 G12

elastic constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

mechanical 110.00 108.00 108.00 – – –
ultrasonic 113.34 101.34 84.80 32.10 33.40 57.00
combined 110.00 108.00 108.00 45.28 – –

normal stiffness fF L T C1111/E1 C1111/C2222 C2222/C3333

ratios & fraction [-] [-] [-] [-] [-] [-]

ultrasonic 0.35 0.94 0.85 1.19 1.05 1.02
combined – 1.04 1.00 1.23 1.06 1.00

Poisson’s ratios ν32 ν31 ν21 ν23 ν13 ν12

[-] [-] [-] [-] [-] [-]

ultrasonic 0.492 0.449 −0.083 0.412 0.336 −0.074
combined 0.193 0.277 0.277 0.193 0.272 0.272

the principle material directions. Longitudinal and transversal strains were measured by means
of extensometers. Ultrasonic measurements were performed at frequencies of 2.25 and 5 MHz,
on a single, initially box-shaped specimen (with dimensions 50×38×38 mm), which underwent
progressive cuts, in order to allow for measurements in non-principal directions. These tests
allowed for determination of three Young’s moduli, three shear moduli, and six Poisson’s ratios
(see Table 2.3, rows three, four, eight, nine, 18, and 19).

When evaluating stiffness components and Poisson’s ratios, respectively, from mechanical and
ultrasonic/combined tests, respectively, the propagating relative measurement errors may be
augmented by a factor of two or three, respectively, see Table 2.4. This would indicate a fairly
similar performance of all three methods. However, off-axis velocity measurements exhibit
large errors as compared to quasi-static measurements, so that Poisson’s ratios derived from
ultrasonic measurements deviate considerably from directly measured Poisson’s ratios (by up
to 80%, Table 2.3, row 21). By comparison, the combined method, Eqs. (2.23) to (2.29),
delivers Poisson’s ratios much closer to the directly determined ones (see Table 2.3, row 22)
— this underlines the method’s potential in case direct measurements are complicated to be
performed, as is often the case for wood, dealt with next.
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Table 2.3: Elastic constants of stainless-steel weld metal from mechanical (me), ultrasonic (us)
and combined (co) tests [bold values from direct measurements; L = (C1111/C2222) / (E1/E2) =
(C1111/E1) / (C2222/E2), T = (C2222/C3333) / (E2/E3) = (C2222/E2) / (C3333/E3)].

elastic stiffness C1111 C2222 C3333 C1122 C1133 C2233

tensor constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

mechanical 264.47 263.50 235.14 148.36 155.68 163.30
ultrasonic 278.00 242.00 223.00 127.00 170.00 135.00
combined 278.00 242.00 223.00 146.13 159.50 141.32

engineering E1 E2 E3 G23 G13 G12

elastic constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

mechanical 150.60 140.06 111.48 94.34 107.64 52.63
ultrasonic 144.78 156.36 101.17 87.00 77.00 57.00
combined 150.60 140.06 111.48 – – –

normal stiffness L T C1111/E1 C1111/C2222 C2222/C3333

ratios [-] [-] [-] [-] [-]

mechanical 0.93 0.89 1.76 1.00 1.12
ultrasonic 1.24 0.70 1.92 1.15 1.09
combined 1.07 0.86 1.85 1.15 1.09

Poisson’s ratios ν32 ν31 ν21 ν23 ν13 ν12

[-] [-] [-] [-] [-] [-]

mechanical 0.529 0.476 0.268 0.421 0.352 0.249
ultrasonic 0.482 0.671 0.150 0.312 0.469 0.162
combined 0.437 0.528 0.296 0.348 0.391 0.275

deviation us/me [%] 9.9 −29.1 78.4 35.2 −24.9 53.6
deviation co/me [%] −17.4 10.9 10.2 −17.4 10.9 10.2
deviation co/us [%] −9.2 −21.4 96.7 11.7 −16.7 69.3

2.6 Application of combined ultrasonic-mechanical me-

thod: Determination of Poisson’s ratios in a biolog-

ical orthotropic material — spruce wood

According to Section 2.4, Eqs. (2.23) – (2.29), three uniaxial quasi-static tests and three ul-
trasonic tests, performed in the three principle material directions of an orthotropic material,
respectively, can be employed to get access to the six Poisson’s ratios of an orthotropic material.
The application of this method to wood [which, in contrast to the materials of Section 2.5, is
highly porous, with a porosity of about 67%, see e.g. Hofstetter et al. (2005)] is challenged by
the fact that quasi-static tests in the radial (2) and circumferential (3) directions are difficult
to be performed — while uniaxial tests in the longitudinal (stem) direction (1) are common,
and also ultrasonic tests involving longitudinal waves in all principal material directions are
easy to perform. Consequently, based on only four (instead of six) tests (three ultrasonic and
one quasi-static one) on the investigated specimens, Poisson’s ratios of that specimen cannot
be directly computed from (2.23) – (2.29) — which would require given values for C1111, C2222,
C3333, E1, E2, and E3 —, but these equations need to be seen as functions of two variables L
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Table 2.4: Errors [%] induced in Poisson’s ratios or normal and off-diagonal stiffness tensor com-
ponents of orthotropic stainless-steel weld metal (see Section 2.5.3) considering 1% deviation
of a measured property for three different methods to determine Poisson’s ratios.

m
ec

h
an

ic
al 1% error in νij C1111 C2222 C3333 C1122 C1133 C2233

ref. [GPa] 278.0 242.0 223.0 146.1 159.5 141.3

ν32 or ν23 0.5 0.9 0.9 1.3 1.1 1.7
ν31 or ν13 1.1 0.6 1.1 1.5 1.9 1.4
ν21 or ν12 0.6 0.6 0.4 1.2 0.8 0.8

u
lt

ra
so

n
ic

1% error in Ciijj ν32 ν31 ν21 ν23 ν13 ν12

ref. [-] 0.437 0.528 0.296 0.348 0.391 0.275

C1111 0.7 0.0 0.0 1.0 −1.4 −1.7
C2222 0.0 0.6 −1.6 −1.4 0.7 0.0
C3333 −1.7 −1.6 1.6 0.0 0.0 1.5
C1122 −1.5 −1.2 3.2 −0.5 −0.2 3.2
C1133 −0.1 2.2 −2.2 −1.5 2.2 −0.9
C2233 2.5 0.0 −1.1 2.5 −1.2 −2.2

co
m

b
in

ed

1% error in Ciiii, Ei ν32 ν31 ν21 ν23 ν13 ν12

ref. [-] 0.437 0.528 0.296 0.348 0.391 0.275

C1111 −1.8 0.7 2.0 −1.8 0.7 2.0
C2222 0.9 −1.3 1.8 0.9 −1.3 1.8
C3333 1.3 0.9 −3.0 1.3 0.9 −3.0
E1 1.8 −0.2 −1.5 1.8 −1.2 −2.5
E2 −0.4 1.3 −2.3 −1.4 1.3 −1.3
E3 −1.8 −1.4 2.9 −0.8 −0.4 2.9

and T ,
νij = Fortho,ij (L, T )C1111, C2222, C3333, E1 fixed (2.35)

with

L =
C1111/E1

C2222/E2

=
C1111/C2222

E1/E2

and T =
C2222/E2

C3333/E3

=
C2222/C3333

E2/E3

, (2.36)

i.e. L being the longitudinal-to-radial ratio of normal stiffnesses to Young’s modulus ratios,
and T being the respective radial-to-circumferential ratio.

In the sequel, we will discuss the nature of the functions (2.35) by example of ultrasonic and
quasi-static tests on spruce samples, as detailed hereafter.

2.6.1 Uniaxial, quasi-static tests on spruce samples

We consider three different samples tested mechanically by Teischinger and Patzelt (2005).
These samples originate from three different trees with bottom diameters of around 60 cm,
grown in the north-east of Austria, at altitudes of 550, 800, and 940m, see Table 2.5.

Specimens for mechanical, micromechanical, and density tests were extracted from a 20 × 6 ×
6 cm3 region consisting of adult wood, located within the tree around one meter above ground.
The considered specimens were fairly similar in terms of moisture content and mass density, see
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Table 2.5: Properties of spruce specimens for mechanical (uniaxial, quasi-static) tests
(Teischinger and Patzelt 2005), and for ultrasonic tests (this work).

tree uniaxial, quasi-static tests ultrasonic tests

(Teischinger and Patzelt 2005) (this work)

# radial age moisture density ring latewood spiral MFA density ring

position content width proportion grain width

[-] [cm] [years] [%] [g/cm3] [mm] [%] [◦] [◦] [g/cm3] [mm]

1 16 37 12.0 0.487 2.12 21.7 4.9 - 0.497 2.05
2 24 120 12.6 0.476 1.00 30.2 0.8 9.8 0.486 0.95
3 20 61 12.8 0.459 2.37 28.4 0.3 11.7 0.444 1.97

Table 2.5. None of them contained compression wood (i.e. the micro fibril angle (MFA) was
below 30◦, see Table 2.5 and lignin content was below 35%), so that their chemical compositions
can be regarded as fairly similar. The fiber length of wood cells was approximately 5 mm, both
in earlywood and latewood. The diameter of the wood cells, i.e. the lumen diameter, was
34 µm on average, and the cell wall thickness was 3 µm on average. The average lignin content
was measured to be 28.4 ± 0.2% (Teischinger and Patzelt 2005).

The three samples for uniaxial quasi-static testing were characterized by a total length of
100 mm, by a measurement length of 40 mm, and by a rectangular cross-section spanning,
in the measurement region, 7.8 mm in radial and 1.25 mm in circumfential direction. In the
clamping region (which was reinforced by pine veneer), the rectangular cross-section widened
up to 12 mm. Given the typical growth ring dimensions of Table 2.5, a specimen contained four
to eight growth rings along the larger dimension of the rectangular cross-section. Measurements
were performed on a uniaxial tensile testing machine (Z100/SW5A, Zwick/Roell, Germany), at
stress levels ranging from 10% to 40% of the tensile strength ft (ft = 201, 154, and 116 MPa
for specimens 1 to 3), and at a displacement rate of 1 mm/min (Teischinger and Patzelt 2005).
Longitudinal strains were determined by means of an extensometer with a measurement length
of 25 mm. Test results in terms of the longitudinal Young’s modulus E1 are given in Table 2.8,
column two, lines 9 – 13.

2.6.2 Ultrasonic tests on spruce samples

Ultrasonic testing in wood has a long tradition, starting with Lee (1958) and Hearmon (1965),
followed by many others, including Paschalis (1978); Bucur and Archer (1984); Kamioka (1988);
Ouis (2002); Payton (2003); Koponen et al. (2005). We here report tests on twelve samples,
four each having been harvested at a 20 × 6 × 6 cm3 region at the same longitudinal and
radial positions where the three specimens for the aforementioned quasi-static, uniaxial tests
were harvested, but 10 cm off the latter in the circumferential direction. In this way, it was
guaranteed that the samples for ultrasonic tests had density and ring width characteristics
similar to those of the samples for mechanical tests. The twelve samples for ultrasonic testing
were of cubical shape with 20 mm edge length. Densities used for stiffness determination
from ultrasonic tests were specimen-specific (tree-specific density values are given in Table 2.5,
column ten). All six surfaces of one out of four tree-specific samples were parallel to the
principle material directions, and only two surfaces of the other three (out of four) samples
were parallel to one material symmetry plane, while the corresponding four other surfaces were
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inclined by an angle of 45◦ with respect to the principle material directions. All samples were
kept at approximately the same moisture content as the samples used for mechanical testing,
and the samples were insonified by longitudinal ultrasonic waves of frequencies f = 50, 100,
250, 500 kHz, and by transversal waves of frequency f = 250 kHz, according to the pulse
transmission method (Markham 1957; Kohlhauser and Hellmich 2009b). A cellophane film
was used to prevent the coupling medium honey from infiltrating the wood mircostructure and
thus influencing its stiffness properties, while not reducing the accuracy of the wave velocity
measurements, as shown by Kamioka (1988) for thin (55 micron) plastic foil (which changed
the velocity measurements by only 1 – 2%). Accuracy was also maintained through application
of a constant pressure onto the ultrasonic transducers, ensuring the reception of a constant
pulse amplitude, as done by Kamioka (1988).

Table 2.6: Wavelengths of longitudinal waves transmitting spruce wood at different ultrasonic
frequencies, and characteristic length of the wood inhomogenities ‘lumen’ and ‘growth ring’.

velocity: wavelength: lumen: growth ring:

vi,i λL,i [see Eq. (2.7)] d ≈ 0.03 mm d ≈ 2.00 mm

f v1,1 v2,2 v3,3 λL,1 λL,2 λL,3 d/λ1 d/λ2≈3 d/λ1 d/λ3

[MHz] [km/s] [km/s] [km/s] [mm] [mm] [mm] 10−3 10−3 10−1 10−1

0.05 6.05 2.25 2.01 120 45 40 0.3 0.8 0.2 0.5
0.10 5.97 2.25 2.02 60 23 20 0.5 1.5 0.3 1.0
0.25 6.37 2.26 2.09 25 9.0 8.3 1.2 3.5 0.8 2.5
0.50 6.45 2.27 2.09 13 4.5 4.2 2.3 7.0 1.5 4.5

Longitudinal wave velocities vi,i and transversal wave velocities vi,j [according to Eq. (2.10)]
were measured in the three principle material directions (given the aforementioned cut of the
samples, this was done on two tree-specific samples per material direction), yielding normal and
shear stiffnesses (see Table 2.8, columns two to seven, lines three to five for tree-related normal
and Possion-type stiffness components, and line six for corresponding average values; as well
as columns five to seven, lines nine to eleven for shear stiffness components, and line twelve for
corresponding average values). In this context, average values for the transversal or shear wave
velocities were used, since vi,j 6= vj,i for the non-perfect orthotropic structure of wood. While
the ultrasonically determined values of (longitudinal) wave velocities documented in Table 2.6
are physically reasonable, quasi-longitudinal velocities vij,ij (the index-pair relates to plane
of propagation and polarization) yielded complex solutions for off-diagonal stiffnesses, and
quasi-transversal wave velocities vij,ij yielded positive off-diagonal stiffnesses, but unrealistic
(including negative) Poisson’s ratios. Such physically questionable results [due to sensitivity of
off-diagonal stiffness components to measurement errors in vij,ij] were also obtained by Bucur
and Archer (1984), whose ultrasonically determined Poisson’s ratios differ by relative errors
as huge as 237%, 383%, −35%, 27%, 68%, and −38%, respectively, from the averages over
a wide collection of literature values from mechanical tests (see Table 2.7). More generally,
the authors are not aware of a single published ultrasonic measurement result for Poisson’s
ratios that compare well with a corresponding mechanical measurement. Thus, ultrasonic-
based values for Poisson’s ratios are not considered as reference in this work.

Our ultrasonically determined shear stiffnesses compare well with ultrasonic measurements by
the other authors, see e.g. Bucur and Archer (1984); Kohlhauser et al. (2008), but they deviate
from a large number of quasi-statically determined shear stiffnesses, by up to 50% in longitudinal
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planes [compare G12 = 0.62 ± 0.08 and G13 = 0.70 ± 0.12, n = 10 (Jenkin 1920; Carrington
1923; Hörig 1935; Stamer 1935; Doyle and McBurney 1946; Hearmon 1948; Kollmann and Côté
1968; Neuhaus 1981; Niemz and Caduff 2008)], and by up to 100% in radial-circumferential
planes (compare G23 = 0.033 ± 0.007, n = 10). However, these discrepancies are probably
due to difficulties in mechanical testing of pure shear, which is known to underestimate shear
stiffness. However, good agreement between ultrasonic and mechanical shear testing has been
obtained by Soule and Nezbeda (1968) on graphite; and very recent mechanical tests of the
transverse (radial-circumferential) shear modulus of spruce (Hassel et al. 2009), based on full
field strain measurements on a single cube apparatus, delivered values of G23 = 68.0±22.2 MPa
(n = 9), which agree well (i.e. within 10% relative error) with our ultrasonic measurements
(see Table 2.8, column five, row nine to twelve).
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Figure 2.2: Influence of wave frequency on measured longitudinal wave velocities and stiff-
nesses in spruce [solid lines show averages over six values (two per tree), dashed lines show
standard deviations of these values] — frequencies below or equal 100 kHz characterize the
microheterogeneous material ‘spruce wood’.

According to the fundamentals of continuum mechanics (Salençon 2001; Zaoui 2002), ultra-
sonically determined stiffnesses relate to representative volume elements (RVE) of a material
being much smaller than the wavelength of the wave exciting the samples (ℓRV E ≪ λ), and
the length of the RVE needs to be much larger than the inhomogeneities d within the RVE, so
that material properties can be measured on the RVE (ℓRV E ≫ d). While RVEs of softwood or
hardwoods with lumen inhomogeneities are clearly far smaller than the employed wavelengths,
RVEs of (spruce) wood containing several growth rings are only ‘felt’ by waves with exciting
frequencies of 50 and 100 kHz (see Table 2.6). This becomes evident from the ratios between
d and λL reported in Table 2.6 and from the independence of wave velocities from frequency
in Figure 2.2. Therefore, only measurements based on these two frequencies are reported in
Table 2.8. Notably, when choosing f = 250 kHz instead of 100 kHz, the longitudinal and
circumferential wave velocities v1,1 and v3,3 increase by 6.5 and 5%, respectively (see circles and
diamond markers in Figure 2.2). These velocities (with wavelengths separated by less than fac-
tor ten from inhomogeneity size d, see Table 2.6, column ten and eleven) do not any more refer
to the material ‘spruce wood’, but the effect of single growth rings in latewood transporting the
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ultrasonic signals at a faster pace, becomes remarkable. This is not the case in the radial direc-
tion where no contiguous path of latewood rings between ultrasonic transmitter and receiver
exists (see square markers in Figure 2.2). As compared to longitudinal waves, transversal waves
are less sensitive to material inhomogeneities, and typically reveal the ‘homogenized’ behavior
of a microheterogeneous material (ℓRV E ≫ d), already at d/λT -ratios as high as d/λT = 0.1 – 1
(Kohlhauser and Hellmich 2009b). This is the case for the transversal waves employed in the
present study.

2.6.3 Poisson’s ratios at known normal stiffnesses and longitudinal
Young’s modulus — functional representation

For a set of normal stiffnesses C1111, C2222, C3333, and E1, function Fortho,ij (L, T ) according to
(2.35) exhibits both real and complex values depending on the set of argument pairs (L, T ).
For an axially nonauxetic material such as spruce wood, only positive real values of Fortho,ij

make physical sense. This, together with the relations

L =
1 − ν23 ν32

1 − ν13 ν31

and T =
1 − ν13 ν31

1 − ν12 ν21

, (2.37)

which result from definition (2.36) and from Eq. (2.20), yields admissible values for Poisson’s
ratios, once C1111, C2222, C3333, and E1 are given, coinciding with the real values depicted as
surfaces in Figure 2.3 (depicted as top view in Figure 2.4). In these figures, values represented
through surfaces are computed from the average normal stiffnesses given in Table 2.8, rows 6,
12, and 18. Regions in the (L, T )-plane related to admissible Poisson’s ratios are bounded by
three curved lines which contact each other at non-smooth edges A, B, C, with coordinates
A(L = 0, T = 1), B(L = 1, T = C1111/E1), and C(L = C1111/E1, T = E1/C1111). At
all these three edge points, domains of real positive, real negative, and complex values of
Fortho,ij ‘meet’. Accordingly, a large ratio C1111/E1 yields a wide range of T -values related to
admissible Poisson’s ratios. Nevertheless, this range of T -values depends on the values for L
(see Figures 2.4). Hence, it is of interest to narrow the relevant ranges for T and L, as to further
minimize the domain of admissible νij’s. Therefore, we continue with discussing a wide range
of mechanical tests revealing a typical value for T , as well as for the radial Young’s modulus
E2.

2.6.4 Data collection on mechanical test-derived orthotropic Pois-
son’s ratios on spruce’s universal value for T = (1− ν13 ν31)/(1−
ν12 ν21)

A collection of Poisson’s ratios determined from different mechanical testing campaigns at
different laboratories (see Table 2.7) reveals that the radial-to-circumferential ratio of normal
stiffnesses of spruce, T , is always very close to 1, in fact, the scattering (in percent) around
this value is two to even three orders of magnitude lower than the scattering related to the
longitudinal-to-radial normal stiffness ratio L, as well as to each of the Poisson’s ratios (see
Table 2.7). Adapting this value T = 1 as relevant for any spruce wood sample, including those
tested by the combined ultrasonic-mechanical method in Table 2.8, bold values in lines three to
eleven and columns two to four, further contracts the domains of admissible Poisson’s ratios,
from 2D surfaces in Figure 2.3, to 1D lines in Figure 2.5 (a). This results in already narrow
admissible ranges (around 0.4 – 0.5) for ν31 and ν21, irrespective of the actual value of L. Still,
L has a major influence on all other Poisson’s ratios, see Figure 2.5. In our present setting,



Christoph Kohlhauser 67

L depends on the transverse Young’s modulus E2, and a reliable spruce-related range of this
quantity should finally give us characteristic values for all Poisson’s ratios.
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Figure 2.3: Poisson’s ratios of spruce as function of ratios L and T from average stiffnesses in
Table 2.8.
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Figure 2.4: Poisson’s ratios of spruce as function of ratios L and T from average stiffnesses in
Table 2.8 — top view.
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Table 2.7: Poisson’s ratios νij [-], ratios L [-] and T [-], and densities ρ [g/cm3] for spruce
compared with values from different literature sources: 1. . . Hearmon (1948) [collected data from
Jenkin (1920); Carrington (1923); Hörig (1935); Stamer (1935); Doyle and McBurney (1946)],
2. . . Kollmann and Côté (1968), 3. . . Neuhaus (1981), 4. . . Niemz and Caduff (2008), 5. . . Bodig
and Jayne (1993), 6. . . USDA (1999), 7. . . Dahl and Malo (2008), 8. . . Eberhardsteiner (2002).

literature ρ ν32 ν31 ν21 ν23 ν13 ν12 L T

1 0.390 0.430 0.470 0.370 0.250 0.020 0.029 0.901 1.001
1 0.370 0.570 0.560 0.440 0.290 0.013 0.031 0.841 1.006
1 0.500 0.430 0.520 0.360 0.330 0.023 0.018 0.868 0.994
1 0.390 0.510 0.510 0.380 0.310 0.025 0.030 0.853 0.999
1 0.390 0.640 0.490 0.390 0.320 0.019 0.029 0.803 1.002
1 0.430 0.560 0.540 0.450 0.300 – – – –
1 0.440 0.470 0.380 0.440 0.250 0.013 0.028 0.887 1.007
2 – 0.420 0.530 0.279 0.329 0.028 0.019 0.875 0.990
3 – 0.600 0.550 0.410 0.310 0.035 0.056 0.830 1.004
4 0.445 0.640 0.420 0.376 0.335 0.015 0.022 0.791 1.002
5 – 0.470 0.420 0.370 0.350 0.033 0.041 0.847 1.001
6 – 0.435 0.467 0.372 0.245 0.025 0.040 0.904 1.003
6 – 0.530 0.462 0.422 0.255 0.058 0.083 0.889 1.009
7 – – 0.575 0.451 – – – – –
8 – – – 0.450 – – – – –

average 0.419 0.516 0.486 0.394 0.298 0.026 0.036 0.857 1.002
st. dev. 0.043 0.080 0.056 0.046 0.037 0.012 0.018 0.037 0.005
st. dev. [%] 10.2 15.6 11.5 11.8 12.3 48.7 51.5 4.3 0.5

50% fractile 0.510 0.489 0.394 0.296 0.023 0.032 0.857 1.002
5% fractile 0.316 0.337 0.271 0.200 0.006 0.008 0.746 0.985
95% fractile 0.823 0.709 0.574 0.438 0.094 0.130 0.984 1.018
5% fractile [%] -38 -31 -31 -32 -75 -75 -13 -1.6
95% fractile [%] 61 45 46 48 303 305 15 1.7

this work ν32 ν31 ν21 ν23 ν13 ν12 L T

50% fractile 0.567 0.518 0.466 0.459 0.044 0.048 0.756 1.000
5% fractile 0.607 0.512 0.461 0.491 0.041 0.045 0.716 1.000
95% fractile 0.522 0.525 0.472 0.422 0.047 0.052 0.798 1.000

deviation ν32 ν31 ν21 ν23 ν13 ν12 L T

from avg. 0.052 0.032 0.072 0.161 0.018 0.013 -0.102 -0.002
from avg. [%] 10.0 6.6 18.4 54.0 70.4 36.6 -11.9 -0.2

2.6.5 Radial Young’s modulus of spruce

Measuring reliable values for the radial Young’s modulus of spruce is challenged by the correct
measurement of strains. When estimating average strains from displacement measurements
on macroscopic samples, local strain concentrations occuring together with strain softening
(‘strain localization’) may artificially augment the average strain value estimated from such
displacement measurements, yielding finally probably too low values for the radial Young’s
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Figure 2.5: Poisson’s ratio ranges: cross-sections through Figures 2.3 and 2.4 at relevant values
of L and T for orthotropic softwood spruce (see Table 2.8; dashed lines indicate new ranges for
deviations of C1111/E1 of ±2%).

modulus of spruce (Miyauchi and Murata 2007). The inferiority of such values, amounting
to E2 = 0.82 ± 0.13 GPa (Jenkin 1920; Carrington 1923; Hörig 1935; Stamer 1935; Doyle
and McBurney 1946; Hearmon 1948; Kollmann and Côté 1968; Neuhaus 1981; Niemz and
Caduff 2008) is underlined by their incompatibility, in the sense of Eqs. (2.23) – (2.29), with
the fairly consistent set of Poisson’s ratios in Table 2.7. Hence, a finer resolution of strains
as that provided by extensometers is due, such as the digital speckle photography of Modén
and Berglund (2008) who measured the radial Young’s modulus on specimens with a length
covering the complete radial range from pith to bark (≈ 20 cm) and a cross-section of 5×2 mm
(longitudinal× circumferential directions), at a resolution of 50 µm, i.e. at the scale of a few
wood cells. Focusing, in Figure 5 of Modén and Berglund (2008), on (micro-)densities between
0.45 – 0.50 g/cm3 (coinciding with the macroscopic apparent density investigated in the present
study in Table 2.8), suggests E2 = 1.41 GPa. Given, however, the macroscopic apparent
density of Moden and Berglund’s specimens, amounting to ≈ 0.3 g/cm3, to be far smaller than
that investigated at Table 2.8 of the present study, the aforementioned value is probably still
lower than the one relevant for our case. Therefore, we evaluate the 50 µm-resolution digital
speckle photographs of Jernkvist and Thuvander (2001), of a growth ring of 2.44 mm width
(similar to widths given in Table 2.5) subjected to radial uniaxial tension, see Figures 4 (a)
and 5 (a) of Jernkvist and Thuvander (2001). For each circumferential position [row position
in Figure 2.6 (a)], we average the radial (micro-)strains εmicro

2 over the entire growth ring, as to
obtain the ‘macroscopic’ radial strain ε2

ε2 =
1

ℓring

∫

ℓring

εmicro
2 dr , (2.38)

characteristic for the investigated sample of spruce wood. Given the uniaxial nature of the
mechanical test of Jernkvist and Thuvander (2001), this radial strain, together with the known
(prescribed uniaxial) radial stress σ2, gives access to values for the radial Young’s modulus
E2 = σ2/ε2, for each of the 476 rows of Figure 2.6 (a), representing the experimental scattering
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Figure 2.6: (a) Strain field in a growth ring of 2.44 mm width in radial direction and 5.40 mm
in circumferential direction [black: εmicro

2 = 0.7306 · 10−3, white: εmicro
2 = 3.8292 · 10−3; from

Jernkvist and Thuvander (2001)] and scattering of Young’s modulus in radial direction, E2, over
circumferential direction and (b) log-normal distribution of E2 with 5, 50 and 95%-fractiles.

of E2 over the circumferential direction Figure 2.6 (b). These values for E2 are characterized
by a mean value of E2 = 1.64 GPa, as well as by 5% and 95%-fractiles of 1.55 GPa (−5.3%)
and 1.73 GPa (+5.6%), respectively [see Figure 2.6 (b)].

2.6.6 Poisson’s ratios of spruce — results
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Figure 2.7: Poisson’s ratios of spruce. Comparison of results with literature (given in Table 2.7).

Specification of admissible (positive) regions of Figures 2.3 and 2.4, for T = 1 and E2 =
1.64 GPa (or for E2,5% = 1.55 GPa and E2,95% = 1.73 GPa) yields the sought expected values
of Poisson’s ratios for the samples of Table 2.5 (or of the 5% and 95%-fractiles, see Figure 2.7).
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Table 2.8: Elastic constants of spruce (specimens from three different trees) from combined
ultrasonic-mechanical tests (bold values from direct measurements; densities are average values
from quasi-static and ultrasonic test specimens, see Table 2.5, columns five and ten).

elastic stiffness C1111 C2222 C3333 C1122 C1133 C2233

tensor constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

tree 1 18.09 2.54 2.07 1.78 1.61 1.34
tree 2 17.80 2.25 1.84 1.61 1.46 1.03
tree 3 16.36 2.39 1.91 1.78 1.59 1.16
average 17.42 2.39 1.94 1.72 1.55 1.18

engineering E1 E2 E3 G23 G13 G12

elastic constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

tree 1 16.52 1.64 1.34 0.077 0.95 1.05
tree 2 16.27 1.64 1.34 0.061 0.87 0.87
tree 3 14.65 1.64 1.31 0.085 0.92 0.91
average 15.81 1.64 1.33 0.074 0.91 0.94

normal stiffness ρ L T C1111/E1 C1111/C2222 C2222/C3333

ratios & densities [g/cm3] [-] [-] [-] [-] [-]

tree 1 0.492 0.706 1.000 1.10 7.12 1.23
tree 2 0.481 0.795 1.000 1.09 7.90 1.23
tree 3 0.451 0.765 1.000 1.12 6.84 1.25
average 0.475 0.756 1.000 1.10 7.29 1.24

Poisson’s ratios ν32 ν31 ν21 ν23 ν13 ν12

[-] [-] [-] [-] [-] [-]

tree 1 0.614 0.489 0.442 0.500 0.040 0.044
tree 2 0.522 0.526 0.475 0.426 0.043 0.048
tree 3 0.566 0.539 0.481 0.451 0.048 0.054
average 0.567 0.518 0.466 0.459 0.044 0.048

Except for ν23, they lie well within the ranges suggested by the collected literature data of
Table 2.7, see Figure 2.7. Notably, the agreement for ν31 and ν21, where the mechanical tests
(with the uniaxial stress applied in the longitudinal direction) are most reliable as indicated
by the lowest standard deviation in rows 20, 24, 25, columns four and five of Table 2.7, is
very satisfactory. This underlines the relevance of the proposed method. This is far more so if
one considers that the bars in Figure 2.7 relate to scattering among laboratory-specific mean
values, while the scattering within the values from one and the same laboratory might be far
larger [see e.g. Eberhardsteiner (2002), page 77 and Figure 4.6]. Also, the combined method
for determination of Poisson’s ratios is by far superior to the purely ultrasonic one [although
relative measurement errors might propagate to the same extent in both the former (for T = 1)
and the latter (see Table 2.9)], because the off-axis velocity measurement errors are enormous,
as already mentioned in Section 2.1 and 2.6.2. On the other hand, in the case of spruce wood
with C1111/E1 = 1.10, the additional information of T = 1 is important to restrict relative error
enlargement during propagation (compare rows 16 – 21 with rows 22 – 25 in Table 2.9), while
the relative errors do not significantly increase through propagation if C1111/E1 > 1.20 (as is
the case for steel weld, see Table 2.4).
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Table 2.9: Errors [%] induced in Poisson’s ratios or normal and off-diagonal stiffness tensor
components of orthotropic softwood spruce (see Section 2.6) considering 1% deviation of a
measured property for three different methods to determine Poisson’s ratios.

m
ec

h
an

ic
al 1% error in νij C1111 C2222 C3333 C1122 C1133 C2233

ref. [GPa] 17.42 2.39 1.94 1.72 1.55 1.18

ν32 or ν23 0.1 0.8 0.8 1.2 1.2 1.8
ν31 or ν13 0.1 0.1 0.1 0.4 0.8 0.1
ν21 or ν12 0.1 0.1 0.1 0.8 0.4 0.1

u
lt

ra
so

n
ic

1% error in Ciijj ν32 ν31 ν21 ν23 ν13 ν12

ref. [-] 0.569 0.517 0.465 0.461 0.043 0.048

C1111 0.1 0.0 0.0 0.1 −1.1 −1.1
C2222 0.0 0.8 −1.4 −1.1 1.1 0.0
C3333 −1.1 −1.4 0.8 0.0 0.0 1.1
C1122 −0.1 −1.2 2.2 0.0 −1.1 2.2
C1133 0.0 2.2 −1.2 −0.1 2.2 −1.1
C2233 1.1 −0.4 −0.4 1.1 −1.2 −1.2

co
m

b
in

ed

1% error in Ciiii, Ei ν32 ν31 ν21 ν23 ν13 ν12

ref. [-] 0.569 0.517 0.465 0.461 0.043 0.048

C1111 −1.1 5.4 5.3 −1.1 5.4 5.3
C2222 0.7 −11.5 10.3 0.7 −11.5 10.3
C3333 0.7 10.3 −11.5 0.7 10.3 −11.5
E1 1.0 −5.1 −5.1 1.0 −6.1 −6.1
E2 −0.2 11.0 −11.1 −1.1 11.0 −10.2
E3 −1.1 −11.1 11.0 −0.2 −10.2 11.0

T
=

1

C2222 & C3333 1.3 −0.7 −0.7 1.3 −0.7 -0.7
E2 & E3 −1.4 0.2 0.2 −1.4 1.2 1.2
C2222 & E2 0.5 0.0 −0.5 −0.5 0.0 0.5
C3333 & E3 −0.5 −0.5 0.0 0.5 0.5 0.0

2.7 Conclusion

Poisson’s ratios of isotropic, transversely isotropic, and orthotropic non-axially auxetic materials
were expressed as functions of normal elastic stiffnesses, considering the positive definiteness
of the stiffness and compliance tensors. Insertion of measured normal elastic stiffness values
documented in the literature for (isotropic) aluminum, (transversal isotropic) aluminum matrix-
fiber composite and (orthotropic) stainless-steel weld metal into the aforementioned functions
yielded estimates for Poisson’s ratios which agree very well with directly measured values.
This confirmed the relevance of the proposed combined ultrasonic-mechanical method. Finally,
the method was applied to (orthotropic) wood (namely spruce), by measuring four normal
stiffnesses, and relying on a spruce-specific universal constant involving longitudinal Poisson’s
ratios, namely T = (1 − ν13 ν31)/(1 − ν12 ν21) = 1, and on reasonable estimates for the radial
Young’s modulus. Resulting ranges of Poisson’s ratios agree well with ranges of Poisson’s
ratios obtained from direct mechanical measurements on spruce. This is particularly the case
for mechanical tests where the specimens are pulled in the longitudinal directions and strains are
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measured in one of the transverse directions, which exhibit the highest experimental precision.
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2.8 Appendix: Phase versus group velocities in ultra-

sonic tests

In anisotropic media (such as the ones investigated in Sections 2.5.2, 2.5.3, and 2.6), ultrasonic
techniques may not detect phase velocities [as defined through Eq. (2.7)], but also so-called
group velocities related to wave packets of more than one frequency [which is practically always
the case (i.e. in wave pulse techniques), except for the continuous wave transmission techniques
(Lynnworth et al. 1981)]. On the other hand, group and phase velocities are identical within
isotropic media. Therefore, it seems appropriate to shortly recall the difference between group
and phase velocity, and to show that the evaluation of our tests as described throughout the
paper indeed always delivers phase velocities (which, a priori, is not so straight forward). The
group velocity vg, defined as (Lighthill 1965; Auld 1990; Carcione 2001)

vg =
∂ω

∂k
, (2.39)

can be shown to be identical to the energy velocity ve, which is defined as the time-averaged
power flow vector 〈p〉 = 〈σ · v⋆〉 (v⋆ being a velocity vector along which work per time is
done, 〈.〉 being the time average of quantity ‘.’) over the time-averaged total (i.e. potential and
kinetic) energy density 〈E〉 [(Carcione 2001), pages 16 – 19]

ve =
〈p〉
〈E〉 . (2.40)

Definition (2.40) implies (Fedorov 1968; Auld 1990; Wolfe 1998; Carcione 2001)

ve · n = vp = vg · n , (2.41)

which results from extension of the momentum balance used in Section 2.3, to a power form
[through multiplication with velocity vector v⋆, (Carcione 2001), page 17]. It follows from (2.41)
that

vg =
∂vp

∂n
= venv , (2.42)

which is the defintion of the so-called envelope velocity venv (Shercliff 1970; Carcione 2001),
being identical to the group and energy velocities in elastic media [but not necessarily in
attenuating media, (Carcione 2001), page 20]. According to (2.41), the wave group or energy
travels faster than or as fast as the wave phase, and the group velocity direction deviates
(Musgrave 1970), by an angle of α = arccos (ve · n)/|ve|, from the phase velocity (which is
directed towards n, i.e. vp = vp n). In test set-ups like the ones dealt with in this paper,
where transducers of sizes comparable to that of the tested specimen are put onto opposite
surfaces of the latter [see Figure 2.8 (a); and where the transducer is large as compared to
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Figure 2.8: Measuring (a) phase and (b) group/energy velocities, in ultrasonic measurement
systems with (a) plane-wave sources and (b) point sources — all experiments dealt with in this
paper refer to case (a).

the wavelength, so that a plane wave is generated (Musgrave 1954)], the time of flight, tf ,
can only be related to the normal distance ℓp between transmitter and receiver, and both tf
and ℓp indeed give access to vp [see Eq. (2.3)], irrespective of the energy flux direction, see
Figure 2.8 (a) as well as the discussions of Musgrave (1954); Sahay et al. (1992); Every (1980,
1994); Wolfe and Hauser (1995); Wolfe (1998); Carcione (2001). As a further comment on the
ultrasonic tests dealt with in this paper, α in Figure 2.8 (a) is only non-zero for the off-diagonal
quasi-longitudinal and quasi-transversal wave velocity measurements [this might induce the
frequently encountered measurement errors in these directions (Kriz and Stinchcomb 1979)],
and zero in all other cases, i.e. for waves traveling in principle material directions, group and
phase velocities coincide. Also oblique pulse transmission techniques, e.g. immersion techniques
(Rokhlin and Wang 1989, 1992), allow for phase velocity measurements [for details see (Every
1994)]. However, when using pulse transmission techniques where the transducers are much
smaller than the specimens [see Figure 2.8 (b)], the receiver must be placed correctly (Sahay
et al. 1992) as to receive any signal (which follows the energy flux direction), while in (pulse)
echo techniques the acoustic echo returns to the source even for strongly oblique energy flux
directions (Wolfe 1998). In these cases, the total distance ℓe between the transducers, when
combined with tf , gives access to the energy velocity, through

ve =
ℓe

tf
, (2.43)

where ℓe cos α = ℓp, which reflects a specific case of the general relation (2.41) (Wolfe 1998;
Carcione 2001). Point sources and group velocity measurements can be suitably realized with
laser-generated ultrasound (Castagende et al. 1991). In these cases, determination of elastic
constants needs to be approached indirectly, as there does not exist any simple relation analo-
gous to (2.5), that would relate group velocities to elastic constants (Every and Sachse 1990;
Kim 1994; Kim et al. 1997; Degtyar and Rokhlin 1997).
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Mechanical testing is the most common experimental technique to determine elastic stiffness of
materials. In case of porous materials, especially such with very high porosity, the determination
of material stiffness may be strongly biased by inelastic deformations occurring in the material
samples, especially in the vicinity of the load transfer devices, such as loading platens. In
contrast, ultrasonic waves propagating through a material generate very small stresses and
strains (and also strain rates lying in the quasistatic regime). Thus, they enable the direct
determination of the components of elastic stiffness tensors of materials, and also of those with a
very high porosity. We shortly revisit from the theoretical basis of continuum (micro)mechanics
that, depending on the frequency of the employed acoustical signals, the investigated materials
are characterised at different observation scales, e.g. the elasticity of the overall porous medium,
or that of the solid matrix inside the material are determined. We here report the elastic
properties of biomaterials and biological materials at different length scales, by using ultrasound
frequencies ranging from 100 kHz to 20 MHz. We tested isotropic scaffolds for biomedical
engineering, made up of porous titanium and two different bioactive glassceramics, and we also
determined the direction-dependent normal and shear stiffness components of the anisotropic
natural composite spruce wood.

3.1 Introduction

The elastic stiffness of materials is often determined by means of mechanical testing, by referring
the force exerted on the samples to the nominal crosssection of the latter (to define stress) and by
dividing this stress by the corresponding strain, approximated as the relative displacement of the
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load platens over the sample height. However, because of nonhomogeneous strain distributions
within the sample (often reflected by the absence of any linearity in corresponding stressstrain
curves), it is sometimes very difficult or even impossible to extract the elastic modulus of the
material from the stressstrain curve obtained in a mechanical test. This is particularly the
case for very porous materials. If the latter are comprised of open cell-type microstructures,
corresponding stressstrain curves are not even monotonic, but rather of the zigzag type (see,
e.g. Figure 6 of Chen et al. (2006) as regards mechanical testing of Bioglass®-derived highly
porous glassceramic scaffolds), because of local collapse of the struts and plates building up the
cellular foams.

These problems can be circumvented by ultrasonic measurement techniques, as they imply the
application of only very small stresses to the material, avoiding any inelastic phenomena in the
tested samples. Ultrasonic techniques are based on the measurement of wave propagation ve-
locities, so that it is relatively easy to determine all components of the (isotropic or anisotropic)
elasticity tensors (or related technical constants such as Youngs moduli and Poissons ratios)
from one sample, reducing the expenditure needed for specimen preparation.

Elasticity determination through ultrasonics has been applied to a wide range of materials,
including single-crystal and polycrystalline materials since the 1940s (Hearmon 1946; Hunt-
ington 1947), geomaterials and composite materials since the 1970s (Helbig 1994; Markham
1970), and biological materials such as bone and wood since the 1980s (Ashman et al. 1984;
Bucur and Archer 1984). To the knowledge of the authors, they have at most very rarely been
applied to biomaterials for biomedical engineering (Thelen et al. 2004). Hence, we here describe
ultrasonic testing of biomaterials for which experimental data have never been gained so far.
To gain additional confidence in our measurement device, we also conducted experiments on a
biological composite, spruce wood, and compared the results with those published (Bucur and
Archer 1984).

This paper is divided into four main parts. First, the processing and the microstructure of
the aforementioned materials are described, followed by a formulation of the methods used for
determination of density, porosity, ultrasonic wave velocity and elastic stiffness. Determination
of the elastic stiffness is based on classical continuum elastodynamics, while considering the
proper micromechanical definition of material volumes and a structure built up thereof. Exper-
imental results for spruce wood, porous titanium, porous Bioglass®-ceramic foams, and porous
CEL2 glassceramic scaffolds are followed by a short summary and conclusion.

3.2 Materials

At Vienna University of Technology, Laboratory for Micro and Nanomechanics of Biological
and Biomimetic Materials, four different types of porous materials were tested ultrasonically.
In order to reproduce well-accepted results of the literature as a baseline for our investiga-
tions, the first material tested was spruce wood (Figure 1), the material properties of which are
characterised by orthorhombic symmetry. The remaining three material types were man-made
biomaterials, namely porous titanium, produced at the Fraunhofer Institute for Manufacturing
Technology and Applied Materials Research (Bremen), Bioglass®-based open scaffolds, pro-
duced at Imperial College London, and CEL2 glassceramic, produced at Politecnico di Torino,
Italy. These biomaterials, all isotropic, were provided in the form of dense and porous speci-
mens, of different shapes and sizes (see Figures 3.2–3.6).
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3.2.1 Spruce wood

Wood has a cellular structure. The wood cells (prosenchymatous cells called tracheids) are
hollow tubes oriented in the direction of the stem (i.e. longitudinal direction). In softwood,
such as spruce, the cells are 1-3 mm long (Kollmann 1982; Wagenführ 1989), and they exhibit
a diameter which ranges typically from 20 to 40 µm (see Figure 3.1, in particular the image
of the right-side panel, for the microstructure of wood in a transverse cross-section, i.e. in
a plane perpendicular to the longitudinal direction). Smaller cell diameters and thicker cell
walls are found in latewood, while larger diameters and thinner walls are found in earlywood.
The average cell wall thickness in earlywood is 4 µm, and that in latewood is 9 µm (Fengel
and Wegener 2003). Two adjacent, concentric layers of earlywood (with lower mass density)
and latewood (with higher mass density) form an annual ring with a thickness of 1 to 2 mm
(see left and right panel images of Figure 3.1 for the entire width of a growth ring and for an
annual ring border, respectively). This cellular structure is the cause for the orthotropic elastic
properties of spruce, with the three orthogonal symmetry planes being the longitudinal, radial
and tangential planes, defined by the natural growing directions of a tree, i.e. the stem direction,
the direction orthogonal to the growth rings, and the circumferential direction orthogonal to
the two aforementioned directions.

3.2.2 Porous titanium

Porous titanium is produced by compaction of a mixture of (i) metal powder, (ii) paraformalde-
hyde spheres of 500 µm characteristic size, which function as space holders for spherical pores,
and (iii) process aids that are dissolved in water to ensure bonding of the constituents. Subse-
quently, the space holder material is removed from the mixture by means of chemical (catalytic)
processes. Then, the material is sintered for 2 h at 1300◦C in an argon atmosphere, at atmo-
spheric pressure. In this way, cylindrically shaped specimens (Figure 3.2) with and without
polymer sphere-induced pores, i.e. dense and porous specimens, were produced (see Figures 3.3
and 3.4 for the microstructure of these materials).

Figure 3.1: SEM micrograph images, showing spruce
wood anatomy in transversal direction (reproduced from
Lichtenegger (1999) with permission from H. Lichteneg-
ger)

Figure 3.2: Titanium samples
(left porous, right dense)

3.2.3 Bioglass®-derived glass-ceramic scaffolds

Bioglass® is a bioactive and biodegradable material with a molar composition of 46.1% SiO2,
24.4% Na2O, 26.9% CaO and 2.6% P2O5 (Chen et al. 2006). Scaffolds with slightly different
porosities, as well as dense specimens (Figure 3.5) were manufactured. A fully reticulated
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400 µm 50 µm

Figure 3.3: Two micrographs of dense titanium

white polyester-based polyurethane foam with a pore size in the range of 1080-1580 µm, used
as template for a skeletal structure, was impregnated with a slurry made of melt-derived 45S5
Bioglass® powder with a particle size smaller than 5 µm, of poly-D,L-lactic acid (PDLLA)
and of dimethylcarbonate (DMC). After drying of this material, the resulting green bodies
were heat-treated at 1050◦C for 3 h. During this period, the organic phases PDLLA, DMC
and the polyurethane foam burned out, and the Bioglass® phase sintered. As a result, hollow
struts formed by smoothly shaped particles form a foamtype microstructure with approximately
800 µm characteristic pore size (Figure 3.7), inside cuboidshaped specimens (Figure 3.5).

3.2.4 CEL2-derived glass-ceramic scaffolds

Highly bioactive glass (CEL2) with a molar composition of 45% SiO2, 26% CaO, 15% Na2O,
7% MgO, 4% K2O and 3% P2O5 was synthesised by melting the raw products at 1400◦C for 1 h,
followed by quenching in cold water, grounding and sieving to a grain size of <30 µm (Vitale-
Brovarone et al. 2007). The manufacturing of the CEL2 glass–ceramic scaffolds is similar to
the aforementioned procedure described for the Bioglass®-based scaffolds. A polymeric tem-
plate exhibiting a porous microstructure was impregnated with a suitable water-based powder
suspension containing the aforementioned glass powder, together with 6 wt.% polyactic acid
as binder, Figure 3.8. Then, thermal treatment above the crystallisation temperature of the
used glass (around 800◦C) burned out the organic phase, sintered the inorganic phases, led to
a partial crystallisation of the glass, and delivered cuboidshaped samples (Figure 3.6) of CEL2
glassceramic scaffolds with approximately 500 µm characteristic pore size (Figure 3.8).

400 µm 50 µm

Figure 3.4: Two micrographs of porous titanium
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Figure 3.5: Bioglass®-ceramic samples
(left dense, right porous)

Figure 3.6: CEL2 glassceramic samples
(left dense, right porous)

3.3 Methods

3.3.1 Density and porosity

All governing geometrical quantities of the cylindrical or cuboid-shaped specimens, such as
height H, diameter D, or edge length A and B, were measured five times at different positions,
and the corresponding average values were used for computation of the volume and the density
of the samples. The apparent mass density ρapp (g cm−3) of specimens was determined by
dividing the mass M (g) of each specimen by its volume V (cm3), i.e.

ρapp =
M

V
(3.1)

Additional measurement or knowledge of the mass density of the solid phase ρs (g cm−3) in the
samples (see Results section for numbers) yields the sample-specific porosity φ (%) as

φ =
ρapp − ρs

ρs

× 100 . (3.2)

The number of specimens of each material, their masses, dimensions, densities and porosities
are given in Tables 3.1, 3.3, 3.5 and 3.9.

200 µm 50 µm

Figure 3.7: Bioglass®-ceramic scaffold and magnified strut
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240 µm 80 µm

Figure 3.8: Polymeric sponge covered with CEL2-glass slurry – subsequent sintering leads to
CEL2-derived glass-ceramic scaffolds

3.3.2 Ultrasonic wave velocity — equipment and experiment

The equipment for performing ultrasonic measurements consists of a pulser receiver PR 5077
(Panametrics Inc., Waltham, MA USA; see Figure 3.9), an oscilloscope and several ultrasonic
transducers (see Figure 3.10). Seven different pairs of Panametrics Inc. transducers were used:
X1020 and V1011 (0.1 MHz), two C602 (1.0 MHz), two V112 (10 MHz), V112 and V116
(20 MHz), two V151 (0.5 MHz, transversal), two V155 (5 MHz, transversal) and two V221
(10 MHz, transversal).

Figure 3.9: Pulser receiver Figure 3.10: Ultrasonic transducers

The pulser unit emits an electrical square-pulse of up to 400 V pulse voltage, with frequencies
from 0.1 to 20 MHz. The piezoelectric elements inside the ultrasonic transducers transform such
electrical signals into mechanical signals (when operating in the sending mode, transferring, via
a coupling medium, the mechanical signals to one side of the specimen under investigation),
or they transform mechanical signals back to electrical signals (when receiving mechanical
signals having travelled through the specimen under investigation). The coupling medium for
longitudinal waves can be water or another suitable liquid. In order to transmit shear forces into
the medium, the coupling medium for transversal waves must be a highly viscous material, e.g.
honey. We used honey as the coupling medium for both longitudinal and transversal waves. The
influence of the type of honey is very small, as it only provides a connection for the ultrasound
to be transmitted from the transmitter to the sample. The higher the viscosity, the better the
shear wave transmission, as less damping of the ultrasonic beam occurs. The use of any standard
viscous honey is possible. To our knowledge, there are no restrictions concerning the quality of
the honey. The piezoelectric elements are tailored to the frequency of the employed mechanical
signal: the higher the frequency, the smaller the element and the corresponding transducer



Christoph Kohlhauser 83

(see Figure 3.10). Depending on the cut and orientation of the element, a longitudinal or a
transversal wave is emitted. The receiver unit of the pulser receiver has a bandwidth of 0.1–
35 MHz and a voltage gain of up to 59 dB. The amplified signal is displayed on an oscilloscope
WaveRunner 62Xi (Lecroy Corporation, Chestnut Ridge, NY, USA) with a bandwidth of 600
MHz and a sample rate of 10 GS s−1 (gigasamples per second). The oscilloscope gives access to
the time of flight of the ultrasonic wave through the specimen, ts (µs), which provides, together
with the travel distance through the specimen, ℓs (mm), the phase velocity (km s−1) of the
longitudinal (compressional) or transversal (shear) wave, vL or vT , reading as

vi =
ℓs

ts
. (3.3)

We used two transducers here, one sending a signal into the specimen and one receiving the sent
signal at the opposite side of the specimen (transmission through technique, see Figure 3.11).
As the pulse travels only once through the specimen, the influence of signal attenuation is
minimised, and problems emanating from reflection of waves are avoided. However, in contrast
to the pulse echo technique where a single transducer acts as both signal sender and receiver,
both transducers need to be coupled with the specimen, which may increase measurement
errors related to wave velocity. Moreover, the exact identification of the arrival time of the
received signal (first apparent deviation from time axis) is a source of measurement inaccuracies,
especially for small thicknesses of the specimens and corresponding short times of flight. Still,
ultrasonic techniques are in general satisfactorily exact, as the wave velocity related to the time
of flight via Equation (3.3), is directly related to the material stiffness, as described next.
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Figure 3.11: Transmission through technique

3.3.3 Elastic stiffness — theory of ultrasonic wave propagation

Frequency f (MHz) and wave velocity v (km s−1) of an ultrasonic wave give access to the
wavelength λ (mm), through (Newton 1687; Carcione 2001),

λ =
v

f
. (3.4)

If the wavelength is considerably smaller than the characteristic length a (mm) of the sample
surface where the transducer is applied (see Figure 3.11, either diameter D or edge length A,
B), a (compressional) bulk wave, i.e. a laterally constrained wave, propagates in a quasi-infinite
medium. On the other hand, if the wavelength is larger than the characteristic length a of the
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side of the specimen where the transducer is applied, a bar wave propagates, i.e. the specimen
acts as one-dimensional bar without lateral constraints (Ashman et al. 1984; Kolsky 1953).
Mathematically,

a

λ
≫ 1 . . . bulk wave and

a

λ
< 1 . . . bar wave. (3.5)

In contrast, shear waves propagate identically in quasi-infinite media and bar-like structures
(Ashman et al. 1987).

As regards bulk waves, combination of the conservation law of linear momentum, the gen-
eralised Hookes law, the linearised strain tensor and the general plane wave solution for the
displacements inside an infinite solid medium yields the elasticity tensor components as func-
tions of the material mass density and the wave propagation velocity (Carcione 2001), reading
for isotropic materials as

C1111 = ρ v2
L and C1212 = G = ρ v2

T , (3.6)

where C1111 and C1212 = G (GPa) are the elastic stiffness tensor components related to normal
and shear deformation, the second equation of Equation (3.6) being valid for both quasi-infinite
spatial structures and bar-type structures.

Combination of Equation (3.6) with the definitions of the engineering constants Youngs modulus
E (GPa) and Poissons ratio ν (−), yields the latter as functions of the wave velocities, in the
form

E = ρ
v2

T (3 v2
L − 4 v2

T )

v2
L − v2

T

and ν =
v2

L/2 − v2
T

v2
L − v2

T

, (3.7)

respectively. Orthotropic materials have nine independent elastic stiffness tensor components
and thus nine engineering constants. In order to determine all of them, at least nine wave
velocities in different propagation directions must be known. We will focus on determination
of diagonal (normal and shear) stiffness tensor components according to

Cℓℓℓℓ = ρ v2
L|ℓ , Crrrr = ρ v2

L|r , Ctttt = ρ v2
L|t,

Crtrt = ρ v2
T |r,t , Cℓtℓt = ρ v2

T |ℓ,t , and Cℓrℓr = ρ v2
T |ℓ,r ,

(3.8)

where ℓ, r and t indicate the principal material directions of wood, i.e. different planes of
symmetry of the orthotropic material in which the wave is propagating. For both longitudinal
vL|i and transversal vT |i,j velocities, the second index stands for the propagation direction of
the wave, whereas for a transversal wave, indicated by three indices, the third index defines the
polarisation direction.

In the case of bar wave propagation, we have (Kolsky 1953)

E = ρ v2
bar , (3.9)

where vbar is the velocity of a bar wave.

In continuum (micro)mechanics (Zaoui 2002), the elastic properties [Equations (3.6)–(3.9)] are
related to a material volume (representative volume element RVE), with a characteristic length
ℓRV E (mm) being considerably larger than the inhomogeneities d (mm) inside the RVE, and
the RVE being subjected to homogeneous stress and strain states. Hence, the characteristic
length of the RVE, ℓRV E, needs to be much smaller than the scale of the characteristic loading
of the medium, here the wavelength λ. Mathematically,

d ≪ ℓRV E ≪ λ . (3.10)

Therefore, ultrasonic tests at different frequencies ’detect’, inside a sample, materials at different
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observation scales, such as the macroscopic porous material or the solid phase of the material,
as described for bone in Hellmich (2005); Fritsch and Hellmich (2007). In this way, the elastic
properties of spruce wood, porous titanium, Bioglass®-ceramic scaffolds and CEL2-derived
glass-ceramic scaffolds were characterised at different observation scales.

3.4 Results

3.4.1 Spruce wood

Three cuboid-shaped specimens were cut so that each of them allowed a measurement in one
of the three symmetry planes through a distance H of approximately 20 mm. The densities
of the three samples are close to the value of ρapp = 0.430 g cm−3, commonly given in the
literature for spruce wood (Wagenführ 1989). The porosity is estimated according to Equation
(3.2), with ρs = 1.4 g cm−3 (see Table 5 in Hofstetter et al. (2005)) as the mass density of the
cell wall material. This results in φ ≈ 70% (see Table 3.1).

Table 3.1: Spruce wood specimens: geometry, mass and porosity

No. H A B V M ρapp ρs φ

[-] [mm] [mm] [mm] [mm3] [g] [g/cm3] [g/cm3] [%]

Equation (3.1) (3.2)

Longitudinal 1 21.12 47.04 40.33 40073 16.890 0.421 1.4 69.9
Radial 1 19.81 40.70 40.58 32715 13.982 0.427 1.4 69.5
Transverse 1 20.75 40.67 41.12 34698 14.391 0.415 1.4 70.4

Table 3.2: Elasticity of spruce wood samples, determined from propagation velocity of bulk
waves

Polarisation f vL|i, vT |i,j d ℓRV E λ a/λ Ciiii, Cijij

[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa]

Equation (3.3) (3.10) (3.4) (3.1) (3.8)

ℓ Longitudinal 1.0 6.38 0.03 ≥ 0.15 6.4 3.6 17.2
r 2.26 2.3 9.3 2.19
t 2.03 2.0 11 1.71
ℓr Transversal 0.5 1.47 0.03 ≥ 0.15 2.9 15 0.760
rℓ 1.19 2.4 17
ℓt 1.50 3.0 15 0.885
tℓ 1.41 2.8 14
rt 0.35 0.7 58 0.076
tr 0.49 1.0 42

Longitudinal waves at ultrasonic frequencies f of 1 MHz and transversal waves of 0.5 MHz were
employed to characterise three cuboidal spruce wood samples. The waves travelled along the
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height H of each sample. A cellophane sheet was inserted between the coupling medium honey
and the sample, as to keep the wood microstructure free from honey. The latter might change
the properties of the wood cell wall material.

The inhomogeneities within an RVE of ’spruce softwood’ are the wood cells with an average
diameter of d = 30 µm. Thus, the ultrasonic waves with frequencies of 0.5 and 1.0 MHz and
velocities of typically ≈ 1.5–2 km s−1 (see Table 3.2), implying [according to Equation (3.4)]
wavelengths of typically ≈ 2–3 mm, characterise [according to Equation (3.10)] an RVE of
’spruce softwood’ with ℓRV E ≥ 0.15 mm. Bulk wave propagation is ensured by a high ratio of
the lateral dimension to the wavelength [see Equation (3.5)]. Notably, the transversal (shear)
velocities vT |i,j are not equal to vT |j,i, which shows that wood is not perfectly orthotropic. We
use the average of vT |i,j and vT |j,i for estimation of the corresponding shear stiffness (shear
modulus) Cijij = Gij = ρ (vi,j + vj,i)

2/4 (see Table 3.2). Axial and shear stiffness tensor
components of all orthotropic symmetry directions (see Table 3.2) agree quite well with earlier
measurements performed on spruce wood (Bucur and Archer 1984).

3.4.2 Porous titanium

The (macro-)porosities of the titanium samples (cylinders with height H and diameter D,
see Table 3.3) were determined according to Equation (3.2), using the mass density of pure
titanium ρs = 4.5 g cm−3 (Thelen et al. 2004). The specimens without space holder-induced
spherical pores (dense titanium) still exhibited a porosity of approximately 15%, related to
approximately 10-µm-sized pores visible in Figure 3.3, while the porous titanium had a porosity
of approximately 60% (Table 3.3). Longitudinal waves at ultrasonic frequencies f of 0.1 and
10 MHz, and transversal waves at f = 5 MHz were employed to characterise the cylindrical
samples. The waves travelled along the height H of the specimens.

Table 3.3: Titanium specimens: geometry, mass, and porosity (mean value ± standard devia-
tion)

Nr. H D V M ρapp ρs φ
[-] [mm] [mm] [mm3] [g] [g/cm3] [g/cm3] [%]

Equation (3.1) (3.2)

Dense cylinder 4 13.43 ± 1.02 9.28 ± 0.06 908 ± 60 3.48 ± 0.27 3.83 ± 0.05 4.50 14.9 ± 1.2
Porous cylinder 4 13.54 ± 0.31 9.34 ± 0.02 927 ± 25 1.57 ± 0.07 1.69 ± 0.09 4.50 62.4 ± 2.1

Table 3.4: Elasticity of dense and porous titanium samples, determined from propagation
velocity of bar waves

Polarisation f vbar d ℓRV E λ a/λ E
[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa]

Equation (3.3) (3.10) (3.4) (3.9)

Dense cylinder Longitudinal 0.1 5.06 ± 0.09 0.02 ≥ 0.10 50.6 ± 0.9 0.18 98.1 ± 4.4
Porous cylinder Longitudinal 0.1 3.39 ± 0.05 0.50 ≥ 2.50 33.9 ± 0.5 0.28 19.5 ± 1.7

The employed frequencies and the measured wave velocities (see Tables 3.8 and 3.4) im-
plied, according to Equation (3.4), wavelengths characterising the RVEs ’porous titanium’
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(ℓRV E ≥ 2.50 mm), ’dense titanium’ (ℓRV E ≥ 0.10 mm) and ’dense phase of the porous tita-
nium’ (ℓRV E ≥ 0.10 mm) (see Tables 3.8 and 3.4). Depending on the wavelength, measured
velocities correspond to bulk waves (Table 3.8) or to bar waves (Table 3.4). Remarkably, two
independent test series at different frequencies, providing Young’s modulus of dense titanium
either directly through bar wave propagation at f = 0.1 MHz [see Equation (3.9)], or via C1111

and C1212 at f = 5 and f = 10 MHz [see Equations (3.6) and (3.7)], differ by only 4% (see
underlined values in Tables 3.8 and 3.4). Poisson’s ratio of dense titanium (see Table 3.8) was
found to be slightly smaller than that for pure titanium. This finding can be supported by
Mori-Tanaka’s micromechanical model (Zaoui 2002; Mori and Tanaka 1973) when considering
spherical pores embedded in a titanium matrix.

Bulk waves, i.e. waves of higher frequency, sent through the porous samples, were attenuated
too much, and therefore did not yield any useful results. Preparation of thinner porous samples
might allow for measurement of bulk waves.

3.4.3 Bioglass®-derived glass-ceramic scaffolds

The (macro-)porosity of the Bioglass®-derived glass-ceramic scaffolds, with pore sizes of typ-
ically 800 µm (see Figure 3.7), was in a range from ≈ 80% to ≈ 90%, with a mean value of
85.7% (see Table 3.5). The dense disc-shaped specimen (height H and diameter D, see Fig-
ure 3.5) exhibited a density of ρs = 2.54 g cm−3, which reached almost that of pure Bioglass®

[2.70 g cm−3 (Chen et al. 2006)] and had a characteristic pore size of less than a few microns.
The density of the dense specimens was used to compute the porosities of the porous samples
(see Table 3.5), according to Equation (3.2).

Table 3.5: Bioglass®-derived glass-ceramic specimens: geometry, mass, and porosity (mean
value ± standard deviation)

Nr. H D, A V M ρapp ρs φ
[-] [mm] [mm] [mm3] [g] [g/cm3] [g/cm3] [%]

Equation (3.1) (3.2)

Dense disc 2 2.29 ± 0.02 8.83 ± 0.06 140 ± 3 0.356 ± 0.003 2.54 ± 0.03 2.54 ≈ 0
Porous cuboid 7 12.00 ± 2.09 8.00 ± 0.33 818 ± 199 0.271 ± 0.091 0.36 ± 0.10 2.54 85.7 ± 3.8

Table 3.6: Elasticity of dense Bioglass®-derived glass-ceramic samples, determined from prop-
agation velocity of bulk waves

Polarisation f vL d ℓRV E λ a/λ C1111

[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa]

Equation (3.3) (3.10) (3.4) (3.6)1

Dense disc Longitudinal 20 5.82 ± 0.05 ≪ 0.01 ≥ 0.01 0.29 ± 0.00 30 86.0 ± 0.3

Longitudinal waves at ultrasonic frequencies f of 0.1 and 20 MHz were employed to characterise
the dense, disc-shaped samples and the porous, cuboidal samples (height H, edge length A and
B). The porous material has a quite low material strength. Small pieces of the scaffold broke
off easily during handling, especially when applying honey to the specimen surface. Because of
the small and irregular specimen geometry and a little loss of mass during testing, dimensions,
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Table 3.7: Elasticity of porous Bioglass®-derived glass-ceramic samples, determined from prop-
agation velocity of bar waves

Polarisation f vbar d ℓRV E λ a/λ E
[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa]

Equation (3.3) (3.10) (3.4) (3.9)

Porous cuboid Longitudinal 0.1 2.10 ± 0.13 0.80 ≥ 4.00 21.0 ± 1.4 0.38 1.57 ± 0.30

mass density, and porosity of the porous samples could not be determined as accurately as for
the other materials.

The employed frequencies and measured wave velocities (see Tables 3.6 and 3.7) implied, accord-
ing to Equation (3.4), wavelengths characterising the RVEs ’porous Bioglass®-ceramic scaffolds’
(ℓRV E ≥ 4.00 mm), and ’dense Bioglass®-ceramic’ (ℓRV E ≥ 0.01 mm). The 20-MHz pulse had
an average velocity of 5.82 km s−1 and a wavelength of 0.29 mm, implying bulk wave prop-
agation [see Equation (3.5)] and an average normal stiffness component of C1111 = 86.0 GPa
of dense Bioglass®-ceramic (see Table 3.6). The 0.1-MHz wave had an average velocity of
2.10 km s−1 corresponding, via Equation (3.4), to a wavelength of 21.0 mm, implying bar wave
propagation according to Equation (3.5) (see Table 3.7). Hence, Equation (3.9) allows for
computation of Youngs modulus, with mean and standard deviation of 1.57 ± 0.30 GPa. The
relatively high value of the standard deviation is due to the difficulties in determining the mass
density as accurately as for stronger materials. Nevertheless, the specific values for Young’s
modulus of the seven scaffolds show a decrease with increasing porosity (see Figure 3.12), as
expected from a micromechanical point of view.

Figure 3.12: Youngs modulus over porosity for Bioglass®-ceramic scaffolds: square of correla-
tion coefficient amounts to R2 = 0.87

Bulk waves, i.e. waves of higher frequency, sent through the porous samples, were attenuated
too much, and therefore did not yield any useful results. The limited height of the disc-shaped,
dense specimens did not allow for realisation of bar wave propagation through these specimens.

3.4.4 CEL2-derived glass-ceramic scaffolds

Dense and porous cuboidal CEL2-derived glass-ceramic specimens (height H, edge length A
and B, see Figure 3.6) with porosities of approximately 0% and 65%, respectively, were tested.
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The density of the dense specimens was used to compute the porosities of the porous samples
(see Table 3.9) according to Equation (3.2).

Longitudinal waves at ultrasonic frequencies f of 0.1 and 20 MHz, and transversal waves at
f = 10 MHz were employed to characterise two dense and two porous cuboidal samples. The
waves travelled along the dimensions H and A of the porous specimens, and along dimensions
H, A and B of the dense specimens, allowing for a greater number of measurements, and thus
for a higher reliability of the corresponding mean values. The porous scaffolds had to be grinded
before testing, in order to obtain two parallel and plane surfaces.

The employed frequencies and measured wave velocities (see Tables 3.10 and 3.11) implied,
according to Equation (3.4), wavelengths characterising the RVEs ’porous CEL2-derived glass-
ceramic’ (ℓRV E ≥ 2.50 mm) and ’dense CEL2-derived glass-ceramic’ (ℓRV E ≥ 0.01 mm). De-
pending on the wavelength, measured velocities correspond to bulk waves (Table 3.10) or bar
waves (Table 3.11). We note that two independent test series at different frequencies, providing
Young’s modulus of dense CEL2-derived glass-ceramic either directly through bar wave prop-
agation (f = 0.1 MHz), or via C1111 and C1212 (f = 10; 20 MHz), result in fairly consistent
values for Youngs modulus (see underlined values in Tables 3.10 and 3.11).

Bulk waves sent through the porous samples, were attenuated too much and therefore did not
yield any useful results.
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Table 3.8: Elasticity of dense titanium samples, determined from propagation velocity of bulk waves

Polarisation f vL, vT d ℓRV E λ a/λ C1111, C1212 E, G ν

[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa] [GPa] [-]

Equation (3.3) (3.10) (3.4) (3.6) (3.7)1, (3.6)2 (3.7)2

Dense cylinder Longitudinal 10 5.59 ± 0.02 0.02 ≥ 0.10 0.56 ± 0.00 17 119.7 ± 2.3 94.3 ± 4.0 0.28 ± 0.03
Porous cylinder Transversal 5 3.11 ± 0.12 0.02 ≥ 0.10 0.62 ± 0.02 15 37.0 ± 2.3 37.0 ± 2.3

Table 3.9: CEL2-derived glass-ceramic specimens: geometry, mass, and porosity (mean value ± standard deviation)

Nr. H A B V M ρapp ρs φ

[-] [mm] [mm] [mm] [mm3] [g] [g/cm3] [g/cm3] [%]

Equation (3.1) (3.2)

Dense cuboid 2 49.46 ± 0.01 9.82 ± 0.06 5.96 ± 0.14 2894 ± 50 7.403 ± 0.214 2.56 ± 0.03 2.56 ≈ 0
Porous cuboid 2 35.67 ± 3.87 9.45 ± 0.33 10.68 ± 0.59 3622 ± 714 3.219 ± 0.613 0.89 ± 0.01 2.56 65.2 ± 0.2
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Table 3.10: Elasticity of dense CEL2-derived glass-ceramic samples, determined from propagation velocity of bulk waves

Polarisation f vL, vT d ℓRV E λ a/λ C1111, C1212 E ν

[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa] [GPa] [-]

Equation (3.3) (3.10) (3.4) (3.6) (3.7)1 (3.7)2

Dense cuboid Longitudinal 20 6.38 ± 0.20 ≪ 0.01 ≥ 0.01 0.32 ± 0.01 69 ± 35 104.1 ± 6.4 85.3 ± 5.0 0.25 ± 0.02
Dense cuboid Transversal 10 3.65 ± 0.11 ≪ 0.01 ≥ 0.01 0.36 ± 0.01 68 ± 25 34.1 ± 2.2

Table 3.11: Elasticity of dense and porous CEL2-derived glass-ceramic samples, determined from propagation velocity of bar waves

Polarisation f vbar d ℓRV E λ a/λ E

[-] [MHz] [km/s] [mm] [mm] [mm] [-] [GPa]

Equation (3.3) (3.10) (3.4) (3.9)

Dense cuboid Longitudinal 0.1 6.19 ± 0.21 ≪ 0.01 ≥ 0.01 61.9 ± 2.1 0.36 ± 0.18 98.1 ± 6.9
Porous cuboid Longitudinal 0.1 4.24 ± 0.08 0.50 ≥ 2.50 42.4 ± 0.8 0.39 ± 0.19 16.0 ± 0.6
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3.5 Summary and Conclusion

It was shown in this study that ultrasonic phase velocity measurements comprise an interest-
ing possibility to measure the elastic stiffness of wood and of very porous biomaterials. Our
measurement results on wood agree quite well with data given in the literature. This gives con-
fidence in the experimental devices used. The frequencies employed allowed transmission of bar
waves, leading to direct determination of Young’s modulus of highly porous bone replacement
materials. Stiffness tensor component C1111 of dense glass-ceramic and titanium samples were
determined from longitudinal bulk wave velocities. In addition, the velocities of transversal
waves gave access to shear stiffnesses C1212, and thus, both Young’s modulus and Poisson’s ra-
tio of dense CEL2-derived glass-ceramics and dense titanium. The ratio of longitudinal to shear
wave velocity in these materials amounted to 0.56 and 0.57, respectively, and is consistent with
typical values for this ratio in well-known materials, such as titanium (0.52), steel (0.55), iron
(0.56) and quartz (0.58) [see Table 6.3 in Briggs (1992)]. Even though our wood specimens had
a much lower density (≈ 0.42 g cm−3) than our porous titanium specimens (≈ 1.69 g cm−3), the
longitudinal elastic modulus of wood was the same as the isotropic elastic modulus of porous
titanium (15.4 and 19.5 GPa, respectively), while the specimens also exhibited nearly equal
porosities (≈ 70% and ≈ 62%, respectively). Hence, besides mass density, microstructural
morphology is a key factor for the elastic stiffness of porous biomaterials.
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Biocompatible materials are designed so as to mimic biological materials such as bone as closely
as possible. As regards the mechanical aspect of bone replacement materials, a certain stiffness
and strength are mandatory to effectively carry the loads imposed on the skeleton. In this
paper, porous titanium with different porosities, produced on the basis of metal powder and
space holder components, is investigated as bone replacement material. For the determina-
tion of mechanical properties, i.e. strength of dense and porous titanium samples, two kinds of
experiments were performed - uniaxial and triaxial tests. The triaxial tests were of porome-
chanical nature, i.e. oil was employed to induce the same pressure both at the lateral surfaces of
the cylindrical samples and inside the pores. The stiffness properties were revealed by acoustic
(ultrasonic) tests. Different frequencies give access to different stiffness components (stiffness
tensor components related to high-frequency-induced bulk waves versus Young’s moduli related
to low-frequency-induced bar waves), at different observation scales; namely, the observation
scale the dense titanium with around 100 µm characteristic length (characterized through the
high frequencies) versus that of the porous material with a few millimetres of characteristic
length (characterized through the low frequencies). Finally, the experimental results were used
to develop and validate a poro-micromechanical model for porous titanium, which quantifies
material stiffness and strength from its porosity and (in the case of the aforementioned triaxial
tests) its pore pressurisation state.
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Notation

a radius of cylindrical specimen
Chom Homogenized stiffness of porous medium
CS Elasticity tensor of pure titanium
C1111 Normal component of isotropic elasticity tensor
C1212 Shear component of isotropic elasticity tensor
d Characteristic size of inhomogeneities within material volume (RVE)
div divergence of a vector field
e1,2,3 Base vectors
E Macroscopic strain tensor
E Young’s modulus of porous titanium
ES Young’s modulus of pure titanium
F Homogenized, macroscopic yield criterion
f Frequency
fy Yield stress
G Shear modulus of porous titanium
i Index denoting tensor components
I Fourth-order identity tensor
j Index denoting tensor components
J Volumetric part of fourth-order identity tensor
J0 Bessel function of first kind and order 0
J1 Bessel function of first kind and order 1
K Deviatoric part of fourth-order identity tensor
kf Compressibility of porous medium
kS Bulk modulus of pure titanium
ℓRV E Characteristic length of the RVE
lS Travel distance through the specimen
p Pore pressure in porous titanium
p0 Lateral pressure built up in pressure cell
m Fluid mass per unit volume of porous medium
r Radial polar coordinate
RVE Representative volume element
S Eshelby tensor
t Time
tr trace of tensor
tS Travel time through the specimen
v Phase velocity of acoustic wave
vL Bulk velocity of longitudinal (or compressional) wave
vbar Bar velocity of bar wave
vT Velocity of transversal (or shear) wave
v Fluid velocity
Vsolid Solid volume inside the RVE of porous medium
w Mass flow vector
x Location vector in the RVE
1 Second-order identity tensor
αn Roots of J0, J0(αn) = 0
β Inverse characteristic time of surface pressue built-up
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δij Kronecker delta
∆ Laplace operator
ε Microscopic strain tensor
εd Equivalent (micro-) shear strains
εeff,d Effective equivalent deviatoric microstrains
ηf Viscosity of fluid
κ Intrinsic permeability of porous medium
λ Wavelength
µS Shear modulus of pure titanium
ν Poisson’s ratio of porous titanium
νS Poisson’s ratio of pure titanium
ρ Mass density of specimen
ρf Mass density of fluid
Σ Macroscopic stress tensor
Σd Equivalent deviatoric macroscopic stress
Σm Mean macroscopic stress
ϕ Porosity of porous medium
: Second-order tensor contraction
⊗ Dyadic product of tensors

4.1 Introduction

Many bone replacement materials, based on a multitude of different chemical compositions,
are available nowadays. All these materials are designed so as to mimic bone as closely as
possible. In other words, the bone biomaterials are required to be biocompatible (Jones 2005),
i.e. they should smoothly fit into the biological, chemical, and mechanical environment inside
the body of the patient. As regards the mechanical aspect, a certain stiffness and strength are
mandatory to effectively carry the loads imposed onto the skeleton. In addition, the biomaterial
should match the mechanical properties of the original bone as precisely as possible, in order
to preserve the standard physiological stress fields around the implant. These stress fields are
required to guarantee effective functioning of the biological cells resorbing the bone and forming
new bone.

In this study,we aimed at contributing to the latter aspect. Precise determination of the stress
fields around an implant requires profound knowledge of the material properties of both the
bone material and the bone replacement material under multiaxial stress states, as found in the
living body (Kobayashi et al. 2001). In addition to multiaxial stress fields, the pore pressure
inside the bone is often believed to play a mandatory role, as regards both mechanical integrity
(Hellmich and Ulm 2005a,b; Ochoa et al. 1991; Lim and Hong 2000) and biological function
(Mizuno et al. 2004; Weinbaum et al. 1994). However, related experimental data are extremely
scarce in the open literature. Therefore, we have started a campaign of triaxial test series on
bone and bone biomaterials, giving access to the strength properties of the tested materials.
Moreover, to determine the stiffness of such materials, our test campaign included ultrasonic
measurements as well. Here we describe processing as well as its mechanical and acoustic
characterization of titanium biomaterials. Finally, the experimental results are used to develop
and validate a first poro-micromechanical model for porous titanium, which quantifies material
stiffness and strength from its porosity and (in the case of the aforementioned triaxial tests) its
pore pressurization state.
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4.2 Materials

Porous titanium samples with open cell structures were produced by using metal powder (pure
titanium particles with <45µm characteristic length) and spherical space holder components
(para-formaldehyde with a mean diameter of 500 µm), at Fraunhofer IFAM (Bremen, Ger-
many). The manufacturing process included four steps.

1. Powder mixture preparation: Titanium and para-formaldehyde (as space holder) were
mixed with paraffin (as a pressing agent), and with additional process aids dissolved in
water or organic solvent, to ensure a good bonding of the metal powder and the space
holder particles.

2. Pressing: The mixture was densified, by means of axial pressing in a powder press.

3. Debinding: After compaction, the space holder and bonding agent phases was removed
from the samples, in a catalytic process.

4. Sintering: After complete space holder removal, the samples were sintered in a high
vacuum atmosphere, at a temperature of 1200oC.

The above-described process ensures crack-free and homogeneous titanium samples, with two
different porosities (Figure 4.1).

Figure 4.1: (a) Titanium samples (porous in foreground, dense in background); (b) higher
magnification of porous titanium samples

Figure 4.2: (a) Micrograph of the center of a dense titanium sample; (b) higher magnification
of the denser part of the same sample
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1. Dense titanium [Figure 4.1(a), background] was processed without space holders. How-
ever, the formation of some microns-sized pores inside the material (Figure 4.2) results in
a mass density of 3.80 g/cm3, remarkably lower than the mass density of pure titanium,
which is 4.50 g/cm3 (Thelen et al. 2004).

2. Porous titanium [Figure 4.1(a), foreground; and Figure 4.1(b)] was produced by use of
spaceholders as described before. The solid matrix between the hundreds-of-microns-
sized pores is similar to the material depicted in Figure 4.2. The overall porous material
exhibits a mass density of 1.64 g/cm3.

4.3 Mechanical testing

All tests were conducted at room temperature. The average height and diameter of the samples
were 10.0 and 5.0 mm, respectively. In uniaxial testing mode, the samples were subjected to
axial compressive loads by means of a 150 kN uniaxial electromechanical machine [LFM 150;
Wille Geotechnik, Germany, with displacement control, Figure 4.3(a)], at a displacement rate
of 0.01 mm/s. Extension of uniaxial testing mode to triaxial loading was realized through a
high-pressure triaxial testing cell [LT 63500-2/50-T; Wille Geotechnik, Germany, Figure 4.3(b)],
filled with mineral oil. In order to stabilize the sample during the filling process, it was attached
to the lower die by means of plasticine [Figure 4.3(d)].

An outlet valve on the top of the cell eliminated air bubbles within the testing chamber. This
valve was locked once the chamber was properly filled with oil. Then, the oil was pressur-
ized by means of an electromechanical pressure control [DV 350-150/10; Wille Geotechnik,
Figure 4.3(c)], up to a pressure of 14.5 MPa. Pressures of this order of magnitude occur if
the bone is deformed under undrained conditions (Lim and Hong 2000). A vertical compres-
sive force was applied simultaneously by the electromechanical uniaxial testing machine. The
specimens were loaded in a state of axisymmetric triaxial compressive stress until the vertical
displacement of the upper die [Figure 4.3(d)], driven by the electromechanical machine, reached
30% of the specimen height.

Figure 4.3: Experimental setup for uniaxial and triaxial tests: (a) 150 kN uniaxial testing
machine; (b) pressure control; (c) 150 bar triaxial cell; (d) fixing of specimen: (1) specimen,
(2) plasticine, (3) upper die, (4) lower die
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4.3.1 Identification of triaxial tests as poromechanical tests

Here, we show that the pore pressure build-up within the porous titanium samples is very much
faster than the uniaxial load application through the electromechanical machine, so that the
uniaxial macroscopic deformation is increased, while a constant pore pressure is prescribed in
the pores. In order to estimate corresponding characteristic times, we study the transport of
oil through an undeformed (incompressible) porous medium (metal foam).

The fluid mass conservation law for this case reads as

dm

dt
+ div w = 0, (4.1)

where m is the fluid mass per unit volume of porous medium, d(.)/dt denotes the temporal
derivation of quantity (.), div denotes the divergence of a vector field, and w is the mass fluid
vector. The latter is related to the fluid velocity v through

w = ϕρfv, (4.2)

where ϕ is the porosity and ρf the mass density of the fluid. The fluid mass change is related
to the fluid pressure change dp/dt through the state equation of the fluid (Coussy 2004)

dm

dt
= ϕ

dρf

dt
= ϕ ρf

1

kf

dp

dt
, (4.3)

where kf = 1.5 GPa (Rydberg 2001) is the compressibility or bulk modulus of the (oil) fluid.
The fluid velocity v results from a pressure gradient, as expressed in Darcy’s fluid conduction
law

v = − κ

ηf

grad p, (4.4)

where ηf is the fluid viscosity (ηf = 450 mPas for oil (Grimm and Williams 1997)), and κ
the intrinsic permeability of the porous medium (κ = 3.1 x 10−8 m2 for an open metal foam
of comparable porosity (Leong and Jin 2006)). Use of Equations (4.2)-(4.4) in (4.1) yields an
analogon to the so-called diffusion equation (Crank 1975), reading for space-invariant material
properties kf , ηf and κ, as

dp

dt
=

kfκ

ηf

∆p, (4.5)

with ∆ as the Laplace operator.

Solutions of this partial differential equation are widely documented, see e.g. (Crank 1975).
Specifically, the pore pressure development p(r, t) inside a cylindrical porous sample due to
rapid pressure build-up around the sample,

p = p0(1 − exp(−βt)) with β → ∞ (4.6)

can be given in the form (Crank 1975):

p

p0

= 1 − J0(
√

βr2ηf/kfκ)

J0(
√

βa2ηf/kfκ)
exp(−βt) +

2βηf

akfκ

∞∑

n=1

J0(rαn)

αnJ1(aαn)

exp(−kfκα2
nt/ηf )

α2
n − (βηf/kfκ)

(4.7)

where r is the radial polar coordinate, t denotes the time elapsed since the initiation of pressure
build-up, J0 and J1 are the Bessel functions of the first kind and of order 0 and 1, respectively,
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and αn are the roots of J0, J0(αn) = 0: α1 = 2.4048, α2 = 5.5201, α3 = 8.6537, . . . .

Evaluation of Eq. (4.7) for the intrinsic permeability values of metal foams (Table 4.1), and the
compressibility and viscosity of mineral oil, kf = 1.5 GPa (Rydberg 2001) and ηf = 450 mPas
(McNeil and Stuart 2004), respectively, clearly shows that the pore pressure inside the tested
titanium samples is built up within a small fraction of 1 s. This holds even for the intrinsic
permeability values of bone (Table 4.1) which are lower than the one for metal foams. Hence,
during the mechanical experiments, lasting typically 10 min, the pore pressure is always quasi-
identical to the oil pressure built up in the pressure cell. Therefore, the triaxial tests performed
here may be regarded as poromechanical tests, where the pore pressure inside the samples is
prescribed.

Table 4.1: Intrinsic permeabilities κ of metal foams and bone

Source Material κ [m2]

Leong and Jin (2006) Metal foam 3.1 x 10−8

Grimm and Williams (1997) Trabecular bone 8.5 x 10−9

Li et al. (1987) Cortical bone 2.5 x 10−13

4.3.2 Determination of strength properties

Load-displacement curves obtained for uniaxial and triaxial tests (Figure 4.4) are characterized
by a considerable decrease of the slope of the load-displacement curve at a certain load level.
This refers to ductile material behavior, which is also evident from the deformed shape of the
samples after mechanical testing, as shown in the photographs of Figure 4.5. Bilinear approx-
imation of the load-displacement curves gives access to the yield load (Figure 4.4). Dividing
the latter by the sectional area of the specimen gives access to the yield stress of the material
(see Table 4.2 for corresponding experimental results). The results of the uniaxial and triaxial
tests are not markedly different. This is probably due to the fact that the lateral pressure of
14.5 MPa is by far smaller than the uniaxial yield stress of the samples. More profound inves-
tigations into the poromechanical behavior of the titanium materials considered herein would
call for a pressure cell apt for extremely high pressures.

The remarkably high ductility of the titanium materials does not necessarily match the me-
chanical characteristics of natural bone, often showing a more brittle behavior in compression
(Morgan et al. 2005). This underlines the fact that, in addition to the anisotropy of natural
bone (Lees et al. 1979), which is not mimicked by the tested biomaterial, the inelastic constitu-
tive behavior of man-made biomaterials still needs to be improved as to match more precisely
the one of natural bone.

The load-displacement curves presented in Figure 4.4 do not show any linear regime, which
indicates that inelastic phenomena are at action right from the initial testing phase, when they
are restricted to the regions of the samples close to the load platens. Hence, elastic properties
cannot be derived from the load-displacement curves; therefore, the mechanical tests were used
for determination of strength properties, only; and the materials’ elasticity was revealed through
ultrasonics measurements (shown below).
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Figure 4.4: Load-displacement curves for dense and for porous titanium samples

4.4 Acoustical Testing

4.4.1 Equipment for transmission through technique

The used ultrasonic device consists of a pulser-receiver PR 5077 [Panametrics Inc., Waltham,
MA, Figure 4.6(a)], an oscilloscope, and several ultrasonic transducers [Figure 4.6(b)]. The
pulser unit emits an electrical square-pulse of up to 400 V, with frequencies from 0.1 MHz to
20 MHz. The piezoelectric elements inside the ultrasonic transducers transform such electrical
signals into mechanical signals [when operating in the sending mode, transferring, via a coupling
medium (here honey), the mechanical signals to one side of the specimen under investigation], or
they transform mechanical signals back to electrical signals (when receiving mechanical signals
from the opposite side of the specimen under investigation). The piezoelectric elements are
tailored for the frequency of the employed mechanical signal: The higher the frequency, the
smaller the element and the corresponding transducer. Depending on the cut and orientation
of the element, a longitudinal or a transversal wave is emitted.

The receiver unit of the pulser-receiver has a bandwidth of 0.1 to 35 MHz and a voltage gain
of up to 59 dB. The amplified signal is displayed on an oscilloscope Lecroy WaveRunner 62Xi
(Lecroy Corporoation, Chestnut Ridge, NY) width a bandwidth of 600 MHz and a sample rate
of 10 gigasamples per second. The oscilloscope gives access to the time of flight of the ultrasonic
wave through the specimen, tS, which provides, together with the travel distance through the
specimen, lS, the phase velocity of the wave as

v =
lS
tS

(4.8)

Table 4.2: Mean values and standard deviations of yield stresses in [MPa] (p. . . oil pressure, n
. . . number of tests)

Titanium dense Titanium porous

Uniaxial test (p = 0 MPa) 400 ± 26 (n=4) 103 ± 32 (n=4)
Triaxial test (p = 15 MPa) 353 ± 70 (n=4) 88 ± 15 (n=4)
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Figure 4.5: Photographs of tested samples: (a) dense titanium; (b) porous titanium

see Table 4.3 for typical velocities of longitudinal or compressional waves (vL), where the particle
displacement points into the wave propagation direction, and transverse or shear waves (vT ),
where the particle displacement is perpendicular to the wave propagation direction.

Table 4.3: Ultrasonic measurement results for titanium (Ti) samples (mean values ± standard
deviations)

ρ f v λ ℓRV E C1111/C1212 E/G ν

[g/cm3] [MHz] [km/s] [mm] [mm] [GPa] [GPa]

Dense Ti 3.83±0.05 10.0 vL= 0.56±0.00 ≥0.10 C1111= E= 0.28±0.03
samples 5.59±0.02 119.7±2.3 94.3±4.0
Dense Ti 3.83±0.05 5.0 vT = 0.62±0.02 ≥0.10 C1212= G=
samples 3.11±0.12 37.0±2.3 37.0±2.3
Dense Ti 3.83±0.05 0.1 vbar= 50.6±0.9 ≥0.10 E=
samples 5.06±0.09 98.1±4.4
Porous Ti 1.69±0.09 0.1 vbar= 33.9±0.5 ≥2.50 E=
samples 3.39±0.05 19.5±1.7

4.4.2 Theoretical basis of ultrasonic measurements

Frequency f and wave velocity v give access to the wavelength λ, through

λ =
v

f
(4.9)

If the wavelength is considerably smaller than the diameter of the specimen, a (compressional)
‘bulk wave’, i.e. a laterally constrained wave, propagates with velocity vL in a quasi-infinite
medium. On the other hand, if the wavelength is considerably larger than the diameter of the
specimen, a ‘bar wave’ propagates with velocity vbar, i.e. the specimen acts as one-dimensional

Figure 4.6: Equipment for acoustical testing: (a) pulser-receiver; (b) ultrasonic transducers
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bar without lateral constraints (Ashman et al. 1984). In contrast, shear waves’ propagation is
identical in quasi-infinite media and bar-like structures (Ashman et al. 1987).

As regards bulk waves, a combination of the conservation law of linear momentum, the gen-
eralized Hooke’s law, the linearized strain tensor, and the general plane wave solution for the
displacements inside an infinite solid medium yields the elasticity tensor components C1111 and
C1212 of isotropic materials as functions of the material mass density ρ and the bulk wave
propagation velocities vL and vT (Carcione 2001),

C1111 = ρv2
L and C1212 = G = ρv2

T (4.10)

with G as the shear modulus.

Combination of (4.10) with the definitions of the engineering constants Young’s modulus E and
Poisson’s ratio ν, yields the latter as functions of the wave velocities, in the form

E = ρ
v2

T (3v2
L − 4v2

T )

v2
L − v2

T

(4.11)

and

ν =
E

2G
− 1 =

v2
L/2 − v2

T

v2
L − v2

T

(4.12)

respectively.

In the case of bar wave propagation (Kolsky 1953), the measured bar wave velocity vbar gives
direct access to the Young’s modulus,

E = ρv2
bar (4.13)

In continuum (micro)mechanics (Zaoui 1997, 2002), elastic properties are related to a material
volume [representative volume element (RVE)], with a characteristic length ℓRV E being con-
siderably larger than the inhomogeneities d inside the RVE, and the RVE being subjected to
homogeneous stress and strain states (Figures 4.7 and 4.8). Hence, the characteristic length of
the RVE, ℓRV E, needs to be much smaller than the scale of the characteristic loading of the
medium, here the wavelength λ (Figure 4.7). Mathematically,

d ≪ ℓRV E ≪ λ (4.14)

Therefore, ultrasonic tests at different frequencies ‘detect’, inside a sample, materials at dif-
ferent observation scales (Fritsch and Hellmich 2007), such as the macroscopic porous material
or the solid phase of the material. In the following, this is detailed for the titanium samples.

4.4.3 Determination of elastic properties

Longitudinal waves at ultrasonic frequencies of 0.1 and 10 MHz, and transversal waves at
5 MHz were employed to characterize four dense and four porous cylindrical samples. The
waves traveled along the height of the specimen.

The employed frequencies implied wavelengths of around half a millimeter and half a decimeter,
respectively (Table 4.3), characterizing the RVEs of dense and porous titanium samples, with
at least 0.1 and 2.5 mm characteristic length, respectively (Table 4.3). Depending on the
wavelength, measured velocities correspond to bulk waves (rows 1 and 2 of Table 4.3) or to
bar waves (rows 3 and 4 of Table 4.3). Remarkably, two independent test series at different
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Figure 4.7: Schematic, grey-scale based illustration of stress magnitude in specimens tested
ultrasonically with different frequencies (f1 > f2) (Fritsch and Hellmich 2007)

frequencies, providing Young’s modulus of dense titanium either directly (f = 0.1 MHz) or via
C1111 and C1212 (f = 5 and f = 10 MHz), differ by only 3% (rows 3 and 1 in Table 4.3).

4.5 Prediction of mechanical properties by means of poro-

micromechanics — microstructure-property relation-

ships

In this section, we aim at explaining the above-collected stiffness and strength properties from
the internal structure and composition of the tested materials. Therefore, we consider the
basic morphological feature of the pores inside the samples, which is its spherical shape, and
the volume occupied by these pores normalized by the volume of the entire material volume,
i.e. the porosity of the samples. In a first micromechanical approximation of the material’s
microstructure, we do not distinguish between the typically 10-µm-sized pores discernable in
Figure 4.2 and the typically 500-µm-sized pores discernible in Figure 4.1; but we consider
the sum of both porosities as overall porosity. Accordingly, the measured mass density of
each specimen and the mass density of pure titanium, equal to 4.50 g/cm3, give access to the
aforementioned overall porosity of each sample (see coordinates on abscissa of experimental data
points in Figures 4.9 and 4.10, as well as Table 4.4 for mean values and standard deviations).

We consider an RVE of porous titanium (Figure 4.8, see also Section 4.4 and Figure 4.7), with

e3

e2e1 p

ℓRV E

ξ∂V : ξ(x) = E · x

E

Figure 4.8: Micromechanical representation of porous medium (Dormieux 2005; Dormieux et al.
2002, 2006): a representative volume element (RVE) is loaded by displacements related to
homogeneous (macroscopic) strains E, and by a pore pressure p
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characteristic length ℓRV E = 2. . . 5 mm. Therein, we distinguish two quasi-homogeneous sub-
domains (also called material phases): (i) the pores of characteristic size d = 10 . . . 500 microns
≪ ℓRV E, with a volume fraction equal to the porosity ϕ and with a prescribed hydrostatic
stress state equal to the pore pressure; and (ii) the solid titanium matrix with volume fraction
(1 − ϕ) and with mechanical properties of pure (non-porous) titanium. The elastic properties
of the latter are typically given by a Young’s modulus ES = 120 GPa and a Poissons ratio νS

= 0.32, i.e. by a bulk modulus kS = 111 GPa and a shear modulus µS = 45.5 GPa (Matweb
2007), see also the stiffnesses in Figure 4.9 at ϕ= 0, and the uniaxial strength of pure titanium
typically amounts to 450 MPa (Matweb 2007). These quantities are the basis for determination
of the ‘homogenized’ mechanical behavior of the overall material, i.e. the relation between ho-
mogeneous (‘macroscopic’) deformations E acting on the boundary of the RVE (being identical
to the average of the (‘micro’-) strains inside the RVE) and resulting average (‘micro’-) stresses
(being identical to the ‘macroscopic’ stresses Σ), as well as the macroscopic stress states related
to material failure (‘homogenized strength’). The homogenized or effective material behavior of
the porous titanium samples is estimated from the mechanical behavior of the aforementioned
homogeneous phases, representing the inhomogeneities within the RVE, their dosages within
the RVE, their characteristic shapes, and their interactions, as described next.
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Figure 4.9: Prediction of stiffness properties of titanium samples, by means of poro-
micromechanical model, Equations (4.15) – (4.18); experimental values according to Sections
4.3 and 4.4

Table 4.4: Porosities of samples (mean values ± standard deviations)

ϕ (%)

Dense titanium samples 14.9 ± 1.2
Porous titanium samples 62.4 ± 2.1

4.5.1 Stiffness

For predicting the effective stiffness properties of the (empty) porous titanium samples, we
consider - on average - the interaction of spherical pores inside a pure titanium matrix, by
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Figure 4.10: Prediction of strength properties of titanium samples, by means of poro-
micromechanical model, Equations (4.19)-(4.20); experimental values according to Sections
4.3 and 4.4

means of a Mori-Tanaka homogenization scheme (mean-field homogenization) (Zaoui 2002;
Dormieux 2005; Dormieux et al. 2002; Mori and Tanaka 1973; Benveniste 1987), delivering
the following estimate Chom for the ‘homogenized’ stiffness of the composite material ‘porous
titanium’

Chom = CS : (I − ϕ[I − (1 − ϕ)S]−1), (4.15)

relating macroscopic stresses Σ to macroscopic strain E. In (4.15), CS is the elasticity tensor
of pure titanium, CS = 3kSJ + 2µSK with

J =
1

3
1 ⊗ 1 and K = I − J (4.16)

as the volumetric and the deviatoric part of the fourth-order identity tensor,

I = Iijkl =
1

2
(δikδjl + δilδkj) (4.17)

and δij (Kronecker delta) are the components of the second-order identity tensor 1, δij=1 for
i=j and 0 otherwise.

The Eshelby tensor S for spherical inclusions accounts for the inclusion shape and is of the form
(Eshelby 1957)

S =
3kS

3kS + 4µS

J +
6(kS + 2µS)

5(3kS + 4µS)
K (4.18)

The predictions of the micromechanical model (4.15)-(4.18) compare well with corresponding
experimentally determined stiffnesses (Figure 4.9).

4.5.2 Strength

In contrast to the homogenized elastic properties, which can be derived from averages of mi-
crostrains and microstresses over the material phases, homogenization of strength properties
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calls for additional information on the heterogeneity of these micro-quantities, i.e. the strain
or stress peaks inside the microstructure (possibly cancelled out through averaging) need to be
appropriately considered.

It has recently been shown (Dormieux et al. 2002; Kreher 1990), that this heterogeneity can
reasonably be considered through the so-called effective microstrains, such as the square root
of the average over the solid material phase, of the squares of the equivalent deviatoric (micro-
)strains εd(x),

εeff,d =

√
∫

Vsolid

εd(x) : εd(x)dV (4.19)

with

εd(x) = ε(x) − 1

3
trε(x)1 (4.20)

where Vsolid is the volume inside the RVE, which is occupied by the solid matrix, x the location
vector indicating positions inside the RVE (Figure 4.8), and tr denotes the trace of a tensor.
By non-linear homogenization theory (Dormieux 2005; Dormieux et al. 2002; Suquet 1997),
the limit case of large effective microstrains, being related to microstresses fulfilling a failure
criterion (such as the ideally plastic von Mises criterion calibrated by the uniaxial strength of
pure titanium herein), can be assigned to corresponding macroscopic stress states, defining a
‘macroscopic’, homogenized (ideally plastic) yield criterion of the following, elliptical form:

F(Σm, Σd, p) =
3ϕ

4(1 − ϕ)2
(Σm + p)2 +

1 + (2/3)ϕ

(1 − ϕ)2
Σ2

d −
f 2

y

3
= 0 (4.21)

with Σm and Σd as the mean and the equivalent macroscopic stress, reading as

Σm =
1

3
trΣ (4.22)

and

Σd =

√

1

2
Σd : Σd, Σd = Σ − 1

3
trΣ1 (4.23)

and p as the pressure acting inside the pores. It is important to note that p is a state variable
independent of Σ. In particular, p is not equal to hydrostatic part of the macroscopic stress,
1/3 tr Σ, as it is sometimes used in the open literature.

For validation of the micromechanics model through our experimental data, we consider a
Cartesian base frame with base vectors e1, e2 and e3, where the third axis coincides with the
long axis of the cylindrical samples. We consider model predictions for the yield stress in:

1. uniaxial compression without internal pore pressure:

Σ = Σ33e3 ⊗ e3,

p = 0,

and in
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2. triaxial (not hydrostatic) compression with internal pore pressure:

Σ = −p0e1 ⊗ e1 − p0e2 ⊗ e2 + Σ33e3 ⊗ e3,

p = p0, p0 = 14.5 MPa,

where Σ33 is the normal stress related to the axial compression load imposed by the electrome-
chanical machine onto the specimen, irrespective of the pore pressure p0.

The aforementioned model predictions compare quite well to corresponding, experimentally
obtained values (Figure 4.10). Consideration of two differently sized porosities in a multistep-
homogenization procedure, instead of only one as done herein, might improve the model pre-
dictions.

4.6 Conclusions

Triaxial mechanical tests and ultrasound experiments were performed on porous titanium sam-
ples of different porosity, in order to determine their Young’s moduli and Poisson’s ratios,
as well as their plastic behavior and yield stresses. The investigations indicate that porous
titanium material has a hardening plasticity behavior as seen in load-displacement curves (Fig-
ure 4.4). Experiments show that yield stress and Young’s modulus decrease at increasing
porosity (see data points in Figures 4.9 and 4.10). The experimental results were consistent
with poro-micromechanical model predictions based on the stiffness and strength properties
of pure titanium, as well as on the sample specific porosity. In addition, the corresponding
Mori-Tanaka model for upscaling of elasticity shows that the overall Young’s modulus of the
porous titanium samples depend nonlinearly and convexly on the porosity (Figure 4.9); while a
nonlinear homogenization scheme based on effective microstrains in the solid material matrix,
shows that the uniaxial yield stress depends more linearly on the porosity and that internal oil
pressure increases the yield stress (Figure 4.10). However, as the employed oil pressure is by far
smaller than the uniaxial yield stress, the aforementioned increase is very small in the present
case. This is probably the reason why it could not be clearly confirmed by the experiments.
This leads the way to our next step in the described research project, devoted to application of
the same oil pressure to materials characterized by a higher porosity, and to application of by
far higher oil pressures to materials such as the ones described herein. In addition, we plan an
extension of the experimental program towards cyclic loading. This loading condition is highly
relevant for the day-to-day use of implants (Hosoda et al. 2006), and also plays an important
mechanobiological role (Mizuno et al. 2004).
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Owing to their stimulating effects on bone cells, ceramics are identified as expressly promising
materials for fabrication of tissue engineering (TE) scaffolds. To ensure the mechanical compe-
tence of TE scaffolds, it is of central importance to understand the impact of pore shape and
volume on the mechanical behaviour of the scaffolds, also under complex loading states. There-
fore, the theory of continuum micromechanics is used as basis for a material model predicting
relationships between porosity and elastic/strength properties. The model, which mathemati-
cally expresses the mechanical behaviour of a ceramic matrix (based on a glass system of the
type SiO2-P2O5-CaO-MgO-Na2O-K2O; called CEL2) in which interconnected pores are embed-
ded, is carefully validated through a wealth of independent experimental data. The remarkably
good agreement between porosity based model predictions for the elastic and strength proper-
ties of CEL2-based porous scaffolds and corresponding experimentally determined mechanical
properties underlines the great potential of micromechanical modelling for speeding up the
biomaterial and tissue engineering scaffold development process — by delivering reasonable
estimates for thematerial behaviour, also beyond experimentally observed situations.
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Notation

Ar fourth order strain concentration tensor of phase r
AS fourth order strain concentration tensor of solid phase

(dense CEL2 glass ceramic)
Apor fourth order strain concentration tensor of pores
a typical cross-sectional dimension

of a CEL2-based porous biomaterial sample
Chom fourth order homogenised stiffness tensor
Cijkl components of fourth order homogenised stiffness tensor
Cpor fourth order stiffness tensor of pores
CS fourth order stiffness tensor of solid phase (dense CEL2 glass ceramic)
d characteristic length of inhomogeneity within an RVE
E second order ‘macroscopic’ strain tensor
Ed deviatoric part of macroscopic strain tensor
ES Young’s modulus of solid phase (dense CEL2 glass ceramic)
Eexp experimentally determined Young’s modulus

of porous CEL2-based biomaterial
Ēexp mean over all experimentally determined Young’s moduli

of porous CEL2-based biomaterial
Ehom homogenised Young’s modulus of porous CEL2-based biomaterial
ē mean of relative error between predictions and experiments
eS standard deviation of relative error between predictions and experiments
e1 unit base vector of Cartesian reference base frame
f ultrasonic excitation frequency
f(σ) = 0 boundary of elastic domain of solid material phase,

in space of microstresses
F(Σ) = 0 boundary of elastic domain of porous CEL2-based biomaterial,

in space of macrostresses
g1, g2 functions for determination of homogenised elastic constants

khom and µhom [see Eq. (5.18)]
I fourth-order identity tensor
J volumetric part of fourth-order identity tensor I

K deviatoric part of fourth-order identity tensor I

kj
DS, kj+1

DS homogenised bulk moduli of step j and j + 1 in a Differential Scheme
kS Bulk modulus of solid phase (dense CEL2 glass ceramic)
khom homogenised bulk modulus of porous CEL2-based biomaterial
L characteristic length of a structure containing an RVE
ℓRV E characteristic length of RVE of porous CEL2-based biomaterial
l length of ultrasonic path
M mass of a porous CEL2-based biomaterial sample
RVE representative volume element
r index for phases
Ssph fourth order Eshelby tensor for spherical inclusion embedded in isotropic

matrix with stiffness CS

t transition time of an ultrasonic wave
through a CEL2-based biomaterial sample

tr trace of a second order tensor
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V volume of a porous CEL2-based biomaterial sample
Vpor volume of pores within an RVE of porous CEL2-based biomaterial
VS volume of the solid phase (dense CEL2 glass ceramic)

within an RVE of porous CEL2-based biomaterial
VRV E volume of an RVE of porous CEL2-based biomaterial
v propagation velocity of ultrasonic wave

within a CEL2-based biomaterial sample
x position vector within an RVE
∆ϕ pore increment in a Differential Scheme
∆x very small volume fraction of homogenised material

in a Differential Scheme, to be replaced by pores
δij Kronecker delta
ε second order microscopic strain tensor
εd deviatoric part of microscopic strain tensor
εd equivalent deviatoric microscopic strain

εeff
d effective deviatoric microscopic strain

εpor average microscopic strain in pore phase
εr average microscopic strain in phase r
εS average microscopic strain in solid phase (dense CEL2 glass ceramic)
λ ultrasonic wave length

µj
DS, µj+1

DS homogenised shear moduli of step j and j + 1 in a Differential Scheme
µhom homogenised shear modulus of porous CEL2-based biomaterial sample
νS Poisson’s ratio of solid phase (dense CEL2 glass ceramic)
νhom homogenised Poisson’s ratio of porous CEL2-based biomaterial sample
ξ displacements within an RVE and at its boundary
ρ material mass density of porous CEL2-based biomaterial sample
ρS material mass density of solid phase (dense CEL2 glass ceramic)
Σ second order ‘macroscopic’ stress tensor
Σd deviatoric part of macroscopic stress tensor

Σult,c
pred model predicted uniaxial compressive strength of porous CEL2-based

biomaterial
Σult,c

exp experimentally determined uniaxial compressive strength of porous
CEL2-based biomaterial

σ second order ‘microscopic’ stress tensor
σd deviatoric part of microscopic stress tensor
σd equivalent deviatoric microscopic stress

σeff
d effective deviatoric microscopic stress

σS average microscopic stress in solid phase (dense CEL2 glass ceramic)
τult
S shear strength of dense CEL2 glass ceramic

τult shear strength
ϕ volume fraction of pores within an RVE

of porous CEL2-based biomaterial
∂V boundary of an RVE
1 second order identity tensor
〈(.)〉V = average of quantity (.) over volume V
1/V

∫

V
(.)dV

· first order tensor contraction
: second order tensor contraction
⊗ dyadic product of tensors
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5.1 Introduction

Bone replacements are needed for many orthopaedic, maxillofacial and craniofacial surgeries.
The latter may be required due to e.g. trauma or bone neoplasia. Hence, bone regeneration is
an increasingly important clinical need. Autografts, allografts and xenografts can be used as
bone substitutes; autografts are still considered as the best choice, because of their ability to
support osteoinduction and osteogenesis, but considerable drawbacks are associated with the
need for further surgery and with donor site morbidity. Allografts and xenografts represent a
promising alternative, but they show worse bone induction properties, lower integration rates
and non-negligible risks of viral contamination. For these reasons, artificial grafts (also called
scaffolds) are interesting candidates to stimulate bone regeneration.

The term scaffold refers to a structure, realised with natural or synthesised materials, which
is able to promote cellular regeneration and to guide bone regeneration. Therefore, synthetic
scaffolds may be seeded with carefully chosen biological cells and/or growth factors: this is
referred to as tissue engineering (Langer and Vacanti 1993). Within this concept, the main role
of a scaffold is to assure a mechanical support to the growing tissue, to guide this growth and
to induce correct development of the bony organ. Due to their stimulating effects on bone cells,
ceramics (such as hydroxyapatite (Akao et al. 1981; Verma et al. 2006), β-tricalcium phosphate
(Charrière et al. 2001), bioactive glasses (Hench and Jones 2005; Boccaccini et al. 2005), or
glass ceramics (Vitale-Brovarone et al. 2007)) are identified as expressly promising materials
for fabrication of tissue engineering scaffolds.

However, the design of such scaffolds is still a great challenge since (at least) two competing
requirements must be fulfilled:

(i) on the one hand, the scaffold must exhibit a sufficient mechanical competence, i.e. stiffness
and strength comparable to natural bones;

(ii) on the other hand, once the scaffold would be implanted into the living organism, it
should be continuously resorbed and replaced by natural bones. This typically requires a
sufficient pore space (pore size in the range of hundred micrometres and porosity of more
than 50-60% (Cancedda et al. 2007)), which discriminates the aforementioned mechanical
properties, and therefore competes with the first requirement.

For finding a good balance between these competing requirements, it is of central importance to
understand the impact of pore shape and volume on the mechanical behaviour of the scaffolds,
also under complex loading states. In order to contribute to this understanding, the authors
started a multidisciplinary activity driven forward by physicists, chemists, material scientists,
and engineering mechanicians. While the authors’ endeavours comprised state of the art pro-
cessing and characterisation techniques, ranging all the way from microscopy to mechanical
and acoustical testing, the focus of the present contribution is on an engineering science based
synthesis tool for consistent explanation of the experimental data: in more detail, the theory of
continuum micromechanics (Suquet 1997; Zaoui 2002) provides the authors with the basis for a
material model predicting relationships between porosity and elastic/strength properties. The
model, which mathematically expresses the mechanical behaviour of a ceramic matrix in which
interconnected pores are embedded (see Section 5.3), is carefully validated through a wealth
of independent experimental data (see Section 5.4). The latter are gained from geometrical
and weighing measurements and from mechanical tests on CEL2 biomaterials (see Section 5.4).
These biomaterials are based on a glass system of the type SiO2-P2O5-CaO-MgO-Na2O-K2O,
the production and microstructural morphology of which will be given in Section 5.2. The
remarkably good agreement between porosity based model predictions for elastic and strength
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properties of CEL2-based porous scaffolds and corresponding experimentally determined me-
chanical properties (see Section 5.4) underlines the great potential of micromechanical modelling
for speeding up the biomaterial and tissue engineering scaffold development process – by de-
livering reasonable estimates for the material behaviour, also beyond experimentally observed
situations. A related discussion concludes the present paper (see Section 5.5).

5.2 Processing and microstructural characterisation of

CEL2 biomaterials before and after bioactivity treat-

ment

The production of glass ceramic tissue engineering scaffolds with different porosities was based
on a glass called CEL2 (Vitale-Brovarone et al. 2007). This glass belongs to the system SiO2-
P2O5-CaO-MgO-Na2O-K2O, with the following molar composition: 45% SiO2, 3% P2O5, 26%
CaO, 7% MgO, 15% Na2O, 4% K2O. CEL2 was prepared by melting the raw products in a
platinum crucible at 1400oC for 1 h and by quenching the melt in cold water to obtain a frit
that was finally ground and sieved. This resulted in a final grain size of less than 30 µm.

The porous scaffolds were produced by means of two different methods:

(i) the replication technique based on a polymeric sponge

(ii) the burning-out method based on a mixture of glass and organic powders.

In the latter method, different quantities of an (polyethylene) organic powder with grain sizes of
100-600 µm are mixed with the aforementioned CEL2 powder, leading to different porosities of
the end product. Subsequently, the mixture is pressed, then it passes through a heat treatment
where the polymer burns, leaving pores on the substrate; finally, the powders are sintered.
As an alternative production technique, the replication method involves the impregnation of a
polymeric template with a suitable powder suspension (slurry). The chosen template possesses
a porous microstructure and, after the impregnation phase, the template undergoes a thermal
treatment that burns out the organic phase and sinters the inorganic one.

To check the bioactivity requirement given in Section 5.1, some of the replication technique
based 3D scaffolds were treated in simulated body fluid (SBF) for one week (sample ‘B’ in
Tables 5.2 and 5.3) and for four weeks (sample ‘D’ in Tables 5.2 and 5.3) respectively, in
order to study the formation of hydroxyapatite crystals on the sintered struts (Figure 5.2). In
addition, 3D scaffolds were also soaked in a buffered medium, trishydroxymethylaminomethane
(standardly abbreviated as tris), again for one week (sample ‘C’ in Tables 5.2 and 5.3) and four
weeks (sample ‘D’ in Tables 5.2 and 5.3) respectively, so as to assess the scaffolds bioresorption
with time.

The microstructural morphology of the scaffolds was studied by means of scanning electron
microscopy (SEM). The replication technique allows for realisation of strut like morphologies
inspired by trabecular bone architecture [Figure 5.1(a)-(b)], while the powder mixture technique
results in porous matrix type morphologies [Figure 5.1(c)-(d)]. In both cases, the pore sizes
related to the tailored (macro) porosity range between 100 and 500 µm. Moreover, the sintering
process induces a microporosity (with characteristic length of 15 µm) important for adhesion
of proteins and cells. After soaking in SBF or tris at 37oC, a new phase formed on the pore
surfaces (Figure 5.2), showing the remarkable bioactivity of the material. In SBF, the chemical
composition of this new phase was confirmed to be close to hydroxyapatite, by means of X-ray
diffraction (XRD) and energy dispersion spectrometry (EDS). The pH variations in the pores
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(a) (b)

(c) (d)

Figure 5.1: Scanning electron micrographs of CEL2 glass ceramic scaffolds at different resolu-
tions, produced by replication method (a)-(b), and by burning-out method (c)-(d)

during the soaking of the scaffolds were also monitored: ranging between 7.4 and 8, they fall
into the moderately alkaline conditions preferred by the osteoblasts, the biological cells building
up an extracellular bone matrix.

Next, the microstructural information contained in Figures 5.1 and 5.2 is reduced to the features
which are essential to capture the mechanical behaviour of the scaffolds. Therefore, the authors
will not distinguish between the solid glass ceramic substance and the new phase initiated
through treatment in SBF or tris. The relevance of this simplification will be underlined in
the section devoted to model validation. The model itself will be cast in the framework of
continuum micromechanics, as is detailed next.

5.3 Micromechanical model

5.3.1 Fundamentals of continuum micromechanics — representative
volume element

In continuum micromechanics (Suquet 1997; Zaoui 2002; Hill 1963) a material is understood
as a macrohomogeneous, but microheterogeneous body filling a representative volume element
(RVE) with characteristic length ℓRV E, ℓRV E ≫ d, d standing for the characteristic length
of inhomogeneities within the RVE, and ℓRV E ≪ L, L standing for the characteristic lengths
of the geometry or loading of a structure built up by the material defined on the RVE. In
general, the microstructure within each RVE is so complicated that it cannot be described
in complete detail. Therefore, quasihomogeneous subdomains with known physical quantities
(such as volume fractions, elastic or strength properties) are reasonably chosen. They are
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Figure 5.2: Scanning electron micrograph of CEL2 glass ceramic scaffold after one week of
soaking in SBF

called material phases. The ‘homogenised’ mechanical behaviour of the overall material, i.e. the
relation between homogeneous deformations acting on the boundary of the RVE and resulting
(average) stresses, or the ultimate stresses sustainable by the RVE, can then be estimated
from the mechanical behaviour of the aforementioned homogeneous phases (representing the
inhomogeneities within the RVE), their dosages within the RVE, their characteristic shapes,
and their interactions.

5.3.2 Micromechanical representation of CEL2-based biomaterial

An RVE of CEL2-based biomaterial is considered, with characteristic length ℓRV E=55 mm
and with volume VRV E, hosting spherical, empty pores with characteristic size d=100-500 µm
≪ ℓRV E, with volume Vpor and volume fraction ϕ (=Vpor/VRV E). These pores are embedded in
a solid matrix with volume VS and volume fraction (1-ϕ) (see Figure 5.3).

Homogeneous (‘macroscopic’) strains E are imposed onto the RVE, in terms of displacements
ξ at its boundary ∂V

∀x ∈ ∂V : ξ(x) = E · x (5.1)

with x as the position vector within the RVE. As a consequence, the resulting kinematically
compatible microstrains ε(x) throughout the RVE with volume VRV E fulfil the average condition

VSCS
VRV E

VporCpor ≡ 0

Figure 5.3: Micromechanical representation of CEL2-based biomaterial: macropores of porosity
ϕ are embedded and interconnected within dense (microporous) solid glass substance with
elasticity tensor CS
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(Hashin 1983)

E = 〈ε〉 =
1

VRV E

∫

VRV E

ε(x) dV = (1 − ϕ) εS + ϕ εpor (5.2)

with

εS =
1

VS

∫

VS

ε(x) dV, εpor =
1

Vpor

∫

Vpor

ε(x) dV, VS + Vpor = VRV E (5.3)

Equation (5.2) provides a link between ‘micro’ and ‘macro’ strains. Thereby, εS and εpor are
the averages of the (micro)strain tensor fields, over the solid and the porous phase respectively
[see equation (5.3)]. Analogously, homogenised (‘macroscopic’) stresses Σ are defined as the
spatial average over the RVE of the microstresses σ(x)

Σ = 〈σ〉 =
1

VRV E

∫

VRV E

σ dV = (1 − ϕ) σS (5.4)

with σS as the average of the (micro)stress tensor field over the solid phase.

5.3.3 Constitutive behaviour of CEL2 and pores

The solid phase (consisting of dense CEL2 glass ceramic, and in case of samples tested for
biocompatibility, also of tris or SBF-derived substances) inside the RVE VRV E behaves linear
elastically

σ = CS : εS (5.5)

with CS = 3kSJ + 2µSK as the isotropic elastic stiffness of the solid phase; with bulk modulus
kS and shear modulus µS. J = 1/31 : 1 and K = I − J are the volumetric and the deviatoric
part of the fourth order identity tensor I, with components Iijkl = 1/2(δikδjl + δilδkj); the
components of the second order unit tensor 1, δij (Kronecker delta), read as δij = 1 for i = j
and δij =0 for i 6=j. The pores are empty, therefore Cpor = 0. The load bearing capacity of the
solid phase is bounded according to a von Mises-type failure criterion, reading as

f(σ(x)) = σd(x) − τult = 0 (5.6)

where τult is the shear strength of the solid phase, and σd is the equivalent deviatoric microscopic
stress, reading as

σd(x) =

√

1

2
σd(x) : σd(x) (5.7)

with

σd(x) = σ(x) − 1

3
tr σ(x)1 (5.8)

as the deviatoric part of the microscopic stress tensor σ.
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5.3.4 Homogenisation of elastic properties

Homogenised (‘macroscopic’) stresses and strains, Σ and E, are related by the homogenised
(‘macroscopic’) stiffness tensor Chom

Σ = Chom : E (5.9)

which needs to be linked to the solid stiffness CS, as well as to the shape, and to the spatial
arrangement of the phases (solid glass ceramic substance and pores). This link is based on
the linear relation between the homogenised (‘macroscopic’) strain E and the average (‘micro-
scopic’) strain εr, resulting from the superposition principle valid for linear elasticity [equation
(5.5)] (Hill 1963). This relation is expressed in terms of the fourth order concentration tensors
Ar of each of the phases r (r=S or por)

εr = Ar : E (5.10)

which implies, together with equation (5.2), that

(1 − ϕ) AS + ϕ Apor = I (5.11)

Insertion of equation (5.10) into equation (5.5) and averaging over all phases according to
equation (5.4) leads to

Σ = (1 − ϕ) CS : AS : E (5.12)

From equations (5.12) and (5.9), the sought relation between the phase stiffness tensor CS and
the overall homogenised stiffness Chom of the RVE can be identified

Chom = (1 − ϕ) : CS : AS = CS : (I − ϕ Apor) (5.13)

If the porosity is very small, ϕ ≪ 1 (dilute dispersion of pores), the mechanical interactions
between the pores can be neglected. In this case, the macroscopic strains E acting on the RVE
of Figure 5.3 can be set equal to those acting on the remote boundary of an infinite matrix made
up by the solid phase, a matrix which hosts one pore like inclusion. Under this condition, the
homogeneous (microscopic) strains εpor within a spherical empty pore follows from Eshelby’s
1957 problem (Eshelby 1957), and read as

εpor = [I − Ssph]
−1

︸ ︷︷ ︸

Apor

: E (5.14)

whereby Apor follows from equation (5.10). The fourth order Eshelby tensor Ssph accounts for
the morphology of the inclusion. For spheres, it reads as

Ssph =
3kS

3kS + 4µS

J +
6(kS + 2µS)

5(3kS + 4µS)
K (5.15)

Use of equations (5.14) and (5.15) in equation (5.13) yields the so called ‘dilute estimate’ for
the stiffness of a porous material with spherical pores. In the present situation, however, this
estimate needs to be extended to the case of higher porosities made up by interconnected pores
(see Figures 5.1 and 5.2). Therefore, the so called Differential Scheme is used (Boucher 1976;
McLaughlin 1977; Molinari and El Mouden 1996; Dormieux and Lemarchand 2001). Initially,
a very small volume fraction of pores ∆ϕ is introduced into the solid matrix and the material is
homogenised via equations (5.14), (5.15) and (5.13). The following steps consist in (i) removing
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a very small portion ∆x ≪ 1 of the previously homogenised material (containing already some
porosity), in (ii) replacing it by the same volume fraction of pores (see Figure 5.4), and in (iii)
homogenisation of the slightly more porous material. Thereby, the overall porosity increases
by the increment ∆ϕ.

∆V

VRV E
∆x = ∆V

VRV E

jth homogenised medium

pore volume∆x

poressolid phase

Figure 5.4: Schematical representation of Differential Scheme, in the line of (Dormieux and
Lemarchand 2001)

∆ϕ = −ϕ∆x + ∆x = (1 − ϕ)∆x, ∆x ≪ 1 (5.16)

Repeating this removal and introduction of small volume fractions, followed by subsequent
homogenisation, leads to an iteration scheme of the form (Dormieux et al. 2006)

kj+1
DS = kj

DS

[

1 −
(

1 +
3kj

DS

4µj
DS

)

∆x

]

µj+1
DS = µj

DS

[

1 −
(

5
3kj

DS + 4µj
DS

9kj
DS + 8µj

DS

)

∆x

]

(5.17)

with kj
DS and µj

DS as the homogenised moduli after the jth homogenisation step. Realising
scheme (5.17) for the limit case ∆ϕ → 0, as long as the actual porosity is reached,

∑

j ϕj = ϕ,
yields the differential estimate (Dormieux et al. 2006)

g1 =
(1 + 4µS/3kS)(µhom/µS)3

2 − (1 − 4µS/3kS)(µhom/µS)3/5
− (1 − ϕ)6 = 0

g2 =
µhom

µS

− (1 − 4/3 µhom/khom)5/3

(1 − 4/3 µS/kS)5/3
= 0 (5.18)

with khom and µhom as the bulk and the shear modulus of the homogenised stiffness tensor
Chom, Chom = 3khomJ + 2µhomK. Equation (5.18) is valid as long as Poisson’s ratio νS =
(3kS − 2µS)/(6kS + 2µS) is larger than 0.2 (see (Dormieux et al. 2006)). Finally, standard
isotropic elasticity relates khom and µhom to the Young’s modulus Ehom

Ehom =
9khomµhom

3khom + µhom

(5.19)

5.3.5 Upscaling of failure properties

In order to determine the effective failure properties resulting from local failure characteristics
[equation (5.17)], we are left with relating the local strains and stresses to corresponding macro-
scopic quantities. In contrast to the homogenised elastic properties, which can be derived from
(first order) averages of microstrains and microstresses over the material phases [see εS and εpor
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in equation (5.3)], homogenisation of strength properties calls for additional information on the
heterogeneity of these microquantities, i.e. the strain or stress peaks inside the microstructure
(possibly cancelled out through averaging) need to be appropriately considered. This hetero-
geneity can reasonably be considered through so called effective microstrains ε

eff
d (Kreher 1990;

Dormieux et al. 2002; Barthélémy and Dormieux 2003, 2004) (see (Fritsch et al. 2007a,b, 2009)
for application to hydroxyapatite ceramics), such as the square root of the average over the
solid material phase, of the squares of the equivalent deviatoric (micro) strains εd(x),

εeff
d =

√
√
√
√

1

VS

∫

VS

ε2
d(x)dV (5.20)

with

εd(x) =

√

1

2
εd(x) : εd(x) (5.21)

with the deviatoric microstrain tensor

εd(x) = ε(x) − 1

3
tr ε(x)1 (5.22)

and with tr ε as the trace of the microscopic strain tensor. Energy considerations (Dormieux
et al. 2002) allow for determination of the effective deviatoric strain εeff

d from the macroscopic
strains E, according to

εeff,2
d =

1

2(1 − ϕ)

[
1

2

∂khom

∂µS

(tr E)2 +
∂µhom

∂µS

Ed : Ed

]

(5.23)

with tr E and Ed as the trace and the deviatoric part of the macroscopic strain tensor E. The
definition of Ed is analogous to equation (5.22). The derivations of khom and µhom with respect
to µS are obtained via implicit differentiation of equation (5.18), leading to

∂µhom

∂µS

=
− ∂g1

∂µS

∂g1

∂µhom

,
∂khom

∂µS

=
−
(

∂g2

∂µhom

∂µhom

∂µS
+ ∂g2

∂µS

)

∂g2

∂khom

(5.24)
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whereby

∂g1

∂µS

= −
6µ3

hom(9kS + 8µS)

(

4µhomµS + 5µS

(
µhom

µS

)2/5

kS − 2µhomkS

)

µS N
,

∂g1

∂µhom

=

6µ2
hom(3kS + 4µS)

(

8µhomµS + 15µS

(
µhom

µS

)2/5

kS − 6µhomkS

)

N ,

N = 5µ4
S

(

6kS − 3

(
µhom

µS

)3/5

kS + 4

(
µhom

µS

)3/5

µS

)2(
µhom

µS

)2/5

,

∂g2

∂µS

= −µhom

µ2
S

−
20
(

1 − 4µhom

3khom

)5/3

9kS

(

1 − 4µS
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The macroscopic strains E and Ed in equation (5.23) are related to the corresponding macro-
scopic stress states via the homogenised stiffness tensor Chom [see equation (5.9)]. In equation
(5.6), stress peaks of σd(x) are left to be estimated by the effective microstress σeff

d . The latter
reads as

σeff
d = 2µS εeff

d (5.26)

Insertion of equation (5.26), together with equations (5.18)-(5.25) and (5.9), into the micro-
scopic failure criterion (5.6) with σd(x) ≈ σeff

d , delivers an elastic limit criterion for macroscopic
stress states (representing ultimate strength in the case of brittle materials), as function of the
porosity ϕ

F(Σ) =
2µS

√

2(1 − ϕ)

[

1

2

∂khom

∂µS

(
trΣ

3khom

)2

+
∂µhom

∂µS

Σd : Σd

2µ2
hom

]1/2

− τult = 0 (5.27)

with tr Σ and Σd as the trace and the deviatoric part of the macroscopic stress tensor Σ. The
definition of Σd is analogous to equation (5.22).

In particular, strength model (5.27) will be evaluated for stress states related to uniaxial com-
pression Σ = Σ e1 ⊗e1, yielding an estimate for the macroscopic uniaxial compressive strength

Σult,c
pred =

[

9(2νhom − 1)2 ∂khom

∂µS
+ 12(νhom + 1)2 ∂µhom

∂µS

]1/2

(1 − ϕ)1/2Ehomτult

[

3(2νhom − 1)2 ∂khom

∂µS
+ 4(2νhom + 1)2 ∂µhom

∂µS

]

µS

(5.28)

In equation (5.28), νhom is Poisson’s ratio of the homogenised material

νhom =
3khom − 2µhom

6khom + 2µhom

(5.29)
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5.4 Model validation

5.4.1 Strategy for model validation through independent test data

Validation of the micromechanical representation of CEL2-based biomaterials will rest on
two independent experimental sets, related to dense CEL2 glass ceramics and to samples of
(macro)porous biomaterials: biomaterial specific macroscopic (homogenised) Young’s moduli
Ehom and uniaxial compressive strengths Σult,c

pred, predicted by the micromechanics model (see
Section 5.3) on the basis of biomaterial independent (‘universal’) elastic and strength properties
of pure CEL2-glass (experimental set I, see Section 5.4.2) for biomaterial specific porosities ϕ
(experimental set IIa, see Section 5.4.3), are compared to corresponding biomaterial specific
experimentally determined Young’s moduli Eexp (experimental set IIb-1, see Section 5.4.4) and
uniaxial compressive strength values Σult,c

exp (experimental set IIb-2, see Section 5.4.5).

5.4.2 ‘Universal’ mechanical properties of dense CEL2 glass ceram-
ics — experimental set I

Acoustic experiments (Kohlhauser et al. 2008) reveal the isotropic elastic constants for dense
CEL2 glass ceramic, its Young’s modulus ES = 85.3 GPa, and its Poisson’s ratio νS = 0.25
(equivalent to bulk modulus kS = ES/3/(1 − 2νS) = 56.9 GPa and shear modulus µS =
ES/2/(1 + νS) = 34.1 GPa (see also Table 5.1). The authors are not aware of reliable direct
strength tests on dense CEL2 glass ceramics. However, ceramic biomaterials made of hydrox-
yapatite with a microporosity similar to that of the herein investigated materials exhibit a
typical shear strength of τult = 9.8 MPa (Charrière et al. 2001), which will be considered as
representative for dense (microporous) CEL2 glass ceramic (Table 5.1).

Table 5.1: ‘Universal’ (biomaterial-independent) isotropic phase properties of dense CEL2 glass
ceramic (=solid phase in Figure 5.3)

Young’s modulus ES 85.3 GPa from (Kohlhauser et al. 2008)
Poisson’s ratio νS 0.25 from (Kohlhauser et al. 2008)
Shear strength τult

S 9.8 MPa from (Charrière et al. 2001)

5.4.3 Sample specific porosities of CEL2-based biomaterials — ex-
perimental set IIa

The porosity of the investigated CEL2-based samples was determined from measurements of
their masses M and volumes V , according to

ϕ = 1 − M

V ρS

(5.30)

whereby ρS = 2.6 g/cm3 is the mass density of the dense CEL2 glass ceramic (Kohlhauser et al.
2008) (see Table 5.2). Samples denoted A-E in this table were cubes with an edge length of
about 5 mm, while the rest of the samples collected in Table 5.2 were cuboid shaped, with
dimensions between 10x10x10 mm and 10x10x50 mm. Equation (5.30) was also used for the
estimation of the porosity of the scaffolds soaked in SBF and tris (see Section 5.2 for details):
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this is equivalent to approximating the mass density of the soaking induced, newly formed
phases, such as hydroxyapatite with density between 2.61 and 3.16 g/cm3 in biological systems
(Dorozhkin and Epple 2002) by the mass density of CEL2 glass.

Table 5.2: Porous CEL2-based biomaterial samples: Young’s modulus Eexp determined from
propagation velocity vbar of bar waves with a signal frequency f=0.1 MHz: a is a typical cross-
sectional dimension, ρ is the mass density, and ϕ the porosity of the sample; λ denotes the
wavelength

Specimen a ρ ϕ vbar λ a/λ Eexp

measured measured Eq. (5.30) Eq. (5.31) Eq. (5.32) - Eq. (5.33)

nr. [mm] [g/cm3] [%] [km/s] [mm] - [GPa]

A 5.22 0.84 67.3 3.96 39.6 0.13 13.10
B 5.35 0.87 66.2 4.09 40.9 0.13 14.50
C 4.33 0.97 62.3 3.94 39.4 0.11 15.00
D 5.22 0.80 68.7 3.06 30.6 0.17 7.50
E 5.14 0.58 77.5 2.97 29.7 0.17 5.10
1 15.27 1.47 42.4 4.71 47.1 0.32 32.73
2 13.34 1.45 43.5 4.31 43.1 0.31 26.87
3 9.78 1.35 47.1 4.09 40.9 0.24 22.61
4 9.74 1.32 48.3 4.16 41.6 0.23 22.85
5 9.85 1.40 45.3 4.08 40.8 0.24 23.28
6 9.59 1.30 49.3 4.08 40.8 0.24 21.58
7 9.5 1.88 26.7 4.73 47.3 0.20 42.02
8 9.5 1.59 37.9 4.43 44.3 0.21 31.13
9 10.39 0.88 65.4 4.34 43.4 0.24 16.70
10 9.74 0.89 65.1 4.24 42.4 0.23 16.10
11 24.75 0.88 65.4 4.25 42.5 0.58 16.00
12 21.6 0.89 65.1 4.13 41.3 0.52 15.30

5.4.4 Sample specific elasticity experiments on CEL2-based bioma-
terials — experimental set IIb-1

Elastic properties of porous CEL2-based biomaterials were determined through acoustical test-
ing. The used ultrasonic device is composed of a pulser-receiver Panametrics-NDT 5077 PR, of
an oscilloscope, and of several ultrasonic transducers; the pulser unit can emit a square pulse
of up to 400 V, with frequencies from 0.1 to 20 MHz. The piezoelectric elements in the trans-
ducers are able to transform electrical signals into mechanical ones, or mechanical signals into
electrical ones (see Figure 5.5).

The receiver unit has a bandwidth of 0.1-35 MHz and a voltage gain until 59 dB. The signal is
displayed on an oscilloscope Lecroy Waverunner 62Xi, which allows for estimating the time of
flight t of the acoustic wave through the specimen along a path of length l; t and l give access
to the velocity v of the wave, via

v =
l

t
(5.31)
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(a) (b)

Figure 5.5: Equipment for acoustical testing: (a) pulser-receiver, (b) ultrasonic transducers

Velocity v and frequency f of the acoustic signal yield the wavelength λ as

λ =
v

f
(5.32)

If the wavelength l is considerably larger than the diameter or another typical cross-sectional
dimension a of the specimen, a bar wave propagates with velocity vbar (Fedorov 1968; Ashman
et al. 1984). This is the case for the herein employed 0.1 MHz signals propagating through
CEL2-based biomaterial samples (see Table 5.2). There, the theory of elastodynamics (Fedorov
1968; Ashman et al. 1984) allows for the determination of Young’s modulus from the velocities
of bar waves

E = ρv2
bar (5.33)

Given λ ≈ 40 mm (see Table 5.2) ≫ lRV E = 5 mm (see Section 5.2), these values for Young’s
modulus actually refer to the (macro)porous biomaterial scaffolds (and not to the dense CEL2
glass ceramic between the macropores).

5.4.5 Comparison between sample specific stiffness predictions and
corresponding experiments

The stiffness values predicted by the homogenisation scheme for elastic properties (described in
Section 5.3) for biomaterial specific porosities (experimental set IIa) on the basis of biomaterial
independent (‘universal’) stiffness of CEL2 biomaterials (experimental set I) are compared to
corresponding experimentally determined biomaterial specific stiffness values from experimental
set IIb-1. To quantify the model’s predictive capabilities, the mean and the standard deviation
of the normalised error e, between predictions and experiments ē and eS, are considered

ē =
1

n

n∑

i=1

ei =
1

n

n∑

i=1

ei
Ehom,i − Eexp

Ēexp

(5.34)

eS =

[

1

n − 1

n∑

i=1

(ei − ē)2

] 1

2

(5.35)

with summation over n values Eexp. Ēexp is the mean over all experimental values.

Insertion of biomaterial specific porosities (fourth column of Table 5.2) and ‘universal’ stiffness
constants (Table 5.1) into equation (5.18) delivers, together with equation (5.19), sample specific
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stiffness estimates for the effective Young’s modulus Ehom. These stiffness predictions are
compared to corresponding experimental stiffness values Eexp (Figure 5.6 and last column of
Table 5.2). The satisfactory agreement between model predictions and experiments is quantified
by prediction errors of −9 ± 16% (mean value±standard deviation).
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Figure 5.6: Comparison between model predictions and experiments for stiffness of porous
CEL2 glass ceramic scaffolds

5.4.6 Sample specific strength experiments on CEL2-based bioma-
terials — experimental set IIb-2

Ultimate properties of CEL2-based biomaterials were determined by uniaxial, compressive,
quasistatic testing. The five cubic samples A-E (see also Table 5.2 and Section 5.4.3) were
suitable for measurements in an electromechanical testing stand (MTS QTest 10, see Figure 5.7).
A 1000 N range force transducer was used. Compression tests were performed in a displacement
control mode with 0.015 mm/s speed (strain rate ∼ 3 · 10−3/s). Corresponding stress strain
curves of the specimens are characterised by pronounced softening after a first stress peak. The
latter was identified as ultimate strength (see Table 5.3).

Table 5.3: Experimental compressive strength Σult,c
exp of CEL2-based biomaterial samples as

function of porosity ϕ (see Table 5.2)

Sample ϕ Σult,c
exp

[-] [MPa]

A 0.67 1.85
B 0.66 4.58
C 0.62 4.40
D 0.69 2.11
E 0.77 1.91
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Figure 5.7: Electromechanical testing stand for compression tests on CEL2-based biomaterial
samples

5.4.7 Comparison between sample specific strength predictions and
corresponding experiments

The strength values predicted by the upscaling relations described in Section 5.3, for sam-
ple specific porosities (experimental set IIa) on the basis of sample independent (‘universal’)
elasticity and shear strength characteristics of dense CEL2 glass ceramic (experimental set I)
are compared to corresponding experimentally determined sample specific uniaxial compressive
strength values from experimental set IIb-2.

Insertion of biomaterial specific porosities (second column of Table 5.3) into equation (5.28),
together with equations (5.24), (5.25) and (5.18), delivers, together with ES, νS and τult

S (Ta-
ble 5.1), sample specific strength estimates for uniaxial compressive strength (Σult,c

pred). These

strength predictions are compared to corresponding experimental strength values Σult,c
exp (Fig-

ure 5.8 and third column of Table 5.3). The satisfactory agreement between model predictions
and experiments is quantified by prediction errors of 3±34% [mean value±standard deviation,
in analogy to equations (5.34)-(5.35)].

5.5 Conclusions

A continuum micromechanical concept has been developed for the elasticity and strength of
porous biomaterials made of CEL2, which was verified through independent experimental sets.
The latter were gained from the authors’ own experiments. The predictions of the porosity based
micromechanics model agree well with the corresponding experimentally determined mechanical
properties of samples produced by both the replication technique and the burning-out method:
this underlines the relevance of the Differential Scheme for microstructures with interconnected
pores, irrespective of the actual sphere or strut type microstructural morphology. The good
agreement of the model with the corresponding elasticity and strength experiments of samples
of both the unmodified and the bioactivity tested biomaterials indicates that the bioactivity
tests primarily increased the porosity of the scaffolds, while the newly formed chemical phases
exhibit mechanical properties which are more or less similar to the original glass ceramic phase.
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Figure 5.8: Comparison between model predictions and experiments for compressive strength
of porous CEL2 glass ceramic scaffolds

The suitability of the differential scheme to predict the elasticity properties of porous CEL2
glass ceramic scaffolds for tissue engineering is consistent with the earlier finding (Zimmermann
1991) that this scheme appropriately predicts the elastic properties of sintered glass (Walsh et al.
1965) of various porosities with nearly spherical pore shape.

Conclusively, it is proposed that micromechanical models have a considerable potential for im-
proving biomaterial design. Nowadays, the latter is largely done in a trial-and-error procedure.
Based on a number of mechanical and/or acoustical tests, new material design parameters are
guessed. On the other hand, with well validated micromechanical models, the mechanical im-
plications of changes in the microstructure can be predicted so that minimisation of material
failure risk allows for the optimisation of key design parameters, such as porosities or geometries
of microstructures. Hence, it is believed that micromechanical theories can considerably speed
up the future development of tissue engineering scaffolds.
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AppendixA
Literature review

Several theortical works on wave propagation phenomena in the early times of ultrasonic meth-
ods deal with isotropic materials (Hearmon 1946; Kolsky 1953). Later anisotropic materials,
where energy flux deviation and group velocity must be taken into account when determining
the complete stiffness tensor, were investigated (Hayes and Musgrave 1979). Extensive litera-
ture can be found on the propagation of elastic waves in anisotropic media, e.g. Auld (1990);
Carcione (2001); Helbig (1994); Kolsky (1953); Markham (1970). Whereas anelastic waves are
covered by far less authors, e.g. Kolsky (1953); Carcione (2001).

In the following, short literature reviews on (i) wave propagation in bars and (ii) wave scattering
in multi-phase media are given.

A.1 Wave propagation in bars

In the majority of ultrasonic experiments on small specimen some influence of the side bound-
aries of the specimen exists and often the complete wave is guided by the boundaries, i.e.
guided waves propagate that travel a zigzag path along the waveguide by successive reflections
at the boundaries (Redwood 1963). A clear distinction between this propagation type and bulk
wave propagation is difficult because of coupling of the longitudinal and transversal waves at
boundaries and interfaces in bounded media (Redwood 1963; Thurston 1978). Depending on
different reflection types for longitudinal and transversal waves, different propagation modes
are possible, which are assigned to modes called compression, shear, torsional or flexural and,
depending on the particle displacement, are termed symmetric or asymmetric. For some higher
modes of guided waves the plane wave assumption also breaks down, but these are connected
with velocities that are not directly related to elastic stiffnesses (Redwood 1963).

The first mathematical description of high frequency waves in (circular) bars based on the solu-
tion of a boundary value problem in the theory of elasticity go back to Pochhammer (1876) and
Chree (1889). For a short history of research on wave propagation in bars see McSkimin (1956)
and Kolsky (1964). The solutions of the dispertion relation for a high frequency continuous
wave propagating in isotropic, infinte, circular bar are usually presented in plots of phase or
group velocity against frequency f or wavelength λ parameters that include the diameter of the
bar a, e.g. a/λ. Of all (infinite) modes of wave propagation, i.e. real solutions of the dispertion
relation, only three extend to zero frequency, i.e. a/λ = 0. These are the lowest (fundamental)
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axial-radial, i.e. longitudinal, and the lowest torsional mode (both axial-symmetric modes) and
the lowest flexural mode (Thurston 1978). The torsional wave propagation is govern by a single
elastic constant, the shear modulus G, while the two other modes are govern by two elastic
constants, e.g. Young’s modulus E and Poisson’s ratio ν, i.e. plots are usually given for fixed
Poisson’s ratio ν.

The (lowest) longitudinal mode propagates at the extensional wave velocity, which is govern by
Young’s modulus E in the low-frequency limit, reaching vE =

√

E/ρ at a/λ = 0, where ρ is the
mass density of the bar (Kolsky 1964; Thurston 1978). This special symmetrical mode is also
called the Young’s modulus mode, which is (not exactly) plane and dispersive (Redwood 1963).
With decreasing wavelength the (phase and group) velocity drops to the Rayleigh velocity
between a/λ ≈ 0.2–2 (reaching it at a/λ = ∞). Except for the Young’s modulus mode, all
axial-radial modes have cut-off frequencies, at which the displacements are independent of the
length of the bar (Thurston 1978).

The (lowest) flexural mode can be described by the elementary flexure theory for a/λ > 0.03,
i.e. at vanishingly small velocities at infinite wavelength (a/λ = 0). With increasing frequency
the (phase and group) velocity tends to the Rayleigh velocity, reaching it approximately at
a/λ ≈ 1 and reaching it exactly at a/λ = ∞ (Kolsky 1964). For higher ‘flexural’ modes at high
frequencies, a/λ ≪ 1, wave propagation can be described as nearly transverse shear waves,
i.e. waves that are nearly linearly polarized, with phase and group velocity nearly equal to the
transversal wave velocity vT (Thurston 1978).

The velocity of the (lowest) torsional mode is nondispersive, i.e. the wave velocity is constant
for all values of a/λ, and equal to the transversal wave velocity vT , showing dispersion only
at higher modes (Kolsky 1964). The (phase and group) velocities of all higher axi-symmetric
and flexural modes tend to the transversal wave velocity at zero wavelengths (Thurston 1978).
Generally phase and group velocities in the long and short wavelength limits of the fundamental
modes are equal. Only the transition behavior is slightly different, with the longitudinal mode
and the flexular modes exhibiting a minimum of 0.38 vE and a maximum of 0.64 vE, respectively,
at ≈ 0.4 a/λ, i.e. no smooth transition to the Rayleigh velocity exists.

The phase velocity of the first mode of shear wave propagtion of small wavelength in a bar was
found to be slightly greater than the bulk transversal wave velocity (McSkimin 1956). Solutions
for long wavelength of transverse wave motion are described by the flexural mode.

As the velocity, also the displacement distribution across the cross-section of the bar changes
with frequency. At very long wavelengths the cross-section oscillates essentially rigidly, while
the axial displacements vary linearly from the neutral plane or remain constant for the fun-
damental flexural mode or longitudinal mode, respectively. At very small wavelengths the
disturbance at the fundamental longitudinal and flexural modes is concentrated near the bar
surface, similar to Rayleigh waves (Thurston 1978). Transversal waves at small wavelengths
exhibit a predominantly transverse displacement distribution with only very small axial dis-
placements. The displacements in the center of the bar are principally unidirectional, but radial
and tangential displacements reverse their direction along axes in and normal to the excitation
direction, respectively (McSkimin 1956).

It is important to realize, that experimentally obtained ultrasonic velocities are measurements
of pulse wave propagation in bars of finite length. The dispersion curves ignore boundary
conditions (because they are obtained for infinite bars), but these do not influence the velocity
solutions for high frequencies when the wavelength is smaller than the length of the bar. The
Pochhammer-Chree theory can also be applied to determine resonance frequencies of finite bars
(Thurston 1978). Moreover, pulse propagation in a bar of low frequency, i.e. the extensional
velocity at a/λ < 1 may be discribed by the theoretical solutions for continuous waves, but fail
to describe the propagation of high frequency pulses (a/λ > 10), where the velocity of the first
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pulse is equal to the longitudinal bulk wave velocity vL in an unbounded medium (Redwood
1959). The theoretic high frequency limiting velocities of longitudinal wave modes (Rayleigh
and transversal velocity) could not be confirmed in experiments with very high frequency waves
(e.g. pulses), where longitudinal bulk wave velocity in bars was observed (Tu et al. 1955). This
discrepancy is related to the coupling of transversal and longitudinal waves at the boundaries
(Thurston 1978).

Normally the fundamental mode is excited by a pulse propagating in a bar. A small part of
a pulse in a bar propagates with longitudinal bulk wave velocity, but its amplitude becomes
extremely small when a/h < 0.1 (Kolsky 1964). Diffraction phenomena can occure when the
wavelength of a pulse is in the same order of magnitude as the characteristic lateral dimension
(i.e. a/λ ≈ 1).

Tu et al. (1955) measured the group velocity in circular rods (diameter a = 3 – 25 mm, f = 0.2 –
2.5 MHz) within a range of a/λ = 0 – 3.2. The pulse-transmission technique and the standing
wave technique (continuous sinusoidal wave) were used for the lower (a/λ < 1) and upper
(a/λ > 1) range. Around a/λ = 1 neither technique was successfull. For a/λ > 2.5 bulk
wave velocity and at a/λ = 0 extensional wave velocity was measured. The group velocities
measured with the pulse technique increased steadily with increasing frequency from half of
the longitudinal bulk wave velocity at a/λ ≈ 1.2. This is not conform with solutions for a
continous wave (Thurston 1978). Within the region measured with the standing wave technique
(a/λ = 0 – 0.8) the group velocity follows the solution of a continous wave, i.e. it drops down
to approximately 0.3 vL at a/λ = 0.4. Using the standing wave method, the extensional wave
velocity approaches the Rayleigh velocity from a/λ = 0 to a/λ ≈ 1 (Morse 1948, 1950), which
follows the solution for the phase velocity of a continous wave. If the edge-length of a square
is equal to the diameter of circular cross-section no difference in phase velocity measured in a
bar was found (Morse 1948). For the shear pulse velocity in a bar no dependency on a/λ was
found (Tu et al. 1955).

Besdo et al. (2007) showed with a 3D finite element model of a circular bar that inducing a
sudden transversal displacement in the form of a ramp function, yields a flexural and a shear
wave propagating in the bar (a/λ ≈ 1). They also mention that it is usually impossible to
separate these waves in experiments.

Hayashi et al. (2003) found good agreement (for both, phase and group velocities) between the-
oretical and experimental dispersion curves [characterize the frequency dependence of (guided)
wave velocities] of a square bar obtained in experiments with a/h = 0.002 and a contact trans-
ducer with a center frequency f = 50 kHz. Later Hayashi et al. (2006) gave wave structures
(discribe displacement distributions in a bar cross-section) for longitudinal, flexural and tor-
sional vibration modes in bar. For the longitudinal vibration, a transition from extensional
velocity vE to bulk longitudinal velocity vL with increasing a/λ can be observed, reaching vL

at a/λ ≈ 2.

In an infinite isotropic medium phase and group velocity are equal. In a waveguide group and
phase velocity differ, the former being the velocity of the pulse, i.e. the velocity along the trav-
eled path within the waveguide and the later the velocity along the propagation direction, i.e.
the longitudinal direction of the waveguide (Redwood 1963). Because in typical experimental
setups, velocity is determined by dividing the direct travel distance, i.e. height or length of the
specimen, by the time of flight through the specimen, it is evident that the determined velocity
is the phase velocity in an (isotropic) bulk medium as well as in waveguide, e.g. in a bar.
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A.2 Wave scattering in multi-phase media

Two essentially different methods can be applied to obtain the homogenized (effective) elastic
stiffness of microstructured materials: (i) (multi-step) homogenization of elastic stiffnesses and
(ii) modelling of plane wave propagation considering scattering effects. Homogenization tech-
niques predict the overall behavior, e.g. linear elasticity, of heterogeneous materials from their
constituents (Zaoui 2002). With this methods for materials with several different inclusions, an
hierarchical microstructure, and with other more complex microstructures an excellent approx-
imation of elastic stiffnesses (over the complete porosity or concentration range) can be given.
Effective wave propagation techniques predict the scattering behavior over a certain frequency
range (Yang and Mal 1994). The effective stiffnesses computed from effective (phase) velocities
converge for zero frequency, i.e. in the long-wavelength-limit, to the static limit case of elastic
stiffness. These methods give access to the frequency dependency of attenuation, velocities and
(complex) elastic stiffnesses, i.e. results may be obtained for any desirable wavelength. Most
models consider relatively simple microstructures (spherical or cylindrical inclusions). Recently,
models for composites with complex (two-dimensional) microstructure were developed (Parnell
and Abrahams 2008). Strict upper and lower bounds on the effective stiffnesses can be derived
by variational principles (Hashin and Shtrikman 1962a,b).

When applying ultrasonic methods to determine elastic stiffnesses of microstructured materials
it is essential to know the correct applicable frequency to obtain the correct homogenized stiff-
nesses and/or the stiffnesses of the matrix material in a single phased material. Using dynamic
models (effective wave propagation techniques) to obtain solutions for velocities (and thus stiff-
nesses) is much more complex, due to the underlying theoretical and computational expenses.
Furthermore, due to the complexity of some microstructures, presently not all materials can be
modeled with such techniques. Homogenization techniques on the other hand are available for
very complex materials (e.g. strut-like scaffolds) and allow for the backcalculation of velocities
(in the static limit).

First theoretical descriptions of the propagation of multiple-scattered waves were given for
point scatters (Foldy 1945; Waterman and Truell 1961) and polycrystalline metals (Mason and
McSkimin 1948; Huntington 1950). Three different scattering regimes (Rayleigh, stochastic and
diffusive or geometric region), accompanied by different energy losses, are identified by the ratio
of grain or inclusion (i.e. scatter) dimension d to the wavelength λ (d/λ). For large wavelengths
(d/λ < 1/3) Rayleigh scattering of waves occures, where energy losses are proportional to d3/λ4.
Transmission at small wavelengths (d/λ > 3) leads to a diffusion of waves (compareable to the
propagation of heat waves) in the geometric region with losses proportional to 1/d (Mason
and McSkimin 1948). In the intermediate range (d/λ ≈ 1), the stochastic region, the losses
are proportional to d/λ2 (Huntington 1950). Ayrault and Griffiths (2006) proposed a method
to seperate viscothermal losses and losses due to scattering for frequencies in the Rayleigh
scattering regime.

Stanke and Kino (1984) developed a model covering all three scattering regimes for (single
phase) polycrystalline materials with small single crystal anisotropy. The dispersion curves and
the maximal differences in longitudinal and transversal velocities were given for two isotropic
metals (aluminum and iron) with single crystals of cubic symmetry (see Table A.1). The
magnitudes of order of d/λ-ratios between the different scattering regimes (see Table A.1) are
the same as the ratios given by Mason and McSkimin (1948) (see previous paragraph). d/λ-
ratios at which a steep increase in velocity difference is observeable are given in brackets in
Table A.1. At small d/λ-ratios the velocity difference is less than 1% (for aluminum even
less than 0.1%). The steep increase in the velocity difference in the diffusive region is due to
higher perturbations of the velocity, i.e. the acoustic rays can bend and thereby ‘weight’ the
effective (average) inhomogenity. Stanke and Kino (1984) mention that longitudinal waves in
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a polycrystalline media with single crystals of cubic symmetry travel along the stiffer grains in
the diffusive scattering region. In all other cases they travel along weaker grains. They do not
give an explantion for this effect.

Table A.1: d/λ-limits determined from single crystal properties at scattering regions in poly-
crystalline aluminum and iron [values extracted from dispersion curves given by Stanke and
Kino (1984)].

scattering region: Rayleigh diffusive max. velocity

material velocity d/λ [-] d/λ [-] difference [%]

aluminum
vL < 0.2(20) > 100 1
vT < 0.2(4) > 20 3

iron
vL < 0.2(2) > 20 6
vT < 0.02(1) > 10 10

Several works on ultrasonic wave scattering in heterogeneous materials were published on fi-
brous (Yang and Mal 1994) and on particulate (Yang 2003; Wei and Huang 2004) two phase
composite materials. Also several experimental studies (Kinra et al. 1982; Kinra and Anand
1982; Datta and Ledbetter 1983; Ledbetter and Fortunko 1991) on such transversal isotropic
and isotropic materials were published. Multiple-scattering theories for elastic waves consider-
ing (i) the ‘quasi-crystalline approximation’ (Lax 1952) — to obtain average wave propagation
constants — and (ii) a ‘pair correlation function’ (Bose and Mal 1973) — to account for the
(random) geometric correlations between the inclusions (i.e. scatters) — accurately predict
wave propagation at low frequencies and low inclusion concentrations (Bose and Mal 1973,
1974; Datta 1977; Varadan et al. 1978; Willis 1980; Ledbetter and Datta 1986). Some multiple-
scattering models do not predict static limits at the zero-frequency or long-wavelength-limit
correctly because their formulation is based on an isolated scatter (Yang and Mal 1994). At
high inclusion concentrations, the multiple-scattering models become sensitive to the choice
of the pair correlation function (Yang and Mal 1994), i.e. the interaction of inclusions is not
correctly described. The effective medium approach (Berryman 1980; Sabina and Willis 1988;
Yang and Mal 1994; Yang 2003) solves this problem by implementing a micromechanical ho-
mogenization technique. Yang and Mal (1994) used the generalized self consistent model of
Christensen and Lo (1979) for high (fiber) concentrations. Sabina and Willis (1988) showed
that the effective medium scattering models are valid for wavelengths greater than four times
the diameter of (spherical) inclusions (λ > 4 d). More recent studies include effects due to im-
perfect (e.g. viscoelastic) interphases between inclusions and matrix materials (Wei and Huang
2004). Wave scattering models (covering solid inclusions and small d/λ-ratios) are focused on
the isotropic plane of transversal isotropic composites and rearly on wave propagation in the
longitudinal direction of the composite. Only Murakami et al. (1979b) presented dispersion
curves of longitudinal wave velocity in the direction of (solid) cylindrical inclusions embedded
in an isotropic matrix. The dispersion increases as the stiffness of the fibers becomes much
larger than that of the matrix and — in this case — decreases with increasing fiber volume
fraction.

Yang and Mal (1994) verified their model for high frequencies for graphite-epoxy, boron-epoxy
and silicon carbide-titanium (fiber) composites using inclusion diameters and fiber volume
fractions of d = 0.01 mm, d = 0.14 mm, d = 0.14 mm and ϕ = 0.65, ϕ = 0.54, ϕ = 0.35,
respectively. These values yield at a frequency of f = 20 MHz approximately d/λ = 0.1,
d/λ = 1.6, and d/λ = 0.7, respectively. Comparing these values with the scattering regimes
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of polycrystalline materials (see Table A.1), shows that measurements and models used for
composite materials generally cover the Rayleigh regime (long-wavelength regime). Therefore,
as expected, velocities (and thus stiffnesses) measured in this range are approximately constant
[compare Yang and Mal (1994), Figures six, ten and eleven] and correspond to the homogenized
stiffnesses. Only in the case of boron-epoxy,the model shows an increase in velocity [compare
Yang and Mal (1994), Figure ten], indicating that the stochastic scattering regime is reached and
thus related stiffnesses do not correspond to the homogenized material. Datta and Ledbetter
(1983) showed good agreement in elastic stiffness constants between measurements of a boron-
aluminum alloy composite at d/λ = 0.14 (d = 0.14 mm, f = 10 MHz, ϕ = 0.48) and different
models (Bose and Mal 1973, 1974; Hlavacek 1975).

The work of Kinra and Anand (1982) seems to be the only experimental study of (partic-
ulate) composites investigating the problem of wave propagation at small (and long) wave-
lengths. Ultrasonic velocities of glass-epoxy composites with different glass-inclusion diameters
(d = 1, 2, 3 mm) and inclusion volume fractions (ϕ = 0.05 – 0.45) were measured at different
frequencies (f = 0.3 – 3 MHz). Velocities at long wavelengths (d/λL < 0.8) agree well with
(static) bounds (being closer to the lower bound) given for the static limit case (see also Kinra
et al. (1982)). The values move, with increasing inclusion volume fraction and smaller d/λL-
ratios, closer the upper bound. For short wavelength (d/λ > 1.2) the measured velocities were
all located above the upper bound, again with smaller differences to the bound, as inclusion
volume fraction increases. Both observations lead to the assumption that at short wavelength
(i.e. in the stochastic to the diffusive scattering regime) the wave propagation becomes more
influenced by the (much stiffer) inclusions (ratio of longitudinal velocity of inclusion to that
of the matrix equals 2.1), especially at high inclusion volume fractions. Later, Kinra (1985)
showed experimentally that at high frequencies (stiffer) inclusions move out of phase with the
matrix.

Gubernatis and Domany (1984) derived a unified theory for effective (elastic) wave propagation
in an isotropic medium containing spherical pores. They show, that a porosity of 10% yields
an (effective medium) velocity 7.5% less than the velocity of the solid material at d/λ ≈ 0.04.
Ratios of d/λ < 0.06 also yielded the effective velocity within deviations of less than 10%
(rising constantly from the minimum at d/λ ≈ 0.04). Ratios of d/λ > 0.2 resulted in the solid
wave velocity with deviations smaller than 1%. Gubernatis and Domany (1984) also found
that the significant (spherical) void diameter (in porous materials with different distributions
of inclusion diameters) is the most probable one, and that the wave propagation (velocity and
attenuation) is quite insensitive to the distribution of inclusion diameters.

Numerical modeling of wave scattering in composites with finite difference equations, employing
space and time discretization (Ruffino and Delsanto 2000), allows for detailed investigation of
interferences and mode conversion patterns in (reflected) waves. The problem of shear wave
propagation in scaffolds was investigated by Besdo et al. (2007) by means of finite element
models, without considering the frequency dependency of wave propagation.

If the influence of inclusion diameter to wavelength ratios (or other micromechanical param-
eters) on the different tensor components of a (general) anisotropic material are of interest,
application of a continuum (micro)mechanical homogenization techniques and backcalculation
of the appropriate frequency (and thus wavelength) to obtain the desired stiffness, is recom-
mended. Especially for large inclusion diameter or, more precisely,at higher d/λ-ratios (i.e. in
the diffusive scattering regime) these methods are of advantage.

Another concept for (micro)mechanical homogenization for periodic heterogeneous materials
defines a material volume as a repeating unit cell (RUC). In contrast to the micromechanical
analysis of an RVE, which is based on the equivalence of homogeneous traction and displacement
boundary conditions, the analysis of an RUC is based on combined periodic displacement and
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traction boundary conditions (Drago and Pindera 2007). Drugan and Willis (1996) showed
that the minimum size of an RVE for any reinforcement type of (spherical) inclusions (including
voids and rigid particles) is approximately ℓRV E ≈ 2 d, up to an inclusion volume fraction of
ϕ = 0.4 (error of effective stiffnesses < 5%; for errors < 1%: ℓRV E ≈ 4.5 d). To obtain the same
accuracy in normal and shear stiffnesses, the RVE for normal straining must approximately be
twice the size necessary for shear straining. According to Kanit et al. (2003) the size of an
RVE is a function of the physical property, the contrast of properties, the volume fractions of
components, the wanted relative precision for the estimation of the effective properties, and the
number of realizations of the microstructure associated with computations to be performed.
Due to the dependency of the RVE size on all of these parameters, model and chosen ℓRV E

are in general experimentally validated. Exemplarily the work of Jeong and Hsu (1996) shall
be mentioned, which combines ultrasonic measurements and the Mori-Tanaka homogenization
scheme (Mori and Tanaka 1973) to predict the effective porosity and elastic stiffness of porous
ceramics.





AppendixB
Dimensional analysis of wave
propagation in two-phase materials

Wave propagation in any direction in an two-phase, isotropic material, and in the principle
material directions of an two-phase, anisotropic material, the wave (longitudinal or transver-
sal) velocity only depends on a single (normal or shear) stiffness tensor component [compare
Eqs. (1.15) and Eqs. (2.10)]. Therefore, an independent investigation of longitudinal and
transversal wave propagation is possible in these cases. The experimentally measured wave
velocities vi,exp (i = L, T ) are hence a function of four material properties [mass density of ma-
trix ρ and inclusion ρinc, normal or shear stiffness component of matrix Cijij and inclusion Cinc

ijij

(ij = 11, 12)], of one wave property (frequency f), of two geometrical properties (characteristic
cross-sectional dimension a, height h), and of two microstructural properties (characteristic
inclusion dimension d, volume fraction of inclusion ϕ), i.e.

vi,exp = F (Cijij, Cinc
ijij, ρ, ρinc, f, a, h, d, ϕ) . (B.1)

Note that ϕ is related [e.g. for porous media via (1.29)] to material (ρ) and effective material
(ρapp) properties and to the characteristic inclusion dimension d [e.g. for hexagonal cylin-
drical pore inclusions via (1.30)]. The (matrix) material properties (Cijij, ρ) are related via
Eq. (1.15)1 [or Eq. (1.15)2] to the (matrix) wave velocties (vi, i = L, T ) and furthermore via
(1.9) to the (matrix) wavelength (λi, i = L, T ), which thus depends on wave (f) and material
properties. Except for the geometry-related properties, the variables in (B.1) are the same
as for determining the length of a representative volume element [see Kanit et al. (2003) and
Appendix A].

To extract relevant parameters of this physical problem we apply dimensional analysis (Buck-
ingham 1914; Barenblatt 1996). In dimensional analysis a functional relation [e.g. (B.1)]
between one physical quantity (the dependent variable, here vi,exp) and several other physical
quantities (the independent variables, here N = 9 quantities), is simplified through the study
of the dimensions of all involved quantities, while making sure that the newly extracted func-
tional relationship does not depend on the units of measurements chosen to assign quantitative
value to the physical quantities (Buckingham 1914). Using an L(ength)M(ass)T (ime)-class of
systems of units, the dimension of each physical quantity Qi can be written as a power-law
monomial in the form

[Qi] = LαiMβiT γi , (B.2)
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where L, M , and T are abstract positive numbers which describe the factor by which the
fundamental units of length, mass, and time decrease upon passage from one system of units
of measurements to an other one. In our case, these dimension functions read as [vi] = L T−1,
[ρ] = [ρinc] = L−3 M , [Cijij] = [Cinc

ijij] = L−1 M T−2, [f ] = T−1, [a] = [h] = [d] = L and
[ϕ] = 1. The rank of the dimensional exponent matrix (see Table B.1) is k = 3, i.e. three
of the nine independent physical quantities are dimensionally independent and N − k = 6
quantities are dimensionally dependent. These three dimensionally independent quantities can

Table B.1: Dimensional exponent matrix.

unit Qi vi ρ ρinc Cijij Cinc
ijij f a h d ϕ

L αi 1 -3 -3 -1 -1 0 1 1 1 0
M βi 0 1 1 1 1 0 0 0 0 0
T γi -1 0 0 -2 -2 -1 0 0 0 0

be chosen freely from the nine independent physical quantities. Here, we choose Cijij, ρ and
f as dimensionally independent quantities. Next, six (N − k + 1 = 7 and ϕ is omitted due
to [ϕ] = 1) dimensionless forms i are constructed by dividing the dimensionally dependent
quantities through powers of the dimensionally independent quantities, according to:

[Πi] =
[Qi]

[Cijij]n
i
1 [ρ]n

i
2 [f ]n

i
3

i = {ρinc, Cinc
ijij, a, h, d, vi} . (B.3)

Inserting the dimension functions of all involved quantities into (B.3) yields an equation for each
dimensionally dependent quantity, which has to be fulfilled for any abstract positive numbers
L, M , and T and thus yielding nρ

1 = 0, nρ
2 = 1, and nρ

3 = 0 for Πρ, nC
1 = 1, nC

2 = 0, and nC
3 = 0

for ΠC , na
1 = nh

1 = nd
1 = 1/2, na

2 = nh
2 = nd

2 = −1/2, and na
3 = nh

3 = nd
3 = −1 for Πa, Πh, and

Πd, respectively, and nv
1 = 1/2, nv

2 = −1/2, and nv
3 = 0 for Πv. The (dimensionless) physical

relation expressed in dimensionless variables only, i.e. Πv = F (Πρ, ΠC , Πa, Πh, Πd, Πϕ) reads

vi,exp
√

Cijij/ρ
= F

(

ρinc

ρ
,

Cinc
ijij

Cijij

,
a fi

√

Cijij/ρ
,

h fi
√

Cijij/ρ
,

d fi
√

Cijij/ρ
, ϕ

)

, (B.4)

with i = {L, T} and ij = {11, 12}. Using the requations Eq. (1.15)1 [or Eq. (1.15)2] and
Eq. (1.9) yields

vi,exp

vi

= F
(

ρinc

ρ
,

Cinc
ijij

Cijij

,
a

λi

,
h

λi

,
d

λi

, ϕ

)

i = {L, T} ij = {11, 12} . (B.5)

The ratio of a measured (longitudinal or transversal) wave velocity to the (corresponding)
bulk velocity of the matrix, i.e. a material parameter, is therefore depending on two inclusion
material parameters, two geometry-wave parameters and two microstructural-wave parameters,
namely the ratios of the inclusion density and stiffness to matrix density and (corresponding)
stiffness, respectively, of geometrical and inclusion dimensions to the (corresponding) matrix
wavelength, and the porosity. Using dimensional analysis the number of arguments in the
function describing the physical problem of wave propagation in a two-phase material was
reduced significantly from nine (dimensionful) to six (dimensionless). Further simplifications
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for porous (i.e. pore inclusions) materials with ρinc = 0 and thus Cinc
ijij = 0 yield

vi,exp

vi

= F
(

a

λi

,
h

λi

,
d

λi

, ϕ

)

i = {L, T} . (B.6)

For wave propagation in (approximately) solid (single-phase) specimens (e.g. polycrystaline
metals) the dimensionless physical relation (B.6) further simplfies with ϕ = 0 and consequently
d = 0 to (see also Section 1.6)

vi,exp

vi

= F
(

a

λi

,
h

λi

)

i = {L, T} . (B.7)

Hence, we obtained the ratio of measured to bulk velocities as a function of only two geometry-
over-wave property parameters, i.e. characterisitc cross-sectional-dimension-over-wavelength
a/λ and height-over-wavelength h/λ parameters. A similar functional relation to (B.7) is ob-
tained when h instead of f is chosen as one of the dimensionally independent quantities, i.e.
the two arguments of F in (B.7) become a/h and h/λi. Hence, a purely geometrical parameter
and the same height-over-wavelength parameter. Considering (1.19) and (1.9) in the definition
of the geometry-over-wavelength parameters a/λi and h/λi yields

a

λi

=
a

h
f tf,i and

h

λi

= f tf,i , (B.8)

respectively. From (B.8) follows that the parameter a/λi passes into the purely geometric
parameter a/h by division of the parameter the h/λi = f tf,i. If the influence of geometries can
be neglected, i.e. if bulk wave propagation is ensured, the dimensionless physical relation (B.6)
can be reduced to (see also Section 1.7)

vi,exp

vi

= F
(

d

λi

, ϕ

)

i = {L, T} . (B.9)

Hence, we obtained the ratio of measured to bulk velocities as a function of only one microstructure-
over-wave property parameter, d/λi, and one microstructure property parameter, ϕ.

When investigating a two-phase material with solid inclusions a distinction (at high frequencies)
between the wave velocity of the matrix and the wave velocity of the inclusions, is not easily
possible (e.g. as in the work of Kinra and Anand (1982) mention in Section A.2). Besides this
advantage of pore inclusions, several problems occure when investigating porous materials: The
lower limits for d/λi to achieve effective wave propagation given in Section 1.7 as compared to
values observed for different composites [e.g. by Datta and Ledbetter (1983)], are attributed to
the limit case of void inclusions, which can not transmit any wave paths yielding much higher
scattering. Thus larger wavelengths must be used to account for a propagation medium with
inclusions that do not allow ultrasonic wave propagation, i.e. voids. This is also supported by
results of Gubernatis and Domany (1984), which found similar (small) values of d/λi-ratios for
spherical voids. Moreover, effective stiffnesses of materials with void inclusions are smaller than
with solid inclusions, yielding smaller effective wave velocities and hence smaller wavelength at
equal frequencies.





AppendixC
Kelvin-Christoffel equation

The Kelvin-Christoffel equation gives the relationship between a stress wave propagating within
a solid and the (elastic) material stiffness. Combination of the conservation law of linear
momentum, of the generalized Hooke’s law, of the linearized strain tensor, and of the general
plane wave solution for the displacements inside an infinite solid medium yields the elasticity
tensor components as functions of the material mass density and the wave propagation velocity.
The derivation of this basic equation is given in several books on the topic of elastic waves in
solids, among which are books by Auld (1990), Carcione (2001), and Helbig (1994). Kolsky
(1953) solves the wave equation directly with isotropic constitutive relations and does not give
the Kelvin-Christoffel equation specifically. Here, a detailed step-by-step derivation of the
Kelvin-Christoffel equation is given, with a subsequent solution (giving the Kelvin-Christoffel
matrix components) for the elastic waves in an isotropic material.

Extension of the periodic plane wave disturbance in a one-dimensional space [Eq. (13)] to a
general plane wave solution for the displacement vector ui of body waves in three-dimensional
space yields

ui(xi, t) = u0,i sin(kj xj − ω t) i, j = x, y, z , (C.1)

where ki = k ni is the wave vector and u0,i = u0pi is the particle vector. The wave vector is a
representation of the wave, with the wave number k as its magnitude and the direction of wave
propagation ni, which reads in vector notation

n = nx ez + ny ey + nz ez =







nx

ny

nz






, (C.2)

where the components are the direction cosines with respect to the basis unit vectors ex, ey

and ez of an arbitrary Cartesian coordinate system. The particle vector is a representation of
the particle vibration, with the size of the displacement, i.e. the amplitude, u0 and the particle
vibration direction or polarization direction pi. The vectors ni and pi are unit vectors. The
space vector xi defines a point in a three-dimensional space for which the displacement due to
the wave propagation are given. Elucidations of time t and of angular frequency ω are given
in the Introduction. The relationship for the phase velocity vp [Eq. (14)] can be used to define
the phase velocity vector

vp,i = vp ni . (C.3)
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The phase function Θ(xi, t) = ki xi − ω t contains all information of the wave regarding its
distribution in space (ki xi) and time (ω t). The term u0 pi contains information regarding the
particle vibration. Thus the displacement caused by a plane elastic stress wave is fully described
by the function ui(xi, t) [Eq. (C.1)] in time, space and magnitude. This function can also be
expressed using the exponential function and an imaginary exponent

ui(xj, t) = u0 pi exp[i k(nj xj − vp t)]. (C.4)

This alternative form to (C.1) is used in the following derivations because it is easier to differ-
entiate.

Starting point for the derivation of the Kelvin-Christoffel equation is the equation of motion,

∂jσij + fi = ρ bi , (C.5)

where σij is the Cauchy stress tensor, fi are the body forces, ρ is the mass density of the
material and bi is the particle acceleration. The displacements induced by an ultrasonic wave
are small compared to the dimensions of solids. The derivation of displacements with respect to
space coordinates is small compared to one. Thus the two prerequisites for using a geometrical
linearized theory are fulfilled and the linearized strain tensor

εij =
1

2
(∂jui + ∂iuj) (C.6)

can be used. Assuming the materials under investigation have a linear stress-strain relationship
within the displacement regime of ultrasonic waves a physical linearized theory can be applied.
Therefore the relationship between stresses and strains can be described with the generalized
Hooke’s law

εij = Dijkl σkl (C.7)

and its inverse form
σij = Cijkl εkl , (C.8)

where D is the compliance tensor and
C = D

−1 (C.9)

is the stiffness tensor.

Substitution of the linearized strain tensor (C.6) into (C.8) and considering the symmetry of
this tensor, i.e. εij = εji and thus Cijkl = Cijlk, yields

σij = Cijkl
1

2
(∂luk + ∂kul) = Cijkl ∂luk . (C.10)

Inserting this expression in the first term of the equation of motion (C.5) and considering
∂jCijkl = 0 for homogeneous materials yields

∂j(Cijkl ∂luk) = Cijkl ∂
2
ljuk , (C.11)

whereas
∂2

ljuk = −k2 nl nj uk . (C.12)

The particle velocity and particle acceleration are given by time derivatives of the particle
displacement vector ui [Eq. (C.4)] to

vi = ∂tui = u̇i = −i ω ui and bi = ∂2
ttui = üi = −ω2 ui = −k2 v2

p ui . (C.13)
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Neglecting the body forces acting on the solid (fi = 0) and inserting (C.10) and the second
equation (C.13) in the equation of motion (C.5) yields

Cijkl k
2 nl nj u0 pk exp[i k(nj xj − vp t)] = ρ k2 v2

p u0 pi exp[i k(nj xj − vp t)] (C.14)

and further
Cijkl nl nj pk − ρ v2

p pi . (C.15)

Using pi = δik pk one gets
(Cijkl nl nj − ρ v2

p δik) pk = 0 , (C.16)

with
Γik = Cijkl nl nj (C.17)

as the symmetric Kelvin-Christoffel matrix one obtains the Kelvin-Christoffel equation

(Γik − ρ v2
p δik) pk = 0 . (C.18)

The Kelvin-Christoffel equation is an eigenvalue problem with three eigenvalues (ρ v2
p)

n and the
associated eigenvectors pn

i . The three solutions of the Kelvin-Christoffel equation correspond to
three body waves n = 1, 2, 3 propagating in an unbounded medium. For a non-trivial solution
of (C.18) the coefficient determinate must vanish, i.e. we obtain the dispersion relation

∣
∣Γik − ρ (vn

p )2 δik

∣
∣ = 0 , (C.19)

that gives ω = ω(k) with the definition of the phase velocity (14). The three eigenvalues
obtained from (C.19) correspond to the three phase or wave velocities vn

p of the waves and
the three eigenvectors obtained from (C.18) to the polarization directions pn

i . The Kelvin-
Christoffel matrix is real and symmetric, thus the eigenvalues are real and the eigenvectors
are mutually perpendicular, i.e. the polarization directions of the three body waves for one
propagation direction are mutually perpendicular. If two or three eigenvalues are equal, the
Kelvin-Christoffel matrix is singular, i.e. of rank one, or of rank zero, respectively, and the
corresponding eigenvectors do not have fixed directions (Helbig 1994). For double roots the two
corresponding eigenvectors can be chosen within a plane perpendicular to the third eigenvector.
Since all eigenvectors are mutually perpendicular these two must be mutually perpendicular.
For triple roots three mutually orthogonal eigenvectors can be chosen completely arbitrarily.
For comparison we mention another well-known eigenvalue problem in solid mechanics,

(σij − σ δij) nj = 0 , (C.20)

which is used for the determination of principal normal stresses σ and their orientations nj.

By using the kinetic, the kinematic, constitutive relations, and the general plane wave solution,
we obtained a relationship between the stiffness and mass density of a material and the phase
velocities vn

p and polarization directions pn
i of a stress wave propagating in a direction ni within

this material. The unit vector for the propagation direction ni is normal to the wavefront of
the wave, whereas the polarization direction pi can have angles between 0◦ and 90◦ to the
propagation direction (see Section 2.3). The inverse of the phase velocity is defined as slowness

s =
k

ω
=

1

λ f
=

1

vp

. (C.21)

Thus the slowness vector can be computed as

si =
ki

ω
=

k ni

ω
= s ni . (C.22)
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In matrix notation the Kelvin-Christoffel equation (C.18) reads





Γ11 − ρv2 Γ12 Γ13

Γ21 Γ22 − ρv2 Γ23

Γ31 Γ32 Γ33 − ρv2



 ·







p1

p2

p3






=







0
0
0






. (C.23)

with the components of the Kelvin-Christoffel matrix in in explicit form

Γ11 = C1111 n2
1 + C1212 n2

2 + C1313 n2
3 + 2 C1312 n2 n3 + 2 C1113 n3 n1 + 2 C1112 n1 n2

Γ22 = C1212 n2
1 + C2222 n2

2 + C2323 n2
3 + 2 C2223 n2 n3 + 2 C2312 n3 n1 + 2 C2212 n1 n2

Γ33 = C1313 n2
1 + C2323 n2

2 + C3333 n2
3 + 2 C3323 n2 n3 + 2 C3313 n3 n1 + 2 C2313 n1 n2

Γ12 = C1112 n2
1 + C2212 n2

2 + C2313 n2
3

+ (C2312 + C2213) n2 n3 + (C1123 + C1312) n3 n1 + (C1122 + C1212) n1 n2 (C.24)

Γ13 = C1113 n2
1 + C2312 n2

2 + C3313 n2
3

+ (C2313 + C3312) n2 n3 + (C1133 + C1313) n3 n1 + (C1123 + C1312) n1 n2

Γ23 = C1312 n2
1 + C2223 n2

2 + C3323 n2
3

+ (C2323 + C2233) n2 n3 + (C3312 + C2313) n3 n1 + (C2213 + C2312) n1 n2 .

Due to the symmetry of the strain and stress tensors and the independency of the order of
derivation of the strain energy density with respect to the strain tensor, the number of inde-
pendent stiffness tensor components reduces from 34 = 81 to 21. Giving these components in
an contracted symmetric 6 × 6 matrix we have

{Cijkl} =











C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212











. (C.25)

Reducing a pair of subscripts (ij) to a single subscript I or J according to the correspondence

(11) → 1 , (22) → 2 , (33) → 3 ,
(23) = (32) → 4 , (13) = (31) → 5 , and (12) = (21) → 6 ,

(C.26)

yields the shortend matrix notation or Voigt notation (Carcione 2001). Using contracted matrix
and contracted subscripts yields the stiffness tensor C as

{CIJ} =











c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66











. (C.27)

When the shortend matrix notation is used for the stiffness tensor CIJ , the components of the
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Kelvin-Christoffel matrix according to (C.24), become

Γ11 = c11 n2
1 + c66 n2

2 + c55 n2
3 + 2 c56 n2 n3 + 2 c15 n3 n1 + 2 c16 n1 n2

Γ22 = c66 n2
1 + c22 n2

2 + c44 n2
3 + 2 c24 n2 n3 + 2 c46 n3 n1 + 2 c26 n1 n2

Γ33 = c55 n2
1 + c44 n2

2 + c33 n2
3 + 2 c34 n2 n3 + 2 c35 n3 n1 + 2 c45 n1 n2 (C.28)

Γ12 = c16 n2
1 + c26 n2

2 + c45 n2
3 + (c46 + c25) n2 n3 + (c14 + c56) n3 n1 + (c12 + c66) n1 n2

Γ13 = c15 n2
1 + c46 n2

2 + c35 n2
3 + (c45 + c36) n2 n3 + (c13 + c55) n3 n1 + (c14 + c56) n1 n2

Γ23 = c56 n2
1 + c24 n2

2 + c34 n2
3 + (c44 + c23) n2 n3 + (c36 + c45) n3 n1 + (c25 + c46) n1 n2 .

The non-zero stiffness tensor components for materials with isotropic, transversal isotropic and
orthotropic symmetry class are

{CIJ} =











c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66











. (C.29)

One can recognize from (C.29) and Hooke’s law in Voigt notation

σI = CIJ εJ (C.30)

that for these material symmetries axial stresses only cause axial strains and vice versa. A
certain shear stress only depends on the respective shear strain. With (C.29) the components
of the Christoffel matrix (C.28) reduce to

Γ11 = c11 n2
1 + c66 n2

2 + c55 n2
3

Γ22 = c66 n2
1 + c22 n2

2 + c44 n2
3

Γ33 = c55 n2
1 + c44 n2

2 + c33 n2
3 (C.31)

Γ12 = (c12 + c66) n1 n2

Γ13 = (c13 + c55) n3 n1

Γ23 = (c44 + c23) n2 n3 .

For an isotropic elastic solid not only the stiffness tensor components, but also the components
of the stiffness matrix must be independent of the chosen coordinate system, because the
material properties are equal in all directions. This leads to

c11 = c22 = c33 , c44 = c55 = c66 , and c12 = c13 = c23 , (C.32)

and the other components, as given in (C.29), equal to zero. Using the unity constrain for the
direction vector

‖ni‖ = n2
1 + n2

2 + n2
3 = 1 , (C.33)
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we further have

Γ11 = c11 n2
1 + c44 (n2

2 + n2
3) = c11 n2

1 + c44 (1 − n2
1)

Γ22 = c11 n2
2 + c44 (n2

1 + n2
3) = c11 n2

2 + c44 (1 − n2
2)

Γ33 = c11 n2
3 + c44 (n2

1 + n2
2) = c11 n2

3 + c44 (1 − n2
3) (C.34)

Γ12 = (c12 + c44) n1 n2

Γ13 = (c12 + c44) n3 n1

Γ23 = (c12 + c44) n2 n3 .

In an isotropic medium the material properties, and thus the wave solutions, are the same for
all directions of propagation. Therefore an arbitrary direction can be chosen, e.g. the x-axis
direction with a direction vector n = {1, 0, 0}T leads to

Γ11 = c11 , Γ22 = c44 , and Γ44 = c44 , (C.35)

and the off-diagonal terms Γ12 = Γ13 = Γ23 = 0. Then the Kelvin-Christoffel equation (C.23)
becomes 



c11 − ρ (vn
p )2 0 0

0 c44 − ρ (vn
p )2 0

0 0 c44 − ρ (vn
p )2



 ·







pn
1

pn
2

pn
3






=







0
0
0






. (C.36)

From the dispersion equation (C.19) one dispersion relation is obtained, i.e.

[
c11 − ρ (vn

p )2
] [

c44 − ρ (vn
p )2
] [

c44 − ρ (vn
p )2
]

= 0 , (C.37)

giving the three eigenvalues of the Kelvin-Christoffel matrix

c11 = ρ (v1
p)

2 , c44 = ρ (v2
p)

2 , and c44 = ρ (v3
p)

2 , (C.38)

from which the phase velocities are computed. The corresponding eigenvectors pn
i are obtained

by inserting each eigenvalue in the Kelvin-Christoffel equation (C.36). Solving a system of
three equations consiting of two equations from (C.36) and the unity constrain ‖pn

i ‖ = 1 [see
Eq. (C.33)] yields the three components of the polarization vector pn

i . Because two eigenvalues
coincide, the two corresponding eigenvectors can be chosen arbitrary as mutually perpendicular
vectors within a plane that is perpendicular to the third eigenvector. For the first eigenvalue
in (C.38) the resulting set of equations is

(c44 − c11) p1
2 = 0

(c44 − c11) p1
3 = 0 (C.39)

(p1
1)

2 + (p1
2)

2 + (p1
3)

2 = 1 ,

with the solution

p1 =







1
0
0






= n , (C.40)

i.e. the polarization direction of the first wave is parallel to the propagation direction. Two
arbitrary eigenvectors may be chosen in the plane perpendicular to this eigenvector, e.g. one
in the vertical plane containing the propagation direction and one perpendicular to this plane.
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Thus the three waves propagating in an isotropic medium are

• one longitudinal (or compressional) wave at a phase velocity vL with particle displacement
in direction of propagation and

• two transversal (or shear) waves at equal phase velocities vT with particle displacements
perpendicular to the direction of propagation (in-plane and out-of-plane polarization).

The velocities of the three body waves are therefore

v1
p = vL and v2

p = v3
p = vT , (C.41)

and the relationship between stiffness tensor components and velocities can be rewritten from (C.38)

C1111 = ρ v2
L and C1212 = ρ v2

T . (C.42)

The stiffness tensor for isotropic materials reads (in index and matrix notation)

Cijkl = λ δij δkl + µ (δik δjl + δil δjk) and C = λ1 ⊗ 1 + µ I , (C.43)

where 1 is the second and I the forth order unity tensor. An isotropic material is fully charac-
terized by two independent engineering material constants. In (C.43) Lame’s parameters

λ = c12 = c13 = c23 and µ = G = c44 = c55 = c66 (C.44)

are used, where the latter is equal to the shear modulus G. The third non-zero stiffness tensor
component is related to the two others, and thus to Lame’s elastic constants, by

c11 = c22 = c33 = c12 + 2 c44 = λ + 2 µ . (C.45)

The compliance tensor D as a function of the Young’s modulus E and Poisson’s ratio ν is given
to

{Dijkl} =
1

E











1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)











, (C.46)

where the second equation of (C.44) can be verified by G = E/2/(1 + ν) and (C.9).

The velocities expressed as a function of the mass density and stiffness tensor components or
[using (C.45) and the expression for the bulk modulus K = λ − 2/3 G] engineering elastic
constants are given as

vL =

√

C1111

ρ
=

√

λ + 2 µ

ρ
=

√

K + 4/3 G

ρ
and vT =

√

C1212

ρ
=

√

G

ρ
. (C.47)

Using the relationships between Lame’s constants and the Young’s modulus and Poisson’s ratio

E =
µ (3 λ + 2 µ)

λ + µ
and ν =

λ

2 (λ + µ)
, (C.48)

and the relationships between Lame’s constants and the longitudinal and shear velocities, that
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follow directly from (C.47)

λ = ρ (v2
L − 2 v2

T ) and µ = ρ v2
T , (C.49)

formulas for E and ν are obtained

E = ρ
v2

T (3 v2
L − 4 v2

T )

v2
L − v2

T

and ν =
v2

L/2 − v2
T

v2
L − v2

T

. (C.50)



AppendixD
Matrix notation of forth order
elasticity tensors

The generalized Hooke’s law and its inverted form are given to

σij = Cijklεkl and εij = Dijklσ
kl , (D.1)

respectively. σ and ε are the second order stress and strain tensors and C and D are the forth
order stiffness and complinace tensors, respectively. Subscripts indicate covariant coordinates,
superscripts indicate contravariant coordinates of the tensorial basis (Helnwein 2001). The 6×6
matrix representation of C and D for materials with orthotropic symmetry is given to

{Cijkl} =











C1111 C1122 C1133 0 0 0
C2211 C2222 C2233 0 0 0
C3311 C3322 C3333 0 0 0

0 0 0 c C2323 0 0
0 0 0 0 c C1313 0
0 0 0 0 0 c C1212











,

{Dijkl} =











D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0

0 0 0 d D2323 0 0
0 0 0 0 d D1313 0
0 0 0 0 0 d D1212











. (D.2)

The constant c depends on the used tensorial basis. Most commonly used in engineering
mechanics is the convention, to use contravariant coordinates for the second order stress tensor
σ and covariant coordinates for the second order strain tensor ε. Therefore C is given in
contravariant and D is given in covariant coordinates, yielding c = 1 and d = 4. A more
general formulation is obtained if a normalized tensorial basis is used to represent second and
fourth order tensors (Helnwein 2001), yielding c = d = 2. No distinction between covariant and
contravariant representation is required in this notation and the norm of a second order tensor
is defined correctly.
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Comparison of Eqs. (D.1) gives
D = C

−1 . (D.3)

The tensor of elastic constants must, by definition of the positive definitness of the strain
energy density, be symmetric and positive definite. This implies the necessary but not sufficient
condition that all diagonal terms must be positive, i.e.

C1111 > 0 , C2222 > 0 , C3333 > 0 , C2323 > 0 , C1313 > 0 , C1212 > 0 . (D.4)

The necessary and sufficient condition for Cijkl to be positive definite is that the sequential
principal minors must be positive, i.e. for orthorhombic symmetry

A11 = C1111 > 0

A22 = C1111 C2222 − C2
1122 > 0

A33 = C1111 C2222 C3333 + 2 C1122 C1133 C2233 − C1111 C2
2233 − C2222 C2

1133 − C3333 C2
1122 > 0

A44 = C2323 A33 > 0 (D.5)

A55 = C1313 C2323 A33 > 0

A66 = |Cijkl| = C1212 C1313 C2323 A33 > 0 .



AppendixE
Single crystal and polycrystal material
properties of aluminum

Elastic material properties of certrain materials are unaltered by certain transformations —
so-called symmetry transformations. These symmetry properties are usually described by sym-
metry classes used to characterize crystal symmetry. Out of two basic types of transformations
— rotation and mirror reflection — all symmetries can be generated. These transformations
are denoted by k = 1, 2, 3, 4, or 6 for rotations (where 2π/k is the angle of the rotation) and m
for a mirror plane. The simplest repeating unit in a crystal is called unit cell, which is defined
by a certain arrangement of lattice points. The lattice points in 3D-space are the points around
which the particles (set of atoms) are free to vibrate. All crystals can be classified in terms of
14 different unit cells, which fall into seven crystal systems (triclinic, monoclinic, orthorhombic,
tetragonal, rhombohedral, hexagonal, and cubic). Each of the seven crystal systems consists
of a discrete number of point groups that sum up to a total of 32 crystal classes. Materials
in the most general, the triclinic system do not have any symmetry and are described by 21
elastic constants. The istropic symmetry, belonging to the cubic crystal system, is unchanged
by any transformation and is thus the highest possible symmetry, with two independent elastic
constants. Besides the isotropic symmetry, the transversal isotropic (hexagonal crystal system)
and the orthotropic (orthorhombic crystal system) symmetry are of importance in this work
(see Section 2.3 for details on their independent elastic constants). The latter requires either
three twofold axes of rotation, one twofold axis of rotation and two mirror planes, or three
mirror planes, denoted by 222, 2mm, and mmm, respectively.

Aluminum is used for different investigations in Publications 1 and 2. In the following the
difference in aluminum single crystal and alumnium (polycrystals) alloy (see Table 1.7 for
material properties of alloy EN AW-5083-H111) is elucidated. Major component of the chemical
composition of aluminum alloy 5083 (Table E.1) is (pure) aluminum (≈ 94 %), with, according
to EN-485-2 (2006), a magnesium content of 4.5 % and a manganese content of 0.4 %. The
temperature dependency of aluminum alloy 5083 was found to be the highest for Young’s
modulus and shear modulus and the lowest for bulk modulus and Poisson’s ratio, with changes
from liquid-helium to room temperature of 14% and 4%, respectively (Weston et al. 1975).

Aluminum is a metal with a face-centred cubic crystal structure (closest packing possible) with
a lattice constant of 0.40494 nm (Kamm and Alers 1964). In single crystal materials only one
orientation of the crystal lattice is present in a specimen, whereas in a material consisting of
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Table E.1: Range of chemical composition of aluminum alloy 5083.

Al Mg Mn Si Fe Zn Ti Cr Cu

[%] [%] [%] [%] [%] [%] [%] [%] [%]

balance 4.0 – 4.9 0.4 – 1.0 0.4 0.4 0.25 0.15 0.05 – 0.25 0.1

grains each of these has a certain orientation of the crystal lattice. Spherical grains would have
the lowest surface to volume ratio, i.e. lowest energy usage to form a material, but do not
fill completely the space. Thus, polygonal grains are formed. The elastic properties of such
polycrystal materials are influenced by their microstructure and the crystallography of the single
crystal (Markham 1962). The elastic stiffness of cubic (single) crystal structure is defined by
three independent stiffness tensor components. However, in a polycrystalline (aluminum) alloy,
the properties of a single crystal are homogenized over single crystals with a quasi-isotropic
orientation distribution. Hence, the alloy is an (quasi-)isotropic material with two independent
stiffness tensor components.

The single crystal adiabatic elastic constants of aluminum have been determined by several
authors (Goens 1933; Lazarus 1949; Sutton 1953; Schmunk and Smith 1959; Kamm and Alers
1964; Chung and Buessem 1968; Thomas 1968; Ho and Ruoff 1969) to a relatively high precision,
by dynamic methods — mostly using ultrasonic wave propagation (see Table E.2 for average
values and standard deviations in percent of average at room temperature). The standard
deviation of these eight different sources are maximal only 1% and 2% for ultrasonic velocities
(in principal material directions) and cubic stiffness tensor components, respectively. The com-
ponent C1122 has a standard deviation nearly twice as high, indicating that the determination
of off-diagonal stiffness tensor components is not possible with an equally high precision. This
stems from the much higher impact of measurement errors in velocities of waves propagating in
non-principal material directions, used to determine the off-diagonal stiffness components. Ob-
viously, the stability criteria for a cubic crystal, namely the spinodal, shear and Born criteria,
i.e. (Karki et al. 2001)

C1111 + 2 C1122 > 0 , C1212 > 0 , and C1111 − C1122 > 0 , (E.1)

are fullfilled by the stiffness components given in Table E.2.

Table E.2: Elastic constants of cubic aluminum single crystal from literature (Goens 1933;
Lazarus 1949; Sutton 1953; Schmunk and Smith 1959; Kamm and Alers 1964; Chung and
Buessem 1968; Thomas 1968; Ho and Ruoff 1969) [average values ± standard deviation in
percent of average; ultrasonic velocities derived via (1.15)].

ρ vL vT C1111 C1212 C1122 n

[g/cm3±%] [km/s±%] [km/s±%] [GPa±%] [GPa±%] [GPa±%] [-]

2.699±0.03 6.316±1.0 3.237±0.3 107.69±2.1 28.28±0.7 62.03±3.5 8

The strength of aluminum alloys is two orders of magnitude higher than of single crystal alu-
minum, whereas the difference in elastic stiffness is marginal (see Tables 1.7 and E.2). Single
crystal aluminum is only slighly anisotropic (compare C1122 in Tables 1.7 and E.2), thus even
a strongly textured polycrystalline aggregate of aluminum would be nearly isotropic (Naimon
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et al. 1975). The elastic constant of polycrystalline materials could also be determined by
computational averaging of the single crystal properties. Ledbetter (1980) showed that the
errors of computational homogenization for copper was within the (ultrasonic) measurement
uncertainties of the polycrystaline material. The grain size, i.e. the inhomogeneity d of pure
Aluminum is approximately 300 µm (Hansen and Huang 1998), the average grain size of Alu-
minum alloy 5083 is approximately 100 µm (Llorca-Isern et al. 2005). Comparing d/λL = 0.3
and d/λT = 0.6 of the highest deployed frequency f = 20 MHz (see Table 1.1 for wavelengths)
with d/λ-values obtained for aluminum alloy (see Table A.1), confirms that all our ultrasonic
measurements were clearly performed in the Rayleigh scattering regime and thus the average
(static limit case) stiffness constants of the aluminum alloy were determined (without induced
deviations from single crystal properties). Young’s modulus of aluminum oxide (alumina) was
found to be independent of grain size [1-200 µm, Spriggs et al. (1986)].

For an isotropic material, such as aluminum alloy, the combination of the wave velocities
in an infinite isotropic medium (1.15) with the isotropic stiffness tensor C written in terms
of engineering elastic constants (C.43), and using C1111 = C1122 + 2 C1212 [see Eq. (C.45)]
yields Lame’s parameters (λ (= C1122) and µ (= C1212)) in terms of (isotropic) wave velocities
[see Eq. (C.49)]. Using relationships between the isotropic stiffness tensor components and
engineering elastic constants Young’s modulus E and Poisson’s ratio ν

C1111

E
=

v2
L

v2
E

=
1 − ν

(1 + ν) (1 − 2 ν)
and

C1212

E
=

v2
T

v2
E

=
1

2 (1 + ν)
, (E.2)

the latter can be written in terms of wave velocities [see Eq. (C.50)]. The ratio of longitudinal
to transversal stiffness tensor components is given to

C1212

C1111

=
v2

T

v2
L

=
1/2 − ν

1 − ν
. (E.3)
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Figure E.1: Dependency of the ratio of bulk longitudinal (vL) and transversal (vT ) wave veloci-
ties to extensional wave velocity vE (blue and red solid line, respectively), of the normal (C1111)
and shear (C1212) stiffnesses to Young’s modulus E (blue and red dashed line, respectively), of
bulk longitudinal wave velocity (vL) to transversal wave velocity (vT ) (solid green line), and of
normal stiffness (C1111) to shear stiffness (C1212) (dashed green line) on Poisson’s ratio ν.

An stronger influence of Poisson’s ratio on both, velocity and stiffness, in longitudinal than
in transversal direction is evident from equations (E.2) (compare blue and red curves in Fig-
ure E.1). For lower Poisson’s ratios (ν < 0.2) the difference of C1111 and E is less than 10%, thus
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the stiffness deduced from a bulk wave propagation may be approximated with a extensional
wave. This can be of importance if an estimation of Young’s modulus E needs to be determined
by only longitudinal (bulk) wave propagation. The higher Poisson’s ratio, the higher the error
in stiffness determination (≈ 50% for aluminum) when the propagation mode is not correctly
considered. The ratio of the bulk longitudinal velocity to the bulk transversal velocity is al-
ways smaller than 0.7 for the physical admissible range of positive Poisson’s ratios in isotropic
materials (ν = 0 – 0.5) and approximately 0.5 in aluminum [Eq. (E.3); see solid green curve in
Figure E.1].



AppendixF
Sample-specific wave propagation —
bulk waves and extensional waves:
Alternative representation

In Publication 1 the dependceny of sample specific (longitudinal and transversal) wave veloc-
ity with respect to the edge-length-over-height parameter a/h and the height-over-wavelength
parameters h/λi (i = {L, T}) was given (see Section 1.6). Here, the same measurement results
are presented with respect to the edge-length-over-wavelength parameters a/λi and the height-
over-wavelength parameters h/λi (see Figures F.1 and F.2, and Figure F.3 for a sectional view
along a/λi of specimen set A1 ; sectional views along h/λi of Figures F.1 and F.2 and Fig-
ures 1.9, 1.10, 1.11, and 1.12 are identical). Also, the 2D-cross-sections through Figures 1.11
and 1.12 for transversal waves are presented (see Figures F.4 to F.6). Finally, the effect of using
delay lines with longitudinal waves in elucidated (see Figure F.7).

Investigated specimen geometry and deployed ultrasonic transducers, i.e. ultrasonic pulse fre-
quencies yield the geometry parameters a/λi, h/λi in a range of five orders of magnitude (see
Figures F.1 and F.2). Data points in Figures F.1 and F.2 belonging to specimen sets A1, A2,
and B are for clarity connected with blue, green, and red lines, respectively, while data points
belonging to set R are not interconnected. To retaine clarity, sectional views only display each
specimen set A1 (constant h/λi), set A2 (constant a/λi), and set B (constant a/λi).

It should be noted, that the physical realizability of measurements in regions not covered by data
points in Figures F.1 and F.2 (very long bars or very thin plates), is very limited or only possible
with extensive complexity in the experimental realization. In this cases, generally, measurement
possibilities other than (contact) ultrasonic pulse-transmission should be considered.
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Figure F.1: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless longitudinal wave velocity (vL,exp/
√

C1111/ρ =
vL,exp/vL), on specimen geometry, and on wave frequency (in terms of edge-length-over-wavelength parameter a/λL and height-over-wavelength
parameter h/λL).
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Figure F.2: Specimen sets A, B, R (according to Table 1.5): Dependency of dimensionless transversal wave velocity (vT,exp/
√

C1212/ρ = vT,exp/vT ),
on specimen geometry, and on wave frequency (in terms of edge-length-over-wavelength parameter a/λT and height-over-wavelength parameter
h/λT ).
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The four corners of the Figures F.1 and F.2 represent limit cases of wave propagation (assuming
a finite wavelength λi). Constant values of a/h are located on parallel lines to the diagonal
defined by a/λi = h/λi (equivalent to cubic specimens, i.e. a/h = 1; see dash-dotted lines
in Figures F.1 and F.1), i.e. identical specimen, measured at different frequencies. Along this
diagonal the worst case (pertaining to wave propagation) at the lower end with a/λi = h/λi → 0
and the best case at the upper end with a/λi = h/λi → ∞ are located. These cases refer
to wave propagation in an infinitely small to infinitely large (cubic) specimen assuming a
fixed finite wavelength, or refer to an infinitely large to infinitely small wavelength assuming a
(cubic) specimen with fixed finite dimensions. Perpendicular to this diagonal the bar case with
a/λi → 0 and h/λi → ∞ and the plate case with a/λi → ∞ and h/λi → 0 are located. The
directions normal to the diagonal a/λi = h/λi refer to geometry transition from bar via cube
to plate, while the directions parallel to the diagonal a/λi = h/λi refer to wave transition from
larger to smaller wavelength, i.e. from lower to higher frequencies. In Figures 1.9, 1.10, 1.11, and
1.12 these limit cases of wave propagation refer to a finite height h. The geometry limit cases of
bar case and plate case with a/h → 0 and a/h → ∞, respectively are here separated from the
wave limit cases of zero to infinite wavelength, i.e. h/λi → ∞ and h/λi → 0, respectively. The
best case and worst case are located along a/h = 1 at h/λi → ∞ and h/λi → 0, respectively.
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Figure F.3: Specimen set A1, R-2 (according to Table 1.5): Dependency of dimensionless
(a) longitudinal wave velocity (vL,exp/

√

C1111/ρ = vL,exp/vL) and (b) transversal wave velocity

(vT,exp/
√

C1212/ρ = vT,exp/vT ) on edge-length-over-wavelength parameter (a/λL, a/λT ); data
points relating to the same h/λL(a/λT )-ratio are connected by solid lines.

Five major regions of a/λi (or a/h) and h/λi values are identified for longitudinal wave propa-
gation in Figures F.1, which are regions of

• extensional (or bar) wave propagation,

• transition between bulk and extensional wave propagation,

• bulk wave propagation,
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Figure F.4: Specimen set A1, R-2 (according to Table 1.5): Dependency of dimensionless
transversal wave velocity (vT,exp/

√

C1212/ρ = vT,exp/vT ), on (a) edge-length-over-height param-
eter (a/h), and on (b) height-over-wavelength parameter (h/λL); data points relating to the
same h/λT -ratio are connected by solid lines.

• measurement accuracy limit of wave velocity, and

• ultrasonic frequencies limit,

whereas for transversal wave propagation in Figures F.2 only the latter three regions are present.
In the following this different regions shall be discussed.

Bulk wave propagation (blue area in Figures F.1) occures for geometry to wavelength ratios
that are located around the diagonal a/λi = h/λi, where the deviation from the diagonal
becomes larger with increasing ratios. This means that bulk wave propagations becomes easier
with increasing frequency for both, lower specimen geometry ratios a/h (rising deviation from
cube to bar) and higher ratios a/h (rising deviation from cube to plate). Longitudinal wave
velocities deviate from bulk wave velocities in regions where changes to a bar-like geometry
and thus to Young’s modulus mode become pronounced (see Figures 1.6 and 1.7), and where
changes to a plate-like geometry and to thus very short propagation times (see Figures 1.8)
become pronounced. For transversal waves there is no theoretical reason for deviation from the
bulk wave velocity. Deviations from the transversal (bulk) wave velocity are due to problems in
determining the correct transversal velocity at low frequencies at plate-like (see Figures F.6),
as well as at bar-like (see Figures F.4 and F.5) geometries.

Extensional wave propagation (red area beyond thick dashed line in Figures F.1) occures for
combinations of small ratios a/λL with larger ratios h/λ, e.g. a/λL < 0.1 and h/λL > 1 or
a/λL < 1 and h/λL > 100, where the best pre-conditions are combinations of low ratios. The
lower the ratios, the larger the extensional wave region becomes with respect to the bulk wave
region (see Figures F.1). Generally, specimen geometry ratios a/h < 0.01 lead to extensional
wave propagation for all frequencies, wheres for a/h > 0.01 only very low frequencies yield
this type of wave (see Figure 1.10). Extensional wave propagation seems to be influenced
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Figure F.5: Specimen set A2, R-1 (according to Table 1.5): Dependency of dimensionless
transversal wave velocity (vT,exp/

√

C1212/ρ = vT,exp/vT ), on (a) edge-length-over-height param-
eter (a/h), and on (b) height-over-wavelength parameter (h/λT ); data points relating to the
same a/λT -ratio are connected by solid lines.

not only by the (generally accepted) ratio of a/λL, but also by the ratio h/λL, i.e. also the
slenderness ratio a/h. Hence, for a given (bar-like) specimen (i.e. constant a/h) extensional
wave propagation is more difficult to achieve with increasing frequency (see Figure 1.10). Or, in
other words, a measurement in (bar-like) specimen at a given frequency (i.e. constant λL) will
more likely lead to extensional wave propagation if its height (or length) is short in comparison
to the wavelength. Increasing slenderess, i.e. smaller ratio a/h (0.02 – 0.06), and decreasing
ratios a/λL (0.01 – 0.5) and h/λL (0.2 – 10) yield extensional wave propagation (compare with
Figures F.3 (a), 1.6, and 1.7). The preferable frequencies to transmit extensional waves in bars
(a/h → 0) are low, as to obtain wavelengths that are equally long or longer than the bar
(h/λL → 0).

Transition between bulk and extensional wave propagation (area between thick dashed line
and thick solid line in Figures F.1) occures between the regions mentioned above, with an ap-
proximately constant width over the complete frequency range (see Figures F.1, 1.9, and1.10).
Transition in Figures F.3 (a), 1.6, and 1.7 from extensional to bulk wave propagation is related
to transition from slender and long bars (small a/h) measured at low frequencies (small a/λL)
to squat and short bars (slighly larger a/h) measured at higher frequencies (large a/λL) at
increasing h/λL. Measurements of bars with a slenderness ratio a/h between 0.01 to 0.2, i.e.
the slim to squat bars of set A1 (see Figures F.3 (a) and 1.6) and the long to short bars of
set A2 (see Figures 1.7) are located in the transition region. Specimen with equal ratio a/h
are approximately (deviation within experimental errors) located on parallel lines (see Fig-
ures F.3 (a), 1.6, and 1.7), indicating that the transition region is an inclined plane in the
douple logarithmic a/λL –h/λL space. We note for comparison that a change in vL,exp/vL in
this region (hmin = 30 mm) of 0.01 (1% change of vL,exp) refers to a difference in time of flight
readings of ∆tf ≈ 0.05 µs, which is due to difficulties in extensional wave measurements and
measurement errors (see Table 1.4) a relatively low value. At low values of a/λL (a/λL < 1)
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Figure F.6: Specimen set B, R-3 (according to Table 1.5): Dependency of dimensionless
transversal wave velocity (vT,exp/

√

C1212/ρ = vT,exp/vT ), on (a) edge-length-over-height pa-
rameter (a/h), and on (b) height-over-wavelength parameter (h/λT ); data points relating to
the same a/λT -ratio are connected by solid lines.

the energy is divided among a large number of modes and thus the transmitted pulse becomes
weak and blurred and hence difficult to detect (Tu et al. 1955). The high pulse voltage used in
our experimental setup enabled us to detect longitudinal pulses at values as low as a/λL = 0.01.
Several works on stiffness determination of porous materials with the pulse-transmission tech-
nique (Ashman et al. 1987; Ashman and Rho 1988; Kohlhauser et al. 2008) use the unverified
assumption that for λL ≪ a extensional wave propagation is present in a sample regardless its
height and thus Young’s modulus can be determined directly via (1.18). Our results show that
extensional wave propagation is only possible in very slender bars at low frequencies indicat-
ing this assumption is not correct. Williams (1992) excluded the possibility, by using Biot’s
theory to describe wave propagation, that extensional wave propagation on struts within the
microstructure of bone occures.

Measurements at the accuracy limit of the wave velocity [dark blue, green, yellow. and red
area to the lower right of the dash-dotted line in Figure F.1 (b)], i.e. of the time of flight tf
and of the specimen height h (h to a lesser extent, see Section 1.3.3), may yield to considerable
errors (see Figures 1.8 and F.6). In very thin specimens waves propagate as bulk waves, but
when the thickness h in comparison to the time of flight tf becomes very small [compare
with equation (1.19)], vi can not be determined accurately enough (see also Table 1.4). This
circumstance is not correctly displayed by the given illustration based on h/λi and a/λi (or
a/h), as the dimensional analysis only considers changes in the velocity due to physical reasons
and not to, e.g., reasons related to experimental realizations. Thus, no clear limit of h/λi can
be identified in Figures F.1 (b) and F.2 (b). Considers a relatively thick specimen, say h/λi > 1,
and a very large characteristic cross-section dimension a, e.g. a/λi > 100, it becomes clear that
the dimensional analysis, i.e. given illustration, do not reproduce this effect for all sets of h/λi

and a/λi. Clearly, velocity measurements at medium frequencies would be accomplishable to
a high accuracy, but the corresponding data point would be positioned in the accuracy limit



160 Appendix F Doctoral Thesis

0 5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

h [mm]

v
L

,e
x

p
/
v

L
[-
]

 

 

vL

error 1%
0.05 MHz
0.1 MHz
0.25 MHz
0.5 MHz
1.0 MHz
2.25 MHz
5.0 MHz
10 MHz
20 MHz

(a) with delay line

0 5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

h [mm]
v

L
,e

x
p
/
v

L
[-
]

(b) without delay line

Figure F.7: Dependency of dimensionless longitudinal wave velocity (vL,exp/
√

C1111/ρ =
vL,exp/vL), i.e. error of vL,exp, of specimen set B over specimen height h for different frequencies.

region. Hence, the accuracy limit region depends on the ratio h/λi, i.e. f tf,i, but is independent
from a/λi, and is not a wave propagation phenomena.

Longitudinal velocity were determined using delay lines to improve accuracy of measurements
and to allow for measurements in very thin samples. Comparison of Figures F.7 shows that the
velocity deviation was reduced from 2% (for specimen with h > 10 mm) to 1% (for specimen
with h > 5 mm) for all frequencies. Velocity measurements of very thin specimens (h ≥ 1 mm)
with an error of 2% were possible at high frequencies (f ≥ 5 MHz). Generally, accurate
measurements were possible for h/λL ? 0.1 to h/λL ? 1 [see Figures 1.8 (b)] and for h/λT ? 1
to h/λT ? 10 [see Figures F.6 (b)] at low to high frequencies, respectively.

Application limits of (ultrasonic) frequencies [white area in lower left corner in Figures F.1 (b)
and F.2 (b)] are reached for typical specimen dimensions at low values of both geometry related
parameters (a/λL = h/λL > 0.1), e.g. a or h equal to 30 mm for aluminum alloy (limit
ultrasonic frequency fmin = 20 kHz yields λL,max ≈ 320 mm). Due to the lack of ultrasonic
transducer at frequencies that close to the ultrasonic limit no measurements were performed in
this region.
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Graphical representation of Poisson’s
ratio ranges

Ultrasonic velocity measurements are commonly used to determine elastic stiffnesses of (fiber)
composite materials. Comparison of the resulting engineering elastic constants with other
(measurement) methods is often limited to Young’s modulus, while comparing Poisson’s ratios
directly, is neglected. Complete sets of elasticity components of materials of hexagonal, or-
thorhombic, or lower symmetry class determined by both mechanical and ultrasonic tests are
very scarce in literature. In addition to the aluminum-silica fiber composite [see Section 2.5.2
and Figure G.1 (a)] ultrasonic measurement results from two other transversal isotropic alu-
minum matrix-fiber composites with different fibers are taken from literature and the Pois-
son’s ratios from ultrasonic measurements are compared with results obtained from combined
ultrasonic-mechanical testing (see Publication 2) of normal elastic stiffnesses constants.

If C1111, C2222, and E1 are known, Poisson’s ratios of transveral isotropic materials depend [on
the basis of Eqs. (2.30)] on the missing normal stiffness, i.e. Young’s modulus E2 [transversal
shear stiffness in the isotropic plane follows from Eq. (2.31) and the fifth unknown is the shear
stiffness in longitudinal direction]. Thus, Poisson’s ratios then cannot be directly computed
from Eqs. (2.30), based on given values for C1111, C2222, E1, and E2, but these equations need
to be seen as functions of a single variable L,

νij = Ftrans (L)C1111, C2222, E1 fixed , (G.1)

with the longitudinal-to-radial ratio of normal stiffnesses to Young’s modulus ratios L accord-
ing to Eq. (2.36)1, in order to give ranges with respect to the missing normal stiffness (see
Figure G.1 for visual representations of Ftrans). In addition to the discussion of Poisson’s ratios
determination of orthotropic stainless-steel weld metal in Section 2.5.3, the graphical represen-
tation of the Poisson’s ratio ranges according to Eqs. (2.35) and (2.36) in Section 2.6 is given
and discussed in here.
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G.1 Transversely isotropic aluminum-carbon fiber com-

posite

Mouchtachi et al. (2004) determined the elastic constants of transversely isotropic fiber compos-
ites, consisting of carbon (C) fibers embedded into a matrix made of aluminum alloy AS7G0.3;
characterized by a fiber diameter dF = 7 µm and a fiber volume fracion of fF = 0.58. Elasticity
tensor components related to normal strains and stresses (see Table G.1, row three) and to
shear strains and stresses (see Table G.1, row eight) were measured on plate-like specimens,
by means of an automated, computer-assisted, immersion device, based on (quasi-)longitudinal
and (quasi-)transversal waves propagating in the principle material directions as well as in
several different angles to these directions. Young’s modulus in longitudinal direction E1 was
determined by means of mechanical tests for this composite (see Table G.1, row seven). The
measured modulus agrees well (1% difference) with the result obtained by the rule of mixture
model approach (Mouchtachi et al. 2004). Inversion of ultrasonic results yield a deviation of
more than 8% of the longitudinal Young’s modulus between mechanical and ultrasonic tests,
indicating measurement erros in ultrasonically determined off-diagonal stiffnesses tensor com-
ponents.

Table G.1: Elastic constants of fiber composite Al-C from mechanical, ultrasonic and combined
tests (bold values from direct measurements).

elastic stiffness C1111 C2222 C3333 C1122 C1133 C2233

tensor constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

ultrasonic 165.30 42.90 39.50 22.60 24.40 18.70
combined 165.30 41.20 41.20 11.46 11.46 8.33

engineering E1 E2 E3 G23 G13 G12

elastic constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

mechanical 160.00 – – – – –
ultrasonic 146.64 33.23 29.97 10.70 20.70 22.30
combined 160.00 39.00 39.00 16.43 – –

normal stiffness fF L T C1111/E1 C1111/C2222 C2222/C3333

ratios & fraction [-] [-] [-] [-] [-] [-]

ultrasonic 0.58 0.87 0.98 1.13 3.85 1.09
combined – 0.98 1.00 1.03 4.01 1.00

Poisson’s ratios ν32 ν31 ν21 ν23 ν13 ν12

[-] [-] [-] [-] [-] [-]

ultrasonic 0.428 0.464 0.325 0.386 0.095 0.074
combined 0.187 0.231 0.231 0.187 0.056 0.056

Using normal stiffnesses Ciiii and longitudinal Young’s modulus E1 from mechanical tests,
Poisson’s ratios νij are given in Figure G.1 (b) as a function of L. A large deviation in the
longitudinal Poisson’s ratios is evident from this function, as the maximum values for ν21 and
ν12 are approximately 0.24 and 0.06, respectively (compare with νij in Table G.1, row 16).
Moreover, even though C2222 ≈ C3333 (difference is 8%, which is small compared to the four
times higher value of stiffness C1111) and T ≈ 1 (see Table G.1) ν31 deviates by ≈ 40% from
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ν21 (see Table G.1, row 16). This, too, is an indicator that the off-diagonal stiffnesses tensor
components are not correct.

To obtain results for Poisson’s ratios from normal stiffnesses, the transversal modulus given in
Mouchtachi et al. (2004), which was nummerically determined (using an Eshelby-type model),
and the average of C2222 and C3333 were used (assuming perfect transversal isotropy). These
Poisson’s ratios, which make use of the mechanical result for E1, strongly deviate from the ones
obtained from ultrasonic tests (compare Table G.1, rows 16 and 17), but both the transverse and
the larger longitudinal Poisson’s ratio are in accordance with Poisson’s ratios for the similarly
buildup composite with alumina-silica fibers (see Table 2.2, row 17 and Section 2.5.2). The
difference in Poisson’s ratios is due to the difference in the ratio C1111/E1 (see Table G.1, rows
twelve and 13), whereas the negative Poisson’s ratio obtained for aluminum-silica fibers (see
Table 2.2) were due to the ratio T = 0.85 that is too far off the value of 1 (transversal isotropy)
to result in positive solutions (see Figures G.3 and 2.3 for a typical complete three-dimensional
representation of νij = νij(L, T ) for orthotropic symmetry and the related discussion).
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Figure G.1: Poisson’s ratios as a function of longitudinal-to-radial ratio of normal stiffnesses to
Young’s modulus ratios L for transversal isotropic aluminum matrix composites (dashed lines
indicate new ranges for deviations of C1111/E1 of ±5%).

G.2 Transversely isotropic aluminum-nickel fiber com-

posite

An unidirectionally-solidified eutectic composite of aluminum nickel (Al3Ni) fibers in an α-
aluminum matrix was tested with an ultrasonic pulse-echo-overlap method by Grabel and
Cost (1972). Velocity measurements were performed on five specimen (composite density ρ =
2.84 g/cm3), which were cut at different angles to the fiber direction to obtain the complete
stiffness tensor (precision of stiffnesses ≈ 0.6%). Ultrasonic frequencies between 2 and 30 MHz
were used — most measurements were performed at 5 MHz, yielding a ratio of inhomogenity
d to wavelength λ of d/λ ≈ 10−3, i.e. small enough to ensure homogeneous material behavior
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in terms of wave propagation [compare (1.1) and Kohlhauser and Hellmich (2009b)] and thus
measuring average stiffness properties and not stiffnesses of composite constituents (Table G.2,
rows three, seven, and eight). Using the average fiber diameter of 0.7 µm and the inter-fiber
spacing of 1.7 µm, the fiber volume fraction is estimated via Eq. (1.30) to be fF ≈ 15% —
considering a hexagonal fiber arrangement, which was observed in some regions (Grabel and
Cost 1972). The fiber length was approximately 100 times larger than the fiber diameter. The
average longitudinal Young’s modulus from mechanical tests was given to E1 = 78 GPa [Grabel
and Cost (1972); see Table G.2, row seven]. Longitudinal Young’s modulus from ultrasonic
measurements overestimates this value by 9.6%.

Table G.2: Elastic constants of fiber composite Al-Al3Ni from mechanical, ultrasonic and com-
bined tests (bold values from direct measurements).

elastic stiffness C1111 C2222 C3333 C1122 C1133 C2233

tensor constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

ultrasonic 132.60 122.30 122.30 66.50 66.50 65.30
combined 132.60 122.30 122.30 72.36 72.36 69.49

engineering E1 E2 E3 G23 G13 G12

elastic constants [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

mechanical 78.00 – – – – –
ultrasonic 85.45 77.47 77.47 28.40 – –
combined 78.00 71.94 71.94 26.40 – –

normal stiffness fF L T C1111/E1 C1111/C2222 C2222/C3333

ratios & fraction [-] [-] [-] [-] [-] [-]

ultrasonic 0.15 0.98 1.00 1.55 1.08 1.00
combined – 1.00 1.00 1.70 1.08 1.00

Poisson’s ratios ν32 ν31 ν21 ν23 ν13 ν12

[-] [-] [-] [-] [-] [-]

ultrasonic 0.359 0.354 0.354 0.359 0.321 0.321
combined 0.362 0.377 0.377 0.362 0.348 0.348

Using normal stiffnesses Ciiii and longitudinal Young’s modulus E1 from mechanical tests,
Poisson’s ratios νij are given in Figure G.1 (c) as a function of L. Figure G.1 (c) indicates
similar Poisson’s ratios as obtained from ultrasonic tests (compare with Table G.2, row 16).
Using L = 1.00 — L = 0.98 from ultrasonic measurements; aluminum composites in the
previous Section and Section 2.5.2 exhibit similar values; see Tables G.1 and 2.2 — Poisson’s
ratios show good agreement with ultrasonically determined ratios (see Table G.2, row 16 and
17). The ultrasonically determined constants of this composite are less prone to measurement
errors because of its low acoustical damping. The larger deviation of longitudinal Poisson’s
ratios (ν21 and ν12) is due to the lower value of E1 — yielding a higher C1111/E1-ratio —
obtained from mechanical tests, which is used in the combined method.

Generally, when using normal stiffnesses to compute Poisson’s ratios, a low C1111/E1-ratio (close
to one) yields higher errors for Poisson’s ratio of longitudinal planes ν21 = ν31 and ν12 = ν13

[compare dashed lines in Figures G.1 (a) – (c), which indicate 5% change in C1111/E1], while
the transverse Young’s moduli, i.e. L, mostly influences the result of Poisson’s ratios in the
transverse plane ν32 = ν23 and of ν12 = ν13 (see Figures G.1, row one and two).
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G.3 Orthotropic stainless-steel weld metal

Dewey et al. (1977) determined the elastic stiffness tensor constants by means of mechanical
and ultrasonic tests (see Section 2.5.3, Table 2.3). In Dewey et al. (1977) average values —
assuming transversal isotropy in the plane 1− 2 — of the elastic constants obtained from these
two measurement methods are given. For normal components the average of ultrasonic and
mechanical results, for off-diagonal components the mechanical results, and for shear compo-
nents the ultrasonic results were used. The latter two selections were argued with the use of
transformation relations (using, besides measurement values associated with this components,
also measurement results of other components) to determine these components with ultrasonic
tests [see Eqs. (2.12) to (2.14)] and mechanical tests, respectively. Young’s moduli in the trans-
verse directions 2 and 3 differ by 7 and 26%, respectively, from the longitudinal moduli, while
the deviations of stiffness tensor components in the transverse directions compared to the lon-
gitudinal direction 1 are 13 and 20%, respectively. As these differences between the normal
stiffnesses in the three principal directions are in the same order of magnitude and not negligible
small, orthotropic — and not transversal isotropic — symmetry should be considered for this
material.
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Figure G.2: Cross-sections through Figures G.3 at relevant values of L and T for orthotropic
stainless-steel weld metal (see Table 2.3; dashed lines indicate new ranges for deviations of
C1111/E1 of ±5%).

Using the normal stiffness tensor components and longitudinal Young’s modulus, i.e. known
ratios C1111/E1, C1111/C2222, and C2222/C3333, Poisson’s ratios νij can be given as function of L
and T (see Figures G.3 and G.4 for 3D and top views of this 3D representations, respectively).
It is evident from cross-sections through Figures G.3 and G.4 (see Figures G.2) that L and T ,
i.e. E2 and E3, have a strong influence on the resulting Poisson’s ratios when determined from
normal stiffnesses (see Table 2.3, row 20 for results when using all six normal stiffnesses). They
are not, on the other hand, sensitive to changes in the C1111/E1-ratio — see dashed lines in
Figures G.2 for a change of 5% — because this ratio is not close to one. Ratios C1111/C2222 and
C2222/C3333 are, even if they are close to one, of lesser influence on the results.
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Figure G.3: Poisson’s ratios of stainless-steel weld as function of ratios L and T (see Table 2.3).
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Figure G.4: Poisson’s ratios of stainless-steel weld as function of ratios L and T (see Table 2.3)
— top view.





AppendixH
Group velocities and energy deviation
angles in bone, wood, and a fiber
composite

Ultrasonics determination of material elasticity has become a classical technique, with plane
wave theory as its theoretical fundament. However, from a general physics viewpoint, it is
generally accepted that waves travel in the form of packets with more than one frequency,
rather than in that of a shape with one single frequency. This also holds for mechanical (pulse)
waves such as the ones employed for ultrasonic measurements. Velocities of wave packets
are referred to as group velocities, while (plane) wave velocities (as standardly considered in
ultrasonics) are referred to as phase velocities. The energy velocity (defines the wave front,
which in the elastic range is equal to the wave surface) of the amplitude of a pulse, i.e. wave
packet (superposition of harmonic components), is equal to the group velocity (Lighthill 1965;
Auld 1990; Carcione 2001), which in lossless (non-attenuating, non-dispersive) media is equal to
the envelope velocity (velocity of the envelope of plane waves) (Shercliff 1970; Carcione 2001).
The group velocity is the velocity of the modulation envelope, while the carrier waves of the
wave packet travel with the phase velocity, i.e. the velocity of a certain state — the phase — of
a material point (‘representative volume element’). In general each component of a pulse can
travel at a different phase velocity, but in a homogeneous elastic media the phase velocity is
frequency-independent — compare Eqs. (2.8), which are only functions of Cijij and ρ, and the
linear dispersion relation (2.7), which is a characteristic of continuum elasticity theory (Wolfe
1998) — and thus the pulse travels at the same velocity as each component.

Materials with microstructure can be considered as homogeneous in terms of wave propagation if
the scale of the characteristic loading of the medium, here the wavelength λ, is much larger than
the representative volume element (characteristic length ℓRV E), which must be considerably
larger than the inhomogeneities d inside the RVE (Zaoui 2002), i.e. d ≪ ℓRV E ≪ λ. If
this is not fullfilled, phase velocities are frequency-dependent, i.e. the wave is dispersive. In
anisotropic materials, energy (defined by the energy flux vector, also referred to as ray direction)
does not necessarily propagate with the phase velocity in the direction the wave normal n (wave
propagation direction) as it does in isotropic materials (Musgrave 1970). Experimentally one
always receives the displacement or energy of a wave (pulse). A discussion of the interpredation
of the resulting time measurement is given in Section 2.8. In short, it follows that the projection
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of the signal vector to the wave normal is equal to the phase velocity, thus allowing for certain
experimental set-ups to directly measure the phase velocity from time delay measurements
(Sahay et al. 1992; Every 1980).

Next, we re-call the relationships between phase velocity and group velocity, and we re-evaluate
experimental data published in the open literature as to show the difference between these
velocities for anisotropic materials, more precisely for bone, wood, and a fiber composite.

Group velocity is the velocity of the amplitude of a wave packet, i.e. of a puls [for details on
the theory of pulse propagation, see Norris (1978)]. The propagation velocity of modulation or
envelope on a wave is defined as the group velocity (Lighthill 1965; Hayes and Musgrave 1979;
Carcione 2001) (see also Section 2.8)

vg =
∂ω

∂k
=

∂vp

∂n
. (H.1)

We will verify the relationship (Fedorov 1968; Auld 1990; Wolfe 1998; Carcione 2001)

vg · n = vp , (H.2)

using dispersion relations ω = ω(k) to obtain an explicit form of vg in terms of stiffness tensor
components. The right part of (H.1) is obtained using (2.7), k = k n, and the fact that vp = vp n
is a homogeneous function of degree one in the components of n (Fedorov 1968; Every 1980).

Substituting vp in Eq. (2.8) (quasi-longitudinal and quasi-transversal wave in the symmetry
plane 1−2) according to the definition of the phase velocity vp = ω/k [Eq. (2.7)] and considering
that k = k n we obtain

ω(1,2) =

√

C1111 k2
1 + C2222 k2

2 + C1212 k2 ± ck

2 ρ
(H.3)

ck =

√

[(C2222 − C1212) k2
2 − (C1111 − C1212) k2

1]
2
+ 4 [(C1122 + C1212) k1 k2]

2 .

Derivation with respect to ki under consideration of k2 = k2
1 + k2

2 + k2
3 and backsubstituting vp

gives the group velocity vector vg for the quasi-longitudinal and quasi-transversal wave in the
symmetry plane 1− 2 as a function of the mass density ρ, the stiffness tensor components Cijkl

and the propagation direction ni

v(1,2)
g =

dω(1,2)

dk
=

1

2 ρ v
(1,2)
p







(C1111 + C1212) n1 ± c−1 ca

(C2222 + C1212) n2 ± c−1 cb

0






, (H.4)

where

ca = −(C2222 − C1212) (C1111 − C1212) n1 n2
2 + (C1111 − C1212)

2 n3
1

+ 2 (C1122 + C1212)
2 n1 n2

2 , (H.5)

cb = (C2222 − C1212)
2 n3

2 − (C1111 − C1212) (C2222 − C1212) n2
1 n2

+ 2 (C1122 + C1212)
2 n2

1 n2 , (H.6)

and c according to (2.8). From Eq. (2.9) we obtain the group velocity vector vg for the purely
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transversal wave as

v(3)
g =

dω(3)

dk
=

1

ρ v
(3)
p







C1313 n1

C2323 n2

0






. (H.7)

Eqs. (H.4) and (H.7) are also obtained via [see Section 2.8, Eq. (??); (Fedorov 1968; Every
1980)]

vg =
∂vp

∂n
. (H.8)

In the case of a deviation between the propagation direction (or phase velocity direction, or
wave normal) and the energy flux direction (group velocity direction), that is, in anisotropic
materials in non-principle material directions, it is the projection of the group velocity into
the direction of the wave normal (propagation direction), that is measured in an ultrasonic
contact pulse transmission experimental setup [with finite dimensions of the (ultrasonic) wave
source and receiver (i.e. no point source or receiver), and with n being normal to the (parallel)
specimen surfaces, where the transducers are applied], i.e.

vg · n = vg,1 n1 + vg,2 n2 + vg,3 n3 . (H.9)

For quasi-longitudinal and quasi-transversal waves [Eq. (H.4)] this yields

v(1,2)
g · n =

1

2 ρ v
(1,2)
p

[
(C1111 + C1212) n2

1 + (C2222 + C1212) n2
2 ± c−1(ca n1 + cb n2)

]
. (H.10)

With ca n1 + cb n2 = c2, n2
1 + n2

2 = 1, and the square of the phase velocity v
(1,2)
p [Eq. (2.8)], the

latter equation becomes

v(1,2)
g · n =

1

2 ρ v
(1,2)
p

[
C1111 n2

1 + C2222 n2
2 + C1212 ± c

]
= v(1,2)

p . (H.11)

For the out-of-plane pure transversal wave [Eq. (H.7)], Eq. (H.9) yields, using the square of the

phase velocity v
(3)
p [Eq. (2.9)],

v(3)
g · n =

1

ρ v
(3)
p

(C1313 n2
1 + C2323 n2

2) = v(3)
p . (H.12)

From (H.11) and (H.12) follows, that for contact pulse transmission time of flight measurements
in any direction within symmetry planes of orthotropic media it is the phase velocity that
is measured. This result is also obtained from geometrical arguments and is valid for any
direction in an anisotropic material (Musgrave 1954; Sahay et al. 1992; Every 1994; Wolfe
1998). Furthermore, Eq. (H.2) is verified via (H.11) and (H.12) for symmetry planes. Eq. (H.2)
holds for all directions in a fully anisotropic material (Fedorov 1968; Auld 1990; Wolfe 1998;
Carcione 2001).

The group velocity is given through the norm of the group velocity vector,

vg = ‖vg‖ , (H.13)

the deviation angle ∆v between the group and phase velocity vectors can be computed from
vector calculus,

∆v = cos−1

(
vp · vg

vp vg

)

, (H.14)

with vp = vp n, and the difference between the phase velocity and the group velocity is given
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to

∆v =
vg − vp

vg

. (H.15)

Four stiffness tensors of three different materials were taken from the open literature. Two
biological materials which are considered to be of orthorhombic symmetry (bone and wood) and
one transversely isotropic material (artificial fiber composite) (for stiffness tensor components
and densities see Table H.1). From these stiffness tensor components the phase velocities in the
principle material directions (see Table H.2), and the phase and group velocities in symmetry
planes in directions inclined 45◦ to the two other symmetry planes (see Tables H.3 and H.4),
were computed.

Table H.1: Density [g/cm3] and stiffness tensor components [GPa] of different anisotropic ma-
terials: human femoral bone (Ashman et al. 1984), pine (Bucur and Archer 1984), spruce
(Jenkin 1920; Hearmon 1948), carbon-epoxy fiber composite (Dean and Turner 1973; Kriz and
Stinchcomb 1979).

material bone wood wood composite

human femoral pine spruce carbon-epoxy

ρ 1.9 0.383 0.43 1.61
C1111 27.6 10.202 14.0648 161
C2222 18.0 2.472 1.1030 14.5
C3333 20.2 0.903 0.5929 14.5
C2323 4.52 0.073 0.0320 3.63
C1313 6.23 0.683 0.5000 7.10
C1212 5.61 0.925 0.7200 7.10
C1122 10.1 2.864 0.6845 6.50
C1133 10.7 1.785 0.4747 6.50
C2233 9.98 1.393 0.3451 7.24

Ashman et al. (1984) determined the complete stiffness tensor of human femoral bone by a
continuous ultrasonic wave technique (see Table H.1, column two).

Bucur and Archer (1984) determined the complete stiffness tensor of six different wood species
by the ultrasonic contact pulse transmission method at frequencies of 0.5 and 1 MHz (moisture
content was not specified). Both, the diagonal and off-diagonal stiffness components of pine
were taken from measurements at a pulse frequency of 0.5 MHz (see Table H.1, column three).
For the latter an optimum value was used by rejecting values with extreme error estimates
and taking the midpoint of the remaining values (Bucur and Archer 1984). Stiffness tensors
determined via ultrasonic methods yielded negative Poission ratio’s and several stiffness tensors
had a determinant close to zero, i.e. were nearly singular. See Section 2.6 for resulting errors in
stiffness tensor components and for a reliable method to determine complete stiffness tensors
of wood.

Tests on different wood species performed by different authors were collected by Hearmon
(1948). The engineering elastic constants of spruce (at moisture content 12%) determined by
Jenkin (1920), defined the compliance tensor, which was inverted to obtain the stiffness tensor
(see Table H.1, column four). Jenkin (1920) and Carrington (1923) were the first to give full
elasticity tensors of wood (Hearmon 1948).

The stiffness tensor components of the transversely isotropic carbon-epoxy fiber composite (see
Table H.1, column five) were obtained by curve-fitting ultrasonic data (Kriz and Stinchcomb
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Table H.2: Phase velocities [km/s] in principle material directions of different anisotropic ma-
terials computed from data in Table H.1.

material bone wood wood composite

human femoral pine spruce carbon-epoxy

vp,L
1,1 3.811 5.161 5.719 10.000

vp,L
2,2 3.078 2.541 1.602 3.001

vp,L
3,3 3.261 1.535 1.174 3.001

vp,T
2,3 1.542 0.437 0.273 1.502

vp,T
1,3 1.811 1.335 1.078 2.100

vp,T
1,2 1.718 1.554 1.294 2.100

1979; Dean and Turner 1973). The composite is made up of transversly isotropic Modmor
type 2 carbon fibers, which are uniaxially aligned and embedded in an Ciba LY558 epoxy resin
(Dean and Turner 1973). The volume fractions of the fibers was fF = 0.67.

Table H.3: Phase and group velocities [km/s] of human femur bone and pine wood in symmetry
planes in directions inclined 45◦ to the two other symmetry planes computed from data in
Table H.1.

material bone — human femoral wood — pine

quantity vp vg ∆v αv vp vg ∆v αv

[km/s] [km/s] [%] [◦] [km/s] [km/s] [%] [◦]

vqL
12,12 3.435 3.516 2.4 12.36 4.068 4.764 17.1 31.38

vqL
13,13 3.534 3.578 1.2 8.95 3.875 4.910 26.7 37.90

vqL
23,23 3.169 3.174 1.7E-1 3.30 2.114 2.320 9.7 24.31

vqT
12,12 1.776 1.776 1.7E-2 1.07 1.554 1.554 1.6E-6 0.01

vqT
13,13 1.835 1.835 1.6E-3 0.33 1.126 1.196 6.2 19.73

vqT
23,23 1.546 1.546 5.1E-6 0.02 0.357 0.367 2.7 13.09

vT
12,3 1.682 1.703 1.3 9.04 0.993 1.277 28.5 38.90

vT
13,2 1.633 1.642 5.8E-1 6.14 1.141 1.501 31.5 40.49

vT
23,1 1.765 1.768 1.4E-1 3.00 1.449 1.465 1.1 8.56

The three phase velocities of waves propagating in each principle material direction (which are
equal to the group velocities in these directions) were back-calculated from the elastic constants
in Table H.1 via Eqs. (2.10) (see Table H.2; for transversal waves vi,j = vj,i is valid, thus only
six values are given). The three phase velocities of waves propagating in the three non-principle
material directions under investigation, namely n = {1/

√
2, 1/

√
2, 0}T in symmetry plane 1−2,

n = {1/
√

2, 0, 1/
√

2}T in symmetry plane 1−3, and n = {0, 1/
√

2, 1/
√

2}T in symmetry plane
2 − 3, i.e. three quasi-longitudinal wave velocities vp,qL

ij,ij , three quasi-transversal wave velocities

vp,qT
ij,ij , and three purely transversal wave velocities vp,T

ij,k, are computed via Eqs. (2.8) and (2.9),
and similar equations for symmetry planes 1 − 3 and 2 − 3 (see Tables H.3 and H.4, columns
two and six). The respective nine group velocities, vg,qL

ij,ij , vg,qT
ij,ij , and vg,T

ij,k, are computed via
Eqs. (H.4), (H.7) and (H.13) (see Tables H.3 and H.4, columns three and seven). The differences
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Table H.4: Phase and group velocities [km/s] of spruce wood and carbon-epoxy fiber composite
in symmetry planes in directions inclined 45◦ to the two other symmetry planes computed from
data in Table H.1.

material wood — spruce fiber composite — carbon-epoxy

quantity vp vg ∆v αv vp vg ∆v αv

[km/s] [km/s] [%] [◦] [km/s] [km/s] [%] [◦]

vqL
12,12 4.167 5.560 33.4 41.45 7.252 9.760 34.6 42.01

vqL
13,13 4.125 5.611 36.0 42.68 7.252 9.760 34.6 42.01

vqL
23,23 1.246 1.412 13.3 28.07 3.001 3.001 0.0 0.00

vqT
12,12 1.395 1.407 9.2E-1 7.74 2.514 2.622 4.3 16.55

vqT
13,13 1.091 1.091 2.4E-2 1.26 2.514 2.622 4.3 16.55

vqT
23,23 0.703 0.778 10.7 25.45 1.502 1.502 0.0 0.00

vT
12,3 0.787 1.048 33.2 41.34 1.825 1.919 5.1 17.92

vT
13,2 0.935 1.267 35.5 42.46 1.825 1.919 5.1 17.92

vT
23,1 1.191 1.210 1.6 10.22 2.100 2.100 0.0 0.00

between phase and group velocities ∆v are computed via Eq. (H.15) (see Tables H.3 and H.4,
columns four and eight) and the angle ∆v between the directions of these two velocities in the
non-principle material directions is computed via Eq. (H.14) (see Tables H.3 and H.4, columns
five and nine).

The difference between phase and group velocity in certain directions strongly depends on
the difference between stiffness components of anisotropic materials. A high difference in the
absolute value of the two velocities is always accompanied by a large angle of deviation between
the two velocity vectors, i.e. a large energy beam deviation from the wave normal (see Tables H.3
and H.4, columns four and five, eight and nine). This is also an indication for highly anisotropic
material behavior. Human femoral bone has the lowest deviation angles ∆v (∆v,max = 12◦; see
Table H.3, column five). Among the two wood spieces investigated, spruce is slighlty more
anisotropic (∆v,max = 43◦; see Table H.4, column five). Still, beam deviations in wood are very
strong and are between 10◦ and 45◦ for most velocities in the non-principle material direction
investigated (see Tables H.3 and H.4, columns nine and five, respectively). The carbon-epoxy
fiber composite is characterized by a strong (energy) beam deviation in longitudinal directions
(∆v,max = 42◦), but due to its isotropic nature in the transversal plane, beam deviation is zero
in this plane (see Table H.4, column nine).

For certain ultrasonic measurement setups the difference of group and phase velocity is not
relavant for (phase) velocity measurements (e.g. for the contact pulse transmission technique
and others, see Section 2.8. It is nevertheless important to be aware of this deviation in order to
allow for a correct physical interpretation of measurement results (e.g. strong beam deviations
can yield to unintended reflections at specimen surfaces).
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Barthélémy, J.-F. and Dormieux, L. (2003). Determination of the macroscopic strength criterion
of a porous medium by nonlinear homogenization. Comptes Rendus Mecanique, 331:271 – 276.
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