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Abstract
One of the main problems in architectural geometry is the generation of aesthetically
appealing surfaces. This process occasionally conditions the application of appropriate
smoothing methods. In this thesis a particular case of 3-dimensional planar quadrilateral
meshes is observed. The smoothness of a quadrilateral mesh is defined, not through differ-
entiability like in the continuous case, but based on the trend of a structure line; the more
rectilineal a polygon becomes, the smoother it gets. This thesis also sets out to preliminary
introduce well-known smoothing methods; such as the minimization of energy functionals,
the Laplacian smoothing method or Taubin’s smoothing method. Subsequently an al-
ternative fairing concept is introduced, which ’smoothes’ the undesirable zigzag lines with
methods of optimization. This approach examines the smoothness of each point in advance
and flattens it if necessary. The distance between the smoothed points can be directed to-
wards the initial point via a penalty function. With reference to examples, the results of
the smoothing through the alternative fairing method and that of the well-known methods
of Laplace and Taubin can be compared.
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Kurzfassung
Das Generieren ästhetisch ansprechender Flächen ist in der architektonischen Geometrie
von besonderem Interesse. Dieser Prozess bedingt mitunter das Anwenden geeigneter
Glättungsverfahren. In der vorliegenden Diplomarbeit wird der spezielle Fall von diskreten
3-dimensionalen planaren Vierecksflächen betrachtet. Die Glätte eines Netzes wird - nicht
wie im kontinuierlichen Fall durch die Differenzierbarkeit, sondern - anhand des Verlaufs
einer Strukturlinie bestimmt; je geradliniger ein Polygon wird, umso glatter ist es. Einleit-
end werden dazu in dieser Arbeit bekannte Glättungsverfahren vorgestellt; wie zum Beispiel
das Minimieren von Energiefunktionalen, das Verfahren von Laplace oder Taubin. An-
schließend wird ein Fairing-Konzept präsentiert, welches mit Hilfe von Optimierungsmeth-
oden die unerwünschten Zickzacklinien aus dem Netz

”
glättet“. Das Verfahren untersucht

vorab jeden Punkt auf dessen Glattheit und fixiert ihn gegebenenfalls. Mit Hilfe einer
Gewichtsfunktion kann der Abstand der geglätteten Punkte zu den Ausgangspunkten ges-
teuert werden. Anhand von Beispielen werden die Ergebnisse der Glättung dieser Fairing-
Methode mit denen der bekannten Verfahren von Laplace und Taubin verglichen.
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1 Introduction

1 Introduction
The application of aesthetically appealing (meshes approximating) surfaces is becoming
more and more important in architecture. While a surface may be smooth in the math-
ematical - differentiable - sense, it does not have to be satisfying in an aesthetic view.
Therefore the measure of the ’well-shape-ness’ - especially for meshes - is more difficult to
define in technical terms. The process of designing such surfaces or meshes is called fairing.

This thesis gives an overview of well-established smoothing and fairing methods and a
variety of techniques to obtain the desired effect. The methods change the vertex positions
either iteratively or by calculate them by solving a large sparse linear system. The meth-
ods were chosen in a way that a variety for smoothing and fairing a mesh is presented.
Additionally some constraints - such as deviation for each point, planarity1 of the resulting
mesh or boundary constraints - are mentioned.

After giving an overview, this thesis provides another concept for fairing quadrilateral
meshes. The new approach is linear in the unknowns and minimizes the variation of con-
secutive direction vectors of a structure line. Certain constraints, which will be described
in the associated section, are imposed for the new as well as for the well-known methods.
On the basis of examples, the efficiency of this method is underlined by the comparison of
the new method and the ones mentioned before.

The remainder of this thesis is organized as follows:

� Chapter 2 gives a short introduction to differential geometry, providing a consistent
notation. The section is divided into differential geometry and the discrete counter-
part with the focus on what will be needed in the following sections.

� In Chapter 3, a review of existing smoothing and fairing methods is given. The first
subsection deals with the minimization of well-known energy functionals and the
energy (of the variation) of the curvature in the continuous as well as in the discrete
case, cf. [11], [30], [10] and [29]. The second subsection presents the well-established
Laplacian smoothing method and Taubin’s smoothing method described in [27], [26]
and [28] based on Fourier Analysis. The third method is an iteration-based algorithm
which moves vertices to suitable positions while minimizing the curvature variation,
cf. [33]. The last algorithm of Schneider-Kobbelt deals with solving a differential
equation to create fair discrete surfaces, see [20] and [21].

� Chapter 4 provides a new fairing method which eliminates zigzag lines. The func-
tionality and the constraints are explained and the the unfluence of the modifiable

1The input meshes of the examples are indeed planar, but the resulting meshes do not have planar
faces anymore. For the sake of completeness the planarity of meshes is mentioned but the requirement of
planar faces in the resulting mesh goes beyond the scope of this thesis.
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1 Introduction

parameters are presented via some examples.

� Chapter 5 compares the new fairing concept with the Laplacian smoothing method
and the Taubin smoothing method. The presentation of four examples will show the
assets and drawbacks of each method.

� Chapter 6 concludes the thesis.

2



2 Differential Geometry

2 Differential Geometry
This section introduces the basic terms from Differential Geomtry and Discrete Differential
Geometry. A consistent notation which will be needed in the following sections is presented
and some technicalities that later on allow us to describe theoretical properties of fair poly-
gon networks are resolved. The first subsection is about the basics of Differential Geometry
and the second about the discretization.

2.1 Basics of Differential Geometry

Before discussing discrete analogs, we briefly review the used theory of Differential Geom-
etry for curves and surfaces in this thesis and define a consistent notation. For further
details we refer to [12] and [6].

2.1.1 (Surface) Curves and Curve Networks

Definition 2.1 (Parametric differentiable Curve). A parametric differentiable curve is a
continuous differentiable mapping c : I → Rn, where I ⊆ R is an open interval.

Definition 2.2 (Regular Curve). A parametric differentiable curve c : I → Rn is called
regular, if c′(t) 6= 0 for all t ∈ I. A point t with c(t) = 0 is called singularity.

The differentiability in the definition above means that the function c maps each t ∈ I
onto a point c(t) = (x1(t), . . . , xn(t)) ∈ Rn such that the functions x1(t), . . . , xn(t) are
differentiable. The variable t is called the parameter of the curve.

Definition 2.3 (Frenet Frame). Let c(s) be a curve in R3 in arc length parameterization
and we assume c′′(t) 6= 0. At each point of the curve, we define three pairwise orthogonal
unit vectors (t,n,b) as follows:

t = c′ . . . Unit Tangent Vector

n =
c′′

‖c′′‖
. . . Principal Normal Vector

b = t× n . . . Binormal Vector

By differentiation of the identity (c′)2 = 1 we find c′ · c′′ = 0 and thus we see that the
two vectors t and n are orthogonal. Of course, they span the osculating plane. The
orthonormal frame (t,n,b) is called Frenet frame.

Remark 2.1. It will be useful to use the convention that derivatives with respect to arc
length s are indicated by primes (c′, c′′, . . .), whereas derivatives with respect to another
parameter t are written with dots (ċ, c̈, . . .).

3



2 Differential Geometry

Lemma 2.1. The Frenet frame of a C3 curve c(s) in arc length parameterization fulfills
the equations

t′ = κn,

n′ = −κ t + τ b,

b′ = −τ n,

with κ = ‖t′‖ = ‖c′′‖ and τ = det(c′, c′′, c′′′)/c′′2.

The derivation of the Frenet formula is demonstrated in [1]. By construction, the coeffi-
cients κ(s) and τ(s) are Euclidean invariants of the curve.

Definition 2.4 (Curvature). κ is called curvature and τ torsion at the point c(s).

For a curve given by an arbitrary parameterization c(t), one can show the following ex-
pressions for curvature and torsion

κ =
‖ċ× c̈‖
‖ċ‖3

,

τ =
det(ċ, c̈, c(3))

(ċ× c̈)2
.

Definition 2.5 (Curve Network). A curve network is a finite set of curves C = {c}, each
defined in its parameter interval [ac, bc].

Definition 2.6 (Knot). We call points which are common to more than one curve knots.
Each knot k of the curve network has a collection Cs

k of curves starting there and another
set Ce

k of curve segments ending there. The location of the knot in space is some point
pk. So if a curve c, defined in the interval [ac, bc] starts in the knot pk, i.e., c ∈ Cs

k, then
c(ac) = pk, and analogously, if a curve c ends in the knot pk, i.e., c ∈ Ce

k, then c(bc) = pk.

Definition 2.7 (Connectivity). The knots pk together with the sets Cs
k, C

e
k define the

connectivity of the network.

Definition 2.8 (Outgoing and Incoming Curves). The curves in the set Cs
k are called

outgoing curves of the knot pk, and the curves in the set Ce
k are called incoming curves of

pk.

To obtain nice polygon networks we often want two curve segments joining in a knot (an
incoming curve and an outgoing one) to actually belong to one larger curve. More formally,
a curve ce ∈ Ce

k ending in a knot pk together with a curve cs ∈ Cs
k starting in pk may be

required to form a single smooth curve.

Definition 2.9 (Structure Line). Two curve segments (ce, cs) with the above properties
are part of a structure line of the curve network.

Note that structure lines can also consist of more than two curve segments [30].

Definition 2.10 (Geodesic Line). A geodesic line has the property that its main normal
vector is parallel to the surface normal vector at every point of the line [5].

4



2.1 Basics of Differential Geometry

Figure 2.1: Example of a curve network given by curves c1, . . . , c16. The connectivity is de-
fined by the knots p1, . . . , p9. The structure lines are: (c1, c2), (c3, c4), (c5, c6), (c7, c8), (c9, c10),
(c11, c12), (c14, c15).

2.1.2 Regular Surfaces

Definition 2.11 (Parametric Surface). A subset S ⊂ R3 is called parametric surface, if for
each point p ∈ S, a neighborhood V ∈ R3 exists and a continuous mapping x : U → V ∩S
from an open set U ⊂ R2 onto V ∩ S ⊂ R3, so that

x : (u, v) ∈ U 7→ x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) ∈ S.
x is called parameterization.

Definition 2.12 (Regular Surface). The parameterized surface is called regular, if the
partial derivative vectors ∂x

∂u
, ∂x
∂v

are linearly independent for all (u, v) ∈ S.

Definition 2.13 (Tangent Plane). A curve (u(t), v(t)) in x’s parameter domain defines a
surface curve c(t) = x(u(t), v(t)). The tangent of this curve has the direction vector

ċ(t) = u̇
∂x

∂u
+ v̇

∂x

∂v
.

This vector is a linear combination of the two vectors ∂x
∂u

, ∂x
∂v

. Therefore, the tangent of an
arbitrary surface curve at a given surface point lies in the plane spanned by ∂x

∂u
, ∂x
∂v

, the
so-called tangent plane Tp(S).

Definition 2.14 (Unit Normal Vector Field). Given a parameterization x : U ⊂ R2 → S
at p ∈ S, the unit normal vector at each surface point q ∈ x(U) is defined by

n(q) =
∂x/∂u× ∂x/∂v

‖∂x/∂u× ∂x/∂v‖
(q).

The differentiable mapping n : x(U) → R3 assigns each q ∈ x(U) a unit normal vector
n(q). If V ⊂ S is an open subset of S and n : V → R3 is a differentiable mapping, n is
called a differentiable unit normal vector field.

Definition 2.15 (Orientation). A regular surface is called orientable, if a globally differ-
entiable unit normal vector field can be defined on the surface. The choice of such a vector
field n is called orientation of the surface.

5



2 Differential Geometry

2.1.3 Fundamental Form

Definition 2.16 (First Fundamental Form). Given a regular surface S. Let 〈., .〉 denote
the Euclidean scalar product on R3 (and as tangent spaces are subsets of R3 on each
tangent space TpR3). The inner product restricted to each tangent space Tp(S) is denoted
by 〈., .〉p. The bilinear form I(.) = 〈., .〉p is called first fundamental form of the surface S
in p ∈ S.

Let x(u, v) be a parametric surface. Then the inner product of a tangent vector2 ċ(t) =
u̇xu + v̇xv of an parametric curve c(t) is

I(u̇xu + v̇xv) = 〈u̇xu + v̇xv, u̇xu + v̇xv〉p
= 〈xu,xu〉p u̇2 + 2〈xu,xv〉p u̇ v̇ + 〈xv,xv〉p v̇2

= E(u, v) u̇2 + 2F (u, v) u̇ v̇ +G(u, v) v̇2.

The bivariate functions

E(u, v) = 〈xu,xu〉p
F (u, v) = 〈xu,xv〉p
G(u, v) = 〈xv,xv〉p

are called the coefficients of the first fundamental form.

In differential geometry, properties that only depend on the first fundamental form are
called intrinsic. Intuitively, the intrinsic geometry of a surface can be perceived by 2D
creatures that live on the surface without knowledge of the third dimension. Examples
include length and angles of curves on the surface 3. The coefficients of the first fundamental
form can be used to measure the angle of two surface curves intersecting at a point (if these
curves possess tangent vectors), to calculate the lengths of curves on the surface and the
areas of regions on the surface.

Definition 2.17 (Gaussian Map). Let S ⊂ R3 be a surface with orientation n. The
mapping n : S → S2 : p 7→ n(p), where S2 denotes the unit sphere is called Gaussian
map.

The Gaussian map is differentiable and its differential dnp is a linear mapping from Tp(S)
to Tn(p)(S

2). Since Tp(S) and Tn(p)(S
2) are parallel planes, dnp can be considered as a

linear mapping of Tp(S) onto itself. Since dnp : Tp(S) → Tp(S) is a self-adjoint linear
mapping4, a quadratic form Q on Tp(S) given by Q(v) = 〈dnp(v),v〉, v ∈ Tp(S) can be
assigned to dnp.

2To obtain more compact formulae, we write xu instead of ∂x
∂u .

3Note that the term ”intrinsic” is also often used to denote independence of a particular parametrization.
4For further information we refer to [6].
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2.1 Basics of Differential Geometry

Definition 2.18 (Second Fundamental Form). The quadratic form IIp defined on Tp(S)

IIp(v) = −〈 dnp(v),v 〉

is called second fundamental form of S at p.

On the surface S we consider a curve c(s) = x(u(s), v(s)), with s as arc length of c. Then,
the second derivative vector is

c′′ = u′′2 xuu + 2u′ v′ xuv + v′′2 xvv + u′′ xu + v′′ xv.

We are interested in the normal component of the vector c′′. Thus, we compute its inner
product with the unit normal vector n,

c′′ · n = (xuu · n)u′2 + 2 (xuv · n)u′ v′ + (xvv · n) v′2.

The coefficients of c′′ · n

L = xuu · n
M = xuv · n
N = xvv · n

are called coefficients of the second fundamental form.

2.1.4 Curvatures

The curvatures of a smooth curve c(s) are the local properties of its shape, invariant under
euclidean motions. The only first-order information is the tangent line; since all lines in
space are equivalent, there are no first-order invariants. Second-order information (again,
independent of parameterization) is given by the osculating circle; the corresponding in-
variant is its curvature κ = 1

r
.

Definition 2.19 (Center of Curvature). The center of curvature of a curve is found at a
point that is at a distance equal to the radius of curvature lying on the normal vector. It is
the point at infinity if the curvature is zero. The osculating circle to the curve is centered
at the center of curvature.

A plane curve is completely determined (up to rigid motion) by its (signed) curvature κ(s)
as a function of arc length s. For a space curve, however, we need to look at the third-order
invariants; these are the torsion τ and the derivative κ′, but the latter of course gives no
new information. Curvature and torsion now form a complete set of invariants: a space
curve is determined by κ(s) and τ(s) [24].

Definition 2.20 (Normal Curvature). The normal curvature κn is the curvature of the
planar curve that results from intersecting the surface S with the plane through p spanned

7



2 Differential Geometry

by n and t. We distinguish between the normal curvature of a curve with arc length
parameterization

κn = c′′ · n = (xuu · n)u′2 + 2 (xuv · n)u′ v′ + (xvv · n) v′2,

and the normal curvature of a curve with arbitrary parametrization

κn =
L u̇2 + 2M u̇ v̇ +N v̇2

E u̇2 + 2F u̇ v̇ +G v̇2
,

where the coefficients of the fundamental forms are used.

Definition 2.21 (Principal Curvatures and Principal Direction). The minimal normal
curvature κ1 and the maximal normal curvature κ2 are called principal curvatures. The
associated tangent vectors e1 and e2 are called principal directions and are always perpen-
dicular to each other.

Theorem 2.1 (Euler’s Theorem). The normal curvature can also be written as

κn = κ1 cos2 φ+ κ2 sin2 φ,

where φ is the angle between the unit tangent vector t and the principal direction e1.

Proof. Since e1, e2 form an orthonormal basis of the tangent space, we may write

t = 〈t, e1〉e1 + 〈t, e2〉e2 = e1 cosφ+ e2 sinφ.

The normal curvature along t is given by

κn = IIp(t) = −〈dnp(t), t〉
= −〈dnp(e1 cosφ+ e2 sinφ), e1 cosφ+ e2 sinφ〉
= 〈e1 κ1 cosφ+ e2 κ2 sinφ, e1 cosφ+ e2 sinφ〉
= κ1 cos2 φ+ κ2 sin2 φ.

Using Euler’s theorem, we can express the normal curvature κn for a direction t by the
principal curvatures κ1 and κ2 and the principal curvature directions e1 and e2:

κn = 〈e1 κ1 cosφ+ e2 κ2 sinφ, e1 cosφ+ e2 sinφ〉.

Definition 2.22 (Mean Curvature). The mean curvature H is the average of the principal
curvatures, i.e.,

H =
κ1 + κ2

2
=
EN − 2F M +GL

2(E G− F 2)

8



2.1 Basics of Differential Geometry

The mean curvature is certainly not intrinsic [23]. Note that the sign of H depends on
the choice of the unit normal n, so often it is more natural to work with the vector mean
curvature (or mean curvature vector) H := H · n.

Definition 2.23 (Gaussian Curvature). The Gaussian curvature K is defined as the prod-
uct of the principal curvatures, i.e.,

K = κ1κ2 =
LN −M2

E G− F 2
.

The Gaussian curvature is invariant under local isometries and as such also intrinsic to the
surface.

Definition 2.24 (Total Curvature). The total curvature of a curve is
∫
κ ds and the total

curvature of a surface is
∫
κ2

1 + κ2
2.

For plane curves, we can consider instead the signed curvature, and find that
∫
κ ds is

always an integral multiple of 2π.

2.1.5 Laplace-Operator

Definition 2.25 (Laplace Operator). The Laplace operator is a second-order differential
operator in the n-dimensional Euclidean space En, defined as the divergence (∇) of the
gradient (∇f). If f is a twice-differentiable real-valued function, then the Laplacian of f
is defined by

∆f = ∇2f = ∇ · ∇f.

Equivalently, the Laplacian of f is the sum of all the unmixed second partial derivatives
in the Cartesian coordinates xi:

∆f =
n∑
i=1

∂2f

∂x2
i

.

As a second-order differential operator, the Laplace operator maps Ck-functions to Ck−2-
functions for k ≥ 2.

Definition 2.26 (Laplace-Beltrami Operator). The Laplace operator can be generalized
to operate on functions defined on surfaces (or more generally on Riemannian manifolds).
This more general operator goes by the name Laplace-Beltrami operator. As the Laplacian,
the Laplace-Beltrami operator is defined as the divergence of the gradient.

Just as the curvature κ is the geometric version of the second derivative for curves, mean
curvature H is the geometric version of the Laplacian ∆. Indeed, if a surface S is written
locally near a point p as the graph of a height function f over its tangent plane TpS, then
H(p) = ∆f . Alternatively, we can write H = ∆B x, where x is the position vector in E3

and ∆B is the Laplace-Beltrami operator, the intrinsic surface Laplacian.

9



2 Differential Geometry

2.2 Basics of Discrete Differential Geometry

Since polygonal meshes are piecewise linear surfaces, the concepts introduced before cannot
be applied directly. The following definitions of discrete differential operators are thus
based on the assumption that meshes can be interpreted as piecewise linear approximations
of smooth surfaces. The goal is to compute approximations of the differential properties
of the underlying surface directly from the mesh data.

Definition 2.27 (Polygon). A polygon p = (p1,p2, . . . ,pn) with vertices pi ∈ Rd can
be seen as a discrete curve. The length (number of vertices) of a polygon with vertices
p = (p1,p2, . . . ,pn) is n. A polygon is either thought to be closed with pn+1 = p1,
pn+2 = p2, . . . or open.

Definition 2.28 (Knot, Connectivity). A knot is a vertex that is shared by more than
one polygon. The connectivity of a polygon network is given by the polygons and the
knots. Note that in contrast to the curve network case, we do not consider incoming and
outcoming curves at a knot, and each polygon is a structure line.

Definition 2.29 (Neighborhood Structure). Both for polygons and polygon networks, a
neighborhood N(vi) of a vertex vi is a set of vertices. If the vertex vj belongs to the
neighborhood vi, we say that vj is a neighbor of vi. The neighborhood structure of a
polygonal curve or polyhedral surface is the family of all its neighborhoods {N(vi) : i =
1, . . . , n}. A particularly important neighborhood structure is the first-order neighborhood
structure N1(vi), where for each pair of vertices vi and vj that share a face (edge for a
curve), we make vj a neighbor of vi, and vi a neighbor of vj. For example, for a polygonal
curve represented as a list of consecutive vertices, the first-order neighborhood of a vertex
vi is N(vi) = {vi−1,vi+1}.

Definition 2.30 (Symmetric Neighborhood Structure). A neighborhood structure is sym-
metric if every time that a vertex vj is a neighbor of vertex vi, also vi is a neighbor of
vj.

With non-symmetric neighborhoods certain constraints can be imposed5.

Definition 2.31 (Difference Operator). The difference polygon ∆p consists of the vectors

∆pk = pk+1 − pk. (1)

By iteration, we construct higher difference polygons ∆2p,∆3p that consist of vectors

∆2pk = ∆(∆pk) = pk+2 − 2pk+1 + pk

∆3pk = ∆(∆2pk) = pk+3 − 3pk+2 + 3pk+1 − pk,

5An example for non-symmetric neighborhood can be the fixing of certain vertices. If the neighborhood
of vi is empty, then the vertex vi does not change during the fairing process, because the discrete Laplacian
∆vi is equal to zero by definition of empty sum.
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and so on. We use the difference of successive points as a discrete first derivative, and the
difference of such differences as a discrete second derivative. If the polygon p is open, the
length of the difference polygon ∆p = (∆p1, . . . ,∆pn−1) is n − 1. If p is closed, indices
are taken modn and the length of the difference polygon ∆p = (∆p1, . . . ,∆pn) is n.

2.2.1 Laplace Operator

Definition 2.32 (Discrete Laplace Operator). The discrete Laplace operator on a piecewise
linear surface, i.e., a triangle mesh, is expressed as

∆pi =
∑

pj∈N1(pi)

ωij(pj − pi),

where for all vertices pi weights are normalized such that∑
pj∈N1(pi)

ωij = 1.

(Note that normalization and symmetry are not generally necessary for smoothing. In
contrast, possibly required area terms destroy these properties.) We can now write the
discrete Laplace operator as a matrix L with non-zero entries

L =

{
−1, i = j
ωij, pj ∈ N1(pi)

L is generally sparse, the number of non-zeros in each row is one plus the valence of the
associated vertex. For the uniform discretization ∆uni we choose weights ωij = 1

|N1(pi)| , i.e.,
the Laplacian depends only on the mesh connectivity. Then L is symmetric and has real
eigenvalues and eigenvectors.
The eigenvectors of L form an orthogonal basis of Rn, where n denotes the number of
vertices, and the associated eigenvalues are commonly interpreted as frequencies. The
projections of the coordinates px, py, pz ∈ Rn into this basis is called spectrum of the
geometry. Given eigenvectors ei, the x-components px of the mesh geometry can now be
expressed as

px =
n∑
i=1

αxi ei,

where the coefficients αxi = eTi p, and similar for py, pz. It shows that the eigenvectors
associated with the first eigenvalues 0 ≤ λ1 ≤ . . . ≤ λn correspond to low-frequency
components: in other words, cancelling coefficients αi associated with high-frequency com-
ponents yields a smoothed version of the shape. This is well-known from spectral graph
theory: the projection into the linear space spanned by the eigenvectors provides a gener-
alization of the Discrete Fourier Transform.
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This can also be seen immediately for the discrete univariate setting. Here, the decom-
position is equivalent to the discrete cosine transform. For general surface meshes, their
spectral decomposition defines a natural frequency domain. Taubin [27,28] uses this fact to
motivate geometric signal processing and to define low-pass filters for smoothing meshes [3].

The discrete Laplace operator can be seen as a discrete approximation of the following
curvilinear integral

1

|γ|

∫
v∈γ

(v − vi)dl(v),

where γ is a closed curve embedded in the surface which encircles the vertex vi, and |γ| is
the length of the curve. It is known that, for a curvature continuous surface, if the curve
γ is let to shrink to the point vi, the integral converges to the mean curvature H of the
surface at the point vi times the surface normal vector ni at the same point

lim
ε→0

1

|γε|

∫
v∈γε

(v − vi)dl(v) = H ni.

The expression on the right hand side is the curvature normal. It follows that the length
of the Laplacian vector is equal to the product of the average edge length times the mean
curvature

∆vi =

( ∑
vj∈N1(vi)

ωij‖(vj − vi)‖
)
Hni,

which can be used as a definition of discrete mean curvature [28].

2.2.2 Laplace-Beltrami Operator

In general, the Laplace operator is defined as the divergence of the gradient, i.e. ∆ = ∇2 =
∇·∇. In Euclidean space this second-order differential operator can be written as the sum
of second partial derivatives

∆f = div∇f =
∑
i

∂2f

∂x2
i

with Cartesian coordinates xi. The Laplace-Beltrami operator ∆B extends this concept to
functions defined on surfaces. For a given function f defined on a manifold surface S the
Laplace-Beltrami operator is defined as

∆Bf = div∇f,

which requires a suitable definition of the divergence and gradient operators on manifolds.
A discretization of the Laplace-Beltrami operator is

∆B v =
2

AV oronoi(v)

∑
vi∈N1(v)

(cotαi + cot βi)(vi − v),

12



2.2 Basics of Discrete Differential Geometry

where αi = ∠(v,vi−1,vi), βi = ∠(v,vi+1,vi) and AV oronoi(v) denotes the Voronoi area

AV oronoi(v) =
1

8

∑
vi∈N(v)

(cotαi + cot βi)‖v − vi‖2,

around the vertex v as shown in Figure 2.2.

Figure 2.2: The Laplace-Beltrami operator ∆B is computed by a linear combination of its vertex
v and those of its one-ring neighbors vi. The corresponding weights are given by the cotangent
values of αi and βi and the Voronoi area A(v).

Applied to the coordinate function x of the surface the Laplace-Beltrami operator evaluates
to the mean curvature normal

∆Bx = −2Hn.

Note that the Laplace-Beltrami operator is an intrinsic property that only depends on the
metric tensor of the surface and is thus independent of a specific parameterization.

2.2.3 Discrete Curvature

Definition 2.33 (Discrete Curvature). The discrete curvature at a point pi is defined to
be the reciprocal value of the circle radius interpolating the points pi−1,pi,pi+1 or 0 if the
points lie on a straight line, which leads to the well-known formula

κi = 2
det(pi − pi−1,pi+1 − pi)

‖pi − pi−1‖ ‖pi+1 − pi‖ ‖pi+1 − pi−1‖
.

Definition 2.34 (Discrete Normal Curvature). Given an edge (vi,vj), vertex positions
pi,pj and the normal ni,

κn(pi) = 2
(pj − pi)ni
‖pj − pi‖2

13
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provides an approximation of the normal curvature at pi in the tangent direction that
results from projecting pi and pj into the tangent plane defined by ni.

The Discrete Mean Curvature

The mean curvature of a discrete surface is supported along the edges. A common model
for integrated discrete mean curvature associated with an edge e is given by the product
of dihedral angle and edge length,

H(e) = (π − θe) · ‖e‖.

A similar model was used by replacing (π− θe) by cos(θe/2). Obviously, these two versions
agree (up to a factor of two) in the limit of small angles between normals (θe → π) [2]. A
linear model for the mean curvature normal is

H(e) = −2 cos
θe
2
· ‖e‖ · ne,

where ne is the (angle-bisecting) normal vector to e of unit length. Note that unlike the
scalar-valued mean curvature H, H is a vector, and the norm of H corresponds to the
(scalar) mean curvature. This version is linear in vertex positions of the mesh (cf. [2]).

Definition 2.35 (Discrete Mean Curvature). Vertex-centered discrete mean curvatures are
obtained by choosing one of the above edge-based models and summing the contributions
from all edge-based curvatures of incident edges,

H(p) =
1

2

∑
e:p∈e

H(e).

The factor 1
2

is due to the fact that we treat integrated quantities here, and each triangle
in the vertex star of a vertex p is seen by exactly two edges.

In [16] the mean curvature H is computed as

H =
1

2
‖H(xi)‖,

where H(xi) is defined as

H(xi) =
1

2AMixed

∑
xj∈N(xi)

(cotαij + cot βij)(xi − xj).

The surface area AMixed for each vertex x is defined as the sum of each triangle T from the
1-ring neighborhood of x, whereas the areas of the triangle T are computed as follows: if
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T is non-obtuse, the area is the Voronoi area, or either the area area(T )
4

for an obtuse angle

of T at x is added or area(T )
2

for an non-obtuse angle of T at x.

The Discrete Gaussian Curvature

Let M be a triangulation of smooth surface S in R3. For a vertex p of M , suppose N(pi)
is the set of the 1-ring neighbor vertices of p. The set {pippi+1}, (i = 1, . . . , n) of n
Euclidean triangles forms a piecewise linear approximation of S around p. Let γi denote
the angle ∠pippi+1 and the angular defect at p be 2π −

∑
i γi.

A popular discrete scheme6 for computing a discrete Gaussian curvature G is in the form

of
2π−

∑
i γi

E
, where E is a geometry quantity. In general, one selects E as A(p) and obtains

the following approximation

G(1) =
3 (2π −

∑
i γi)

A(p)
,

where A(p) is the sum of the areas of triangles pippi+1.
It is impossible to construct a discrete scheme which is convergent for any discrete mesh,
but we know that the discrete scheme G(1) has quadratic convergence rate if the mesh
satisfies the so-called parallelogram criterion, which requires valence 6 and for non-uniform
data, the discrete scheme G(1) is not always convergent to true Gaussian curvature.
Another possibility for discrete Gaussian Curvature is

G(2) =
2π −

∑
i γi

1
2
A(p)− 1

8

∑
i cot(γi)d2

i

,

where di is the length of edges pipi+1. As stated before, the previous discrete schemes,
including G(1) and G(2), only converge at the regular vertex with valence 6.

It should be pointed out that there is another discrete scheme

G(3) =
2π −

∑
i γi

AV oronoi(p)
,

where AV oronoi(p) is the area of Voronoi region. Since A(p) could be approximated by
3AV oronoi(p) (under some conditions) G(3) is easily derived from G(1). In [16] the Gaussian
curvature is calculated as

G(4) =
2π −

∑
i γi

AMixed(p)
.

For further information about the discrete Gaussian curvature schemes and their conver-
gence we refer to [32].

6For further information we refer to [32].
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The Discrete Principle Curvature

We have seen in Section 2.1.4 that the mean and Gaussian curvatures are easy to express
in terms of the two principal curvatures κ1 and κ2. Therefore, since both H and G have
been derived for triangulated surfaces, we can define the discrete principal curvatures as:

κ1 = H(xi) +
√
H(xi)2 −G(xi)

κ2 = H(xi)−
√
H(xi)2 −G(xi).

Unlike the continuous case, where H2 −G is always positive, we must make sure that H2

is always larger than G to avoid any numerical problems, and threshold H2 −G to zero if
it is not the case (an extremely rare occurrence).
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3 Presentation of the well-known Smoothing and Fairing Methods

3 Presentation of the well-known
Smoothing and Fairing Methods

One of the main problems in geometric modeling is the generation of aesthetically appeal-
ing surfaces. Usually these surfaces are subject to technical requirements like smoothing
or interpolation constraints. While the constraints can easily be expressed in mathemati-
cal terms (and thus are compatible to the mathematical description of the surface itself),
the explicit formulation of ’well-shaped-ness’ causes some difficulties. A surface may be
smooth in a mathematical sense but still unsatisfactory from an aesthetical point of view.
While the former denotes the continuous differentiability (Ck) of a surface, the latter is
an aesthetic measure of ’well-shaped-ness’ and therefore in technical terms more difficult
to define than smoothness. The process of designing a high-quality surface is called fairing.

Motivated by physical models of elastic membranes or thin plates, the variational approach
to surface design measures the ’bad-shapedness’ of a surface by the value of some (bending)
energy functionals. In the referring literature, most techniques use constrained energy min-
imization. The functionals are typically formulated in terms of intrinsic shape properties,
i.e. quantities that do not depend on the particular parameterization (or triangulation in
the discrete setting), such as curvatures [3].

This section provides an overview of fairing methods used to evaluate the quality of meshes.
First of all, a variety of energy functionals and their possible constraints are presented. Sec-
ondly, the methods of Laplace and Taubin, which use Fourier Analysis for their approaches,
are described. Furthermore, a Spring Model approach which moves the points of an un-
desired shape along the normal line is presented. Finally, the algorithm of Schneider and
Kobbelt to create a fair discrete surface by solving a differential equation is provided.

3.1 Minimization of the Bending Energy

The first smoothing procedures are based on minimizing an energy functional of a poly-
gon network, described in [11], [30], [10] and [29]. The classical energy functionals are
quadratic, and after discretization we obtain quadratic functions, which makes minimiza-
tion easy [10].
At first we define the energy of a single curve, and then the energy of the curve network
as the sum of energies of all the curves that contribute to the curve network. Since poly-
gons and polygon networks are the discrete analogues of curves and curve networks, their
energies are the discretized ones of the curves and curve networks.
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3 Presentation of the well-known Smoothing and Fairing Methods

3.1.1 Energy of Polygons and Polygon Networks

Derivation of Curves and Curve Networks

For a smooth curve c(t), defined in some parameter interval [a, b], the energy which mini-
mizes the L2-norm of the first derivative is defined by

E1(c) =

∫ b

a

‖c′(t)‖2dt. (2)

Minimizing the L1- or L2-norm of the first derivative of curves is a classical problem of
Differential Geometry and leads to the geodesic lines of surfaces [10]. The linearized bending
energy or cubic spline energy is defined by

E2(c) =

∫ b

a

‖c′′(t)‖2dt. (3)

Minimizing a linear combination of energies (2) and (3) leads to the well-known tension
energy

Eτ (c) = E2 + τE1, (4)

where τ is a tension parameter. The parameter τ controls the tension of the curve. In
the case where a curve is restricted to a surface, increasing the tension parameter τ moves
the curve closer to the surface [10]. As mentioned above, the energy of the entire curve
network C is the sum of energies of all single curves of the curve network:

E(C) =
∑
c∈C

E(c).

Here, E is either E1, E2 or Eτ . We refer to energy minimizing curve networks also as fair
curve network or short: fair webs [30].
An unconstrained E2-minimizing curve network turns out to consist of C2 cubic splines.
The usually unique E-minimal curve network in the unconstrained case is found as a so-
lution of a system of linear equations [29].

Constraints on Fair Webs

Constraints imposed on the smoothing process include the sustainment of linear and non-
linear surface features such as sharp edges, corners, or non-planar curves. The hard error
(or accuracy) bounds are represented as tolerance cylinders, where the surface is permitted
to move. A constraint is hard, when the error is not guaranteed to be below the allowed
bounds. The smoothing is accomplished by means of an energy minimization technique
constrained to keep the surface inside the tolerance bounds [11].

Fair webs constrained to surfaces have a number of nice properties [30]. The most impor-
tant one from the fairness point of view is, that for E2- and Eτ -minimizing fair webs, a
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3.1 Minimization of the Bending Energy

structure line is actually C2. A discretized network has analogous properties. We consider
fair webs whose curves are constrained to a given surface F . Although we assume that
the connectivity of the fair web is maintained, we have the freedom to choose which knot
points shall be fixed, and which knot points shall be free7.

Consideration of Polygons and Polygon Networks

A polygon p = (p1,p2, . . . ,pn) with vertices pi ∈ Rd can be seen as discrete curve. The
length (number of vertices) of a polygon with vertices p = (p1,p2, . . . ,pn) is n.

By replacing integration by summation, any of the functionals E1, E2 and Eτ is thus
converted into a quadratic function, and we define the discrete counterparts of the energies
from equation (2)-(4) by

E1(p) =
n∑
i=1

‖∆pi‖2, (5)

E2(p) =
n∑
i=1

‖∆2pi‖2, (6)

Eτ (p) =
n∑
i=1

(‖∆2pi‖2 + τ‖∆pi‖2), (7)

where ∆pi is the difference polygon defined in (1).
The gradients ∇E1, ∇E2 and ∇Eτ of these energy functions are given by

∇E1(p) = −2∆2p, (8)

∇E2(p) = 2∆4p, (9)

∇Eτ (p) = 2(∆4p− τ∆2p). (10)

An energy gradient ∇E(p) of equations (8), (9) and (10) may be visualized as a sequence
of vectors (∇E(p))k attached to the vertices pk of the polygon.

If we replace the set of curves C by a set of polygons P we get a polygon network [29].
Polygon networks have energies which are defined as the sum of the energies of the polygons
they are made of. Therefore, we can define the energy of a polygon network to be the sum
of energies of the n different polygons defined by j = const and the m different polygons
defined by i = const:

E(P) =
n∑
j=1

m−1∑
i=2

‖pi−1,j − 2pi,j + pi+1,j‖2 +
m∑
i=1

m−1∑
j=2

‖pi,j−1 − 2pi,j + pi,j+1‖2. (11)

7Knots are called fixed, if their position is chosen, eg. by the user. And knots are called free, if the
location is not fixed as a side condition. Their position will be determined by the energy minimization
procedure.
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Constraints on Polygon Networks

A fair polygon network is one which has minimal energy among all networks which fulfill a
fixed set of constraints. Fair polygon networks are well suited to compute visually pleasing
meshes in the sense that they are formed by sequences of fair discretized curves. By fixing
certain knots, the designer can influence the creation of a fair mesh. They may also be
applied to surface parameterization by mapping chosen lines of the parameter domain to
fair curves on a surface. For instance, it is easy to wind a visually pleasing textured band
around an object. Further, fair polygon networks are useful for the design of fair surfaces
which avoid given obstacles [29].

In order to express planarity of a quad face Qi,j, we consider the four angles φ1
i,j, . . . , φ

4
i,j

enclosed by the edges of Qi,j, measured in the interval [0, π]. It is known that Qi,j is planar
and convex if and only if these angles sum up to 2π. We use the notation

cpq,i,j := φ1
i,j + . . .+ φ4

i,j − 2π = 0.

In [11] another possible constraint to allow each point a magnitude of deviation was men-
tioned. For that approach, each point pij has to be equipped with its own tolerance cylinder
Zij. That means that every point has a horizontal deviation bounded by rij and a vertical
deviation bounded by hij, so that the point is within a cylinder Zij of diameter 2rij and
height 2hij, which is centered in the given point pij = (xij, yij, zij). The ultimate goal is
to move the points pij in a way that makes the energy (11) smaller, but the surface still
passes through the cylinders Zij

8.

Figure 3.1: Left: Polyline network with the tolerance cylinders Zij associated with the vertices
pij . Right: At top, initial state before optimization. At center, Option 1 of optimization (all
vertices stay inside the tolerance cylinders). At the bottom, Option 2 in which the vertices are
allowed to leave the cylinders, provided the surface still passes through them.

8This condition is stricter than actually necessary. It is certainly sufficient that for each vertex pij , one
of the two polylines meeting there meets Zij .

20



3.1 Minimization of the Bending Energy

Minimizing the quadratic function (11) of the variables xij, yij, zij, subject to the con-
straints mentioned above, is a quadratic optimization problem with convex condition - in
case of the first condition, that pij remains inside Zij - and non-convex side condition
otherwise. The convex optimization problem has a unique solution. The difference be-
tween the first and second option is not very big, as illustrated in [11], for which reason
the second procedure is ”convex enough” so that we do not expect a direct minimization
procedure getting stuck in a local minimum. Minimizing the quadratic functions (11) of
the variables (xij, yij, zij) contains too many variables for just submitting it to a generic
optimization procedure. The quality, that the energy would be zero, if computed with x
and y coordinates of the initial data alone, allows a more direct approach. Therefore we
do not expect the points pij to move very much in x and y direction during optimization.
Indeed, this is confirmed by numerical experiments. We only use the z coordinates of the
data points as variables for minimization:

E =
n∑
j=1

m−1∑
i=2

‖zi−1,j − 2zi,j + zi+1,j‖2 +
m∑
i=1

m−1∑
j=2

‖zi,j−1 − 2zi,j + zi,j+1‖2.

Because of the condition, that pij remaining inside Zij leads to a convex optimization
problem with unique solution, we employ a gradient descent method with the original data
as initial condition. It is elementary that the gradient of the energy is given by

(∇E)ij = (zi−2,j + zi+2,j + zi,j−2 + zi,j+2)− 4(zi,j−1 + zi+1,j + zi,j−1 + zi,j+1) + 12zi,j,

provided i, j > 2 and i < m−1, j < n−1. For implementation of the optimization see [11].

The algorithm is capable of smoothing the data with tolerance cylinders of different sizes.
These flexible tolerances have two particular advantages: first, we can preserve features
present in the data by reducing the size of the tolerance cylinders in feature areas, and
secondly the algorithm can be used to fill holes present in the original data during the
smoothing process.

3.1.2 Energy of the Curvature

A common method to guarantee excellent surface fairness is to minimize fairness func-
tionals based on geometric invariants [20]. In the case of the fairness of a curve c(t), the
minimization of the arc length integral of the squared magnitude of curvature is tradition-
ally:

E(c) =

∫
κ2 dt.

One of the best-known functionals in the mentioned category and most frequent ones is
the total curvature of a surface S [21]:

E(S) =

∫
S

κ2
1 + κ2

2 dS. (12)
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Here κ1 and κ2 are the principal curvature, which non-linearly depend on the surface S.
E is a geometric quantity whose definition is independent of parametrization. Therefore,
this formulation does not create shape artifacts related to an underlying fixed surface pa-
rameterization.

For closed surfaces, it turns out that minimizing bending energy is equivalent to minimizing
mean curvature, since the area integral of Gaussian curvature, G = κ1κ2, is a topological
constant that depends only on the genus of the surface. Using mean curvature H as the
energy functional is also known as Willmore energy [22]:

EW (S) =

∫
S

(H2 −G)dA =
1

4

∫
S

(κ1 − κ2)
2dA.

Recall from the differential geometry of surfaces that information about the curvature of a
surface at a point is given by the second fundamental form. The normal section curvature
of a surface S(u, v) in the direction of a parametric unit tangent t is given by κ = II(t, t),
where

II(t, t) = tT

[
∂2S
∂u2 · n ∂2S

∂u∂v
· n

∂2S
∂v∂u
· n ∂2S

∂2v
· n

]
t

and n is the surface unit normal. It is straightforward to show that the squared Frobenius
norm of the matrix is equivalent to κ2

1 + κ2
2 [31].

A minimization process based on such functional leads to surfaces of extraordinary quality,
but due to the demanding construction process, the required computation time can be
enormous. A popular technique to simplify this approach is to give up the parameter
independence and approximate the geometric invariants with higher-order derivatives. For
some important fairness functionals this results in algorithms that enable the construction
of a solution by solving a linear system. A representation of this category is the thin-
plate energy of a mesh X, which can be used to create surfaces satisfying C1 boundary
conditions:

Ethin plate(X) =
1

2

∫
ω

(
∂2X

∂u2

)2

+ 2

(
∂2X

∂u∂v

)2

+

(
∂2X

∂v2

)2

dudv. (13)

Note that the thin-plate energy turns out to be equal to the total curvature only when the
parametrization (u, v) is isometric.
Many practical fairing methods also prefer the membrane functional of a mesh X:

Emembrane(X) =
1

2

∫
ω

(
∂X

∂u

)2

+

(
∂X

∂v

)2

dudv. (14)

Celniker and Gossard [4] were able to improve the quality of interpolating surfaces by
using a fairness norm based on a linear combination of the energy of a membrane and a
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thin plate. The fairness norm is still quadratic, so it can be minimized by solving a linear
system. As a result their method is fast enough for interactive design, but their technique
is not capable of describing surfaces of arbitrary genus [9].
Instead of minimizing a functional, another approach first applies variational calculus to
transform the minimization problem into a problem of solving a differential equation with
constraints. For the functional (13) the optimal surfaces can be characterized by the par-
tial differential equation ∆2X = 0, where ∆ is the Laplace operator, to create surfaces
satisfying prescribed C1 boundary conditions [20]. Similarly, minimizing the membrane
energy functional (14) leads to solving ∆X = 0 [3].

The Euler-Lagrange equations ∆iX = 0 associated with minimizers of various fairing func-
tionals show their relation to steady state solutions of diffusion flow (and hence signal
processing and low-pass filters). It follows that fairing indeed refers to designing fair sur-
faces that ideally depend only on the given boundary conditions: for surfaces derived from
∆kX = 0, boundary constraints of order Ck−1 are interpolated. Note that for the solution
of the arising linear systems appropriate boundary conditions have to be applied to guar-
antee the existence of solutions [3].

3.1.3 Energy of the Variation of the Curvature

The problem of creating surfaces with G1 continuity is very difficult to solve satisfacto-
rily. Most techniques use heuristics to set extra degrees of freedom and sufficient but not
necessary constructions to guarantee G1 continuity; however they typically produce un-
necessary and undesirable ”wrinkles”. Henry P. Moreton and Carlo H. Séquin presented
in [17] a method to minimize a fairness functional subject to given geometric constraint
using nonlinear optimization techniques. Once the geometric constraints are satisfied by
construction, the techniques described in [17] set the remaining surface parameters (degrees
of freedom) to minimize the fairness functional while maintaining G1 continuity using a
penalty function. The curve and surface functional minimize the variation of curvature;
thus we refer to the curves as minimum variation curves (MVC) and to the surfaces as
minimum variation surfaces (MVS) (cf. [17]). In the case of curves, the integral of the
squared magnitude of the derivative of curvature

E(c) =

∫
dκ2

dt
dt

is minimized. This new functional results in curves with noticeably smoother curvature
plots [17]. For surfaces, the functional is the integral of the squared magnitude of the
derivatives of normal curvature taken in the principle directions

E(S) =

∫ (
dκ2

n

dê1

+
dκ2

n

dê2

)
dS.
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Here κn is the normal curvature and ê1 and ê2 are the corresponding principal curvature
directions. The principal curvatures κ1 and κ2 are the normal curvatures in the principle
directions. Thus the problem of computing dκn

dê1
and dκn

dê2
is transformed into a computation

of dκ1

dê1
and dκ2

dê2
:

E(S) =

∫ (
dκ2

1

dê1

+
dκ2

2

dê2

)
dS. (15)

Moreton and Séquin complete their objective function which is being minimized by adding
a penalty for lack of G1 continuity. They use the gradient descent scheme with an appro-
priate initial surface and refine that surface until the optimal surface is reached.

The choice of this functional has the advantage that it leads to regular shapes commonly
used in geometric modeling. The minimization of the fairness functional also produces very
fair free-form surfaces [17]. As for the functional (12) the required computation time for
the minimization process of the fairing functional (15) can be enormous. In general, some
surface energy is defined that quantifies surface fairness, and curvature is used to express
these terms as it is independent of the special parameterization of a surface. A fair surface
is then designed by minimizing these energies [3].

Analogously to the previous case of curvature, giving up parameter independence corre-
sponds to solving the sixth-order partial differential equation ∆3X = 0 [3].

3.2 Fourier Analysis on Meshes

Fourier analysis is a natural tool to solve the problem of signal smoothing. By generalizing
classical discrete Fourier analysis to two-dimensional discrete surface signals - functions
defined on polyhedral surfaces of arbitrary topology - we reduce the problem of surface
smoothing, or fairing, to low-pass filtering. The space of signals - functions defined on a
certain domain - is decomposed into orthogonal subspaces associated with different fre-
quencies, with the low-frequency content of a signal regarded as subjacent data, and the
high-frequency content as noise [27].

The signal-processing approach was motivated by the problem of how to fair large poly-
hedral surfaces of arbitrary topology. Most existing algorithms based on fairness norm
optimization [9,17,31] are prohibitively expensive for very large surfaces. Therefore a new
algorithms with linear time and space complexity was required. However, the signal pro-
cessing formulation results in much less expensive computations. In [9, 17, 31], after finite
element discretization, the problem is often reduced to the solution of a large sparse linear
system, or a more expensive global optimization problem. Large sparse linear systems
are solved using iterative methods, and usually result in quadratic time complexity algo-
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rithms [27].

The simplest smoothing algorithm that satisfies the linear complexity requirement is Lapla-
cian smoothing, described in detail in section 3.2.2. Laplacian smoothing is an iterative
process, where in each step every vertex of the mesh is moved to the barycenter of its neigh-
bors. The only problem with Laplacian smoothing is shrinkage. The algorithm introduced
by Taubin solves this problem and imposed the signal processing machinery necessary to
analyze the behavior of these smoothing processes [28].

3.2.1 The Method of Fourier Descriptors

The method of Fourier descriptors smoothes a closed curve by removing the noise from the
coordinates, i.e. by projecting the coordinate signals onto the subspace of low frequencies.
To denoise a signal it is sufficient to compute its discrete Fourier transformation, discard
its high frequency coefficients, and compute the linear combination of remaining terms as
the result. This is exactly what the method of Fourier descriptors does to smooth a closed
curve.

The approach to extend Fourier analysis to signals defined on polyhedral surfaces of arbi-
trary topology is based on the observation that the classical Fourier transform of a signal
can be seen as the decomposition of the signal into a linear combination of the eigenvectors
of the Laplace operator. To extend Fourier analysis to surfaces of arbitrary topology we
only have to define a new operator that takes the place of the Laplacian.

As an initiation for the Laplacian and Taubin smoothing methods, we consider the classical
case of a discrete time n-periodic signal described in [27, 28]. The signal is a function
defined on a regular polygon of n vertices, which is represented as a column vector x =
(x1, . . . , xn)T . The components of this vector are the values of the signal at the vertices of
the polygon [27]. The discrete Laplacian of x is defined as

∆xi =
∑

xj∈N1(xi)

ωij(xj − xi),

where the indices are incremented and decremented modn. The weights are non-negative
numbers that add up to one for each vertex star∑

xj∈N1(xi)

ωij = 1.

The weights can be chosen in many different ways, which is discussed at the end of this
section. One particularly simple choice that produces good results is to set ωij equal to the
inverse of the number of neighbors 1

|N1(xi)| of vertex xi, for each element j of N1(xi) [27].

If W = (ωij) is the square n × n matrix of weights, with the convention that the weight
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ωij is equal to 0 if vertex xj is not a neighbor of vertex xi. We also assume that once set,
the weights are kept constant during the iterative smoothing process [27].
If we define the matrix K = I − W , with I the identity matrix, the Laplace operator
applied to a graph signal x can be written in matrix form as follows:

∆x = −Kx.

For a first-order neighborhood structure, and for the choice of weight described above,
the matrix K has real eigenvalues 0 ≤ k1 ≤ . . . ≤ kn ≤ 2 with corresponding linearly
independent real unit length right eigenvectors e1, . . . , en.9 In matrix form

KE = E diag(k),

with E = (e1, . . . , en), k = (k1, . . . , kn)T , and diag(k) the diagonal matrix with ki in its i-th
diagonal position. Seen as discrete surface signals, these eigenvectors should be considered
as the natural vibration modes of the surface, and the corresponding eigenvalues as the
associated natural frequencies.

Since e1, . . . , en form a basis of n-dimensional space, every signal x can be written in a
unique way as a linear combination

x =
n∑
j=1

x̂jej = E x̂.

The vector of coefficients x̂ is the Discrete Fourier Transform of x, and E is the Fourier
Matrix.

Fourier descriptors have been widely used then in the computer vision literature as multi-
resolution shape descriptors for object recognition [26]. The method of Fourier descriptors
does not produce shrinkage, but nevertheless, it does have two significant problems. The
first problem is that it does not extend to surfaces of arbitrary topological type [26]. Sec-
ond, in general, the matrix K is large, and although sparse, it is almost impossible to
reliably compute its eigenvalues and eigenvectors. Even using the Fast Fourier Transform
algorithm, the number of arithmetic operations is of the order of n log(n), where n is the
number of vertices. This makes it impractical to smooth vertex positions of large meshes
with the Fourier descriptors method [28].

3.2.2 The Laplacian Smoothing Method

Perhaps the most popular linear technique of geometric smoothing parametrized curves
is the so-called Laplacian Smoothing Method or Gaussian Smoothing Method. In the con-
tinuous case, Laplacian smoothing is performed by convolving the vector function that

9The proof can be found in the Appendix of [27].
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parameterizes the curve with a Gaussian kernel. Laplacian smoothing is defined on poly-
hedral surfaces of arbitrary topology. When Laplacian smoothing is applied to a noisy
3D polygonal mesh without constraints, noise is removed, but significant shape distortion
may be introduced. The main problem is that Laplacian smoothing produces shrinkage,
because in the limit, all the vertices of the mesh converge to their barycenter [28].

Except for the zero frequency, all the frequencies are attenuated. To prevent shrinkage,
the smoothing algorithm must produce a low-pass filter effect [26].

The set of displacements ∆xi produced by the Laplacian smoothing step that moves each
vertex to the barycenter of its neighbors can be described as the result of applying the
Laplace operator to the vertices of the mesh. The Laplace operator is defined on a signal
x by weighted averages over the neighborhoods

∆xi =
∑

xj∈N1(xi)

ωij(xj − xi). (16)

For each signal xi the weights ωij are still normalized so that∑
xj∈N1(xi)

ωij = 1, (17)

but otherwise they can be chosen in many different ways taking into consideration the
neighborhood structures. Some particular choices are mentioned below. Once the Laplace
operators for all vertices are computed, the new positions x′i, are obtained by adding to
each vertex current position xi its corresponding displacement vector ∆xi

x′i = xi + λ∆xi (18)

where 0 < λ < 1 is called the scale factor, which can be a common value for all the vertices
or be vertex dependent [26]. The scaling factor is used to control the speed of the diffusion
process [28]. For λ < 0 and λ ≥ 1 the algorithm enhances high frequencies instead of
attenuating them [27]. One step of the Laplacian smoothing algorithm can be described
in matrix form as follows:

x′ = (I− λK)x = f(K)x,

where f(K) is a matrix obtained by evaluating the univariante polynomial f(k) in the
matrix K. The function of one variable f(k) is the transfer function of the filter. To
produce significant smoothing this process is iterated n times. In the case of Laplacian
smoothing, where the transfer function is f(k) = (1 − λk)n, with 0 < λ < 1, we see that
for every k ∈ (0, 2], we have (1−λk)n → 0 when n→∞ because |1−λk| < 1. This means
that all the frequency components, other than the zero frequency component (the barycen-
ter of all the vertices), are attenuated for large n. On the other hand, the neighborhood
normalization constraint of equation (17) implies that the matrix K always has 0 as its
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first eigenvalue with associated eigenvector (1, . . . , 1)T , and the zero frequency component
is preserved without changes because f(0) = 1 independently of the values of λ and n. In
conclusion Laplacian smoothing filters out too many frequencies [28].

The Laplacian smoothing method has a number of advantages with respect to the existing
method of Fourier descriptors. The first advantage is that it applies to piece-wise linear
surfaces of arbitrary topological type, not only those that can be parameterized by func-
tions defined on a rectangular domain. The second advantage is that, since first-order
neighbors are defined implicitly in the list of edges or faces of curve or surface, no storage
is required to encode the neighborhood structures. The third advantage is that the number
of operations is a linear function of the total number of vertices, edges and faces [26].

However, by iterating the smoothing process a significant shrinkage effect is also imposed,
because the convolution with a Gaussian kernel is not a low-pass filter operation [26]. To
define a low-pass filter, the matrix (I−λK) must be replaced by some other function f(K)
of the matrix K. Taubin’s non-shrinking fairing algorithm, described in the next section,
is one particularly efficient choice.

3.2.3 Taubin’s Smoothing Method

Taubin presented in [26] a signal processing approach to the problem of fairing piece-wise
linear shapes of arbitrary dimension and topology. Without changing the connectivity of
the faces the faired surface has exactly the same number of vertices and faces as the orig-
inal one. The main innovation is the modification of the Laplacian smoothing method to
prevent shrinkage, obtaining a simple and general method to smooth general and arbitrary
polygonal curves and polyhedral surfaces that has all the good properties of earlier meth-
ods, but none of their disadvantages [26].

This method produces a low pass filter effect, where curve or surface curvature takes the
place of frequency. The original non-smooth curve or surface is modeled as an underlying
smooth curve or surface, plus a normal perturbation vector field. The underlying curve
or surface is bounded above in curvature, and the perturbation that needs to be filtered
out is regarded as zero mean high curvature noise. The two scale factors determine the
pass-band and stop-band curvatures. For higher attenuation in the stop-band, the two
Laplacian smoothing steps must be repeated alternating the two scale factors λ and µ.
The amount of attenuation is then determined by the number n of iterations.

The smoothing algorithm consists of two consecutive Laplacian smoothing steps. After a
first Laplacian smoothing step with a positive scale factor λ is applied to all the vertices
of the shape, a second Laplacian smoothing step is applied to all the vertices, but with a
negative scale factor µ, greater in magnitude than the first scale factor (0 < λ < −µ). To
produce a significant smoothing effect, these two steps must be repeated, alternating the
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positive and negative scale factors, a number of times.
If the process is iterated n times, the output can still be expressed as xn = f(K)nx. It is
well known that for any of these functions, the matrix f(K) has the eigenvectors e1, . . . , en
of the matrix K, and eigenvalues the result f(k1), . . . , f(kn) of evaluating the function
on the eigenvalues of K (see 3.2.1). Taubin based his approach on defining a suitable
generalization of frequency to the case of arbitrary connectivity meshes. Using a discrete
approximation to the Laplacian, its eigenvectors become the ”frequencies” of a given mesh.
Repeated application of the resulting linear operator to the mesh was then employed to
tailor the frequency content of a given mesh [5]. Since for any polynomial transfer function

x′ = f(K)x =
n∑
j=1

f(kj)x̂jej,

because Kej = kjej, to define a low-pass filter a polynomial such that f(ki) ≈ 1 for low
frequencies, and f(ki) ≈ 0 for high frequencies in the region of interest k ∈ [0, 2] has to be
found [27]. The so-called Taubin smoothing algorithm or λ|µ-algorithm uses

f(k) = (1− λk)(1− µk),

where 0 < λ, and µ is a new negative scale factor such that µ < −λ. After performing the
Gaussian smoothing step of equation (18) with positive scale factor λ for all the vertices -
the shrinking step - we then perform another similar step can be created

x′i = xi + µ∆xi

for all the vertices, but with negative scale factor µ instead of λ - the un-shrinking step [27].
Since f(0) = 1 and µ+ λ < 0, there is a positive value of k, the pass-band frequency kPB,
such that f(kPB) = 1. The value of kPB is

kPB =
1

λ
+

1

µ
. (19)

The graph of the transfer function f(k)n displays a typical low-pass filter shape in the
region of interest k ∈ [0, 2]. The pass-band region extends from k = 0 to k = kPB, where
f(k)n ≈ 1. As k increases from k = kPB to k = 2, the transfer function decreases to zero.
The faster the transfer function decreases in this region, the better. The rate of decrease
is controlled by the number of iterations n.

Once kPB has been chosen, we have to define λ and n (µ comes out of equation (19) af-
terwards). Of course we want to minimize n, the number of iterations. To do so, λ must
be chosen as large as possible, while keeping |f(k)| < 1 for kPB < k ≤ 2 (if |f(k)| ≥ 1 in
[kPB, 2], the filter will enhance high frequencies instead of attenuating them). For kPB < 1
the choice of λ so that f(1) = −f(2) ensures a stable and fast filter.
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In Taubin’s case the problem of surface fairing is reduced to sparse matrix multiplication
instead a linear time complexity operation [27]. The method is efficient both in terms of
computational complexity, and in terms of storage requirements. The complexity is linear
in the number of edges or faces of the shape, and the storage required is a linear function
of the vertices.

Automatic Anti-Shrinking Fairing

Pure diffusion will, by nature, induce shrinkage. This is inconvenient as this shrinking
may be significant for aggressive smoothing. Taubin proposed to use a linear combination
of the Laplacian transfer function f(k) to amplify low frequencies in order to balance the
natural shrinking. Unfortunately, the linear combination depends heavily on the mesh in
practice, and this requires fine tuning to ensure both stable and non-shrinking results.
Desbrun et al. apply in [5] a simple scale on the vertices to achieve exact volume preserva-

tion. By multiplying all the vertex positions by β = ( V0

Vn
)

1
3 , the volume is guaranteed to go

back to its original value. As this is a simple scaling, it is harmless in terms of frequencies.
To put it differently, this scaling amplifies all the frequencies in the same way to change
the volume back. The overall complexity for volume preservation is then linear [5].

3.2.4 Constraints

In [27] Taubin extended the analysis, and modified the algorithm accordingly, to accom-
modate different types of constraints. The ability to impose constraints to the smoothing
process, such as specifying the positions of some vertices, or normal vectors, specifying
ridge curves, or the behavior of the smoothing process along the boundaries of the mesh,
is needed in the context of free-form interactive shape design. Taubin [27] shows that by
modifying the neighborhood structure certain kinds of constraints can be imposed without
any modification of the algorithm, while other constraints require minor modifications and
the solution of small linear systems.

Interpolatory Constraints
A simple way to introduce interpolatory constraints in Taubin’s fairing algorithm is to use
non-symmetric neighborhood structures. If no other vertex is a neighbor of a certain vertex
vi, i.e. the neighborhood of vi is empty, then the value xi of any discrete surface signal
x does not change during the fairing process, because the discrete Laplacian ∆xi is equal
to zero by definition of empty sum. Other vertices are allowed to have v1 as a neighbor,
though.

Hierarchical Interpolation
This is another application of non-symmetric neighborhoods. We start by assigning a nu-
meric label li to each vertex of the surface. The vertex vj will be defined as a neighbor of
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Figure 3.2: Example of surfaces designed using smoothing steps with one interpolartory con-
straint. (A): Skeleton. (B): Surface (A) after Taubin’s smoothing without constraints. (C):
Same as (B) but with non-smooth interpolatory constraint. (D) Same as (B) but with smooth
interpolatory constraint.

vertex vi, if vi and vj share an edge (or face) and if li ≤ lj. Note that if vj is a neighbor of
vi and li < lj, then vi is not a neighbor of vj. The symmetry applies only to vertices with
the same label. For example, if we assign a label to all the boundary vertices of a surface
with boundary greater than we assign a label to all the internal vertices, then the boundary
is faired as a curve, independently of the interior vertices, but the interior vertices follow
the boundary vertices. If we also assign a label to a closed curve composed of internal
edges of the surface equal to the label of the boundary vertices, then the resulting surface
will be smooth along, and on both sides of the curve, but not necessarily across the curve.
If we also assign a label greater than the label of boundary and internal vertices to some
isolated points along the curves, then those vertices will in fact not move, because they
will have empty neighborhoods.

Figure 3.3: Example for different choices of boundary constraints. (A): Skeleton with marked
vertices. (B): Surface (A) after three levels of Taubin’s smoothing without constraints. (C): Same
as (B) but with empty neighborhoods of marked vertices. (D): Same as (B) but with hierarchical
neighborhoods, where marked vertices have label 1 and unmarked vertices have label 0.

Tangent Plane Constraints After section 2 it follows that imposing normal constraints
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at vi is achieved by imposing linear constraints on ∆vi. If ni is the desired normal direction
at vertex vi after the smoothing process, and si and ti are two linearly independent vectors
tangent to ni, the surface after n iterations of the smoothing algorithm will satisfy the
normal desired constraint at the vertex vi in the following two linear constraints

sTi ∆vni = tTi ∆vni = 0

are satisfied. This leads us to the problem of smoothing with general linear constraints.

3.2.5 Different Ways of choosing Weights

The weights of the discrete Laplacian in equation (16) can be chosen in many different
ways taking into consideration the neighborhood structures. The three weighting schemes
described in this section can be applied to both Laplacian smoothing and Taubin smooth-
ing, but Fujiwara weights and Desbrun weights must be recomputed after each iteration,
or after a small number of iterations. This makes the whole smoothing process a nonlinear
operation, and computationally more expensive.

By first choosing an edge cost cij = cji ≥ 0 for each graph edge, and then setting ωij =
cij
ci

,
where ci is the average cost of edges incident to xi:

ci =
∑

j∈N1(xi)

cij > 0.

If all the edges have unit cost cij = 1, then for each neighbor xj of xi, the weight ωij is
equal to the inverse of the number of neighbors 1

|N1(xi)| of xi. This choice of weights - called
equal weights - is independent of the vertex positions, or geometry, of the mesh, and only
function of the connectivity of the mesh [28]. Very satisfactory results are obtained on
meshes which display very small variation in edge length and face angles across the whole
mesh. When these assumptions are not made, local distortions are introduced. The edge
weights can be used to compensate for the irregularities of the tesselation, and produce
results which are functions of the local geometry of the signal, rather than the local pa-
rameterization.

A more general way of choosing weights for a surface with a first-order neighborhood
structure, is using a positive function φ(xi,xj) = φ(xj,xi) defined on the edges of the
surface

ωij =
φ(xi,xj)∑

h∈N1(xi)
φ(xi,xh)

.

For example, the function can be the surface area of the two faces that share the edge
or some power of the length of the edge φ(xi,xj) = ‖xi − xj‖α. When using a power of
the length of the edges as weighting function, the exponent α = −1 produces good re-
sults [27]. The so-called Fujiwara weights makes the Laplace operator independent of the
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edge lengths, and only dependent on the directions of the vectors pointing to the neigh-
boring vertices. This weighting scheme does not solve the problems arising from unequal
face angles.

Desbrun weights compensate not only for unequal edge lengths, but also for unequal face
angles. Laplacian smoothing with equal edge costs tends to equalize the lengths of the
edges, and so, tends to make the triangular faces equilateral. The vertex displacements
produced by the Laplace operator can be decomposed into a normal and a tangential
component. Based on a better approximation to the curvature normal, Desbrun proposes
in [5] the following choice of edge costs

cij = cot αij + cot βij,

where αij and βij are the two angles opposite to the edge e = (i, j) in the two triangles
having e in common. This choice of weights produces no tangential drift when all the faces
incident to the vertex are coplanar [28].

3.3 Spring Model

In the spring model, a linear spring whose length approximately represents a curvature
radius, is attached along the normal line of each polygon node. Energy is assigned to the
difference of the lengths, that is, the difference in curvature radius, of neighboring springs.
In the paper [33], Yamada et al. presented an iteration-based algorithm for generating fair
polygonal curves and surfaces that is based on a new discrete spring model. The algorithm
moves the nodes to suitable positions while minimizing the curvature variation by an it-
erative approach under the given constraints. To update the node positions, two types
of spring forces are applied to each node. First, a force acting in the normal direction,
to optimize the curvature variation and second, a force in the direction perpendicular to
the normal, to optimize the node distribution. It accepts various constraints, such as posi-
tional, normal and least-square constraints, so that useful surface models can be generated.
The polygonal surfaces are not limited to triangular meshes; they also include quadrilateral
meshes. Theoretically, n-sided faces such as pentagons or hexagons may also be included
in the meshes.

Consider a planar curve and its normal lines at two neighboring sampling points pi and
pj. For a curvature-continuous curve, if pi approaches pj, the intersection point H of the
normal lines converges to a center of curvature at pj. Therefore, the idea is to attach a
linear spring to each normal line of a node consisting in a polygonal curve or surface.

The first step of the algorithm is to calculate a unit normal vector ni for each node pi.
In the case of a polygonal surface the spring model algorithm calculates pseudo-normal
vectors, because the polygonal surface is a discrete model and therefore, the unit normal
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vector must be calculated only approximately. In the implementation, the unit normal ni
is calculated by averaging the normals of polygonal faces adjoining the node. In the early
phase of iterations, the normal vector is unreliable; however, as the iterations proceed, the
normal vector converges to the reliable normal of the fair surface.

The linear spring works to keep equal the spring lengths |pi − H| and |pj − H| of a V-
shape formed by pi, H and pj. The spring length approximately represents the curvature
radius; therefore, keeping the spring length equal is equivalent to minimizing variation in
the curvature radius. Suppose node pj is fixed by a constraint. If |pi −H| is smaller than
|pj−H|, node pi moves to a new position along the normal ni in the direction that enlarges
|pi −H| to the size of |pj −H|. If |pi −H| is larger, the node pi moves so that |pi −H|
is shortened to the size of |pj −H|. In a stable configuration, pi and pj are considered to
be on a circular arc whose center is at H and whose curvature radius is |pj −H|.

On the supposition that the vertex pj is fixed, a displacement dpij of a node pi from a
current position to a new position is formally defined by the force of the spring model.
Let pi and pj be two nodes, and let ni and nj be unit normal vectors associated with the
nodes, respectively. We assume the inner product 〈ni,nj〉 to be positive10. An intersection
of the two normal lines is denoted by H. Let ti and tj be real values satisfying

pi −H = tini, (20)

pj −H = tjnj. (21)

|ti| and |tj| correspond to the distances |pi−H| and |pj −H|, respectively, because ni and
nj are unit vectors. We define the displacement dpij of node pi by our spring model as

dpij = (tj − ti)ni. (22)

By solving some elemetary equations, we obtain

tj − ti =
〈pj − pi,ni + nj〉

1 + 〈ni,nj〉
.

Therefore, equation (22) is written as

dpij =
〈pj − pi,ni + nj〉

1 + 〈ni,nj〉
ni. (23)

The denominator always has a non-zero value, because the inner product is assumed to be
positive.

One may consider that a numerical error occurs when two normal lines are parallel because
of the absence of H. However, equation (23) does not use H directly; therefore, the spring

10Therefore, if two normal vectors with their negative inner product are given, let either ni or nj be the
direction-reversed vector.
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model is stable even in the case of parallel normal lines. In this case, equation (23) is
deduced to the following equation:

dpij = 〈pj − pi,n〉n, (n = ni = nj).

Figure 3.4: Displacement of a node, if the normal lines have no intersection point.

In the case of a planar curve, normal lines along ni and nj always have an intersection.
However, if we consider a non-planar curve or a surface, normal lines do not always intersect
at a point. Therefore, we cannot use equation (20) as it is for non-planar cases. Instead
of an intersection point H in equation (20), we use Hi and Hj, which are the feet of the
shortest line segment connecting two normal lines. Then, for non-planar cases, we modify
equation (20) to obtain the following equations

pi −Hi = tini,

pj −Hj = tjnj.

An equation for (tj − ti) can be calculated analogously to the planar case. In fact, the
equation for (tj − ti) in equation (22) for the non-planar case is the same as for the planar
case.

After calculating the displacement dpij for each node pi caused by the force exerted by
the spring model, pi moves to a new position along the normal ni by the weighted average
dpi of the displacements dpij as follows

dpi =

∑m
j=1 ωjdpij∑m

j=1 ωj
, (24)

where ωj, j = 1, . . . ,m are weights for the averaging. In the paper [33] Yamada et al.
determined the weight ωj by inverse of the length of the edge connecting pi and pj

ωj =
1

‖pi − pj‖
, j = 1, . . . ,m.
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It is important to maintain the regular node distribution during the iteration process,
because uneven distribution of nodes results in incorrect estimation of curvature. To obtain
the regular node distribution, Yamada et al. use a variation of a Laplacian smoothing
operator. However, applying the regular Laplace operator offsets the displacement dpi in
Equation (24). Therefore, their idea is to use only a component dpu,i, that is perpendicular
to the normal ni, of the displacement of the Laplace operator. Using only this component
creates two displacements dpi and dpu,i perpendicular to each other. Therefore, the two
displacements do not offset each other. The displacement dpu,i is written as follows:

dpu,i = dpu0,i − dpu1,i,

dpu0,i =
1

m

m∑
j=1

pj − pi,

dpu1,i = 〈dpu0,i,ni〉ni.

Basically, the algorithm for curve fairing is the same as the one for surface fairing. The
case of a planar curve does not involve any extension of the surface case; however, in the
case of a non-planar curve, the calculation of the pseudo-normal ni is more difficult than
in the surface case. From a sequence of nodes pi−1, pi, and pi+1, the unit tangent ti and
the unit binormal bi is calculated as follows:

ti =
pi+1 − pi−1

‖pi+1 − pi−1‖
,

bi =
(pi − pi−1)× (pi+1 − pi)

‖(pi − pi−1)× (pi+1 − pi)‖
,

where × denotes the outer product. As the outer product of bi and ti, we calculate the
unit principal normal ni as follows:

ni =
bi × ti
‖bi × ti‖

.

If pi−1,pi and pi+1 are collinear, bi and ni are zero vectors; then the displacement dpi is
a zero vector according to equation (23). The best way to obtain a fair curve is to apply
spring forces in the directions of both bi and ni; however, in practice, applying a force only
in the direction of ni gives a fair curve, even if the problem is a non-planar case.

Constraints

Constraints are considered to be external forces for controlling the shape of a surface. Var-
ious kinds of constraints can be considered, depending on the requirements of applications.

A positional constraint fixes a node to a certain position during the iterations. Therefore,
the calculation of the displacement can be skipped. A normal constraint fixes a normal of
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3.4 Algorithm of Schneider-Kobbelt

a node to a certain direction. For the normal fixed node, the pseudo-normal calculation
is skipped and the given normal is assigned. In the approach of the paper [33], positional
constraints must be given at least to end nodes for the case of an open polygonal curve and
to boundary nodes for the case of an open polygonal surface. If it is necessary to modify
the shape of the boundary curves of a surface, start from the modeling of boundary curves
and go on to the modeling of the surface bounded by the boundary curves.

Another constraint, which is mentioned in [33] is an indirect constraint, which is not di-
rectly connected to certain nodes. One major constraint is scattered points. During the
iterations, connections between the constraints and the nodes are updated dynamically.
This is an important application in Computer Aided Design and Computer Graphics for
generating a smooth surface fitted to scattered points in the least-square sense.

Termination Condition

The positions and normals of nodes are updated in each iteration and the iterations are
continued until the termination condition is satisfied. In one iteration the updated latest
positions are always used to calculate the positions of other nodes. To determine when the
iteration terminates, the maximum among the norms of all node displacements is compared
with a given threshold ε. If the maximum norm is less than the threshold ε, the iterations
are terminated. The size of the displacement depends on the resolution of the polygonal
surface; therefore the displacement should be normalized by the sizes of polygonal faces.
Yamada et al. normalize the displacement of each node by the average length of its neigh-
boring edges. The maximum norm of the normalized displacements is then compared with
the threshold ε.

According to Yamada et al., the algorithm is decidedly robust and stable; however, the
convergence of the algorithm needs to be proved in future work.

3.4 Algorithm of Schneider-Kobbelt

Schneider and Kobbelt presented a new algorithm to create fair discrete surfaces satisfying
G1 boundary conditions. As already mentioned in chapter 3.1.2 and 3.1.3 the energy min-
imization problem can be transformed into the problem of solving a differential equation
with constraints. Instead of using variational calculus, the partial differential equation
approach can also be seen as a reasonable approach to the fairing problem in its own right,
which is especially important for fairing based on geometric invariants [20]. This means
instead of searching for intrinsic energy functionals that lead to handy partial differen-
tial equations, it seems promising to search directly for simple intrinsic partial differential
equations producing fair solutions. This idea leads to the question which partial differen-
tial equation based on geometric invariants seems suited for the creation of fair surfaces
satisfying G1 boundary constraints.
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3 Presentation of the well-known Smoothing and Fairing Methods

The algorithm presented in [20] from Schneider and Kobbelt is based on solving a non-linear
fourth-order partial differential equation

∆BH = 0, (25)

that only depends on intrinsic surface properties, i.e. properties that depend on the ge-
ometry alone, instead of being derived from a particular surface parameterization. Here
∆B is the Laplace-Beltrami operator and H the mean curvature. Equation (25) can be
interpreted as a surface analogon to the planar equation κ′′ = 0, where the derivative
of the curvature κ is with respect to arc length [21]. To simplify the computation the
fourth-order partial differential equation is factorized into a set of two nested second-order
problems thus avoiding the estimation of higher order derivatives. Because of the mean
value property of the Laplacian, it is guaranteed that the extremal mean curvature values
of a solution of (25) will be reached at the border and that there are no local extrema in
the interior.

In [20] solutions of (25) were approximated by meshes in the special case where the meshes
have subdivision connectivity and the boundary vertices could be regularly sampled on a
smooth curve. One year later Schneider and Kobbelt presented in [21] an algorithm for
smoothing arbitrary triangle meshes that does not have such limitations. There are also
no restrictions concerning the mesh structure and the boundary vertices and we are free
to choose an inner fairness criteria. Nevertheless, the resulting construction algorithm is
fast and can be implemented compactly. Instead of trying to simulate the continuous case
using local quadratic approximations, we use the discrete data of our minimization process
directly [21].

The algorithm completely seperates outer and inner fairness by discretizing an intrinsic
partial differential equation. The discretization relies on the fact that there is a tight
connection between the Laplace-Beltrami operator ∆B and the mean curvature normal of
a surface. We can discretize the equation ∆BH = 0 at a vertex qi as∑

qj∈N(qi)

(cot αj + cot βj)(H(qi)−H(qj)) = 0,

where αj and βj are the angles of the corners, which are on the opposite of the edge defined
by qi and qj. If this equation is satisfied at all inner vertices qi and if we further know all
mean curvature values for the boundary vertices, this leads us to a sparse linear system in
the unknown H(qi) for inner vertices

Sii =
∑

qj∈N(qi)

(cot αj + cot βj), (26)

Sij =


−(cot αj + cot βj) : qj ∈ N(qi) ∩ VI(M)

0 : otherwise,
(27)
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3.4 Algorithm of Schneider-Kobbelt

where VI(M) defines the set of all vertices in the interior of the mesh M . The matrix S
is symmetric and - as long as no triangle areas of the mesh vanish - positive definite. An
elegant proof of the mathematical structure of this matrix can be found in the paper [18]
by Pinkall and Polthier.

Furthermore, a discretization of the mean curvature H(qi) at a vertex qi is presented,
which depends on the vertices in a local neighborhood. There are various techniques
to discretize surface curvatures, but to be applicable to the construction algorithm of
Schneider Kobbelt, it is important that - for a given mesh connectivity - the discretization
of H(qi) is a continuous function of those vertices.

The curvature discretization algorithm that seems ideal for their needs was presented by
Moreton and Séquin in [17]. The idea of their approach is to use the fact that the normal
curvature distribution cannot be arbitrary, but is determined by Euler’s theorem (see 2.1.4).

Figure 3.5: Projecting the neighborhood of q onto the plane defined by n and normalizing the
results we get the normal curvature directions ti.

To each vertex qj ∈ N(q) we can assign a unit direction vector tj by projecting qj into
the plane defined by the normal n and scaling this projection to unit length (cf. Figure
3.5). For each qj we can now estimate a normal curvature κ̃j as the inverse of the circle
radius defined by q,qj and tj

κ̃j = 2
〈qj − q,n〉

〈qj − q,qj − q〉
. (28)

Using the Euler formula, the normal curvature κn for a direction t by the principal cur-
vatures κ1 and κ2 and the principal curvature directions e1 and e2. Let tx and ty be the
coordinates of t in the basis bx, by and let ex and ey be the coordinates of e1, then the
normal curvature can be expressed as

κn =
(
tx ty

)
·K ·

(
tx
ty

)
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3 Presentation of the well-known Smoothing and Fairing Methods

with

K =

(
ex ey
−ey ex

)
·
(
κ1 0
0 κ2

)
·
(
ex ey
−ey ex

)
.

The idea of Moreton and Séquin is to use the normal curvatures κ̃j to create a linear
system and find estimates for the unknown principal curvature values by determining the
least square solution. Let tj,x and tj,y denote the coordinates of tj and let m be the valence
of q, then we get by using Euler’s theorem

Ax = b,

where

A =


t21,x t1,xt1,y t21,y
t22,x t2,xt2,y t22,y
...

...
...

t2m,x tm,xtm,y t2m,y

 ,b =


κ̃1

κ̃2
...
κ̃m

 and x =

 x0

x1

x2

 =

 e2xκ1 + e2yκ2

2exey(κ1 − κ2)
e2xκ2 + e2yκ1

 .

ex and ey are the coordinates of the principal curvature direction e1. Since x0+x2 = κ1+κ2

this means the mean curvature is determined by

H =
1

2
(x0 + x2).

The input data for the algorithm consists of vertices and unit normals that form the G1

boundary condition and an initial mesh M0 that interpolates the boundary vertices. The
idea of the construction algorithm is to create a mesh sequence Mk, k = 0, 1, 2, . . . by
iteratively updating the vertices, until the outer and inner fairness conditions are suffi-
ciently satisfied. Instead of solving a fourth-order problem directly, we factorize it into
two second-order problems which are solved sequentially. The factorization idea is inspired
by the following observation: Given a fixed Laplace-Beltrami operator and fixed mean
curvature values at the boundary vertices11 of a mesh Mk, the equation

∆BH(qi) = 0 ∀qi ∈ VI(MS),

where the mesh MS is a discrete solution of equation (25), can be interpreted as a Dirichlet
problem for the Hi. The unknown scalar mean curvature values at the inner vertices are
determined by a nonsingular linear system with a symmetric and positive definite matrix
S whose coefficients are defined in (26) and (27). Solving the resulting non-singular linear

system yields scalar values H̃(qi) at all inner vertices qi ∈ VI(M
k), that represent a

discrete harmonic function. The idea is now to use this calculated scalar values H̃(qi) to

update each inner vertex qi so that H(qk+1
i ) = H̃i, which is again a second-order problem.

Expressed in two formulas, this factorization of Mk →Mk+1 becomes

1. ∆BH̃(qi) = 0

2. H(qk+1
i ) = H̃(qi)

}
∀qki ∈ VI(Mk).

11The set of boundary vertices is denoted by VB(M).

40



3.4 Algorithm of Schneider-Kobbelt

In practice, it is not necessary to solve the Dirichlet problem exactly. In order to be able
to separate between inner and outer fairness, we only allow the vertex to move along the
surface normal vector. This means we search for a scalar value t so that

H(qk+1
i ) = H̃(qi) with qk+1

i = qki + tn. (29)

With help of a linearization technique equation (28) turns into

κ̃j ≈ 2
〈qj − qi,n〉

〈qj − qi,qj − qi〉
− 2t

1

〈qj − qi,qj − qi〉
.

Using this assumption, the discretization of H(qk+1
i ) determined by equation H = 1

2
(x0 +

x2) and x = (ATA)−1ATb becomes a linear function in t. Solving this linear equation for
t, we finally update qk+1

i = qki + tn which approximately solves (29).

The concept behind the construction algorithm works best for ∆BH = 0, but it is not
restricted to that. Minimal energy surfaces are also constructed by solving their Euler-
Lagrange equation ∆BH = −2H(H2−K) and surfaces satisfying ∆BH = const. However,
these inhomogen problems are more costly to solve and a stable construction algorithm is
more involved.
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4 Explanation of the alternative Fairing Method

4 Explanation of the alternative
Fairing Method

In the previous section 3 well-established smoothing and fairing methods where presented,
which do not yield the desired result for our purpose. The aim of this section is to generate a
mesh which not only has a fair surface but also fair structure lines. This section introduces
a new concept, which ”fairs” the mesh in an appropriate manner. We focus on fairing the
structure lines instead of the surface obtaining an aesthetically appealing and well-shaped
mesh. We compare this new method to the Laplacian and the Taubin smoothing method
in the following section and prove that this ansatz has several aesthetic-desirable qualities
that improve the appearance of the resulting meshes.

Exemplification of the Concept
The idea of the alternative fairing ansatz is to consider structure lines and thus gain a
satisfying resulting mesh. Let vi−1, vi and vi+1 be three consecutive direction vectors of

a structure line. A structure line is considered to be fair iff
∥∥1

2
· (vi−1 + vi+1)− vi

∥∥2 ≈ 012

which corresponds to the energy functional (6) for direction vectors (instead of points) of
chapter 3.1.1. Thus the concept is to minimize the sum of the discrete bending energy of
three consecutive unit vectors of a mesh

min

#edges−1∑
i=2

∥∥∥∥1

2
·
(

vi−1

||vi−1||
+

vi+1

||vi+1||

)
− vi
||vi||

∥∥∥∥2

, (30)

where the vectors are defined as

vi−1 := pi − pi−1,

vi := pi+1 − pi,

vi+1 := pi+2 − pi+1

of four consecutive points pi−1, pi, pi+1 and pi+2 of a structure line. To simplify we
transform the formula (30) into a formulation for each point pi

min

#vertices−2∑
i=2

∥∥∥∥1

2
·
(

pi − pi−1

||pi − pi−1||
+

pi+2 − pi+1

||pi+2 − pi+1||

)
− pi+1 − pi
||pi+1 − pi||

∥∥∥∥2

. (31)

Divsion by the length of the vector makes the optimization problem nonlinear and therefore
too complicated for this kind of application. A demand on the fairing concept is to sustain
the form of the mesh. Therefore the distance of the faired points and the original points

12Note that for a straight line
∥∥ 1

2 · (vi−1 + vi+1)− vi

∥∥2 = 0.
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4 Explanation of the alternative Fairing Method

respectively has to be as minimal as possible13. Because of this constraint we can estimate
the distance of two faired points ‖pi+1 − pi‖ by the length li :=

∥∥p0
i+1 − p0

i

∥∥ of the distance
of the original points p0

i and p0
i+1. This makes the optimization linear and the formula is

reformed into the following objective function

min

#vertices−2∑
i=2

∥∥∥∥− 1

2li−1

pi−1 +

(
1

2li−1

+
1

li

)
pi −

(
1

li
+

1

2li+1

)
pi+1 +

1

2li+1

pi+2

∥∥∥∥2

. (32)

It is well-known [8] that the vector norm ||.||2 on Rn can be written as

‖fi(x)‖2 = fi(x)T · fi(x) = (fi(x))2,

whereas in this case fi(x) is defined as

fi(x) := − 1

2li−1

pi−1 +

(
1

2li−1

+
1

li

)
pi −

(
1

li
+

1

2li+1

)
pi+1 +

1

2li+1

pi+2.

It is possible and desirable to transform equation (32) into matrix notation, i.e.

fi(x) = Aix + bi.

The matrix Ai ∈ R3×3·#vertices is defined as

Ai =

 ai−1 0 0 ai 0 0 ai+1 0 0 ai+2 0 0 . . .
. . . 0 ai−1 0 0 ai 0 0 ai+1 0 0 ai+2 0 . . .

0 0 ai−1 0 0 ai 0 0 ai+1 0 0 ai+2 . . .

 ,

where

ai−1 :=

{
− 1

2li−1
: pi−1 should be smoothed

0 : pi−1 is fixed

ai :=

{ 1
2li−1

+ 1
li

: pi should be smoothed

0 : pi is fixed

ai+1 :=

{
− 1
li
− 1

2li+1
: pi+1 should be smoothed

0 : pi+1 is fixed

ai+2 :=

{ 1
2li+1

: pi+2 should be smoothed

0 : pi+2 is fixed.

Each 3×3-block in the matrix Ai with the diagonal entries aij range from column 3(ij−1)+1
to column 3ij. In this case the four consecutive points of the structure line are four points
with consecutive indices. Typically two consecutive points pi1 and pi2 of a structure line
do not have consecutive indices (i.e. i1 + 1 6= i2). Therefore the 3 × 3-block related to
vertex pi1 in matrix Ai with the diagonal entries ai1 range from column 3(i1 − 1) + 1 to

13We will dwell on this constraint later.
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column 3i1 and the 3 × 3-block related to vertex pi2 with the diagonal entries ai2 range
from column 3(i2 − 1) + 1 to column 3i2.

The vector x ∈ R3·#vertices×1 is defined as

x =



x1

y1

z1
...

x#vertices

y#vertices

z#vertices


, whereas pi =

 xi
yi
zi

 .

The vector bi ∈ R3×1 is defined as

bi = − 1

2li−1

p′i−1 +

(
1

2li−1

+
1

li

)
p′i −

(
1

2li+1

+
1

li

)
p′i+1 +

1

2li+1

p′i+2,

where

p′i :=

{
0 : pi should be smoothed

pi : pi is fixed.

To sum up, equation (31) can be written as

min

#vertices−2∑
i=2

‖Aix + bi‖2

= min

#vertices−2∑
i=2

(Aix + bi)
T · (Aix + bi)

T

= min xT
#vertices−2∑

i=2

AT
i Ai︸ ︷︷ ︸

=:D

x + 2

#vertices−2∑
i=2

bTi Ai︸ ︷︷ ︸
cT

x +

#vertices−2∑
i=2

bTi bi.

The matrices A1, A#vertices−1 and A#vertices are defined as zero matrices. To solve the min-
imization problem which was explained above a fairing method without any constraints
would be used. As already mentioned we include the sustainment of the shape of the
original mesh to avoid any shape deformation of the faired mesh.

Sustainment of the shape and closeness to the original vertices
The aim is to sustain the shape of the original mesh. For obtaining this sustainment the
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distances of the faired vertices to the original vertices will be minimized too. To preserve
a certain degree of freedom for the deviation of the faired mesh the constraint will be
included in terms of a penalty function. On the basis of the penalty method the distance
of the faired new vertices to the original ones can be controlled by the penalty parameter.

The Penalty Method

The penalty method is a classical method for solving constrained optimization problems [7].
A constrained optimization problemminf(x) under the equality constraints gj(x) = 0, (j =
1, . . . , p) is replaced by a series of unconstrained problems

P (x;α) = f(x) +
α

2

p∑
i=1

gj(x)2,

which are formed by adding a term to the objective function that consists of a so-called
penalty parameter α > 0 and a measure

∑p
i=1(gj(x))2 of violation of the constraints. The

part
∑p

i=1(gj(x))2 punishes high values of gj(x) and therefore one speaks of a penalty
function. Within an iterative algorithm α is increased until the constraints are fulfilled
sufficiently well. The minimization of P (x;α) with given α is an unconstrained optimiza-
tion problem. However, the constraints require a large value of α.

In the new fairing method α will be given and is used as a parameter to control the
deviation of the faired mesh to the original one. Translating the penalty method into this
fairing ansatz the penalty function is defined as

fD(x) =

#vertices−2∑
i=2

∥∥pi − p0
i

∥∥2

=

#vertices−2∑
i=2

(
pi − p0

i

)2
.

The penalty function can be written as

fD(x) =

#vertices−2∑
i=2

(Cix− di)
2

= xT
#vertices−2∑

i=2

CT
i Cix− 2

#vertices−2∑
i=2

dTi x +

#vertices−2∑
i=2

dTi di,

where the vector x is defined as above, the vector di is defined as

di :=

{
0 : iff the point pi is fixed

pi : iff the point pi is smoothed
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and Ci ∈ R3×3·#vertices is a zero matrix iff the point pi is fixed or

Ci =

 0 0 1 0 0 0 0
0 . . . 0 0 1 0 0 . . . 0
0 0 0 0 1 0 0

 ,

iff the point pi is smoothed. The identity matrix in Ci ranges from column 3(i− 1) + 1 to
column 3i.

The objective function of the alternative fairing method can now be defined as

P (x;α) =

#vertices−2∑
i=2

fi(x) +
α

2

#vertices−2∑
i=2

fD(x)2 (33)

=

#vertices−2∑
i=2

(Aix + bi)
T · (Aix + bi)

T +
α

2

#vertices−2∑
i=2

(
pi − p0

i

)2
. (34)

To simplify matters we refer to the penalty parameter as the weight ω := α
2

of the distance
of the faired vertices to the original vertices. In each iteration step of the fairing method
the weight can be chosen arbitrarily.

4.1 The Algorithm

In this section the algorithm is described in a more detailed way than above.

Algorithm

Input: mesh, weight, deviation, number of iteration steps
Output: faired mesh

1. Find the structure lines of the mesh.

2. Each vertex will be categorized as a ”fixed” or a ”need to be faired” vertex.
The deviation parameter indicates the magnitude of the deviation of three
consecutive direction vectors of a structure line. If the deviation of the
consecutive direction vectors is greater than the deviation parameter then
the vertex is characterized as part of a zigzag line.

3. Compute the coordinates of the ”need to be faired” vertices such that the
deviation of three consecutive direction vectors and the penalty function
(of the weighted distance of the new points to the input points) is minimal;
i.e. compute the minimum of equation (34).
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It is possible to assign a category manual to each vertex, i.e. one can fix vertices arbitrary
or only move some requested vertices. The four corner vertices are always fixed.

4.2 The Influence of the Parameters

In this section we want to describe the parameters of the Laplacian, the Taubin smooth-
ing and the alternative fairing method in a more detailed way and show some examples
of different variations of the specific parameters. The only parameter for the Laplacian
and the Taubin fairing method is the number of iterations that do not play a minor role.
The changable parameters of the new fairing method are the number of iterations, the
deviation of three consecutive direction vectors and the weight of the distances of the new
vertices to the original vertices respectively. The deviation and the weight parameter can
be changed in each iteration step. The different influences on the mesh with the changing
of the parameters are now shown with reference to some examples.

The Number of Iterations

It is quite obvious that the number of iterations plays a major role in a fairing method.
For the Laplacian and the Taubin smoothing method the number of iterations declares
how smooth the mesh will become; the more iteration steps are performed the more flat
the mesh will be. For the Laplacian method the number of iterations should not be too
large, because of the (already mentioned) shrinkage effect. As it can be seen in Figure 4.1
the mesh is shrinking vastly after only five iteration steps.

(a) Original (b) 1 Iteration (c) 5 Iterations

Figure 4.1: Variation of the number of iterations of the Laplacian smoothing method

It seems that the Taubin smoothing method also has an undesirable effect of turning a
quadrangular mesh into a ”rounded” mesh. The implementation of the Taubin smoothing
method which is used in this thesis did not fix the corner vertices. Therefore the corners
are cut off and it seems that the mesh gets round. We can ignore this effect and only
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consider the structure lines without the corner vertices.

(a) Original (b) 1 Iteration (c) 10 Iterations

Figure 4.2: Variation of the number of iterations of the Taubin smoothing method

The Interaction between the Number of Iterations and the Magnitude of the Devi-
ation of Three Consecutive Vectors

For the new fairing method the number of iterations is intimately connected with the devi-
ation parameter of three consecutive direction vectors. For each iteration step a deviation
parameter can be chosen separately. If the deviation for every three consecutive vectors is
smaller than the deviation parameter every vertex will be fixed and the number of itera-
tions does not have any influence on the fairing process. The magnitude of the deviation
parameter must therefore be chosen in an appropriate manner so that in each iteration
step vertices are moved and that the number of iterations plays a decisive role.

(a) Original (b) 1 Iteration (c) 10 Iterations

Figure 4.3: Variation of the number of iterations of the alternative fairing method. For this
fairing method the deviation parameter is chosen as 0, 1 and the weight is 0, 001.

The Weight

The parameter weight is the penalty parameter of the penalty function of the optimization
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problem. It controls the distance of the faired to the original vertices. High accuracy in
fulfilling the constraints requires a large value of α. Therefore choosing the weight ω � 1
the penalty function pulls the vertices close to the original ones. On the contrary for ω ≈ 0
the vertices veer away from the original ones and the mesh can possess sizable deformation.
The implementation of the alternative fairing method can be extended so that each ver-
tex gets its own weight dependent on the value of the deviation of three consecutive vectors.

(a) Original (b) Weight = 1000 (c) Weight = 0,0001

Figure 4.4: Variation of the weight of the fairing method. The deviation parameter is chosen
as 0, 1 and the number of iterations is one.
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5 Examples
In this section the new fairing concept is compared to the well-established smoothing
methods of Laplace and Taubin.
As already mentioned the Taubin and Laplacian smoothing methods move each vertex in
the barycenter of its 1-ring-neighborhood. Hence the corners are being cut off, because the
four corner vertices will be moved in the barycenter of the three surrounding vertices. We
disregard this fact in the following examples and compare the remaining mesh anyway.

5.1 Example 1

As the first example we choose a mesh with comparatively few vertices in order to demon-
strate the fact that the vertices are moved in the barycenter of the 1-ring-neighborhood
and therefore change the characteristics of the structure lines significantly. The surface is
similar to a saddle surface. The number of vertices is 100 and the number of faces is 81.

Laplacian Smoothing Method

The number of iterations for the Laplacian smoothing method is 3.
Already after the first iteration step the structure line of the thin strip on the brink of the
mesh is moved to the middle of the two neighboring structure lines. This causes a maybe
undesirable mesh deformation. After three iterations the structure lines are faired, but
also the surface got smoothed through flattened structure lines.

Taubin Smoothing Method

The number of iterations for the Taubin smoothing method with equal weights is 40.
After 40 iteration steps the zigzag lines appear noticeable smoothed. The displacement of
the stucture line which was discussed at the Laplacian smoothing method is not as dis-
tinctly as it was before. The deformation through the flatten of the surface exists, but is
acceptable. More disruptive is the fact that the marginal structure lines move remarkably
outwards beyond the original boundary.

New Fairing Concept

The number of iterations for the new fairing concept is 3 and the weight is 0.001. The
magnitude of the deviation of three consecutive direction vectors is given by 0.1.
The deformation of the surface is less or equal of the deformation by the Taubin smoothing
method. The marginal structure lines are almost identical, except for one part of a struc-
ture line which was obviously a zigzag line (near the left corner of the mesh) and therefore
allowed to be faired. It would seem that the structure lines got faired along the surface of
the mesh.
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Figure 5.1: The Original Mesh

Figure 5.2: The Laplacian Smoothing Method after 3 Iterations

51



5 Examples

Figure 5.3: The Taubin Smoothing Method after 40 Iterations

Figure 5.4: The New Fairing Method
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5.2 Example 2

The second example is a free-form surface. The number of vertices is 169 and the number
of faces is 144.

Laplacian Smoothing Method

The number of iterations for the Laplacian smoothing method is 1.
Already after the first iteration step the s-shape of the surface is flattened and the structure
lines move so that they have almost equidistant edges. After the second iteration step the
mesh is well smoothed, but it got considerably deformed. After five iterations the mesh is
that flattened, that the s-shape of the structure lines is not as remarkable as they were at
the beginning.

Taubin Smoothing Method

The number of iterations for the Taubin smoothing method with equal weights is 20.
The boundary structure lines (exept for the four corner vertices) are - in contrary to the
first example - identical to the original mesh boundary. The mesh possesses minimal de-
formation along the s-shaped structure lines. The result is as well faired as the mesh after
the application of the method of Laplacian, but does not have the enormous deformation.

New Fairing Concept

The number of iterations for the new fairing concept is 3 and the weight is 0.005. The
magnitude of the deviation of three consecutive direction vectors is given by 0.1.
The deformation is as minimal as in the Taubin smoothing process. The boundary structure
lines are nearly identical to the original mesh and the curvature of the s-shaped structure
lines are almost sustained.
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Figure 5.5: The Original Mesh

Figure 5.6: The Laplacian Smoothing Method after 1 Iterations
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5.2 Example 2

Figure 5.7: The Taubin Smoothing Method after 20 Iterations

Figure 5.8: The New Fairing Method
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5.3 Example 3

The surface of this example is smooth, but the structure lines are zigzag lines. The number
of vertices is 902 and the number of faces is 840.

Laplacian Smoothing Method

The number of iterations for the Laplacian smoothing method is 4.
We disregard the fact that the four corners get cut off. The structure lines still possess
minimal zigzag lines, but the number of iterations can not be increased anymore because
the surface has already started to be flattened. Each iteration step bends the surface
such that it is more flat and after four iteration steps there is an apparent deformation of
the surface. The structure lines are smoothed, but every vertex is translated so that the
smoothed mesh is parallel to the original one. In the region where the curvature changes
the smoothed parallel mesh and the original mesh intersects. After ten iteration steps the
mesh is shrinking and the connection to the original mesh is not given anymore.

Taubin Smoothing Method

The number of iterations for the Taubin smoothing method with equal weights is 50.
Some structure lines are better faired than with the alternative fairing method and some
lines are unsteadier. As with the Laplacian smoothing methods some parts of the mesh
are translated in the opposite direction and intersect in the middle of the surface where
the curvature changes. The translation is not as distinctive as generated by the Laplacian
smoothing method. Near the corners the boundary structure lines overlap the boundary
of the original mesh.

New Fairing Concept

The number of iterations for the new fairing concept is 10 and the weight is 0.001. The
magnitude of the deviation of three consecutive direction vectors is given by 1 and is di-
vided into halves after each iteration step.
The alternative fairing method neither generates a translation nor possesses any rough
deformation of the mesh. The structure lines are sustained without any deformation of the
mesh.
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Figure 5.9: The Original Mesh

Figure 5.10: The Laplacian Smoothing Method after 4 Iterations
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Figure 5.11: The Taubin Smoothing Method after 50 Iterations

Figure 5.12: The New Fairing Method
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5.4 Example 4

The number of vertices is 902 and the number of faces is 840.

Laplacian Smoothing Method

The number of iterations for the Laplacian smoothing method is 4.
Already after four iterations the mesh is shrinking such that the original mesh envelopes
the smoothed mesh. The structure lines are smooth but the deviation of the smoothed
vertices to the original ones is not maintainable.

Taubin Smoothing Method

The number of iterations for the Taubin smoothing method with equal weights is 30.
Contrary to the Laplacian smoothing method the Taubin smoothing method increases the
mesh; the smoothed mesh envelopes the original surface. The part of the mesh with less
curvature is flattened and moves away from the original mesh.

New Fairing Concept

The number of iterations for the new fairing concept is 5 and the weight is 0.0005. The
magnitude of the deviation of three consecutive direction vectors is given by 1.
The alternative fairing method has neither shrinkage nor growth as the other smoothing
methods. Of course there is a deviation to the original mesh, but no remarkable defor-
mation at all. The vertices of the structure lines are moved with small deviation in the
surface of the mesh such that the structure lines are fair and the shape is still sustained.
The structure lines are perfectly faired and the boundary structure lines are completely
preserved too.
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Figure 5.13: The Original Mesh

Figure 5.14: The Laplacian Smoothing Method after 4 Iterations
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Figure 5.15: The Taubin Smoothing Method after 30 Iterations

Figure 5.16: The New Fairing Method
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6 Conclusion

6 Conclusion
In this thesis a new method for fairing structure lines of a quadrilateral mesh was pre-
sented. The purpose was to get an overview of well-known smoothing and fairing methods
before the new concept was introduced. Therefore chapter 3 investigated well-established
smoothing methods, eg. minimization of energy functionals, the Laplacian and Taubin
smoothing method or the algorithm of Schneider-Kobbelt. Subsequently an alternative
fairing method which offers some advantages over the previous methods was presented.
The algorithm faired the mesh by minimizing the bending energy of three consecutive
direction vectors of a strucutre line. Thereby every vertex is investigated as if it is part
of a zigzag line and therefore part of the fairing procedure. The categorization when a
line is detected as a zigzag line can be chosen arbitrarily by a parameter of deviation of
three consecutive direction vectors. Besides the four boundary vertices which are always
fixed, each vertices can be fixed separately too. To sustain the shape of the mesh another
parameter which indicates the distance of the faired to the original vertex can be chosen ar-
bitrarily. To underline the aesthetical-appealing qualities of the alternative fairing method
chapter 5 has shown some examples. Thereby the meshes which were smoothed with the
Laplacian and the Taubin smoothing method were contrasted with the new fairing method.

In terms of future work, investigations to extend this approach can be made to provide
a solution not only for quadrilateral meshes, but also triangular meshes and meshes with
faces with more than 4 vertices. Because the input meshes have planar faces the integration
of a planarity constraint can also be considered.
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& Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, zweite edition, 1992.

[7] Carl Geiger and Christian Kanzow. Theorie und Numerik restringierter Opti-
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