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Summary

Time-varying volatility modeling for univariate asset returns is a well investigated

topic in time series analysis, including the prominent 2003 Nobel Prize winning

ARCH model by Robert F. Engle.

This thesis provides an introduction into general ideas and tools of time series

modeling with a special focus on ARCH and generalized ARCH models. Theo-

retical properties of this model class as well as its fitting to data are discussed.

For formulations of generalized ARCH in higher dimensions, several approaches -

Constant Conditional Correlation, Dynamic Conditional Correlation, (Diagonal)

Vector GARCH and BEKK models - are presented and analyzed. Because the

curse of dimensionality plays a major role in practical applicability of MGARCH,

main attention is placed on models with reasonable numbers of parameters. These

are fitted to the Austrian and German stock market indices ATX and DAX making

use of S-PLUS [18] with the module finmetrics [19]. Finally, results for empirical

prediction performance among the different models are compared by means of both

in- and out-sample measurement.
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Chapter 1

Fundamentals

In this chapter the basic ideas of multivariate time series are presented. The

approach is similar to McNeil et al. [20], including supplements of Tsay [26], Zivot

and Wang [28], and Brockwell and Davis [8, 9]. Basic common probability theory

will be assumed to be known and is covered in many textbooks such as Elstrodt [11]

or Bauer [2] (German) and Durret [10] or Williams [27] (English).

1.1 Basic Definitions

A multivariate time series model for multiple risk factors is a multivariate stochas-

tic process (X t)t∈Z = (Xt,1, . . . , Xt,n)′t∈Z. In other words, it is a family of random

vectors, indexed by the integers and defined on some suitable probability space

(Ω,F , P ).
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1.1. BASIC DEFINITIONS

1.1.1 Moments of a multivariate time series

Definition 1.1 (Moments of a multivariate time series). We define the mean

function µ(t) and the covariance matrix function Γ(t, s) of (X t)t∈Z by

µ(t) = E[X t], t ∈ Z,

Γ(t, s) = E[(X t − µ(t))(Xs − µ(s))′], t, s ∈ Z.

Obviously, these do not need to exist in R.

Remark. It is interesting to note that Γ(t, s) is in general not symmetric (i.e.

Γ(t, s) 6= Γ(s, t)), which is in contrast to the univariate case. Lagged values of

one of the component series can be more strongly correlated with future values

of another component series than vice versa. This property, when observed in

empirical data, is known as a lead-lag effect. Nevertheless, due to the fact that

Γ(t, s)ij = cov(Xt,i, Xs,j) = cov(Xs,j, Xt,i) = Γ(s, t)ji (1.1)

it is clear that Γ(t, s) = Γ(s, t)′.

1.1.2 Concepts of stationarity

Similar to univariate time series analysis, several ideas of stationarity may be

considered. The underlying idea is that (X t)t∈Z and time-shifted (X t+h)t∈Z for

any h ∈ Z should share statistical properties. One possible way of doing this is to

demand that all arbitrarily lagged finite-dimensional samples are distributionally

identical. Formalized, this results in the following definition:

Definition 1.2 (Strict stationarity). The multivariate time series (X t)t∈Z is called

strictly stationary, if

(X ′
t1
, . . . , X ′

tn)
d
= (X ′

t1+h, . . . , X
′
tn+h)

holds for all t1, . . . , tn, h ∈ Z and for all n ∈ N.

2



1.1. BASIC DEFINITIONS

Strict stationarity is usually hard to verify in practice and also a very strong

assumption. Alternatively, there exists another possible concept of stationarity,

which only involves first and second moments, demanding that they are time-

invariant.

Definition 1.3 (Covariance stationarity). The time series (X t)t∈Z is called co-

variance stationary (or weakly or second-order stationary) if the first two moments

exist and satisfy

µ(t) = µ, t ∈ Z,

Γ(t, s) = Γ(t + h, s + h), t, s, h ∈ Z.

Remark. Assuming the covariance matrix is finite, covariance stationarity is a

necessary condition for strict stationarity and is therefore often referred to as

weak stationarity. Clearly the contrary is not true, and it is also possible to

define infinite-variance processes which are strictly stationary but not covariance

stationary (McNeil et al. [20]).

1.1.3 Correlation in stationary multivariate time series

By definition of covariance stationarity one can easily observe that for covariance

stationary time series Γ(t−s, 0) = Γ(t, s) holds for all s, t ∈ Z. This simply means

that the covariance between X t and Xs only depends on their temporal separation

t− s, also known as the lag. For covariance stationary time series this enables to

write the covariance matrix function as a function of one variable, i.e.

Γ(h) := Γ(h, 0), h ∈ Z.

Remark. As noted above, the sign of the lag is, in contrast to the univariate case,

of importance and it is not sufficient to choose h ∈ N0.

Noting that Γ(0) = cov(X t) for all t ∈ Z, it is now possible to define the correlation

matrix function of a multivariate covariance stationary process.

3



1.1. BASIC DEFINITIONS

Definition 1.4 (Correlation matrix function). Let ∆ ∈ Rd×d be a diagonal ma-

trix containing the standard deviations of the component series, in other words

∆ = diag(
√

Γ(0)11, . . . ,
√

Γ(0)dd). Then the correlation matrix function P (h) of a

covariance stationary multivariate time series (X t)t∈Z is

P (h) := ∆−1Γ(h)∆−1, h ∈ Z.

Remarks. 1. The diagonal elementes P (h)ii of this matrix-valued function give

the autocorrelation function (i.e. the lagged correlation with itself) of the

ith one-dimensional component series (Xt,i)t∈Z.

2. The off-diagonal entries give so-called cross correlations between different

component series at different times.

3. It follows directly from (1.1) that P (h) = P (−h)′, but just like Γ(h) P (h)

need not be symmetric.

1.1.4 Noise concepts

Before constructing more interesting classes of time series models, simple multi-

variate white noise processes are defined. They are acting as building blocks for

later models.

Definition 1.5 (Multivariate white noise). (X t)t∈Z is multivariate white noise if

it is covariance stationary and its correlation matrix function is given by

P (h) =

{
P h = 0,

0 h 6= 0,

for some positive-definite correlation matrix P . Centered to have mean zero with

covariance matrix Σ = cov(X t), it will be denoted WN(0, Σ).

Remark. It is clear by definition that a WN(0, Σ)-process has no cross correlation

between component series, except for contemporaneous cross correlation at lag

zero. A simple example for such a process is a series of iid random vectors with

finite covariance matrix, itself known as strict white noise.

4



1.1. BASIC DEFINITIONS

Definition 1.6 (Multivariate strict white noise). (X t)t∈Z is called multivariate

strict white noise if it is a series of iid random vectors with finite covariance matrix.

Centered to have mean zero and covariance matrix Σ it will be denoted SWN(0, Σ).

Assuming that (X t)t∈Z is adapted to some filtration (Ft)t∈Z, it is possible to intro-

duce the martingale difference noise concept for multivariate time series. (Ft)t∈Z
will typically be the so-called natural filtration, defined by Ft := σ{(Xs)s≤t}. It

is usually interpreted as the information available up to time t.

Definition 1.7 (Multivariate martingale difference). (X t)t∈Z is said to have the

multivariate martingale difference property with respect to the filtration (Ft)t∈Z if

1. E[|X t|] < ∞ and

2. E[X t|Ft−1] = 0

hold for all t ∈ Z.

Remark. Because of

E[X t] = E[E[X t|Ft−1]] = 0 ∀t ∈ Z,

the unconditional mean of such a process is also zero. If cov(X t) = E[X tX
′
t]

exists for all t, then if t < s,

Γ(t, s) = E[X tX
′
s] = E[E[X tX

′
s|Fs−1]] = E[X tE[X ′

s|Fs−1]] = E[X t0
′] = 0

holds. Similarly, if t > s, we have

Γ(t, s) = E[X tX
′
s] = E[E[X tX

′
s|Ft−1]] = E[E[X t|Ft−1]X

′
s] = E[0X ′

s] = 0,

resulting in the fact that the covariance matrix function satisfies Γ(t, s) = 0 for

t 6= s. If additionally it is constant for all t = s then a process with the multivariate

martingale difference property is also a multivariate white noise process.

5



1.1. BASIC DEFINITIONS

1.1.5 Example

In order to apply some of the above ideas, a small example taken from Brockwell

and Davis [8] is now being analyzed.

Example 1.1 (Brockwell and Davis [8]). Consider the bivariate covariance sta-

tionary time series (X t)t∈Z defined by

X t =

[
Xt,1

Xt,2

]
=

[
Zt

Zt + .75Zt−10

]
, (1.2)

with (Zt)t∈Z being univariate WN(0, 1). Clearly (X t)t∈Z has mean zero, i.e.

µ = E[X t] = E

[
Zt

Zt + .75Zt−10

]
= E

[
Zt

Zt

]
+ .75E

[
0

Zt−10

]
= 0,

and is covariance stationary with

Γ(0) = E[X tX
′
t] = E

[
Z2

t Z2
t + .75ZtZt−10

Z2
t + .75ZtZt−10 (Zt + .75Zt−10)

2

]
=

[
1 1

1 1.56

]
,

Γ(−10) =

[
0 .75

0 .75

]
, Γ(10) =

[
0 0

.75 .75

]
,

and Γ(h) = 0 for h ∈ Z \ {−10, 0, 10}. Recalling that the correlation matrix

function P (h) = ∆−1Γ(h)∆−1 for ∆ = diag(
√

Γ(0)11, . . . ,
√

Γ(0)dd), P (h) can

easily be calculated by inserting:

P (h) =




Γ(h)11
Γ(0)11

Γ(h)12√
Γ(0)11Γ(0)22

Γ(h)21√
Γ(0)11Γ(0)22

Γ(h)22
Γ(0)22


 ,

yielding

P (−10) =

[
0 .6

0 .48

]
, P (0) =

[
1 .8

.8 1

]
, P (10) =

[
0 0

.6 .48

]
,

with P (h) = 0 elsewhere.

6



1.2. ANALYSIS IN THE TIME DOMAIN

1.2 Analysis in the Time Domain

1.2.1 Sample covariance and correlation

Taking the practical viewpoint, it is now assumed that an arbitrary random sample

{X1, . . . , Xn} from a covariance stationary multivariate time series model (X t)t∈Z
is given. It is therefore necessary to construct empirical estimators of the covariance

matrix function (and the correlation matrix function) from this given random

sample. A straightforward and widely accepted estimator, the sample covariance

matrix function Γ̂(h), is calculated according to:

Definition 1.8 (Sample covariance and correlation matrix function).

Γ̂(h) =
1

n

n−h∑
t=1

(X t+h −X )(X t −X )′, 0 ≤ h < n,

with X = 1
n

∑n
t=1 X t being the sample mean, a well known estimator for µ. From

that, the sample correlation matrix function P (h) can be estimated by

P̂ (h) = ∆̂−1Γ̂(h)∆̂−1, 0 ≤ h < n,

with ∆̂ standing for the d× d diagonal matrix of the sample standard deviations

of the component series, i.e.

∆̂ = diag

(√
Γ̂(0)11, . . . ,

√
Γ̂(0)dd

)
.

Remark. 1. In order for the sample covariance and correlation matrix to be

positive definite, the sample size n must be greater than the number of

component time series d (Zivot and Wang [28]).

2. Asymptotic properties of the sample correlation matrix function P̂ (h) have

been investigated under various assumptions (see for example Fuller [15] for

details). The estimate is consistent, but biased in a finite sample. For asset

return series, the finite sample distribution of P̂ (h) is rather complicated

partly because of the presence of conditional heteroscedasticity and high

7



1.2. ANALYSIS IN THE TIME DOMAIN

kurtosis. Proper bootstrap resampling methods are recommended if the finite

sample distribution is needed (Tsay [26]).

1.2.2 The cross correlogram

The information in the sample correlation matrix function is generally displayed

in the cross correlogram, which is a d × d matrix of plots. The ith diagonal

plot in this graphic display is the correlogram of the ith component series given

by {(h, P̂ (h)ii) : h = 0, 1, 2, . . .}. For the off-diagonal plots containing the es-

timates of cross correlation there are various possible presentations. Here the

convention adopted for instance by S-PLUS [18] will be used: for i < j the set

{(h, P̂ (h)ij) : h = 0, 1, 2, . . .} is plotted, for i > j {(−h, P̂ (h)ij) : h = 0, 1, 2, . . .}.
See Example 1.2, especially Figure 1.2 and 1.3 for details and interpretation.

Remark. Observing cross correlograms, one will usually find (dotted) horizontal

lines centered around the time axis. These are the 95% Gaussian confidence bands

at (−1.96/
√

n, 1.96/
√

n), which are only asymptotically correct, under the (strik-

ing) assumption that the underlying process is a white noise process. Even though

they are hardly ever theoretically justified in practice, they are often used as a

rough guidance for the eye (in order to determine whether correlation at a certain

lag is significantly different from zero). Nevertheless, they should not be relied

upon too heavily to draw conclusions, especially if the number of observations is

small or the underlying process is not a white noise process (McNeil et al. [20]).

1.2.3 Example

In order to understand better how the above ideas may work in practice, a small

time domain analysis is now being conducted on simulated data.

Example 1.2. Returning to Example 1.1, consider again the bivariate covariance

stationary time series (X t)t∈Z defined by (1.2),

X t =

[
Xt,1

Xt,2

]
=

[
Zt

Zt + .75Zt−10

]
.

8



1.2. ANALYSIS IN THE TIME DOMAIN

Instead of a theoretical analysis, the time series is now being simulated in S-

PLUS [18] and the module finmetrics [19], as well as in R [21], making use of the

library tseries [25]. Two different distribution functions are used for simulat-

ing the white noise (Zt)t∈Z. Firstly, it is chosen to be independently normally

distributed with mean zero and variance one, i.e. Zt ∼ N(0, 1) iid. Secondly, it

is chosen to be independently t distributed, centered around zero, with degrees

of freedom ν equaling three, and appropriately scaled to have variance one, i.e.

Zt ∼ t(3, 0, 1
3
). A possible realization with sample size n = 250 is shown in Fig-

ure 1.1.

By simply looking at the plots (and assuming for a while that one does not know

the generating equations beforehand), it comes to mind that stationarity may be a

plausible assumption. Shocks and peaks seem to recenter quickly, and no trend is

visible. There is some evidence that the two component series might be correlated,

at each point in time as well as with some lag. This becomes especially clear when

looking at the path with t innovations (lower plots): The large negative shock

taking place simultaneously for both component time series at t = 76 seems to be

repeated by component series two at t = 86. Similar effects, even though not as

striking, can be observed at several other points in time.

Despite the fact that it may be possible to understand some properties of the time

series being analyzed directly by observing the standard time series plot such as

Figure 1.1, it is always advisable to look at the cross correlogram. Concerning

our concrete example, it is given in Figure 1.2 for the time series with Gaussian

innovations and in Figure 1.3 for the time series with t-innovations and provides

graphically all necessary information about the correlation function in an easy to

read fashion.

Looking at Figure 1.2, the picture in row one and column two (i.e. the upper

right picture) shows estimated correlations between Xt+h,1 (component series one

at time t + h) and Xt,2 (component series two at time t) for h ≥ 0. Clearly these

estimates are small and lie mostly within the confidence band with the obvious

exception of the correlation estimate for values with lag zero P̂ (0)12 ≈ 0.8137.1

1Since the generating equations are known, we may compare this value with the true correla-
tion P (0)12 = P (0)21 = 0.8, calculated in Example 1.1.
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Gaussian innovations: Component series 1
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Figure 1.1: Two paths of the time series defined by (1.2). The upper two plots
show a realization with iid Gaussian innovations, the lower ones show a realization
with iid t innovations (df ν = 3), as described in Example 1.2.
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Figure 1.2: Cross correlogram of the realization of the bivariate time series defined
by (1.2) with Gaussian innovations, see Example 1.2 for commentary.

The picture in row two and column one (the lower left picture) again shows es-

timated correlations between Xt+h,1 and Xt,2, but contrary to the above now for

h ≤ 0. Lag zero correlation P̂ (0)12 is plotted again and is exactly the same as

above. Values for h < 0 are all within the confidence bounds except for the value

P̂ (−10)12 ≈ 0.6223, which is significantly different from zero.2

The diagonal pictures in Figure 1.2 display the autocorrelations of each compo-

nent series and correspond to the correlograms known from univariate time series

analysis. One can observe the trivial peaks P̂ (0)ii = 1 for i ∈ {1, 2} in both

component series, but apart from that only one really significant nonzero value

P̂ (10)22 ≈ 0.4631.3

2The true correlation at lag h = −10 amounts to P (−10)12 = P (10)21 = 0.6.
3The true autocorrelation at lag h = 10 is P (10)22 = 0.48.
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Summarizing these results, we can conclude that we were able to successfully

estimate auto- and intercorrelation from the simulated time series. The lead-lag

effect of component series one Xt,1 onto component series two Xt,2 was preserved

and could clearly be seen in the cross correlogram. S-PLUS [18] code used for

simulating and generating the plots can be found in the appendix.
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Figure 1.3: Cross correlogram of the realization of the bivariate time series defined
by (1.2) with standard t innovations as plotted in Figure 1.1, see Example 1.2 for
commentary.

The same analysis as above was conducted with the second time series realization,

where the innovations Zt were t distributed. The cross correlogram is displayed in

Figure 1.3 and does qualitatively not differ much from the above. The estimated

values are:

P̂ (−10) ≈
[

0 .6302

0 .4941

]
, P̂ (0) ≈

[
1 .8121

.8121 1

]
,
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1.3. VECTOR ARMA PROCESSES

with P̂ (h) ≈ 0 for h ∈ Z \ {−10, 0, 10}.

1.3 Vector ARMA Processes

The main goal of this section is to provide a brief excursion into multivariate

ARMA models, since they are a traditional and well-investigated tool for model-

ing time series in various fields. For daily financial data capturing multivariate

ARMA effects is much less important than capturing multivariate volatility effects

(and dynamic correlation effects) through multivariate GARCH modeling,4 but for

longer period returns the more traditional ARMA processes become increasingly

useful. In econometrics literature they are more commonly known as vector ARMA

or VARMA processes.

1.3.1 The VARMA model

Definition 1.9. Let (εt)t∈Z be WN(0, Σε). The process (X t)t∈Z is a zero-mean

VARMA(p, q) process if it is a covariance stationary process satisfying difference

equations of the form

X t − Φ1X t−1 − . . .− ΦpX t−p = εt + Θ1εt−1 + . . . + Θqεt−q (1.3)

for all t ∈ Z and fixed parameter matrices Φi and Θj in Rd×d. (X t)t∈Z is a

VARMA(p, q) process with mean µ if the centered series (X t − µ)t∈Z is a zero-

mean VARMA(p, q) process.

Remarks. 1. VARMA stands for Vector Auto-Regressive Moving Average.

The left hand side of (1.3) is usually referred to as the (V)AR part, the

right hand side as the (V)MA part.

2. Equation (1.3) is often written in the more compact form

Φ(B)X t = Θ(B)εt, (εt)t∈Z ∼ WN(0, Σε), (1.4)

4Multivariate GARCH modeling will be the main topic in Chapter 3.
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1.3. VECTOR ARMA PROCESSES

where Φ(z) := I − Φ1z − . . . − Φpz
p and Θ(z) := I + Θ1z + . . . + Θqz

q are

matrix-valued polynomials, I is the d× d identity matrix and B denotes the

backward shift operator, defined by BkX t = X t−k for k ∈ N.

3. For practical applications only causal VARMA processes are considered,

which are, loosely speaking, processes which depend only on the past. This

idea is being formalized in Definition 1.10.

Definition 1.10 (Causality). A process (X t)t∈Z is a causal process, if it admits

a representation of the form

X t − µ =
∞∑
i=0

Ψiεt−i, (1.5)

where (εt)t∈Z is WN(0, Σε) and (Ψi)i∈N0 is a sequence of matrices in Rd×d whose

components are absolutely summable, i.e.

∞∑
i=0

|Ψi,jk| < ∞ (1.6)

holds for any j and k in {1, . . . , d}.

Remark. The so-called absolute summability condition (1.6) is a technical con-

dition which ensures that E|X t| < ∞. This guarantees that the infinite sum in

(1.5) converges absolutely, almost surely, meaning that both
∑∞

i=0 |Ψi||εt−i| and∑∞
i=0 Ψiεt−i are finite with probability one.5 See Brockwell and Davis [8] for de-

tails.

1.3.2 Some properties of VARMA processes

One striking reason of restricting attention to causal models is the fact that causal-

ity implies covariance stationarity, and first and second moments may easily be

calculated.

5The absolute value of matrices and vectors is to be taken component-wise and not to be
confused with the determinant.
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1.3. VECTOR ARMA PROCESSES

Proposition 1.1. Any causal process is covariance stationary with E[X t] = µ.

For h ≥ 0 the covariance matrix function is given by

Γ(h) =
∞∑
i=0

Ψi+hΣεΨ
′
i.

Proof. Considering the absolute summability condition (1.6) and linearity of ex-

pectation, it easily follows that

E[X t] = E[µ +
∞∑
i=0

Ψiεt−i]
(1.6)
= E[µ] +

∞∑
i=0

ΨiE[εt−i] = µ.

For h ≥ 0 the covariance matrix function is given by

Γ(t + h, t) = E[(X t+h − µ)(X t − µ)′] = E
[ ∞∑

i=0

Ψiεt+h−i

∞∑
j=0

ε′t−jΨ
′
j

]
,

which can, again by interchanging sums and expectations according to (1.6), be

rewritten as

∞∑
i=0

∞∑
j=0

ΨiE[εt+h−iε
′
t−j]Ψ

′
j =

∞∑

i=h

ΨiE[εt+h−iε
′
t+h−i]Ψ

′
i−h =

∞∑

i=h

ΨiΣεΨ
′
i−h,

applying that E[εiε
′
j] 6= 0 ⇐⇒ i = j.

The requirement that a process satisfying the VARMA-equations (1.3) (or equiva-

lently (1.4)) be causal imposes conditions on the values that the parameter matrices

Φi (in particular) and Θj may take. The theory is well-investigated, one important

result being the causality criterion.

Proposition 1.2 (Causality criterion). If for all z ∈ C with |z| ≤ 1,

det Φ(z) 6= 0, (1.7)

holds, then (1.4) has exactly one stationary solution. This solution is causal, i.e.

X t =
∞∑

j=0

Ψjεt−j.
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The matrices Ψj are determined uniquely by

Ψ(z) :=
∞∑

j=0

Ψjz
j = Φ−1(z)Θ(z), |z| ≤ 1. (1.8)

Proof. The proof of this proposition makes use of the existence of Φ−1(z) for

|z| < 1 + ε, which is assured by condition (1.7). Therefore it has a power series

expansion with nice properties, which is then used for the desired representation.

For a detailed proof the reader is referred to Brockwell and Davis [8], Theorem

11.3.1.

Remark. The matrices Ψj from Proposition 1.2 can easily be found recursively

from the equations

Ψ0 = I,

Ψj =

j∑
i=1

ΦiΨj−i + Θj, j = 1, 2, . . . ,

where Θj = 0 for j > q, and Φi = 0 for i > p. These equations are established by

comparing coefficients of zj in the power series identities (1.8) after multiplying

through by Φ(z).

1.3.3 Examples and problems

In many cases the full generality of VARMA models is not required, and VAR

or VMA models suffice to explain the data. One widely used, and rather simple

model is the VAR(1) model, analyzed in Example 1.3.

Example 1.3 (VAR(1) process). The first-order VAR process satisfies the set of

vector difference equations

X t = ΦX t−1 + εt, (1.9)

for all t ∈ Z. According to Theorem 1.2 it is possible to find a causal process

satisfying (1.5) and (1.6) that is a solution of (1.9) if all eigenvalues of the matrix
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Φ are less than one in absolute value. The causal process

X t =
∞∑
i=0

Φiεt−i,

calculated directly or recursively as explained above, is then the unique solution.

This solution can be thought of as an infinite order vector moving average process, a

so-called VMA(∞) process. The covariance matrix function of this process follows

from Proposition 1.1 and is given by

Γ(h) =
∞∑
i=0

Φi+hΣε(Φ
i)′ = Φh

∞∑
i=0

ΦiΣε(Φ
i)′ = ΦhΓ(0), h ∈ N0.

Full VARMA models are less common than models from the VAR subfamily in

practice, one reason being that identifiability problems arise when estimating pa-

rameters. For example, we can have situations where the first order VARMA(1,1)

model X t−ΦX t−1 = εt + Θεt−1 can be rewritten as X t−Φ∗X t−1 = εt + Θ∗εt−1

for completely different parameter matrices Ψ∗ and Θ∗, as shown in Example 1.4.

Such an identifiability problem is serious, because, without proper constraints, the

likelihood function of a vector ARMA(1,1) model for the data may not have a

unique maximum.

Example 1.4 (Tsay [26]). Consider the two-dimensional VARMA(1,1) model de-

fined by

X t −
[

.8 −2

0 0

]
X t−1 = εt +

[
.5 0

0 0

]
εt−1.

This model is identical to the VARMA(1,1) model

X t −
[

.8 −2 + a

0 b

]
X t−1 = εt +

[
.5 a

0 b

]
εt−1

for any nonzero a and b. In this particular instance, the equivalence occurs because

we have Xt,2 = εt,2 in both the first and the second model. The effects on the

parameters a and b on the system cancel out between AR and MA parts of the

second model.
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Another problem that arises when estimating VARMA models is the estimation

procedure itself. In order to obtain the maximum likelihood estimate, the likeli-

hood function has to be maximized numerically. This is computationally expensive

and local maxima may be encountered.
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Chapter 2

Univariate Models for Changing

Volatility

The most important models for daily risk factor return series are addressed in

this section. Definitions of (univariate) ARCH and GARCH models are given,

and some of their mathematical properties are discussed. Throughout the chapter

examples of simulated time series are presented in order to illustrate (some of) the

ideas. Structure and notation again follows McNeil et al. [20], with some minor

exceptions.

2.1 ARCH Processes

2.1.1 Definition and basic properties

Definition 2.1. Let (Zt)t∈Z be univariate SWN(0,1). The process (Xt)t∈Z is an

ARCH(p) process if it is strictly stationary and if it satisfies for all t ∈ Z and some
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strictly positive-valued process (σt)t∈Z equations of the form

Xt = σtZt, (2.1)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i, (2.2)

where α0 > 0 and αi ≥ 0 for i = 1, . . . , p. Each Zt shall be called an innovation

and interpreted as such.

Remarks. 1. Let Ft = σ{(Xs)s≤t} again denote the σ-algebra representing the

history of the process up to time t. Clearly construction (2.2) ensures that σt

is measurable with respect to Ft−1. Provided that E[|Xt|] < ∞ and applying

the independence of Zt and Ft−1, one may easily calculate that

E[Xt|Ft−1] = E[σtZt|Ft−1] = σtE[Zt|Ft−1] = σtE[Zt] = 0, (2.3)

meaning that the ARCH process has the martingale difference property with

respect to the natural filtration (Ft)t∈Z.

2. If one further assumes that E[X2
t ] exists so that the process (Xt)t∈Z is a

covariance stationary white noise1, one can also calculate that

var(Xt|Ft−1) = E[σ2
t Z

2
t |Ft−1] = σ2

t var(Zt) = σ2
t .

Thus the model has the interesting property that its conditional standard

deviation σt, or volatility, is a continually changing function of the previous

squared values of the process. If one or more of the past |Xt−1|, . . . , |Xt−p| are

particularly large, then Xt is effectively drawn from a distribution with large

variance, and may itself be large; in this way the model generates volatil-

ity clusters. The name ARCH (autoregressive conditionally heteroscedastic)

refers to this structure: the model is

• autoregressive, since Xt clearly depends on previous Xt−i, and

• conditionally heteroscedastic, since the conditional standard deviation

changes continually over time.

1A condition therefore may be formulated in terms of restrictions on the parameters αi

(namely that
∑p

i=1 αi < 1) and will be given in Proposition 2.4.
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3. Note that the independence of Zt and Ft−1 which was assumed above is only

true for causal ARCH process, i.e. the equations (2.1) and (2.2) must have a

solution of the form Xt = f(Zt, Zt−1, . . .) for some f so that Zt is independent

of previous values of the process. Therefore, in practical applications only

causal solutions are considered (and in fact the causality-requirement is often

included in the definition itself).

4. The distribution of the innovations (Zt)t∈Z can in principle be any zero-

mean, unit-variance distribution. For statistical fitting purposes one may or

may not choose to actually specify the distribution, depending on whether

a maximum-likelihood (ML), quasi-maximum-likelihood (QML) or nonpara-

metric fitting method is implemented.2 According to McNeil et al. [20],

the most common choices for ML are standard normal innovations, i.e.

Zt ∼ N(0, 1), or t innovations scaled in such a way that the variance is

one, i.e. Zt ∼ t(ν, 0, ν−2
ν

).3

2.1.2 Stationarity aspects of ARCH(1)

In this section properties of the ARCH(1) model are analyzed. They extend to

the whole ARCH class and, later on, to GARCH models. Nevertheless, these

properties are pointed out in the simplest case.

Some intuitive discussion

Focusing on the question which condition an ARCH(1) process needs to satisfy

in order to be stationary, it is important to note that especially in the context of

ARCH models there has to be carefully distinguished between covariance station-

arity and strict stationarity, since it is possible that there exist strictly stationary

ARCH(1) processes with infinite variance (which are of course not covariance sta-

tionary).

2A more extensive discussion of fitting the models will be topic of Section 2.3.
3See equations (2.18) and (2.20) in Section 2.3.2 for the forms of the densities.
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Figure 2.1: ARCH(1) process with simulated Gaussian innovations and parameters
α0 = 0.1 and α1 = 0.5. The upper left picture shows the realization of the
process itself, the upper right the realization of the volatility σt. The lower two
pictures display the correlograms of the raw values Xt and squared values X2

t . The
process is covariance stationary with variance 1/5 and finite fourth moment (since
α1 < 1/

√
3 ≈ 0.577) and the squared values follow an AR(1) process. The true

form of the ACF of the squared values is a dashed line in the correlogram. Details
and explanation to the above ideas will be given in the following sections.

Using X2
t = σ2

t Z
2
t and (2.2) in the case p = 1, the squared ARCH(1) process may

be written as

X2
t = α0Z

2
t + α1X

2
t−1Z

2
t . (2.4)

Taking expectation on both sides and noting the independence of Xt−1 and Zt, the

above equation (2.4) transforms to

E[X2
t ] = α0 + α1E[X2

t−1],
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since E[Z2
t ] = 1 by Definition 2.1. Assuming covariance stationarity, E[X2

t ] =

E[X2
t−1] := σ2

x < ∞ holds and the last line simplifies to

σ2
X = α0 + α1σ

2
X .

This equation may now easily be solved for σ2
X , obtaining the variance of a covari-

ance stationary ARCH(1) process as an elementary function of the parameters α0

and α1:

σ2
X =

α0

1− α1

.

Simply because the variance σ2
X has to be positive and α0 is strictly greater than

zero by definition, α1 < 1 is a necessary condition for the ARCH(1) model to be

covariance stationary. Moreover, it is also a sufficient condition, which may be

seen by applying parts of the theory of stochastic recurrence equations (SREs).

Strict stationarity of ARCH(1)

Equation (2.4) is one particular SRE of the form

Yt = AtYt−1 + Bt, (2.5)

where At and Bt are each iid series of random coefficients (in this special case

At = α1Z
2
t and Bt = α0Z

2
t ). In order to be able to answer the question whether

there exists a stationary solution of (2.4), the following theorem for stochastic

recurrence equations may be used.

Theorem 2.1 (Brandt [7]). Given a stochastic recurrence equation of type (2.5)

with the coefficients satisfying

E[log(|At|)] < 0, E[max{0, log(|Bt|)}] < ∞, (2.6)

then equation (2.5) has a unique stationary solution given by

Yt =
∞∑
i=0

Bt−i

i−1∏
j=0

At−j,
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where the sum on the right hand side converges absolutely, almost surely.4 This

solution is strictly stationary.

For the detailed proof of this theorem, the reader is referred to eg. Brandt [7].

Nevertheless, some intuition for these conditions and the form of the solution is

given by iterating equation (2.5) k times to obtain

Yt = At(At−1Yt−2 + Bt−1) + Bt

= Bt +
k∑

i=1

Bt−i

i−1∏
j=0

At−j + Yt−k−1

k∏
i=0

At−i.

The conditions (2.6) ensure that the middle term on the right converges absolutely

and the final term disappears. In particular note that

1

k + 1

k∑
i=0

log(|At−i|) a.s.−→ E[log(|At|)] < 0

by the strong law of large numbers. So

k∏
i=0

|At−i| = exp

(
k∑

i=0

log(|At−i|)
)

a.s.−→ 0,

which shows the importance of the condition that E[log |At|] < 0. The solu-

tion (2.7) is a strictly stationary process because it is a function of iid variables

(As, Bs)s≤t, and the E[log |At|] < 0 condition turns out to be the key to the strict

stationarity of ARCH and GARCH models.5

Applying Theorem 2.1 to the ARCH(1) model, then the squared process in (2.4)

is a stochastic recurrence equation with Yt = X2
t , At = α1Z

2
t and Bt = α0Z

2
t .

Therefore, the conditions translate into

E[max{0, log(α0Z
2
t )}] < ∞, E[log(α1Z

2
t )] < 0.

4The empty product appearing in
∏i−1

j=0 At−j for i = 0 is set to be one.
5More precisely, the above condition is in fact the key to a strictly stationary solution of the

ARCH equations (2.1) and (2.2) (or GARCH equations (2.11) and (2.12), respectively), which
is a requirement for a (G)ARCH process by definition.
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The first condition is automatically satisfied by definition. Hence, the second con-

dition is the condition for a strictly stationary solution of the ARCH(1) equations

(2.1) and (2.2) (which makes a process satisfying these equations an ARCH(1)

process as defined). It may be shown that it is in fact a necessary and suffi-

cient condition for strict stationarity; see Bougerol and Picard [6]. Assuming this

condition fullfilled, (X2
t )t∈Z takes the form

X2
t = α0

∞∑
i=0

αi
1

i∏
j=0

Z2
t−j. (2.7)

It may easily be shown by simulation6 that if the (Zt)t∈Z follow the standard normal

distribution, then the condition for a strictly stationary solution is approximately

α1 . 3.56. Maybe somewhat surprisingly, if the (Zt)t∈Z are scaled t distributed

with four degrees of freedom and variance one, the condition is α1 . 5.43; choosing

three degrees of freedom raises the bound to α1 . 7.39.

Covariance stationarity of ARCH(1)

Obviously, strict stationarity depends on the distribution of the (Zt)t∈Z, but co-

variance stationarity does not. The following theorem verifies that α1 < 1 is a

necessary and also sufficient condition for covariance stationarity, without having

to specify any distributional assumptions.

Theorem 2.2. An ARCH(1) process as in Definition 2.1 has a covariance sta-

tionary solution if and only if α1 < 1. Furthermore, the variance of the process is

given by α0/(1− α1).

Proof. =⇒: This direction has already been proved.

⇐=: Assuming that α1 < 1, then by Jensen’s inequality7 for concave functions,

E[log(α1Z
2
t )] ≤ logE[α1Z

2
t ] = log(α1) < 0

6The straightforward simulation was performed in S-PLUS [18], producing the same result as
stated in McNeil et al. [20] and Shepard [24].

7See for example Elstrodt [11] for details on this famous and often useful theorem.
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holds. Theorem 2.1 may be applied and taking expectations on both sides of (2.7)

results in

E[X2
t ] = α0E

[ ∞∑
i=0

αi
1

i∏
j=0

Z2
t−j

]
= α0

∞∑
i=0

αi
1 =

α0

1− α1

,

yielding the desired result.

Thus, the ARCH(1) process (Xt)t∈Z with α1 < 1 is a martingale difference sequence

with finite and constant second moment and therefore a white noise process ac-

cording to Definition 1.5.

Example 2.1. In Figure 2.2 four time series plots are displayed. Each of the

time series is generated by ARCH(1) equations using the same innovations. The

parameter α0 = 0.01 is fixed for all four, and α1 varies in each series. The top time

series is both strictly and covariance stationary (α1 = 0.99), whereas the middle

two are not covariance stationary but strictly stationary (α1 = 2 and α1 = 3,

respectively). In the bottom picture a non-stationary (explosive) process with

α1 = 4 is displayed.

Note that the lower two pictures use a special logarithmic y-axis, where all values

less than one in modulus are set to be zero. More concretely, this means that

ylog = sgn(y) · log (max {1, |y|})

is being plotted on the y-axis.

2.1.3 Higher moments of ARCH(1)

It is clear from (2.7) that the distribution of (Xt)t∈Z in an ARCH(1) model bears

a complicated relationship to the distribution of (Zt)t∈Z. Even if the innovations

are Gaussian, the stationary distribution of the time series is not Gaussian, but

rather a leptokurtic8 distribution with more slowly decaying tails. The distribution

8A random variable is loosely speaking called leptokurtic if its probability density curve has
fatter tails and a higher peak at the mean than the normal distribution.
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Figure 2.2: Four time series generated by ARCH(1) equations using fixed α0 but
varying α1. From top to bottom, α1 = 0.99, α1 = 2, α1 = 3 and α1 = 4,
respectively. Please refer to Example 2.1 for detailed explanation.
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of Xt would essentially be known if the distribution of σt was known, which has

no simple form. Nevertheless, a lot is known about the behaviour of its tails.

Theorem 2.3 (similar to Engle [12]). For m ≥ 1, the strictly stationary ARCH(1)

process has finite moments of order 2m if and only if

E[Z2m
t ] < ∞ and α1 < E[Z2m

t ]−1/m.

Proof. We rewrite (2.7) in the form

X2
t = Z2

t

∞∑
i=0

Yt,i,

for positive random variables Yt,i = α0α
i
1

∏i
j=1 Z2

t−j for i ≥ 1 and Yt,0 = α0. For

m ≥ 1 and an arbitrary large n ∈ N+ the following inequalities hold:

n∑

k=0

E[Y m
t,k] ≤ E

[( n∑

k=0

Yt,k

)m]
≤

( n∑

k=0

E[Y m
t,k]

1/m

)m

.

The first inequality is true due to linearity of expectation and elementary calculus,

and the second one is known as Minkowski’s inequality.9 Since

E[X2m
t ] = E[Z2m

t ]E
[( ∞∑

i=0

Yt,i

)m]
,

it follows that

E[Z2m
t ]

∞∑
i=0

E[Y m
t,i ] ≤ E[X2m

t ] ≤ E[Z2m
t ]

( ∞∑
i=0

E[Y m
t,i ]

1/m

)m

.

By observing that E[Y m
t,i ] = αm

0 (αm
1 E[Z2m

t ])i it may now easily be deduced that the

above sums converge if and only if αm
1 E[Z2m

t ] < 1 and E[Z2m
t ] < ∞, which proofs

the theorem.

Remark. For a finite fourth moment (meaning that m = 2), the condition required

amounts to α1 < 1/
√

3 in the case of Gaussian innovations and α1 < 1/
√

6 in the

case of t6 innovations; for t4 innovations the fourth moment is undefined.

9Details and proof may again be found in Elstrodt [11].
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Assuming the existence of a finite moment it is easy to calculate its value as well

as that of the kurtosis of the process. Squaring both sides of (2.4) and taking

expectations of both sides results in

E[X4
t ] = α2

0E[Z4
t ] + α2

1E[Z4
t ]E[X4

t ] +
2α2

0α1E[Z4
t ]

1− α1

.

Solved for E[X4
t ] the above amounts to

E[X4
t ] =

α2
0E[Z4

t ](1 + α1)

(1− α1)(1− α2
1E[Z4

t ])
.

The kurtosis of the stationary distribution κX can then easily be calculated to be

κX =
E[X4

t ]

E[X2
t ]2

=
κZ(1− α2

1)

1− α2
1κZ

,

where κZ = E[Z4
t ] denotes the kurtosis of the innovations. Clearly when κZ > 1,

the kurtosis of the stationary distribution κX is inflated in comparison with that

of the innovation distribution; for Gaussian or scaled t innovations κX is greater

than 3, so the stationary distribution is leptokurtic.

2.1.4 Parallels of ARCH(1) and AR(1)

When observing the serial dependence structure of the squared time series (X2
t )t∈Z

in the case of covariance stationarity (α1 < 1), one can see a close resemblance to

an univariate AR(1) process. We write the squared process as

X2
t = σ2

t Z
2
t = σ2

t + σ2
t (Z

2
t − 1), (2.8)

and setting Tt = σ2
t (Z

2
t − 1) we note that (Tt)t∈Z forms a martingale difference

series, since E[|Tt|] < ∞ and E[Tt|Ft−1] = σ2
tE[Z2

t − 1] = 0. By plugging in

according to Definition 2.1, X2
t may further be rewritten as

X2
t = α0 + α1X

2
t−1 + Tt, (2.9)
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which now closely resembles an AR(1) process for X2
t , except that Tt is not neces-

sarily a white noise process. In order to assure this property, one needs to restrict

their attention to processes where E[X4
t ] is finite. Tt then has a finite and constant

second moment and is a white noise process. Under this assumption, (X2
t )t∈Z is

an AR(1) in mean process according to Definition 1.9 of the form

(X2
t − µ)− α1(X

2
t−1 − µ) = Tt, µ =

α0

1− α1

.

It is a well known fact10 that the autocorrelation function11 of an AR(1) process

is ρ(h) = α
|h|
1 for h ∈ Z. For an example of an ARCH(1) process with finite fourth

moment whose squared values follow an AR(1) process please see Figure 2.1.

2.1.5 ARCH(p)

This section briefly concentrates on ARCH models of higher order (p > 1). These

models allow more flexibility when modeling the correlation structure.

Reconsidering the definition of ARCH models with higher order, an ARCH(p)

process (Xt)t∈Z is given by

Xt = σtZt, σt =

√√√√α0 +

p∑
i=1

αiX2
t−i, t ∈ Z, (2.10)

where α0 > 0, α1, . . . , αp ≥ 0 and Zt ∼ SWN(0,1).

The basic idea of these models is to increase the order of the autoregressive poly-

nomial. Properties of the ARCH(p) models are generalizations of the ARCH(1)

model, such as the following theorem.

Theorem 2.4 (Engle [12]). The ARCH(p) process is covariance stationary if and

10May be verified in almost every book about time series covering fundamental theory, see for
example Brockwell and Davis [8, 9], Fuller [15] or Tsay [26].

11The correlation matrix function P (h) as introduced in Definition 1.4 may easily be applied
to the univariate case, in which it is usually referred to as autocorrelation function (or simply
ACF), and denoted by ρ(h) = P (h) for dimension d = 1. The lag h is usually chosen to be in
N0, since the ACF is symmetric, i.e. ρ(−h) = ρ(h).
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only if
p∑

i=1

αi < 1.

The variance is then given by

E[X2
t ] =

α0

1−∑p
i=1 αi

.

By defining Tt = σ2
t (Z

2
t − 1) the ARCH(p) may analogously to the ARCH(1)

process be represented in the form

X2
t = α0 +

p∑
i=1

αiX
2
t−i + Tt.

Once more Tt is a white noise process assuming that 4th moments of the time

series (Xt)t∈Z are finite. Hence, the squared ARCH(p) process (X2
t )t∈Z has an

AR(p) representation.

Models with high order p have to be used in applications quite often, since the

influence on volatility significantly depends on (more than one) past values. This

raises the problem of estimating a large number of parameters with restrictions,

which is a disadvantage of high order ARCH(p). These restrictions split up in two

conditions:

• non-negativity conditions (by definition) and

• stationarity conditions (e.g.
∑p

i=1 αi < 1).

The estimation of a large number of parameters is numerically very laborious, if,

for example, efficient estimation methods such as maximum likelihood are used

(Franke, Härdle and Hafner [14]). In order to reduce the computational burden

but also include a large number of past values the conditional variance may be

parameterized as

σ2
t = α0 + α1

p∑
i=1

wiX
2
t−i,
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where the weights wi, i = 1, . . . , q are given by

wi =
2(q + 1− i)

q(q + 1)
.

The weights decline linearly and are constructed such that
∑p

i=1 wi = 1, whereas

yet only two parameters have to be estimated (Bera and Higgins [3]).

2.2 GARCH Processes

2.2.1 Definition and basic properties

Definition 2.2. Let (Zt)t∈Z be univariate SWN(0,1). The process (Xt)t∈Z is a

GARCH(p, q) process if it is strictly stationary and if it satisfies for all t ∈ Z and

some strictly positive-valued process (σt)t∈Z the equations

Xt = σtZt, (2.11)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j, (2.12)

where

• α0 > 0, αi ≥ 0 for i = 1, . . . , p,

• βj ≥ 0 for j = 1, . . . , q.

Remarks. 1. GARCH process are generalized ARCH processes in the sense

that the squared volatility σ2
t is allowed to depend not only on the previous

squared values of the process, but also on the previous squared volatilities

themselves.

2. In practice low-order GARCH models are most widely used, and focus here

will be placed on the GARCH(1,1) model. In this model periods of high

volatility tend to be persistent, since |Xt| has a chance of being large if either

|Xt−1| is large or |σt−1| is large. Of course the same effect can be achieved
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2.2. GARCH PROCESSES

in GARCH models of high order, but lower-order GARCH models achieve

this effect more parsimoniously. A simulated realization of a GARCH(1,1)

process with Gaussian innovations and its volatility are shown in Figure 2.3.

In comparison with the ARCH(1) model in Figure 2.1 it is clear that the

volatility persists longer at higher levels before decaying to lower levels.

2.2.2 Stationarity aspects of GARCH(1,1)

It follows from (2.12) that for a GARCH(1,1) model we have

σ2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1, (2.13)

which is again a SRE of the form Yt = AtYt−1+Bt as in (2.5). This time it is a SRE

for Yt = σ2
t rather than X2

t , but its analysis follows easily from the ARCH(1) case:

The condition E[log |At|] < 0 for a strictly stationary solution of (2.5) translates

to E[log (α1Z
2
t + β1)] < 0 for (2.13) and the general solution (2.7) becomes

σ2
t = α0 + α0

∞∑
i=1

i∏
j=1

(α1Z
2
t−j + β1).

If (σ2
t )t∈Z is a strictly stationary process then so is (Xt)t∈Z, since Xt = σtZt and

(Zt)t∈Z is strict white noise. The solution of the GARCH(1,1) defining equations

is then

Xt = Zt

√√√√α0

(
1 +

∞∑
i=1

i∏
j=1

(α1Z2
t−j + β1)

)
. (2.14)

Again E[log(α1Z
2
t + β1)] < 0 is not only a sufficient but also necessary condition

for strict stationarity of GARCH(1,1), and using the previous result the condition

for covariance stationarity may be deduced.

Theorem 2.5. The GARCH(1,1) process is a covariance-stationary white noise

process if and only if α1 + β1 < 1. The variance is then given by α0

1−α1−β1
.

Proof. Theorem 2.5 may be proved analogously to Theorem 2.2 by making use of

(2.14).
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Figure 2.3: GARCH(1,1) process with simulated Gaussian innovations and para-
meters α0 = 0.1, α1 = 0.2, β1 = 0.7. In the upper left picture the realization of the
process itself is displayed, accompanied by the evolution of the volatility σt to its
right. The lower two pictures show the correlograms of the raw and squared values
of the time series. The process is covariance stationary according to Theorem 2.5
with unit variance and a finite fourth moment. Thus its squared values follow an
ARMA(1,1) process, as derived in the following sections. The true form of the
ACF of the squared values is indicated by the dashed line in the correlogram.
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2.2.3 Higher moments of GARCH(1,1)

Using a similar approach to that of Theorem 2.3, representation (2.14) may be used

to derive conditions for the existence of higher moments of a covariance stationary

GARCH(1,1) process. For existence of a fourth moment, a necessary and sufficient

condition is that E[(α1Z
2
t + β1)

2] < 1, which may, using elementary calculus and

the fact that E[Z2
t ] = 1, alternatively be written as

(α1 + β1)
2 < 1− (κZ − 1)α2

1.

As before, κZ again denotes the kurtosis of Zt.

Assuming this to be true, fourth moment and kurtosis of Xt can again easily be

calculated by squaring both sides of (2.13) and taking expectations to obtain

E[σ4
t ] = α2

0 + 2α0(α1 + β1)E[σ2
t ] + (α2

1κZ + 2α1β1 + β2
1)E[σ4

t ].

Recalling that E[σ2
t ] = E[X2

t ] = α0

1−α1−β1
, the above equation may be solved for

E[X4
t ] = κZE[σ4

t ], obtaining

E[X4
t ] =

α2
0κZ(1 + α1 + β1)

(1− α1 − β1)(1− α2
1κZ − 2α1β1 − β2

1)
,

from which it follows that

κX =
κZ(1− (α1 + β1)

2)

(1− (α1 + β1)2 − (κZ − 1)α2
1)

. (2.15)

Equation (2.15) is written in a form which makes clear that the kurtosis of Xt

is greater than that of Zt whenever κZ > 1, such as for Gaussian and scaled t

innovations. The kurtosis of the GARCH(1,1) model in Figure 2.3 is 5.18.

If the innovations are assumed to be standard normally distributed, there even

exists a formula for calculating all higher moments. Just like Engle [12] derived a

condition for 2rth moment existence of the ARCH(1) process in 1982, Bollerslev

was able to extend this theorem to the more general GARCH(1,1) class four years
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later:12

Theorem 2.6 (Bollerslev [5]). A necessary and sufficient condition for existence

of the 2rth moment for a GARCH(1,1) process with standard normal innovations

is

µ(α1, β1, r) =
r∑

j=0

(
r

j

)
ajα

j
1β

r−j
1 < 1,

where a0 = 1, and aj =
∏j

i=1(2j − 1) for j ∈ N. The 2rth moment can then be

expressed by the recursive formula

E[X2r
t ] =

ar

1− µ(α1, β1, r)

[
r−1∑
n=0

a−1
n E[X2n

t ]αr−n
0

(
r

r − n

)
µ(α1, β1, n)

]
.

Summarizing the above results for a GARCH(1,1) process Xt yields:

• The skewness of Xt equals zero if it exists and innovations themselves are

not skew (true for Gaussian and t innovations).13

• Xt and Xt−k are uncorrelated for k > 0 (which is obviously not true for the

squared values X2
t and X2

t−k).

• The distribution of Xt is leptokurtic for both Gaussian and t innovations.

More generally speaking, kurtosis of Xt is inflated in comparison with that

of Zt whenever κZ > 1.

• Just like ARCH(p) processes have an AR(p) representation for the squared

series X2
t , the squared GARCH(1,1) model generalizes to have a ARMA(1,1)

representation (see Section 2.2.4).

Remark. Virtually all of the above features generalize unmodified to the more

general GARCH(p, q) class.

12Please refer to Bollerslev [5] for a proof to this theorem.
13Can be seen analogously to (2.3): Provided that E[|X3

t |] < ∞,

E[X3
t ] = E[E[X3

t |Ft−1]] = E[E[σ3
t Z3

t |Ft−1]] = σ3
tE[E[Z3

t |Ft−1]] = σ3
tE[Z3

t ] = 0.
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2.2.4 GARCH(p, q)

Higher-order GARCH models have the same general empirical behavior as the

above discussed GARCH(1,1), but their mathematical analysis becomes more te-

dious. Nevertheless, similar to the case of ARCH processes, not only empiri-

cal but as well mathematical properties of the GARCH(1,1) models generalize to

GARCH(p, q) models for p > 1 or q > 1.

Stationarity aspects of GARCH(p, q)

In higher-order models, the condition for a strictly stationary solution of the

GARCH-equations (2.11) and (2.12) has been derived by Bougerol and Picard [6]

in 1992, but is rather complicated. For covariance stationarity, the necessary and

sufficient condition has been derived by Bollerslev in 1986 and is stated in the

following theorem.

Theorem 2.7 (Bollerslev [5]). The GARCH(p, q) process according to Defini-

tion 2.2 is covariance stationary if and only if

p∑
i=1

αi +

q∑
j=1

βj < 1.

The variance of the process is then given by

V[Xt] = E[X2
t ] =

α0

1−∑p
i=1 αi −

∑q
j=1 βj

.

Remark. As can be seen, the condition for covariance stationarity is similar to

that of the ARCH(p) case in Theorem 2.4. Not surprisingly, the GARCH(p, q)

version of the theorem additionally includes the βj terms for j = 1, . . . , q next to

the familiar αi terms for i = 1, . . . , p.
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Parallels of GARCH(p, q) and ARMA(p, q) process

As done for the ARCH process (see Section 2.1.4), the covariance stationary

GARCH(p, q) process may be written as

X2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j + Tt,

where Tt is a martingale difference process given by Tt = σ2
t (Z

2
t − 1). Since

σ2
t−1 = X2

t−1 − Tt−1, the above formula can be rewritten as

X2
t = α0 +

m∑
i=1

(αi + βi)X
2
t−i −

q∑
j=1

βjTt−j + Tt (2.16)

by setting m = max (p, q) and

αi = 0 for i = p + 1, . . . , q if q > p,

βj = 0 for j = q + 1, . . . , p if p > q.

Equation (2.16) now begins to resemble an ARMA(m, q) process for X2
t . If we

further assume that E[X4
t ] < ∞ and recall that Xt is covariance stationary (and

therefore
∑m

i=1 (αi + βi) < 1), we may rewrite (2.16) according to Definition 1.9,

(X2
t − µ)−

m∑
i=1

φi(X
2
t−i − µ) = Tt +

q∑
j=1

θjTt−j.

Now it can be observed that X2
t is formally an ARMA(m, q) process with param-

eters φi = αi + βi, θj = −βj and mean

µ =
α0

1−∑p
i=1 αi −

∑q
j=1 βi

.

Remark. As before, ARMA theory may now be used to calculate (for example)

the true ACF of the squared series X2
t . This has been done in Figure 2.3, which

shows a realization of a GARCH(1,1) process with finite fourth moment whose

squared values follow an ARMA(1,1) process.
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2.3 Fitting Univariate GARCH Models

A very versatile and most widely used approach to fitting GARCH models to

data is by maximum likelihood, which will be explained in detail in this section.

The topics will be the building of the (log-)likelihood, the finding of parameter

estimates and the asymptotic behavior of the estimates. Some remarks about

model checking will be added.

2.3.1 Building the likelihood

In order to avoid unnecessary confusion, attention is restricted to the cases of

ARCH(1) and GARCH(1,1) models. The fitting of higher-order ARCH(p) and

GARCH(p, q) models easily follows.

Starting from n + 1 data values X0, X1, . . . , Xn, the likelihood function L can be

written as the joint density of these observations, i.e.

L = fX0,X1,...,Xn(x0, x1, . . . , xn),

where f denotes the density function. Recalling that the joint density may be

rewritten in terms of the product of conditional densities, the likelihood may equi-

valently be expressed as

L = fX0(x0)
n∏

t=1

fXt|Xt−1,...,X0(xt|xt−1, . . . , x0). (2.17)

However, the marginal density fX0(x0) is not known in a tractable closed form

for ARCH and GARCH models and this poses a problem for basing a likelihood

on (2.17). The workaround for this problem in pactice is to use the conditional

likelihood conditioned on X0 instead. Doing so yields

Lc = fX1,...,Xn|X0(x1, . . . , xn|x0)

=
n∏

t=1

fXt|Xt−1,...,X0(xt|xt−1, . . . , x0).
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In the case of the ARCH(1) model, the conditional densities simplify to

fXt|Xt−1,...,X0(xt|xt−1, . . . , x0) = fXt|Xt−1(xt|xt−1),

since the ARCH(1) process is first order Markovian. The conditional distribution

of Xt may easily be calculated to be

P[Xt ≤ xt|Xt−1] = P
[
Zt ≤ xt

σt

|Xt−1

]
= GZ

(
xt

σt

)
,

for t = 1, . . . , n. GZ (·) stands for the distribution function of the innovations

(Zt)t∈Z and σt =
√

α0 + α1X2
t−1. Differentiating yields the conditional density for

Xt|Xt−1,

fXt|Xt−1(xt|xt−1) =
1

σt

gZ

(
xt

σt

)
,

with gZ(·) denoting the density of the innovations. It follows that the conditional

likelihood takes the tractable form

Lc(α0, α1; X) =
n∏

t=1

1

σt

gZ

(
Xt

σt

)
,

where X = (X1, . . . , Xn)′. An analogous method works for ARCH(p) processes by

conditioning on the first p values.

In the GARCH(1,1) model σt does not only depend on Xt−1, but also on σt−1.

Therefore, the joint density of X1, . . . , Xn conditional on realized values of both

X0 and σ0 is constructed:

fX1,...,Xn|X0,σ0(x1, . . . , xn|x0, σ0) =
n∏

t=1

fXt|Xt−1,...,X0,σ0(xt|xt−1, . . . , x0, σ0).

As above, this term can be calculated using the density of the innovations by

fXt|Xt−1,...,X0,σ0(xt|xt−1, . . . , x0, σ0) =
1

σt

gZ

(
xt

σt

)
,

with σt explained recursively by σt =
√

α0 + α1X2
t−1 + β1σ2

t−1. Considering these
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reasonings, the conditional likelihood can now be defined to be

Lc(α0, α1, β1; X) =
n∏

t=1

1

σt

gZ

(
Xt

σt

)
.

The problem remains that the value of σ2
0 is not actually observed. This is usu-

ally solved rather pragmatically by imputing a starting value such as the sample

variance of X or even simply zero.14

In the GARCH(p, q) case a larger sample size is needed. Assuming that n + p

data values X−p+1, . . . , X0, . . . , Xn are given, the conditional likelihood is built

conditional on the observed values X−p+1, . . . , X0 and the unobserved variables

σ−q+1, . . . , σ0. Again, for these unobserved values σ−q+1, . . . , σ0 starting values are

imputed.

2.3.2 Finding parameter estimates

Appropriate parameter estimates are obtained by maximizing the conditional like-

lihood function. By doing so it is equivalent to maximize its logarithm (being a

monotone function), which is easier to cope with (Tsay [26]). Hence, denoting the

set of parameters by θ = (θ1, . . . , θr)
′, the conditional log-likelihood is given by

log(Lc(θ; X)) =
n∑

t=1

lt(θ),

where lt(θ) = log(fXt|Xt−1,...,X0(xt|xt−1, . . . , x0)).

In order to find estimates for the set of parameters θ, the negative log-likelihood is

minimized with respect to θ. Alternatively, the root of equations ∂
∂θ

∑n
t=1 lt(θ) = 0

is found. These are the so-called score equations and are typically solved us-

ing numerical optimization procedures, such as (modified) Newton-Raphson-type

methods. Concretely, negative log-likelihood can be minimized using the BHHH15

14According to McNeil et al. [20], the issue of conditioning on starting values is of relatively
minor importance when datasets are large. The influence of these initial values on the final
parameter estimates is small, which can be verified by experimentation.

15BHHH is an acronym for Berndt, Hall, Hall and Hausman [4].
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2.3. FITTING UNIVARIATE GARCH MODELS

algorithm as Bollerslev [5] proposed when introducing GARCH(p, q) models.

Example 2.2 (Normal innovations). Assuming that the sequence of innovations

(Zt)t∈Z is a Gaussian strict white noise with variance one, gZ is given by

gZ(x) =
1√
2π

exp

(
−1

2
x2

)
, (2.18)

which yields by elementary calculus that the negative conditional log likelihood

function turns out to be

− log Lc =
n∑

t=1

(
log(

√
2π) + log(σt) +

1

2

X2
t

σ2
t

)

=
n

2
log(2π) +

1

2

n∑
t=1

log(σ2
t ) +

1

2

n∑
t=1

X2
t

σ2
t

. (2.19)

Example 2.3 (Student t innovations). Obviously, the same basic approach can

be used with non-Gaussian distributions, for example a standardized Student-t

distribution. Let Y be Student-t distributed with ν > 2 degrees of freedom. Then

V(Y ) = ν
ν−2

for ν > 2, and the innovations are chosen to be Zt =
√

ν
ν−2

Y . The

probability density function of Zt is then given by

gZ(x) =
Γ

(
ν+1
2

)

Γ
(

ν
2

) √
(ν − 2)π

(
1 +

x2

ν − 2

)− ν+1
2

, (2.20)

where ν > 2 and Γ(a) is the Gamma function, i.e., Γ(a) =
∫∞

0
xa−1e−xdx. Us-

ing the above density, the negative conditional log likelihood function of Xt can

analogously be calculated to be

− log(Lc) = n log

(
Γ

(
ν
2

) √
(ν − 2)π

Γ
(

ν+1
2

)
)

+
1

2

n∑
t=1

log(σ2
t )

+
ν + 1

2

n∑
t=1

log

(
1 +

X2
t

(ν − 2)σ2
t

)
.

Remark. Following the above ideas, other admissible distributions for Zt can
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2.3. FITTING UNIVARIATE GARCH MODELS

easily be employed. Among these, which have been used with ARCH-related

models belong to the Normal-Poisson mixture distribution, the power exponential

distribution and the generalized exponential distribution (Hamilton [16]).

2.3.3 Quasi-maximum likelihood estimation

What if the fitted model is misspecified with respect to the distribution of the

innovations? In other words, what if the model has been fitted to e.g. Gaussian

innovations, but although the dynamic form of the model is correct the choice

of innovations is wrong? Under this misspecification the model fitting procedure

is known as quasi-maximum or pseudo-maximum likelihood estimation (QML).

Essentially the negative Gaussian conditional log-likelihood specified by (2.19) is

treated as an objective function to be minimized rather than a proper likelihood.

Intuitively, this may still give reasonable parameter estimates - which turns out to

be the case under appropriate assumptions about the true innovation distribution

(McNeil et al. [20]).

Let θ̂n be the estimate that minimizes the negative Gaussian conditional log-

likelihood (2.19) and θ be the true value. Then even when Zt is non-Gaussian and

E[Z4
t ] < ∞ it follows that

√
n(θ̂n − θ)

d−→ Np+q+1(0, I(θ)−1J(θ)I(θ)−1), (2.21)

where

I(θ) = −E
[
∂2lt(θ)

∂θ∂θ′

]
,

often said to have outer product form, and

J(θ) = E
[
∂lt(θ)

∂θ

∂lt(θ)

∂θ′

]
,

referred to as Hessian form. Note that the expectation in I(θ) and J(θ) is taken

with respect to the true model (not the misspecified Gaussian model). In general

I(θ) 6= J(θ) unless the true model really has Gaussian innovations, i.e. the model

is not misspecified.
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The asymptotic covariance matrix appearing in equation (2.21) is estimated by

I(θ̂)−1J(θ̂)I(θ̂)−1, where I is approximated by the observed information matrix

I(θ) = − 1

n

n∑
t=1

∂2lt(θ)

∂θ∂θ′
,

and J is approximated by

J(θ) =
1

n

n∑
t=1

∂lt(θ)

∂θ

∂lt(θ)

∂θ′
.

2.3.4 Model checking

For a (correctly specified) GARCH(p, q) model, the standardized shocks or resid-

uals zt defined by

zt =
Xt

σ̂t

, (2.22)

σ̂2
t = α̂0 +

p∑
i=1

α̂iX
2
t−i +

q∑
j=1

βjσ̂
2
t−j,

should behave like strict white noise. This can be graphically investigated with

correlograms of raw and absolute residual values (and other transformations of the

raw values such as the logarithm or polynomials). Additionally, formal tests such as

portmanteau SWN tests can be applied to raw and transformed values. However,

due to the construction of (2.22), some initial values are needed. Usually, the

starting values of Xt are set to zero and those of σ̂t are either set to be the sample

variance or also zero. Since the first few values of zt will strongly be influenced by

these imputed starting values, they might be ignored in later analysis.

Assuming that the SWN hypothesis is sustainable (i.e. the dynamics have been

captured satisfactorily), the validity of the distribution used in the ML fitting

can also be investigated using QQ-plots and goodness-of-fit tests for the choice

of the innovation distribution. If residuals do not behave like standard normal

observations, other choices might be considered. Alternatively, if the Gaussian

likelihood does a reasonable job of estimating dynamics, the QML philosophy can

44



2.3. FITTING UNIVARIATE GARCH MODELS

be adopted and asymptotic standard errors can be estimated using the ideas of

Section 2.3.3.
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Chapter 3

Multivariate Models for Changing

Volatility

In this chapter multivariate GARCH (often referred to as MGARCH) models are

introduced. Analogously to univariate GARCH models, they are of particular use

in finance, especially when modeling daily risk factor return series, because they

model directly the evolution of volatilities. Several different models (all commonly

summarized as MGARCH models) will be discussed, all of which can to a certain

extent be viewed as generalizations of the univariate models discussed in Chapter 2.

3.1 General Structure of MGARCH Models

3.1.1 Definition

Definition 3.1. Let (Zt)t∈Z be SWN(0, Id). The process (X t)t∈Z is said to be a

multivariate GARCH process if it is strictly stationary and satisfies equations of

the form

X t = Σ
1/2
t Zt, t ∈ Z, (3.1)
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3.1. GENERAL STRUCTURE OF MGARCH MODELS

where Σ
1/2
t ∈ Rd×d is the Cholesky factor of a positive-definite matrix Σt that is

measurable with respect to Ft−1 = σ{(Xs)s≤t−1}, the history of the process up to

time t− 1. Each Zt shall again be called an innovation and interpreted as such.

Remark. Using different types of “square roots” for Σt other than the Cholesky

factor (such as the root derived from symmetric decomposition) is possible and

effects the construction of residuals when fitting the model in practice.

3.1.2 Conditional moments

It is easily calculated that a process of type (3.1) has the multivariate martingale

difference property

E[X t|Ft−1] = E[Σ
1/2
t Zt|Ft−1] = Σ

1/2
t E[Zt] = 0, (3.2)

from which again it follows that the unconditional expectation E[X t] is also zero.

Assuming covariance stationarity, this implies that the process is multivariate

white noise. Because of

cov(X t|Ft−1)
(3.2)
= E[X tX

′
t|Ft−1] = Σ

1/2
t E[ZtZ

′
t](Σ

1/2
t )′ = Σ

1/2
t Id(Σ

1/2
t )′ = Σt,

(3.3)

Σt is the conditional covariance matrix. Again it is possible to decompose Σt

involving a diagonal matrix,

Σt = ∆tPt∆t, ∆t = diag(σt,1, . . . , σt,d), (3.4)

where the ∆t is known as the volatility matrix and contains the volatilities for

the component series (X t,k)t∈Z for k = 1, . . . , d and Pt (symmetric with unit di-

agonal elements) is known as the conditional correlation matrix. When building

multivariate GARCH models, the dependence of Σt (or equivalently of ∆t and Pt)

on the past is to be specified in a way that Σt always remains symmetric and

positive-definite.1

1A covariance matrix must of course be symmetric and positive semidefinite and in practice we
restrict our attention to the positive definite case (which facilitates fitting since the conditional
distribution of Xt|Ft−1 never has a singular covariance matrix). Compare McNeil et al. [20].
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3.1.3 Unconditional moments

Of course it is also possible to analyze unconditional expectation and covariance,

as shall be done in the following Theorem.

Theorem 3.1 (Unconditional moments). The unconditional covariance matrix Σ

of a process of type (3.1) is given by E[Σt] and the unconditional correlation matrix

P has (i, j)th element

Pij =
E[Pt,ijσt,iσt,j]√
E[σ2

t,i]E[σ2
t,j]

.

Proof. Σ may again easily be calculated using basic rules for conditional expecta-

tion and previous results:

Σ = cov(X t)
(3.2)
= E[X tX

′
t] = E[E[X tX

′
t|Ft−1]]

(3.3)
= E[Σt].

It also holds that

Pij =
Σij√
ΣiiΣjj

=
E[Σt,ij]√

E[Σt,ii]E[Σt,jj]
=
E[σt,iσt,jPt,ij]√
E[σ2

t,i]E[σ2
t,j]

,

since by definition

Σt =




σ2
t,1 σt,1σt,2Pt,12 . . . σt,1σt,dPt,1d

σt,1σt,2Pt,12 σ2
t,2 . . . σt,2σt,dPt,2d

...
...

...

σt,1σt,dPt,1d σt,2σt,dPt,2d . . . σ2
t,d




.

Remark. Clearly P is in general not simply the expectation of the conditional

correlation matrix Pt.

3.1.4 Innovations

In practical work the innovations Zt are generally taken to be either from a multi-

variate Gaussian distribution Zt ∼ Nd(0, Id) or, more realistically for daily returns
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because of the heavier tails, a spherical multivariate t distribution appropriately

scaled to have covariance matrix Id, i.e. Zt ∼ td(ν,0, ν−2
ν

Id). Of course any other

distribution with mean zero and covariance matrix Id is permissible as well.

3.2 Models for Conditional Correlation

In this section emphasis will be placed on models which focus on specifying the

conditional correlation matrix Pt while allowing volatilities to be described by

univariate GARCH models. To begin with, a popular and rather parsimonious

model is described, where Pt is assumed to be constant for all t.

3.2.1 Constant conditional correlation (CCC)

Definition and basic properties

Definition 3.2. The process (X t)t∈Z is a CCC-GARCH process if it is a process

with the general structure given in Definition 3.1 such that the conditional co-

variance matrix is of the form Σt = ∆tPc∆t for a constant and positive definite

correlation matrix Pc and the components σt,k of the diagonal volatility matrix ∆t

satisfy

σ2
t,k = αk,0 +

pk∑
i=1

αk,iX
2
t−i,k +

qk∑
j=1

βk,jσ
2
t−j,k, k ∈ {1, . . . , d}, (3.5)

where

• αk,0 > 0,

• αk,i ≥ 0 for i = 1, . . . , pk,

• βk,j ≥ 0 for j = 1, . . . , qk.

Remark. The CCC-GARCH specification represents a simple way of combin-

ing univariate GARCH processes. This may be seen by observing that in a
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3.2. MODELS FOR CONDITIONAL CORRELATION

CCC-GARCH model observations and innovations are connected by equations

X t = ∆tP
1/2
c Zt, which may be rewritten as X t = ∆tY t for a SWN(0, Pc) process

(Y t)t∈Z. Clearly the component processes are univariate GARCH.2

Theorem 3.2. The CCC-GARCH model is well defined in the sense that Σt is

almost surely positive definite for all t. Moreover it is covariance stationary if and

only if
pk∑
i=1

αk,i +

qk∑
j=1

βk,j < 1

holds for each k ∈ {1, . . . , d}.

Proof. For a vector v 6= 0 in Rd we have

v′Σtv = (∆tv)′Pc(∆tv) > 0,

since Pc is positive definite and the strict positivity of the individual volatility

processes ensures that ∆tv 6= 0 for all t.

If (X t)t∈Z is covariance stationary then each component series (Xt,k)t∈Z is a co-

variance stationary univariate GARCH process for which a necessary and sufficient

condition is
∑pk

i=1 αk,i +
∑qk

j=1 βk,j < 1 by Theorem 2.7. Conversely, if the compo-

nent series are covariance stationary, then

cov(X t)ij = E[Σt,ij] = PijE[σt,iσt,j] < ∞, 1 ≤ i, j ≤ d,

and (X t)t∈Z is a multivariate martingale difference with finite, non-time-dependent

second moments; in other words a covariance stationary white noise.

The CCC model is often a useful starting point before going on to fitting more

complex models. Applied to financial data, it gives an adequate performance in

some empirical settings, but it is generally considered that the constancy of con-

ditional correlations in this model is an unrealistic feature and that the impact

2A univariate GARCH process may now be seen as a special case of a MGARCH process as
described in Definition 3.1 with dimension d equaling one and Σ1/2

t = σt = σt,1 ∈ R satisfying
equation (3.5).
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of news on financial markets requires models that allow a dynamic evolution of

conditional correlation as well as a dynamic evolution of volatilities. A further

criticism of the model (which applies in fact to the majority of MGARCH speci-

fications) is the fact that the individual volatility dynamics (3.5) do not allow for

the possibility that large (asset) returns in one component series at a particular

time point can contribute to increased volatility of another component time series

at future time points.3

The de-volatized process

It turns out to be a fruitful approach (both for understanding and fitting the CCC

model) to introduce the notion of a de-volatized process.

Definition 3.3. For any multivariate time series process X t the de-volatized pro-

cess Y t is defined to be

Y t = ∆−1
t X t,

where ∆t is, as usual, the diagonal matrix of volatilities of the component time

series as in equation (3.4).

Remark. In the case of a CCC model it is easily seen that the de-volatized process

(Y t)t∈Z is a SWN(0, Pc) process.

Stepwise estimation

The above structure suggests a three-stage fitting method when dealing with empi-

rical data. The process of de-volatizing, in this case steps one and two, is sometimes

also referred to as pre-whitening.

1. The individual volatility processes for the component series are fixed by

fitting univariate GARCH processes or, more generally, any univariate model

for changing volatility.4

3Compare also Zivot and Wang [28] for further practical aspects and criticism.
4Well-known examples for extension of GARCH models are GARCH with leverage, threshold

GARCH or exponential GARCH.
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2. The de-volatized process is estimated by Ŷ t = ∆̂−1
t X t, where ∆̂−1

t is the

estimate of ∆−1
t found as explained above.

If the CCC-GARCH model assumption is adequate, then the Ŷ t data should be-

have like a realization form a SWN(0, Pc) process. This can be checked empirically

by investigating the correlogram and cross-correlogram applied to raw and abso-

lute values (and other standard tools used to investigate independence of random

variables).

3. Assuming the adequacy of the model, the conditional correlation matrix Pc

can finally be estimated from Ŷ t by the sample correlation matrix P̂c as

noted in Definition 1.8 or other adequate correlation matrix estimates.

A special case of CCC-GARCH which shall be called a pure diagonal model occurs

when Pc = Id. A covariance stationary model of this kind is clearly multivariate

white noise where the contemporaneous components Xt,i and Xt,j are also uncor-

related for i 6= j. Whether they are also independent or not depends on further

assumption about the driving SWN(0, Id) process: if the innovations have inde-

pendent components (e.g. they are multivariate Gaussian), then the component

series are independent; in other cases (e.g. Zt ∼ td(ν,0, ν−2
ν

Id)) the component

processes are dependent.

3.2.2 Dynamic conditional correlation (DCC)

Definition and basic properties

This model generalizes the CCC model to allow conditional correlations to evolve

dynamically according to a relatively parsimonious scheme (which will make it

practically useful). It can again be seen as a combination of univariate GARCH

models.

Definition 3.4. The process (X t)t∈Z is a DCC-GARCH process if it is a process

with the general structure given in Definition 3.1 where the volatilities comprising
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∆t = diag(σt,1, σt,2, . . . , σt,d) follow univariate GARCH specifications as in (3.5),

i.e.

σ2
t,k = αk,0 +

pk∑
i=1

αk,iX
2
t−i,k +

qk∑
j=1

βk,jσ
2
t−j,k, k ∈ {1, . . . , d},

with the above restrictions on αk,i and βk,j. The conditional correlation matrices

Pt satisfy the equations

Qt = cQ +

p∑
i=1

αiY t−iY
′
t−i +

q∑
j=1

βjQt−j, (3.6)

Pt = (∆
(Q)
t )−1Qt(∆

(Q)
t )−1, t ∈ Z, (3.7)

where

• Q is a positive-definite covariance matrix,

• ∆
(Q)
t is a diagonal matrix containing the square root of the diagonal entries

of Qt, i.e. ∆
(Q)
t = diag(

√
Qt,11,

√
Qt,22, . . . ,

√
Qt,dd),

• Y t denotes the de-volatized process of X t, i.e. Y t = ∆−1
t X t,

• c = 1−∑p
i=1 αi −

∑q
j=1 βj,

• the coefficients satisfy αi ≥ 0, βj ≥ 0, c > 0.

Remark. The process (Qt)t∈Z as defined in (3.6) is a process of matrices which

are not themselves correlation matrices (although as explained below the model

can be parameterized in such a way that they are correlation matrices in expec-

tation). Hence we need to use the operation (3.7) to obtain correlation matrices.

In order to see that these dynamic equations preserve the positive definiteness

of Pt it suffices to check that (3.6) preserves the positive definiteness of Qt. If

Qt−q, Qt−q+1, . . . , Qt−1 are positive definite, then, for a vector v 6= 0 in Rd, we

have

v′Qtv = cv′Qv +

p∑
i=1

αiv
′Y t−iY

′
t−iv +

q∑
j=1

βjv
′Qt−jv > 0, (3.8)

since the first term is strictly positive by definition and the second and third terms

are non-negative.
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The de-volatized process of DCC

Again the idea of de-volatization turns out to be a useful tool for analyzing the

model. As can be seen in the definition, the de-volatized process (Y t)t∈Z is the

driving force of the dynamics of correlation.

Theorem 3.3 (McNeil et al. [20]). For any covariance stationary multivariate

GARCH process the de-volatized process (Y t)t∈Z as introduced in Definition 3.4 is

a zero-mean white noise with covariance and correlation matrix E[Pt].

Proof. By observing that Y t = ∆−1
t X t = P

1/2
t Zt and conditioning on Ft−1, it can

be seen that the de-volatized process has conditional mean zero (i.e. the martingale

difference property) and conditional covariance matrix

cov(Y t|Ft−1) = E[Y tY
′
t|Ft−1] = P

1/2
t E[ZtZ

′
t](P

1/2
t )′ = Pt,

resulting in cov(Y t) = ρ(Y t) = E[Pt]. A martingale difference with a finite,

non-time-dependent second moment forms a white noise process, what proves the

theorem.

If now the further condition that Q = cov(Y t) = E[Pt] is imposed in (3.6), meaning

that Q should equal the unconditional covariance/correlation matrix of the de-

volatized process, and attention is restricted to the covariance stationary case, it

holds true that E[Qt] = E[Pt] = Q. This can be verified by direct calculation:

Taking expectation on both sides of (3.6) yields

E[Qt] =

(
1−

p∑
i=1

αi −
q∑

j=1

βj

)
Q +

p∑
i=1

αiQ +

q∑
j=1

βjE[Qt],

what can easily be simplified to give the desired result. Under this condition, the

correlation matrix Q of the de-volatized process is the expectation of both Qt and

Pt.
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Stepwise estimation

Similar to the CCC model, the estimation of a DCC-GARCH model suggested by

these calculations might be conducted in the following steps:

1. Fit univariate GARCH-type models to the component series to estimate the

volatility matrix ∆t.

2. Form an estimated realization of the de-volatized process by calculating Ŷ t =

∆̂−1
t X t.

3. Estimate Q by taking the sample correlation matrix of the de-volatized data

(or again some other (robust) estimator of correlation).

4. Estimate the remaining parameters αi and βj in equation (3.6) by fitting a

model with structure Y t = P
1/2
t Zt to the de-volatized data. This can be

achieved as a special case of the methodology for fitting general multivariate

GARCH models, explained in Section 3.5. Note that in a first order model

(p = q = 1) there will only be two remaining parameters to estimate.

3.3 Models for Conditional Covariance

Models presented in this section specify explicitly a dynamic structure for the

conditional covariance matrix Σt in (3.1). In contrast to the previous section,

these models are not designed for multiple-stage estimation based on univariate

GARCH estimation procedures.

3.3.1 Some preliminaries

Before turning to the models themselves, a simple but useful tool for restructuring

symmetric matrices is introduced. It will later simplify the notation of the VEC

model.
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Definition 3.5 (vech operator). Let sym(Rd×d) be the space of real-valued sym-

metric matrices with dimension d and A ∈ sym(Rd×d) with elements aij. The

vector half operator (vech) is a map

sym(Rd×d) −→ R
d(d+1)

2

A 7−→ vech(A)

defined by

vech(A) = (a11, a21, . . . , ad1, a22, . . . , ad2, a33, . . . , add)
′.

In other words, vech stacks the columns of the lower triangle of A in a single

column vector of length d(d + 1)/2.

Remark. Due to the symmetry of A it is clear that vech(A) contains the same

information as A itself, rearranging the important components and leaving out

unnecessary ones.

3.3.2 The general vector GARCH model (VEC)

A very general vector GARCH model - the VEC model - is extremely rich in pa-

rameters and therefore of limited practical use. Nevertheless, it provides a general

framework for possible various restrictions on parameter matrices (e.g. diagonal

VEC model). Alongside the BEKK model of Section 3.3.4, it is discussed in Engle

and Kroner [13] with full mathematical rigour.

Definition 3.6 (VEC Model). The process (X t)t∈Z is a VEC process if it has

the general structure given in Definition 3.1 and the dynamic of the conditional

covariance matrix Σt is given by

vech(Σt) = a0 +

p∑
i=1

Aivech(X t−iX
′
t−i) +

q∑
j=1

Bjvech(Σt−j), (3.9)

for a vector a0 ∈ R
d(d+1)

2 and matrices Ai, Bi ∈ R
d(d+1)

2
× d(d+1)

2 .
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Remarks. 1. By using the vector half operator, equation (3.9) should be un-

derstood as specifying the dynamics for the lower-triangular portion of the

conditional covariance matrix; the remaining elements of the matrix are de-

termined by symmetry.

2. In (3.9), Σt is not automatically positive definite and can therefore not be

interpreted as a covariance matrix. For the model to be well defined in

that sense, further restrictions have to be imposed onto the parameters. A

sufficient condition may easily be found by observing that Σt is positive

definite if

• vech−1(a0) is positive definite,

• vech−1(Aivech(mm′)) and vech−1(Bjvech(M)) are positive semidefinite

for all applicable i and j, m ∈ Rd and M positive semidefinite.

However, this condition is practically unverifiable.

3. In this very general form the model has (p + q)c2 + c parameters, where

c = d(d + 1)/2. It is not very hard to predict that this amounts to enormous

numbers of parameters for higher dimensions (even for p = q = 1). Please

consult Section 3.4 with Table 3.1 and Figure 3.1 for a small overview.

4. Very similar to the univariate case, conditions have been found to ensure the

covariance stationarity of the process. These may be formulated in terms of

restrictions onto the parameters matrices by

max |eig(

p∑
i=1

Ai +

q∑
j=1

Bj)| < 1, (3.10)

where eig(A) denotes the eigenvalues of A. For details and proof please

consult e.g. Proposition 2.7 in Engle and Kroner [13].
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3.3.3 The diagonal vector GARCH model (DVEC)

Definition and basic properties

One very common simplification of the VEC model has been to restrict attention to

cases when Ai and Bi in Definition 3.6 are diagonal matrices, which is then called

a diagonal VEC or DVEC model. This special case can be written very elegantly

in terms of element-wise matrix multiplication.5 The following representation is

obtained, which is equivalent to a well defined general VEC model as in (3.9) for

diagonal Ai and Bi.

Σt = A0 +

p∑
i=1

Ai ¯ (X t−iX
′
t−i) +

q∑
j=1

Bj ¯ Σt−j, (3.11)

where

• A0 ∈ Rd×d is symmetric and positive definite,

• Ai, Bj ∈ Rd×d are symmetric and positive semidefinite for i = 1, . . . , p and

j = 1, . . . , q.

Remark. This representation emphasizes beautifully the similarities to the uni-

variate GARCH equation (2.12) for σt in terms of both restrictions onto the pa-

rameters as well as general structure.

Due to the fact that the parameter matrices Ai, Bi are chosen to be positive

(semi)definite, Σt is automatically positive definite.

Theorem 3.4. In the DVEC model (3.11) the conditional covariance matrix Σt

is positive definite for all t.

Proof. The above statement can be seen by observing that for v 6= 0 in Rd it holds

5The element-by-element matrix multiplication is often referred to as the Hadamard product,
defined for two matrices of the same size, and will be denoted ¯.
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3.3. MODELS FOR CONDITIONAL COVARIANCE

true that

v′Qtv = v′A0v +

p∑
i=1

v′(Ai ¯X t−iX
′
t−i)v +

q∑
j=1

v′(Bj ¯ Σt−j)v

= v′A0v +

p∑
i=1

(v ¯Xt−i)
′Ai(v ¯Xt−i) +

q∑
j=1

v′(Bj ¯ Σt−j)v

> 0,

since the first term is positive and the second term is nonnegative by definition.

Because the Hadamard product of two positive semidefinite matrices is also positive

semidefinite, the third term is also nonnegative.

Due to the fact that the DVEC model is simply a special VEC model with diagonal

Ai and Bj, condition (3.10) for covariance stationary of a general VEC model

simplifies to

max
1≤m≤n≤d

|
p∑

i=1

ai,mn +

q∑
j=1

bj,mn| < 1,

where ai,mn and bj,mn denote the (m,n)th element of Ai and Bj, respectively.

The structure of DVEC

Example 3.1 (Analysis in two dimensions). In order to gain an understanding of

the dynamics of (3.11), consider the simplest possible DVEC model: a bivariate

model with p = q = 1. The structural equations simplify to the three scalar terms6

σt,11 = a0,11 + a1,11X
2
t−1,1 + b1,11σt−1,11,

σt,22 = a0,22 + a1,22X
2
t−1,2 + b1,22σt−1,22,

σt,12 = a0,12 + a1,12Xt−1,1Xt−1,2 + b1,12σt−1,12. (3.12)

By looking at the first two equations, it can be observed that the squared volatilities

of the two component series (σt,11 and σt,22) follow univariate GARCH updating

6Please note that σt,ij now denotes the element of Σt in row i and column j. The volatility
of the ith component series σ2

t,i therefore corresponds to σt,ii.
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3.3. MODELS FOR CONDITIONAL COVARIANCE

patterns. The conditional covariance σt,12 in equation (3.12) has a similar structure

driven by the products of the lagged values Xt−1,1Xt−1,2.

As for the CCC and DCC models, the volatility of a single component series is

only driven by large lagged values of that series and cannot directly be affected

by large lagged values in another series (no lead-lag effect). The more general

(but unfortunately virtually always overparameterized) general VEC model would

allow this feature.

Some possible parameter restrictions

Since it is required by definition that A0 should be positive definite and A1, . . . , Ap

and B1, . . . , Bq should all be positive semidefinite, Attanasio [1] suggested to

parameterize the model in terms of lower-triangular Cholesky factor matrices

A
1/2
0 , A

1/2
i , B

1/2
j satisfying

A0 = A
1/2
0 (A

1/2
0 )′, Ai = A

1/2
i (A

1/2
i )′, Bj = B

1/2
j (B

1/2
j )′. (3.13)

Because A1, . . . , Ap and B1, . . . , Bq should only be positive semidefinite, a much

simpler parametrization such as

A0 = A
1/2
0 (A

1/2
0 )′, Ai = aia

′
i, Bj = bjb

′
j (3.14)

might be considered (ai and bj are vectors in Rd). An even cruder model satisfying

the requirement of positive-definiteness of Σt would be

A0 = A
1/2
0 (A

1/2
0 )′, Ai = aiId, Bj = bjId. (3.15)

Here ai and bj are simply nonnegative constants. Clearly it is possible to combine

the specifications in equations (3.13), (3.14) and (3.15) in various ways for adequate

parameter reduction.
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3.3. MODELS FOR CONDITIONAL COVARIANCE

3.3.4 The BEKK model

Definition and basic properties

The BEKK7 model family discussed in this section has the great advantage that the

positive-definiteness of Σt is ensured by construction without the need of further

conditions. Together with the VEC model of section 3.3.2 it was introduced and

analyzed by Engle and Kroner [13] in 1995.

Definition 3.7. The process (X t)t∈Z is a BEKK process if it has the general

structure given in Definition 3.1 and the dynamic of the conditional covariance

matrix Σt is given by the equations

Σt = A0 +

p∑
i=1

AiX t−iX
′
t−iA

′
i +

q∑
j=1

BjΣt−jB
′
j, (3.16)

where

• A0 ∈ Rd×d is symmetric and positive definite,

• Ai, Bj ∈ Rd×d for i = 1, . . . , p and j = 1, . . . , q.

Theorem 3.5. In the BEKK model (3.16) the conditional covariance matrix Σt

is positive definite for all t.

Proof. May be seen analogously to (3.8): For any vector u 6= 0 in Rd it holds true

that

u′Σtu = u′A0u +

p∑
i=1

(u′AiX t−i)
2 +

q∑
j=1

(B′
ju)′Σt−j(B

′
ju) > 0,

because the first term is positive by definition and the second and third terms are

non-negative.

7The acronym BEKK comes from joint work on multivariate ARCH models by Yoshi Baba,
Rob Engle, Dennis Kraft and Ken Kroner.
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The structure of BEKK

Example 3.2 (Analysis in two dimensions). To gain insight into the BEKK model

it is again useful to analyze the bivariate special case of order (1,1) and to consider

the dynamics that are implied by (3.16) while comparing to those of the DVEC

model given in (3.12).

σt,11 = a0,11 + a2
1,11X

2
t−1,1 + 2a1,11a1,12Xt−1,1Xt−1,2 + a2

1,12X
2
t−1,2

+ b2
1,11σt−1,11 + 2b1,11b1,12σt−1,12 + b2

1,12σt−1,22. (3.17)

σt,22 = a0,22 + a2
1,22X

2
t−1,2 + 2a1,22a1,21Xt−1,1Xt−1,2 + a2

1,21X
2
t−1,1

+ b2
1,22σt−1,22 + 2b1,22b1,21σt−1,12 + b2

1,21σt−1,11. (3.18)

By studying equation (3.17) it may be observed that we now have a model where

a large lagged value of the second component Xt−1,2 can influence the volatility of

the first series σt,11 through the parameter a1,12. This contrasts with the bivariate

DVEC model analyzed in Example 3.1, where this effect is not possible. Similarly,

a large lagged second component conditional variance σt−1,22 may now effect the

present first component conditional variance σt,11. Clearly, the same effects can be

seen for the volatility of the second series σt,22 in (3.18).

Focusing on the conditional covariance σt,12 = σt,21, the following structure for the

off-diagonal elements in Σt appears:

σt,12 = a0,12 + a1,11a1,21X
2
t−1,1 + a1,22a1,12X

2
t−1,2

+ (a1,11a1,22 + a1,12a1,21)Xt−1,1Xt−1,2

+ b1,11b1,21σt−1,11 + b1,22b1,12σt−1,22

+ (b1,11b1,22 + b1,12b1,21)σt−1,12. (3.19)

Here it can be observed that the conditional covariance of the two component series

is now not only effected by lagged conditional covariances σt−1,12 and component

series products Xt−1,1Xt−1,2 as in (3.12), but also by lagged variances and lagged

values of the (squared) component processes themselves. To eliminate all crossover
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effects in the conditional variance equations of the BEKK model in (3.17) and

(3.18), the off-diagonal terms a1,12, a1,21, b1,12 and b1,21 would have to be set to

zero and the parameters governing the individual volatilities would also govern

the conditional covariance σt,12 in (3.19).

A more general BEKK class

The above example particularly shows that already a low order and low dimen-

sional BEKK model inhibits rather complicated and nested covariance matrix

structure. Nevertheless, the original definition of the BEKK class given by Engle

and Kroner [13] is even broader than the previously defined. It is given by

Σt = A0A
′
0 +

K∑

k=1

p∑
i=1

Ak,iX t−iX
′
t−iA

′
k,i +

K∑

k=1

q∑
j=1

Bk,jΣt−jB
′
k,j, (3.20)

where d(d+1)/2 ≥ K ≥ 1 and the choice of K determines the richness of the model.

This model class is of largely theoretical interest and is probably too complex for

practical applications; even for K = 1 it is difficult to fit in higher dimensions. For

this class of models, conditions have been found which assure that a given VEC

model can be cast as a BEKK model (the contrary is always true), and it is also

flexible enough to include all DVEC models.8

3.4 Model Comparison

In Table 3.1 and Figure 3.1 the numbers of parameters in the presented models

are summarized. It can be seen that the general VEC model becomes completely

unfeasible in higher dimensions, and BEKK and general DVEC models are also of

limited use as dimension grows. For higher dimensional modeling, the remaining

models are the most practically useful.

8More information on this topic can be found in Engle and Kroner [13] and the recent works
by Scherrer and Ribarits [22], where it is for example shown that BEKK models as in (3.20) are
as general as VEC models in the bivariate case, whereas in higher dimensions VEC models allow
for more flexibility.
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Model Parameter Count 2 5 10 20

VEC d(d+1)
2

(1 + (p + q)d(d+1)
2

) 21 465 6105 88410

BEKK (K = 1) d(d+1)
2

+ d2(p + q) 11 65 255 1010

DVEC1 as in (3.13) d(d+1)
2

(1 + p + q) 9 45 165 630

DCC d(d+1)
2

+ (d + 1)(p + q) 9 27 77 252

CCC d(d+1)
2

+ d(p + q) 7 25 75 250

DVEC2 as in (3.14) d(d+1)
2

+ d(p + q) 7 25 75 250

DVEC3 as in (3.15) d(d+1)
2

+ p + q 5 17 57 212

Table 3.1: Summary of numbers of parameters in various multivariate GARCH
models. Second column gives general formula and final columns give numbers for
dimensions 2, 5, 10 and 20 when p = q = 1. In CCC and DCC it is assumed that
all component series volatilities have p ARCH and q GARCH terms (i.e. pk = p
and qk = q for k = 1, . . . , d) in Definitions 3.2 and 3.4. Additional parameters in
the innovation distribution are not considered.

3.5 Fitting Multivariate GARCH Models

In the previous sections notes have already been given on fitting some models in

stages. In the high-dimensional applications this may in fact be the only feasible

strategy. However, when confronted with return series of modest dimension, one

can attempt to fit multivariate GARCH models by maximizing an appropriate

likelihood with respect to all parameters in a single step. This procedure follows

directly from the ideas developed in Section 2.3.

3.5.1 Building the likelihood

The method of building a likelihood for any multivariate GARCH model of type

X t = Σ
1/2
t Zt is completely analogous to the univariate case. Again, for the sake

of simplicity, a first order model shall be considered and the data is assumed to be

labeled X0, X1, . . . , Xn. For the same reasons as before, the “regular” likelihood

approach as in (2.17) fails because of the unknown density fX0(x0). A conditional

likelihood approach is based on the conditional joint density of X1, . . . , Xn given
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3.5. FITTING MULTIVARIATE GARCH MODELS

X0 and an initial value for the conditional covariance matrix Σ0, which is written

fX1,...,Xn|X0,Σ0(x1, . . . , xn|x0, Σ0) =
n∏

t=1

fXt|Xt−1,...,X0,Σ0(xt|xt−1, . . . , x0, Σ0).

If g(z) denotes the multivariate innovation density of Zt, the conditional densities

can be expressed in terms of the innovation density and Σt:

fXt|Xt−1,...,X0,Σ0(xt|xt−1, . . . , x0, Σ0) = |Σt|−1/2g(Σ
−1/2
t X t),

where Σt is a matrix-valued function of xt−1, . . . , x0 and Σ0. Most common choices

of g(z) are in the so called spherical family, where g(z) = h(z′z) for some function

h of a scalar variable known as the density generator (McNeil et al. [20]). This

yields a conditional likelihood of the form

Lc(θ) =
n∏

t=1

|Σt|−1/2h(X ′
tΣ

−1
t X t), (3.21)

where all parameters appearing in the volatility equation and the innovation dis-

tribution are collected in θ. Equation (3.21) may of course be adapted to include

a constant mean term or one of vector autoregressive structure (as introduced in

Section 1.3).

Of course, the above ideas may easily be extended in order to combine the model-

ing of conditional expectation and conditional variance. Considering for instance

VARMA(p1, q1)-BEKK(p2, q2), the likelihood would look like

Lc =
n∏

t=1

|Σt|−1/2g(Σ
−1/2
t (X t − µt)),

with

µt = µ +

p1∑
i=1

Φi(X t−i − µ) +

q1∑
j=1

Θj(X t−j − µt−j)

and

Σt = A0 +

p∑
i=1

Ai(X t−i − µt)(X t−i − µt)
′A′

i +

q1∑
j=1

BjΣt−jB
′
j.
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3.5.2 Finding parameter estimates

In order to evaluate the likelihood (3.21), a starting value is required for Σ0. It

is typically set to equal the sample covariance matrix (or other estimators for

covariance).9 For the numerical maximization of Lc, common choices are again

modified Newton-Raphson procedures, in particular that of Berndt, Hall, Hall and

Hausman [4].

3.5.3 Model checking

Standardized residuals zt are calculated according to

zt = Σ̂
−1/2
t X t, t = 1, . . . , n,

and should by assumption behave like a realization of a SWN(0, Id) process. This

can be investigated with the usual univariate procedures described in Section 2.3.4

(such as correlograms, correlograms of transformed values and portmanteau tests)

applied to the component series of the residuals. Also, there should be no evidence

of cross correlations at any lags for both the raw and absolute residuals in the cross

correlogram.

Model selection is often performed by comparing different information criteria (like

Akaike AIC or Bayes BIC). Is is important to note, however, that there is not yet

much literature on theoretical aspects of the use of AIC or BIC in an univariate

GARCH context, and certainly even less in a multivariate one. They are defined

by

AIC(p) = −2 log(Lc) + 2p,

BIC(p) = −2 log(Lc) + p log(n),

where p is the number of parameters and n the length of the time series considered

(S-PLUS Reference Manual [17]).

9The same remarks as in the univariate case apply, namely that the issue of conditioning on
starting values is of relatively minor importance when datasets are large.
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Figure 3.1: Evolution of the numbers of parameters in various multivariate
GARCH models with increasing dimension d. On the left picture p = q = 1
are fixed, on the right p = q = 3. The terms DVEC1, DVEC2 and DVEC3 refer
to the special DVEC parameterizations given in (3.13), (3.14) and (3.15), respec-
tively. In CCC and DCC it is assumed that all component series volatilities have
p ARCH and q GARCH terms (i.e. pk = p and qk = q for k = 1, . . . , d) in Defi-
nitions 3.2 and 3.4. Additional parameters in the innovation distribution are not
considered.
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Chapter 4

Multivariate GARCH in Practice

Focus of this chapter will be put on fitting several different MGARCH models to

data, with some attention to modeling the mean term by means of autoregressive

structure. The fitting itself is performed with S-PLUS [18] making use of the

module finmetrics [19]. Some sample code can be found in the appendix.

4.1 The Data

For the following analysis the ATX1 and the German DAX2 time series are consid-

ered. The time span ranges from November 11, 1992 to April 28, 2006 and data is

collected daily (on workdays). The very few days where only one stock market was

in operation were ignored in order to obtain a syncronized time series, resulting

in a dataset with a total of 3321 observations. In Figure 4.1 the two (obviously

non-stationary) time series are displayed graphically.

A very common way of handling a non-stationary time series (N t)t∈Z is to look at

1ATX (abbreviated from Austrian Traded Index) is the most important stock index at the
Vienna stock exchange currently consisting of stocks of the 21 largest quoted companies in
Austria, such as Erste Bank Group (19,24%), OMV (17,39%) or Telekom Austria (12,97%).

2DAX (abbreviated from Deutscher Aktienindex) is a stock market index consisting of the
30 major German companies trading on the Frankfurt Stock Exchange. Examples are Siemens
(12,44%), Deutsche Telekom (10,42%), E.ON (8,89%), Deutsche Bank (8,86%), Daimler-Chrysler
(8,64%).
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Figure 4.1: ATX (lower time series) and DAX (upper time series).

first differences ∆N t defined by

∆N t = N t −N t−1,

which often yields stationary time series. Another, especially in finance literature

even more widespread method is to consider continuously compounded one period

returns3 or simply log-returns, denoted by ∆N t and defined to be

X t := ∆N t = log

(
N t

N t−1

)
= ∆(log N t), (4.1)

where log(·) is the natural logarithm function. The log-returns of the ATX and

3Terminology taken from Zivot and Wang [28]. The name refers to the economic interpretation
of these returns making ∆N t the continuously compounded growth rate between periods t − 1
and t.
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4.1. THE DATA

DAX are shown in Figure 4.2 and some descriptive statistics of the data are pre-

sented in Table 4.1.
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Figure 4.2: Log-returns of ATX (bottom) and DAX (top), as defined in (4.1).

ATX DAX
Mean 0.000514 0.000416
Median 0.000702 0.000999
Minimum -0.086995 -0.066523
Maximum 0.052623 0.075527
Standard Deviation 0.010027 0.014649
Skewness -0.644807 -0.153466
Excess Kurtosis 4.411840 2.929709

Table 4.1: Descriptive statistics of the log-returns.

In order to gain some insight into the correlation structure of the time series
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X t, the cross-correlogram4 of the raw and the absolute values are displayed in

Figure 4.3. While the raw cross-correlogram on the top of Figure 4.3 exhibits

hardly any autocorrelation (apart from ATX at lag one) and only little cross-

correlation, the cross correlogram of the squared values (bottom) shows that both

auto- and cross-correlation are significantly different from zero, even for large lags.

4.2 Modeling the Mean

Even though little auto- and cross-correlation of the raw time series can be spotted,

a mean-equation model is implemented by means of diagonal vector autoregres-

sion.5 Information criteria such as AIC or BIC displayed in Table 4.2 suggest that

a diagonal VAR model of order one adequately captures the dynamics of the data.

lag likelihood AIC BIC
1 20309.52 -40607.03 -40570.39
2 20303.47 -40586.94 -40525.87
3 20299.37 -40570.73 -40485.24
4 20300.55 -40565.10 -40455.18
5 20296.60 -40549.19 -40414.86
6 20297.63 -40543.25 -40384.50
7 20293.28 -40526.55 -40343.38
8 20293.19 -40518.38 -40310.80
9 20287.78 -40499.57 -40267.58
10 20285.00 -40485.99 -40229.60

Table 4.2: Likelihood, AIC and BIC for VAR(p) models, p = 1, . . . , 10.

The cross correlogram of the residuals can be found in Figure 4.4, and it may

be observed that some auto- and cross-correlation of the raw values has been

successfully removed. Some significant cross-correlation, however, still persists at

lags 4 and 15 - higher order diagonal VAR or even full VAR models would be

needed in order to fully remove these. As expected, the correlation structure of

the absolute values has not changed noticeably; they still show major correlation.

4The cross-correlogram is introduced and explained in Section 1.2.2
5In a diagonal VAR(p) model Φi is required to be diagonal for i = 1, . . . , p.
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Figure 4.3: Cross Correlograms of ATX and DAX. Top pictures show auto- and
cross-correlation of the raw values of log-returns, bottom pictures show auto- and
cross-correlation of the absolute values.

72



4.2. MODELING THE MEAN

 ATX  

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ATX and DAX

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

 DAX and ATX

Lag

A
C

F

-30 -25 -20 -15 -10 -5 0

0.
0

0.
1

0.
2

0.
3

0.
4

 DAX  

Lag
0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Raw Values

 ATX  

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 ATX and DAX

0 5 10 15 20 25 30

0.
0

0.
10

0.
20

0.
30

 DAX and ATX

Lag

A
C

F

-30 -25 -20 -15 -10 -5 0

0.
0

0.
10

0.
20

0.
30

 DAX  

Lag

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute Values

Figure 4.4: Cross correlograms of raw and absolute residuals after fitting an AR(1)
model to the log returns.
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For future investigations, the approach chosen is to model conditional correlation

with different MGARCH models and a diagonal VAR(1) mean term. Higher order

(full) VAR models will not be considered for reasons of parameter parsimony. The

results will then be compared in Section 4.7.

4.3 CCC Approach

The first model fitted to the data will be a simplest possible combination of two

univariate GARCH models with assumed constant conditional correlation. With

a decent number of ARCH and GARCH terms, this model is rather parsimonious.

Nevertheless, it provides adequate fitting quality.

4.3.1 Lag-length selection

When fitting a CCC-model as discussed in Section 3.2.1, for each of the two com-

ponent series the number of ARCH coefficients p1 and p2 as well as the number

of GARCH coefficients q1 and q2 appearing in equation (3.5) have to be fixed. In

practice they are often set to one without further investigation (since that choice

has shown reasonable results). Also, a comparison of AIC or BIC numbers may be

performed. Even though this approach is not fully theoretically justified, it may be

a helpful guidance. For the sake of simplicity, we set p1 = p2 and q1 = q2, i.e. the

univariate GARCH models have the same number of parameters. For illustration

purposes, a “BIC-landscape” is displayed in Figure 4.5.

Even though Figure 4.5 gives an idea about the evolution of BIC, other visual-

izations such as those in Figure 4.6 are probably more helpful. These can be

interpreted as “slices” of Figure 4.5 for fixed p or q, respectively.

The pictures suggest that when fitting a CCC model, choosing p = q = 1 should

be a reasonable and adequately parsimonious choice. Fixing q to zero would not

be appropriate, and higher order models show only very little if any improvement.

When looking at AIC instead of BIC, this effect is slightly less striking (since BIC

penalizes large number of parameters heavier).
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4.3. CCC APPROACH

Figure 4.5: Value of BIC after fitting CCC-models to the bivariate time series
consisting of ATX and DAX log-returns for different choices of p = p1 = p2 and
q = q1 = q2.

4.3.2 Choice of the innovation distribution

So far, no attention has been paid to the choice of the innovation distribution.

The above calculations have been performed with assumed Gaussian innovations

(standard in S-PLUS). It might be reasonable to loosen this assumption and switch

to a Student t distribution instead, at the cost of one extra parameter.6 Compar-

ing AIC, BIC and likelihood values as in Table 4.3 indicates that the Student t

distribution provides a much better fit.

6In fact it is reasonable to use a Student t innovation distribution instead of a Gaussian one,
as can be seen when looking at QQ-plots of residuals in Section 4.3.4. The Gaussian distribution
cannot capture the heavy tails appropriately.
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Figure 4.6: Value of BIC after fitting AR(1)-CCC-models to the bivariate time
series for different choices of p = p1 = p2 and q = q1 = q2. In the top six frames,
pictures show BIC-value for varying q and fixed p; in the bottom six vice versa.
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AIC BIC likelihood para
(p, q) normal t normal t normal t normal
(1,0) -41125 -41681 -41076 -41626 20571 20850 8
(2,0) -41565 -41958 -41504 -41890 20793 20990 10
(1,1) -42389 -42586 -42328 -42519 21205 21304 10
(1,2) -42390 -42582 -42317 -42502 21207 21304 12
(2,1) -42395 -42589 -42322 -42510 21210 21308 12
(3,0) -41807 -42113 -41734 -42033 20916 21069 12
(2,2) -41937 -42231 -41852 -42139 20983 21130 14
(1,3) -42387 -42580 -42301 -42489 21207 21305 14
(3,1) -42393 -42587 -42308 -42495 21211 21308 14
(2,3) -42376 -42243 -42278 -42139 21204 21138 16
(3,2) -42392 -42582 -42294 -42479 21212 21308 16
(3,3) -41864 -42196 -41754 -42080 20950 21117 18

Table 4.3: Comparison of AIC, BIC and likelihood value for different lag-lengths
and innovation distributions. The fitted model is AR(1)-CCC with parameters
(p, q) indicated as above. Last column shows number of parameters for normal
innovations, for t innovations add one to each row. Best fits according to AIC and
BIC are indicated in bold font.

Due to the above reasoning, the AR(1)-CCC(1,1) (short notation for diagonal

AR(1) combined with MGARCH-CCC with parameters p = p1 = p2 = q = q1 =

q2 = 1) model with a constant mean and t innovations will be considered for further

investigation.

4.3.3 The fitted model

The parameters obtained through maximum likelihood estimation, as well as esti-

mated standard errors and corresponding t-statistics with p-values are summarized

in Table 4.4.

Remark. Please note that in S-PLUS the VARMA model with mean is formulated

slightly different to Definition 1.9. Taking vector AR(1) as an instructive example,

the S-PLUS formulation with a constant reads

X t = c + φX t−1 + εt.

77



4.3. CCC APPROACH

AR(1)-CCC(1,1) value std. error t value p value
c1 0.00079153 0.00014644 5.404987 0.00000003
c2 0.00091768 0.00017815 5.151118 0.00000014
φ1 0.09707496 0.01563813 6.207583 < 10−8

φ2 -0.02583484 0.01609135 -1.605511 0.05423833
α1,0 0.00000313 0.00000067 4.643741 0.00000178
α2,0 0.00000080 0.00000030 2.648684 0.00405945
α1,1 0.06750091 0.00845642 7.982207 < 10−8

α2,1 0.06098339 0.00742144 8.217191 < 10−8

β1,1 0.89674024 0.01307623 68.577882 < 10−8

β2,1 0.93710688 0.00723059 129.603145 < 10−8

Table 4.4: Estimated AR(1)-CCC(1,1) coefficients as of ATX and DAX log-returns
with standard errors. Innovation distribution: Student t.

This implies that the mean µ as defined in Chapter 1 amounts to

E[X t] = µ = (I − φ)−1c.

According to the approximate t-statistics, all estimated parameters are more or

less significantly different from zero. This is especially important for α1,0 and α2,0,

which are actually rather close to zero but must be strictly positive by definition.

The conditional constant correlation matrix was estimated to be (standard errors

in squared brackets)

P̂c =

(
1 0.5033

0.5033 1

) [
0.0145

0.0145

]
,

and the innovation distribution parameter ν (degrees of freedom) amounts to

9.3063 [0.8483].

The estimated conditional volatility is displayed in Figure 4.7. The pictures sug-

gest that the constant conditional correlation matrix assumption might be too

restrictive; higher correlation would for instance be expected around 1997 to 1999

rather than at other times. This justifies a different modeling approach allowing

for dynamic evolvement of the conditional correlation.
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Figure 4.7: Estimated conditional volatility of ATX (bottom) and DAX (top) log-
returns using AR(1)-CCC(1,1) with t-innovations. In the background the actual
AR-residuals are displayed.
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4.3.4 Model diagnostics

As mentioned in the previous chapters, the standardized residuals (i.e. mean-

corrected residuals) should behave like a realization of a SWN(0, Id) process. They

are displayed in Figure 4.8. Clearly, with a picture like this, it is rather difficult

to sense possible violations of the independence hypothesis and even harder to

confirm independence.

However, it seems that (at least some of the) volatility clustering effects have

successfully been removed. This can be observed when comparing the standardized

residuals with the raw log-returns in Figure 4.2. Also, no striking dependence

effects like simultaneous jumps or similar can be observed.
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Figure 4.8: Standardized residuals after fitting a AR(1)-CCC(1,1) model with
Student t innovations for log-returns of ATX and DAX.
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Maybe more helpful than looking at the standardized residuals directly is the

investigation of component series autocorrelation of raw and transformed values

as well as the cross-correlation between them. This can comfortably be achieved

using the cross correlogram, which is displayed in Figure 4.9. As before, the

correlograms of raw and absolute values are shown. Using other transformations

than the absolute value (such as square roots, logarithms or powers) gives similar

results.

Figure 4.9 shows that both auto- and cross-correlation has been removed to a very

large extent. Some lead-lag effect from DAX onto ATX remains, most likely due

to the rather low-order AR-part of the model. The univariate GARCH parts seem

to have done their job very well: autocorrelation of transformed values has been

reduced drastically in comparison to the correlogram of the log-returns displayed

in Figure 4.3.

Finally, some attention is again paid to the choice of the innovation distribution.

Quantile-Quantile-plots of both the AR(1)-CCC(1,1) model with Gaussian inno-

vations as well as of that with Student t innovations are displayed in Figure 4.10

below.

Imposing Gaussian innovation distribution underestimates the tails of the data,

which can be seen by noting the inverted S shape of the QQ-plots in Figure 4.10.

Student t innovations manage somewhat better. However, some negative outliers

(i.e. downward shocks) are still not modeled correctly.

4.4 DCC Approach

The above ideas may be extended to DCC as described in Section 3.2.2, now

allowing a dynamic evolution of conditional correlation while keeping the number of

parameters low. In the simplest but very successful case, only two extra parameters

are required.
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Figure 4.9: Cross Correlograms of standardized residuals after fitting an AR(1)-
CCC(1,1) model with Student t innovations. Top pictures show auto- and cross-
correlation of the raw values, bottom pictures of the absolute values.
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Figure 4.10: QQ-plots of innovation distribution against the empirical distribution
of the standardized residuals. Left picture shows model with Gaussian innovations,
right picture shows model with t innovations.

4.4.1 Stepwise estimation

Since no predefined DCC model is available in finmetrics’ MGARCH() function for

S-PLUS, the stepwise estimation approach suggested on page 55 was implemented.

Univariate AR(1)-GARCH(1,1) models were fitted to the component series and the

de-volatized process Ŷ t = ∆̂−1
t (X t− φ̂X t−1− ĉ) was formed. Q was estimated by

the sample correlation matrix of Ŷ t. Finally, a model of structure Y t = P
1/2
t Zt

with Pt given by (3.6) and (3.7) was fitted to the de-volatized data for p = q =

1. The last step was performed manually7 in S-PLUS without the use of pre-

compiled code for evaluating the likelihood function, which resulted in very slow

7Please consult comments and source code in A.6 for remarks about finding appropriate
starting values for the optimization.
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but perfectly working code. Results are given in Table 4.5.

AR(1)-DCC(1,1) value std. error t value p value
c1 0.00080285 0.00015473 5.188568 0.0000001
c2 0.00099349 0.00018729 5.304542 0.0000001
φ1 0.09003532 0.01759758 5.116346 0.0000002
φ2 -0.01550337 0.01834954 -0.844891 0.1991163
α1,0 0.00000316 0.00000081 3.901673 0.0000487
α2,0 0.00000091 0.00000040 2.252767 0.0121695
α1,1 0.07057884 0.01067204 6.613435 < 10−8

α2,1 0.06824717 0.00968003 7.050306 < 10−8

β1,1 0.89424746 0.01601047 55.853927 < 10−8

β2,1 0.93071103 0.00930861 99.983899 < 10−8

α1 0.01527278 0.00243383 6.275214 < 10−8

β1 0.96201186 0.00005660 16996.045676 < 10−8

Table 4.5: Estimated AR(1)-DCC(1,1) coefficients as in (3.6) and (3.7) with Q
equaling the sample correlation matrix of the de-volatized data. Multivariate Stu-
dent t innovation distribution (estimated degrees of freedom 6.7302 [0.5228]) is
chosen for modeling component series volatilities, Gaussian innovation distribu-
tion for the conditional correlation.

4.4.2 Alternative modeling

Differences in the volatility parameters in comparison with Table 4.4 result from

varying internal estimation methods in S-PLUS for univariate GARCH and CCC

models. It is of course also admissible to use the volatility parameter estimates

from Table 4.4 and/or the constant correlation matrix estimate from above for Q

instead of the sample covariance matrix. Doing so yields the very similar estimates

presented in Table 4.6.

4.4.3 Time-varying conditional correlation

The in contrast to CCC now time varying conditional correlation is shown in

Figure 4.11 with the constant conditional correlation from above indicated by a

horizontal line. Although the conditional cross correlation between ATX and DAX
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AR(1)-DCC(1,1) value std. error t value p value
α1 0.01381020 0.00226884 6.086892 < 10−8

β1 0.96461046 0.00004605 20946.275590 < 10−8

Table 4.6: Estimated MGARCH-DCC coefficients with Q equaling the CCC matrix
given in (4.3.3). Student t innovation distribution (estimated degrees of freedom
9.3063 [0.8483]) is chosen for component series volatilities, Gaussian innovation
distribution for modeling the conditional correlation. Values for component series
volatilities can be found in Table 4.4.

usually fluctuates around 0.5, times of higher correlation around 1998 as well as

times of lower correlation in the first years of the new millennium can be spotted.

For visualization purposes a smoothed version of the correlation is also drawn.8

The DCC cross correlogram of the standardized residuals shows no noticeable

difference to CCC in Figure 4.9.

4.5 DVEC Approach

Goal of this section will be the application of diagonal VEC models to the bivariate

ATX-DAX log-returns time series.

4.5.1 Specifying the model

Formulations (3.13), (3.14) and (3.15) as well as combinations thereof allow many
different possible fitting approaches. An excerpt of some AIC, BIC and likelihood
values of selected models can be found in Table 4.7. In this table,

• “mat” stands for a parametrization of type Mi = M
1/2
i (M

1/2
i )′,

• “vec” means that Mi = mim
′
i, and

• “scalar” connotes Mi = miId.

8Smoothed time series obtained by lowess scatter plot smoothing as implemented in S-PLUS.
Lowess uses robust locally linear fits. A window, sized 1/8 of the time series length, is placed
about each time series value; points that are inside the window are weighted so that nearby
points get the most weight (from S-PLUS [18] help).
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Figure 4.11: Constant and dynamic conditional correlation between ATX and DAX
log returns as estimated by AR(1)-DCC(1,1). DCC is additionally visualized with
a smoothed time series.

The model “mat.vec” for instance stands for a multivariate GARCH model with

the following covariance matrix formulation:

Σt = A
1/2
0 (A

1/2
0 )′ +

p∑
i=1

A
1/2
i (A

1/2
i )′ ¯ (X t−iX

′
t−i) +

q∑
j=1

bjb
′
j ¯ Σt−j.

Please note that in all models A0 is decomposed by A
1/2
0 (A

1/2
0 )′.

When looking at Table 4.7, it appears that allowing full matrices to model Bj is

unnecessary; vector or even scalar terms suffice here. For modeling Ai, however,

the dynamics of “matrices” or at least “vectors” is necessary. As with CCC/DCC,

already low order models capture volatility effects well, lag-lengths of one or two are
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model order AIC BIC likelihood parameters
scalar.scalar (1,1) -42570.87 -42509.79 21295.44 10

(1,2) -42568.91 -42501.72 21295.45 11
(2,1) -42568.68 -42501.50 21295.34 11
(2,2) -42270.64 -42197.34 21147.32 12

scalar.vec (1,1) -42594.07 -42526.88 21308.03 11
(1,2) -42592.38 -42512.98 21309.19 13
(2,1) -42591.89 -42518.59 21307.94 12
(2,2) -42272.97 -42187.46 21150.49 14

scalar.mat (1,1) -42598.60 -42525.30 21311.30 12
(1,2) -42270.58 -42178.97 21150.29 15
(2,1) -42596.70 -42517.30 21311.35 13
(2,2) -42268.90 -42171.18 21150.45 16

vec.scalar (1,1) -42586.15 -42518.96 21304.07 11
(1,2) -42582.74 -42509.45 21303.37 12
(2,1) -42614.22 -42534.82 21320.11 13
(2,2) -42614.41 -42528.90 21321.20 14

vec.vec (1,1) -42592.80 -42519.51 21308.40 12
(1,2) -42593.19 -42507.68 21310.59 14
(2,1) -42614.81 -42529.30 21321.40 14
(2,2) -42267.54 -42169.81 21149.77 16

vec.mat (1,1) -42559.95 -42480.55 21292.97 13
(1,2) -42272.19 -42174.46 21152.09 16
(2,1) -42545.45 -42453.83 21287.72 15
(2,2) -42263.48 -42153.54 21149.74 18

mat.scalar (1,1) -42610.93 -42537.64 21317.47 12
(1,2) -42607.67 -42528.27 21316.83 13
(2,1) -42365.67 -42274.06 21197.84 15
(2,2) -42552.12 -42454.40 21292.06 16

mat.vec (1,1) -42614.23 -42534.83 21320.12 13
(1,2) -42599.97 -42508.35 21314.99 15
(2,1) -42335.67 -42237.95 21183.84 16
(2,2) -42261.83 -42151.89 21148.91 18

mat.mat (1,1) -42552.06 -42466.55 21290.03 14
(1,2) -42272.26 -42168.43 21153.13 17
(2,1) -42300.75 -42196.91 21167.37 17
(2,2) -42256.88 -42134.73 21148.44 20

Table 4.7: AIC, BIC and likelihood values of different AR(1)-DVEC(p, q) models
with Student t innovations. Best models according to AIC and BIC are indicated
in bold font.
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appropriate.9 According to likelihood criteria, “vec.scalar” and “vec.vec” of order

(2,1) as well as “mat.vec” of order (1,1) perform reasonably well when fitted to the

data. They all have a total of 13 or 14 parameters. Also, “mat.scalar” of order (1,1)

with only 12 parameters admits high likelihood values. Generally speaking, it can

be said that those models with more parameters also work adequately with low

order approaches, whereas comparably parsimonious models tend toward larger

lags.

4.5.2 The “mat.scalar” model

Estimated parameters for the fitted AR(1)-DVEC(1,1) model that restricts B1 to

be scalar with asymptotic standard errors and t statistics can be found in Table 4.8.

AR(1)-DVEC(1,1)
mat.scalar value std. error t value p value

c1 0.00072540 0.00014959 4.849339 0.00000065
c2 0.00087019 0.00017714 4.912533 0.00000047
φ1 0.09253095 0.01526954 6.059840 < 10−8

φ2 -0.02613145 0.01638065 -1.595263 0.05537438
a0,11 0.00146003 0.00013071 11.169660 < 10−8

a0,12 0.00103090 0.00011824 8.718653 < 10−8

a0,22 0.00070481 0.00019488 3.616607 0.00015147
a1,11 0.22133182 0.01130271 19.582199 < 10−8

a1,12 0.20256135 0.01626014 12.457542 < 10−8

a1,22 0.15787331 0.01657400 9.525361 < 10−8

b1 0.92655579 0.00664735 139.387271 < 10−8

ν 9.528223 0.8972094

Table 4.8: Parameter estimates with standard errors and t statistics for AR(1)-
DVEC(1,1) of type “mat.scalar”. Last row displays estimated degrees of freedom
for the t innovation distribution.

9AIC/BIC model comparison for larger lag-lengths than shown in Table 4.7 has been con-
ducted but showed very little if any improvement.
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4.5.3 Time-varying conditional correlation

In Figure 4.12, the estimated conditional and unconditional cross correlation is

visualized. In comparison to Figure 4.11, it can be observed that this estimate is

rougher and fluctuates more - going down to 0.1 or even less around 2001/2002.

The smoothed time series, however, shows similar structure.
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Figure 4.12: Conditional correlation between ATX and DAX log returns as esti-
mated by AR(1)-DVEC(1,1) of type “mat.scalar” with a smoothed version. Un-
conditional cross correlation estimate is indicated by a horizontal line.

4.5.4 Model checking

For means of model checking, the cross correlogram of the raw and absolute stan-

dardized residuals is displayed in Figure 4.13. It is similar to that of the CCC

residuals in Figure 4.9, and the above remarks apply accordingly.
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Figure 4.13: Cross Correlograms of standardized residuals after fitting an AR(1)-
DVEC(1,1) model of type “mat.scalar” with Student t innovations. Top picture
shows raw values, bottom picture shows absolute values.
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4.6 BEKK Approach

The last model class that fitted to the data is the BEKK one with K = 1. Recall

that the conditional covariance matrix Σt in this model is parameterized by

Σt = A0A
′
0 +

p∑
i=1

AiX t−iX
′
t−iA

′
i +

q∑
j=1

BjΣt−jB
′
j.

In contrast to the above models, this parameterization allows lagged values of one

component series’ volatility to directly effect the volatility of the second component

series. However, for the bivariate BEKK(1,1) model, flexibility is achieved at the

cost of two extra parameters in comparison to the full DVEC model of the same

order.

4.6.1 Lag-length selection

(p, q) AIC BIC likelihood parameters
(1,0) -41652.14 -41578.84 20838.07 12
(1,1) -42594.28 -42496.55 21313.14 16
(2,0) -41921.17 -41823.45 20976.59 16
(3,0) -42052.87 -41930.71 21046.43 20
(2,1) -42645.14 -42522.99 21342.57 20
(1,2) -42611.91 -42489.75 21325.95 20
(1,3) -42584.85 -42438.26 21316.43 24
(3,1) -42637.57 -42490.98 21342.78 24
(2,2) -42251.54 -42104.95 21149.77 24
(2,3) -42243.56 -42072.54 21149.78 28
(3,2) -42243.73 -42072.71 21149.86 28
(3,3) -42235.75 -42040.30 21149.87 32

Table 4.9: AIC, BIC and likelihood values of different AR(1)-BEKK(p, q) models
with Student t innovations. Best models according to AIC and BIC are indicated
in bold font.

Model comparison may again be performed using Akaike or Bayes information

criteria, the results are displayed in Table 4.9. It can be seen that even for low-

order models the number of parameters is already comparably large, but due to the
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large dataset certainly justifiable. A direct comparison of likelihood-related values

with other models indicates that this model might provide a better fit, especially

for p = 2 and q = 1. Section 4.7 will provide further insight here by comparing

models according to their out-sample performance.

4.6.2 AR(1)-BEKK(2,1)

The parameters of one selected model, AR(1)-BEKK(2,1), are presented in Ta-

ble 4.10. It has already 20 parameters including that of the innovation distribu-

tion, but apparently not all of them are significantly different from zero - it may be

appropriate to set some parameters to zero and re-estimate the model or simply

use a lower order model.

AR(1)-BEKK(2,1) value std. error t value p value
c1 0.00071072 0.00014927 4.761202 0.0000010
c2 0.00090894 0.00017445 5.210207 0.0000001
φ1 0.09806248 0.01549255 6.329656 < 10−8

φ2 -0.02634346 0.01459442 -1.805036 0.0355799
a0,11 0.00183625 0.00022130 8.297706 < 10−8

a0,21 0.00099985 0.00029887 3.345395 0.0004154
a0,22 0.00087351 0.00016910 5.165802 0.0000001
a1,11 0.26245554 0.02179329 12.042953 < 10−8

a1,21 0.12858682 0.03787498 3.395033 0.0003471
a1,12 0.00638890 0.01751830 0.364699 0.3576798
a1,22 0.01531479 0.05886504 0.260168 0.3973753
a2,11 0.03741888 0.05444952 0.687221 0.2459957
a2,21 -0.09872095 0.03564027 -2.769927 0.0028191
a2,12 0.05923639 0.01474170 4.018288 0.0000300
a2,22 0.30557655 0.02166363 14.105511 < 10−8

b1,11 0.94303484 0.00916175 102.931753 < 10−8

b1,21 -0.01123108 0.01386314 -0.810140 0.2089591
b1,12 -0.00871062 0.00414487 -2.101540 0.0178345
b1,22 0.95513583 0.00622612 153.407877 < 10−8

ν 9.888383 0.9514615

Table 4.10: Parameter estimates with standard errors and t statistics for an AR(1)-
BEKK(2,1) model. Last row displays estimated degrees of freedom for the t inno-
vation distribution.
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4.6.3 Time-varying cross correlation

In Figure 4.14, the evolvement of estimated cross correlation over time is visualized.

It again differs slightly from the cross correlation estimated before, admitting some

higher peaks which go up to as high as 0.8. Nevertheless, times of lower correlation

cannot be observed as strikingly as in Figure 4.12. As expected, the general

structure resembles that of Figure 4.11 and Figure 4.12.
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Figure 4.14: Conditional correlation between ATX and DAX log returns as esti-
mated by AR(1)-BEKK(2,1) with a smoothed version. Unconditional cross corre-
lation estimate is indicated by a horizontal line.
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4.6.4 Model checking

The cross correlogram of absolute standardized residuals displayed in Figure 4.15

shows some slight improvement to that of the DVEC model in Figure 4.13 in

modeling the lead-lag effect of DAX onto ATX partly due to an increase in lag-

length, but also due to the less parsimonious model choice.
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Figure 4.15: Cross correlogram of absolute standardized residuals.

4.7 Empirical Model Performance

The aim of this final section will be a direct comparison of the presented models

by in- and out-sample prediction performance measures.
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4.7.1 Motivation

Recalling introductory chapters, the conditional covariance matrix in the multi-

variate framework is given by

cov(X t|Ft−1) = cov(Zt|Ft−1) = Σt,

with Σt being Ft−1-measurable. In other words, the estimated element σ̂ij,t of

the estimated conditional covariance matrix Σ̂t predicts the conditional covariance

between Yi,t and Yj,t for i, j = 1 . . . , d. Hence, natural performance measures used

to compare different estimated conditional covariance matrices may be defined for

instance by

MAEij =
1

n− n0

n∑
t=n0

|(Yi,t − µ̂i,t)(Yj,t − µ̂j,t)− Σ̂ij,t|, (4.2)

MSEij =
1

n− n0

n∑
t=n0

((Yi,t − µ̂i,t)(Yj,t − µ̂j,t)− Σ̂ij,t)
2, (4.3)

HMSEij =
1

n− n0

n∑
t=n0

(
(Yi,t − µ̂i,t)(Yj,t − µ̂j,t)

Σ̂ij,t

− 1

)2

, (4.4)

where µ̂t denotes the vector of estimated means, n0 is an arbitrary starting point

and i, j = 1, . . . , d. Total average errors are given by summing up and normalizing,

i.e.

MAE =
1

d2

d∑
i,j=1

MAEij,

MSE =
1

d2

d∑
i,j=1

MSEij,

HMSE =
1

d2

d∑
i,j=1

HMSEij.

Note that these performance measures not only incorporate performance of condi-

tional covariances, but also performance of conditional means. In contrast to the
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mean absolute error (MAE), which penalizes deviation linearly, the mean squared

error (MSE) weights large deviation somewhat stronger. Clearly, this makes MAE

more robust to outliers than MSE. The third error measure proposed, the hetero-

scedasticity-adjusted MSE (HMSE), penalizes deviations heavier in times of low

volatility (Schöftner [23]).10

Obviously, these statistical loss functions can be applied regardless of the distribu-

tional assumption to in- and out-sample testing. Referring to the underlying data

set, dimension d equals 2 and the number of observations n equals 3321.

4.7.2 Model comparison by likelihood related values

Before turning to empirical measurement, the AIC, BIC, likelihood and parameter

values for the models selected above are summarized again in Table 4.11.

AIC BIC likelihood parameters
CCC(1,1) -42586 -42519 21304 10

mat.scalar DVEC(1,1) -42611 -42538 21317 12
BEKK(1,2) -42645 -42523 21343 20

Table 4.11: AIC, BIC, likelihood values and number of parameters for selected
models. DCC is not directly comparable because of the stepwise estimation pro-
cedure and is therefore not included.

As expected, the more nested models achieve higher likelihood values. However,

when taking the number of parameters into account, the more complicated model

is not automatically the better anymore. Likelihood values of DVEC are 0.12%

smaller than those of BEKK, while CCC values are about 0.18% behind.

4.7.3 In-sample measurement

One possible approach to quantifying prediction quality is in-sample measurement.

In the underlying case, this means that:

10The magnitude of different HMSEij ’s may differ significantly since it measures the percentage
squared error. The total sum can mainly be influenced by one high value.

96



4.7. EMPIRICAL MODEL PERFORMANCE

• Parameters are being determined once by fitting a specified model to the

entire dataset.

• For measuring the prediction quality, (4.2), (4.3) and (4.4) are applied.

One striking argument for using in-sample methods is that the above procedure

can be applied to (almost) the entire data, many comparisons are available and

consequently lead to better estimation of the real errors. On the contrary, one

might argue that the parameters are estimated knowing the “future” instead of

restricting the estimation to the past. For the underlying investigation, 90% of the

data have been used, i.e. n0 = 332.

In the following tables, in-sample performance measures are presented. For mean

modeling, a diagonal autoregressive model of order one is used. Table 4.12 shows

appropriately scaled MAE11, MSE11 and HMSE11 for various previously discussed

models; in other words, conditional covariance prediction errors for ATX log re-

turns.

MAE11 10−4 MSE11 10−7 HMSE11 101

CCC(1,1) 1.017404 0.587623 0.369657
DCC(1,1) 1.021291 0.588538 0.364316

alternative DCC(1,1) 1.017404 0.587623 0.369657
mat.scalar DVEC(1,1) 1.019623 0.592393 0.380945

BEKK(2,1) 1.017310 0.582360 0.357916

Table 4.12: In-sample performance measures for ATX conditional variance.

As can be seen in Table 4.12, AR(1)-BEKK(2,1) is superior in predicting ATX con-

ditional variance according to all three performance measures. However, AR(1)-

CCC(1,1) and equivalently AR(1)-DCC(1) are virtually equal, especially when

considering the absolute error with a deviation of less than 0.01%. The slightly

less parameter-parsimonious mat.scalar DVEC(1,1) model is behind about 0.23%

in MAE and 1.72% in MSE. Table 4.13 presents the same numbers for DAX con-

ditional variance.

DAX conditional variance prediction measures listed in Table 4.13 generally show

significantly larger values than those of ATX. Only HMSE values are smaller, but
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MAE22 10−4 MSE22 10−7 HMSE22 101

CCC(1,1) 2.286205 1.986459 0.283322
DCC(1,1) 2.300142 1.979073 0.274724

alternative DCC(1,1) 2.286205 1.986459 0.283322
mat.scalar DVEC(1,1) 2.252521 1.976215 0.272338

BEKK(2,1) 2.255986 1.960333 0.280813

Table 4.13: In-sample performance measures for DAX conditional variance.

do not allow an equally straightforward interpretation as MAE and MSE. De-

pending on whether focus is laid onto absolute or squared errors, DVEC(1,1) or

BEKK(2,1) exhibit smallest errors. Generally it can be said that when measuring

conditional variance only, simple models such as CCC perform quite well. Con-

sidering the absolute error, CCC is about 1.5% behind DVEC, looking at squared

errors the difference amounts to 0.52%.

Turning to conditional covariance prediction, this picture changes only slightly.

In-sample performance measure results can be found in Table 4.14.

MAE12 10−4 MSE12 10−7 HMSE12 101

CCC(1,1) 1.081838 0.530029 0.722084
DCC(1,1) 1.082260 0.523735 0.710118

alternative DCC(1,1) 1.079954 0.524524 0.723057
mat.scalar DVEC(1,1) 1.063635 0.524700 1.079326

BEKK(2,1) 1.065886 0.522767 0.755547

Table 4.14: In-sample performance measures for conditional covariance.

When considering absolute or squared errors, Table 4.14 gives some evidence that

more nested models such as DVEC or BEKK capture conditional covariance bet-

ter than simpler models. Constant correlation assumption is now outperformed

somewhat clearer (1.71% in MAE and 1.02% in MSE).

For a last overview, the overall in-sample performance measures are presented in

Table 4.15, which are simply created by averaging the (weighted) measures from

above.
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MAE 10−4 MSE 10−7 HMSE 101

CCC(1,1) 1.366822 0.908535 0.524287
DCC(1,1) 1.371488 0.903770 0.514819

alternative DCC(1,1) 1.365879 0.905783 0.524773
mat.scalar DVEC(1,1) 1.349854 0.904502 0.702984

BEKK(2,1) 1.351267 0.897057 0.537456

Table 4.15: Overall in-sample performance measure results.

4.7.4 Out-sample measurement

Another way of measuring prediction quality is out-sample prediction. Here this

means that

• The data is split into “past” and “future” with splitting point n0. In order

to determine the parameters, a model is fit to the “past” part of the data.

• The one-step ahead prediction is evaluated as before.

• Steps one and two are iterated until the end of the dataset is reached. The

splitting point is increased by one in every step.

Obviously, this method is computationally much more expensive, since a new

model has to be fitted in every iteration step.11 Alternatively and computation-

ally relatively inexpensive, out-sample measuring can be performed by re-using

parameter estimates obtained at the first splitting point n0. This method yields

very similar results to the in-sample performance measures displayed in Table 4.12

to 4.15.

For the underlying data n0 = 2656, i.e. at least 80 percent of the data are used

for obtaining parameter estimates.

Similar to in-sample measurement, Table 4.16 shows that AR(1)-BEKK(2,1) is

slightly ahead in ATX conditional variance prediction. According to absolute er-

rors, it is 0.87% better than CCC and 0.56% better than DVEC. Considering

11Because fitting DCC is hand-made and not numerically and computationally optimized, this
method is not feasible for DCC as implemented. DCC out-sample performance measure values
were not obtained.
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MAE11 10−4 MSE11 10−7 HMSE11 101

CCC(1,1) 0.777158 0.201629 0.298885
mat.scalar DVEC(1,1) 0.772804 0.200974 0.306884

BEKK(2,1) 0.770483 0.200417 0.304465

Table 4.16: Out-sample performance measures for ATX conditional variance.

squared errors, this effect reduces to 0.60% and 0.20%, respectively. Paying at-

tention to HMSE, CCC performs better by 2.68% in comparison to DVEC and

1.87% in comparison to BEKK. In Table 4.17, these numbers can be found for

DAX conditional variance.

MAE22 10−4 MSE22 10−7 HMSE22 101

CCC(1,1) 1.043066 0.271602 0.226310
mat.scalar DVEC(1,1) 1.049171 0.271139 0.208190

BEKK(2,1) 1.031579 0.267115 0.237015

Table 4.17: Out-sample performance measures for DAX conditional variance.

Again, DAX conditional variance prediction measures listed in Table 4.17 exhibit

larger values than those of ATX. AR(1)-BEKK(2,1) performs best when focusing

on absolute errors with 1.11% higher accuracy in comparison to CCC and 1,70%

compared to DVEC. Squared errors portrait a similar picture: BEKK is 1.68%

ahead of CCC and 0.17% ahead of DVEC.

MAE12 10−4 MSE12 10−7 HMSE12 101

CCC(1,1) 0.631214 0.110458 0.600891
mat.scalar DVEC(1,1) 0.648044 0.110909 0.527230

BEKK(2,1) 0.643572 0.110856 0.584268

Table 4.18: Out-sample performance measures for conditional covariance.

Interestingly, Table 4.18 shows that when observing predicted conditional covari-

ance, AR(1)-CCC(1,1) performs best. In comparison to DVEC, the accuracy is

2.67% higher in MAE and 0.41% higher in MSE. Compared to BEKK, it is still

better by 1.96% in MAE and 0.36% in MSE. Just like before, HMSE “favours”

DVEC.
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Finally, in Table 4.19 the overall measure of out-sample prediction performance is

displayed. No clear evidence for a “best” model can be spotted.

MAE 10−4 MSE 10−7 HMSE 101

CCC(1,1) 0.770663 0.173536 0.431744
mat.scalar DVEC(1,1) 0.779516 0.173483 0.392383

BEKK(2,1) 0.772301 0.172311 0.427504

Table 4.19: Overall out-sample performance measure results.
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Appendix A

S-PLUS Source Code

Appendix A contains used S-PLUS source code. The files used in this thesis are

presented and described in order of their usage within the thesis. In S-PLUS

comments are written in the “# comment” style.

A.1 firstsim.scc

Simple S-PLUS code used to create Figures 1.1, 1.2 and 1.3.

# Simulate and visualize time series as defined by (1.2)

# Innovation distribution: normal, t

set.seed(11)

n <- 250

t.innov <- sqrt(1/3)*rt(n+10, df=3)

g.innov <- rnorm(n+10, sd=1)

x <- y <- matrix(nrow = n, ncol = 2)

x[,1] <- g.innov[11:(n+10)]

x[,2] <- g.innov[11:(n+10)] + .75*g.innov[1:n]

y[,1] <- t.innov[11:(n+10)]
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y[,2] <- t.innov[11:(n+10)] + .75*t.innov[1:n]

dimnames(x) <- list(NULL, c("Component series 1", "Component series 2"))

dimnames(y) <- list(NULL, c("Component series 1", "Component series 2"))

# Visualize the time series itself

par(mfrow=c(4,1))

tsplot(x[,1], main="Gaussian innovations: Component series 1", col=1)

tsplot(x[,2], main="Gaussian innovations: Component series 2", col=1)

tsplot(y[,1], main="t innovations: Component series 1", col=1)

tsplot(y[,2], main="t innovations: Component series 2", col=1)

# Visualizing the ACF

x.acf <- acf(x, plot=F)

y.acf <- acf(y, plot=F)

par(mfrow=c(1,1))

acf.plot(x.acf, main="")

acf.plot(y.acf, main="")

A.2 garchfunctions.scc

Some functions used in univariate GARCH contexts. Using these, all simulations

in Chapter 2 can easily be conducted. For one example, please see A.3.

# Function to get the logarithmic values of given data, whereas

# also negative values are possible. Given data in modulus

# smaller than 1 is assigned zero. Used for visualization.

logit <- function(x) {

x[-1 < x & x < 1] <- 1

x[x<0] <- -log(-x[x<0])

x[x>0] <- log(x[x>0])

return(x)

}

# Similar to above. Negative values are now assigned
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# the reciprocal in modulus. Used for visualization.

log.prepare <- function(x) {

x[-1 < x & x < 1] <- 1

x[x<0] <- -(1/x[x<0])

return(x)

}

# Function to simulate an ARCH(1) process x with conditional

# variance sigma.

arch1sim <- function(alpha0, alpha1, lead = 10, innov = rnorm(510)) {

tslength = length(innov)

x <- vector(length = tslength)

sigma <- vector(length = tslength)

x[1] <- 0

sigma[1] <- 0

for (i in 2:tslength) {

sigma[i] <- sqrt(alpha0 + alpha1 * (x[i-1])^2)

x[i] <- sigma[i]*innov[i]

}

x <- x[-(1:lead)]

sigma <- sigma[-(1:lead)]

return(cbind(x, sigma))

}

# Function to simulate a GARCH(1,1) process x with conditional

# variance sigma.

garch11sim <- function(alpha0, alpha1, beta, lead = 10,

innov = rnorm(510)) {

tslength = length(innov)

x <- vector(length = tslength)

sigma <- vector(length = tslength)

x[1] <- 0

sigma[1] <- 0

for (i in 2:tslength) {

sigma[i] <- sqrt(alpha0 + alpha1*(x[i-1])^2 + beta*sigma[i-1]^2)

x[i] <- sigma[i]*innov[i]
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}

x <- x[-(1:lead)]

sigma <- sigma[-(1:lead)]

return(cbind(x, sigma))

}

# Calculates kurtosis of a GARCH(1,1) process.

garch11.kurtosis <- function(alpha1, beta, kappa.z) {

kappa.x <- (kappa.z*(1-(alpha1+beta)^2))/(1-(alpha1+beta)^2 -

(kappa.z-1)*alpha1^2)

return(kappa.x)

}

# Calculates real autocorrelation of squared GARCH(1,1) process, made

# possible by ARMA representation. See chapter 2.2.4.

garch11squared.acf <- function(alpha1, beta, x) {

phi <- alpha1 + beta

theta <- -beta

y <- (phi^(x-1)*(phi + theta)*(1+phi*theta))/(1+theta^2+2*phi*theta)

return(y)

}

A.3 arch1sim.scc

Functioning as an example, the script producing Figure 2.1 is presented here. It

needs (some of) the above code in garchfunctions.scc.

# Produces Figure 2.1, uses garchfunctions.scc

set.seed(11)

n <- 500

lead <- 10

n.innov <- rnorm(n+lead)

alpha0 <- .1

alpha1 <- .5
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simresult <- arch1sim(alpha0, alpha1, lead, innov = n.innov)

par(mfrow = c(2,2))

tsplot(simresult[, "x"], main = "")

tsplot(simresult[, "sigma"], type = "h", main = "")

x <- (0:200)/10

y <- alpha1^x

plot(acf(simresult[, "x"], plot=FALSE, lag.max=20), main="")

plot(acf(simresult[, "x"]^2, plot=FALSE, lag.max=20), main="")

lines(x,y, lty = 4)

A.4 atxdax.scc

After importing the stock return data obtained as “Comma Separated Value”

(.csv) files from YAHOO!, the following code needs to be executed in order to be

able to use the functionality of the specially designed timeSeries objects. It also

illustrates the use of its high-level plotting function, seriesPlot().

# Obtaining, converting and displaying data for ATX and DAX,

# .raw objects are imported DataFrames from .csv-files.

# converts DataFrames to timeSeries objects

toTimeSeries <- function(ts) {

class(ts[,"Date"]) <- "character"

td <- timeDate(ts[,"Date"], in.format="%d-%m-%y",

format="%a %b %d, %Y")

res <- timeSeries(pos=rev(td), data=rev(ts[,"Close"]))

}

atx <- toTimeSeries(atx.raw) # toTimeSeries converts DataFrames to

dax <- toTimeSeries(gdaxi.raw) # timeSeries objects

x.merged <- seriesMerge(atx,dax) # merging the series to one multivar
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colIds(x.merged) <- c("ATX", "DAX")

x.merged@title <- "ATX and DAX"

x.merged@documentation <- "Daily data for ATX and DAX (for days on which

all were available). Data by YAHOO!"

x <- getReturns(x.merged) # calculating the log-return

x@title <- "Log-Returns of ATX and DAX"

x@documentation <- "Daily Log-Returns of ATX and DAX (for days on which

both were available). Data obtained through YAHOO!"

par(mfrow =c(1,1))

plot(x.merged, main = "")

seriesPlot(seriesMerge(x[,"DAX"],x[,"ATX"],), one.plot = F,

strip.text=colIds(x))

plot(acf(x, plot = F), main = "")

plot(acf(x^2, plot = F), main = "")

A.5 ccc.scc

The following code illustrates exemplary how AIC/BIC tables and QQ-plots as in

Figure 4.10 may easily be created. Also, conditional volatility and standardized

residuals are plotted over time. In this case this is done for the CCC model.

i.length <- 3

j.length <- 3

ic <- data.frame(sort(rep(0:j.length, i.length+1)),

rep(0:j.length, i.length+1),0,0,0,0)

names(ic) <- c("p","q","AIC","BIC","likelihood","parameters")

for (i in 0:i.length) {

for (j in 0:j.length) {

if (i == 0 & j == 0) next

tmp <- mgarch(x~ar(1), ~ccc(i,j), trace=F)

ic[(i*(j.length+1))+j+1,c(3,4,6)] <- summary(tmp)$abic[c(2,3,1)]
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ic[(i*(j.length+1))+j+1,5] <- tmp$likelihood

}

}

ic[1,] <- c(0,0,NA,NA,NA,NA)

ccc11t <- mgarch(x~ar(1), ~ccc(1,1), trace=F, cond.dist="t")

par(mfrow = c(1,1))

seriesPlot(ccc11t$sigma.t,one.plot=F,strip.text=colIds(ccc11t$sigma.t))

seriesPlot(resid(ccc11t, standardize = T), one.plot=F,

strip.text=colIds(ccc11t$std.residuals))

print(qqPlot(resid(ccc11t, standardize = T), ccc11t$cond.dist$dist.par,

distribution = ccc11t$cond.dist$cond.dist, strip.text =

c("Component Series 1","Component Series 2"), id.n = 0,

ylab = "Standardized Residuals", xlab = paste("Quantiles of t

distribution"), main = ""), position = c(.5,0,1,1), more = T)

A.6 dcc.scc

For estimating the DCC model, manual likelihood evaluation needs to be per-

formed, which is done straightforwardly and in a non-optimized way by like().

Even though it is possible to use this approach, the code is very slow compared to

the pre-compiled Fortran-based likelihood optimization implemented in finmetrics’

MGARCH() function. After getting an idea about possible local and global minima

by placing a grid over the entire parameter space, the built-in minimizer nlminb()

is used for final optimization. The DCC model is then embedded as a manually

fitted MGARCH object and conditional correlation is visualized.

# for manually evaluating the DCC-likelihood-function

like <- function(para, qbar, x) {

alpha <- para[1]

beta <- para[2]
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c <- 1 - alpha - beta

if (c <= 0) return(NA)

q <- array(dim=c(numRows(x)+1, 2, 2))

q[1,,] <- qbar

for (i in 2:(numRows(x)+1)) {

q[i,,] <- c*qbar + alpha*seriesData(x)[i-1,]%*%t(seriesData(x)[i-1,])+

beta*q[i-1,,]

}

q <- q[-1,,]

normalizer <- sqrt(q[,1,1]*q[,2,2])

q <- q/normalizer

q[,1,1] <- 1

q[,2,2] <- 1

res <- array(dim=c(numRows(x),2))

for (i in 1:numRows(x)) {

res[i,] <- solve(chol(q[i,,]))%*%seriesData(x)[i,]

}

tmp <- sum(log((1-q[,1,2]^2)^-.5*dmvnorm(res)))

return(-tmp)

}

# fit univariate GARCH models and calculate sample correlation

garch11t <- mgarch(x~ar(1), ~garch(1,1), cond.dist = "t", trace=F)

x.devol <- garch11t$std.residuals

qbar <- cor(x.devol)

# grid for getting an idea of how like() looks like for different par

resch <- array(dim=c(50,50))

for (i in 0:49) {

for (j in 0:49) {

resch[i,j] <- like(i/50, j/50, qbar, x.devol)

}

}

# results therof...

# maxi <- .01+6/1000
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# maxj <- .95+11/1000

max.result <- nlminb(c(maxi,maxj), like, lower = c(0,0),

upper = c(1,1), x = x.devol, qbar = qbar)

alpha <- max.result$parameter[1]

beta <- max.result$parameter[2]

# manually embed the optimized model in mgarch()

dcc <- mgarch(formula.mean = x.devol~-1, formula.var =

~dvec.scalar.scalar(1,1), cond.dist = "normal", trace=T)

newmodel <- dcc$model

c <- 1 - alpha - beta

newmodel$a.value <- sqrt(c)*t(chol(qbar))

newmodel$arch$value$lag.1 <- alpha

newmodel$garch$value$lag.1 <- beta

# trick for not really estimating any model, but still using mgarch()

dcc <- mgarch(series = x.devol, model = newmodel, trace=F,

control = bhhh.control(n.iter = -1))

tmp <- timeSeries(dcc$R.t[,1,2], pos = positions(x))

smooth <- lowess(1:length(dcc$R.t[,1,2]), dcc$R.t[,1,2],

f = 1/8, delta = 0)$y

tmp2 <- timeSeries(smooth, pos = positions(x))

tmp3 <- timeSeries(rep(qbar[1,2], numRows(x)), pos = positions(x))

tmp <- seriesMerge(tmp, tmp2, tmp3)

plot(tmp, reference.grid=F)

A.7 testfunctions.scc

The following code shows how out-sample performance measuring was conducted.

Both MGARCH’s implemented prediction methods (outsampletest()) as well as

“manual” prediction (outsampletest3()) was used (faster). For different models

the code may simply be adjusted accordingly.

110



A.7. TESTFUNCTIONS.SCC

# Extracts sigma from a fitted MGARCH object

getSigma <- function(model, pos) {

sigma <- diag(as.vector(model$sigma.t[pos,]))%*%

matrix(model$R.t[pos,,], nrow=2)%*%

diag(as.vector(model$sigma.t[pos,]))

}

# Extracts prediction for sigma from a fitted MGARCH object

getSigmap <- function(model, pos=1) {

sigma <- diag(as.vector(model$sigma.pred[pos,]))%*%

matrix(model$R.pred[pos,,], nrow=2)%*%

diag(as.vector(model$sigma.pred[pos,]))

}

outsampletest <- function(x, model = ~dvec.mat.mat(1,1),

meanmodel = ~ar(1), innovdist = "t",

testsize = numRows(x)/5, ...) {

samplesize <- numRows(x)

part.refcov <- part.cov <- matrix(ncol = numCols(x)^2,

nrow = testsize)

for (i in testsize:1) {

part.model <- mgarch(series = x[1:(samplesize-i),],

formula.mean = meanmodel, formula.var = model,

cond.dist = innovdist, trace = F, ...)

part.pred <- predict(part.model,1)

part.cov[i,] <- as.vector(getSigmap(part.pred, 1))

tmp <- as.vector(x[samplesize-i+1,] - part.pred$series.pred)

part.refcov[i,] <- tmp %*% t(tmp)

}

mae <- apply(abs(part.refcov - part.cov), 2, mean)

mse <- apply((part.refcov - part.cov)^2, 2, mean)

hmae <- apply(abs(part.refcov/part.cov - 1), 2, mean)

hmse <- apply((part.refcov/part.cov - 1)^2, 2, mean)

mae.total <- mean(abs(part.refcov - part.cov))

mse.total <- mean((part.refcov - part.cov)^2)
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hmae.total <- mean(abs(part.refcov/part.cov-1))

hmse.total <- mean((part.refcov/part.cov-1)^2)

res <- data.frame(t(matrix(c(mae, mse, hmae, hmse), nrow=4)),

c(mae.total, mse.total, hmae.total, hmse.total),

row.names=c("MAE", "MSE", "HMAE", "HMSE"))

}

outsampletest3 <- function(x, model = ~dvec.mat.mat(1,1),

meanmodel = ~ar(1), innovdist = "normal",

testsize = numRows(x)/5, ...) {

samplesize <- numRows(x)

part.refcov <- part.cov <- matrix(ncol = numCols(x)^2, nrow = testsize)

part.model <- mgarch(series = x[1:(samplesize-testsize)],

formula.mean = meanmodel, formula.var = model,

cond.dist = innovdist, trace = F, ...)

A0 <- part.model$model$a.value %*% t(part.model$model$a.value)

A1 <- part.model$model$arch$value$lag.1 %*%

t(part.model$model$arch$value$lag.1)

B1 <- part.model$model$garch$value$lag.1 %*%

t(part.model$model$garch$value$lag.1)

c <- part.model$model$c.value

ARterm <- part.model$model$AR$value$lag.1

sigma <- getSigma(part.model, samplesize-testsize)

eps <- as.vector(x[samplesize-testsize,]) - c -

ARterm %*% as.vector(x[samplesize-testsize-1,])

eps2 <- eps %*% t(eps)

for (i in testsize:1) {

sigma <- A0 + A1*eps2 + B1*sigma

part.cov[i,] <- as.vector(sigma)

eps <- as.vector(x[samplesize-i+1,]) - c -

ARterm %*% as.vector(x[samplesize-i,])

eps2 <- eps %*% t(eps)
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part.refcov[i,] <- as.vector(eps2)

}

mae <- apply(abs(part.refcov - part.cov), 2, mean)

mse <- apply((part.refcov - part.cov)^2, 2, mean)

hmae <- apply(abs(part.refcov/part.cov - 1), 2, mean)

hmse <- apply((part.refcov/part.cov - 1)^2, 2, mean)

mae.total <- mean(abs(part.refcov - part.cov))

mse.total <- mean((part.refcov - part.cov)^2)

hmae.total <- mean(abs(part.refcov/part.cov-1))

hmse.total <- mean((part.refcov/part.cov-1)^2)

res <- data.frame(t(matrix(c(mae, mse, hmae, hmse), nrow=4)),

c(mae.total, mse.total, hmae.total, hmse.total),

row.names=c("MAE", "MSE", "HMAE", "HMSE"))

}
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