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Chapter 1

Introduction

Quantum chromodynamics (QCD) is nowadays the well established theory
to describe the strong interaction. As quantum electrodynamics (QED), it is
a gauge field theory, however with important differences. While QED is an
Abelian theory with gauge group U(1), QCD has SU(3) as gauge group and
is non-Abelian. In QED the gauge boson associated with U(1) is the photon,
which is uncharged. Contrary to this for the color group SU(3) there exist 8
gluons that carry color themselves. Both, QED and QCD, are renormalizable
theories and the coupling constant turns out to be a function of the energy
scale. But here we find once more a remarkable difference between QCD
and QED. While the coupling for the latter increases for larger energy scales,
non-Abelian gauge theories have the property that the coupling constant
decreases for increasing energy scales. This is called asymptotic freedom
and has been tested experimentally by deep inelastic scattering of leptons on
nucleons. On the other side, at low energies quarks, which are the matter
particles of QCD, are confined in hadrons and these are then the relevant
degrees of freedom.

However, according to standard cosmology there existed a gas of almost
free quarks and gluons until 10−6 − 10−5s after the Big Bang. This un-
usual state of matter is called quark-gluon plasma (QGP), in analogy to the
conventional electromagnetic plasma, where atoms are split in electrons and
ions. The QGP might also occur in the core of heavy neutron stars and it
is believed to be produced fleetingly on earth at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory. The conditions under
which a QGP may exist are either very hot, with a temperature above a crit-
ical temperature TC of the order of 160 MeV, or extremely dense (or both).
At RHIC the required temperatures are achieved by letting ultrarelativistic
heavy ions collide. In the following we want to sketch such a collision.

The two heavy nuclei are accelerated nearly to the speed of light and are
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Figure 1.1: Illustration of the almond shaped collision region for a non-
central heavy ion collision. The beam line is perpendicular to the plane of
the drawing.

therefore strongly Lorentz contracted. They most probably do not collide
perfectly head on, so that there is an almond shaped collision region. If
nothing interesting happens and the nucleons simply collide independently
the detector will show an isotropic distribution of transverse momenta. But
in the experiments an anisotropic distribution is detected. This can be ex-
plained, if we assume that the products of nucleon-nucleon collisions can
not fly out freely but collide themselves with the products of other nucleon-
nucleon collisions and therefore come to approximate local thermal equilib-
rium (e.g. locally thermalized QGP). A short time after the collision of the
Lorentz contracted nuclei the almond shaped collision region is filled up into
an almond shaped cylinder. There is some central pressure and no pressure
outside the cylinder, such that there exists an anisotropic pressure gradi-
ent (the pressure gradient must be larger along the shorter diameter of the
almond). Due to this pressure gradient the particles are accelerated more
along the shorter diameter, which results in an anisotropic momentum dis-
tribution. This is called elliptic flow and it is one indication beside others
that the QGP has been produced.

However, when simulations of ideal hydrodynamics are matched to ex-
perimental data, it is found that the data is described well only if the QGP
thermalizes very rapidly on a time scale of the order of or perhaps smaller
than 1 fm/c. One way to describe this fast thermalization is to assume a
strongly coupled plasma. Actually the data harvested at RHIC seems to
indicate that the produced QGP is indeed not weakly coupled. This means
that at center of mass energies achieved at RHIC the QCD coupling con-
stant is not sufficiently small such that perturbative methods could be used.
Strongly coupled systems have been investigated analytically by making use
of the AdS/CFT conjecture in the recent past. However, soon the experi-
ments at the LHC at CERN will study heavy ion collision at much higher
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center of mass energies and therefore it might be possible that the plasma
shows specific perturbative features there. But even if it turns out that
the LHC can not reach high enough energies, a better understanding of the
weakly coupled QGP is still desireable, since already in the case of RHIC
physics the actual truth will most probably be somewhere in between the
strong and weak coupling asymptotics.

In this thesis we want to examine the weakly coupled QGP and there a
key issue in the context of the fast thermalization is the understanding of the
collective behavior of the plasma and especially of the instabilities that arise
in non-equilibrium situations present in the early stage after the collision. To
be able to describe such systems, we need to take into account that the QGP
expands into the vacuum after the collision and this makes a non-stationary
treatment inevitable.

We only investigate the theoretically clean limit at asymptotically weak
coupling and additionally we consider the linear approximation, which is
valid for sufficiently weak gauge fields, where non-Abelian self-interactions
are negligible. Therefore we are dealing with an effectively Abelian theory
in the following. This thesis is organized as follows: In chapter 2 we present
some basics of thermal quantum field theory, that we use to obtain the col-
lective behavior of an isotropic plasma in chapter 3. In chapter 4 we analyze
the implications of anisotropic momentum distributions of the particles in
the plasma in stationary situations. We also discuss the presence of instabil-
ities before we turn to the investigation of anisotropically expanding plasmas
in chapter 5. Eventually we present our results for the time evolution of the
gauge fields in chapter 6, where we examine the collective modes in detail.

We use natural units (c = ~ = kB = 1) and the Minkowski signature
(+,−,−,−) throughout this thesis.



Chapter 2

Basics of thermal QFT

In this introductory chapter we want to establish some concepts of quantum
field theory at finite temperature. The discussion presented here is mainly
concerned with aspects we will need later. We will skip many important
facets of the theory and the interested reader is referred to the textbooks
[1, 2] and to [3, 4].

2.1 Partition function as functional integral

2.1.1 Quantum statistical mechanics

We start by recalling some important facts from quantum statistical mechan-
ics. In equilibrium statistical mechanics it is possible to work in different
ensembles depending on the characteristics of the system:

microcanonical ensemble: energy E, particle number N and volume V
fixed

canonical ensemble: temperature T , N and V fixed; E variable

grand canonical ensemble: T , chemical potential µ and V fixed; E and
N variable

β = T−1 and µ can be thought of as Lagrange multipliers, which determine
the mean energy and the mean particle number in the canonical and grand
canonical ensemble. In general, every conserved observable N̂i, like charge
or baryon number, can be associated with a chemical potential µi.

In equilibrium the fundamental quantity in statistical mechanics is the
statistical density matrix ρ̂, which is defined as

ρ̂ = e−β(Ĥ−µiN̂i) (2.1)

4



2.1. PARTITION FUNCTION AS FUNCTIONAL INTEGRAL 5

and the partition function Z is given by

Z = Trρ̂ = Tre−β(Ĥ−µiN̂i). (2.2)

With the knowledge of the partition function the other thermodynamic prop-
erties, such as pressure, entropy or energy can be obtained from it. The
thermal expectation value of any observable Â can be obtained from

〈Â〉 =
1

Z
Tr(ρ̂Â). (2.3)

2.1.2 Transition amplitude

After this short reminder of quantum statistical mechanics we want to rewrite
the partition function as a functional integral. Before we can do this, we first
want to calculate the transition amplitude. To be accurate, we consider
bosonic fields and will remark on fermions later.

In conventional quantum mechanics the projection of an eigenstate 〈x| of
the position operator x̂ onto the eigenstate |p〉 of the momentum operator p̂
is given by

〈x|p〉 = eip·x (2.4)

In QFT we have an infinite number of degrees of freedom and therefore the
discrete sum

∑
i pixi becomes an integral,

〈φ|π〉 = ei
R
d3xπ(x)φ(x). (2.5)

In the above expression φ(x) and π(x) are eigenfunctions of the field operator
φ(t,x) and the conjugate momentum operator π(t,x) at t = 0, respectively.
The completeness and orthogonality conditions are∫

dφ(x)|φ〉〈φ| = 1, (2.6)∫
dπ(x)

2π
|π〉〈π| = 1, (2.7)

〈φa|φb〉 = δ[φa(x)− φb(x)], (2.8)

〈πa|πb〉 = δ[πa(x)− πb(x)] (2.9)

and the Hamiltonian Ĥ can be written as an integral of the Hamilton density
H, which depends on the field operators

Ĥ =

∫
d3xH(π(x), φ(x)). (2.10)
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We want to find the transition amplitude for identical initial and final states
φ. The reason for this will be clear in a moment. We divide the time interval
[ti = 0, tf = t] into N pieces of length ∆t and let N →∞

〈φ|e−iĤt|φ〉 = lim
N→∞

〈φ|e−iĤ∆te−iĤ∆t . . . e−iĤ∆t|φ〉 (2.11)

= lim
N→∞

∫ N∏
i=1

dπi
2π

dφi〈φ|πN〉〈πN |e−iĤ∆t|φN〉〈φN |πN−1〉 ×

〈πN−1|e−iĤ∆t|φN−1〉 × . . .× 〈φ2|π1〉〈π1|e−iĤ∆t|φ1〉〈φ1|φ〉.

Here, we inserted each of the completeness relations N times alternatingly.
Looking at the terms involving the Hamiltonian, we can write these as

〈πi|e−iĤ∆t|φi〉 = e−i∆t
R
d3xH(πi,φi)〈πi|φi〉

= e−i∆t
R
d3xH(πi,φi)ei

R
d3xπiφi . (2.12)

This is allowed since ∆t is infinitesimally small and when we expand the
exponential we can neglect all terms of O(∆t2). Finally for the last factor in
(2.12) we get, according to the orthonormality condition 〈φ1|φ〉 = δ(φ− φ1).
Putting the pieces together we find

〈φ|eiĤt|φ〉 = lim
N→∞

∫ N∏
i=1

dπi
2π

dφiδ(φ− φ1)×

exp

{
i∆t

N∑
j=1

∫
d3x

[
πj
φj+1 − φj

∆t
−H(π, φ)

]}
. (2.13)

where φN+1 = φ. Finally we take the limit N →∞ and obtain

〈φ|eiĤt|φ〉 =

∫
Dπ
∫ φ(t,x)=φ

φ(0,x)=φ

Dφ exp

{
i

∫ tf

0

dt

∫
d3x [π∂tφ−H(π, φ)]

}
,

(2.14)
where we denoted the continuum limit of the functional integration as∫ N∏

i=1

dπi
2π

dφi →
∫
Dπ
∫
Dφ. (2.15)

We emphasize that the fields φ and π in (2.14) depend on time and space
coordinates.
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Finally we want to compare the partition function (2.2) with the result
for the transition amplitude (2.14)

Z = Tre−β(Ĥ−µiN̂i) (2.16)

=

∫
dφ〈φ|e−β(Ĥ−µiN̂i)|φ〉

=

∫
Dπ
∫
periodic

Dφ exp

{
−
∫ β

0

dτ

∫
d3x(H− µiNi − iπ∂τφ)

}
.

Now it should be obvious why we calculated the transitions amplitude for
identical initial and final states. Here, we identify the inverse temperature
with ”imaginary time” τ = it 1, such that the integration over τ goes from 0
to 1/T . ”Periodic” in the above expression means that all φ’s have to satisfy
φ(0,x) = φ(β,x), hence they must be periodic in imaginary time.

It is possible to write the partition function in the form of the usual
path integrals known in conventional quantum mechanics, in terms of the
Lagrangian instead of the Hamiltonian. After a shift of the conjugate mo-
menta (e.g. π̃ = π − ∂tφ for a real non-interacting scalar field), the integral
over the π’s, which turns out to be a Gaussian integral, factorizes and gives
a constant. Therefore we obtain

Z = const.

∫
periodic

Dφ exp

{∫ β

0

dτ

∫
d3xL

}
. (2.17)

Actually the situation is different for fermions, since they are anticom-
muting objects. This manifests in the partition function such that

Z = Tre−βĤ =

∫
dη∗dηe−η

∗η〈−η|e−βĤ |η〉, (2.18)

where η is an anticommuting number. Note the different sign convention
for the trace. Finally it turns out that for fermions we need antiperiodic
boundary conditions in (2.16) and (2.17) instead of periodic ones2.

2.2 Matsubara frequencies

We will exclusively consider the so called ”imaginary time” or ”Matsubara
formalism” (ITF). Since we will only use diagrammatic methods in equilib-
rium situations, ITF is convenient for our purpose3.

1This can also be interpreted as going from Minkowski to Euclidean space, where τ is
real, since the Minkowski metric transforms into a Euclidean metric (t2−x2 → −(τ2+x2)).

2More details on this are given in [1, 2, 3].
3The ”real time formalism” is treated in [2].
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Im k0

Re k0

Figure 2.1: The integration contour in the complex k0 plane

2.2.1 Bosons

In 2.1.2 we met the condition for the bosonic field to be periodic in imaginary
time with periodicity β. This translates to discrete frequencies, the so called
bosonic Matsubara frequencies ωn, in momentum space. To see this, we
Fourier transform the field

φ(X) =

√
β

V

∑
K

e−iK·Xφ(K) =

√
β

V

∑
K

ei(ωnτ+k·x)φ(K). (2.19)

The normalization is chosen such, that the Fourier-transformed field φ(K) is
dimensionless. Capital letters denote four-momenta

X ≡ (t,x) = (−iτ,x), K ≡ (k0,k) = (−iωn,k) (2.20)

and by K ·X = k0t−k·x we mean the Minkowski scalar product. Demanding
φ(0,x) = φ(β,x), we need that eiωnβ = 1 and therefore

ωn =
2πn

β
= 2πnT, n ∈ Z. (2.21)

Next we present a method to calculate Matsubara sums making use of
contour integration. We assume g(ω = iωn) is regular along the imaginary
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axis. We can rewrite the sum over ωn

T
n=+∞∑
n=−∞

g(ω = iωn) =
1

2πi

∮
C
dωg(ω)

1

2
coth

ω

2T
, (2.22)

where the contour C encircles all the poles along the imaginary axis coming
from coth ω

2T
, but none of the possible poles of g(ω) away from the imaginary

axis. In figure 2.1 the dots refer to poles of coth ω
2T

, which are located where
the denominator eω/2T − e−ω/2T = 0, hence at ω = iωn. Therefore (2.22)
simply follows from the residue theorem4

1

2πi

∮
C
h(z) =

∑
n

Res h(z)|z=zn . (2.23)

To solve the contour integral we can deform the contour into vertical lines as
shown in figure 2.1 and substitute ω → −ω for one integral. We then obtain

T
n=+∞∑
n=−∞

g(ω = iωn) =
1

2πi

∫ i∞+ε

−i∞+ε

dk0 [g(ω) + g(−ω)]
1

2
coth

ω

2T
, (2.24)

with ε→ 0+. To evaluate (2.24) we can close the path with a large half circle
which allows us to pick up the poles of g(ω) (indicated by crosses in figure
2.1) and then use the residue theorem a second time. Finally we can use an
identity, which can be derived easily,

1

2
coth

x

2T
=

1

2
+ fB(x), (2.25)

where fB(x) = (eβx − 1)−1 is the Bose-Einstein distribution.
A simple example is

T
n=+∞∑
n=−∞

1

ω2
n + p2

=
1

2p
[1 + 2fB(p)] . (2.26)

2.2.2 Fermions

For fermions we will repeat the procedure taking into account the antiperi-
odicity of the fields. The Fourier transformed expression with ωn again being
the Matsubara frequency, but this time for fermions, is given by

ψ(X) =
1√
V

∑
K

e−iK·Xψ(K) =
1√
V

∑
K

ei(ωnτ+k·x)ψ(K). (2.27)

4If we can write the function h as h(z) = φ(z)/ψ(z), with analytic functions φ(z) and
ψ(z), the residues are Res h(z)|z=zn

= φ(zn)/ψ′(zn).
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Noting that ψ(0,x) = −ψ(β,x), which implies that eiωnβ = −1, we find for
the fermionic Matsubara frequencies

ωn =
(2n+ 1)π

β
= (2n+ 1)πT, n ∈ Z. (2.28)

Matsubara sums for fermions can be done by contour integration, just as for
bosons, if we replace the coth ω

2T
by a tanh ω

2T
(The requirements for g(ω) are

the same.)

T

n=+∞∑
n=−∞

g(ω = iωn) =
1

2πi

∮
C
dωg(ω)

1

2
tanh

ω

2T
. (2.29)

The contour C encloses only the poles from tanh ω
2T

, which are given by the
zeros of eω/2T + e−ω/2T and hence for ω = iωn. After deforming the contour
and making use of ω → −ω we obtain

T
n=+∞∑
n=−∞

g(ω = iωn) =
1

2πi

∫ i∞+ε

−i∞+ε

dk0 [g(ω) + g(−ω)]
1

2
tanh

ω

2T
. (2.30)

This can again be calculated by closing the contour with a large half circle,
such that the poles of g(ω) are encircled and then using the residue theorem.
Note that we can rewrite

1

2
tanh

x

2T
=

1

2
− fF (x), (2.31)

with fF (x) = (ex/T + 1)−1 being the Fermi-Dirac distribution function.
The simplest Matsubara sum in the fermionic case is given by

T
∑
n

1

ω2
n + p2

=
1

2p
[1− 2fF (p)]. (2.32)

Examples of fermionic Matsubara sums we will need for the calculation
of the photon self-energy, which are related to loop diagrams, are

T
∑
n

1

(ω2
n + E2

1)((ωn − νm)2 + E2
2)

=

−
∑

s1,s2=±1

s1s2

4E1E2

1− fF (s1E1)− fF (s2E2)

iνm − s1E1 − s2E2

, (2.33)

T
∑
n

ωn
(ω2

n + E2
1)((ωn − νm)2 + E2

2)
=

∑
s1,s2=±1

is2

4E2

1− fF (s1E1)− fF (s2E2)

iνm − s1E1 − s2E2

. (2.34)



2.3. GAUGE THEORIES 11

Here ωn and νm are fermionic and bosonic Matsubara frequencies, respec-
tively.

2.3 Gauge theories

To conclude this chapter we want to add some brief remarks on gauge theo-
ries. At first we state some facts of non-Abelian gauge theories such as QCD,
but we will keep it general and consider the gauge group SU(N) (N = 3 for
QCD). The generators of the group are denoted by Ta. The index a runs
in integral steps from 1 to N2 − 1. The generators satisfy the commutation
relation

[Ta, Tb] = ifabcTc, (2.35)

where the fabc are the totally antisymmetric structure constants of the group.
The generators are normalized such that

Tr[TaTb] =
1

2
δab. (2.36)

The gauge fields and the field strength tensor can be expanded in terms of
Ta

Aµ = AaµTa, Fµν = F a
µνTa, F a

µν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.37)

with g being the coupling constant. Infinitesimal gauge transformations of
the gauge fields read5

δAaµ(x) = Dab
µ (x)ωb(x) = (∂µδ

ab + gfabcAcµ(x))ωb(x), (2.38)

where Dab
µ is the covariant derivative and ωb(x) are infinitesimal scalar func-

tions which parametrize the gauge transformation. The Lagrangian of the
pure gauge theory is given by

L = −1

4
F a
µνF

µν
a . (2.39)

After this general remarks on non-Abelian gauge theories we want to find
the appropriate partition function. This is done in detail for electromagnetic
fields in [1, 2]. Here we simply want to give the main idea of the calculation
and state the final result for both, Abelian and non-Abelian gauge theories.

If one naively writes down the partition function as in (2.17), there is a
redundancy in the path integral. The reason for this is that we sum over

5The gauge fields transform under a gauge transformation U(x) = eigω
a(x)Ta ∈ SU(N)

according to Aµ → UAµU
−1 + i

gU∂µU
−1.
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physically equivalent configurations where the gauge fields only differ by a
gauge transformation, hence they belong to the same gauge orbit. We want
to pick out only one configuration of each gauge orbit, which can be done by
the so called “Faddeev-Popov trick” that is well known in zero temperature
field theory [5, 6, 7]. Using a gauge fixing condition fa(Abµ(x)) = 0 we can
insert

1 = ∆f (A)∆−1
f (A), with ∆−1

f (A) =

∫ ∏
x

dh(x)
∏
x,a

δ[fa(hA(x))] (2.40)

into the path integral. h(x) is the x-dependent group element and hA(x) is
the gauge transform of A(x). It is then possible to integrate over h(x), hence
over gauge orbits, to obtain for the partition function

Z =

∫
periodic

DAaµ∆f (A)
∏
x,a

δ[fa(A(x))] exp

{∫ β

0

dτ

∫
d3xL

}
. (2.41)

∆f (A) is the Faddeev-Popov determinant

∆f (A) = det

(
δfa(ωA(x))

δωb(y)

)
= det

(
∂fa

∂Acµ(x)
Dcb
µ (x)δ(4)(x− y)

)
. (2.42)

For Abelian electromagnetism a takes only one value and Dab
µ → ∂µ. ∆f (A)

does not play a role in zero temperature QED since there it is not field depen-
dent. However, we must keep it at finite temperatures even for QED because
the determinant depends on temperature through the boundary conditions.

Finally we can write the Faddeev-Popov determinant as a functional in-
tegral over anticommuting Grassmann fields η(x) and η̄(x) by

∆f (A) =

∫
periodic

D(η, η̄) exp

{∫ β

0

dτ

∫
d3xη̄a

(
∂fa

∂Acµ
Dcb
µ

)
ηb

}
. (2.43)

Despite of their fermionic character η(x) and η̄(x) obey periodic boundary
conditions. These fields are called Faddeev-Popov ghosts. In QED it can be
shown that the ghost fields do not interact with any other fields6 but serve
only to eliminate the unphysical degrees of freedom of the photon in the
partition function. The situation is different for non-Abelian gauge theories,
where, in general, the ghost fields have interaction terms with physical fields
and therefore Feynman graphs containing ghost lines must be taken into
account.

6This can be seen already in (2.43), because this expression has no dependence on Aµ

for QED.



Chapter 3

Collective excitations in an
isotropic plasma

In a medium the properties of elementary particles get modified due to inter-
actions. We then speak about quasi-particles or collective modes, which can
be characterized by a dispersion law ω(q). If we consider a weakly coupled
plasma (g � 1), we can define a hierarchy of scales in the system. The energy
scale T is characteristic of individual particles, since their average energy is
∼ T and the distance between two neighboring particles is ∼ T−1. We are
now interested in the energy scale gT (with g replaced by the electron charge
e for QED) at which collective motion of particles takes place over distances
∼ 1/gT .

We will calculate the polarization tensor for photons and gluons, from
which we can obtain the dispersion relation of collective modes, in the Hard
Thermal Loop (HTL) approximation. At the end we will show, that we can
obtain the same results from kinetic theory, which can be understood since
the typical wavelength of the collective excitation (λ ∼ 1/gT ) is much larger
than the thermal wavelength (λ ∼ 1/T ) and thus a semi-classical treatment
might be appropriate.

3.1 Why Hard Thermal Loops?

Before we come to the actual calculation of the photon polarization tensor,
we will briefly describe the HTL approximation. HTLs are the dominant
one-loop diagrams in the limit of high temperature. They are generated by a
small part of the integration region, where the loop momentum Kµ is “hard”,
which means it is of order the temperature. In our terminology a momentum
Qµ is “soft” if every component of Q is of order gT . The reason why we need

13
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�
Figure 3.1: Self-energy in λφ4-theory

HTLs can be illustrated by an example from scalar λφ4-theory [1, 8].
Let us consider the one-loop self-energy (fig. 3.1)

Π = 12g2T
∑
n

∫
d3k

(2π)3

1

ω2
n + ε2k

= 12g2

∫
d3k

(2π)3

1

2εk
(1 + 2fB(εk)) , (3.1)

with εk =
√

k2 +m2. The term independent of T is ultraviolet divergent and
must be removed by zero-temperature renormalization (here we simply drop
it). The thermal part is finite and in the high temperature limit (where all
masses are negligible) the integral is dominated by momenta k ∼ T . The
leading term contribution, which is the HTL, is proportional to T 2

Π ' g2T 2. (3.2)

The effective propagator is given by ∆−1 = ∆−1
0 + Π and can be written in

momentum space as

∆(K) =
1

ω2
n + q2 + g2T 2

. (3.3)

When the momentum Q is hard, the self energy contribution is simply a small
perturbative correction. However, if the momentum is soft, the correction
will be as large as the inverse propagator and hence definitely not negligible.
We see that conventional perturbation theory, which counts the loop order,
breaks down when we calculate corrections at soft scales. This is because
the HTL contributions to one-loop vertex functions are of the same order of
magnitude as their tree-level counterparts for external momenta Q ∼ gT 1,
which is the energy scale we want to consider in what follows.

1for details see [9]
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�
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K −Q

Figure 3.2: Photon self-energy

3.2 The polarization tensor

The photon polarization tensor Πµν (figure 3.2) is given by

Πµν(Q) = e2T
∑
n

∫
d3k

(2π)3
Tr[γµ 6Kγν(6K − 6Q)]∆̃(K)∆̃(K −Q), (3.4)

where ∆̃(K) = (ω2
n + k2)−1 and ∆̃(K − Q) = ((ωn − νm)2 + (k − q)2)−1,

with ωn being a fermionic Matsubara frequency. We point out that since
the external momentum Q belongs to the photon, the Matsubara frequency
νm is bosonic 2. In the HTL approximation we can neglect the soft external
momentum 6Q with respect to 6K in the numerator, because we expect the
main contribution to the loop integration coming from K ∼ T .

The trace gives

Tr[γµ 6Kγν 6K] = 8KµKν − 4K2gµν . (3.5)

For the polarization tensor we find

Πµν(Q) =8e2T
∑
n

∫
d3k

(2π)3
KµKν∆̃(K)∆̃(K −Q)

+ 4e2gµνT
∑
n

∫
d3k

(2π)3
∆̃(K −Q)

=Iµν − gµν
e2T 2

6
, (3.6)

2Here our convention is k0 = iωn and q0 = iνn.
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where we used that ∆̃(K) = −1/K2 and evaluated 3

T
∑
n

∫
d3k

(2π)3
∆̃(K −Q) =T

∑
n

∫
d3k

(2π)3
∆̃(K)

=

∫
d3k

(2π)3

1

2k
(1− 2fF (k)) ' −T

2

24
. (3.7)

The Matsubara sum was performed according to (2.32) and the 'means that
we keep only the T 2 part of the result. It remains to calculate Iµν , which can
be done by making use of (2.33) and (2.34). With −ω2

m = k2
0 = K2 + k2 we

obtain for I00

I00 =
e2T 2

3
+ 2e2

∫
d3k

(2π)3

k2

E1E2

×[( 1

q0 + E1 + E2

− 1

q0 − E1 − E1

)
(1− fF (E1)− fF (E2))+

( 1

q0 + E1 − E2

− 1

q0 − E1 + E2

)
(f(E1)− f(E2))

]
, (3.8)

with E1 = k and E2 = |k − q|. We note that q0 = iνm is a discrete bosonic
Matsubara frequency. In the HTL approximation, with k ∼ T and q ∼ eT �
T , we find for the denominators

q0 ± E1 ± E2 ' ±2k, q0 ± E1 ∓ E2 ' q0 ± q · k̂, (3.9)

and for the distribution functions

1−fF (E1)−fF (E2) ' 1−2fF (k), fF (E1)−fF (E2) ' q·k̂∂fF (k)

∂k
. (3.10)

The first term in square brackets of (3.8) turns out to be of the same form
as (3.7). Finally after merging all contributions to Π00 the only term that
survives is the second term in the square bracket above and we thus obtain

Π00(Q) =2e2

∫
d3k

(2π)3

(
1

q0 + q · k̂
− 1

q0 − q · k̂

)
q · k̂∂fF (k)

∂k

=4e2

∫
d3k

(2π)3

(
1− q0

q0 − q · k̂

)
∂fF (k)

∂k
, (3.11)

3The divergent term independent of T must be again removed by zero temperature
renormalization.
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�+�+�+�
Figure 3.3: Feynman diagrams contributing to the gluon self-energy. Curly
lines: gluons. Dashed lines: ghosts. Solid lines: quarks.

where we used that the angular integral gives the same result for both terms.
Finally we can perform the k-integral exactly,∫ ∞

0

k2dk
∂fF (k)

∂k
= −T 2

∫ ∞
0

dx
x2ex

(ex + 1)2
= −T

2π2

6
, (3.12)

and find for the considered component of the polarization tensor

Π00(Q) = −2m2

(
1−

∫
dΩ

4π

q0

q0 − q · k̂

)
. (3.13)

In the last step we defined the photon thermal mass m by [2]

m2 =
e2T 2

6
. (3.14)

The remaining components can also be obtained by making use of the fermionic
Matsubara sums (2.33) and (2.34). Eventually we get

Π0i(Q) =2m2

∫
dΩ

4π

q0k̂i

q0 − q · k̂
, (3.15)

Πij(Q) =2m2

∫
dΩ

4π

q0k̂ik̂j

q0 − q · k̂
. (3.16)

To obtain the gluon self-energy we need to compute the Feynman graphs
shown in figure 3.3. In [1, 2] it is shown that in the HTL limit we will obtain
the same result as for QED, if we write the correct gluon mass mg instead of
the photon mass m

m2
g =

g2T 2

6

(
Nc +

1

2
Nf

)
, (3.17)

with Nc being the number of colors and Nf being the number of quark flavors.
This is a rather surprising result, since it follows that the functional form of
the dispersion relation will be the same for photons and gluons at least to
lowest order in the coupling constants.
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3.3 Dispersion relations

The HTL self-energy is a symmetric second-rank tensor and can, in general,
be written as a linear combination of gµν , QµQν , UµUν and QµUν + QνUµ.
Here Uµ is the four-velocity of the heat bath, which we choose Uµ = δ0

µ.
Furthermore it can be proven that the HTL polarization tensor obeys the
Ward identity

QµΠµν(Q) = 0 (3.18)

and therefore it is transverse. With this additional requirement we can de-
compose it making use of projection operators

P ij
T = δij − q̂iq̂j, P 00

T = P 0i
T = P i0

T = 0, (3.19)

P µν
L =

QµQν

Q2
− gµν − P µν

T , (3.20)

that are both 4-transverse to Q. Furthermore the projector PT is also 3-
transverse, while PL is 3-longitudinal. Hence we call the term of the self-
energy proportional to PT “transverse” and the part proportional to PL
“longitudinal”. The HTL self-energy written in terms of the projectors is
now given by

Πµν(Q) = F (Q)PL,µν +G(Q)PT,µν . (3.21)

It remains to calculate the functions F (Q) and G(Q). We assume that the
external momentum vector q points in the z direction. We then find

F (Q) =
Q2

q0q
Π0z(Q) =

2m2Q2

q

∫
dΩ

4π

cos θ

q0 − q cos θ

=− 2m2Q2

q2

(
1− q0

2q
ln
q0 + q

q0 − q

)
(3.22)

and

G(Q) =Πxx(Q) = 2m2

∫
dΩ

4π

q0 sin2 θ cos2 φ

q0 − q cos θ

=m2 q0

q

(
q0

q
− Q2

2q2
ln
q0 + q

q0 − q

)
=

=m2 − 1

2
F (Q). (3.23)

We emphazise that q0 was originally a discrete bosonic Matsubara frequency.
To allow for soft q0 � T not being restriceted to zero4, we need to analytically
continue the frequency yielding q0 → ω+iε for retarded boundary conditions.

4The only case where ωn = 2πnT � T is for n = 0.
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Figure 3.4: Dispersion relations for gauge bosons in quadratic scales.

The logarithm in (3.22) and (3.23) has a cut from −q to +q in the complex
ω-plane. It is real for time-like Q2 (Q2 = ω2−q2 > 0) and complex for space-
like Q2:

ln

(
ω + q

ω − q

)
= ln

∣∣∣∣ω + q

ω − q

∣∣∣∣− iπθ(q2 − ω2). (3.24)

After finding F (Q) and G(Q), we eventually obtain the retarded gauge
boson propagator in a covariant gauge with gauge fixing parameter ρ from
∆−1 = ∆−1

0 + Π [1]

∆R
µν =

1

G−Q2
PT,µν +

1

F −Q2
PL,µν + ρ

QµQν

Q4
. (3.25)

From the poles of the transverse and longitudinal parts of the propagator
we derive the dispersion laws for transverse and longitudinal waves in the
plasma, which are the collective excitations we are looking for. The dispersion
relations are presented in figure 3.4, in a quadratic plot.

Above a common frequency, which we call plasma frequency, ωpl =
√

2/3m,
there are propagating modes. The transverse modes tend to a mass hy-
perboloid with asymptotic mass m2

∞ = m2, while the longitudinal branch
approaches the lightcone exponentially. The longitudinal mode has no ana-
log in zero temperature theory and is a purely collective phenomenon. The
spatially transverse mode can be thought of as the physical polarizations of
gauge bosons modified by the medium.

For ω < ωpl we find that the wavevector q is imaginary, hence there
exist no propagating modes. But there is still a collective behavior, which
corresponds to collective screening in both, the electric and magnetic sector
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for ω > 0. In the static limit (ω = 0) the inverse screening length |q| reaches
the Debye mass m2

D = 3ω2
pl in the longitudinal case (electrostatic screening)

but it vanishes for the transverse branch (absence of magnetostatic screening)
[10].

For ω2 < q2 we find an imaginary part in the structure function coming
from (3.24), which corresponds to the possibility of Landau damping. This is
the collisionless transfer of energy from soft fields to hard plasma constituents
moving in phase with the fields.

3.4 Kinetic theory

At the end of this chapter we want to show that it is possible to obtain the
HTL polarization tensor from kinetic theory. We neglect collisions in our
discussion, since the distance scales in the soft regime are still small com-
pared to the mean free path (∼ 1/g2T ). The distribution function f(p,x, t)
describes the time dependent distribution of particles in the phase space. We
start by examining the Boltzmann equation for a QED plasma

[∂t + v · ∇x + e(E + v ×B) · ∇p] f(p,x, t) = 0. (3.26)

Since the particles are charged, we need to solve the Boltzmann equation and
Maxwell’s equation for the soft fields self-consistently. The latter is

∂µF
µν = Jνind = e

∫
d3p

(2π)3
V µf(p,x, t), (3.27)

with V µ = (1,p/p0). The current is given by the hard particles. These equa-
tions are known as Boltzmann-Vlasov equations. We want to consider small
fluctuations δf around a neutral thermal background distribution function
f0, which is position independent.

f(p,x, t) = f0(p) + δf(p,x, t). (3.28)

The linearized version of the equations is given by

(∂t + v · ∇x)δf(p,x, t) =− e(E + v ×B) · ∇pf0(p), (3.29)

∂µF
µν =e

∫
d3p

(2π)3
V µδf(p,x, t). (3.30)

For QCD the distribution function becomes a color density matrix and space-
time derivatives become covariant derivatives Dµ. We find in the adjoint
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representation

V ·Dδfa(p,x, t) =− g(Ea + v ×Ba) · ∇pf0(p) = gVµF
µν
a ∂(p)

ν f0(p), (3.31)

DµF
µν
a =Jνa,ind =

g

2

∫
d3p

(2π)3
V µδfa(p,x, t). (3.32)

We will only consider the linear approximation, which is valid as long as the
gauge fields are weak enough such that we can neglect them in the covariant
derivative (∂µ ∼ gT � gAµ). To leading order in the coupling constant the
Boltzmann-Vlasov equations for QED and QCD are the same, since Dµ → ∂µ
and Fµν → ∂µAν−∂νAµ. If we perform a Fourier transformation, we will find
an expression for δf from (3.31). Inserting it into (3.32), we can obtain the
induced current. In momentum space and with retarded boundary conditions
it reads 5

Jµa,ind(Q) =
g2

2

∫
d3p

(2π)3
V µ∂β(p)f0(p)

(
gγβ −

VγQβ

q0 − q · v + iε

)
Aγ(Q). (3.33)

The HTL gauge boson self-energy is obtained as functional derivative of the
induced current with respect to Aνa

Πµν(Q) =
g2

2

∫
d3p

(2π)3
Vµ∂

β
(p)f0(p)

(
gνβ −

VνQβ

q0 − q · v + iε

)
. (3.34)

In the isotropic case we find the same result we obtained by diagrammatic
methods in section 3.2 6. We note that in the kinetic theory approach it
is straight forward to consider non-isotropic momentum-space distribution
functions. Therefore we will follow this procedure for our studies of non-
equilibrium situations in the next chapters.

Finally we want to find the equation of motion for the A fields. We do
this by expressing the induced current in terms of the polarization tensor

Jµind(Q) = Πµν(Q)Aν(Q). (3.35)

If we plug this into Maxwell’s equation, we will find in momentum space

−iQµF
µν(Q) = Jνind(Q) + Jνext(Q), (3.36)

where we have taken a possible external current into account. Rearranging
things a bit, we eventually obtain

[Q2gµν −QµQν + Πµν(Q)]Aµ(Q) = −Jνext(Q). (3.37)

5For QED we replace g2/2→ e2.
6A more detailed discussion of the kinetic theory approach is presented for example in

[11]
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It is possible to rewrite this in terms of physical electric fields by choosing a
particular gauge7. In temporal axial gauge defined by A0 = 0 we obtain

[(q2−ω2)δij− qiqj + Πij(Q)]Ej(Q) = (∆−1(Q))ijEj(Q) = iωJ iext(Q). (3.38)

For a non-vanishing frequency ω there is also a magnetic field present due to
the law of induction, which is given by q×E = ωB in momentum space. The
collective behavior can again be obtained from the poles of the propagator
∆(Q).

7Πµν is gauge invariant [12].



Chapter 4

The anisotropic plasma

After we discussed collective modes of the isotropic ultrarelativistic plasma
in the last chapter, we want to examine anisotropic momentum-space distri-
bution functions. We consider a special class of distribution functions, where
we simply stretch or contract an isotropic distribution along one direction
denoted by n̂

f(p) = N(ξ)fiso
(
p2 + ξ(p · n̂)2

)
. (4.1)

ξ is the anisotropy parameter, which can range from −1 to ∞. N(ξ) is a
normalization constant that can depend on the anisotropy parameter. We set
it equal to one for simplicity. For −1 < ξ < 0 we have a prolate distribution
function (distribution is elongated along n̂) and for 0 < ξ < ∞ it is oblate
(distribution is contracted along n̂). This class of distribution functions was
studied by Romatschke and Strickland in [13, 14]. After a general discussion
of the collective behavior in the anisotropic case, which will follow [13] closely,
we want to consider in some detail the appearance of instabilities. We will
study these instabilities in particular for an extremely oblate distribution
function [15].

4.1 Self-energy structure functions

We have already stated that the polarization tensor is symmetric and trans-
verse. Therefore not all components of Πµν are independent. We can restrict
this discussion to the spatial part of the self-energy, because (Q = (ω,q))

Π0ν(Q) =
qiΠ

iν(Q)

ω
, Π00(Q) =

qiΠ
ij(Q)qj
ω2

. (4.2)

23
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The space-like components can be written as1

Πij(Q) = −g
2

2

∫
d3p

(2π)3
vi∂

(p)
l f(p)

(
δjl +

vjql

Q · V + iε

)
. (4.3)

With our choice of the distribution function (4.1) we can simplify this ex-
pression by changing the coordinates to

p̃2 = p2
(
1 + ξ(v · n)2

)
. (4.4)

After this change we can integrate out the |p̃| dependence and obtain

Πij(Q) = m2
D

∫
dΩ

4π
vi
vl + ξ(v · n)nl

(1 + ξ(v · n)2)2

(
δjl +

vjql

Q · V + iε

)
, (4.5)

with

m2
D = − g2

(2π)2

∫ ∞
0

dp̃p̃2dfiso(p̃
2)

dp̃
. (4.6)

To find the self-energy structure functions for the anisotropic case we
need to establish a tensor basis for a symmetric 3-tensor that depends on the
momentum vector q and a fixed anisotropy vector n̂. The projector to the
transverse direction of q is given by

Aij = δij − qiqj

q2
. (4.7)

This can be used to define ñi = Aijnj, with which we can construct the
remaining tensors

Bij =
qiqj

q2
, (4.8)

Cij =
ñiñj

ñ2
, (4.9)

Dij =qiñj + qjñi. (4.10)

We can decompose any symmetric 3-tensor T into the basis spanned by A,
B, C and D

T = aA + bB + cC + dD (4.11)

1In our conventions the parton distribution function for the QGP can be decomposed
as f(p) = 2Nf

(
n(p) + n̄(p)

)
+ 4Ncng(p), where n, n̄ and ng are the distribution functions

of quarks, anti-quarks and gluons, respectively [16].
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and the inverse is given by [13]

T−1 = a−1A +
(a+ c)B− a−1(bc− ñ2q2d2)C− dD

b(a+ c)− ñ2q2d2
. (4.12)

We can apply this tensor decomposition to the self-energy and find

Πij = αAij + βBij + γCij + δDij, (4.13)

where α, β, γ and δ are the structure functions, which depend on mD, ω, q,
ξ and q̂ · n̂ = cos θ. They can be extracted from the polarization tensor by
the contractions

qiΠijqj =q2β, (4.14)

ñiΠijqj =ñ2q2δ, (4.15)

ñiΠijñj =ñ2(α + γ), (4.16)

TrΠij =2α + β + γ. (4.17)

The resulting integral expressions can be found in [13, 14].
In the isotropic limit, where ξ → 0, γ and δ vanish and

α(Q) =ΠT (Q) =
m2
Dω

2q

(
ω

q
− Q2

2q2
ln
ω + q

ω − q

)
, (4.18)

β(Q) =
ω2

q2
ΠL(Q) =

m2
Dω

2

q2

(
ω

2q
ln
ω + q

ω − q
− 1

)
, (4.19)

which is the same result we obtained in section 3.3 2.
As in the isotropic case the collective behavior is found by examining the

propagator, whose inverse can be written as

∆−1(Q) = (q2 − ω2 + α)A + (β − ω2)B + γC + δD. (4.20)

Applying the inversion formula (4.12) we obtain

∆ = ∆AA + (q2−ω2 +α+ γ)∆GB + [(β−ω2)∆G−∆A]C− δ∆GD, (4.21)

with

∆−1
A =q2 − ω2 + α, (4.22)

∆−1
G =(q2 − ω2 + α + γ)(β − ω2)− q2ñ2δ2. (4.23)

2We note that m2
D = 2m2.
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4.2 Collective modes

To find the dispersion relations which characterize the collective modes in
an anisotropic plasma, we look for the zeros in (4.22) and (4.23). We first
examine the stable modes and then turn to the unstable ones.

4.2.1 Stable modes

Stable modes can be determined by the poles of the propagator with real
ω > q. For ∆G we find that we can factorize the denominator

∆−1
G = (ω2 − Ω2

+)(ω2 − Ω2
−), (4.24)

where

2Ω2
± = Ω̄2 ±

√
Ω̄4 − 4((α + γ + q2)β − q2ñ2δ2), (4.25)

and
Ω̄2 = α + β + γ + q2. (4.26)

The quantity under the square root can be written as (α − β + γ + q2)2 +
4q2ñ2δ2, which is always positive for real ω > q. Therefore there are at
most two stable modes coming from ∆G, whose dispersion relations can be
obtained by finding the solutions to

ω± = Ω2
±(ω±). (4.27)

Another stable mode is coming from ∆A, which has its pole at

ω2
α = q2 + α(ωα). (4.28)

In the isotropic limit (ξ → 0) we discover again a transversal branch
with ωα = ω+ = ωT and a longitudinal branch with ω− = ωL. For a finite
anisotropy parameter ξ we get 3 stable collective modes, whose dispersion
relations depend on the angle between q and n̂

4.2.2 Unstable modes

Additionally to the stable modes we just discussed there exist unstable modes
as well. For ξ 6= 0 the propagators have poles at imaginary ω. To obtain the
dispersion relations we substitute ω = iΓ and solve for real Γ(q). This gives
the following factorization for ∆−1

G

∆−1
G = (Γ2 + Ω2

+)(Γ2 + Ω2
−). (4.29)
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This time there is only one solution since in [13] it was found that Ω2
+ > 0

for all Γ > 0.
For ξ > 0, which corresponds to the oblate distribution function, there is

also an unstable mode coming from ∆A so that in total we find

Γ2
− =− Ω2

−(iΓ−), (4.30)

Γα =− q2 − α(iΓα). (4.31)

Finally we remark that in both cases there are solutions with positive and
negative growth rates. The exponentially growing solutions are studied in
some detail in the next section.

4.3 Instabilities

In the preceding discussion, which was based on [13], we found that in an
anisotropic plasma there exist instabilities. These instabilities may lead to
a faster isotropization in the early stage of a heavy ion collision and are
therefore of interest phenomenologically. They are also well known phenom-
ena in conventional plasma physics, where several different types are known
[17, 18, 19]. Usually plasma instabilities are divided into ”hydrodynamic in-
stabilities”, caused by coordinate space inhomogeneities, and ”kinetic insta-
bilities” due to non-equilibrium momentum distribution of plasma particles.
While the first group plays no prominent role in quark-gluon plasma physics
the latter does and we intend to study these in the following. We want to
follow [15] by Arnold, Lenaghan and Moore in this section in order to gain
more insight qualitatively and quantitatively.

4.3.1 Categorization of instabilities

Let us write down the linearized effective equation for soft gauge fields with
no external current

[(ω2 − q2)gµν −QµQν + Πµν(Q)]Aν = 0. (4.32)

For a given wave vector q we find an instability if there are solutions for
ω with Im ω > 0. In the case of parity symmetric distribution functions
(f(p = f(−p)) there exist sufficient conditions for the existence of unstable
growing modes3 [15]. They are motivated in appendix A.

3Our class of distribution functions given in (4.1) satisfies this condition.
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CONDITION 1: There is an instability with a given wavevector q for
each negative eigenvalue of the 3× 3 matrix q2δij − qiqj + Πij(0,q)

Instabilities which satisfy condition 1 are called magnetic4, because the
condition itself involves the self energy for A(ω = 0) and thus magnetic and
not electric fields. However when the magnetic fields grow there will also be
growing electric fields due to the law of induction.

Actually following [15] condition 1 can be used to obtain a necessary and
sufficient condition for magnetic instabilities in an ultrarelativistic plasma

CONDITION 1-b: Magnetic instabilities exist for a given (parity sym-
metric) distribution f(p), if

M(p̂) ≡ g2

4π2

∫ ∞
0

pdpf(pp̂) (4.33)

is anisotropic in p.

There exists another type of instabilities that is of interest to us, which
we call electric or longitudinal. They can be discovered by

CONDITION 2: There is an instability for a given wave vector q if

q2 − Π00(0, q̂) + Π0i(0, q̂)[q2 + Π(0,q)]−1
ij Πj0(0, q̂) < 0, (4.34)

where [q2 +Π(0,q)]−1 denotes the inverse of the 3×3 matrix q2δij+Πij(0,q).

We note that this categorization as “magnetic” and “electric” instabil-
ities is not always physically significant and in this chapter we simply use
this terminology to distinguish whether the instability is indicated by con-
dition 1 or 2. We should also mention that the polarization of the actual
growing modes can differ from what we would expect by the conditions given
above. The reason for this is that these modes have non-zero (imaginary)
frequency ω and it turns out that the eigen-directions can change as one
varies ω from iε (with ε→ 0+) to the actual location of the unstable solution
[15]. Nevertheless we will only present the calculations in the static limit
for simplicity. Before we discuss unstable modes associated with condition 1
and 2 we want to gain some qualitative insight into the mechanisms leading
to the instability.

4They are also known as Weibel [20] or transverse instabilities and are studied in the
context of heavy ion collisions for example in [21, 22] too.



4.3. INSTABILITIES 29

Figure 4.1: Untrapped (left panel) and trapped (right panel) particles trav-
elling in the background of a magnetic field B = Bey sin(qz) (taken from
[15]). The arrows of the trajectories show the direction of the momentum
for positively charged particles. The direction (±y) of the magnetic field is
shown at the top. The big arrows in the bottom line indicate the average
current j(z) pointing in the ±x direction.

4.3.2 Qualitative origin of instabilities

We start by examining magnetic instabilities. We consider a gas of non-
interacting charged particles in zero field. Because we restricted this treat-
ment to parity symmetric distribution functions, there is no current. For
every particle going in one direction there is another particle going in the
opposite direction. We fix the wave vector to point in the z direction for now
and turn on a small magnetic field

B = Bey sin(qz), (4.35)

with ey being the unit vector in the y direction. It is easy to check that one
can choose a vector field A which points in the x direction and which is given
by

A = Aex cos(qz). (4.36)

Due to the magnetic field the charged particles wiggle around their straight
line trajectories, which they would have in zero field.

Let us first discuss the situation in the left panel of figure 4.1. Because
of the wiggles, at certain z coordinates there are more particles moving in
one x direction than in the opposite. This causes an average current in the
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±x direction indicated by the big arrows in the bottom line. The current
produces a magnetic field in the opposite direction of the original one and
thus this contribution is stabilizing. Also the velocity of particles traveling in
the z direction is larger in certain regions and smaller in others. This leads
again to a current pointing in the same direction as before and therefore is
stabilizing too.

To find a destabilizing contribution we should consider particles with a
small velocity component vz such that they get trapped in the z direction
by the magnetic field. This is illustrated in the right panel of figure 4.1.
Consider a pair of particles located initially at a and b that move in opposite
directions in zero field. As soon as we turn on the magnetic field the particle
starting from a will stay quite close to its initial z coordinate. Since it is
moving upwards there will be a contribution to the current in the positive x
direction. Contrary to this the particle initially located at b wiggles stronger
and travels within a bigger z region. Therefore even though the current
was canceled in zero field, it does not cancel any longer after turning on the
magnetic field. However this time the resulting current points in the correct
direction to amplify the original magnetic field and thus the situation is
potentially unstable leading to the instability we were looking for.

We summarize that untrapped particles are stabilizing while trapped par-
ticles are destabilizing. From our qualitative discussion we can conclude
whether there are magnetic instabilities in certain simple situations or not.
For example there is no instability in the isotropic limit. If we contract the
distribution function in the direction of the wave vector q, we will add more
trapped particles, which will lead to an instability. On the other side for a
stretched distribution along q we do not expect a magnetic instability since
the number of untrapped particles increased.

Finally we consider an electric instability caused by charge fluctuations.
This instability can be associated with a destabilizing contribution of Π00

(Π00(0, q̂) > 0) according to condition 2. We assume we have a small static
electric potential

A0 = φ cos(qz) (4.37)

and the corresponding electric field is

E = Eez sin(qz). (4.38)

Particles with a velocity component vz in the z direction will be trapped,
if vz is too small so that they can not move over the electric potential bar-
riers. Trapped positively charged particles then accumulate in regions with
a negative electric field and are therefore stabilizing in contrast to the situa-
tion before. However, particles with vz large enough to overcome the electric
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Figure 4.2: In the left panel the z component of the motion of an untrapped
particle in a sinusoidal electric field is shown. In the right panel untrapped
and trapped particles with respect to their z direction are illustrated. (Both
taken from [15].)

potential barriers are destabilizing. This can be seen by noting that, be-
cause of energy conservation, positively charged particles move slower at the
maxima of A0 and faster at the minima. Thus they spend more time near
the maxima and so their contribution to the average charge density will be
greatest there. This leads to an enhancement of the magnitude of A0. This
is illustrated in figure 4.2. Eventually we repeat that for electric instabil-
ities the trapped particles are stabilizing while the untrapped particles are
destabilizing, which is contrary to the magnetic case.

4.3.3 Magnetic instability for planar momentum dis-
tribution

After the qualitative discussion of instabilities we want to do a stability
analysis5 for an extremely oblate distribution function

f(p) = F (p⊥)δ(pz) (4.39)

corresponding to ξ →∞ in (4.1) with the direction of the anisotropy in the z
direction. We choose the wave vector q to lie in the xz plane without loss of
generality due to the axial symmetry of the distribution. We emphasize that

5We will not consider growth rates here, but are only interested whether there is an
instability or not. Therefore it turns out to be sufficient to consider the static limit. For
details on growth rates we refer to [13, 15].



4.3. INSTABILITIES 32

z

x

y

q

n

v
θ

φ

Figure 4.3: Directions of q, n and v. q and n lie in the xz plane and v lies
in the xy plane. The anisotropy is in the z direction.

for the present discussion the vector n̂ will not be the anisotropy vector, which
is simply the unit vector in the z direction, but the vector in the xz plane
perpendicular to the wave vector. To check for evidence of an instability we
only need to consider the static limit. After an integration by parts of the
spatial components of the self energy (4.3) we find

Πij(ω = 0,q) =
g2

2

∫
d3p

(2π)3

f(p)

p

[
δij − viq̂j + q̂ivj

q̂ · v − iε
+

vivj

(q̂ · v − iε)2

]
.

(4.40)
The distribution function f(p) has support only in the pxpy plane and is
independent of the direction in the plane. We can introduce a parameter
m2 > 0

m2 =
g2

2

∫
d3p

(2π)3

f(p)

p
(4.41)

and find

Πij(0,q) = m2

〈
δij − viq̂j + q̂ivj

q̂ · v − iε
+

vivj

(q̂ · v − iε)2

〉
p∈pxpy plane

, (4.42)

where we factored out the angular dependence. In our treatment θ will be
the angle q makes with the z axis and φ the angle v makes with the x axis
(see figure 4.3).
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For sin θ 6= 0 we find

Πq̂q̂(0,q) =0 (4.43)

Πn̂n̂(0,q) =m2

∫ 2π

0

dφ

2π

[
1 + 0 +

cos2 θ

sin2 θ

]
=

m2

sin2 θ
(4.44)

Πyy(0,q) =m2

∫ 2π

0

dφ

2π

[
1 + 0 +

sin2 φ

(sin θ cosφ− iε)2

]
=m2

(
1− 1

sin2 θ

)
= −m2 cot2 θ (4.45)

These components can be shown to be the eigenvalues of Πij(0, q̂) 6 [15]. Ac-
cording to condition 1 there exists an instability for each negative eigenvalue
of q2δij − qiqj + Πij(0, q̂). This is clearly only the case for Πyy associated
with Ay, where we find an instability for

q < qmax(θ) = m cot θ. (4.46)

The corresponding magnetic field points in the n̂ direction. This instability
corresponds to the poles of ∆A for ξ →∞. We see that there is no instability
at all for a wave vector perpendicular to the anisotropy direction. There is
also no instability associated with Πn̂n̂ and a magnetic field in the y direction.
We want to give an instructive explanation for this. Transversal instabilities
are caused by trapped particles with v orthogonal to q. In our geometry
this means we must consider the case when v is pointing in the y direction.
If the magnetic field is in the y direction as well, there will be no trapped
particles and hence no instability. The situation will change, if we consider
a distribution function with a certain small but finite thickness in the z
direction. In [15] it is argued that then there are two unstable growing modes
for sin θ ≤ ∆θ with ∆θ ∼ pz/p being the angular width of the distribution
function. The second unstable mode corresponds to An̂. For sin θ > ∆θ
there is again only the instability we already found in the planar case.

By symmetry for sin θ = 0 (wave vector parallel to the anisotropy direc-
tion) the behavior of Πxx must be equal to that of Πyy and we always find
two magnetically unstable modes.

4.3.4 Electric instability for planar momentum distri-
bution

We want to repeat the stability analysis, but now we check for condition
2. This time we integrate Π00 by parts which gives for an ultrarelativistic

6For example one can show that all non diagonal elements vanish.



4.3. INSTABILITIES 34

plasma in the static limit

Π00(0,q) =
g2

2

∫
d3p

(2π)3

f(p)

p

(
1

(q̂ · v − iε)2
− 1

)
. (4.47)

The first term in the bracket gives no contribution since it integrates to zero
and we end up finding

Π00(0,q) = −m2. (4.48)

According to condition 2 this is stabilizing. But we still have to compute Π0i

which is once more obtained after a partial integration

Π0i(0,q) =
g2

2

∫
d3p

(2π)3

f(p)

p

vi − q̂iq̂ · v
(q̂ · v − iε)2

. (4.49)

It is easy to check that the only non vanishing contribution is

Π0n̂(0,q) =
g2

2

∫
d3p

(2π)3

f(p)

p

cos θ cosφ

(sin θ cosφ− iε)2
. (4.50)

Performing the angular integral first and then taking the limit ε→ 0 gives

Π0n̂(0,q) = −im2 cos θ

sin2 θ
. (4.51)

All we still need to check for condition 2 is Πn̂n̂(0,q), but this has been found
already in the last section. Therefore we have the required terms. There is
an electric or longitudinal instability for each wave vector which satisfies

q2 − Π00(0,q) + Π0n̂(0,q)[q2 + Π(0,q)]−1
n̂n̂Πn̂0(0,q) < 0. (4.52)

This means we find an electrically unstable mode if

q2 +m2 − m4 cot2 θ

q2 sin2 θ +m2
< 0. (4.53)

The expression is minimized for q = 0 and the inequality gives

1− cot2 θ < 0. (4.54)

This shows that there can only be an electric instability, if its wave vector
lies within 45 degrees of the z axis. For a given θ the maximal q can be
written as

qmax(θ) = m

[
cos θ(4 cos2 θ)1/2 − sin2 θ − 1

2 sin2 θ

]1/2

. (4.55)
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This instability corresponds to the poles of ∆G for ξ →∞.
However, a more detailed analysis beyond the static limit given in the

appendix of [15] reveals that in the case of sin θ = 0 this instability is not
associated with a longitudinal polarization, but points in the x̂ direction.
This is an example, where the simple conclusion that condition 2 indicates
longitudinally polarized instabilities may be misleading for the actual values
of ω for the unstable modes, as mentioned in section 4.3.1.

Finally we should emphasize that the instability found here can not be
described by our qualitative discussion of the origin of electrically unstable
modes, because the contribution from Π00 turned out to be stabilizing. How-
ever, this instability arises due to Π0n̂, which refers to the coupling of charge
and current fluctuations as the responsible mechanism.

4.3.5 Remarks on prolate momentum distributions

To conclude this chapter we briefly discuss prolate momentum distributions.
We concentrate on another extreme case, namely the line momentum distri-
bution (see the appendix of [15])

f(p) = F (pz)δ
(2)(p⊥), (4.56)

with F (−pz) = F (pz). For the current treatment we do not set ω = 0 from
the beginning, but we specialize to the static limit only later. The general
form of the polarization tensor is

Πij(ω,q) =
g2

2

∫
d3p

(2π)3

f(p)

p

[
δij − qivj + qjvi

−ω + q · v − iε
+

(q2 − ω2)vivj

(−ω + q · v − iε)2

]
.

(4.57)

Using the δ functions in (4.56) to do all but the pz integral, we find

Πij(ω,q) =
m2

2

∑
±

[
δij ∓ qiδjz + qjδiz

−ω ± q cos θ − iε
+

(q2 − ω2)δizδjz

(−ω ± q cos θ − iε)2

]
,

(4.58)

where the sum is over contributions from pz < 0 and pz > 0 and m2 is given
by

m2 =
g2

2

∫
d3p

(2π)3

f(p)

p
=

g2

(2π)3

∫ ∞
0

dpz
F (pz)

pz
. (4.59)

At this point we emphasize that if F (0) 6= 0 the expression above has a log-
arithmic small pz divergence. However, a small width ∆p⊥ of the δ function
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would cut off the divergence when pz ∼ ∆p⊥.7 Here we are only interested
in leading order results and therefore we can proceed with (4.58). For the y
direction we easily obtain

Πyy(ω,q) = m2 (4.60)

and hence there is no instability associated with this polarization. The re-
maining directions give

Πq̂q̂(ω,q) =η2Π00(ω,q) = m2η2 sin2 θ
η2 + cos2 θ

(η2 − cos2 θ)2
, (4.61)

Πq̂n̂(ω,q) =ηΠ0n̂(ω,q) = m2η2 sin θ cos θ
η2 − 2 + cos2 θ

(η2 − cos2 θ)2
, (4.62)

Πn̂n̂(ω,q) =m2 (η2 − 1)2 cos2 θ + η2 sin4 θ

(η2 − cos2 θ)2
, (4.63)

where η = ω/q and additionally we absorbed the iε prescription in the de-
nominator into η such that η → η + iε.

In the static limit (ω = 0) we find Π00(0,q) = m2 tan2 θ and Π0n̂(0,q) = 0,
which indicates an electric instability according to condition 2 for

q < qmax = m tan θ. (4.64)

Furthermore we note that Πn̂n̂(0,q) = m2/ cos2 θ. This implies that there
exists no magnetic instability for θ 6= π/2. Qualitatively this can be under-
stood, because for q̂ not in the xy plane there are no trapped particles for
the distribution given in (4.56). However, from condition 1-b we conclude
that there must be a magnetic instability associated with θ = π/2.

7This is a reasonable assumption for physical situations.



Chapter 5

The anisotropically expanding
plasma

In the last chapter we found that for anisotropic momentum distribution
functions there exist exponentially growing modes, which we studied in some
detail. They have been studied numerically for Abelian and non-Abelian
plasmas (for example in [23, 24, 25]). We also pointed out that these insta-
bilities may be of interest in order to understand the fast equilibration of
the quark-gluon plasma after a heavy ion collision. However, to be able to
describe a system after a heavy ion collision we must take into account that
the quark-gluon plasma produced by the colliding nuclei is expanding into
the vacuum. This expansion modifies the dynamics of the system and was
considered semi-analytically in the Abelian limit in [26]. The situation for
non-Abelian fields is discussed in [27].

The aim of this chapter is to set the framework to be able to discuss
the behavior of collective modes in an ultrarelativistic and anisotropically
expanding plasma. The expansion takes place in the z direction in our con-
sideration. We solve the Boltzmann-Vlasov equations in an appropriate coor-
dinate system and eventually find integro-differential equations that describe
the time evolution of the soft gauge fields. The solution of this equations will
then be the topic of the next chapter. We will mainly follow the discussion
presented in [26], but we intend to generalize it in some aspects.

37
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5.1 Boltzmann-Vlasov equations for a non-

stationary plasma

In the discussion of an isotropic plasma in section 3.4 we found the Boltzmann-
Vlasov equations

V ·Dδfa(p,x, t) =gVµF
µν
a ∂(P )

ν f0(p) (5.1)

DµF
µν
a =Jνa,ind =

g

2

∫
d3p

(2π)3

P µ

p0
δfa(p,x, t), (5.2)

with V µ = (1, pi/p0). For (5.1) to be valid in a non-stationary plasma as
well, we need to assume a color neutral background distribution function
f0(p,x, t) that satisfies

V · ∂f0(p,x, t) = 0. (5.3)

In a stationary plasma f0 only depends on the momenta and therefore the
condition is satisfied trivially. The situation is different for a plasma that
expands in the direction of the anisotropy (here ẑ), which we want to consider
in the following. This is assumed to be a good approximation for a parton gas
in the initial stage after a heavy ion collision as long as the dimension of the
system perpendicular to the z direction is sufficiently large [28]. Additionally
we assume the distribution to be boost invariant in rapidity and isotropic in
the xy plane. This leads to [26]

f0(p,x, t) = f0(p⊥, tp
z − zp0) = f0(p⊥, p

′z, τ) (5.4)

which can be shown to satisfy (5.3). According to special relativity the
transformed momentum p′z is given by

p′z = γ(pz − βp0), β =
z

t
, γ =

t

τ
(5.5)

where τ =
√
t2 − z2 is the proper time and for ultrarelativistic particles

p0 =
√
p2
⊥ + (pz)2.

5.2 Comoving coordinates

To describe the dynamics of fluctuations around a boost invariant background
it is useful to change to convenient coordinates, which are proper time τ and
space-time rapidity η = atanh z

t
. The cartesian coordinates are then

t = τ cosh η, z = τ sinh η. (5.6)
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Figure 5.1: Illustration of proper time τ and space-time rapidity η.

The metric in the new comoving coordinates is diagonal with

gττ = 1, gxx = gyy = −1, gηη = −τ 2. (5.7)

We denote 4-vectors in comoving coordinates by an index from the be-
ginning of the Greek alphabet X̃α = (x̃τ , x̃i, x̃η) = (τ, x̃i, η), with i = 1, 2.
Additionally we write a tilde over the vectors in τ , η- coordinates in this
section to emphasize the distinction from cartesian coordinates. In later sec-
tions we will drop the tilde to avoid overloaded notation. Vectors in cartesian
coordinates are denoted by indices µ, ν, . . .

First we rewrite the Boltzmann-Vlasov equations in comoving coordi-
nates. We note that the field strength tensor, being a two form F =
dA− igA ∧ A and therefore with indices down, is given by

F̃αβ = ∂̃αÃβ − ∂̃βÃα − ig[Ãα, Ãβ]. (5.8)

The indices can be lifted by the metric, but we point out that F̃αβ is not the
same as ∂̃αÃβ − ∂̃βÃα − ig[Ãα, Ãβ]. The covariant derivative is given by

D̃α = ∂̃α − ig[Ãα, •]. (5.9)

When we want to transform Maxwell’s equation DµF
µν = jν into comov-

ing coordinates, we must take care of space-time derivatives and Christoffel
symbols. To make things easier and in order to avoid confusion by space-time
and gauge-covariant derivatives we write the additional terms coming from
the Christoffel symbols explicitly. We do this in detail for j̃3 and then state
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the form of Maxwell’s equation. The only non-vanishing Christoffel symbols
for the metric in comoving coordinates are

Γ̃0
33 = τ, Γ̃3

03 = Γ̃3
30 =

1

τ
. (5.10)

For ν = 3 we obtain in τ, η coordinates

(D̃0 + Γ̃3
30)F̃ 03 + D̃1F̃

13 + D̃2F̃
23 = j̃3

(D̃0 +
1

τ
)F̃ 03 + D̃1F̃

13 + D̃2F̃
23 = j̃3. (5.11)

Doing this for the other 3 components as well, Maxwell’s equation can be
compactly written as

1

τ
D̃α(τ F̃αβ) =

1

τ
D̃α(τgαγ(τ)gβδ(τ)F̃γδ) = j̃β. (5.12)

Furthermore we introduce a momentum rapidity y = atanhp
z

p0
for massless

particles such that

P µ = |p⊥|(cosh y, cosφ, sinφ, sinh y). (5.13)

In comoving coordinates we get

p̃τ =
∂τ

∂t
p0 +

∂τ

∂z
pz = cosh(η)p0 − sinh(η)pz = p⊥ cosh(y − η), (5.14)

p̃η = − p̃η
τ 2

= − 1

τ 2
(
∂t

∂η
p0 +

∂z

∂η
pz)

= − 1

τ 2
(τ sinh(η)p0 + τ cosh(η)pz) =

1

τ
p⊥ sinh(y − η), (5.15)

where from the above it can be seen that tpz − zp0 = −p̃η. Therefore the
momentum distribution function in (5.4) depends solely on p⊥ and pη in τ ,
η-coordinates. Additionally we define the new quantity

Ṽ α =
P̃α

p⊥
=

(
cosh(y − η), cosφ, sinφ,

sinh(y − η)

τ

)
. (5.16)

Next we take a look at the expression of the current in comoving coordi-
nates, which is

j̃β =
g

2

∫
d2p⊥dp

′z

(2π)3p′0
P̃ βδf = −g

2

∫
d2p⊥dp̃η
(2π)3τ p̃τ

P̃ βδf =
g

2

∫
d2p⊥dy

(2π)3
P̃ βδf,(5.17)

with p′0 = γ(p0 − βpz) = p̃τ and p′z = γ(pz − βp0) = −p̃η/τ .
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Finally we are able to write down the Boltzmann-Vlasov equations in
comoving coordinates

Ṽ · D̃δfa|pµ = gṼ αF̃ a
αβ∂

β
(P )f0(p⊥, p̃η), (5.18)

1

τ
D̃α(τ F̃αβ) = j̃β =

g

2

∫
d2p⊥dy

(2π)3
P̃ βδf (5.19)

It is important to note that the derivative of δf is taken at fixed P µ and
not at fixed P̃α[26]. In the following we will drop the tilde and denote
comoving 4-vectors solely by indices from the beginning of the Greek alphabet
as mentioned already before.

5.3 QCD Hamiltonian in comoving coordi-

nates

Before solving the Boltzmann-Vlasov equations to obtain the time evolution
of the soft gauge fields we digress from this topic for the moment and consider
the QCD Lagrangian and Hamiltonian in comoving coordinates as well1. We
will make use of the present discussion later when we consider the energy
density of the expanding system for certain situations.

The pure gluonic part of the QCD action in general coordinates is of the
form

S = −1

2

∫
dτdηdx⊥

√
− det gαβTr[Fαβg

αγgβδFγδ] =

∫
dτdηdx⊥L. (5.20)

In τ , η-coordinates we have
√
− det gαβ = τ . We adopt temporal gauge

(Aτ = 0) and then find for the Lagrangian

L = τTr

[
F 2
τη

τ 2
+ F 2

τi −
F 2
ηi

τ 2
−
F 2
ij

2

]
(5.21)

in comoving coordinates. From the Lagrangian we can obtain the conjugate
momenta of the gauge fields which are

Πi =
∂L

∂(∂τAi)
= τ∂τAi = τFτi (5.22)

and

Πη =
∂L

∂(∂τAη)
=

1

τ
∂τAη =

1

τ
Fτη. (5.23)

1see also [29, 30]
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We can use these to construct the Hamiltonian density

H = 2Tr
[
(∂τAi)Π

i + (∂τAη)Π
η
]
− L = Tr

[
(Πi)2

τ
+
F 2
ηi

τ
+ τ(Πη)2 +

τ

2
F 2
ij

]
.

(5.24)
Actually we find that the energy density differs from the Hamiltonian density
by a factor 1/τ . Finally we obtain

E =
1

τ
H = EE⊥ + EB⊥ + EE|| + EB|| =

=Tr

[
(Πi)2

τ 2
+
F 2
ηi

τ 2
+ (Πη)2 +

F 2
ij

2

]
, (5.25)

where EE|| and EE⊥ is the energy density of electric fields in the z direction

and perpendicular to the z direction, respectively2. The analog holds for the
magnetic fields. From the energy density we can read off the expressions for
electric and magnetic fields in terms of the gauge fields. Along the anisotropy
we find

Bη = Fxy, Eη = Πη (5.26)

and perpendicular to it

B1 =− 1

τ
Fη2, E1 =

1

τ
Π1, (5.27)

B2 =
1

τ
Fη1, E2 =

1

τ
Π2. (5.28)

Due to the expansion the total energy density E is not conserved, but we
find

d

dτ
E|j=0 = −2

τ
ET |j=0. (5.29)

The condition j = 0 above indicates that this result is only true, if the
induced current of the hard particles is zero. But in the presence of a plasma
of hard particles this current does not vanish. To investigate the influence of
the induced current we define the net energy gain rate [27]

RGain =
dE
dτ

+
2

τ
ET , (5.30)

which gives the rate of energy transfer from the free-streaming hard particles
into the collective fields. This quantity can be negative which is the case
when energy is transfered from the fields into the hard particles.

2We want to reserve the terms “longitudinal” and “transverse” to express directions
along the wave vector of a collective mode or perpendicular to it.
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5.4 Background distribution

After the short interlude on the QCD Hamiltonian in comoving coordinates
in the preceding section, we come back to our task of describing the time
evolution of gauge fields. We start by defining the background distribution
of hard particles. We again consider a class of distribution functions that can
be obtained from isotropic distributions by stretching or contracting along
one direction, but this time the function will be non-stationary. We already
saw that a distribution which satisfies the conditions mentioned in section 5.1
only depends on p⊥ and pη. When we assume the background distribution
to be isotropic at proper time τiso, we can take [26]

f0(p⊥, pη) = fiso(
√
p2
⊥ + p2

η/τ
2
iso). (5.31)

The anisotropy parameter of chapter 4 is now a time dependent quantity and
can be identified by

ξ(τ) =
τ 2

τ 2
iso

− 1. (5.32)

We find that the distribution is prolate for τ < τiso and oblate for τ > τiso.
Furthermore we note that the background distribution function gets more
and more oblate as it evolves in time. We remark that a plasma description
at arbitrarily early times does not make sense and therefore we must choose
a starting time τ0 for our considerations. In [26] only oblate distributions
were studied and therefore τ0 was set larger than τiso. We want to use the
following treatment to study initially prolate cases as well and therefore do
not make any restrictions on τ0 for the moment.

5.5 Auxiliary fields Wα

Now we attempt to solve

Ṽ · D̃δfa|pµ = gṼ αF̃ a
αβ∂

β
(P )f0(p⊥, p̃η) (5.33)

for the non-stationary background distribution we just introduced to get an
expression for δfa. Because

pτ∂τpη(x)|y,p⊥ =− p2
⊥ sinh(y − η) cosh(y − η)

=− pη∂ηpη(x)|y,p⊥ , (5.34)
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we find that3

P · ∂
[
∂α(P )f0(p⊥, pη)

]
= 0. (5.35)

Therefore it is possible to solve (5.33) by introducing an auxiliary field
Wα(τ, xi, η;φ, y) that satisfies

δf(p, x) = −gWα(τ, xi, η;φ, y)∂α(P )f0(p⊥, pη) (5.36)

and
V ·DWα(τ, xi, η;φ, y) = V βFαβ. (5.37)

We want to solve the latter equation by the method of characteristics. We
emphasize that we only consider the linear regime, which is valid as long as
the gauge fields are weak enough to neglect them in the covariant derivative.
It is then also appropriate to neglect self-interactions and therefore we are
essentially dealing with an Abelian theory. We adopt the gauge condition
Aτ = 0 and can write

(V τ∂τ + V i∂i + V η∂η)Wα(τ, xi, η;φ, y) = V βFαβ (5.38)

Our background distribution is isotropic in the directions x1 and x2 (recall
that the symbol y is already used for momentum rapidity), which allows us
to choose the wave vector of the collective modes to lie in the plane spanned
by x̂1 and η̂. Thus the modes and therefore the auxiliary fields Wα are
independent of x2 and we will from now on denote x1 = x. Therefore (5.38)
reduces to

(V τ∂τ + V η∂η + cosφ∂x)Wα(τ, x, η;φ, y) = V βFαβ. (5.39)

It is possible to solve this first-order partial differential equations by the
method of characteristics where we introduce a parameter s such that

dWα

ds
=
∂Wα

∂τ

dτ

ds
+
∂Wα

∂η

dη

ds
+
∂Wα

∂x

dx

ds
= V βFαβ, (5.40)

with

dτ

ds
=V τ = cosh(y − η(s)), (5.41)

dη

ds
=V η =

1

τ(s)
sinh(y − η(s)), (5.42)

dx

ds
=V 1 = cosφ. (5.43)

3Here it is essential that the index of the partial differentiation with respect to the
momentum is upstairs, since otherwise there would be additional τ ’s involved and (5.35)
would not be valid.
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Since dτ/ds > 0 it is possible to use τ instead of s for the purpose of inte-
grating (5.40). Writing ds = dτ ′/V τ (η(τ ′)) we get

Wα(τ, x, η;φ, y)−Wα(τ0, x0, η0;φ, y) =

∫ τ

τ0

dτ ′
V βFαβ|τ ′,x(τ ′),η(τ ′)

V τ (η(τ ′))
, (5.44)

where x0 = x(τ ′ = τ0) and η0 = η(τ ′ = τ0). The functions x(τ ′) and η(τ ′)
are solutions of

dx(τ ′)

dτ ′
=

cosφ

cosh(y − η(τ ′))
, (5.45)

dη(τ ′)

dτ ′
=

1

τ ′
tanh(y − η(τ ′)), (5.46)

with x(τ ′ = τ) = x and η(τ ′ = τ) = η. The latter equation is solved by

τ ′ sinh(y − η(τ ′)) = τ sinh(y − η) (5.47)

as can be checked easily by differentiation with respect to τ ′. More explicitly
we find

η′ ≡ η(τ ′) = y − asinh
( τ
τ ′

sinh(y − η)
)
. (5.48)

With this solution we can integrate (5.45) and obtain

x′ ≡ x(τ ′) =x+ [τ ′ cosh(y − η′)− τ cosh(y − η)] cosφ

=x+

[√
τ ′2 + τ 2 sinh2(y − η)− τ cosh(y − η)

]
cosφ, (5.49)

where we have inserted the expression for η′ in the second line. After we
have determined the characteristics we give the solution for the components
of the W fields4

W1 −W 0
1 =

∫ τ

τ0

dτ ′
[
∂τ ′A

1 +
tanh(y − η′)

τ ′
(∂x′Aη + ∂η′A

1) (5.50)

− sinφ

cosh(y − η′)
∂x′A

2
]
,

W2 −W 0
2 =

∫ τ

τ0

dτ ′
[
∂τ ′ +

tanh(y − η′)
τ ′

∂η′ +
cosφ

cosh(y − η′)
∂x′
]
A2, (5.51)

Wη −W 0
η =−

∫ τ

τ0

dτ ′
[
∂τ ′Aη +

V i∂η′A
i + ∂x′Aη

cosh(y − η′)

]
. (5.52)

4We do not need the zero component of the W fields as can be seen in (5.36), because
∂α(P )f0(p⊥, pη) does not depend on pτ .
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The dependencies ofAα(τ ′, x′, η′) have been omitted above. We do not specify
the W 0

α here and postpone this task until the next chapter after we have seen
why these terms turn out to be important to us5.

5.6 Current conservation

At this point we pause in deriving the effective field equations for the soft
modes and take a look at the conservation law for the current. From (5.2)
and (5.36) it follows that the current in cartesian coordinates can be written
as

Jµ = −g
2

2

∫
d3p

(2π)3

P µ

p0
Wα∂

α
(P )f0(p⊥, pη). (5.53)

Because DµP
µ = P µDµ = PαDα we obtain, by additionally changing the

integration variables to comoving coordinates like in (5.17),

D · J =
g2

2

∫
d2p⊥dpη

(2π)3

1

τp′0
P ·DWα∂

α
(P )f0(p⊥, pη). (5.54)

Now we can use (5.35), (5.37) and p′0 =
√
p2
⊥ + (p′z)

2 and end up with

D · J =
g2

2

∫
d2p⊥dpη

(2π)3

P β

τ
√
p2
⊥ + p2

η/τ
2

(
Fiβ

∂f0(p⊥, pη)

∂pi
+ Fηβ

∂f0(p⊥, pη)

∂pη

)
(5.55)

Finally for our class of background distribution functions, ∂f0/∂pi and ∂f0/∂pη
are odd functions in pi and pη such that the current is conserved by symme-
try. We now want to go on and find expressions for the components of the
current and eventually obtain the equations of motion for the A fields.

5It turns out that keeping the initial W fields is the most important generalization
compared to [26].
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5.7 Time evolution of gauge fields

In a first step we want to to find an expression for the current in terms of
the auxiliary fields. Therefore we insert (5.36) into (5.17) and obtain

Jβ =− g2

2

∫
d2p⊥dy

(2π)3
P βWα∂

α
(P )f0(p⊥, pη)

=− g2

2

∫
d2p⊥dy

(2π)3
P β

(
Wi

pi√
p2
⊥ + p2

η/τ
2
iso

+Wη
pη

τ 2
iso

√
p2
⊥ + p2

η/τ
2
iso

)
∂fiso(p)

∂p

=− g2

2

∫ 2π

0

dφ

2π

∫ ∞
0

dp⊥
(2π)2

p2
⊥

∫
dy√

1 + V 2
η /τ

2
iso

V β
(
−V iWi +

Vη
τ 2
iso

Wη

)
f ′iso(p)

=− m2
D

2

∫ 2π

0

dφ

2π

∫
dy

(1 + V 2
η /τ

2
iso)

2
V β
(
V iWi −

Vη
τ 2
iso

Wη

)
(5.56)

with

m2
D = −g2

∫ ∞
0

dp

(2π)2
p2f ′iso(p) (5.57)

and p = p⊥

√
1 + V 2

η /τ
2
iso.

Due to the linearity of Maxwell’s equation and the expression for the W
fields in the Abelian limit, we can study the time evolution of individual
modes obtained by a Fourier decomposition

Aα(τ, x, η) =

∫
dk

2π
eikx

∫
dν

2π
eiνηÃα(τ ; k, ν) (5.58)

and similarly for the currents.
To express the Fourier transformed current as functional of the gauge

fields we note that the partial derivatives ∂x′ and ∂η′ in equations (5.50)-
(5.52) will be replaced by factors ik and iν, respectively. The proper time
integrals over the partial time derivative of the gauge fields Aα(τ ′, x′, η′) can
be partially integrated, yielding∫ τ

τ0

dτ ′∂τ ′Aα(τ ′, x′, η′) =

∫ τ

τ0

dτ ′
∫

dk

2π
eikx

′
∫

dν

2π
eiνη

′
∂τ ′Ãα(τ ; kν)

=

∫
dk

2π

∫
dν

2π

{
eikxeiνηÃα(τ ; k, ν)− eikx0eiνη0Ãα(τ0; k, ν)

− i
∫ τ

τ0

dτ ′eikx
′
eiνη

′
[
k

cosφ

cosh(y − η′)
+ ν

tanh(y − η′)
τ ′

]
Ãα(τ ′; k, ν)

}
.

(5.59)
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We recall that x′, x0 and η′, η0 are given by (5.49) and (5.48), respectively,
and therefore depend on x, η and τ . It remains to insert equations (5.50)-
(5.52) and (5.59) into the expression for the current (5.56). The calculation
is lengthy and involves quite many terms, therefore we will not present it
explicitly here. We introduce new variables

ȳ ≡ y − η, (5.60)

η̄′ ≡ η̄(τ ′) ≡ η(τ ′)− η = ȳ − asinh
( τ
τ ′

sinh ȳ
)
, (5.61)

χ′ ≡ χ(τ ′) ≡ (x(τ ′)− x)/ cosφ =

√
τ ′2 + τ 2 sinh2 ȳ − τ cosh ȳ (5.62)

with η̄0 = η̄(τ0) and χ0 = χ(τ0). The integration over the momentum space
angle φ involves terms typically looking like∫ 2π

0

dφ

2π
cosm φ eikχ

′ cosφ and

∫ 2π

0

dφ

2π
sinm φ eikχ

′ cosφ, (5.63)

with m ∈ N. Their solution can be given in terms of Bessel functions of the
first kind Jn(kχ). We also use the recurrence formula for the Bessel functions

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x). (5.64)

Eventually the expression for the 1 component of the current is

j̃1 =− m2
D

2

∫
dȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
1

2
Ã1(τ) (5.65)

+eiνη̄0

[
iτ sinh ȳ

τ 2
iso

J1(kχ0)Ãη(τ0)− 1

2

[
J0 − J2

]
(kχ0)Ã1(τ0)

]

+

∫ τ

τ0

dτ ′
eiνη̄

′√
1 + τ2 sinh2 ȳ

τ ′2

[(k
4

[
3J1 − J3

]
(kχ′)− iντ sinh ȳ

2τ 2
iso

[
J0 − J2

]
(kχ′)

)
Ã1(τ ′)

+
τ sinh ȳ

τ ′2

(ik
2

[
J0 − J2

]
(kχ′)− ντ sinh ȳ

τ 2
iso

J1(kχ′)
)
Ãη(τ

′)

]}
+ j̃1

0(τ).

The last term j̃1
0 accounts for possible terms coming from the W 0

α fields we
have not specified yet. Similar terms show up for every component of the
current. We refer to the τ ′-integral as memory integral, because it depends
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on the history of the gauge fields. For j̃η we find

j̃η =− m2
D

2τ

∫
dȳ sinh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
− τ sinh ȳ

τ 2
iso

Ãη(τ) (5.66)

+eiνη̄0

[
τ sinh ȳ

τ 2
iso

J0(kχ0)Ãη(τ0)− iJ1(kχ0)Ã1(τ0)

]

+

∫ τ

τ0

dτ ′
eiνη̄

′√
1 + τ2 sinh2 ȳ

τ ′2

[(ik
2

[
J2 − J0

]
(kχ′) +

ντ sinh ȳ

τ 2
iso

J1(kχ′)
)
Ã1(τ ′)

+
τ sinh ȳ

τ ′2

(iντ sinh ȳ

τ 2
iso

J0(kχ′)− kJ1(kχ′)
)
Ãη(τ

′)

]}
+ j̃η0 (τ).

We see that these components of the current only depend on Ã1 and Ãη. If
either k = 0 or ν = 0, the 1 and η components will decouple from each other.
These will be two special cases we want to discuss in detail in the following
chapter. On the other hand, j̃2 is found to be a functional of Ã2 only

j̃2 =− m2
D

2

∫
dȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
1

2
Ã2(τ)− 1

2
eiνη̄0

[
J0 + J2

]
(kχ0)Ã2(τ0)

−
∫ τ

τ0

dτ ′
eiνη̄

′√
1 + τ2 sinh2 ȳ

τ ′2

[
iντ sinh ȳ

2τ 2
iso

[
J0 + J2

]
(kχ′)

− k

4

[
J1 + J3

]
(kχ′)

]
Ã2(τ ′)

}
+ j̃2

0(τ). (5.67)

Finally, even though in temporal gauge there is no equation for the time
evolution of the zeroth component of the gauge fields, we need j̃τ to check
the Gauss law. Therefore we continue and obtain

j̃τ =− m2
D

2

∫
dȳ cosh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
eiνη̄0

[
τ sinh ȳ

τ 2
iso

J0(kχ0)Ãη(τ0)− iJ1(kχ0)Ã1(τ0)

]

+

∫ τ

τ0

dτ ′
eiνη̄

′√
1 + τ2 sinh2 ȳ

τ ′2

[(ik
2

[
J2 − J0

]
(kχ′) +

ντ sinh ȳ

τ 2
iso

J1(kχ′)Ã1(τ ′)
)

+
τ sinh ȳ

τ ′2

(iντ sinh ȳ

τ 2
iso

J0(kχ′)− kJ1(kχ′)
)
Ãη(τ

′)

]}
+ j̃τ0 (τ), (5.68)

which is again a functional of Ã1 and Ãη.
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After we have found the expressions for the components of the current,
we can write down the equations of motion for the soft gauge fields from
Maxwell’s equation

1

τ
∂α
(
τgαγ(τ)gβδ(τ)Fγδ

)
= jβ. (5.69)

We are interested in the Fourier transformed version, therefore we again
replace the partial derivatives ∂x and ∂η by factors ik and iν. We find a
coupled set of equations for Ã1 and Ãη(1

τ
∂ττ∂τ +

ν2

τ 2

)
Ã1(τ ; k, ν) =j̃1(τ ; k, ν)− kν

τ 2
Ãη(τ ; k, ν), (5.70)(

τ∂τ
1

τ
∂τ + k2

)
Ãη(τ ; k, ν) =j̃η(τ ; k, ν)− kνÃ1(τ ; k, ν). (5.71)

We observe that these equations decouple for either k = 0 or ν = 0, since
in these cases also j̃1 and j̃η only depend on Ã1 and Ãη, respectively, as we
have already seen. In terms of the conjugate momenta we defined in (5.22)
and (5.23) we get

1

τ
∂τ Π̃1(τ ; k, ν) = j̃1(τ ; k, ν)− ν2

τ 2
Ã1(τ ; k, ν)− kν

τ 2
Ãη(τ ; k, ν) (5.72)

and

1

τ
∂τ Π̃

η(τ ; k, ν) = −j̃η(τ ; k, ν)− k2

τ 2
Ãη(τ ; k, ν)− kν

τ 2
Ã1(τ ; k, ν), (5.73)

where we used j̃η = −j̃η/τ 2.
The equation of motion for the transverse mode Ã2(τ ; k, ν) decouples for

general k and ν and has the form(1

τ
∂ττ∂τ + k2 +

ν2

τ 2

)
Ã2(τ ; k, ν) = j̃2(τ ; k, ν) (5.74)

or again in terms of the conjugate momenta

1

τ
Π̃2(τ ; k, ν) = j̃2(τ ; k, ν)−

(
k2 +

ν2

τ 2

)
Ã2(τ ; k, ν). (5.75)

Finally it only remains to find an expression for the Gauss law which can be
obtained from the zeroth component of Maxwell’s equation

jτ (τ, x, η) =− 1

τ
∂x(τFxτ )−

1

τ
∂η

(
1

τ
Fητ

)
=− ∂x∂τA1(τ, x, η) +

1

τ
∂η

1

τ
∂τAη(τ, x, η)

=− 1

τ
∂xΠx(τ, x, η) +

1

τ
∂ηΠ

η(τ, x, η). (5.76)
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The Fourier transformed version of the Gauss law constraint reads

j̃τ (τ ; k, ν) =
i

τ

(
νΠ̃η(τ ; k, ν)− kΠ̃1(τ ; k, ν)

)
. (5.77)

At the end of this section we want to briefly discuss the need of the initial
data for W -fields, which we have ignored so far. When the right side of
(5.77) is not vanishing at initial time τ0 we must have a non-vanishing τ
component of the current at τ0 in order to have a chance to satisfy the Gauss
law constraint. Therefore let us take a closer look at j̃τ (τ0). First we note
that at τ = τ0 we get η̄0 = 0 and χ0 = 0. The only non-vanishing Bessel
function at 0 is J0(0) = 1 which leaves us with

j̃τ (τ0; k, ν) =− m2
D

2

∫
dȳτ0 cosh ȳ sinh ȳ

τ 2
iso(1 +

τ2
0 sinh2 ȳ

τ2
iso

)2
Ãη(τ0; k, ν) + j̃τ0 (τ0; k, ν)

=j̃τ0 (τ0; k, ν). (5.78)

As it should, the first term vanishes by symmetry, because we integrate an
odd function in ȳ. Since we essentially need induced currents at τ0 in some
cases, it is also interesting to discuss the influence of such initial induced
currents in general. This will be done in the following chapter, where our
aim is to solve the integro-differential equations of motion for the soft gauge
fields numerically.



Chapter 6

Results for the time evolution
of gauge fields

Before we discuss our final results for the time evolution of the gauge fields in
the weak-field approximation, let us briefly recapitulate what we did in the
preceding chapter. Our starting point was the set of Boltzmann-Vlasov equa-
tions we first had obtained from kinetic theory in section 3.4 for stationary
momentum distributions of the hard particles. We saw that under certain
assumptions, which had to be satisfied by the distribution function, we were
able to treat non-stationary situations as well. We adopted a convenient co-
ordinate system and solved the Boltzmann-Vlasov equations by introducing
auxiliary fields. In the end we obtained integro-differential equations which
describe the time evolution of the collective modes we are interested in. It
remains to solve these equations, which can only be done numerically, and to
discuss certain interesting cases. This is done in the present chapter, where
we encounter again stable and unstable modes like in the stationary case.
We start by considering wave vectors with k = 0 and ν 6= 0, hence parallel
to the anisotropy direction which is the z or η direction in our case.

6.1 Wave vector parallel to anisotropy direc-

tion

In the stationary case and for an oblate momentum distribution we found
that collective modes with wave vectors parallel to the anisotropy direction
are unstable for transversally polarized fields and stable for longitudinally
polarized ones. In the non-stationary situation we find that this does not
change, but the frequency of the stable oscillations and the growth rate of
the unstable modes become time dependent. At first we consider the stable

52
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solutions and then turn to the more interesting instabilities.

6.1.1 Stable modes

In the case of longitudinal modes (gauge fields parallel to the wave vector) we
need non-vanishing initial W fields whenever we choose the initial conjugate
momentum to be non-zero due to the Gauss law constraint (5.77). In fact the
numerical computation shows that initial A fields instead of initial Π fields
only give constant solutions, which are not of interest to us. Therefore it is
inevitable to introduce W 0

α 6= 0 at least in one spatial component. We need
to choose the initial data such that the τ component of the current does not
vanish at τ0. A possible choice is

W 0
η (τ0, η0;φ, y) = K1 tanh(y − η0)eiνη0 , (6.1)

where K1 is a constant and η0 is given by (5.48) and depends on τ and η. At
τ = τ0 we have η0 = η and so (6.1) gives the non-vanishing term in jτ (τ0)

jτ0 (τ0, η) =
m2
D

2

∫
dy cosh(y − η)

(1 +
τ2
0 sinh2(y−η)

τ2
iso

)2

Vη
τ 2
iso

W 0
η (τ0; ν, φ, y)

=− K1m
2
Dτ0

2τ 2
iso

∫
dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2
eiνη, (6.2)

where in the last step we used ȳ = y − η. However, our choice (6.1) is not
unique, but every odd function in ȳ can be used in principle. In the next step
we fix the constant K1 by requiring that the Gauss law constraint is satisfied
at τ0. We therefore Fourier transform (6.2) and obtain

j̃τ (τ0; ν) = −2πK1m
2
Dτ0

2τ 2
iso

∫
dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2
=
iνΠ̃η(τ0; ν)

τ0

. (6.3)

From above we read off the expression for the constant K1

K1 = −2iτ 2
isoνΠ̃η(τ0; ν)

2πm2
Dτ

2
0

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

. (6.4)
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The τ component of the current coming from the initial W fields at arbitrary
times τ > τ0 is then given by

j̃τ0 (τ ; ν) =
iντ 2Π̃η(τ0; ν)

τ 3
0

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳeiνη̄0 cosh ȳ sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

√
1 + τ2 sinh2 ȳ

τ2
0

, (6.5)

with

η̄0 ≡ ȳ − asinh
( τ
τ0

sinh ȳ
)

(6.6)

according to (5.61).
The W 0

η given in (6.1) does also contribute to j̃η and we eventually find

j̃η0 (τ0; ν) =
iντ Π̃η(τ0; ν)

τ 3
0

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳeiνη̄0 sinh3 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

√
1 + τ2 sinh2 ȳ

τ2
0

. (6.7)

As mentioned before the equations of motion of the gauge fields decouple for
k = 0 and we therefore need to solve1

1

τ
∂τ Π̃

η(τ ; ν) = −j̃η(τ ; ν) (6.8)

numerically. We discretize both the variable τ and τ ′ of the memory integral
in j̃η and then apply a leap frog algorithm. It remains to fix the dimensionful
parameters. We do this in the same way as in [26] in the framework of the
color glass condensate. As a starting time for the plasma phase we choose
τ0 ' Q−1

s with Qs ' 1 and 3 GeV being the so called saturation scale for
RHIC and LHC, respectively [31]. The only other dimensionful parameter is
the Debye mass m2

D ' 1.285/(τ0τiso)
2. Because we intend to study oblate

momentum distributions in this section, we choose τ0 > τiso.

1Here, j̃η is the complete expression of the induced current as given in (5.66) and j̃η0 is
just the part of it, that comes from initial W fields.

2The details on how to obtain these values are given in [26] and references therein. The
value of the Debye mass chosen here corresponds to a gluon liberation factor c = 2 ln 2



6.1. WAVE VECTOR PARALLEL TO ANISOTROPY DIRECTION 55

Ν = 3

Ν = 10

Ν = 20

50 100 150 200

Τ

Τ0

-0.5

0.0

0.5

1.0

Τ0 AΗHΤ, ΝL

Τ

Figure 6.1: Longitudinal modes for τiso/τ0 = 0.01. The thin light lines are
the results from the analytic late time behavior (B.21), which are in good
agreement with the numerical data (thick darker lines) even at early times.

In figure 6.1 we compare the late time behavior, which is obtained ana-
lytically in appendix B, with our numerical simulation. We notice that these
modes are indeed stable. Finally we remark that we tested for Gauss law
violations at τ > τ0 and found that they decrease with increasing accuracy
while the results in figure 6.1 remain the same. In the next section we turn
to the more interesting case of unstable modes.

6.1.2 Unstable modes

From our analysis in section 4.3.3 we expect to find instabilities when we
study transversely polarized fields and oblate distribution functions. Our aim
is to consider various initial conditions and therefore we want to investigate
the influence of initial induced currents too. In the present situation (k = 0
and Πη = 0) the Gauss law constraint simply becomes j̃τ = 0 and hence by
introducing appropriate non-vanishing initial data for the W fields we can
choose a third parameter j̃i(τ0; ν) besides Π̃i(τ0; ν) and Ãi(τ0; ν). We note
that the equations of motion are the same for Ã1 and Ã2 when k = 0 as can
be seen from (5.65) and (5.67) in section 5.7. As before for the longitudinal
modes the choice of the W fields at τ0 is not unique. We take3

W 0
i (τ0, η0;φ, y) = K2e

iνη0 , (6.9)

3We studied different choices too, but the qualitative behavior turned out to be the
same in all cases we considered.
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where K2 is again a constant. Next we investigate the expression for the
current ji at τ0 taking into account (6.9) and find

ji0(τ0, η) = −K2m
2
D

4

∫
dȳeiνη

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2
, (6.10)

where we used that η0 = η for τ = τ0. From this expression we can write
the constant K2 in terms of the initial induced current. After performing a
Fourier transformation we find for the term of the transverse current that
comes from the initial W fields

j̃i0(τ ; ν) = j̃i(τ0; ν)

∫ dȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳeiνη̄0

(1 + τ2 sinh2 ȳ
τ2
iso

)2
(6.11)

at arbitrary τ > τ0.
Eventually we have to solve

1

τ
∂τ Π̃i(τ ; ν) = j̃i(τ ; ν)− ν2

τ 2
Ãi(τ ; ν) (6.12)

by applying a leap frog algorithm again. We fix the dimensionful parameters
in exactly the same way as for the stable modes. In the left panel of figure
6.2 the solutions for 3 different values of ν are compared to their late time
behavior, which is obtained in appendix B. Here, the starting conditions are
Π̃i(τ0; ν) = 1 and Ãi(τ0; ν) = j̃i(τ0; ν) = 0 for all modes. For late times we
notice that modes with a larger wave number ν also have larger growth rates.
Actually we find for the analytical late time behavior of the transverse gauge
fields obtained in appendix B that very infrared modes (ν � 1) correspond
indeed to oscillatory stable solutions.

In the left log-square root plot of figure 6.2 we additionally notice that
there is a delay until the instabilities start to grow. For small τ the am-
plitudes even decrease. To clarify what this delay means we should discuss
the time scales associated with it. From comparison of the experimental data
from RHIC with results obtained from hydrodynamic simulations it has been
concluded that the time the quark-gluon plasma needs to thermalize is of the
order of or perhaps smaller than 1 fm/c.4 In the way we fixed our dimen-
sionful parameters, 1 fm/c corresponds to approximately 5τ0 for RHIC and
about 15τ0 for LHC [27]. Due to this delay it would be unlikely that quark-
gluon plasma instabilities contribute to the fast isotropization in heavy ion

4In [32] it has been argued that the hydrodynamic behavior observed experimentally
does not require local thermodynamic equilibrium, but merely an isotropic momentum
distribution.
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Figure 6.2: In the left panel transverse magnetic fields are compared for
different wave numbers ν but equal initial conditions Π̃i(τ0) = 1 and Ãi(τ0) =
j̃i(τ0) = 0. The expected analytical late time behavior is indicated by the
thin light lines. In the right plot the influence of different initial values is
studied for modes with ν = 30 (non-zero initial values are indicated in the
plot). In both cases we assume an oblate momentum distribution from the
beginning with τiso/τ0 = 0.01.

collisions. However, we can still investigate other possible initial conditions.
The result is shown in the right plot of figure 6.2 for ν = 30. Whenever
we choose the induced current to be zero at τ0 we observe an uncomfortably
long delay of the onset of the instabilities. The situation changes when we
consider initial induced currents as can be seen clearly in the right panel of
figure 6.2, where the amplitude of the magnetic field starts to rise almost
immediately.

At this point we should mention how we normalize the modes for different
starting conditions. Whenever we only have non-vanishing A and Π fields,
but zero initial currents, we simply choose the total energy density of the
fields (as defined in section 5.3) to be equal at the beginning. For initial
currents only the energy density of the fields is zero at τ0 and hence we must
normalize these modes differently. We do this by setting the height of the first
maximum in the amplitude of the A fields approximately equal to those of
the other modes with non-zero initial values in the fields only. We also adopt
this normalization when we study the energy density. Anyway the qualitative
result that modes with j̃i(τ0; ν) 6= 0 start growing almost immediately does
not depend on normalization issues.

When we consider the total energy density in figure 6.3, we find again
that the delay of the onset of the instabilities is clearly reduced for modes
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Figure 6.3: Total energy density for different wave numbers ν. The full
lines correspond to j̃i(τ0; ν) 6= 0, while the dashed lines are the results for
Π̃i(τ0; ν) 6= 0. τiso/τ0 = 0.01.

with initial induced currents. However, let us quantify this result a bit. We
stated already that plasma instabilities should have some important influence
already around 1 fm/c in order to possibly describe the fast isotropization
of the system, which takes place at this time scale. As mentioned before
this would roughly correspond to 5τ0 for RHIC, where the energy density
for modes with j̃i(τ0; ν) = 0 is still decreasing. But also for the modes
with non-vanishing initial currents the energy density has not grown signifi-
cantly until 5τ0. For LHC, where 1 fm/c ≈ 15τ0, the situation becomes more
promising, at least for modes with j̃i(τ0; ν) 6= 0. We should also mention
that the actual isotropization takes place when the gauge fields have grown
non-perturbatively large. Therefore this can not be studied in the hard loop
approximation. Nevertheless, we can investigate the early evolution of the
instabilities and therefore discuss the minimal time for isotropization.

When the total energy density is split into an electric and magnetic con-
tribution, we find that the magnetic energy density accounts for almost all of
the total energy density except at very early times. In figure 6.4 the gain rate
as defined in (5.30), which gives the energy transfer from the hard particles
to the soft collective modes, is plotted. It is exactly this transfered energy
that drives the instability. In the beginning the gain rate actually becomes
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Figure 6.4: The total energy density Etot for ν = 10 and j̃i(τ0; ν) 6= 0 is split
into the contributions from electric (EE) and magnetic fields (EB). Addition-
ally the gain rate defined in (5.30) times τ0 is shown.

negative. This indicates that the energy of hard particles increases at the
expense of the collective modes. However, for late enough times we note that
the energy transfer only takes place in direction to the soft gauge fields.

The important conclusion from this study is that taking into account
initial values of W fields and, associated with this non-vanishing induced
currents at starting time τ0, modifies the dynamics of the system. Especially
the long delay till the onset of the instabilities, which was found first in
[26], is reduced drastically. This makes it at least more likely that plasma
instabilities play some role in explaining the fast isotropization after heavy
ion collisions5.

6.2 Wave vector perpendicular to anisotropy

direction

Next we discuss the second simple case where the equations for the time
evolution of Ã1 and Ã2 decouple, which happens for ν = 0. There we find 3

5We remind the reader that we only discuss the Abelian regime, but to draw conclusions
for the quark-gluon plasma it is important to consider the non-Abelian case. However,
the Abelian results can provide an upper bound for the behavior of non- Abelian plasma
instabilities [27].
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different modes, because the expressions for the gauge fields in the 1 and 2
direction are not the same this time. In this section we want to investigate
the behavior for prolate distribution functions as well and therefore choose
the starting time of our considerations τ0 to be smaller than τiso. We only
have to worry about the Gauss law constraint when we study the 1 direction,
which refers to longitudinally polarized modes (the wave vector points in the
1 direction in this section). We again start by examining the stable solutions.

6.2.1 Stable modes

Let us first discuss the longitudinal modes. We must introduce initial W
fields to be able to satisfy the Gauss law. This in done completely analogous
to before. We choose the initial data of the W fields to be

W 0
1 (τ0, x0;φ, y) =

K3e
ikx0

cosφ
, (6.13)

where K3 is again a constant that must be fixed in the following. This gives
the non-vanishing contribution to j̃τ (τ0; k) which reads

j̃τ (τ0; k) = −K3m
2
D2π

2

∫
dȳ cosh ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2
. (6.14)

We obtain the expression for K3 from the Gauss law constraint

τ0j̃
τ (τ0; k) = −ikΠ̃1(τ0; k). (6.15)

Eventually we find

j̃τ0 (τ ; k) = −ikΠ̃1(τ0; k)

τ0

∫ dȳ cosh ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ0(kχ0) cosh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
(6.16)

for τ > τ0, where χ0 is a function of both τ and ȳ. It remains to find the
contribution to j̃1, which is

j̃1
0(τ ; k) =

kΠ̃1(τ0; k)

τ0

∫ dȳ cosh ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ1(kχ0)

(1 + τ2 sinh2 ȳ
τ2
iso

)2
. (6.17)

Finally we have all the ingredients we need in order to solve the equation of
motion for Ã1

1

τ
∂τ Π̃1(τ ; k) = j̃1(τ ; k) (6.18)
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Figure 6.5: Stable modes for wave vectors perpendicular to the anisotropy
direction. The red and the blue line correspond to Ẽ1 and Ẽ2, respectively.
The parameters are m2

D = 1.285/(τisoτ0), τiso/τ0 = 100 and k = 0.1. The
initial conditions are such that there is only a non-vanishing conjugate mo-
mentum Π̃i(τ0; k) = 1.

consistently. Since we want to study prolate and oblate momentum distri-
butions, we fix τiso = 100τ0. The class of momentum distribution functions
we defined in section 5.4 gets more and more oblate in time. Therefore we
simply choose the final time of our simulation to be larger than τiso such that
we can investigate the behavior in the oblate case as well. In figure 6.5 we
plot the electric field corresponding to a mode with k = 0.1.

For wave vectors perpendicular to the anisotropy direction we additionally
find stable modes that are transversally polarized, namely in the 2 direction.
There is no need for any initial W fields to satisfy the Gauss law and, because
we are more interested in instabilities, we skip the task of introducing initial
induced currents in the present case6. Therefore we simply solve

1

τ
∂τ Π̃2(τ ; k) = j̃2(τ ; k)− k2Ã2(τ ; k), (6.19)

with j̃2
0(τ ; k) = 0 in (5.67). The electric field in the 2 direction is compared

to the longitudinal electric field in figure 6.5. The parameters are the same
in both cases. We notice that the modes are stable for prolate and oblate
momentum distribution functions.

6Possible initial data would be W 0
2 (τ0, x0;φ, y) = Keikx0 (with K being constant), but

the solution turns out to be qualitatively similar for initial induced currents too.
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6.2.2 Unstable modes

We still need to examine the time evolution of Ãη. To study the influence of
induced currents at τ0 we introduce

W 0
η (τ0, x0;φ, y) = K4e

ikx0 . (6.20)

With this initial data we have the freedom to set the value of the current at
τ0. We proceed in the same way as before and end up with

j̃η0 (τ ; k) = j̃η(τ0; k)

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ0(kχ0) sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
. (6.21)

The integro-differential equation we intend to solve is

1

τ
∂τ Π̃

η(τ ; k) = −j̃η(τ ; k)− k2

τ 2
Ãη(τ ; k). (6.22)

As for the stable modes we choose τ0 < τiso such that the momentum dis-
tribution is prolate at the initial time. We again stop our simulation only
after the momentum distribution function became oblate. Unfortunately
the solutions show little activity for physically reasonable mass parameters
mD. Therefore we want to consider the solutions for a very high Debye
mass m2

D = 1000/(τ0τiso) at first and comment on the situation for physical
parameters later.

The gauge fields for different wave numbers are shown in the left plot of
figure 6.6. We note that the corresponding magnetic fields point in the 2
direction. We see that there exists an instability for prolate distributions.
However, the modes get stable for τ ≥ τiso. We again show the solutions for
different initial conditions, but this time the difference is not as significant
as before. For completeness we mention that this time modes with non-
vanishing initial currents are normalized such that the oscillations in the
stable region have approximately the same amplitude. When we consider the
energy density of one mode, we again find that the magnetic fields account
for most of the total energy density. This can be seen in the logarithmic plot
on the right side of figure 6.6. The energy transfer between hard particles
and soft modes takes place in the following way (we note that the gain rate
is not shown in figure 6.6). At early times energy is transfered to the gauge
fields, such that the instability can evolve. At about 5.5τ0 the gain rate
changes sign and in the following the energy density for the collective modes
decreases rapidly. Eventually the gain rate oscillates with a small amplitude
around zero in the region where the momentum distribution is oblate.
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Figure 6.6: Unstable modes for prolate momentum distributions for different
wave numbers and initial conditions (left). The dashed lines correspond to
Π̃η(τ0; k) 6= 0 and the full lines to j̃η(τ0; k) 6= 0. In the right panel the total
energy density and its contributions from electric and magnetic fields are
shown for k = 10 and j̃η(τ0; k) 6= 0. The remaining parameters in both plots
are m2

D = 1000/(τisoτ0) and τiso/τ0 = 10.

Now we turn to a more reasonable Debye mass m2
D = 1.285/(τisoτ0). We

must consider small wave numbers k < 1 and strongly elongated momentum
distributions to find an instability. We choose τiso/τ0 = 100. In figure 6.7
the energy density for k = 0.1 is shown. Again we split the total energy
density into contributions coming from magnetic and electric fields. We
emphasize that the plot is not logarithmic this time. To get a better insight
we consider the gain rate too. We find that it is positive in the very beginning,
which indicates that energy is transfered from the hard particles to the soft
fields. However, after about 30τ0 it becomes negative for the first time.
The gain rate then rises again, but after 70τ0 it becomes negative for a
second time. After the distribution function becomes isotropic at 100τ0 and
thereafter increasingly oblate the gain rate simply oscillates around zero. As
for the bigger Debye mass we see that there is only an instability for prolate
momentum distributions.

6.3 General wave vectors

Up to now we considered two special situations, where the integro-differential
equations for Ã1 and Ãη decoupled. In this section we intend to examine
cases, where both k and ν are non-zero. Due to the expansion the wave
vector is not constant in time. From dimensional analysis we find that the
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Figure 6.7: Total, electric and magnetic energy densities for a physically
more reasonable Debye mass m2

D = 1.285/(τisoτ0). The gain rate is increased
by a factor 5 to make it better visible. The only non-vanishing initial data is
for the induced current. The remaining parameters are k = 0.1 and τiso/τ0 =
100.

wave vector can be written as

k = kx̂1 +
ν

τ
η̂. (6.23)

We see that the angle k makes with the η (or z) axis increases as time
passes by. At first we solve the coupled equations and return to the task of
determining the time evolution of Ã2 at the end of this section. The Gauss
law constraint reads

τ j̃τ (τ ; k, ν) = i
(
νΠ̃η(τ ; k, ν)− kΠ̃1(τ ; k, ν)

)
(6.24)

and we must take care that it is satisfied at τ0 by introducing initial W fields.
This can be done in various ways. We choose the initial data such that it
equals (6.1) for k = 0 and take

W 0
η (τ0, x0, η0;φ, y) = K5 tanh(y − η0)eiνη0eikx0 , (6.25)

where x0 and η0 are given by (5.49) and (5.48), respectively. The constant K5

is found by demanding the Gauss law constraint at τ0. We have performed
analogous calculations above and therefore only state the final result for the



6.3. GENERAL WAVE VECTORS 65

part of j̃τ (τ ; k, ν) that comes from non-vanishing initial W fields

j̃τ0I(τ ; k, ν) =
iτ 2

τ 3
0

(
νΠ̃η

0 − kΠ̃0
1

)∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳJ0(kχ0)eiνη̄0 cosh ȳ sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

√
1 + τ2 sinh2 ȳ

τ2
0

, (6.26)

where Π̃η
0 = Π̃η(τ0; k, ν) and Π̃0

1 = Π̃1(τ0; k, ν). It is easy to check that this
does indeed give the Gauss law constraint for τ = τ0.

The W field in (6.25) does also contribute to the currents in the 1 and η
direction. Eventually we find

j̃1
0I(τ ; k, ν) =

τ 2

τ 3
0

(
kΠ̃0

1 − νΠ̃η
0

)∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳJ1(kχ0)eiνη̄0 sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

√
1 + τ2 sinh2 ȳ

τ2
0

(6.27)

and

j̃η0I(τ ; k, ν) =
iτ

τ 3
0

(
νΠ̃η

0 − kΠ̃0
1

)∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳJ0(kχ0)eiνη̄0 sinh3 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

√
1 + τ2 sinh2 ȳ

τ2
0

. (6.28)

However, these expressions vanish at τ0. When we want to take initial
induced currents in the τ and η component into account, we need to introduce
further W fields at τ0. For example

W 0
η (τ0, x0, η0;φ, y) = K6e

iνη0eikx0 (6.29)

gives only a non-vanishing contribution at τ0 in the η component and
hence K6 turns out to be proportional to j̃η(τ0; k, ν). At arbitrary time
τ > τ0 (6.29) contributes to j̃τ , j̃1 and j̃η. The expressions are quite lengthy
and we therefore collect them in appendix C. In the same way we can fix
initial values for j̃1(τ0; k, ν) after introducing

W 0
1 (τ0, x0, η0;φ, y) = K7e

iνη0eikx0 . (6.30)
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The corresponding contributions to the various currents for τ > τ0 can again
be found in the appendix. In total we add 3 terms coming from initial W
fields to the current

j̃1
0(τ ; k, ν) = j̃1

0I(τ ; k, ν) + j̃1
0II(τ ; k, ν) + j̃1

0III(τ ; k, ν), (6.31)

where j̃1
0II and j̃1

0III are associated with (6.29) and (6.30), respectively. The
same is true for the η and τ component.

We can now solve the coupled integro-differential equations for Ã1 and
Ãη, given in (5.70) and (5.71), numerically. Before we proceed, we discuss in
which directions the resulting physical electric and magnetic fields point. At
first we examine magnetic fields. We notice that the gauge fields and the wave
vector all lie in the plane spanned by x̂1 and η̂ and it follows from B = rotA
that the corresponding B field must point in the direction perpendicular to
that plane, hence in the 2 direction. On the other side the electric field has
a longitudinal and a transversal component with respect to the wave vector.
The projection of E parallel to the wave vector yields

EL =
kΠ̃1 + νΠ̃η

√
k2τ 2 + ν2

. (6.32)

This expression gives the correct form for the limiting cases k = 0 and ν = 0.
In the following we are interested in the energy density of the longitudinal
electric fields. The reason is that in the previous sections we only encountered
transversal instabilities, but from our analysis of the stationary plasma in
section 4.3 we expect to find an electric instability for wave vectors within
an angle of 45◦ to the η axis. However, this is complicated by the fact that
in the non-stationary case the angle between the wave vector and the η axis
increases in time. Therefore we study situations where the 1 component of
the wave vector is initially small compared to the η component.

In figure 6.8 the energy density for k = 1 and ν = 10 is shown. This means
after 10τ0 there can not be an electric instability anymore according to our
analysis before. Again we consider a larger mass parameter m2

D = 10/(τisoτ0)
to find more significant results and indeed we notice that the total energy
density rises initially and has its maximum at about 4τ0. In the follow-
ing it decreases and only takes on comparably small values after τ = 10τ0.
Additionally we remark that the electric energy density in the longitudinal
direction contributes a big fraction of the total energy density this time, while
the transversal electric energy density is still almost negligible.

To conclude our analysis we finally consider the time evolution of the
transverse gauge fields Ã2. We once more introduce initially non-vanishing
W fields to be able to examine the influence of initial currents. We take

W 0
2 (τ0, x0, η0;φ, y) = K8e

iνη0eikx0 . (6.33)
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Figure 6.8: Total, magnetic and electric energy densities for k = 1 and ν =
10. The electric energy density is split into a longitudinal and a transverse
part. The remaining parameters are m2

D = 10/(τisoτ0), τiso/τ0 = 0.1 and
j̃1(τ0; k, ν) 6= 0.

After a short calculation we find that K8 is proportional to j̃2(τ0; k, ν) and
end up with

j̃2(τ0; k, ν) =j̃2(τ0; k, ν)

∫ dȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳ
(
J2(kχ0) + J0(kχ0)

)
eiνη̄0

(1 + τ2 sinh2 ȳ
τ2
iso

)2
(6.34)

It turns out that there is again a significant difference whether we exam-
ine initial induced currents or not. With vanishing currents at τ0 the total
energy density decreases already from the beginning. Contrary to this for
j̃2(τ0; k, ν) 6= 0 we find a maximum in the energy density between 6 and
7τ0 (see figure 6.9). We also notice that the magnetic fields account again
for most of the total energy density and the electric contribution is almost
negligible.
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Figure 6.9: Energy density and its electric and magnetic contributions for
k = 1 and ν = 10. The parameters are m2

D = 10/(τisoτ0), τiso/τ0 = 0.1 and
j̃2(τ0; k, ν) 6= 0.



Chapter 7

Conclusion

In the last chapters we studied the collective behavior of an ultrarelativis-
tic plasma. Even though our motivation was connected to the physics of
heavy ion collisions we only studied effectively Abelian systems, since the
full nonlinear dynamics of large gauge fields requires real-time lattice sim-
ulations [23, 24, 25, 33, 34, 35]. However, it has been noted in [27] that
the Abelian solutions provide an upper bound to the late time behavior of
non-Abelian plasma instabilities. We started by considering the collective
behavior present in isotropic plasmas. Then we introduced an anisotropic
momentum distribution and found that additionally to the stable collective
modes instabilities arise. The stationary anisotropic plasma and the insta-
bilities associated with it are considered in the context of heavy ion collisions
and the quark-gluon plasma in various papers. However, to be able to de-
scribe realistic situations we argued that we must take the expansion of the
system after the collision into account. This leads to modified dynamics of
the gauge fields.

In chapter 5 we set the framework to discuss the collective behavior in
an anisotropically expanding plasma. The expansion takes place in the z
direction only, which should be a good approximation for the initial stage of
a parton gas produced by colliding heavy nuclei. The study is based on a
paper by Romatschke and Rebhan from 2006 [26], which we generalized in
certain aspects. The probably most fundamental detail of this thesis is that
initial data for the auxiliary W fields is inevitable to describe modes that are
restricted by the Gauss law consistently, although this is not an issue for the
unstable modes considered in [26]. Nevertheless, in chapter 6 we found that
this initial W fields give us the possibility to discuss a wider class of initial
conditions, which turned out to be very interesting for unstable modes. By
examining the influence of non-vanishing initial currents we noticed that the
delay in the onset of growth of instabilities that was found in [26] reduces
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drastically. Furthermore we generalized the treatment of modes parallel to
the anisotropy direction and presented results for arbitrary orientation of
wave vectors with respect to the direction of anisotropy. We were therefore
able to discuss a fully 3+1 dimensional situation, where we again investigated
stable and unstable collective modes.

However, to understand the dynamics of a weakly coupled quark-gluon
plasma after a heavy ion collision non-Abelian studies are inevitable. Espe-
cially in the context of instabilities nonlinear effects occur eventually, when
the modes have grown such that non-Abelian interactions become important.
The important issue of saturation of the unstable modes is therefore beyond
the scope of this study.

On the experimental side the LHC will probably shed some light on the
properties of a realistic quark-gluon plasma at unprecedented high energy
densities. This is especially interesting in the case of non-Abelian plasma
instabilities, since they do not seem to play an important role at RHIC.
However, as we have argued in chapter 6 there is a possibility that plasma
instabilities will contribute to the fast isotropization at LHC, which appears
more likely in the light of our results on general initial conditions.



Appendix A

Sufficient conditions for
instabilities

We recall that an instability is associated with a zero eigenvalue of

(∆−1(Q))ij = (q2 − ω2)δij − qiqj + Πij(ω,q), (A.1)

for some ω with Im ω > 0. The above equation was already obtained in
section 3.4. It is possible to justify the conditions from section 4.3.1 by
continuity arguments which we want to explain in the following [15].

A.1 Condition 1

The spatial part of the self energy is given by

Πij(ω,q) = g2

∫
d3p

(2π)3
∂

(p)
k f(p)

[
−viδkj +

vivjqk

−ω + q · v

]
, (A.2)

where we simply absorbed the iε prescription into the value of the complex
frequency ω and v = p/|p|. We can change the integration variable p→ −p
which implies Πij(ω) = Πij(−ω) because f(p) is parity symmetric. We can
also consider the complex conjugate of the polarization tensor and then find

Πij = [Πij(−ω∗)]∗. (A.3)

For purely imaginary ω = iγ (γ is real) we obtain

Πij(iγ) = [Πij(iγ)]∗ (A.4)

indicating that Πij(iγ) is a real matrix and since it is symmetric too it has
real eigenvalues. Πij(iγ,q) is bounded for γ →∞ and thus

lim
γ→∞

[
∆−1(Q)

]ij
= lim

γ→∞
γ2δij. (A.5)
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Figure A.1: Illustration of the continuity argument for condition 1 (left) and
condition 2 (right).

Thus, for large enough γ the eigenvalues are always positive. Lets assume we
find a negative eigenvalue for γ = 0. Then, by continuity of the real eigen-
values of ∆−1(Q) as γ goes from 0 to ∞, we eventually find a γ associated
with an zero eigenvalue and thus an instability. But for γ = 0 we obtain[

∆−1(0,q)
]ij

= q2δij − qiqj + Πij(0,q) (A.6)

and therefore we found condition 1.

A.2 Condition 1-b

To motivate condition 1-b, we first show that non-vanishing Πij(0, q̂) implies
a magnetic instability. To do so we consider the trace of the spatial part of
the polarization tensor averaged over the direction of q̂

〈Πii(0,q)〉q̂ =
g2

2

∫
d3p

(2π)3
∂

(p)
k f(p)

(
−vk + v2

〈 qk

v · q̂− iε

〉
q̂

)
, (A.7)

where 〈 qk

v · q̂− iε

〉
q̂

=
vk

v2
. (A.8)

Hence we find that

〈Πii(0,q)〉q̂ = 0. (A.9)

This expression states that the sum of the eigenvalues of Πij, which is the
same as the trace, averaged over all directions of q̂ is zero. Therefore we find
two possibilities. Either all eigenvalues are identically zero, or in some direc-
tion there must be a negative eigenvalue indicating an instability according
to condition 1.
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In a next step we show that anisotropicM(p̂) as defined in (4.33) implies
a non-vanishing trace Πii(0,q) for some q̂. Therefore we note that we can
write

Πii(0,q) =

〈
M(p̂)

(
1 +

1

(p̂ · q̂− iε)2

)〉
p̂

. (A.10)

Decomposing M(p̂) into spherical harmonics gives

M(p̂) =
∑
lm

αlmYlm(p̂). (A.11)

For Πii(0, q̂) we then find

Πii(0, q̂) =
∑
lm

κlαlmYlm(q̂), (A.12)

with

κl ≡ 4π

〈
Y ∗lm(q̂)

(
1 +

1

(p̂ · q̂− iε)2

)
Ylm(p̂)

〉
p̂,q̂

, (A.13)

which does not depend on m because of rotational invariance.
At this point we note that for an anisotropicM(p̂) at least one of the αlm

with l > 0 can not vanish. Additionally, from our assumptions that f(p) is
parity symmetric, we conclude that l must be even. However, the only way
(A.12) vanishes for all q̂ is that κlαlm is zero. Therefore it remains to check,
whether κl = 0 for all even l > 0.

To obtain κl we choose m = 0 in (A.13) and use the Wigner D functions
to write the spherical harmonic Yl0(p̂), which is defined with respect to a

fixed z axis, in terms of spherical harmonics Y
(q̂)
lm′ (p̂) with respect to the

direction q̂. The corresponding identity reads

Ylm(p̂) =
∑
m′

Dl
mm′(q̂)Y

(q̂)
lm′ (p̂). (A.14)

Let θp be the angle between p̂ and q̂, then we can write〈(
1 +

1

(p̂ · q̂− iε)2

)
Yl0(p̂)

〉
p̂

= Dl
00(q̂)

〈(
1 +

1

(cos θp − iε)2

)
Y

(q̂)
l0 (p̂)

〉
p̂

.

(A.15)
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By noting that

Dl
00(q̂) =

√
4π

2l + 1
Yl0(q̂), Y

(q̂)
l0 (p̂) =

√
2l + 1

4π
Pl(cos θp), (A.16)

we eventually obtain

κl =4π

〈
Y ∗l0(q̂)Yl0(q̂)

(
1 +

1

(cos θp − iε)2

)
Pl(cos θp)

〉
p̂,q̂

=
1

2

∫ 1

−1

d(cos θp)
(

1 +
1

(cos θp − iε)2

)
Pl(cos θp). (A.17)

After performing the remaining integral we end up with [15]

κl = δl0 −
(−1)l/2

√
π
(
l
2

)
!

Γ
(
l+1
2

) , (A.18)

which does not vanish for any even l > 0. Therefore we have shown that
anisotropic M(p̂) implies magnetic instabilities.

We only state that the converse can also be proven. That means, ifM(p̂)
is isotropic, there is, except from possible normalization factors, no difference
to equilibrium distributions and thus there exists no instability.

A.3 Condition 2

The longitudinal polarization of ∆−1 has always a zero eigenvalue at γ = 0,
because of the Ward identity (Πq̂ν(0,q) = 0). However this does not rule out
the existence of an instability, because there can still be negative eigenvalues
for small but non vanishing γ > 0. For small ω = iγ we obtain

∆−1(ω,q) =

(
−ω2 + Πq̂q̂(ω,q) Πq̂>(ω,q)

Π>q̂(ω,q) q2 − ω2 + Π>>(ω,q)

)
'

(
−ω2 + ω2

q2
Π00(0,q) ω

q
Π0>(0,q)

ω
q
Π>0(0,q) q2 + Π>>(0,q)

)
, (A.19)

with > denoting the two directions perpendicular to the wave vector. In the
last step we set ω = 0 where the leading contribution is not proportional to
ω. The small eigenvalue λ of such a matrix is given by

λ ' ω2

q2

[
−q2 + Π00 − Π0>[q2 + Π>>]−1Π>0

]
ω→i0+ , (A.20)

where [q2 +Π>>]−1 denotes the inverse 2×2 matrix q2 +Π>>. The condition
for λ to be negative can be written in the form of condition 2 in section 4.3.1.



Appendix B

Analytical late time behavior

For modes with k = 0 and ν 6= 0 it is possible to obtain expressions for
the late time behavior of single modes analytically, when we expand the
expression in the memory integral around τ ′ = τ . [26].

B.1 Transversal modes

The expressions for the currents are the same in the 1 and 2 direction when we
specialize on modes, whose wave vector is parallel to the anisotropy direction.
In this limit we find

j̃i(τ ; ν) =− m2
D

4

∫
dȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
Ãi(τ ; ν)− eiνη̄0Ãi(τ0; ν)

−
∫ τ

τ0

dτ ′
iντeiνη̄

′
sinh ȳ

τ 2
iso

√
1 + τ2 sinh2 ȳ

τ ′2

Ãi(τ ′; ν)

}
. (B.1)

For simplicity we set Ãi(τ0; ν) = 0. We then expand the integrand of the
memory integral around τ ′ = τ , which gives

iντeiνη̄
′
sinh ȳ

τ 2
iso

√
1 + τ2 sinh2 ȳ

τ ′2

=
iντ

τ 2
iso

(
tanh ȳ + iν tanh2 ȳ

(
1− τ

τ ′

)

+ tanh3 ȳ
(

1− τ

τ ′

)
+O

[(
1− τ

τ ′

)2])
. (B.2)

We neglect higher orders and, since the integration with respect to ȳ is sym-
metric, the terms odd in ȳ give no contribution. Therefore the transverse
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current becomes

j̃i(τ ; ν) '− m2
D

4

∫
dȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
Ãi(τ ; ν)

+

∫ τ

τ0

dτ ′
ν2τ tanh2 ȳ

τ 2
iso

(
1− τ

τ ′

)
Ãi(τ ′; ν)

}
. (B.3)

In a next step we perform the ȳ integral. For the first term we find∫
dȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
=

(x−2 − 2) arctan(
√
x−2 − 1)

(x−2 − 1)3/2
+

1

x−2 − 1
, (B.4)

with x = τiso/τ 6= 1. We are interested in the late time behavior when
τiso � τ such that x is a small quantity. In this limit we obtain

(x−2 − 2) arctan(
√
x−2 − 1)

(x−2 − 1)3/2
+

1

x−2 − 1
=
πx

2
− πx3

4
+O(x4). (B.5)

For the second term in (B.3) the ȳ integration yields∫
dȳ tanh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
=

(2 + x−2) arctan(
√
x−2 − 1)

(x−2 − 1)5/2
− 3

(x−2 − 1)2

=
πx3

2
+O(x4) (B.6)

for τ � τiso.
Finally the transverse current becomes

j̃i(τ ; ν) ' −µ
τ
Ãi(τ ; ν)− µν2

τ 2

∫ τ

τ0

dτ ′Ãi(τ ′; ν)
(

1− τ

τ ′

)
, (B.7)

where µ = m2
Dπτiso/8 and only terms of order 1 in τiso/τ have been kept.

The equation of motion for the transverse gauge fields are(1

τ
∂ττ∂τ +

ν2

τ 2

)
Ãi(τ ; ν) = j̃i(τ ; ν) (B.8)

and acting with ∂2
τ τ

2 on it we eventually obtain an ordinary differential equa-
tion for each mode ν(

∂2
τ τ∂ττ∂τ + ν2∂2

τ + µ∂2
τ τ −

µν2

τ

)
Ãi(τ ; ν) ' 0. (B.9)
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Unfortunately easy expressions for the gauge fields are only found for very
infrared modes ν � 1, where all terms proportional to ν can be neglected,
or for high momentum modes ν � 1, where only those terms proportional
to ν contribute. We find

Ãi(τ ; ν � 1) ' c1J0(2
√
µτ) + c2Y0(2

√
µτ), (B.10)

which is a stable oscillatory solution (Jn(x) and Yn(x) are Bessel functions
of the first and second kind, respectively), and

Ãi(τ ; ν � 1) ' c1

√
τI1(2

√
µτ) + c2

√
τK1(2

√
µτ), (B.11)

with c1,2 being constants. The modified Bessel functions Kn and In have the
asymptotic behavior Kn(x) ' exp(−x)/

√
2πx and In(x) ' exp(x)/

√
2πx,

where the latter describes a rapidly growing mode. Therefore we expect that
large ν modes will be dominant at sufficiently late times with a behavior of

Ãi(τ) ∼ τ 1/4 exp(2
√
µτ). (B.12)

The same behavior is found qualitatively in [29]. For ν ∼ 1 the expressions
are more complicated, but in [26] it was found that it is possible to write
them in terms of generalized hypergeometric functions 2F3 and a Meijer G
function. The dominant contribution is

Ãi(τ ; ν) ∼ τ2F3

(3−
√

1 + 4ν2

2
,
3 +
√

1 + 4ν2

2
; 2, 2−iν, 2+iν,−µτ

)
. (B.13)

B.2 Longitudinal modes

In this section we want to obtain the late time behavior for longitudinally
polarized gauge fields analytically. We proceed similarly to before. When
we check for the contribution of the j̃η0 term numerically, we notice that at
late times the contribution is negligible compared to the rest of the current,
as can be seen in figure B.1. Therefore we may omit terms proportional to
Π̃η(τ0; ν) for the present discussion.

For k = 0 and ν 6= 0 the expression for the longitudinal expression is

j̃η(τ ; ν) =
m2
D

2τ 2
iso

∫
dȳ sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
Ãη(τ ; ν)

−
∫ τ

τ0

dτ ′
iντeiνη̄

′
sinh ȳ

τ ′2
√

1 + τ2 sinh2 ȳ
τiso

Ãη(τ
′; ν)

}
, (B.14)
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Figure B.1: The contribution from to the current proportional to the initial
conjugate momentum j̃η0 is negligible compared to the rest at late times. This
data is for ν = 10 and τiso/τ0 = 0.01.

where we omitted the term proportional to Ãη(τ0; ν) also. When we replace
the factor 1/τ 2

iso by 1/τ ′2 in (B.2) we can make use of the same expansion
and find

j̃η(τ ; ν) ' m2
D

2τ 2
iso

∫
dȳ sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

{
Ãη(τ ; ν)

+ iν tanh2 ȳ

∫ τ

τ0

dτ ′Ãη(τ
′; ν)

1

τ ′2

(
1− τ

τ ′

)}
. (B.15)

Here, we again neglected higher orders. As before we can perform the ȳ
integral by finding a function of x = τiso/τ , which gives the correct values
everywhere except for x = 1. For small x we get∫

dȳ sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
=
πx3

2
+O(x4) (B.16)

and ∫
dȳ sinh2 ȳ tanh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
= 2x4 +O(x5). (B.17)

Eventually the current is given by

j̃η(τ ; ν) ' 2µ

τ 3
Ãη(τ ; ν) +

8µν2τiso
πτ 3

∫ τ

τ0

dτ ′Ãη(τ
′; ν)

1

τ ′2

(
1− τ

τ ′

)
. (B.18)
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By acting with ∂2
τ τ

2 on the current we find

∂2
τ

(
τ 2j̃η(τ ; ν)

)
' 2µ∂2

τ

(Ãη(τ ; ν)

τ

)
− 8µν2τiso

πτ 4
Ãη(τ ; ν), (B.19)

where we can neglect the second part for very large τ . When we only use the
first part of the longitudinal current, the equation of motion for the gauge
fields eventually becomes(

∂τ
1

τ
∂τ +

2µ

τ 2

)
Ãη(τ ; ν) ' 0. (B.20)

Finally the late time behavior of the longitudinal fields is given by

Ãη(τ ; ν)

τ
' c1J2(2

√
2µτ) + c2Y2(2

√
2µτ). (B.21)

This corresponds to stable and oscillatory solutions.



Appendix C

Induced currents

In this appendix we collect the expressions for the induced currents associated
with the two initial W fields given in (6.29) and (6.30) in section 6.3. For
the first we find

j̃τ0II(τ ; k, ν) =τ j̃η(τ0; k, ν)

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳJ0(kχ0)eiνη̄0 cosh ȳ sinh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
, (C.1)

j̃1
0II(τ ; k, ν) =iτ j̃η(τ0; k, ν)

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ1(kχ0)eiνη̄0 sinh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2

(C.2)

and

j̃η0II(τ ; k, ν) =j̃η(τ0; k, ν)

∫ dȳ sinh2 ȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ0(kχ0)eiνη̄0 sinh2 ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
.

(C.3)

It is easy to check that the τ and 1 component vanish at τ = τ0. For the W
field defined in (6.30) the components of the currents are given by

j̃τ0III(τ ; k, ν) =2ij̃1(τ0; k, ν)

∫ dȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ1(kχ0)eiνη̄0 cosh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
,

(C.4)

80



81

j̃1
0III(τ ; k, ν) =j̃1(τ0; k, ν)

∫ dȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1

×

∫
dȳ
(
J0(kχ0)− J2(kχ0)

)
eiνη̄0

(1 + τ2 sinh2 ȳ
τ2
iso

)2
(C.5)

and

j̃η0III(τ ; k, ν) =
2i

τ
j̃1(τ0; k, ν)

∫ dȳ

(1 +
τ2
0 sinh2 ȳ

τ2
iso

)2

−1 ∫
dȳJ1(kχ0)eiνη̄0 sinh ȳ

(1 + τ2 sinh2 ȳ
τ2
iso

)2
.

(C.6)
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