
Agile Provenance

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

E937 Software Engineering/Internet Computing

eingereicht von

Andreas Happe
Matrikelnummer 0226373

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Univ. Prof. Mag. Dr. Schahram Dustdar
Mitwirkung: Univ. Ass. Dipl.-Ing. Lukasz Juszczyk und Dr.techn. Hong-Linh Truong

Wien, 19.4.2010
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Andreas Happe, Schäffergasse 20/15, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 19.4.2010
(Unterschrift Verfasser/in)

Abstract

Provenance describes how objects came into their current state, e.g. it describes different contri-
butions to a document. This information provides detailed audit trails, verification of existing objects
as well as reenactment of recorded activities. Provenance solutions consist of data gathering, storage
and analysis, its implementation is delegated to domain application developers. This leads to custom
provenance solutions that do not adhere to standards and are expensive to maintain. The domain de-
velopers’ productivity also suffers.

We propose a generic provenance system that can be adapted for different domain applications. It
employs advanced unobtrusive data capturing techniques to minimize overhead imposed upon domain
developers. Provenance data is refined and results are provided to developers through an easily usable
interface. This allows domain developers to focus upon their domain tasks.

To prove the feasibility of our approach a prototype system has been implemented within Ruby
on Rails. As domain application an existing experiment management solution was chosen and made
provenance-aware.

Zusammenfassung

Provenienz (engl. provenance) beschreibt die Entstehungsgeschichte von Objekten. Die Prove-
nienz eines Dokumentes beinhaltet beispielsweise jede zwischenzeitliche Dokumentenversion, deren
Autoren als auch die jeweiligen Dokumentäenderungen. Diese Information erlaubt das Erstellen von
detailierten Zugriffsberichten, die Validierung bestehender Objekte als auch das Wiederherstellen alter
Objektversionen. Provenienz-Architekturen beinhalten Komponenten zur Sammlung, Speicherung und
Analyse von Provenienz, deren Implementierung ist zumeist Aufgabe der Anwendungsprogrammierer.
Diese Situation führt zu Insellösungen die nicht standard-konform sind und deren Wartung langfristig
hohe Kosten verursacht.

Im Zuge dieser Diplomarbeit wird ein generisches Provenienzsystem vorgestellt dessen Fokus auf
der Integration mit bestehenden Systemen liegt. Durch Techniken wie “unobtrusive data capturing“
wird der verursachte Overhead und Produktivitätsverlust minimiert. Die genereriten Daten werden
überarbeitet, persistiert und an Analyseapplikationen angeboten.

Die Durchführbarkeit unserer Architektur wurde anhand eines Prototypsystems getestet. Als Soft-
wareumgebung fuer den Prototypen wurde ein dynamisches web-basiertes Applikations-Framework,
Ruby on Rails, gewählt. Als ”use-case“ wurde ein bestehendes Experiment-Management-System (Gen-
esis) adaptiert und um Provenienz-Funktionalität erweitert.

Agile Provenance∗

Andreas Happe

19.4.2010

∗dedicated to Rudolf and Maria Happe

a

Contents

Contents c

List of Figures f

List of Tables f

1 Introduction 1
1.1 Provenance . 1
1.2 Benefactors of Provenance . 2
1.3 Open Problems . 3
1.4 Motivation . 4
1.5 Structure of this Thesis . 4

2 State of the Art 7
2.1 Homegrown Provenance Systems . 7
2.2 Provenance as Addition to existing Systems/Island Provenance 7

2.2.1 Comparison of homegrown and framework-provided Provenance 8
2.3 Full Provenance Frameworks . 9

2.3.1 Document Management Systems . 10
2.3.2 Chimera . 10
2.3.3 myGrid . 10
2.3.4 Trio . 11

3 Related Work 13
3.1 Conceptional Provenance System . 13
3.2 Provenance Gathering . 14

3.2.1 Scope of Generated Provenance Information 15
3.2.2 Capturing Mechanism . 15
3.2.3 Granularity of captured Provenance Data 16
3.2.4 Temporal differences . 16
3.2.5 Integration of Sensors with Existing Systems 16
3.2.6 Automatic Capturing of Provenance Data 17

3.3 Provenance Storage . 18
3.3.1 Provenance Data . 18
3.3.2 Provenance Data Structure . 19
3.3.3 Open Provenance Model . 19
3.3.4 Efficient Provenance Storage . 21
3.3.5 Security . 22

3.4 Provenance Access . 23
3.4.1 Provenance Access and Query Interface . 23
3.4.2 Interoperability . 25

c

4 The Agile Provenance System 27
4.1 System Architecture . 28
4.2 Provenance Representation through Artefacts . 29

4.2.1 Artefacts . 29
4.2.2 Identity of Artefacts . 30
4.2.3 Domain Object Alteration Semantics . 30
4.2.4 Artefact Representation . 31

4.3 Data Gathering . 32
4.3.1 Handling different Sensor Types . 32
4.3.2 Multi-Sensor System . 32
4.3.3 Provenance Transactions . 33

4.4 Storage and Integration . 34
4.4.1 Sensor Interface . 34
4.4.2 Access Control/Security System . 34
4.4.3 Graph-based Storage Backend . 35
4.4.4 Inference . 36

4.5 Providing Provenance Information . 37
4.5.1 Logical Data Model . 37
4.5.2 Providing advanced analysis capabilities . 38

5 Reference Implementation 39
5.1 Environment . 39
5.2 Used Technology . 40

5.2.1 Programming Language and Base Framework 40
5.2.2 Transport and Interfaces . 40
5.2.3 Sensor . 42
5.2.4 Back-End . 42
5.2.5 Storage Technology . 42

5.3 Provenance Gathering . 43
5.3.1 Sensor Interface . 43
5.3.2 Generic Pattern for unobtrusive Provenance Gathering 44
5.3.3 Augmenting Ruby through Monkey Patching 44
5.3.4 Integration with Ruby on Rails’ Data Layer 45
5.3.5 Ease of Use . 45
5.3.6 Policy and Access Control . 46
5.3.7 Sensor Interface Format . 47

5.4 Integration and Storage . 48
5.4.1 Extending the core System . 48
5.4.2 Distributed Back-end Storage . 49

5.5 Provenance Access Interface . 49
5.5.1 Access Control . 49
5.5.2 Logical Data Model . 50
5.5.3 Work-Around SPARQL shortcomings . 53

6 Evaluation 55
6.1 Experiment Management . 55

6.1.1 Responsibilities . 55
6.1.2 Existing Components . 56
6.1.3 Contributions to the Provenance System . 56

6.2 Architecture . 57
6.2.1 Genesis . 57
6.2.2 Provenance System . 58
6.2.3 Management System . 58

6.3 Integrating Genesis . 59

6.3.1 Testbed Configuration Monitor . 60
6.3.2 Testbed Communication Monitor . 60

6.4 Providing Provenance . 60
6.4.1 Provenance Capture . 61
6.4.2 Provenance Usage . 61

6.5 Evaluation . 61
6.5.1 Illustrative Example . 62
6.5.2 Experiment Configuration and Deployment 62
6.5.3 Experiment Configuration Capturing . 62
6.5.4 Testbed Provenance . 63
6.5.5 Capturing Communication . 63
6.5.6 Testbed Configuration Replay . 65

6.6 Conclusion . 66

7 Conclusion and Future Work 67
7.1 General Architecture . 67
7.2 Unobtrusive Provenance Gathering . 67
7.3 Storage System . 68
7.4 Analysis Interface . 69

Bibliography A

License E

List of Figures

1.1 Merriam-Webster’s definition of provenance . 1

3.1 Domain Applications utilizing provenance-aware components 14
3.2 Domain Applications build upon a provenance-enabled Framework 14
3.3 Example Provenance Graph of an Experiment Execution 21

4.1 Conceptional System Architecture . 28
4.2 Mapping between domain objects and provenance artefacts 29
4.3 Communication between Sensors and Storage System 31
4.4 Provenance capture flow . 33
4.5 Format for Sensor Data . 34
4.6 Provenance Fragment Deduplication and Integration . 36
4.7 Conceptional Analysis Data Model . 38

5.1 Typical Ruby on Rails Stack . 41
5.2 Example of a Sensor Provenance Fragment . 48
5.3 Storage System and its relationship to Sensors and Storage 49
5.4 Conceptional Analysis Data Model . 50
5.5 Program flow for gathering an action’s descendants . 54
5.6 Program flow for gathering an action’s descendants with path expressions 54

6.1 System Architecture . 57
6.2 Example Genesis Configuration . 58
6.3 Management System’s Data Model . 59
6.4 Ad-Hoc Experiment Provenance result . 64
6.5 Example Provenance Access through ActiveResource . 65

List of Tables

3.1 Sensor aspect combinations . 17
3.2 Open Provenance Model’s Operations . 20

f

4.1 Sensor Interface’s Elements . 35

5.1 Analysis Interface Resources . 50
5.2 Process’ Elements . 52
5.3 Identity’s Elements . 53

CHAPTER 1
Introduction

1.1 Provenance

provenance
Pronunciation: \präv-nn(t)s, prä-v-nän(t)s\
Function: noun
Etymology: French, from provenir to come forth, originate, from Latin provenire, from pro-

forth + venire to come
Date: 1785

1. origin , source
2. the history of ownership of a valued object or work of art or literature

Figure 1.1: Merriam-Webster’s definition of provenance

Provenance describes how artefacts came into their current state. An artefact can be any object
managed by computer software: a language-dependent object, documents or source code.

Provenance is a well-known problem in the physical world: archaelogist and scientists in general
must confirm the originiality of their published works. In courts evidence must be presented with an
unbroken chain of custody to be valid. Provenance has been addressed within different fields of com-
puter science, from being used for capturing intellectual property rights 15 to being used within the
bio-informatics field 24. Generally provenance information is used to provide audit trails of performed
operations, allows reasoning about artefact’s linage 54 or recreation of older artefact states 12;54.

The following use cases highlight provenance’s importance: In the financial world account changes
must be recorded. The data origin of reconciled reports is of importance for later reevaluations. A
provenance system automatically gathers the needed data and allows the developer to focus on the
business domain.

In the intelligence world provenance of dossiers is important. While authenticity of provenance
must be provided the dossier’s sources must still be hidden from readers. One example that shows the
importance of a dossier’s source can be found in “On Homeland Security and the Semantic Web” 19

1

which describes a system that utilizes the semantic net to infer intelligence information. The same
requirement can also be found in business use cases, for example reviewers of job reviews should be
valid but stay anonymous.

Access to medical files must be recorded and evaluated 32 1. The origin of medical results must be
traceable and last but not least when a decision was made the medical base for this decision should
be recorded. Recently the multi-agent paradigm has been applied to health care systems 33, in such a
decentralized system provenance of data changes is of even higher importance.

1.2 Benefactors of Provenance

Provenance is seldom a means in its own end but rather an aspect of a larger domain application. Gen-
erally speaking activities that transform input data into new data gain from provenance. This includes
business applications that alter bank accounts as well as most analytical processes that reduce origi-
nal data into a concise report (maybe find references). This section highlights various areas in which
provenance is utilized.

Security and Safety
Legal documents need provenance. In the physical world we are convinced that a once submitted offer
cannot be easily altered and provenance is verified by solicitors. In the virtual world a written document
can easily be changed without anyone noticing as long as there are no provenance and security checks
in place.

Example: a cost calculation for a project was established between different parties. Months later
the project is overdue and one party believes that the calculation was altered to cover the increased
spending. A provenance solution is able to guarantee that the calculation was not altered.

Provenance data gathering is related to monitoring. The former can utilize the later for capturing
base provenance data upon which analysis can performed. Gained data shares common characteristics
with regard to safety, security and access control.

Example: A performance review for an employee was written and published. While it must be
verify-able that its authors are allowed to write the report the direct identity of the authors should not
be revealed.

Each process that compacts data into a concise end result must reduce incoming data. For example
an scientific experiment performs statistical methods upon multiple input data sets to gain one single
computed output datum. Through time the performed steps might change and the scientist is responsi-
ble for recording each experiment with all corresponding parameters. This task can be transfered to a
provenance system and saves precious time.

Example: a medical researcher performs various experiments upon collected data. After some time
period an erogenous sensor is detected, some captured data was corrupted. Provenance system now
show which subsequent experiments were affected and have to be redone.

Development Process
Provenance systems impose initial overhead upon software development. In turn provenance also
helps with software development. A time consuming task during application development is debug-
ging which often boils down to watch a system react to input parameters. This can take place through
augmenting the code with output statements or utilizing sophisticated tools as tracing frameworks. A
comprehensive provenance framework especially provides this tracing framework.

2

Questions asked during the first provenance challenge mirror high-level debug problems. How an
object came into being is a typical provenance question, it can also be applied upon a software ob-
ject which is examined by a software developer as it has invalid content. Dynamic languages increase
provenance usefulness as less validations can be done statically. The preferred approach using those
languages, test- or behavior driven development, even aggravate this.

Example: A developer wants to change the structure of an software object but is not sure which
results this will impose on the overall workflow. Provenance solutions can tell him which actions and
artifacts are derived from the to be altered object.

Optimization
The inherent monitoring and tracing capabilities help with optimization problems. Questions that com-
monly arise during distributed system deployment focus on data distribution: which systems access
which artifacts? Provenance shows how to distribute data artifacts more efficiently and how to mini-
mize access times. On a smaller scale access-patterns are important. The question “which read or write
patterns lead to data changes?” often shows redundant data access which impacts performance.

Example: provenance can show that support documents and functionality are frequently used by a
special help desk section. The overall performance can be optimized by locating those documents and
tools nearer to their most frequent callers

Regulations
Regulations mandate compulsory data archival. Legal documents must be stored in a “safe” manner that
prevents tampering with them for a well-defined period of time to prevent fraud. Companies comply
through complicated storage procedures – which cost precious resources. Cryptographically secured
provenance storage provides the needed level of safety and security.

1.3 Open Problems

The prior chapter has shown the need for provenance but provenance solutions are not in wide-spread
use. The following problems explain this discrepancy:

Integration with existing domain systems is mandatory. Provenance systems must be integrated with
domain-specific systems. The domain system must be augmented with functionality that pro-
vides the means of provenance gathering. Various means of achieving this differ in quality and
quantity of gathered provenance data as well as in their imposed overhead upon performance and
the application developer’s agility.

The problem is increased through the multi-system nature of provenance systems. One prove-
nance system captures data from various sources which provide distinct provenance data. Do-
main objects are distributed over multiple systems, e.g. the same invoice can be represented in
two systems by two different objects but the provenance system must be able to integrate both
identities.

There is no generic provenance framework which can be used as building block for new systems.
There exists multiple domain-specific provenance systems that provide similar functionality but
do this through redundant implementations. Different application domains need different analysis
techniques and tools.

There must be no lock-in. Provenance solutions are coupled with their monitored domain-specific
applications. As provenance must be kept a long time an open accessible interface format is
mandatory. The provenance itself should be stored in a format that can easily be accessed and
utilized. The interface must also be open for changes within the sensor implementation. New

3

technologies and techniques lead to new sensors that must be able to interface the storage system
utilizing the same legacy sensor interface.

Data Integrity must be preserved. Provenance data is sensible data. It must be protected from ma-
licious users as the original data. This is amplified through the multiple system approach: es-
pecially when provenance is distributed throughout different companies there must be means of
policing which data is exchanged.

Performance and Storage overhead must not impact the domain system. Provenance data is larger
than the original document’s data. This problematique is amplified as provenance data needs
to be stored for a long time period. To solve this various techniques for data deduplication and
compaction can be employed.

While this eases the storage problem it adds computational complexity. The provenance sys-
tem must not impact the normal domain application execution through its performance needs or
associated latencies. A new provenance system must find the balance those two problems.

Additional problems arise if the provenance solution is used in conjunction with an application
developed in an agile manner:

Unobtrusive Provenance Gathering is mandatory. Agile developed software is open to rapid and
frequent change and any provenance solution must not harm the domain application’s code ability
for rapid re-factoring. This implies that provenance should be gathered in an automatic and
minimal intrusive manner so that application developers can focus on the application domain’s
problems.

The provenance system should be simple and easy to adapt. Agile systems focus on simplicity and
the provenance system should mirror this behaviour. This allows software developers to easily
extend or augment the provenance solution to fulfill their needs.

The analysis interface will also be utilized by agile analysis applications. Its interface must be
easy to integrate and utilize. If it does not achieve this domain-specific extensions might be
directly integrated within the core and taint the provenance system’s generic principle.

1.4 Motivation

We believe that there is a need for an integrated provenance solution that is not currently fulfilled by
existing frameworks or applications. While the amount and quality of gathered provenance is sufficient
existing solutions do not provide the ease-of-use and adaptibility needed for an agile software project.

A generic common provenance base system will reduce development efforts and costs while pro-
viding the base for reusing existing provenance knowledge. In addition a clean, simple and agile base
system can scope with changing trends within provenance thus increasing the life expectation of devel-
oped provenance systems.

1.5 Structure of this Thesis

Chapter 2 shows existing techniques and solutions that implement provenance gathering and analysis.

Chapter 3 explores recent related work that could be utilized when designing a new provenance
system. The scope of the analysis includes provenance gathering, storage and analysis. The describes
techniques will be base for the design of our provenance solution.

Chapter 4 introduces the generic architecture our provenance solution.

4

Chapter 5 explains the reference implementation of our generic provenance architecture. It starts
by describing underlying technologies upon which our solution was built and then shows architectural
details.

Chapter 6 provides some evaluation of our prior claims. We verify if our reference implementation
is able to gather the needed provenance automatically and external analysis applications are provided
with easy to use access to the refined provenance data. We are baseing our evaluation upon a usecase
within the experiment management domain.

Chapter 7 concludes the thesis and gives an outlook upon possible future work.

5

CHAPTER 2
State of the Art

This chapter will show various techniques currently employed for provenance gathering, storage and
analysis. We start with completely homegrown self-written solutions, then explore provenance added
through plugins to existing system and finally show some complete provenance solutions.

2.1 Homegrown Provenance Systems

Provenance capabilities are needed by most applications. As there is no integrated read-for-use frame-
work available, most of this functionality is implemented by developers themsevles on a per-application
base.

This approach yields various drawbacks:

• inefficient use of developer’s time

Each application gets a specific provenance system grafted upon which needs to be designed
and developed by a software developer. This leads to duplicate and redundantly implemented
capabilities.

• non-standardized solutions

As each provenance system is developed for one application, developers cannot share their ex-
perience between different provenance solutions. This can be a problem if developers change
between projects.

• provenance applications not separated from domain applications

Another problem lies in the missing separation between domain and provenance applications.
Their data is mixed in an commonly shared database. This prevents separate release circles of
the provenance and domain application, e.g. prevents developers to focus their work on one of
both of them without taking the impact upon the other into account.

2.2 Provenance as Addition to existing Systems/Island Provenance

Software developers do not like spending time upon reimplementing the same things. As home-grown
provenance solutions bear a high resemblance common characteristics have been moved into the un-
derlying frameworks or within plugins.

7

An example of the former would be Ruby on Rails’ handling of special “magic” object fields. If an
object contains a date field named “created_at” or “updated_at” its fields are filled automatically with
this information by the framework. This is a very small subset of information provided by a provenance
system.

Plugins can capture provenance information for specific purposes. For example under Ruby on
Rails the “acts_as_paranoid” 46 plugin record the destruction time of objects which allows later rea-
soning about why the object was removed. The “acts_as_versioned” 31 plugin stores revision history
for specific objects. This allows data-centric provenance capture, i.e. what has happended when to an
object, but not how, who or why did this change happen.

Those plug-in based provenance approaches share common problems:

• they still mix provenance and domain data. This is rooted in the shared database which is used by
both of them. In contrast to home-grown solutions they allow decoupled updates of the plugin.

• they are “island” solutions. While “acts_as_paranoid” allows provenance gathering for one object
type changes between different objects can only be related through their temporal dependencies
and not because of their direct causality.
Also provenance is not shared between different applications. Service-oriented architectures are
often composed of different services located on different systems. With plugin-based provenance
systems correlating provenance events across different systems can only be achieved manually
by comparing the distinct databases.

2.2.1 Comparison of homegrown and framework-provided Provenance
To show the benefits of our system we contrast it against a system with customarily written provenance.

A software developer wants to create a provenance-enabled application for experiment execution
and management. The application’s development process passes through the following phases:

1. Design

2. Implementation

3. Execution/Usage

We will differate a custom-build solution with a system utilizing our provenance framework for
each phase.

Design

With a custom-build application the software developer has to design the data model with provenance
in mind. This includes relationship tables for associating data with the executed experiments, cap-
turing runtime information and tracing data operations. This implies that domain-specific experiment
management and provenance aspects get intermingled: the software developer cannot treat provenance
as an aspect. This slows software evolution: domain-specific improvements must always reflect upon
their impact upon provenance; provenance-related improvements cannot be achieved without touching
domain-specific code.

The provenance system’s reusability is also reduced through the tight coupling with the domain
system: changes to one provenance system need to be ported to all other domain systems with em-
bedded provenance components. In contrast a dedicated provenance framework allows the application
developer to focus upon the domain-specific design issues. Provenance is handled as an aspect: it is
gathered and stored automatically, refined information is provided for later analysis.

The usage of provenance framework also decouples provenance gathering and storage from the
domain-specific design. Future improvements within the provenance system can be introduced by

8

updating just its components without altering the domain application. This allows parallel development
of domain and provenance aspects.

Implementation

With the custom system all instrumentation must be written by hand: all data manipulation operations
need to be monitored. This is mostly done through embedding monitoring code within the domain
code, thus cluttering up the domain-specific logic. The detected changes are then persisted for later
usage. The advantage is that provenance can be captured at the desired granularity and can easily be
customized for specific needs, but there are also various drawbacks:

• the instrumentation has to be redone for each domain application

• the captured data’s quality and granularity depends upon the instrumentation’s quality and is
likely to fluctuate

• software designers need to integrate provenance gathering into all domain operations. This
should not be their concern.

Agile systems also focus upon software verification through software testing. As the provenance
gathering is implemented per domain application each implementation needs to be verified on its own
thus introducing additional overhead.

In contrast when utilizing our system the application developer just integrates the provenance gath-
ering sensor. Its scope and granularity can then be configured by the developer. It provides provenance
with constant quality and can be reused through various domain applications. As analysis engineers
can assume provenance data of a basic quality in a known structure they can design their analysis
applications to fit, thus allowing reuse of those with alternate domain systems.

Execution

After design and implementation is finished the domain application is executed. As long as the custom
provenance gathering was implemented carefully the quality of its gathered provenance is on the same
level as with our system.

Maintenance costs for the custom solution are higher. As the provenance gathering has been tai-
lored for one domain application advances and bug fixes in one provenance system need to be adapted
for all other provenance systems. The information engineer utilizing provenance has no guarantee that
all custom provenance solutions provide data with the same quality nor granularity.

In contrast our system encapsulates generic provenance gathering into an exchangeable plugin.
After plugin’s improvement all plugin installations can be updated without any alterations. This is
achieved through the separation of domain-specific from generic functionality within our sensors.
Provenance engineers are provided with one common interface to the provenance pool. Through this
they are able to reuse analysis applications with multiple domains. Assumptions about quality and
granularity of provenance can be made as it is collected through the same sensors throughout the sys-
tem.

2.3 Full Provenance Frameworks

There is strong ongoing research on integrating scientific workflow systems with provenance informa-
tion gathering 52 and analysis 7. Scientific work always included provenance-gathering: the traditional
laboratory notepad is not able to cope with the increased information amount of today’s computerized
science systems.

9

2.3.1 Document Management Systems

The goals of provenance gathering systems overlap with those of traditional document management
systems: preservation of one document’s state and history. One example for Document Management
Systems (DMS) would be Microsoft Sharepoint.

It is not possible to substitute a provenance system with a Document Management System as there
are various differences in their scope:

• provenance systems focus on objects not documents. This allows for finer audit trail granularity.

• document management systems focus, as the name implies, upon documents. The data and
its changes is the first-level citizen, important data as user or process information is neglected.
Especially the process information is of high importance for further analysis.

• DMS are written for end-users while provenance systems are rather utilized in the backend area.
While this is not a fundamental difference it leads to different goals for designing user interface
experiences.

• Provenance solutions are integration-centric. Traditional document management systems pre-
sume that all document access and changes happen within their systems.

Provenance systems also allow decoupling of document from provenance storage. This allows
choosing or adapting the best storage solution while preserving an existing provenance solution. As
provenance exists orthogonal to storage provenance can be gathered across various document manage-
ment systems.

2.3.2 Chimera

Chimera 52 is used for analysis of data objects and their derivations in collaborative workflows. Its
scope is generation of derived data, called virtual data, auditing and data comparison.

It is process-oriented and depends upon manually entered user’s descriptions of workflows. Through
this meta-language a graph which describes data changes, the so called derivation graph, is generated.
Those graphs are used as model for data changes during execution. One execution (which can be
parametrized) generates new data which is called a derivation. Provenance is stored through derivation
invocations: a derivation graph with added runtime information. The graph can also be enriched by
annotations but those do not directly influence provenance decisions.

The provenance information is also used to reduce stored data: data is divided into original and
provenance data, the latter can be regenerated through execution of the derivation graph and need
not be stored. Also the system depends upon the integrity of users: they must not provide malicious
provenance data that could corrupt the whole provenance pool. Overall the user describes his compu-
tational work in a meta-language from which in turn the derivation graphs are built. This is suitable
for specialized work loads but fails to provide a generic solution for process provenance gathering and
management.

The drawback of this solution lies within the dependence upon user input. A malicious user can
seriously impact the provenance sphere. The custom meta-language also imposes an learning overhead
upon the software developer.

2.3.3 myGrid

myGrid 41 is a middleware solution for usage with bio-informatics experiments. In addition to service
discovery and workflow enactment it provides meta-data and provenance management.

10

It is service-oriented, workflows are implemented in the XScrufl language and executed through
an custom execution engine. The engine records various provenance related information during work-
flow execution. In addition, the end user is required to annotate workflows and services with semantic
provenance information, but it should be noted that not all of those information is used automatically
by the provenance system, some are only required to describe the experiment for other humans.

In comparison to Chimera this system is more dynamic as generated provenance information can
trigger other workflow runs. The provenance store is implemented using a relational database, but all
data access is done through RDF. This adds overhead to the processing as the provenance system must
convert queries between the relational and graph-based systems.

myGrid depends upon manual user interaction for gathering provenance information as did Chimera.
A generic provenance system should be able to perform at least basic provenance operations without
this user interactions. This requirement is even stronger if malicious users are to be expected. It also
utilizes a meta-language for workflow composition. In contrast to Chimera data gathering is performed
upon workflow service level: this yields less but more useful provenance data.

2.3.4 Trio
Trio 57 is not a comprehensive provenance system but focuses on tracking view data in data warehouses.
Its approach is adaptable for various other data centric uses.

Database views are transformed into query trees. In those trees the leaf nodes are database tables,
parent nodes represent the data manipulations that are done throughout the query. When such a query
tree is executed the evaluation starts at the leafs and propagates up to the single top of the tree where the
end result is produced. Trio uses the inverted tree to provide provenance information of query results.

Trio is a purely non-annotation based provenance scheme. This makes it very robust against ma-
liciously entered data: it is not possible to corrupt the provenance data as the gathering is integrated
within the storage engine itself. Linage information is stored in a special database table and can be
queried by SQL statements. The developers feel this to be inadequate and are working on TriSQL
which is a specialized language for linage queries.

Trio does not depend upon user generated provenance data but through its focus on only the data
level it looses valuable information. In an ideal system Trio would be used to gather the low-level
provenance baseline which then would be enriched by additional sensor data. In our proposed system
Trio would be perfectly suited as a data-centric capturing sensor.

11

CHAPTER 3
Related Work

This chapter describes contemporary work that has influence upon our system’s design. To create a
common starting ground it introduces a conceptional provenance model which terminology is used
further on.

3.1 Conceptional Provenance System

A domain system can either be based upon a provenance framework or augment existing systems
with provenance-enabled components. The integrated sensors capture provenance data and forward
it to the storage and analysis system. The persisted information in turn can be accessed through an
analysis interface. While the graphs show discrete analysis applications they can also be part of existing
components and use the gathered provenance information for self-tuning.

Domain applications can utilize provenance-enhanced components (Figure 3.1) for gathering prove-
nance data. This can either happen directly within the corresponding component or achieved by
wrapping existing components into a provenance gathering proxy. All communication to and fro
the wrapped component can be analyzed for provenance. The inner workings of the component
still stay hidden from capturing, component-internal data alterations cannot be detected by the
provenance wrapper.

Examples for this technique would be Provenance Aware Condor 50 that wraps workflow’s jobs
into a provenance wrapper or PrIMe 44 that wraps the actor to gain data about its interaction with
a system.

Domain applications can also be built directly within provenance-aware systems (Figure 3.2). Such
systems can either provide a dedicated interface for provenance related tasks or capture prove-
nance through augmenting already existing interfaces.

A dedicated provenance framework allows custom directives for provenance data gathering. This
improves the captured data but imposes overhead upon software developers. An example of this
approach would be Chimera 52 where data transformations are recorded in a custom language
and then translated into the data manipulation statements but are also used to collect provenance
information.

Transparently augmented existing interfaces do not enforce any application changes for prove-
nance gathering. All sensor integration is done within the execution engine itself. This has been
done for commercial workflow engines 8.

13

Application sensors can be supplied by users. Automatic capturing cannot gather all semantic prove-
nance information. Additional Application sensors enrich the already gathered data by user-
provided data. Their information must be subject to security and policy checking.

The Storage System stores provenance fragments gathered from different sources. Different sensors
can capture different aspects of the same workflow, the storage system needs to integrate them.
As the audit trails are very space intensive deduplication and compression might need to be
implemented. In distributed systems the storage system also imposes security policies upon col-
lected data.

It provides low and high level interfaces to analysis applications. Through the unified storage it
decouples data gathering from data analysis.

Analysis Applications utilize refined provenance data. Domain-specific analysis methods should be
implementable through external applications as this keeps the provenance system core generic.

Figure 3.1: Domain Applications utilizing provenance-aware components

Figure 3.2: Domain Applications build upon a provenance-enabled Framework

3.2 Provenance Gathering

This section will investigate solutions and technologies relevant to provenance data gathering. A sen-
sor is a piece of software that provides provenance data. Different techniques for achieving this are
discussed in this chapter.

The basic concept of a sensor as something capturing provenance data is quite simple. Real sensor
implementations and their generated provenance data differ in many aspects. The following sections
detail those differences and show various characteristics of provenance data.

14

3.2.1 Scope of Generated Provenance Information
Provenance data differs in their monitoring scope 23. The two big families are data- and workflow-
oriented provenance sensors with user-supplied application-oriented sensors forming a distinct third
family.

Data-centric sensors capture provenance by monitoring the domain data pool. They catch the alter
operations directly. As they capture the changes on a direct data level they achieve a good cover-
age as long as all data sources are monitored, but it is captured data is hard to use as its low-level
nature does not posses much context information that is needed to detect co-related operations.

Process-centric sensors capture provenance on a workflow level. They mostly augment execution en-
gines1 to trace domain processes. Through their focus on workflow level they capture higher-level
data than data-centric sensors which is also easier to co-relate as the execution engine possesses
important context information. They do not experience data changes directly, e.g. they only mon-
itor the data access from the execution engine’s point of view. If the underlying technology alters
the data this is not recorded, e.g. a database trigger that performs some input data correction or
automatic database character set conversions go by undetected.

User-provided application-centric sensors differ from the former mentioned. They introduce prove-
nance data on behalf of a reporting human actor to the provenance data continuum. This is needed
for various data that cannot be easily be generated by automatic means.

This sensor family can further be divided through their implementation. Either they work auto-
matically by capturing system states, preprocessing and forwarding them to the provenance sys-
tem or they can depend fully on direct user input. System that utilize user-provided annotations
fall into this category. While they provide semantically rich data the possibility of erogenous or
malicious data being inserted by corrupt sensors arises.

3.2.2 Capturing Mechanism
Sensors differ in the ways they are employed for gathering provenance data 23. The following distinct
approaches can be identified:

Automated monitoring sensors trace the execution of domain-specific code to gather provenance data.
They do not depend upon user input for data gathering but might be parametrized by the domain
application’s developer. They do have the advantage of a high resistance against malicious users
as those cannot alter the gathered provenance information directly.

They do impose an overhead for the software developer as he has to integrate the automatic
sensors with the domain application and also impose an runtime performance overhead through
the gathering process but do not impose this upon the final end users. The gathered provenance
is called observed provenance.

Manual sensors depend upon user input for provenance gathering. The quality of provenance data
depends upon the user-supplied information: if users enter good information the captured prove-
nance data is semantically rich and useful, if not the data can be very lacking.

This mechanism has security problems in face of malicious users as their data is taken to be cor-
rect and forwarded to the provenance system. The provenance data is sometimes called disclosed
provenance.

Constructing sensors are workflow systems themselves. They accept a workflow definition from users
and create a workflow based upon this definition. The new workflow process is augmented with
provenance capturing aspects. The captured provenance data is of high-level and differs from the

1or are execution engines themselves

15

other captured provenance data in an very important aspect: it is perspective. It describes how the
provenance and data should come look after workflow execution, this information can be utilized
to verify captured provenance data against a workflow’s expected provenance output.

3.2.3 Granularity of captured Provenance Data
Provenance data is situated between the following two extremes:

fine-grained provenance information is collected on a work-flow level, the sensors are integrated into
the workflow execution engine. The gathered information is of a high-level and its amount rather
small.

coarse-grained provenance information is collected on a database level. While this cannot answer
high-level questions about the workflow that generated data is can give detailed answer about data
derivations happening because of database level transformations. The amount of data captured is
rather high 29.

The problems of fine-grained provenance can be seen in “Issues in Automatic Provenance Gath-
ering” 10. The authors propose a very low-level provenance gathering system actually positioned at
system or kernel level. This lead to massive amounts of collected data which turned out too fine-
grained for useful further analysis. Various techniques are discussed to minimize the needed storage,
policed pruning (removal of unneeded provenance information) is deemed to be the best approach.

Workflow provenance focuses on capturing high-level data. Through augmenting workflow sys-
tems the captured information is coarse but rich: reasoning about why a data transformation has taken
place is easy, but the provenance is not direct experienced (thus could be invalidated by underlying
processes).

Users mostly want coarse-grained provenance while automatic systems generate fine-grained prove-
nance information. This mismatch can be overcome by integrating the fine-grained data in coarse-
grained provenance information. Versioned objects are a means of achieving this abstraction: multiple
data changes are combined into one transaction that generates a new object version.

3.2.4 Temporal differences
Provenance can be differated through its temporal and causal relationship to the executed workflow 23.

Retrospective provenance is gathered during workflow execution and includes runtime informa-
tion. This information is essential for logging and reasoning about data changes after they happened.

Perspective provenance describes a workflow before it is executed. It contains information about
which activities will be executed and how data should be altered. Prospective provenance does not de-
pend upon retrospective provenance while the later should have resemblance with the former. Workflow-
based constructing systems are the only ones that are able to capture perspective provenance informa-
tion.

The following table shows various combinations of the different sensor aspects that yield good
candidates for practical provenance sensors:

3.2.5 Integration of Sensors with Existing Systems
A provenance system must always be integrated with a domain system. The domain system must be
augmented with functionality that provides the means of provenance gathering. There are various ways
of achieving this integration, they differ in the quality and quantity of gathered provenance data as well
as in the overhead that they impose upon software development and runtime execution.

There are various approaches to achieve this:

16

Table 3.1: Sensor aspect combinations

mechanism scope granularity pattern
monitoring data fine observed
monitoring workflow coarse observed
manual user any disclosed
constructing workflow medium disclosed

constructing

1. using a dedicated provenance framework for writing the domain specific application. This reaps
the best quality provenance but imposes a large overhead for the application developer

2. wrapping existing components into a provenance proxy. This allows to capture input/output to
and fro a component with small overhead but does not produce comprehensive provenance in-
formation. Data manipulation that happens within the component but does not lead to immediate
communication with an external instance is not detected.

3. augmenting an existing framework while keeping the same API. This allows finer data granularity
than the last approach while keeping the application overhead small. Its overhead and data quality
is a compromise of the other two approaches.

All three approaches might harm the developer’s productivity and thus prevent easy provenance
system adoption. A new system should minimize those costs while gathering provenance information
at a reasonable level.

The integration problematic is increased through the multi-system nature of provenance systems.
One provenance system captures data from various sources which differ in their provided data quality,
scope and security assumptions that can be made. An additional problem are objects that are distributed
throughout systems, e.g. the same invoice can be represented in two systems by two different docu-
ments but the provenance system should be able to match both.

Of course the usability of an integration technique depends upon the concrete use case. For ex-
ample, a wrapped data store can be used by an domain application. While we are not able to capture
internals the captured data is enough to provide a low-level source of data changes.

3.2.6 Automatic Capturing of Provenance Data

Issues in automatic Provenance Collection 10 states that contemporary provenance gathering systems
either depend upon manual or automatic provenance gathering. Manual provenance data entries can
also be divided into two families: user-provided data and developer provided data.

The former depends upon direct user input for capturing provenance. Users can be the most pow-
erful source of information: they do know the semantics and reasons behind their workflow. This also
implies that malicious users can supply invalid provenance data to destroy the provenance trail. Invalid
provenance data can also be introduced through user errors. The quality of the gathered data depends
upon the quality of the user’s input: a lazy user can impact the whole provenance pool. Automatic
verification of provenance is not possible.

Developer-supplied provenance tries to solve some of those problems by removing the direct user
interaction. During development time means for provenance gathering are integrated into the domain
application by software developers. This cannot provide as good provenance as good direct user input
but provides a constant base quality level that cannot be invalidated by erogenous or malicious user
input. This approach does impose overhead upon software development and the final provenance data

17

can still be corrupted by errors during provenance capturing.

Fully automated provenance sensors do neither depend upon user or developer interactions. They
achieve this through deep integration with the underlying software framework. The development of the
initial provenance system is demanding in terms of complexity but subsequent deployments are easy as
the same sensor can be reused.

Automatic gathering through data-centric Sensors

Wang-Chiew Tan focuses 56 on data provenance and gives an overview of current approaches to data-
based provenance gathering.

There seem to be two major approaches: annotation based and non-annotation based. Non-annotation
based solutions capture the database’s state before and after the execution of an transformation, through
comparing those states the provenance information is gained. Annotation approaches behave differ-
ently: each datum can have annotations attached to it. When a transformation is performed upon the
original datum the annotation is also transformed and allows reasoning of the newly datum’s lineage.
A problem with annotation systems is their target: most systems only allow annotating attribute values,
tuples or relationships are not handled.

3.3 Provenance Storage

The main tasks of the storage system are data integration, deduplication and preprocessing. The refined
provenance data is then made available to analysis applications for further usage.

3.3.1 Provenance Data

Provenance data describes how data objects came into being, it is used to clarify the actual state and
linage of data artifacts.

Provenance data is graph data. The nodes in the graph represent actors, actions and artifacts, the
edges describe the casual relationship between them. The graph is as immutable as the history of do-
main objects that it captures. The only destructive operations that should take place are removal of
duplicate or derive-able provenance elements.

Provenance is used to clarify the current state and history of domain objects represented as artefacts
within the provenance space. Important aspects include:

• lineage, e.g. who generated or changed an artifact

• the provenance’s structure is important, e.g. for detecting common workflows

• changes in structure: how does the workflow change upon changed input artifacts

Each edge or node can have meta-data attached to it through annotations. In contrast to the graph
itself those annotations might be changed or be user-supplied. In contrast to ordinary storage systems
provenance data is mostly write-once/read-many. Once provenance data entered the system it is im-
mutable (history should not change). Annotations can be added, but are seldom overwritten or deleted.

There are different opinions regarding the cyclicity of the graph. Within one relationship type the
causal relationships between elements must be acyclic 2. The graph consists of sub-graphs of various
relationship types, when examined the total graph there can be acyclic relationships.

2e.g. one subsequent element cannot be the ancestor of it’s ancestor

18

3.3.2 Provenance Data Structure
As already mentioned lineage data forms a conceptual graph 27. While the conceptional graph might
be used by the provenance system it can be transformed into another form to better suite storage. This
only concerns itself with provenance data, the original artifact’s data needs to be stored through sepa-
rate means.

Data can be structured according to different paradigms. The following sections introduce the
most important approaches with their corresponding query techniques and compare their suitability for
provenance storage.

Relational Databases break down data into tuples and statically defined relationships between those.
The standard access method is SQL and most software developers are fluent in this language.
Alas there is no standardized support for graph queries (which is the natural expression form of
provenance) thus requiring the developer to resolve graph queries programatically which is both
design as well as execution resource intensive.

XML is another well known technology. Its representation is based upon a hierarchical tree which
does not map to well into a provenance graph which can have multiple roots. Those multiple roots
must be reduced to one if provenance should be modulated through XML. Another problem are
automatic references between XML documents. This leads to similar complications as SQL:
more work and complexity for the software developer.

Graph-based triple stores split data into triples consisting of subject, predicate and object. Their sum
produces a (hopefully) adjacent graph. This situation mirrors provenance’s Gestalt perfectly
but the query language (SPARQL) does not treat paths through graphs as first-class citizens
thus limiting their usefulness. While the model is good suited for storage it’s usefulness as
representation for user-access is thus limited.

Semi-structured Datastores represent data as structured records with relationships between records
(which must be resolved manually). While this format is very suitable for network protocols and
easy on users but is not as usable for automatic processing. Still it might be perfect for presenting
analytical results to users, especially through the network.

3.3.3 Open Provenance Model
During the international Provenance and Annotation Workshop of 2006 29 a session on provenance
standardization was held. To better understand the differences between provenance systems the First
Provenance Challenge was initiated. Designed as non-competitive the expressiveness and capabilities
of existing solutions were tested, alas the problem definition was too blurry so no comprehensive re-
sult was gained. One year after a second challenge was issued which clarified questions and expected
results. This challenge was also focused on interoperability between provenance systems. As a result
an object model was developed and published. Thus the Open Provenance Model 43 was born in late
2007. Its intend is data exchange between systems but not a definition of an object model used within
implementations. In 2009 the Third Open Provenance Challenge will take place which will investigate
the various Open Provenance exchange models proposed by the different contestants.

Provenance of objects is represented by an annotated acyclic graph enriched with annotations cap-
turing execution data. Base objects are artifacts which describe an immutable piece of state and pro-
cesses as actions resulting in new artifacts. Processes are started on behalf of an contextual entity called
an actor.

Provenance Operations

The Open Provenance Model 43 identified various common provenance operations that must be ex-
pressed through a provenance system. Those operations are semantically equivalent to edges in the
Open Provenance Model. A simple example of a provenance graph can be found at Figure 3.3, a real

19

Table 3.2: Open Provenance Model’s Operations

Subject Operation Predicate
artefact used-by process
artefact generated-by process
process controlled-by user
process triggered-by process
artefact derived-from artefact

work graph gathered through monitoring an experiment execution can be seen in Figure 6.4.

The Open Provenance Model defines the following operations:

used-by
One or more artifacts were used by a process, i.e. are used as input parameters to an action in our
execution engine.

This information is less useful as first thought: an action might consume much incoming data
when producing only one tiny bit of outgoing data. In contrast to the “derived-from” edge we
cannot create the casual relationship between incoming and outgoing data but can only state that
an action had some interaction with some data element.

generated-by
A process generated one or more artifacts. This only captures the direct producer of an artifact
(as they are created through actions they must have exactly one). It is not possible to identify
ancestor artifacts through this relationship type alone.

controlled-by
Actions are always executed on behalf of an actor. This information is essential for creating audit
trails of artifact’s history.

While the execution engine is able to directly state who was the user responsible for an action our
data-based sensors might have problems deducing this. In a typical application there is exactly
one database user with whom all database operations are executed. The provenance module must
employ context building techniques to match the user identities of the different systems.

triggered-by
A process was triggered by completion or request of another process. This should also correlate
between different systems, e.g. an data store action in the action engine should trigger the store-
action in the storage system sensor.

derived-from
This states that a datum was involved during creation of another datum. This implies:

1. there’s exactly one action that performed the data transformations
2. the altering operation must know each input and the generated output datum, thus it should

have “generated-by” and “used-by” relationships to the two nodes of the “derived-from”
relationship.

3. in a provenance graph each artifact must take part in a provenance trail, i.e. must be con-
nected to a process that generates it.

OPM-inspired data storage

While the Open Provenance model was primary designed as a data exchange format there are no func-
tion problems that would prevent its usability as storage model. We believe that through early design-

20

Andy

was controlled by

Execute
Experiment

output
datumgenerated-by

input
datum
#1

input
datum
#2

used-by

used-by

derived-from

derived-from

Figure 3.3: Example Provenance Graph of an Experiment Execution

decisions a OPM-based data backend should yield sufficient performance while maintaining complexity
at a low level.

3.3.4 Efficient Provenance Storage

Gathered provenance information outgrows the original data by multitudes. An example given by Adri-
ana P. Chapman 13 rates the provenance gathered through a short-time experiment at approximately 6
Gigabyte when performed upon a 200 Megabyte data set.

There are several approaches to improve storage requirements: sensors can be configured for a
limited capturing scope, this reduces the amount of stored data but also removes potential provenance
data. Deduplication ca be employed to reduce data redundancy but this introduces additional computing
overhead for the storage system. The chosen storage backend technique also alters the performance
characteristics and non-functional aspects as software and hardware selection can improve the situation.

Central vs. Decentralized Data Storage

Captured provenance data has historical as well as real-time value. As it is captured by distributed
sensors it is inherently location-based. Comprehensive provenance information can only be extracted
when those distributed provenance fragments are integrated into one graph. In a system where trans-
portation between sensor and storage is lacking this leads to location-aware peer-to-peer storage with
all known problems as consistent naming and distributed querying 36.

Depending upon one central storage component removes much of this complexity but introduces
a severe trade-off: provenance data can only be integrated after a sensor was connected to the storage
system. To improve this situation various techniques as transactions or sensor-side caches can be em-

21

ployed. A centralized storage system also allows concentration of analysis components. This removes
duplicate functionality from sensor implementations.

Deduplication

Another way of reducing the overhead of provenance storage is deduplication which reduces the amount
of data that is actually stored but might introduce additional overhead for analysis.

“Efficient Provenance Storage” 13 focuses on provenance deduplication when using XML as data
store. Various techniques are introduced:

provenance inheritance describes the removal of one artefact’s provenance information if it is just the
subset of another artefact’s provenance. In case of related artefacts this is commonly the case,
use cases that consist of frequent updates upon the same artefacts can thus be reduced greatly.

provenance factorization is based upon the foundation that data manipulations can be represented as
trees. Common trees or sub-trees can then be replaced (as done with provenance inheritance) to
save storage. Actually this forms families of related actions that aids in further analysis.

structural inheritance is even more advanced. Provenance graphs can be dependent upon just some
elements of an data object. If those dependencies can be detected those redundant graphs can be
reduced into one.

The discussed techniques are based upon a XML-based storage system but can still be applied
upon other storage technologies. In our case we will be using a graph-based storage as base for internal
operations. This leads to reduced complexity for implementing provenance inheritance as provenance
artefacts are inherently broken up into small triples before being distinctly stored. This automatically
removes duplicate data.

Provenance factorization would also reap massive performance and storage gains but is not as
easily implemented.

3.3.5 Security
Provenance deals with data and its changes. Not only the data artifacts are of importance but also the
identity of collaborators 45. Intelligence agencies hoard their informants, the identity of review authors
might need to be authenticated but the contributions of each individual reviewer should stay secret.
This situation, in which provenance is more important than the original artifact, is more common than
initially thought of.

The security of the whole system consists of the security of the original data and the security of its
attached provenance data 11. There is manifold related work about securing traditional data. Provenance
data cannot be treated as traditional data: it does not focus on singular data items but on causal rela-
tionships between items. Known security models for relational or tree-structured (XML) data model
do not apply.

Another difference lies in its implicit generation. Provenance is mostly created as a side-effect
while traditional data is created on direct behalf of an user. It’s not clear how this should influence the
chosen security model but the need for a fine-grained ACL system for newly created items can easily
be seen.

Provenance is a directed acyclic causality graph and one query touches nodes along one path down
that graph. The graph itself is immutable, there might be volatile annotations attached to it. A common
need is to hide the participation of one user (node) from the graph. There is no comprehensive work
available on the implications of this thread model or on security models that deal with directed acyclic
graphs.

22

3.4 Provenance Access

This section investigates former work that relates to the analysis components and communication be-
tween them.

3.4.1 Provenance Access and Query Interface

Query languages can be adapted for accessing provenance data. While any generic query language
can be utilized their usability might be lacking. While queries might be express-able their creation and
handling can be cumbersome. This harms agile application development.

Provenance data is meta-data. It differs from other forms of meta-data because it is based on re-
lationships between objects 27 as ancestry and identity information. Those relationships create a large
provenance graph upon which analysis will be performed, thus graph-based query facilities are of high
importance. The First Provenance Challenge confirms this: seven out of nine queries involved paths 29.

A useful query language should incorporate at least the following features:

regular expressions upon paths and it’s elements (nodes/edges) are needed. Provenance queries de-
scribe multiple connected paths through the graph. Without an expressive query facility the
formulation of these paths get out of hand.

path pattern matching it must be possible to define a path through pattern matching. The whole query
path might not be known a priori, e.g. I might be interested in nodes where outgoing edges
eventually touch another node but do not really know or care which edges have been traversed in
between. Such queries are for example not easily doable in SPARQL as each element of a path
must be known beforehand 27. Early research for languages supporting path expressions can be
found in 2.

paths as first-class citizens: graphs and paths are not the end result of queries but rather intermediate
results upon which further analysis will be performed upon 27. A query language that treads
graphs as first-level citizens allows operations upon them, e.g. paths can be compared or set-
level operations performed upon them.

aggregate functions and sub queries are not mandatory in a strict sense. Instead of discrete elements
aggregate values are often the real goal of provenance queries. An ideal query language should
support and aid those queries. The alternative would lead to increased round trips between stor-
age system and analysis application: results of queries would be summarized or used to form
subsequent dependent queries. Neither of which is an successful approach to a performant or
efficient system.

There are various generic purpose languages that might be suited for provenance analysis as well
as a couple of specialized languages, sequent sections will introduce some of them.

SQL

SQL performs upon relational data models which are the antithesis to graph models. To achieve graph-
level queries the required query must be mentally transformed into its relational representation and then
executed. The performance of larger queries is thus lacking (as they depend upon slow operations as
joins).

Lately new revisions of the SQL-standard have seen wider use (SQL99). Those allow limited build-
ing of logical tree models through relational data: this can be utilized to provide a better emulation of
a graph structure but as was already stated a provenance graph has distinctive features3 which prevents

3i.e. no requirement that there is only one root element

23

perfect transformation into a tree.

Even when modeling the data structure as tree its relationships are not first-order citizens. Paths
through graphs cannot be used as elemental data types: regular expressions upon them or using them
as input for further analysis is not possible. A common use case is the comparison of two paths, as they
are not first-level citizens this is not possible with build-in operators.

XML

XPath 14 and XQuery 9 are the two most common languages for querying XML documents. XML doc-
uments follow tree semantics (only one root) which does not mix well with provenance (which is a true
graph). Which is a pity because paths otherwise are full first-class citizens in XML. Another drawback
is that the result of a XQuery is always the final leaf node. Alas provenance queries often depend upon
intermediate results (i.e. the graph nodes that a path traverses through).

Various provenance solutions tried to emulate full graph semantics through XML trees. Their con-
clusion was that it is possible but “it’s unpleasant to use”. Another approach was to use XML as a con-
tainer format, i.e. using XML to store information for a fragment and utilize embedded XPath/XQuery
expressions for relationships between those records. This prevents automatic processing of provenance
data: software developers must repeatedly retrieve XML documents to solve their analytical problems.

SPARQL

As mentioned before graph-based triple stores are a good match for provenance models. The com-
monly used query language use in conjunction with RDF is SPARQL 49.

SPARQL lacks various important features: there is no support for subqueries, few aggregation
functions and expressions are not support in select clauses. Even more problemous is that paths are not
treated as first-level citizens, thus paths cannot easily be compared. Through the missing subqueries it
is also not possible to query for paths where not all edges are known (or at least their count).

There exist various vendor specific extensions that add some of the missing features but they are
incompatible with each others. A combination of various vendor specific extensions might fulfill all
requirements but that combination would bind a potential software developer to a very narrow query
and storage engine. Realistically speaking as it is not possible to mix extensions the “perfect mix” will
never happen.

Custom Provenance Query Languages

All prior mentioned languages were general purpose query languages that were not designed especially
for provenance queries. Their usability is reduced by missing features or mismatching assumptions
about data structure. The results of the first Open Provenance Challenge support this: parties that
based their backend upon XML or SQL did have to work around their short-comings or started to de-
velop their own query interface. Recently dedicated provenance query languages as Lorel 2, PQL or the
Provenance Query Protocol 40 (QPP) have been proposed.

QPP is a WSDL service definition for provenance query interfaces. As such it only defines the
expected interface format and does not specify a full query language. As provenance queries can pro-
duce vast amounts of data querying and scoping capabilities are of high importance for QPP. A new
provenance system might introduce a QPP network interface for analysis applications but so far no
comprehensive query engine which could be employed has been presented.

PQL is a custom query language based upon the Lorel query language. It extends Lorel by more
powerful query capabilities but maintains the base feature-set. Lorel was designed for usage with semi-

24

structured data. It satisfies all requirements for a provenance query language, especially it supports path
expressions. In contrast to SPARQL paths can be constructed without prior knowledge of the detailed
path structure. Lorel and PQL engines would suit provenance perfectly but alas currently there are no
generic query engine implementations available.

While they provide all needed functionality those languages suffer from little publicity: software
developers are not as fit with them as they are with established languages like SQL, XPath or SPARQL.
There are also few existing query engines for provenance languages which are also lacking thorough
evaluation. This implies that a provenance solution that utilizes a custom provenance query engine
needs to provide additional more traditional query capabilities.

3.4.2 Interoperability
Businesses need provenance solutions that work through a long time: while their software solutions
might change frequently the provenance solution might only change if the existing provenance data
can be integrated into the new software.

This might be utilized by provenance solution vendors to tie their customers to their solutions but
we do believe that such tactics are short-sighted and will not turn out successful in the long turn.

Data Structure

The Open Provenance Model 43 provides an intermediate representation of provenance information.
It’s graph based nature is good suited for provenance but leads to transformation costs for provenance
solutions that choose a tree or relational based data backend. When choosing a graph-based backend
the underlying data model should be modeled as close to the OPM as possible: this would ease the
transformation between them.

Another benefit of staying near the OPM lies in better understandability. It is well documented
and personell in the provenance area are commonly educated in it. As long as a provenance solution
chooses an adapted version of it for data storage people will at least have a slight glimpse of the seman-
tic meaning of the involved nodes, edges and relationships.

The OPM is a quite recent development but there are already algorithms emerging that are based
upon its model. Those can be easily adapted to a system which model is a traditional subclass of OPM’s
model. This leads to long-term usability of the provenance system’s backend model.

Provenance Data Access API

The communication protocol between the provenance system’s components as well as between ana-
lytics users of the provenance protocol should depend upon well-known protocols. This will eases the
integration with existing solutions and system designers can utilize already existing knowledge. Web
services are the perfect solution to this problem.

Roy Thomas Fielding proposed the REST architecture for network access on resources in his dis-
sertation 21. The author was involved in the development of the HTTP protocol so it is not surprising
that it utilizes the HTTP protocol for denouncing its operations. This leads to very natural data access
pattern and lean solutions.

25

CHAPTER 4
The Agile Provenance System

We have created an architecture for a provenance system that should solve most stated problems. It
focuses upon the following key problems:

• Multi-sensor Architecture
Provenance must be captured throughout domain applications. This leads to an inherently multi-
sensor design where one important provenance system’s task is the integration of provenance
fragments gained from different sensors.
The interface between provenance system and sensors must be generic so different types of sen-
sors can be connected. Within our reference implementation we focus upon unobtrusive auto-
mated provenance gathering but the interface is utilizable by sensors using other approaches.
This will also aid adoption existing to our framework.

• Lightweight Sensors
The multi-sensor paradigm implies that many different sensors are utilized for provenance gath-
ering. Their used techniques and technologies cannot be determined by the provenance system
so it must provide a generic sensor interface. In addition it needs to prevent duplicate redundant
sensor implementations as this would not confirm to an agile approach. This leads to a core
system concentrating shared functionality and multiple light-weight sensors.

• Modular Storage Engine
Research has shown (Section 3.3.2) that there are various approaches for storing provenance data.
From a software engineering point-of-view this implies that the storage engine shoudl be cleanly
be separated from the provenance system.

• Generic Reusable Interfaces
The provenance system connects multiple (different) sensors with one modular storage engine.
It is the glue layer between sensors, storage and analysis engines. Clear and generic interfaces
decouple these components and aids their parallel evolution.

• Suitable Interface for Analysis Applications
Provenance can be stored within different structures through various stroage engines. Analysis
applications need a stable interface to the provenance system that also presents the stored prove-
nance information in a suitable way. This implies that the provenance system needs to transform
data transmitted between storage and sensors as well as between storage and analysis applica-
tions.
while internal access to the stored provenance might change with the used technology existing
analysis applications need an stable interface. This unified interface should also present the

27

provenance information in a way suitable for analysis applications. The provenance system needs
to transform provenance data gathered from the storage system into this representation.

• easy to use and modify
The provenance system’s architecture must be easy to comprehend and modify. We cannot forsee
all future uses for this system so future developments are aided.

4.1 System Architecture

Ruby on Rails

Analysis Application

Sensor

Sensor Sensor

Rails Data Engine Rails Execution Engine

Provenance System

Data Capture Interface

Analysis Interface
(high level)

Analysis
Component

Provenance
Storage
System

Access Control/
Security System

Deduplication
and Integration

Application

Figure 4.1: Conceptional System Architecture

The scope of a provenance system includes provenance gathering, storage and querying (for anal-
ysis purposes). Our resulting architecture can be seen in Figure 4.1. The functionality has been dis-
tributed in a way to aid decoupling. To detail the various parts and their components:

Data Gathering is responsible for providing provenance to the storage and analysis components.
While we developed an advanced automated capturing sensor the architecture does not concern
itself with the concrete implementation but only with their interactions. As the figure implies
there aree various approaches to provenance gathering which all shoudl be supported by the
storage system interface.

Provenance System concerns itself with data integration and storage. Various responsibilities have
been moved from the sensors to the storage system as this allows a simplified sensor design.

As we are dealing with multiple sensors incoming data fragments need to be verified by a secu-
rity and policy system as malicous users might try to corrupt the provenance system’s data.

The provenance system is also responsible for integrating the different provenance fragments
into one graph. The refined provenance graph is then exported to the potential external analsysis
applications.

28

Provenance Analysis Components utilize the provenance data to gain valuable information. The
provenance interface is a standardized way of gaining the needed knowledge thus hiding the
complexities of provenance gathering and storage from analysis applications.

The following sections will delve into the different components.

4.2 Provenance Representation through Artefacts

Domain objects are data objects used by the domain applications. They store the current state of
an conceptional domain object. Within the provenance system each change to an domain object is
represented through artefacts.

4.2.1 Artefacts
The purpose of a provenance system is to store provenance information for domain objects. This
information is represented through artefacts described through:

1. an artefact represents the state of a monitored domain object. For example a domain document
has been changed during time: each change spawns one provenance artefact describing the state
of the domain document after the change.

2. a domain object can have multiple artefacts associated to it, one for each operation that altered
the monitored object

3. an artefact is identified internally by its unique id, for identification of its source a triple (domain-
id, domain-class, timestamp) is utilized. The timestamp is added to capture subsequent updates
upon the same object.

Changes to one domain object form a family of related artefacts. Such a family describes all al-
terations leading to the current domain object’s state. The changes stored within the artefacts can be
utilized to create any domain object’s state.

Domain System Provenance System

Domain Object
create

Artefact #1

Artefact #2

derived from

update

create new artefact

create new artefact

Figure 4.2: Mapping between domain objects and provenance artefacts

When applied to experiment management a recorded experiment would be an example for an do-
main object. Each experiment alteration leads to a co-related artefact within the provenance data con-
tinuum. The first artefact records the experiment objects creation, additional artefacts describe each
subsequent change performed upon the experiment record.

29

4.2.2 Identity of Artefacts
Domain objects are identified by their type and identifier which commonly is a numeric value. As
they only represent the current state of an object this is sufficient. Within the provenance domain the
type and identifier pair only denotes the family of artefacts belonging to an domain object. To fully
identify one artefact an additional identifier is needed which denotes the temporal dependency between
artefacts. Any monotonic increasing value is sufficient, the most commonly used identifiers are times-
tamps or revision numbers.

While domain objects commonly are stateless there also exist versioned object models. With those
a sufficient temporal object identifier can be extracted from the domain system. Our architecture can
easily be adopted to this scheme but the reference implementation does not use this additional informa-
tion as it attempts to be as independent of the domain application as possible.

Inter-System Identity Matching

A problem commonly found in distributed systems is that of divergent identities between systems.
An artefact found in one system might denote the same entity as an artefact in another system alas
their corresponding system-dependent identities do not match. After both have been imported into the
provenance system they represent different objects with disjunctive provenance trails. This prevents
comprehensive provenance analysis.

As long as Ruby on Rails systems are involved this is not problematic: Rails applications share
data through shared databases, this implies that the vast majority of identities will match automatically.
Our intra-system versioning mechanism also improves the matching probability through its greedy
timestamp-based approach.

If duplicate object identities have already entered the provenance systems inference can be utilized
to unify the different identities. Duplicates can be marked with the owl:sameAs relationship and the in-
terference engine takes care of the rest: subsequent queries will not differate between the two identities
but interpret those two objects as one.

4.2.3 Domain Object Alteration Semantics
Each data-changing event in the monitored application domain translates to newly created artefacts in
the provenance system. While each artefact has an internal unique ID they also store enough informa-
tion1 to form families of artefacts representing versions of the same domain object. Ordering needs
to be established within those families, suitable methods for this are monotonic increasing sub-IDs or
time-stamp.

Establishing the families and their ordering within is a time- and resource-intensive task. Instead
of performing this for each analytical request it can also be done once per artefact at import-time and
its results be stored as a special relationship type. Later operations use this relationship instead of
re-creating the families. There is actually not even a negative space impact as we are replacing the
already existing derived-from with a more specific direct-ancestor-of relationship, the former can still
be generated on the fly by inference so no duplicate information is stored.

Object destruction is an operation that is not captured by typical provenance systems. This can
be described through an analogy to the real world: after an object was destroyed its current state does
not matter any more and the already captured audit trail survives the now destroyed domain object.
The provenance system captures object destruction by the destroyed-by relationships analogous to the
generated-by relationships. While not required for pure provenance the fact that an object ceased to

1domain-specific type and identity

30

be is of importance of various analytical questions. Ironically removal of domain objects within the
application leads to creation of additional artefacts in the provenance domain.

4.2.4 Artefact Representation
Artefacts are stored in different representations during their lifetime. Proto-artefacts are generated by
sensors and submitted to the provenance system. There they are processed and converted into triple
form suitable for graph storage. Analysis applications access the stored information but would prefer a
document-based interface. All communication endpoints should also conform to open standards to aid
accessibility.

Figure 4.3: Communication between Sensors and Storage System

During Provenance Gathering proto-artefacts are stored in an implementation dependent manner.
Our reference implementation creates objects which are stored in-memory and then are forwarded to the
provenance system. The interface to the provenance system is object-oriented and not a graph-oriented
triple interface. This allows the sensor to gather all provenance relevant information and submit it as
an aggregated object. If each provenance aspect would be submitted as soon as it was gathered by the
sensor the imposed performance impact would higher. In addition a transactional mechanism would
have to be implemented: if an domain object has created provenance but is not persisted (i.e. due to an
exception) its transmitted provenance must be reverted.

The Storage System stores artefacts in graph-conform triple form. As will be shown in later sec-
tions this aids integration of different provenance sources.

The stored information can finally be accessed by external analysis and display applications through
the Provenance Access Interface. As shown before providing direct access to the graph-based triple
store is not comfortable external applications as the associated query language is lacking and incon-
venient to use. Instead a document-based approach would be preferred. The provenance data is trans-
formed according to a logical model that is implemented through document-based accessible resources.

31

In contrast to the sensor format the data is not just one atomic provenance fragment but consists of in-
terlinked provenance records that can easily be gathered by external provenance-using applications.

4.3 Data Gathering

Provenance data is generated through domain-specific applications that can be distributed throughout
various computers situated within different companies. Provenance sensors must be integrated which
each of those systems thus making our system an inherently multi-sensor based. To share functionality,
compaction and compression are moved into the storage system - the one place shared by all sensors.
This also yields the benefit of making sensors small, simple and easy to implement.

Different sensors posses different internal designs and implementations. While this thesis focuses
upon an automatic monitoring sensor the interface between the storage system and sensors has been
designed to be sensor implementation-agnostic. This allows easy addition of sensors and increases the
life expectancy of the storage system. Future sensor developments can utilize the same provenance
interface, thus reducing long-term migration costs.

4.3.1 Handling different Sensor Types
Existing provenance systems often differate between classes of sensors. Our system differs from this
practice. A sensor is anything that talks through the standardized provenance sensor interface with our
storage system. The storage and analysis is sensor agnostic, it does not differate between sensor data
of different origin although administrative restrictions upon incoming data can be enforced through the
security component.

This simple concept is very powerful as it allows multiple sensors to connect to our capturing inter-
face. The consistency and integrity of pushed provenance fragments does not suffer as the ACL system
for incoming fragments specify which fragment parts are acceptable for each known sensor.

Our prototype’s sensor provides access to monitored as well as provided data. User-provided data is
gathered through developer-provided callbacks that supply information that cannot be gathered through
automatic means. The sensor performs data gathering in a hybrid way: while it is situated at workflow-
level it captures provenance data in addition to workflow data. This is possible as we are monitoring
data manipulation statements during service execution.

Through focusing on framework level provenance data of fine-enough granularity can be gathered
while overhead is reduced. An additional data-centric sensor can still be integrated in the system and
would aid the provenance data pool. Such a sensor would be of great benefit: data-centric sensors
are the only ones that can capture the “real” data changes and would enable use to verify the captured
provenance information.

4.3.2 Multi-Sensor System
The provenance system assumes the existence of multiple sensors. Common functionality was moved
from sensors to the common storage and integration system. This concentrates most complex oper-
ations as provenance fragment deduplication, inference, storage and retrieval in the central storage
system. Sensors themselves only provide few features. Through this separation of functionality the
impact of sensors upon the domain system’s performance is kept small.

The lightweight sensor design also allows easier separation of functionality between sensors. As
the storage system was designed to deal with multi-sensor systems different capturing areas can be
separated into different sensors, e.g. a file-system level sensor can be installed alongside a database
monitoring sensor. This allows system administrators finer control about the type and granularity of

32

captured provenance.

This approach also leads to simpler schemes for multi-company provenance gathering. The storage
and analysis system inherently deals with multiple sensors, it is agnostic to their location (e.g. how
they are located throughout various companies). Administrative filtering is already possible through
the ACL component which validates every incoming provenance fragment against a user-supplied rule
set.

4.3.3 Provenance Transactions

Forwarding each captured provenance datum individually would introduce overhead, instead we’re col-
lecting provenance information and submitting it as batch before completion of each user interaction.
The sensor implementation is responsible for collecting and aggregating the corresponding provenance
fragments. Different application domains are differently suited for this approach.

Figure 4.4: Provenance capture flow

To minimize the archived provenance data we only store provenance that lead to an domain object’s
creation, alteration or destruction. We do not store provenance information for operations that do not
alter an domain object, for example we do not store a history of objects that have been read before
another read access has taken place. If an application would need this functionality it can easily be
implemented but would introduce an high overhead to the capturing and storage process.

33

4.4 Storage and Integration

The goal of the storage and analysis system is to accept provenance fragments and provide refined data
to analysis applications. To achieve this various preprocessing steps are necessary: first the incoming
fragments are checked against a user-supplied security policy. This prevents malicious data from en-
tering the system. The fragments are then split up into atomic triples. Those triplets are then integrated
into the existing provenance data pool. During this integration deduplication happens: duplicate triplets
are removed from the data pool. The analysis interface allows external domain applications to access
this refined data pool.

4.4.1 Sensor Interface
The interface between sensors and provenance system is based upon a defined record format. Its log-
ical model can be seen in Figure 4.5, its elements are detailed in Table 4.1. It is more coherent than
an provenance fragment based interface where the sensor would instantly forward each provenance
fragment towards the storage system.

Access to the provenance resource is atomic: either the provenance information is accepted by the
provenance server or not.

Fragments

Fragment
+timestamp: datetime

Type
+name: string

System
+name: string

Identity
+name: string

Process
+name: stringArtefact

+identifer: id

Domain Object
+identifer: id

prior reads

*

domain object

1

for 1

has_type

executed through

executed by

ran in

Figure 4.5: Format for Sensor Data

4.4.2 Access Control/Security System
All incoming sensor data is subject to consistency checking through the access control component.
This component allows fine-grained policy decisions over which provenance fragments can be ac-
cepted. This prevents a malicious sensor from attacking the integrity of the overall provenance data
continuum.

While the ACL system allows arbitrary rule sets the common reasons for rejecting data are:

• unknown submitting sensor
• the retrieved data does not comply to the provenance fragment schema, this might imply a trans-

mission error
• A sensor does not deliver expected data: the ACL system can be used to restrict the different kinds

of data that a sensor is allowed to transmit. For example a document sensor can be restricted to
only support provenance for documents.

34

Element Type Description
type Enumeration describes the type of operation,

valid types are create, update, de-
stroy

provenance_artefact Structure the domain object for which this
artefact was created for. It is identi-
fied by its type and identifier

timestamp Time when did the operation take place?
user String the user identifier that will be con-

verted into an identity
process String the process identifier that will be

used to describe the altering process
system String user-supplied identifier that can be

used to differate between subsys-
tems

prior_read Array of Domain
Objects

describes which other domain ob-
jects were used before the alteration
operation took place

Table 4.1: Sensor Interface’s Elements

4.4.3 Graph-based Storage Backend

The graph form has various advantages over storing and handling provenance as XML documents. First
of all it is provenance’s most native Gestalt thus “feels right”. Provenance data inherently has a graph
structure, if we use another form for storage the software developer will find himself with mentally
translating graph queries into their SQL or XPath/XQuery equivalent. Often those query languages are
not fit or expressive enough for solving questions, the developer has to work around their lack with
custom logic in his application.

The only drawback lies within the XML-to-triple transformation process (and vice verse): this
imposes a small performance overhead.

Provenance Integration and Deduplication

Provenance information is distributed over various fragments delivered by different sensors. The re-
ceived fragments are integrated by the storage system. Subsequent analysis applications access this
integrated provenance data pool.

The incoming fragments are split into elemental tuples consisting of subject, predicate and ob-
ject. As long as objects and subjects delivered by different sensors share the same approach to identity
forming their data is integrated into one graph. This approach also achieves initial deduplication as
redundant data leads to duplicate tuples that can easily be detected and removed.

The only mandatory part is provenance_artefact which is used to identify the domain-specific doc-
ument, all other elements can be omitted. Analysis operations might be dependent upon existence of
more provenance fragment parts: for example the alteration trail of an artefact is less usable if no sen-
sor provided information about the executing user. We do believe that it is within the domain of the
software developer to provide sensors that retrieve sufficient provenance data for analysis operations.

Another benefit of using the triple form lies in automatic deduplication and integration of the prove-

35

Domain document

alterations
lead to
provenance
fragments

Provenance Fragment

id: 1
type: Experiment
timestamp: 1
action: create

id: 1
type: Experiment
timestamp: 2
action: edit

Provenance Fragment

id: 1 type: Experiment

timestamp: 1

timestamp: 2

action: edit

action: create

Split up
into basic tupel
and remove
duplicate tupel

Data Store
Only store
the unified
Elements

Figure 4.6: Provenance Fragment Deduplication and Integration

nance fragments. As the graph is split up into various atomic triples a very simple deduplication step is
automatically achieved by prevent storage of duplicate triples. This is a form of structural compression.
Process-related deduplication through sub-classing must still be implemented manually.

Integration is also aided: as soon as artefacts posses the same identifier their corresponding prove-
nance fragments are merged. The only step needed is the unification of different document identifiers
which point to the same original object. This is a non-problem in our current work domain as Ruby on
Rails uses the back end database table name and identifier for object identification and this is shared
across various implementations (as long as they use the same database). If we would integrate different
data-sources another preprocessing step would be needed that transforms incoming objects of the same
type (but with different identities) into a unified representation2.

4.4.4 Inference

Graph stores support lazy materialization through inference rules. This allows for sparse graphs that
still maintain expressiveness for queries. Inference rules specify which relationships can be dynami-
cally be generated by analyzing existing relationships. The query engine can be parametrized to enable
the inference engine on a per-query basis.

Inference allows lazy instantiation of tuples that can be automatically derived from existing rela-
tionships3. Redundant data can be removed while maintaining the comfort of expanded data for queries.

Enabled inference adds overhead for queries but the burden of developing, maintaining and opti-
mization of the inference data and engine is moved from the provenance to the storage system and does

2this can be done analogous to the ACL system (but with an replacement operation instead of just checking regular expressions
3The same functionality within XML stores is called “lazy materialization”, its usage with XML is crumbled by patent laws.

36

not influence design or architecture decisions of the provenance system directly. Also I believe that
inference should be closely coupled to storage as this allows further optimization of both.

Usage of Inference

Inference works best when applied upon a data model that posses many redundancies. The Open
Provenance Model (and its descendants as my data model) posses few redundancies thus limiting its
usefulness. With additional functionality this can change though and inference will get more important.

The storage and analysis system currently utilizes inference for:

duplicate marking and removal As the provenance environment spawns over multiple systems it is
possible that the same domain object is represented through different images in those systems
and thus artefacts are created for those distinct objects although they should describe the same
domain object.

Traditional systems have problems coping with this situation: after duplicates are detected their
identities must be unified into one. Subsequent additions and alterations must reflect this transfor-
mation i.e. a mapping between domain object and its various representations must be maintained.
This can grow very space and time consuming. The identity unification step is also expensive
and can impose severe delays when done periodically4.

Through inference duplicate tuples can just be marked with the “sameAs” relationship and are
thus treated as the same object by subsequent queries. This solves the duplicate situation in a
simple and clean way, no manual mappings or update operations are prevented.

efficient relationship sub-typing when an artefact was involved in creation of another artefact the sys-
tem puts both of them in a “derived-from” relationship. Updating an existing artefact follows
the same procedure: a new artefact version is created and a “derived-from” relationship formed.
Analysis queries often are highly interested in those close relationships, because of this a spe-
cial relationship “direct-ancestor” was introduced. To allow “normal” queries that depend upon
“derived-from” relationships to operate with the new system we would have to store both rela-
tionships. This introduces unwanted clutter in our provenance data continuum.

With inference we just specify “direct-ancestor-of” as subtype of “derived-from” and the infer-
ence engine does well-known polymorphic substitution thus removing the need for duplicate data
storage.

4.5 Providing Provenance Information

Domain-specific analysis applications utilize the provenance data to extract meaningful information.
This thesis focuses upon creating the larger framework and generic storage-side analysis components
instead of focusing upon one concrete analysis application.

4.5.1 Logical Data Model

Experiments have shown that a graph based data model is well suited for storage but its usefulness is
limited for communication purposes. To provide application developers with a better interface to the
stored provenance data we introduce an RESTful provenance interface. The underlying data model can
be seen in Figure 5.4.

4as database tables must be mutually exclusive locked during the unification operation to prevent consistency problems

37

Artefact
+id
+user
+controller
+action
+system
+timestamp

Domain Document
+identifier
+class

User
+name

Process
+controller
+action
+system
+timestamp

*

created by*

utilized by*

derived from

*

*

executed by

*

Figure 4.7: Conceptional Analysis Data Model

Changes to domain documents are reflected by artefacts which represent exactly one change in
a domain document’s state. Each change is performed through a process that was executed within a
system on behalf of an user.

This simplified model provides the same data as the graph-based provenance model but incorpo-
rates a format that can easily be utilized by analysis applications. The RESTful API can be enriched
by additional sub-resources to provide additional analysis capabilities5 while keeping the existing API
stable. An overview of provided resources can be seen at Table 5.1.

External applications utilize the offered resources as an programming interface. The various in-
volved elements and their description can be found in the following section. Concrete examples of
those resources can be found in the Experiment chapter.

4.5.2 Providing advanced analysis capabilities
When the incoming requests are converted to graph requests is a good point for implementing advanced
query capabilities. Various graph queries do not provide comprehensive results and the gathered data
must be refined before it is forwarded to the analysis application. This also decouples the analysis inter-
face from the storage subsystems. This allows great flexibility for additional future query subsystems.

The object-oriented to graph-based translation offers a good point for security subsystem integra-
tion.

5as was done for process’ descendants or artefact’s trails

38

CHAPTER 5
Reference Implementation

Based upon the detailed architecture we created a reference prototype of our provenance system. As an
environment for our sensor we have selected Ruby on Rails web applications.

5.1 Environment

Our provenance solution resides within the field of web applications developed and maintained through
an agile mechanism. The principles of agile development are stated in the Agile Manifesto 26:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

This approach often leads to fast-changing domain applications. Software developers work co-
located at their customers site and develop the applications with direct customer feedback and fast
release cycles. This fast-paced approach leads to dedicated problems for provenance gathering which
are shown in section 1.3.

We focus on capturing provenance for applications that are written in web frameworks whose in-
tended usage is this project management technique, e.g. Ruby on Rails 58 or Django. Those frameworks
employ dynamic high-level script languages such as Ruby or Python and provide in-framework support
for backend data access, especially for interfacing database data.

Larger applications consist of invocation of atomic services. Services are accessed by users through
web browsers. Complex workflows are created by an user consuming various discrete services. Each
service encapsulates domain-specific knowledge and follows a basic request/response architecture: the
requested service accepts its input data, executes and its results are returned to the user. For example
a human browses through various dynamically generated web pages: through the selection of viewed
sites he implicitly creates a workflow consisting of the actions that are responsible for creating his ac-
cessed web sites. The combination of consumed services is highly dynamic and will change over time.

The involved web systems need not to be located geographically near or be owned by the same in-
dividuals. Security and Policy Enforcement are of importance, especially when business data between
different companies is shared.

39

The consumed and to be monitored web systems have been developed to fulfill domain-specific
needs and not for provenance gathering. Their function must not be impaired by provenance gath-
ering. Also the effort for integrating provenance gathering and analysis must not impact application
developer’s performance.

5.2 Used Technology

We are all standing upon the shoulders of giants when it comes to writing software systems. Through
intelligent choices of underlying techniques and mechanisms work can be reused and the resulting
system is easier to comprehend by developers.

5.2.1 Programming Language and Base Framework
We’ve chosen the Ruby on Rails web framework for both the storage system and as testbed for the
initial provenance sensor implementation. It is a rapid growing agile and dynamic framework that is
usually used for web 2.0 applications. Typical Rails applications are business-oriented, situated mostly
in the project management, communication and productivity sector. Example web-based applications
include Twitter, Redmine, Bagback, Basecamp, Campfire.

The selection of this framework does yields various benefits:

Ruby and the Rails Framework are very dynamic environments. It is possible to inject the needed
sensor hooks through plug-ins, thus preventing time consuming patches to the framework

Rails provides a database abstraction layer. Through augmenting this capture of all database activity
is possible.

Typical Rails installation consist of multiple application servers that do not share anything1. A system
that can cope with this environment should be easily adaptable to multi-application environments.

There is currently no provenance solution that was adapted for Ruby on Rails.

Those features are commonly shared between agile high-level web-based development frame-
works.

All interfaces with sensors, storage and analysis systems are using standard open technologies,
through this decision additional systems and frameworks can easily adapted to the provenance system.

Extending the core System

Ruby on Rails supports the “monkey patching” approach2 for dynamically modified runtime appli-
cation code. The basic approach is best described by the following quote by Patrick Ewing given at
RailsConf 2007:

Well, I was just totally sold by Adam, the idea being that if it walks like a duck and
talks like a duck, it’s a duck, right? So if this duck is not giving you the noise that you
want, you’ve got to just punch that duck until it returns what you expect.

Monkey patching allows to augment Rails’ functionality with provenance-enhanced versions by
replacing the original objects with augmented ones as long as their signatures match.

5.2.2 Transport and Interfaces
Our provenance system is inherently a distributed system: sensors are distributed with the domain
system and communicate with the core provenance system through the network. Analysis applications
access the refined data through the network even if they might be employed on the same computer

1sharing happens through a shared database
2often also called “duck punching” or “duck typing”

40

Figure 5.1: Typical Ruby on Rails Stack

system. Internally the storage system is also communicated with through a network protocol to further
detangle the involved systems.

Transport Mechanism

We are utilizing the HTTP protocol as base transport means. It is a well known mechanism and its
adoption allows us to benefit from existing knowledge and focus on provenance problems. This re-
duces development costs and eases deployment of our provenance system.

For Authentication and Transport Level Security schemes as SSL/TLS can be reused. They pro-
vide both client and server authentication as well as security of transported data. In addition to the
provenance system’s provided policy mechanisms existing application-level firewalls can be adapted
to filter transported data. The firewall exist outside our provenance application’s realm thus providing
administrators the security that this security cannot be compromised by faults within the provenance
system. There exist multiple solutions based on HTTP for performance and fault tolerance. Examples
include load-balancers and caching proxy systems. And finally an additinoal benefit of using the HTTP
protocol lies in the good client-side library support.

Data Representation

We provide services through the network over HTTP. The services themselves adhere to the REST ap-
proach. Each document type is represented through a resource exported through an identifiable HTTP
object. Upon those resources common operations as CREATE, READ, etc. can be performed. We do

41

not support DELETE or UPDATE semantics as once gathered provenance data should not change.

Data within a resource is formatted either through JSON or XML, the client application can chose it
through the accessed resource. Data marshaling to and fro XML or JSON is provided by the underlying
Ruby on Rails framework.

5.2.3 Sensor

We implemented the sensor as a Ruby on Rails plugin. This allows us to extend the Ruby on Rails
framework through a technique called “monkey-patching” without imposing change requirements upon
domain applications.

The sensor utilizes Ruby on Rails’ ActiveResource framework to access the provenance system.
It allows the sensor to transparently perform the Ruby Object to HTTP request mapping. This is
performed without prior schema information the structure of the resource is created within the Ruby
source code itself.

5.2.4 Back-End

The backend is written in a minimized Ruby in Rails system. We removed most of the database, email
and HTML capabilities as we depend solely upon our graph storage engine and XML/JSON formated
REST resources. Future Rails versions (post 3.0) will make this easier as the framework is redesigned
to be more modular.

We create the SPARQL queries to the storage system without any support library as this enables us
to include vendor-specific language extensions.

5.2.5 Storage Technology

As a back-end store we have chosen Franz’s AllegraGraph which is a graph-based tuple store. For
information why we prefer graph stores over traditional storage solutions please consult the prior chap-
ters.

The reasons for choosing this storage solution were:

• existence of an free edition (which 50 million tuple limit is not a problem for short-term tests
with this prototype).

• wide interface options: the web site states that there are various libraries available for Java,
Python, Ruby, etc. In addition there are also various HTTP interfaces to the storage system.

• Availability of a graphical query tool that helps with rapid application development

During implementation of the prototype we discovered various problems and shortcomings with
Allegra OpenGraph. The ruby bindings (which are implemented as an extension to ActiveRDF) were
unstable and did not provide all needed functionality (as data insert). In response to this we moved
to using the “new HTTP” interface which provides a simple and efficient interface for insertion and
querying through SPARQL. Alas this led to a tuple store that made usage of the graphical query tool
impossible due to database format version conflicts.

While this seems rather disappointing at first it has lead to long-term benefits for the storage system.
As we just depend upon HTTP commands with SPARQL payloads for communication with the storage
system it is rather independent of the back-end store. By usage of a backend-dependent library the
storage system would be closely tied to a specific backend solution. Also the network boundary acts as
a legal limit with regard to license and copyright concerns.

42

Storage Interface Within the storage and integration system a small layer abstracts storage system
access. The current system assumes a graph-based storage backend but interfaces to alternate backend
technologies can also be implemented.

To access the graph store (AllegraGraph) the new HTTP interface was selected. Franz also provides
Ruby ActiveRDF bindings for its database system but their stability was unsatisfactory w.r.t. the tests
performed. That all communication with the graph system happens through a standardized HTTP
protocol also prevents any software license problems3.

5.3 Provenance Gathering

Ruby on Rails uses a simple process model: there is one process or thread per user request. This allows
simple storing of provenance information in a per-thread store which is setup at the beginning of each
request and forwarded to the storage system at the end of a request.

This send operation can be done asynchronously to speed up performance but the system currently
does this synchronously as this eases development and allows interactions from the provenance system
to the application system.

The prototype’s data gathering is tightly integrated within the Ruby on Rails execution engine. It
works synchronously, i.e. it delays an action’s completion until the provenance operation is completed.
A failure within the provenance system is propagated back into Ruby on Rails and prevents data storage.

This allows the provenance system to interact with the application domain system. An advanced
prototype might utilize this behaviour to prevent fraudulent data from entering the domain system. It
also introduces a performance drawback.

Another approach would be an asynchronous system. Provenance data would be passed from the
provenance sensor to the storage system without waiting for the later’s response. This would improve
performance but also endangers provenance data integrity. A reliable storage and transport mechanism
introduces most of the overhead of a synchronous system.

A context store is used for provenance information saving. During operation execution provenance
related information is stored therein and after the operation is completed its contents forwarded to the
provenance storage system. All data operations happening during on service call gets aggregated and
sent to the storage system.

5.3.1 Sensor Interface
As we expect various sensors to interact with the storage system a simple and easily accessible interface
is important. To achieve this we opted for a RESTful JSON or XML interface transported over HTTP.
One reason for choosing this type of interface is good support by programming languages.

The top-level element is fragments which consists of a list of one or more fragments. Sensors can
capture multiple provenance fragments (e.g. multiple update operations) and transfer them in batch to
improve performance. A fragment describes an altering operation within the application domain. Its
contents can be seen in Figure 4.1, a conceptional overview is given in Figure 4.5.

The focus on well-known protocols such as HTTP yields additional benefits. Transport-level secu-
rity and safety procedures are well known and can be adopted to use with our system. The same goes
for redundancy and fault tolerance. Standard HTTP-aware equipment as Proxies, Caches, Firewalls or

3that might have happened when including a patent-encumbered software library

43

Load-Balancers can be used in conjunction with the sensor and analysis interface.

Our first implementation opted for sensors that generated triples that were forwarded to the storage
system. This lead to complex sensor implementations especially when dealing with identity detection
or deduplication and lead to provenance problems: many tuples had to be transported from the sensor
to the storage system, collecting and batch-transferring would require explicit transaction support.

The final RESTful interface solves that problem. The sensor just captures provenance data and
forms one XML document per observed object update. This in turn is analyzed by the storage system
and then split into multiple tuples.

5.3.2 Generic Pattern for unobtrusive Provenance Gathering

One obstacle that prevents wide-scale provenance adoption is the effort needed on part of the domain
software developer. This effort is centered upon integration of provenance gathering means with the
domain-specific application. Sensors that generate monitored provenance lift this burden as long as
they act unobtrusively with regard to the implementing software developer.

Our sensor implements automated unobtrusive gathering of monitored provenance. This can be
achieved without any user or application developer intervention. There are two data pieces that cannot
be gathered through automatic means: those are supplied by user-provided callbacks, making the sensor
a hybrid monitoring and disclosed provenance sensor.

Architecture of the Automated Sensor Subsystem

The storage system is oblivious to the employed sensor architecture. Any sensor must confirm to the
storage-sensor protocol and its supplied data is verified by the security and policy system. This allows
flexibility with regard to utilized sensors.

Our sensor integrates with the domain framework and monitors data access through this framework
data access system. This allows it to gather data provenance while performing on the higher workflow
level.

For each performed domain data manipulation operation a provenance log with all prior data access
leading to the operation is recorded. After the monitored service has completed execution but before
its result is returned to the consuming client the provenance logs are enriched with process and user
information. This final provenance fragment is then forwarded to the storage and analysis application
for further inspection and integration with the already gathered provenance information. This leads to
a natural transactional communication pattern between sensor and storage system.

Our sensor utilizes much of Ruby’s dynamic nature and is able to provide almost all provenance
information,small additional information is gathered through software callbacks implemented by the
application’s software designers. While this is aided Ruby’s dynamic nature its fundamental techniques
can easily be adapted to other languages.

5.3.3 Augmenting Ruby through Monkey Patching

The plugin utilizes monkey-patching 17;30;48 to enhance Ruby on Rails’ Data Access Layer (ActiveRe-
cord 5) and request processing mechanism (ActionController 4) by capturing means. This allows detec-
tion of all object data manipulation actions. The resulting log files are forwarded to the Provenance
System.

44

5.3.4 Integration with Ruby on Rails’ Data Layer
Ruby on Rails’ default data access layer consists of ActiveRecord which is based upon the access
technique of the same name 22. The following object manipulation statements are monitored for prove-
nance:

item instantiation is done for each loaded or queried item. This kind of access is interpreted as read-
access upon the loaded object. Logging access on each object’s attribute would impose a too
high performance hit. Ruby on Rails also supports dirty-marking of changed data: this allows us
to detect the changed attributes when they are stored without additional overhead.

item.create is called when a newly artefact is stored for the first time. This action generates most Open
Provenance Model relationships with help of the information in the context store.

item.delete notes which user is responsible for the destruction of an artefact through which process.
This operation is not foreseen by the Open Provenance Model and is a custom addition by me.

item.update is called when an artefact is updated. It generates almost the same relationships as the
item.create operation, the only difference is the addition of a special relationship (direct-ancestor-
of) to specify that the parent and child artefact are closely related.

There are also various relationships that are captured on a per-request base. Those do not change
with each data access and thus are only calculated when the context store is initialized:

process name stores a short description of the controller and action that executed the current operations

user cannot be determined automatically. In a typical web application the system user does not reflect
the “domain” user that executes an operation. To solve this the developer can fill in a callback
that supplies this information.

system this user-definable callback allows a simple human-readable name to better identify involved
systems in the provenance graph.

Currently the following Rails operations and queries that bypass Ruby on Rails’ Data Access Layer
are not supported. Support for the former could be implemented by augmenting the data access layer
while comprehensive capture of the later information would require an additional low-level SQL sensor.
For example Trio could be utilized to provide low-level provenance data based upon SQL queries for a
database.

5.3.5 Ease of Use
One problem of provenance system is their intrusiveness and the associated costs of creating adequate
instrumentation in existing solutions. Our System was written with minimal developer overhead in
mind.

We implemented the capturing component as Ruby on Rails plugin which can easily be added to
an existing Rails application like any other plugin:

Listing 5.1: Plugin Setup Procedure

$ git submodule add git://github.com/andreashappe/open-provenance -sensor
vendor/plugins/provenance

$ git submodule init
$ git submodule update

By default the capturing system forwards provenance information to localhost:4000. More de-
veloper interaction is not needed for enabling provenance gathering. To improve the quality of the
provenance information developers can add limited data about user and system information. This can
be supplied by augmenting models inheriting from ActiveRecord::Base.

45

Listing 5.2: Providing additional Information

class SomeDataModel < ActiveRecord::Base
def get_user_information
"this is the user-id that will be used"

end

def get_system_information
"human readable description of the system"

end
end

The system information is primary for human usage: it helps the analytics user to differate between
involved systems. The user information is of high importance, many analytics operations depend upon
it and it cannot be gathered automatically (the user seen by the sensor will be the same, mostly www-
data for web based systems and not the user on which behalf an operation was carried out).

5.3.6 Policy and Access Control
Our approach automatically captures provenance information for each persisted domain object. Various
reasons exist for non-comprehensive monitoring:

• some sensitive domain data should not be auditioned or shared with the provenance system

• there’s just no need for provenance of some objects

• performance considerations prevent provenance gathering for some objects

To suite all needs our system provides two capturing schemes. When using the “eager” scheme
all data access objects that are derived from ActiveRecord::Base are monitored for provenance. In an
Ruby on Rails application this captures all database access. With the “lazy” scheme no automatic aug-
menting of data access objects is performed. Application developers need to extend the to be monitored
data objects with the capturing module.

Listing 5.3: Different Capturing Modes

class EagerCapturedDomainObject < ActiveRecord::Base
when the eager-mode is activated every data access
originating from descendants for ActiveRecord::Base
is captured

end

class LazyCapturedDomainObject < ActiveRecord::Base
has_provenance

with the lazy mode only domain objects that include
the has_provenance extension are monitored for provenance

end

Domain applications differ through their sensor requirements. For example, most web-based appli-
cations primary depend upon databases for file storage while others prefer files for persistence. Which
data sources are monitored by the provenance solution must be configurable. We achieve this through
the multi-sensor approach. As our system is designed for multiple sensors the different scopes, e.g.,
database- or file-based capturing, can be extracted into different sensors. The domain application only
includes plugins for sources that it is interested in. This also minimizes the impact upon domain appli-
cations: as each sensor is designed for exactly one capturing type and technique unneeded functionality
is not included into the domain application.

46

Access control is given through an accept and a block list. Each lists consists of provenance
fragments, regular expressions are employed to provide some filtering. This concept is powerful enough
for describing all possible occurrences of provenance fragments, even complex ones, e.g.:

Listing 5.4: Example ACL configuration

whitelist:
document_fragment:
id: ".*"
class: "document"
user: "andy"
system: "rails"
process: ".*"

capture_all_of_user_linh:
id: ".*"
class: ".*"
user: "linh"
system: ".*"
process: ".*"

This allows the user “andy” to submit provenance fragments of class “document” through the
“rails” system. It would also be possible (through the “process”-hook) to limit the controllers or ac-
tions that a user might execute for provenance gathering, this allows very selective provenance gather-
ing. The other rule allows the user linh to capture provenance for everything.

While this is possible it might not be too user-friendly, but this can be solved by a separate appli-
cation that is used to model and create those access control rules. This has the advantage that the core
system can still be kept small and simple while system developers can still be provided with the means
of implementing a complex rule set.

Detection and Verification of an sensor’s identity is not scope of the provenance system itself. We
are relying upon well known technologies for data transportation and those lend well tested means
for achieving this. If sensors need to be identified and the transported data secured SSL can be em-
ployed. Client-side SSL certificates also provide identity validation while it’s transport level encryption
provides security of transmitted data. This design decision allows concentration upon provenance prob-
lems and prevents redundant implementation of well known techniques.

5.3.7 Sensor Interface Format

Using the tuple format for sensor data transportation leads to various problems. As each tuple creates a
single HTTP request transport overhead is high. To solve this we would need to introduce a transaction
mechanism to the data capturing interface. This would violate the “stateless” approach of the REST
paradigm.

To solve this problem we introduced a structured capture interface for sensor data detailed in Fig-
ure 4.5, its elements are described in Table 4.1. This format encapsulates data of various monitored
applications into a inherently transactional format. As it captures a request into one atomic message
it aids third-party filtering through application-level firewalls. With the prior format a filtering proxy
would need to assemble the data of a transaction itself which is an error-prone and expensive operation
that is avoided with the later format.

An example of transmitted provenance data can be seen in Figure 5.2. This example shows prove-
nance for a newly created “experiment” with identifier “1”. It shows which process was responsible for
the new document and on behalf of which user it was executed. The “prior_read” array lists all other

47

Listing 5.5: Example of a Sensor Provenance Fragment
fragments:
fragment_1:
type: create
provenance_artefact:
id: 1
class: experiment

timestamp: Sep 27, 18:14
user: andy
process: experiment -create -111
system: rails
prior_read:
artefact_1:
id: 1
type: data

artefact_2:
id: 4
type: data

fragment_2:
..

Figure 5.2: Example of a Sensor Provenance Fragment

artefacts that were involved in the creation of the new domain document. Multiple fragments can be
grouped together and transmitted with one HTTP request.

5.4 Integration and Storage

Ruby on Rails was also used for the integration system. This allowed rapid development of needed
functionality. The storage itself was Franz AllegraGraph which will be described in a later section.

Recent developments have shown that we could remove the Rails dependency of the storage system
and write a pure Ruby system. While this would remove software dependencies for the storage system
itself the benefits have not been enough to warrant this rewrite: the Rails’ sensor as well as the analysis
system still would depend upon Rails, thus again creating the dependencies that the storage system
would have lost.

5.4.1 Extending the core System

Domain-specific extensions need means of extending the core system while staying generic. These
standardized interface also keeps extensions modular and enable interchangeability between exten-
sions.

The storage and analysis system was written utilizing Ruby on Rails and inherits its extension
mechanisms. Plugins are allowed to change almost all internals of existing code and can provide addi-
tional analysis methods and interfaces.

We distributed the functionality of our provenance system to better suit subsequent monkey patch-
ing. This allows software developers to replace our default capabilities with specialized functionality
by adding plugins to the provenance system’s Ruby on Rails system.

48

5.4.2 Distributed Back-end Storage
Provenance analysis must be performed centrally. The integration steps need atomic access to the full
provenance data continuum. While processing needs to be centralized the underlying storage can still
be distributed. This yields benefits as improved performance or higher data safety through redundancy.

As the storage and analysis system encapsulates all data access exchange of the underlying data
access technology is possible, candidates have been shown in Section 3.3.2. We focus on graph-based
storage accessed through a HTTP protocol. This allows usage of existing solutions as web proxies or
HTTP load balancers for performance and safety gains.

decentralized
Sensors

...

Preprocessing

Analysis

Storage

contralized
Storage and
Analysis
System

Distributed
Storage
Backend

Figure 5.3: Storage System and its relationship to Sensors and Storage

5.5 Provenance Access Interface

This sections describes some details that concern themself with analysis application access to the prove-
nance storage system.

5.5.1 Access Control
The analysis interface allows extensive reasoning about a systems data and the processes altering that
data it must be protected from malicious users. As there is currently no standardized security model
for graph-based data the security checking must be done on access level and might be later be extended
through an intra-data security model.

We do not provide any means of protecting the HTTP interface. In a productive system this can
be easily be done through employing accounting reverse proxies (e.g. apache) or application-level
firewalls. This methods are well known and tried and can easily extend the provenance system’s func-
tionality without adding further complexity to the provenance core.

This is another area where my reliance upon open and well known protocols and standards sig-
nificantly aids the development of the provenance system by delegating tasks to tried and accepted
systems.

49

5.5.2 Logical Data Model
Experiments have shown that a graph based data model is well suited for storage but its usefulness is
limited for communication purposes. To provide application developers with a better interface to the
stored provenance data we introduce an RESTful provenance interface. The underlying data model can
be seen in Figure 5.4.

Artefact
+id
+user
+controller
+action
+system
+timestamp

Domain Document
+identifier
+class

User
+name

Process
+controller
+action
+system
+timestamp

*

created by*

utilized by*

derived from

*

*

executed by

*

Figure 5.4: Conceptional Analysis Data Model

Path Description
/artifacts high-level overview about artefacts
/artifacts/id provenance for one artefact
/artifacts/id/trails provenance family for the domain object
/processes/ high-level overview about processes
/processes/id information about one process
/processes/id/descendants information about processes that are logically de-

pendent upon this process
/identities/ high-level overview about known users
/identities/id provenance information for one user identity

Table 5.1: Analysis Interface Resources

Changes to domain documents are reflected by artefacts which represent exactly one change in
a domain document’s state. Each change is performed through a process that was executed within a
system on behalf of exactly one user.

This simplified model provides the same data as the graph-based provenance model but incorpo-
rates a format that can easily be utilized by analysis applications. The RESTful API can be enriched
by additional sub-resources to provide additional analysis capabilities4 while keeping the existing API
stable. An overview of provided resources can be seen at Table 5.1.

External applications utilize the offered resources as an programming interface. The various in-
volved elements and their description can be found in the following section. Concrete examples of
those resources can be found in the Experiment chapter.

4as was done for process’ descendants or artefact’s trails

50

Artefacts

Each artefact describes the creation, alteration or destruction of one domain object, its elements are:

Element Type Description
artifact-id numeric identifier in conjunction with type describes the

domain object
artifact-class String the type of the domain object
timestamp Time when was this artefact created?
generated-by Structure describes the process and user that gen-

erated this artefact
derived-from List of Artefacts shows artefacts that utilized this artefact

during their creation
was-derived-from List of Artefacts shows each artefact that was involved in

the creation of this new artefact
direct-children List of Artefacts show direct children: these are new ver-

sions of the artefact that describe subse-
quent updates to the domain object

The retrieved information includes:

which other artefacts were involved its creation: this is shown through the derived-from collection
which includes all artefact that were utilized during creation.

direct artefact metadata: this describes the domain object, this includes its artifact-id, artifact-class
and timestamp

which other artefacts used this artefact: this information is provided by the was-derived-from col-
lection. The record also includes Direct-child relationships that show that derived artefacts are
direct children, i.e. the child is a new version of the same domain-specific object. This denotes
an updated domain object.

generated-by provides information how this change came to be: as shown by generated-by. This
shows which Ruby on Rails controller was responsible for the artefacts creation (controller,
action, system), the process that was used (process) and the user in charge of the operation
(user).

Indirectly referenced provenance is not shown within the fragment to preserve efficiency and must
be queried through the referenced object’s resources. For example to retrieve process information
the process resource (“/processes”, see Listing 5.7) can be retrieved. This is especially needed for user
information as this is only contained within the detailed process information and not within the artefact.

The following example shows a provenance artefact encoded in XML:

Listing 5.6: Example Provenance Artefact

<hash>
<was-derived-from type="array">
<was-derived-from>
<artifact -type>Artifact</artifact -type>
<subject>artifact_64359</subject>

</was-derived-from>
</was-derived-from>
<artifact -id>"4"</artifact -id>
<artifact -type>Artifact</artifact -type>
<generated -by>
<controller>"documents"</controller>
<action>"create"</action>
<user>andy</user>
<process>

51

documents -create -38600a7934b384aef21ca1825d8f25ffb38629ef
</process>
<system>Rails</system>

</generated -by>
<derived-from type="array">
<derived-from>
<artifact -type>Artifact</artifact -type>
<subject>artifact_2506</subject>

</derived-from>
</derived-from>
<direct-children type="array">
<direct-child>
<artifact>artifact_64359</artifact>

</direct-child>
</direct-children>
<artifact -class>"Document"</artifact -class>
<timestamp>"Wed Jul 22 08:41:46 UTC 2009"</timestamp>

</hash>

Processes

Each artefact must be created through a process that was executed on behalf of an user. The provenance
information describing each process is:

Element Type Description
process-id identifier unique identifier for this process
system String user-supplied identifier of the in-

volved system
controlled-by User Identity who executed this process
controller String describes the rails controller that

was used
action String describes the action that was exe-

cuted
used-artifacts List of Artifacts which artifacts were read during

process execution
deleted-artifacts List of Artifacts which artifacts were destroyed dur-

ing process execution
created-artifacts List of Artifacts which artifacts were created during

process execution. These describe
all created and updated domain ob-
jects.

Table 5.2: Process’ Elements

This data allows to trace process execution as well as monitor all created, altered or destroyed arte-
facts. Artefacts are referenced by their provenance store internal identifier and further information can
easily be accessed by accessing them through their REST resources.

The following example shows a simple process provenance record:

Listing 5.7: Example Provenance Process

<hash>

52

<created-artifacts type="array">
<created-artifact>
<artifact -type>Artifact</artifact -type>
<subject>artifact_34870</subject>

</created-artifact>
</created-artifacts>
<controller>"documents"</controller>
<artifact -type>Process</artifact -type>
<process-id>"9cdd5dfb7f8d53b1dc7b0ba168caf797c8ad691c"</process-id>
<deleted-artifacts type="array"/>
<action>"create"</action>
<controlled -by>andy</controlled -by>
<used-artifacts type="array"/>
<system>Rails</system>

</hash>

Identities

Identities describe user-specific information.

Element Type Description
name String identifier for this user
processes List of Processes recently executed processes that

were executed on behalf of this user
generated-artifacts List of Artifacts recently generated artefacts

Table 5.3: Identity’s Elements

5.5.3 Work-Around SPARQL shortcomings
SPARQL does not support advanced features as sub-queries or path-based expressions. Various queries’
efficiency depend upon those features. For example, when searching for all descendants of an artefact
(all direct and indirect other artefacts that depend upon the artefact) the program flow resembles Figure
5.5. Actions written in italics are send to the backend storage system, boxed actions interact with the
analysis application.

If the query language would support advanced features for defining paths between nodes the pro-
gram flow would be simplified to the flow pictures in Figure 5.6. This would remove the need for
the retrieval loop within the storage and analysis system and would spare round trips thus improv-
ing performance. As the analysis component encapsulates data access technology future versions of
the storage system can switch to another query engine supporting this functionality without imposing
changes upon existing analysis applications.

53

Analysis app
calls get_descendants

query storage backend
for direct descendants

add descendents to the
result collection

retrieve descendent of
result collection

y

n

Are there
unresolved
children in
the result
collection

Send results to the
Analysis application

Figure 5.5: Program flow for gathering an action’s descendants

Analysis app
calls get_descendants

query storage backend
for descendants

Send results to the
Analysis application

Figure 5.6: Program flow for gathering an action’s descendants with path expressions

54

CHAPTER 6
Evaluation

Scientific method consists of collection of data through observation and experimentation, and the for-
mation and testing of hypothesis 18. An important part of observation and testing is documentation.
It allows subsequent verification and reenactment of executed experiments. Scientists are responsi-
ble for creating those documents: this imposes tedious work upon them and its results are subject to
fluctuations in quality. Automated systems can overcome this problems.

We introduce an experiment management system that utilizes Genesis2 for experiment testbed
deployment and Agile Provenance for history gathering and storage. We show that our software stack
avoids time-consuming user interactions for documentation and provenance gathering while providing
a rich dataset for later experiment evaluation and verification.

6.1 Experiment Management

Experiments are an important part of scientific workflows as they allow falsification of theses 53. Their
documentation is paramount for presenting scientific claims. Experiment Management Systems (EMS)
are used to automate experiment execution and documentation; they concern themselves with the fol-
lowing phases of an experiment’s life cycle 38;39:

experiment design describes the systems and their behaviour during experiment execution

experiment deployment uses the entered testbed configuration to create and deploy the testbed. The
test application must be able to interact with the deployed testbed without modifications that
would taint the tested behaviour.

data collection must be performed during experiment execution. The data should be preprocessed and
presented to the end user in an usable manner.

The origins of experiment management systems were simple log entry tools as scientists’ notepads.
Automation, esp. computers, has increased the amount of generated data so that integrated and auto-
mated experiment management systems become necessary 38.

6.1.1 Responsibilities

Experiment Management Systems remove repetitive tedious tasks from scientists. They also guarantee
constant quality of captured experiment data. An EMS is employed during the whole experiment life
cycle.

55

An experiment is created by a scientist by definition of a testbed. The testbed consists of one or
more communication endpoints that are consumable by the testbed application. After each endpoint’s
behaviour was specified by the scientist the EMS transforms the configuration data into concrete ser-
vices and deploys them as testbed.

After the testbed was deployed the test application can be executed. During its life cycle its com-
munication to and fro the testbed needs to be monitored and captured for later analysis. The sensor
mechanism must be designed and employed in a way that does not taint the observed behaviour: other-
wise the resulting captured data would not allow reasoning about the original test application.

The captured data must be presented to the scientist in an usable way. In addition the experiment
management system should allow third-party applications to access the retrieved capture data. The
configuration stored within the EMS must be an image of the current configuration within the real
testbed.

Experiments evolve over time. They must change to altered test parameters or are adapted by other
scientist to suit their distinct experiments. The EMS needs to store information about all evolutionary
steps and must be able to recreate any former state. This can be employed to recreate and verify
old experiments and provides the experiment documentation and provenance needed by the scientific
method.

6.1.2 Existing Components
We did not write the Experiment Management System from scratch but were able to reuse existing
components:

Genesis creates and deploys testbeds for service-oriented architectures 34 . Testbeds are modeled
through a scripting language on the front-end host, their services are distributed throughout one
or more backend hosts.

The model is not persisted and interactions between the test application and testbed services are
neither traced or logged. No provenance information is collected or stored.

Provenance System is the system described within this master thesis. It consists of sensors forward-
ing provenance fragments to a central integration and storage system. The sensors capture prove-
nance in an automatic and unobtrusive manner, the collected and refined information is provided
to external applications through an separate interface.

Management System is used to bridge the gap between domain application (Genesis) and the prove-
nance system. Its task is configuration of testbeds as well as storing experiment execution data.
It utilizes Genesis to generate testbeds from stored configuration and the provenance system for
gaining historical data.

6.1.3 Contributions to the Provenance System
Supplementary to our Provenance System additional components were needed to integrate Genesis into
our solution. Those components are:

Genesis2 plugin for model observation captures any model modification and forwards new testbed
models to the management system. This provides monitoring of experiment configuration.

Genesis2 communication monitor captures all communication between the testbed and the tested
application. The communication logs are forwarded to the Management System.

Management System allows configuration and deployment of testbeds. In addition it allows analysis
of captured testbed logs. Through provenance changes within models or communication patterns
can be detected and presented to the user.

The Genesis2 plugins should enable data capturing without any modifications of existing Genesis2
systems nor code base.

56

6.2 Architecture

The overall architecture can be seen in Figure 6.1. The Management System bridges Genesis (seen
through its front and backend systems) and the Provenance System. Entered testbed configuration is
used through Genesis to create and deploy a testbed. Within this testbed a Test Application can be run,
all occurring communication is forwarded to the Management System. The Management System’s
data pool is monitored by the Provenance System, which captures provenance trails for all occurring
operations. The user only interacts with the Management System for testbed configuration and log
visualization.

generates and

deploys

Management
System

Genesis
Frontend

Genesis
Backends

Provenance
System

Model
Description Execution

Data

Provenance
Fragments

Configuration

Provenance
Store

Analysis
Application

refined data

Tested
Application

interacts

Figure 6.1: System Architecture

6.2.1 Genesis
Genesis consists of one front-end and various back-end systems. Model configuration takes place at
the front-end component. This generates service endpoints containing operations which are distributed
throughout the backend components. Testbed model configuration is only transient, no information is
persisted.

Configuration Language Genesis uses a Groovy 35-based language for configuration (as can be
seen in listing 6.2). Configuration scripts configure hosts, services and operations contained within
those services. The concrete implementation of one operation is given directly as Groovy program.

An example genesis configuration script can be seen in Figure 6.2. This short code segment defines
a host containing a simple operation helloworld that returns the sum of its input parameters. In addition

57

Listing 6.1: Example Genesis Configuration
def h = host.create("testhost",8181)

def sl = webservice.build {
testservice() {
onDeploy = { println "deployed" }
onUndeploy = { println "undeployed" }

helloworld(a: long, b: double, response: String) {
"got $a and $b"

}
}

}

def s = sl [0]
s.bindTo(h)
s.deploy()

Figure 6.2: Example Genesis Configuration

functionality for callbacks (onDeploy and onUndeploy) is provided. Finally the service is bound and
deployed to the backend host testhost.

Implementation Genesis is implemented in Java with an embedded Groovy interpreter for system
configuration. Functionality is provided through plugins, this allows a very modular system.

6.2.2 Provenance System
The provenance system integrates and stores provenance fragments. Its provenance data is utilized by
the Management System for retrieving experiments’ and models’ histories. This enables retroactive in-
spection of an element’s change history, showing which users altered which aspects of a testbed. As the
captured data is also stored by the provenance system changes in the test application’s communication
patterns can be related to testbed configuration changes.

Data Format Internally data is stored as a graph confirming to the Open Provenance Model 42. For
better accessibility the Provenance System provides an object-oriented REST interface 20;25 to stored
data. Data is grouped into the following resources:

artefacts describe one concrete state of an stored object. As an object is changed through time it
generates multiple artefacts, their sum describes how an object came into being.

processes which software processes are responsible for artefacts?

users which users are responsible for the execution of software processes?

The “Management System” uses those resources to gain historic data about experiment configura-
tion and its related execution logs.

6.2.3 Management System
The Genesis system does not persist information about the current model after deployment finishes.
The provenance system describes changes upon persisted domain objects. To bridge this gap the Man-
agement System persists the current configuration and captured experiment data within its database
which can be monitored by a provenance gathering sensor.

58

Data Model

Configuration and trace data is persisted through ActiveRecord 37 objects. The data model includes
experiment configuration as well as experiment trace data. The former is gained from Genesis’ Groovy
experiment definition while the later is gathered during experiment execution.

Service
+host: string
+port: integer
+service: string

Operation
+in: xml
+out: xml
+implemented_by: code

Invocation
+timestamp: timedate
+in: data
+out: data

*

*
*

Figure 6.3: Management System’s Data Model

The data model (as seen in Figure 6.3) consists of few database tables. A Service uniquely iden-
tifies one communication endpoint which can be contacted by the tested application. Each endpoint
consists of one or more operations. An operation has an incoming and outgoing signature describing
parameters and their format. In addition we store information about the operation’s implementation
or configuration. During experiment execution an operation can be invoked, in that case we store all
messages going from and to the service as well as their timing information.

The data continuum is monitored by a provenance sensor. This allows reflection upon changes
within one data object, e.g. we can detect configuration changes and changes within the trace data.
Our data model lacks most typical provenance information as timestamps, revision history for stored
objects or user operation trails as those can be automatically provided by the provenance system.

User Interface

The Management System also provides a simple end-user interface implemented as a traditional web
application. It allows creation and modification of experiments as well as browsing through corre-
sponding capture logs. Examples of the user interface’s output will be shown throughout the Evaluation
chapter.

6.3 Integrating Genesis

Interactions between GEMs and Genesis consist of three distinct variations: first the testbed configura-
tion entered into the Management System must be converted into a Genesis-compatible form and then
utilized by Genesis to deploy a testbed. Second the Genesis-internal testbed model must be monitored
for changes. This detects alterations which happened because of direct user interactions as well as
mis-transformed data models from the Management System. And last communication data during ex-
periment execution must be captured and persisted to document the experiment. Additions to Genesis
should leverage its plugin mechanism to keep the Genesis impact minimal. Each following section will
detail on of those aspects:

59

6.3.1 Testbed Configuration Monitor

The front-end is augmented with a small sensor component which forwards model information to the
Management System. The testbed model itself is not stored at the front-end component.

The ModelWatcherPlugin installs a Genesis-wide plugin watcher. Each instantiated plugin is ob-
served by an unique PluginWatcher instance. A plugin can export various model types, a service
consists of various of those instantiated types. The Plugin investigates all data types exported by a
plugin for possible instances of the WebService type. If found the PluginWatcher installs one WebSer-
viceObserver which will be called for each model change.

The plugin traverses through all affected hosts and their deployed operations. It creates a snapshot
of each current operation and forwards this information to the Management System. This traversal also
resolves a discrepancy between Genesis’ and the Management System’s data model. In the former one
operation can be deployed on multiple hosts while the later thinks one operation to reside exactly upon
one host. To keep the implementation simple a REST interface is utilized for this.

Implementation-wise our plugin registers a watcher on ModelChange-Events. If the actual event is
a DEPLOY event the plugin investigates all involved web services and extracts their information as sig-
nature, implementation, deployed locations etc. While the configure script can employ programming
techniques as loops or recursions the deployed operations are always atomic; their definition does not
contain external dependencies upon other web services.

Genesis2 creates a configured operation at the configured hostname but places the operation within
a canonical path that includes the operation’s type and an UUID. The UUID is not configurable but
can be detected by our sensor and is transmitted to the management system where it is presented to
scientists as read-only data attribute.

6.3.2 Testbed Communication Monitor

Testbed provenance describes how a testbed was configured, deployed and altered through time but
does not describe what happened during experiment execution. The tested application’s behaviour is
defined through messages that it exchanges with the deployed testbed.

We introduce the CommunicationInterceptor. It augments each deployed WebService with a slim
layer that captures all communication to and fro the encapsulated web service. The proxy approach
removes the need for direct instrumentation of the tested program, thus removing a possible source of
corrupted experiment logs.

The captured messages are encoded for usage within XML messages and forwarded to the manage-
ment system. There they are analyzed, related to configured endpoints and stored within the database.
As the management system keeps the actual testbed configuration incoming messages must always be
relate-able to one endpoint.

The management system also performs simple session reassembly: the communication interceptor
only delivers atomic messages (i.e., one incoming or one outgoing message). Through message order-
ing the management system is able to relate outgoing messages to prior causal retrieved messages.

6.4 Providing Provenance

Provenance is an important aspect for scientific workflow systems. It allows automatic documentation
thus supporting reproducing, sharing knowledge reuse of or within experiments. It also allows rea-
soning about unexpected experiment results and preparation of results for publication 12;54. Integrated

60

provenance solutions promises to be a chief advantage of scientific workflow solutions over traditional
systems 16;47.

Through usage of the existing Provenance System we hope to reduce redundant work for imple-
menting provenance gathering, storage and analysis facilities.

6.4.1 Provenance Capture

Our provenance solution provides sensors that integrate into existing Ruby on Rails 51 applications. We
employed those to augment the Management System with provenance capabilities.

The sensor is installed as any ordinary Ruby on Rails plugin 55 and needs minimal configuration,
mostly the location of the Provenance System. In addition two callbacks have been provided, one
to provide user information and one to identify the Management system through a simple human-
readable name. Through techniques described in 5.3.2 alterations to the management application were
prevented.

The inclusion of provenance capturing through the plugin-concept minimizes its intrusiveness upon
the domain application1. The application developer was able to focus upon other domain aspects and
treat provenance as an automatically supplied aspect.

6.4.2 Provenance Usage

The Management System needs to access the provenance system for needed information. Provenance
is represented through the REST paradigm 20. Ruby on Rails provides the ActiveResource 6 framework
for accessing remote resources. It is a thin dynamic layer that hides network interactions and dynami-
cally generates client-side methods for accessing remote resources.

The provenance system forbids direct access to the graph-based persistence store as there cur-
rently is no security system in place. Direct SPARQL-based access might be allowed when generic
graph-based security systems are available. Complex queries are implemented as resources within the
Management System.

Provenance information is provided through an REST interface. The management system utilizes
the Ruby ActiveResource-interface to automatically generate client-side access code. ActiveResource
also transparently (de-)serializes incoming and outgoing data between its Ruby and XML representa-
tion.

The stored information is represented through resources. Through searching through the artifacts
resource all revisions of a specific domain object can be found. To retrieve the full history trail can
be retrieved by accessing sub-resources of an specific artefact. An example of a Ruby script accessing
provenance information for an operation can be found at listing 6.5.

6.5 Evaluation

The evaluation is based upon a storyline detailing a workflow in the software engineering field. Through
the use cases benefits of GEMS and its components will be shown. The storyline is broken down into
various distinct operations. Each of them will be detailed through a separate section within this chapter.

1which is the Management System in this case

61

6.5.1 Illustrative Example
A software developer has designed a new service-oriented application. To test it and its interactions
with other services GEMS is employed. The software developer describes a testbed through the ex-
periment management system. He creates multiple endpoints which contain operations with defined
semantics. After the testbed configuration is finished the testbed configuration is transformed into run-
ning services and deployed. Throughout the experiment’s life cycle the testbed and test application are
deployed and verified. Each corresponding testbed change must be documented. This documentation
can be consulted to retrieve a high or low level overview of executed test applications and testbeds.
Through its various revisions the evolution of th test environment can be observed.

The software developer expects the following capabilities from the EMS system:

1. deployment of configured testbeds

2. automatic capturing of all communication within the testbed as well as capturing of testbed con-
figuration changes. This documents the test case without any user interactions.

3. display of the current testbed’s state

4. historical information about stored provenance configuration

5. capture and show all communication to and fro the testbed. This is valuable information and can
be seen as input and output to black box testing.

6. it must be possible to revert any prior testbed configuration to replay prior experiments

6.5.2 Experiment Configuration and Deployment
The management system provides testbed configuration through a simple web interface. Its declarative
nature allows easy listing and modification of already configured endpoints and operations. Another
benefit are the inherently multi-user capabilities: the configuration is stored on the central web server,
no additional document management system is needed for the configuration script.

After the user requests a testbed deployment the management system transforms the entered con-
figuration into a standardized Genesis2 Groovy script. The generated scripts possesses the advantage
of adhering to consistent structure and style guidelines.

The Genesis2 script is written to a temporary file which is passed on to the Genesis2 Java inter-
preter. It generates the testbed web services and deploys them to the configured hosts.

6.5.3 Experiment Configuration Capturing
We expect a management system to transparently detect and store any configuration change. It must
be agnostic to the change’s source: it should detect configured changes as well as ad-hoc changes done
during experiment execution. This approach enables various use cases:

• configured testbed models can be verified against their configuration: any derivations should be
detectable through a change to the stored testbed model.

• detect changes within the testbed during experiment execution. Testbed configuration changes
during testing. The automatic capturing of testbed changes enables automatic logging of changes
within the management system.

• transparently document testbeds. As missing endpoints and operations are automatically gener-
ated within the management system our solution transparently documents testbeds.

The Genesis2 front-end is augmented with a testbed model sensor. It detects deployed testbed ele-
ments and forwards configuration changes to the management system. There, the captured information
is split up and integrated with the currently stored testbed model. If deployed endpoints, services or

62

operations are not already registered the management system creates new configuration entries.

We evaluated this claim by running a simple test: first we configured a small test case within the
management system and deployed it. The deployment was monitored by our sensor, but as there were
no derivations from the configuration no change was detectable. To test the sensor we exported the
Genesis2 deployment script, altered it by hand and deployed it. Every change was forwarded to the
management system and integrated into the testbed’s configuration. To investigate an extreme case we
deleted all testbed configuration and executed various versions of our testbed scripts. After execution
was finished the management system contained the current configuration of the deployed testbed.

After executing the test case we investigate the stored provenance graph in Figure 6.4. While all
needed information is captured the large size of the provenance graph shows that queries upon it could
be tedious.

6.5.4 Testbed Provenance
The management system only stores an image of the current state of an experiment. We cannot com-
pare this to any former state as we lack that former state’s information. The evolution of the testbed
and its corresponding observed messages are lost with each newly deployed experiment. Alas this is a
very important part of the scientific method. We expect an experiment management system to provide
all this information.

Traditionally this functionality is provided manually by the EMS developer. We used a different
approach: as part my master thesis I developed an unobtrusive plugable provenance system that auto-
matically captures needed information from the domain application (in our case this is the EMS). We
added this capturing plugin and utilized the provenance system’s data interface for provenance queries.
This removed reduced the costs of implementing provenance capturing and storage completely, the
only remaining provenance effort were the domain-specific analysis queries.

The management system utilizes provenance for the following tasks:

• show history of endpoints and operations. Each modifying operation (as create or update) is
logged with its meta-information (timestamp, executing user and process, data dependencies).
This allows to distinct between changes entered within the management system frontend and
changes done through Genesis2 scripting.

• show detailed information for each object’s revision. As the provenance system is written with
object systems in mind it is able to provide change history on a per-attribute level. In conjunction
with the captured meta-information this generates a thorough “paper trail” of each monitored
object.

We were able to retrieve the wanted provenance information in an efficient manner. Examples of
querying the provenance system can be seen in 6.5.

6.5.5 Capturing Communication
The experiment management system cannot concern itself only with configuration data but must also
monitor all communication within the testbed. In our use case this involves capturing of transported
messages, othe user cases can involve ellaborate measurement mechanisms as physical bio-informatics
sensors.

The observation must no influence the experiment. Following this guideline we employed sensors
that transparently augment Genesis2. No direct alteration of Genesis2 or the to be tested application is
needed.

63

u
se

r
in

fo
rm

a
ti

o
n

 n
o
t

su
p
p
lie

d

Id
e
n

ti
ty

ty
p
e

8

a
d
_h

o
c_

e
x
p
e
ri

m
e
n

ts
-c

re
a
te

-a
4

a
1

e
5

9
2

1
8

7
8

a
f0

b
e
5

e
2

3
fc

f2
3

2
ff

b
7

fc
e
a
fd

1
2

c

co
n

tr
o
lle

d
-b

y

a
4

a
1

e
5

9
2

1
8

7
8

a
f0

b
e
5

e
2

3
fc

f2
3

2
ff

b
7

fc
e
a
fd

1
2

c

h
a
s_

id

cr
e
a
te

h
a
s_

a
ct

io
n

P
ro

ce
ss

ty
p
e

a
d
_h

o
c_

e
x
p
e
ri

m
e
n

ts

h
a
s_

co
n

tr
o
lle

r

R
a
ils

ru
n

n
in

g
-i

n

a
rt

if
a
ct

_2
0

0
2

0 u
se

d
_b

y

a
rt

if
a
ct

_8
7

1
8

8

u
se

d
_b

y

a
rt

if
a
ct

_5
0

2
6

0

g
e
n

e
ra

te
d
-b

y

d
e
ri

v
e
d
-f

ro
m

4

h
a
s_

id

a
rt

if
a
ct

_4
7

0
7

7

d
e
ri

v
e
d
-f

ro
m

a
rt

if
a
ct

_5
3

1
7

1

d
e
ri

v
e
d
-f

ro
m

a
rt

if
a
ct

_7
3

6
9

1

d
e
ri

v
e
d
-f

ro
m

a
rt

if
a
ct

_4
3

6
3

4

d
e
ri

v
e
d
-f

ro
m

A
rt

if
a
ct

ty
p
e

T
h

u
 A

u
g
 2

0
 1

8
:4

5
:2

7
 U

T
C

 2
0

0
9

h
a
s_

ti
m

e
st

a
m

p

E
x
p
e
ri

m
e
n

t

h
a
s_

cl
a
ss

a
rt

if
a
ct

_1
0

8
5

9

u
se

d
_b

y

D
a
tu

m

h
a
s_

cl
a
ss

ty
p
e

7

h
a
s_

id

a
rt

if
a
ct

_3
1

4
4

1

u
se

d
_b

y

u
se

d
_b

y

u
se

d
_b

y

a
rt

if
a
ct

_5
0

9
3

1

u
se

d
_b

y

a
rt

if
a
ct

_2
6

7
3

7

h
a
s_

id
u

se
d
_b

y

h
a
s_

cl
a
ss

ty
p
e

u
se

d
_b

y

a
rt

if
a
ct

_4
5

8
6

1

g
e
n

e
ra

te
d
-b

y

h
a
s_

id

d
e
ri

v
e
d
-f

ro
m

d
e
ri

v
e
d
-f

ro
m

a
rt

if
a
ct

_8
9

1
2

5

d
e
ri

v
e
d
-f

ro
m

M
o
d
e
l

h
a
s_

cl
a
ss

ty
p
e

h
a
s_

ti
m

e
st

a
m

p

a
rt

if
a
ct

_3
7

6
4

2

d
e
ri

v
e
d
-f

ro
m

u
se

d
_b

y

u
se

d
_b

y

h
a
s_

id

h
a
s_

cl
a
ss

ty
p
e

S
y
st

e
m

ty
p
e

a
rt

if
a
ct

_1
8

9
4

8

h
a
s_

id

g
e
n

e
ra

te
d
-b

y

d
e
ri

v
e
d
-f

ro
m

d
e
ri

v
e
d
-f

ro
m

d
e
ri

v
e
d
-f

ro
m

h
a
s_

cl
a
ss

ty
p
e

h
a
s_

ti
m

e
st

a
m

p

u
se

d
_b

y

Figure 6.4: Ad-Hoc Experiment Provenance result

64

Listing 6.2: Example Provenance Access
search for all artefacts for an Object of class Operation with id 2
an artefact describes one change that happened to one operation.
this generates /artifacts.xml?type=Operation&id=2
@artifacts = Artifact.find(:all, :params => { :type => Operation ,

:id => 2})

retrieve all trail subresources for the first retrieved artefact. This
resource provides a summary about all changes done to one operation
this accesses /artifacts/artifact_123/trails.xml
id = @artifacts.first.id
@trails = Trail.find(:all, :from => "/artifacts/#{id}/trails.xml")

take the first revision from the @trails collection and show its changes
@revision = Artifact.find(@trails.current_artifact_id).first
@revision.attributes.each do |name, change|

print "attribute #{name} #{change.before} -> #{change.after}"
end

Figure 6.5: Example Provenance Access through ActiveResource

To test the capturing plugin we deployed a testbed and executed a simple test application within
it. The test application periodically invokes the deployed webservices. The sensor generates com-
munication fragments which are forwarded to the management system where they are associated with
configured endpoints. Within the management system’s user interface the captured XML communi-
cation fragments can be listed and examined. This allows relating endpoints (their configuration) and
exchanged messages (i.e. their experiment behaviour). The provenance system adds versioning to the
storage: older versions of endpoints and communication fragments can be retrieved for alter examina-
tion.

6.5.6 Testbed Configuration Replay

A scientist has worked on an experiment through the last couple of weeks. To locate an error the testbed
was specialized to better trap the problem. After it was fixed the scientist wants to evaluate his solution
with his prior testbeds.

With a manual provenance solution (e.g. hand-recorded documentation) the scientist would need
to retrace all changes to the testbed and recreate the wanted testbed version. Through our automatic
provenance solution we can recreate any prior state of the testbed. The scientist can select one artefact
(as seen in an object’s history trail) or any point in time as reference point. The provenance solution
then creates a Groovy Genesis2 script that can be deployed.

To achieve this we access a special resources within the management system; the /archives/date.xml
resources. For each entered date it produces a Groovy representation of the testbed’s state at time date.
To generate this the management system performs the following steps:

1. retrieve a list of all testbed objects from the provenance system

2. get the last valid object version prior to the entered date (this has to be done for each object).

3. verify that all inter-object references are valid. When an object references another object the
provenance system must make sure that the referenced object’s version is valid during the refer-
encing object’s time frame.

65

4. convert the object collections into valid Genesis2 Groovy scripts. This functionality is shared
with “normal” testbed generation and deployment

This use case shows that the provenance system can be utilized to automatically create any former
state of an observed object model. While we utilize this ability to redeploy testbeds additional use
cases can easily be seen. Generally speaking any software system that needs a versioned or logged
state benefits from an automatic provenance solution

6.6 Conclusion

The combined software stack has been shown that automatic unobtrusive experiment documentation is
possible. The effort of creating the management system was concentrated upon creating and integrating
the management system with Genesis2, adapting the provenance solution did consume less than eight
percent of the overall project time and effort.

The provenance solution allowed us to unobtrusively capture the history of all monitored and per-
sisted objects. This provided the base data layer for experiment’s documentation and replay.

Within the provenance system the current graph-based storage engine and its query language
(SPARQL) were the biggest problems: due to SPARQL’s inherent limit 28 advanced queries had to
be broken down into simpler sub-queries; each of them needs a separate round-trip to the data store
thus reducing overall provenance performance. There is ongoing work on specialized provenance query
engines (i.e. Lorel 3) which will solve this drawback in the short term.

66

CHAPTER 7
Conclusion and Future Work

We have spilt the conclusion in four parts consisting of a general overview of the chosen architecture
and an examination of its larger components. Future steps are detailed for each part.

7.1 General Architecture

Our solution uses a centralized storage system for provenance compaction, persistence and analysis
(see Section 4.1). This concentrates provenance processing into one central component while simpli-
fying sensor design. The central system was augmented with a generic security subsystem (as can be
seen in Section 4.4.2) which is sufficient for multi-sensor architectures.

The architecture and its reference implementation depend upon well-published and open standards
as far as possible. Development tools, as protocol or log analyzers, were easily adapted for usage with
our system. Production environments gain access to security and distribution tools.

The architecture provides a clear separation between generic and domain-specific functionality.
The former is centered at the core while the later can be added through external applications utilizing
the analysis interface or through extensions to the core system. This leads to a clean software design.

7.2 Unobtrusive Provenance Gathering

Our sensor design provides unobtrusive provenance gathering through automatic capturing techniques.
This approach allows domain applications to focus upon their domain-specific tasks in a provenance-
agnostic manner. Experiments have shown (see Section 6.5.3) that the quality and quantity of au-
tomated gathered data within the Ruby on Rails framework is sufficient for subsequent provenance
analysis.

The captured provenance data is detailed enough for subsequent provenance analysis. Its quality is
independant from user activities as it is captured without direct user interactions. This is especially im-
portant if users might be considered malicious. Another advantage is the sensor’s independence from
the domain application implementation: through this the captured provenance data quality is guar-
anteed accross different domain use cases. The sensor’s scope can be configured by the application
software developer, this allows exclusion of data that should not be subject to provenance gathering.
This standardized format also allows easy re-combinations of storage systems and analysis applications.

67

Our implementation can be used as base for future sensors. This is aided through the focus upon
simplicity and open technologies. Ideas for initial beneficial additions could be:

Integrate direct provenance API into the instrumentation sensor. The gathered provenance data could
be presented in a language native format, for example in Ruby the provenance data could be im-
plemented as dynamic object attributes. Currently provenance information is represented through
objects separated from the domain’s objects.

Add additional sensors to the domain system. We provided a workflow-level database capturing
sensor but additional sensors can be added to domain systems in dependence of the business
domain’s needs. A low-level SQL sensor or a file-level sensor would be examples of different
gathering scopes implemented through add-on sensors.

Utilize unit tests to gather prospective provenance. Agile systems commonly depend upon testing
frameworks for verification of their codebase. Those unit tests could be utilized to provide a set-
actual comparison upon the provenance sphere. This would enable anomaly or fraud detection.

7.3 Storage System

Provenance information is provided through different formats within our solution: internal data han-
dling uses a graph-based form for storage and integration while a transformed object-oriented interface
format is provided for interactions between the storage system and external components as sensors
or analysis applications. Graph-based storage is well suited for persisting provenance information.
Provenance fragments are integrated without user intervention as long as identifiers between different
domain-systems can be matched.

Figure 6.4 shows one downside of graph-based provenance storage: the graphs grow large and are
hard to navigate. This representation is inefficient for network transport and hard to utilize by external
analysis applications.

The provenance graph’s security was not within the scope of this thesis. While basic security en-
forcement was imposed upon incoming and outgoing interfaces the stored data itself is not secured. We
hope that recent work on graph-based security will yield storage systems that will provide the needed
functionality.

The Evaluation has shown that the current graph-based storage engine and its query language
(SPARQL) were the biggest problems: due to SPARQL’s inherent limits 28 advanced queries had to be
broken down into simpler sub-queries; each of them needs a separate round-trip to the data store thus
reducing overall provenance performance.

Future steps should focus upon the storage component and its deduplication and query capabilities.
Techniques as common sub-expression elimination that would decrease the amount of stored prove-
nance but might degrade the analysis systems performance. Another approach is putting an compiler
optimization engine on top of the gathering subsystem: provenance data optimization and compiler
optimization share common characteristics. Inference engines should also be explored further. They
provide means of replacing redundancies while keeping the logical data model intact. Inference engines
are currently tightly bonded into the underlying storage engine: a generic inference engine designed as
part of the provenance system would be needed to keep the core system generic.

The former suggestions contain themselves within the storage system implementation, another
weak point is the current query interface. SPARQL is too limited in the long term and needs to be
replaced with a more powerful query language. A future step would be the development of a generic
query engine (using Lorel 3 or PQL) on top of our storage system.

68

7.4 Analysis Interface

Our reference imlementation stores provenance in a graph resembling the Open Provenance model.
This form mirrors provenance’s structure and leads to natural access patterns. In addition we gain auto-
matic deduplication and integration of provenance fragemnts. The graph form is not perfect for provid-
ing client-application access to to the provenance pool: it’s cumbersome to use, clients need to create
complex queries for gaining standard information. We provide a simple networked resource-based in-
terface which allows easy client-side interaction with the analysis data, further query functionality can
be implemented conforming to this method.

SPARQL lacks various features (most important sub-queries and variable paths) that had to be
emulated by the analysis subsystem. Vendor-specific extensions exist but taint the core’s generic prin-
ciples. Another approach would be the implementation of a dedicated generic stand-alone provenance
query language. This has been started by PQL and Lorel but there are currently no query engine im-
plementations available that could be integrated.

Advanced analysis techniques need to be employed over the gathered provenance data. The graph-
based nature of the provenance graph leads to the applying of social network techniques.

69

Bibliography

[1] A provenance project without an Author, f. n.d., ‘Applying provenance in organ transplant man-
agement’.
URL: http://www.gridprovenance.org/applications/OTM.html

[2] Abiteboul, S., Quass, D., Mchugh, J., Widom, J. and Wiener, J. L. 1997a, ‘The lorel query lan-
guage for semistructured data’.

[3] Abiteboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. L. 1997b, ‘The lorel query
language for semistructured data’, International Journal on Digital Libraries 1(1), 68–88.

[4] ActionController API documentation n.d., http://api.rubyonrails.org/classes/
ActionController/Base.html.

[5] ActiveRecord API documentation n.d., http://api.rubyonrails.org/classes/
ActiveRecord/Base.html.

[6] ActiveResource API documentation n.d., http://api.rubyonrails.org/classes/
ActiveResource/Base.html.

[7] Barga, R. S. 2006, Automatic generation of workflow execution provenance, Technical report,
Microsoft Research.

[8] Barga, R. S. and Digiampietri, L. A. 2008, ‘Automatic capture and efficient storage of e-science
experiment provenance’, Concurr. Comput. : Pract. Exper. 20(5), 419–429.

[9] Boag, S., Chamberlin, D. D., Fernández, M. F., Florescu, D., Robie, J. and Siméon, J. 2007,
‘Xquery 1.0: An xml query language’, World Wide Web Consortium, Recommendation REC-
xquery-20070123.

[10] Braun, U., Garfinkel, S., Holland, D. A., Muniswamy-Reddy, K.-K. and Seltzer, M. I. n.d., ‘Issues
in automatic provenance collection’.

[11] Braun, U., Shinnar, A. and Seltzer, M. n.d., Securing provenance, Technical report, Havard School
of Engineering and Applied Sciences.

[12] Buneman, P., Khanna, S. and Tan, W.-c. 2001, Why and where: A characterization of data prove-
nance, in ‘In ICDT’, pp. 316–330.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.1848

[13] Chapman, A. P., Jagadish, H. and Ramanan, P. n.d., Efficient provenance storage, Technical re-
port, University of Michigan, Wichita State University.

[14] Clark, J. and DeRose, S. J. 1999, ‘Xml path language (xpath) version 1.0’, World Wide Web
Consortium, Recommendation REC-xpath-19991116.

A

[15] Dang, Y. B., Cheng, P., Luo, L. and Cho, A. 2008, A code provenance management tool for
ip-aware software development, in ‘ICSE Companion ’08: Companion of the 30th international
conference on Software engineering’, ACM, New York, NY, USA, pp. 975–976.

[16] Davidson, S. B. and Freire, J. 2008, Provenance and scientific workflows: challenges and oppor-
tunities, in ‘SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data’, ACM, New York, NY, USA, pp. 1345–1350.

[17] Delabar, E. 2008, ‘Duck punching javascript - metaprogramming with prototype’, http://www.
ericdelabar.com/2008/05/metaprogramming-javascript.html.

[18] Dictionary, M.-W. O. 2010, ‘Definition of scientific method’.
URL: http://www.merriam-webster.com/dictionary/scientifichod

[19] Ding, L., Kolari, P., Finin, T., Joshi, A., Peng, Y. and Yesha, Y. 2005, On Homeland Security
and the Semantic Web: A Provenance and Trust Aware Inference Framework, in ‘Proceedings of
the AAAI SPring Symposium on AI Technologies for Homeland Security’, AAAI Press. (poster
paper).

[20] Fielding, R. T. 2000, REST: Architectural Styles and the Design of Network-based Software
Architectures, Doctoral dissertation, University of California, Irvine.
URL: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

[21] Fielding, R. T. n.d., ‘Architectural styles and the design of network-based software architectures’.

[22] Fowler, M. 2002, Patterns of Enterprise Application Architecture, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[23] Freire, J., Koop, D., Santos, E. and Silva, C. T. 2008, ‘Provenance for computational tasks: A
survey’, Computing in Science and Engineering 10(3), 11–21.

[24] Groth, P., Munroe, S., Miles, S. and Moreau, L. 2008, In Lucio Grandinetti (ed.), HPC and Grids
in Action, IOS Press, chapter Applying the Provenance Data Model to a Bioinformatics Case.
URL: http://www.ecs.soton.ac.uk/ lavm/papers/hpc08.pdf

[25] Happe, A., Truong, H. and Dustdar, S. 2010, ‘Unobstrusive provenance’.

[26] Highsmith, J. and Fowler, M. 2001, ‘The agile manifesto’, Software Development Magazine
9(8), 29–30.

[27] Holland, D. A., Braun, U., Maclean, D., Muniswamy-Reddy, K.-K. and Seltzer, M. I. n.d., Choos-
ing a data model and query language for provenance, Technical report, Havard University.

[28] Holland, D. A., Braun, U., Maclean, D., Reddy, K. K. M. and Seltzer, M. 2008, Choosing a Data
Model and Query Language for Provenance, in ‘Second International Provenance and Annotation
Workshop (IPAW’08)’.

[29] Holland, D. A., Seltzer, M. I., Braun, U. and Muniswamy-Reddy, K.-K. 2008, ‘Passing the prove-
nance challenge’, Concurr. Comput. : Pract. Exper. 20(5), 531–540.

[30] Interviews from RailsConf 2007 in Portland 2007, http://podcast.rubyonrails.org/
programs/1/episodes/railsconf-2007.

[31] Jul, M. n.d., ‘acts_as_versioned documentation’.
URL: http://ar-versioned.rubyforge.org/

[32] Kifor, T., Varga, L. Z., Vazquez-Salceda, J., Álvarez, S. and Willmott, S. 2006, Ehcr: An eu
provenance case study, Technical report, EU Research Project, Contract Number: 511085.

B

[33] Kifor, T., Varga, L. Z., V?zquez-Salceda, J., ?lvarez, S., Willmott, S., Miles, S. and Moreau, L.
2006, ‘Provenance in agent-mediated healthcare systems’, IEEE Intelligent Systems 21(6), 38–46.

[34] L., J., H., T. and S., D. 2008, ‘Genesis - a framework for automatic generation and steering
of testbeds of complex web services’. 13th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’08).

[35] Laforge, G. 2008, ‘Groovy: An agile dynamic language for the java platform’.
URL: http://groovy.codehaus.org/

[36] Ledlie, J., Ng, C., Holland, D. A., Reddy, K. K. M., Braun, U. and Seltzer, M. I. n.d., Provenance
aware sensor data storage, Technical report, Division of Engineering and Applied Science, Havard
Unversity.

[37] Lerner, R. M. 2005, ‘At the forge: Working with activerecord’, Linux J. 2005(140), 12.

[38] Livny, I., Ioannidis, Y., Livny, M., Haber, E., Miller, R., Tsatalos, O. and Wiener, J. 1994, ‘Desk-
top experiment management’, IEEE Data Engineering Bulletin 16.

[39] Mayer, C. P. and Hübsch, C. 2009, ‘Distributed Experiment Management for Large-Scale
Testbeds’. Presentation at the 9th Würzburg Workshop on IP: Joint EuroNF, ITC, and ITG Work-
shop on ’Visions of Future Generation Networks’ (EuroView2009).
URL: http://doc.tm.uka.de/2009/HuebschMayerEuroView09-cameraready.pdf

[40] Miles, S., Mureau, L. and et al., P. G. n.d., ‘Provenance query protocol’.

[41] Miles, S., Victor Tan, U. o. S., Turi, D., Wolstencroft, K. and Jun Zhao, U. o. M. 2006, ‘mygrid:
An eu provenance case study’.

[42] Moreau, L., Freire, J., Futrelle, J., McGrath, R. E., Myers, J. and Paulson, P. 2008, The open
provenance model: An overview., in J. Freire, D. Koop and L. Moreau, eds, ‘IPAW’, Vol. 5272 of
Lecture Notes in Computer Science, Springer, pp. 323–326.
URL: http://dblp.uni-trier.de/db/conf/ipaw/ipaw2008.html#MoreauFFMMP08

[43] Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J. and Paulson, P. 2007, ‘The open
provenance model’.
URL: http://eprints.ecs.soton.ac.uk/14979/

[44] Munroe, S., Miles, S., Moreau, L. and Vazquez-Salceda, J. 2006, Prime: A software engineering
methodology for developing provenance-aware applications, in ‘Sixth International Workshop on
Software Engineering and Middleware’, ACM Digital.
URL: http://eprints.ecs.soton.ac.uk/13062/

[45] Ni, Q., Xu, S., Bertino, E., Sandhu, R. S. and Han, W. 2009, An access control language for a
general provenance model., in W. Jonker and M. Petkovic, eds, ‘Secure Data Management’, Vol.
5776 of Lecture Notes in Computer Science, Springer, pp. 68–88.
URL: http://dblp.uni-trier.de/db/conf/sdmw/sdmw2009.html

[46] Olson, R. n.d., ‘acts_as_paranoid documentation’.
URL: http://ar-paranoid.rubyforge.org/

[47] Osterweil, L. J., Clarke, L. A., Ellison, A. M., Podorozhny, R., Wise, A., Boose, E. and Hadley, J.
2008, Experience in using a process language to define scientific workflow and generate dataset
provenance, in ‘SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering’, ACM, New York, NY, USA, pp. 319–329.

[48] Plone’s glossary on monkey-patching n.d., http://plone.org/documentation/glossary/
monkeypatch.

C

[49] Prud’Hommeaux, E. and Seaborne, A. 2008, ‘SPARQL query language for RDF’, World Wide
Web Consortium, Recommendation REC-rdf-sparql-query-20080115.

[50] Reilly, C. F. and Naughton, J. F. 2009, ‘Transparently gathering provenance with provenance
aware condor’.

[51] Ruby on Rails n.d., http://www.rubyonrails.rog.

[52] Simmhan, Y. L., Plale, B. and Gannon, D. n.d., A survey of data provenance in escience, Technical
report, Computer Science Department, Indiana University.

[53] Singh, M. P. and Vouk, M. A. n.d., ‘Scientific workflows: Scientific computing meets transac-
tional workflows’.

[54] Sproull, R. and Eisenberg, J. 2005, ‘Building an electronic records archive at the national archives
and records administration: Recommendations for a long-term strategy’.

[55] Steward, A. 2008, ‘Peepcode press: Rails plugin patterns’, http://www.peepcode.com.

[56] Tan, W.-C. n.d., ‘Provenance in databases: Past, current and future’.

[57] Widom, J. 2008, Trio: A system for data, uncertainty, and lineage, in ‘Managing and Mining
Uncertain Data’, Springer.
URL: http://ilpubs.stanford.edu:8090/843/

[58] Wirdemann, R. and Baustert, T. 2006, Rapid web development mit Ruby on Rails, Hanser,
München (u.a.).

D

License

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Aus-
tria License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nc-sa/3.0/at/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

E

