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Abstract

In this thesis the problem of the optimal location of service facilities in the presence
of stochastic demand is analyzed. Fixed servers are allocated to the facility sites.
Customers generate demand for service at each node of the network. The demand
rate is assumed to be Poisson distributed. The customers travel to the closest facility
to obtain service and thus generate the arrival rate at the stations. There is no upper
limit on the capacity of the facility nodes. The established servers provide service
according to a certain service rate. The objective is to �nd the optimal number of
facility sites, their location and the number of assigned servers in order to minimize
the cost of the system.

Motivating applications for this optimization problem include the location of ware-
houses and stores, as well as walk-in health clinics.

In particular, this thesis considers two di�erent location models. In the �rst one,
the Multiple Server Problem, a given number of servers is to be located in order
to minimize the sum of total travel and waiting times in the system. Contrary to
this, the Total Cost Model does not limit the number of server units. The total cost
of the system including travel and waiting time of all customers, �xed installation
costs for facilities and variable server costs is to be minimized.

Both problems are formulated and analyzed. Heuristics, such as Simulated Anneal-
ing, Genetic Algorithm, and Tabu Search are introduced and implemented. A sen-
sitivity analysis is carried out.

The computational results show that the problems can be solved e�ciently by using
the Genetic Algorithm. Not only does it detect the best solution for most of the
problems, but also the results obrained are always among the best of all heuris-
tics. Therefore, the Genetic Algorithm is recommended for solving the underlying
Stochastic Location Models.
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Kurzfassung

In dieser Arbeit wird das Problem der optimalen Positionierung von Dienstleis-
tungseinrichtungen mit stochastischer Nachfrage analysiert. Fixes Personal wird
den Standorten zugewiesen und leistet Service gemäÿ einer gegebenen Servicerate.
Die Kunden sind bei den Knoten eines Netzwerkes platziert, und ihre Nachfrage
ist Poisson-verteilt. Um bedient zu werden, kommen sie zu der nächstgelegenen
Geschäftsstelle. Somit erzeugen sie die Ankunftsrate bei den jeweiligen Standorten.
Ziel ist es, die optimale Anzahl an Geschäftsstellen, deren Position und die optimale
Anzahl an zugewiesenem Personal für jede Position zu �nden, sodass die Kosten des
Systems minimiert werden.

Anwendungsbeispiele dieses Optimierungsproblems beinhalten die Positionierung
von Warenlagern, Filialen, Ambulanzen oder Polizeistationen.

Im Besonderen werden in dieser Arbeit zwei Modelle betrachtet. Im "Multiple Server
Problem" wird eine gegebene Anzahl an Personal, das zur Verfügung steht, so
plaziert, dass die Summe der Reise- und Wartezeiten aller Kunden minimal ist. Im
Gegensatz dazu schränkt das "Total Cost Problem" die Gesamtanzahl des Personals
nicht ein. Die Zielfunktion besteht aus den Gesamtkosten des Systems, die sich aus
Reise- und Wartezeiten der Kunden, Errichtungskosten für die Geschäftsstellen und
Personalkosten zusammensetzen.

Beide Probleme werden formuliert und analysiert. Heuristiken wie Simulated An-
nealing, Genetische Algorithmen und Tabu Search werden erklärt und implemen-
tiert. Anschlieÿend wird eine Sensitivitätsanalyse durchgeführt.

Die numerischen Ergebnisse zeigen, dass beide Modelle mit dem Genetischen Al-
gorithmus auf eine e�ziente Art gelöst werden können. Er liefert nicht nur die beste
Lösung für einen Groÿteil der Probleme, sondern die Ergebnisse haben auch die
geringsten Abweichungen von dem besten gefundenen Resultat.
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Chapter 1

Introduction

Facility Location Problems aim to �nd the optimal position of service facilities in
order to minimize the total cost or to maximize the total coverage of the system.
From the customer's point of view, there are two key issues that should be con-
sidered when choosing the location: the traveling distance to the facilities and the
expected waiting times at the service sites.

Therefore, in this thesis, optimization problems with two decision variables are stud-
ied: the location of the facilities and the capacity of each service site. The facilities
act as queuing systems and the objective is to minimize the total cost of the system.

The demand rate of the customers and the service rate are considered. Since these
two values are stochastic, an interplay of location and stochasticity arises. Such
Stochastic Facility Location Models are very complicated and thus rather strong
assumptions are made to allow for a reasonable analysis: Poisson arrival and service
rates, a �xed number of servers, and a discrete set of possible facility sites. Further-
more, customers are assumed to travel to the closest facility to obtain service.

In this thesis, optimization models for the following two problems are presented
and solved:

1. The Multiple Server Problem: The total consumer costs consisting of travel
costs and waiting costs are to be minimized. An upper bound on the number
of assigned servers is given.

2. The Total Cost Problem: Besides travel and waiting costs, �xed costs for open-
ing facilities and variable costs for installing servers are considered. The number
of servers is not limited.

1



1. Introduction 2

The applications for Stochastic Facility Location Problems range from where to lo-
cate the o�ces in public facilities such as emergency services, police stations, or
government o�ces to private facilities such as warehouses, stores, or bank o�ces.

This thesis is organized as follows:

In Chapter 2 a detailed introduction to Facility Location Problems with Uncertain-
ties is given. After discussing the underlying model, the di�erences and similarities
between the main model types are outlined. Moreover, a short literature review is
presented.

Chapter 3 analyzes the trade-o� between several components of the objective func-
tion. The Multiple Server Problem and the Total Cost Problem are formulated and
di�erences are discussed. Finally, an algorithm to obtain the optimal assignment of
servers is developed for both problems.

Heuristics to �nd the optimal set of facility locations are outlined in Chapter 4.
After de�ning the neighborhood of a solution set and giving a short classi�cation
of heuristics, the Descent Algorithm is formulated. The three guided random search
techniques Simulated Annealing, Genetic Algorithm, and Tabu Search are discussed.
For each of them, a short introduction is given before formulating the algorithms
for the underlying problems.

The four solution procedures from the preceding chapter are implemented for several
problems. The computational results are reported in Chapter 5. The quality of their
results is considered and they are analyzed. Additionally, in the second part of the
experiments, a sensitivity analysis using one of the heuristics is presented.

Finally, Chapter 6 summarizes the most important results of this thesis and provides
a proposal for further research concerning Stochastic Facility Location Problems.



Chapter 2

Stochastic Location Models

2.1 Location Problems with Stochastic Demand and Conges-

tion

Facility Location, sometimes also called Location Analysis, is concerned with the
placement of one or more facilities by choosing from a set of possible positions.
Certain objectives, such as minimizing costs or maximizing the covered population,
have to be considered. The problem is to �nd an optimal location for facilities while
respecting e�ort (e.g. costs) and utility (e.g. maintenance of service).

In 1909, when Alfred Weber tried to �nd an optimal position for a warehouse, the
study of Facility Location began. Since not only mathematicians are attracted by
this problem, Facility Analysis is a well established research area and a lot of litera-
ture on this topic exists (for a literature survey, see Felsenstein and Stiermaier, 2009).

If uncertainties in �nding the optimal location of a facility occur, this problem is
referred to as a Stochastic Location Model. Mainly there are two sources of uncer-
tainty:

1. Stochastic customer demand: The exact time and amount of customer demand
generated at di�erent locations are stochastic variables.

2. Potential congestion at the service facility: The quantity of the customers, who
access service at a certain service station, is also a stochastic variable.

This class of location problems is referred to as "Location Problems with Stochastic
Demand and Congestion" in Berman and Krass (2002).

3



2. Stochastic Location Models 4

In the mid 1970s, Richard C. Larson started the research on Queueing-Location
Problems (see Larson, 1974). Subsequently, many researchers concentrated on loca-
tion problems where queueing occurs.

At certain locations, facilities provide service. The clients come or are taken to these
�xed stations. Their arrival rate is assumed to be Poisson distributed and they are
served according to a certain service rate. If all resources at a facility are exhausted
at a time, the clients have to wait in a queue and are served as soon as a service
unit becomes available.

In order to avoid such queues, not only the optimal locations for the service stations
are sought, but also the best service capacity, i.e., the quantity of servers allocated
at each service facility. Thus, we have two decision variables, the nodes of the service
facilities and the number of assigned servers.

A huge number of objectives in Facility Location exists. The producers seek pro�t
maximization either by minimizing costs or maximizing demand. From the cus-
tomer's point of view, cost minimization is the main objective. And for others,
environmental concerns are the most important ones.

Since it is assumed that customers are free to choose the facility, congestion plays
an important role in these models. If clients anticipate encountering a long queue at
the closest facility, they might choose another one.

Applications for Facility Location models with Stochastic Demand arise in pub-
lic as well as in private sectors. The most popular one is the location of emergency
service facilities such as hospitals, police stations, or �re stations. But also for retail
outlets, Facility Location Models play a crucial role.



2. Stochastic Location Models 5

2.2 General Model Description

Let G = (N,L) be a network, where N is a set of nodes (|N | = n) and L is a set of
links. dij denotes the shortest distance between node i and node j (i, j ∈ N).

2.2.1 Components

According to Berman and Krass (2002), there are four main components in Queueing-
Locations Problems:

� Customers: They are located at each node i ∈ N (|N | = n) and generate
demand at a rate of λi per unit of time at node i (

∑
i∈N λi = 1). It is typically

assumed that the demand rate is Poisson distributed.1

� Facilities: LetM ⊂ N (|M | = m) be a set of potential locations for the facilities.
Thus, at most m facilities can be placed on the network.

Figure 2.1 illustrates a sample network of customer and facility nodes. In this case,
|N | = 5 and |M | = 2. It clari�es that the service nodes are a subset of the customer
nodes.

3

customer and facility node

customer node

1

3

5d 13
d 34

d 35

1

2
4d 24

d 45
d 23

d 12

2

Figure 2.1: Sample Network

1The Poisson distribution can be derived as the limit of a binomial distribution. X is Poisson distributed with

parameter λ, if P (X = n) = λne−λ

n!
. The mean of a Poisson distribution is E(X) = λ (see, e.g., Hillier and

Lieberman, 2005).



2. Stochastic Location Models 6

� Servers: For simplicity it is assumed that all servers have the same service rate
of µ customers per unit time. Just like the demand rate, the service rate is
usually Poisson distributed. Let kj be the quantity of servers located at station
j and p the maximum number of servers that can be allocated to all facilities
(
∑

j∈M kj ≤ p). A node j ∈ M may have no server or any positive integer
number less or equal to p. The servers can either be �xed at the facility location
or mobile (travel to the customers).

� Calls for Service: When a customer calls for service, it �rst must be determined
that the call comes from a "covered" node. If the standards for coverage are
not ful�lled, a penalty has to be paid. A "covered" customer is placed in a
queue and served once a server becomes available. The total response time of
a customer consists of the waiting time and the travel time.

The queueing system at a particular facility node is shown in Figure 2.2. λj cus-
tomers come to the facility site, where kj servers are placed. After being served, the
customers leave the queueing system.

In addition to these four above-mentioned components, further assumptions are
required for formulating a Stochastic Location Model. Among others, the decision
variables, the objective function, and the nature of the servers have to be determined.

C 1

queueing system

customers  λj
queue

C
.
.
.

C

2
.
.
.

kj

service
facility served customers

C j

Figure 2.2: Queueing System at Facility Node j
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2.2.2 Decision Variables

First, we have to decide where to locate the facilities and how many servers to place
there. Therefore, a facility location vector x is de�ned.

xj =

{
k

0

}
, if

{
a facility with k servers
no facility

}
is located at j.

The second decision variable y is called coverage vector. This binary vector provides
information about whether or not a customer node is covered by one of the service
facilities.

yi =

{
1

0

}
, if

{
demand point i is covered by a facility
otherwise

}
.

Later on, xj will also be a binary variable and a new vector K denoting the assigned
number of servers to each facility will be de�ned. Furthermore, y will indicate if
customers from node i are served by facility j (see Section 3.2).

2.2.3 Components of the Objective Function

The objective function consists of four components that should be minimized. As
already mentioned above, penalty costs have to be paid for clients, who are not
covered by one of the facilities. Therefore, the total cost of non-covering customers
NC has to be considered. But even if a client is covered, it cannot be guaranteed
that there is enough space in the queue. Thus, rejection costs RC are the second
component of the objective function. And �nally, the total waiting costs WC of all
customers and the costs for installing servers IC at the facilities should also be as
small as possible.

Consequently, the total cost TC of the system is

TC = NC +RC +WC + IC.

In detail, the costs can be calculated as follows:

� Let cNC be the penalty for each non-covered client. Remember that λi denotes
the demand rate at node i. The total cost of non-covering is given by

NC =
∑
i∈N

cNCλi(1− yi).
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� For each rejected customer, a penalty of cR has to be paid. Considering the
probability P iR(x,y) of rejecting a client from node i, the total cost of rejection
is

RC =
∑
i∈N

cRP
i
R(x,y)λiyi.

� The waiting time for a customer from node i consists of the expected time
Wi(x,y) spent in the system and the expected travel time. Let cW be the
waiting costs per unit time. P ijD (x,y) is the probability that a client at node i
is served by facility j. The shortest distance between i and j is denoted by dij
and v is assumed to be the average travel speed. Then the total waiting costs
are given by

WC =
∑
i∈N

cW (1− P iR(x,y))λiyi

Wi(x,y) +
1

v

∑
j∈M

P ijD (x,y)dij

 .
� For locating k servers at location j, cjkL has to be paid. Recall that the upper
bound on the number of servers allocated to all facilities is p. The total installing
costs are therefore

IC =
∑
j∈M

p∑
k=1

cjkL 1{xj=k}.

2.2.4 Constraints

There are several requirements on the decision variables that have to be considered
and ful�lled.

Limited Number of Servers

The maximum number of servers allocated to the facilities is given by p. Thus, the
�rst constraint is∑

j∈M

kj ≤ p.

Limited Number of Facilities

Since m is the upper limit on the total number of facilities, the second condition is
obtained∑

j∈M

1{xj>0} ≤ m.
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Desired Bound on the Response Time

The third constraint is a probabilistic one that describes a desired bound on the
response time of a customer request.

In case of emergency service, it is of particular importance that the response time
to a call is as short as possible. For example, it might be required that at least 95%

of all calls have a response time less than three minutes.

Let ui be the lower bound on the service level (in our example: three minutes) and
SLi(x,y) the random service level for a customer at node i (e.g. response time). αi
denotes the minimum desired frequency (e.g. 95%).

For the optimal solution, the probability that the service level is smaller than the
required bound ui has to be larger than the desired frequency at all service stations.

P (SLi(x,y) ≤ ui) ≥ αiyi, ∀i ∈ N. (2.1)

2.2.5 General Model Formulation

Combining our results from the preceding Sections 2.2.2, 2.2.3, and 2.2.4, the gen-
eral model for Facility Location with Stochastic Demand can now be formulated as
follows:

min TC = NC +RC +WC + IC (2.2)

s.t.
∑
j∈M

kj ≤ p∑
j∈M

1{xj>0} ≤ m

P (SLi(x,y) ≤ ui) ≥ αiyi, ∀i ∈ N,
xj ∈ {0, . . . , p} , ∀j ∈M,

yi ∈ {0, 1} , ∀i ∈ N.

At this point we would like to emphasize that problem (2.2) provides quite a general
formulation. In what follows, several modi�cations especially of the constraints will
be considered.
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2.3 Di�erent Types of Models

2.3.1 Classes of Models

Considering the objective function, we di�erentiate between Coverage-Type Models
and Median-Type Models.

Coverage-Type Models

As their name already denotes, the main objective of Coverage-Type Models is to
provide adequate coverage for each customer, i.e., at least one service station within
a given maximal distance of each client. In most of these models, the travel costs
are not considered in the objective function.

Berman and Krass (2002) divide the Coverage Models into the following two classes:
The �rst one is the Set Cover-Type Problem, where the focus is on minimizing the
total number of installed facilities. Only the total cost for installing servers IC
remains in the objective function and thus it becomes linear. However, the non-
linearities in the constraints remain. Contrary to these models, the Maximal Weight
Cover Problems aim to maximize the total demand (weight) of all clients. The only
component in the objective function is the cost of non-covering customers NC.

Median-Type Models

Median-Type Models usually assume a �xed number of facilities, and clients seek
service from the closest service station, where all of them are covered by one of
the facilities. Thus, variable y and the third constraint (2.1) can be dropped. The
objective is to minimize the travel and waiting costs. The following non-linear opti-
mization problem in general can only be solved by heuristics.

min RC +WC

s.t.
∑
j∈M

kj = p∑
j∈M

1{xj>0} = m

xj ∈ {0, . . . , p} , ∀j ∈M.

Assuming that customers have full information about the waiting time at the sta-
tions leads to very di�cult formulations. The clients will choose the facility that
minimizes travel and waiting time. Thus, demand becomes a decreasing function in
the expected waiting time.
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2.3.2 The Nature of the Servers

Median-Type Models as well as Coverage-Type Models can be classi�ed into two
categories: models with �xed servers and models with mobile servers.

In the case of �xed facilities, the customers travel to the service station and ob-
tain service there. Mobile servers travel from their home facility to the customer's
location. After providing the required on-scene service, the server returns (with or
without the customer) to the station. If the customers are taken to the facility site,
they are served there (e.g. patients are provided �rst aid by ambulance men and
emergency doctors on scene and are taken to the hospital for further treatment).
Thus, for mobile server units the travel time to the customer and back to their home
facility is part of the service time. While in the case of �xed servers, it is part of the
travel time.

Illustrative Example

The following example (see Berman and Krass, 2002) points out that there are
fundamental di�erences between these two categories.

A system with only one facility is considered. The facility houses k servers and has a
queueing capacity of one customer. The service rate is assumed to be exponentially
distributed.2 A �xed service facility operates as M/M/k/1 queueing system,3 for
which analytical results are available (e.g. exact formulas for the expected waiting
time). Therefore, an analytical formulation of the model can be obtained.

In the mobile server case, the service is also supposed to be exponentially distributed.
Travel times are assumed to be deterministic. The total service time consists of the
travel time to the customer and back to the facility. Since travel times are not ex-
ponentially distributed in this case, we are dealing with an M/G/k/1 system. The
analytical formulation cannot be written down, because analytical results are un-
available. Thus, models with mobile servers nearly always require a combination of
approximations and heuristic solution procedures.

2A random variable is said to be exponentially distributed with parameter λ if its probability density function

is f(x) = λe−λx for x ≥ 0. The expected value is given by E(X) = 1
λ
(see, e.g., Hillier and Lieberman, 2005).

3Kendall's Notation for Queuing Systems: A/B/X/Y, where A denotes the arrival time distribution, B the

service time distribution, X the number of service units, and Y the queueing capacity; G stands for general (i.e.,

not speci�ed), M for Markovian (exponential), and D for deterministic (see, e.g., Hillier and Lieberman, 2005).
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As explained above, the underlying system performance characteristics change dras-
tically depending on whether servers are �xed or mobile. Therefore, a fundamental
di�erence between the models is in the nature of servers.

It is clear that emergency stations (such as �re, police, or ambulance stations) have
mobile servers and strong coverage constraints. Models developed for non-emergency
systems typically have �xed servers and assume that all customers are covered.

In Figure 2.3 the classi�cation of Stochastic Location Models is summarized. How-
ever, to make it easier to read, the nature of the servers for Coverage Type Models
is not included.

In this work Median-Type Models with �xed servers are considered. Customers are
assumed to travel to the closest service facility and obtain service there. Applications
for our formulations can be found in the placement of Automatic Teller Machines
(ATM), the location of bank branches and post o�ces, or any other similar service
business.

Stochastic Location 
ModelsModels

Coverage Type 
M d l

Median Type 
M d lModels

Set Coverage –
Type Models

Maximal Weight 
Cover Problems

mobile serversfixed servers

Models

Figure 2.3: Classi�cation of Stochastic Location Models
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2.4 Literature Review

2.4.1 Median-Type Models

Median-Type Models with Mobile Servers

Primarily the development of Facility Location Models with Stochastic Demand
and Congestion has been motivated by applications of emergency service stations.
The calls for service are stochastic. Mobile servers such as ambulances or �re engines
travel from their station to the site of the emergency.

Berman et al. (1985) �rst discuss the Stochastic Queue Median (SQM) with a sin-
gle server. They assume an M/G/1 queueing system and First-Come-First-Served
manner.

In realistic emergency models, however, not all calls have the same priority. There-
fore, Batta et al. (1988) extend the SQM and consider the problem of di�erent
priority classes. The authors found out that the optimal location is not the same.
Batta and Berman (1989) discuss the SQM with k servers at a single location. As
this model is seen as an M/G/k queue, an adequate approximation for the waiting
time is used.

Other extensions can be found in Berman and Mandowsky (1986) and Berman et al.
(1987). The focus is on �nding the best location for a certain number of facilities
with one mobile server at each station. Furthermore, Berman and Mandowsky allow
cooperation between the servers.

Median-Type Models with Fixed Servers

Recent papers on Median-Type Models concentrate on problems with �xed servers,
where customers travel to the facilities to obtain the required service. Most of the
authors assume that clients do not have full information and hence seek service at
the closest facility.

Wang et al. (2004) consider an M/M/1 queueing system. Only one server can be
placed at a service station. The costs of the system (i.e., travel time and waiting
time of the customers) should be minimized. There are constraints on the maximum
expected waiting time.



2. Stochastic Location Models 14

A greedy-dropping heuristic, a Tabu Search, and a Lagrangian Relaxation for the
latter optimization problem are developed in Wang et al. (2002).

The focus in Berman et al. (2006) is on minimizing the total number of service
stations. Additionally, the authors assume that customer demand is lost if certain
constraints on congestion and coverage are not ful�lled.

The Multiple Server Location Problem is introduced by Berman and Drezner (2007).
At most k servers are allowed to be placed at any potential service station. The lo-
cation of the facilities and the quantity of server units are decision variables. The
objective of this model is to minimize the sum of travel time and waiting time at
the server. Several heuristics are presented in this paper to solve the optimization
problem.

A minimax-type model of this problem is presented in Aboolian et al. (2009), where
the focus is on minimizing the maximum time spent in the system (i.e., the sum of
travel time and waiting time of each customer). A Descent and a Genetic Algorithm
are developed to �nd the optimal facility sites.

Aboolian et al. (2008) discuss a problem that di�ers in several assumptions from
the models mentioned so far. First of all, the objective is to minimize the total cost
of the system, which includes not only the travel and waiting time of all customers,
but also the �xed installation costs of facilities and the variable costs of servers.
There is no limit on the quantity of facilities and servers. In addition to heuristic
approaches (Descent and Simulated Annealing Algorithm), an exact solution algo-
rithm is developed.

Finally, Drezner et al. (2010) consider an extension of Berman and Drezner (2007),
where customers do not seek service at the closest facility. The gravity rule is used
to describe the demand rates of the di�erent stations. In the �rst model, the Sta-
tionary Model, the customers are assumed to neglect the expected waiting times at
the facility. They act according to the gravity rule. In contrast to these assumptions,
the clients in the Interactive Model know and consider the waiting time when choos-
ing the facility. Hence, the second problem is more di�cult to analyze. For solving
these two location problems heuristics (Descent Algorithm, Simulated Annealing,
and Tabu Search) are developed.
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2.4.2 Coverage-Type Models

It is not surprising that a huge amount of research concerning Coverage-Type Mod-
els exists. As before, this review is divided into models with mobile servers and
models with �xed servers.

Coverage-Type Models with Mobile Servers

The �rst model in the �eld of Coverage-Type Models with mobile servers is devel-
oped by Daskin (1983), who considers the Maximum Expected Covering Location
Problem (MECLP), where three simplifying assumptions concerning the servers are
made. Batta et al. (1989) revisit Daskin's model and relax these assumptions.

The Maximum Availability Location Problem (MALP) by ReVelle and Hogan (1989)
assumes that each location can house exactly one server unit.

Also in Marianov and ReVelle (1994) and Marianov and ReVelle (1996) each fa-
cility is assumed to contain only one server. The Queueing Probabilistic Location
Set Covering Problem focuses on minimizing the total number of server units (see
Marianov and ReVelle, 1994). The authors also formulate the Queueing-Maximum
Availability Location Problem, where it is assumed that each neighborhood can be
treated as separate queueing system and that the travel times to customers are much
smaller than the service times (see Marianov and ReVelle, 1996).

Coverage-Type Models with Fixed Servers

The research on Coverage-Type Models, where customers travel to the facilities in
order to obtain service, started later. Marianov and Serra (1998) describe the prob-
lem of locating M �xed facilities and allocating the users to them. The objective is
to maximize the total coverage and to capture as much demand as possible. Two
di�erent assumptions (one server at each facility and k servers at each facility) are
made. The number of servers is �xed in advance and identical for all stations. Each
service facility thus represents an M/M/1 or M/M/k queue with �nite capacity.

In contrast to these formulations, the total number of facilities is part of the de-
cision in Marianov and Ríos (2000) formulation. Also the quantity of servers at each
site is not �xed in advance, but rather a decision variable.



Chapter 3

The Multiple Server Problem and

the Total Cost Problem

For a given network, the problem of locating facility stations at some nodes and
allocating servers to these sites is considered. Customers are placed at the nodes.
Since the servers are assumed to be �xed and the customers have to travel to the
facilities, they select the closest station (i.e., the distance between their `home' node
and the chosen facility is minimized). Due to certain constraints, a facility cannot be
located at every node. Therefore, a subset of nodes for potential facility sites needs
to be selected. The number of servers to be established there can vary from zero
to any positive integer number. As a result, the facilities act as M/M/k queueing
systems (with k denoting the number of servers).

The objective is to minimize the sum of total cost for all customers (the time of
traveling to the closest station and the average time spent at the facility itself) and
the total cost of establishing the facilities (the costs of opening facilities and the
costs for the servers).

The area of applications for this kind of problems is widely spread. Generally, they
can be applied for any establishment that serves customers and where the number of
servers is a decision variable. The most popular example mentioned in the literature
on Facility Location is the location of Automatic Teller Machines (ATM) (see, e.g.,
Berman and Drezner, 2007). But also the location of bank branches, post o�ces, or
similar establishments exempli�es this kind of problems.

16
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3.1 On the Pooling of Services

In the objective function there is a negative trade-o� between several components.
In particular, the travel costs and the waiting costs are considered.

On the one hand, if serving units are located at as many facilities as possible, the
total travel costs are reduced. The installation costs and the waiting costs, however,
increase.

On the other hand, reducing the quantity of facilities and pooling servers at the
selected sites lowers the time spent in the queue. It is obvious that the demand
at the stations increases. Nevertheless, it can be shown that the waiting times are
reduced (see Drezner, 1988).

The arrival rate λ is assumed to be Poisson distributed, the service rate µ expo-
nentially distributed. The number of servers in the system is denoted by k. The
formulae of the probability that no server is in the system, P0, of the average num-
ber of customers in the queue, Lq, and in the system, L, and of the average time in
the queue, Wq, and in the system, W , for the M/M/k case are given by (see, e.g.,
Hillier and Lieberman, 2005)

P0 =

k−1∑
n=0

(
λ
µ

)n
n!

+

(
λ
µ

)k
k!

1

1− ρ


−1

, (3.1)

Lq =
P0

(
λ
µ

)k
ρ

k! (1− ρ)2
,

L = Lq +
λ

µ
,

Wq =
Lq
λ
, and (3.2)

W = Wq +
1

µ
, (3.3)

where ρ = λ
kµ < 1, the utilization of all server units.

For an e�cient way of calculating W and Wq see Appendix A.1. In the follow-
ing, these results are used for all waiting time calculations.
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Assuming that s stations (s being a positive even integer) each served by only one
service unit are given, leads to an average waiting time in the system ofW (1) = 1

µ−λ
and to an average waiting time in the queue of Wq(1) = λ

µ(µ−λ)
at each station.

If only s/2 facilities are opened, but two servers are placed at each station, the
arrival rate is doubled (i.e., 2λ). The waiting times are reduced to W (2) = µ

µ2−λ2

and Wq(2) = λ2

µ(µ2−λ2)
.

In Drezner (1988) it is shown that the ratio between W (2) and W (1) is always
less than one (i.e., the waiting time when two servers are placed at s/2 station is
smaller). This is also the case for the ratios of the waiting times in the queue and the
ratios of the numbers of customers in the queue. Only the number of clients in the
system does not decrease if two servers are located at s/2 facilities (L(2) > L(1)).
This follows from the fact that two customers can be served at the same time.

W (2)

W (1)
=

µ

µ+ λ
< 1

Wq(2)

Wq(1)
=

λ

µ+ λ
< 1

Lq(2)

Lq(1)
=

2λ

µ+ λ
< 1

L(2)

L(1)
=

2µ

µ+ λ
> 1

Is it really possible to improve the situation without paying more? Does the pooling
of servers lead to a better solution without additional costs?

Drezner (1988) supposed that the servers might be exploited more. Using the fol-
lowing arguments, he showed that this is not the case.

If only one server is placed at a station, the probability of no customer being in
the system is given by P0(1) = 1 − λ

µ . In the two server case, P0(2) = 2µ−λ
2µ+λ . The

percentage that only one client is in the system and thus just one server unit is busy
is P1(2) = λ

µP0(2) =
λ(2µ−λ)
µ(2µ+λ)

. Therefore, the probability that one server is idle can

be calculated by P1 = P0(2) + 1
2P1(2) = 1 − λ

2µ , which is the same as P0(1). (The
service rate is doubled since two servers are at s/2 stations.)

We have seen that the situation can be improved just by pooling servers.
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3.2 Model Formulation

Even if two di�erent models are discussed in this chapter, i.e. the Multiple Server
Problem and the Total Cost Problem, we start with a general formulation here and
go into detail later in the next section.

As already mentioned in the General Model Description (see Section 2.2), a graph
G(L,N) is needed. N denotes a set of |N | = n nodes, where the customers are
located and demand rate λi is generated at each node i ∈ N . L represents the link
set. The shortest path between the nodes i and j (i, j ∈ N) is given by dij . It is
assumed that each server has the same service rate of µ customers and a maximum
of p servers are to be located in the system.M ⊂ N (|M | = m) denotes the potential
facility locations and S ⊂ M the set of the selected nodes, where facility sites are
placed.

The facility location vector x (see Section 2.2.2) is now a binary variable and its
components are de�ned as follows:

xj =

{
1

0

}
, if

{
a service site is placed at node j ∈M
otherwise

}
. (3.4)

The coverage vector y is given by (i ∈ N and j ∈M)

yij =

{
1

0

}
, if

{
demand node i is covered by facility j
otherwise

}
. (3.5)

Since these two decision variables do not provide any information about the number
of allocated servers at each facility, a third variable is needed (see Aboolian et al.,
2008). Let K(S) = {kj(S)|j ∈ S} be the assignment vector. The components kj(S)

denote the quantity of server units located at facility j ∈ S. Due to the fact that the
total number of servers is limited to p, each component kj(S) is an integer between
0 and p.

For each node j ∈ S, we de�ne Cj(S), the set of all customer nodes that choose
facility j (i.e., all client nodes, for which the distance to service site j ∈ S is the
smallest compared to all other sites in S). Therefore, the arrival rate at facility j is
given by

λj(S) =
∑

i∈Cj(S)

λi.
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The average waiting time in the queue, Wq, at a service station depends on the
arrival rate λ, the service rate µ and the number of servers k at the station. It is
written as Wq(λ, µ, k) and characterized by the following two properties:

Property 1: Wq(λ, µ, k) is a decreasing function in the number of
servers k.

Property 2: Wq(λ, µ, k) is a convex function in the number of
servers k.

Proof: see Appendix A.2.

The focus is now on minimizing the total cost of the system, which consist of travel,
waiting, installation, and server costs.

Let g be the travel costs per unit of distance. Since dij denotes the distance be-
tween node i and facility j, the total travel costs of all customers in the system
are

TC = g
∑
j∈S

∑
i∈Cj(S)

λidij .

The waiting costs per unit of time are assumed to be v. Therefore, the expected
total costs of waiting equal

WC = v
∑
j∈S

λj(S)W (λj(S), µ, kj(S)),

where λj(S) =
∑

i∈Cj(S) λi.

The costs of opening facilities consist of the �xed installation costs fj for facility
j ∈ S and variable server costs h per server.

OC =
∑
j∈S

fj + h
∑
j∈S

kj(S)

is thus the total cost of opening service sites.

Then, the objective function is formulated as follows:

F (S,K(S)) =
∑
j∈S

{
g
∑

i∈Cj(S)

λidij + vλj(S)W (λj(S), µ, kj(S))+

+ fj + hkj(S)

}
.
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Using the de�nition of the coverage vector y in formula (3.5), the arrival rate of
customers at facility j ∈ M is computed by γj =

∑
i∈N λiyij . Via formula (3.3),

W (γj , µ, k) can be calculated. The objective function can be de�ned with the facility
node set M if the facility location vector (3.4) is used.

Hence, the general formulation for this non-linear integer problem is given by (see
Aboolian et al., 2008)

min
∑
j∈M

{
g
∑
i∈N

λidijyij + v
∑
i∈N

λiyijW

(∑
i∈N

λiyij , µ, kj

)
+ fjxj + hkj

}
(3.6)

subject to∑
j∈M

kj ≤ p, (3.7)

kj ≤ pxj , ∀j ∈M, (3.8)

yij ≤ xj , ∀j ∈M,∀i ∈ N, (3.9)∑
j∈M

yij = 1, ∀i ∈ N, (3.10)∑
k∈M

dikyik ≤ (dij − L)xj + L, ∀j ∈M, ∀i ∈ N, (3.11)

kj ≥
∑

i∈N λiyij

µ
, integer, ∀j ∈M, (3.12)

xj ∈ {0, 1} , ∀j ∈M,

yij ∈ {0, 1} , ∀j ∈M, ∀i ∈ N.

At most p servers are to be located at all facilities (see Constraint (3.7)). If no service
station is installed at node j ∈ M , the Constraints (3.8) and (3.9) forbid assigning
servers and demand to this site. Constraints (3.10) ensure that each customer node
i ∈ N is covered by exactly one service station. Let L in (3.11) be a large positive
number (e.g. maxj∈M,i∈N {dij}; see Aboolian et al., 2008). By (3.11) it is guaranteed
that each customer visits the closest facility. Due to Constraints (3.12), the expected
waiting time at a station must be positive.
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3.3 Di�erences in the Models

3.3.1 The Multiple Server Problem

(See Berman and Drezner, 2007.)
p servers are to be located at the facility sites. The objective is not to minimize the
total cost of the system, but rather the total cost of all customers (i.e., the sum of
the travel related costs and the expected waiting costs at the station). Thus, the
only di�erence to the general model, formulated in the last section, concerns the
objective function, which is reduced to

min
∑
j∈M

{
g
∑
i∈N

λidijyij + v
∑
i∈N

λiyijW (
∑
i∈N

λiyij , µ, kj)

}
.

3.3.2 The Total Cost Problem

(See Aboolian et al., 2008.)
In this case, the total cost of the system is sought to be minimized (i.e., the �xed
costs of installing facilities and the variable costs of servers are also considered). The
objective is therefore given by (3.6).

Since variable server costs are considered, the number of servers assigned to the
facilities limits itself. It will always be a realistic number and thus no upper bound
p is required. Constraints (3.7) and (3.8) can be skipped.

More trade-o� relationships between the components of the objective are impli-
cated by the objective function of the Total Cost Problem. Not only is there a
trade-o� between the number of servers and the expected waiting time (see Section
3.1). Locating fewer facilities on the network diminishes the costs of installing server
sites and leads to pooling of servers. Thus, customers' waiting times at the stations
are reduced as well. On the other hand, assigning fewer server units to the facilities
reduces the variable server costs. However, the waiting times of the customers are
increased.

For both problems, the di�culty is now to �nd the optimal number of facilities,
the optimal location of these sites, and the optimal assignment of servers for each
service facility.
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3.4 The Optimal Assignment of Servers

The set S ⊂ M of nodes, where facilities are placed, is supposed to be given. The
optimal assignment of servers K∗(S) =

{
k∗j (S) |j ∈ S

}
for the given S is sought.

Since the travel related costs and the �xed costs of installing servers at a service
site do not depend on the number of assigned servers k∗j (S), the objective function
is given by

min
{k:kj≥kminj }

F (K) =
∑
j∈S

[hkj + vλj(S)W (λj(S), µ, kj)]

 .

In order to meet all customer demands, the ratio between the arrival rate λj(S) and
the total service rate of all servers kjµ must be less or equal to one. The optimal
number of servers k∗j assigned to each facility j ∈ S must thus be at least kminj . This
lower bound can be calculated by

kminj = int

[
λj(S)

µ

]
+ 1,

where int [.] rounds the parameter down to the next integer. kminj (S) represents the
minimum number of servers required to meet the congestion at each node j ∈ S.

The following greedy algorithm1 �nds the optimal assignment vector K(S) for a
given set of facility nodes S and a given upper server limit p.

Algorithm 3.1: Assignment of Servers for the Multiple Server Problem

For each facility j ∈ S follow these steps:
Step 1 : Find the set of customer nodes Cj(S) that are assigned to

site j and compute the demand rate λj(S) =
∑

i∈Cj(S) λi.
Step 2 : Calculate the minimum number of servers required to serve

the demand λj(S) by kminj = int
[
λj(S)
µ

]
+ 1 and set kj =

kminj .
Step 3 : If

∑
j∈S kj > p, the customer demand can never be met

and thus there is no feasible solution. Else go to Step 4.
Step 4 : l = arg max{j∈S} {W (λj(S), µ, kj)−W (λj(S), µ, kj + 1)}

and set kl = kl + 1.
Step 5 : If

∑
j∈S kj < p go to Step 4, else stop.

1A greedy algorithm is a shortsighted one. At each step the local optimal solution is sought, hoping that this

leads to the desired global optimum.
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An optimal server assignment K(S) =
{
k∗j (S) |j ∈ S

}
is found.

Algorithm 3.1 can be used for the Multiple Server Problem (see Berman and Drezner,
2007). In the case of the Total Cost Problem, there is no upper limit on the number
of servers. Thus, the algorithm must be changed (see Aboolian et al., 2008).

The contribution of each service node j ∈ S to the objective function value is
de�ned by

Fj(kj) = hkj + vλj(S)W (λj(S), µ, kj).

Thus, F (K) =
∑

j∈S Fj(kj). The optimal assignment of servers can be found by
checking the decrease in the objective function value. Only the last three steps of
Algorithm 3.1 must be changed.

Algorithm 3.2: Assignment of Servers for the Total Cost Problem

For each facility j ∈ S follow these steps:
Step 1 : Find the set of customer nodes Cj(S) that are assigned to

site j and compute the demand rate λj(S) =
∑

i∈Cj(S) λi.
Step 2 : Calculate the minimum number of servers required to serve

the demand λj(S) by kminj = int
[
λj(S)
µ

]
+ 1 and set kj =

kminj .
Step 3 : If Fj(kj +1)−Fj(kj) ≥ 0, go to Step 5. Otherwise continue

with Step 4.
Step 4 : Set kj = kj + 1 and go to Step 3.
Step 5 : Set the optimal number of servers for facility j, k∗j (S) = kj ,

and Fj(k∗j (S)) = hk∗j (S)+vλj(S)W (λj(S), µ, k∗j (S)). Stop.

Again, an optimal server assignment for all nodes j ∈ S is found.

Property 3: Fj(kj) = hkj + vλj(S)W (λj(S), µ, kj) is a sum of
linear and convex functions and hence also convex in
kj .

This property follows from the convexity of Wq(λj(S), µ, kj) (see Property 2). It
guarantees that the solutions found by Algorithm 3.1 and Algorithm 3.2 are opti-
mal assignments of servers for a given set S.



Chapter 4

Metaheuristics for Server Location

Problems

The algorithms formulated in the previous chapter (see Section 3.4) �nd the best
allocation K(S) =

{
k∗j (S) : j ∈ S

}
of server units to a given set of facility nodes S.

The problem is now to �nd this optimal set S of facility sites, which minimizes the
objective function. Algorithm 3.1 or Algorithm 3.2 can then be used to calculate an
assignment K.

The objective function depends on the number of assigned servers K and on the
service nodes S. It can thus be written as

F (K, S) =
∑
j∈S

{gλj(S)dij + vλj(S)Wq(λj(S), µ, kj) + fj + hkj(S)} .

For a given S we de�ne F (S) = minK {F (K, S)}.

For the Total Cost Problem, Aboolian et al. (2008) applied an exact algorithm.
However, this procedure performs well only for medium size problems.

In the following we concentrate on metaheuristics. Glover and Kochenberger (2003)
de�ne these searching procedures as follows:

Metaheuristics [...] are solution methods that orchestrate an interaction
between local improvement procedures and higher level strategies to create
a process capable of escaping from local optima [...].

Several heuristics (Descent Algorithm, Simulated Annealing, Genetic Algorithm,
and Tabu Search) are introduced in order to solve our formulated problems and to
obtain a set S of service locations that minimizes F (S).

25
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For all of the algorithms introduced in this chapter a neighborhood of the given set
S is needed. Therefore, the neighborhood of a set has to be de�ned.

4.1 Neighborhoods

First of all, the de�nition of neighborhoods used here is totally di�erent from the
one in topology1. In the underlying consideration there is no topological space, and
a neighbor does not have to contain all nodes of the original set.

Giving a common de�nition of a neighborhood is not possible. There is a huge
number of ways, how to select neighbors of a given solution. For each problem it
is di�erent. Therefore, an universal way of de�ning neighborhood does not exist.
However, it can be said that a neighborhood of a given solution set S is given by a
set that can be achieved by a simple local movement.

For our facility location problems the following neighborhood that can be obtained
in three di�erent ways is used (see, e.g., Aboolian et al., 2008):

1. Subsets with one additional node to S. There are n − |S| elements in the
complement and thus n− |S| sets have an additional node to S.

2. Subsets obtained by removing one node from S. It is obvious that |S| new sets
arise.

3. Subsets with one additional node to S and one node removed from S. In this
case, an element of S is replaced by an element of the complementary set n−|S|.
Therefore, |S| (n− |S|) new neighbors are found.

Consequently, the neighborhood of a node set S features a cardinality of n+ |S| (n−
|S|). The cardinality of the solution set S is not �xed (depends on the current
solution) and n denotes the total number of customer and facility nodes in the
considered network.

1In topology a set N is called neighborhood of a point p in a topological space if N contains an open set O

such that p ∈ O ⊆ N . Furthermore, the set N is called neighborhood of set G if an open set O exists such that

G ⊆ O ⊆ N (see, e.g., Heuser, 2004).
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4.2 Classi�cation of Search Techniques

In the following, the expression "NP-hard" problem is used several times. Therefore,
it is explained at this point (see Heaton, 2008).

Today, many problems are solved by computers in polynomial time and thus are
not NP-hard. If the number of steps to solve a problem is bounded by a polyno-
mial, it is referred to as P-problem (polynomial problem). Problems that cannot be
solved in polynomial time are called NP-hard (nondeterministic polynomial hard
problems). The possible solutions of such problems often increase at a much greater
rate than exponentially. The increasing rate of NP-hard problems is described by
the factorial operator n!.

As shown in Figure 4.1, the search techniques can be divided into three classes:
calculus-based, random, and enumerative techniques (see Ribeiro Filho et al., 1994).

The �rst, calculus-based (numerical) techniques require certain necessary conditions
that have to be ful�lled by the optimal solution. By setting the gradient of the objec-
tive function to zero and solving these equations, the indirect calculus-based methods
�nd local extrema. On the other hand, the direct methods only assess the gradient
in order to �nd the right direction. Newton's or Fibonacci's method exemplify these
kind of methods.

Search TechniquesSearch Techniques

enumerativecalculus‐based  random

non guided

Fibonacci

direct indirect guided non guided guided

Newton Simulated Annealing Tabu Search
Dynamic

Programming
Branch&
Bound
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g

Evolutionary Algorithms
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Evolution Strategies Genetic Programmingg g g

Genetic Algorithm

Figure 4.1: Classes of Search Techniques
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In contrast to numerical techniques, enumerative techniques provide an exact solu-
tion rather than an approximate one. Implementing enumerative techniques is very
simple. However, the domain space of many problems is too large since enumerative
techniques consider each point. Dynamic Programming exempli�es this technique.

These two methods are not suitable for the underlying models. As mentioned above,
the numerical techniques require certain necessary conditions. These prerequisites
are not ful�lled for our problems and thus the calculus-based techniques cannot be
applied. Since our models are NP-hard, the number of possible solutions is very
high. Thus, an enumerative algorithm would take very long to compute all potential
solutions.

Due to these facts we will concentrate on the third class, the random techniques.
These so-called heuristics only check a subset of all possible solutions using some
strategies. Heuristics need much less time to execute, however, in most of the cases
the optimal solution will not be found. It is also unknown, how far the resulting
solution di�ers from the best.

Random search techniques are appropriate for location problems, because they solve
very complex problems. Being based on enumerative techniques, the random search
class also uses additional information to �nd the optimal solution. While Simulated
Annealing is based on a thermodynamical process, Evolutionary Algorithms simu-
late natural selection procedures and Tabu Search uses memory.
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4.3 Descent Procedure

An iterative procedure goes from a current feasible solution to another one. This new
solution is either accepted or the algorithm returns to the last accepted solution. If
this next solution is from the neighborhood of the current one, the iterative method
is called neighborhood search algorithm. A popular example for these searching pro-
cedures is the Descent Algorithm.

Both Berman and Drezner (2007) and Aboolian et al. (2008) develop a Descent
Procedure to solve the formulated problem. With the help of the neighborhood def-
inition from Section 4.1, this algorithm is simple and straightforward.

In a nutshell, it can be described as follows: Starting with a random, initial set
S, the values of the objective function for all neighbors of S are calculated. If the
minimum of all these values is smaller than the objective function value of the start-
ing S, the procedure is repeated with the new minimal S. Otherwise, it stops and
returns to the last accepted S.

Algorithm 4.1: Descent Procedure

Step 1 : Randomly generate a starting S with |S| = 1 and calculate
F (S) (Algorithm 3.1 or 3.2).

Step 2 : For all subsets S′ in the neighborhood of S calculate F (S′).
Set Fmin = min {F (S′)} and Smin = arg min {F (S′)}.

Step 3 : If Fmin < F (S), set S = Smin and F (S) = Fmin. Go to
Step 2.

Step 4 : Otherwise, stop. The best solution found by the Descent
Procedure is S.

As it is pointed out in Aboolian et al. (2009), this algorithm �nds a feasible
solution. Unfortunately, it is not optimal most of the time. Disconnected "islands"
of feasible solutions generate the solution space. If the Descent Procedure reaches
such an island, it cannot move to another one. Therefore, only the best solution on
this island can be found (i.e., the method may stop at an extremum that is locally
optimal but not a global optimum.).

In the following sections, algorithms that deal with this kind of problem are pre-
sented.
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4.4 Simulated Annealing

Simulated Annealing is a generic Monte-Carlo Algorithm2 for combinatorial opti-
mization problems. It is often used for large scale problems that belong to the class
of NP-complete (nondeterministic polynomial time complete) problems.

The method generates several sample states (permutations) of a statistical ther-
modynamic system. It was inspired by the annealing of metallurgy. If melted metals
are cooled controlled, the defects in the solid state body can be reduced and the
resulting crystals become bigger. This thermal process is simulated in order to �nd
a global extremum of optimization problems.

In the mid 1980s, Kirkpatrick et al. (1983) and �erný (1985) introduced this Simu-
lated Annealing method. Originally it was developed for �nding the optimal design
of a computer (see Kirkpatrick et al., 1983). Another very popular application of the
Simulated Annealing Algorithm is the traveling salesman problem (see, e.g., �erný,
1985).

4.4.1 Basic Physical Background

In order to interpret and understand the process of the Simulated Annealing Algo-
rithm, the physical background is of great importance. It is very simple and well
established.

As already mentioned above, the Simulated Annealing Algorithm is based on the an-
nealing of solids (e.g. metals). This thermal process can be described in the following
six steps:

1. The solid is heated in a head bath, where the temperature is increased until a
certain upper bound is reached.

2. The solid is melting and its atoms have high-energy values due to the tem-
perature in the head bath. The particles are randomly arranged and free to
restructure themselves.

3. Slowly the temperature of the head bath is lowered again and the energy of the
atoms decreases.

4. A thermal equilibrium (steady state) is obtained at each temperature level.

2A Monte-Carlo Algorithm is a stochastic method to obtain numerical solutions. The repeated random sampling

might produce an incorrect result with a certain bounded probability. But compared to deterministic algorithms,

this method is often more e�cient.
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5. The atoms can arrange themselves in an energetic optimal structure, because
the temperature level is kept around the freezing point for a long time.

6. If no more changes occur, the procedure is terminated. The minimum energy
state of the system is achieved.

The most important requirement in this procedure is that the annealing must be
carried out really slowly. Since a very stable structure of the resulting crystal is
desired, the temperature of the head bath should be lowered very carefully. No equi-
librium is achieved if the cooling process is too fast. As a consequence, many defects
and irregularities in the structure occur.

A cooling procedure that is carried out too fast might cause defects. This can be
compared with a local extremum of an optimization problem. If the temperature is
lowered too fast, the algorithm might end up in an local optimum.

4.4.2 The Algorithm

To simulate this thermal process, a Monte-Carlo method suggested by Metropolis
et al. (1953) is used. The authors develop a simple algorithm that generates iterative
improvements of states. However, even worse solutions than the current state are
accepted with a certain probability.

The Metropolis Algorithm can be described as follows (see Kirkpatrick et al., 1983):

We start from a certain state i with energy Ei. In each step of the algorithm a change
is made to obtain a new state j with energy Ej . Typically, only small changes are
made. The di�erence in the energy is computed in the next step and denoted by
∆E = Ej − Ei.

If ∆E ≤ 0, the new state j has lower energy and is therefore accepted. It is now
used as a starting state for the next iteration.

On the other hand, if ∆E > 0, a random, uniformly distributed number between 0
and 1 is generated. If P (∆E) = exp(−∆E

kBT
) (kB denotes the Boltzmann constant and

T the temperature) is bigger than this random number, the new state j is accepted.
Otherwise, the initial state i is used for the next iteration.

These steps are repeated either until T equals zero or until a given upper bound of
iterations is reached.
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This algorithm by Metropolis et al. (1953) simulates the con�guration of the atoms
within the head bath. As we can see, moves in the "wrong" direction (i.e., states
with higher energy) are also accepted when the temperature T is high enough. As T
is lowered, P (∆E) decreases. If T goes to zero, P (∆E) converges towards zero and
therefore only states with lower energy are accepted.

The fact that even movements with higher energy are allowed with a certain prob-
ability decreases the chance of ending up in a local minimum.

For the sake of completeness, also the pseudo code of the Simulated Annealing
Algorithm is formulated:

1 begin

2 t = T(0); n = 0; // starting temperature; iteration;

3 s = s0; e = E(s); // initial state; initial energy;

4 sbest = s; ebest = e; // current best solution;

5 repeat

6 choose s* in N(s); // select a neighbor of s;

7 snew = s*; enew = E(s*); // calculate its energy;

8 d = enew-ebest; // difference in energy;

9 if (d < 0) // energy improvement?

10 sbest = snew; ebest = enew;

11 else if (exp(-d/(t*k_b)) > rand(0,1))

12 s = snew; e = enew;

13 t = T(n); n = n+1; // current temperature; iterations;

14 until n >= nmax; // nmax = number of iterations;

15 return sbest // return best found solution;

16 end;

In order to adapt this algorithm to a general minimization problem, the cost func-
tion (objective of the problem) is used instead of the energy. And in place of the
con�gurations (states of the system) a set of parameters of the decision variables is
used. Proceeding like this, we obtain the Simulated Annealing Algorithm, where the
temperature T denotes a control parameter.

Summing up, the Simulated Annealing Algorithm solves minimization problems
with a high number of variables by feigning the cooling process of melted metal.
In each step a random solution in the neighborhood is considered. Depending on the
temperature T and the di�erence of the function values, a probability decides about
the next state.
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4.4.3 Formulation of the Simulated Annealing Algorithm

For the problems described in Section 3.2 (the Multiple Server Problem and the
Total Cost Problem) the Simulated Annealing Algorithm is formulated as follows
(see Aboolian et al., 2008; Berman and Drezner, 2007):

Algorithm 4.2: Simulated Annealing

Step 1 : Set temperature T to the starting temperature T0 and the
number of iterations i to 1.
Generate a set of facility sites S randomly and calculate
F (S).

Step 2 : De�ne S′, a random move in the neighborhood of S.
Step 3 : Calculate F (S′).
Step 4 : If F (S′) < F (S), set S = S′ and Sbest = S′. Continue with

Step 6.

Step 5 : Otherwise, calculate δ =
F (S′)−F (S)

T and generate a random
number rand between 0 and 1. If e−δ > rand change S to
S′.

Step 6 : Set T = αT and i = i+ 1. If i < iter, go to Step 2.
Step 7 : The last value of Sbest is the best solution found by this

algorithm.

As we can see, three parameters have to be determined before starting the pro-
cedure. First of all, the starting temperature T0 of the head bath has to be de�ned.
In each iteration the current temperature is reduced by a certain factor α < 1. This
factor has to be �xed before starting the algorithm. And �nally, the maximal num-
ber of iterations iter has to be predetermined.
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4.5 Genetic Algorithm

Both Simulated Annealing and Genetic Algorithms belong to the group of guided
random search techniques. While Simulated Annealing is a thermal process with a
physical background, Genetic Algorithms are combinatorial evolutionary procedures
based on the mechanics of biological evolution. Alp et al. (2003) describe Genetic
Algorithms in the following way:

Genetic Algorithms (GAs) are heuristic search methods that are designed
to mimic the evolution process. New solutions are produced from old so-
lutions in ways that are reminiscent of the interaction of genes. GAs have
been applied with success to problems with very complex objective func-
tions. While a number of applications to combinatorial optimization prob-
lems have been reported in the literature, there are few applications of
genetic algorithms to facility location problems.

John Holland was the �rst to develop Genetic Algorithms. In 1975 he published the
book "Adaptation in natural and arti�cial systems" (Holland, 1975), which presents
the theory of Genetic Algorithms. Further very important contributions concerning
these optimization techniques were delivered by David Goldberg, a student of Hol-
land (Goldberg, 1989). Dawid (1996) provides analytical results and applications to
economic models using adaptive learning by Genetic Algorithms.

4.5.1 Evolution and the Genetic Algorithm

Charles Darwin's theory of evolution (see Darwin, 1859) can be seen as the initial
point for Genetic Algorithms. He found out that organisms best suited to their envi-
ronment have a higher probability to survive and to produce o�spring. The parents
pass their adaptations on to the children and the new generation is then even bet-
ter adjusted. Thus, life and its quality is improving over time. This theory became
known as "Survival of the �ttest".

At the beginning, a starting population (organisms) exists. Each member can be
characterized by their genetic information (represented by the chromosomes). Due
to their �tness (suitability to the environment), they have a certain survival probabil-
ity. Surviving organisms produce a further generation, whose chromosomes originate
from manipulating the genetic information of their parents. Either crossover or mu-
tation is used as genetic operator (for details see Ribeiro Filho et al., 1994). The
new generation serves as new starting population and the circle is repeated.
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As we can see, evolution demonstrates how to solve the problem of producing or-
ganisms that can survive in a particular environment. This biological evolution is
now simulated to formulate the algorithm.

4.5.2 The Algorithm

The starting population in a Genetic Algorithm corresponds to a set of possible
solutions of the underlying problem. This set has to be generated randomly at the
beginning of the procedure. The solutions (chromosomes) are evaluated by their
value of the objective function (�tness function). Based on these values, the solutions
are selected to serve as parents. Pairs of the chosen solutions are now crossed to
produce an o�spring. The steps of the algorithm can be illustrated in a simple �gure
(see Figure 4.2).

Summing up, the algorithm consists of the following four components that are also
shown in the �gure:

1. a population (set) of possible solutions;

2. an objective (�tness) function;

3. a selection operator for the parents; and

4. a genetic operator to produce a new generation.

population
new

generation evaluation

fitnessgenetic parents

generation

fitness 
function
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Figure 4.2: The "Reproduction" Circle of the GA
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4.5.3 Formulation of the Genetic Algorithm

The Genetic Algorithm is formulated for the problems in Section 3.2. A population
consists of P members (solutions) and G new generations have to be created until
the algorithm terminates. An o�spring is produced following a certain merging pro-
cedure. The new member is admitted to the population if a worst solution already
exists (see Berman and Drezner, 2007).

Algorithm 4.3: Genetic Algorithm

Step 1 : Randomly generate P solutions for the starting population
and perform the Descent Procedure (Algorithm 4.1) on all
these solutions.

Step 2 : Repeat the following steps G times:
• Select two random members. By using the merging pro-
cedure create a new population member S′.
• If F (S′) overvalues one of the population members:
- If S′ is identical to one of the population members, do

not change anything. Start the next iteration.
- Otherwise, instead of the worst member admit S′.
• If F (S′) is worse than all the other population members,
start the next iteration.

Step 3 : The best member of the population denotes the solution
found by the algorithm.

Berman and Drezner (2007) and Aboolian et al. (2009) use the following merging
procedure in order to create a new o�spring. The node sets S1 and S2 denote the
parents.

1. Create SU = S1 ∪ S2 (union of the parents).

2. Create SI = S1 ∩ S2 (intersection between the parents).

3. Create SD in the following manner: to all nodes that are in SU but not in SI

add three random nodes outside of SU .

4. Create S′ (starting o�spring) by adding a random node from SD to SI .

5. Apply a restricted Descent Algorithm to S′ by removing or adding nodes only
in SD. The nodes in SI are �xed.

6. The new produced o�spring is denoted by the solution of the procedure.
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4.6 Tabu Search

The last algorithm introduced in order to solve the underlying optimization problems
is the Tabu Search. Besides Simulated Annealing, this method is also an iterative
search technique based on the de�nition of neighborhood. However, Tabu Search
is not adapted from a thermodynamical process. The most essential feature of the
method described in this section is its "use of memory".

Fred Glover was the �rst to concentrate on memory mechanism. In 1986 he intro-
duced Tabu Search (see Glover, 1986). A full description of the procedure is given
in Glover (1989).

Tabu Search is applied in a large diversity of problems. Glover and Laguna (1997)
mention in their book among others production planning and scheduling, routing
telecommunications, resource allocation, transportation and network design.

4.6.1 Use of Memory

As already mentioned, the most essential component of Tabu Search is its use of
memory. Due to this memory, the method will avoid local minima and is prevented
from cycling.

We will only concentrate on the most important part, the short term memory. Ad-
ditionally, the intermediate and the long term memory intensify and diversify the
search.

Every step of the Tabu Search is looking for the best solution in the neighbor-
hood. This searching strategy might lead to cycles if no memory is used. The short
term memory prevents the algorithm from visiting a solution twice and thus cycles
are avoided. Since certain moves are taboo, this searching procedure is called Tabu
Search.

In Tabu Search the used memory can be both explicit and attributive. An explicit
memory consists of complete solutions that have already been visited during the
search. These solutions in the memory are used to guide the searching procedure
and to avoid visiting solutions more than once. Contrary to this, information about
solution attributes is recorded in the attributive memory. In a network, for example,
arcs from one node to another are memorized. This also guides the process in the
right direction.



4. Metaheuristics for Server Location Problems 38

4.6.2 The Algorithm

Tabu Search (TS) starts with a feasible initial solution (obtained by the Descent
Algorithm). The next step is to create candidates in the neighborhood of the current
solution. If the best neighborhood candidate provides an improvement and is not
yet included in the tabu list, it is accepted as new solution. In order to avoid visiting
this solution again, the tabu list is updated. Otherwise, if the best neighborhood
candidate does not provide an improvement, the current solution remains the same
and only the tabu list is updated. This procedure is repeated iteratively until a
stopping criterion is met.Tabu Search might stop if:

- a certain number of iterations is reached;
- the solution has not improved for a while;
- the neighborhood is empty; or
- a satisfying solution has been found.

The procedure of a Tabu Search is illustrated in Figure 4.3.
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Figure 4.3: Procedure of the TS
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4.6.3 Formulation of the Tabu Search

Again the algorithm for the underlying problems is formulated. Thereby the Descent
Procedure from Section 4.3 and the de�nition of a neighborhood from Section 4.1
are used.

Algorithm 4.4: Tabu Search

Step 1 : Use the Descent Algorithm to generate a starting solution
S. Set F ∗ = F (S) and S∗ = S.

Step 2 : Empty the tabu list.
Step 3 : For each subset S′ in the neighborhood of S calculate

F (S′).
Step 4 : Set Fmin = min {F (S′) : S′ is a neighbor of S} and set

Smin = arg min {F (S′) : S′ is a neighbor of S}.
Step 5 : If Fmin < F ∗ and if Smin is not in the tabu list, change the

current solution S and S∗ to Smin. If the stopping criterion
is met, stop and return S∗. Otherwise, go to Step 2.

Step 6 : Otherwise:
• Set S′ = arg min {F (S′) : move is not in the tabu list}
and use S′ for the next iteration (S = S′).
• The move from S to the selected S′ is added to the tabu
list.
• The nodes, whose tenure exceeds the one of the tabu list,
are deleted from the list.
• Go to Step 7.

Step 7 : If the stopping criterion is not satis�ed, go to Step 3. Oth-
erwise, stop with the resulting solution S∗.

After Step 5, when a better solution is found, the tabu list is emptied each time.
This leads to a more �exible searching process.
In Step 6 the moves being not in the tabu list are nodes that have been in S at the
beginning but are not in the selected S′ or nodes being in S′ but not in the starting
S.



Chapter 5

Computational Results and

Sensitivity Analysis

John Beasley provides and maintains an OR-Library, a collection of test problems
for a number of di�erent areas of Operations Research. Originally, the OR-Library
was described in Beasley (1990) and the test data sets were distributed by electronic
mail. Now they are also available online1.

In this thesis, the 40 problems from Beasley (1985) suggested for the uncapacitated
p-median problem are selected for the computational experiments. The objective of
a p-median model is to locate p facilities on a network in order to minimize the dis-
tance between all customers and their closest facility. Since there is no upper bound
on the number of facilities in the underlying models, p is used to be the maximal
number of servers assigned to all service sites. (This value is only used in the Mul-
tiple Server Problem. Considering the Total Cost Problem, no upper bound on the
number of servers is given. Thus, the value of p is simply neglected.)

The problems suggested by Beasley range from 100 to 900 demand points and from
5 to 200 facilities (server units). It goes without saying that problems with a high
number of nodes and a high number of servers require more running time. Therefore,
only 10 problems (1, 2, 6, 7, 11, 12, 16, 17, 21, and 22) are chosen, for which the
examinations in this thesis are carried out.

All programs are coded in C# and run on a computer with a dual core proces-
sor with 2,4 GHz and 4048 MB RAM. An example of the implemented algorithms
is given in Appendix A.3.

1see http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

40
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5.1 Computational Experiments

5.1.1 Determination of Parameter Values

First of all, suitable values for the parameters that appear in the model formulations
have to be found. When choosing these values, the suggestions made in Berman and
Drezner (2007) are strongly followed. The parameters used in their implementations
are a result of extensive experiments with each of them.

The demand rate λi at customer node i is set to 1. To simplify matters λ is as-
sumed to be equal for all nodes.

The parameter θ is de�ned to be the ratio between total service capacity and to-
tal demand of the customers (θ = pµ

nλ). It is presumed to be 1.1. Thus, the service
capacity of all servers is 10% more than the total demand, which leads to normal
service conditions. Consequently, the service rate µ equals θnλp for all server units
at all facility stations.

The �xed costs of installing servers fj at facility node j are also assumed to be
equal for all nodes and are set to 1000. h, the variable server costs, are presumed
to be 50 for all servers. The customer's travel costs g per unit of time and the cus-
tomer's waiting costs v per unit of time are set to 1.

In Table 5.1 the above mentioned assumed parameter values for the heuristics are
summarized.

parameter value additional information

λi 1 ∀ customer nodes i

θ 1.1 θ = pµ
nλ

µ θnλp ∀ servers
fj 1000 ∀ facilities j
h 50 -

g 1 -

v 1 -

Table 5.1: Determination of Parameter Values
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5.1.2 Metaheuristic Parameters

Before starting the algorithms, one also has to decide how often the four procedures
should be run for each problem and how many iterations the three heuristics should
carry out. In addition, the starting temperature and the reducing factor must be
assigned for the Simulated Annealing Algorithm.

The running times of the Descent Procedure are on average under one second. Thus,
it is run 500 times for each problem.

For the Simulated Annealing Algorithm, N = 4000n
√
p iterations are carried out

and the number of runs equals 50 for each problem. The initial temperature T0 is
set to 1000 and it is reduced by the factor α = 1− 5

N after each iteration.

The Genetic Algorithm is executed for 500n generations with a population size
of n. The running times of this algorithm are relatively high, compared to the one of
the Descent Procedure. In case of the Genetic Algorithm, one run for the ten chosen
problems takes on average 12 minutes. Therefore, each problem is run only 50 times.

The running time of the Tabu Search Algorithm is lower. However, it is also carried
out only 50 times, and 5n iterations are made.

Table 5.2 gives an overview about all these metaheuristic parameters.

algorithm # runs # iterations parameters

Descent Procedure 500 - -

Simulated Annealing 50 N = 4000n
√
p T0 = 1000, α = 1− 5

N

Genetic Algorithm 50 500n population size = n

Tabu Search 50 5n -

Table 5.2: Metaheuristic Parameters

These parameters are used for the Multiple Server Problem. For the second model,
the Total Cost Problem, the number of iterations and the parameters remain the
same. Only the number of runs is changed as follows:

The Descent Procedure is again executed 500 times. All the other heuristics are
run only 30 times.
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5.1.3 The Multiple Server Problem

In Table 5.3 the best known results (i.e., the minimal cost value) obtained by the
four procedures in our computational experiments are presented.

As usual, the number of nodes in the network and the maximal number of servers
placed at the facilities are denoted by n and p. The objective function value (the
costs) of the best found solution is named minimal costs. q is the number of server
nodes for the best known solution and max the maximal number of server units
assigned to one facility site. The abbreviations for the procedures are straightfor-
ward: Descent for Descent Procedure, GA for Genetic Algorithm, SA for Simulated
Annealing, and TS for Tabu Search.

n p minimal costs q max found by

100 5 6692.49 4 2 TS and GA

100 10 5309.07 7 3 TS and GA

200 5 8172.77 4 2 GA

200 10 6709.94 8 3 GA

300 5 8265.45 5 1 TS

300 10 7577.84 9 2 TS

400 5 8207.07 5 1 TS

400 10 7609.77 9 2 GA

500 5 9520.79 5 1 SA

500 10 9415.10 9 2 TS

Table 5.3: Best Known Results for the Multiple Server Problem

As one can see, in the majority of cases, the best known result is found by the Tabu
Search Algorithm (six times). The Genetic Algorithm detected the best known re-
sult for �ve problems.

For one problem, the Simulated Annealing Algorithm found the best result. Due
to the fact that this algorithm is very much based on coincidence and detected only
once the best solution, we do not pay much attention to this result.

The Descent Procedure never obtained a best solution. Its found objective func-
tion values are higher than the best known solution for all problems.
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Can it be inferred from this result that the Tabu Search is the best algorithm to
solve the Multiple Server Problem? Does the Genetic Algorithm provide adequate
solutions as well?

In order to answer these questions, a detailed look at the results of all procedures is
presented. In particular, their deviation from the best found result is compared.

Results for the Four Heuristics

In the following tables (see Table 5.4 and Table 5.5), the deviations from the best
known objective function values for the Descent Procedure, the Simulated Anneal-
ing Algorithm, the Genetic Algorithm, and the Tabu Search are presented (i.e.,
result from the particular procedure

best known result ).

min denotes the minimal, ave the average, and max the maximal deviation from
the best found cost value. All these values are expressed as a percentage over the
best known (BK) result from Table 5.3.

Descent Simulated Annealing

% over BK result % over BK result

n p min ave max min ave max

100 5 2.79 7.70 16.88 0.13 8.35 14.19

100 10 10.41 16.07 21.41 8.87 17.19 24.51

200 5 0.50 9.84 18.78 0.71 9.12 15.41

200 10 1.39 8.57 13.61 6.45 12.11 22.62

300 5 1.05 6.79 8.07 0.93 6.04 10.16

300 10 2.44 9.50 19.38 10.58 16.88 21.57

400 5 0.26 9.47 15.77 1.29 8.49 15.03

400 10 4.67 11.47 19.98 9.17 17.41 31.73

500 5 6.68 12.83 17.30 0.00 7.58 14.86

500 10 1.31 9.20 15.34 3.97 10.95 15.00

Average 3.15 10.14 16.65 4.21 11.41 18.51

Table 5.4: Descent- and Simulated Annealing- Results for the Multiple Server Problem

The solutions found by the Genetic Algorithm are on average only 1.90% higher
than the best found objective function value. Since this procedure also detected the
best known solution in 50% of all problems, it turns out to be the most e�cient one
of all algorithms.
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Genetic Algorithm Tabu Search

% over BK result % over BK result

n p min ave max min ave max

100 5 0.00 2.89 4.14 0.00 4.86 10.24

100 10 0.00 2.91 3.94 0.00 9.39 17.13

200 5 0.00 0.12 0.50 0.02 1.28 6.97

200 10 0.00 1.26 2.11 1.78 4.31 9.51

300 5 0.01 0.01 0.04 0.00 4.80 6.21

300 10 2.44 2.50 3.96 0.00 8.86 19.38

400 5 0.26 0.30 2.02 0.00 7.64 10.67

400 10 0.00 3.51 5.42 3.98 8.31 16.87

500 5 2.90 3.93 6.68 6.49 10.19 12.16

500 10 1.31 1.61 3.04 0.00 6.54 9.77

Average 0.69 1.90 3.19 1.23 6.61 11.89

Table 5.5: Genetic Algorithm- and Tabu Search- Results for the Multiple Server Problem

The second best procedure, considering these tables, is the Tabu Search Algorithm.
Although it found the best solution in most of the cases, its results are on average
already 6.61% higher than the best found solution.

The other two procedures did not perform in a satisfying way (see Table 5.4). On
average, their results are over 10% higher than the best known solution.

Conclusions for the Multiple Server Problem

Concerning the objective function value, the Tabu Search Algorithm detected the
best results in the majority of cases. However, taking not only the best known solu-
tion, but all the found results into consideration shows that the Genetic Algorithm
performed really well and is therefore recommended to use for the Multiple Server
Problem. The Simulated Annealing and the Descent Procedure did not meet the
expectations, because their results exceed the optimal solution clearly.
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5.1.4 The Total Cost Problem

For the Total Cost Problem, the best known solutions obtained by the four heuris-
tics in our computational experiments are presented in Table 5.6.

Again, n denotes the number of nodes and p the number of servers placed at the
facilities. As before, q is the number of server nodes for the particular solution and
max the maximal number of server units assigned to one facility.

n minimal costs p q max found by

100 10254.36 6 2 4 all 4 procedures

100 10301.75 10 2 5 all 4 procedures

200 12038.34 6 2 4 TS, GA and Descent

200 11350.05 10 1 10 all 4 procedures

300 1150.54 5 2 3 TS, GA and Descent

300 13024.96 10 3 4 GA and Descent

400 12146.60 5 2 3 TS, GA and Descent

400 13216.07 10 2 6 TS, GA and Descent

500 13625.17 6 3 2 TS and GA

500 15049.79 10 3 4 TS, GA and Descent

Table 5.6: Best Known Results for the Total Cost Problem

The computational results for this model show that the best known solution is al-
ways found by more than one procedure. Actually, three times all four algorithms
obtained the best result. The Genetic Algorithm detected the minimal value of the
objective function for all problems. Only for one problem, the Tabu Search and the
Descent Procedure did not give the best known result.

A characteristic of the Total Cost Problem is that the value of p is obtained by
the algorithms and not given in advance. For the best found solution of each prob-
lem it is presented in the table. However, concerning the number of assigned servers,
there are no surprising results. Only for three problems, this value di�ers from the
number determined by Beasley. This con�rms that the parameters chosen for this
model are appropriate.

Again the crucial question is, which algorithm is the most suited one to solve the
underlying problem. In order to answer this question we will have a look at the
results of all procedures.



5. Computational Results and Sensitivity Analysis 47

Results of the Four Heuristics

Also for the Total Cost Problem the deviations from the best known objective func-
tion value are presented (see the following two tables Table 5.7 and Table 5.8). Again,
all these values are expressed as a percentage over the best known (BK) result from
Table 5.6.

Descent Simulated Annealing

% over BK result % over BK result

n min ave max min ave max

100 0.00 0.16 0.22 0.00 5.84 10.74

100 0.00 0.00 0.00 0.00 3.52 6.58

200 0.00 0.00 0.00 0.58 3.53 8.06

200 0.00 0.00 0.00 0.00 2.17 6.66

300 0.00 0.32 0.44 0.99 8.42 15.67

300 0.00 0.07 0.29 2.85 8.49 12.99

400 0.00 0.00 0.04 5.49 11.02 18.02

400 0.00 0.02 0.03 3.76 9.02 13.49

500 0.01 0.03 0.03 5.69 14.44 27.71

500 0.00 0.00 0.05 2.86 11.21 22.51

Average 0.00 0.06 0.11 2.22 7.76 14.24

Table 5.7: Descent- and Simulated Annealing- Results for the Total Cost Problem

The obtained results are particularly interesting. Compared to the Multiple Server
Problem, where the deviations are to some extent very high, the results for the Total
Cost Problem are consistent.

In the majority of cases, the Genetic Algorithm and the Tabu Search detected only
one result, the best known solution. Thus, their deviation from the best known solu-
tion is really low. On average it is 0% for the Genetic Algorithm and 0.01% in case
of the Tabu Search.

Also the results given by the Descent Procedure show a very small deviation from
the best known result (on average 0.06%). Again, the Simulated Annealing Algo-
rithm performed most insu�ciently. Its deviation is on average 7.76% over the best
known solution.
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Genetic Algorithm Tabu Search

% over BK result % over BK result

n min ave max min ave max

100 0.00 0.00 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 0.00 0.00 0.01

200 0.00 0.00 0.00 0.00 0.00 0.00

200 0.00 0.00 0.00 0.00 0.00 0.00

300 0.00 0.01 0.32 0.00 0.01 0.32

300 0.00 0.00 0.03 0.03 0.05 0.27

400 0.00 0.00 0.00 0.00 0.00 0.00

400 0.00 0.00 0.00 0.00 0.00 0.00

500 0.00 0.01 0.01 0.00 0.03 0.03

500 0.00 0.00 0.00 0.00 0.00 0.00

Average 0.00 0.00 0.04 0.00 0.01 0.06

Table 5.8: Genetic Algorithm- and Tabu Search- Results for the Total Cost Problem

Conclusions for the Total Cost Problem

Concerning the objective function value, the Descent, the Genetic Algorithm, and
the Tabu Search obtained the best results for almost all problems that were investi-
gated. Only the performance of the Simulated Annealing Algorithm was insu�cient.

Taking not only the best known result, but all found solutions into consideration
shows that the Genetic Algorithm gave the best results, because its average devia-
tion from the best found solution is the smallest.

Conclusions

Summing up the computational results for the Multiple Server Problem and the
Total Cost Problem, we conclude that the Genetic Algorithm performs very well for
both problems. Therefore, it is recommended to use this algorithm for solving our
models. The Tabu Search is second in quality and thus also a good choice.

However, the running times of the algorithms are not considered. One has to keep in
mind that the Genetic Algorithm takes the longest time to deliver results. As already
mentioned, the running times of the Descent Procedure are on average under one
second. Therefore, this algorithm is also an appropriate alternative since it can be
executed many times and the probability that the best solution is found increases.
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5.2 Sensitivity Analysis

In the second part of our experiments, the e�ects of di�erent values of parameters
such as the arrival rate, service rate, �xed installation costs of facilities, and variable
server costs on the results are tested.

Beasley's �rst problem (pmed1) with 100 nodes and 5 servers is chosen to per-
form the analysis on. In case of the Total Cost Problem, the given number of servers
is again neglected.

For this sensitivity analysis, the Descent Procedure is used. Although its perfor-
mance is not among the best, there are several reasons for choosing this algorithm.
First of all, this procedure is used by all the other algorithms and thus provides, to
some extent, a basis for them. Secondly, its running times are the smallest. Moreover,
changes in the parameters will have the same e�ects on the results for all procedures,
even if their performance is not the best. Therefore, the Descent Procedure is used
for the underlying sensitivity analysis.

Since the Total Cost Problem considers more components in the objective func-
tion, this model is particularly interesting for the sensitivity analysis. Thus, most of
our analyses concentrate only on the Total Cost Problem.

Nevertheless, when varying the demand and service rate of the system, there are
interesting di�erences between the Multiple Server Problem and the Total Cost
Problem. Concerning these parameters, the sensitivity analysis is conducted for both
models.

5.2.1 Varying Demand Rate and Service Rate

Besides minimizing the total cost, service stations will try to attract as many cus-
tomers as possible. However, clients do not consider variable server costs or �xed
installation costs. From their point of view, the values of the demand rate and the
service rate are the most interesting ones. Their decision is very much dependent on
these two values.

Thus, the ratio between the total capacity of service and the total demand of the
customers in the system ( pµnλ) is varied. This ratio is denoted by the parameter θ
(see Section 5.1.1).
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For the computational experiments, θ was assumed to be 1.1. In the following, this
parameter is varied between 1.01 and 1.2. θ being 1.01 leads to very tight service
conditions, since the service capacity of all server units is only 1% more than the
demand of all customers. Contrary to this, θ = 1.2 represents very slack service
capacity, because the total service capacity exceeds the total demand rate by 20%.
As already mentioned, θ = 1.1 leads to normal service conditions.

The Multiple Server Problem

In case of the Multiple Server Problem, the waiting costs at the stations are expected
to decrease, when increasing the value of θ. The travel times of the customers to the
stations are independent of θ. Thus, the total cost of the system is presumed to be
a decreasing function in θ.

These assumptions can be checked in Table 5.9, where the results for di�erent values
of θ are presented.2

θ minimal costs waiting time q

1.010 7890.00 5.000 5

1.025 8003.77 1.562 3

1.050 7309.98 0.786 3

1.075 6996.25 0.561 4

1.100 6981.48 0.420 4

1.125 6652.99 0.406 4

1.150 6641.36 0.311 4

1.175 6166.47 0.676 5

1.200 6116.00 0.425 5

Table 5.9: Varying θ in the Multiple Server Problem

As we can see, our a priori statements are true except for some outliers. For the
value of θ being between 1.01 and 1.15, the waiting time is a decreasing function in
θ. For the last two parameter values it is increasing again, which is due to a higher
number of facilities. Considering the servers, one unit is placed at each station for θ
being 1.01. In the following, servers are pooled at 3 or rather 4 facilities. As we have
shown in Section 3.1, this also decreases the waiting times since more units serve
the customer demand. For the last two values of θ, there is again just one server at
each station.

2Note that only the best known results are given in this table.
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Summing up, the total cost is decreasing in θ. This means that with a higher rela-
tive service rate (compared to the total demand rate), the total cost of the system
diminishes.

Figure 5.1 presents a summary of the analysis with respect to the ratio between
the total service and the total demand in the system. For this illustration, the ratio
in total cost, waiting time, and number of facilities for each value of parameter is
measured compared to the "base case" parameter value (i.e., θ = 1.1). In case of
the waiting time, this ratio is given by: waiting time ratio (parameter value) =

waiting time (parameter value)
waiting time (base case parameter value)

.
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Figure 5.1: Sensitivity Analysis with respect to θ for the Multiple Server Problem

To sum up, in the Multiple Server Model, the costs are decreasing in the ratio be-
tween the total capacity of service and the total demand in the system θ = pµ

nλ .

The number of facilities in the system diminishes at �rst, but increases rapidly.
Except for one outlier at the end (i.e., at θ being 1.175), the waiting times are also
decreasing in θ. This outlier can be explained as follows: For θ being 1.175 the num-
ber of facility sites is equal to the number of servers in the system (i.e., 5). Thus
only one service unit is placed at each facility node. As we have seen in Chapter
3 (see Section 3.1), the pooling of servers reduces the waiting times without addi-
tional costs. Consequently, the waiting times increase drastically when the number
of servers is reduced to only one at each station.



5. Computational Results and Sensitivity Analysis 52

The Total Cost Problem

For the Total Cost Problem, the waiting costs are also expected to be a decreasing
function in θ. However, for all the other objective function components (the travel
times, the �xed installation costs, and the variable server costs) it is not safe to
make any assumptions.

Di�erent values of θ might a�ect the total number of assigned servers, on which
there is no upper limit in this model. With an increase in θ, a smaller number of
server units is presumed. Thus, also the location of the facilities might change. Con-
sequently, the variation of θ might a�ect customers' travel time, the �xed installation
costs, and the variable server costs. Therefore, in case of the Total Cost Problem,
the total cost of the system cannot be presumed to be a decreasing function in θ.

Table 5.10 represents the results for di�erent values of θ in case of the Total Cost
Problem.3

θ minimal costs waiting time p q

1.010 10257.83 0.130 6 2

1.025 10257.03 0.121 6 2

1.050 10255.93 0.109 6 2

1.075 10255.07 0.098 6 2

1.100 10254.36 0.091 6 2

1.125 10243.03 0.265 5 2

1.150 10222.35 0.223 5 2

1.175 10214.78 0.164 5 2

1.200 10210.91 0.133 5 2

Table 5.10: Varying θ in the Total Cost Problem

The waiting time is a decreasing function until θ being 1.1. Thus, the waiting costs
of the customers diminish until this value. For higher parameter values, the number
of assigned servers is reduced. Compared to 6 servers for values of θ being smaller
than 1.125, only 5 units are assigned for θ being larger. Consequently, the waiting
time increases for this particular parameter value and decreases afterwards again.
Since the number of servers is diminished only by one at θ = 1.125, the �xed server
costs also become smaller and remain the same afterwards.

3Note that again only the best known results are given in this table.
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For all values of θ, the number of facility sites is 2. Thus, there are no changes
in the �xed installation costs.

Summing up these observations, the total cost in the Total Cost Problem are slowly
decreasing in θ.

Again a summary of the analysis with respect to the ratio between the total service
and the total demand in the system is presented (see Figure 5.2). The ratios in total
cost, waiting time, number of facilities, and number of servers for all values of θ
compared to the "base case" value (θ=1.1) are illustrated.
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Figure 5.2: Sensitivity Analysis with respect to θ for the Total Cost Problem

Due to the fact that the total cost ratio is only very slowly decreasing in θ = pµ
nλ and

close to 1, it is hidden behind the ratios of the number of servers and of the number
of facilities.

The �gure clearly shows that the waiting time is increasing dramatically, when the
number of servers is decreased.

The following two analyses (variation of the variable server costs h and the �xed
installation costs f) are only conducted for the Total Cost Problem, since these
parameters are not considered in the Multiple Server Problem.
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5.2.2 Varying Variable Server Costs h

The focus in this section lies on the consequences of varying variable server costs h
in the Total Cost Problem.

On the one hand, if the total number of assigned servers remains the same, the
total cost will increase. On the other hand, due to higher server costs, fewer service
units might be assigned to the stations. Because of a smaller number of servers,
fewer facilities might be opened. In this case, the waiting times in the system and
also the travel times increase. These facts also cause an increase in the total cost of
the system.

It cannot be presumed, which factor in�uences the total cost of the system most.
However, it is safe to say that the objective function value is an increasing function
in h.

In the computational experiments, the variable server costs h were set to 50. Varying
h between 20 and 100 leads to the following results represented in Table 5.11.4

h minimal costs waiting time p q

20 10074.36 0.0907 6 2

30 10134.36 0.0907 6 2

40 10194.36 0.0907 6 2

50 10254.36 0.0907 6 2

60 10312.04 0.3273 5 2

70 10362.04 0.3273 5 2

80 10412.04 0.3273 5 2

90 10462.04 0.3273 5 2

100 10512.04 0.3273 5 2

Table 5.11: Varying the Variable Server Costs h in the Total Cost Problem

The number of assigned servers remains the same for the �rst four values of h. Sub-
sequently, it is minimized to �ve servers being in the system. Because of this, the
waiting time is an increasing function in the variable server costs. The number of
facilities remains the same for all values of h. Consequently, due to higher server
costs and increasing waiting times, the total cost of the system also increases in the
variable server costs.

4Like in the case of varying θ, only the best known results are presented.
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Figure 5.3 presents a summary of the analysis with respect to the variable server
costs. Again, the ratio in total cost, waiting time, number of facilities, and number
of servers in the system for each value of parameter is measured compared to the
"base case" parameter value (i.e., h = 50 in this case).
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Figure 5.3: Sensitivity Analysis with respect to the Variable Server Costs h in the Total Cost

Problem

This �gure shows again that the waiting times increase drastically, when the number
of servers is reduced. Since the total number of installed facilities in the system re-
mains the same for all values of h, the ratio compared to the "base case" parameter
equals one for all cases. The total cost is slowly increasing, when the variable server
costs rise.
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5.2.3 Varying Fixed Installation Costs f

If the number of facility stations does not change, an increase in the �xed instal-
lation costs f implicates rising total cost. However, it is quite safe to say that the
number of service stations will not remain the same in case of a su�cient increase
in f . But how does this number change? Are there also any e�ects on the number
of servers and consequently on the waiting times in the system?

In order to answer these questions, the e�ects of increasing �xed installation costs on
the total cost, the waiting times, the number of servers, and the number of facility
stations are presented in Table 5.12.5

f minimal costs waiting time p q

200 6687.10 0.1015 9 9

400 8153.84 0.1677 7 7

600 9048.30 0.1426 6 4

800 9812.87 0.1462 6 3

1000 10254.36 0.0907 6 2

1200 10654.36 0.0907 6 2

1400 11054.36 0.0907 6 2

1600 11454.36 0.0907 6 2

1800 11854.36 0.0907 6 2

2000 12254.36 0.0907 6 2

Table 5.12: Varying the Fixed Installation Costs f in the Total Cost Problem

As assumed above, the number of service sites q decreases drastically with increasing
�xed installation costs f . For f being 200, nine facilities are installed, in contrast to
2 service stations when f is 2000. Consequently, also the total number of servers in
the system diminishes. Since the waiting time is very low, its in�uence on the total
cost is not worth mentioning.

However, how can the decrease in the waiting time be explained if the number
of servers p and the number of facilities q decrease? In Chapter 3 (see Section 3.1),
we have seen that the pooling of servers decreases the waiting time of the customers.
In case of varying �xed installation costs, this is also the case. Even if the number
of facilities is decreasing, the waiting time is getting smaller because more servers
are placed at the facility sites.

5Again only the best known results are presented in this table.
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Although the two decision variables (the number of facilities and the number of
assigned servers) are reduced, the total cost of the system is an increasing function
in the �xed installation costs f .

Summing up, Figure 5.4 presents the analysis with respect to the �xed installa-
tion costs of a facility site.
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Figure 5.4: Sensitivity Analysis with respect to the Fixed Installation Costs f in the Total Cost

Problem

The number of server units and the number of installed facilities is a decreasing func-
tion in the �xed installation costs f . However, the total cost of the system increase
due to higher installation costs.



Chapter 6

Conclusions and Extensions for

Further Research

6.1 Conclusions

This thesis was devoted to Facility Location Models with Stochastic Demand and
Congestion. The primary focus was on the formulation of optimization models for
the location-allocation problem that can be solved by heuristic search techniques.

After formulating a general model for Facility Location with stochastic customer
demand and immobile servers, the Multiple Server Problem was introduced. For a
given number of servers, the optimal location was to be found in order to minimize
the travel and waiting times of all customers. This model is based on Berman and
Drezner (2007), who analyzed the Multiple Server Location Problem. The di�erence
to the model discussed in this thesis lies in the waiting times. While Berman and
Drezner use the waiting time in the queue Wq(λ, µ, k), the waiting time in the sys-
temW (λ, µ, k) (i.e., waiting time in the queue plus service time) was considered here.

In addition, the Total Cost Problem was discussed. Aboolian et al. (2008) intro-
duced this model, where the total cost of the system is sought to be minimized.
Besides travel and waiting time, total cost also consists of �xed installation costs for
facilities and of variable server costs. For this model, the number of servers in the
system is not limited.

Four solution procedures (Descent Procedure, Simulated Annealing, Genetic Algo-
rithm, and Tabu Search) were formulated, and examinations for the Multiple Server
Problem and the Total Cost Problem were carried out.
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In contrast to Aboolian et al. (2008), who only concentrated on the Descent Proce-
dure and the Simulated Annealing Algorithm, we executed all four algorithms for
the Total Cost Problem as well.

The Genetic Algorithm provided the highest quality results for both models. It
detected the best solutions for most of the problems and the found results were
always among the best of all heuristics. Therefore, the Genetic Algorithm is rec-
ommended for solving the underlying models. This coincides with the conclusions
drawn in Berman and Drezner (2007). However, contrary to their recommendation
not to use the Tabu Search, this algorithm performed well in our examination. Thus,
the Tabu Search is also a good choice for solving the underlying problems from our
point of view. While the Simulated Annealing Algorithm is recommended for nor-
mal service problems (i.e., θ = 1.1) in Berman and Drezner (2007), its results in our
experiments are not satisfying. The fact that only 10 out of the 40 Beasley problems
were used in the underlying computational experiments might cause these di�erent
conclusions.

Finally, a sensitivity analysis was conducted in this thesis. The ratio between the to-
tal service capacity and the total demand in the system was varied for both models.
For the Total Cost Problem, the consequences of a variation in the �xed installation
costs and in the variable server costs were also analyzed.

6.2 Extensions for Further Research

By pointing to some possible extensions, this thesis is concluded. In the process of
writing, various ideas and options came up that would allow going a step further
than the analysis presented here. Therefore, it is recommended to tackle the fol-
lowing ideas and approaches, which could extend the underlying work concerning
Stochastic Facility Location Models in several ways:

� In the models presented in this thesis it was assumed that customers visit the
closest facility site. As already mentioned in Section 2.3.1, the assumption that
clients have full information about the waiting time at the stations leads to
complex formulations of the model. However, the model becomes more plau-
sible. It is realistic that customers have information about the congestion at
di�erent stations. Therefore, not only the distance to the facility, but also the
expected waiting time should be taken into consideration when choosing the
facility.
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Robert Aboolian (personal communication) is currently working on models,
which consider customer traveling to the facility with the least access time
(travel time and waiting time).

� Furthermore, there is a need for improving the solution procedures for the
underlying models. The performance of the implemented heuristics for problems
with a large number of nodes and of servers is insu�cient. There should be ways
to improve this.

� Another suggestion is to develop an exact solution algorithm. Aboolian et al.
(2008) have already done this for the Total Cost Problem. Only small changes
may be required when applying their results to the Multiple Server Problem.

� Since companies usually have a limited budget, not only the number of servers,
but also the number of facilities might be bounded. Therefore, another topic
for further investigation is to add this constraint in the model formulation.

� Additionally, for more realistic models, it is also reasonable to take the location
of the competitors into consideration. One might lose customers, if the travel
time to a facility of the competitor or the expected waiting time is assumed to
be smaller.



Appendix A

Appendix

A.1 E�cient Calculations of W and Wq

In the case of an M/M/k queueing system, the average waiting time in the queue
Wq(λ, µ, k) and the average waiting time in the system W (λ, µ, k) are given by (see
(3.2) and (3.3))

Wq(λ, µ, k) =

(
λ
µ

)k
ρ

k! (1− ρ)2 λ
P0, (A.1)

W (λ, µ, k) = Wq(λ, µ, k) +
1

µ
, (A.2)

where ρ = λ
kµ .

These formulas are based on the probability that zero customers are in the sys-
tem (see formula (3.1))

P0(k) =

k−1∑
n=0

(
λ
µ

)n
n!

+

(
λ
µ

)k
k!

1

1− ρ


−1

.

For large values of λµ (the ratio of the arrival rate to the service rate) Pasternack and
Drezner (1998) point out that di�culties might arise when calculating P0(k). As λ

µ

gets bigger, P0(k) converges towards zero. Due to computer under�ow, the value of
P0(k) might be calculated as zero. To avoid this problem, the authors formulate an
e�cient way of calculating the average number of customers in the queue Lq(λ, µ, k).
Since we are interested in the waiting times, their suggestions are modi�ed.
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For a given λ and µ, ak is de�ned as follows:

ak = ρ

k−1∑
i=0
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.

Since a1 = 1 and
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]
=

1

ρ
ak + 1,

the sequence ak can be calculated recursively by

a1 = 1; ak = 1 +
µ

λ
(k − 1)ak−1.

The de�nitions of P0(k) and ak lead to the following:

P0(k) =
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λ
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=
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1
ρak + 1

1−ρ
.

We would like to get a simple formula for calculating the total waiting time in the
queue Wq(λ, µ, k) and in the system W (λ, µ, k). Therefore, the obtained result for
the probability that zero customers are in the system, P0(k), is inserted into (A.1)
and (A.2).
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Consequently, Wq(λ, µ, k) can be calculated as follows

Wq(λ, µ, k) =

(
λ
µ

)k
ρ

k!(1− ρ)2λ

k!
(λ/µ)k

1
ρak + 1

1−ρ

=
ρ

(1− ρ)2λ
(

1
ρak + 1

1−ρ

)
=

ρ

(1− ρ)2λ1
ρ

(
ak + ρ

1−ρ

) , where ρ =
λ

kµ

=

λ
kµ

(kµ−λ)2

(kµ)2
λkµλ

(
ak + λ

kµ−λ

)
=

λ

(kµ− λ)2
(
ak + λ

kµ−λ

) .
By adding 1

µ , a simple and e�cient formula for W (λ, µ, k) is obtained:

W (λ, µ, k) =
λ

(kµ− λ)2
(
ak + λ

kµ−λ

) +
1

µ
.
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A.2 Properties of Wq in an M/M/k Queueing System

The average waiting time in the queue Wq(λ, µ, k) of an M/M/k queueing system
can be calculated by formula (A.1). In the following, it is assumed that the arrival
rate λ and the service rate µ are given and Wq is only a function of k. Therefore,
we just write Wq(k).

The waiting time in the queueWq(k) is characterized by the following two properties:

Property 1: Wq(k) is a decreasing function in the number of
servers k.

Property 2: Wq(k) is a convex function in the number of servers
k.

For the proof of these properties, two propositions are needed (see Dyer and Proll,
1977).

Proposition 1

The function H(k) =
F (k)
G(k)

is strictly decreasing in k if F (k) is positive and strictly
decreasing in k and G(k) is positive and strictly increasing in k.

Proof: For a function f(k) the di�erence operator ∆f(k) denotes the di�erence
f(k + 1)− f(k). In case of an increasing function, the di�erence operator is always
positive. For a decreasing function it is always negative.

Thus, the conditions of the Proposition are equivalent to:

F (k), G(k),∆G(k) > 0 and ∆F (k) < 0. (A.3)

We have to show that ∆H(k) < 0.

∆H(k) =
F (k + 1)

G(k + 1)
− F (k)

G(k)

=
F (k + 1)G(k)− F (k)G(k + 1)

G(k + 1)G(k)

=
G(k)∆F (k)− F (k)∆G(k)

G(k + 1)G(k)

According to our assumptions, this fraction is negative. �
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Now this result is applied to the average waiting time in the queue Wq(k) (see
(A.1)) in an M/M/k queueing system. Making some transformations leads to the
following term:

Wq(k) =
ςk

(k − 1)! (k − ς)µ

[
(k − ς)

k−1∑
n=0

ςn

n!
+

ςk

(k − 1)!

]−1

,

where ς = λ
µ .

Thus, F (k) and G(k) in Wq(k) =
F (k)
G(k)

have the following form:1

F (k) =
ςk

(k − 1)! (k − ς)
and G(k) = (k − ς)

k−1∑
n=0

ςn

n!
+

ςk

(k − 1)!
. (A.4)

It is clear that the �rst two conditions, F (k) > 0 and G(k) > 0, are ful�lled, since
k > ς > 0. What about ∆G(k) and ∆F (k)? Do they also meet the conditions?

∆G(k) = (k + 1− ς)
k∑

n=0

ςn

n!
+
ςk+1

k!
− (k − ς)

k−1∑
n=0

ςn

n!
− ςk

(k − 1)!

=

k−1∑
n=0

[(k + 1− ς)− (k − ς)] ςn

n!
+

(k + 1− ς) ςk

k!
+

+
(ς − k) ςk

k!

=

k−1∑
n=0

ςn

n!
+
ςk

k!
=

k∑
n=0

ςn

n!
> 0, (A.5)

∆F (k) =
ςk+1

k! (k + 1− ς)
− ςk

(k − 1)! (k − ς)

=
ςk

k!

[
ς

k + 1− ς
− k (−ς + ς)

k − ς

]
=
ςk

k!

[
− ς

(k + 1− ς) (k − ς)
− 1

]
< 0, (A.6)

since k > ς > 0.

Thus, all constraints in (A.3) are met and H(k) = Wq(k) is a decreasing func-
tion in k. Property 1 is therefore proven.

1
F (k) 1

µ

G(k)
is a decreasing function in k if

F (k)
G(k)

is decreasing. Thus, 1
µ
can be skipped.
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In order to prove Property 2, the following Proposition is needed:

Proposition 2

Let F (k) and G(k) be characterized by the conditions in (A.3).
H(k) =

F (k)
G(k)

is a convex function in k if

F (k + 1)∆2G(k)−G(k + 1)∆2F (k) < 0. (A.7)

Proof: We prove the Proposition using the following equation:
H(k) is convex if and only if ∆2H(k) > 0.

−∆H(k) =
F (k)∆G(k)−G(k)∆F (k)

G(k + 1)G(k)

Both the enumerator and the denominator of this fraction −∆H(k) are positive due
to (A.3).

Let E(k) = F (k)∆G(k)−G(k)∆F (k) and D(k) = G(k + 1)G(k).

∆E(k) = F (k + 1)∆G(k + 1)− F (k)∆G(k)

−G(k + 1)∆F (k + 1) +G(k)∆F (k)

= F (k + 1) [∆G(k + 1)−∆G(k)] + ∆G(k) [F (k + 1)− F (k)]

−G(k + 1) [∆F (k + 1)−∆F (k)]−∆F (k) [G(k + 1)−G(k)]

= F (k + 1)∆2G(k)−G(k + 1)∆2F (k).

Due to property (A.7), ∆E(k) < 0.

∆D(k) = G(k + 2)G(k + 1)−G(k + 1)G(k)

= G(k + 1) [G(k + 2)−G(k)] .

Since G(k) is strictly increasing, ∆D(k)>0.

E(k) and D(k) satisfy the conditions in (A.3) and Proposition 1 can be applied:
−∆H(k) =

∆E(k)
∆D(k)

< 0. Thus, ∆H(k) > 0, ∆2H(k) > 0, and H(k) is convex. �
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If the conditions in Proposition 2 are satis�ed for Wq(k), Property 2 is also proven.
It only has to be shown that inequality (A.7) holds for F (k) and G(k).

Using (A.5), we get ∆2G(k) = ςk+1

(k+1)!
> 0.

For F (k), (A.6) is used and the following is obtained:

∆2F (k) = −
[

1 +
ς

(k + 1− ς) (k + 2− ς)

]
ςk+1

(k + 1)!

+

[
1 +

ς

(k − ς) (k + 1− ς)

]
ςk

k!
= ...

=
k + 1− ς
(k + 1)!

ςk +
(

1 +
ς + 1

k − ς
− ς

k + 2− ς

)
ςk+1

(k + 1)! (k + 1− ς)

≥
[
1 + ς

(
1

k − ς
− 1

k + 2− ς

)]
ςk+1

(k + 1)! (k + 1− ς)

≥ ςk+1

(k + 1)! (k + 1− ς)
≥ 0.

Therefore,

∆2G(k)− (k + 1− ς)∆2F (k) ≤ ςk+1

(k + 1)!
− ςk+1

(k + 1)!
= 0.

Using the de�nitions of G(k) and F (k) (see (A.4)) leads to the following:

G(k + 1) = (k + 1− ς)
k∑

n=0

ςn

n!
+
ςk+1

k!

≥ ςk+1

k!

= (k + 1− ς)F (k + 1).

With the help of these results, we obtain

F (k + 1)∆2G(k)−G(k + 1)∆2F (k)

≤ F (k + 1)
[
∆2G(k)− (k + 1− ς)∆2F (k)

]
≤ 0,

which proves that Wq(k) is a convex function in k.
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A.3 Implemented Algorithms

In Chapter 3, four algorithms (Descent Procedure, Simulated Annealing, Genetic
Algorithm, and Tabu Search) are introduced and formulated in order to solve the
two underlying models. These search procedures are coded in C#. The results from
the computational experiences and the sensitivity analysis are presented in Chapter
4.

Including the source codes of all four algorithms for both models would be be-
yond the scope of this thesis. Therefore, only the implemented Genetic Algorithm
for the Multiple Server Problem is presented as an example for all programs. This
procedure is chosen, because it detected the best solutions for most of the problems,
and its results are always among the best.

Implemented Genetic Algorithm for the Multiple Server Problem

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using MSLP;

6 using System.IO;

7

8 namespace MSLPNew {

9 // solve Multiple Server Problem or Total Cost Problem using a Genetic Algorithm

10 class GeneticSolver : AbstractSolver {

11 private int nrOfIterations ;

12 DescentSolver descentSolver;

13

14 private bool totalCosts ;

15 private int serverCosts = 0;

16 private int installationCosts = 0;

17 private int waitingCosts = 0;

18 private int travelCosts = 0;

19

20 Solution [] mergeNeighbours;

21

22 // constructor for the Multiple Server Problem

23 public GeneticSolver(Distances distances, int nrOfEdges, int maxNrOfServers, double

demandRate, double serviceRate, int nrOfIterations)

24 : base(distances , nrOfEdges, maxNrOfServers, demandRate, serviceRate) {

25 this .nrOfIterations = nrOfIterations;

26 this .mergeNeighbours = new Solution[maxNrOfServers * 2];

27
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28 List<int> nodeRestrictions = new List<int>();

29 for ( int m = 0; m < nrOfNodes; m++) {

30 nodeRestrictions.Add(m);

31 if (m < maxNrOfServers * 2)

32 mergeNeighbours[m] = new Solution(nrOfNodes, nodeShortestDistances, demandRate,

serviceRate, maxNrOfServers, 0, 0, 0, 0);

33 }

34

35 this . totalCosts = false ;

36

37 descentSolver = new DescentSolver(distances, nrOfEdges, maxNrOfServers, demandRate,

serviceRate, nodeRestrictions);

38 }

39

40 // constructor fot the Total Cost Problem

41 public GeneticSolver(Distances distances, int nrOfEdges, int maxNrOfServers, double

demandRate, double serviceRate, int nrOfIterations,

42 int serverCosts, int installationCosts , int waitingCosts, int travelCosts)

43 : base(distances , nrOfEdges, maxNrOfServers, demandRate, serviceRate) {

44 this .nrOfIterations = nrOfIterations;

45 this .mergeNeighbours = new Solution[maxNrOfServers * 2];

46

47 List<int> nodeRestrictions = new List<int>();

48 for ( int m = 0; m < nrOfNodes; m++) {

49 nodeRestrictions.Add(m);

50 if (m < maxNrOfServers * 2)

51 mergeNeighbours[m] = new Solution(nrOfNodes, nodeShortestDistances, demandRate,

serviceRate, maxNrOfServers, serverCosts, installationCosts, waitingCosts, travelCosts);

52 }

53

54 this . totalCosts = true;

55 this .serverCosts = serverCosts;

56 this . installationCosts = installationCosts ;

57 this .waitingCosts = waitingCosts;

58 this . travelCosts = travelCosts;

59

60 descentSolver = new DescentSolver(distances, nrOfEdges, maxNrOfServers, demandRate,

serviceRate, nodeRestrictions, serverCosts, installationCosts, waitingCosts, travelCosts);

61 }

62

63 public override Solution solveMSLP() {

64 Solution [] population = new Solution[nrOfNodes];

65 double[] costsOfPopulation = new double[nrOfNodes];

66 int posOfWorstMember = −1;
67 double highestCosts = double.MinValue;

68
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69 // create the initial population

70 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 for ( int i = 0; i < nrOfNodes; i++) {

72 population[i ] = descentSolver.solveMSLP();

73 double currCosts;

74 if (totalCosts)

75 currCosts = population[i ]. getTotalCosts();

76 else

77 currCosts = population[i ]. getCosts();

78 costsOfPopulation[i ] = currCosts;

79 if (currCosts > highestCosts) {

80 highestCosts = currCosts;

81 posOfWorstMember = i;

82 }

83 }

84 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85

86 Random rand = new Random();

87 Solution mergeResult = null;

88 for ( int i = 0; i < nrOfIterations; i++) { // generate <nrOfIterations> generations

89 // randomly select two individuals from the population

90 int �rstIndividual = rand.Next(nrOfNodes);

91 int secondIndividual = rand.Next(nrOfNodes);

92 while (secondIndividual == �rstIndividual) {

93 secondIndividual = rand.Next(nrOfNodes);

94 }

95

96 // merge these selected individuals and create a new individual

97 mergeResult = merge(population[�rstIndividual], population[secondIndividual]) ;

98 if (mergeResult != null) {

99 // assign the number of servers assigned to the chosen facilities

100 if (totalCosts)

101 mergeResult.assignNumberOfServersToPositionsTotalCosts();

102 else

103 mergeResult.assignNumberOfServersToPositions();

104 double newCosts;

105 // calculate the costs of the new individual

106 if (totalCosts)

107 newCosts = mergeResult.getTotalCosts();

108 else

109 newCosts = mergeResult.getCosts();

110 // check if the �tness of the new individual is better than the �tness of the worst

individual in the population

111 if (newCosts < highestCosts) {

112 // check if this solution already exists in the population

113 if (! isSolutionInPopulation(mergeResult, population)) {
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114 // replace the worst member

115 population[posOfWorstMember] = mergeResult;

116 costsOfPopulation[posOfWorstMember] = newCosts;

117 highestCosts = double.MinValue;

118 // �nd and store the individual with the worst �tness

119 for ( int j = 0; j < nrOfNodes; j++) {

120 if (costsOfPopulation[j] > highestCosts) {

121 highestCosts = costsOfPopulation[j];

122 posOfWorstMember = j;

123 }

124 }

125 }

126 }

127 }

128 }

129

130 double bestCosts = highestCosts;

131 int posOfBest = 0;

132 // �nd the best member in the population

133 for ( int i = 0; i < nrOfNodes; i++) {

134 if (costsOfPopulation[i ] < bestCosts) {

135 bestCosts = costsOfPopulation[i];

136 posOfBest = i;

137 }

138 }

139 // return the best member

140 return population[posOfBest];

141 }

142

143 // check if a certain solution already exists in a particular population

144 private bool isSolutionInPopulation(Solution mergeResult, Solution[] population) {

145 int [] serversInSolution = mergeResult.getServers();

146 for ( int i = 0; i < nrOfNodes; i++) {

147 bool isCurrEqual = true;

148 for ( int j = 0; j < mergeResult.nrOfServers; j++) {

149 if (!population[i ]. containsServer(serversInSolution [ j ]) ) {

150 isCurrEqual = false;

151 break;

152 }

153 }

154 if (isCurrEqual)

155 return true;

156 }

157 return false ;

158 }

159
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160 // merge two individuals and create a new individual

161 private Solution merge(Solution �rstIndividual , Solution secondIndividual) {

162 Solution intersection = new Solution(nrOfNodes, nodeShortestDistances, demandRate,

serviceRate, maxNrOfServers, serverCosts, installationCosts, waitingCosts, travelCosts);

163 List<int> di�erence = new List<int>();

164

165 // calculate the intersection and the di�erence of the two given individuals

166 getDi�erenceAndIntersection(ref intersection , ref di�erence , �rstIndividual ,

secondIndividual);

167

168 if ( di�erence .Count > 0) { // if the two individuals are equal, this parameter equals 0

169 // run a restricted Descent Procedure

170 descentSolver.setNodeRestrictions(di�erence ) ;

171 return descentSolver.solveMSLP(intersection);

172 }

173 return intersection ;

174 }

175

176 // calculate the di�erence and the intersection of two given individuals

177 private void getDi�erenceAndIntersection(ref Solution intersection , ref List<int> di�erence,

Solution �rstIndividual , Solution secondIndividual) {

178 int [] serversOfFirst = �rstIndividual .getServers() ;

179 int [] serversOfSecond = secondIndividual.getServers();

180 for ( int i = 0; i < �rstIndividual .nrOfServers; i++) {

181 int currServerOfFirst = serversOfFirst[ i ];

182 if (secondIndividual.containsServer(currServerOfFirst))

183 intersection .addServer(currServerOfFirst, false ) ;

184

185 if (! secondIndividual.containsServer(currServerOfFirst))

186 di�erence .Add(currServerOfFirst);

187 }

188 for ( int i = 0; i < secondIndividual.nrOfServers; i++) {

189 int currServerOfSecond = serversOfSecond[i];

190 if (! �rstIndividual .containsServer(currServerOfSecond))

191 di�erence .Add(currServerOfSecond);

192 }

193 int nrOfRandAdds = 0;

194 Random rand = new Random();

195 // randomly add 3 nodes to the di�erence (for the restricted Descent Procedure)

196 // this represents the mutation of the Genetic Algorithm

197 while (nrOfRandAdds < 3) {

198 int addNode = rand.Next(nrOfNodes);

199 if (! �rstIndividual .containsServer(addNode) && !secondIndividual.containsServer(

addNode)) {

200 di�erence .Add(addNode);

201 nrOfRandAdds++;
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202 }

203 }

204 intersection .assignClientsToServer() ;

205 }

206 }

207 }
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