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Automatic Loop Bound Analysis

of Programs written in C

Abstract

The knowledge about the worst-case execution time is important for the design
of real-time systems. Without a save upper bound for the execution time it cannot
be guaranteed that the system will meet all its deadlines. As part of the worst-case
execution-time calculation, it is important to know how many times the body of a
loop will be executed after entering the loop header for the first time. Traditionally,
loop bounds had to be provided explicitly, in the form of source-code annotations
to support timing analysis of real-time programs.

This thesis presents a method that is able to calculate a lower and an upper bound
for the number of iterations of different loop types by analyzing the semantics of
a source code, written in the high-level language C. Only if the number of itera-
tions of a loop depends on unknown variable values, annotations about the value
bounds have to be given in the source code. The analysis of loops is done at the
source code level. For every supported loop, the result of the loop-bound calculation
is written back into the source file to support the further steps of the WCET analysis.

Keywords: Hard Real Time Systems, Worst Case Execution Time (WCET), Static
Analysis, Loop Bound
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Automatic Loop Bound Analysis

of Programs written in C

Kurzfassung

Das Wissen um die maximale Ausführungszeit ist wichtig für das Design von
Echtzeitsystemen. Ohne einer sicheren oberen Grenze für die Ausführungszeit kann
nicht garantiert werden, dass das System alle seine zeitlichen Grenzen einhält. Als
Teil der Analyse der maximalen Ausführungszeit ist es wichtig zu wissen, wie oft der
Schleifenrumpf bei erstmaligen Treffen auf den Schleifenkopf ausgeführt wird. Tra-
ditionell wurde diese Begrenzung zur Unterstützung der zeitlichen Analyse explizit
als Kommentar in den Quellcode eingefügt.

Diese Diplomarbeit präsentiert eine Methode, welche eine untere und eine obere
Grenze für die Anzahl der Durchläufe von verschieden Schleifentypen durch Analyse
der Semantic eines in der Programmiersprache C geschriebenen Quellcodes berech-
net. Nur wenn die Anzahl der Schleifendurchläufe von unbekannten Variablenwerten
abhängt, sind zusätzliche Kommentare mit Wertebegrenzungen dieser Variablen im
Quellcode erforderlich. Die Analyse der Schleifen wird auf dem Level des Quellcodes
durchgeführt. Für jede unterstützte Schleife wird das Ergebnis der Berechnung in
den Quellcode, zur Unterstützung weiterer WCET Analyseschritte, als Kommentar
zurückgeschrieben.

Schlüsselwörter: Harte Echtzeitsysteme, Maximale Ausführungszeit (WCET),
Statische Analyse, Begrenzung von Schleifendurchläufen
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Chapter 1

Introduction

Due to technical improvement of computer hardware, IT1 penetrates more and more
into new application areas. New development methods makes it possible to let the
size of computer hardware shrink continually and also reduces the production costs.
Therefore, different kinds of computer systems will be found also within formerly
traditional mechanical equipment and becomes a important part of the human life.

Today, the main share is hold by personal computers that are mainly used within
industry but also to fill the private sectors. Beside this domain, computer systems
are also used to interact with the environment. Such kind of computer systems
are often installed within other objects and called embedded systems. The current
trend within the computer science is to hide the presence of computer systems from
the user. Because computer systems are always getting more complicated and it
should be avoided to overtax users without special education. This trend has been
summarised as ubiquitous computing. For these relatively young areas, sensors and
actuators are additionally needed to interact with the environment.

Every time when an interaction with the environment is needed, this interaction
has to fulfil some timing requirements. For example, within the holiday season it
is useless to get informed about traffic jam when someone is right in the middle of
it and there is no way out. This may be sound funny but there are also situations
where it may be dangerous for living beings to miss some timing requirements. A
modern ABS 2 car brake system has to measure and regulate the braking pressure
every few milli seconds. Otherwise the braking distance could increasing and bring
the passengers into a dangerous situation. Such systems with fixed timing require-
ments are also called real-time systems.

In addition to the functional correctness of the service, there must be a way to
show that a computer system can offer its service guaranteed within a fixed time-

1Information Technology
2Anti Blocking Ssystem
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1.1 Motivation 1 Introduction

line. Or, in case of an erroneous system, to show that the service could not delivered
within this fixed timeline. The keywords for the timing behaviour are BCET 3 and
WCET 4, which represent a lower and upper bound for the execution time. Both
execution-time representations could be calculated dynamically (e.g. by measure-
ment), statically (e.g. with analytical methods) or as a combination of both. Within
this thesis the calculation of loop bounds, which is part of the WCET analysis, is
done by static methods.

1.1 Motivation

For the calculation of the BCET and the WCET of a program it is important to
know the execution time for each instruction on the target hardware. But a sequence
of instructions could also be executed reiterated. Therefore, also the number of
reiterations must be known. Structures within a programming language, which are
used to express such reiterations are called loops and the number of reiterations
are called loop bounds. Traditionally, these loop bounds have been inserted within
the source code by hand before or prompted during analysis. Writing these loop
bounds by hand could be annoying and for complicated loops also error prone.
Another disadvantage of hand-written user annotations is that they may become
invalid if the source code has been changed. Because these changes could also
influence the number of iterations and therefore these previous assertions has to
be recalculated and updated within the code. Meanwhile, several work focuses
on methods to calculate the loop bounds automatically. The approach followed
within this thesis is to calculate the loop bound directly at the presentation level
of the source code, while most other analysers performs their analysis at low level
representations like assembler. The implementation of this analyser is based on a
publication of Healy, Sjödin, Rustagi, Whalley and v. Engelen in [HSR+00]. The
main difference lies within the level of representation. While this work directly uses a
C language file as input, the original work was targeted to analyse an assembly source
program. An advantage of this approach is that the result can directly inserted into
the original source file. Loops that cannot calculated by the algorithm can be bound
by hand afterwards. Figure 1.1 on page 3 shows a structural representation of the
working method of the actual implementation. As input file will be taken a C
source file. This file could also contain user insertions for variable value ranges that
cannot be calculated automatically. As described within the following sections, these
annotation are not needed for every unknown variable, but could help to calculate
the result more accurately. The given input file is handed over to the preprocessor to
replace all constants and defines. After the preprocessing, all possible flow facts will
be calculated and stored within the internal representation structure. Following, the
loop bound for all supported loops is calculated. The calculated result are inserted
in a compatible style to the language WCETC (described in [Kir02]) within the

3Best-Case Execution Time
4Worst-Case Execution Time
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1.2 Contribution 1 Introduction

source file. This modified source file can be handed over to any WCETC compatible
WCET analyser for further calculation.

Preprocessor

Extraction of
Flow Facts

Loop Bound
Calculate

Assertions
Variable

Loop Bound
Write

WCET Analysis

Source
Code

Annotated
Source
Code

Figure 1.1: Structural representation of the working method of the analyser

1.2 Contribution

Within this work, the theoretical method behind and some concrete implementation
details of a loop analyser for further WCET analysis are described. In contrast
to several other related works the described analysis is performed directly at C
source files. Additionally to the basic algorithm, which has been described within
[HSR+00], this thesis outlines:

• How to parse and represent the information of the input source file for further
analysis. And also how to reduce the gained information without influence of
the calculation result.

• A method to create a control flow graph out of the previous parsed source file.
Extraction of flow facts by investigation of the ’C’ language semantic.

• Some additional expansions that must be performed to analyse a program
at C source level are introduced. Also some transformations of possible ’C’
language constructs that not fulfil the required structure are explained.

3



1.3 Outlook 1 Introduction

• An algorithm to extract the needed information for the following loop bound
calculation is explained in detail. Last, the preparation of the calculation
results using the language WCETC is shown.

1.3 Outlook

The content of this thesis is structured as follows:

Chapter 2 gives a detailed overview over the main topics of the current research
area of WCET analysis. It outlines some vocabulary of the WCET field and de-
scribes different actual approaches to overcome and solve existing problems within
this area.

Chapter 3 summarises some related work within the area of WCET analysis.
It contains not only work descriptions about loop iteration bounding directly but
also descriptions about the entire WCET analyses.

Chapter 4 describes in detail the theoretical background of the method used
within this work. It concentrates on the calculation of loop bounds. Only when nec-
essary for better understanding, additional implementation details of the framework
has been included.

Chapter 5 shows some of important implementation details of the actual frame-
work realisation. It outlines some principal details of the lexical and syntactical
analysis using the tools FLEX and YACC. Also how the control flow graph is cal-
culated and of course the implementation of the theoretical background, described
within chapter 4.

Chapter 6 gives some examples of loops that could be successfully bounded by
the algorithm. Also some types of loops that could not be successfully bounded are
listed. Additionally there is a list of some existing restrictions for expressions within
the input code that cannot handled by the current implementation and can lead to
incorrect results. At least some calculation results of loops are given to show how
this tool implementation works.

Chapter 7 gives a short summary of the possibilities of the algorithm and also
the pros and cons of the approach. Further, a list of some future work that has not
realised within the current implementation, is given.

4



Chapter 2

WCET Analysis

Within this chapter, the WCET analyses in general is described. This general
description also outlines the most important terms that are used within this research
area. Afterwards, the course of WCET measurement and of a static WCET analysis
is described. The loop bound analysis described in chapter 4 is also based on statical
analysis.

2.1 Introduction into WCET Analysis

Computer systems often interact with their environment. This interaction may be
processing measurement information from an external sensor and control an exter-
nal actuator depending on this processed information. If these course of events will
be periodically repeated, there is only limited time from getting the sensor value
to change the actuator position. The time, when these course of events have to be
finished, is called deadline. Such computer systems that must fulfil timing require-
ments are called real-time systems. Figure 2.1 on page 6 depicts a rough possible
structure of such a system. The sensor on the left side will periodically transmit
measurements of physical values. This physical value could be the temperature of
the cooling water of a car. The actuator on the right hand side could be a valve that
controls the water circulation depending on the temperature of the water. Then,
the information system between these two parts gets the actual temperature and
calculates from this value the next position of the valve to stay within a fixed tem-
perature range. Every mark within the continuous timeline where the sensor takes a
new measurement is called observation time (t̂observation). The timeline mark when
the valve reaches its new position is called reaction time (t̂reaction). The passed time
between the measurement and the reaching of the new position (t̂reaction-t̂observation)
is called response time (tresponse). Within the field of real-time systems this response
time has to be bounded to a certain limit. Because the transmission of a car may
be damaged if it is not running within a proper temperature range. In case that
the information processing system has not only to control the position of the valve

5



2.1 Introduction into WCET Analysis 2 WCET Analysis

but also to control some other actuators, the system must decide which task1 will
be processed first. The decision of which task will be processed first, is taken by a
scheduler. There exist several realisations of such a scheduler. One of the simplest
would be, to process that task first, that has the nearest deadline in the future. To
guarantee that all tasks within a real-time system will be meet their deadline, the
execution time of each task must be known. The maximum of the execution time is
called worst case execution time (WCET). Similary, the minimum of the execution
time is called best case execution time (BCET). Using the WCET, it can be verified
whether all tasks of a real time system meet its deadline. In contrast, the BCET
can be used to prove that not every deadline can be met. But also to guarantee that
the system does not respond faster than expected. Depending on the consequence
of missed deadlines the domain of real time systems is split up into two subdomains.

processing
information

system

tasks
scheduler
messages WCET

t̂observation
tresponse

t̂reaction

F

Sensor Actuator

Figure 2.1: Structural representation of a real time system (from [Kir03])

If a missed deadline leads to a critical failure of the whole system it is called
a hard real time system. Otherwise if a missed deadline only leads to a reduced
service quality of the system, it is called a soft real time system. Therefore, soft
real time systems can be said to follow the best effort strategy. This means that the
task scheduler will order the tasks such that the number of deadline misses is low.
In case of a hard real time system, the reaching of all deadlines must be guaranteed.

This explains why the knowledge of the temporal behaviour of the tasks is fun-
damental within the design process of a real time system. The temporal behaviour
of a task is given by its deadline and by its execution time. Figure 2.2 on page 7
shows the execution time distribution of a task. The probability of the WCET is in
general small compared to the average execution time. But it is most important for
the behaviour of a hard real time system. Because within a hard real time system it

1Within this thesis always the synonym task will be used. This synonym will be also include the
execution of a whole software. Because the thesis itself deals not with internal software architectures.
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2.1 Introduction into WCET Analysis 2 WCET Analysis

is important that the tasks of a system meet their deadline under all circumstances.
If the consequences of a missed deadline are catastrophic it is not sufficient that in
general all deadlines are reached. The execution time of a task is normally near the
average time. But the real execution time ’ETActual’ depends on several facts.

WCET t . . . Time

Probability

ETAverage

ETActual

BCET

Figure 2.2: Plot of the execution time probability of a task within a WCET system

In many cases, the input data of a task do influence its execution time. If not
all input values are within the defined ranges of the specification, the system must
include some mechanism of error handling. But error handling will not be within
the scope of this work. Therefore, interested reader are referred to additional liter-
ature. A nice summary of real-time systems could be found in [Kop97].

Another reason for different execution times comes from internal processor states.
Processors of early generations are of much more simpler architectures than com-
plex processors today. Therefore, it was possible to determine the execution time
of single commands more precisely. Within modern processors many additional
performance-increasing technologies are used. Such technologies lead to a larger
amount of possible internal processor states. It is obviously that additional internal
states in the same way increase the complexity of analysis. This complexity could
be reduced by several approximations. But the main drawback is that that they
often lead to imprecise WCET analysis results. Thus, a system may be classified
to not fulfil the requirements but in reality it does. The following list summarises
some technologies that are used within modern processors and possibly influence the
execution time.

• Pipelining: The instruction processing is split up into several stages like
FETCH, DECODE, EXECUTE and WRITE BACK. This makes parallelism
possible by overlapping instruction execution. If this overlapping execution
could not be included within the analysis, the calculated WCET result could
be significant higher as it would be within reality.

• Caching: Memory is often structured by hierarchy and builds a compromise
between hardware costs and access times. Mass storage hardware like hard
disks can be produced cheap but needs long access times. Therefore, processors
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often use a so-called cache memory with faster access times. Used data will
be intermediately stored within this cache memory. Before new data will be
loaded from external memory it will be looked if this data has been stored
within the cache. If they have been previously stored, they will be loaded
from the cache; otherwise they would be loaded from the external memory.
The difficulties of WCET analysis of processors that use cache memory are:

1. Caches can reduce the execution time significant by intermediate storage
of previously used data.

2. But caches can also reduce the execution time if every cache access is a
cache miss.

3. Ignorance of cache memory leads often to pessimistic analysis results by
not including the possible speed gain.

Another problem within the analysis of the temporal behaviour of hardware
can lie within its documentation. Processors are not always designed for the use
within real time systems. Therefore, companies do not or only roughly analyse the
temporal behaviour of their products and the available documentation is lacking of
such detailed information. If some information must be estimated for the execution
time analysis, it has to be save. This possible overestimation will additionally lead
to pessimistic analysis results. On the other hand, for a special group of processors
it is impossible to predetermine the timing behaviour by the manufacturer. For
configurable processors an extra application-specific firmware could be written by
application developers. The final instruction timing depends also on this firmware
and could therefore not be evaluated by the hardware manufacturer.

2.2 WCET analysis by measurement

Compared to statical WCET analysis, the approach of determining the WCET by
measurement has a long tradition. But for the real WCET value, all possible execu-
tion scenarios evaluated must be evaluated. For the complex structures of modern
computer systems this will become infeasible. Increasing hardware improvements
have been introduced to reduce the average execution time. The idea behind is to
create a system that follows the best effort strategy. This strategy let the WCET
analysis to become more and more complex. Because the possible internal states
of such modern computer system will be increase enormously. By extracting repre-
sentative input values, it could be tried to find execution traces of input dependant
statements within the source code that may lead to WCET scenarios. The arduous
work of extracting proper input values could be done manually. But this could also
still be solved by heuristic algorithms. Within section 2.2.1 on page 9 the possibility
of evolutionary testing is described. This method iteratively produces input values
while the execution time in the optimal case converges to the real WCET. Another
problem within the measurement based approach is the so-called probe effect. Ad-
ditional break points, input- or output values influence the execution time. Figure
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2.3 shows a possible realisation of a test-environment for measurement-based timing
analysis.

Computer

Host

Timer

User Interface

Processor

Target

Test
Software under
Test Driver,

Input Data

Configuration Data

Execution Times

Figure 2.3: Test set-up for WCET analysis by measurement (from [PN98])

Within this test-environment, the WCET of the target processor should be eval-
uated. To minimize the possibility of probe effect occurrences, all calculations of
input values and time measurements will be done outside of the target processor.
The initialisation and the disposal of input values will be done by the host computer.
After the execution of the real-time program has been started on the target com-
puter, the external timer is triggered to start the measurement. The measurement
stops when the calculated output values are visible at the output ports of the tar-
get computer. Although there is no guarantee that the longest measured execution
time is near the real WCET, execution time measurement is still an option. Both,
static WCET analyses and execution time measurement can be used to control the
calculated result of each other. Comparing the results of each methodology we got
the following equation:

Measured WCET ≤ Real WCET ≤ Statically analysed WCET (2.1)

In common, static analysis is used during the development of real time systems.
After the development process, measurement based analysis can be used to control
if there was no fundamental error within static analysis and the system will fulfil its
requirements.

2.2.1 Evolutionary testing

As described previously, execution time measurements covering all possible execution
scenarios will be nearly infeasible. Hence, it must be searched for input data that
lead to a execution time near to the real WCET. Within the area of evolutionary
testing, it will be tried to find input data that lead to a maximal execution time,
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using heuristic methods. Figure 2.4 on page 10 shows a diagram of the working
course of evolutionary testing. It can be realised with genetic algorithms. This
algorithm and its terms have been overtaken from the biological research. Generic
algorithm consists of:

• Genes: Represents the smallest factor of the input data. For example, this
will be some integer constants.

• Chromosomes: Unions from several genes to units. A chromosome could be
a matrix that is part from a matrix multiplication.

• Individuals: Consists of a number of chromosomes and represents a whole
input data set. For each individual, a fitness value will be calculated. This
value will be used to judge each individual and will be calculated by a problem
specific value function.

• Population: Several individuals are grouped into a population. The number
of individuals depends on the complexity of the problem.

Initialization

Evaluation

Recombination

Selection

Mutation

Evaluation

Reinsertion

Optimization

criteria met?
Result

Figure 2.4: Graphical representation of evolutionary testing
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The terms described above are be used to outline the method behind evolutionary
testing. The steps of evolutionary testing within the scheme of figure 2.4 can be
described as follows:

1. Initialisation: The first population will be initialised manually or with ran-
dom values.

2. Evaluation: Within this step, the fitness value for each individual will be
calculated. Depending on WCET analysis, this fitness value is the execution
time of a run with the actual individual as input value. Within a test setup,
as described in figure 2.3, the fitness value is generated by the external timer.

3. Optimization criteria: Determines if the exit condition that depends on the
calculated fitness values is fulfilled. The exit condition depends the individual
implementation. A possible approach is to stop the evaluation after a previous
fixed number of runs without getting a new WCET value.

4. Selection: Depending on their fitness values, some individuals will be selected
and recombined. Selecting only individuals that have lead to high WCET
values will possibly resulting into local optima. To overcome this problem
various selection algorithms have been developed. One possible approach is
simulated annealing2 where not always individuals with high fitness values are
selected.

5. Recombination: To increase the measured WCET values, new individuals
are generated. This generation will be done as shown on figure 2.5. The parent
individuals are selected as previously described.

Some genes of the parents will be mixed up by chance. This will be lead into
new individuals with possible the same or a higher WCET. The recombination
could also be repeated with the previous generated individuals. It could also
included to the selection algorithm that the number of a possible generation
deepness is fixed.

6. Mutation: Each bit within a gene are reversed by a, typically fixed, prob-
ability. New individuals not only depend on older generations, but also will
be generated independently. This measures could also help to escape local
optima.

7. Reinsertion: The number of individuals within a population is restricted.
Therefore, the fitness value (WCET value) of all new individuals is ascertained.
Individuals with low fitness values are removed from the population to get the

2this algorithm is adopted from metal processing. Glowing metal can be formed easier. Contin-
ually annealing metal will become hard to form. This means that at the beginning the probability
of selecting an individual with lower fitness value is higher. At the end, individuals with high fit-
ness values will be selected more likely. This could possibly avoid that the search will end at local
optima.
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Parents Offspring

Figure 2.5: Recombination of parent individuals to get a new generation of individ-
uals

same number of individuals within the population as at the beginning. This
procedure is conform to Darwins3 laws on evolution.

Additional information about genetic algorithm can also be found in [PN98].

2.3 Static WCET Analysis

As previously described, static WCET analysis is used to calculate save upper
bounds of the WCET. It will be tried to extract the needed information for further
calculation out from the source code. But unfortunately, not all information can
be directly extracted from the semantic analysis of a program. To get the informa-
tion needed for WCET analysis that cannot extracted from the language semantic,
a programmer may insert some additional information (flow facts) by annotations.
The following list describes three different methods to extract and collect flow facts
of a program code:

• Abstract interpretation: The complexity of the WCET analysis could be
decreased by performing some kind of abstraction during the extraction of flow
facts. One kind of abstraction could be to perform all calculations using value
ranges instead of perform the calculations for each concrete value separately.

• Simplified methods: This approach uses annotations within the source code
to simplify the calculation process. Providing an upper and a lower bound for
value ranges or for the number of loop iterations leads to less complex and
maybe more exact analyses.

• Symbolic computation: The flow facts are calculated by solving algebraic
equations in symbolic form. The computation complexity of symbolic execution

3Charles Darwin was born on 12.02.1809 in Shrewsbury, England and † on 9.04.1882. Within
the book On the Origin of Species by Means of Natural Selection he developed his famous theory
about evolution.
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lies between the complexity of abstract interpretation and that of simplified
methods.

2.3.1 Calculation of the WCET

The WCET will be calculated by following the longest path within the control
flow graph of the analysed program and summing up the execution time of each
single instruction. As described by existing research, this path will be calculated by
following one of the following approaches:

• Tree-based calculation: The calculation of the WCET will be done in a
hierarchical manner. A tree, corresponding to the syntactical parse tree of
the target program, will be evaluated in a bottom up manner. For each type
of compound statement, like loops or IF statements, rules will be used to
determine the WCET at each level of the tree. Such tree-based calculation
techniques in general are simple and fast, but are also limited with regard to
path specifications.

• Path-based calculation: The WCET is calculated by evaluation of all pos-
sible paths through a program. To evaluate all paths, the program will be split
up into several scopes. A possible scope would be build by a loop. Each scope
will be investigated hierarchically to find the longest path out of all possible
paths.

• Implicit path enumeration technique (IPET): This method is also based
on the control flow graph. It translates the control flow graph systematically
into a set of constraints. One possible realisation of IPET could be Integer
Linear Programming (ILP), which is described in section 2.3.2.

2.3.2 Integer Liner Programming

Instead of tracing the execution time of all possible paths and determine the max-
imum out of them, several methods of Integer Linear Programming could be used.
Figure 2.6 depicts a control flow graph for a small C example code. This example
graph will be used in the following lines to explain the main idea behind this analysis
method. The basic blocks have been named from B1 until B7.

A variable xi for each basic block Bi gives the maximal number of executions.
Using the control flow graph in figure 2.6, the flow equations given in table 2.1 on
page 14 can be derived. These equations builds structural constraints for the control
flow graph. On the one hand, the number of all incoming edges em of a basic block
must be the same as the number as all outgoing edges en. On the other hand, this
number must be the same as the maximal number of executions for the basic block
itself. All symbols that have been used in equation 2.1 are summarized in table 2.2.
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j++;

if(cond)

while(j<20)

m++; m+ =2;
cond=false;

n=m∗5;

m=0;

B7

e4

B6

B1

B2

B3

B4 B5

e0

e1

e2

e3

e5 e6

e7
e8

e9

Figure 2.6: Annotated control flow graph for flow facts derivation [Kai05]

e0 = e1 = x1 e1 + e9 = e2 + e8 = x2

e2 = e3 + e4 = x3 e3 = e5 = x4

e4 = e6 = x5 e5 + e6 = e9 = x6

e8 = e7 = x7

Table 2.1: Derived Flow Equations from figure 2.6

Additional to the previous described structural constraints we can use functional
constraints. Such functional constraints can result from the context of a program.
For example, x5 (the maximal number of executions of basic block B5) can be
bounded with ’≤ 1’, as the condition of basic block B3 would be true maximal once.
Such functional constraints can be also inserted as comment within the source code
by the programmer. As a result of a value restriction for the variable j to values
’≥ 0’ by the programmer, the number of executions of basic block B3 can be limited
to ’x3 ≤ 20 ∗ x1’ by the analyser.

All these defined or derived constraints lead to the Integer Linear Programming
- equation 2.2 for the WCET. The WCET is the maximum sum of all statement
execution times, dependent on the number of executions for each statement and all
functional constraints. A piece of code that should be analysed must be natural,
which is expressed for the example in figure 2.6 by e1 = 1 and means that there is
only one entry point. At least, the number of all incoming edges must be the same
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as the number of all outgoing edges.

WCET = max
( ∑

ci ∗ xi |

| e1 = 1 ∧
(
∀ i ∈ {1, . . . , N}∑

em∈Em,i
em =

∑
en∈En,i

en = xi

)
∧

∧ functional constraints
)

(2.2)

Bi . . . Basic Block number i, i ∈ [1 . . . N ]
N . . . Number of Basic Blocks
ci . . . Execution time of Basic Block Bi

xi . . .Maximal number of executions of Basic Block Bi

Em,i . . . Set of incoming edges of Basic Block Bi

En,i . . . Set of outgoing edges of Basic Block Bi

Table 2.2: Explanation of used symbols within section Integer Linear Programming

2.4 Hybrid Analysis

Alternative to the previous described calculation techniques, research time is also
spent on possible combinations, of both, measurement and static techniques. To
obtain a reliable WCET result, the code is split into blocks. The execution time
of these blocks is estimated by measurements. To avoid overestimation within the
analysis, this blocks should be coarser than basic blocks. The entire WCET will
be calculated by putting the measurement results for each separate block together.
Compared to other pure analytical methods, it needs less effort to reuse this analysis
method for different hardware technologies.
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Chapter 3

Related work

This chapter introduces different approaches to calculate or process flow facts within
the area of WCET analysis. The main focus is pointed at automatic flow facts
derivation without user support. Each of the introduced algorithms is summarised
to show the idea behind. More interested readers are referred to the corresponding
bibliography entries at the end of this thesis.

3.1 Flow Facts calculation

Flow Facts are used to describe all possible paths through a computer program. The
paths itself could be made visible within a control flow graph. But flow facts are
more powerful. They can also describe the behaviour, like when each path and how
often a path will be taken. This information will be used for several purposes; for
example, to interpret a source file or to calculate the execution time of a computer
program. The aim of this thesis is to support the calculation of the worst case
execution time (WCET ). Some of this flow facts can be directly extracted from the
source code. Others can not be directly extracted or it is too complicated to extract
them from the semantics of the source code. Instead, this information could be also
inserted by manual annotations. An often used annotation within WCET analysis
is the number of iterations of a loop. Apart from the method used within this thesis,
there exists several different approaches to calculate this loop bound automatically.

3.1.1 Flow Analysis by using Abstract Interpretation

3.1.1.1 Flow Analysis of Object-Oriented Real-Time Programs

Jan Gustafsson and Andreas Ermedahl presents in [GE98] a method for automatic
derivations of path and loop annotations in object-oriented real-time programs.
Within this paper, the idea is shown on the programming language Smalltalk. The
analysis is done by using abstract interpretation. Every time in the program where
the value of a variable is of interest, a control point is set. To every control point,
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one ore more environments ”σi”, which hold the possible values of the variables at
this control point, are associated. These environments are created by semantic func-
tions, which are subdivided into functions for statements and functions for condition
rules.

σy = S[expression]σx . . . for statements
σy = C[condition]σx . . . for conditions

Where σx is the input environment and σy is the new created output environ-
ment. The analysis is performed within two environments for two alternative paths
in an ifTrue-construct. The idea behind the analysis of loops is to transform loops
recursively into ifTrue-constructs.

S[ [C] whileTrue: S]σ = S[ [C] ifTrue: [S [C] whileTrue: S] ]σ

A loop is rolled out until it terminates. The ifTrue-environment creates two new
environments until the loop terminates. This leads to a heavy increase of the num-
ber of environments. Therefore, environments could be merged at different control
points. Which means that the ranges of each variable within the environments are
merged. The loop iteration bounds are determined using the value ranges within the
environments of the loop headers. Merging of environments avoids explosion of the
number of environments but could also lead to overestimation of the loop bound.
To avoid non-terminating of the analysis in case of unbounded loops, timing bud-
gets have been introduced. This timing budget must be a realistic upper bound of
the execution time and is the only required manually annotation within the source
code. The actual execution time is calculated during the analysis and continuously
compared to the timing budget. If this budget is exceeded the analysis is stopped
with an error message.

Characterization:

+ Termination of the program is guaranteed by using timing budgets.

+ Stopping criterion in the case of unbounded execution time

+ Wrong timing budgets leads in the worst case only to previous ending of the
analysis.

− Exponential increase of environments without environment merging.

− Merging of environments leads to overestimation.

− Without environment merging, all possible paths must be evaluated.
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3.1.1.2 Flow Analysis of C-programs

A method to calculate flow facts automatically without the need for the programmer
to insert manual annotations for the loop bounds is introduced in [GLSB03] by Jan
Gustafsson, Björn Lisper, Christer Sandberg and Nerina Bermudo. The authors de-
scribe the algorithm behind by explaining their developed analysis tool. The input
of their tool will be an intermediate code, originated from a C program. It produces
as output a set of flow facts that describe and constrain the possible flow within the
program. After optimising and production of an internal representation of the code,
the analysis itself can be summarised by the following steps:

1. Static Single Assignment Construction (SSA): SSA is a form of data flow
description and is used to store and also to simplify the program for further
analysis.

2. Removal of Non-Conditionals: Within this step, all statements that do not
influence the program flow are removed. This is used to reduce the data for
the next analysis step.

3. Scope Graph Construction: Transforms the control flow graph (CFG) into a
scope graph. This scope format is used to support unstructured code and
recursion.

4. Syntactical Analysis: Tries to express the number of iterations of simple loops
as recurrence equations. If these equation can be expressed within a closed
form then the number of iterations could be directly get without further anal-
ysis.

5. Abstract interpretation: All loops that could not successfully bounded within
the syntactical analysis will be bounded using abstract interpretation. This
means that abstract values (value intervals) instead of real values are used
during the calculation.

Characterization:

+ Works theoretically for all loop constructs of the supported language.

+ Needs no further annotation within the source code.

+ Removes unnecessary information before analysing

+ Efficiency gain by means of combination of syntactical analysis and abstract
interpretation.

− High implementation effort used for abstract interpretation.

− Requires simulation of all paths within every iteration.
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3.1.2 Detection and Exploitation of Value-Dependant Constraints

In [HW99], Christopher Healy and David Whalley describe a method to bind the
number of loop iterations by using effect-based and iteration-based constraints. These
constraints are used to predict the control flow within the execution of a program.

Effect-Based Constraints: First, all variables and registers that determine the
direction of a conditional branches within the control flow graph are identified.
It tries to predict the successors of a node within the control flow graph at a
certain point. To indicate the behaviour of a conditional branch, three different
states are distinguished:

1. Unknown: If a value of a condition is unknown, no statement about the
behaviour can be made.

2. Falltrough: If the behaviour of the conditional branch can be determined
and the target of the branch is the sequential successor.

3. Jump: If the behaviour of the conditional branch can be determined and
the target of the branch is not the sequential successor.

All assignments to variables, that are used within branches, are marked with
a set of states. For example, the assignment ’a=0;’ results in the condition
’if(a>0)’ within a basic block with the index number 4 to jump to its suc-
cessor and therefore marked with 4J. Additionally, the behaviour of a branch
could be related to the behaviour of other branches. If a condition ’if(a>0)’
leads to a fall through, an other condition ’if(a==0)’ always leads to jump.
The behaviour of a branch within a loop will remain unchanged until the value
of variable will be changed.

Iteration-Based Constraints: A basic induction variable is a variable that is in-
cremented or decremented by a constant value within every loop iteration.
If this variable is compared to a constant, it is possible for the algorithm to
calculate the range when a branch will jump or fall through. Otherwise, if
such a variable is compared to a loop invariant non-constant with a relational
operator ’!=’ or ’==’, it could be determined that this condition will be true
once, even if the value of the non-constant will be unknown. This calculated
range information will be stored for each edge within the control flow graph.

This derived information will be used within the analyser to determine the min-
imum and maximum number of iterations for each loop. A list with all calculated
constraints for each path trough a loop is stored. As a path through a loop we
understand a path from the first basic block1 within the loop body back to the
loop header. A value constraint is valid within a path until new constraints are
encountered. A new found effect-based constraint nullifies the previous constraint.
Finally, if such a constraint is still valid at the end of a path, it will be propagated

1A sequence of sequential statements with only one entry point and only one exit point
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to all other paths within the loop. After this propagation is completed, a can follow
matrix will be created to see which path can follow another path. This matrix, in
combination with the previous calculated edge ranges, will be used to determine the
longest possible path through a loop. The longest found path will be the foundation
of the following WCET analysis.

Characterization:

+ Also applicable for nested loops

+ Analysis possible without value assertions

− Tighter estimations will still require value assertions

− Increasing memory consumption for storage of intermediate results

− Hard to verify whether the longest path was found

3.2 Using Flow Facts for WCET Analysis

Section 3.1 had outlined different approaches to derive flow facts from a given source
code. The aim of this section is to show how these derived flow facts can be used
to calculate the Worst Case Eexution Time (WCET).

3.2.1 Tree-Based WCET Analysis on Instrumentation Point Graphs

As described in section 2.3.1 on page 13, three typical methods are available to
calculate the WCET of a program. Adam Betts and Guillem Bernat introduces
in [BB06] a tree-based hybrid2 analysis method for WCET calculation. It combines
low-level measurement-based and high-level static analysis techniques to reduce pos-
sible underestimation and overestimation, as it likely happens when these techniques
are used each separately.

The basis for this analysis method is the control flow graph (see section 4.1 on
page 23 for further details) of the input program. This control flow graph will be ex-
panded with instrumentation points (ipoints ∈ Î), which represent individual time
stamp instructions. This placement of ipoints is a fundamental issue when measure-
ment based and static techniques are combined. Because it determines the precision
and resolution of further analysis. The ipoints can be placed at arbitrary locations,
therefore each basic blocks can be split up into a set B̂ of sub basic blocks. The
resulting flow graph is called Instrumentation Point Graph (IPG) and is defined as:

Definition 1. An IPG is a connected directed graph Γ(Î, E′, s, e) such that (i, j) ∈
E′ if and only if there exists a path i → b1 → . . . → bn → j such that each bi ∈ B̂

2a combination of statical and measurement-based WCET analysis
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and n ≥ 0.

with B̂ . . . set of ipoints, E′ . . . set of directed edges, s . . . start node, e . . . end node;

To minimize the probe effect3, the number of ipoints will be reduced and several
sub basic blocks combined to instruction blocks (IB). Afterwards, the IPG is decom-
posed hierarchical into an Itree, which is used to calculate the WCET within the
following analysis. The structure of the Itree consists of four different nodes:

• An alternative node is a rooted n-ary tree that models the selection of paths.

• A sequence node is a rooted n-ary tree that models a non-empty path to a
post-dominator node.

• A loop node is a rooted binary tree that models all paths between header and
tail.

• A meta-loop is a rooted n-ary tree that models several sub loops. The sub-
loops have different tails but the same loop header and shares a common path
p.

The previous described Itree will be used to compute WCET estimates by ap-
plying several rules. The following two equations show how the WCET for loop
structures and meta-loop structures is calculated:

WCET (loop) = ((WCET (body) + WCET (iteration edge)) ∗ k (3.1)

WCET (meta) =
n∑

i=1

WCET (loopi) + WCET (p) ∗
n∑

i=1

ki (3.2)

In equation (3.1), k denotes the upper bound of the analysed loop. These loop
bound will be calculated with methods, described within section 3.1. Methods to
bound the number of iterations are not within the scope of the actual described
related work. In equation (3.2), the WCET of a meta-loop is the sum of all sub
loops plus the WCET of any path p common to all sub loops. Path p is always
executed before any sub loop is encountered and therefore the WCET of path p is
factored by the upper bound of every sub loop. The WCET of a single instruction
block is determined by measurement.

Characterization:

+ Compared to non-hybrid methods, reduced underestimation and overestima-
tion of the WCET.

3the collection of timing data at the ipoints affect the execution time of program
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+ This work presents an algorithm in a pseudo language for each step within the
tree modifications.

− Additional effort for the creation of the instrumentation tree is needed. This
special three has to be created out of the standard control flow graph.

− This work does not discuss the calculation of all flow facts in detail.
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Chapter 4

Loop Bound Analysis

This chapter describes the theoretical background used to analyse a source file of the
procedural programming language ’C’ and to calculate the upper and lower bound
of loop iterations. The concept of how to find the bounding iterations for loops
in SPARC assembler files was introduced in [HSR+00] and [HSW98]. Within this
thesis, the methods are adapted to analyse files of the high level language C directly
without translation into assembler files. Because translation to assembler files differs
sometimes depending on the used compiler and requires additional transformations
of annotations to the assembler file and vica versa. This work is also compatible to
the programming language WCETC introduced in [Kir02].

4.1 General definitions for the Control flow graph

Expression consists of constants (e.g. “12”), identifiers (e.g. “var 1”) and opera-
tors (e.g. “+” or “-”). A valid expression would be “var 1 = 1”, which assigns
to the identifier “var 1” the constant value “1”.

Statement consists in the simplest case of only one statement, followed by a semi-
colon. Several statements, surrounded by a beginning “{” and a completing
“}”-bracket, are combined to a block statement. A “{”-bracket increases the
depth level of a statement and a “}”-bracket decreases it. But there also ex-
ists more complex statements like loops and branches. The analysis of such
statements is the main focus of this thesis.

Node = Basic Block consists of a list of consecutive statements and has a single
entry point at the beginning and a single exit point at the end. All statements
inside a node have the same depth level. If a statement consists of a branch
(e.g. an IF -statement) or the next statement has a different depth level, a
node ends with the actual statement.

Predecessor Every node has zero or more predecessor-nodes. Several nodes build
a tree (=called Control Flow Graph), where the nodes are connected with
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directed edges. A way from one node to another is called a path. A node i is
called a predecessor of a node j, if they are connected with a directed edge and
node j follows node i within the tree.

Successor In the same way like the predecessor, a node has zero or more successor
nodes.

Dominator A node or basic block i dominates another node j if there is no path
from the tree head to the node j which contains not node i. For instance, the
header of a natural loop1 predominates all nodes inside the loop.

Postdominator A node or basic block i postdominates another node j if there is
no path from node i to the exit of the Control Flow Graph which contains not
node j.

(A node always dominates and postdominates itself)

Functions A C-program consists of a number of functions. A function consists of
a function header and a function body. The header consists of the function-
name, the arguments (=the input values of a function) and the type of the
return value. The body of a function consists of variable declaration list and a
list of statements, which forms nodes and a whole tree within the control flow
graph.

4.2 Loops with multiple exits

To calculate the number of loop iterations of a natural loop the steps of the following
list must be performed. Within this section each step is explained using example
C-codes like in figure 4.2 on page 26.

1. Parse input C source files (see chapter 5.1.3 for further details)

2. Construction of the control flow graph (see also chapter 5.5 for further details)

3. Find all conditional branches inside the loop that can affect the number of
loop iterations

4. Construct the branch tree with the loop header and all identified branches

5. Expand the branch tree if there are expressions with alternative internal con-
trol flow or also if there are SWITCH -CASE -statements

6. Determine the range of iterations when each of this identified branches could
be reached

7. Calculate the minimum and maximum number of iterations for the loop
1natural means that the loop has only a single entry point
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4.2.1 Construction of the control flow graph

After the source code is parsed in the usual way there are some specialities required
for the analysis. A detailed description of the implementation of the construction of
the control flow graph will be given in section 5.5. This section only outlines some
highlights that are necessary for the following analysis. Figure 4.1 shows a short
selection of possible expression statements of the language C.

void main( void ){
int arr[20], i=1; /* line 01 */
arr[i++]=5; /* line 02 */
arr[i>0?--i:i]=6; /* line 03 */

}

Figure 4.1: Sequence of valid statements in C

The corresponding YACC 2-grammar of line 1 and 2 in figure 4.1 is:

postfix expression ’[’ expression ’]’

This means that the index of an array could be an arbitrary expression. If this
expression contains an assignment or a conditional assignment (line 3 in figure 4.1)
it must be extracted as separate statement.
The statement

arr[i>0?--i:i]=6;

will be changed to an IF -statement like

if(i>0){
i=i-1;

}
arr[i]=6;

This is an additional branch which must be evaluated within the calculation (see
section 4.2.2). Additionally, such expressions could influence the calculation of in-
formation (see also section 4.2.4). The main drawback of this approach is that it is
not working for all possible expressions. Therefore, a number of restrictions for the
input files have been formulated. These restrictions are listed and outlined in detail
in chapter 6 on page 65.

2Yet Another Compiler Compiler
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void main( void ){
extern int x;

for(i=0, j=0; i < 200; i++, j+=2 ){
if(i > 150){

/* do something */
}

if((j > 160 && x) || (j > 450)){
break;

}
}

}

Figure 4.2: Example loop with multiple exits

4.2.2 Finding all branches that can affect the number of loop iter-
ations

Loop iteration Within this work, every time when it is spoken about loop itera-
tions, the number of executions of the loop header is meant. Because if the
condition of the loop header is always false, the loop header is executed once
and the body of the loop is executed never.

Iteration Branch Is a branch inside a loop where the choice of which path in
the Control Flow Graph will be taken, could directly of indirectly infect the
number of loop iterations. The choice of which path will be taken depends
also on a conditional expression. The structure of such an expression must be
“variable relop3 limit”; otherwise the branch is treated as unknown.

Unknown branches does not mean that the iteration bound of a loop could
not be calculated. They only lead to maybe less accurate results with bigger
ranges.

Back Edges An edge from a node inside a loop to the node, containing the loop
header, is called back edge. Such a node is the last node within the loop or a
node containing a CONTINUE -statement at the end.

A branch could directly affect the number of loop iterations if it has a successor
Sx outside the loop, the successor Sx is the loop header itself or it is postdominated
by the loop header. It could indirectly affect the number of iteration branches if

3relop . . . relational operator (e.g. ’<’ or ’<=’ or ’>’ or . . . )
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each successor is postdominated by a different iteration branch. In figure 4.3 on
page 27 an algorithm for finding such branches is presented (from [HSR+00]).

//Find the iteration branches that can directly affect the number of iterations
I = {}
FOR each block B in the loop L DO

IF (B has two successors S1 and S2) THEN
IF (S1 /∈ L) OR (S2 /∈ L) OR

(S1 ∈ PostDom(Header(L))) OR (S2 ∈ PostDom(Header(L))) THEN
I = I ∪ B

END IF
END IF

END FOR

//Find the iteration branches that can indirectly affect the number of iterations
DO

FOR each block in B in the loop L DO
IF (B has two successors S1 and S2) AND (B /∈ I) THEN

IF (there exists J , K ∈ I AND J 6= K AND
S1 ∈ PostDom(J) AND S2 ∈ PostDom(K)) THEN
I = I ∪ B

END IF
END IF

END FOR
WHILE (any change to I)

Figure 4.3: Algorithm to find the set of Iteration Branches for a loop

Sx ∈ PostDom(Header(L)) Successor Sx is postdominated by the header of the
loop L.

Sx /∈ L Successor Sx is located outside of the loop body. Such a successor could be
a BREAK - or a GOTO-statement.

Now, the small C-function in figure 4.2 is used to show step by step how the loop
bound is be calculated. First, it must be searched for all branches that had succes-
sors outside the loop and or that are postdominated by the loop header. Within
the small example function, there is only the second IF -statement. If the condition
is true, it has a BREAK -statement as successor, which is a jump to the first state-
ment outside the loop. And if the condition is false, the closing brace of the loop is
found as successor, which has a back edge to the loop header within the control flow

27



4.2 Loops with multiple exits 4 Loop Bound Analysis

for(... ; i < 200; ...)

if( i > 150 )

/* do something */

if( i > 160 && x > 0 || j > 450 )

break

Figure 4.4: Control flow graph of the example in figure 4.2

graph (figure 4.4). The first IF -statement was not found because there is no direct
successor outside of the loop and no successor, which is postdominated by the loop
header. To store all found branches, a bitvector can be used and each bit within the
bitvector represents a branch. But a branch is always the last statement of a node.
Therefore the branch vector could be understand as node vector containing one bit
for each node of the control flow graph (figure 4.4).

After identification of all branches the construction of the flow graph works in a
similar way. For all branches that have a successor outside of the loop, a BREAK -
node is set as successor. All other branches that are directly postdominated by the
loop header (this means that there is no other branch between this and the loop
header) get a CONTINUE -node as successor. Afterwards, the branch tree could be
connected from top down. The loop header is also set as the root node of the branch
tree. As successor will connected the first node, which is set in the branch vector
and which is also dominated by the actual branch. For the example code of figure
4.2, the constructed branch tree is shown in figure 4.5. Note that the IF -branch
contains a multiple condition. How to dissolve such branches into multiple branches
with only a single condition of the form “variable operator limit” is the subject
of section 4.2.3.
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break

continuebreak

for(... ; i < 200; ...)

if( i > 160 && x > 0 || j > 450 )

Figure 4.5: Branch tree with all identified branches

logical and expression
: inclusive or expression
| logical and expression ’&&’ inclusive or expression
;

logical or expression
: inclusive and expression
| logical or expression ’||’ inclusive and expression
;

Figure 4.6: YACC-grammar for logical ’||’ and ’&&’ expressions

4.2.3 Expansion of the branch tree

As mentioned before, if there are branches with multiple conditions they must be
resolved into multiple branches with a single condition. Using the YACC4 expression
in figure 4.6 it could be constructed a tree out of the multiple condition.

For the testexample 4.2, the resulting tree is shown in figure 4.7. Now it is
possible to expand the tree from top to down. A branch “if( cond1 || cond2 )”
with the successor S1 if the condition is true and successor S2 otherwise could be
expand to “if( cond1 )” with successor S1 if the condition is true. If the condi-
tion is false the successor is a new inserted branch “if( cond2 )” with the original
successors S1 and S2. For a branch “if( cond1 && cond2 )” with the successor S1

if the condition is true and successor S2 otherwise it is done in a similar way. The
new branches are “if( cond1 )” with the successor S2 if the condition is false and
“if( cond2 )” with the original successors if the condition is true. The conditions
cond1 and cond2 could be itself contain multiple conditions, so this tree could be

4Yet Another Compiler Compiler
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j > 450&&

||

i > 160 x > 0

Figure 4.7: Condition tree for example in figure 4.2

expanded recursively without knowledge of the actual structure of cond1 and cond2.
Using this method for the example in figure 4.2 with the corresponding branch tree
in figure 4.5 will lead to the branch tree depicted in figure 4.10.

1

2

3

4

break

break

continuebreak

for(... ; i < 200; ...)

if(i > 160)

if(x > 0)

if(j > 450)

Figure 4.8: Branch tree after expanding

The next pieces of code within the high level language C that contain hidden IF -
ELSE -branches inside are SWITCH -CASE -statement. As described within section
4.2.2, a CASE -statement could be found as branch that could affect the number of
iterations, because it has a successor for each CASE -statement and another one for
the DEFAULT -statement. This CASE statements are replaced by IF statements,
where every following CASE statement is inside of the ELSE scope of the previous
CASE/IF statements. Figure 4.9 shows for a small piece of code how this trans-
formation works. This could also be done in the same way for a higher number of
CASE -statements. After the transformation, the SWITCH -statement within the
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branch tree is replaced with this sub-tree of IF -ELSE -statements. Additionally, the
resulting control flow graph must be evaluated and the last basic block within the
scope of a CASE statement, if it is not terminated with a BREAK, connected with
the body of the following CASE statement (= fall-through of CASE statements).

switch( x ){ if( x==1 ){
case 1: . . .

. . . } else {
break; . . .
default: }

. . .
break;

}

Figure 4.9: Transformation of SWITCH -CASE -statements

4.2.4 Calculation of required information

Within this section, it will be shown how the number of loop iterations when a
branch from the branch tree will change its direction (or determined that a con-
dition will be always false/true) is calculated. This information is required within
the next step where the number of how often the loop header is examined during
runtime will be estimated. Within table 4.1, all information, including the require-
ments that are used to classify a branch as known, are listed. If one of these table
entries could not be found or calculated, the branch is classified as unknown. Being
classified as unknown does not mean that a loop could not be calculated. Only the
range of the calculated loop iterations will be bigger and therefore less accurate. In
the worst case, the calculated range will be “<0...∞>” which does mean that no
information about the loop iteration bound could have been calculated.

Referring to the testexample in figure 4.2, it does mean that branch 3 ’if(x > 0)’
is classified as unknown because the initial value of the external variable x could
not be determined. The value adjust, which compensates the difference between the
relational operator ’<’ and ’<=’ or ’>’ and ’>=’, can be read from table 4.2 for
each branch. If all required information for a branch have been collected, equation
4.1 is used to calculate the loop iteration when each branch changes its direction.
From table 4.2, it can also be read if a branch will never change its direction and
will therefore always be true or false. Within this case, no further calculation using
equation 4.1 is necessary. It includes also the case where beforei + afteri = 0 and
therefore a divide by zero exception equation 4.1 is avoided.
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Term Explanation Requirement
variable The control variable

which is used within the
condition and compared
to the limit value

Only assignments of the form
’var := var + c’ are allowed. Where
’c’ must be a constant. Additionally,
the amount of change must be constant
every loop iteration. To guarantee this
requirement, every node containing an
assignment to this variable must dominate
every node with a back edge to the loop
header.

limit Value to which the vari-
able is compared to.

Must be a constant or a variable which
must not change its value inside the loop
(see also section 4.3) each iteration.

relop Relational operator
used inside condition

Must be one of the following operator
types: ’<’, ’<=’, ’>’ or ’>=’. If some ad-
ditional requirements are fulfilled, the op-
erator could also be an equality ’==’ or an
non equality ’ !=’ operator (see also section
4.2.7 fur further information.

initial Initial or start value of
the variable before en-
tering the loop

The assignment to this value must be de-
fined within the last basic block before the
loop body begins. This value must also be
a constant (see also section 4.3 how this re-
quirement could be handled alternative)

before Amount of change of
the variable before
reaching the actual
branch at each itera-
tion.

This amount of change must be constant at
every loop iteration, otherwise the branch
is unknown.

after Amount of change of
the variable after reach-
ing the actual branch at
each iteration.

This amount of change must be constant at
every loop iteration, otherwise the branch
is unknown.

adjust Is used to compensate
the difference of the re-
lational operators ’<’,
’<=’, ’>’ or ’>=’.

Must be an integral value between the
range of -1 and 1 (see table 4.2 how this
value will be calculated)

Table 4.1: Required information for each known iteration branch

Ni =
⌊

limiti − (initiali + beforei) + adjusti
beforei + afteri

⌋
+ 2 (4.1)
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Operator Condition Test Result adjust
<= first ≤ limit & incr > 0 is false on the Nth iteration 0
<= first ≤ limit & incr ≤ 0 always true
<= first > limit & incr ≥ 0 always false
<= first > limit & incr < 0 is true on the Nth iteration 1
< first < limit & incr > 0 is false on the Nth iteration -1
< first < limit & incr ≤ 0 always true
< first ≥ limit & incr ≥ 0 always false
< first ≥ limit & incr < 0 is true on the Nth iteration 0
> first ≤ limit & incr > 0 is true on the Nth iteration 0
> first ≤ limit & incr ≤ 0 always false
> first > limit & incr ≥ 0 always true
> first > limit & incr < 0 is false on the Nth iteration 1

>= first < limit & incr > 0 is true on the Nth iteration -1
>= first < limit & incr ≤ 0 always false
>= first ≥ limit & incr ≥ 0 always true
>= first ≥ limit & incr < 0 is false on the Nth iteration 0
Where first = initial + before, incr = before + after, N is defined in

equation 4.1 and adjust is used in equation 4.1

Table 4.2: How to determine the adjust value and the direction of change of the
iteration branch

Table 4.3 shows the calculated information for each branch of our example code.
The last column contains the result of the equation 4.1. Branch 3 is unknown
and therefore no number of iteration when the branch changes direction could be
calculated. Branch 4 is known, but as it could be seen in the next section, the
number of iteration will never be reached and therefore replaced with ∞. Another
example where equation 4.1 is not useful will be the following loop:

for( i=0; i>10; i++ ){ some statement; }
The value of initial+before (=0) is less than the limit of 10 and therefore the condi-
tion is false at the beginning and exits immediately. This means that the number of
loop iterations is 0 because the body of the loop is never executed. Another example
for a loop that may never exit is the following:

for( j=0; j<10; j-- ){ some statement; }
The value of initial+before (=0) is less than the limit of 10 and the update value
(before+after) is -1 and therefore less than 0. This fulfils case 2 within the second
operator class of table 4.2 and the condition will be always true and the loop may
never exit.
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branch variable limit relop initial before after adjust known iter
1 i 200 < 0 0 1 -1

√
201

2 i 160 > 0 0 1 0
√

162
3 x 0 > – 0 0 – – –
4 j 450 > 0 0 2 0

√
227

Table 4.3: Calculated information for each branch of the tree in picture 4.8

4.2.5 Determine the range of iterations when each of these identi-
fied branches could be reached

The next step within the calculation of the loop iteration bound is to determine
when each of the branches could be reached. This information is calculated in
top-down order. First, to the loop header is always assigned the range from 0
(=node range min) to ∞ (=node range max), which is written as [0...∞]. All other
nodes are assigned the result of the union of all incoming edge ranges. The ranges
of all outgoing edges may be calculated using one of the following rules:

1. If the node is dedicated as known and the test result of the third column in
table 4.2 is “is false on the Nth iteration”:

(a) if the number of iteration when a branch changes its direction (last column
within table 4.3) is less than node range min and greater or equal as
node range max: the range of the first edge (when the condition is true)
is set to [node range min...iteration of change-1] and the range of the
second edge is set to [iteration of change...node range max ]

(b) Otherwise the range of the first edge is assigned to
[node range min...node range max ] and the range of the second edge is
assigned to [∞...∞] (because this edge will never be reached)

2. If the node is dedicated as known and the test result of the third column in
table 4.2 is “is true on the Nth iteration”:

(a) if the number of iteration when a branch changes its direction (last column
within table 4.3) is less than node range min and greater or equal as
node range max: the range of the first edge (when the condition is true)
is assigned to [iteration of change...node range max ] and the range of the
second edge is set to [node range min...iteration of change-1]

(b) Otherwise the range of the first edge is assigned to [∞...∞] (because this
edge will never be reached) and the range of the second edge is assigned
to [node range min...node range max ]

3. If the node is dedicated as known and the test result of the third column in
table 4.2 is “always true” then to the first edge is assigned the same range as
to the node itself and to the second edge is assigned the range [∞...∞].
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4. If the node is dedicated as known and the test result of the third column in
table 4.2 is “always false” then to the first edge is assigned the same range as
to the node itself and to the second edge is asigned the range [∞...∞].

5. If the node is dedicated as unknown to all outgoing edges are assigned the
same range as the node itself. This is done, because there is no information
when each direction is followed.

Figure 4.10 shows the branch tree with all node ranges and edge ranges for the
example in figure 4.2. Within this directed graph, every node, where the branch is
classified as known, is marked with a K otherwise with a U. Note that the condition
if(j > 450) of node 3 will never be true and therefore the edge has the assigned
range [∞...∞].

break

break

breakcontinue

4

2

3 U

[162...200]

K

K1

K

[201...∞][1...200]

[1..∞]

[1...200]

[162...200]

[162...200]

[162...200] [1...161]

[1...200]

[1...200] [∞...∞]

Figure 4.10: Branch tree with calculated ranges of iterations

4.2.6 Determining the minimum and maximum loop iterations

The calculated ranges for each branch in the previous section and its edges now
are used to calculate the minimum and maximum number of the iterations of the
entire loop. For each branch the minimum and the maximum iteration number are
calculated in bottom-up order. At the end, the minimum and maximum iteration
number of the root node (=loop header) represents the range for the loop itself.
Table 4.4 announces all terms that are used within the following rules. These rules
lay down how the values to each term are assigned.

35



4.2 Loops with multiple exits 4 Loop Bound Analysis

[edge range min...edge range max ]
edge range min: lowest iteration value when this edge can be reached
edge range max : highest iteration value when this edge can be reached

<edge exit min...edge exit max>
edge exit min: first iteration when this edge may lead to a break
edge exit max : first iteration when this edge must lead to a break

[node range min...node range max ]
node range min: lowest iteration value when this node can be reached
node range max : highest iteration value when this node can be reached

<node exit min...node exit max>
node exit min: first iteration when this node may lead to a break
node exit max : first iteration when this node must lead to a break

Table 4.4: Notation that is used within the assignment rules

1. If an edge is leading to a BREAK -node than both the edge exit min and the
edge exit max values are assigned to the edge range min value. Because this
edge can only taken once and the loop will be leaved. A BREAK is the only
way to leave a loop and therefore the only place where bounded values can be
introduced.

2. If an edge is leading to a CONTINUE -node than both the edge exit min and
the edge exit max values are assigned to ∞. Because a CONTINUE will only
point to the loop header and therefore not hold any information about the
loop exit.

3. If an edge is not pointing to a BREAK or to a CONTINUE node it is
pointing to a node, representing a conditional branch. Within this case, the
edge exit min value is simply assigned to the node exit min value of the target
node and the edge exit max value is assigned to the node exit max value of the
target node. This could be done because the ranges of each edge are calcu-
lated exactly as described in the previous section. This is slightly different as
it was described in [HSR+00] where the edge ranges are assigned to [1...N-1]
and [N...∞]. N stands for the number of iteration when the branch changes
its direction.

4. If a node of the branch tree is marked as known then the edge exit max value
for this node is set to the smallest number of the edge exit max values of both

36



4.2 Loops with multiple exits 4 Loop Bound Analysis

outgoing edges. Because the loop has to be leaved if a BREAK occurs and
the higher iteration bound for a BREAK could never be reached.

5. If a node of the branch tree is marked as known then the edge exit max value
for this node is set to the largest number of the edge exit max values of both
outgoing edges. Because the algorithm has no information about the branch
behaviour and therefore must take the upper exit bound.

6. The node exit min value of a branch tree node is set to smallest number of the
edge exit min values of both outgoing edges. For the lower exit value it must
take the first possibility when a BREAK could be reached. And therefore
there is no need to distinguish between known and unknown branches.

Figure 4.11 shows the same branch tree as in figure 4.10 but now with calculated
exit ranges using the rules described before. Branch node 4 has received the node
exit ranges < ∞...∞ > because the edge pointing to the BREAK node will never
be reached. Branch node 3 has been assigned the node exit ranges < 162...∞ >
because the iteration number when the first outgoing edge leads to a break is 162.
But the branch is classified as unknown and there is no guarantee that the edge will
ever be taken and therefore the greatest possible range must be taken. And the loop
header and therefore the entire loop has received the iteration bound < 26...101 >
because the lower iteration number when a path leads to a BREAK is 26. But there
is no guarantee that this path will be taken. And at the iteration number of 101,
the second edge absolutely leads to a BREAK.

4.2.7 Calculate loops with iteration branches using the equality
operator

In section 4.2.4, branch nodes that contains an equality operator (== or ! =) were
classified as unknown. This will be result in a safe but also bigger range of loop
iterations. But there are types of loops using equality operators, which can be
successfully bounded by the implementation of the previous sections if they are
fulfil some additional requirements. Figure 4.12 contains some simple example loops
to show the problematic nature of loops containing equality operators. Loop 4.12 a)
(some statement is any statement that not influence the number ob loop iterations)
can be bounded because it is guaranteed that the induction variable i reaches a
point where the condition becomes false. A short look at example 4.12 b) exhibits
that this loop must be unbounded because the variable i there does never reach a
value that let the condition become false. Another problem, which can occur while
dealing with such types of loops is shown in example 4.12 c). Because there is an
unknown branch, which can prevent the loop from reaching its BREAK statement.
This loop may have a bounded number of loop iterations but there is no guarantee
because the value of x could not be determined (section 4.3 will show how this
problem could be mastered). The following table lists a number of rules when also
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break

break

breakcontinue

4

2

3 U

< ∞...∞ >

K

K1

K
< ∞...∞ >

< ∞...∞ >

< 162...∞ >

< 162...∞ >

< ∞...∞ >

< 162...∞ >

< 162...∞ >

< 162...162 >

< 162...201 >

< 201...201 >

< ∞...∞ >

Figure 4.11: Graph after calculation of minimum and maximum iteration values

for loops, containing equality operator, a bounded number of loop iterations could
be calculated, if all of them are fulfilled.

1. Every node containing a back edge to the loop header must be dominated by
the branch containing an equality operator. Because if this condition is not ful-
filled it is not guaranteed that this branch will meet its exit condition although
the branch variable is assigned to the value, which makes the branch change
its direction. Example 4.12 c) does not fulfil this rule and could therefore not
be calculated.

2. One of the outgoing edges of an iteration branch that contains an equality
operator must lead to a BREAK. Because it must be guaranteed if a branch
changes its direction that one of the directions leads to an exit point.

3. The following expression, which is part of equation 4.1 must result in an inte-
gral value:

limiti − (initiali + beforei)
beforei + afteri

This means that a variable must reach its limit at a certain iteration branch.
Example 4.12 b) does not fulfil this requirement and therefore the variable
does never meet its limit of 10 (only 0, 4, 8, 12, . . . but not 10).

If these requirements are all fulfilled, the branches are calculated in the same
way as described in the previous chapter. Only table 4.2 will be replaced with table
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4.5 to calculate the ranges and adjust values for every node and also the ranges for
each edge. Note that if the update value of a variable is 0 than the condition is
always false or always true and we do not need to use equation 4.1 and therefore
avoid a divide by zero exception.

for( i=0; i!=10; i++ ){ for( i=0; i!=10; i+=4 ){
some statement; some statement;

} }

a) b)

c) for( i=0; ; i++ ){
if( x>5 );

continue;
if( i==20 );

break;
}

Figure 4.12: Some example loops using equality operators

Operator Condition Test Result adjust
== first < limit & incr > 0 is true on the Nth iteration -1
== first > limit & incr < 0 is true on the Nth iteration 1
== first = limit & incr = 0 always true –
== first = limit & incr 6= 0 is false on the 2nd iteration –
== otherwise always false –
! = first < limit & incr > 0 is false on the Nth iteration -1
! = first > limit & incr < 0 is false on the Nth iteration 1
! = first = limit & incr = 0 always false –
! = first = limit & incr 6= 0 is true on the 2nd iteration –
! = otherwise always true –
Where first = initial + before, incr = before + after, N is defined in

equation 4.1 and adjust is used in equation 4.1

Table 4.5: Adjust value and direction of change for branches with equality operator
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4.3 Loops with a non-constant loop-invariant number
of iterations

As it has been shown in the previous section, it is not always possible to bound
the number of loop iterations; because the iteration number where some branches
changes its direction could be unknown. There are different ways to handle loops
that could not be calculated. The program may be prompting the user to specify the
number of loop iteration interactively or it may specified within the source code as
annotation. But for long and complicated loops it may be difficult to determine the
number of loop iterations by hand and therefore there is no guarantee that the user
my specify the right loop bound. Otherwise variables within branch conditions are
often loop invariant. Using this circumstance it is possible to relax the requirement
within table 4.3 that the values of limit and initial had to be constants. For the
initial value of a branch condition variable or if the limit is also a variable the last
basic block before the loop body starts is evaluated. But if there is no assignment
with a constant found it is possible to let the user specify an upper and a lower
bound for the variable. Because this is less error prone as letting the user specify an
upper and a lower bound for the entire loop. This could also be done interactively.
To stop the calculation for each branch that could not be classified as known and ask
the user for upper and lower bound could be annoying. Therefore this work is only
based on user annotations within the source code. Similar as in the programming
language WCETC of [Kir02] the grammar of the programming language C will be
expanded for value bound annotations before a branch that could not be classified
as known occurs. Within the header file “wcet.h” in [Kir02] a new macro

WCET VALUE BOUNDS(x,y,z)

has been inserted that is replaced by the preprocessor with

value bound (x) minimum (y) maximum (z)

if LANG WCET is defined within the source code. Otherwise it will be replaced by
an empty sequence when it will be translated with a usual C compiler. The variable
x of the assertion stands for the variable name and y for lower variable bound and
in the same way z for the upper variable bound. If such an assertion for the limit
or the initial value of a branch condition is found and the defined minimum and
the maximum values are identical the loop bound could be calculated automatically
in the usual way. When there is a difference between the minimum and maximum
values, the value in the calculation will be replaced first with the minimum and
afterwards with the maximum value. The upper bound for the loop iterations is
the biggest result of both upper bound calculations and the lower bound is smallest
result of both lower bounds. Figure 4.13 shows a simple example function with an
annotation for the value limit of variable a. The number 20 is the minimum and the
number 30 is the maximum value for a. Using this provided values, the upper and
lower loop iteration bound could be easily calculated as < 20...30 >.
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int calculate( int a ){
int res=1;

WCET VALUE BOUNDS( a, 20, 30 )
for( i=0; i<a; i++ ){

res *= i;
}
return a;

}

Figure 4.13: Loop with a non-constant loop-invariant number of iterations

If there is more than one annotation for different values within the code it must
be calculated the upper and the lower bound for each permutation of this values. For
example three different upper and lower bounds for three different variable values
have been parsed from the code. This would result in the following combinations:

val1 val2 val3
min min min
max min min

val1 val2 val3
min min max
max min max

val1 val2 val3
min max min
max max min

val1 val2 val3
min max max
max max max

where min represents the minimum value of the annotation and max the maximum
value. As it can seen, this results in 2n (n is the number of assertions) different
combinations, which have to be calculated. This means that a loop with 3 unknown
values with different minimum and maximum value assertions needs approximately
an 8 times greater calculation time. Therefore, a programmer of code for WCET5

analysis could decrease the calculation time if he would follow some coding conven-
tions to make loop bounds predictable (see [HSR+00] for further details).

5Worst Case Eexcution Time
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Chapter 5

Realization of the framework

Within this chapter an overview is given about the method of how to calculate
the minimum and maximum iteration of a natural loop1, described in the previous
section, had been implemented within this master thesis. To ease the understanding
of the implementation, we partitioned it into several steps and each step is described
within an own subsection.

5.1 Syntactical analysis of the input file

5.1.1 Preprocessing

Before starting the analysis, the GCC preprocessor is called to replace all macros
and include the code of all used header files. To divert the output stream of the
preprocessor into the input stream of the analyser, the unix system call popen() is
used. The function popen() creates a pipe for the return stream, forks the actual
process and invokes a shell to call the preprocessor. If the system call was successful,
the preprocessed input file can be processed within the analyser.

5.1.2 Lexical Analysis

Finite Automates are used to describe the syntax (structure) of input data. It
consists of states, transitions, one distinguished start state and also one dis-
tinguished end state. All transitions are marked edges that connect the states
together. If an input is read, it starts from the start state and depending on
the sequential input symbol it follows the marked transitions and changes the
state or stays where it is. If the end state is reached the input sequence is
accepted.

Regular Expressions are an effective description of a finite automate. A regular
expression consists of a sequence of recognisable symbols and some abstract
symbols. Abstract symbols for example are ’[’ and ’]a’, which represents a

1a loop with only a single entry
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symbol class. Another abstract symbol could be an asterisk ’∗’, which can
follow a symbol class and indicates zero or an endless number of symbols
within the symbol class. E.g. [1-9][1-9]∗ can be used to recognise natural
numbers. [1-9] indicates a digit between 0 and 9 and [1-9]∗ indicates zero or
an endless number of digits like ’1234’.

Token accepted individual sequence described by a regular expression

The aim of a lexical analyser is to translate a textfile into a stream of tokens.
Lexical analysis of different programming languages is very similar. Therefore writ-
ing the code for such a scanner can be done automatically. Within this work, the
scanner generator FLEX 2 was used. This generator needs a specification file as in-
put and creates a output file with the scanner function yylex(), which can be called
from another source file. Every call of the function yylex() returns a new recognised
token. The specification file consits of three with ’%%’ separated sections. The first
section is the definition part. There can be placed all variable definitions, reusable
parts of a regular expression or #include instructions. Every line in this section is
copied directly into the output file. The next section is the most important part.
There must be placed all regular expressions where each of it describes an individual
token. For each regular expression there must be placed an action that will be exe-
cuted if a token is recognised. The last section can be used to define some functions,
which are called as action for any regular expression. Within this work, all rules in
the configuration file have the form

‘‘tokenname ’’ or regular expression

{ count(); if( !attribute found ) return(token ); }

All elements between the opening ’{’ and the closing ’}’ braces are executed as
action. The function count() calculates the line and the column of the beginning
of the token within the input file. This information is required to write the result
of the analysis on the right place within the output file. To distinguish between the
source of the input and the source of an included file, the line and column are set to
-1 for tokens of the include code. The flag attribute found is set if the GCC compiler
extension attribute was found. If this flag has been set, the following tokens
are ignored. Otherwise the token identifier (e.g. ”GOTO”) is returned. Using the
specification file, the call

flex -flags ’specification file ’

produces a file called lex.yy.c, which can be compiled and linked to the whole
program.

2Fast Lexical analyser
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5.1.3 Syntactical analysis

Context free grammar A context free grammar produces a context free language.
Beginning from a non-terminal start symbol, a context free grammar produces
a sequence of terminal symbols using grammar rules iteratively. This sequence
could also be empty (∅). A grammar is context free if on the left side of the
grammar rules are only single non-terminal symbols. Such non-terminals will
be replaced independent from the surrounding context.

Grammar rule All grammar rules of a context free grammar are of the form
A → γ. Where A is a non-terminal symbol and γ a sequence of terminal
symbol and non-terminal symbols. The empty sequence will be produced with
the rule A → ε. A formal description of these rules is:
∀(w1 → w2) ∈ Grammar rules:

(w1 ∈ Nonterminals) ∧ (w2 ∈ (Terminals ∪Nonterminals)∗)

Terminal is a symbol that cannot be replaced anymore, e.g. a token, returned by
the scanner.

Non-terminal is a symbol which can be replaced with a sequence of terminal and
non-terminal symbols using the grammar rules described before.

Startsymbol is a single non-terminal start symbol, that will be replaced first.

Similar to the lexer as described in the previous section, the parser for the syn-
tactical analysis is generated using the parser generator YACC 3. This compiler gen-
erator needs as input a configuration file, which has the form

%{
C-declarations

%}
YACC-declarations

%%
Rules

%%
Helping functions

Within the section C-declarations, all C functions used within the parser will
be declared (also the external scanner function int yylex()). Additionally all
#include directives and global variables definitions will be placed at this section.

The YACC-declarations of the next section will be replaced by declarations de-
scribing the characteristic of the C language grammar. Table 5.1 shows a list of
some this declarations, which have been used within this master thesis.

3yet another compiler compiler
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%union{ struct func ∗fn, ...} Type of $$, the non-terminal on the left
side of a YACC grammar rule

%token GOTO Indicates that the symbol GOTO is a to-
ken (= terminal symbol)

%type <fn> function definition Indicates that the non-terminal symbol
function has the type < fn > which must
be part of the union defined in the first
line

%start program Indicates that the nonterminal program is
the start symbol of the whole grammar

Table 5.1: Some often used examples of YACC declarations

For every terminal or non-terminal used within the grammar rules it must be
indicated as token (with %token) or have a declared type (with %type <type>).

The longest and most important part of the configuration file will be the section
containing the YACC grammar rules. These rules are context free (as described
within the beginning of this section) and have the form

non terminal : /* empty */

| (terminals ∪ non terminals) { action }
;

The ’:’ separates the left side of the grammar rule from the right side. On the
right side, the ’|’ separates different possible replacement rules and the semicolon ’;’
at the end terminates the whole rule. Between the opening ’{’ and the closing ’}’
braces after each replacement rule there could be some C functions inserted which
will be executed if this replacement rule would be used. Figure 5.2 shows how a
function could be described using a context free grammar. All symbols are written
with lower case signs, which means that they are non-terminals. There are four
possibilities of how a function could be defined. The first rule means that there
is a declared return value (declaration specifier), followed by the function name
(declarator) and the arguments (declaration list). And at least is the function body
(compound statement) placed, which contains in the most cases a list of statements.
As second example in figure 5.3 on page 46, the possible definitions of C language
loops, also described by a YACC grammar, are shown. The key words for, do
and while are recognised as tokens and therefore written in upper cases. Also the
opening ’(’ and closing ’)’ round braces between the inverted commas means that
they are terminal symbols. The expression or expression statement contains the
loop condition which has be analysed in chapter 4. The symbol statement is also
a non-terminal and would be replaced by a list of statements and forms the loop
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body, which could also have multiple exits (see section 4.2 for further details).

function definition
: declaration specifiers declarator declaration list
compound statement

| declaration specifiers declarator compound statement
| declarator declaration list compound statement
| declarator compound statement
;

Table 5.2: YACC rule to recognise the different types of function definitions

How to use this and all the other rules that describe a valid C program and how
to create a syntax tree of the input source file is shown in the next section (section
5.2). At the end of the configuration file there is the section Helping functions left.
This section can be used to define some C language helping functions that may be
used between the ’{’ and ’}’ braces where the action for each of the grammar roles
could be defined.

iteration statement
: WHILE ’(’ expression ’)’ statement
| DO statement WHILE ’(’ expression ’)’ ’;’
| FOR ’(’expression statement expression statement

maybe expression ’)’
statement

;

Table 5.3: YACC rule to recognise the different types of loop definitions

5.2 Syntax tree

This section describes how the syntax tree is created using the YACC -rules of the
previous section. The tree is created from top down. Figure 5.1 on page 47 gives a
graphical representation of the stored syntax tree at the end of the lexical analysis.
All functions are stored in a single linked list. The loop analysis takes place local at
each function so there is no gain of performance if a double linked list will be used.
For each function, a pointer to a linked list of all statements inside of of it is stored.
During the analysis there is of often the need to get the successor of a statement.
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But there are also a number of accesses to predecessor of a statement. Therefore a
double linked list was chosen as the most efficient way to store the data. And for
each statement, as can be also seen in the same figure, the expressions are stored in
a hierarchical order as a directed linked tree. Within the next lines of text, there
is also a short description of the used code segments within the implementation of
this work.

Function 1

Function 2

Function 3

Expression 4

Statement 1

Statement 2

Statement 3 Expression 1

Expression 2 Expression 3

Expression 5

Figure 5.1: Structure of the syntax tree of C language programs

Table 5.4 shows the piece of code from the data structure which is used to
store the parsed information for each C function definition within the source code.
“num nodes” and “**nodes” are used to store the nodes of each function. How to
group the statements of a function into nodes and how they are used within the
control flow graph are described in section 5.5. The vector “*labels” is used to
store all labels that are used as target of the jump statement GOTO. Because a label
can be declared at every position inside a function. And therefore, within the worst
case the algorithm must search within all predecessor statements until the function
header is reached and again to search all successors down to the end of the function
until the target of a GOTO statement is found. Using this vector, only the list of all
labels had to be evaluated until the target is found. This can be save a lot of search
time compared to the worst case where every statement has to be evaluated. The
pointer at the last line “*symb” refers to a list of all symbols that can be accessed
from this function.
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struct func *next; /*!< Pointer to the next function */
struct ident *name; /*!< Name of function */
struct stmt *stmts; /*!< First statement */
int num nodes; /*!< Number of cfg nodes */
struct cfg node **nodes; /*!< Nodes of cfg */
vector<struct stmt *> *labels; /*!< Stores all labels of a function */
registered symbols t *symb; /*!< Pointer to the last declared

symbol in this function */

Table 5.4: Data structure to store all details of a function

One step deeper into the hierarchy of the syntax tree goes table 5.5 on page 49. It
shows the implementation of one member of the double-linked statement list of each
function. One important member of this is the integer depth level, which indicates
the hierarchy level where a statement is located. For global statements this value is 0,
for arguments of the function 1 and within the function ≥ 2. Whenever a new scope
(beginning with an opening curly brace ’{’) begins this value is incremented. And at
the end of a scope (ends with a closing curly brace ’}’) it will be decremented. This in
important e.g. for finding the right successor within nested IF -ELSE -statements as
described in section 5.5. The two members, line and column, indicate the position
of the beginning of the statement within the source code. This position is used at
the end of the analysis where the result of the calculation must be written between
the loop header and the loop body. The pointers *symboltab and *typetab are
referring to the list of symbols and to the list of types that can be seen from the
position of the actual statement (see section also section 5.4 fur further details).
Within the case that the actual statement is of type FOR, WHILE or DO the
pointer *details will point to a structure containing the calculation result (see
section 4 for further details). Now, the expression level of figure 5.1 is described.
As mentioned in previous sections, a statement could contain an expression (e.g. a
condition or a expression statement). For the analysis within this work it has been
found that this information could be best stored as directed binary tree. Because, if
it must be evaluated if a variable has only constant assignments, then all expressions
must be considered where the root node is an assignment. If such an expression is
found and the left child is the variable then the right child has to be a constant.
Table 5.6 shows the corresponding data structure, which is used to store such an
expression tree. The enum “type” of type expr type stores, which kind of expression
it is. The enum “expr type” contains a large number of members so not all of them
could be described here. In assistance for all others, the members E VARIABLE
(indicates that the expression is a variable), E ASSIGN (representative of ’=’) and
E NUM CONSTANT (means that the expression is a number constant like ’1.0’)
are introduced.
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enum stmt type type; /*!< Statement type */
struct stmt *next; /*!< Next statement */
struct stmt *prev; /*!< Previous statement */
struct expr *expr; /*!< Expression */
int depth level; /*!< Depth-level of the statement */
symbol t *symboltab; /*!< Pointer to the symbol-table */
type t *typetab; /*!< Pointer to the type-table */
int line; /*!< Line number in sourcecode of

this statement */
int column; /*!< Column in the code where

this statement starts */
struct loop details *details; /*!< Contains all analysis details */

Table 5.5: Data structure of a statement

Within the case that an expression is a variable, the pointer “*ident” refers to a
structure, which stores the name of the variable and the pointer to the corresponding
symbol within the symbol list (see also section 5.4).

enum expr type type; /*!< Operator/expression */
struct expr *kids[2]; /*!< Operands of operator */
struct ident *ident; /*!< Identifier for variables/

function calls */
double val; /*!< Value of number constants */

Table 5.6: Data structure of an expression

The double value “val” stores the number if an expression is a number con-
stant. Now, to show it with an example, the expression of the following expression
statement

var1 = 3;

should be stored within an expression tree. Within the YACC specification file,
the following grammar rule is used to describe such an assignment expression. Like
this piece of code, in most YACC grammar implementations they are in hierarchical
order. If in this case the expression is not an assignment expression, then it could be
a conditional expression. This hierarchy ends with an primary expression, which
could be a number constant or an identifier.
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assignment expression
: conditional expression
| unary expression assignment operator assignment expression
;

Using the example of few lines before, var1 goes the hierarchy from unary expression
down to an identifier. There is a new expression with type E VARIABLE created.
The pointer “kids[0/1]” are set to NULL and the pointer “*ident” are set to a
structure where the name “var1” and corresponding the element of the symbol tree
(section 5.4) will be stored. The constant number “3” is stored in a similar way.
The only difference is that the *ident pointer is set to NULL and the number “3” is
stored in val. And now, the previous described YACC rule finds the assignment op-
erator “=” within the non-terminal symbol assignment operator. Within this rule,
also a new expression, but now with the type E ASSIGN, is created. The previous
created expressions are set as kids, with the variable as kids[0] and the constant as
kids[1]. This is the idea behind the storage of expressions as binary tree. Sometimes,
such stored tree must be changed to make the analysis easier afterwards. Because
an expression of an expression-statement could also be a composed one like “var1
= var2 = 3;”. Then we have to change it into two separate expressions “var1 =
3;” and “var2 = 3;” to get the usual structure variable = constant. Afterwards,
this separate binary tree will be joined together with a concatenation expression
E CONCAT. There are also many other necessary changes, but the idea behind is
always nearly the same and therefore not further described within this work.

5.3 Type table

The type table is used to store all non-elementary types that occurs during parsing
of the source code. Such non-elementary types are enum, struct, union or new
types defined with typedef. Every time when a new variable declaration is found the
corresponding type is stored together with all other variable details. And therefore
this type table can be used to get the real structure behind a variable name. The
type table is implemented as linked list of data structures, which is shown within
table 5.7 on page 51. Composed types are stored as sub-lists within linked elements
of the same structure. The name of the type is a string, which is used to identify
the type within the source code. The next element typespec stores which kind of
composed type (e.g. STRUCT ) it is, T POINTER is used for pointer types and
T TYPEDEF for a new declared type name. If it is only an elementary type (e.g.
int) the name of the elementary type will be stored. For composed ones like struct
the number of subtypes and a reference to the list of subtypes is stored. If a type
is a subtype of a composed one, then the corresponding member name must also be
stored. Because only the type name is not enough to indicate each type member.
Each part of the program should only see the types that are declared for it and
therefore, like for statements, the depth level for each type is stored.
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char* name; /*!< name of the type */
typespec t typespec; /*!< kind of type */
int numsubtype; /*!< number of subtypes for composed types */
struct type *subtype; /*!< dyn. alloc. array for sub-types */
struct type *next; /*!< next type element in list */
int depth level; /*!< statement-level of declaration-point */
char *member name; /*!< name, if struct- or union-member */

Table 5.7: Structure of the type table

A new type is always be inserted at the beginning of the list. If a scope end,
indicated with the closing curly brace ’}’, is found the pointer for the current type
list is set to the first element with a depth level less than the level of the current
type. The corresponding type table for a source file has a similar structure as the
corresponding symbol table which is depicted in figure 5.3 on page 52. The following
short example shows how a new type is stored within the list.

typedef int counter t;
counter t counter1;

First, a new element is inserted at the beginning of the current type list. This
new element has the typespec T TYPEDEF and the name counter t. The subtype
counter numsubtype is set to ’1’. As subtype, a reference to the structure and
T NUMBER as type, representative for int, is stored. All other elements for the
subtype are set to the initial values. The pointer ∗next refers to the old current
type list, which is the next element within the new list. The depth level is set to
the same value as the level of the surrounding statement where the type is declared.
In the following line, the declared variable has the new defined type counter t. So
the reference to the current type table can be followed until the first type with name
counter t is found. The result of the search has the type T TYPEDEF, so it can
be dereferenced and the reference to the subtype t number is stored as type for the
variable counter1.

5.4 Symbol table

The symbol table is structured similarly as the type table, described in the previous
section. The example code within figure 5.2 is used to demonstrate the construction
of the symbol table using a valid C code. The pointer current symbol list always
holds a reference to current position within the symbol table. Every time a new
symbol is declared it will appended at the beginning of the current symbol list. Af-
ter the new symbol is appended, the pointer current symbol list will be set to this
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new symbol. At the end of a scope this pointer is set to the first symbol which has a
depth level less then the depth level of the current target of this pointer. This leads
to a symbol table, which may contain several branches inside.

int symbol1;
if( condition1 ){

int symbol2;
} else {

int symbol3;
if( codition2 ){

int symbol4;
} else {

int symbol5, symbol6, symbol7;
}

}

Figure 5.2: Example code to show the structure of the symbol table

For the example code on page 52, figure 5.3 shows the resulting symbol table.
With every opening curly brace ’{’ a new scope begins. As it can be seen on this
figure, after symbol1 and symbol2, the symbol table splits up because there are
different scopes and within each of this scope new symbols had been declared. Now,
we describe the data structure used to store new symbols within the symbol table.
The code of the data structure is shown within figure 5.8.

Symbol 1Symbol 7 Symbol 6 Symbol 5

Symbol 4

Symbol 3

Symbol 2

Figure 5.3: Graphical representation of the symbol table from the example code

One of the most interesting details of this structure may be the reason of the
introduction of the elements numsubsymb, subsymb and subsymbof. They are used
if the type of the symbol is a composed one. Because in this case, for each subtype
of the main symbol type also a subsymbol must be created. This subsymbols are
used for accesses like the following
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symbol->member1 = element1;
symbol.member1 = element2;

where for each assignment the reference to the subsymbol is stored. To get the
reference of the outer symbol itself the pointer *subsymbof of the stored subsymbol
must be followed. If the outer symbol is reached this pointer is NULL. Every time
a variable is used again within the source code after the declaration, the pointer
current symbol list has to be followed. The first found symbol with the same name is
the right one; because the last declarations always has been inserted at the beginning.
And each statement has also only access to that path of the symbol list with variables
that are valid inside of the actual scope.

char *name; /*!< Name of the symbol */
type t *ptype; /*!< Pointer to the type structure */
int numsubsymb; /*!< Number of subsymb. */
struct symbol *subsymb; /*!< Dyn. alloc. subsymb. array */
struct symbol *subsymbof; /*!< Pointer to the parent-symbol */
struct symbol *next; /*!< Next element in list */
int depth level; /*!< Depth level of the symbol

(0=global, 1=paramter, >1=local) */
int id; /*!< Unique id for a symbol */
struct registered symbols

*rsymbol; /*!< Pointer to the registered symbol */

Table 5.8: Structure of the symbol table

5.5 Control Flow Graph

After the source file has been parsed successfully and the creation of the syntax tree
is finished, there must be created a control flow graph for each function. This control
flow graph is necessary for the further analysis of the code. Every node within this
flow graph represents a basic block4. During the construction, the following steps
must be performed:

1. Finding all basic blocks of each function.

2. Storage of the first and the last statement of each block.

3. Finding all successors of each basic block.

4. Finding all predecessors of each basic block.
4see section 4 for further definitions around the control flow graph
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To find all basic blocks, the syntax tree at the statement level must be evaluated.
At the beginning, the algorithm starts with a new basic block. If the next statement
has a depth level greater or less then the depth level of the actual statement, the
current basic block ends with the actual statement. The second reason for ending
the current basic block is when the actual statement is a branch statement like
FOR, IF, or SWITCH. If the current basic block ends and the last statement of this
block was not the last statement of the function, a new basic block starts. When
the beginning and the end of each basic block have been determined, the first and
the last statement is stored for each block. The statements are double linked with
its successor and predecessor and therefore only the first and the last statement is
necessary for each basic block. After determining all basic blocks (=nodes of the
control flow graph), the first basic block is set as root node within the control flow
graph. To find and store all successors of each node is a little bit more tricky;
because also the semantic of the program must be taken into account.

if( condition1 ){
if( condition2 ){

some statement1 ;
}

} else {
some statement2 ;
some statement3 ;

}

Figure 5.4: Some example code to show the construction of the control flow graph

Figure 5.4 shows a short code example, which could be a source of errors if the
grammar of the C language would not followed exactly. During parsing, an IF or
corresponding ELSE statement is terminated by an pseudo END IF statement to
let the algorithm know when corresponding IF -ELSE -statements are finished. Nor-
mally, the successor of an END IF node is the sequential successor node. The only
exception is an IF -ELSE -statement that itself is inside of an IF -block of an IF -
ELSE -statement. Because the sequential successor would be the ELSE -statement
of the surrounding IF -ELSE -statements. But the right successor is the next node
containing an END IF statement with the same depth level as the found ELSE
statement. Otherwise, if the condition of the surrounding IF -statement is true, the
path within the control flow graph goes through the body of the IF statement and
also through the body of the ELSE -statement. And this path is erroneous. Figure
5.5 on page 55 shows the well constructed control flow graph to the corresponding
code within figure 5.4.
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if( condition1 )

elseif( condition2 )

some statement 1;

end if

end if

some statement 3;

some statement 2;

Figure 5.5: Control flow graph of the example code within figure 5.4

int id; /*!< Node id */
struct stmt *first, /*! <First and */

*last; /*! <Last statement of sequence */
int num preds; /*! <Number of predecessors */
int **preds; /*!< Predecessors */
int num succs; /*!< Number of successors */
int **succs; /*!< Successors */
struct branch *branch tree; /*!< Used during analyses */

Table 5.9: Structure of a node within the control flow graph

Setting of the predecessor nodes for each node of the control flow graph can be
done straight forward. Because every node that has received the actual node as
successor can be set as predecessor. Last, a short introduction to the corresponding
data structure that is used to store a control flow graph node, is given. Table 5.9
shows all elements of the data structure that are used within the source code. Before
all predecessor and successor nodes will be set, every node gets a unique id. This id
number is stored within the first line of the data structure and is used to store the
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predecessors and successors afterwards. To make the access of these elements much
more clearly and easier to read, some macros like

#define CFG GET SUCC ID(NODE REF,INDEX) ( *( NODE REF->succs[INDEX] ) )

are used. Now, all necessary data are ready for the analysis, which is described
within the following section.

5.6 Loop bound analysis

This section shows some of the implementation details of the methodology described
in chapter 4. Within the first subsection a short overview of some implementation
details about the construction of the branch tree is given. The following subsec-
tion explains how and which values for each branch must be calculated. Last, the
calculation of the loop iteration bound is described.

5.6.1 Finding all branches that can influence the number of loop
iterations

As described within section 4.2.2, all branches that can influence the number of
loop iterations are found within two steps. First, all branches that could directly
influence the number of iterations are identified and afterwards, all branches that
could indirectly influence the number of iterations are identified. A bitvector is used
to mark all identified branch nodes5. This bitvector is an array with the same size
as the number of nodes of that part of the control flow graph that is representing the
loop. At the beginning, every element of this array are initialised with ’0’. When
a branch should be marked the corresponding element of the bitvector must be set
to ’1’. The main piece of code of the algoritm within the whole implementation,
which has been introduced within figure 4.3 on page 27 at the previous chapter, is
the function

bool is postdominated by( struct func *pFn, int nNode, int nPostDom )

and is used to find out if a node with id6 nNode is postdominated by the node
with id nPostDom. Within the first step of algorithm 4.3, a node is marked if a call
of the previous introduced function returns TRUE. As arguments, the reference to
the actual function that contains the loop, the id of one of the successors of the
actual branch node and as postdominator the id of the node that contains the loop
header, are used. The second reason to mark a branch node within the first step is,
if one the successors is located outside the loop. A node can be identified as located
outside of the loop when his id is higher as the id of the last loop node. Because
the node id ’s have been assigned arising during the construction of the control flow

5branch node: a basic block or control flow graph node where the last statement of this node
has more than one successor

6id is an element of the structure shown on table 5.9
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graph. When all branches that can indirectly affect the number of iterations should
be found, the function is postdominated by(...) has to be called for every node
where the corresponding flag is not set within the previous described bitvector. As
argument for the postdominator node, one the nodes where the corresponding flag
has been set is taken. If the function returns TRUE, the flag of the evaluated
branch node is set to ’1’. This procedure is repeated until no new flag has been
set within the bitvector. Table 5.10 shows, how the return value of the function
is postdominated by(...) is calculated. The first case within this table means
that a node cannot be postdominated by a previous defined node. The loop header
has an id less (FOR of WHILE ) or equal (DO-WHILE ) as the loop end (=last
loop node). Therefore, the return value is FALSE if an id greater as the id of the
last loop is reached. Otherwise, if the loop header is reached without looking (e.g.
CONTINUE ) for, this path is not postdominated from a node with id nPostDom
(third case of table 5.10). The next case means that a node cannot be reached from
the end of the loop body and therefore the return value is false again.

Condition Return value

nPostDom ! = id of the loop header FALSE

&& nNode > nPostDom

nPostDom == id of the loop header FALSE

&& nNode > nEnd

nPostDom ! = id of the loop header FALSE

&& nNode == id of the loop header

nPostDom ! = nEnd FALSE

&& nPostDom ! = nHeader

&& nNode == nEnd

nNode == nPostDom TRUE

All previous conditions are FALSE and one of the successor
nodes of nNode is not postdominated by nPostDom

FALSE

Everything else TRUE

Table 5.10: Return values of the function is postdominated by(...)

The only exception is the loop header, which will be reached from the last loop
node. But every node postdominates itself and therefore case five returns TRUE.
If all of the previous cases are not true, then this function is called recursive for
each successor. If one of these paths is not postdominated by nPostDom, then the
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node itself is not postdominated nPostDom and the whole function returns FALSE.
If a direct successor of a node is identified by the previous described function as be
postdominated by the loop header or be postdominated by a node outside the loop,
then the marker for this node is set within the bitvector. Within the second step of
algorithm 4.3, all nodes that can indirectly influence the number of loop iterations,
are found with use of this bitvector. If a node is not marked and all its successors
are postdominated by different marked nodes than the marker for the node itself is
set. The algorithm stops if no new marker of the bitvector has been set.

5.6.2 Construction of the branch tree

After identifying all nodes that can directly or indirectly infect the number of iter-
ations, a directed acyclic graph will be created with all identified nodes. The graph
must be acyclic to avoid endless loops during path analysis. Before describing details
of the construction of the branch tree, the elements of the data structure for a tree
node will be listed within table 5.11 and explained for short at the following.

struct cfg node *node; /*!< Pointer to a node containing
the branch */

enum branch node type type; /*!< Type of the node */
struct var info *var info; /*!< Information about induction

variable */
int num preds; /*!< Numer of predecessors */
struct branch **preds; /*!< Pointer to the predecessors */
int num succs; /*!< Number of successors */
struct branch **succs; /*!< Pointer to the successors */

Table 5.11: Structure of the elements within the branch tree

The pointer “*node” is a reference to the corresponding node within the control
flow graph which contains the actual branch. The “type” is used to distinguished
between real branch nodes and pseudo nodes which represents BREAK and CON-
TINUE. The pointer “*var info” refers to a structure that stores all information
about the condition of the branch. The next elements of the table are used to store
all predecessor and also all successor nodes within the branch tree.

As preparatory work for the following construction, a branch tree node must be
created for every branch of the previous set bitvector with type “B NODE”. The
construction of the tree starts with all the branches where one of its successors is
outside of the loop. In this case, a pseudo branch tree node with type “B BREAK”
and no successors will be created. Every node that has an successor outside the loop
is pointint to this created BREAK node as successor afterwards. It is important
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for the bottom up analysis within the following sections that all nodes refers to the
same terminal node. Now, all nodes with set mark within the bitvector are con-
nected together. For the root node (=loop header), the first successor (successor,
if the condition is true) is the first branch node where the mark is set within the
bitvector. And the second successor is the BREAK node. For all other nodes, the
first successor (if not already set to the BREAK node) is the first branch node where
the mark is set and which postdominates the first successor7 of the branch. If there
is no such successor branch node found (where the mark is set) a pseudo node with
type “B CONTINUE” is set as successor. The second successor is set in the same
way. Figure 4.5 on page 29 is showing a graphical representation of such a branch
tree after construction. If some branch contains a non single branch condition (e.g.
‘‘if( cond1 && cond2 )”) or if the branch statement has the type “S SWITCH ”
the branch tree is expanded as described within section 4.2.3 on page 29. The pointer
“*node” of the splited up nodes refers to a copy of the original pointer target. But
the condition of the copy is replaced with the corresponding single condition. There-
fore, all successors within the control flow graph can be evaluated in the same way
during the following analysis.

5.6.3 Calculation of information about each branch condition

In section 4.2.4 on page 31, a branch is classified as known if all information, which is
necessary to determine the number of iteration when the branch changes its direction
could be calculated. Table 5.12 lists the first half of the elements of the structure
var info, which are stored for each branch within instances of the structure from
table 5.11 as target for the pointer “*var info”. The meaning of each of this
elements are described within table 4.1 at chapter 4 on page 32. If the value of
one of these members could not be calculated, the branch is classified as unknown
for the following analysis. For the elements limit and initial, there exits additional
minimum and maximum values. These additional elements are used if the value
of the element itself could not be extracted from the parsed source file and user
defined annotations for the minimum and maximum value had been placed within
the source file (see section 5.6.4 for differences within determining the minimum and
maximum loop iterations). The value for “*variable” and the relational operator
“relop” could be directly extracted from the branch condition if it is of the type
“variable operator limit”. The value of “limit” could be a constant, a variable or
an expression like “expression operator expression”. Where the operator could be
’+’, ’−’, ’∗’ or ’/’. If the “limit” is a constant it can be stored straight forward.
Within the case that is a variable (e.g. a condition like “variable relop variable”),
it must be guaranteed that this variable is always constant for this loop. So the
limitation within this work is, that there must be an assignment with a constant to
this variable in the last basic block before the loop body starts. It is also important
not only to evaluate expression statements but also pay attention to side effects

7This is the first node which follows the branch within the control flow graph
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within sub-expressions (e.g. array[variable++]=x;).

struct symbol *variable; /*!< Pointer to the variable */
bool known; /*!< TRUE if expression is known, else

FALSE */
double limit; /*!< The value being compared to the

variable */
double limit min; /*!< Value bounds can be inserted within

the source code */
double limit max; /*!< Value bounds can be inserted within

the source code */
enum expr type relop; /*!< Operator used to compare the variable

and the limit */
double initial; /*!< Value of the variable when loop is

entered */
double initial min; /*!< Value bounds can be inserted within

the source code */
double initial max; /*!< Value bounds can be inserted within

the source code */
double before; /*!< Amount of change of the variable

before reaching the branch */
double after; /*!< Amount of change of the variable

after reaching the branch */
enum adjust adjust; /*!< Adjustment value for difference of

relational operators */

Table 5.12: First half of the structure var info

And additional, every path through the loop must be evaluated to guarantee that
the value of this variable does not change within the loop.

Operator

ExpressionExpression

Figure 5.6: Graphical representation of an expression tree

If the “limit” is an expression it has been stored as expression tree during parsing
as shown within figure 5.6. Therefore, the value can be calculated recursive for the
whole expression. If a variable is inside of the expression, it must be handled in the
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same way as described before. If there are multiple variables inside the expression
and one of them cannot be bounded, the “limit” itself cannot be bounded and the
branch becomes unknown. For the control variable (stored as “*variable”), the
initial value, the amount of change before the branch is reached and the amount
of change after reaching the branch must be calculated. The initial value is deter-
mined in the same way as a single variable limit by searching constant assignments
within the basic block before the loop starts. Before the amount of change can be
calculated, it must be proofed that it is constant within every path. This is done
by two nested loops. The outer loop iterates over all statements of the loop within
the linked statement list. If such a statement contains an assignment to a control
variable then the inner loop iterates over all nodes of the control flow graph. If
a node has the loop header as successor it must be dominated by the node which
contains the assignment. Otherwise, the amount of change is not constant on every
path. To determine if a node is dominated by another node, every successor must
evaluated recursive. If a successor node is the dominator node, then this path is
dominated by this node. Otherwise, every successor of the successor node must be
evaluated. If the loop header is reached before reaching the dominator node then
this path is not dominated by the dominator node. A branch must be classified
as unknown if the amount of change is not constant on every path. The amount
of change before reaching the actual branch can be calculated by following a path
until the loop header is reached. It must be constant for every path and therefore
always the first predecessor can be followed. For every node all corresponding state-
ments and their expression trees must be evaluated. Only assignments of the form
“variablex = variablex + constant” are allowed. Therefore, the amount of change
within each loop iteration is a summation of all constants within the assignments.
For the calculation of the amount of change after reaching the actual branch the
path of the first successor is followed in the same way as described before, until the
loop end is reached. And the last value “adjust” can be calculated straight forward
using equation 4.1 on page 32.

5.6.4 Determination of the minimum and maximum number of loop
iterations

When the information collection for each branch is finished, then the last two re-
maining steps of the analysis are

1. determining the ranges of when each of the branches of the branch tree can be
reached and

2. determining the minimum and maximum number of loop iterations.

All elements that must be calculated during these two steps are stored within
the second half of the structure “var info”, which is part of the structure listed in
table 5.12. The second half of the previous mentioned structure “var info” is listed
within table 5.13 and will described for short within the following lines. The first
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of the remaining two steps is calculated in top-down and the second in bottom-up
order. Within bottom-up order, all values of the current branch node could not
calculated until all successors of the node within the branch tree have been calcu-
lated. To let the algorithm know when the values of all successor nodes have been
calculated, the “set counter” is incremented for each calculated successor. The
elements “edge range ∗” and “edge exit ∗” are all available as pairs for the first
and the second successor. The method behind of how this values are calculated
has been introduced within section 4.2.5 and 4.2.6 and will described further within
this section. The implementation has been simply realised with IF -ELSE structures
based on this method.

int set counter; /*!< Used to know if all predecessor values
are set */

double node range min; /*!< First iteration on which it is possible to
execute node */

double node range max; /*!< Last iteration on which it is possible to
execute node */

double node exit min; /*!< First iteration when this node may lead
to a break */

double node exit max; /*!< First iteration when this node must lead
to a break */

double edge range min1; /*!< Lowest loop iteration when the first edge
can be reached */

double edge range max1; /*!< Highest loop iteration when the first
edge can be reached */

double edge range min2; /*!< Lowest loop iteration when the second
edge can be reached */

double edge range max2; /*!< Highest loop iteration when the second
edge can be reached */

double edge exit min1; /*!< First iteration when the first edge can
be reached */

double edge exit max1; /*!< First iteration when the first edge must
lead to a break */

double edge exit min2; /*!< First iteration when the second edge
can be reached */

double edge exit max2; /*!< First iteration when the second edge
must lead to a break */

Table 5.13: Second half of the structure var info
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The next interesting detail of the implementation is the realisation of the deter-
mination of the minimum and maximum loop iterations using annotations for upper
and lower bound of variables. Because if there are an upper and also a lower bound
with different value, then it is not known if the upper bound or the lower bound,
or maybe both, could influence the number of iterations. Therefore, the iteration
bounds must be calculated for both values. The result is an union of both ranges,
where the smallest value of the lower bound and the biggest value of the upper
bound must be taken. If there are more than one unknown variables for which value
bound annotations have been provided, the iteration bound must be calculated for
each minimum and maximum value combination. This fact leads to the problem of
how to calculate each possible combination within the efficientest way. The mini-
mum and maximum values could be represented as ’0’ for the minimum and ’1’ for
the maximum value. This leads to 2n possible combinations with n as the number
of annotations with different upper and lower bound. To represent these combina-
tions, a binary bitvector with n elements can be used. The simplest implementation
method would be to implement a binary counter that counts from “0 0 0 ...0” up
to “1 1 1 ...1”. But the disadvantage of this simple method is the relatively high
calculation overhead. Because before setting the next higher priority bit to ’1’ all
lower priority bits down to the least significant bit must be reset to ’0’. For a large
number of n this is very inefficient. To avoid this unnecessary calculation overhead
this bitvector is calculated recursively until all bits are set. The calculation starts
with an uninitialised bitvector of the size ’n’:

x x x . . . x x x
n n-1 n-2 . . . 3 2 1

Afterwards, a set function, with this vector and the index of the highest priority
bit as arguments, is called. This function sets the bit with the given index first to
’1’ and calls itself with this changed vector and the by one incremented index as
arguments afterwards. After this first function call, the bitvector has been changed
to

1 x x . . . x x x
n n-1 n-2 . . . 3 2 1

and
0 x x . . . x x x
n n-1 n-2 . . . 3 2 1

and the new index is now ’n−1’. The same procedure is done once more but now
the bitvector is set to ’0’ at the actual index position. This recursive function calls
is repeated until the index position reaches 0. Now the algorithm knows that all
positions have been set. And the next step is to set the input data for the following
analysis according the previous calculated bitvector. If the value for the correspond-
ing variable is set to ’1’, the higher annotation value is taken for initialisation and
vica versa. For big loops with many unknown branches and corresponding anno-
tations within the code, it must taken into account that the calculation time also
increases by the previous announced factor 2n.
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After the ranges for all loops within a source file have been calculated, the results
must be inserted within the source file. To avoid changes of the original source file,
it is copied and stored with the same name; but now with additional leading “ ”.
The annotation starts after the closing round ’)’ brace of FOR and WHILE loops or
after the DO statement, followed by a blank space, of DO-WHILE loops. Therefore,
the overall style of the source is still remaining unchanged after the insertion. As
mentioned within the previous chapter, this work has been implemented compati-
ble with the programming language WCETC, introduced in [Kir02]. Within this
language, the syntax for the annotation of the loop bound is

WCET LOOP BOUNDS( variable name, lower bound, upper bound )

and has been followed within this work.
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Chapter 6

Evaluation

This chapter presents the possibilities and the limits of the analysis method and
the actual implementation. Every characteristic property is illustrated with a small
example loop and also supplemented with a short explanation. More complex loop
bound calculations are shown within section 6.4. The style of used annotations
for the value bound of some variables are compatible with the language WCETC
from [Kir02].

6.1 Types of loops that can be successfully bounded

Within this section, it is described which types of loops this actual implementation
is able to calculate. There are small examples listed to made the explanations more
clearer and understandable. Figure 6.1 shows a simple loop that can be calculated
straight forward. But is shows some of the important limitations of the method.

for( i=0; i<100; i++ ){
some statement;

}

Figure 6.1: Example loop 1 that can be bounded by the algorithm

To calculate when a branch changes its direction, the initial value for the induc-
tion variable must be given as constant. As relational operator only “<”, “<=”,
“>” and “>=” allowed. With some additional limitations also “==” and “! =” are
allowed. The limit of the condition must be constant for every loop execution. And
the next important limitation is that the amount of change for each induction vari-
able must be constant within every loop iteration. If this requirements are fulfilled
there could also be multiple exits within the loop. Within figure 6.2, an example
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loop is depicted, which has two possible exits. There is no limitation regarding the
number of the exits. The complexity for loops without user assertions is O(n).

for( i=0, j=2; i<1000; i++, j+=2 ){
some statement;
if( j > 4000 ){

break;
}

}

Figure 6.2: Example loop 2 that can be bounded by the algorithm

But also if some branches of the loop are unknown, an iteration bound could
be calculated. The range of this iteration bound could be larger compared to loops
with known branches. Within the worst case the range could be between 0 and
∞ and therefore has no expressiveness. The iteration range of the example loop
within figure 6.3 has been determined by the algorithm between 1 and 301. The
inner branch has been marked as unknown because there could no initialisation value
determined. And therefore, the lower iteration value was set to 1 for the case that
this branch condition is fulfilled within the first iteration.

extern int j;
for( i=0; i<300; i++, j++ ){

if( j>200 ){
break;

}
}

Figure 6.3: Example loop 3 that can be bounded by the algorithm

Such less accurate calculations could be minimised with value bound annotations
for each unknown variable. Figure 6.4 shows the same example code as figure 6.3
but now with an annotation for the variable j. This annotation minimizes the loop
iteration bound from [1. . .301] to [1. . .102]. But is must also be mentioned that
annotations results in performance lost within big loops with many annotations.
Because the calculation must be done with all possible combinations of these values.
The calculation result is an union of all calculated ranges. Therefore, 2m calcula-
tions must be performed, if m is the number of annotations with different upper and
lower bound.
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extern int j;
for( i=0; i++, j++ ){

WCET VALUE BOUNDS( j, 100, 300 )
if( j>200 ){

break;
}

}

Figure 6.4: Example loop 4 that can be bounded by the algorithm

The next code example, depicted in figure 6.5, shows a loop with an equality
operator. Within the case of equality operators, three additional requirements must
be fulfilled. First, such a branch must be included within every path that ends in
a back edge. Second, one of the outgoing transitions must lead to a BREAK. Last,
equation 4.1 on page 32 must be result in an integral value. Otherwise, this equation
will never changes its direction and the loop could potentially be unbounded.

for( i=0; i!=100; i++, j+=2 ){
if( j==200 ){

break;
}

}

Figure 6.5: Example loop 5 that can be bounded by the algorithm

6.1.1 Grammatical description of valid expressions

As described in previous sections, expressions with alternative internal flow are
translated into into IF -ELSE constructs. These translations are necessary to create
a valid control flow graph. But unfortunately, not all allowed expressions of the
language C can be translated into such IF -ELSE constructs. Based on the YACC
grammar of the language C (all found YACC grammar descriptions were nearly
equivalent) an expression can be translated into a single ’assignment expression’,
or into comma separated ’assignment expression’s. The YACC grammar rule for
an assignment expression is shown in figure 6.6. This ’assignment expression’ can
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be translated into a list of ’=’-separated ’unary expression’s with a conditional
expression at the end.

assignment expression
: conditional expression
| unary expression assignment operator assignment expression
;

Figure 6.6: YACC replacement-rule for an assignment-expression

If one of these ’unary expression’s is set between round braces, it again can be
a new expression. This circumstance leads to a possible expression as shown in figure
6.7 b) that cannot translated hierarchically into IF -ELSE statements. Therefore,
the grammar must be restricted in that way that at the bottom of these unary
expressions must be an identifier (variable). A valid example of such an expression
is shown in figure 6.7 a).

a = b = (c > 1)?2 : 3; a = (d > 1)?b : c = (d > 1)?2 : 3;

a) Vailid expression b) Invalid expression

Figure 6.7: Examples of valid and invalid expressions

The next step down within the grammar hierarchy leads to conditional expres-
sions. The original replacement rule says that the first alternative after the ’?’ also
can be an expression.

conditional expression
: logical or expression
| logical or expression ’?’ assignment expression ’:’

conditional expression
;

Figure 6.8: Modified YACC replacement-rule for an conditional-expression
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In that case, comma separated assignments are possible. But the algorithm is only
able to handle single assignment expressions as shown in figure 6.9 a). Therefore,
the replacement rule has been modified as shown in picture 6.8 to avoid expressions
that cannot be handled like 6.9 b).

j = (c > 1)?a = b = 2 : a = b = 3; j = (c >= 1)?d∗ = 3, e = 4 : 4;

a) Valid expression b) Invalid expression

Figure 6.9: Examples of valid and invalid expressions

The next problem of the original grammar rules lies within the selection state-
ments. A typical expression for the condition that can be handled is shown in
6.11 a). It is possible to translate this IF statement iterative into an IF -ELSE
construct with only single conditions. Such valid conditions can be produced by the
grammar rules shown in figure 6.12 and 6.13.

selection statement
: IF ’(’ logical or expression ’)’ statement
| IF ’(’ logical or expression ’)’ statement ELSE statement
| SWITCH ’(’ identifier ’)’ statement
;

Figure 6.10: Modified YACC replacement-rule for a selection-statement

An expression that cannot be translated by the algorithm into correspond-
ing IF -ELSE statements is shown in 6.11 b). Therefore, the grammar replace-
ment rule for selection statements in figure 6.10 has been modified so that only
’logical or expression’s are allowed.

if(( a<= 5 )||( b>6 )) if( j<=( c>=1 )?d++:4 )

a) Valid expression b) Invalid expression

Figure 6.11: Examples of valid and invalid selection statements
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Most all quite common expressions can be expressed in that way. Addition-
ally, the expression of a SWITCH statement has been changed to an identifier.
A ’switch(a){ case 5: ... }’ statement construct can be changed to IF -ELSE
statements like ’if( a==5 ){ ... ’ by following this replacement rule.

logical or expression
: logical and expression
| logical or expression ’||’ logical and expression
;

Figure 6.12: YACC replacement-rule for a logical-or-expression

logical and expression
: inclusive or expression
| logical and expression ’&&’ inclusive or expression
;

Figure 6.13: YACC replacement-rule for a logical-and-expression

At last, to allow grouped expressions like ’( a<=5 || a>8) && b<10’ for the con-
dition of a selection statement, the replacement rule of a primary expression at the
bottom of the hierarchy has been modified as shown in figure 6.14. The replace-
ment of ’( expression )’ by ’( logical or expression )’ makes it possible to
define also such, with round braces, grouped expressions. But avoids expressions
that cannot be translated.

primary expression
: IDENTIFIER
| CONSTANT
| ( logical or expression )
;

Figure 6.14: Modified YACC replacement-rule for a primary-expression
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6.2 Types of loops that cannot be successfully bounded

As it had been shown within the previous section, the described methodology has
also some limitations. During these section, some examples are used to show the
main limitations that could made the iteration bounding impossible.

• Non-constant amount of variable change: The example within figure 6.15
violates the paradigm that the amount of change must be constant within ev-
ery loop iteration. Theoretically, for a human user it is possible to calculate
the number of iterations for this loop. But for the algorithm it is not possible,
because it could not calculate when the loop header changes its direction. Be-
cause this is the only branch that could lead to a BREAK.

for( i=0, j=0; i<20; i++ ){
if( j>10 ){

i++;
}

}

Figure 6.15: Example loop 1 that can not be bounded by the algorithm

• Function calls with variable references: Within the following example,
the amount of change for the variable i seems to be constant for each loop
iteration. But the function call gets a reference to this variable and maybe
could change its value. Therefore, it is no guarantee that this value is left
unchanged and the algorithm must handle the condition of the loop header as
unknown.

int i=0;
do{

i++;
some function( &i );

} while( i<100 );

Figure 6.16: Example loop 2 that can not be bounded by the algorithm

• Invalid induction variable updates: The example within figure 6.17 shows
why the assignments within a loop are limited to “variable = variable + con-
stant”. Because the induction variable i changes its sign within every iteration
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of the loop and therefore has no constant growth. But also when the variable
value itself would continually grow, the amount of change also depends on the
variable itself and the amount of change is not constant too.

int i=1;
while( i<20 ){

i*=-3;
}

Figure 6.17: Example loop 3 that can not be bounded by the algorithm

• Nested loops: Another group of loops that must be excluded from the cal-
culation are nested loops. There must also be distinguished between different
types of nested loops. Nested loops that are dependent on the enclosing or
inner loop and such that are independent. The first group is complicated be-
cause the number of iterations must be calculated as a whole. Within the
second group, the loops could in principle be calculated independent, but the
sub loops inside leads to endless loops during the path analysis. Therefore,
nested loops are not supported in general within the current version. At last,
within figure 6.18 on the right side (b)), an example is shown that could be a
source of an endless loop during path analysis.

for( i=0; i<20; ){ for( i=0; i<20; i++ ){
if( i<30 ){ if( i<=10 ){

some statement; LABEL2:
goto LABEL1; some statement;

} } else {
LABEL1: goto LABEL2;

i++; }
} }

a) b)

Figure 6.18: Example loops 4 a) and 4 b) that can not be bounded by the
algorithm

Within the example on the left side (a)) it is obvious that there is no sub-
loop; because the target of the GOTO statement is a node with a higher
index. But if the successor of a node that contains a GOTO statement has an
index less than the node itself, it is for the algorithm not possible to detect,
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if the control flow graph contains a sub-loop or not. This is the case in the
example on the right side. During the construction of the control flow graph,
the node that represents the body of the IF statement gets a lower index as
the node representing the body of the ELSE statement, because it is defined
before. So the target of the GOTO statement is a node with a lower index
and does not form a loop. But within the current implementation is not
possible to distinguish GOTO statements that form a loop and such that do
not. Therefore, if a loop contains a GOTO statement, the number of iterations
could not be calculated if the target node is not outside the loop or is also not
a node with a higher index.

• Multiple conditions with negation operator: The example loop in figure
6.19 shows another type of loops that cannot be handled by the current imple-
mentation. Because conditions with negation operators cannot be translated
into multiple IF -ELSE statements with single conditions in the same way as
described within the previous chapters for conditions without negation oper-
ator. A negation operator requires some kind of algebraic transformations,
which are not implemented within the current version.

while( !((i<=5) && ((j>20) || (j<5)) ){
some condition;
i++, j++;

}

Figure 6.19: Example loop 5 that can not be bounded by the algorithm

6.3 Loops that maybe are bounded incorrectly

Within this section, some examples are shown that maybe will be bounded false by
the algorithm. Because there a some circumstances that can not detected by the
algorithm. These circumstances must be excluded by definition.

• Aliasing: One of these problems is called aliasing and is shown within figure
6.20. If there is a pointer definition within a node of a control flow graph that
had a lower index as the last node before the loop body starts, than it could
refer to a basic induction variable and the analyser does not take notice of
it. Because the actual implementation evaluates the parse tree only local at
function level. But these reference assignments could also be placed outside
of the function, global or within another file. For example, the expression
statement “*pt=5;” within the figure 6.20 not only changes the value of the
variable “*pt” itself.
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int ∗pt = i;
...

i=0;
*pt=5;
while( i<100 ){

i++;
}

Figure 6.20: Example loop 1 that maybe is bounded false

Because the pointer “*pt” and variable “i” refers to the same memory lo-
cation. Therefore, the value of the variable “i” changes its value too. But
during local analysis, this behaviour could not detected and therefore must be
excluded by definition.

• Variable overflow: A further problem of the algorithm could be variable
overflow. All numbers are stored during the lexical analysis with type signed
double. For example, an assignment of “0xff’’ to a signed character variable
with 8 bits memory will result in “-1”. But within the token analysis the
function

double strtod( const char *nptr, char **endptr);

is used to convert a read string into a number. This function returns “255” as
result for the string “0xff” that deviates from the overflow result during an
execution of the source program. Another example is shown in figure 6.21 a)
on the left side. The calculation result of the character variable “c3” will
be “4”. Because the range for 8 bit unsigned chars lies between “-127” and
“127”. But within the analyser the variable is stored with type double as
shown on the right side. There is no overflow and therefore the calculation
result of the analyser is incorrect. But this overflow problem will be fixed in
the next version release of this analyser.

6.4 Examples

Within this section, the calculation results of some example loops are shown. To
make the results more readable, a branch tree with numbered edges and nodes for
each example has been inserted. The calculated results are explained separately
using this numbers.
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char c1 = 126; double f1 = 126;
char c2 = 126; double f2 = 126;
char c3 = c1 * c2; double f3 = f1 * f2;

a) b)

Figure 6.21: Different calculation results, depending on the variable type

6.4.1 Example loop 1

The first example demonstrates the calculation of a DO-WHILE loop with multiple
exits. The C language code of this example is depicted within table 6.22. It contains
one IF statement with multiple conditions. This statement must be split up into
two separate IF statements with only single conditions (see also section 4.2.3 on
page 29 for further details).

int i=0, j=1;
do{

if( j>1000 ){
break;

} else {
if( j<500 ){

some statement;
}
if( j>500 && i<150 ){

break;
}

}
j += 10;
i++;

}while( i<5000 );

Figure 6.22: Calculation example loop 1

The corresponding branch tree after branch expansion is depicted within figure
6.23. The required information of table 4.1 on page 32 could have been calculated
for every node of the branch tree. Therefore all nodes are marked as known. Within
the following lines the calculated results of the ranges when a node can be reached
(within ’[’ and ’]’ brackets) and the number of iterations (within ’<’ and ’>’ brackets)
when a nodes leads to a loop exit are listed.
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Range Exit
Node 1 [1 . . .∞ > < 51 . . . 51 >
Outgoing edge 1 [1 . . . 4999] < 51 . . . 51 >
Outgoing edge 2 [5000 . . .∞] < 5000 . . . 5000 >

Node 2 [1 . . . 4999] < 51 . . . 51 >
Outgoing edge 3 [1 . . . 100] < 51 . . . 51 >
Outgoing edge 4 [101 . . . 4999] < 101 . . . 101 >

Node 3 [1 . . . 100] < 51 . . . 51 >
Outgoing edge 5 [1 . . . 50] < ∞ . . .∞ >
Outgoing edge 6 [51 . . . 100] < 51 . . . 51 >

Node 4 [51 . . . 100] < 51 . . . 51 >
Outgoing edge 7 [∞ . . .∞] < ∞ . . .∞ >
Outgoing edge 8 [51 . . . 100] < 51 . . . 51 >

The outgoing edges of node 4 are leading to a CONTINUE (edge 7) and to a
BREAK (edge 8) node. Therefore, the result when node 4 leads to a break is 51 for
the upper and also for the lower bound. Because iteration 51 is the only one when
an exit can be reached. Next, as we can see at figure 6.23, both outgoing edges of
node 2 are may lead to a BREAK.

K

K break

K

K

break

continue

continue break

1

2

3

4

i < 5000

j > 1000

j > 500

i < 150

1 2

3 4

5 6

7 8

Figure 6.23: Branch tree for the example loop of figure 6.22

A look at the calculation results shows that both exits can be reached. But if a
BREAK has been reached once, the loop execution stops and not further exit can
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be reached. Therefore, the calculated result when node 2 leads to a break is also
51 (the smallest value of both outgoing edges) for the upper and lower bound. The
same calculation model leads to the result that node 1, which represents the loop
header, will be executed exactly 51 times.

6.4.2 Example loop 2

The following example loop contains a branch where the number of iterations when
it changes its direction could not be determined. Unknown branches often leads
to less accurate calculation results. Therefore an assertion (see also section 4.3 for
further details) for variable j with upper and lower bound has been placed before
the branch definition within figure 6.24.

extern int j;
for( i=0; i!=100; i++ ){

WCET VALUE BOUNDS( j, 20, 60 )
if( j > 50 ){

goto LABEL1;
}

}
LABEL1:

...

Figure 6.24: Calculation example loop 2

Figure 6.25 shows the corresponding branch tree of the example loop within
figure 6.24. The target of the GOTO statement is outside of the loop and therefore
replaced by a BREAK node. With use of the annotations, every node could be
calculated and therefore also node 2 is marked as known.

K

K break

continue break

1

2

1 2

3

i ! = 100

j > 50

4

Figure 6.25: Branch tree for the example loop of figure 6.24
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As described within the sections 4.3 and 5.6.3, the results must be calculated for all
possible combinations of assertions. Within the previous described example there is
only one annotation that leads to two independent calculations. The first calculation
uses the value 20 for the initial value of the variable j. This calculation leads to the
results of the following table:

Range Exit
Node 1 [1 . . .∞] < 100 . . . 100 >
Outgoing edge 1 [1 . . . 100] < ∞ . . .∞ >
Outgoing edge 2 [101 . . .∞] < 101 . . . 101 >

Node 2 [1 . . . 100] < ∞ . . .∞ >
Outgoing edge 3 [1 . . . 100] < ∞ . . .∞ >
Outgoing edge 4 [∞ . . .∞] < ∞ . . .∞ >

Within this calculation the condition of the branch of node 2 is always FALSE
and the number of iterations when this branch leads to a BREAK is ∞. Therefore,
the calculation result is 100, which is the number of iteration when the loop header
itself changes its direction, decremented by 1; because the body is not executed
anymore when the loop header has changed its direction. The second calculation
uses the upper bound 30 of the annotation for variable j which leads to the result
of the following table:

Range Exit
Node 1 [1 . . .∞] < 1 . . . 1 >
Outgoing edge 1 [1 . . . 100] < 1 . . . 1 >
Outgoing edge 2 [101 . . .∞] < 101 . . . 101 >

Node 2 [1 . . . 100] < 1 . . . 1 >
Outgoing edge 3 [1 . . . 100] < 1 . . . 1 >
Outgoing edge 4 [∞ . . .∞] < ∞ . . .∞ >

For the value 30 of the variable j the loop exits after the first iteration. The
end result after all variations of the annotation values is the union of all separate
calculation results. As lower bound is taken ’1’, which is the lower number when the
second calculation leads to the BREAK. The upper bound is taken from the first
calculation, because 100 is the higher number of iteration when the loop may exit.
After the calculation

WCET LOOP BOUNDS( 1, 100 )

is inserted as result between the loop header and the loop body within the source
file for further WCET analysis.
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Conclusion

Within this thesis an implementation of a loop analyser for further WCET anal-
ysis has been described. It is used to analyse source code, written in C, without
transformation into intermediate or assembler code. It based on a publication by
Healy at al. in [HSR+00] for bounding the number of loop iterations at assembly
code level. To have a tight upper and lower bound of the number of iterations of
loops is necessary for statical WCET analysis. Traditional approaches for WCET
analysis have mainly used annotations for the loop bound within the source code.
Calculating the loop bound manually could be arduous and for complex loops also
error prone.

Therefore this loop analyser tries to extract the required information out of the
source code. If the loop bound could be determined, the result is written back into
the source code as annotation. These annotations are compatible to the language
WCETC, introduced in [Kir02]. Afterwards, the revised source file can be handed
over to a timing analyser.

The main difference of the actual work is the level of representation. Whereas
the basis publication are used for analysis at assembly code level, this thesis had
been implemented to analyse code, written within the high level language C. This
level of representation requires several transformation to bring the code in a form
that can by analysed by the algorithm. As described within chapter 4 and 5, only
branches with a single condition of the form ’variablex operator limit ’ are allowed.
This requires transformations of branches with multiple conditions, but also trans-
formations from SWITCH -CASE statements into a representation with IF -ELSE
statements. Additionally, the condition of a FOR statement could be empty and
must be replaced by an condition that is always true.

Unfortunately, the types of loops that can be successfully bounded by the algorithm
are restricted. These types of loops that will be bounded successfully are shown
within figure 7.1 on page 80. The current implementation is only able to bound
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natural1 C loops constructed by FOR, WHILE and DO-WHILE. These natural
loops can be bounded also within the case of multiple exits - figure 7.1 (a) - and in
combination with annotations, also when the number of iterations is non-constant -
figure 7.1 (b). A more detailed description of loops that can be bounded and possible
restrictions within the calculation are given within the previous chapter.

for(i=0; i<10; i++){ for( i=0; i<x; i++){
...

...
if( any condition ){ }

break;
...
}

}
b) Loop, where the number of

a) Loop with multiple exits iterations is non constant

Figure 7.1: Types of loops that could be successful bound

7.1 Future work

Apart from loops where a tight loop bound can be calculated, there are several
limitations that could prevent some loops of being successfully bounded. Although
such loops are maybe of one of the types as described within figure 7.1, in some
cases a calculation of a tight loop bound is not possible. The limitations of the
implementation have already been described within the previous chapter. But some
of these loops in principle can be calculated by the algorithm after some structural
changes. One of this actual limitations are shown within picture 7.2. The input file
is split up into its functions and one function is evaluated after the other. But within
future versions of the actual work the code will be considered globally. Additionally,
all basic blocks between the function and the loop header will be evaluated. After
these changes it would also be possible to recognise most of all alias dependencies
(in combination with an aliax matrix). With the exception of some special cases,
alias dependencies of induction variables can be successfully handled and the corre-
sponding loop can be bounded always correctly.

Another point of weakness of the actual implementation is the limitation to
standard loops. The insertion of a search algorithm for non-standard loops as shown
within figure 7.3 will be one of the topics of future versions. The difficulties within
such loops are that GOTO statements have the power to form loops with complicated

1natural means that the loop has only a single entry point
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int i;
int *p = i;
...

i=0;
...

*p=10;
while( i!=10 ){

some statement;
}

Figure 7.2: Alias occurrence that could influence the number of iterations

control flow graphs (e.g. two loop headers). The chosen implementation of the
control flow graph is also a reason why nested loops within the current version are
not supported. Therefore, a redesign of the current implementation of the control
flow graph is also planed for future versions.

LOOP HEAD:
some statement;
if( condition ){

goto LOOP HEAD;
}

Figure 7.3: Example of a natural GOTO loop

Figure 7.4 shows an example of two nested loop where the number of iterations
of the inner loop is independent from the enclosing loop and vica versa.

for( i=0; i<10; i++ ){
for( j=0; j<10; j++ ){

some statement;
}

}

Figure 7.4: Example of independent nested loop
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Independent in that case that no one of the depicted loops changes the induction
variables of each other. The inner loop could be evaluated in nearly the same way as
described within chapter 4. Additionally, it only must be guaranteed that the outer
loop not changes the induction variable ’i’ of the inner loop. But using the current
implementation, the evaluation of the outer FOR-loop leads within an endless loop
after reaching the header of the inner loop. Because all possible paths within a
loop are followed and the last node of the inner loop points to its header and again
the same paths are followed. A possible approach for further improvement will be
to copy the control flow graph and cut out the inner loop. Additionally, the inner
loop must be evaluated to guarantee that there will be no influence of the induction
variables of the outer loop. There seems to be no limitation regarding to the deepness
of the nested loops. Another type of nested loops that should be supported within
later versions are depicted within figure 7.5. The number of iterations of the inner
loop from these two nested loops depends on the induction variables of the outer
loop.

for( i=0; i<10; i++ ){
for( j=i; j<10; j++ ){

some statement;
}

}

Figure 7.5: Example of nested loops that depends on outer loops

A possible algorithm to determine such, so called non-rectangular loops, had been
published within [HvEW99], which is based on a previous publication by Sakellariou
in [Sak97]. Additionally to this previous presented improvements, further research
time will be spent into new algorithms to support supplementary types of loops.
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