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Abstract 

Software-intensive systems in business IT and industrial automation have become 
increasingly complex due to the need for more flexible system re-configuration, business 
and engineering processes. Systems and software engineering projects depend on the 
cooperation of experts from several engineering domains and organizations, who work in 
engineering environments with a wide range of semantically different terms, models, and 
tools that were not designed to cooperate seamlessly. Current semantic engineering 
environment integration is often ad hoc and fragile, making the evolution of tools and re-
use of integration solutions across projects unnecessarily inefficient and risky. 
When designing an engineering project environment, project managers and engineering 
domain experts need to semantically integrate a given set of engineering tools and project 
data models to allow efficient adaptations to new or changed requirements, as well as for 
re-use in new engineering projects. Current alternative solutions like standards for data 
models and tools in the development process, data-driven tool integration, and complete 
transformation between tool data work in principle, but pose their own challenges for 
engineering, such as inefficient and complex data access and query definitions, solutions 
which are not robust enough, or take considerable effort to develop and modify. 
This work introduces the Engineering Knowledge Base (EKB) framework for engineering 
environment integration in multi-disciplinary engineering projects. The EKB stores explicit 
engineering knowledge to support access to and management of engineering models across 
tools and disciplines by providing a) data integration based on mappings between local and 
domain-level engineering concepts; b) transformations between local engineering 
concepts; and c) advanced applications built on these foundations, e.g., end-to-end 
analyses. As a result experts from different organizations may use their well-known tools 
and data models, and can, in addition, access data from other tools in their syntax. 
Semantic integration research has focused on finding general approaches for schema 
integration, which can be used in many contexts. However, these general approaches do 
not take into account the specifics of a domain and therefore tend to be inefficient and 
often fail to solve specific problems that are hard to solve in general. In this work, we build 
on domain-specific knowledge of engineering processes, models and analyses to enable 
designing semantic integration methods and tools. Key contributions of this work are the 
industrial application and proof-of-concept of the proposed semantic integration approach, 
as well as design guidelines for semantic integration in the engineering domain. 
The research results have been evaluated in two industrial application domains: distributed 
business systems and services and software-intensive production automation systems, 
regarding feasibility, effort, robustness, performance, scalability, and usability. The 
evaluation results indicate an effort reduction of more than 20% for re-use in new 
engineering projects and finding defects earlier in the engineering process. 



 
 

Zusammenfassung 

Software-intensive Systeme in der Informatik und der industriellen 
Automatisierungsbranche erleben in den letzten Jahren ein stetiges Ansteigen der 
Komplexität aufgrund höherer Flexibilitätsanforderungen. Experten aus verschiedenen 
Ingenieurswissenschaften verwenden typischerweise eine Vielzahl an semantisch 
unterschiedlichen Termen, Modellen und Werkzeugen, welche ursprünglich nicht für eine 
Zusammenarbeit entwickelt wurden. 
Um eine Ingenieursumgebung herzustellen müssen Projektmanager und Experten der 
verschiedenen Ingenieurswissenschaften eine vorgegebene Menge an 
Ingenieurswerkzeugen und Datenmodellen semantisch integrieren, sowohl um flexibel auf 
neue oder geänderte Anforderungen reagieren zu können, als auch um derartige 
Integrationslösungen für ähnliche neue System- und Softwareentwicklungsprojekte 
weiterverwenden zu können. Aktuelle verwendete Ansätze, wie die Verwendung von 
Standards für Datenmodelle, datenbasierte Werkzeugintegration, oder vollständige 
Transformation zwischen Werkzeugdatenmodellen, funktionieren prinzipiell, stellen aber 
neue Herausforderungen wie das Beherrschen komplexer und ineffizienter Datenzugriffe, 
oder den robusten Umgang mit fehlerhaften Datenmodellen dar. 
Diese Arbeit stellt das Engineering Knowledge Base (EKB) Framework vor, welches sich 
mit der Integration von Ingenieursumgebungen aus mehreren Ingenieurswissenschaften 
befasst. Die EKB speichert explizites Ingenieurswissen um Zugriff und Verwalten von 
Modellen werkzeugübergreifend und über die Grenzen verschiedener 
Ingenieurswissenschaften hinweg zu ermöglichen. Dazu speichert die EKB a) 
Verbindungen zwischen toolspezifischen und gemeinsamen Konzepten, und ermöglicht so 
b) die Transformation. Diese Grundlagen ermöglichen dann anschließend auch c) 
fortgeschrittene Anwendungen wie z.B. End-to-End Analysen. Dadurch ermöglicht die 
EKB die Beibehaltung bekannter Werkzeuge und Datenmodell, und erlaubt zusätzlich den 
Zugriff auf Daten anderer Werkzeuge in anerkannter Darstellungsform. Hauptbeitrag der 
Arbeit ist einerseits die industrielle Anwendung und eine Machbarkeitsstudie des 
vorgestellten generischen Ansatzes, andererseits eine Reihe von generischen Richtlinien 
für semantische Integration im Bereich der Ingenieurswissenschaften. 
Die Ergebnisse dieser Forschungsarbeit wurden in zwei Anwendungsgebieten, einerseits 
verteilte betriebliche IT Systeme und Services und andererseits Software-intensive 
Produktionsautomatisierungssysteme, im Bezug auf Machbarkeit, benötigter Aufwand, 
Robustheit, Performanz, Skalierbarkeit und Benutzerfreundlichkeit evaluiert. Erste 
Ergebnisse der Evaluation zeigen dass einerseits für die Wiederverwendbarkeit in anderen 
System- und Softwareentwicklungsprojekten mit einer Aufwandsreduktion von mehr als 
20% zu rechnen ist, und dass andererseits Fehler in System- und 
Softwareentwicklungsprozessen früher entdeckt werden. 
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1 Introduction 

Software-intensive systems in business IT and industrial automation become 
increasingly complex due to the need for flexibility of business processes, system re-
configuration, and engineering processes (Schäfer and Wehrheim 2007). Such systems 
and software engineering projects bring together experts from several engineering 
domains and organizations, who work in a heterogeneous engineering environment 
with a wide range of models, processes, and tools that were originally not designed to 
cooperate seamlessly. A core question is how to integrate data models across tools and 
domain boundaries. Current semantic engineering environment integration is often ad 
hoc and fragile, making the evolution of tools and re-use of integration solutions across 
projects risky (Halevy 2005; Noy, Doan et al. 2005). 
In order to reach the common goal of developing software products in the engineering 
team, it is important to share the necessary knowledge for common work processes 
between engineering domain experts (Schäfer and Wehrheim 2007). However, this 
knowledge is often only implicitly available and therefore inefficient to share, resulting 
in time-consuming repetitive tasks; often it is hard or even impossible to create and 
maintain common shared knowledge repositories. A method and platform for making 
expert knowledge explicit and efficiently shareable is needed in order to support 
quality and project managers in their data analyses based on engineering knowledge and 
concrete data in the engineering tool models, which is currently achieved using 
inefficient or fragile approaches. 
Weakly integrated software engineering tools, methods, and processes lead to higher 
delays and risks when putting a system in operation and avoidable downtime during 
operation and maintenance. Typical system integration challenges are 1.) technical 
heterogeneities, e.g., tools from different sources may use a range of technologies that 
become expensive and error-prone to integrate in traditional point-to-point ways; and 
2.) semantic heterogeneities, e.g., project participants may use different terms for 
common concepts in the engineering and application domains. In this thesis, the focus 
lies on managing semantic heterogeneities, while the handling of technical 
heterogeneities which is by now well achieved in related work, is the basis for this 
thesis, and therefore summarized in the related work. 
There are two aspects on systematic engineering environment integration which are 
important in the context of this thesis: 1. the design and creation of the engineering 
project environment; and 2. engineering project work using the engineering 
environment. 

1 
 



The first aspect deals with the allocation of a tool box to integrate a given set of 
engineering tools and project data models, while keeping the solutions flexible for 
adaptation to new or changed requirements, as well as for re-use in new projects. The 
major problem here is the difficulty to re-use hardcoded integration or transformation 
scripts for other projects, i.e., the so-called “ossification” of IT solutions (Aaen 2003). 
The most basic approach would be the identification of general engineering concepts 
which can be re-used in other projects (Doan, Noy et al. 2004; Doan and Halevy 2005). 
This however rises issues such as a) which technology in the area of knowledge 
management or semantic web would support representation and re-use of these general 
engineering concepts; and b) how this extended functionality can be provided without 
the need to change existing and well-accepted notations and tools, as well as without the 
need to agree on a common data model beforehand. The second issue is especially 
important for this thesis, since typical data-driven integration approaches focus on a 
common data model agreed on by all participants, however this is hard to achieve or 
even impossible for multi-organizational engineering projects, as well as hard to re-use 
for other projects with different project partners. 
The second aspect deals with the feasibility of supporting particular engineering process 
tasks in a given engineering environment architecture that go across tool and discipline 
boundaries. The major problems here are the currently high effort needed to perform 
tasks like change impact analyses or model checks across domain boundaries, risks of 
defects, or the need to use several tools that require re-entry of data in several tools. The 
most basic approach would be to extend the functionality of the existing tools, data 
models and interfaces, however this approach has to be as transparent in daily usage, 
i.e., invisible for normal application, or provide good usability and/or expert roles for 
special applications. 
The target audiences of this thesis belong to the following three stakeholder classes: 
engineering domain experts, knowledge beneficiaries and ontology experts. Engineering 
domain experts, e.g., engineers, want to effectively and efficiently follow their 
engineering process. However, often problems like high effort to perform typical 
engineering tasks like change impact analyses or model checks across domain 
boundaries or risk of defects hinder them in following their engineering process. 
Knowledge beneficiaries, e.g., project or quality managers, want to monitor, control and 
improve engineering processes. This intention is often complicated by the needed high 
effort for performing cross domain process analyses, as well as by the impossibility to 
easily re-use these analyses in other projects. Finally, ontology experts, e.g., semantic 
technology expert with general engineering know-how, want to design and validate 
semantic solutions in an engineering application context. 
An engineering environment integration approach needs to be effective and efficient, 
i.e., there should be few errors in the integrated knowledge as well as in the knowledge 
tasks, and the integration effort should be at least equal or considerably lower than the 
effort needed for achieving similar results with different approaches. Additionally, the 
approach needs to be robust against poor data quality and changes in the environment, 
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as well as flexible regarding the effort needed to adapt the solution to changed 
requirements. 
An existing alternative solution is the usage of standards (e.g., RUP, sysML) for 
platforms, data models, modeling languages and tools in the development process 
(Kruchten 2000; Weilkiens 2008). This works well, if the standard is defined in an early 
phase of the project and if all project partners adhere to the standard, however, it is 
hard to define and maintain standards for cross-domain engineering, and even harder 
or nearly impossible for a larger number of project partners to agree on a standard, 
which usually takes longer than the time horizon of the project. Another alternative 
solution is the use of a common repository for collecting and storing the data of the 
single participants (Bernstein and Dayal 1994). This is a typical solution for modern 
data-driven tool integration which well solves the challenges of persistency and 
versioning of data, but poses new challenges since the stored data often is hard to 
access and query (Hohpe and Woolf 2004; Trowbridge, Roxburgh et al. 2004).The 
ultimate alternative solution is the complete transformation between data models of 
tools (Assmann, Dörr et al. 2005), i.e., the translation of engineering model parts of one 
tool for work in another tool. While the advantage of this solution is the seamless 
cooperation between project partners using well-known and established tools and 
notations, the feasibility of this approach is hard to verify and the effort required for 
establishing the needed transformations is considerably high. 
 
This work proposes the Engineering Knowledge Base (EKB) framework for 
supporting engineering environment integration in multi-disciplinary engineering 
projects. Since standards are hard to apply in projects where experts from different 
organizations participate, who have invested into different kinds of local standards or 
approaches, these experts may use their well known local tools and data model, and 
additionally can access data from other tools in their local syntax. The EKB is located 
on top of a common repository and stores explicit engineering knowledge to support 
access and management of engineering models across tools and disciplines by providing 
a) data integration by exploiting mappings between local and common engineering 
concepts; b) transformations between local engineering concepts by following these 
mappings; and c) advanced applications using these foundations, e.g., end-to-end 
analyses. Only a selection of the most relevant data elements to achieve interaction 
between engineering tools and experts is stored in the EKB in order to avoid time-
consuming and effort-intensive transformations of full engineering models. As a result 
experts from different organizations may use their well known local tools and data 
model, and additionally can access data from other tools in their local syntax. 
By now, Semantic Integration research has focused on finding general approaches for 
schema integration which can be used in many contexts. However, these general 
approaches do not take into account the specifics of a domain and therefore tend to be 
inefficient and often fail to solve specific problems that are hard to solve in general. In 
this work, we build on domain-specific knowledge of engineering processes, models 
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and analyses to enable designing semantic integration methods and tools. Since the 
engineering project participants by now already work together, they already use 
common knowledge for their project tasks. By using the EKB framework we make this 
existing knowledge explicit and machine-understandable, and therefore can automate on 
project level tasks that build on this explicit and machine-understandable knowledge. 
Key contributions of this work are the industrial application and proof-of-concept of 
the proposed semantic integration approach, as well as design guidelines for Semantic 
Integration in the engineering domain. 
 
The research results have been evaluated in two industrial application domains, 
distributed business systems and services and software-intensive production automation 
systems, regarding effort, feasibility, performance, scalability, robustness and usability. 
The evaluation is based on prototypes for a set of specific use cases of the two industrial 
application domains, as well as on empirical studies of beneficiary roles as proof-of-
concept. Major results of this work are the feasibility of the EKB framework, i.e., the 
process, method and tool support is usable and useful across engineering domains, as 
well as better accuracy, effectiveness and efficiency. In addition, defects are found 
earlier in the engineering process, resulting in risks like errors or inconsistent entries in 
data models being mitigated earlier and more efficiently. Initial evaluation results 
indicate an effort reduction of more than 20% for re-use in new engineering projects 
and finding defects earlier in the engineering process. In addition, the engineers found 
the method useable and useful; furthermore, new kinds of analysis could be performed 
easily. 
 
The remainder of this work is structured as follows: Chapter 2 summarizes related work 
on technical system integration, semantic heterogeneity, model-driven architecture, 
ontologies, semantic integration, and semantic web services. Chapter 3 describes the 
research approach by identifying the research issues, specifying the research methods 
and introducing the application scenarios. Chapter 4 introduces the Engineering 
Knowledge Base (EKB) framework, describes usage scenarios and the generic 
framework architecture, as well as specifies the evaluation aspects. Chapter 5 
summarizes the results of applying the EKB framework to the System-Wide 
Information Sharing (SWIS) application scenario, while chapter 6 summarizes the 
results for the EKB framework application to the other application domain, namely to 
the Production Automation domain using the Simulation of Assembly Workshops 
(SAW) application scenario. Chapter 7 presents the results of the EKB framework 
evaluation and discusses these results with regard to the specified research issues. 
Finally, chapter 8 concludes this thesis and gives an outlook on future research 
perspectives. 

 



Chapter 2 
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2 Related Work 

This chapter summarizes related work on technical system integration, semantic 
heterogeneity, model-driven architecture, ontologies, semantic integration and semantic 
web services. In the first section, technical system integration challenges, types and 
architectures are introduced. Then, in the second section, problems, challenges and 
origins of semantic heterogeneity are explained, as well as solution approaches such as 
schema matching. In the next section, a brief introduction to model-driven architecture 
is given. In the fourth section, ontologies are introduced, including methods for 
Ontology Alignment and some examples for typical usage scenarios for ontologies in 
Software Engineering. In the fifth section, the research field of Semantic Integration is 
introduced, the different available approaches are classified and explained, and in 
addition application scenarios for the usage of ontologies for Semantic Integration are 
given. Finally, the sixth section summarizes related work on Semantic Web Services 
and service matchmaking approaches. 

2.1 Technical System Integration 

This section summarizes related work on technical system integration by giving a short 
overview followed by shortly explaining technical system integration challenges, types 
and architectures. Technical integration typically deals with technical heterogeneities, 
e.g., tools from different sources may use a range of technologies that become 
expensive and error-prone to integrate in traditional point-to-point ways, and is the basis 
for dealing with semantic heterogeneities. 

2.1.1 Overview 

System integration is the task to combine numerous different systems to appear as one 
big system. There are several levels at which system integration could be performed 
(Balasubramanian, Gokhale et al. 2006), but there is so far no standardized integration 
process that explains how to integrate systems in general. 
System integration can require changes (Hohpe and Woolf 2004) in the actual business 
policy of a company not only due to the emerging communication needs between 
multiple computer systems but also due to the communication requirements which have 
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to be established between business units. Therefore, integration can have strong 
implications on the company as improper integration solutions can lead to considerable 
inefficiency. Another integration challenge is to keep sufficient control over the 
involved applications as in most cases integration developers have only limited control 
over these applications, e.g., legacy systems.  
Typical integration solutions focus only on either the heterogeneity on service level or 
the heterogeneity on network level. In order to cope with technological heterogeneity on 
service level a homogeneous middleware technology approach (Gail, David et al. 2003) 
could be used for syntactical transformation between services, while the semantic 
heterogeneity of services could be addressed by means of a common data schema 
(Halevy 2005). Heterogeneity on network level may be addressed by using so called 
adapters transforming messages between each used combination of middleware 
technologies. However, in order to provide an effective continuous integration solution 
in this environment, both integration levels (i.e. service and network level) need to be 
addressed in a mutual way. 
The derived limitations for such kinds of integration approaches are on the one hand the 
need for a common data schema (Halevy 2005), which is often a hard and time 
consuming procedure, if not even impossible in integration scenarios with several 
different stakeholders. On the other hand, the need for integration over heterogeneous 
middleware technologies with different APIs, transportation capabilities, or network 
architecture styles implies the development of static and therefore inflexible wrappers 
between each combination of middleware technologies, and thus increases the 
complexity of communication. Traditional approaches for integration of business 
services can be categorized (Chappel 2004) into: Hub and spoke vs. distributed 
integration and coupled vs. separated application and integration logic. In the following, 
using current technology concepts for each category a brief discussion about their 
advantages and disadvantages with respect to the described scenario is given. 
Application servers (Gail, David et al. 2003) are capable of interoperating through 
standardized protocols, but tightly couple integration logic and application logic 
together. Additionally, as the name suggests a server based architecture style is used for 
integration and as such has proven to be inconvenient for the scenario. Traditional EAI 
brokers (Chappel 2004), some of them built upon application servers, use a hub-and-
spoke architecture. This approach on the one hand has the benefit of centralized 
functions such as the management of business rules or routing knowledge, but on the 
other hand does not scale well across business unit or departmental boundaries, 
although it offers clear separations between application, integration and routing logic. 
Message-oriented Middleware (Piyush and Michael 2005) is capable of connecting 
application in a loosely coupled manner but requires low-level application coding 
intertwining integration and application logic. The resulting effort and complexity of 
implementing an integration platform with the support for any kind of existing 
middleware technologies and protocols therefore is considerably high. To enable 
transparent service integration, the Enterprise Service Bus (ESB) provides the 
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infrastructure services for message exchange and routing as the infrastructure for 
Service Oriented Architecture (SOA) (Mike and Willem-Jan 2007). It provides a 
distributed integration platform and clear separation of business logic and integration 
logic. It offers routing services to navigate the requests to the relevant service provider 
based on a routing path specification. Routing may be (Chappel 2004) itinerary-based, 
content-based, conditional-based defined manually (Satoh, Nakamura et al. 2008) or 
dynamic (Xiaoying, Jihui et al. 2007). In both cases the drawback is the minimal 
support for considering all functional and non-functional requirements of all service 
connections in the system. Dynamic configuration focuses mainly on creating a route 
for a special business case. Using manual configuration, a system integrator has to rely 
on his expertise, thus the high number of service interactions may get complex and the 
configuration error-prone. This may lead to routes that are configured in a way in which 
their influence on other business interactions is not fully known. As a consequence, 
business interactions may mutually violate their non-functional business requirements, 
such as message delivery within a specific time frame otherwise the message may be 
still useful but not up-to-date any more. Additionally, dynamic configuration may not 
cope with e.g. node failures fast enough due to missing routing alternatives, therefore 
possibly violating the same type of non-functional business service requirements. 

2.1.2 Integration Challenges 

The integration of heterogeneous systems is not an easy task. There are a lot of 
challenges which must be handled to reach the aim of a functioning coherent integrated 
system (e.g. applications are running on different platforms and are located on different 
places). Current system integration technologies partially provide great techniques for 
dealing integration tasks, but implicate also numerous limitations. Gorton et al. (Gorton, 
Thurman et al. 2003) defined some challenges for system integration regarding the 
integration of different applications, which must be solved. These challenges can occur 
as a result of ever-changing technologies applications are developed with and focuses 
on the requirements pretended for the realization of an integration solution. 

2.1.2.1 Scale 

Due to the high amount of digital data sources and the increasing number of modern 
applications depending on rapid access to multiple data sources, scalability of 
integration solutions to handle numerous different data sources is a crucial task. 
Integration solutions should be able to rapidly merge different data from disparate data 
formats to provide a transparent access to this data from different applications. 
Therefore modern integration solutions must have a look to scalability to handle 
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numerous data source and have to provide a flexible transformation mechanism to 
convert data from one format to another (Gorton and Liu 2004). 

2.1.2.2 Dynamic configuration 

Integration techniques often must handle different heterogeneous data sources by means 
of adapters. An adapter converts data from one specific format to another specific data 
format. But often no appropriate adapter for a data source is available and so a new 
adapter must be created to achieve the needed tasks. Furthermore the development of an 
adapter is not as easy as it sounds. It could lead to high costs for development and it is 
important to consider the time an adapter needs to convert the relevant data of a data 
source. If there are many requests for accessing the data source, the adapter must be 
built with main focus on performance. For system integration purposes modern 
integration technologies have to minimize cost and time factors for the integration of 
data sources. At best an integration technology automatically creates suitable adapters 
for the integrated data sources to establish access to the data from participating 
applications (Kramer and Magee 1985). 

2.1.2.3 Finding Relevant Data 

Finding relevant data out of a mass of data for a specific application is becoming a real 
problem due to the increasing amount of integration solutions with big infrastructures 
and enormous existing data. Most traditional data sources do not possess with semantic 
search functions where data of interest can be indicated and easy located Modern 
integration techniques should be able to automatically find the relevant data from the 
data sources by extracting semantics of the data sources and linking the appropriate data 
to the participating applications (Gorton, Thurman et al. 2003). 

2.1.3 Integration Types 

System integration techniques focus on different levels to combine participating 
heterogeneous system. There are multiple types of system integration techniques which 
differ at the level where the integration is done. Basically two groups of integration 
types exist. The first group of integration techniques focuses on the design of an 
integration layer (Hohpe and Woolf 2004; Trowbridge, Roxburgh et al. 2004). This 
group contains the following types: 
 

9 
 



• Business Process integration: Process integration is an orchestration of interac-
tions between multiple systems by defining a business process model outside of 
the applications. 

• Portal integration: Portal integration represents an overall user-interface of mul-
tiple applications so that the user gets a comprehensive view of all the underly-
ing applications. 

• Entity aggregation: Entity aggregation extends the portal integration so that not 
only users but also applications can deal with the integration by providing a uni-
fied data view. 

The second group of integration techniques focuses on the mechanism how the systems 
are connected together (Hohpe and Woolf 2004; Trowbridge, Roxburgh et al. 2004). 
This group consists of the following types: 
 

• Data integration: Data integration is an approach to make the high amount of 
data, containing in different data sources, accessible so that all other systems can 
use all the data. 

• Functional integration: By means of functional integration the participating 
systems are combined together by providing special interfaces. Via this inter-
faces the systems can access among each other to use the underlying data source. 

• Presentation integration: With presentation integration all participating applica-
tions interacts with the host application via the user interface. Applications can 
access the functionality of another application through a presentation byte 
stream by simulating users input and get the required information back by read-
ing the output from the display. 

2.1.3.1 Data Integration 

The data integration mechanism integrates systems at the logical data layer. The idea is 
to provide an overall interface for accessing different data sources of multiple 
applications. In an enterprise many applications exist which keep large amounts of 
information in data stores like flat files or databases. Other applications which want to 
use the information connect directly to these data stores. An advantage of data 
integration is that the applications which held the data sources must not be changed to 
provide an interface on where the other applications get access to the underlying data. 
Another advantage is that a user, who needs some data from different data sources, must 
not care about the location of the wanted data. The user does not need to know which 
application stores the specific data. The data integration approach gives users the ability 
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to specify what data they want, instead of determining how to obtain the data (Levy 
2000). But the integration solution within data integration uses a strong binding to the 
data structure of the underlying applications. This means that in case of changing one 
data model of any application, also the integration solution has to be changed to meet 
the modified specifications and to access the data source furthermore. In general data 
integration is easy to develop, because no application logic of the integrated 
applications is used (Hohpe and Woolf 2004; Trowbridge, Roxburgh et al. 2004). 
Organizations have to care about the possibilities to share the data between the different 
heterogeneous applications. There are some techniques for such integration. Data 
integration can be realized by means of shared databases, maintain data copies, and file 
transfer. Each of these techniques gives an answer to the question, on how to integrate 
multiple applications that are not designed to work in correlation and are not 
constructed to change information among each other. 

2.1.3.2 Functional Integration 

Functional integration is also known as application integration and integrates systems at 
the logical business layer. This means that the business logic of an application which 
keeps data in data stores is shared, so that other applications can use the data store 
across the application without direct access to it. The individual applications will be 
connected via interfaces and specifications allocated by the integrated application. But 
often some of the participating legacy applications don’t provide any interfaces or 
specifications and an integration of such applications is hard or rather not possible 
(Hohpe and Woolf 2004). 
To realize an integration of multiple applications by means of functional integration, 
two preconditions are needed. First: availability of the business function which is used 
for the integration in the business logic of the source application. If this condition is not 
given the source application must be modified to implement the needed business 
functionality. Second: remote access to the source applications API is needed. If an 
application only supports local API calls and middleware must be created which 
receives remote API calls and transforms them into local calls, accepted by the 
application. The Implementation of a functional integration solution can be realized by 
means of distributed objects, message-oriented middleware or service-oriented 
architectures (Trowbridge, Roxburgh et al. 2004). 

2.1.4 Integration Architectures 

For the integration of different systems there exist several ways how these systems 
could be connected together to build one big corporate system. Generally there exist 
three main possible integration architectures to establish the integration of systems. The 
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difference between these architectures is the way how senders and receivers are 
connected together. In the following section the three various architectures are 
described, starting with the basic Point-to-Point connection, following by the more 
complex Hub connection and finally the Bus connection (Hohpe and Woolf 2004; 
Trowbridge, Roxburgh et al. 2004). 

2.1.4.1 Point-to-Point architecture 

The Point-to-Point communication is the simplest way of connecting participating 
systems among each other (see Figure 1). Each system has respectively a direct 
connection to all other systems. To establish the communication some precondition has 
to be given. The first requirement to send a message from sender to receiver is that the 
sending system must know where the receiving system is located because a sender 
could be connected to more than one system. Furthermore each involved system can 
only deal with specific message formats and so the sender must transform a message 
from one format into another format that could be handled by the receiver. That is a big 
disadvantage of such integration architecture. Each system needs a separate integration 
solution to all other involved systems. Generally each system in a Point-to-Point 
integration has a direct connection to all other systems and requires a specific message 
transformation for any connection. If systems supported message format changes, the 
message transformer of all associated systems that communicate with the changed entity 
must be updated.  

 

Figure 1: Point-to-Point integration architecture. 

Finally a Point-to-Point integration is easy to handle if just a few systems are connected 
together, but for more and more systems the effort to maintain such integration 
increases very fast. With n participating systems  different integration solutions 

exist. So it is obviously that a Point-to-Point integration is quite reasonable for small 
organizations with few systems (Hohpe and Woolf 2004; Trowbridge, Roxburgh et al. 
2004). 
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2.1.4.2 Hub/Broker architecture 

This kind of integration architecture connects all involved systems via a central point, 
namely the hub. Figure 2 shows the basic design of the hub integration architecture. 

 

Figure 2: Hub integration architecture. 

The hub controls the whole communication between senders and receivers. All 
participating systems do not have to care about the location of the receiver and do not 
have to know the message format supported by the receiver. A sender forwards his 
message to the hub and the hub takes the message, transforms the message and sends 
the transformed message to the correct receiver. This technique is often called the “hub 
& spoke” integration architecture (Hohpe and Woolf 2004). 
The hub architecture follows a broker pattern. The task of a broker is to decouple sender 
systems from the receiver systems by coordinating the communication between them. 
Systems are loosely coupled if only few common variables are used by the systems or if 
the common variables are less addicted to other influencing factors (Pinelle and Gutwin 
2005). By using hub architectures, the single systems are separated from each other and 
so a loose coupling takes place. The decoupling of the participating systems is achieved 
by three main tasks (Trowbridge, Roxburgh et al. 2004): 
 

• Routing: Routing is the task of determining the location of the receiving system 
of a message and performing the routing via direct or indirect communication. 

• Endpoint registration: Endpoint registration is used by the involved systems to 
register themselves with the broker. After registration the system is public and 
can be found by other systems. 

• Transformation: Each participating application uses its own specific data for-
mat. To make it possible that applications can communicate with each other, the 
messages must be converted to the right format. The transformation is the me-
chanism to convert a message from one format to another format.  
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2.1.4.3 Bus architecture 

In this architecture, all participating systems are connected via a special component the 
so-called bus (see Figure 3). The easiest communication mode of a bus is the broadcast 
communication. A system sends its message to the bus and the bus forwards the 
message to all other connected systems. Therefore the systems themselves must decide 
if a message is addressed to them or not (Hohpe and Woolf 2004; Trowbridge, 
Roxburgh et al. 2004). 

 

Figure 3: Bus integration architecture. 

Generally, an integration bus provides a common communication mechanism to connect 
heterogeneous systems. To achieve the integration, the involved systems must follow 
some agreements. Trowbridge et al. (Trowbridge, Roxburgh et al. 2004) defined three 
criteria for the participating systems to be able for a connection to the bus: 
 

• Message schema: All connected systems must support the correct structure of 
the messages. 

• Command message: Command messages are used for reliable invocation of a 
procedure provided by another application. A command message is a normal 
message with a command in it. 

• Shared Infrastructure: To build a bus architecture a predefined infrastructure is 
needed for sending messages from sender to receiver, e.g. message router, pub-
lish/subscribe mechanism. These different types of shared infrastructures are de-
scribed below. 

2.2 Semantic Heterogeneity 

This section summarizes related work on semantic heterogeneity by explaining 
challenges and origins of semantic heterogeneity, as well as by presenting solution 
approaches such as schema matching. The management of semantic heterogeneities 
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using semantic integration techniques is the main focus of this thesis; hence this section 
provides basic definitions of semantic heterogeneities. 

2.2.1 Challenges and Origins 

When database schemas for the same domain are developed by independent parties, 
they will almost always be quite different from each other. These differences are 
referred to as semantic heterogeneity. Semantic heterogeneity also appears in the 
presence of multiple XML documents, web services and ontologies. Or, more general, 
whenever there is more than one way to structure a body of data. In order for multiple 
data systems to cooperate with each other, they must understand each other's schema. 
Without such understanding, the multitude of data sources amounts to a digital version 
of the Tower of Babel (Halevy 2005). 
Enterprises today are increasingly facing data management challenges that involve 
accessing and analyzing data residing in multiple sources, such as database systems, 
legacy systems, ERP systems and XML files and feeds. For example, in order for an 
enterprise to obtain a single view of customer data, they must tap into multiple 
databases. Similarly, to present a unified external view of their data, either to cooperate 
with a third party or to create an external facing web site, they must access multiple 
sources. There are many reasons for which data in enterprises resides in multiple 
sources. First, many data systems were developed independently for targeted business 
needs, but when the business needs changed, data needs to be shared between different 
parts of the organization. Second, enterprises acquire many data sources as a result of 
mergers and acquisitions (Halevy 2005). 
The problem of reconciling schema heterogeneity has been a subject of research for 
decades, but solutions are few. The fundamental reason that makes semantic 
heterogeneity so hard is that the data sets were developed independently, and therefore 
varying structures were used to represent the same or overlapping concepts 
(Bergamaschi, Castano et al. 1999; Doan and Halevy 2005). In many cases, we are 
trying to integrate data systems that were developed for slightly (or vastly) different 
business needs. Hence, even if they model overlapping domains, they will model them 
in different ways. Differing structures are a byproduct of human nature people think 
differently from one another even when faced with the same modeling goal. From a 
practical perspective, one of the reasons that schema heterogeneity is difficult and time 
consuming is that it requires both domain and technical expertise: you need a person 
that understands the business meaning of each of the schemas being reconciled and 
people skilled in writing transformations (e.g., SQL or XQuery experts). While schema 
heterogeneity is challenging for humans, it is drastically more challenging for programs. 
A program is only given the two schemas to reconcile but those schemas are merely 
symbols. They do not capture the entire meaning or intent of the schemas; those are 
only in the minds of the designers (Doan and Halevy 2005). 
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It is often argued that the way to resolve semantic heterogeneity is though standard 
schemas. However, experience has shown that standards have very limited success and 
only in domains where the incentives to agree on standards are very strong. Even then, 
while data providers may share their data using a standard, their own data systems still 
employ their original schemas (and the cost of changing those systems is prohibitive). 
Hence, semantic heterogeneity needs to be resolved at the step where the data provider 
exposes its data to its counterparts (Halevy 2005). 

2.2.2 Solution Approaches 

Resolving schema heterogeneity is inherently a heuristic, human assisted process. 
Unless there are very strong constraints on how the two schemas you are reconciling are 
different from each other, one should not hope for a completely automated solution. The 
goal is to reduce the time it takes a human expert to create a mapping between a pair of 
schemas, and enable them to focus on the hardest and most ambiguous parts of the 
mapping (Rahm and Bernstein 2001). 
A solution approach is to query multiple data sources in real-time. While the users of 
these systems still see a single schema (whether relational or XML), queries are 
translated on the fly to appropriate queries over the individual data sources, and results 
are combined appropriately from partial results obtained from the sources. 
Consequently, answers returned to the user are always based on fresh data. In any data 
sharing architectures, reconciling semantic heterogeneity is the key (Doan and Halevy 
2005). No matter whether the query is issued on the fly, or data is loaded into a 
warehouse, or whether data is shared through web services or in a peer-to-peer fashion, 
the semantic differences between data sources need to be reconciled. Typically, these 
differences are reconciled by semantic mappings. These are expressions that specify 
how to translate data from one data source into another in a way that preserves the 
semantics of the data, or alternatively, reformulate a query posed on one source into a 
query on another source. Semantic mappings can be specified in a variety of 
mechanisms, including SQL queries, XQuery expressions, XSLT scripts, or even Java 
code (Halevy 2005). 

2.2.2.1 Schema Matching 

As would be expected, people have tried building semi-automated schema matching 
systems by employing a variety of heuristics (Rahm and Bernstein 2001). Below a few 
of these as well as their limitations are listed. The process of reconciling semantic 
heterogeneity typically involves two steps. In the first, called schema matching, 
correspondences between pairs (or larger sets) of elements of the two schemas that refer 
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to the same concepts or objects in the real world are identified. In the second phase, 
these correspondences are exploited to create the actual schema mapping expressions. 
 
The following classes of heuristics have been used for schema matching (Halevy 2005): 
 

• Schema element names: Element names (e.g., table and attribute names) carry 
some information about their intended semantics. Hence, by looking at the 
names, possibly stemming the words first we can obtain clues for the schema 
matcher. The challenges involved in using names are that the use of synonyms is 
very common as is the use of hypernyms (words that are specializations or gene-
ralizations). Furthermore, we often see that same word being used with different 
meanings (homonyms). In addition, we often see abbreviations and concatena-
tions of words appearing in element names (Gangemi, Guarino et al. 2003). 

• Data types: Schema elements that map to each other are likely to have compati-
ble data types, but this is certainly not a rule. However, in many schemas the da-
ta types are underspecified (e.g., CDATA for XML). In practice, considering da-
ta types is a useful heuristic for ruling out certain match candidates. 

• Data instances: Elements from two schemas that match each other often have 
similar data values. Similarities can arise in several ways: (1) values drawn from 
the same small domain, e.g., brands of cars or names of countries, (2) significant 
occurrences of the same values, or (3) patterns of values (e.g., phone numbers). 
Data instances are extremely useful when available, but one cannot rely on their 
availability. 

• Schema structure: Matching elements in a schema are typically related to other 
related schema elements. For example, in an object-oriented hierarchy, it's often 
the case that if two classes match each other, then the children of these classes 
will also (at least partially) match. However, relying on such a heuristic can be 
very fragile, and one of the main challenges is to find an initial match that drives 
the similarity of its neighbors. 

• Integrity constraints: Considering integrity constraints on single attributes or 
across attributes can be useful for generating matches. For example, if two 
attributes are known to be keys in their respective schemas, then that provides 
additional evidence for their similarity. 

While each of these heuristics is useful, experience has shown that taking any of them 
in isolation leads to a brittle schema matching solution. Hence, research has focused on 
building systems that combine multiple heuristics (Rahm and Bernstein 2001; Do and 
Rahm 2002; Doan, Madhavan et al. 2004). Despite these ideas, commercial products 
often rely on completely manual specification of semantic mappings. They help by 
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offering visual interfaces that enable designers to draw the lines between elements of 
disparate schemas, while the details of the mapping can often be generated on the back 
end. These tools already save a significant amount of time, but they do not suggest 
initial mappings to the designer. 

2.2.2.2 Leveraging Past Experience 

One of the fundamental reasons that the schema matching solutions described above are 
brittle is that they only exploit evidence that is present in the two schemas being 
matched, ignoring past experience (Halevy 2005). These schemas often lack sufficient 
evidence to be able to discover matches. However, looking more closely at schema 
matching tasks, it is evident that these tasks are often repetitive. Specifically, we often 
find that we repeatedly map schemas in the same domain into a common mediated 
schema. A human expert, after seeing many schemas in a particular domain, is able to 
map schemas much faster because he/she has seen many variations on how concepts in 
the domain are represented in schemas. The challenge, therefore, is to endow the 
schema matcher with the same capabilities: leverage past experience. For example, once 
the system has been given several mappings in the domain of used cars, it should be 
able to predict mappings for schemas it has not seen before. As it sees more schemas in 
a particular domain, its predictions should become more accurate, and it should be more 
robust in the presence of variations (Noy, Doan et al. 2005). 
The paradigm of learning from past experience of performing schema matching tasks is 
only in its infancy. It is interesting to take a step back and consider what one can learn 
from the past in this context. We assume the past is given to us as a collection of 
schemas in a particular domain, mappings between pairs of schemas in that collection, 
and to the extent possible, data instances. The schemas can come from anywhere, and 
can involve very closely related domains, not necessarily modeling the same data. We 
often refer to such a collection of schemas as a corpus, in analogy to the use of corpora 
of documents underlying Information Retrieval (IR) and web-search engines (Frakes 
and Baeza-Yates 1992). Of course, while the corpora in IR involve collections of words, 
here we are managing semantically richer elements, such as schemas and their 
instances. The goal of analyzing a corpus of schemas and mappings is to provide hints 
about deeper domain concepts and at a finer granularity. 

2.3 Model-Driven Architecture 

This section gives an overview of the Model-Driven Architecture techniques. To 
understand this comprehensive topic, the first section presents some elementary 
explanations about models and meta models. Then the layered architecture of MDA is 
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figured and finally the benefits of using the MDA technique compared to a traditional 
software development process are listed. 
Model-Driven Architecture (MDA) developed by the Object Management Group 
(OMG) is an approach for modern software development, by using a layered 
architecture for software system specifications and development (Malveau 2000). The 
defined system specifications describe the software system at different abstraction 
levels. Each level provides a special view of the system. MDA is used for separating 
business and application logic from the underlying platform technologies1. In other 
words, MDA is the separation of the specification of system functionality from the 
actual implementation of the specified functionalities (Miller and Mukerji 2001). All 
defined specifications are expressed as models. 

2.3.1 Models and Meta Models 

This chapter describes two fundamental parts used in Model Driven Architecture, 
models and meta models. “A model is a coherent set of formal elements describing 
something (for example, a system, bank, phone, or train) built for some purpose that is 
amenable to a particular form of analysis.” (Mellor, Clark et al. 2003) Another 
definition for a model comes from Stachowiak (Stachowiak 1973). He specifies that a 
model is essentially a scale, detailedness and/or functionality shortened and accordingly 
abstract representation of the original system. In short, a model is a replication of the 
real world. It must be noted, that a model is just a representation of an original system 
and not a copy. For example if someone builds a true to detail object according to an 
original one so that the replication equals the original in every little detail, the 
replication is a copy and not a model. It is obviously that a model has to concentrate and 
represent just some particular details of the original. Models are a basic part in Model 
Driven Architecture. 
Selic (Selic 2003) has appointed five key characteristics an engineering model must 
conform to a certain degree: 
 

• Abstraction is the most important characteristic of a model. A model is always a 
shortened representation of a system that it specifies. Abstraction means that the 
model is not a one to one replication of a system, but reflects only the relevant 
properties of a regarding system. This means that irrelevant details are unat-
tended in the model. Therefore abstraction is almost the only method to deal 
with the complexity of an always increasing sophisticated functionality of soft-
ware systems. 

                                                 
1 http://www.omg.org/mda 
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• Understandability is also an important characteristic for a model. If a model is 
suppressed in a language which needs much intellectual knowledge to under-
stand it, a model will provide no benefit. A model must present their information 
in a form (e.g. a notation) that it could be understood without significant intel-
lectual effort. For that reason a model is a good model when not much intellec-
tual effort is needed to understand the content provided by the model. 

• Accuracy: Useful models must be accuracy. This means that a model must pro-
vide the modeled system in such a way that it offers a concise representation of 
the system’s features the model is interested in. 

• Predictiveness: With models it should be possible to exactly predict the interests 
the modeled system focuses on without non suggesting properties, by experi-
mentations or formal analysis. Predictiveness relies on the accuracy characteris-
tic of a model and the modeling form. 

• Inexpensiveness: The last characteristic a model should possess is inexpensive-
ness. The construction and analysis of a model should be essentially cheaper 
than the construction and analysis of the system itself. It would be very ineffi-
cient and uneconomical for building models if the modeling of a system costs 
more than the creation of the actually system. 

There are some more concepts which occur in relation to the MDA approach, Platform-
Independent Models (PIM) and Platform-Specific Models (PSM). A PIM represents a 
formal specification of systems structure and characteristic, without including technical 
details. The Platform-Independent Models are constructed for an implementation on 
different platforms. A PSM specifies how to realize the defined functions of a PIM on a 
specific platform. It represents enough details and information (e.g. software 
architecture) to generate a complete coded application (Mellor and Balcer 2002). But it 
is still defined as a model. Out of a Platform-Specific Model the code for the whole 
implementation of a software system can be created (Miller and Mukerji 2001). 

2.3.2 Model Driven Architecture Layered Model 

The Model Driven Architecture approach is based on a layered architecture. Generally, 
the MDA architecture consists of four layers: the M3-layer which represents a meta-
meta model, the M2-layer, representing a meta model, the M1-layer, depicting a 
concrete model and the M0-layer which illustrates the reality. In Figure 4 these four 
layers of the MDA architecture are displayed (Gašević, Djurić et al. 2006). 
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Figure 4: The MDA four-layer architecture (Gašević, Djurić et al. 2006). 

The meta-meta model layer (M3-layer) is the topmost level of the MDA architecture. 
This layer is represented by the Meta Object Facility (MOF). MOF builds an industry 
standard environment to export models from one application and import it to another 
application, transferred over a network and transformed into different formats. MOF 
represents a basis to define other modeling languages, like UML (Unified Modeling 
Language), IDL (Interface Definition Language) used in CORBA or CWM (Common 
Warehouse Meta model). Even MOF is described in MOF and can be subdivided into 
EMOF (Essential MOF) and CMOF (Complete MOF). EMOF is a simple language for 
defining meta models and is useful for meta modelers. CMOF is an extension for 
EMOF with support and management of metadata. In generally the M3-layer provides a 
specification of modeling languages and is primarily used to express meta models of the 
M2-layer (Seidewitz 2003). 
The meta model layer (M2-layer) contains the actual meta models (model of model) 
defined by the MOF. This layer represents an instance of the M3-layer. UML is one of 
numerous meta modeling languages. The Unified Modeling Language technique is used 
to help system architects, software engineers and software developers by providing 
tools for better analysis, design and implementation of software-based systems or 
miscellaneous modeling challenges. The model layer (M1-layer) contains 
representations of the real world in terms of models. Such a model is an instance of 
meta models defined in the M2-layer (e.g. UML model of a software system). The 
reality layer (M0-layer) represents an instance of the models defined in the M1-layer. 
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This layer contains actual objects of the real world, like persons, buildings, etc (Miller 
and Mukerji 2001; Mellor, Kendall et al. 2004). 

2.3.3 Benefits of Model Driven Architecture 

Developing software by means of the Model Driven Architecture approach provides 
some improvements of the software development process. Kleppe et al. (Kleppe, 
Warmer et al. 2003) have researched the benefits of MDA and categorized them into 
four classifications: Productivity, Portability, Interoperability, and Maintenance and 
Documentation. These benefits are explained in relation to a traditional software 
development life cycle with their containing problems. 

2.3.3.1 Productivity 

Specifications between the requirement, analysis, design and implementation phase are 
represented in terms of text and diagrams. This means that phase 1 through 3 produce 
many text documents and diagrams for the later software implementation. The written 
specifications are lacking maintained and so they present no exact mapping of the 
created implementation. This becomes a serious problem due to permanent changes at 
the code level. Introducing the changes to the documents and diagrams is very time-
consuming and therefore hard to maintain (Kleppe, Warmer et al. 2003; Mellor, Kendall 
et al. 2004). 
Model Driven Architecture attempts to solve the problem of creating mass of 
documents and diagrams by using a Platform-Independent Model (PIM). By means of a 
PIM the determined requirements and capabilities for a software product are represented 
in the form of a model. This primarily created PIM will be later on transformed into a 
Platform-Specific Model (PSM) which comprehends specific information about the 
underlying platform. A PSM conforming to another platform can be easily generated 
out of the defined PIM. But the extensive creation of the PIM is the only disadvantage 
of using MDA for reaching a higher productivity. It looks very easy, but much effort is 
needed to produce a correct PIM for further processing. Often only a high skilled 
specialist can achieve the creation of the abstract PIM. But once the PIM was created, 
the productivity benefits to generate PSMs for different platforms are very high if tools 
to automatically transform the specified PIM into a PSM are used (Miller and Mukerji 
2001). 

22 
 



2.3.3.2 Portability 

Portability describes the possibility to use the same program or model on different 
platforms without modification. In a Model Driven Architecture portability can be 
obtained by using Platform-Independent Models (PIMs). A PIM is defined in a platform 
independent manner and therefore can be used on different platforms without any 
modifications. A key benefit of portability in MDA with a PIM is, that independent of 
new developed platform technologies the created PIM can be used furthermore. With a 
specific transformation tool, according to the new platform technology, the PIM is 
transformed into a functioning PSM without altering the original PIM (Frankel 2003; 
Mellor, Kendall et al. 2004). 

2.3.3.3 Interoperability 

Interoperability deals with the problem that a specific system should be able to interact 
with other existing systems developed in another technology. It is crucial that the 
different systems support a common working to gain a result. The multiple generated 
PSMs for different platforms out of one common PIM may have particular similarities 
and therefore some correlations, so-called bridges in MDA. The different PSMs are not 
able to directly communicate among each other, but by means of the bridges a 
communication can be established. A bridge transforms the concepts according to one 
platform into the concepts according to the other participating platform. Within MDA, 
interoperability is achieved by additionally generating the required bridges between the 
generated PSMs (Miller and Mukerji 2001; Kleppe, Warmer et al. 2003). 

2.3.3.4 Maintenance and Documentation 

In a traditional software development process the numerous created documents are often 
very hard to maintain. After creation of the source code out of the requirements the 
documents are neglected. If changes in the source code are made, the documents are 
often not updated to meet the altered requirements. Therefore in a traditional software 
development process changes must be updated multiple times on different places. 
Within MDA, changes are only updated on a single place in the PIM. Out of the PIM 
the different PSMs are generated and out of a PSM the source code is generated. 
Therefore each source code is an exact representation of the PIM and no inconsistencies 
between source code and specifications can occur. Generally a PIM illustrates a form of 
a high-level documentation used by any underlying software system (Frankel 2003; 
Kleppe, Warmer et al. 2003). 
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2.4 Ontologies 

The proposed semantic integration approaches use ontologies as major modeling 
method, therefore in this section the term ontology will be explained. An overview on 
the basic concepts of ontologies is given. Furthermore the main operational areas of 
ontologies are described. Then, an overview of the available languages for describing 
ontologies is presented. After focusing on guidelines for creating ontologies, the 
research field of ontology alignment is described in detail. Finally, some applications of 
ontologies in Software Engineering are presented.  

2.4.1 Definition and Overview 

First of all, a definition of an ontology is presented: “An ontology is a formal, explicit 
specification of a shared conceptualization. A ‘conceptualization’ refers to an abstract 
model of some phenomenon in the world by having identified the relevant concepts of 
that phenomenon. ‘Explicit’ means that the type of concepts used, and the constraints 
on their use are explicitly defined. ‘Formal’ refers to the fact that the ontology should 
be machine readable, which excludes natural language. ‘Shared’ reflects the notion that 
an ontology captures consensual knowledge, that is, it is not private to some individual, 
but accepted by a group.” (Studer, Benjamins et al. 1998) 
In general, ontologies are a main part of the semantic web technology and are used like 
a knowledge representation of the real world or only part of it. Ontologies are formal 
models of a specific application domain, and primarily used to facilitate the exchange 
and partitioning of knowledge. More precisely, an ontology is a data model that 
represents a set of concepts within a domain and their relationships. The word ontology 
has its origin from the Greek words ontos (=being) and logos (=word). From a 
philosophical point of view an ontology refers to the subject of existence, that is the 
study of being as such (Gašević, Djurić et al. 2006). Gruber (Gruber 1993) defines an 
ontology as an explicit specification of a conceptualization. Where a conceptualization 
illustrates an abstract, simplified picture of the world used for representation and 
designation. Each knowledge representation follows a certain degree of 
conceptualization, either explicitly or implicitly. Moreover ontologies can effectively 
support software development processes, primarily by providing a continuous data 
model (Calero, Ruiz et al. 2006). 
According to Powers (Powers 2003) ontologies consist of four main components: 
classes, relations between classes, properties of classes, and constraints on relationships 
between the classes and properties of the classes. But additionally an ontology also 
consists of individuals which represents instances of concrete types. A class represents 
concepts of a domain, for example the concept “vehicle” with his specifications: car, 
motorcycle, bus, etc. (a set of objects with common properties). A relation represents an 
association between class concepts of the domain. A property represents an attribute to 
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describe objects in the ontology. And the last component, a constraint defines 
statements for a relation between classes or properties that cannot be formally expressed 
by the other main components. 
In the following, the main components of an ontology (individuals, classes, attributes 
and relations) are described in detail (Gruber 1993; Gruber 1995): 
 

• Individuals (instances): The individuals build the basic components of an on-
tology and are similar to object instances in the object oriented programming. 
Individuals represent concrete types like house or car, and additionally more dis-
crete types like numbers or words. 

• Classes (concepts): The classes represent abstract groups, sets, or collections of 
objects and are similar to abstract objects in the object oriented programming. 
Classes can contain other classes or individuals or a combination of classes and 
individuals. The single ontologies can vary among each other on the conditions 
they support. They distinguish whether classes can contain other classes, or 
whether a class can belong to itself and so on. Also restrictions can be made to 
prevent that an ontology can have an invalid state, like whether an individual in-
herits from two disjunctive classes. 

• Attributes: Attributes represent properties, features and characteristics of an ob-
ject in an ontology. An attribute consists of at least a name and a value, whereas 
the value can be a normal value type and also a complex data type. 

• Relations: Relations specifies how the various objects are related together. A re-
lation between objects in the ontology is described by means of attributes. To-
gether, all the specified relations characterize the semantic of an ontology. Gen-
erally different types of relations exist: the subsumption relation (is-subtype-of, 
is superclass-of, whereas the objects are members of a common group of ob-
jects), the is-a relation (tree structure with child and parent objects, whereas each 
object is a child of a parent) and the meronymy relation (part-of relation). 

2.4.2 Ontology Languages 

Ontologies can be expressed in different languages. Gómez-Pérez et al. (Goméz-Pérez, 
Fernandez-Lopez et al. 2003) divide the logical ontology languages into traditional 
ontology languages and web-based ontology languages. Whereas traditional languages 
are developed in the early 1990s for artificial intelligence purposes, the web-based 
ontology languages are developed at the beginning of the web-age to use the 
characteristics of the internet. In this section we focus on the web-based languages 
shown in Figure 5. 
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Figure 5: Web-based ontology languages (Goméz-Pérez, Fernandez-Lopez et al. 2003). 

The syntax of the web-based ontology languages is based on common web markup 
languages like HTML or XML. In the following enumeration the web-based ontology 
languages shown in the diagram are described shortly (Goméz-Pérez, Fernandez-Lopez 
et al. 2003): 
 

• SHOE: The Simple HTML Ontology Extension language uses frames and rules 
and was developed as an extension to the HTML markup language. With SHOE 
it is possible to describe a webpage in a semantic manner. 

• XOL: The XML-based Ontology Language was developed to include primitives 
based on the OKBC (Open Knowledge Base Connectivity) protocol. OKBC is a 
protocol to access knowledge bases stored in different knowledge systems. 

• RDF: The Resource Description Framework language is used for defining web-
resources in a semantically way. RDF was developed by the World Wide Web 
Consortium (W3C).  

• RDF/S: The RDF Schema extends the Resource Description Framework and 
represents an easy language to specify domain-ontologies. With RDF/S the dec-
larations defined in RDF can be structured hierarchically into classes and in-
stances. Furthermore it is possible to precisely specify the relations between the 
particular properties. RDF/S builds a basis for the next three described ontology 
languages: OIL, DAML+OIL and OWL. 

• OIL: The Ontology Inference Layer adds a frame-based knowledge representa-
tion to the underlying RDF/S and supports formal semantics provided by De-
scription Logics (Fensel, Van Harmelen et al. 2001). 

• DAML+OIL: The DARPA Agent Markup Language is a communication lan-
guage for software agents (Rebstock and Paulheim 2008) and builds in combina-
tion with OIL the basis for OWL. DAML+OIL uses an object oriented approach 
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and therefore it is designed to specify the structure of a specific domain in terms 
of classes and properties (Horrocks 2002). 

• OWL: The Web Ontology Language is a semantic markup language used to 
create ontologies constructed in a formal representation language. Unlike of just 
providing information to humans, ontologies written in OWL can be used by ap-
plications to process the content of information2. OWL is best suitable for the 
description of relations between classes, properties and other individuals 
(Gašević, Djurić et al. 2006). There exist three different types of OWL which 
differ in the capability of expression, OWL Full, OWL DL and OWL Lite. OWL 
Full provides all OWL language constructs and additionally offers the use of 
RDF constructs. OWL DL is a subtype of the OWL language constructs with 
some restrictions (e.g. a class must not be an instance of another class) and with-
out support for RDF constructs. OWL Lite represents a minimal subset of the 
OWL language construct with several restrictions and was developed as easy to 
implement language. 

2.4.3 Designing Ontologies 

In this section design criteria for the development of ontologies are described. Such 
criteria become very crucial, because if we represent something of the real world in the 
form of an ontology, it is essential to make suitable design decisions. For the 
development of well designed ontologies a set of objective criteria is needed, which 
corresponds to the scope of the resulting items. Therefore Gruber (Gruber 1995) 
appointed five main criteria and principles that have to be considered for the creation of 
ontologies. They are significant for ontologies used for knowledge sharing and 
interoperation between applications in a shared manner. These criteria serve as guiding 
principles and help to evaluate the developed ontology design (Noy 2004). 
 

• Clarity: In general, an ontology has to clearly represent the intended sense of the 
environment it is used for. The ontology must be specified in an objective man-
ner and should not depend on social or computational impacts. Furthermore an 
ontology must be completely defined. Not only the essential capabilities but also 
additional sufficient capabilities are preferred to get a complete definition and 
not just a partial definition about the environment. These definitions contained in 
an ontology should be described with formal languages (McGuire, Kuokka et al. 
1993). 

                                                 
2 http://www.w3.org/TR/owl-features 
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• Coherence: It is crucial to develop an ontology in a way that it is coherent. Co-
herence means, that ontologies should support various implications which con-
form to the definitions. Therefore it is necessary that the specified conventions 
are logically conforming to each other. But the term coherence is not only li-
mited to inferences which should satisfy the definitions, it should also relate to 
any concepts that are described in an informally way. Such informal described 
concepts are documents and samples specified within a formal language. If a de-
rived concept out of the specified conventions does not conform to the defini-
tions, the ontology is not coherent (Gruber 1995). 

• Extendibility: This criterion focuses on the possibility of further development 
and enhancement of an ontology. An ontology must be designed for arbitrary 
expandability, and therefore should provide a conceptual basis for later append-
ing of anticipating tasks. It is crucial that the implementation of an ontology is 
designed for featuring a monotonically extension. Generally, within an existing 
ontology new items should be added by using the available vocabulary of the on-
tology without altering the previous containing definitions. If it is not possible 
that a new item is specified in the same scheme as the underlying ontology, the 
ontology must be able to deal items written in another format. But the original 
scheme should not be modified (McGuire, Kuokka et al. 1993). 

• Minimal encoding bias: An ontology should be designed in a decoupled man-
ner, in other words, the conceptualization should not depend on a specific encod-
ing format. The design of an ontology should not match only one particular case 
of notation or implementation, if so, an encoding bias exist. Because of the reuse 
of developed ontologies the encoding bias must be as small as possible (Gruber 
1993; Gruber 1995). 

• Minimal ontological commitment: To satisfy the purposed knowledge sharing 
tasks, an ontology needs to fulfill the minimal ontological commitment. On the 
other side for a versatile usage of the ontology it is crucial that the ontology re-
quires as few assumptions about the underlying modeled world as possible. 
Therefore a basic ontology, based on a minimal ontological commitment, can be 
used from many different parties for many different models due to the individual 
configuration and instantiation of such an ontology. It is always advisable to mi-
nimize the ontological commitment of ontologies by defining only elementary 
conditions of the represented knowledge to allow the most models using such a 
minimized ontology (Gruber 1995). 
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2.4.4 Ontology Alignment 

This section summarizes related work from the research field Ontology Alignment. The 
first subsection gives an overview and defines the used terms, the second subsection 
introduces different methods and techniques, the third subsection deals with similarity 
measurements used for the identification of possible alignments, the fourth subsection 
introduces a generic ontology mapping process, and finally the fifth subsection 
describes three different ontology alignment tools (FOAM, PROMPT, GLUE) in more 
details. 

2.4.4.1 Definition 

It is difficult to find concrete definitions of the term ontology alignment. There are also 
terms like matching, mapping, merging, which are mostly used synonymous in 
literature. Ehrig has done a differentiation and definition of these terms (Ehrig 2007). In 
the following the most important and needed terms for this work will be defined. In 
general ontology alignment, ontology mapping and so on is used to connect partially 
different ontologies of one certain domain and overcomes therewith the problem of 
semantic heterogeneity. Ontology alignment tries to find a corresponding entity in one 
ontology for each entity of another ontology, with the same or at least a similar meaning 
(see Figure 6). 
 

Alignment
Process

 
Figure 6: Ontology Alignment (Ehrig 2007). 

Due to the fact that the terms matching and mapping are often used as synonyms for 
alignment and vice versa, they will also be regarded. Ehrig sees the difference between 
alignment and mapping as follows: "Whereas alignment merely identifies the relation 
between ontologies, mappings focus on the representation and the execution of the 
relations for a certain task." (Ehrig 2007) Ontology mapping is used to transform 
instances of one ontology into instances of another. The instructions, how this has to be 
done, are called mapping axioms, which are stored apart from the ontology. A mapping 
does not change the ontologies and often this can only be done in one direction. A 
typical use case for mapping is a query of an user formulated for one ontology 
representation, which will be translated or rewritten and forwarded to other ontologies. 
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The same happens to the answers on the way back. Another example for the need of 
ontology mapping is instance data sharing (Ehrig 2007). 
Ontology matching handles the search for two corresponding entities, which do not 
have to be the same, but they must have a certain degree of similarity. "Matching 
corresponds to our definition of general alignment, however, where a fixed relation 
between the aligned entities expresses the kind of match." (Ehrig 2007) Hence for 
matching there has to be one specific kind of relation between two entities. Ontology 
Merging, however, concentrates on merging ontologies with overlapping domains (see 
Figure 7). Two or more ontologies will be merged into one ontology, which will replace 
the others. 
 

Merging
Process

 
Figure 7: Ontology Merging (Ehrig 2007). 

Ontology integration deals with integrating one or more ontologies into an existing one. 
This does not assume that something has to be merged. Furthermore the integrated 
ontologies will not be changed but at most extended. This makes sense if the ontologies 
derive from different domains. 
 

Integrating
Process

 
Figure 8: Ontology Integrating (Ehrig 2007). 

2.4.4.2 Methods and Techniques 

To align two or more ontologies, one has to discover connections between the entities 
(concepts, relations or instances) of the ontologies. These entities can be equal, similar 
or different. According to Noy (Noy 2005), alignments between ontologies can be 
detected by using information sources like: 
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• A common reference ontology (upper ontologies, background knowledge) 

• Lexical information: String normalization (upper and lower Case, blanks, deli-

miters); String distance (Hamming-distance, edit distance); Language-based 

(Stemming); Semantic-based (WordNet); Soundex; Thesaurus 

• Ontology structure 

• User input 

• External resources (Wordnet, synonym databases, dictionaries) 

• Prior matches 

The following diverse methods are used to find alignments (Noy, Doan et al. 2005): 
 

• Heuristic and Rule-based methods (FOAM, Prompt): Structure analysis and lex-

ical analysis methods (Ehrig and Sure 2005) 

• Graph analysis (Anchor Prompt): Ontologies are seen as graphs and correspond-

ing sub graphs are compared (Noy and Musen 2001) 

• Machine-learning (GLUE): Statistics of data content; Using multiple learners; 

Using instance and value information (Doan, Madhavan et al. 2004) 

• Probabilistic approaches: Combining results produced by heuristic-based map-

pings 

• Reasoning, theorem proving 

Furthermore Ontology Alignment or Mapping uses techniques, which have been 
developed for Schema matching (XML schemas, relational schemas etc.). The main 
difference between schemas and ontologies is that schemas do not provide semantics for 
their data. 

2.4.4.3 Similarity 

Similarity is a very important issue for ontology alignment, because most of the 
approaches in this field are based on similarity to align entities. It is used to compare 
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ontologies respectively sets of entities. A comparison results into a numeric value, 
which states how similar two elements are. There are three layers of similarity, the data 
layer, the ontology layer and the context layer, which build upon each other (Ehrig 
2007). Additionally there is the domain knowledge (see Figure 9). 

 
Figure 9: Similarity Layers (Ehrig 2007). 

On the data layer only simple or complex data types, like integer and string, are 
considered for the comparison of entities. However, on the ontology layer semantic 
relations between the entities are regarded for comparison. On the context layer the 
external context of the use of the entities is important. The domain-specific knowledge 
can be situated on every layer and at this point the domain-specific vocabulary is the 
decisive factor. In the following some examples of the measures of these layers will be 
given (Ehrig 2007). 
 

• Equality: Sometimes entities need to be equal, for example data values that are 
used as identifiers. 

• Syntactic Similarity: The edit distance of two strings states how many atomic 
actions (i.e. addition, deletion, replacement, moving position) have to be done to 
change one string into the other. 

• Distance-Based Similarity for Numeric Values: The arithmetic difference be-
tween numeric values is used to compute the similarity. 

• Dice coefficient: Sets of entities are compared via the overlap of the sets indi-
viduals 

• Label Similarity: String similarity, for example syntactic similarity, is used to 
compare labels, which are human identifiers for entities. Also dictionaries and 
databases for synonyms are used to compare labels, but in case of homonyms, 
failures are very probably. 

• Extensional Concept Similarity: Two concepts are similar, if their instances are 
similar. 
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2.4.4.4 A Generic Ontology Mapping Process 

Based on the fact that there has been defined a generic mapping process, which is said 
to subsume all the other approaches, it will be described first (Ehrig and Staab 2004). 
 

INPUT
OUTPUT

Feature
Engineering InterpretationSimilarity

Computation
Similarity

Aggregation
Search Step

Selection

Iteration

 

Figure 10: General mapping process (Ehrig and Staab 2004). 

First of all two ontologies are needed as input. In the first step, feature engineering, 
features will be selected, which describe a specific entity (concept, attribute, relation). 
The following features of ontologies are used to detect alignments (Noy 2004): 
 

• Concept names and descriptions 

• Class hierarchy (relationships) 

• Property definitions (domains, ranges, restrictions) 

• Instances of classes 

• Class descriptions 

After that it is possible to restrict the search space by choosing the entities for a 
comparison. For the next step, similarity computation, similarity functions, as described 
in section 2.4.4.3, for strings, objects and sets of objects, as well as analysis of 
dissimilarity and so on are applied. Then the similarity values for a candidate pair of 
entities have to be aggregated to get one single value. These values will be used for 
mapping the entities of the ontologies. There are several possibilities like thresholds, 
relaxation labeling or combining structural and similarity criteria. After these steps it is 
possible to iterate over the whole process, for a better using of the structure of 
ontologies, because similarities of related entities are able to influence similarities of 
other entities (Ehrig and Staab 2004; Sure, Ehrig et al. 2006). 

2.4.4.5 Ontology Alignment Tools 

Generally there are two different types of tools for working with ontologies, ontology 
development tools and ontology alignment, mapping or merging tools. One common 
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development tool is Protégé3 (see also section 4.1.1.4). Protégé is a Java-based free, 
open source ontology editor and knowledge-base framework, where ontologies can be 
modeled via the Protégé-Frames or the Protégé-OWL editors. There are many plug-ins 
available, which range from visualization to mapping tools. Today there are many 
approaches for ontology mapping or merging. There are console- and web-based tools 
as well as tools with graphical user interface. They reach from completely manual to 
fully automatic processes. In the majority of cases ontology mapping is done manually, 
although this is a very time and effort consuming work. Hence there are more and more 
semi-automatic ontology mapping approaches, which try to support users by making 
suggestions or providing visualizations. 
In the following three different approaches for ontology mapping are described. Each 
approach applies a different method. FOAM is a heuristic based tool, which applies 
different similarity functions for detecting alignments. PROMPT also uses heuristics, 
but has an additional function called Anchor-PROMPT, which analyses the structure of 
the graph to find alignments. And GLUE is a machine learning approach, which 
originates from the research area of schema mapping. 

2.4.4.6 FOAM 

FOAM, Framework for Ontology Alignment and Mapping, is based on NOM, Naïve 
Ontology Alignment, and was developed by Ehrig and Sure at the University of 
Karlsruhe (Ehrig and Sure 2005; Sure, Ehrig et al. 2006). It is a fully or semi-
automatically framework for aligning two or more ontologies. It has been implemented 
as a Java application (console or programming environment) and also a web service is 
available. It works with OWL-DL ontologies and uses similarity computation to find 
alignments. Foam is based on the general alignment process and applies heuristic 
measures, more precisely a wide range of similarity functions, to compute similarities of 
labels, structure and instances. Similarity functions for strings, objects and sets of 
objects and also equality are implemented , which can be defined as defined in (Ehrig 
and Staab 2004): 
 

• Object Equality: based on existing logical assertions, especially assertions from 
previous iterations: 

• Explicit Equality: checks whether a logical assertion already forces two entities 
to be equal: 

• String Similarity: measures the similarity of two strings on a scale from 0 to 1 
based on Levenshtein's edit distance, ed (Ehrig and Staab 2004): 

                                                 
3 http://protege.stanford.edu 
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• SimSet: for many features it must be determined to what extend two sets of enti-
ties are similar. Multidimensional scaling measures how far two entities are from 
all other entities and assumes that if they have similar distances to all other enti-
ties, they must be very similar: 

After computing the similarities, they are aggregated. In the next step a threshold is 
applied to reduce similarity failures and bijectivity is accomplished. Iteration over the 
process is needed, because this allows using already computed pairs. FOAM starts the 
process with the basic comparison methods based on labels and string similarity and 
thereafter all functions are used. 
The following extensions have been implemented in FOAM (Sure, Ehrig et al. 2006): 
 

• QOM – Quick Ontology Mapping (Ehrig and Staab 2004): Improves the effi-
ciency of the alignment of bigger ontologies, by restricting the amount of com-
pare pairs. Only very similar pairs or pairs close by already finished alignments 
are permitted. 

• APFEL (Ehrig, Staab et al. 2005): APFEL is an approach to solve the problem 
of the selection of features by machine learning. There are feature combinations, 
which are not useful for the remaining process. Machine learning is used to 
eliminate these combinations and thus improve the alignment results. Therefore 
an adequate amount of training data is needed. 

• Interactive Integration (Sure, Ehrig et al. 2006): It is possible to interact with 
the user via questioning to minimize the effort. The user will be only asked for 
candidate pairs, which are highly cross-linked within the ontology. 

• Adaptive Integration (Sure, Ehrig et al. 2006): This allows parameters of the 
process to be automatically chosen. Bigger ontologies need other specifications 
than small ones. Therefore the process can be used for diverse tasks. 

2.4.4.7 PROMPT 

PROMPT is a semi-automatic approach for ontology merging and mapping. It has been 
developed by Noy and Musen at Stanford University in 2000 and is available as a plug-
in for Protégé (Noy and Musen 2000). Later on in literature it is called iPROMPT. It 
needs two ontologies as input and produces a single merged ontology as output by 
making suggestions and guiding the user through the process. It also detects 
inconsistencies, which occur due to user actions, and is able to suggest possible 
solutions. During the process of merging, it logs the identified mappings to create a 
declarative mapping specification between the source ontologies. 
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Figure 11 illustrates the flow of the iPROMPT algorithm. First an initial list of matches 
based on class names is created. After that the user can choose an operation out of the 
suggestion list of iPROMPT or do an operation manually. iPROMPT provides 
explanations like why an operation has been suggested to be done first or why it has 
been moved. After choosing an operation iPROMPT will execute the operation, perform 
automatic updates, find conflicts and present new suggestions to the user. An evaluation 
has revealed that human experts followed 90 % of PROMPT's suggestions (Noy and 
Musen 2000). The original PROMPT is a heuristic-based tool. It works with lexical 
comparison of entity labels. As similarity measure only equality is applied. The entities 
with identical labels are presented to the user successively. There is no iteration 
necessary because the similarity computation does not build on previously computed 
alignments (Noy and Musen 2000; Ehrig 2007). 
 

Make initial suggestions

Select next operation

Perform automatic updates

Find inconsistences and potential problems

Make suggestions

User

PROMPT

 
Figure 11 iPROMPT Algorithm (Noy and Musen 2003). 

iPROMPT works with simple lexical-distance measures, to detect similar labels. But it 
is also designed for other algorithms to be easily plugged in, like WordNet to find 
synonyms, the Foam algorithm etc. (Noy and Musen 2003). Anchor-PROMPT analyses 
the graph structure of the ontologies. It traverses paths between anchor-points. Anchor-
points are entities, which have been identified as equal, because their labels are 
identical. They can be chosen by the user manually or generated automatically. New 
alignments are detected along the paths by comparing the labels to find similar ones, 
which will be suggested to the user. Pairs with the same position have higher similarity 
values. With Anchor-PROMPT iteration is needed to recalculate the corresponding 
similarities after the user's choice to present new suggestions (Noy and Musen 2001; 
Noy and Musen 2003; Ehrig 2007). 
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2.4.4.8 GLUE 

GLUE has been developed by Doan and colleagues (Doan, Madhavan et al. 2004), who 
already have done research in schema mapping. It is a semi-automatic approach that 
implements machine learning techniques for ontology mapping. It needs a large number 
of instances for learning and it is not possible to align relations and instances directly. 
The architecture of GLUE is made up of three parts: the Distribution Estimator, the 
Similarity Estimator and the Relaxation Labeler. 
GLUE pays only attention to the taxonomy of ontologies and checks every possible 
concept pair. The Distribution Estimator takes the tree structure and the data instances 
as input to find similar concepts. This is done by computing the joint distribution of two 
concepts by applying machine leaning techniques to the instances. There are different 
types of information like instance names, value formats, etc., which can be used by 
learners for predictions. Therefore a multi-strategy learning approach is used (Doan, 
Madhavan et al. 2004). 

2.4.5 Ontologies in Software Engineering 

The emerging field of semantic web technologies promises new stimulus for Software 
Engineering research. However, since the underlying concepts of the semantic web have 
a long tradition in the knowledge engineering field, it is sometimes hard for software 
engineers to overlook the variety of ontology-enabled approaches to Software 
Engineering. 
Happel and Seedorf (Happel and Seedorf 2006) propose a simple classification schema 
that allows a better differentiation among the various ideas of using ontologies in 
Software Engineering. The Ontology Driven Architecture (ODA) note at W3C serves as 
a starting point to elaborate a systematic categorization of the approaches and to derive 
more clearly defined acronyms (Tetlow, Pan et al. 2005). Happel and Seedorf propose 
two dimensions of comparison to achieve a more precise classification. First, they 
distinguish the role of ontologies in the context of Software Engineering between usage 
at run-time and development time. Second, they look at the kind of knowledge the 
ontology actually compromises. Here, they distinguish between the problem domain 
that the software system tries to tackle, and infrastructure aspects to make the software 
or its development more convenient. Putting these two dimensions together, the result is 
the matrix shown in Figure 12. The four categories for ontology usage in Software 
Engineering are (Happel and Seedorf 2006): 
 

• Ontology-driven development (ODD) subsumes the usage of ontologies at de-
velopment time that describe the problem domain itself. Prime example are the 
approaches in the context of MDD, see section 2.4.5.1. 
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• Ontology-enabled development (OED) also uses ontologies at development 
time, but for supporting developers with their tasks. For example, requirements 
engineering (see section 2.4.5.2) or test case generation (see section 2.4.5.3) can 
be put in here. 

• Ontology-based architectures (OBA) use ontologies as a primary artifact at run-
time. The ontology makes up a central part of the application logic. Business 
rule approaches are an example for this kind of application. 

• Ontology-enabled architectures (OEA) finally, leverage ontologies to provide 
infrastructure support at the run-time of a software system. An example are se-
mantic web services (see section 2.6), where ontologies add a semantic layer on 
top of the existing web service descriptions, adding functionality for the auto-
matic discovery, matching and composition of service-based workflows. 

 
Figure 12: Ontology Usage in Software Engineering (Happel and Seedorf 2006). 

2.4.5.1 Ontologies and Model-Driven Development 

The current MDA-based infrastructure provides an architecture for creating models and 
meta models, define transformations between those models, and managing meta data. 
Though the semantics of a model is structurally defined by its meta model, the 
mechanisms to describe the semantics of the domain are rather limited compared to 
knowledge representation languages (Tetlow, Pan et al. 2005). MDA–based languages 
do not have a knowledge-based foundation to enable reasoning. Other possible 
shortcomings include validation and automated consistency checking. However, this is 
addressed by the Object Constraint Language (OCL). 
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There are several alternatives for integrating MDA-based information representation 
languages and ontology languages, which are exemplified in (Kiko and Atkinson 2005). 
Whereas some regard the UML as ontology representation language by defining direct 
mappings between language constructs (Cranefield 2002), others employ the UML as 
modeling syntax for ontology development (Baclawski, Kokar et al. 2002). In most 
cases, MDA-compliant languages and RDF/OWL are regarded as two distinct 
technological spaces sharing a “semantic overlap” where synergies can be realized by 
defining bridges between them (Gaševic, Djuric et al. 2004). The Ontology Definition 
Metamodel (ODM) (OMG 2006) is an effort to standardize the mappings between 
knowledge representation and conceptual modeling languages. It specifies a set of MOF 
meta models for RDF Schema and OWL among others, informative mappings between 
those languages, and profiles for a UML-based notation. 
Software modeling languages and methodologies can benefit from the integration with 
ontology languages such as RDF and OWL in various ways, e.g. by reducing language 
ambiguity, enabling validation and automated consistency checking (Tetlow, Pan et al. 
2005). Ontology languages provide better support for logical inference, integration and 
interoperability than MOF-based languages. UML-based tools can be extended more 
easily to support the creation of domain vocabularies and ontologies. Since ontologies 
promote the notion of identity, ODM and related approaches simplify the sharing and 
mediation of domain models 

2.4.5.2 Ontologies in Requirements Engineering 

The phase of requirements engineering deals with gathering the desired system 
functionality from the customers. Since the involved software engineers are often no 
domain experts, they must learn about the problem domain from the customers. A 
different understanding of the concepts involved may lead to an ambiguous, incomplete 
specification and major rework after system implementation. Therefore it is important 
to assure that all participants in the requirements engineering phase have a shared 
understanding of the problem domain. Moreover, change of requirements needs to be 
considered because of changing customer’s objectives. 
Ontologies can be used for both, to describe requirements specification documents 
(Mayank, Kositsyna et al. 2004; Decker, Ras et al. 2005) and formally represent 
requirements knowledge (Lin, Fox et al. 1996; Wouters, Deridder et al. 2000). In most 
cases, natural language is used to describe requirements, e.g. in the form of use cases. 
However, it is possible to use normative language or formal specification languages 
which are generally more precise and pave the way towards the formal system 
specification. Because the degree of expressiveness can be adapted to the actual needs, 
ontologies can cover semi-formal and structured as well as formal representation 
(Wouters, Deridder et al. 2000). 
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In contrast to traditional knowledge-based approaches, e.g. formal specification 
languages, ontologies seem to be well suited for an evolutionary approach to the 
specification of requirements and domain knowledge (Wouters, Deridder et al. 2000). 
Moreover, ontologies can be used to support requirements management and traceability 
(Lin, Fox et al. 1996; Mayank, Kositsyna et al. 2004). Automated validation and 
consistency checking are considered as a potential benefit compared to semi-formal or 
informal approaches providing no logical formalism or model theory. Finally, formal 
specification may be a prerequisite to realize model-driven approaches in the design and 
implementation phase. 

2.4.5.3 Ontologies for Test Case Generation 

Software tests are an important part of quality assurance (Abran, Moore et al. 2004). 
However, the writing of test cases is an expensive endeavor that does not directly yield 
business value. It is also not a trivial task, since the derivation of suitable test cases 
demands a certain amount of domain knowledge. 
Ontologies could help to generate basic test cases since they encode domain knowledge 
in a machine processable format. A simple example for this would be regarding 
cardinality constraints. Since those constraints define restrictions on the association of 
certain classes, they can be used to derive equivalency classes for testing (Knublauch, 
Oberle et al. 2006). 
Ontologies may not be the first candidate for such a scenario, since there are formalisms 
like OCL that are specialized for such tasks. However, once domain knowledge is 
available in an ontology format anyway (e.g. due to one of the various other scenarios 
described in this thesis), it might be feasible to reuse that knowledge. 
Nguyen et al. (Nguyen, Perini et al. 2008) describe a framework for automated test case 
generation for multi-agent systems. They use agent interaction ontologies that define 
content semantics of agent interactions to generate test inputs, guide the exploration of 
the input space during test case generation, and verify messages exchanged between 
agents with respect to the agent interaction ontology. Experimental results show that 
whenever the interaction ontology has non trivial size, the proposed method achieves a 
higher coverage of the ontology classes than manual test case derivation. It also 
overcomes manual derivation in terms of revealed faults, as well as portion of input 
space explored during testing. 

2.4.5.4 Advantages of Ontologies in Software Engineering 

Since modeling ontologies is a tedious and costly task, it is always important to 
demonstrate the advantages one can gain by applying ontologies in Software 
Engineering. This is underlined by the fact that most of the formal foundations of 
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ontologies have been in place for a long time, without enjoying a wide-spread adoption 
by software engineers. 
So clearly the current advent of logic-based formalisms in the context of the semantic 
web effort is an important factor. Activities by the W3C and others have helped to flesh 
out standards like RDF or OWL that receive increasing attention by tool builders and 
users. In a certain sense, the importance of standardization here can be compared to the 
situation of visual modeling in Software Engineering before UML (Happel and Seedorf 
2006). 
Another important factor is the flexibility of ontologies. With information integration as 
a major use case, ontologies are well-suited to combine information from various 
sources and infer new facts based on this. Also, the flexibility allows extending existing 
ontologies very easy, thus fostering the reuse of existing work. This is further promoted 
by the "web"-focus of current ontology approaches. Due to the fact that software 
systems also get increasingly web-enabled and must thus cope with data from 
heterogeneous sources that may not be known at development time, software engineers 
seek technologies that can help in this situation. Thus, experts in the field like Grady 
Booch are expecting semantic web technology to be one of the next big things in the 
architecture of web-based applications (Booch 2006). Also, the web makes it easier to 
share knowledge. Having URIs as globally unique identifiers, it is easy to relate one’s 
ontology to someone else's conceptualization. This in turn encourages interoperability 
and reuse. 
Regarding more Software Engineering-specific advantages, ontologies make domain 
models first order citizens. While domain models are clearly driving the core of every 
software system, their importance in current Software Engineering processes decreases 
after the analysis phase. The core purpose of ontologies is by definition the formal 
descriptions of a domain and thus encourages a broader usage throughout the whole 
Software Engineering lifecycle (Uschold and Gruninger 2004). 

2.4.6 Ontologies vs. Metamodeling 

To be widely adopted by users and to succeed in real-world applications, knowledge 
engineering and ontology modeling must catch up with mainstream software trends. It 
will provide a good support in software tools and ease the integration with existing or 
upcoming software tools and applications, which will add values to both sides. To be 
employed in common applications, software knowledge management must be taken out 
of laboratories and isolated high-tech applications and put closer to ordinary developers 
(Cranefield 2002). 
Djurić et al. (Djurić, Gašević et al. 2005) propose an approach for ontology modeling in 
the context of MDA and Semantic Web, as presented in Figure 13. 
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Figure 13: Ontology Modeling in MDA and Semantic Web (Djurić, Gašević et al. 2005). 

The proposed Ontology Definition Metamodel (ODM) should be designed to 
comprehend common ontology concepts. A good starting point for ODM construction is 
OWL since it is the result of the evolution of existing ontology representation 
languages, and is going to be a W3C recommendation. It is at the Logical layer of the 
Semantic Web, on top of RDF Schema (Schema layer). In order to make use of 
graphical modeling capabilities of UML, an ODM should have a corresponding UML 
Profile. This profile enables graphical editing of ontologies using UML diagrams as 
well as other benefits of using mature UML CASE tools (Biffl, Ferstl et al. 2009). Both 
UML models and ODM models are serialized in XMI format so the two-way 
transformation between them can be done using XSL Transformation. OWL also has 
representation in the XML format, so another pair of XSL Transformations should be 
provided for two-way mapping between ODM and OWL. For mapping from the 
Ontology UML Profile into another, technology-specific UML Profiles, additional 
transformations can be added to support usage of ontologies in design of other domains 
and vice versa (Djurić, Gašević et al. 2005). 
Parreiras et al. (Parreiras, Staab et al. 2007) illustrated variations on the principle idea of 
using meta modeling technical space (MMTS) with different ontological technical 
spaces (OTSs). The basic patterns they identified in their work is that next to existing 
technical spaces of established meta modeling frameworks, new technical spaces are 
positioned that either enrich or exploit the software engineering capabilities by or for 
ontology technologies. 
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Figure 14: The ontology-aware meta-pyramid (Aßmann, Zschaler et al. 2006). 

Aßmann et al. (Aßmann, Zschaler et al. 2006) discuss the role of descriptive and 
structural models, in particular ontologies, in the model-driven process. They extend the 
MDA layered architecture (see Figure 4) to the so-called “ontology-aware” meta 
pyramid as shown in Figure 14. 
Aßmann et al. (Aßmann, Zschaler et al. 2006) identified several benefits of the 
ontology-ware meta pyramid. First of all, it suggests a more concrete model-driven 
software development process. The designer starts from standardized analysis models, 
ontologies, which may have been defined long before project start. These domain and 
business models are refined towards design models, avoiding the risks of a self-made 
domain analysis. Secondly, ontologies as analysis models offer more common 
vocabulary for software architect, customer, and domain expert. This should improve 
the understanding of the parties that order and construct software. Then, the 
standardization of the ontologies improves the interoperability of applications, because 
applications that use the ontology contain a common core of common vocabulary. 
Finally, the ontology-aware meta-pyramid distinguishes conceptual from behavioral 
models. It seems to be convenient to centre software modeling on concepts of a domain, 
or structure of a domain, while adding behavior to it step by step. 
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2.5 Semantic Integration 

The proposed Engineering Knowledge Base (EKB) framework can be seen as a 
semantic integration approach, hence this section introduces the research field of 
Semantic Integration, the different available approaches are classified and explained, 
and in addition application scenarios for the usage of ontologies for Semantic 
Integration are given. 

2.5.1 Overview 

Semantic Integration is defined as the solving of problems originating from the intent to 
share data across disparate and semantically heterogeneous data (Halevy 2005). These 
problems include the matching of ontologies or schemas, the detection of duplicate 
entries, the reconciliation of inconsistencies, and the modeling of complex relations in 
different sources. (Noy, Doan et al. 2005) Over the last years, semantic integration 
became increasingly crucial to a variety of information-processing applications and has 
received much attention in the web, database, data-mining and AI communities. One of 
the most important and most actively studied problems in semantic integration is 
establishing semantic correspondences (also called mappings) between vocabularies of 
different data sources. (Doan, Noy et al. 2004) 
Goh (Goh 1996) identified three main categories of semantic conflicts in the context of 
data integration that can appear: confounding conflicts, scaling conflicts, and naming 
conflicts. The use of ontologies as a solution option to semantic integration and 
interoperability problems has been studied over the last 10 years. Wache et al. (Wache, 
Vögele et al. 2001) reviewed a set of ontology-based approaches and architectures that 
have been proposed in the context of data integration and interoperability. 

2.5.2 Classification of Approaches 

Doan and Halevy (Doan and Halevy 2005) summarize the research on semantic 
integration in the database community. There, the matching of two database schemas 
requires deciding if any two elements of both schemas match, meaning that they refer to 
the same real-world concept. Typical challenges include the efficient extraction of 
semantic information, unreliable clues for matching schema elements (e.g., element 
names, types, data values, schema structures and integrity constraints), incomplete 
schema and data clues, and subjective matching depending on the application. Rule-
based matching techniques use hand-crafted and/or probabilistic rules to exploit schema 
information for the identification of mappings. Rule-based matching techniques are 
relatively inexpensive and fairly fast since the typically operate only on schemas and 
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not on data instances. But this is also their main drawback, as they cannot exploit data 
instances effectively, even though the instances can encode a wealth of information. 
Additionally, in many cases effective matching rules are simply too difficult to hand 
craft. Learning-based matching techniques consider a variety of machine learning 
techniques to exploit both schema and data information. There is also a growing 
realization that schema- and data-related evidence in two schemas being matched often 
is inadequate for the matching process, leading to the inclusion of external evidences 
beyond the two current schemas to the matching process. The key idea here is that a 
matching tool must be able to learn from past matches (Halevy 2005). 

2.5.3 Ontologies for Semantic Integration 

Noy (Noy 2004) identified three major dimensions of the application of ontologies for 
supporting semantic integration: the task of finding mappings (semi-)automatically, the 
declarative formal representation of these mappings, and reasoning using these 
mappings. There exist two major architectures for mapping discovery between 
ontologies. On the one hand, the vision is a general upper ontology which is agreed 
upon by developers of different applications. Two of the ontologies that are built 
specifically with the purpose of being formal top-level ontologies are the Suggested 
Upper Merged Ontology (SUMO) (Niles and Pease 2001) and DOLCE (Gangemi, 
Guarino et al. 2003). On the other hand, there are approaches comprising heuristics-
based or machine learning techniques that use various characteristics of ontologies (e.g., 
structure, concepts, instances) to find mappings. These approaches are similar to 
approaches for mapping XML schemas or other structured data (Bergamaschi, Castano 
et al. 1999; Cruz, Huiyong et al. 2004). The declarative formal representation of 
mappings is facilitated by the higher expressive power of ontology languages which 
provide the opportunity to represent mappings themselves in more expressive terms. 
There exists a large spectrum of how mappings are represented. Bridging axioms relate 
classes and properties of the two source ontologies and can be seen as translation rules 
referring to the concepts of source ontologies and e.g., specifying how to express a class 
in one ontology by collecting information from classes in another ontology. Another 
mapping representation is the declarative representation of mappings as instances in an 
ontology. This ontology can then be used by tools to perform the needed 
transformations. Then a mapping between two ontologies constitutes a set of instances 
of classes in the mapping ontology and can be used by applications to translate data 
from the source ontology to the target. Naturally, defining the mappings between 
ontologies, either automatically, semi-automatically, or interactively, is not a goal in 
itself. The resulting mappings are used for various integration tasks: data 
transformation, query answering, or web-service composition, to name a few. Given 
that ontologies are often used for reasoning, it is only natural that many of these 

45 
 



integration tasks involve reasoning over the source ontologies and the mappings (Noy, 
Doan et al. 2005). 
Rosenthal et al. (Rosenthal, Seligman et al. 2004) extend the concept of semantic 
integration to semantics management, which has the goals of easing data sharing for 
both new and old systems, of ensuring that needed data is actually collected, and of 
maximizing over time the business value of an enterprise’s information systems. To 
reach these goals, new areas of useful semantic agreements need to be produced 
proactively, helping enterprises to satisfy new requirements and also reducing costs by 
reducing unneeded semantic and representation diversities. Additionally, not only the 
needs of technology-savvy system integrators need to be considered, but also other roles 
(e.g., enterprise owners, architects, end users and developers) need assistance to have a 
greater shared understanding of what the data means. Finally, the definition of 
“semantics” need to be broadened, to describe what data instances are collected and 
desired (as in publish/subscribe systems), not just concept definitions and relationships. 
Uschold and Gruninger (Uschold and Gruninger 2004) identified four main categories 
of ontology application to provide a shared and common understanding of a domain that 
can be communicated between people and application systems (Fensel 2003): Given the 
vast number of non-interoperable tools and formats, a given company or organization 
can benefit greatly by developing their own neutral ontology for authoring, and then 
developing translators from this ontology to the terminology required by the various 
target systems. To ensure no loss in translation, the neutral ontology must include only 
those features that are supported in all of the target systems. The trade-off here is loss of 
functionality of some of the tools; since certain special features may not be usable. 
While it is safe to assume there will not be global ontologies and formats agreed by one 
and all, it is nevertheless possible to create an ontology to be used as a neutral 
interchange format for translating among various formats. This avoids the need to create 
and maintain O(N2) translators and it makes it easier for new systems and formats to be 
introduced into an existing environment. In practical terms, this can result in dramatic 
savings in maintenance costs - it has been estimated that 95% of the costs of enterprise 
integration projects is maintenance (Pollock 2002). 
There is a growing interest in the idea of “Ontology-Driven Software Engineering” in 
which an ontology of a given domain is created and used as a basis for specification and 
development of some software. The benefits of ontology-based specification are best 
seen when there is a formal link between the ontology and the software. This is the 
approach of Model-Driven Architecture (MDA) (Miller and Mukerji 2001) created and 
promoted by the Object Modeling Group (OMG) as well as ontology software which 
automatically creates Java classes and Java Documents from an ontology. A large 
variety of applications may use the access functions of the ontology (Parreiras, Staab et 
al. 2007). Not only does this ensure greater interoperation, but it also offers significant 
cost reduction for software evolution and maintenance. A suite of software tools all 
based on a single core ontology are semantically integrated for free, eliminating the 
need to develop translators. To facilitate search, an ontology is used as a structuring 
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device for an information repository (e.g., documents, web pages, names of experts); 
this supports the organization and classification of repositories of information at a 
higher level of abstraction than is commonly used today Using ontologies to structure 
information repositories also entails the use of semantic indexing techniques, or adding 
semantic annotations to the documents themselves. If different repositories are indexed 
to different ontologies, then a semantically integrated information access system could 
deploy mappings between different ontologies and retrieve answers from multiple 
repositories (Happel and Seedorf 2006). 

2.6 Semantic Web Services 

This section summarizes related work on Semantic Web Services and present 
approaches for Service Matchmaking. 

2.6.1 Overview 

The promise of Web Services and the need for widely accepted standards enabling them 
are by now well recognized, and considerable efforts are underway to define and evolve 
such standards in the commercial realm. In particular, the Web Services Description 
Language (WSDL) (Christensen, Curbera et al. 2001) is already well established as an 
essential building block in the evolving stack of Web Service technologies, allowing the 
specification of the syntax of the input and output messages of a basic service, as well 
as of other details needed for the invocation of the service. WSDL does not, however, 
support the specification of workflows composed of basic services. In this area, the 
Business Process Execution Language for Web Services (BPEL4WS) (Juric 2006), has 
the most prominent status. With respect to registering Web services, for purposes of 
advertising and discovery, Universal Description, Discovery and Integration (UDDI) 
(Bellwood, Clement et al. 2002) has received the most attention to date. 
At the same time, recognition is growing of the need for richer semantic specifications 
of Web Services, so as to enable fuller, more flexible automation of service provision 
and use, support the construction of more powerful tools and methodologies, and 
promote the use of semantically well-founded reasoning about services. Because a rich 
representation language permits a more comprehensive specification of so many 
different aspects of services, they can provide a better foundation for a broad range of 
activities, across the Web service lifecycle. Furthermore, richer semantics can help to 
provide fuller automation of activities as verification, simulation, configuration, supply 
chain management, contracting, and negotiation of services. (Martin, Paolucci et al. 
2005) 
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To meet this need, researchers have been developing languages, architectures and 
related approaches for so called Semantic Web services (McIlraith, Son et al. 2001). 
The Ontology Web Language for Services (OWL-S) (Martin, Ankolekar et al. 2004), 
which seeks to provide the building blocks for encoding rich semantic service 
descriptions in a way that builds naturally upon OWL (Bechhofer, van Harmelen et al. 
2004), the Semantic Web language, supplies Web Service providers with a core set of 
markup language constructs for describing the properties and capabilities of their Web 
Services in unambiguous, computer-interpretable form. OWL-S markup of Web 
Services facilitates the automation of Web Service tasks, including automated Web 
Service discovery, execution, composition and interoperation. 
Sivashanmugam et al. (Sivashanmugam, Verma et al. 2003) propose an approach for 
adding semantics in WSDL and UDDI. Semantics are added to WSDL using 
extensibility in elements and attributes supported by the WSDL specification. Using this 
extensibility existing and extended WSDL constructs (i.e., operations and message 
parts) are mapped to ontologies. The use of ontologies allows representing Web Service 
descriptions in a machine-interpretable form like. Additionally, new WSDL tags for 
Web Service preconditions and effects are added. Semantic discovery using UDDI is 
enabled by storing the semantic annotation of Web Services in the existing structures of 
UDDI and by providing an interface to construct queries that use these semantic 
annotations. 
WSDL-S (Miller, Verma et al. 2004) is another approach for annotating current Web 
Service standards with semantic descriptions. In WSDL-S, the expressivity of WSDL is 
enriched with semantics by employing concepts similar to those in OWL-S while being 
agnostic to the semantic representation language. The advantage of this approach to 
adding semantics to WSDL is multi-fold. First, users can, in an upwardly compatible 
way, describe both the semantics and operation level details in WSDL- a language that 
the developer community is familiar with. Second, by externalizing the semantic 
domain models, a language-agnostic approach to ontology representation is taken. This 
allows Web service developers to annotate their Web services with their choice of 
modelling language (such as OWL, or legacy models developed in UML or other 
knowledge representation languages). This is significant because the ability to reuse 
existing domain models expressed in modelling languages like UML can greatly 
alleviate the need to separately model semantics. Finally, it is relatively easy to update 
the existing tooling around WSDL specification to accommodate our incremental 
approach. Moreover, the externalization of the semantic domain models still allows for 
richer representations of domain concepts and relationships in languages such as OWL, 
thereby bringing together the best of both worlds. Use of expressive mapping 
representation and techniques can further enable this approach to deal with significant 
types of syntactic, structural, representational and semantic heterogeneity. (Akkiraju, 
Farrell et al. 2005) 
The Web Service Modeling Ontology (WSMO) (Lausen, Polleres et al. 2005) is a 
framework for Semantic Web Services which refines and extends the Web Service 
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Modeling Framework (WSMF) (Fensel and Bussler 2002) to a meta-ontology for 
Semantic Web services. WSMF defines a rich conceptual model for the development 
and the description of Web Services based on two main requirements: maximal 
decoupling and strong mediation. WSMO is accompanied by a formal language, the 
Web Service Modeling Language (WSML) that allows annotating Web Services 
according to the conceptual model. Also an execution environment (WSMX) (Haller, 
Cimpian et al. 2005) for the dynamic discovery, selection, mediation, invocation, and 
inter-operation of Semantic Web services based on the WSMO specification is 
included. (Feier, Roman et al. 2005). 

2.6.2 Service Matchmaking Approaches 

Software components discovery and Web Service discovery can be classified into two 
categories: signature matching and semantic matching. 
Purtilo and Atlee (Purtilo and Atlee 1991) propose a signature-matching approach by 
specifying the invocation parameters. Zaremski and Wing (Zaremski and Wing 1995) 
describe exact and relaxed signature matching as a means for retrieving functions and 
modules from a software library. Wang and Stroulia (Wang and Stroulia 2003) provide 
a structure-matching-based signature matching for Web Service discovery. Signature 
matching is an efficient means for software components retrieval, but two software 
components with similar signatures may have completely different behaviors. 
Semantic matching addresses this problem by comparing software components based on 
formal descriptions of the semantics of their behaviors. Zaremski and Wing (Zaremski 
and Wing 1997) extend their signature-matching work with a specification-matching 
scheme. Cho et al. (Cho, McGregor et al. 1998) use a protocol to specify 
interoperability of objects. Semantic matching identifies suitable services more 
precisely than signature-matching methods, but the cost of formally defining provided 
and required services is considerable. 
Paolucci et al. (Paolucci, Kawamura et al. 2002) propose a DAML-S based approach for 
a declarative description of web services outside the representation capabilities of UDDI 
and WSDL. They provide an upper-level ontology of service profiles consisting of 
service actors, functional service attributes, and function service descriptions. 
Trastour et al. (Trastour, Bartolini et al. 2001) define a set of requirements needed for 
service matchmaking based on Semantic Web techniques and evaluate a set of standard 
approaches (e.g., UDDI, ebXML) using these requirements. The potential complexity of 
the service descriptions, like attribute-value pairs or nested tree/graph style structures, 
requires a flexible and expressive metadata model. In order to support under-specified 
data structures like incomplete service advertisements, an approach needs to be able to 
express semi-structured data. Additionally, support for types and subsumption is needed 
to be able to work at different levels of generality. Finally, constraints need to be 
expressed to define and check the acceptable instances for service invocation. 
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Li and Horrocks (Li and Horrocks 2004) investigate how Semantic and Web Services 
technologies can be used to support service advertisement and discovery in e-
Commerce. They describe the design and implementation of a service matchmaking 
prototype which uses a DAML-S based ontology and a Description Logic reasoner to 
compare ontology based service descriptions. By representing the semantics of service 
descriptions, the matchmaker enables to locate suitable web services automatically. The 
approach is evaluated using a realistic agent based e-commerce scenario. Although the 
initial classification of large numbers of service descriptions could be quite time 
consuming, subsequent matching of queries could be performed very efficiently. 
Kolovski et al. (Kolovski, Parsia et al. 2005) provide a mapping of WS-Policy to OWL. 
WS-Policy (Bajaj, Box et al. 2006) provides a general purpose model and syntax to 
describe the policies of a Web service. It specifies a base set of constructs that can be 
used and extended by other Web service specifications to describe a broad range of 
service requirements and capabilities.WS-Policy’s scope is limited to allowing 
endpoints to specify requirements and capabilities needed for establishing a connection. 
Its goal is not be used as a language for expressing more complex, applicationn-specific 
policies that take effect after the connection is established. Kolovski et al. (Kolovski, 
Parsia et al. 2005) show how standard OWL reasoners can be used to check policy 
conformance and perform an array of policy analysis tasks. The main advantage of 
representing Web Service policies using OWL is that OWL is much more expressive 
than WS-Policy and thus provides a framework for exploring richer policy languages. 
Verma et al. (Verma, Akkiraju et al. 2005) present an approach for matching the non-
functional properties of Web Services represented using WS-Policy (Bajaj, Box et al. 
2006). To date, most policy matching has been done using syntactic approaches, where 
pairs of policies are compared for structural and syntactic similarity to determine 
compatibility. In their approach, the authors enhance the policies of a Web Service with 
semantics by creating the policy assertions based on terms from ontologies. The use of 
semantic terms enables richer representations of the intent of a policy and allows 
matching of policies with compatible intent, but dissimilar syntax. This approach of 
using semantic concepts and rules during policy matching leads to better Web Service 
matches that may not have been possible with syntax based matchers, or prior semantic 
based methods. 
Oldham et al. (Oldham, Verma et al. 2006) present a framework and implementation of 
an innovative tool for the matching providers and consumers based on WS-Agreements. 
The WS-Agreement specification (Andrieux, Czajkowski et al. 2004) defines a 
language and protocol for capturing the relationship with agreements between two 
parties. An agreement between a service consumer and a service provider specifies one 
or more service level objectives (SLO) which state the requirements and capabilities of 
each party on the availability of resources and service qualities. WS-Agreement is more 
expressive than the previous policy standards because in addition to service level 
objectives, an agreement contains scopes for which the guarantee holds, conditions 
which must exist in order for the guarantee on the SLO to be valid, and business values, 
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such as penalties and rewards, which incur if the SLO is not satisfied. Oldham et al. 
(Oldham, Verma et al. 2006) utilize Semantic Web technologies to achieve rich and 
accurate matches. A key feature is the flexible approach for achieving user personalized 
matches using user-defined rules. 

 



Chapter 3 
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3 Research Approach 

This chapter describes the research approach by identifying the research issues, 
specifying the research methods and introducing the two application scenarios, namely 
System-Wide Information Sharing (SWIS) and Simulation of Assembly Workshops 
(SAW). 
The scope of this work is an engineering team consisting of experts from several 
engineering disciplines, who work on engineering process tasks with role-specific tools 
and systems that encapsulate engineering models and project data. As the engineers 
work together to deliver a product to the end user, they inevitably have to form common 
concepts on deliverables at interfaces between their work tasks. Such common concepts 
can be found in elements of requirements, design, and defect descriptions, which 
concern more than one role. Typical requirements for such engineering process tasks are 
low delay, i.e., in-time availability of information from other engineering tools and low 
effort for achieving the information exchange between the engineering tools. 
 

 
Figure 15: Overview of the research challenges. 

As shown in Figure 15, each engineering role (e.g., electrical engineer or software 
engineer) has a tailored tool set that works on data relevant to the engineer’s tasks. In 
order to support the data exchange between these engineering tools, an additional 
component is needed. In a typical process step in the engineering process an engineer 
exports data from his tool to a transfer document (e.g., PDF of data table) and integrates 
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this document in a common repository accessible by a set of partner engineering tools. 
The major challenges here are on the one hand side in the identification and description 
of tool data that should be extracted from tools and made available to other tools. On the 
other hand side, the data integration itself poses another huge challenge, since it is often 
not possible to agree on a common data schema agreed on by all tools, and additionally 
all engineers working with the tools want to stick with their well-known terms and 
notations. Finally, the re-use of at least parts of integration solutions for other projects 
with different project partners is mostly not possible. In order to support data exchange 
between these sets of partner engineering tools, transformations between the different 
notations and format of the particular partner engineering tools is needed. The major 
challenges of the transformation process are both the adaptation of transformation 
instructions to new or changed tool data structures which normally requires time-
consuming manual human work, as well as the runtime performance of these 
transformation instructions. Using these foundations, i.e., export, integration and 
transformation, additional methods like Quality Assurance (QA) support or other 
advanced methods like model consistency checking or end-to-end analyses are allowed. 
Currently there is high effort needed to perform typical engineering project tasks like 
model checks across tool boundaries or end-to-end analyses, which may also lead to 
risks of defect since data needs to be manually re-entered in several different tools. 
For these tasks, we propose to use the novel Engineering Knowledge Base (EKB) 
framework. In comparison to a simple data storage such as a common repository, a 
knowledge base stores information (i.e., the original data plus meta-data describing 
links between data elements or annotations of data elements using machine-
understandable syntax which can be used to automate time-consuming tasks and support 
human experts in doing their work. The EKB stores explicit engineering knowledge to 
support access to and management of engineering models across tools and disciplines 
by providing (1) data integration by exploiting mappings between local and common 
engineering concepts; (2) transformations between local engineering concepts; and (3) 
advanced applications using these foundations, e.g., end-to-end analyses. 

3.1 Research Issues 

This section identifies the research issues addressed in this thesis. The key research item 
of this thesis is the Engineering Knowledge Base (EKB) framework, which aims at 
enabling effective and efficient data integration and transformation between 
heterogeneous engineering experts’ data models without the need for a common data 
schema, and at additionally providing advanced methods like end-to-end analyses. The 
application area of the EKB as key research item is the engineering of distributed, 
flexible and complex systems, which traditionally were designed inflexible, but in order 
to follow the trend of engineering flexible systems, new engineering approaches are 
needed. 
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Figure 16: Overview of the research issues. 

Figure 16 shows the three major research issue categories, which were derived from the 
three major contributions of the proposed approach, namely (1) Data Integration, (2) 
Transformation, and (3) Advanced Applications. The first research issue category 
addresses the functionality and feasibility of the proposed approach (RI-1), by 
dealing with the foundations for data integration and transformation, with Quality 
Assurance support, with the support for traceability across engineering domains, and 
with the support for end-to-end testing. The second research issue category deals with 
the comparison of the proposed EKB framework to two different kinds of 
alternative solutions (RI-2), namely solutions that primarily rely on implicit 
knowledge, such as common repositories and data warehouses, as well as solutions that 
also rely on explicit knowledge, such as other ontology-based approaches. Since the 
process of applying the EKB framework uses ontologies as modeling methods, the third 
research issue category deals with two semantic web specific research areas (RI-3), 
namely the usage of Ontology Alignment methods for providing the required mappings, 
as well as a conceptual approach for structuring big ontologies in order to increase 
usability and maintainability 
The following subsections describe the single research issues more detailed with respect 
to the three major research issue categories: functionality and feasibility of the proposed 
engineering environment integration approach, comparison of the proposed engineering 
environment integration approach to traditional approaches that use only implicit 
knowledge and other approaches which use explicitly represented knowledge, and 
specific semantic research areas of the proposed engineering environment integration 
approach. 

3.1.1 Functionality and Feasibility of the Proposed Approach 

In this thesis, we apply the Engineering Knowledge Base (EKB) framework to two 
application scenarios from two different application domains. The first research issue 
category deals with the general functionality and feasibility of the EKB architecture and 
processes. As precondition for these research issue, we needed to ensure that a) the 
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knowledge is complete enough for relevant process steps, and b) the knowledge can be 
accessed by tools or processes, e.g., by means of an API. 

3.1.1.1 Foundations for data integration and transformation 

The basic process of applying the EKB framework (refer to section 4.3.2) consists of 
the following steps: As a first step for the preparation of the engineering environment, 
the involved models are analyzed to identify overlapping concepts between pairs of 
engineers and their tools. Once the overlapping engineering concepts are identified, 
these concepts need to be described and modeled. Once this domain model is complete 
and revised, the local tool-specific concepts need to be described and modeled. After the 
tool models is complete and revised, the final step of mapping local tool-specific 
concepts to overlapping common concepts needs to be performed. These mapping 
allows the creation of transformation instructions. Based on these transformations, more 
complex applications can be implemented which use the integrated data of the virtual 
common data model to perform advanced tasks like tracing of artifacts, consistency 
checking across tool boundaries, change impact analyses or end-to-end analyses. 
Based on this, we derive the following research issues (refer also to research challenges 
1-3 in Figure 15). 
 
RI-1.1. Feasibility of the proposed engineering environment integration approach. 
Investigate, whether the proposed engineering environment integration approach is 
capable of supporting and automating typical engineering process steps. This research 
issue primarily is addressed in sections 4.3, 5.2.3, and 6.2.1. 
 
RI-1.2. Foundations for tool support for automation of engineering process steps. 
Investigate to what extent (e.g., effort saved during process execution) the explicit and 
machine-understandable semantic modeling of common domain knowledge helps to 
automate time-consuming engineering process steps. This research issue primarily is 
addressed in the sections 4.3.3, 5.5, 6.6, and 6.7. 
 
To address changing business needs, IT systems have to be built in shorter cycles and 
more flexible, which puts pressure on quality management capabilities to effectively 
evaluate the quality of more complex systems (with new sources of defects). The 
general challenges of engineering of distributed, flexible and complex systems – weak 
integration between engineering disciplines and the need for more flexible systems and 
engineering processes – lead to the following research issues regarding quality 
assurance support, support for traceability across engineering domains, and 
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3.1.1.2 Quality assurance support 

New software development approaches, such as the EKB framework, are expected to 
bring benefits to software development like faster or more efficient development. 
However, from a software quality point of view the question remains whether the means 
for quality assurance (QA) are comparable to or better than with a traditional approach; 
e.g., the complexity introduced by the EKB framework architecture may make QA 
actually harder. From the goal to measure and ensure stakeholder-oriented quality of the 
product and the development process, we derive the following research issues (refer 
also to research challenge 4 in Figure 15). These research issues primarily are addressed 
in section 6.5. 
 
RI-1.3. Explicit modeling of stakeholder requirements. To what extent can domain-
specific stakeholder value elements be explicitly modeled in the EKB framework as 
input to QA?  
 
RI-1.4. Tool support and QA for requirements transformation. To what extent can 
the EKB framework transform the explicit quality requirements models into a running 
system without significant sources of defects like manual interaction; better quality 
measurement and feedback on intermediate models during systems development? 
 
RI-1.5. Stakeholder-level quality measurement. How can the required quality levels 
be measured and assured in the EKB framework life cycle; i.e., auditing capabilities of 
the systems development process? 

3.1.1.3 Support for traceability across engineering domains 

A major challenge in the engineering of distributed, flexible and complex IT systems is 
to extend the scope of QA from software artifacts to include software-relevant parts of 
artifacts in other engineering domains. Thus a key research issue is traceability, i.e., 
how to link the relevant elements of models for requirements, design, implementation, 
and testing across engineering disciplines as foundation for better integrated product 
assessment and improvement. As manual tracing has been found effort-consuming and 
error-prone, automated approaches for software engineering have been developed to 
capture dependencies based on syntactical identity (e.g., keyword-matching as in 
information retrieval approaches). A major limitation of these automated approaches is 
their inability to capture dependencies completely, because they cannot capture 
dependencies between semantically related artifacts without syntactic identity (semantic 
gap). Therefore, we derive the following research issue (refer also to research challenge 
5 in Figure 15). 
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RI-1.6. Support for traceability across engineering domains. Investigate how the 
EKB framework can support traceability (e.g., of requirements to source code and 
further on to test cases) across engineering domain boundaries. This research issue 
primarily is addressed in section 7.1.3. 

3.1.1.4 Support for End-to-End Testing 

In a typical engineering environment, system testing requires end-to-end testing, but 
since the single tools are distributed and using heterogeneous data models, an end-to-
end test is hard to perform.  Although testing tools are available to perform testing at 
multiple levels, most testing tools are incapable of building composite interdependent 
tests across technology platforms, languages and systems. Therefore the challenges in 
testing are driven by the distributed, heterogeneous nature of the used tools and a 
growing market of third-party services implying that there is not a single owner of the 
complete system. Based on this, we derive the following research issue (refer also to 
research challenge 5 in Figure 15). 
 
RI-1.7. Support for end-to-end testing. Investigate how the EKB framework can 
support end-to-end testing across engineering tool and /or engineering domain 
boundaries. This research issue primarily is addressed in section 7.1.4. 

3.1.2 Comparison of the Proposed Approach to Other Solutions 

In this thesis, we compare the EKB framework to two different kinds of alternative 
solutions, namely solutions that primarily rely on implicit knowledge, such as common 
repositories and data warehouses, as well as solutions that also rely on explicit 
knowledge, such as other ontology-based approaches. The second research issue 
category deals with this comparison. 

3.1.2.1 Comparison with Common Repository-based approaches 

In this thesis, we evaluate and discuss the benefits and limitations of the proposed EKB 
framework in comparison to a traditional solution using a common repository, in 
particular, more efficient support for data exchange between automation systems 
engineering tools. Key goal is to investigate to what extent the explicit and machine-
understandable knowledge stored in the EKB helps support time-consuming 
engineering processes, such as data exchange between tools or model checking across 
tools. Relevant derived issues for investigation are the following research issues. These 
research issues primarily are addressed in sections 7.1 and 7.2.3. 
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RI-2.1. Comparison of the EKB framework and Common Repository-based 
approaches. What are the advantages of using the EKB framework for these processes, 
compared to using a common repository?  
 
RI-2.2. More effective and efficient engineering using the EKB framework. 
Investigate whether the EKB framework provides an overall more efficient and 
effective engineering process regarding typical requirements for engineering process 
tasks such as low delay, low effort for achieving the information exchange between the 
engineering tools, and flexibility of the approach regarding the involved engineering 
tools and data definitions.  
 
RI-2.3. EKB framework usage trade-off analysis. Analyze how the extra effort for 
involving the EKB framework is likely to pay off in a typical engineering context. 

3.1.2.2 Comparison to Data Warehouse-based approaches 

Important management decisions such as decisions regarding product quality (e.g., 
measured by defect density in artifacts or the average time needed to fix major defects) 
or decisions regarding the development team (e.g., identification and preservation of 
core developers) are typically based on data originating from a range of tools. Currently, 
data collection is based on queries from a wide range of sources such as mailing lists, 
version control systems, and issue trackers. This approach has become very time-
consuming. In addition, this data has to be available with little delay to support quickly 
reacting to various internal such as changes in the development team as well as external 
condition such as new releases of new software libraries used in a project. The faster 
relevant data can be retrieved, the more agile project steering can become. As project 
circumstances can change quickly or releases if new software versions are performed 
periodically, data collection has to be as well repeated with the same frequency, which 
is infeasible without proper tool support. Furthermore, once the data is retrieved, the 
process of analyzing and evaluating this data is even more difficult, if the data is 
collected from inhomogeneous sources with a variety of different, often incompatible 
data formats. Another issue is the data quality. Invalid, malformed, and irrelevant data 
elements further complicate the evaluation process, often making the outcome 
unsuitable for decision support. 
In this thesis, we propose the EKB framework which enables automated collection and 
integration of data originating from a set of heterogeneous tools used in software 
development. To be of use for decision support, data integration has to be carried out 
efficiently to provide quasi-instant availability of the data, despite the fact that these 
tasks are very complex. The integrated and validated data can then be used as basis for 
basic of project data analysis and data improvement such as aggregation of data. Based 
on the data, also more advanced project management methods such as quality prediction 
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(Wahyudin, Mustofa et al. 2007), in-time notification of relevant stakeholders 
(Wahyudin, Heindl et al. 2008), or decision support for project managers can be 
applied. From this approach we derive the following research issues. These research 
issues primarily are addressed in section 7.3.1. 
 
RI-2.4. Comparison of a traditional Date Warehouse-based data collection process 
to a semantically-enabled data collection process. Currently, the collection and 
integration of data originating from a set of heterogeneous tools is a mainly manual 
task. There exists tool support for the loading processes of a Data Warehouse; however, 
these tools are often only useable for specific applications and therefore hard to use for 
more generic processes without major adaptations. The EKB framework supports the 
collection and integration process by providing automated process steps, such as time-
triggered collection or automated checks of data consistency and integrity. While we 
expect the EKB framework to make the data collection and validation process steps 
significantly more efficient, we also see reasonable effort investment in setting up the 
framework in a given context. Thus empirical evaluation is necessary to assess by when 
a breakeven point is likely to be achieved. 
 
RI-2.5: Integration of additional data sources. Current tools used in a distributed 
software engineering environment are not fixed, but frequently change over time or 
according to new project requirements. In order to support such changes of data sources, 
the proposed approach needs to provide extensibility regarding both the underlying 
process as well as the designed data model. To assess the cost and benefit of this 
extensibility, the effort needed for the inclusion of another data source needs to be 
measured as well as the relationship of the extension effort to the number and types of 
already integrated data sources. 

3.1.2.3 Comparison to other approaches which use explicit knowledge 

There exist related Semantic Integration approaches (refer to section 2.5) which rely on 
ontologies for providing their functionality. In order to classify the proposed EKB 
framework, these approaches need to be identified, analyzed and compared with the 
proposed EKB framework. Based on this, we derive the following research issue. This 
research issue primarily is addressed in section 4.1.3.3. 
 
RI-2.6: Relation of the proposed engineering environment integration approach to 
other ontology-based Semantic Integration approaches. Identify similar Semantic 
Integration approaches which also use ontologies as their modeling method. Analyze 
and discuss similarities and differences of the identified approaches. 
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3.1.3 Specific Semantic Research Areas of the Proposed Approach 

The process of applying the EKB framework introduced in 3.1.1.1 uses ontologies as 
modeling methods. Therefore, the third category of research issues deals with two 
semantic web specific research areas, namely the usage of Ontology Alignment 
methods for providing the required mappings, as well as a conceptual approach for 
structuring big ontologies in order to increase usability and maintainability. 

3.1.3.1 Combination with Ontology Alignment methods 

In general, ontology alignment is used to connect partially different ontologies of one 
certain domain and overcomes therewith the heterogeneity problem. Ontology 
alignment tries to find a corresponding entity in one ontology for an entity in another 
ontology, with the same or at least a similar meaning. To align two or more ontologies, 
connections between the entities (concepts, relations or instances) of the ontologies 
need to be discovered. These entities can be equal, similar or different. Alignments 
between ontologies can be detected by using information sources like a common 
reference ontology (upper ontologies, background knowledge), lexical information, 
ontology structure, user input, external resources (WordNet, synonym databases, 
dictionaries) or prior matches (Noy and Stuckenschmidt 2005). 
From an integration point of view, a major goal was to improve the capability of 
assuring validity of an integration solution while facilitating team work and tool 
support. From this general goal, we derived the following research issues regarding the 
EKB framework. These research issues primarily are addressed in sections 5.5.1 and 
7.4.3. 
 
RI-3.1. Safety-Critical Ontology Alignment: Investigate to what extent the mainly 
manual ontology alignment tasks of the EKB framework approach could be supported 
by other more automated ontology alignment approaches without violating the 
requirements regarding safety-criticalness. 
 
RI-3.2. Risks of applying state-of-the-art ontology alignment approaches: 
Investigate the risks of using standard Ontology Alignment approaches within the EKB 
framework. Analyze the requirements resulting from the use case which have to be 
fulfilled by the investigated Ontology Alignment approaches. 

3.1.3.2 Derivation of design guidelines for ontologies 

Ontologies can provide relevant advantages like explicitly specifying the application 
domain semantics in heterogeneous engineering contexts. However, ontologies can get 
complex themselves and may get hard to extend, understand and manage. Therefore, we 
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propose approaches for ontology design that aim at making ontology parts easier to 
handle and recombine, the so-called Ontology Areas. The general idea of Ontology 
Areas is to structure a comprehensive ontology into smaller building blocks with the 
following benefits for the designer and user of the ontology: 
 

• A smaller ontology based on Ontology Areas that contains the minimal neces-
sary knowledge for a specific task can be selected from a comprehensive ontolo-
gy to facilitate more efficient use and change. 

• We expect a smaller ontology (consisting of selected Ontology Areas) to exhibit 
lower cognitive complexity for designers who work with ontologies to make 
tools that support the automation of stakeholder tasks. 

• Specific Ontology Areas can contain the more volatile ontology elements and 
thus make the design of the overall ontology more stable against changes. 

We used the following guidelines to design the Ontology Areas: a) concepts that a 
particular stakeholder needs to fulfill his typical tasks in order to achieve cohesiveness 
of the Ontology Areas; b) discern between common domain concepts and local add-ons 
of a stakeholder (such as terminology), which may change in different project contexts; 
c) keeping apart more stable design-time concepts from more volatile run-time 
concepts; and d) structuring volatile run-time data by manageable time intervals 
depending on the frequency of data elements’ change. 
We empirically evaluate these approaches to find out whether the added complexity 
from using an ontology outweighs their intended benefits. As measurement criteria for 
evaluation we use the size of an ontology (and an Ontology Area) by counting the 
number of facts and relationships. In our study context the comprehensive ontology 
consists of: a) the production automation domain concepts for design-time and run-time 
elements; and b) stakeholder extensions to the data model, such as local terminologies 
and mappings, for all stakeholders. 
We derive the following research issue to investigate the benefits of an ontology 
structured with Ontology Areas compared to an ontology without Ontology Areas. This 
research issue primarily is addressed in sections 6.4.2 and 7.3.2. 
 
RI-3.3. Supporting engineering roles by lowering the cognitive complexity of the 
used ontologies. Evaluate the capability of Ontology Areas for supporting each 
engineering role by allowing using their local terminology to communicate with other 
stakeholders. For this task sufficient Ontology Areas need to contain for the 
communicating stakeholders: the common domain concepts in their universe of 
discourse, local terminologies, mappings between local terminology elements and 
common domain concepts (on class level).  
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3.2 Research Methods and Evaluation Concept 

This section describes the research methods used in this thesis as well as the evaluation 
concept and evaluation criteria. 

3.2.1 Research Methods 

For research and review of related literature, we performed a systematic literature 
review (Brereton, Kitchenham et al. 2007) on Semantic Integration (see section 2.5), 
Ontology Alignment (see section 2.4.4) and Semantic Web Services (see section 2.6). A 
systematic literature review is primarily concerned with the problem of aggregating 
empirical evidence which may have been obtained using a variety of techniques, and in 
(potentially) widely differing contexts. Performing a systematic review involves several 
discrete activities, which can be grouped into three main phases: planning; conducting 
the review; and reporting the review. Fig. 1 illustrates the overall 10-stage review 
process. 
 

 
Figure 17: Systematic literature review process (Brereton, Kitchenham et al. 2007). 

For modeling, we used three different modeling methods: for understandability reason, 
we try to use the standard Unified Modeling Language (UML) wherever it is possible. 
The UML has been the industry standard for visualizing, specifying, constructing, and 
documenting the artifacts of a software-intensive system. As the de facto standard 

63 
 



modeling language, the UML facilitates communication and reduces confusion among 
project stakeholders (Booch, Rumbaugh et al. 2005). For semantic modeling (Hull and 
King 1987), we stick with the entity-relationship model (Chen 1976). This model 
incorporates some of the important semantic information about the real world. The 
entity-relationship model can be used as a basis for unification of different views of 
data: the network model, the relational model, and the entity set model. Semantic 
modeling provides richer data structuring capabilities, e.g., for database applications. 
Semantic modeling provides mechanisms for representing structurally complex 
interrelations among data typically arising in commercial applications. In general terms, 
semantic modeling complements work on knowledge representation (in artificial 
intelligence) and on database models based on the object-oriented paradigm of 
programming languages. 
For feasibility evaluation, we realize prototypes as proof-of-concept of our conceptual 
approaches (Floyd 1984). The term prototype in connection with software development 
indicates a primary interest in a process rather than in the prototype as a product. The 
goal of the prototyping process is the identification of processes which involve an early 
practical demonstration of relevant parts of the desired software, and which are able to 
be combined with other processes in system development with a view to improving the 
quality of the target systems. Many software developers are motivated to employ 
prototyping by important conclusions drawn from their working experience. 
For performance evaluation, we follow the guidelines for empirical research in software 
engineering (Kitchenham, Pfleeger et al. 2002). The guidelines are intended to assist 
researchers, reviewers, and meta-analysts in designing, conducting, and evaluating 
empirical studies. For statistical evaluation, we use descriptive statistics as well as 
statistical tests. 

3.2.2 Evaluation Concept 

For investigating these research issues requirements were gathered from two application 
scenarios from two different industrial application domains. As next step, the EKB 
framework was applied and adapted to the special requirements of the particular 
application domain. For each of the two application scenarios (please refer to chapter 5 
and chapter 6), all required process steps needed for applying the EKB framework are 
described in detail. In addition, this thesis aims at identifying generic, domain-
independent concepts of the EKB framework which are summarized in chapter 4. 
For empirical evaluation (see chapter 7), the following evaluation criteria were 
established. We classified the evaluation criteria into three categories, namely general 
functionality, error recovery, and industrial application; with the main focus lying on 
the first category. 
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3.2.2.1 General functionality 

For the general functionality and runtime of the EKB framework, effectiveness, 
efficiency and performance are the major evaluation criteria as described below: 
 

• Effectiveness: the feasibility, validity and correctness of the proposed EKB 
framework regarding the original requirements, as well as the possibility to prac-
tically implement the EKB framework 

• Efficiency: the effort needed for setting up the EKB framework, as well as the 
effort needed for typical engineering tasks when supported by the EKB frame-
work 

• Performance: the run-time performance of the EKB framework, i.e., the time 
needed by the EKB framework to perform certain transformations or analyses 

3.2.2.2 Error recovery 

The EKB framework should be able to recover itself in case of errors, therefore the 
evaluation criterion robustness is the major evaluation criterion for this category as 
described below: 
 

• Robustness: the identification and handling of defects by the EKB framework, 
as well as the susceptibility of the EKB framework regarding typical failures in 
engineering processes 

3.2.2.3 Industrial application 

For industrial application and acceptance, the major evaluation criteria are scalability 
and usability of the proposed EKB framework, as described below: 
 

• Scalability: the extendibility of the EKB frameworks architecture, i.e., how well 
the performance of the EKB framework can be increased by increasing e.g., 
computational power 

• Usability: the usability of the EKB framework for typical non-IT personnel, e.g., 
from the production automation domain, as well as efforts needed for training 

65 
 



3.3 Application Scenarios 

The EKB framework is applied to two different applications domain, namely the Air 
Traffic Management (ATM) domain and the Production Automation domain to show 
the frameworks ability to adapt to changed domain-specific requirements. The 
following two subsections shortly describe the two application scenarios and their 
special characteristics. 

3.3.1 System Wide Information Sharing (SWIS) 

SWIS is targeted as an information sharing network within the Air Traffic Management 
domain. This domain is characterized by very demanding safety and security 
requirements as well as the need for high availability, leading to conservative IT 
structures at present. 
Today companies and organizations today operate in a highly complex environment 
requiring well-defined but flexible means for communication and cooperation that can 
be easily adapted to potentially frequently changing business processes. Traditionally, 
most organizations have developed IT infrastructures consisting of numerous stand-
alone applications, which are connected via point-to-point links. Such infrastructures 
cannot always support increasing demands for more flexibility and, in particular, more 
interpretability. Over the last years several approaches have been taken to solve this 
architecture problem, like Enterprise Application Integration as a concept and the 
Service Oriented Architecture. These approaches provide mechanisms for a flexible 
interconnection of various business applications in one domain. 
In the ATM case (see also Figure 18), many actors are involved (e.g. airports, airlines, 
military users, General Aviation, Air Traffic Service Providers, Air Traffic Flow 
Management instances, providers of meteorological and other data…). In the past, their 
actions and decisions were more or less de-coupled from each other; however, the 
expected growth of air traffic in the next decades is anticipated to force all ATM actors 
towards co-operative handling of virtually shared information during the entire life 
cycle of a flight. All ATM strategic documents regard the concepts of Collaborative 
Decision Making (CDM) and System-Wide Information Management (SWIM) as key 
enablers for sustained growth of air traffic. However, these high-level concepts imply 
an appropriate underlying technical solution for such co-operative handling of 
information is in place and that operational interoperability has been established 
between the involved actors. In other words, for the high-level concepts to work, a low-
level mechanism for information sharing shall be established and the corresponding 
operational procedures and practices agreed and installed at all actors’ premises. 
Currently, only relatively conservative communications capabilities and mechanisms 
can be found in some domains that cannot be really seen as a mean for information 
sharing. 
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Figure 18: Overview of an ATM environment (Moser, Mordinyi et al. 2009). 

In the ATM environment, the degree of heterogeneity of existing legacy systems, 
solutions, actors, their practices, and preferences may well preclude any “end-to-end” 
interoperable solution. It is essential to keep low-level information sharing mechanisms 
strictly de-coupled from high-level applications that rely upon these mechanisms. The 
demand for an improved solution in the ATM domain generates a need for the 
development of a “System-Wide Information Sharing Network” (SWIS) based upon 
adequate and sound concepts. SWIS has to enable sharing of information in a highly 
distributed environment, taking demanding requirements regarding performance, 
scalability, maintainability, safety and security into account. In a SWIS-based solution, 
SWIS should just provide basic harmonized mechanisms for information sharing that 
are required by all actors; each actor can then use these basic SWIS capabilities to make 
the best possible use of available information for his own local applications and 
operational purposes. 

3.3.2 Simulation of Assembly Workshops (SAW) 

The major goal of the Simulation of Assembly Workshops (SAW) project was to design 
and implement a simulator that uses a multi-agent system to represent an automated 
production system able to carry out specific production sequences. These assembly 
tasks are bedded into a production planning process which allows generating a complete 
production planning and control process cycle beginning from the request of goods by a 
customer towards the delivery at the end of the assembly line out of the inventory. The 
use of a simulator provides the advantage to find a nearly optimal solution to arrange 
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entities like machines, transport systems and robots or to try out different production 
strategies to fulfil incoming orders to reach the production goals. The simulator usage 
allows an easy entrance to verify all possible production sequences by changing the 
different production parameters influencing the process. Basing on the results various 
decisions can be made to optimize the calculated production plan. 
 

 
Figure 19: Screenshot of the SAW simulator (Merdan, Moser et al. 2008). 

The simulator realized in the SAW project (see Figure 19) bases on Multi-Agent 
Systems (MAS) and has its roots in the Distributed Artificial Intelligence (DAI) domain 
and is implemented using the Java Agent Development Framework (JADE)4. The 
various agents of the system act as community to solve the production problem handed 
over to the production simulator. The simulated system representation using several 
agents facilitates an efficient evaluation and optimization of the production system 
performance. The agents act autonomously and heterogeneously, taking their own 
knowledge and the received knowledge out of the communication with other agents in 
the environment and manage his next actions due to this information. So all agents in 
the system try to solve their own local task but always keep their common goal to 
achieve the production process in focus. The information transition between these 
agents is essential for the correct function of the system. For example a machine has to 
inform its logical predecessor in the production sequence, for example the crossing 
redirecting the goods to the transport system leading to the machine, that it is not 
reachable because of a damage to prevent the whole system for overall breakdowns. 
                                                 
4 http://jade.tilab.com/ 
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This interaction is realized using the Agent Communication Language of the Foundation 
for Intelligent Physical Agents (FIPA-ACL)5. 
The chosen assembly workshop of the SAW project is based on a miniature model 
situated at the Odo Struger lab of the Automation Control Institute (ACIN)6 at the 
Vienna University of Technology. The software simulator to build up the assemble line 
bases on the production system simulation kit origins from Rockwell Automation 
International Research situated in Prague (Vrba 2003). During the SAW project, this 
tool to create assembly lines out of agents like docking stations, machines, conveyor 
belts, crossings and sensors was enhanced with further intelligence to be able to 
simulate more complex behaviours, e.g. sorting machines and waiting loops, which are 
needed to simulate the production of more complicated products consisting of parts 
where the assembly sequence is important. 
Furthermore the simulator of Rockwell is extended with coordination agents that 
represent the interface between the more business-oriented layers which are responsible 
for the order dispatching and the rather technical layer responsible for the workshop 
floor simulation. By feeding this simulation system with different parameter settings, it 
can be used as a test system for various possible scheduling strategies on an assembly 
line with redundant machines. This parallel machine scheduling problem is defined as a 
production system that has to fulfil the outlined tasks on the available machines with the 
constraints of a number of underlying conditions. The simulator tries to find out the 
obvious production sequence for the tasks. Taking all these facts into consideration the 
production system represented by the simulator can be defined as a closed-queuing 
transfer network with redundant paths through the different lines and nodes. 
The focus of the SAW project lies on the design process of the described simulator. 
Therefore the whole production process beginning on the business layer down to the 
technical execution layer with the in between lying simulation possibility to optimize 
the production planning has to be analyzed and represented. A central coordination 
component needs a global view onto the system to make proper decision which 
management and production steps are useful to be done next. This coordination is done 
by a so called “dispatcher” who interprets all available information in the system to 
calculate an adequate solution or tries out different possibilities by using the 
possibilities of the simulation if there is enough time. This dispatcher acts upon 
coordination patterns which guarantee the hierarchical organisation of the agents within 
the system. It is a kind of decision hub coordinating the communication between the 
upper business layer (where the dispatcher is rather situated in and acting from) and the 
down lying technical/operational layer of the workshop (where the production entities 
represented by agents fulfil their assigned working tasks). 
The production planning and control process allows a well arranged layer view onto the 
production process. The layer concept provides a view for all the different involved 
                                                 
5 http://www.fipa.org/repository/aclspecs.html 
6 http://www.acin.tuwien.ac.at/ 

69 
 



roles during the production process. Hence, the break-down process of incoming orders 
to single working steps for machines can be separated into layer which fit to their level 
of aggregation. Figure 20 shows the separation of the business process of the production 
in an organization into different layers basing on the various views of involved roles. 
Each role has different responsibilities and passes information to the other roles leading 
to a top-down information flow as well as to a bottom-up up flow of the same 
information. 
 

 
Figure 20: SAW layer model for production processes (Moser, Merdan et al. 2010). 

Based on this layer concept, the business process cycle of the production planning and 
control together with a simulation of incoming order towards the real-life production, 
leads to the identification of various layers in the project in congruence to the 
introduced layer concept. Because of the large quantity of information processed during 
the production and the different roles which are only interested in relevant information a 
further consideration about the data management had to be done. The dependencies of 
role specific data, the resulting data structures and the congruency with the layer 
concept leaded to the approach to realize a knowledge base by using the technology of 
ontologies. Ontologies also provide the possibility to separate information on several 
self defined layers with using the area concept. 
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4 Engineering Knowledge Base Framework 

This chapter summarizes the proposed Engineering Knowledge Base (EKB) framework. 
In the first section, an overview of the framework is given, as well as an explanation of 
the used technologies and preconditions for the usage of the EKB framework. In 
addition, the first section summarizes challenges of the EKB framework and tries to 
classify the approach regarding related approaches. The second section presents usage 
scenarios that could benefit from using the EKB framework. Finally, the third section 
details the generic architecture of the EKB framework as well as the two major phases 
of the process of using the EKB framework. 

4.1 Overview 

Industrial automation systems depend on distributed software to control the system 
behavior. The behavior of automation systems must be testable and predictable to meet 
safety and quality standards. Modern automation systems have to be designed for better 
interoperability and flexibility to satisfy increasing customer needs for product variety, 
manufacturing agility, and low cost. In systems engineering, software engineering tasks 
depend on specification data and plans from a wide range of engineering expert 
domains in the overall engineering process, e.g., physical plant design, mechanical, and 
electrical engineering, and production process planning. This expert knowledge is 
embodied in domain-specific standards, terminologies, people, processes, methods, 
models, and software (Lüder, Peschke et al. 2004). 
However, a major challenge in current industrial development and research approaches 
is insufficient semantic model integration between the expert disciplines (Schäfer and 
Wehrheim 2007; Biffl, Sunindyo et al. 2009). Different and partly overlapping 
terminologies are used in these expert disciplines, which hampers understanding. 
Consequently, the weak tool support for semantic integration of the expert knowledge 
across domain boundaries hinders flexible engineering process automation and quality 
management, leading to development delays and risks for system operation. 
The strategic goal of making the systems engineering process more flexible without 
delivering significantly more risky end products translates into the capability to 
efficiently re-configure the engineering process and tool instances of a project 
environment. While there are approaches based on a common repository that holds all 
relevant project data (Schäfer and Wehrheim 2007), experience has shown that such a 
repository tends to get large, inflexible, and hard to maintain surprisingly fast, which 
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makes the knowledge in the repository hard to reuse in new projects. Further, if several 
organizational units are involved in a project, even agreeing on a common data model is 
difficult. Thus a key goal is to allow all participants to continue using their own data 
models and provide a mechanism for translation between these data models. In the past 
several approaches for providing engineering knowledge in machine-understandable 
syntax have been investigated (McGuire, Kuokka et al. 1993; Lovett, Ingram et al. 
2000; Liao 2005). However, these approaches focus primarily on storing existing 
homogeneous knowledge rather than providing support for managing and accessing 
heterogeneous knowledge, which is the focus of this thesis. 
 

 
Figure 21: Overview Semantic Integration Approach (Moser, Biffl et al. 2010). 

In this thesis, we introduce an generic approach for semantic integration in systems 
engineering (see Figure 21) with a focus on providing links between data structures of 
engineering tools and systems to support the exchange of information between these 
engineering tools and thus making systems engineering more efficient and flexible. Our 
approach is the so called Engineering Knowledge Base (EKB), an ontology-based data 
modeling approach which support explicit modeling of existing knowledge in machine-
understandable syntax. Therefore, we can automate on project level processes that build 
on this machine understandable knowledge The EKB framework stores the engineering 
knowledge in ontologies and provides semantic mapping services to access design-time 
and run-time concepts and data. The EKB framework aims at making tasks, which 
depend on linking information across expert domain boundaries, more efficient. A 
fundamental example for such engineering tasks is checking the consistency and 
integrity of design-time and run-time models across tool boundaries (Moser, Biffl et al. 
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2010). The numbered tags in Figure 21 represent the process steps and major 
components of the EKB framework and are explained in detail in section 4.3.1. 
The top part of Figure 21 illustrates the use case scenario with the EKB framework for 
engineering a production automation system. In this example, there are two types of 
engineers (electrical engineer, software engineer) who come from to different 
engineering domains respectively. These roles use specialized engineering tools for 
their tasks. These tools contain local data sources, which produce and/or consume data 
with heterogeneous data structures. The EKB is used to facilitate the efficient data 
exchange between these engineering tools and data sources by providing a so-called 
“virtual common data model”. Based on this data exchange, more complex engineering 
process tasks like model checking across tools are supported. The bottom part of Figure 
21 shows the internal architecture of the EKB, which is described in more details in 
section 4.3.1. 

4.1.1 Used Technologies 

This section shortly summarizes the major technologies used for the implementation 
and usage of the EKB framework. 

4.1.1.1 Jena 

Jena7 is an open source java framework for building semantic web applications. Jena 
evolved during the work with the HP Labs Semantic Web Research. Jena provides 
API’s for RDF, RDFS, OWL and SPARQL. Further a rule-based inference engine is 
offered by the framework. A benefit of Jena is that it is documented well and many 
helpful examples do exist. In Jena, a separate graph structure holds each imported 
ontology document. This fact is most important, otherwise it would be impossible to 
trace where a statement came from. Each arc in an RDF model is called a statement. 
Each statement asserts a fact about a resource. A statement is a triple consisting of a 
subject, predicate, and object. The subject is the resource from which the arc leaves. 
The predicate is the property that labels the arc and the object is the resource or literal 
pointed to by the arc. 

4.1.1.2 Apache Lucene 

Apache Lucene8 is an API for a search engine allowing efficient text search of large 
archives. The basic unit of Lucene is a “document” which contains “fields”. Every 
                                                 
7 http://jena.sourceforge.net/ 
8 http://lucene.apache.org/ 

74 
 



document along with its fields is stored in a central index, where the data is rearranged 
in a way to allow fast lookup by any combination of fields. This is very similar to the 
main EKB concept, with the exception that in Lucene not all document fields (~key-
value pairs of GenericContent) may be indexed and/or optimized for search. Large 
base64-strings, i.e. the binary content of any proprietary file format may not be 
accessible by search, only metadata such as name, date, author and so on may lie in the 
index; the remaining data will be persisted. 

4.1.1.3 Java Content Repository (JCR) 

Java Content Repository9 (JCR) Specification states that its motivation is to provide a 
“common programmatic interface to (...) [content] repositories”. JCR was designed to 
specify an API to mediate between different types of data storages to provide a generic 
and centralized view, thus providing full data integration. JCR defines three levels of 
compliance, “Level 1”, basically defining read-only access, export and the data 
representation, “Level 2”, which is mostly about write access and “Optional/Full 
compliance” which adds transactions and versioning. The basic representation of data is 
a “repository” that holds a tree of “nodes” with “properties”, not to be confused with 
leaves, that contain the actual data. Nodes may also hold an ID for direct reference (i.e. 
if the data to integrate is based only on keys and not on hierarchical structures) and can 
be versionable. Further features of JCR include XPath-and SQL-like queries (at the 
same time), user access control and distributed repositories. 

4.1.1.4 Protégé 

Protégé10 is an open source ontology editor and knowledge-base framework. Protégé 
was developed by Stanford Center for Biomedical Informatics Research at the Stanford 
University School of Medicine. With the framework it is possible to export the Protégé 
ontologies into a variety of formats namely RDF(S), OWL, and XML schema. At its 
core, Protégé implements a rich set of knowledge-modeling structures and actions that 
support the creation, visualization, and manipulation of ontologies in various 
representation formats. Protégé can be customized to provide domain-friendly support 
for creating knowledge models and entering data. Further, Protégé can be extended by 
way of a plug-in architecture and a Java-based Application Programming Interface 
(API) for building knowledge-based tools and applications. 
The Protégé platform supports two main ways of modeling ontologies, in this thesis we 
primarily focus on the second way: 
 
                                                 
9 http://jcp.org/en/jsr/detail?id=283 
10 http://protege.stanford.edu/ 
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• The Protégé-Frames editor enables users to build and populate ontologies that 
are frame-based, in accordance with the Open Knowledge Base Connectivity 
protocol (OKBC). In this model, an ontology consists of a set of classes orga-
nized in a subsumption hierarchy to represent a domain's salient concepts, a set 
of slots associated to classes to describe their properties and relationships, and a 
set of instances of those classes - individual exemplars of the concepts that hold 
specific values for their properties. 

• The Protégé-OWL editor enables users to build ontologies for the Semantic 
Web, in particular in the W3C's Web Ontology Language (OWL). An OWL on-
tology may include descriptions of classes, properties and their instances. Given 
such an ontology, the OWL formal semantics specifies how to derive its logical 
consequences, i.e. facts not literally present in the ontology, but entailed by the 
semantics. These entailments may be based on a single document or multiple 
distributed documents that have been combined using defined OWL mechan-
isms. 

4.1.1.5 SPARQL 

SPARQL11 is an RDF query language; its name is a recursive acronym that stands for 
SPARQL Protocol and RDF Query Language. It was standardized by the RDF Data 
Access Working Group (DAWG) of the World Wide Web Consortium, and is 
considered a key semantic web technology. On 15 January 2008, SPARQL became an 
official W3C Recommendation. SPARQL allows for a query to consist of triple 
patterns, conjunctions, disjunctions, and optional patterns. Furthermore, SPARQL 
queries hide the details of data management, which lowers costs and increases 
robustness of data integration on the Web. 

4.1.2 Scope and Preconditions 

The scope of the EKB framework is the support of multi-disciplinary engineering teams 
that produce software. Each discipline has specific engineering models and tools. These 
engineering models work well for the specific discipline or expert, but are not well 
designed for interdisciplinary cooperation. These engineering teams follow an (at least 
implicit) engineering process, e.g. the V-Model XT (activities, roles, tools) (Broy and 
Rausch 2005). 
The target audience of the EKB framework are the following three stakeholder classes: 
engineering domain experts, knowledge beneficiaries and ontology experts. Engineering 
                                                 
11 http://www.w3.org/TR/rdf-sparql-query/ 
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domain experts, e.g., engineers, want to effectively and efficiently follow their 
engineering process. However, often problems like high effort to perform tasks like 
change impact analyses or model checks across domain boundaries or risk of defects 
hinder them in following their engineering process. Knowledge beneficiaries, e.g., 
project or quality managers, want to monitor, control and improve engineering 
processes. This intention is often complicated by the needed high effort for performing 
cross domain process analyses, as well as by the impossibility to easily re-use these 
analyses in other projects. Finally, ontology experts, e.g., semantic technology expert 
with general engineering know-how, want to design and validate semantic solutions in 
an engineering application context. 
The major precondition for using the EKB framework is a working communication link 
between the engineering tools to be integrated. An existing approach to (re-)integrate 
the tools has, among other solutions, led to the concept of the Enterprise Service Bus 
(ESB) (Chappel 2004). Its idea is to provide a common infrastructure for tools to 
communicate with each other. However, current ESB implementations only provide 
limited possibilities for integration out of the box. The Open Engineering Service Bus 
(OpenEngSB) (Biffl, Schatten et al. 2009) aims at extending the capabilities of an ESB 
by introducing “tool domains”. Any tool used is considered to have two properties; 
First, it is part of a workflow (else no integration would be required) and second, it can 
be replaced by another tool providing similar functionality (even if this may only be a 
newer or older version of the same tool). The first property implies that tool domains 
are in some relation to other tool domains which can be abstracted from the specific 
tools. The second property leads to the conclusion that every tool of a domain has a 
similar data model and provides certain services which are usually a single step of a 
workflow. Therefore tool domains can be used when modeling workflows with no need 
to explicitly address tools. This abstraction of course leads to the necessity of “tool 
connectors” used to connect a tool to its corresponding tool domain. With tool domains 
available, existing workflows can be improved, supervised and assisted more easily. 
This helps engineering groups to increase their efficiency by ensuring a correct and 
complete flow of information and a proper chain of actions. Creation and tracing of 
these workflows is required by engineering process engineers who describe workflows 
on a domain level (i.e., tool-independent) and by project and quality managers who 
need to trace and validate processes across tool boundaries. 

4.1.3 Classification of the Engineering Knowledge Base Framework 

This section tries to classify the novel EKB framework by providing on the one hand 
side differentiations to other technologies and approaches, and on the other hand side by 
mentioning limitations of related approach which hinder an efficient and effective 
realization. 
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4.1.3.1 Usage of standards in development processes 

A possible solution approach is the usage of standards (e.g., RUP12, SysML13) for 
platforms, data models, modeling languages and tools in the development process. This 
works well, if the standard is defined in an early phase of the project and if all project 
partners adhere to the standard, however, it is hard to define and maintain standards for 
cross-domain engineering, and even harder or nearly impossible for a larger number of 
project partners to agree on a standard, which usually takes longer than the time horizon 
of the project (Kruchten 2000; Weilkiens 2008). 
The Systems Modeling Language (SysML) is a general-purpose modeling language for 
systems engineering applications. It supports the specification, analysis, design, 
verification and validation of a broad range of systems and systems-of-systems. SysML 
was originally developed by an open source specification project, and includes an open 
source license for distribution and use. SysML is defined as an extension of a subset of 
the Unified Modeling Language14 (UML) using UML's profile mechanism. SysML 
reuses seven of UML 2's thirteen diagrams, and adds two diagrams (requirements and 
parametric diagrams) for a total of nine diagram types. 
The advantages of SysML over UML for systems engineering become obvious if you 
consider a concrete example, such as modeling an automotive system. With SysML you 
can use Requirement diagrams to efficiently capture functional, performance and 
interface requirements, whereas with UML you are subject to the limitations of Use 
Case diagrams to define high-level functional requirements. Likewise, with SysML you 
can use Parametric diagrams to precisely define performance and quantitative 
constraints. UML provides no straightforward mechanism to capture this sort of 
essential performance and quantitative information. 
However, many projects do not yet use a common data schema which could be 
represented using SysML; therefore it is important to provide mechanisms allowing also 
participants with different heterogeneous data models to cooperate. 

4.1.3.2 Usage of common project repositories 

The usage of common project repositories (“data dumps”) is a typical solution for 
modern data-driven tool integration which well solves the challenges of persistency and 
versioning of data, but poses new challenges since the stored data often is hard to access 
and query. Databases that are widely used in an engineering context do not allow the 
storage of heterogeneous concepts and also do not store meta-information. 
Bernstein and Dayal (Bernstein and Dayal 1994) define a repository as “shared 
database of information about engineered artifacts produced or used by an enterprise”. 
                                                 
12 http://www-01.ibm.com/software/awdtools/rup/ 
13 http://www.omgsysml.org/ 
14 http://www.omg.org/spec/UML/2.2/ 

78 
 



Examples of such artifacts include software, documents, maps, information systems, 
and discrete manufactured components and systems (e.g., electronic circuits, airplanes, 
automobiles, industrial plants). Storing this information in a common repository has 
several benefits. First, since the repository provides storage services, tool developers do 
not need to create tool-specific databases. Second, a common repository allows tools to 
share information so they can work together. Without a common repository, special 
protocols would be needed for exchanging information between tools. By conforming to 
a common data model (i.e., allowable data formats) and information model (i.e., schema 
expressed in the data model), tools can share data and metadata without being 
knowledgeable about the internals of other tools. Third, the information in the 
repository is subject to common control services, which makes sets of tools easier to 
use. Since a repository is a database, it is subject to database controls, such as integrity, 
concurrency, and access control. However, in addition, a repository system provides 
checkout/checkin, version and configuration control, notification, context management, 
and workflow (Heiler 1995). 
However, Bernstein and Dayal (Bernstein and Dayal 1994) state that it is unavoidable 
that many tools will, for the foreseeable future, have replicated heterogeneous 
repositories, for the following reasons: 
 

• Many existing tools are already committed to a private repository implementa-
tion, e.g., database systems. These repositories are already well-tuned to the 
tool’s performance requirements. 

• Many tools need to be portable across operating systems. Therefore, they can 
only depend on a repository manager that runs on those operating systems and 
there are few such products on the market. 

• In an object-oriented world, some objects will be designed to maintain some 
state that describes the object. It will be some time before repository technology 
is so mature that all objects will entrust all their state to a shared repository man-
ager. 

Thus, the problem of maintaining consistent heterogeneous repositories must be faced. 
Or we will have to wait for a repository technology to dominate the product world and 
for tools to be written or re-written to use that technology. 

4.1.3.3 Complete Transformation between project data models 

The ultimate alternative solution is the complete transformation between data models of 
tools, i.e., the translation of engineering model parts from one tool for work in another 
tool. While the vision of this solution is the seamless cooperation between project 
partners using well-known and established tools and notations, the feasibility of this 
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approach is hard to verify and the effort required for establishing the needed 
transformations is considerable. 
In the Modale15 project, Assmann et al (Assmann, Dörr et al. 2005) developed an 
ontology-based data integration approach in order to realize a seamless integration 
between cooperating partners in the field of digital production engineering. The major 
obstacle was the syntactic, structural and semantic heterogeneity of the internally used 
tools in the digital production engineering domain. As proof of concept, the researchers 
have also provided a web-service based prototypic implementation of their approach. 
However, many questions still remain open, requiring more research effort to be 
invested. The main directions that concern in the short to medium term revolve around 
the following: 
 

• a methodology that allows an efficient (even automatic) construction of the ne-
cessary models and semantic bridges 

• standardized, domain-specific extensions to which would allow a very short 
start-up time for projects 

• issues concerning the integration with each partner’s internal processes, in order 
to achieve minimal disturbances in their existing workflows 

4.2 Exemplary Usage Scenarios of the Engineering Knowledge 
Base Framework 

This section details four exemplary usage scenarios of the EKB framework in the 
context of production automation systems engineering, namely the most basic usage 
scenario, data-exchange between tools, as well as three more advanced usage scenarios, 
namely model consistency checking across tool boundaries, impact analysis of model 
value changes, and end-to-end analysis. 

4.2.1 Data-Exchange Between Tools 

To cooperate the engineers have to exchange relevant parts of the data structures (i.e., 
information required in another tool should become available as soon as it has been 
saved in the original tool) in their tools with each other with the goal of a consistent 
overall view on certain aspects in the project, e.g., when producing a specification for a 
subcontractor. Currently, every role uses organization-, domain-, and tool-specific data 
formats and terms, thus the data exchange takes considerable expert knowledge on the 
                                                 
15 http://www.modale.de 
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receiving end to make sense of the incoming data, typically as large PDF document or 
tool-specific import file. 
In the SAW context (refer to section 3.3.2), the different types of experts may have their 
own terminologies. However, at the interfaces between their processes these experts 
need to have common concepts to cooperate. For example, the business manager uses 
the term “client purchase”, while the software engineer uses the term “business order” 
for the same concept. The ontology allows mapping between both terms to common 
concept called “customer order”, so we can have a translation between business 
manager and software engineer. 

4.2.2 Model Consistency Checking Across Tool Boundaries 

Model checking, i.e., the validation of model data elements regarding their integrity and 
consistency, typically is performed at project milestones before the model elements can 
be used in the next stage of engineering. For a safety-critical domain such as the 
production automation domain, model checking is required for obtaining relevant 
system certifications. Currently, model checking is limited to single engineering tools or 
engineering domains. In addition to syntactical checks, plausibility checks of model 
elements regarding their usage in other engineering domains are needed. 
In the SAW research system (refer to section 3.3.2) model checks are necessary after 
concurrent engineering model changes to ensure that models do not violate design 
constraints. Design-time model checks include checking the workshop layout validity 
and the availability of all machine functions needed for valid production orders. Run-
time model checks include checking sufficient machine capacity for producing orders 
planned for a shift and checking the impact of relevant machine/conveyor failures on 
the overall production output. 

4.2.3 Impact Analysis of Model Value Changes 

In difference to single system models, where changes of model values have direct 
impacts on other model elements, model value changes in cross-domain modeling 
require additional transformation and checks before the actual impact of a value change 
can be estimated or measured. In the SAW context (refer to section 3.3.2), model 
checks are necessary after concurrent engineering model changes to ensure that models 
do not violate design constraints. Design-time model checks include checking the 
workshop layout validity and the availability of all machine functions needed for valid 
production orders. Run-time model checks include checking sufficient machine capacity 
for producing orders planned for a shift and checking the impact of relevant 
machine/conveyor failures on the overall production output. 
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4.2.4 End-to-End Analysis 

In distributed engineering in heterogeneous environments, typically a set of different 
models is used along the engineering chain. In order to ensure validity and consistency 
of the overall engineering process, it is important to ensure that required data fields can 
be enforced during the whole lifecycle of the engineering chain (Moser, Winkler et al. 
2010). 
 

 
Figure 22: Overview End-to-End Analysis (Moser, Winkler et al. 2010). 

In the SAW context (refer to section 3.3.2), this may be defined as a list of hardware 
sensors and software variables (as shown in Figure 22), which are connected to a system 
interface by virtual links in models or by wiring in the real-world. Internally, the signals 
are mapped from the system interface to a software interface, where these signals are 
represented as variables. A typical consistency and validity check may be used to check 
whether there exist any incomplete chains between variables and sensors. 

4.3 Architecture and Process of the Engineering Knowledge 
Base Framework 

This section introduces the Engineering Knowledge Base (EKB) framework, describes 
the EKB architecture and pictures the process for establishing and using the EKB 
framework. For understandability reasons, an example from the production automation 
engineering domain is chosen. The EKB framework consists of two major phases: the 
preparation of the engineering environment and the use of the project environment in 
the engineering process. This separation could also be seen as a separation into design 
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time and runtime usage of the EKB. During design time, the data structures and model 
of the local engineering tools are described and mapped to more general common 
engineering concepts, while during runtime transformation instructions, which are 
derived from the design time knowledge, are executed in order to convert data to the 
required target format. 

4.3.1 Generic Engineering Knowledge Base Architecture 

This section describes the internal architecture of the EKB, as shown in the bottom part 
of Figure 21. The general mechanism of the EKB framework uses common engineering 
concepts identified beforehand as basis for mappings between proprietary tool-specific 
engineering knowledge and more generic domain-specific engineering knowledge to 
support transformation between these engineering tools (Moser, Biffl et al. 2010). In the 
following, the internal architecture of the EKB is described in detail; the numbers 
directly refer to the numbered tags in Figure 21. 

4.3.1.1 Extraction of Tool Data (1) 

As first step, the data elements contained in a particular tool need to be extracted in 
order to be available to the EKB framework. Since by now only a few engineering tools 
provide APIs for directly accessing the contained data, the export functionality of the 
tools is used. The exported data then is parsed and transformed into an internal format 
consisting of key-value pairs for each data attribute, which is easier to handle in the 
later steps. 

4.3.1.2 Storage of Extracted Tool Data (2) 

The extracted and transformed key-value pairs are stored using a Java Content 
Repository (JCR) implementation, the so-called Engineering Data Base (EDB). For data 
storage, a tree structure is used, and additional functionality like versioning or roll-back 
is provided. The EDB is indexed and can be queries using Apache Lucene. 

4.3.1.3 Description of Tool Knowledge (3a) 

The tool ontologies define the engineering-tool-specific, proprietary view on the 
information exchanged (e.g., a list of signals) in an integration scenario. This includes 
the view on the format of the information, but can also describe the meaning or the use 
of the specific view on the existing information, since there can exist multiple views for 
the same information. The most important part of this description is the definition of the 

83 
 



exchanged information, i.e., the definition of the data structures either provided or 
consumed by a tool. 

4.3.1.4 Description of Domain Knowledge (3b) 

The domain ontology contains the relevant shared knowledge between stakeholders in 
the particular application domain (in our case the Production Automation domain) and 
hence represents the collaborative view on the information exchanged in an integration 
scenario. In addition, the domain ontology is the place to model standardized domain-
specific information (e.g., the description of concepts used throughout an application 
scenario such as the application domain independent description of business orders or 
machines in the context of production automation systems). The proprietary information 
of the engineering tools, which is defined in the tool ontologies, is mapped to the more 
general information of the domain ontology in order to allow the interoperability with 
other engineering tools. In contrast to a common data schema, the knowledge stored in 
the domain ontology is defined on a more general domain level compared to the 
knowledge stored in the tool ontologies. 
This particular domain-specific knowledge described in the domain ontology can easily 
be updated or transferred to other EKB-based integration scenarios residing in the same 
domain. This approach allows a broad spectrum of new applications in a particular 
domain to benefit from the described domain knowledge. 

4.3.1.5 Mapping of Tool Knowledge to Domain Knowledge (4) 

Each data structure segment described in the tool ontology is mapped to either exactly 
one particular corresponding domain concept or domain concept attribute described in 
the domain ontology, or to e.g., all inherited sub-concepts of a target concept. In 
addition, the granularity of the mapped elements does not need to be the same, so that 
e.g., a concept can be mapped to the attribute of another concept, or vice versa. This 
defines the semantic context of the information contained in the segment and allows the 
detection of semantically similar information consumed and produced by other 
engineering tools. In addition, the format of the information is described, enabling an 
automated transformation from source to target format. 

4.3.1.6 Usage of the EKB (5) 

The mapping of concepts described in the tool ontologies to common concepts 
described in the domain ontology allows the creation of transformation instructions. 
These transformation instructions are the foundation to transform data structures 
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between two engineering tools, because the engineering tools may label or format their 
data structures in different ways. 
Due to the mappings between tool ontologies and domain ontology data structures that 
are semantically equal can be identified, because they are either aligned to the same 
domain concept or belong to the same tree segment in the concept tree described in the 
domain ontology. The transformation instructions can be defined in XML syntax and 
consist of at least one input and output data structure segment. The segments contain a 
unique ID and instructions, how the input segment is transformed to an output segment. 
There is a set of basic transformations that can be combined to more complex 
transformations, like changing the name of a segment, converting the format using 
converters, merging or splitting a set of input segments or querying external services for 
transformation (Moser, Schimper et al. 2009). Based on these transformations, more 
complex applications can be implemented which use the integrated data of the virtual 
common data model to perform advanced tasks like tracing of artifacts, consistency 
checking across tool boundaries, change impact analyses or notification of stakeholders 
in case of changes. 
Now that we have described the general mechanism and the internal architecture of the 
EKB framework, the next step is the setup and configuration of the EKB framework. As 
described in (Biffl, Schatten et al. 2009), we suggest to use an enterprise service bus-
based approach to integrate engineering tools by describing the data structures they 
produce and consume as services. The EKB framework acts as a component in the 
proposed technical integration solution, which performs its transformation service on 
the message transmitted using the enterprise service bus. After the EKB is set up and 
configured properly, we show how the EKB framework supports typical engineering 
tasks, illustrated in the context of the SAW production automation research system. 

4.3.2 Preparation of the Engineering Environment 

This section describes the process for the preparation of the engineering environment 
using the EKB framework in more details. Figure 23 gives an overview of the process 
for the preparation of engineering environments. The following sections describe each 
process step in details. 
As already mentioned, the EKB framework supports engineering process which are not 
yet fully automated and include media breaks requiring tedious and error-prone manual 
human work tasks, e.g., re-entering information in other tools because there is no 
connection between these tools possible yet. Another prerequisite is the solved technical 
integration, which means that the communication between the engineering tools is 
established and working correctly, e.g., by using an Engineering Service Bus (Biffl, 
Schatten et al. 2009). After all these technical heterogeneities have been addressed and 
solved, there still exist semantic heterogeneities between the involved tools respectively 
between their underlying data models. That means that either two or more models use 
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different terminologies for the same concepts or that the concepts are defined and used 
using different levels of granularity. Goh (Goh 1996) and (Halevy 2005) classified 
semantic heterogeneities into three main categories: confounding conflicts (e.g., 
equating concepts are actually different), scaling conflicts (e.g., using different units for 
the same concept), and naming conflicts (e.g., synonyms and homonyms). The EKB’s 
focus of addressed semantic heterogeneities are confounding conflicts and naming 
conflicts. 
 

 
Figure 23: Preparation of the Engineering Environment. 

4.3.2.1 Identify overlapping engineering concepts 

As a first step for the preparation of the engineering environment, the involved models 
are analyzed to identify overlapping concepts between pairs of engineers and their tools. 
The top of Figure 24 shows the engineering tool data models of three different 
engineering roles: namely process engineer (blue), electrical engineer (orange), and 
software engineer (green). Each of these data models consists of a set of local concepts, 
as well as a set of common concepts display in the intersection of the three models 

86 
 



(white). The goal of this process step is to identify the used common concepts of all 
participating engineering roles respectively of their used tools and the underlying data 
models. A good starting point is both the analysis of the interfaces or export artifacts of 
the involved engineering tools, as well as the identification and analysis of available 
standards in the problem domain (e.g., AutomationML for the automation engineering 
domain). 
 

 
Figure 24: Identification of common concepts across disciplines (Biffl 2009). 

AutomationML16 (Automation Markup Language) is a neutral data format based on 
XML for the storage and exchange of plant engineering information, which is provided 
as open standard. Goal of AutomationML is to interconnect the heterogeneous tool 
landscape of modern engineering tools in their different disciplines, e.g. mechanical 
plant engineering, electrical design, etc. AutomationML describes real plant 
components as objects encapsulating different aspects. An object can consist out of 
other sub-objects, and can itself be part of a bigger composition. It can describe a screw, 
a claw, a robot or a complete manufacturing cell in different levels of detail. The result 
of this analysis typically is a set of overlapping engineering concepts used in the 
engineering process. While this has proven to be true for well-established projects, the 
overlapping engineering concepts may not yet be available. In order to support future 
engineering projects, the knowledge regarding existing engineering projects should be 
used to derive guidelines to support similar future engineering projects. 
                                                 
16 http://www.automationml.org 
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4.3.2.2 Describe overlapping common concepts in domain ontology 

Once the overlapping engineering concepts are identified, these concepts need to be 
described or modeled in the domain ontology. In order to support this process step, we 
assume that the overlapping engineering concepts as well as their relationships will be 
modeled using well-established modeling standards, e.g., UML or EER diagrams. The 
models can then easily be transformed into valid OWL ontologies, e.g., by using 
UML2OWL17. 
With the UML2OWL tool (Leinhos 2006) it is possible to transform an existing UML 
class diagram into a valid OWL DL document. Thereby, all UML concepts are 
maintained and transformed. Furthermore, no adjustments or additional enrichments 
(e.g. through stereotypes) are necessary. Every modeled data or information is 
transformed and maintained and the resulting OWL DL document can be used e.g. as 
common basis for application integration. 

4.3.2.3 Describe local tool-specific concepts in the tool ontologies 

Once the domain ontology has been derived from the models and revised, the local tool-
specific concepts need to be described or modeled in the particular tool ontologies. 
Again, we assume that for each of the used engineering tools at least some rudimentary 
data model exists, which again can be transformed into a valid OWL ontology using the 
UML2OWL tool. One important aspect is which non-overlapping concepts should be 
made available in the tool ontologies, because it is important to only store really 
essential non-overlapping information in the models to avoid big and unhandy tool 
ontologies. 

4.3.2.4 Map local tool-specific concepts to overlapping common concepts 

After the tool ontologies are derived and revised, the final step of mapping local tool-
specific concepts to overlapping common concepts needs to be performed. This is 
shown in the left bottom of Figure 24. Here, we differentiate between simple mappings 
and more complex mappings. Simple mappings are those which are obvious due to their 
identification and usage during the analysis of overlapping concepts, i.e., concepts 
which were “elevated” from the tool level to the domain level to allow data exchange. 
The identification of complex mappings is directly related to the research area of 
Ontology Alignment (refer to section 2.4.4). 
For performing the Ontology Alignment, we use the Ontology Alignment tool Lily 
(Wang and Xu 2007; Wang and Xu 2008). Lily is an ontology mapping system, and it 
has four main features: generic ontology matching, large scale ontology matching, 
                                                 
17 http://diplom.ooyoo.de 

88 
 



semantic ontology matching and mapping debugging. To accurately describe what the 
real meaning of an entity in the original ontology is, Lily extracts a semantic sub-graph 
for each entity. Then it exploits both linguistic and structural information in semantic 
sub-graphs to generate initial alignments. If necessary, using these initial results as 
input, a subsequent similarity propagation strategy could produce more alignments, 
which often cannot be obtained by the previous process. The outcome of the Ontology 
Alignment process is used to suggest possible mappings to engineering experts, the 
actual mapping then is performed manually, e.g., by accepting suggested mappings of 
the Ontology Alignment process. 
The mappings can then consecutively be used to enable transformation between 
different local tool concepts as shown in the right bottom of Figure 24 and as described 
in section 4.3.1.6. 

4.3.3 Use of the Project Environment in the Engineering Process 

This section describes the process for the use of the project environment in the 
engineering process using the EKB framework in more details. Figure 25 gives an 
overview of the process for the use of the project environment in the engineering 
process. In the following each process step is described in details. 
 

 
Figure 25: Use of the project environment in the engineering process. 
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As a first step for the use of the engineering environment, the overlapping engineering 
concepts described in the domain ontology are queried, using e.g., SPARQL (see 
section 4.1.1.5). This query is then automatically transformed into a set of queries on 
the tool ontologies, which include concepts that are mapped to the concepts of the 
domain ontology that were included in the original query. These tool ontology specific 
queries are then executed using the Jena framework (see section 4.1.1.1) and the results 
are fetched. These results then again are transformed into their representation in the 
domain ontology by exploiting the mappings between tool ontologies and the domain 
ontology. Finally, the combined results are returned using the representation described 
in the domain ontology. 
For an example of the use of the engineering environment for performing end-to-end 
analyses refer to section 7.1.4.2. 

 



Chapter 5 
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5 Semantic Modeling of Requirements and Ca-
pabilities for Configuration Derivation 

This chapter summarizes the results of applying the EKB framework to an application 
scenario from the Air Traffic Management domain, as described in section 3.3.1. The 
three major process parts, namely the modeling of the problem space, the modeling of 
the solution space and the matching of the problem and the solution space and the 
generation of system configurations, directly relate to the general three steps of the EKB 
framework. The modeling of the problem and solution space can be seen as a 
combination of the data integration and transformation step, while the matching of 
the problem and the solution space and the generation of system configurations can be 
seen as an advanced application provided by the EKB framework. 
In the first section, an overview of the application scenario and domain is given, as well 
as a detailed description of the specific requirements of this application scenario 
regarding the EKB framework. In the second section, the overall process used for the 
application scenario is introduced and explained superficially, while the following three 
sections describe the three major process parts, namely the modeling of the problem 
space, the modeling of the solution space and the matching of the problem and the 
solution space and the generation of system configurations, in more details. Finally, the 
sixth section concludes the chapter and summarizes limitations, extensions and specifics 
of applying the EKB framework to this specific application scenario. 

5.1 Overview 

In the Air Traffic Management domain complex information systems need to cooperate 
to provide data analysis and planning services, which consist in the core of safety-
critical Air Traffic Management services and also added-value services for related 
businesses. Air Traffic Management is a relevant and dynamic business segment with 
changing business processes that need to be reflected in the integration of the 
underlying information and technical systems. 
A major integration challenge is to explicitly model the knowledge embedded in 
systems and Air Traffic Management experts to provide a machine-understandable 
knowledge model for integration requirements between a set of complex information 
systems. Complex information systems consist of a large number of heterogeneous 
subsystems. Each of these subsystems may have different data types as well as 
heterogeneous system architectures. In addition, complex information systems typically 
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have significant quality-of-service demands, e.g., regarding security, reliability, timing, 
and availability. Many of today’s Air Traffic Management complex information 
systems were developed independently for targeted business needs, but when the 
business needs changed, these systems needed to be integrated into other parts of the 
organization (Halevy 2005). Most of the system knowledge is still represented 
implicitly, either known by experts or described in human-only-readable sources, 
resulting in very limited tool support for systems integration. The process of adapting 
the cooperation the business system is traditionally a human-intensive approach of 
experts from the Air Traffic Management and technology domains (Moser, Mordinyi et 
al. 2009). 
 

 
Figure 26: Explicit and Implicit ATM Expert Knowledge (Moser, Mordinyi et al. 2009). 

Making the implicit expert knowledge explicit (see Figure 26) and understandable for 
machines can greatly facilitate tool support for systems integrators and engineers by 
providing automation for technical integration steps and automatic validation of 
integration solution candidates. Consequently, we employ the EKB framework as a 
data-driven approach that explicitly models the semantics of the problem space, i.e., 
integration requirements and capabilities (Moser, Mordinyi et al. 2009); the solution 
space, i.e., the connectors, and data transformations between heterogeneous legacy 
systems (Mordinyi, Moser et al. 2009); and finally provide a process to bridge problem 
and solution spaces, i.e., find out whether there are feasible solutions and minimize the 
cost of integration (Moser, Mordinyi et al. 2009). 

5.2 Process Description 

This section describes a traditional UML-based integration process approach, and an 
EKB-based semantically-enabled integration approach that makes expert knowledge 
explicit to facilitate tool support. Both process variants are based on a generic 
integration process described in section 5.2.1 (Moser, Mordinyi et al. 2009). 
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5.2.1 Generic Systems Integration Process 

The generic systems integration process (see Figure 27) consists of 3 major steps: 1. 
modeling system requirements and capabilities, 2. derivation and optimization of an 
integration system configuration; and 3. lab/field testing and performance measurement. 
Between these major steps, Quality Assurance steps are needed for assuring both a 
correct working system model and a valid integration system configuration (Moser, 
Mordinyi et al. 2009). 

 
Figure 27: Generic System Integration Process Steps (Moser, Mordinyi et al. 2009). 

5.2.1.1 Modeling of Systems Requirements & Capabilities 

Subject Matter Experts provide systems knowledge to describe the data exchange 
requirements and capabilities of the participating legacy systems. This includes the 
descriptions of the interfaces to be shared, a detailed description of the exchanged 
messages types and a description of the global and/or local additional (non-functional) 
requirements of the systems (e.g., the maximal time allowed for message delivery). 
Output of this process step is a model representing the requirements and capabilities of 
the systems to be integrated. Typical requirement and capability models include a) 
communication contracts for defining the communication capabilities and requirements 
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of business systems; b) policies for reflecting interests of the organizations contributing 
to systems; and c) infrastructure capabilities for describing the topology and 
characteristics of the underlying network (Moser, Mordinyi et al. 2009). 

5.2.1.2 Requirements Quality Assurance 

QA personnel validate and check the model created in the previous step for defects and 
issues by comparing the knowledge captured in the model with the knowledge given as 
input to the modeling process step. In case of issues raised, these issues are reported 
back to the modeling step for resolution (Moser, Mordinyi et al. 2009). 

5.2.1.3 Systems Configuration Design & Optimization 

The Integration Expert (IE) uses the validated and checked model created in the first 
process step to derive as output a technical system configuration representing the 
integration solution for the participating legacy information systems (Moser, Mordinyi 
et al. 2009). 

5.2.1.4 Configuration Quality Assurance 

Quality Assurance personnel validate and check the system configuration created in the 
previous process step for defects and issues (e.g., unsuitable integration partners). This 
is achieved by comparing the knowledge captured in the systems configuration with 
both the knowledge captured in the system requirements and capabilities model as well 
as the knowledge given as input to the modeling process step. In case of issues raised, 
these issues are reported back to either the systems configuration creation step or the 
modeling process step for resolution (Moser, Mordinyi et al. 2009). 

5.2.1.5 Lab/Field Test and Performance Measurement 

The integration tester tests the validated and checked technical system integration 
configuration in lab and field tests to measure system performance characteristics 
(Moser, Mordinyi et al. 2009). 

5.2.2  Traditional (UML-based) Systems Integration Approach 

This section describes a traditional (i.e., UML-based) integration approach (see top 
process in Figure 28) (Moser, Mordinyi et al. 2009). 
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5.2.2.1 System Description 

For each legacy information system to be integrated, the Subject Matter Expert (SME) 
responsible for the particular system describes the requirements and capabilities of the 
system using human-readable language. The outcome of this process step is a set of 
legacy systems interface description documents (Moser, Mordinyi et al. 2009). 

5.2.2.2 Integration Partner Derivation 

In order to identify possible and select suitable integration partner legacy systems, the 
Subject Matter Experts of all participating systems, a domain expert (DE) who is 
capable of managing the knowledge involved in the problem domain and an integration 
expert (IE) who is responsible for the actual integration need to cooperate. The 
integration partner candidates are identified by the Subject Matter Experts by comparing 
the legacy systems interface description documents created in the previous step and by 
the domain expert by identifying similar knowledge represented in the participating 
systems. The integration expert then selects the best fitting integration partners from the 
pool of possible integration partners. The outcome of this process step is a set of 
accepted integration partners (Moser, Mordinyi et al. 2009). 

5.2.2.3 Transformation Instruction Generation 

In order to allow the interoperability between proprietary and heterogeneous legacy 
information systems, semantic transformation is needed at run time. Instructions are 
needed to perform these transformations. In this process step, the domain expert and the 
Subject Matter Experts of the particular affected system cooperate in order to derive 
these transformation instructions. The outcome of this process step is a document 
representing the transformation instructions needed for the integration solution (Moser, 
Mordinyi et al. 2009). 
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Figure 28: UML-based and EKB-based approaches (Moser, Mordinyi et al. 2009). 
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5.2.3 Engineering Knowledge Base-based Integration Approach 

This section describes the EKB-based semantically-enabled system integration 
approach (see bottom process in Figure 28). The following subsections summarize the 
process steps, with special regard to a continuous example from the ATM domain 
presented in Figure 29 (Moser, Mordinyi et al. 2009). 

5.2.3.1 Legacy System Description 

For each legacy information system to be integrated, the Subject Matter Expert (SME) 
responsible for the particular system describes the requirements and capabilities of the 
system using machine-understandable notations. In comparison to the traditional 
integration process, the outcome of this process step is a set of ontologies describing the 
requirements and capabilities of the legacy information system to be integrated, as well 
as the mapping of this information to general domain knowledge (Moser, Mordinyi et 
al. 2009). 
In the continuous example, there are 4 business systems on the left hand side which 
provide a total of 5 services that send messages, and 2 business systems on the right 
hand side which provide a total of 3 services that receive messages. The content of these 
messages is represented using a tuple-based notation. Additionally, services can define 
extra requirements, like secure transmission (Moser, Mordinyi et al. 2009). 

5.2.3.2 Domain Knowledge Description 

In addition to the description of the requirements and capabilities of the participating 
systems, the domain expert describes the common knowledge of the problem domain 
used in the integration scenario. This externalized domain knowledge is used by the 
Subject Matter Experts (SMEs) while describing the particular legacy systems, who 
map proprietary system information to more general knowledge represented in the 
domain ontology in order to overcome semantic gaps between legacy systems. On 
infrastructure level the network administrator (NA) describes the architecture and 
capabilities of the underlying network. The outcome of this process step is an ontology 
describing the shared problem domain knowledge as well as the integration network 
infrastructure. This domain ontology can be reused for several integration scenarios in 
this domain  (Moser, Mordinyi et al. 2009). 

98 
 



 
Figure 29: Continuous EKB-based example (Moser, Mordinyi et al. 2009). 
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The first part of the continuous example shows the description of the domain 
knowledge. The domain knowledge is exemplarily represented using a tuple-based 
notation plus a set of arrows to indicate relationships between domain knowledge 
elements, e.g., the element “FlightStatus” could either be defined using the element 
“Arrived” or the element “Departed”, or the elements “FlightNr” and “FlightID” can be 
treated equally. The second part shows the description of the integration network 
infrastructure. On the one hand, the architecture of the network is represented by a set of 
nodes and links which connect these nodes, on the other hands additional capabilities of 
nodes (e.g., secure transmission) are described (Moser, Mordinyi et al. 2009). 

5.2.3.3 Automated Integration Partners Derivation and Selection 

The externalized knowledge of the Subject Matter Experts (SMEs), the domain expert 
(DE), and the network administrator (NA) which was captured in the ontologies in the 
previous steps is used to automatically derive the set of possible Integration Partner 
candidates with ontology-based reasoning, allowing an easier and less error-prone 
identification of possible Integration Partners compared to the traditional integration 
process. The integration expert (IE) is responsible for choosing suitable Integration 
Partners from the set of possible Integration Partners derived in the previous step. The 
outcome of this process step is a set of accepted Integration Partners (Moser, Mordinyi 
et al. 2009). 
The first part of the continuous example shows the derivation of the possible Integration 
Partners. Based on the legacy system descriptions, the description and mapping of the 
domain knowledge and the description of the architecture and capabilities of the 
integration network, the possible sending and receiving service partners are derived 
using heuristics and ontology-based reasoning (Moser, Schimper et al. 2009). In the 
example, this is represented as a graph consisting of the possible collaborations (i.e., the 
services which are able to communicate) and the exchanged messages. The second part 
shows the mapping of these derived collaborations to the underlying network 
infrastructure. The example focuses on the collaboration between “PFIP” and 
“ATMIS”, showing that the request collaboration initiated by “PFIP” used the unsecure 
route via “Node X”, while the reply collaboration initiated by “ATMIS” used the secure 
(“red”) route via “Node Y”, as defined in the additional service requirements of the 
“ATMIS” business system (Moser, Mordinyi et al. 2009). 

5.2.3.4 Automated Derivation of Transformation Instructions 

In this process step, instructions for the transformations between the participating 
heterogeneous legacy systems selected in the previous step are automatically derived 
from the ontologies created in the first 2 process steps. The outcome of this process step 
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is a set of transformation instructions needed for the integration solution (Moser, 
Mordinyi et al. 2009). 
In the continuous example, 3 exemplary transformation instructions are generated, e.g., 
the transformation of the element “FlightNr” to the element “FlightID”, or the 
transformation of the element “TimeOfDeparture” to the element 
“FlightStatus(Departed)” (Moser, Mordinyi et al. 2009). 

5.2.3.5 Quality Assurance Steps 

There are 2 Quality Assurance steps in the EKB-based integration process, which can 
be very well supported with tools based on ontology-based reasoning. This allows a 
much faster and more reliable Quality Assurance compared to the traditional integration 
process and relieves scarce experts from tedious work (Moser, Mordinyi et al. 2009). 

5.3 Modeling of the Problem Space 

This section pictures the semantic modeling of heterogeneous knowledge using a set of 
ontologies as model. The ontology architecture  (Moser and Anjomshoaa 2007) is 
described in detail as well as the distribution of the modeled information among the 
layers (Moser, Mordinyi et al. 2009). 
The ontologies used as input models for the derivation of the system configuration are 
organized using a subdivided architecture, consisting of three different types of 
ontologies. The ontology types building the semantic model for a specific scenario are 
the abstract integration scenario ontology (AIS), the domain-specific ontologies, and the 
integration system ontologies (see Figure 30). The domain ontologies extend the 
abstract integration scenario ontology by adding concepts describing the common 
domain knowledge used. In addition, the integration system ontology uses the other two 
ontologies for aligning its concepts with the more general concepts defined in either the 
AIS or domain ontology (Moser, Mordinyi et al. 2009). 

5.3.1 Abstract Integration Scenario Ontology 

The abstract integration scenario (AIS) ontology is defined in an application-domain-
independent manner, allowing its use across different domains. This domain 
independent definition is a powerful mechanism to provide a flexible base for 
information sharing scenarios, completely independent of a particular domain. The 
terms in the AIS ontology are defined in an abstract way to simplify the conceivability 
of the use in different domains (Moser, Mordinyi et al. 2009). 
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Figure 30: Simplified Ontology Architecture Example (Moser, Schimper et al. 2009). 

5.3.2 Domain Ontology 

The domain ontology includes the main shared knowledge between stakeholders of the 
particular domain (e.g., ATM domain) and hence represents the collaborative view on 
the information exchanged in an integration scenario. In addition, the domain ontology 
is the place to model standardized domain-specific information. The customers map 
their proprietary in-formation, which is defined in the integration system ontologies, to 
the standardized information in order to allow the interoperability with other 
participants (Moser, Mordinyi et al. 2009). 
This domain-specific information is used for the detection of semantically identical 
information provided or consumed by participating applications or organizations, 
independent of the format or identifiers used for the information, and therefore 
improves or enables the communication between these organizations. The identification 
of possible integration partners is simplified and the tool-supported transformation of 
semantically identical information existing in different formats allows further 
communication between new partners (Moser, Mordinyi et al. 2009). 
This particular domain-specific knowledge described in the domain ontology can easily 
be updated or transferred to other EKB-based integration scenarios residing in the same 
domain. This allows a broad spectrum of new applications in a particular domain to 
benefit from the described domain knowledge. Instead of modeling the domain know-
ledge from scratch it is also possible to use as starting point a description of the problem 
domain, a so-called “world model”. The advantage of this approach is the reduced effort 
for modeling the domain knowledge; however a tradeoff exists in the complexity of 
typical “world model” ontologies, resulting in a longer waiting time when searching for 
concrete domain knowledge (Moser, Mordinyi et al. 2009). 
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5.3.3 Integration System Ontology 

The integration system ontology (ISO) defines the customer-specific, proprietary view 
on the information exchanged in an integration scenario. This includes the view on the 
format of the information (as required by the legacy application), but can also describe 
the meaning or the use of the specific view on the existing information, since there can 
exist multiple views for the same information. The ISO defines the structure of the 
legacy applications, services and messages, i.e., the services provided by a legacy 
application, the messages provided or consumed by a service and the message segments 
a message consists of, by adding instances of the concepts defined in either the AIS or 
domain ontology (Moser, Mordinyi et al. 2009). 
The most important part of this description is the definition of the exchanged 
information, i.e., the definition of the messages either provided or consumed by the 
legacy applications. The ISO describes the semantic context and the format of each 
message segment, supported by the domain expert. Each message segment is mapped to 
exactly one particular domain concept. This defines the semantic context of the 
information contained in the segment and allows the detection of possible collaborations 
for an integration scenario. In addition, the format of the information is described, 
enabling automated transformation between formats (Moser, Mordinyi et al. 2009). 

5.4 Modeling of the Solution Space 

This section describes the modeling of the solution space, separated into two 
subsections, namely the model-driven systems configuration (MDSC) and the 
integration platform (Mordinyi, Moser et al. 2009). 

5.4.1 Model-driven System Configuration 

This section describes the model-driven system configuration (MDSC) process (Moser, 
Mordinyi et al. 2009). As shown in Figure 31, the MSDC process consists of 5 major 
process steps. In the following subsections, these steps are explained in detail, with 
regard to the example data presented in Figure 31 (Mordinyi, Moser et al. 2009). 

5.4.1.1 Business Services in the ATM domain 

For each legacy information system to be integrated, the Subject Matter Expert (SME) 
responsible for the particular system describes the messages which are either provided 
or consumed by the business services provided. Both the structure (i.e., data types and 
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semantic meanings) and the format of the exchanged messages are described (Moser, 
Mordinyi et al. 2009). 
In the example, there are 2 business services shown on the on the left hand side, “CFC” 
and “ATMIS”. Additionally, 4 message types are presented using a tuple-based 
notation. The “CFC” service provides the “CFC-Message” consisting of information 
about a certain flight, i.e., flight number, departure and destination airport, planned time 
of departure and estimated duration of the flight. In contrast, the “ATMIS” service 
consumes the “ATMIS Message” consisting of additional flight information compared 
to the “CFC-Message”, namely the estimated day and time of arrival of a certain flight 
(Mordinyi, Moser et al. 2009). 

5.4.1.2 Requirement and Capability Models 

In addition to the description of the provided or consumed message of the participating 
business services, the business services define extra requirements regarding either 
possible integration partner candidates (i.e., other business services) or the underlying 
heterogeneous network infrastructure (Moser, Mordinyi et al. 2009). 
The example shows three different kinds of requirement and capability models. On the 
left hand side, the requirements of the “CFC” service regarding both the transmission 
using the underlying heterogeneous network infrastructure (e.g., the transmission needs 
to be both secure and reliable) as well as the required capabilities of possible integration 
partners (e.g., an integration partner services has to be an Austrian governmental 
service) are presented exemplary. In the middle, the capability models of business 
services are shown exemplary. E.g., the “ATMIS” service has a defined service location 
of “Austria”, and the “CFC” service has a defined retransmission interval of 2 seconds. 
On the right hand side, the capability models of the underlying integration network 
infrastructure are presented. The integration network consists of nodes and links. Each 
link presents a specific middleware technology and may define additional capabilities, 
e.g., the capability of performing secure and reliable transmissions (Mordinyi, Moser et 
al. 2009). 
In comparison to a traditional integration process, the outcome of the so far described 
process steps is a set of machine-understandable knowledge models describing both the 
message structures as well as the requirements and capabilities of the legacy 
information system to be integrated and the capabilities of the underlying integration 
network infrastructure (Mordinyi, Moser et al. 2009). 
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Figure 31: Model-driven System Configuration process (Mordinyi, Moser et al. 2009). 

5.4.1.3 Logical Solution Model 

The externalized knowledge which is captured in the knowledge models created in the 
previous steps is used to automatically derive the set of possible integration partners 
using ontology-based reasoning, allowing an easier and less error prone identification of 
possible integration partners compared to the traditional integration process (Moser, 
Mordinyi et al. 2009; Moser, Schimper et al. 2009). 
Based on the legacy system descriptions, the description and mapping of the domain 
knowledge and the description of the architecture and capabilities of the integration 
network, the possible sending and receiving service partners are derived using heuristics 
and ontology-based reasoning .In the example, this is represented as a graph consisting 
of the possible collaborations (i.e., the services which are able to communicate). As 
shown in Figure 31, there are 4 automatically derived collaborations: collaboration 1 
between “ATMIS” and “PFIP”, collaboration 2 between “PFIP” and “ATMIS”, 
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collaboration 3 between “CFC” and “ATMIS”, and collaboration 4 between “SFDP” 
and “ATMIS” (Mordinyi, Moser et al. 2009). 

5.4.1.4 Concrete Technical Solution Model 

Based on the logical solution model derived in the previous process step, the technical 
solution model for each integration node is generated automatically. This technical 
solution model is an XML configuration which is interpreted by the integration platform 
introduced in section 5.4.2. The major components of the technical solution model are 
a) routing tables that specify where certain received messages belonging to a specific 
collaboration should be forwarded to – there are more than one routing targets for a 
specific collaboration (so called “backup routes”), which are automatically used in case 
of unavailability of the original target integration node; b) transformation instructions 
that define how messages originating from business services should be transformed 
before sending them to other business services via the integration nodes; c) middleware 
specifications that define the configuration parameters and access methods for each 
connected specific middleware technology of a particular integration node; d) 
application specifications that define the configuration parameters and access methods 
for each connected business service of a specific integration node; and finally e) 
security specifications of the particular integration node (i.e., encryption protocols or 
certificates to use for the transmissions) (Mordinyi, Moser et al. 2009). 
As shown in Figure 31, the concrete technical solution model for each single integration 
node contains information about all collaborations which use this particular node. 
Additionally, there is a difference between integration nodes that are connected to 
business services and integration nodes without connected business services (so called 
“intermediate nodes”). While the technical solution model of intermediate nodes only 
contains routing tables, middleware specifications and security information, the 
technical solution model of integration nodes connected to business services 
additionally contains transformation instructions and application specifications 
(Mordinyi, Moser et al. 2009). 

5.4.1.5 Deployment to concrete Hardware 

Finally, the concrete technical solution model for each single integration node is 
deployed to the particular integration platform (see section 5.4.2) (Mordinyi, Moser et 
al. 2009). 
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5.4.2 Integration Platform 

The model-driven system configuration (MDSC) process results in a solution model that 
needs to be deployed. Additionally, the process is capable of improving the system’s 
configuration by means of monitoring data collected during execution. In the following 
the integration platform for the MDSC approach is described (Mordinyi, Moser et al. 
2009). 
The main task of the integration platform (see Figure 32) is to interconnect business 
services a) by binding business services and middleware technologies; b) by routing 
messages in a fault-tolerant manner with respect to virtual sender groups over 
heterogeneous middleware technologies; and c) by transforming messages to overcome 
the semantic gaps between business services. The integration platform is installed on 
every node described in the network capability model and uses the derived solution 
model to configure its components (Mordinyi, Moser et al. 2009). 

5.4.2.1 Application Adapter 

Based on the automatically derived configuration, the adapter loads the so called 
Application Gateways. An Application Gateway represents the connection to the 
business service and is implemented by the developers of the service. Similar to JBI 
(Ten-Hover and Walker 2005), by means of the Application Gateway  the service is 
capable of sending and receiving messages asynchronously. The interfaces of the 
Application Adapter and of the Application Gateway do not need to be described by 
means of WSDL since their capabilities have already been defined in the capability 
models. Messages sent by the Application Gateway additionally receive a so called 
CollaborationID representing the collaboration that has been calculated in the Logical 
Solution Model. This ID helps the Routing Component to route messages (i.e., the 
Routing Component looks up the specific network route for a particular 
CollaborationID) (Mordinyi, Moser et al. 2009). 

5.4.2.2 Middleware Adapter 

Based on the automatically derived configuration, the adapter loads the so called 
Middleware Gateways. A Middleware Gateway represents a communication link with a 
specific middleware technology between two nodes only. If there are several different 
communication links between two nodes, then there has to be one Middleware Gateway 
available for each possibility. The Middleware Gateway functions as a wrapper and 
knows how to interact with the real middleware that is actually forwarding the message 
to the destination specified by the routing component. The responsibility of the 
Middleware Gateway is to operate and to optimize the middleware technology 
according to the capabilities which have been specified in the capability models and 

107 
 



selected during the derivation of the logical solution model. Similar to the Application 
Gateway, the interface of the Middleware Gateway consists of methods for sending and 
receiving messages asynchronously (Mordinyi, Moser et al. 2009). 
 

 
Figure 32: Integration Platform overview (Mordinyi, Moser et al. 2009). 

5.4.2.3 Transformation Component 

The solution model provides transformation instructions specifying how to handle 
certain message types. The instructions have been derived from the requirement and 
capability models describing the services and thus the Transformation Component is 
able to manipulate message structure and content accordingly. The component can 
change message data types, split messages into several segments, merge different 
segments into a message, replace or enrich certain information of a message, or perform 
any combination of the described possibilities (Mordinyi, Moser et al. 2009). 
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5.4.2.4 Routing Component 

The automatically derived configuration of the routing component contains a routing 
logic specifying where to forward a message. A message can be either forwarded to a 
local service via the Transformation Component or to one of the installed the 
Middleware Gateways. Consequently, the routing logic specifies either the target 
Application Gateway or the target the Middleware Gateway which is used to send the 
message to the next hop along the route to the final target service. The chosen the 
Middleware Gateway has a priori been selected during the derivation of the concrete 
technical solution model. Additionally, the solution model contains several other routes, 
so called “backup routes”, which have been calculated during the derivation of the 
concrete technical solution model. These backup routes are used by the routing logic of 
the integration platform if the originally targeted next hop is not available any more. 
This allows the integration platform to react on changing network conditions quickly 
(Mordinyi, Moser et al. 2009). 
To keep the abstraction interface reduced to the methods send and receive and the 
implementation of the integration platform less complex, it has been avoided to add a 
component responsible for group communication only. Additionally, traditional group 
communication mechanisms are not capable of coordination over multiple 
heterogeneous middleware technologies. Therefore, the interface is configurable as 
well, and as such the send method can be intercepted by aspects representing the 
appropriate strategy for coordination (David 1996). The need for a virtual sender groups 
is derived from the data in the service capability and requirement models. Additional 
collaborations with unique collaboration-IDs are set up between the members of a 
virtual sender group, and in the concrete technical solution model an appropriate route 
between those nodes is calculated. This means that the aspect is configured with 
information about the virtual sender group and which collaboration-ID it has to use to 
reach other virtual sender group members. When the aspect receives a message from a 
business service that is a member of the virtual sender group, it withholds the message 
until the group has reached a decision. Either the message is then sent via the original 
the Middleware Gateway or discarded (Mordinyi, Moser et al. 2009). 
The task of the Monitoring Component of the integration platform is to collect 
information that may help to improve the capability models reflecting a more realistic 
description of the network infrastructure and the business services. This results in a 
configuration that is adapted to the real circumstances and environment. The 
Monitoring Component collects data on e.g. transmission speed and maximum 
bandwidth between two nodes, the number and size of exchanged messages, the time 
needed to reach an agreement in a virtual sender group, or the number of node failures 
resulting in accurate failure probability values (Mordinyi, Moser et al. 2009). 
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5.5 Matching of Problem and Solution Space 

Safety-critical systems and business processes, e.g., in the Air Traffic Management 
(ATM) domain, have to become more flexible to implement changes due to new 
business environments (e.g., mergers and acquisitions), new standards and regulations. 
A promising approach follows the service-oriented architecture (SOA) paradigm that 
builds flexible new systems for business processes based on a set of software services 
provided by system nodes in a network. A key design challenge is the matchmaking of 
business processes and software services, i.e., finding the software services that a) best 
meet the requirements of the business processes under consideration and b) can be 
implemented with the available network capabilities. The solution space is typically 
large even for small problems and a general semantic solution to enable comprehensive 
tool support seems infeasible (Moser, Mordinyi et al. 2009). 
Figure 33 provides an overview on the integration layers, data flows between the 
integration layers, and the steps of the semantic service matchmaking process (Moser, 
Mordinyi et al. 2009). 
 

 

Figure 33: Semantic Service Matchmaking Process (Moser, Mordinyi et al. 2009). 
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SM1: For each business processes, identify the suitable software services sets, which 
fulfill all business processes service and data requirements. From these possible 
business process and software services sets, the system integrators choose the most 
promising sets, the so-called collaboration sets (Moser, Mordinyi et al. 2009). 
SM2: The selected collaboration sets are then optimized regarding the original 
infrastructure requirements of both the business processes and the software services, as 
well as the available limited capabilities of the infrastructure’s nodes and links. The 
outcome of SM2 is an optimized configuration of the integration solution, consisting of 
the selected collaboration sets as well as their grounding to the underlying integration 
network infrastructure (Moser, Mordinyi et al. 2009). 
 
The following subsections describe the semantic service matchmaking approach as well 
as the multi-objective optimization of the chosen integration services candidates 
(Moser, Mordinyi et al. 2009). 

5.5.1 Identification of Possible Collaboration Candidate Sets 

The identification of possible collaboration candidate sets is implemented as a heuristic 
algorithm. Step by step, the possible collaboration candidate sets are reduced by 
applying the rules described to the possible collaboration candidate sets. The heuristic 
rules that are applied during the source/sink matching are described in the following 
subsections (Moser, Mordinyi et al. 2009). 

5.5.1.1 Message mapping 

During the description of the software service messages, each software service message 
segment was mapped to a domain concept, which has been specified in the common 
domain ontology. Therefore, for all segments of the message required by a certain 
business process, it is searched for messages of the software services that contain 
segments, which are mapped to the same domain concept, and if possible, to the same 
message format (Moser, Mordinyi et al. 2009). 

5.5.1.2 Service Policies 

In addition, software services can define requirements (policies) regarding preferred or 
unwanted software service partners, as well as other non-functional requirements, e.g., 
QoS requirements regarding the underlying integration network. A policy is a restriction 
or a condition for a single collaboration or a set of collaborations, in order to allow the 
communication via the underlying integration network. In the application scenario, 
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there are two kinds of policies. On the one hand, there are policies which are valid for 
all collaborations. They specify global conditions that need to be fulfilled by all 
collaborations, e.g., a maximum time for the delivery of messages. On the other hand, 
there are policies which are required only for a specific subset of collaborations. These 
policies specify conditions that need to be fulfilled by the collaborations containing 
particular software services, e.g., the communication has to use only secure links, or 
only a specified set of other software services is allowed to participate in the 
collaboration. The software service policies that regard other software services are 
evaluated by checking whether the attributes and tags of every software service of the 
particular collaboration candidate meet the service policies defined by the business 
process (Moser, Mordinyi et al. 2009). 

5.5.1.3 Format Translation 

If a message segment is mapped to the same domain concept as the required message 
segment, but the formats of the two segments differ, check whether there is a converter 
defined for the two formats. A converter is used to convert the format of message 
segments from one basic data type to a different one. An explicit identifier is defined to 
allow the search for the converter at runtime (e.g., by using Java Reflection) (Moser, 
Mordinyi et al. 2009). 

5.5.1.4 External Service Transformation 

If the message segments differ in the domain concept they are mapped to, check if a 
service exists that consumes a segment mapped to the same domain concept as the 
segment of the message of the software service and provides a message with a segment 
mapped to the same domain concept of the segment of the message of the business 
process (Moser, Mordinyi et al. 2009). 

5.5.1.5 Route Deduction 

As last rule it is checked whether there is an existing route between the nodes 
connecting the software services and the node connecting the business process. 
If all the rules mentioned above are successfully applied to a set of one or more 
software services and a business process, then the particular set is accepted as 
collaboration candidate. If any of the rules cannot be met, the particular set is discarded 
as collaboration candidate (Moser, Mordinyi et al. 2009). 
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5.5.2 Validity-Check and Optimization of Collaborations 

Once all collaborations have been specified a Scenario is derived. A Scenario contains 
beside all collaborations a specification detailing how to configure the network 
infrastructure, so that the integration solution is optimized according to the given 
objectives. In the following the process steps needed to optimize the scenario is 
explained (Moser, Mordinyi et al. 2009). 

5.5.2.1 Preliminary Checks 

The process step checks whether there is at least one single network route for each 
collaboration satisfying all global and collaboration specific policies. If this step cannot 
be completely satisfied the process raises an exception. The system integrator either 
updates or removes the collaborations which cannot be mapped to a network route, and 
restart the process step, or adapts the semantic infrastructure model, by adding 
additional nodes and links (Moser, Mordinyi et al. 2009). 

5.5.2.2 Route Derivation 

Once it has been verified that each collaboration can be mapped to at least one route in 
the network, the process step derives every possible route for each collaboration. The 
only restrictions are that no node is allowed to appear twice within the same route and 
all policies have to be satisfied. The valid ones are retained; the ones violating the 
restrictions are removed. At the end of this process step, each collaboration will have 
either a single route or a set of valid routes to choose from (Moser, Mordinyi et al. 
2009). 

5.5.2.3 Creating Scenarios 

The processing step combines each route of each collaboration with each other. This 
means that a scenario consists of a set of collaborations where each collaboration 
represents exactly one route. The more scenarios are created, the higher the probability 
to find a scenario that is well suited for achieving the stated optimization objectives 
(Moser, Mordinyi et al. 2009). 

5.5.2.4 Evaluation 

The process iterates through all scenarios and calculates their fitness according to the 
optimization objectives. The fitness of a scenario is the fitness of all its containing 
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collaborations, and represents the real values (e.g. the time a message needs and the 
costs along the chosen route) of the objectives. The fitness represents the trade-off of 
the configuration, the routes of each collaboration predetermine. The set of fitness 
values is then analyzed according to the Pareto Front approach (Ehrgott 2005). The 
Pareto Front contains either a single Scenario or a set of Scenarios. In the latter case 
there may be several “nearly equivalent” configurations as integration solutions. Thus, 
the system integrator has to decide which one to pick for practical deployment (Moser, 
Mordinyi et al. 2009). 

5.5.2.5 Multi-Objective Optimization 

We have accomplished the process of optimizing collaborations by implementing a Java 
version of the mPOEMS approach into the SWIS framework. mPOEMS is an 
evolutionary algorithm using the concept of dominance for multi-objective optimization 
(Moser, Mordinyi et al. 2009). The results and explanations of the approach can be 
found at (Kubalík, Mordinyi et al. 2008). 

5.6 Summary 

In this chapter we proposed and evaluated the EKB-framework to integrate 
heterogeneous legacy systems in the ATM domain to provide integration services with 
little extra integration effort, short time to market, and explicit and easy-to-understand 
integration knowledge to simplify the overall system evolution. In contrast to 
integration technologies like web services or the enterprise service bus, the EKB-based 
approach externalizes explicit integration requirements and capabilities in machine-
understandable formats, making them easier to change and maintain. 
The following sub-sections describe the findings and results for the EKB-based process 
description, for the modeling of the problem space, for the modeling of the solution 
space, and for the matching of the problem and the solution space and the generation of 
system configurations. 

5.6.1 Process Description 

Based on use cases from a research project in the ATM domain with two industry 
partners, we evaluated the EKB-based approach in comparison to an UML-based 
modeling approach. Major results of the evaluation are: a) the semantically enabled 
approach was found to be more efficient to retain expert knowledge and make this 
knowledge available to experts from different domains; b) the EKB-based approach 
took considerably shorter for the modeling phase and lowered the risk of errors in the 
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system configuration. While the integration analysis with explicit knowledge modeling 
takes slightly more effort than the traditional approach, the more efficient QA and 
configuration generation can be expected to return this investment after two iterations of 
systems integration (based on conservative estimates). In many projects experiences 
have been that a high modeling effort which has to be invested before any benefit can 
be shown is not accepted. Therefore an approach such as the presented can only succeed 
if convincing ways exist to minimize modeling efforts. As the approach also introduced 
new sources of complexity by more fully modeling the integration knowledge, 
empirical evaluation of larger cases are necessary to validate the benefits and limitations 
of the approach (Moser, Mordinyi et al. 2009) 

5.6.2 Modeling of the Problem Space 

In this chapter, we introduced and evaluated a domain-specific approach for ATM to 
make expert knowledge on heterogeneous systems and system integration requirements 
explicit to facilitate tool-support for design and QA. An important contribution of this 
chapter is to enable new research and application areas for semantic techniques that help 
control complex information system. Major results of our research evaluation of the 
EKB-based approach in an industrial case study were: a) the explicit and machine-
understandable knowledge in the EKB-based approach helps to automate time-
consuming systems integration steps like consistency and completeness checks. 
Furthermore, it allows automating later integration processing steps, like deriving 
integration partner candidates or automatically generating transformation instructions 
for message exchange between the integrated systems; b) the evaluation showed that the 
integration effort needed with the EKB-based approach is slightly higher in case of 
integration from the scratch, but comparatively a lot smaller when adaptations due to 
changing business needs have to be performed. In addition, the advantage of centrally 
storing the domain ontology together with the mappings of individual system 
knowledge lies in the possibility of an automated QA and automation of further 
integration steps resulting in less integration efforts and less failures (Moser, Mordinyi 
et al. 2009) 

5.6.3 Modeling of the Solution Space 

The Model-Driven System Configuration (MDSC) approach has proven to be especially 
suitable for integration scenarios with frequent reconfiguration due to changing business 
requirements or network infrastructure. This allows manipulating capability and 
requirement models in order to simulate integration scenarios for fine-tuning of business 
interactions. The benefit arises from the option to cheaply generate system versions that 
can be analyzed to better understand the trade-offs of different capabilities in the case 
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study context, e.g., the valuation of different middleware technologies on the 
distribution of traffic in the system. Additional advantage of the approach is that the 
complexity of manipulating models and as consequence the solution model for the 
integration platform is focused at a central point that can be managed by a few experts 
only. In the traditional integration process, administrators have just a partial view of the 
entire system and may try to optimize their business interactions locally. Compared to 
traditional high-level MDA based approaches, the MDSC approach is adapted to a 
specific domain (like ATM), resulting in a skipped CIM, and directly in a PIM that is 
not very high-level. The collection of monitoring data from integration platform allows 
a) comparing the described capability models with the real behavior of the system and 
b) updating the existing values of the capability models automatically based on the 
measured real life data (Mordinyi, Moser et al. 2009) 
The automatically derived configuration predetermines the overall behavior of the 
integration scenario. The more specifications the configuration contains the better the 
integration platform can react on changing circumstances. This allows the integration 
platform to work in a predefined deterministic way without "surprises" during execution 
regarding e.g. network failures, service failures, or network bottlenecks. The complexity 
of integrating business services is shifted away from the integration platform (run-time) 
to the MDSC approach at design time, minimizing the time criticality of the integration 
solution. This allows keeping the implementation of the integration platform itself as 
simple as possible since it is entirely dependent on configuration instructions only. 
Compared to traditional integration solution the middleware adapter abstracts any kind 
of middleware technologies. While in traditional solutions connectors between each 
used combination of different middleware technologies need to be implemented, the 
integration platform requires only the binding to the interface of the middleware adapter 
only. Although the approach of a common interface is not sophisticated, the benefit of it 
is a common interface with different transmission semantics. The semantic of the 
method, e.g. reliable or secure communication, depends on the capability of the 
middleware that is represented by that interface (Mordinyi, Moser et al. 2009; Moser, 
Mordinyi et al. 2009) 

5.6.4 Matching of the Problem and the Solution Space 

The example shows that even for small problems the solution space is typically large. 
However, large Business Process and Software Service integration networks consist of 
hundreds of integration nodes; and changes of Software Service properties and network 
capabilities make the correct and efficient identification of feasible Business Process 
and Software Service pairs a recurring complex and error-prone task. By providing only 
sets of feasible/promising service provider and consumer candidates, semantic 
matchmaking supports designers and system integrators by providing sets of possible 
integration partners regarding both structural and semantic attributes. However, the 
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relevant semantic concepts are hard to define unambiguously for general domains, thus 
the focus on a well-defined domain like ATM provides semantic clarity (Moser, 
Mordinyi et al. 2009). 
We used the concept of describing Service policies using a knowledge representation 
language like OWL, but defined our own extendable policy representation language 
which is better suitable for the ATM domain. We do not use standardized Web Service 
description frameworks because, since the strengths of Web Service description 
frameworks lies in the generality of the approach, however their weakness is that it may 
become complicated to describe domain-specific issues. For specific domains, it may be 
useful to use the principles of web service descriptions but tailor them to the domain. 
Additionally, we defined our own ontology-based architecture for describing the 
properties and features of the ATM services (Moser, Mordinyi et al. 2009). 
Current service matchmaking approaches focus on either technical or semantic 
integration issues (Verma, Akkiraju et al. 2005), while business process support is, to 
our knowledge, missing. In the EKB framework, we presented a combined service 
matchmaking approach that performs matching based on the data of the services and 
available service policies regarding other services. The EKB framework’s semantic 
service matchmaking enables an effective search space reduction and poses lower risk 
and effort compared to the current human-based approaches (Moser, Mordinyi et al. 
2009; Moser, Schimper et al. 2009). 
The optimization process steps allow using existing resources efficiently. Out of all 
possible collaborations for a single business process which are creatable by means of 
the proposed semantic matchmaking approach, only those are desirable to be deployed 
in the integration solution which fulfills certain criteria. Those criteria are set up by the 
integration expert so that existing collaborations use the underlying integration network 
infrastructure with its limited resources as efficient as possible (Mordinyi, Moser et al. 
2009; Moser, Mordinyi et al. 2009). 



Chapter 6 
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6 Semantic Integration of Production Automa-
tion Engineering Environments 

This chapter summarizes the results of applying the EKB framework to an application 
scenario from the Production Automation domain, as described in section 3.3.2. Again, 
the process directly relates to the three general steps of the EKB framework. While the 
description of the underlying SAW ontology data model displays the data integration 
and transformation step, the Quality Assurance support, the support for runtime 
decisions and the semantic event correlation can be seen as advanced applications 
provided by the EKB framework. 
In the first section, an overview of the application scenario and domain is given, as well 
as a detailed description of the specific requirements of this application scenario 
regarding the EKB framework. In the second section, the overall process used for the 
application scenario is introduced and explained superficially. The third section gives an 
overview of the system architecture of the Simulation of Assembly Workshops (SAW) 
simulator. The fourth section introduces the ontology used as underlying data model for 
the SAW simulator and additionally introduces and details the Ontology Area concept. 
The fifth section summarizes research results of applying the ontology-based 
architecture for supporting typical Quality Assurance steps. The sixth section reports on 
research regarding the support of runtime decisions using design time information. The 
seventh section presents results of research regarding semantic event correlation. 
Finally, the eighth section concludes the chapter and summarizes limitations, extensions 
and specifics of applying the EKB framework to this specific application scenario. 

6.1 Overview 

Industrial production automation systems depend on distributed software to control the 
system behavior. The behavior of automation systems must be testable and predictable 
to meet safety and quality standards. Modern automation systems have to be designed 
for better interoperability and flexibility to satisfy increasing customer needs for product 
variety, manufacturing agility, and low cost. In Automation Systems Engineering (ASE) 
software engineering tasks depend on specification data and plans from a wide range of 
engineering expert domains in the overall engineering process, e.g., physical plant 
design, mechanical, and electrical engineering, and production process planning. This 
expert knowledge is embodied in domain-specific standards, terminologies, people, 
processes, methods, models, and software (Lüder 2000). 
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However, a major challenge in current industrial development and research approaches 
is insufficient semantic model integration between the expert disciplines (Schäfer and 
Wehrheim 2007; Biffl, Sunindyo et al. 2009). Different and partly overlapping 
terminologies are used in these expert disciplines, which hampers understanding. 
Consequently, the weak tool support for semantic integration of the expert knowledge 
across domain boundaries hinders flexible engineering process automation and quality 
management, leading to development delays and risks for system operation. 
The strategic goal of making the ASE process more flexible without delivering 
significantly more risky end products translates into the capability to efficiently re-
configure the engineering process and tool instances of a project environment. While 
there are approaches based on a common repository that holds all relevant project data 
(Schäfer and Wehrheim 2007), experience has shown that such a repository tends to get 
large, inflexible, and hard to maintain surprisingly fast, which makes the knowledge in 
the repository hard to reuse in new projects. Further, if several organizational units are 
involved in a project, even agreeing on a common data model is difficult. Thus a key 
goal is to allow all participants to continue using their own data models and provide a 
mechanism for translation between these data models. In the past several approaches for 
providing engineering knowledge in machine-understandable syntax have been 
investigated (McGuire, Kuokka et al. 1993; Lovett, Ingram et al. 2000; Liao 2005). 
However, these approaches focus primarily on storing existing homogeneous 
knowledge rather than providing support for managing and accessing heterogeneous 
knowledge, which is the focus of this chapter. 

6.2 Process Description 

Current Software Engineering approaches like Component Based Software Engineering 
(CBSE) reuse configurable domain assets for the efficient derivation of new product 
variants. A main challenge is to manage concurrent development of software artifacts 
due to changing requirements resulting in inconsistent or error-prone artifacts, partly 
because the models for the variability of system variants seem not to cover the entire 
downstream development and Quality Assurance (QA) processes. Ontologies can 
support the requirements engineering by providing a continuous model for software 
development processes supporting elicitation, representation, and analysis of the 
interdependencies among artifacts. Ontology-based reasoning can facilitate analyzing 
the impact of requirement changes, supporting a more consistent handling of changing 
requirements (Biffl, Mordinyi et al. 2007). 
There are reports on using ontologies for software engineering: a) for describing the 
problem domain; b) for the semantic description of transformations between models in 
Model-Driven Development (MDD); and c) for QA reasoning on semantic 
inconsistencies between models (Baclawski, Kokar et al. 2002). However, we found 
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very little work on ontologies to provide a continuous model for linking different stages 
of the engineering process of software-intensive systems (Bosch, Florijn et al. 2002). 
In this chapter we introduce a) an SE process for CBSE using a continuous engineering 
ontology for efficient system development and for improving variability management; 
b) semantic support for requirements modeling, requirements transformation, simulation 
and testing; c) support for role-oriented views on the engineering ontology assisting 
domain experts and roles that do not easily accept abstract data models. 
The semantic model is the foundation for appropriate tool support along the CBSE 
process, which allows bridging specific models of roles with different viewpoints such 
as sales people, architects, developers, and QA personnel. Ontologies seem well suited 
to provide their reasoning capabilities for component selection and valid 
parameterization, transforming models for downstream activities (e.g., generating test 
cases for system performance evaluation), and checking models for consistency both at 
design time and at run time. “Ontology areas” for a concrete domain can help keep the 
model grounded and prevent unnecessary complexity (Biffl, Sunindyo et al. 2009). 

6.2.1 Ontology-Supported Variability Management 

Figure 34 shows the process for development and generation of new system versions for 
production automation that supports variability modeling and traces design decisions by 
means of ontology-supported continuous modeling (Biffl, Mordinyi et al. 2008). 
 

 
Figure 34: Feedback-driven and ontology-based approach (Biffl, Mordinyi et al. 2008). 

The ontology-supported software engineering process is divided into the “domain level” 
and “production line level” development processes. On each level requirements and 
capabilities are described semantically. The “domain level” represents the development 
activities for a reusable set of software components, the “component tool box”. The 
“production line level” outlines the activities of the actual system configuration in order 
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to build a particular product. This process is divided into two more layers, “capability 
layer” and “request layer”. It demonstrates the coordination steps needed for 
optimization over all sets of selected component capabilities in order to achieve correct 
component parameterization (Biffl, Mordinyi et al. 2008). 
The “capability layer” is in charge of fulfilling the transformed requirements with the 
resources available. For estimating the potential available for the currently requested 
requirements the layer has to take into account already used resources reserved for 
previously requested requirements. The “request layer” optimizes the number and type 
of requirements based on the estimated potential of the “capability layer” in order to 
achieve an effective and efficient usage of available resources with respect to the 
number and type of requirements (Biffl, Mordinyi et al. 2008). 

6.2.1.1 Step 1: Component Development 

Based on requirements or triggered by new technologies or roles, components are 
developed on domain level for the production automation Component Tool Box. 

6.2.1.2 Step 2: Requirements Transformation 

The input for the “request layer” is a set of functional (e.g., customer orders) and non-
functional requirements (e.g., production time) that is transformed into requests for 
resources needed to fulfill the incoming requirements. The transformed set is forwarded 
to the capability layer. 

6.2.1.3 Step 3: Component Analysis 

The system reconfiguration cycle at the production line level is triggered either by new 
or changed requirements or components. Additional input to component analysis are 
selected components from the Component Tool Box. Further input is the current 
combination of components representing the current production system. The analysis 
step creates all valid combinations of the input with respect to compatibility of the 
components with each other. The set of components is then parameterized according to 
the analysis of historical test cases measurements as explained in the next section. 

6.2.1.4 Step 4: New Design 

During the design phase complex requirements have to be fulfilled focusing on 
choosing the right combination of components. The step selects the combination that 
fulfills non-functional requirements like production time, cost or machine utilization. 
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The selected combination is then transformed into a configuration view that can be 
interpreted by the production system. 

6.2.1.5 Step 5: Testing and Simulation 

The operation of tools to measure system quality and performance of new 
configurations is mandatory to assure that the configurations meet overall requirements 
including system safety before deployment to real-world environments. The introduced 
development cycle represents another source of error leaving the possibility of 
remaining unresolved (uncritical) defects. One solution is to execute simulations of 
relevant properties of the target system to capture performance measurements from 
monitoring for evaluation and use in step 3 for component selection and in step 4 for 
analyzing component combinations. In comparison to traditional approaches with 
implicit feedback by manually analyzing the results of test case runs, this approach 
explicitly provides measurement feedback integrated into the ontology for step 3. 

6.2.1.6 Step 6: Analysis and Optimization 

Based on simulation and test data representing the available resource capacity the layer 
has to optimize selected performance criteria, e.g. maximize the number of 
accomplished requirements.  

6.2.1.7 Step 7: Field Environment 

If the reported data is promising, the created configuration is approved in order to be 
deployed. Reports of progress or potential errors are forwarded to the monitoring step. 

6.2.1.8 Step 8: Monitoring 

Monitoring supports feedback on the current system states by providing measurement 
data to be used for comparison with the estimated key indicators created by step 6. 

6.2.2 System Measurement Specification 

Figure 35 shows the System Measurement Specification (SMS) approach for the 
automated derivation of new product versions and variants using the measurements and 
results of historical test cases as input. We use an engineering ontology consisting of 
different areas in order to model and store the data of the SMS. It is possible to combine 
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a collection of areas to provide a complete ontology model for certain tasks, e.g., 
testing, statistical data analysis, business strategy planning, requirements tracing to test 
results. Historical test cases and their results are stored in the so called System 
Measurement Specification Database (SMSDB), a derivation of the EKB, in order to 
support the selection of parameters for future test cases (Biffl, Mordinyi et al. 2008). 
 

 

Figure 35: SMS & Role-oriented EKB views (Biffl, Mordinyi et al. 2008). 

In our approach, a test case consists of static data (context) and dynamic data (input 
variations). The context consists of definitions of the infrastructure (e.g., layout of an 
assembly workshop), descriptions of the components used in the test case (e.g., 
workshop machines) and the requirements of the test case (e.g., work orders to fulfill). 
The input variations contain parameters for the infrastructure (e.g., overall size of the 
workshop) and parameters for components (e.g., speed of a conveyor belt) (Biffl, 
Mordinyi et al. 2008). 
 
From Figure 35, the following 4 steps can be derived. 
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6.2.2.1 Step 1: Requirements Transformation 

The given requirements (both internal and external) can be transformed into a set of test 
cases, specified by a static context and dynamic input variations. The selection of the 
input parameters is done by querying the SMSDB for matching historical test cases with 
the context of the current test case. This allows systematic variation on the input 
parameters enabling repeatable testing and statistical data analysis on system 
performance. The variation of context parameters allows not only to test a particular 
system version, but to build and test a range of system versions and consequently 
investigate the impact of system variation factors on the quality and performance of 
system versions derived, e.g., in a product family. 

6.2.2.2 Step 2: Static QA 

The context and the input variation are then checked according a given rule set using the 
ontology-based reasoning support. This allows a check of the validity of the input 
parameters with regard to the used context and the original requirements. 

6.2.2.3 Step 3: Dynamic QA 

After the static QA steps are finished, the simulation is started and the output of the 
simulation can be checked for validity with regard to the requirements. In this step, 
mainly runtime requirements like performance or failure rates are checked. 

6.2.2.4 Step 4: Storage in SMSDB 

As a last step, the test case and the results of the static and dynamic QA steps are stored 
in the SMSDB. The SMSDB actually is a specific view on the engineering ontology, 
representing the set of conducted, historical test cases, which may be queried using 
ontology-based reasoning. 

6.2.3 Role-specific Views on the Engineering Knowledge Base 

Figure 35 shows a number of role-specific views on the EKB. This allows more 
effective management of ontology areas a certain role is interested in, since the data can 
be presented in a well-accepted format/tool for this role, e.g., work order manager, 
operator, architect, or data analyst personnel (Biffl, Mordinyi et al. 2008). 
Figure 35 illustrates a number of roles supported by the EKB. The work order manager 
is responsible for fulfilling the incoming work orders represented as requirements, 
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which are shown by his ontology view. The operator supervises the simulation and 
reacts in case of errors accordingly. His ontology view therefore includes information 
about the operation and measurement data of the simulation. The architect is in charge 
of component development and monitoring the creation of the configuration during the 
design step. The dedicated ontology view for this role includes both infrastructure and 
component data. The data analyst performs statistical analysis of historical test case data 
like a complete data analysis of the whole set resulting in more significant assertions of 
the result data. His ontology view therefore includes both information about the test 
case requirements and the simulation output data. This ontology view has already been 
introduced as SMSDB, which is represented at the bottom of Figure 35 (Biffl, Mordinyi 
et al. 2008). 
The usage of the ontology-supported and test case-based SMS approach entails a 
number of advantages: 1) Based on the assumption that systems can be defined as 
combinations of selected components and their parameters, at design time a data vector 
can capture the fixed context information and input variations for a test case. 2) Static 
QA based on ontology reasoning can provide initial feedback on the test case data 
vector, e.g., point out errors in the parameters. 3) Dynamic QA based on simulation or 
testing provides the actual result of the test case and system performance measurements 
(Biffl, Mordinyi et al. 2008). 

6.3 Simulation of Assembly Workshops (SAW) System Archi-
tecture 

Modern production automation systems need to become more flexible to support the 
timely reaction to changing business and market needs. However, the overall behavior 
of the many elements in a production automation system with distributed control can get 
hard to predict as these heterogeneous elements may interact in complex ways (e.g., 
timing of redundant fault-tolerant transport system and machine groups) (Lüder, 
Peschke et al. 2004). 
Software agents seem particularly well suited to model and design flexible, modular, 
and self-organizing systems that are robust to changes in their environment. Multi-
Agent Systems (MAS) can help simulate in a distributed control system the effects of 
production strategies that coordinate the behavior of the entities in the production 
automation system  (Jennings and Wooldridge 1998). However, designing coordination 
for several levels of agents in a flexible control structure is a major challenge and can 
benefit from design patterns that can be systematically validated and reused in a range 
of contexts. In the production automation domain there are the levels of a) business 
processes; b) redundant robust transport system and machine functions; and c) control 
components in the machines of the production automation system (see Figure 36). 
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In order to allow the interaction between these levels, coordination between agents on 
each layer is required. Coordination patterns are design/implementation paradigms 
suitable for solving certain problem scenarios. In our context, coordination patterns are 
used to enhance the design and implementation of a) domain expert knowledge in their 
particular layer (model of world, constraints, strategies, goals, etc.); b) the allocation of 
available resources (e.g., production strategies, auctions, or work load balancing); and 
c) information model and control (e.g., master/slave (following the layer concept), 
message exchange, or blackboard pattern) (Moser, Merdan et al. 2010). 
In this section, we describe the pattern-based extension of a MAS-based production 
automation simulation tool, Manufacturing Agents Simulation Tool (MAST) (Vrba 
2003). The architecture of our extension, the SAW (Simulation of Assembly 
Workshops) framework consists of three major parts: a) the original MAST simulator; 
b) the work order scheduling system; and c) the performance test management system 
(MAST-TMS) (Merdan, Moser et al. 2008; Merdan, Moser et al. 2008). The work order 
scheduling system transforms incoming business orders into feasible working tasks and 
then coordinates these tasks with the original MAST simulator. MAST-TMS supports 
the creation and execution of test cases to measure system performance for exploring 
the systematic effects of a range of strategies and system configurations and to enable 
the quantitative evaluation of a large number of simulation runs. The simulation system 
has been validated with the hardware of this research lab to ensure the external validity 
of simulation measurement and analysis (Moser, Merdan et al. 2010). 

6.3.1 Framework Architecture 

The coordination of the agent-based production planning system is the main goal of the 
framework presented in this section. The production planning system is based on a 
simulator developed by Rockwell Automation, which already includes a set of FIPA18-
compliant simulation agents. This agent system is modified and extended by a 
coordination component that should monitor the agents’ tasks and activities. Figure 36 
provides an overview on the layers of the agent system: on the business layer the 
dispatcher (order agent) converts customer orders into work orders that are sent to the 
workshop layer (product agent) (Moser, Merdan et al. 2010). Figure 36 shows the layer 
model of the production automation system used in the SAW framework. 
                                                 
18 http://www.fipa.org/ 
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Figure 36: Coordination layer model of SAW (Moser, Merdan et al. 2010). 

6.3.1.1 Business process 

The order agent in the first layer is responsible for the incoming business orders from 
the costumer, monitoring and guiding a single product through the simulator. The 
business orders represent guidelines for the arrangement of product sequences 
depending on the selected workshop scheduling strategy. After the sorting mechanism 
the dispatcher registers n product agents (PA) for each product and forwards the 
product, as a defined so-called product plan, to these agents. 

6.3.1.2 Workshop Scheduling 

These n PAs operate in the second layer of the coordination model and represent the 
interface between the dispatcher and the simulation agents. They analyze the product 
and divide the product plan in more detailed working steps, i.e. transport and assembly 
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steps. These working steps are delegated to Resource Agents (RAs). This decision 
making process includes a very important negotiation and allocation sequence between 
the PA and the RAs. The choice which RA will get the working steps follows an auction 
pattern. The Auction pattern provides the possibility of offering a good or a service to 
other participators. In this case the PA sends an announcement message, including an 
identifier and the machine function, to the RAs. The RAs offering the required function 
send back a message containing the estimated processing time of the machine function 
plus the estimated time needed for the transportation to the machine. The PA picks the 
RA with the lowest overall machine function time and delegates the task to it. During 
the simulation processes the product agents of the second layer can influence the 
simulator and monitor the events and states within the simulator. 

6.3.1.3 MAST 

The third layer is the simulator, where the simulation agents communicate with each 
other as well as with the agent of the layer above. The agents can be classified into 
Resource Agents, which work on tasks delegated by the PAs, and Transport Agents, 
which have to fulfill various transport steps (e.g. sending palettes). The simulation 
agents implemented by Rockwell Automation already include some self-coordinated 
behavior such as flexible routing. This coordination functions have been modified and 
adjusted to the needed requirements. The agents have to fulfill the various tasks getting 
from the agents in the second layer and have to report about their status, capacities, 
failures and the measurements. 

6.3.2 Performance Test Management System 

Figure 37 illustrates the design of the performance test management system (MAST-
TMS) that allows automatically running a large number of systematic variations of test 
scenarios to evaluate the effects of these variations on the overall system performance. 
The test system is a harness that starts up the SAW with the current test scenario 
parameters and customer order events. The SAW in turn runs the software agents, the 
coordination patterns, and logs the results of the test run. The test system collects the 
measurement results of each test run in a database for further statistical analysis (Moser, 
Merdan et al. 2010). 
The Performance Test Management System (MAST-TMS) is a part of the SAW 
framework and uses the MAST system for automatically running pre-defined sets of test 
cases described in XML files. These test cases describe goals, strategies, and 
constraints: the products to assemble, assembly steps, the workflow scheduling strategy 
to apply, the number of pallets to use, and the duration of a production shift. For 
running a test suite, the MAST system is reset to a starting state, the XML file is parsed 
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and the test cases are consecutively injected into the MAST system, which acts on the 
input parameters of the test cases to run the agent-based simulation and control system. 
Relevant events and result data (e.g., number of finished products, machine utilization 
rates) are measured using pluggable measuring methods and algorithms to the agents 
and then logged to an XML output file. This approach allows scheduling automated 
runs of a large number of systematic test case variations, resulting in comprehensive 
output data for statistical data analysis. In addition to the automated runs of test cases, 
the MAST-TMS provides a generator for preparing a given number of systematically 
derived test cases, e.g., for evaluating the impact of the variation of one or more 
parameters in the simulation (e.g., with exhaustive enumeration of the parameter range 
or with statistical sampling) (Moser, Merdan et al. 2010). 
 

 
Figure 37: SAW Performance test management system (Moser, Merdan et al. 2010). 

Results of the performance evaluation can be found in (Merdan, Moser et al. 2008; 
Merdan, Moser et al. 2008). 
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6.4 Simulation of Assembly Workshops (SAW) Ontology Archi-
tecture 

The integration of business processes and IT systems in homogeneous environments 
(i.e., consistent data formats and terminology) is supported by well-established 
approaches like data integration using Scheer’s ARIS for CIM (Scheer 1989). However, 
in more heterogeneous environments with a range of data formats and local 
terminologies like the production automation domain, typically stakeholders from 
several areas (e.g., business experts, software engineers and electrical engineers) work 
together to develop and operate software-intensive systems. A homogenization of these 
environments is often not achievable, if the stakeholders come from different 
organizational backgrounds or organizations change over time due to mergers and 
acquisitions. The precondition for successful semantic integration is a common 
understanding on the relevant concepts in the problem domain of the project. 
An example for a collection of common problem domain concepts is the Enterprise-
Control System Integration19 (ECSI) standard (American National Standard 2000) for 
developing automated interfaces between enterprise and control systems. The objectives 
of ECSI are to provide a) a consistent terminology as foundation for supplier and 
manufacturer communications, b) consistent information models, and c) consistent 
operations (process) models, which are the basis for clarifying application functionality 
and how information shall be used. 
However, a standard like ECSI can only cover parts of the problem domain without 
getting too complex and hard to use. Further, many key players in the production 
automation domain currently do not follow this standard, which often hinders the 
cooperation of stakeholders in projects, since transformations between stakeholder 
terminologies to overcome semantic gaps between the stakeholders need to be 
conducted by scarce experts or carefully hand-crafted. 
Ontologies are flexible open-world data models for knowledge representation, which 
store information in machine-understandable notation (Gruber 1993). Therefore, 
ontologies can help to bridge semantic gaps between partial data models by providing 
mappings between them via common domain concepts. Ontologies usually capture 
problem-domain-specific information which can be reused later. Due to their concurrent 
development ontologies need to be checked for inconsistencies to stay useful. However, 
ontologies in practice usually have to combine several view points and thus get large 
and complex, particularly, if the ontology contains volatile domain elements, such as 
run-time data (Biffl, Mordinyi et al. 2008). 
In this section, we propose a data modelling approach that helps structure ontologies 
with ontology building blocks, so-called “Ontology Areas”. An Ontology Area is a 
meaningful part of an ontology for a stakeholder, which helps ontology users managing 
a complex ontology. The combination of all needed Ontology Areas represents the 
                                                 
19 http://www.isa-95.com 
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overall ontology for supporting the original engineering process (Biffl, Sunindyo et al. 
2009; Moser, Biffl et al. 2010). 

6.4.1 Semantic Gaps Between Stakeholders 

Figure 38 illustrates sources of semantic gaps between stakeholders: stakeholder 
domain layers with different local terminologies; and design-/run-time views which are 
semantically not well connected. The data model, in our case an ontology model (the 
Engineering Knowledge Base), contains common domain concepts to bridge the 
semantic gaps between stakeholder terminologies and design-/run-time views (Biffl, 
Sunindyo et al. 2009). 
 

 
Figure 38: Semantic gaps between stakeholders (Biffl, Sunindyo et al. 2009). 

The three stakeholder layers in Figure 38 are: a) the business layer (B) for production 
planning to fulfill customer orders by assigning optimal work orders to the workshop; b) 
the workshop layer (W) for coordinating the complex system of transport elements and 
machines to assemble smaller basic products into larger more comprehensive products 
according to the work orders; and c) the operation layer (O) for monitoring the 
individual transport system elements and machines to ensure their contributions to the 
workshop tasks. Those three layers are divided into two parts based on the time those 
layers worked on, namely design time (development) and run time (usage) (Biffl, 
Sunindyo et al. 2009). 
Figure 38 (right hand side) illustrates part of the data model that represents common 
domain concepts for the uses cases in UML-class-diagram style notation. The bottom 
box of each data element shows which stakeholder layer (B, W, and O) needs this data 
element to conduct their tasks and when: at Design Time (DT) or Run Time (RT) (Biffl, 
Sunindyo et al. 2009; Moser, Biffl et al. 2010). 
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6.4.2 Ontology Areas for Bridging Semantic Gaps 

An ontology area is a subset of ontology as a building block that can solve a certain 
task. The ontology can be broken into ontology areas based on several aspects, for 
example by the time, volatility, layer and roles. Figure 38 shows the breakdown of 
ontology into several ontology areas based on the stakeholder layers (business, 
workshop, operation) and time when models are mostly used (design time and run 
time). Some parts of the data mode are much more volatile than others, e.g., run-time 
process measurements compared to design-time workshop layout. For example, each 
data point measured once a second in a shift that takes 8 hours produces around 30,000 
data point instances, which need to be reduced by statistical methods or will take 
considerably storage space (Biffl, Sunindyo et al. 2009). 
To make an OA from the whole ontology, we can follow this basic algorithm. First, 
define a task that is needed to be solved by the stakeholder. Second, find related classes 
for doing the task. Third, find classes that linked to the classes in step two. Fourth, drop 
other classes that are not needed and save as a new ontology. Also, we can reconstruct 
the whole ontology from the ontology areas, by merging them together into a single 
ontology by using ontology tool like Protégé (Biffl, Sunindyo et al. 2009). 

6.4.2.1 Translation between local stakeholder terminologies 

The business manager on the business layer receives customer orders and schedules 
work tasks to the coordinator in the workshop layer. While they have a defined interface 
for exchanging work task information, they use local terminologies for concepts that are 
only occasionally needed to resolve scheduling issues, e.g., reference to specific 
customer orders if limited workshop capacity does not allow to fulfill all work tasks in a 
shift and negotiation on which tasks have higher priority are necessary to determine 
which customer orders will be fulfilled. Because the stakeholders use different 
terminologies, translations are necessary to automate references to customer orders 
between stakeholders in business and workshop layers. The stakeholders of the 
production automation systems need to work together to achieve their goal. A common 
data schema is not possible because the stakeholders usually use different data formats, 
local terminologies and tools to access the data from the system. The ontology 
(Engineering Knowledge Base) plays a role as a common domain concept, where the 
local terminologies from the stakeholders will be mapped to. By mapping each local 
terminology to the ontology, the system can translate the local terminologies from one 
stakeholder to the other stakeholders. The translation could be the name of function, 
some names in the argument of the function, different data format, or the meaning of 
some parameters. However, the complexity of the ontology may increase when the 
number of the terminologies and the stakeholders is also increases, since the ontology 
should store all terminologies, the mappings and the common concepts. 
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By using the ontology areas, the stakeholder can take a small part of the ontology that 
he really cares and solving his task with the same results but less complexity than by 
using the full ontology. The example is illustrated in Figure 39 (Biffl, Sunindyo et al. 
2009). For a more complex transformation example, please refer to Figure 48. 

 
Figure 39: Transformation between Terminologies (Biffl, Sunindyo et al. 2009). 

The business stakeholder has the local terminology ClientContract, while the workshop 
stakeholder has the local terminology BusinessOrder. Both share the common concept 
CustomerOrder in the Ontology Areas. Then, both terminologies will be mapped to the 
class CustomerOrder as mentioned in Listing 1. 

Listing 1: Mapping terminologies to common concepts (Biffl, Sunindyo et al. 2009). 

mapping('ClientContract','CustomerOrder'). 
mapping('BusinessOrder','CustomerOrder'). 
 
From the mappings above, we can have a translation between two local terminologies 
by using a rule, e.g., the rule described in Listing 2. The query and result can be seen in 
Listing 3. 

Listing 2: Simple translation rules (Biffl, Sunindyo et al. 2009). 

translate(Term1,Term2) :- 
 mapping(Term1,CommonConcept), 
 mapping(Term2,CommonConcept), 
 not(Term1 = Term2). 

Listing 3: Translation result (Biffl, Sunindyo et al. 2009). 

translate(X,Y). 
X = 'ClientContract' 
Y = 'BusinessOrder' 

 
The translation is just one example for translations in general. Ontology Areas for this 
use case would just consider the parts of the ontologies for the stakeholders involved 
(see Figure 39): stakeholder concepts, their local terminologies and mappings, which 
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can more easily be added to and removed from an ontology as stakeholders change in a 
particular context (Biffl, Sunindyo et al. 2009). 

6.4.2.2 Run-time measurement data representation and analysis for design 
model improvements 

If an engineering knowledge base is available to support run-time decisions with design 
knowledge, it is easy to also provide all kinds of run-time measurements linked to 
design elements, e.g., actual capacity of infrastructure, to iteratively improve the 
accuracy of design estimates with feedback from run time. 
Run-time measurement information can be used to make design time information more 
accurate. Volatile information like run-time measurement can produce large amounts of 
data which would make a single ontology unnecessary large and slow down the 
performance of the ontology. The need for storing a high volume of run-time 
measurement data in the ontology occurs if the concrete future statistical analysis 
procedures are not known at the time of measurement (Biffl, Sunindyo et al. 2009). 
Partitioning of the ontology in areas of similar volatility allows building partial 
ontologies for the task or query at hand. Run-time measurement at the frequency of 1 
data point per second provides 30,000 data points of shift of 8 hours. If this is too much 
information for the ontology to hold, it is possible to define Ontology Areas for smaller 
time windows, which allow including the data for a certain time frame to be loaded into 
the ontology for data analysis as needed without exceeding the capacity of the ontology. 

Listing 4: Run-time data with semantic annotation (Biffl, Sunindyo et al. 2009). 

% process (machine function id, batch number, status, timestamp) 
process(‘MF1’,’B-100’,’start’,2009-02-03 T 10:01:06.01) 
process(‘MF1’,’B-100’,’stop’,2009-02-03 T 10:01:06.11) 
process(‘MF2’,’A-200’,’start’,2009-02-03 T 10:01:06.12) 
process(‘MF1’,’B-101’,’start’,2009-02-03 T 10:01:06.13) 
process(‘MF1’,’B-101’,’stop’,2009-02-03 T 10:01:06.21) 
process(‘MF2’,’A-200’,’stop’,2009-02-03 T 10:01:06.24) 

 
Semantic gaps between run-time measurement and design-time information occur when 
we have data elements from the interface of the machine at run time, but there is no 
machine-understandable documentation for the design of the interface. To solve this 
problem, we first give meaning to run-time data that are needed to be stored in the 
ontology and then provide a link from run-time to design-time semantics.  
For example, to find out the maximum process time of certain machine functions, we 
can measure the process duration of that machine function in one shift, so we collect 
sufficient and still manageable data. The measurement result is an event named 
“process” that consists of the id, the batch number, status and timestamp of machine 
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function. Listing 4 shows several measurement results that can be obtained by filtering 
run time data. The real data themselves is a very long list. 
To calculate the maximum process time of certain machine function, first we should 
calculate each process time by using predicate process_time to find the difference 
between the timestamp of stop status and the related timestamp of start status from the 
same machine function and batch number, and keep it in the list using 
list_of_process_time predicate. Then with using the predicate maxprocess we will find 
the maximum value of process time of certain machine function (MFun) from the list of 
process time. Listing 5 pictures this example using Prolog-style notation. 

Listing 5: Example analysis rule of runtime data (Biffl, Sunindyo et al. 2009). 

max(X,Y,X) :- X >= Y. 
max(X,Y,Y) :- X < Y. 
maxlist([X],X). 
maxlist([X,Y|Tail],Max) :-  
maxlist([Y|Tail],MaxTail),max(X,MaxTail,Max). 
process_time(MF,SN,T) :- 
  process(MF,SN,start,X), 
  process(MF,SN,stop,Y), 
  T is Y - X. 
list_of_process_time(List,MFun) :- 
findall(T,(process_time(MF,SN,T),MF = MFun),List). 
maxprocess(MFun,T) :- 
  list_of_process_time(List,MFun), 
  maxlist(List,T). 

 
For query, for example we want to know the maximum process time of MF1. The result 
of the query maxprocess(‘MF1’,T) would be 0.1. 
 
The machine function entity in design time consists of the id and process time attributes. 
Usually the values of process time attributes come from estimation, but by using run-
time measurement on process time, we can compare the previous design-time estimates 
to actual run-time data analysis for research on design improvements. The illustrating 
example above is simple enough to conduct statistical analysis at run time, but for more 
complex statistical analyses, a solution for storing large amounts of data in an ontology 
may be necessary, which would inflate ontology size and decrease the ontology 
reasoning performance. Ontology Areas allow to manage stacks of run-time data 
elements and keep the size of ontology within well-performing capacity ranges (Biffl, 
Sunindyo et al. 2009). 
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6.5 Ontology-Supported Quality Assurance 

A focus of requirements engineering is identifying and aligning the value propositions 
of project stakeholders towards explicit requirements (Biffl, Aurum et al. 2006). Based 
on these requirements, Quality Assurance (QA) and Project Management (PM) can 
measure both internal and external quality to guide software development. Substantial 
research has been reported on views of internal quality, while the external (customer) 
views of quality seem harder to measure. In order to meet the customer quality 
requirements, they need to be properly transformed and implemented, often 
concurrently, by many contributors to a software-intensive system. 
Traditional software development approaches (e.g., RUP) are based on linking the 
requirements to project artifacts and responsibilities of software development roles. 
Since requirements typically change during the software lifecycle, the artifacts need to 
be adapted to stay consistent to the current requirements. Therefore, a major challenge 
of Quality Assurance is continually representing the stakeholders’ value propositions 
and checking their consistency with artifacts of the software development process 
(Biffl, Aurum et al. 2006). Currently, domain experts and engineers use a multitude of 
notations and tools to represent their views on a software system and the evolution 
process; however, the views represented in these notations and tools are often 
fragmented, inconsistent, and challenging to reconcile and check for Quality Assurance. 
Ontologies can support the requirements engineering and Quality Assurance processes 
by providing a continuous model for software-intensive systems, their environments, 
and processes supporting elicitation, representation, and analysis of the 
interdependencies among artifacts of software-intensive systems on engineering and 
domain levels. Another application of ontologies to systems engineering is modeling the 
system requirements together and their connections to development artifacts (Lee and 
Gandhi 2005). Ontology-based reasoning can facilitate analyzing the impact of 
requirement changes, supporting a more consistent handling of changing requirements 
and a more continuous representation of the stakeholders’ value propositions. 
In this section we introduce a continuous engineering ontology (the EKB) for Quality 
Assurance of software and system development. We report from an industry case study 
that a) introduces an ontology approach for iteratively designing component-based 
dependable systems in production automation, and b) discusses the expected benefits 
and risks for building and assuring stakeholder-related quality compared to a traditional 
development approach (Biffl, Mordinyi et al. 2008). 

6.5.1 Ontology-Supported Life Cycle Quality Assurance 

Figure 40 shows the process for development and generation of new system versions for 
production automation that implements stakeholder quality requirements and traces 
design decisions by means of ontology-supported continuous modeling. 
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Figure 40: EKB-based Engineering Approach (Biffl, Mordinyi et al. 2008). 

The ontology-supported software engineering processing is divided into the domain 
level and production-line level development process. On each level requirements and 
capabilities are described semantically. The domain level represents the development 
activities for a reusable set of software components, the “component tool box”. The 
production line level outlines the activities of the actual system configuration in order to 
build a particular product. This process consists of component analysis, design, testing 
and simulation of new configuration versions. New production line system versions are 
defined from components in the component tool box and the configuration of the 
production system. Since quality measurement, Quality Assurance, and auditing are 
major issues in safety-critical systems, we describe the key steps in the cycle that deal 
with stakeholder-relevant Quality Assurance (Biffl, Mordinyi et al. 2008). 

6.5.1.1 Step 1: Component Development 

Based on requirements or triggered by new technologies or roles, components are 
developed which are used in the production automation system. The developed 
component runs through the first static Quality Assurance test using ontology support. 
Based on the requirement descriptions of the component, tests instances are generated; 
e.g. unit tests for specific functionality. In addition it can be checked whether all 
component dependencies and security aspects are fulfilled. If the tests are successful the 
component is added to the Component Tool Box; errors are reported to the developer of 
the component (Biffl, Mordinyi et al. 2008). 

6.5.1.2 Step 2: Component Analysis 

The system reconfiguration cycle at the production line level is triggered either by new 
or changed requirements or components. The reason could be the selection of a new 
production strategy due to changed working capacities or altered customer 
requirements. The input to the component analysis step is a set of components from the 
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Component Tool Box that fulfill the specified requirements. Additionally, the current 
combination of components representing the current production system is taken as input 
as well. The analysis step creates all possible combinations of the input with respect to 
compatibility of the components with each other. The set of components is then 
parameterized according to the analysis of historical test cases measurements, which are 
returned to the Component Analyses step by means of a feedback cycle (Biffl, Mordinyi 
et al. 2007). The next Quality Assurance check point has to ensure that each 
parameterized combination still fulfills customer requirements. Issues and defects are 
reported back to the component analysis step (Biffl, Mordinyi et al. 2008). 

6.5.1.3 Step 3: New Design 

During the design phase complex requirements have to be fulfilled focusing on 
choosing the right combination of components. The step selects the combination that 
fulfills non-functional requirements like production time, cost or machine utilization. 
The selected combination is then transformed into a configuration view that can be 
interpreted by the production system. The third Quality Assurance checkpoint focuses 
on the new configuration that has to pass tests which e.g. check its completeness and 
syntax. Issues and design defects are reported to step 2 (Biffl, Mordinyi et al. 2008). 

6.5.1.4 Step 4: Testing and Simulation 

In general it is necessary for safety-critical systems, such as for production automation, 
to assure that the configurations meet overall requirements including system safety 
before deployment to real-world environments. Therefore, the operation of tools to 
measure system quality and performance of the new configuration is mandatory. The 
introduced cycle represents another source of error, so there is the possibility of 
remaining unresolved (uncritical) defects, wrong responses to failure scenarios. One 
solution is to execute simulations representing relevant properties of the target system 
so that the built in monitoring functionality is able to produce monitoring data which 
can be further evaluated and used by step 2 for component selection. This means that in 
comparison to traditional approaches with implicit feedback by manually analyzing the 
results of test case runs, this approach explicitly provides measurement feedback 
integrated into the ontology for step 2. The successfully tested and simulated 
configuration can be deployed and used as new current system component for step 2. 
Defects found during simulation and testing are reported (Biffl, Mordinyi et al. 2008). 
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6.5.2 Using the Engineering Knowledge Base for Quality Assurance 

The continuous model used during the engineering approach is the Engineering 
Knowledge Base. This ontology consists of several ontology areas containing the 
concepts and individuals of a certain category of the production automation 
environment. As sketched in Figure 40, the EKB consists of areas describing the 
infrastructure and layout of the assembly workshop, the building plans and properties of 
the components, the data of the concrete work orders derived from the business orders 
and the measured data of the operation/simulation (Biffl, Mordinyi et al. 2008). 
Multiple versions of ontology areas may be used sequentially, e.g., for analysis. This 
means that certain ontology areas can be populated using either time (“time slices”) or 
version constraints. Using this approach it is possible to define a number of test cases, 
which should be executed consecutively (Biffl, Mordinyi et al. 2008). 
Figure 40 shows a number of role-specific to access the engineering ontology. This 
allows more effective management of ontology areas a certain role is interested in, since 
the data can be presented in a well-accepted format/tool for this role, e.g., work order 
manager, operator, architect, or Quality Assurance personnel (Biffl, Sunindyo et al. 
2009). 

6.6 Supporting Runtime Decisions using Design Time Informa-
tion 

Engineers, who want to adapt the system at runtime, need information from software 
models that reflect dependencies between components at design and run time, e.g., the 
workshop layout, customer orders and assembly procedures that translate into needs for 
machine function capacities over time; and the coordination of tasks for redundant 
machines in case of a failure. During development design-time software models like 
data-oriented models (e.g., class or EER diagrams) or workflow-oriented models (e.g., 
sequence diagrams or state charts) are the basis to derive run-time models but are often 
not provided in machine-understandable format to reflect on changes at runtime, i.e., the 
knowledge is kept in an explicit human-understandable way but cannot be accessed by 
components automatically. Domain and software experts are needed to integrate the 
fragmented views (e.g., propagating model changes into other models, cross-model 
consistency checks) from these models, which often is an expensive and error-prone 
task due to undetected model inconsistencies or lost experience from personnel 
turnover. 
Practitioners, especially designers and quality assurance (QA) personnel, want to make 
reconfigurable software-intensive systems (which like SAW consist of components 
defined by general design-time behavior, derived run-time configuration, and run-time 
specific behavior enactment) more robust against important classes of failures: machine 
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failures, misuse from invalid supply, and failure-related changes in machine capacities 
at runtime. QA people could benefit from more effective and efficient tool support to 
check system correctness, by improving the visibility of the system defect symptoms 
(e.g., exceptions raised from assertions). 
Challenges to detect and locate defects at run-time come from the different focus points 
of models: e.g., components and their behavior are defined at design time, while 
configurations may change at run time and violate tacit engineering assumptions in the 
design-time models. Without an integrated view on relevant parts of both design-time 
and run-time models inconsistencies from changes and their impact are harder to 
evaluate and resolve between design and run time. 
Better integrated engineering knowledge can improve the quality of decisions for run-
time changes to the system, e.g., better handling severe failures with predictable 
recovery procedures, lower level of avoidable downtime, and better visibility of risks 
before damage occurs. 

In this section we present an approach to improve support for run-time decision 
making with an ontology: a domain-specific engineering knowledge base (EKB) that 
provides a better integrated view on relevant engineering knowledge in typical design-
time and run-time models, which were originally not designed for machine-
understandable integration. The EKB can contain schemas on all levels and instances, 
data, and allows reasoning to evaluate rules that involve information from several 
models that would be fragmented without machine-understandable integration (Moser, 
Schatten et al. 2009). 
Using the EKB provides the following benefits: a) Uniform and efficient access to 
related data in design-time, deployment, and run-time models on the levels of schemata, 
instances, and configurations. This feature allows reasoning to effectively evaluate 
specific decision alternatives, e.g., the importance of defect messages. Further the 
feature supports checking the impact of changes in one model on the consistency of 
other models; and b) derivation of assertions that should hold at runtime to establish and 
maintain causal links between design/runtime models and the running software. These 
assertions can support systematic exception handling and escalation procedures; e.g., 
check correct sequences of messages; valid behavior of component groups; or check 
actual run-time performance with design estimates/limits (Moser, Schatten et al. 2009). 

6.6.1 Engineering Knowledge Base Architecture 

In this section, we introduce the Engineering Knowledge Base (EKB) used for this 
scenario, a set of relevant information elements about components in machine-
understandable format using ontology syntax. Components can query the EKB at run 
time to retrieve information for decision making, e.g., enriching and filtering failure 
information or run-time coordination of machine workloads due to changes in the 
available machine capacity (Moser, Schatten et al. 2009). 
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Figure 41 illustrates 3 major phases in the life cycle of software-intensive systems in the 
production automation domain: 1. Design time: Models that describe the workshop 
layouts, the building plans of manufactured products, etc. are transformed into 
executable program code and design-time configuration instructions. 2. In the 
Deployment phase, the executable program code is deployed into installable packages 
and the run-time configuration is derived from the design-time configuration. 3. At Run 
Time the deployed program code for system operation gets installed to a set of 
components and the run-time configuration gets injected into these components. This 
architecture has proven effective for systems whose properties change seldom, since the 
effort needed for transformation, deployment, and injection is considerable (Moser, 
Schatten et al. 2009). 

 

 
Figure 41: An Engineering Knowledge Base in context (Moser, Schatten et al. 2009). 

However, typical software-intensive systems also undergo reconfiguration phases, e.g., 
if some components fail or become unavailable. To support reconfiguration, the 
components need to be able to perform decisions at run time, since a complete new 
iteration of model transformation, program code deployment, and configuration 
injection would take too long. A major challenge of run-time decisions is to provide 
access to relevant design-time information that is usually stripped away during 
transformation for efficiency reasons (Moser, Schatten et al. 2009). 
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The Engineering Knowledge Base (EKB) provides a place for storing design-time 
information that seems valuable for supporting run-time decisions of components, 
especially in the case of handling failures or unplanned situations (but not transformed 
into run-time code or configuration to limit their complexity) (Moser, Schatten et al. 
2009). 
Components can query the EKB at run time with query languages like SPARQL20 
(SPARQL Protocol and RDF Query Language) or SWRL21 (Semantic Web Rule 
Language), which provide to the components the full expressive power of ontologies, 
including the ability to derive new facts by reasoning. In addition, components can feed 
back interesting observations into the run-time information collection of the EKB and 
therefore help to improve the design-time models (e.g., by improving estimated process 
properties with analysis of actual run-time data) and/or check the information based on 
a certain set of assertions. Furthermore, valuable deployment information can also be 
stored in the EKB in order to support and enhance for further deployments (Moser, 
Schatten et al. 2009). 
Based on the design-time information, it is possible to define a set of run-time assertions 
in the EKB. These run-time assertions observe the run-time information fed back into 
the EKB and can notify a specific role or system if the violation of an assertion has been 
detected (Moser, Schatten et al. 2009). 

6.6.2 Examples for Supported Run-Time Decisions 

In this section, we describe a real-world use case on system adaptation to accommodate 
runtime failures. The use case is based on the SAW simulation. In the simulation 
context we collect evidence to which extent a richer and better integrated semantic 
knowledge base can translate into more accurate faster and cheaper making. Based on 
the SAW data model (see also section 6.4), we derived two use case scenarios which 
show the run-time decision (RTD) support and derived assertions based on the 
capabilities of the Engineering Knowledge Base (Moser, Schatten et al. 2009). 

6.6.2.1 RTD-1: Error message filtering and sequencing 

Discussions with industry partners showed that there exists need for a more effective 
detection and handling of failures at runtime. Currently, an operator conducts front-line 
failure handling and may receive a (potentially very large) set of error messages from 
distributed components. These components and their errors may be interrelated in 
several ways (logical, process, physical, etc.). As example for a wide range of failures 
                                                 
20 www.w3.org/TR/rdf-sparql-query/ 
21 www.w3.org/Submission/SWRL/ 
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of components that are interdependent (not always in obvious ways): an initial failure of 
a non-redundant conveyor may cause follow-up failures at (distant) machines that 
depend on transport from the failing conveyor. Typically, the operator will be notified 
about a set of failures and may not know which failure is of first importance; in most 
cases the operator tends to handle failures of expensive machines first before attending 
to less expensive components, such as the conveyor belt, which may lead to an 
ineffective sequence of recovery activities. 
Using the EKB approach, it is possible a) to model the component interdependencies 
and their relationships to errors/failures and b) derive the original source of failure using 
ontology-based reasoning as well as present additional important failure information 
like instructions and responsibilities to the operator. Important run-time decisions in this 
scenario are which messages should be provided to the operator and which messages 
should be filtered out (e.g., less important defects) as well as the sequence in which the 
messages should be presented to the operator (e.g., messages from most important 
components first – most important does not necessarily mean largest or most expensive 
component). 
An assertion for this run-time decision can be to flag not only direct failures of 
components but also non-reachable components or parts of the overall workshop. If 
relevant parts of the workshop are not reachable for an extended period, both the 
operator and some higher-level roles like a dispatcher or a ERP system need to be 
notified about the (temporary) change of the workshop system capacity so they can 
react to the foreseeable capacity change in time. 
 

 
Figure 42: EKB-supported runtime decisions (Moser, Schatten et al. 2009). 
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Figure 42 (bottom left) shows how a failure in Conveyor X (1) will result in 
unreachable Machines A and B (2) and consequent follow-up failure messages. 
However, the operator will receive in general several failure warnings, and has to reason 
on their overall meaning. If he chooses to handle the failure of Machines A or B first, 
valuable time will be lost. The EKB can deduce that Conveyor X is a predecessor of 
both Machines A and B using the connectedTo relation between Conveyor and 
Component. 
Thus it is possible to define a query whether the failure of a component should be 
reported to an operator or should be filtered out; see Listing 6 for a simple query 
definition which implies a failure of a component C should be filtered out if a failure of 
any predecessing component P occurs at the same time and if the Failure ID is not 
severe, e.g., of failure class “3”; in Listing 1 reportFailure(C) will return false, since the 
failure code is “5” and P is a predecessor of C. This query can be used as soon as a 
number of failures occur in order to identify a possible source of failure and to suppress 
confusing follow-up failures. 

Listing 6: Rules for Reporting Failures (Moser, Schatten et al. 2009). 

Failure(C,5,”noPalletInput”). 
Failure(P,4,”motorBroken”). 
predecessor(X,Y) :- connectedTo(X,Y). 
predecessor(X,Y) :- connectedTo(X,Z), 
    predecessor(Z,Y). 
 
reportFailure(C) :- not predecessor (C,P). 
reportFailure(C) :- Failure(C,3). 

6.6.2.2 RTD-2: Individual Preparation of Machine Maintenance Tasks 

A second relevant run-time decision in the production automation scenario is when to 
perform machine maintenance tasks in order to keep a certain minimum level of 
production output. 
This decision could also be taken during design time, resulting in a decreased ability to 
react to new or changing environment conditions (e.g., failures, reconfiguration). Since 
system flexibility supports operational efficiency in production automation, the decision 
when to perform machine maintenance tasks (e.g., cleaning, refurbishment) and the 
preparations for these tasks (i.e., emptying the machine buffers) could be taken by the 
machines themselves taking into account the state of other machines and workshop 
environment conditions. The idea is to coordinate the maintenance tasks of a set of 
related machines to minimize the impact on the overall production process. This 
planned maintenance should also be reported to a controlling system (e.g., an ERP 
system) in order to allow in-time reaction to the future capacity changes. 
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An assertion for this run-time decision can be to detect a situation in which too many 
machines plan to go into maintenance mode at the same time and react by preventing 
some machines from entering maintenance mode and notifying an operator to 
investigate the actual situation. 
Figure 42 (bottom right) illustrates two redundant machines (machines that provide at 
least in part similar functionality): Machines A1 and A2, have independent virtual input 
buffers (3) that contain all work orders which are scheduled to be processed at the 
particular machine. In addition, every machine has a counter counting the number of 
performed operations, as well as a threshold defining the approximate number of 
operations after which machine maintenance tasks should be performed. Based on the 
average time a machine function takes, a machine can derive the optimal moment for 
starting maintenance tasks. As preparation of these tasks, the virtual machine buffer 
needs to be closed (4) and all remaining work orders need to be processed. To avoid that 
all redundant machines switch to maintenance mode at the same time, the planned 
maintenance time needs to be stored in the EKB, so other machines can adjust their 
maintenance plans. 

Listing 7: Reporting capacity changes to ERP (Moser, Schatten et al. 2009). 

Task(T1,F1). 
Task(T2,F1). 
Task(T3,F1). 
Machine(A1,F1,1,0). 
Machine(A2,F1,2,15). 
 
ReportCapacityChange(M1) :- 
   Machine(M1,X,_,_), 
   count(Task(_,X)) > Machine(M2,X,Y,_). 

 
Listing 7 shows a simple query to check whether a capacity change caused by a 
machine going into maintenance mode can be handled by the system itself or should be 
reported to a dispatcher and/or ERP system. There are three tasks which need the same 
machine function F1 and two machines A1 and A2, which offer machine function F1. 
A1 has a capacity of 1 task but needs to go into maintenance mode now since its number 
of allowed operations before a planned maintenance is 0. Machine A2 has a capacity of 
2 tasks and 15 more allowed operations before its planned maintenance phase. The 
query now checks whether the number of tasks needing a certain machine function (F1 
in our example) is greater than the available capacity of the other machines which offer 
this machine function (in our example machine A2) and returns true if the number of 
tasks is greater than the available capacity. In our example the query would return true, 
since there are three tasks needing the machine function F1, but the available capacity 
of machine A2 is only 2 tasks. 
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6.7 Semantic Event Correlation 

Complex event processing (CEP) is a modern software engineering paradigm that aims 
at integrating heterogeneous software systems based on the events they produce and 
consume. Event correlation is the act of connecting related events gathered from various 
sources to scan for patterns and detect situations of interest. So far, event correlation has 
been limited to match only equal values of event attributes to decide if two events are 
related. However, this approach is adequate only if the data quality of the attribute 
values on which the correlations are based is guaranteed. While this is even hard to 
ensure for a single organization, it is even more difficult for various, different 
organizations. Semantic correlation provides an explicit way to model these differences 
in a decoupled layer providing the means for better adaptability and reusability. 
Furthermore, it facilitates building correlations based on inherited meanings of terms as 
well as on relationships between them. 
In this section, we examine how ontologies can be used in software engineering to 
complement the current approach and add semantics to the evaluation of correlations 
sets. We identified 3 application scenarios for event correlation: basic, inherited and 
relation-based semantic correlation. Basic correlation does not require the events to 
have exact equal values but matches equivalent terms. Inherited semantic correlation 
goes one step further through the use of a taxonomy consisting of a set of sub-concepts 
defined using ontologies. Relation-based semantic correlation uses relations defined in 
ontologies to correlate events if their attribute values are in such a relation. For 
example, the ontology defines that department X is responsible for shipping product Y 
in country Z. This can be used to correlate events from this very department and the 
related shipping events for this product in that country (Moser, Roth et al. 2009). 

6.7.1 Complex Event Processing 

The term of Complex Event Processing (CEP) was first introduced by David Luckham 
(Luckham 2002) and defines a set of software engineering technologies to process large 
amounts of events, utilizing these events to monitor, steer and optimize businesses in 
real time. The main application field for CEP generally is in areas where low latency 
times in decision cycles are needed, combined with a high throughput for observed 
relevant business events of predefined or exceptional situations, indicating opportunities 
and problems. 
Typically, these are areas like financial market analysis, trading, security, fraud 
detection, logistics, compliance checks, customer care and relationship management; 
and more generally speaking, the monitoring of business processes and the reaction to 
these processes with short delay. A CEP system continuously processes and integrates 
the data included in events without the need for batch processes to extract and load data 
from different sources and store this data in a data warehouse for further processing or 
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analysis. CEP solutions capture events from various sources and establish a relational 
connection between them. Schiefer et al. introduced SARI (Sense and Respond 
Infrastructure) (Schiefer and Seufert 2005) and included the original event correlation 
approach (Schiefer and McGregor 2004) which we extend in this section to semantic 
relationships between events. 

6.7.1.1 Correlation Meta Model 

The correlation meta-model, illustrated in Figure 43, is a straight-forward, nested 
structure for defining correlations for event processing model components. A 
correlation set contains at least one correlation tuple. A correlation tuple is identified by 
a unique id and can contain more than one Event Type Selector. An Event Type 
Selector can only contain one Attribute Selector which selects the value used to check 
on quality with the event attribute value of another event type. The Event Type 
Selectors defines which attributes of the corresponding types make up the relationship. 
The Attribute Selector itself can be defined using EAExpressions or XPath, whereas 
EAExpressions are a domain specific language that allows to access event type details 
and perform various calculations, evaluations or apply mathematical functions (Moser, 
Roth et al. 2009). 
 

 
Figure 43: Correlation meta-model (Moser, Roth et al. 2009). 

6.7.2 Semantic Correlation of Events from Heterogeneous Systems 

Semantic correlation complements the correlation approach by integrating ontologies in 
the correlation meta-model. Our approach facilitates 3 different possibilities to 
semantically correlate events which are: 1) building correlations because of equal 
meaning, not just because of the exact equality of event attributes, 2) resembling 
terminology hierarchies to correlate events with differing event attribute values derived 
from the actual meaning and 3) defining relationships between terms. This gives us the 
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powerful means to define correlations which depend on an event attribute of one event 
type and several attributes of another. In addition, ontologies can be used to integrate 
events coming from different organizations or using different terminologies, by 
providing a kind of domain knowledge base containing the knowledge representing the 
events to be integrated. The events are then mapped to the knowledge terms they 
represent, allowing a transformation between different event types. If needed, this 
mapping can be broken down to the attribute level, allowing an even more fine-grained 
transformation of the events (Moser, Roth et al. 2009). 
The alternative approach to solve the problem at hand would be to translate event 
attribute values to generally accepted terms before applying the traditional correlation 
approach. Apart from the very likely usage of ontologies in both cases, in both cases, 
this is not an ideal approach in our opinion since several problems prevail. First of all, it 
only helps to solve the basic semantic correlation problem but it does not provide the 
opportunity to define inherited semantic correlations and relation-based semantic 
correlations. Secondly, a single event attribute may be used multiple times in a 
correlation definition. Furthermore, the decision on how to map these values has to be 
made at design time whereas our semantic correlation approach can be applied ex-post, 
e.g. for analytical purposes. Finally, incorporating this knowledge explicitly using 
ontologies in a decoupled way is favorably in our opinion as far as maintainability and 
reusability are concerned (Moser, Roth et al. 2009). 
In the following, we use an example from a production automation environment where 
different products are produced by a set of machines providing different machine 
functions to illustrate the three identified possibilities. Product orders arrive 
continuously and are assigned automatically to suitable machines. Products are made of 
different materials and need a certain set of machine functions to process these 
materials. Upon the arrival of a new product order, all the machines publish an offer 
which consists of their available set of functions, their utilization rate, the potential cost 
as well as other information. Semantic correlation is used to match suitable responses to 
the order event. Using this approach, the assignment of orders to machines can be 
extracted into a higher level definition allowing a more flexible integration of new 
machines and products. In the following, special cases of this example will be used to 
three different degrees of usages of ontologies (Moser, Roth et al. 2009). 

6.7.2.1 Basic Semantic Correlation 

In production environments many heterogeneous systems communicate with each other, 
each using its own terminology. Ontologies support the transformation between events 
from these systems and therefore shorten the development cycle. 
A correlation set based on the correlation meta-model shown in Figure 43 puts two 
events into the same correlation if the selected data elements of each one of the 
correlation tuples are equal. A minimalist approach using an ontology-based semantic 
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correlation meta-model allows us to be more flexible and to match on equal meaning 
rather than on equal value. With these correlated events it is possible to measure the 
total amount of orders in a specific time or the average available delivery time. A 
certain product may be known under different names, depending on the context. Until 
now, every order was either required to use the same product name, or it had to be 
mapped somewhere. The use of ontologies makes this mapping explicit, reusable and 
easily adaptable allowing the participants to use their own terminologies. 
Figure 44 illustrates this example. For brevity, only one concept of the ontology and 
two of its individuals, Björn and Bjørn, are shown and should indicate that different 
product names exist for the same product. The self-correlating correlation set definition 
is linked to this concept and therefore, event attributes containing any of these 
individuals are semantically equivalent and the events become correlated. 
 

 
Figure 44: Basic semantic correlation (Moser, Roth et al. 2009). 

6.7.2.2 Inherited Semantic Correlation 

Semantic correlation based on derived terms that share the same, inherited meaning as 
the one being matched loosens the concepts of correlations even more. Using ontologies 
to define inheritance hierarchies of the domain terminology isolates this aspect and 
makes it easier to define correlation sets if the values of event attributes can be more 
fine-grained but when this level of detail is of no importance. 
For example as shown in Figure 45, products could be grouped in product categories 
which can be further grouped in product lines. Inherited semantic correlation can now 
be used to define semantic correlations on all orders for products from a certain product 
group as well as from the same product line. The information from this correlation can 
then be used to calculate metrics on the product orders on the level of product groups or 
product lines. 
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Figure 45: Inherited semantic correlation (Moser, Roth et al. 2009). 

6.7.2.3 Relation-Based Semantic Correlation 

Finally, ontologies allow defining relations between terms. The correlation meta-model 
defined in section 6.7.1.1 uses correlation tuples which exactly match one event 
attribute of each event type. Relation-based semantic correlations on the other side 
allow matching multiple event attributes of each event type which define the semantic 
meaning of this tuple. In other words relation-based semantic correlations allow the 
correlation of different events, using their semantic relations. 
In addition to the characteristics introduced in the previous examples, products consist 
of a set of one or more different materials and are assembled/produced using at least one 
specific machine function. Machine functions are offered by different machines, each 
machine offers at least one machine function. 
The example shown in Figure 46 takes place in the following way: As a first step, a 
certain product is ordered. This order consists of the product ID and the amount of the 
product. Using the semantic description of the product defined in the ontology, it is 
possible to determine which materials and machine functions are needed in order to 
assemble the target product. All available machines periodically broadcast their 
available machine functions, their costs and their utilization rates. As next step, these 
broadcast events are correlated with the order event, using the machine functions 
needed for the assembly of the product, which are retrieved from the ontology, and the 
available machine functions of the periodical broadcast events of all machines, which 
are also retrieved from the ontology. This correlation is used to identify all machines 
providing the needed machine functions for the production of a certain product. In 
addition, the production costs and the utilization rates can be used to identify the 
machine representing the best choice for the production process. 
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Figure 46: Relation-based semantic correlation (Moser, Roth et al. 2009). 

6.7.2.4 Semantic Correlation Meta-Model 

After presenting 3 different possibilities of semantic correlations we now extend the 
correlation meta-model presented in section 6.7.1.1 to include ontologies. Since 
correlation tuples define the different event types as well as one event attribute for each 
one of these event types, an ontology concept is assigned to each semantic correlation 
tuple. An ontology consists of several concepts which themselves can contain sub-
concepts and/or individuals (Moser, Roth et al. 2009). 
For example, a concept product name containing sub-concepts for each available 
product name with individuals different product names for the same product can be used 
to correlate events on different product names for the same product. As we have seen in 
section 6.7.2, semantic correlations furthermore allow having more than one event 
attribute to serve as the matching criteria. Therefore, an event type selector can now 
have multiple attribute selectors as opposed to the correlation meta-model, i.e. the 
attributes can be selected not only based on EAExpressions or XPath described in 
section 6.7.1.1., but also based on semantic criteria like e.g. semantic equality (Moser, 
Roth et al. 2009). 
Figure 47 shows the extended correlation meta-model. The integration of SPARQL 
(Prud’hommeaux and Seaborne 2007) allows for even more flexibility. SPARQL 
queries can be used to uncover knowledge not explicitly known by just analyzing the 
ontology. In addition, SPARQL queries may be used in order to check either the 
consistency of ontologies or some user defined constraints (Moser, Roth et al. 2009). 
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Figure 47: Semantic correlation meta-model (Moser, Roth et al. 2009). 

Basic semantic correlation is used to identify semantically identical events, even with 
different terminologies. This is achieved by tracing an individual defined in the 
ontology back to its concept. The concept of the events to be correlated is defined in the 
definition of the particular correlation tuple. During runtime evaluation, an event is 
looked up in the ontology, and if this individual is derived from the concept defined in 
the correlation tuple, this specific event is added to the correlation set (Moser, Roth et 
al. 2009). 
Inherited semantic correlations use a similar mechanism as basic semantic correlation. 
In addition to checking the concept of certain individuals, this type of semantic 
correlation is used to identify individuals either of the specified concept or of any sub-
concept of the specified concept, without any restriction on the hierarchical depth. As 
before, this concept is defined in the definition of the particular correlation tuple. 
During runtime evaluation, again an individual is looked up in the ontology. This time, 
the specific event is added to the correlation set, if either it is an individual of the 
defined concept or of any sub-concepts of the defined concept (Moser, Roth et al. 
2009). 
Relation-based semantic correlation takes into account the semantic relations between 
autonomous concepts. Two event types are correlated based on their semantic concept 
and object properties. The concepts and the object properties to be correlated are stated 
in the definition of the particular correlation tuple. During runtime evaluation, for two 
events that are individuals of the defined concepts it is checked whether the relation 
between the two concepts defined by their object properties is identical with the 
semantic meaning of the attributes of the particular events. In case of a positive match, 
these two events are then added to the correlation set (Moser, Roth et al. 2009). 
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6.8 Summary 

In this chapter we proposed and evaluated the EKB framework for semantic mapping in 
Automation Systems Engineering based on the real-world use case SAW, with a focus 
on providing links between data structures of engineering tools and systems to support 
the exchange of information between these tools and thus making Automation Systems 
Engineering more efficient and flexible. 
The major difference compared to traditional approaches, i.e., using a common 
repository, is the lack of the need for a common data schema when using the EKB 
framework, which can be seen as the main advantage of the EKB framework compared 
to a common repository as the common data schema is a source of extra maintenance 
effort and tool evolution risk. Additionally, the number of needed converters is O(n2) 
when using a common repository, compared to O(n) converters needed when using the 
EKB framework. Further, using the EKB framework allows a more generic definition 
and execution of model checks on an application domain level, and additionally enables 
more advanced checks regarding the plausibility and semantic correctness of data 
structures by exploiting the querying capabilities of ontologies. 
The following sub-sections describe the findings and results for the EKB-based process 
description, for the Ontology Areas concept, for Ontology-Supported Quality 
Assurance, for supporting runtime decisions using design time information, and for 
semantic event correlation. 

6.8.1 Process Description 

In this chapter we introduced ontology support for development and generation of new 
system versions for production automation that supports variability modeling and traces 
design decisions by means of ontology-supported continuous modeling. Based on an 
industry case study, we described the engineering process, the coordination concept, 
and how software variant performance can be measured and improved (Biffl, Mordinyi 
et al. 2008). 

6.8.1.1 Variability modeling using an iterative feedback driven process 

The ontology and CBSE paradigms reinforce each others’ advantages: the ontology-
supported CBSE approach seems to be more effective and efficient due to reasoning 
support for selecting and parameterizing the most suitable components out of a 
component tool box with respect to a certain set of requirements or dependencies 
between components automatically and therefore without significant sources of defects 
like manual interaction. The EKB framework supports both static and dynamic QA 
during the production engineering process. Test result measurements are stored in the 
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engineering ontology and can be used for component analysis in next iteration of the 
production engineering process in order to create new system versions, and so 
completing the feedback cycle. Furthermore, the results from running test case 
documented in simulations in a way that allows efficient quality analysis and 
comparison of the results with the original assertions (Biffl, Mordinyi et al. 2008). 

6.8.1.2 Test case-based engineering approach 

The use the EKB framework during the engineering approach provides a continuously 
available and evolving representation of the stakeholder requirements. Compared to 
traditional methods, the use of ontologies entails a number of advantages. The output of 
the simulation is automatically fed back in the ontology, resulting in a combination of a 
test case and its outcome. The context-based matching of historical test case data allows 
the effective reuse of knowledge achieved in previous process iterations. These have 
proven to be useful for performing more advanced statistical analysis on the data, 
leading to more significant assertions (Biffl, Mordinyi et al. 2008). 

6.8.1.3 Optimization of role-oriented views on EKB Ontology Areas 

Role-oriented views on the Engineering Knowledge Base assist domain experts and 
roles that do not easily accept abstract models by presenting data in a well-accepted 
format/tool. This allows more effective management of the engineering ontology by 
different roles (Biffl, Mordinyi et al. 2008). 

6.8.2 Ontology Areas Concept 

Ontologies support the translation between stakeholder local terminologies via common 
domain concepts, in our case production automation concepts. Typically, the ontology 
models become very large and complex compared to the basic data model (such as used 
in a data base to automate run-time processes) if they include several aspects on a 
domain and some parts of the data model are volatile. In this chapter, we proposed a 
data modeling approach based on ontology building blocks, so-called “Ontology 
Areas”, which allow solving tasks with smaller parts of the overall ontology. We 
evaluated the proposed approach with use cases from the production automation 
domain. Major result in the study context is that Ontology Areas improved the 
efficiency of data collection task for decision making by lowering the cognitive 
complexity for designers and users of the ontology (Biffl, Sunindyo et al. 2009). 
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6.8.2.1 Lesson learned 

From the experiences with the use cases (see section 6.4.2), we can learn the following 
lessons (Biffl, Sunindyo et al. 2009). 
 
Building a smaller ontology for a task. As Ontology Areas allow focusing on the 
content of interest for a stakeholder task, we could show that the resulting ontology is 
considerable smaller. A smaller ontology is often also more efficient to handle and 
allows tackling tasks that use a particularly large number of data elements (e.g., run-
time measurements). 
 
Focus stakeholders on relevant data elements. The combination of Ontology Areas, 
design-time, and run-time data elements allowed filtering relevant data elements for 
stakeholders, which would not be possible without the combination. Thus the Ontology 
Area approach helped lower the cognitive complexity for stakeholders by providing just 
the relevant subset of the comprehensive ontology. 
 
Version management for ontology areas. With the Ontology Area concept we can 
flexibly build task-oriented ontologies based on different criteria (like volatileness, 
layers, roles, etc.). It is even possible to compare different versions of the same 
Ontology Area (e.g., production automation system designed with different parameter 
settings) to compare the run-time reactions to from changing design parameters. 
However, this ability also raises the need for better version management for Ontology 
Areas to ensure the building of consistent ontologies for specific tasks. 

6.8.3 Ontology-Supported Quality Assurance 

In this chapter we introduced ontology support for systems engineering that explicitly 
describes stakeholder quality requirements and traces design decisions to generate new 
system versions that implement these requirements. Based on an industry case study, we 
described the ontology concept of the system, the development process, and how 
software quality can be measured and improved (Biffl, Mordinyi et al. 2008). 

6.8.3.1 Explicit and continuous modeling 

The use of the EKB framework during the engineering approach provides a 
continuously available and evolving representation of the stakeholder requirements. 
Compared to traditional methods, the use of ontologies entails a number of advantages. 
As shown in the case study, this allows a more automated QA support. In addition the 
usage of the ontology area concept creates a personalized view on the data model for 
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each role. The output of the simulation is automatically fed back in the ontology, 
resulting in a combination of a test case and its outcome. This automated feedback cycle 
has proven useful for performing more advanced statistical analysis on the data, leading 
to more significant assertions for the generation of new system versions (Biffl, 
Mordinyi et al. 2008). 

6.8.3.2 Tool support for transformation of explicit requirements and for 
Quality Assurance 

The ontology and CBSE paradigms reinforce each others’ advantages: the ontology-
supported CBSE approach seems to be more effective and efficient due to reasoning 
support for selecting and parameterization of the most suitable components out of a 
component tool box. This is automatically achieved with respect to a certain set of 
stakeholder requirements or dependencies between components and therefore without 
significant sources of defects like manual interaction. The EKB framework supports 
both static and dynamic QA during the production engineering process. Test result 
measurements are stored in the engineering ontology and can be used for component 
analysis in next iteration of the production engineering process in order to create new 
system versions, and so completing the feedback cycle. Furthermore, the results from 
running test cases are documented in simulations in a way that allows efficient quality 
analysis and comparison of the results with the original assertions (Biffl, Mordinyi et al. 
2008). 

6.8.3.3 Measurement of stakeholder-level quality of the product and devel-
opment process 

Stakeholder-level quality is assured by means of ontology-based reasoning, allowing 
tracing customer-specific requirements continuously throughout the entire production 
engineering process. The Ontology Area approach and the role-specific views of 
selected data effectively and efficiently allow the involved roles to check the mapping 
and tracing of their value proposition and requirements at all times. Conflicts during 
dynamic QA can directly refer to the quality requirements of a certain configuration 
(Biffl, Mordinyi et al. 2008). 

6.8.4 Supporting Runtime Decisions using Design Time Information 

In this paper we described an ontology-based approach to provide relevant design-time 
and run-time engineering knowledge stored in a so called Engineering Knowledge Base 
(EKB). The EKB provides a better integrated view on relevant engineering knowledge 
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contained in typical design-time and run-time models in machine-understandable form 
to support runtime decisions. This approach is useful in the automation domain, and can 
more generally be used for other (distributed) engineering systems. We illustrated our 
approach with two types of run-time decisions from a real-world case study in the area 
of software-intensive production automation systems (Moser, Schatten et al. 2009). 
Major results of the evaluation of the proposed EKB approach were: Due to separation 
of automation code, diagnosis and decision support the complexity of single 
components can be reduced by approximately 20-30%, since these components now can 
rely on external information. Another benefit is the possibility to define assertions in the 
EKB which are checked based on the run-time information input of the running 
components. This can be seen as external Quality Assurance without interfering with 
the original production system and therefore it has proven to be easier to enrich existing 
applications without the need to make changes to legacy systems (smoother migration 
path). Further, the quality of information presented to an operator is improved since all 
information both from design-time as well as from run-time is available, leading to 
more intelligent run-time analysis and decision support (Moser, Schatten et al. 2009). 

6.8.5 Semantic Event Correlation 

In this paper we described the role of event correlation in Complex Event Processing 
and a meta-model for traditional syntactic correlation sets which define how events are 
related to each other. We extended this meta-model to include semantic correlation sets 
by incorporating ontologies. We identified three application scenarios that show how 
ontologies and correlation sets can be combined to semantically correlate events based 
on meaning, inheritance and relations. Using the proposed semantic correlation 
approach allows to use and correlate events which by now could not be correlated 
effectively because of semantically heterogeneous terminologies of participating 
systems/organizations. The possibility to perform these correlations without the need to 
change existing events and therefore no need to change running systems strongly 
increases the flexibility of Complex Event Processing (Moser, Roth et al. 2009). 
Using the three identified use cases for semantic correlation, the possibilities for the 
identification and processing of events are broadened, allowing further usages of events. 
Events that by now could not have been correlated directly using traditional syntactic 
correlation methods can now be described and processed using semantic techniques. 
Compared to the alternative approaches which required changes of the original events 
and therefore of the running systems, the proposed semantic correlation approach 
provides a much higher flexibility. In addition, the semantic definition of events and 
their properties and relations, contributes to the overall understanding of the systems to 
be integrated and their produced events (Moser, Roth et al. 2009). 
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7 Evaluation and Discussion 

This chapter presents the results of the evaluation of the EKB framework and discusses 
these results with regard to the specified research issues (see section 3.1). In the first 
section, the prototypic realization of the four usage scenarios, namely data exchange 
between tools, model consistency checking across tool boundaries, impact analysis of 
model value changes, and end-to-end analysis, are described in detail. The second 
section describes the evaluation of the SWIS application scenario, while the third 
section describes the evaluation of the SAW application scenario. In the fourth section, 
the benefits and limitations of the EKB framework are summarized, and the specifics of 
applying the EKB framework to the two application scenarios, SWIS and SAW, are 
described. 

7.1 Prototypic Realization of the Usage Scenarios 

This section describes the prototypic realization of the four usage scenarios of the 
Engineering Knowledge Base framework identified in section 4.2. 

7.1.1 Data Exchange Between Tools 

To cooperate the engineers have to exchange relevant parts of the data structures (i.e., 
information required in another tool should become available as soon as it has been 
saved in the original tool) in their tools with each other with the goal of a consistent 
overall view on certain aspects in the project, e.g., when producing a specification for a 
subcontractor. Currently, every role uses organization-, domain-, and tool-specific data 
formats and terms, thus the data exchange takes considerable expert knowledge on the 
receiving end to make sense of the incoming data, typically as large PDF document or 
tool-specific import file (Moser, Biffl et al. 2010). 

7.1.1.1 Common Repository Approach 

The exchange of data structures originating from different engineering tools using a 
common repository requires a set of prerequisites. Either, all participating tools need to 
agree on a common data schema used for the data structure exchange. All exchanged 

160 
 



information is then structured according to this schema. While this is even hard for tools 
originating from the same engineering domain, it becomes nearly impossible for tools 
originating from different and typically heterogeneous engineering domains. In 
addition, changes to one or more of the engineering tools regularly require an update of 
the common schema, which then needs to be forwarded to the other engineering tools 
which use this schema. So the major functionality of the common repository is to store 
all information, while at the same time providing point-to-point integration between all 
participating tools using converters for each possible combination of the tools (Moser, 
Biffl et al. 2010). 
Once set up and configured properly, this data exchange method has a low delay, i.e., 
information made available by an engineering tool is available for all other engineering 
tools that need these information. However, the configuration of this approach requires 
high effort, since converters need to be written for all needed pairs of n engineering 
tools, with O(n2) required converters. In addition, the common repository is inflexible 
and fragile in case of changes of single engineering tools, since converters need to be 
adapted or complete rewritten in this case (Moser, Biffl et al. 2010). 

7.1.1.2 Engineering Knowledge Base (EKB) Approach 

A first step in using the EKB framework is the identification of common concepts used 
in the participating engineering tools. These common concepts are then described in the 
Domain Knowledge Base (DKB, see Figure 48). As a next step, the proprietary tool-
specific knowledge is mapped to the more general knowledge stored in the DKB. Based 
on these mappings, the EKB framework semi-automatically generates transformation 
instructions for transforming data structures between tool-specific formats. This semi-
automated generation exploits the mappings stored in the EKB and makes suggestions 
for possible transformations to be reviewed by a human expert. The human expert then 
can revise the suggested transformation, change them or add new or more complex 
transformation rules manually. Since for each of the n participating engineering tools a 
single transformation instruction is required, the number of overall needed 
transformation instructions is O(n) (Moser, Biffl et al. 2010). 
While the EKB framework requires similar or at most slightly higher effort for setup 
and configuration compared to the common repository approach, new benefits come 
from using ontologies for storing the engineering knowledge. The ontologies enable the 
semi-automated generation of the required converters, both initially and when 
engineering tools evolve. The number of required converters is also smaller with O(n) 
converters for n engineering tools. Further, once set up, the delay of the data exchange 
method is similar to the delay using the traditional common repository based approach 
(Moser, Biffl et al. 2010). 
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Figure 48: Translation between Business and Workshop Configuration Knowledge. 

Figure 48 illustrates two different engineering-tool-specific terminologies of the SAW 
production automation system. The business knowledge uses the concept 
ClientPurchase as a local terminology, while in the workshop configuration knowledge 
the concept WorkTask is used as a local terminology. As shown in the figure, both 
concepts are mapped to the corresponding domain concepts, CustomerOrder and 
WorkOrder respectively. In addition, the attribute Date of ClientPurchase is mapped to 
the attribute DueDate of WorkOrder, while the attribute Client of WorkTask is mapped 
to the attribute CustomerID of CustomerOrder. Further, in the Domain Knowledge Base 
the concepts CustomerOrder and WorkOrder are linked by their common attribute 
Product and ProductID respectively. Using these mappings, we can identify work tasks 
which belong to a specific client purchase or vice-versa identify the corresponding 
client purchase for a specific work task, without the need to establish a direct link or 
mapping between the two local terminologies (Moser, Biffl et al. 2010). 

7.1.2 Model Consistency Checking Across Tool Boundaries 

Model checking refers in the evaluation study context to the inspection of model data 
elements regarding their consistency and integrity. As a first step towards 
comprehensive model checking, checks of local data structures belonging to a specific 
engineering tool can be performed. For these checks, no access to data structures of 
other engineering tools is needed. However, since the data structures of the single 
models are viewed independent of the data structures of other engineering tools, more 
advanced checks regarding a combination of data structure of multiple engineering 
models. For this use case, we focus on two types of models checks, namely a) 
consistency and integrity checks of model changes; and b) the derivation of runtime 
functionality for automated testing and monitoring (Moser, Biffl et al. 2010). 
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An example for consistency and integrity checks of model changes is a hardware pump 
which supports a certain number of input/output signals (I/Os), and which is controlled 
by a pump control software using either analog or digital signal processors. Analog 
signal processors can handle 8 I/Os, digital 64 I/Os. If the signal processor type is 
changed in the pump control software model, it needs to be validated whether the new 
signal processor type can handle all available I/Os of the hardware pump. Respectively, 
if the I/Os are changed (e.g., new I/Os added) it has to be checked whether they all can 
be controlled using the chosen signal processor type of the pump control software. 
Another example for the derivation of runtime functionality for automated testing and 
monitoring is again a hardware pump which can handle approximately 1000 liters per 
hour. A time-based analysis of the events originating from the reservoir located behind 
the hardware pump could show impossible conditions or sensor states, e.g., if the 
reservoir capacity of 10000 liters is reached within 5 hours starting from an empty 
condition (Moser, Biffl et al. 2010). 

7.1.2.1 Common Repository Approach 

Using a common repository enables to perform advanced checks regarding the data 
structures of more than one engineering tool, such as checking the consistency of single 
data structure elements across tool boundaries or analyzing the possible impact of 
changes to data structures belonging to a specific engineering tool on the data structures 
of other engineering tools. The major drawback of this approach of performing model 
checks is the need for manual involvement of human experts. The experts need to 
explicitly define the checks and select the data they want to include in these checks. 
This definition needs to be updated after every change to the involved data elements. 
Additionally, the nature of the common repository allows only for syntactical checks 
(e.g., the availability of all obligatory data fields or the validity of data types regarding a 
certain data schema) of the data, but not for other checks such as regarding the semantic 
correctness or plausibility of data structures. Other checks, such as checks regarding 
logical connections of data elements, are not supported out of the box using a common 
repository, since the data elements in the repository are stored unaltered and without 
meta-information. However external analysis tools can use the data elements stored in 
the common repository for performing such model checks (Moser, Biffl et al. 2010). 

7.1.2.2 Engineering Knowledge Base (EKB) Approach 

The EKB framework enables automated checks regarding both syntactical issues as well 
as plausibility checks regarding semantic correctness of data structures. The EKB 
framework exploits the querying capabilities of ontologies to allow even more advanced 
checks, such as checks regarding completeness of available information. Human experts 
define checks regarding specific domain or tool-specific concepts, which are then on-
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the-fly transformed into checks regarding tool-specific data structures accordingly. The 
results are then collected and again transformed into the domain concept level, allowing 
experts both to define checks as well as to view the results of the defined checks in their 
well-known syntax, terminologies and notations (Moser, Biffl et al. 2010). 

7.1.3 Impact Analysis of Model Value Changes 

The problem from the SAW context (see 3.3.2) described here corresponds to the sales 
manager’s task of identifying the maximal amount of products that can be produced 
during a shift. To do this task, the sales manager needs to collect information from other 
stakeholders and make calculations based on the information collected before getting to 
the final result (Moser, Biffl et al. 2010). 

7.1.3.1 Common Repository Approach 

All information of the process production is placed in the common repository. The sales 
manager retrieves the needed information out of the common repository, while the other 
stakeholders put the information in the common repository. The drawbacks of this 
approach are updates submitted by different stakeholders that are hard to handle 
concurrently, and different formats and syntax originating from different stakeholders. 
The sales manager has to deal with other data not necessarily needed for his tasks and 
manual and therefore error-prone steps are required to get the needed data from other 
stakeholders (Moser, Biffl et al. 2010). 

7.1.3.2 EKB Approach 

By using the EKB framework, the automated analyses are supported using the following 
these steps (refer also to Listing 8 for a detailed description of these steps using 
simplified OWL syntax): The sales manager queries the global view to find out the 
current shift time. The shift time is identified in the global view and the mapping of the 
shift time to the workshop manager’s local view is exploited, and subsequently the shift 
time is queries in the workshop manager’s local view and represented in the global 
view. As next step, information about the finishing time of the product type of product 
prod6 is queried in the global view, resulting again in an exploiting of the mapping to 
the business manager’s local view, a query of this local view and a representation of the 
product type and finishing time of the product prod6 in the global view. Finally, in the 
global view the maximum amount of products that can be produced in the current shift 
is calculated using the previously queried information and the result is presented to the 
sales manager (Moser, Biffl et al. 2010). 
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workshop:shift1 workshop:lasts workshop:14400 
workshop:shift1 workshop:order workshop:prod6 
business:prod6 business:finishingTime business:50 
 
SELECT(?x) WHERE {sales:shift1 sales:lasts ?x} 
 
SELECT(?x) WHERE {global:shift1 global:lasts ?x} 
 
SELECT(?x) WHERE {manager:shift1 manager:lasts ?x} 
Result: x = manager:14400 
 
manager:14400 owl:equalTo global:14400 
 
SELECT(?y) WHERE {global:prod6 global:finishingTime ?y} 
 
SELECT(?y) WHERE {business:prod6 business:finishingTime ?y} 
Result: y = business:50 
 
business:50 owl:equalTo global:50 
 
SELECT(?z) WHERE {?x owl:equalTo global:shiftTime, 

?y owl:equalTo global:finishingTime, 
global:prod6 global:has ?z: x/y) 

Result: z = global:288 
 
global:288 owl:equalTo sales:288 

Listing 8: EKB Impact Analysis Example (Moser, Biffl et al. 2010). 

7.1.4 End-to-End Analysis 

In distributed engineering in heterogeneous environments, typically a set of different 
models is used along the engineering chain (see also Figure 22). In order to ensure 
validity and consistency of the overall engineering process, it is important to ensure that 
required data fields can be enforced during the whole lifecycle of the engineering chain 
(Moser, Winkler et al. 2010). In the following subsections, we present a database 
approach for end-to-end analyses of semantically homogeneous data, as well as an EKB 
framework approach for end-to-end analyses of semantically heterogeneous data. 

7.1.4.1 A database approach for end-to-end analyses of semantically homo-
geneous data 

Figure 49 shows the scenario used for the end-to-end analysis example using a 
homogeneous data set. There are three different engineering roles (electrical engineer, 
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configurator, software engineer) from different engineering disciplines that use different 
engineering tools. 
 

 
Figure 49: End-To-End Analysis of homogeneous data (Moser, Winkler et al. 2010). 

In the following, we show an exemplary query using the data provided in Figure 50. 
 

 
Figure 50: End-to-End analysis - Homogeneous data (Moser, Winkler et al. 2010). 

In the query, we want to identify all sensors, connectors and variables that are used end-
to-end. Listing 9 shows the query in SQL syntax, as well as the results of the query 
using relational notation. 
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SELECT Electric.E_short, Electric.E_name, Configuration.C_short, 

 Configuration.C_name, Software.S_short, Software.S_name  
 
FROM 

(Electric INNER JOIN Configuration ON 
Electric.EC_link = Configuration.C_short) 

INNER JOIN Software ON Configuration.CS_link = Software.S_short; 
 

 
(S1, Sensor 1, C1, Connector 1, V_A, Variable A) 
(S4, Sensor 4, C3, Connector 3, V_B, Variable B) 
(S2, Sensor 2, C5, Connector 5, V_C, Variable C) 

Listing 9: Homogeneous End-to-End Query 1 (Moser, Winkler et al. 2010). 

7.1.4.2 EKB framework approach for end-to-end analyses of semantically 
heterogeneous data 

If we now assume that the data originating from the three different engineering 
disciplines is not homogeneous, but rather is only available in heterogeneous form (as 
shown in Figure 51), the simple SQL-based approach presented in section 7.1.4.1 is not 
working any more. 
 

 
Figure 51: End-to-End analysis – Heterogeneous data (Moser, Winkler et al. 2010). 

As shown in the top of Figure 51, the links between the electric and the configuration 
entity or the configuration and software entity requires the EC_link and the C_short 
attributes or the CS_link and S_short attributes to be the same for the queries to work. If 
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however these attributes are not equal as shown in the bottom of Figure 51 (CforV_A 
and C1, respective V_Interface1 and V_A), queries like the ones presented in section 
7.1.4.1 do not work. 
A solution approach would be to provide mapping tables in the database, which store 
the mappings between the attributes defining the links between entities. However, this 
results in both an increasing complexity of the SQL statements, as well as in the need to 
adapt these mapping tables each time attribute values are changed. 
We now model this scenario using the EKB framework, as shown in Figure 52. There 
are three different layers, namely the domain ontology, the tool ontologies and the 
instance data layer. In the domain ontology, the general attributes (the so-called 
overlapping engineering concepts) and the relations (dotted lines in the figure) of the 
concepts electric, configuration and software are modeled. In the tool ontologies, all 
attributes of the tool-specific concepts electric, configuration, and software are modeled. 
In addition, the mappings (dashed lines in the figure) between the tool ontologies and 
the attributes of the generic concepts in the modeled in the domain ontology are 
described. Finally, the third layer shows an example for concrete instances (individuals) 
of the modeled concepts. 
 

 
Figure 52: EKB Framework - End-to-End analysis (Moser, Winkler et al. 2010). 
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Using this model allows us to define queries on the domain ontology layer. For 
example, we again want to identify all sensors, connectors and variables that are used 
end-to-end. Listing 10 shows the SPARQL query and the result of the query. 
 
SELECT ?Electric_ID, ?Config_ID, ?SW_ID 
 
WHERE { el:E_short ekb:mapsTo ?Electric_ID. 
   ?dom:Electric dom:Electric_ID ?Electric_ID. 
   ?dom:Electric dom:Config_ID ?Config_ID. 
   cfg:C_short ekb:mapsTO ?Config_ID. 
   ?dom:Configuration dom:Config_ID ?Config_ID. 
   ?dom:Configuration dom:SW_ID ?SW_ID. 
   sw:S_short ekb:mapsTo ?SW_ID. 
   ?dom:Software dom:SW_ID ?SW_ID. 
 } 
 
(S1, C1, V_A) 
(S4, C3, V_B) 
(S2, C5, V_C) 

Listing 10: Heterogeneous End-to-End Query 1 (Moser, Winkler et al. 2010). 

As shown in Figure 53, we now assume that there exist two different types of variables, 
namely normal variables (V_B and V_C) and safety-critical variables (V_A and V_D). 
Safety-critical variables need to be connected by a minimum of two sensors to allow 
continuous functionality in case of the failure of a sensor. 
 

 
Figure 53: End-to-End analysis Safe Variables (Moser, Winkler et al. 2010). 
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Using this model allows us to define queries regarding the correct connectivity of all 
safety-critical variables. For example, we again want to identify all safety-critical 
variables that are not connected to 2 sensors. Listing 11 shows the SPARQL query and 
the result of the query. 
 
SELECT ?SW_ID, count ?Electric_ID 
 
WHERE { ?dom:Software dom:SW_ID ?SW_ID. 
   ?dom:Software dom:S_type ‘safe’. 
   ?dom:Configuration dom:SW_ID ?SW_ID. 
   ?dom:Configuration dom:Config_ID ?Config_ID. 

  cfg:C_short ekb:mapsTO ?Config_ID. 
   ?dom:Electric dom:Config_ID ?Config_ID. 
   ?dom:Electric dom:Electric_ID ?Electric_ID. 
   el:E_short ekb:mapsTo ?Electric_ID. 
 } 
 
(V_A, 2) 
(V_D, 1) 

Listing 11: Heterogeneous End-to-End Query 2 (Moser, Winkler et al. 2010). 

7.2 Evaluation of the SWIS Application Scenario 

This section describes the evaluation of the SWIS application scenario in detail. First, 
the design of the evaluation and the evaluation criteria are summarized, then a step-by-
step evaluation of the SWIS process is performed and described. 

7.2.1 Evaluation Design for the SWIS Application Scenario 

In order to assess the benefits and limitations of the EKB-based approach, we 
performed an evaluation by means of applying the proposed entire EKB-based 
approach. Therefore, we derived four parameters to compare the EKB-based approach 
with the traditional one. Table 1 summarizes the effort and duration needed for 
integration, the quality assurance efficiency, the complexity of the models, and finally 
the level of automation support both approaches provide (Moser, Mordinyi et al. 2009). 
The evaluation is based on two scenarios within the ATM domain application scenario. 
The first scenario (Scenario 1) determines the results based on an integration project 
from the scratch. The second scenario (Scenario 2) assumes that an initial integration 
project has been accomplished providing a first integration solution, but due to changing 
business requirements some system adaptations have to be performed, like the need to 
update the domain model. Scenario 1within the ATM domain application scenario has 
the following characteristics: 5 systems (applications) with 30 integration points 
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(services) and 100 data structures (logical entities). In case of Scenario 2, 10 integration 
points of 3 different systems have been updated resulting in 2 new data structures and 
10 updated ones. The overall integration effort for Scenario 1 using the traditional 
approach was 415 PDs22 and for scenario 2 76 PDs. When using the EKB-based 
approach, the overall integration effort for scenario 1 was 435 PDs, compared to 32 PDs 
for scenario 2 (Moser, Mordinyi et al. 2009). 

Table 1: UML- and EKB-based approaches (SWIS) (Moser, Mordinyi et al. 2009). 

Evaluation 
parameters 

Traditional 
approach 

EKB-based 
approach 

Integration 
Effort 

System knowledge is 
described in human-

readable documents by 
Subject Matter Experts 

 
No explicit domain 

knowledge used 

System knowledge is externalized in 
a machine-readable ontology by 

Subject Matter Experts 
 
 

Domain knowledge is incrementally 
externalized in a machine-readable 

ontology by the Domain Expert 

QA 
Efficiency 

Low 
 

Manual checks of 
documents and models 

needed 

High 
 

Automated ontology reasoning 
allows quickly locating inconsistent 

knowledge in the model 
Model 

Complexity 
High and  

distributed 
High and  

centralized 

Level of 
Automation 

Support 

Low 
 

Exhaustive 
communication of Subject 
Matter Experts, Domain 
Expert, and Integration 
Expert needed to clarify 

integration partners 
 

Domain Expert 
coordinates the generation 

of transformation 
instructions with the 

affected Subject Matter 
Experts 

 
Manual checks of 

documents and system 
configuration needed 

High 
 

Automated derivation of possible 
integration partners by means of 

ontology based reasoning 
 
 
 
 
 

Automated derivation of 
transformation instructions by means 

of ontology based reasoning 
 
 
 

Automated ontology reasoning 
allows quickly locating invalid 

system configurations 
                                                 
22 PD: Person Day (Full Time Equivalent). 
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7.2.2 Evaluation Criteria for the SWIS Application Scenario 

This section describes the criteria used for the evaluation, as well as the results obtained 
for each particular criterion (Moser, Mordinyi et al. 2009). 

7.2.2.1 Integration effort 

The results of the evaluation show that the overall integration effort is similar for both 
approaches in case of small number of systems to be integrated and slightly higher for 
the EKB-based approach in case of larger systems. The higher effort comes from the 
need to manage the domain model, since additional mappings between the integration 
system ontology and the domain model are needed. The effort to create the integration 
system ontology or the interface description is similar since in both approaches the 
conducted Subject Matter Experts has to cope with the same problem of finding the 
right information describing the system interfaces with its semantics. The EKB-based 
has the advantage that in case of adaptation the knowledge already gathered is explicitly 
given and can be reused in further discussions compared to the traditional approach 
where this knowledge exists implicitly only. In case of reconfiguration issues the EKB-
based process has proven to be more efficient than the traditional approach since once 
the knowledge has been externalized, it can be reused with little extra effort. 
Furthermore, in case of the traditional approach each system expert has to be contacted 
for any kind of changes resulting in discussions (Moser, Mordinyi et al. 2009). 
In case of the EKB-based approach the domain expert is needed in major changes only 
where the mapping of the integration system ontology to the domain ontology has to be 
altered as well. In case of minor changes, affecting the characteristics of the system 
only, the Subject Matter Experts are needed. Additionally, performing changes, like 
structure modifications, based on documents is more difficult and time consuming than 
compared with ontologies where you deal with classes. Changes can be performed 
much faster and can be done during the discussion concerning the integration project as 
well. The duration of the traditional approach tends to be higher due to error-prone 
mainly manual process steps resulting in additional efforts to discuss error sources and 
possible solutions. The proposed EKB-based approach reports errors or missing 
information immediately due to in-time consistency and completeness checks based on 
ontology reasoning. In case of describing systems, parallel processing is possible in 
both approaches. However, the following EKB-based processing steps are running 
mainly automated from the third processing step on, while the traditional approach is 
still human-driven resulting in time consuming and error-prone processing steps. 
Therefore, the duration depends strongly on of automation support (Moser, Mordinyi et 
al. 2009). 
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7.2.2.2 Quality Assurance efficiency 

Since the traditional approach focuses on manual validity checks, it is therefore more 
time consuming and error-prone. This also results in the fact that missing information is 
often detected in a later integration step. The quality assurance efficiency is measured 
by the number of failures detected in each system description weighted by the time of 
detection. The later the failure detected the higher the weighting rate. The EKB-based 
approach uses ontology-based reasoning. This allows performing consistency and 
completeness checks in-time automatically, resulting in a lower failure rate and in-time 
notification of the Subject Matter Expert about missing/incorrect information. 
Additionally, since the EKB-based approach is mainly automated, it allows returning to 
any processing state in order to e.g., reproduce errors or revise decisions taken (Moser, 
Mordinyi et al. 2009). 

7.2.2.3 Model complexity 

The model used in the traditional approach is smaller and therefore less complex 
compared to the model used in the EKB-based approach, since a considerable part of 
the integration knowledge is not described explicitly. In the EKB-based approach, the 
number of relations, i.e., the number of mappings from the integration system ontology 
to the domain ontology introduces a higher structural complexity. The benefit of a more 
complex ontology model lies in the way how later integration steps can be supported by 
a higher level of automation. From the Subject Matter Expert’s point of view the 
complexity remains the same in both approaches. For the domain expert the EKB-based 
approach reduces his efforts to the task of managing the structural complexities of the 
ontologies and to support the Subject Matter Experts in mapping. In the traditional way 
the domain experts need to cope with the major part of the complexity, since he is 
responsible for ensuring the consistency and completeness as well as managing the 
integration of the Subject Matter Experts’ legacy system descriptions (Moser, Mordinyi 
et al. 2009). 

7.2.2.4 Level of automation support 

The EKB-based approach supports the user while entering the data with consistency and 
completeness checks. Additionally, it influences the integration process in later steps by 
automatically deriving integration partner candidates and automatically generating 
transformation instructions for message exchange between the integrated systems 
(Moser, Mordinyi et al. 2009). 
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7.2.3 Step-by-Step Evaluation of the SWIS Process 

Within a research project with two industry partners, the approach has been evaluated 
by means of several different scenarios from the ATM domain. We determine the effort 
for both process step variants and compare the overall outcome. The following 
subsections summarize the effort needed to perform the particular process steps. The 
effort estimations are based on the expertises of the integration experts from both 
companies (Moser, Mordinyi et al. 2009). 

7.2.3.1 Step 1: Legacy System Description 

The externalization of legacy system knowledge using ontologies needs slightly more 
effort than the traditional approach using only human-readable artifacts like documents 
because the knowledge needs to be transformed from implicit expert or system 
knowledge into machine-readable ontology models (Moser, Mordinyi et al. 2009). 

7.2.3.2 Step 2: Domain Knowledge Description 

In the traditional integration process the domain knowledge is not made explicit but 
implicitly captured by domain experts and documents in a non-machine-readable way 
requiring no additional effort. Additionally, the integration network knowledge (i.e., the 
architecture and capabilities of the underlying network infrastructure) are described, 
which again represents an additional effort compared to the implicit knowledge of the 
traditional integration process. Using the EKB-based approach the domain and 
integration network knowledge has to be incrementally externalized by the domain 
expert and the network administrator resulting in medium effort in the first instance. 
This effort is reduced due to reuse within similar integration scenarios or additional 
process iterations triggered by reconfiguration issues (Moser, Mordinyi et al. 2009). 

7.2.3.3 Step 3: Model Quality Assurance 

The traditional approach requires a lot of effort to check the consistency and 
completeness of the documents since it has to be done manually. The EKB-based 
approach uses automated ontology based reasoning techniques to assure consistent 
models leading to comparatively low model Quality Assurance effort (Moser, Mordinyi 
et al. 2009). 
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7.2.3.4 Step 4: Derivation and Selection of Integration Partners 

This traditional integration process step demands exhaustive communication between 
the involved roles (Subject Matter Expert, Domain Expert, Integration Expert, Network 
Administrator) in order to derive possible integration partners and clarify considerable 
dependencies between legacy systems. This results in very high integration effort for the 
traditional integration process while the EKB-based approach provides automated 
derivation of possible integration partners by means of ontology-based reasoning. The 
step involves the Integration Expert only who is responsible for selecting the most 
suitable set of integration partners from the provided suggestions; the mapping of the 
selected integrations partners to the underlying integration network is done fully 
automated using the externalized integration network knowledge described in step 2 
(Moser, Mordinyi et al. 2009). 

7.2.3.5 Step 5: Generation of Transformation Instructions 

In case of the traditional approach the effort for generating transformation instructions 
is higher than with the EKB-based approach because the derivation of those instructions 
has to be done manually, but still lower than in the previous step because the number of 
involved roles is lower. The EKB-based process step is performed automatically using 
ontology based reasoning for deriving transformation instructions based on the 
explicitly captured knowledge (Moser, Mordinyi et al. 2009). 

7.2.3.6 Step 6: System Configuration Quality Assurance 

Consistency and completeness checks in the traditional approach are time-consuming 
and error-prone, leading to a high level of manual human effort. On the other hand, the 
EKB-based approach again uses automated ontology-based reasoning techniques to 
quickly locate invalid system configurations, resulting in much lower effort for this 
process step (Moser, Mordinyi et al. 2009). 

7.3 Evaluation of the SAW Application Scenario 

This section describes the evaluation of the SAW application scenario in detail. First, 
UML- and Ontology-based approaches for process improvement in developing agile 
Multi-Agent Systems are investigated and then the Ontology Area concept use case is 
evaluated. 
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7.3.1 Investigating UML- and Ontology-Based Approaches for SAW 

This section reports on an evaluation of the process variants described in section 6.2 
based on a scenario taken from industry and discusses the results. We focus on the 
reconfiguration level process and investigate the enactment of the general process from 
the roles MAS developer and QA (a) using a traditional UML-based modeling approach 
and (b) using an EKB-based approach that promises to model important reconfiguration 
aspects in a continuous model. We conduct a feasibility study to investigate actual 
strengths and limitations of both approaches. In the study the roles were taken by 2 
persons with good technical experience in the application area and UML/ontologies 
fitting to the process variant they were to enact (Moser, Kunz et al. 2008). 
In this section we also identify typical defects that may occur in UML-based approach 
that should be addressed by the ontology-based approach. 
The subsections describe the scenarios and the results of modeling new configurations 
in the context of the SAW system. The research application context involved 7 agent 
classes with the following number of agent instances 25 conveyors, 6 junctions; 6 
diverters, 6 index stations; 4 RFID readers, 3 robots, and one storage rack. We analyzed 
both approaches regarding model complexity; modeling effort and quality risk. 
 
Scenario 1 – adding a conveyor: In order to increase the throughput of the system a 
new connection conveyor should be added, leading from the storage area to the 
assembly area. 
Scenario 2 – conveyor removal: One connection conveyor should be removed from the 
system. 
Scenario 3 – change of conveyor direction: The direction of a connection conveyor 
should be changed. 
 
Precondition for each of the reconfiguration scenarios is to conduct a dependency 
analysis to identify relevant dependencies between agent instances. In this context, 
dependencies exist with the direct neighborhood of an agent (e.g., in- and out-node of a 
conveyor), but also in design patterns where a group of agents cooperates (e.g., several 
conveyors can provide a loop to temporarily store pallets). Dependencies impact design 
changes and QA in both approaches similarly. 

7.3.1.1 Scenario - Change of a Resource Agent - UML 

This subsection describes the results of reconfiguration using the UML-based approach.  
In order to identify, if adding, removing, and change direction of the conveyor has an 
impact on the system behavior, we conduct a dependency analysis to find out, which 
behavior or which design patterns may be affected. This dependency analysis has to be 
conducted manually by analyzing existing design patterns. 
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Just to give an example, adding a conveyor to the system results in a small number of 
changes. The first step is to analyze the requirements for the new conveyor. If the 
conveyor does not need new functionality beyond the capabilities available from the 
agent tool box, we can take the agent as it is. In this case the only change is in the XML 
configuration file, which has to be extended by the new conveyor. 
However, if the conveyor is added as an additional rerouting possibility because of 
higher work load in the system, it is necessary to model the rerouting design pattern 
with additional sequence charts. It is also important to model the failure handing 
behavior for the new conveyor with additional sequence diagrams. Also a new design 
pattern may be necessary. The changes made to the different models and the newly 
created models result in at least one QA cycle (manual review) for each of the models. 

7.3.1.2 Scenario - Change of a Resource Agent - EKB 

This subsection describes the results of reconfiguration using the EKB-based approach 
(Moser, Kunz et al. 2008). 
 
Scenario 1 – adding a conveyor: The requirement to include a new conveyor in the 
system can be satisfied by creating a conveyor-supervising software agent, which is 
responsible for the proper behavior and for scheduling of the underlying hardware 
conveyor. Further we add a new instance of Conveyor concept in the ontology and fill 
in its properties. Defects introduced during adding activities, e.g., a non-connected 
conveyor, can be prevented or found early by running the ontology-based reasoner with 
logical queries based on the system design and coordination patterns that are applicable 
to a conveyor. 
 
Scenario 2 – conveyor removal: In order to remove a conveyor from the system, the 
responsible software agent has to be destroyed, the instance of Conveyor concept, as 
well as the supervising agent instance, have to be removed from the ontology and all the 
machine agents supervising connected resources (e.g., intersections) have to delete the 
link to conveyor instances in the relevant ontology property values. Defects introduced 
during the activities, e.g., a non-connected intersection or separated line clusters 
(partially connected network) can be again prevented by running logical queries. Some 
of these situations can be resolved by changing the direction of a remaining conveyor. 
 
Scenario 3 – change of the conveyor direction: Changing the conveyor direction 
requires few actions to be performed: The values of the conveyor properties inNode and 
outNode have to be exchanged and connected intersection agents have to change the 
intersection instance class from Diverter to Junction and vice-versa and shift the 
changed conveyor instance between its inConveyor and outConveyor properties. 
Changing the conveyor direction can however cause defect situations when, e.g., the 
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junction (i.e., new in-node) does not have the switching capability, so it cannot act as a 
diverter, or the direction change could cause the creation of a logistically unreachable 
subsystem. After changing the hardware conveyor direction, all the software agents 
controlling diverter intersections perform recalculation of the shortest paths to the line 
nodes by running corresponding general logical rules. These rules are able to discover 
any unreachable nodes and issue warnings. 
Logical reasoning, on the other hand, can effectively prevent the logical changing of the 
junctions to diverters as their switching behavior is required and has to be denoted in the 
corresponding property value. Some of such defect situations might have a solution in 
changing the direction of another conveyor in the system. 

7.3.1.3 Comparison of UML- & EKB-based Processes 

Table 2 provides a side-by-side view on complexities, effort, and risks encountered in 
the study scenario. Process effort measurements depend on several factors in addition to 
process and tool support (e.g., task selection and skill factors, maturation of subjects), 
thus we present the effort ranges without consideration of statistical significance. We 
are well aware of the external validity limitations of such an initial study; however, such 
studies are important to motivate the investment into more comprehensive empirical 
studies in practitioner environments (Moser, Kunz et al. 2008). 
Overall both approaches were well suited to deal with the limited complexity of the 
initial evaluation scenarios. The main difference in evaluation between the two 
approaches is in the modeling effort, which is considerably higher for the UML-based 
approach than for the ontology-based approach, which can be supported by automated 
reasoning.  Manual dependency checks and QA need considerably more time and are 
also more error prone. A similarity in the approaches is in the interdependency of effort 
for conducting the actual model changes and the number of models to be changed. 
However, in the UML-based approach we have to change more artifacts than in the 
ontology-based approach (Moser, Kunz et al. 2008). 
The quality risks of the UML-based approach depend mainly on the accuracy of the 
system designer. Especially the dependency analysis and QA tasks have to be conducted 
carefully and completely to avoid mistakes, which may lead to system failures, which 
are only detected during system operation. Thus, the quality risk is rated medium. The 
quality risk for the ontology-based approach is rated low, because QA can be well 
supported with automated reasoning, which avoids the human factor and thus has a very 
low probability of missing inconsistencies (Moser, Kunz et al. 2008). 
Perceived strengths of the UML-based approach for reconfiguration were to help 
designers get an overview on a domain and identify components to work with: a) to 
provide well readable and understandable visualization for the designer and developer, 
especially for the software development process of reusable assets (e.g., an agent tool 
box); and b) to provide a well understandable high-level overview on agent classes, 
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their properties and of agents states, so behavior modeling can be focused to most 
relevant agents (Moser, Kunz et al. 2008). 

Table 2: UML- and EKB-based approaches (SAW) (Moser, Kunz et al. 2008). 

 UML-Based Approach EKB-based Approach 
Scenario 1 – adding a conveyor 
Model 
complexity 

Number of affected artifacts: 
6 

Number of affected artifacts: 
4 

Modeling 
effort 

Model changes: 50-60 min. 
Dependency analysis: 80-90 
min. 
Quality assurance: 160-180 
min. 

Model changes: 35-45 
minutes 
Dependency analysis: 50-60 
min. 
Quality assurance: 25- 35 
min. 

Quality risk medium low 
Scenario 2 –conveyor removal 
Model 
complexity 

Number of affected artifacts: 
7 

Number of affected artifacts: 
4 

Modeling 
effort 

Model changes: 60-70 min. 
Dependency analysis: 80-90 
min. 
Quality assurance: 160-180 
min. 

Model changes: 25-35 min. 
Dependency analysis: 50-60 
min. 
Quality assurance: 25-35 
min. 

Quality risk medium low 
Scenario 3 –change of conveyor direction 
Model 
complexity 

Number of affected artifacts: 
10 

Number of affected artifacts: 
3 

Modeling 
effort 

Model changes: 90-100 min.
Dependency analysis: 80-90 
min. 
Quality assurance: 160-180 
min. 

Model changes: 25-35 min. 
Dependency analysis: 50-60 
min. 
Quality assurance: 25-35 
min. 

Quality risk medium low 
 
Perceived weaknesses of UML-based approach for reconfiguration were a) to needs 
model extensions to the reconfiguration information, which leads to a fractured view 
(that needs to be compensated with appropriate QA methods, e.g., inspection of 
consistency between several models that capture partly overlapping aspects); b) could 
not well capture the agent instance and configuration information; c) had a higher error 
proneness due to the need for manual model reviews (Moser, Kunz et al. 2008). 
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The EKB-based approach seems to be stronger to keep an overview on all the detailed 
information and dependencies on agents and instances over several iterations of 
reconfigurations in the context of a well-defined big picture (Moser, Kunz et al. 2008). 
Perceived strengths of EKB-based approach for reconfiguration were a) to capture 
system configuration description (schema and data) in an integrated model; b) the 
integrated model allows tool support for QA checks (reasoning to conduct consistency 
and plausibility checks among the model aspects); c) to provide the source to explore 
the system structure using an ontology editor; and d) to provide a model that is directly 
usable both at design time and run time, enabling dynamic reconfiguration checks even 
at run-time (e.g., when handling of hardware failure scenarios) (Moser, Kunz et al. 
2008). 
Perceived weaknesses of EKB-based approach for reconfiguration were a) higher 
complexity of the ontology model; b) to provide human readable visualization of 
relationships among entities and a general overview on a domain with generic standard 
tools; c) the challenge to understand the contribution of an ontology element without 
good understanding of the domain, the design task, and the overall ontology design. In 
addition it has to be stated that compared to traditional SE qualifications like data 
modeling using UML, ontologies are a fairly new topic. Therefore, additional training 
or qualification of the involved software engineers is needed in order to allow the EKB-
based approach to be used in an efficient way (Moser, Kunz et al. 2008). 

7.3.2 SAW Ontology Area Concept Use Case Evaluation 

We have implemented the Ontology Areas from the SAW ontology (see section 6.4.2) 
using Protégé 3.3.1. The SAW ontology consists of 24 classes and 3,000 instances from 
the simulation of production automation system. The evaluation compares the 
measurement of the whole ontology and the ontology areas for the two different use 
cases explained in section 6.4.2 (Biffl, Sunindyo et al. 2009). 

7.3.2.1 UC-1: Translation between local stakeholder terminologies 

We compare the complexity (size) of the minimal ontology with Ontology Areas to the 
complexity of the overall ontology in the study context. For the minimal ontology with 
Ontology Areas, the business and workshop stakeholders have local terminologies of 
300 and 400 words, respectively. Both need 100 words to communicate with each other. 
There are 200 to 700 data elements representing common knowledge, and 200 words 
for mapping from both local terminologies to the common concepts. Totally 1,100 to 
1,600 entities are needed for the Ontology Areas. 
 Meanwhile, the comprehensive ontology for 6 stakeholders consists of around 1,800 
words for local terminologies and around 300 words to communicate with each other. 
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There are 1,600 words of common knowledge, and 600 to 1,800 words for mapping of 
all local terminologies to common concepts. In total, the comprehensive ontology 
consists of 4,200 to 5,400 words. In this case, Ontology Areas can reduce the ontology 
size to 20 to 30 % of the comprehensive ontology. 
We can compare the efficiency of the minimal ontology with Ontology Areas to the 
efficiency of the whole ontology in conducting the translation task as follows. To 
produce 100 words of translation results from 200 words of mapping, the Ontology 
Areas needs 3 operators of query applying to those mapping.  
The comprehensive ontology can produce more translations (300 words) with 3 
operators of query as well. But the query should be applied to more mapping (600 to 
1,800 words). With Ontology Areas we can reduce the size of mapping and make the 
operation faster (Biffl, Sunindyo et al. 2009). 

7.3.2.2 UC-2: Run-time measurement and analysis for design improvement 

For evaluation we determined the minimal complexity of Ontology Areas to support a 
specific data analysis task more efficiently, such as calculating process characteristics. 
Then we will compare the result with Ontology Areas to the (cognitive) complexity 
using a comprehensive complexity. 
In the Ontology Areas of the specific task, for 1 volatile entity the run-time 
measurement consists of 30,000 data points per shift. In the overall ontology, there may 
be many more, e.g., 300,000, data points in one shift. By using the Ontology Areas, the 
user can focus only on entity that he needs, and thus reduce the complexity of data 
handling considerably.  
The efficiency of the minimal ontology with Ontology Areas is compared to the 
efficiency of the overall ontology in the case to conduct the data analysis task as 
follows. In the Ontology Area, to obtain 5 data points analysis, it needed to run 3 
operators of query over 30,000 data points at one shift. Hence 18,000 operations on data 
points are needed to obtain one of the measurements.  
In the whole ontology, to obtain 20 data points analysis, it needed to run 3 operators of 
query over 300,000 data points at one shift. Hence 45,000 operations on data points are 
needed to obtain one of the measurements. Ontology Areas are notably more efficient 
than a single ontology (Biffl, Sunindyo et al. 2009). 

7.4 Discussion 

This section discusses the results of the evaluation of the EKB framework with regard 
to the research issues identified in section 3.1. 
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7.4.1 Functionality and Feasibility of the Proposed Approach 

In this thesis, we applied the EKB framework to two application scenarios from two 
different application domains. The first research issue category deals with the general 
functionality and feasibility of the EKB architecture and processes. In the following, the 
specific research issues are answered. 
 
RI-1.1. Feasibility of the proposed engineering environment integration approach. 
In this thesis, we introduced the novel Engineering Knowledge Base (EKB) framework 
for supporting engineering environment integration in multi-disciplinary engineering 
projects with a focus on providing links between data structures of engineering tools 
and systems to support the exchange of information between these tools and thus 
making software and systems engineering more efficient and flexible. Based on two 
real-world application scenarios, we applied and implemented the EKB framework in a 
prototypic way. Since standards are hard to apply in projects where experts from 
different organizations participate, who have invested into different kinds of local 
standards or approaches, these experts may use their well known local tools and data 
model, and additionally can access data from other tools in their local syntax. The EKB 
is located on top of a common repository and stores explicit engineering knowledge to 
support access and management of engineering models across tools and disciplines by 
providing a) data integration by exploiting mappings between local and common 
engineering concepts; b) transformations between local engineering concepts by 
following these mappings; and c) advanced applications using these foundations, e.g., 
end-to-end analyses. Only a selection of the most relevant data elements to achieve 
interaction between engineering tools and experts is stored in the EKB in order to avoid 
time-consuming and effort-intensive transformations of full engineering models. As a 
result experts from different organizations may use their well known local tools and 
data model, and additionally can access data from other tools in their local syntax. Since 
the engineering project participants by now already work together, they already use 
common knowledge for their project tasks. By using the EKB framework we make this 
existing knowledge explicit and machine-understandable, and therefore can automate on 
project level tasks that build on this explicit and machine-understandable knowledge. 
Furthermore, using the EKB framework allows a more generic definition and execution 
of model checks on an application domain level, and additionally enables more 
advanced checks regarding the plausibility and semantic correctness of data structures 
by exploiting the querying capabilities of ontologies. 
 
RI-1.2. Foundations for tool support for automation of engineering process steps. 
The explicit and machine-understandable knowledge in the EKB framework helps to 
automate time-consuming engineering process steps like consistency and completeness 
checks. Furthermore, e.g., in the SWIS context, it allows automating later integration 
processing steps, like deriving integration partner candidates or automatically 
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generating transformation instructions for message exchange between the integrated 
systems. 
 
RI-1.3. Explicit modeling of stakeholder requirements. The use of an “engineering” 
ontology during the engineering approach provides a continuously available and 
evolving representation of the stakeholder requirements. Compared to traditional 
methods, the use of ontologies entails a number of advantages. As shown in the case 
study, this allows a more automated QA support. In addition the usage of the ontology 
area concept creates a personalized view on the data model for each role. The output of 
the simulation is automatically fed back in the ontology, resulting in a combination of a 
test case and its outcome. This automated feedback cycle has proven useful for 
performing more advanced statistical analysis on the data, leading to more significant 
assertions for the generation of new system versions. 
 
RI-1.4. Tool support and QA for requirements transformation. The ontology and 
CBSE paradigms reinforce each others’ advantages: the ontology-supported CBSE 
approach seems to be more effective and efficient due to reasoning support for selecting 
and parameterization of the most suitable components out of a component tool box. 
This is automatically achieved with respect to a certain set of stakeholder requirements 
or dependencies between components and therefore without significant sources of 
defects like manual interaction. The engineering ontology supports both static and 
dynamic QA during the production engineering process. Test result measurements are 
stored in the engineering ontology and can be used for component analysis in next 
iteration of the production engineering process in order to create new system versions, 
and so completing the feedback cycle. Furthermore, the results from running test cases 
are documented in simulations in a way that allows efficient quality analysis and 
comparison of the results with the original assertions. 
 
RI-1.5. Stakeholder-level quality measurement. Stakeholder-level quality is assured 
by means of ontology-based reasoning, allowing tracing customer-specific requirements 
continuously throughout the entire production engineering process. The ontology area 
approach and the role-specific views of selected data effectively and efficiently allow 
the involved roles to check the mapping and tracing of their value proposition and 
requirements at all times. Conflicts during dynamic QA can directly refer to the quality 
requirements of a certain configuration. 
 
RI-1.6. Support for traceability across engineering domains. A major challenge in 
the engineering of distributed, flexible and complex IT systems is to extend the scope of 
QA from software artifacts to include software-relevant parts of artifacts in other 
engineering domains. Thus a key research issue is traceability, i.e., how to link the 
relevant elements of models for requirements, design, implementation, and testing 
across engineering disciplines as foundation for better integrated product assessment 
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and improvement. As manual tracing has been found effort-consuming and error-prone, 
automated approaches for software engineering have been developed to capture 
dependencies based on syntactical identity (e.g., keyword-matching as in information 
retrieval approaches). A major limitation of these automated approaches is their 
inability to capture dependencies completely, because they cannot capture dependencies 
between semantically related artifacts without syntactic identity (semantic gap). Using 
the EKB framework allows to define and query traces on domain level, without the need 
stick with tool-specific terms and notations. The queries on domain level are 
automatically transformed into the tool-specific format and vice-versa. 
 
RI-1.7. Support for end-to-end testing. In a typical engineering environment, system 
testing requires end-to-end testing, but since the single tools are distributed and using 
heterogeneous data models, an end-to-end test is hard to perform.  Although testing 
tools are available to perform testing at multiple levels, most testing tools are incapable 
of building composite interdependent tests across technology platforms, languages and 
systems. Therefore the challenges in testing are driven by the distributed, heterogeneous 
nature of the used tools and a growing market of third-party services implying that there 
is not a single owner of the complete system. As shown in section 7.1.4.2, using the 
EKB framework enables engineers to perform end-to-end analyses also on 
heterogeneous data sets, since the queries are defined on domain level, and then 
automatically transformed to the tool-specific levels by exploiting the mappings 
between tool ontologies and domain ontology. 

7.4.2 Comparison of the Proposed Approach to Other Solutions 

In this thesis, we compared the EKB framework to two different kinds of alternative 
solutions, namely solutions that primarily rely on implicit knowledge, such as common 
repositories and data warehouses, as well as solutions that also rely on explicit 
knowledge, such as other ontology-based approaches. The second research issue 
category deals with this comparison. In the following, the specific research issues are 
answered. 
 
RI-2.1. Comparison of the EKB framework and Common Repository-based 
approaches. The explicit and machine-understandable knowledge in the EKB 
framework helps to automate time-consuming automation systems engineering process 
steps like the exchange of data structures between heterogeneous engineering tools or 
consistency and completeness checks of data structures. Further, the EKB allows 
automating later integration processing steps, like automatically generating 
transformation instructions for data structure exchange between the integrated 
engineering tools. The major difference between the two evaluated approaches is the 
lack of the need for a common data schema when using the EKB framework, which can 
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be seen as the main advantage of the EKB framework compared to a common 
repository. However, additional expert skills are necessary when using a fairly new 
technology in a quite traditional application context. 
 
RI-2.2. More effective and efficient engineering using the EKB framework. The 
advantage of centrally storing the domain knowledge together with the mappings of 
individual tool knowledge lies in the possibility of an automated QA and automation of 
further engineering process steps. As described in (Biffl, Mordinyi et al. 2008), using 
ontologies for storing the knowledge in the EKB framework, enables more efficient and 
effective QA for component-based systems such as production automation systems. The 
major differences between the two evaluated approaches are the amount of needed 
human involvement to define and perform model checks, and the types of model checks 
which are supported by the approaches. 
 
RI-2.3. EKB framework usage trade-off analysis. The evaluation showed that the 
effort needed for certain automation systems engineering process steps with the EKB 
framework is slightly higher in case of performing it from the scratch, but 
comparatively a lot smaller when adaptations due to changing business needs have to be 
performed since new converters only need to be generated semi-automatically for each 
new or changed engineering tool in comparison to the need of creating or adapting a 
vast number of converters for each affected combination of the new or changed 
engineering tool manually. 
 
RI-2.4. Comparison of a traditional Date Warehouse-based data collection process 
to a semantically-enabled data collection process. To succeed in building a tool that 
is capable of mastering all described requirements, one has to carefully choose the right 
technology to handle the described required tasks. The approach using an ontology is 
obvious, since, in contrast to a database, an ontology is capable of a proper knowledge 
representation based on well-defined semantics. While a database only supports 
integrity checks on a structural level, conducting integrity checks on a semantic level is 
an intrinsic part of an ontology. Furthermore an ontology provides extensive reasoning 
capabilities, which means the possibility to use a priori hidden knowledge by deducting 
new facts out of known ones. By providing an explicit specification of the stored data’s 
intended meaning, instead of the sole data itself, an ontology allows sophisticated 
querying. This is important to address the issue of being able to provide project 
managers with a proper tool for decision support. 
 
RI-2.5: Integration of additional data sources. During the design process special care 
was taken to retain the possibility of integrating support for additional data sources. 
Despite the fact that implementing support for additional data sources (as mentioned 
earlier) is time-consuming, providing this possibility is important, since it allows the 
integration of the proposed tool into already existing environments. During the 
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integration process, when merging data retrieved from the various data sources into the 
ontology to successfully carry out the combination, the routines have to be able to 
recognize relations between the various entries. A topic of discussion is the 
implementation of the possibility to integrate data from two or more different projects 
into the same ontology. This could enable for the analysis of possible synergy effects 
between different projects as well as combined statistics. Of course, the corresponding 
project leaders would have to evaluate, whether this step makes sense for their 
particular projects. 
 
RI-2.6: Relation of the proposed engineering environment integration approach to 
other ontology-based Semantic Integration approaches. The ultimate alternative 
semantic integration solution is the complete transformation between data models of 
tools, i.e., the translation of engineering model parts of one tool for work in another 
tool. While the advantage of this solution is the seamless cooperation between project 
partners using well-known and established tools and notations, the feasibility of this 
approach is hard to verify and the effort required for establishing the needed 
transformations is considerably high. 
In the Modale23 project, Assmann et al (Assmann, Dörr et al. 2005) developed an 
ontology-based data integration approach in order to realize a seamless integration 
between cooperating partners in the field of digital production engineering. The major 
obstacle was the syntactic, structural and semantic heterogeneity of the internally used 
tools in the digital production engineering domain. As proof of concept they have also 
provided a web-service based prototypic implementation of their approach. However, 
many questions still remain open, requiring more research effort to be invested. 

7.4.3 Specific Semantic Research Areas of the Proposed Approach 

The process of applying the EKB framework uses ontologies as modeling methods. 
Therefore, the third category of research issues deals with two semantic web specific 
research areas, namely the usage of Ontology Alignment methods for providing the 
required mappings, as well as a conceptual approach for structuring big ontologies in 
order to increase usability and maintainability. In the following, the specific research 
issues are answered. 
 
RI-3.1. Safety-Critical Ontology Alignment. Since the alignment should not be 
performed fully automated because of the safety-criticalness of the application domains, 
we propose a semi-automated approach that provides suggestions to the user which can 
be accepted or declined. The advantages of using such a semi-automated approach are a 
significant reduction of time and effort needed for the mapping, the reproducibility of 
                                                 
23 http://www.modale.de 
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the given suggestions (and mappings), and the detection of consistency failures in the 
domain ontology. 
 
RI-3.2. Risks of applying state-of-the-art ontology alignment approaches. While 
presenting a set of advantages, the adaptation of the state-of-the-art ontology alignment 
approaches for the EKB ontology alignment also bears some risks. The quality of the 
alignment suggestions heavily and primarily depends on the implemented ontology 
alignment method and may not always suggest the optimal alignment candidate or 
sometimes – even worse – result in no or false suggestions. Therefore it is necessary to 
use an appropriate algorithm or a combination of algorithms to gain the best possible 
result. 
 
RI-3.3. Supporting engineering roles by lowering the cognitive complexity of the 
used ontologies. Ontologies are flexible open-world data models for knowledge 
representation, which store information in machine-understandable notation (Gruber 
1995). Therefore, ontologies can help to bridge semantic gaps between partial data 
models by providing mappings between them via common domain concepts. Ontologies 
usually capture problem-domain-specific information which can be reused later. Due to 
their concurrent development ontologies need to be checked for inconsistencies to stay 
useful. However, ontologies in practice usually have to combine several view points and 
thus get large and complex, particularly, if the ontology contains volatile domain 
elements, such as run-time data. 
In this thesis, we propose a data modelling approach that helps structure the ontologies 
using in the EKB framework with ontology building blocks, so-called “Ontology 
Areas”. An Ontology Area is a meaningful part of an ontology for a stakeholder, which 
helps ontology users managing a complex ontology. The combination of all needed 
Ontology Areas represents the overall ontology for supporting the original engineering 
process. An ontology area is a subset of ontology as a building block that can solve a 
certain task. The ontology can be broken into ontology areas based on several aspects, 
for example by the time, volatility, layer and roles. The Ontology Area Concept 
provides the following benefits: 

 
• As Ontology Areas allow focusing on the content of interest for a stakeholder 

task, we could show that the resulting ontology is considerable smaller. A small-
er ontology is often also more efficient to handle and allows tackling tasks that 
use a particularly large number of data elements. 

• The combination of Ontology Areas, design-time, and run-time data elements al-
lowed filtering relevant data elements for stakeholders, which would not be 
possible without the combination. Thus the Ontology Area approach helped 
lower the cognitive complexity for stakeholders by providing just the relevant 
subset of the comprehensive ontology. 
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• With the Ontology Area concept we can flexibly build task-oriented ontologies 
based on different criteria (like volatileness, layers, roles). It is even possible to 
compare different versions of the same Ontology Area (e.g., production automa-
tion system designed with different parameter settings) to compare the run-time 
reactions to from changing design parameters. However, this ability also raises 
the need for better version management for Ontology Areas to ensure the build-
ing of consistent ontologies for specific tasks. 

 



Chapter 8 
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8 Conclusion and Perspectives 

Software-intensive systems in business IT and industrial automation and software 
engineering projects bring together experts from several engineering domains and 
organizations, who work in a heterogeneous engineering environment with a wide range 
of models, processes, and tools that were originally not designed to cooperate 
seamlessly (Schäfer and Wehrheim 2007). A core question is how to integrate data 
models across tools and domain boundaries. Current semantic engineering environment 
integration is often ad hoc and fragile, making the evolution of tools and re-use of 
integration solutions across projects risky (Halevy 2005; Noy, Doan et al. 2005). 
In order to reach the common goal of developing software products in the engineering 
team, it is important to share the necessary knowledge for common work processes 
between engineering domain experts (Schäfer and Wehrheim 2007). However, this 
knowledge is often only implicitly available and therefore inefficient to share, resulting 
in time-consuming repetitive tasks; often it is hard or even impossible to create and 
maintain common shared knowledge repositories. A method and platform for making 
expert knowledge explicit and efficiently shareable is needed in order to support quality 
and project managers in their data analyses based on engineering knowledge and 
concrete data in the engineering tool models, which is currently achieved using 
inefficient or fragile approaches. 
This work proposes the Engineering Knowledge Base (EKB) framework for supporting 
engineering environment integration in multi-disciplinary engineering projects. Since 
standards are hard to apply in projects where experts from different organizations 
participate, who have invested into different kinds of local standards or approaches, 
these experts may use their well known local tools and data model, and additionally can 
access data from other tools in their local syntax. The EKB is located on top of a 
common repository and stores explicit engineering knowledge to support access and 
management of engineering models across tools and disciplines by providing a) data 
integration by exploiting mappings between local and common engineering concepts; b) 
transformations between local engineering concepts by following these mappings; and 
c) advanced applications using these foundations, e.g., end-to-end analyses. Only a 
selection of the most relevant data elements to achieve interaction between engineering 
tools and experts is stored in the EKB in order to avoid time-consuming and effort-
intensive transformations of full engineering models. As a result experts from different 
organizations may use their well known local tools and data model, and additionally can 
access data from other tools in their local syntax. 
By now, Semantic Integration research has focused on finding general approaches for 
schema integration which can be used in many contexts. However, these general 
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approaches do not take into account the specifics of a domain and therefore tend to be 
inefficient and often fail to solve specific problems that are hard to solve in general. In 
this work, we build on domain-specific knowledge of engineering processes, models 
and analyses to enable designing semantic integration methods and tools. Since the 
engineering project participants by now already work together, they already use 
common knowledge for their project tasks. By using the EKB framework we make this 
existing knowledge explicit and machine-understandable, and therefore can automate on 
project level tasks that build on this explicit and machine-understandable knowledge. 
Key contributions of this work are the industrial application and proof-of-concept of the 
proposed semantic integration approach, as well as design guidelines for Semantic 
Integration in the engineering domain. 
The research results were evaluated in two industrial application domains, distributed 
business systems and services and software-intensive production automation systems, 
regarding effort, feasibility, performance, scalability, robustness and usability. The 
evaluation is based on prototypes for a set of specific use cases of the two industrial 
application domains, as well as on empirical studies of beneficiary roles as proof-of-
concept. Major results of this work are the feasibility of the EKB framework, i.e., the 
process, method and tool support is usable and useful across engineering domains, as 
well as better accuracy, effectiveness and efficiency. In addition, defects are found 
earlier in the engineering process, resulting in risks like errors or inconsistent entries in 
data models being mitigated earlier and more efficiently. Initial evaluation results 
indicate an effort reduction of more than 20% for re-use in new engineering projects 
and finding defects earlier in the engineering process. In addition, the engineers found 
the method useable and useful; furthermore, new kinds of analysis could be performed 
easily. 

8.1 Highlights and Lessons Learned 

In this section, we summarize the main results of the work done for researchers and 
practitioners. 
 

• Systematic Literature Review on Semantic Integration: In section 2.5, the re-
sults of a systematic literature review on the Semantic Integration are presented. 
The section introduces the research field of Semantic Integration, classifies and 
explains the different available approaches, and in addition gives exemplary ap-
plication scenarios for the usage of ontologies for Semantic Integration. Based 
on the results of this systematic literature review, the Engineering Knowledge 
Base (EKB) framework was positioned regarding alternate semantic integration 
approaches. 
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• Challenges and Solution Approach for Semantic Integration in the Engineer-
ing Domain: In chapter 3, we identify the challenges of efficient data integration 
and transformation between heterogeneous engineering experts’ data models, 
and present a generic solution approach, the so-called Engineering Knowledge 
Base (EKB) framework, in section 4.3. 

• Semantic Modeling of Requirements and Capabilities for Configuration Deri-
vation in the ATM domain: In chapter 5, we apply the EKB framework to the 
Air Traffic Management (ATM) domain. We use the EKB framework to seman-
tically model business service requirements and IT infrastructure capabilities, 
and then match these requirements and capabilities in order to identify suitable 
communication partners and generate integration system configurations. 

• Ontology Area Concept: In section 6.4.2, we introduce the Ontology Area con-
cept. Ontology Areas are a data modeling approach based on ontology building 
blocks, which allow solving tasks with smaller parts of the overall ontology. On-
tology Areas improve the efficiency of data collection task for decision making 
by lowering the cognitive complexity for designers and users of the ontology. 

• Supporting Runtime Decisions using Design Time Information: In section 6.6, 
we present an approach to improve support for run-time decision using the EKB 
framework. The EKB framework provides a better integrated view on relevant 
engineering knowledge in typical design-time and run-time models, which were 
originally not designed for machine-understandable integration. This allows uni-
form and efficient access to related data in design-time, deployment, and run-
time models, as well as the derivation of assertions that should hold at runtime. 

• End-to-End Analyses across Domain Boundaries: In distributed engineering in 
heterogeneous environments, typically a set of different models is used along the 
engineering chain. In order to ensure validity and consistency of the overall en-
gineering process, it is important to ensure that required data fields can be en-
forced during the whole lifecycle of the engineering chain. In section 7.1.4, we 
introduce an EKB framework-based approach for end-to-end analyses of seman-
tically heterogeneous engineering data. 

8.2 Research Challenges and Solution Approach 

As shown in Figure 54, each engineering role (e.g., electrical engineer or software 
engineer) has a tailored tool set that works on data relevant to the engineer’s tasks. In a 
typical process step in the engineering process an engineer exports data from his tool to 
a transfer document and integrates this document in a common repository accessible by 
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a set of partner engineering tools. The major challenges here are identification and 
description of tool data, the data integration itself, and the re-use of at least parts of 
integration solutions for other projects. In order to support data exchange between these 
sets of partner engineering tools, transformations between the different notations and 
format of the particular partner engineering tools is needed. The major challenges of the 
transformation process are the adaptation of transformation instructions to new or 
changed tool data structures and their runtime performance. Using these foundations, 
i.e., export, integration and transformation, additional methods like Quality Assurance 
(QA) support or other advanced methods like model consistency checking or end-to-end 
analyses are allowed. Currently there is high effort needed to perform typical 
engineering project tasks, which may also lead to risks of defect. 
 

 
Figure 54: Overview of the research challenges. 

For these tasks, we propose to use the novel Engineering Knowledge Base (EKB) 
framework (see Figure 55) with a focus on providing links between data structures of 
engineering tools and systems to support the exchange of information between these 
engineering tools and thus making systems engineering more efficient and flexible. The 
EKB framework is an ontology-based data modeling approach which supports explicit 
modeling of existing knowledge in machine-understandable syntax. Therefore, we can 
automate on project level processes that build on this machine understandable 
knowledge. The EKB framework stores the engineering knowledge in ontologies and 
provides semantic mapping services to access design-time and run-time concepts and 
data. The EKB framework aims at making tasks, which depend on linking information 
across expert domain boundaries, more efficient. 
In comparison to a simple data storage such as a common repository, a knowledge base 
stores information (i.e., the original data plus meta-data describing links between data 
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elements or annotations of data elements using machine-understandable syntax which 
can be used to automate time-consuming tasks and support human experts in doing their 
work. The EKB stores explicit engineering knowledge to support access to and 
management of engineering models across tools and disciplines by providing a) data 
integration by exploiting mappings between local and common engineering concepts; b) 
transformations between local engineering concepts; and c) advanced applications using 
these foundations, e.g., end-to-end analyses. 
 

 
Figure 55: Overview of the Solution Approach (Moser, Biffl et al. 2010). 

8.3 Future Research 

This section identifies future research areas opened up by the research on the EKB 
framework. The following subsections describe research topics such as ontology-
supported generation of test cases, semantic integration of heterogeneous data sources 
for monitoring frequent-release software projects, and Ontology Alignment in a safety-
critical domain. 

8.3.1 Ontology-Supported Generation of Test Cases 

Production automation systems are often complex systems as the behavior of the overall 
system cannot easily be predicted from the behavior of the subsystems. Thus simulation 
is used to study the behavior of complex production automation systems. In addition to 
the accuracy of the simulation the system performance is an important issue, 
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particularly if many parameter variants for system behavior are to be tested. Parameters 
for assembly lines are, for instance, scheduling strategy, failure handling strategy and 
the number of products. 
Software testing investigates the quality of the product or service under test. In order to 
fully test all requirements of an application, there must be at least one test case for each 
requirement. The goal is to generate test cases in a fully automated and systematic way 
to find suitable scenarios for most of the requirements in a short period of time. 
Future research will investigate two different approaches for providing test cases. One 
approach is the use of a static specific generator script where it is difficult to add new 
parameters. In addition, the users need programming skills for both setting and 
modifying parameters. The second approach uses a dynamic generic generator script 
together with an ontology as data model. Test cases are generated with respect to the 
chosen parameters by the user. Important advantages of using an ontology are efficient 
tool support for modifying ontologies and the fact that the generator script is not 
affected by the modification. Thus users do not need programming skills to add new 
parameters. 
The focus of the practical part of this future research lies on enhancing the existing 
ontology of the simulation tool to include the test case generator domain. A dynamic 
generic generator script will be worked out to generate test cases from the ontology and 
export them. The implemented generator script and the ontology are coupled loosely. 
Therefore changes to the ontology do not necessarily lead to changes of the dynamic 
generic script. This fact enables a flexible and high-level test description. Furthermore, 
the results of executed simulations can be integrated into the ontology as feedback. As a 
result, an optimal set of parameters can be achieved. The evaluation of this future 
research will investigate whether reduced costs for test description, increased flexibility, 
and definable test coverage can be achieved with the ontology-based approach. 

8.3.2 Semantic Integration for Monitoring Software Projects 

Open source software (OSS) projects rely on experts from various backgrounds and 
have gained an impressive level of stability and performance, in some areas even 
outperforming comparable commercial tools (e.g., tool sets of the Apache Software 
Foundation24). OSS teams routinely develop complex software products in distributed 
settings with rather lightweight processes and project documentation. However, there 
are issues that slow down the proliferation of OSS for complex projects such as 
insufficient awareness of changes in a project (e.g., due to time zone differences) or 
misunderstandings (e.g., due to cultural differences or incompatible development style). 
Therefore project managers and task leaders need effective and efficient data collection 
services as foundation for the timely overview on progress, cost, and quality of the 
                                                 
24 Apache Software Foundation – http://www.apache.org 
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project activities, similar to a data warehouse in long-running business processes, for 
exploring and analyzing large quantities of data in order to discover meaningful patterns 
(Berry and Linoff 1997). 
Unfortunately, the broad range of means for communication (e.g., e-mail, personal 
instant messaging, communication forums, and blogs) and coordination (e.g., version 
control systems, requirement management tools, and issue trackers) used in distributed 
development project settings has made managing such projects an increasingly difficult 
task. A good project manager needs to get an overview on all relevant tools used in his 
project, as well as of the relevant data on the status of the project work contained within 
these tools. The ability to correlate and assess project data in distributed project tools is 
vital both for estimating the current project status and also for predicting future project 
risks and opportunities (Thai, Pekilis et al. 2001; Mockus, Fielding et al. 2002). 
A major challenge of data collection is how to extract the relevant project management 
knowledge effectively and efficiently from the wide range of available software project 
data sources, such as artifact versions, bug reports, and discussion forums. Project 
participants communicate through a wide range of tools that contain knowledge on the 
status of tasks, artifacts, and processes. Unfortunately, these data sources exhibit 
semantically heterogeneous data formats and terminologies, which take significant 
effort to reconcile with a data warehouse approach. Further, to keep the overview, 
monitoring and evaluation processes have to be repeated regularly because of the more 
frequent system releases which are performed in line with user expectations for greater 
responsiveness and shorter cycle times (Brown and Booch 2002). Thus a manual 
approach seems infeasible due to the immense amount of data. While the data 
warehouse approach has been optimized (Nguyen, Tjoa et al. 2004) significantly for 
data from a stable type of tools, data from heterogeneous sources still poses a major 
challenge. 
Future research will focus on applying the EKB framework in order to support semantic 
integration of data coming from a variety of data sources and tool support to enable 
efficient data collection, especially in projects with frequent iterations like OSS. Major 
challenges for the application of the EKB framework are the management of incomplete 
and/or inconsistent data. The retrieved data should be integrated into a suitable well-
defined format to ease processing and analyzing, e.g., within a data warehouse. Based 
on data from real-world use cases in OSS projects we will compare the effort using the 
EKB framework and a traditional data warehouse approach in test scenarios for 
integrating data from OSS projects. 

8.3.3 Ontology Alignment in a Safety-Critical Domain 

Ontology Alignment is an automated process that tries to identify similarities between 
two or more heterogeneous ontologies based on a set of metrics, like string similarity or 
structural similarity measurements. This works well for big taxonomies that can tolerate 
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a moderate failure rate regarding wrong mappings. However, using Ontology 
Alignment approaches in safety-critical domains needs further investigations to 
minimize the risk of misalignment (Moser, Mordinyi et al. 2009; Moser, Schimper et al. 
2009). For the EKB correct mappings, e.g., between a large number of engineering 
model elements in different system, are a crucial foundation for applications that use the 
EKB services. Thus we will investigate the trade-off between the better precision of the 
mainly manual Ontology Alignment tasks of the EKB approach and the better 
efficiency of more automated Ontology Alignment approaches while satisfying the 
required safety levels in automation systems engineering. 
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