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Zusammenfassung. Das Themengebiet dieser Dissertation umfasst die gegenseit-
ige Ausrichtung und Anpassung (matching) geometrischer Objekte. Wir behandeln
die Registrierung von zwei oder mehreren Punktwolken und die Rekonstruktion von
B-spline Flächen aus diskreten Punktmengen. Die zu Grunde liegenden nichtlinearen
und mit unter nicht glatten Optimierungsprobleme basieren auf einer Minimierung der
nicht vorzeichenbehafteten beziehungsweise der quadratischen Distanzfunktion zwischen
den Objekten. Verschiedene Anwendungen definieren Nebenbedingungen an diese Opti-
mierungen. Die Registrierung von Punktwolken ohne gegenseitige Durchdringung führt
zu einer realistischen Rekonstruktion zerbrochener Objekte. Für ein effektives Zusam-
menfügen zahlreicher Datensätze dreidimensionaler Oberflächenkoordinaten, gemessen
in zeitlich kurzen Abständen, beschränken wir die Registrierung lokal auf kinematische
Flächen. Der zweite Teil dieser Arbeit befasst sich mit der Approximation von Punkt-
wolken durch Regelflächen. Zum einen verwenden wir die entwickelten Algorithmen zur
Flächenrekonstruktion für die Bahnberechnung zylindrischer Fräser. Die Vermeidung
von Unterschnitt lässt sich ebenso wie ein Voreilen des Fräskopfes als Nebenbedingung
formulieren und erhöht die Qualität der erhaltenen Fräsbewegung. Für Anwendungen in
der Architektur fügen wir mehrere Regelflächen zu Streifenmodellen zusammen und un-
tersuchen Methoden zur Erzeugung glatter Übergänge zwischen den einzelnen Streifen.



Abstract. In this thesis we are concerned with the geometric matching of shapes.
We consider the local and rigid alignment of point clouds and the reconstruction of
ruled surfaces from point clouds within an active shape framework. The emerging non-
linear and occasionally non-smooth optimization problems center around minimizations
of the squared and unsigned distance function, respectively. Several application specific
requirements impose side conditions on this optimization. The alignment of point clouds
without mutual penetration reconstructs broken objects in a physical meaningful way.
For an effective alignment of input data acquired at high frame rates, we constrain the
registration of input shapes locally to a kinematic surface in a space-time model. We
consider ruled surface approximations to compute optimal tool paths for production
technologies. In particular, for cylindrical flank milling, we minimize undercut errors
and stress along the cutting tool by introducing constraints. For architecture, we join
multiple ruled surface patches and discuss ways to achieve smooth and visually pleasing
designs.
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1 Introduction

Matching problems surround us any time, any place. Let it be the key that unlocks a
door, the cloth we put on in the morning or the PIN we enter to withdraw some money.
As common matching problems are in everyday life, as popular they are in mathematics.
Many fields of mathematics such as graph theory or statistics study matching problems.
In this work, we consider the matching of geometric shapes. In particular, we develop
methods to transform or modify a given shape such that it matches a target shape in
an optimal sense.

Shape matching is closely related to shape representation. Typically, the intended
application or method of matching determines the employed shape model. Point clouds,
polygonal meshes or freeform surface (Campbell and Flynn, 2001), implicit surfaces
(Sethian, 1999; Osher and Fedkiw, 2003), objects from constructive solid geometry
(McWherter et al., 2001) or spatial data structures such as voxels or binary space
partitioning trees (Kazhdan and Funkhouser, 2002) are some of many representation
techniques for shape matching. We will consider the matching of point clouds to points
clouds and that of B-spline surfaces to point clouds. Our approach to shape representa-
tion will be to interpret both discrete point sets and B-spline surfaces as zero level sets
of implicit functions. We will define our level set shape representation in detail in the
following section.

The last years have seen a large body of research in the area of shape matching. The
recent survey by (Tangelder and Veltkamp, 2008) and similar previous summaries (Lon-
caric, 1998; Campbell and Flynn, 2001; Mamic and Bennamoun, 2002) are excellent
sources for a detailed and complete overview of existing methods. Instead of repro-
ducing an extensive summary, we remain with a rough classification of shape matching
techniques and cite representative work only. The remaining chapters of this work will
discuss specific related literature much more precise.

Many shape matching strategies are feature based. These techniques compute features
on the shape’s geometry, that may be brought into correspondence subsequently. Al-
ternatively, the relative position of features (the distribution of features) is investigated
and compared without establishing correspondences of surface points directly. Local
signatures such as spin images (Johnson, 1997), shape context (Belongie et al., 2002),
multi-scale approaches (Li and Guskov, 2005; Pottmann et al., 2009), heat kernel (Sun
et al., 2009) and global histogram techniques (Ankerst et al., 1999) may be attributed as
feature based approaches. A controlled search of the underlying transformation space is
popular for the matching of deformed shapes and is typically based on a combination of
local and global features (Zhang et al., 2008; Lipman and Funkhouser, 2009). Contrary
to feature based techniques, graph based methods combine information about a shape’s
geometry and topology. Model graphs (McWherter et al., 2001) and skeleton and Reeb
graphs (Biasotti et al., 2003) are the most prominent shape graph models examined for
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1 Introduction

combinatorial similarity. All of these contributions to shape matching are global in a
sense that there are no restrictions on the initial pose of the shapes. Our work considers
local shape matching problems, assuming that the shapes are in rough alignment to each
other. For the vast majority of this work, we are going to establish correspondences by
nearest neighbor computations on point sets or B-spline surfaces. This may be seen as
a greedy, low level feature based approach.

The intention of some shape matching literature and literature on shape retrieval in
particular is a measure for shape dissimilarity. The main focus is on the Boolean result,
whether two or more shapes match or not. We will not stop at this point but are going
to modify the position or geometry of shapes such that dissimilarity is minimized. This
will happen with regard to application specific constraints, that draw their motivation
from a broad spectrum of applications such as physics, production technologies and
architecture. In this context, we are going to consider the alignment or registration
of point clouds and the B-spline surface reconstruction from point clouds as matching
problems. The following section will formalize our problem statement.

1.1 Problem Statement

Let shape A be a subset of Euclidean three space R
3. We define an embedding function

φ : R
3 → R, φ(x) = 0 for x ∈ A, that describes A implicitly by its zero level set. Given

that A is the boundary ∂A of an open set A ⊂ R
3, we call any x ∈ A inside and any

x ∈ AC \ ∂A outside of shape A.
The definition of φ is far from being unique with the values of φ(x), x /∈ A, arbitrary.

The set of suitable embedding functions includes the signed distance function to A.

Definition. Let ‖x‖ : R
3 → R denote the Euclidean norm in R

3. Then, functional
d(A,x) : R

3 → R, with

• d(A,x) = 0 for x ∈ A

• d(A,x) = −mina∈A ‖a − x‖ for x inside of A

• d(A,x) = mina∈A ‖a − x‖ for x outside of A

is called the signed distance function to shape A.

The level sets of φ, φ(x) = t, may be interpreted as an evolution of the zero level set
over time. The signed distance function d describes an evolution of the zero level set at
constant speed. It is the viscosity solution of a non-linear partial differential equation,
the so-called Eikonal equation (Sethian, 1999),

‖∇d‖ = 1, d(x) = 0, x ∈ A.

The Eikonal equation is a special case of the Hamilton-Jacobi equations, well-known in
mechanics and widely investigated in mathematics (Lions, 1982).

8



1 Introduction

Figure 1.1: Graph of the unsigned distance function to a planar curve (left) and to a
discrete point set (right).

Definition. We call a point fx ∈ A the foot point of the shortest distance from x ∈ R
3

to A, if
fx = argmin a∈A‖a − x‖.

If not stated otherwise, the abbreviated expression “foot point on A” will refer to the
foot point of the shortest distance to A. The set of points in R

3, for which the foot point
is not unique, is called the medial axis of A. In points of the medial axis, the signed
distance function is not differentiable.

For the purpose of describing proximity to a shape the sign of d(A,x) becomes re-
dundant. Loosely speaking, it shall not be relevant if we are inside or outside of A if
we aim at getting close to A. For this reason, it turns out useful to either employ the
absolute value |d(A,x)| or square the signed distance function d2(A,x) for computations.
We summarize both cases notation-wise by writing d∗(A,x) = ‖fx − x‖∗, ∗ = 1, 2. In
other words, we measure the length of the residual vector fx−x with respect to different
norms.

The unsigned and squared distance function lead straight forward to a notion of dis-
tance between two shapes A and B. We call

d∗(A, B) =
∫

B
d∗(A,b) dB

the unsigned or squared distance from B to A. In general, d∗(A, B) will not equal
d∗(B, A) as the foot point relation “a is the foot point of b” is not symmetric. In order
to emphasize this asymmetry, we will call A the base and B the query shape.

Now, let T (A) ∈ T denote a manipulation of shape A by means of a transformation or
shape modification. We will get more specific about sets of manipulators T later. In the
meantime, we are able to formally state the matching problems considered in this work.
Depending on whether we apply T to the base or to the query shape, we obtain two
scenarios: Given two shapes A and B, find that manipulator T such that the distance
from B to A is minimized,

min
T∈T

d∗(A, T (B)) or min
T∈T

d∗(T (A), B). (1.1)

9



1 Introduction

1.2 Solving the Minimization Problems

Without giving any further details about above matching problems we see that mini-
mizations of Equ. (1.1) are of a non-linear nature. In this section, we sketch a solution
to these optimizations problems that will be outlined in much more detail in the re-
maining chapters of this work. Our aim here is to show that most of what follows fits
into a general unique framework. We will consider the first minimization problem of
Equ. (1.1) only. Results for the second problem minT∈T d∗(T (A), B) are obtained in a
similar manner.

The non-linear dependancy on T in

d∗(A, T (x)) = ‖fT (x) − T (x)‖∗,

is tracked down to two main sources. Once, the foot point depends non-linearly on T .
Second, at a higher level, d∗ is non-linear, apart from that an explicit representation of
it won’t be available for general shapes. We will tackle these issues with an iterative
and alternating approach to minimization. We first fix manipulator T and compute the
foot points of the query shape on the base shape. Then, we fix the foot points and find
optimal T by minimizing approximations of d∗. These two steps are repeated over several
iterations. The foot point computations for fixed T relate to the exact represenation of
the base shape but will pose no further difficulties (cf. Sec. 1.3). For the second part of
an iteration, we will derive local approximations of both |d| and d2 in the following.

The first approximation regards the query shape B as mathematical model that shall
be fit to an observation set, in our case the foot points of B on A. Similar setups are very
well-known in mathematics and we minimize either the l1-norm or the squared l2-norm
of the residual

d(A,x) ≈
{

‖fx − x‖ x not inside A
−‖fx − x‖ x inside A

with respect to unknown T ,

|d(A, T (x))| ≈ ‖fx − T (x)‖ and d2(A, T (x)) ≈ ‖fx − T (x)‖2.

Please note that the residual might well be interpreted as Taylor approximation of order
0 of d. Following the notation of (Wang et al., 2006) we will call these approximations
of the signed distance function point to point distance terms.

Given that d is differentiable in a foot point fx, we may compute higher-order approx-
imations of the signed distance function. Let us consider a linearization of the signed
distance function,

d(A,x) ≈ d(A, fx) + ∇d(A, fx)T · (x − fx).

As fx ∈ A, the first term vanishes. Recalling that d is an evolution of the zero level
set at constant speed, ∇d(A, fx) coincides with the outward oriented normal vector of
shape A in fx. This observation leads straight forward to a geometric interpretation of
the first-order Taylor approximation. Linearization of the signed distance function in a
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B

x

T (B)

A
fbfbfbfbfbfbfbfbfbfbfbfbfbfbfbfbfb

Figure 1.2: Level sets of the point to point (left) and point to tangent plane (right) error
terms for local registration.

foot point fx yields the signed distance to the tangent plane in that foot point. Taking
the residue’s l1-norm completes the second approximation for |d|,

|d(A, T (x))| ≈
∣∣∇d(A, fx)T · (fx − T (x))

∣∣ .
For the squared distance function, we obtain,

d2(A, T (x)) ≈
[
∇d(A, fx)T · (fx − T (x))

]2
.

Given that d2(A,x) is twice differentiable in a foot point, second-order Taylor approxi-
mation of d2 yields,

d2(A,x) ≈ d2(A, fx) + ∇d2(A, fx)T · (x − fx) +
1
2
(x − fx)T∇2d2(A, fx)(x − fx).

Recalling that d(A, fx) = 0, the gradient ∇d2 = 2∇d · d = 0 vanishes and we rewrite the
Hessian,

∇2d2(A, fx) = 2(d · ∇2d + ∇d · ∇dT ) = 2∇d · ∇dT .

We see that above squared l2-norm of the linearized signed distance function is indeed a
second-order Taylor approximation of d2. We summarize both higher-order approxima-
tions as point to tangent plane distance approximations.

Curvature based approximations of the squared distance function (Pottmann and
Hofer, 2003) and similar considerations regarding the signed distance function (Flöry
and Hofer, 2010) show theoretic improvements over above approximations. We do not
further discuss any higher-order approximations but point out that they suit well into
the presented algorithmic framework.

In summary, a solution to above minimization problems can be found iteratively by
computing the foot points at the beginning of an iteration, approximating d∗ in these
foot points and minimizing these approximations. The following algorithm summarizes
these steps.

Algorithm. A solution for the non-linear minimization problems of Equ. (1.1) com-
prises the following steps.

11



1 Introduction

Figure 1.3: Local registration of two point clouds as an example for geometric shape
matching. (Left) The two input point clouds are in rough alignment to each
other. (Right) Final alignment. The point clouds have been triangulated for
better visualization

1. Initialize the problem. For non-linear optimization problems, a proper initialization
is crucial for convergence (Kelley, 1999).

2. Compute the foot points for the elements of the query shape on the base shape.

3. Approximate d∗ in these foot points according to one of the methods above.

4. Minimize the approximated distance between query shape and base shape with re-
spect to the unknown shape manipulator.

5. Apply the minimizing manipulator. If the distance between the shapes is below a
user-defined threshold, stop. Otherwise continue at step 2.

1.3 Examples

We will conclude the introduction by giving two examples for shape matching problems.
These will be the basic problems considered in the remaining two parts of this work.
A thorough investigation of the single steps of above algorithm, any extensions and
constraints as well as convergence properties will be detailed in the following chapters.

12
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A

fbfbfbfbfbfbfbfbfbfbfbfbfbfbfbfbfb

T (A)

B
b

Figure 1.4: Level sets of the point to point (left) and point to tangent plane (right) error
terms for curve/surface fitting.

1.3.1 Local Registration

The first matching problem we discuss is the local registration of two point clouds A =
{ai ∈ R

3 : i = 1, . . . , nA} and B = {bi ∈ R
3 : i = 1, . . . , nB}. Given that the two

shapes A and B are in rough alignment to each other, our goal is to find that rigid body
motion T ∈ T minimizing the distance between the two shapes. Thus, the set of feasible
manipulators T will be the Euclidean group of rigid body transformations E+

3 on R
3.

We fix point cloud A, the base or target system, and minimize the distance of T (B) (the
query or moving system) to A. The objective of the non-linear minimization problem is
given by

min
T∈E+

3

nB∑
i=1

d∗(A, T (bi)). (1.2)

The definition of d∗ is based on the foot points of B on A. As both A and B are discrete
point sets, the foot point fb is identified with the nearest neighbor of b in A. For the
point to tangent plane approximations of d∗ we require the signed distance function
to be differentiable in the foot points. This requirement is not met for point clouds.
Nevertheless, it is possible to estimate normals in the elements of the target point cloud
(cf. Sec. 4.3.2) and consider A to behave locally like the estimated tangent plane in fb.

1.3.2 B–spline Surface Reconstruction

The second problem we consider within above matching framework is the surface re-
construction from point cloud data. For a given point cloud B = {bi ∈ R

3 : i =
1, . . . , nB}, our goal will be to compute that tensor product B–spline surface A(u, v) =∑nA

i=1 Ni(u, v)di approximating B best. B-spline surface A will be the deforming shape
as well as the base shape for foot point computations. We modify the shape of A by
displacing its control points di. Accordingly, T = R

3nA comprises all 3 · nA dimensional
translation vectors.

Putting things together, the objective of the non-linear surface fitting optimization

13



1 Introduction

Figure 1.5: Fitting a B–spline surface to a point cloud as an example of geometric shape
matching. (Left) Initial point cloud and approximating surface. (Right)
Final approximation.

problem is of the form,

min
T∈R

3nA

nB∑
i=1

d∗(T (A),bi).

The foot point of bi on a parametric surface A(u, v) is obtained in a Newton iteration
minimizing min(u,v) ‖A(u, v)−bi‖2. As opposed to the registration problem, ∇d(A(u, v))
is given as surface normal in A(u, v).

1.4 Overview

In this section we defined our understanding of shapes and developed a general framework
for the subsequent chapters. How different registration and surface fitting problems
might occur at first sight, it is worth to keep in mind how similar they are at the core.

The remainder of this thesis is split into two parts. The first part considers the con-
strained registration of point clouds. The constraints will be of very diverse nature.
Chapter 2 formulates side conditions preventing mutual penetration of aligning shapes.
The third chapter investigates the constrained alignment of point clouds with respect to
the l1-norm of residues. The fourth chapter discusses the registration of point clouds, ac-
quired at high temporal density. In a space-time model, this will constrain the alignment
locally to a kinematic surface.

Part II shifts the focus to surface fitting problems and the B-spline surface recon-
struction from discrete point sets. In Chapter 5, the main restriction will be that we
employ ruled surface patches as fitting entities only. Finally, Chapter 6 will show that
many application specific requirements from production technologies and architecture
are effectively stated as constrained minimization problems.
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Part I

Constrained Registration
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2 Registration without Penetration

Registration is one of the most prominent matching problems in computer vision and
geometry processing. In its most basic form, the goal is to register (or align or match) a
moving shape by a rigid body transformation to a target shape. The rapid development
of shape acquisition devices in recent years lets registration enjoy an ever increasing
number of applications. Alignment algorithms are used to combine 3D information
obtained from different view points into a common coordinate system. In industrial
inspection, machine parts are scanned and registered onto their CAD models to control
abrasion. More abstract applications rely on registration as well, for example (Botsch
et al., 2006) and (Kilian et al., 2008), who employ registration to glue and match soups
of prisms/polygons.

Among this wealth of applications, alignment algorithms are used to solve 3D puzzles.
Imagine a solid object broken into several fragments. Its reassembly may be considered
a 3D puzzle. In classic registration, we tolerate or even require a final alignment to
distribute matching errors equally across the model, typically in some least-squares sense.
However, physical facts make it impossible to let matching fragment surfaces of a 3D
puzzle penetrate each other. In this chapter, we will develop an algorithm to align two
or more matching shapes in a penetration free way.

Our work is based on the well established ICP class of registration algorithms, in-
troduced by (Besl and McKay, 1992) and (Chen and Medioni, 1992). ICP chooses an
iterative approach to compute an optimal aligning transformation between the input
shapes. Hence, it suits well into the framework of the previous chapter and solves the
non-linear matching problem in a series of iterations with quadratic objective. We will
formulate the penetration free constraint as side condition to these optimization prob-
lems thus arriving at a constrained optimization problem.

2.1 Related Work

It is common to organize the vast body of literature on rigid registration in two groups.
Depending on whether the shapes to be matched are in general or roughly aligned
position to each other we speak of a global or local registration problem. Beyond this
section on related work we are going to consider the local registration problem and we
will skip the attribute “local” most times.

Observing that the dimension of the rigid alignment problem is rather small (the six
degrees of freedom of a rigid body motion in space), a direct search of the solution
space for the optimal solution seems suitable. In computer vision, several methods have
been proposed building upon this observation. Generalizations of the Hough transform
to determine boundaries (Ballard, 1981; Hecker and Bolle, 1994), counting the support
of solution candidates with geometric hashing (Hecker and Bolle, 1994; Wolfson and
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2 Registration without Penetration

Rigoutsos, 1997) or randomly sampling the solution space with RANSAC (Fischler and
Bolles, 1981) are prominent examples. Recent work based on the geometric hashing
paradigm comprises (Gal and Cohen-Or, 2006); the RANSAC principle in combination
with 4 point bases is used in (Aiger et al., 2008).

One way of bypassing the need to search most of the solution space are features.
Instead of matching the input shapes directly, the problem is reduced to match sets of
features. The latter task is often referred to as the correspondence problem, describing
the need to identify a counterpart for each feature. If the correspondences are known
a priori, an explicit least-squares solution was proposed by (Horn, 1987). For unknown
correspondences, surface descriptors are used as features. In Chapter 1 we have already
mentioned several approaches to global registration. These include spin images (Johnson,
1997), shape contexts (Frome et al., 2004), multi-scale integral invariants (Gelfand et al.,
2005) or multi-scale normal differences (Li and Guskov, 2005).

For a comprehensive solution, a global matching technique is often combined with a
local method as final refinement step (e.g. Huang et al., 2006). For local registration,
the proximity of shapes makes the use of features obsolete. Instead, correspondences are
established iteratively by computing closest points between the shapes. This is the basic
idea of the classic Iterative Closest Point (ICP) algorithms proposed originally by Besl
and McKay (1992) and (Chen and Medioni, 1992) and used in many variants nowadays,
see (Rusinkiewicz and Levoy, 2001) for a survey. In their initial formulation, these
techniques align two shapes. Multiple shapes may be matched pair by pair (Levoy et al.,
2000; Bernardini and Rushmeier, 2002), the major drawback being accumulative errors.
Simultaneous or multi-view registration leaves this shortcoming behind by considering
all systems at the same time and distributing alignment errors equally (Bergevin et al.,
1996; Pulli, 1999).

Above contributions all focus on computing rigid body motions to align the input
shapes. Non-rigid registration methods build on extending the rigid ICP algorithms
(Hähnel et al., 2003), learning correspondences in a pose deformation model (Anguelov
et al., 2005) or canceling out low frequency acquisition errors (Brown and Rusinkiewicz,
2007).

Our work extends the ICP approach and classifies as local and rigid registration al-
gorithm. We will begin by shortly recapitulating the basic ICP algorithm. Then, we
will introduce constraints to achieve penetration free alignments which we generalize to
multi-view setups. We conclude this chapter with two extensive examples.

2.2 Unconstrained Pairwise Registration

For a start, let us consider the pairwise registration problem in R
3 and its well-known

solutions. Given a target point cloud A = {ai : i = 1, . . . , nA} and a moving point cloud
B = {bi : i = 1, . . . , nB}, we want to compute that rigid body motion,

m(b) = M · b + t, M ∈ SO3, t ∈ R
3,

minimizing the squared distance d2(A,m(B)), with m(B) = {m(b) : b ∈ B}. In this
chapter, we will not consider the absolute value of the signed distance function. This
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2 Registration without Penetration

Figure 2.1: Penetration free reassembly of a brick model.

will be the topic of the next chapter.
The unknown of the optimization problem is shape manipulator m. Classic work on

registration either computes m explicitly from pairs of corresponding points (Besl and
McKay, 1992) or — if an explicit solution is not available — includes the entries of
M and t in a constrained way as unknowns in the minimization (Chen and Medioni,
1992). In this work, we will choose a different approach discussed in (Pottmann et al.,
2002), linearizing the unknown rigid body motion with instantaneous kinematics. We
will review some basic facts on instantaneous kinematics shortly, for details we refer the
reader to (Pottmann and Wallner, 2001).

Let m(b) be an instance of a smooth one-parameter family of Euclidean motions,

m(t) = M(t) · b + t(t).

The first derivative of m(t), the velocity vector field, is known to be linear and of the
form,

v(m(t)) = ṁ(t) = c̄(t) + c(t) × m(t), c̄(t), c(t) ∈ R
3.

A first-order Taylor approximation of m(t) in t = 0 reads in this notation as,

m(b) ≈ b + c̄ + c × b.

We will employ this linearization of the shape manipulator m(b) in the minimization.
Consequently, (c̄, c) will be the unknowns of the registration problem’s iterations. Once
we obtained a minimum, we observe that in general the mapping b → b + v(b) is not
a Euclidean motion, but an affine transformation. Hence, we describe two ways for
reconstructing a rigid body motion from c̄ and c in the following.

Consider a one-parameter motion with constant velocity vector field (c̄, c). Such a
motion is called uniform and is either the trivial motion (c̄ = c = 0), a translation
(c = 0), a rotation about a fixed axis (c̄ = c̄Tc = 0) or a superimposition of a rotation
and translation along the fixed rotation axis (uniform helical motions for c̄Tc 	= 0).
(Pottmann and Wallner, 2001) show how to compute a general uniform helical motion
from given (c̄, c) in a computationally cheap way. The second method, proposed by
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B

S0

S1

fi

BBBBBBBBBBBBBBBBB

d′ ≥ 0

d′ ≤ 0

Figure 2.2: (Left) The two blue shapes with solid boundary S0 and S1 are in penetra-
tion free alignment with the yellow base shape B. (Right) Deriving linear
constraints for a penetration free alignment. d′ denotes a first-order approx-
imation of the signed distance function in fi.

(Botsch et al., 2006), considers the registration problem with known correspondences
of the initial configurations {bi} to their affine images {bi + v(bi)}. Using Horn’s
quaternion approach (Horn, 1987), which comprises eigenvalue computations for a 4× 4
matrix, the rigid body motion describing the affine mapping best in a least-squares sense
is computed. As we expect only small displacements for local registrations, we use the
first, computationally cheap technique.

Now that we have described how the shape manipulator enters the optimization prob-
lem, we are able to cast the classic ICP algorithms in the minimization framework
presented in the introductory chapter. First, the closest points for the elements of B are
computed in A. Let fi ∈ A denote the foot point of bi in A. Then, the squared distance
function to A is approximated in these closest points. The first approximation of d2, the
point to point error term, was introduced by (Besl and McKay, 1992) to registration. In
our notation with instantaneous kinematics, the objective reads,

min
(c̄,c)

nB∑
i=1

‖bi + v(bi) − fi‖2 .

The higher-order approximation of d2, minimizing the squared distance to the tangent
plane in the foot point, was proposed by (Chen and Medioni, 1992). Given that ni is a
normal in the closest point fi ∈ A of bi, the optimization problem is of the form,

min
(c̄,c)

nB∑
i=1

[
nT

i · (bi + v(bi) − fi)
]2

.

Both objectives are quadratic in the unknowns c̄ and c and minimization amounts to the
solution of a six-dimensional system of linear equations. The convergence characteristics
of both objectives have been investigated by (Pottmann et al., 2006) who derive that
the point to point error terms exhibits linear convergence. The point to tangent plane
approximation is shown to be a Gauss-Newton method and is thus of quadratic local
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2 Registration without Penetration

Figure 2.3: Unconstrained (left) and penetration free alignment (right) of two point sets
(triangulated for better visualization).

convergence for zero residual problems. As a consequence, a minimizer (c̄, c) does not
yield the optimal update but the descent direction and requires proper step size control
(Kelley, 1999).

2.3 Constrained Pairwise Registration

In various real world applications of registration, the input shapes are supposed to align
without any mutual penetration. This requirement is translated straight forward to a
mathematical context (see also Fig. 2.2).

Definition. Two shapes A and B (with A the boundary of an open set in R
3) are said to

be in penetration free or one-sided alignment, if d(A,b) is either positive for all b ∈ B
or negative.

This definition along with the general registration objective leads directly to a con-
strained minimization problem for penetration free registration,

minT d∗(A, T (B)) subject to d(A, T (b)) > 0, ∀b ∈ B
or d(A, T (b)) < 0, ∀b ∈ B.

In the following we will consider the first case d(A, T (b)) > 0 only. Our results are
migrated to the opposite case easily by replacing the greater signs with less signs. To
make above definition apply to non-closed shapes, we close them artificially. Practically,
an orientated normal field of A suffices, even for A a discrete point cloud, as is shown
below.

Some of the most popular methods to solve constrained non-linear optimization prob-
lems are summarized as Sequential Quadratic Programming in optimization literature
(Nocedal and Wright, 1999). They solve the non-linear problem in a series of approx-
imated quadratic programs (with linearly constrained quadratic objectives). We recall
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2 Registration without Penetration

that,
d(A, T (bi)) ≈ nT

i · (T (bi) − fi),

with ni the outward oriented normal vector in fi and obtain the following constrained
optimization problems per iteration,

min(c̄,c)

∑nB
i=1 ‖bi + v(bi) − fi‖2

s. t. nT
i · (bi + v(bi) − fi) > 0, ∀i.

min(c̄,c)

∑nB
i=1

[
nT

i · (bi + v(bi) − fi)
]2

There are mainly two groups of algorithms solving this kind of optimization problems
(Nocedal and Wright, 1999). Active set methods constitute the first group of solutions.
They remain in the feasible solution space by continuously estimating and updating
sets of active constraints describing the constraints locally. In their emphasis on the
boundary of the feasible set they resemble the well-known Simplex method for solving
linear programs. Interior point methods, on the other hand, have been generalized from
linear programs to quadratic and general convex programs. They traverse, as their name
suggests, strictly the interior of the feasible set.

Active set methods apply well to small scaled problems, whereas Interior point meth-
ods perform better for large scale problems. For constrained registration, the dimension
of the solution space is six. However, the number of linear constraints equals the possibly
large number of points in the moving point cloud. In its dual formulation, the dimen-
sion of the optimization problem equals basically the number of constraints of the primal
problem. Hence, we may regard the constrained registration problem as medium to large
scaled and we are using an Interior point method described in (Gertz and Wright, 2003)
to solve the quadratic programs.

We may summarize as follows. We achieve a penetration free and one-sided alignment
of two shapes A and B by iteratively minimizing an approximation of the squared dis-
tance function from A to B. This minimization is constrained in such a way that every
element bi ∈ B is displaced in the half space defined by its foot point’s tangent plane
and outward oriented normal vector.

2.4 Simultaneous Constrained Registration

Our motivating example for penetration free registration — the reassembly of broken
objects — will not comprise pairs of point clouds only but multiple input shapes. Per-
forming a constrained registration for every pair of discrete point sets might depict a
sufficient solution at first sight. However, the high error propagation renders this option
useless. In Chapter 4 we will illustrate the severe accumulative errors of subsequent pair-
wise registrations. Constrained simultaneous registration of all point clouds overcomes
this problem. Instead of repeatedly registering pairs of point sets, the whole scene is
brought into better alignment at once. In this section, we will generalize our hitherto
existing results to a multi-view constrained registration of multiple shapes. Therefore,
we will employ the same approach as in (Pottmann et al., 2002).
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2 Registration without Penetration

Figure 2.4: The adjacency graph for the cake example in Fig. 2.6.

Let Ai, i = 0, . . . , n, be the n + 1 input point sets of simultaneous registration. In
general, a single system will not be adjacent to all the other point clouds. Two point
clouds are called neighboring if their distance is below a user-defined threshold. We use
an adjacency relation,

ajk =
{

1 Aj neighboring Ak

0 else

to describe the combinatorics of neighborhoods. Let A := {(j, k) : j = 0, . . . , n, k =
j + 1, . . . , n, ajk = 1} denote the set of adjacent point cloud pairs (see Fig. 2.4).

Without loss of generality we choose A0 as fixed system. We linearize the unknown
motions as before. For any point cloud Ai (i > 0), let

vi0(x) = c̄i + ci × x,

denote the velocity vector field of its unknown motion towards fixed A0. The relative
velocity of system Aj towards system Ak is described with respect to the fixed system
(Pottmann and Wallner, 2001),

vjk(x) = vj0(x) − vk0(x), ∀(j, k) ∈ A.

The unknowns of the simultaneous registration problem are the 2 · n vectors c̄i and ci.
The matching error between two adjacent systems Aj and Ak is approximated with the

point to point or the point to tangent plane error as for the pairwise case. The objective
of the whole setup is given by summing up all pairwise error terms. As constraints, above
linearization is employed. The velocity vectors vjk constitute the set of unknowns,

min
(c̄1,c1,...,c̄n,cn)

∑
(j,k)∈A

∑
b∈Aj

[(
b + vjk(b) − fk

b

)T
· nk

b

]2

subject to
(
b + vjk(b) − fk

b

)T
· nk

b > 0 ∀(j, k) ∈ A, b ∈ Aj .

Here, fk
b denotes the closest point of b ∈ Aj in Ak and nk

b a normal of Ak in fk
b . The

formulation of the multi-view point to point based registration problem is obtained in a
similar construction.
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2 Registration without Penetration

Figure 2.5: The initial poses of a broken brick’s fragments (left) are aligned in a pene-
tration free way (right).

In summary, we obtain a constrained optimization problem with quadratic objective
and linear side conditions that is solved with an Interior point method. The resulting
velocity vector fields vi0 are translated to rigid body motions with any method discussed
before.

2.5 Examples

As stated before, the geometric matching algorithms in the present work are of a local
nature. Local in this sense means that the algorithms are designed with the assumption
in mind that the initial poses of the shapes are in rough alignment to each other. For
local registration, the ICP methods by (Besl and McKay, 1992) and (Chen and Medioni,
1992) and their variants constitute the de facto standard and state of the art. In contrast,
global registration motivated a wealth of solutions, many specific to a certain class of
applications.

2.5.1 Reassembling Fractured Objects

In this first example, we consider the 3D puzzle problem that served as motivation for
penetration free alignments. Given the fragments of a recently broken solid, we ask
for a reconstruction of the original object. Such a reassembly involves identification of
matching fragments (the global matching problem) and alignment of the corresponding
pieces (the local constrained registration problem). The input data consists of digital
point cloud models of the fragments, obtained for example with a 3D laser scanner.
Please note that the generation of the digital input data for a fragment most likely
involves unconstrained simultaneous registration to merge the multiple captured views
into a single coordinate system.

In (Huang et al., 2006), the presented constrained registration algorithm serves as
final local alignment stage in a reassembling pipeline. We want to sketch the associated
global matching solution shortly to give a complete picture of the general matching
problem. In the first step of the pipeline, the fragments’ surfaces are segmented into
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2 Registration without Penetration

Figure 2.6: Penetration free reassembly of a cake and a venus model.

faces along their automatically extracted edges. On these faces, feature descriptors
are computed. In every point of a face, mean curvature and difference of principal
curvatures are estimated from integral invariants on local neighborhoods. The curvature
estimates are aggregated into multi-scale surface roughness and sharpness descriptors.
Subsequently and based on this information, faces are matched pairwise in a statistical
robust way. The quality of pairwise matchings initializes a greedy multi-piece matching
phase. As output, adjacency relation ajk is obtained that serves as input to the final
constrained simultaneous registration. Reassembled broken objects are shown in Figures
2.1, 2.3, 2.5 and 2.6.

2.5.2 Reassembling Ancient Monuments

Above method for the reassembly of fractured objects relies on the fact that correspond-
ing fracture faces carry enough geometric information to let matching and registration
succeed in a stable way. This is the case for a wide range of materials, recently broken
objects and well preserved ancient excavations. However, a significant percentage of
findings has been subject to erosion jeopardizing identification of matching faces as well
as an accurate registration. Including information exterior to corresponding faces im-
proves the results, enlarging and stabilizing the matching domain. In the following, we
derive shortly how a more global view improves the constrained registration algorithm
in the presence of strong erosion. The results are an excerpt from (Thuswaldner et al.,
2009), where digital data from the Octagon building in Ephesus is used as illustrative
example.

Let A and B be two matching faces. We write N(A) = {Ai : i = 1, . . . , nA} for faces on
the same fragment as A that are adjacent to A, and define N(B) = {Bi : i = 1, . . . , nB}
in a similar fashion. Then, faces in N(A) will be in exterior correspondence with faces
in N(B). For the Octagon data set, more or less all fragments are bounded by planar
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2 Registration without Penetration

Figure 2.7: Alignment of two building blocks of the Octagon data set (Ephesus). From
top to bottom we see an unconstrained alignment, a penetration free align-
ment and a penetration free alignment with additional enforced coplanarity
of exterior corresponding faces. The center column depicts cross sections
of the building blocks, the right column illustrates close-ups of the contact
areas.
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2 Registration without Penetration

Figure 2.8: Penetration free and coplanar reassembly of six building blocks of the Oc-
tagon data set.

faces. As a consequence, exterior correspondence of two faces Ā ∈ N(A) and B̄ ∈ N(B)
will constrain the reassembly process to align Ā and B̄ such that they are coplanar. We
achieve this by adding a weighted penalty term for any pair (Ā, B̄),

fcoplanar(c̄, c) =
∑
b∈B̄

[
nT

A · (b + v(b)) + dA

]2

to the objective of the constrained registration algorithm. Here, nT
A ·x+ dA = 0 denotes

the signed distance to the fitting plane of locally fixed face Ā. If the fragments’ faces
were exactly planar, it would be more appropriate to state coplanarity as linear equality
constraint. However, inevitable noise in our application would yield an infeasible set of
constraints. Figures 2.7 and 2.8 illustrate aligned building blocks of the Octagon data
set.
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3 Registration in the l1-norm

In the previous chapter we have extended the widely popular solutions to the uncon-
strained local registration problem by (Besl and McKay, 1992) and (Chen and Medioni,
1992). Their approaches center around approximations of the squared distance function
between the shapes. This makes these algorithms two of many in geometry processing

minimizing the l2-norm ‖r‖2 :=
√∑

i r
2
i of some residue r ∈ R

p. The wide spread of
least-squares approaches is probably due to the simplicity and effectiveness in the linear
case, as formalized by the Gauss-Markov theorem (Björck, 1996): Given that the input
data has zero mean, same variance and no correlation, the least-squares approach yields
the best (by means of minimal variance) linear unbiased estimator.

Unfortunately, the input data does not always meet these requirements and severely
challenges the least-squares approach. One particular problem are outliers, which nat-
urally occur in various ways in physical measurement processes used to acquire the
input data. Several techniques have been proposed to improve the robustness of l2-norm
optimizations and applications of these methods have found their way into geometry
processing.

We choose a different approach and go beyond least-squares. Instead of turning to
robust variants of l2-approximations we choose a norm known to be more robust by
itself, the l1-norm ‖r‖1 =

∑
i |ri| (cf. Fig. 3.1). l1-techniques are far less popular in

CAGD which may be due to the challenges of non-smooth optimization resulting from
the absolute values in the definition of ‖.‖1. Geometric insights allow us to explore the
l1-approach in an elegant way. In many cases, the least-squares techniques are equivalent
to a minimization of the squared distances in the setup. In the l1-norm, this results in
working with (the absolute value of) the signed distance function. In the introduction,
we have already outlined how to derive approximation algorithms from this premise.
Please note that distances will still be taken in the Euclidean norm, but instead of
squaring the distance values (l2-norm) we employ the l1-norm.

3.1 Related Work

For previous work on registration, we want to refer to the surveys in Chapters 2 and
4. Efforts to increase the robustness of least-squares methods are well summarized
in (Pighin and Lewis, 2007). Weighted least-squares basically break with the equal
variance assumption of the Gauss-Markov theorem. Intuitively, measurements with large
errors are considered outliers and weighted weaker. Iteratively Reweighted Least Squares
(Holland and Welsch, 1977) for example suggest to weight the summands of the current
error term with reciprocal powers of a previous iteration’s residuals. (Sharf et al., 2008)
rely partially on this method in a surface reconstruction framework based on a space-
time model. Apart from weighting the residuals, least-squares have been combined
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Figure 3.1: The l1-norm weights outliers much less than the l2-norm. Moreover, it puts
more emphasis on small residues (cf. function graph of f(x) = |x| and
f(x) = x2, left). Both properties can be seen in typical histograms of residues
for l1- (center) and l2-approximations (right). These plots were computed on
discrete input data. The histograms’ two left most bins (marked in gray) are
below the average sampling density and bias the analysis. We will discuss
the residual distribution in more detail in Sec. 3.4.

with RANSAC (Fischler and Bolles, 1981). This so-called least median squares method
(Rousseeuw and Leroy, 1987) has been used among others for multi-view registration of
range scan images (Masuda and Yokoya, 1995).

The l1-norm appears early in geometric optimization problems. (Weber, 1909) states
the problem of finding the optimal location of a new industrial site with minimal sum of
distances to a set of existing sites. The problem was soon traced back to Fermat in the
17th century and is known as the Fermat-Weber problem since then. (Weiszfeld, 1937)
was first to propose an iterative approach to solve the problem that was thoroughly
investigated by (Kuhn, 1973). The solution of the Fermat-Weber problem is usually
called the l1-median or geometric median. Recently, (Lipman et al., 2007) presented a
projection operator for surface reconstruction that resembles locally the l1-median. In
this context, the terminology of signed or unsigned distance function is frequently used.
If a point set’s normal field is required to have unique orientation, the distance function
is called signed. Otherwise, it is denoted as unsigned. See the discussion in (Alliez et al.,
2007) for pointers to recent literature.

The l1-norm is used infrequently to solve matching problems. (Zhu et al., 2004)
formulate an l1-minimization of the signed distance function for profile error evaluation
but do not seem to further examine this option. A prominent exception from rare
l1-norm appearances are contributions in image processing. For translational image
registration, (Barnea and Silverman, 1972) discretize the solution space and use the
l1-norm of the difference images as similarity measure. Consequently, this approach is
well known as sum of absolute differences technique. It is still widely used nowadays in
modern video compression software (Richardson, 2003). (Rudin et al., 1992) propose a
variational formulation to the problem of image noise removal that employs the l1-norm
of the minimizer’s derivatives as regularization term. (Chan and Esedoglu, 2004; Zach
et al., 2007) discuss extensions of this approach to image reconstruction measuring the
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3 Registration in the l1-norm

Figure 3.2: Local, rigid registration of two point clouds: starting from the initial setup
(left), the final alignment (right) is obtained as solution of a non-smooth
minimization problem.

fidelity (approximation) error as l1-norm of residuals to observation data. References
to optimization literature covering non-smooth minimization (among others, sums of
absolute values) are given in Sec. 3.3.2.

The remaining parts of this chapter are organized as follows. First, we derive new
error terms for l1-based local registration. For this, we will greatly benefit from the
results of the previous chapters. Subsequently, we will put some effort in showing ways
to solve the emerging non-smooth optimization problems. The presentation of a handful
of examples along with a discussion of the results will conclude this chapter.

3.2 Error Terms for Registration in the l1-norm

Let us continue in the terminology and notation of Sec. 2.2. Given a target point cloud
A and moving point cloud B, our goal is to determine that rigid body motion m(b)
minimizing the unsigned distance function from A to m(B), |d(A,m(B))|. We solve
this non-linear and non-smooth optimization problem within the general framework of
Chapter 1. Approximating unknown m(b) by its linear velocity vector field v(b) =
c̄ + c × b, we can write T (bi) ≈ bi + v(bi) for the shape manipulator of bi ∈ B. We
denote the closest point of bi in A by fi and arrive at the point to point error term for
l1-registration,

|d(A, T (bi))| ≈ ‖bi + v(bi) − fi‖.
Let ni describe a normal of A in fi. Linearizing the signed distance function and taking
the absolute value yields the corresponding point to tangent plane error term,

|d(A, T (bi))| ≈
∣∣nT

i · (bi + v(bi) − fi)
∣∣ .
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3 Registration in the l1-norm

Summing up the individual error terms reveals the objectives per iteration of the regis-
tration problem in the l1-norm,

min
(c̄,c)

nB∑
i=1

‖bi + v(bi) − fi‖ and min
(c̄,c)

nB∑
i=1

∣∣nT
i · (bi + v(bi) − fi)

∣∣ .
Let us have a closer look at the two objectives for a moment. The point to point

objective is only C0 in the zeros of its summands. A term bi + v(bi) − fi will vanish
if the moving point coincides with its corresponding target point. This is certainly a
situation we want to achieve and will arise naturally in zero residual problems (e.g.
when the moving point cloud is a congruent copy of the target point cloud). For this
reason, there is no other way than to consider a non-smooth optimization problem in the
first place to minimize above objective. Apart from being not differentiable everywhere,
the objective is convex and the arguments of the norm are linear in c̄ and c. Similar
facts hold for the point to tangent plane objective. The absolute value function is not
differentiable in the zero of its argument, which itself is linear in c̄ and c. The error
term however is convex.

3.3 Optimization

Above, we have derived two error terms for local registration based on the unsigned
distance function between the input shapes. In this section, we consider the solution of
the resulting non-smooth but convex optimization problems. First, we briefly sketch a
class of general non-smooth solvers, the so-called Proximal Bundle methods. Second, we
show that both objectives can be turned into smooth, though constrained minimization
problems.

To ease the following discussion, we change to a different notation for the objective
functions and leave the previous meanings of variables behind. For x ∈ R

n as unknown,
the point to point distance objective shall read

∑
i ‖Aix + bi‖. Consequently, the point

to tangent objective will be considered as
∑

i |bT
i x + ci|. As we have already stated in

the previous section, both functionals are convex.

3.3.1 Proximal Bundle Method

In smooth optimization theory, the objective function is differentiable at least once and
information about the first or higher-order derivatives enters the optimization process.
Given a non-smooth optimization problem, the objective function is not differentiable
everywhere and an adapted idea of gradients is introduced. Non-smooth optimization
algorithms such as the Proximal Bundle method (Kiwiel, 1990) build upon this concept.

Let f denote the convex non-smooth objective function of a minimization problem
minx∈Rn f(x). We call s ∈ R

n a sub-gradient of f in x, if

f(z) ≥ f(x) + sT (z − x), ∀z ∈ R
n.

The set of sub-gradients in a point x is called the sub-differential ∂f(x) of f in x. In
any point x where f is differentiable, ∂f(x) comprises only a single vector, namely the
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3 Registration in the l1-norm

Figure 3.3: The moving point cloud (blue) includes three significant outliers. The l1-
registration (top) is more robust than the l2-registration (bottom). The
initial position of the moving point cloud is shown in gray at the bottom.

gradient ∇f(x) of f . It is common to derive a general theory of convex derivatives based
on ∂f(x) (cf. Rockafellar, 1972).

Example. From above definition, we immediately obtain the sub-differential of the point
to point error term,

∂ ‖Ax + b‖ =
{

{s ∈ R
n : ‖Az + b‖ ≥ sT A−1(Az + b), ∀z ∈ R

n} for Ax + b = 0
AT (Ax + b)/‖Ax + b‖ for Ax + b 	= 0

The sub-differential of the point to tangent plane error term reads

∂ |bTx + c| =

⎧⎨
⎩

αb + (1 − α)b for bTx + c = 0, α > 0
−b for bTx + c < 0
b for bTx + c > 0

In a point x, each sub-gradient s supports a hyperplane h = {z ∈ R
n : f(x) +

sT (z − x)}, a linear and lower bound approximation of f in x. Proximal Bundle meth-
ods approximate the non-smooth objective by combining several of these linearizations.
Assuming that x0 is an arbitrary starting point, typical iterations for these algorithms
are of the form,

xk+1 = argmin f̂(x) +
1

2tk
‖x − xk‖2. (3.1)

Here, f̂ denotes a linear approximation of f (the cutting plane model) that aggregates
knowledge from a bundle of previous sub-gradients and corresponding hyperplanes, re-
spectively. The second term controls the maximal allowed step width (proximity) in an
iteration, as the minimum of f̂ may be unbounded. The approximate objective function
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Figure 3.4: For registration in the l1-norm (left) and the l2-norm (right), the point to
point error term performs worse than the point to tangent plane approach.

of Equ. (3.1) yields a quadratic optimization problem with linear constraints that (or its
dual) can be solved with methods of smooth optimization theory. In Chapter 2 we have
already encountered this type of minimization problem and we want to refer one more
time to (Nocedal and Wright, 1999) for solutions.

The challenges in realizing Proximal Bundle methods are found to be rules to maintain
and update the bundle of sub-gradients defining f̂ and the choice of the proximity
parameter tk. It can be shown that these methods give an ε-optimal global minimizer x∗

for convex f , that is f(x∗) ≤ f(z)+ε, ∀z ∈ R
n for user-defined ε (Kiwiel, 1990). Proximal

Bundle methods are general approximate solvers for non-smooth optimization problems.
The next section will show that by exploiting certain properties of the objectives, above
minimization problems can be solved in an exact way.

3.3.2 Non-Smooth vs. Smooth Optimization

Instead of applying a general but approximate solver such as the Proximal Bundle
method, our goal will be to turn the non-smooth problems into smooth optimization
problems. This will happen at cost of increasing the dimension and constraining the
solution space.

Let us consider the tangent distance minimization term first. In order to avoid mini-
mization of the absolute value of bix + ci, we require the latter term to evaluate in an
interval with variable bounds [−yi, yi]. If we minimize yi along with x now, we imitate
the effect of the absolute value function. Applying this idea to the point to tangent
plane objective, we obtain

min
x

m∑
i=1

|bT
i · x + ci| ⇐⇒ min

z=(x,y)

m∑
i=1

yi

subject to − yi ≤ bT
i · x + ci ≤ yi, i = 1, . . . , m

where y = (y1, . . . , ym) ∈ R
m are m auxiliary variables (Boyd and Vandenberghe, 2004).

It is obvious that we face an increase of dimension from 6 to 6 + m for the optimization
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3 Registration in the l1-norm

problem. What we get in return is a linear program, that can be solved with a variety
of algorithms, e.g. the well-known Simplex method or Interior point methods (Nocedal
and Wright, 1999).

The 2 ·m constraints are part of the price we pay for obtaining a smooth optimization
problem. This effect is somewhat reduced if we combine the point to tangent plane reg-
istration term in above formulation with the penetration free constraints of the previous
chapter. We obtain a constrained optimization problem with slightly simpler constraints,

min
x

m∑
i=1

|bT
i · x + ci| ⇐⇒ min

z=(x,y)

m∑
i=1

yi

subject to 0 ≤ bT
i · x + ci ≤ yi, i = 1, . . . , m

It will be interesting to evaluate experimentally in Sec. 3.4 whether the one-sided regis-
tration problem can be solved more efficiently than its unconstrained counterpart.

It is obvious to apply above conversion to the point to point objective as well. The
sum of norms of vector-valued linear functions is turned into,

min
x

m∑
i=1

‖Ai · x + bi‖ ⇐⇒ min
z=(x,y)

m∑
i=1

yi

subject to ‖Ai · x + bi‖ ≤ yi, i = 1, . . . , m.

(3.2)

Please note, that we omit the lower bound constraints as norms are not negative. We
see, that we still have a linear objective function. However, the constraints are not linear
but quadratic and the theory of linear programs does not apply.

Indeed, this optimization problem belongs to the class of Second-order cone program-
ming (short SOCP) problems (Nesterov and Nemirovskii, 1994; Alizadeh and Goldfarb,
2003). In their most general form, cone programs minimize a linear function under
second-order constraints, an intersection of an affine set with a Cartesian product of
cone constraints. For our needs, the unit second-order cone,

C0 = {(x, t) : x ∈ R
p, t ∈ R, ‖x‖ ≤ t},

is well suitable. C0 plays an important role in wide fields of second-order cone program-
ming. By applying an affine mapping to C0 we obtain the general SOCP problem

min
z

gT · z

subject to ‖Ai · z + bi‖ ≤ cT
i · z + di, i = 1, . . . , m.

SOCP programs are generalizations of linear and quadratic programs (Lobo et al., 1998).
With R

p
+ as cone, we can express any standard linear program as cone programming

problem. Moreover, by rewriting the objective of a quadratic program as quadratic
constraints in a similar fashion to Equ. (3.2), quadratic programs are seen to be special
cases of SOCP as well.

Returning to the point to point objective, Equ. (3.2) matches the structure of a SOCP
problem without any further modifications. For solving SOCP problems, Interior point
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3 Registration in the l1-norm

Figure 3.5: The l1-registration aligns the two input point clouds well (left). In contrast,
the least-squares registration result is tilted (right). Both target and moving
point cloud are noisy and include numerous outliers.

methods are widely employed. A detailed description of these algorithms is out of scope
of this work and we remain with stressing once again that it is straight forward to include
further linear constraints to SOCP problems, as we will do to achieve penetration free
alignments.

Above conversion from an unconstrained non-smooth to a constrained smooth opti-
mization problem may be adapted to solve the l∞-minimization problem,

min
x

max
i=1,...,m

|bT
i · x + ci| ⇐⇒ min

z=(x,y)
y

subject to − y ≤ bT
i · x + ci ≤ y, i = 1, . . . , m.

Min-max problems are of a certain interest to industrial quality management as industrial
standards typically norm the maximal errors of a system. (Zhu et al., 2004) investigate
min-max registration problems in the context of industrial inspection and we do not
further consider l∞-registration here.

3.4 Results

Let us begin by comparing the two error terms for unsigned distance registration to their
l2-norm counterparts. We refrain from presenting the whole two times two matrix of
results but give a representative final alignment for an unsigned point to tangent plane
optimization (cf. Fig. 3.2). As expected, the convergence plots of Fig. 3.4 indicate that
the point to point minimizations perform worse than the tangential terms. Regarding
the computational cost, unconstrained l2-registration requires a 6 × 6 system of linear
equations to be solved. Hence, we regard the computational effort negligible. This does
not hold for the non-smooth objectives which require some effort to be solved with a
Proximal Bundle method.

In Fig. 3.3, we compare the performance of a planar l1-registration to that of a least-
squares alignment. The moving point cloud comprises three significant outliers. Apart
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Figure 3.6: An iteration’s point to point (left) or point to tangent plane (right) minimiza-
tion may be turned into a smooth though constrained optimization problem,
that can be solved exactly. An exact solution yields better convergence at
global scope but is computationally more expensive.

from those, the problem would be a zero residual problem. In Fig. 3.5, we show another
robust non-smooth 3D registration and a least-squares alignment. This data set was
obtained with a stereo and active illumination based 3D scanner, capable of acquiring
17 frames per second (Weise et al., 2007), see also the next chapter. The high frame
rate reduces the quality of the coordinate samples and outliers are very common. We
triangulated the data for better visualization. Both tests confirm the robustness of the
l1-methods.

The robustness of l1-optimization is due to a lesser weighting of samples with large
residues. This is best seen in Fig. 3.1 (right) in a comparison of the absolute value
function f(x) = c0|x| and a parabola f(x) = c1x

2. From the graphs we can immediately
deduce another property. The l1-norm considers small residues stronger than the l2-
norm. These two properties are confirmed by histograms of a l1- and a l2-registration
in Fig. 3.1 (center and right). The discrete nature of the aligned shapes renders the
histogram unreliable for residues smaller than half the average sampling density. For
this reason, the corresponding bins are grayed out.

In Sec. 3.3.2 we have seen that both the point to point and the point to tangent plane
objectives can be converted to constrained smooth minimization problems. Opposed
to the approximate general solver for non-smooth systems, the constrained smooth pro-
grams of an iteration may be minimized exactly (and thus are expected to converge faster
at global scope). Fig. 3.6 confirms our expectations. The improved convergence comes
at the price of longer per iteration running times. While the increase in computational
cost for solving the linear program is moderate (by a factor of approximately 1.5), the
point to point error term’s second-order cone program is expensive to minimize.

General registration yields final alignments with target and moving point cloud pen-
etrating each other. This is to be expected as the distance between the two shapes is
minimized. For several applications however, it is of interest to achieve penetration free
alignments (see Chapter 2). We have seen that the corresponding linear constraints may
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3 Registration in the l1-norm

Figure 3.7: Unconstrained registration (left) yields a final alignment with mutual pene-
tration of target and moving point cloud. The inclusion of linear constraints
— eventually simplifying the smooth variant of the point to tangent plane
l1-registration — achieves a penetration free alignment (right).

be added to any optimization solver discussed above. In the case of the point to tangent
plane error term, integration of these constraints even simplifies the optimization prob-
lem. Typically, a penetration free registration takes half the time of an unconstrained
registration in the l1-norm. Please note that the corresponding least-squares registration
is an optimization problem with quadratic objective and linear constraints that requires
some computational effort as well. In Fig. 3.7, we show results of an unconstrained and
a penetration free alignment. Again, the point clouds have been converted to triangular
meshes after registration for better visualization.
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4 Dynamic Geometry Registration

Under certain aspects, the registration of Chapters 2 and 3 may be called static. The
input data to these algorithms is usually acquired in a process that takes several seconds
per view point. During acquisition, both the captured object and the entire measurement
setup are required not to move. Though the resulting data exhibits some noise, just as
the output of any physical measurement process, it is of considerably high quality.

In contrast, numerous real-time shape acquisition techniques have emerged in recent
years. Methods such as active space-time stereo (Zhang et al., 2003; Davis et al., 2005),
motion compensated structured light (Fong and Buron, 2005; König and Gumhold, 2008)
or combinations of both (Weise et al., 2007) are capable of capturing 3D data at speeds
of up to video frame rates. Typically, the object is moved in the scanning device’s field of
view in order to expose all of its surface to the scanner. In the meanwhile, the scanner
takes up to 20 measurements per second. The output data comprises hundreds and
thousands of measured coordinate sets; every set uniquely tagged by its frame number.
The short exposure time lets even moderate deforming objects appear rigid for the
duration of a single frame, with all the motion concentrating between subsequent stills.

A reconstruction of an object scanned in real-time faces the same challenges as the
registration of the previous chapters. The point clouds are unstructured and no inter-
frame correspondences of data points are available. Any frame covers only those parts of
the object that were visible at measurement time. Moreover, a frame’s 3D data is stored
in the scanner’s local coordinate system. However, there is a fundamental difference
between both types of input data. While the number of frames in a static acquisition
process is typically small with the motion between the frames being large, the real-time
3D data features many frames with small inter-frame motion. For this reason, we refrain
from using classic multi-view registration as it scales badly with increasing number of
input systems. Instead, our goal is to derive a registration algorithm exploiting the dense
spatial and temporal coherence in the input data.

The close temporal coherence of the samples motivates an approach investigating
instantaneous kinematic properties of the input data. To give a short in-depth preview
of the contents of this chapter, consider a planar curve c0 and its images ct under a
smooth one-parameter Euclidean motion m(t). Embedding ct in R

3 with time as third
coordinate axis, we obtain a smooth space-time surface S such as that in Fig. 4.1.
Any plane t = const holds an instance of the rigidly transformed initial curve c0. We
consider the input point data P i to be discrete measurements of such planar intersections
of S. In the following we will show, how inter-frame motions can be reconstructed from
kinematic properties of space-time surface S. To emphasize the difference to classic
static registration approaches, we call our method dynamic.
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4 Dynamic Geometry Registration

ti+1

ti

ti−1

t = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = tit = ti

SSSSSSSSSSSSSSSSS

Figure 4.1: The d-dimensional input point cloud data is converted to samples of a smooth
space-time surface S in R

d+1. The additional coordinate axis t is given by
acquisition time ti.

4.1 Related Work

Registration literature hasn’t paid any special attention to dense temporal input data
until 2007, when (Wand et al., 2007) and the work presented here (Mitra et al., 2007)
have been published. Up to that point of time, static registration algorithms were
widely applied to reconstruct the scanned object. For a survey of this classic registration
literature we want to refer to the corresponding sections of the previous two chapters.

While the geometry processing community turned its attention to the estimation of
inter-frame motions in dense temporal input data only recently, computer vision has
considered what is known as object tracking for some time. Techniques such as optical
flow (Beauchemin and Barron, 1995) aim at identifying an object over subsequent frames
of a video. For this purpose, optical flow methods reconstruct the two-dimensional image
motion from which the three-dimensional motions may be derived. Variants of this
method have even been translated to the 3D registration context (Rusinkiewicz et al.,
2002).

Parallel to this work, (Wand et al., 2007) proposed another method for the recon-
struction of temporal coherent data. Based on a Bayesian statistical model, the authors
establish correspondences between the data points of adjacent time frames. This is in
contrast to our work which does not estimate correspondences in any way. (Wand et al.,
2007) formulate various priors for shape reconstruction, noise removal and as-rigid-as-
possible inter-frame motions that are maximized in interleaved smooth and discrete
optimization steps. The employed surfel based representation turns out to be compu-
tational expensive and imposes certain limitations on the usability of the method for
data set comprising more than 30 frames (as reported in a follow-up publication by the
authors, (Wand et al., 2009)).

(Süßmuth et al., 2008) build upon the approaches of (Wand et al., 2007) and (Mitra
et al., 2007) and start from a similar four-dimensional space-time setup derived from the
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4 Dynamic Geometry Registration

Figure 4.2: A reconstruction of the Stanford bunny model from more than 300 simulated
noisy scans. The original model is included as ground truth (blue) in the cen-
ter figure. The point clouds have been triangulated for better visualization.

input data. In a next step, an implicit surface is fitted to the four-dimensional point
cloud. From its zero level set an initial guess of the original shape is computed that
is refined by moving this template over the remaining time instances in an as-rigid-as-
possible manner. (Sharf et al., 2008) abandon the rigidity assumption for inter-frame
motions in favor of a volume preserving objective. Their approach centers around a
mass flow model, defined on the input space-time point cloud projected onto a four-
dimensional grid.

(Wand et al., 2009) extend their 2007 work and head for better scalability. Instead
of estimating the deformation per surfel and per time slice, they introduce a coarse
set of deformation basis functions on the shape. This basis set is defined in a topol-
ogy aware manner and is subject to optimization favoring rigidity, volume preservation
and temporal smoothness. Techniques for performance and garment capture such as
(de Aguiar et al., 2008; Bradley et al., 2008) consider the reconstruction of 3D models
from multi-view video data in a marker-less way and relate both to object tracking and
the registration of point cloud data acquired at high frame rates.

In the following, we present a registration framework based on estimating kinematic
properties of a space-time surface. We discuss various theoretical and numerical is-
sues of our optimization approach and conclude with several examples illustrating the
effectiveness of the proposed algorithm.

4.2 Motion Parameter Computation in R
3+1

In this section we are going to transform the input data into a higher-dimensional space-
time framework. With the help of this model, we reconstruct the scanned object.

Assume an object is being moved according to some smooth one-parameter Euclidean
motion p(t) = R(t) · p0 + r(t). At several points of time ti, a scanning device acquires
coordinate samples P i of the currently visible parts of the object. This data is in the
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4 Dynamic Geometry Registration

Figure 4.3: The velocity vector (yellow) of a sample on space-time surface S is tangential
to the sample’s trajectory. Hence, the velocity vector is tangential to S and
perpendicular to the surface normal (blue). The registration computes a time
frame’s unknown velocity vector field in a least-squares setup, minimizing the
velocity vectors’ deviation from the tangent planes.

scanner’s local coordinate system and bears no correspondences between any frames P i

and P j . We combine the coordinates of a time frame’s elements with scanning time ti
and obtain a four-dimensional space-time point cloud Qi = {(pi, ti) : pi ∈ P i}. We
summarize all transformed input data in a single point cloud Q = ∪i=0,...,NQi. The
elements of Q are the probably noisy samples of an unknown smooth three-dimensional
space-time surface S. We can think of S as being generated by a smooth one-parameter
Euclidean motion of a profile shape S0. A trajectory q(t) = (R(t) ·p0 +r(t), t) of a point
p0 ∈ S0 lies entirely in S. Consequently, a tangent to q(t) is tangent to S for any t. In
other words, velocity vector and the space-time surface normal in a point q = (p, t) ∈ S
are perpendicular.

In the space-time model, the velocity vectors of q(t) are of special form,

v(q) = (c̄ + c × p, 1).

Given that the scanner operated at constant frame rate, the scaling factor of time is
completely arbitrary. We will further discuss our choice of unit time scale in Sec. 4.3.1.
For the reconstruction of the velocity vector field v(q) = (c̄i +ci ×p, 1) of time slice Qi,
we minimize the velocity vectors’ deviation from the surface’s tangent planes in points
qi ∈ Qi,

min
(c̄i,ci)

∑
qi∈Qi

[
v(qi)T · ni

]2
. (4.1)

Here, ni denotes a surface normal of S in qi, that we estimate from Q (cf. Sec. 4.3.2). If
the motion between two time slices P i and P i+1 is sufficiently small, it is approximated
well by the spatial component of the velocity vector field of Qi. We reconstruct a rigid
body transformation from (c̄i, ci) with one of the methods in Sec. 2.2. Collecting all the
data in a single time slice by applying the inter-frame motions yields a reconstruction of
the scanned object.
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4 Dynamic Geometry Registration

Above optimization constrains a time slice locally to a kinematic surface, a surface
invariant with respect to a one-parameter group of Euclidean motions (Pottmann and
Wallner, 2001). Such a one-parameter group has constant velocity vector field, which
is estimated by above objective. We will arrive at the same optimization problem if we
consider the image of a time slice under an unknown, linearized inter-frame motion. This
image is required to lie as close as possible to a space-time surface S, given by Q. In order
to measure the residuals of the displaced points to S, the latter is approximated by the
tangent planes in the samples. Minimizing the squared distance to the tangent planes
yields the objective of Equ. (4.1). Optimization involves the solution of a six-dimensional
system of linear equations.

In the course of above discussion, we gave several hints at what the final registration
algorithm will look like. In the following, we shortly summarize the single steps.

Algorithm. Given point samples P i = {pi ∈ R
3}, i = 0, . . . , N of a moving object,

acquired at times ti = i · Δt, a registration algorithm constraining the measurements in
a least-squares sense locally to a kinematic surface comprises the following steps.

1. Transform the input data to space-time models Qi = {(pi, ti) ∈ (R3 × R)}.

2. For each time slice, compute the unknown parameters (c̄i, ci) of the inter-frame
motion’s velocity vector field as solution of Equ. (4.1).

3. Reconstruct the inter-frame motions αi from (c̄i, ci) with one of the methods in
Sec. 2.2.

4. Summarize the data at time tN ,

αN−1 ◦ αN−2 ◦ . . . αi(P i),

for a maximal reconstruction of the scanned object.

4.3 Further Discussion

This section undertakes a detailed discussion of the optimization problem in Equ. (4.1).
We consider time scaling issues related to the input data conversion, the essential com-
putation of normals to the space-time surface, numerical characteristics of the objective
and links to classic work on registration.

4.3.1 Time Scaling

Above, we have already noted that the scale of the time axis — basically the ratio of
spatial vs. temporal unit length — is arbitrary. Hence, we need to consider the influence
of a scaling of the time axis by a factor of λ,

ti �→ λti,
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Figure 4.4: Normals of high quality are essential for the proposed algorithm. We propose
a PCA based method (left) and a method based on triangulation (tetrahe-
dralization) of the input data (right).

on the estimation of motion parameters (c̄i, ci). Scaling by λ changes the fourth coordi-
nate of the inter-frame motion’s velocity vector,

(c̄i + ci × p, 1) �→ (c̄i + ci × p, λ).

Moreover, the space-time surface’s unit normals are modified,

n = (n̂, m) �→ 1

(λ2n̂T n̂ + m2)
1
2

(λn̂, m).

Updating Equ. (4.1) with these new expressions yields a factor of ρ = λ2

λ2n̂T n̂+m2 per
summand. At first glance this seems to bias the optimization severely, as individual
scaling of the objective’s summands will give different minimization results in general.
However, for small, smooth inter-frame motions, the first three coordinates n̂ will dom-
inate the fourth coordinate m significantly. ‖n̂‖ � |m| and n̂T n̂ ≈ 1 imply ρ ≈ 1 and
thus minimize any effects of scaling the time axis.

4.3.2 Normal Estimation

So far we have not given any details on how to compute normals in the elements of the
discrete space-time surface Q. In the following, we will discuss two methods, that differ
in how well they adapt to a scaling in time (cf. Fig. 4.4). Above considerations showed,
that our method is only insensitive to time scaling, if the normal estimation captures
the change in coordinates correctly.

PCA-based method

A widely used method for normal computation fits a hyperplane to a local neighborhood
Nr(q) = {q̂ ∈ Q : ‖q − q̂‖ < r} of a point q, e.g. by a principal component analysis
(PCA) of Nr(q). The normal estimate n will then be the normal of the estimated
fitting hyperplane. The characteristics of Nr(q) greatly affect resulting n. We define
two criteria regarding the neighborhood Nr(q) for normals of good quality.
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Figure 4.5: The two proposed methods for normal estimation differ in how well they
adapt to a scaling of the time axis. While the PCA based method gives good
results for timescales from 0.5 to 2 times the average spacing of input data,
the connectivity based method is effected only little by time scaling.

First, we make use of the degree of freedom due to the arbitrary scale of time. We
require the average temporal distance of frames to equal the average spatial spacing of the
point samples. As a second requirement, we determine the radius of Nr(q) from a quality
measure for normal estimations with PCA, proposed by (Pauly et al., 2002). With the
estimated normal basically being the eigenvector with respect to the smallest eigenvalue
of the neighboring data’s covariance matrix, the ratio of this smallest eigenvalue to the
sum of all eigenvalues may be used as measure for the quality of the estimate. We start
with small radius r and increase it until the ratio stops improving.

Returning to a discussion of time scaling effects, we observe that PCA adapts correctly
to a scale of time, given that Nr(q) does not change. Scaling of the point’s fourth
coordinate inversely scales the fourth coordinate of the covariance matrix’s eigenvectors.
Fig. 4.5 visualizes how violations of the first of the above two criteria influences the
normal estimation quality. For the ratio of temporal vs. spatial sampling being between
0.5 and 2, PCA performs well. However, outside this range, the normals’ and the result’s
quality decrease rapidly.

Local tetrahedralization

In low noise conditions, we can reliably estimate normals using a local surface meshing
approach. We illustrate this method in R

2+1 first, before sketching a generalization of
this technique to one dimension higher. For a space-time surface traced by a curve, we
perform a local surface triangulation in 3D around each vertex q = (p, ti). A normal
estimation in q can then be achieved by averaging the one-ring’s face normals. We
observe that the one-ring contains only neighbors of q in time slices ti−1, ti and ti+1.
Hence, we can limit the local triangulation efficiently to a subset of the input data. The
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Figure 4.6: Pairwise classic registration of the initial input data (left) introduces high
accumulation errors over 300 time frames (center). The dynamic geometry
registration yields a better alignment of the first to the last frame (right).

triangulation is very local in its nature, as we may neglect global issues like intersecting
triangles or unique normal orientation.

For surfaces, we generalize this approach to four dimensions and generate a local tetra-
hedral mesh. Again, computing a local tetrahedralization around q = (p, ti) involves the
previous, current and next time slice only. With respect to the current time slice, three
types of tetrahedra occur. Those with a face entirely in Qi, those with only one edge in
Qi and finally those with only one vertex in the current time slice. The tetrahedra define
the connectivity of the local neighborhood of q. With the four-dimensional variant of
the cross product, we compute a normal for each tetrahedra. Averaging all adjacent
tetrahedra’ normals yields a surface normal in q. Again, we may ignore global issues
such as local intersections or orientation issues.

In low noise conditions, this second technique for space-time normal computation
yields better results for large time scaling (see Fig. 4.5). For more robustness at cost of
increasing complexity, the tetrahedralization may be enhanced to span more than just
adjacent time slices, thus averaging k-ring face normals.

4.3.3 Sensitivity to Noise

In order to examine stability issues of our registration algorithm, we consider how noise
in the input data propagates to the final motion estimates x := (c̄i, ci). Let the noise
in the sample points be bounded by εP , that in normals by εN . For the PCA based
method, the relation between εP and εN has been studied by (Mitra and Nguyen, 2003).
Let A · x = b denote the linear system to be solved in a minimization of Equ. (4.1).
Then, for matrix A and right hand side vector b we obtain for the Frobenius norm ‖.‖F
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Figure 4.7: Consider sample q and its closest point g in the next time frame. By choosing
the normal in g such that q is in the tangent space Tg of g, the objective
of the proposed algorithm turns out to be the same as that of (Chen and
Medioni, 1992) for classic registration.

of distorted Ã and Euclidean norm of b̃,

‖Ã‖F = ‖A‖F + O(εP ) + O(εN )

and
‖b̃‖ = ‖b‖ + O(εP ) + O(εN ).

Well-known results for the numerical stability of methods to solve systems of linear
equations let us examine the effects of noise on the solution. Given that εP + εN <

1
‖A−1‖F

, an a priori error estimate for direct methods such as Gaussian elimination gives
(Isaacson and Keller, 1994),

‖x̃ − x‖
‖x‖ ≤ k(A)

1 − k(A)‖Ã−A‖F

‖A‖F

(
‖Ã − A‖F

‖A‖F
+

‖b̃ − b‖
‖b‖

)
.

We see that the relative error in x is linear both in εP and in εN . However, the constant
may be large for bad condition number k(A), e.g. when we solve for nearly slippable
motions.

4.3.4 Relation to ICP

The estimation of normals ni to the space-time model Q leaves some degree of freedom,
as we have seen above. In this section, we are going to use this freedom one more time.
We will show, that for specific choice of ni, our registration method is equivalent to the
ICP algorithm in the variant of (Chen and Medioni, 1992).

For a given point p ∈ R
3 acquired at time ti, let f ∈ R

3 be the closest (corresponding)
point in adjacent time frame ti+1 = ti + 1. Accordingly, we may write, q = (p, ti) and
g = (f , ti+1) in the space-time model (see Fig. 4.7). Let nf , ‖nf‖ = 1, denote the normal
in f to the (i + 1)-th time slice. Then we define the space-time normal in g as,

ng := (nf , m).
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Figure 4.8: A reconstruction of a coati model from more than 2000 point clouds, acquired
at 17 frames per second, without noise removal or general error distribution.
The point clouds have been triangulated for better visualization.

We choose m such that q is element of the tangent space in g (cf. Fig. 4.7).
This special normal choice yields for an unsquared summand of Equ. (4.1),

v(q)T · nq = v(q)T · nq + (q − g)T · nq = (q + v(q) − g)T · nq

=
(

p + v(p) − f
ti + 1 − ti+1

)T

·
(

nf

m

)
= (p + v(p) − f)T · nf .

Squaring the latter expression gives the squared distance of displaced point p to the
tangent space in foot point f . We have already encountered this distance measure before
in Sec. 2.2 as error term of the ICP registration algorithm proposed by (Chen and
Medioni, 1992).

This comparison emphasizes some of the space-time registration algorithm’s advan-
tages. Whereas classic ICP employs approximations of the squared distance function,
the proposed algorithm is locally exact in terms of instantaneous kinematics. The qual-
ity of a solution of Equ. (4.1) depends only on the quality of estimated normals. We
also note that the ICP method is based on correspondences between points of matching
data sets. The space-time algorithm is correspondence-free and incorporates information
from multiple time slices at once via the normal estimates (cf. Fig. 4.6).

4.3.5 Extensions

The presented algorithm can be extended in various ways. The normal estimation may
be performed iteratively by updating the neighborhood for the PCA method with the
inter-frame motions of the last iteration. The major assumption in above derivation has
been that the unknown motion is rigid. By performing the optimization of Equ. (4.1) not
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over the entire time slice but only over small subsets, the algorithm may be applied to
the reconstruction of articulated or even deformable objects. We do not further discuss
these extensions here and refer to the original publication (Mitra et al., 2007) instead.

4.4 Examples

The Stanford bunny (Fig. 4.2), the coati model (Fig. 4.8) and the bee model (Fig. 4.9)
illustrate results of the proposed algorithm. The Stanford bunny model was recon-
structed from more than 300 point clouds counting 33k elements each. The input data
was obtained in a simulated scanning process on the GPU’s z-buffer, that added arti-
ficial Gaussian noise to the data. The alignment took 13 minutes on a 2.4GHz Athlon
Dual Core computer, more than 80% of the computation time was spent on neighbor-
hood queries for the PCA based normal estimation. The coati and the bee input data
was acquired with a scanner developed by (Weise et al., 2007) at 17 frames per second.
The alignment of the 2200 frames per model with more than 20k (coati) and 28k (bee)
samples each took 51 and 71 minutes respectively. For these as for all other of our
experiments neither noise removal nor any global error distribution was carried out.

The numerical experiment on the scalability of the two proposed normal estimation
techniques with respect to a scaling of the time axis (cf. Fig. 4.5) was done for the
Stanford bunny data set. The unit length of the time axis was given by the average
spatial sampling density of the input data. In addition, we compared the point to
tangent plane ICP algorithm to the proposed algorithm at hand of 300 time frames from
the coati data set. For each time frame, the velocity vector field was estimated with either
approach. Finally, the first frame was aligned to the last frame. Fig. 4.6 illustrates that
the registration algorithm estimating kinematic properties of a space-time surface shows
significantly less accumulation error than the classic ICP approach.
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Figure 4.9: A reconstruction of a bee model from more than 2000 point clouds, acquired
at 17 frames per second, without noise removal or general error distribution.
The point clouds have been triangulated for better visualization.
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Part II

Constrained Surface Fitting
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5 Ruled Surface Approximation

The second part of this work moves the focus away from registration, without giving
up on it totally. We will return in a short note to the local alignment of shapes. In
this part, we turn our attention towards a class of surfaces, both simple and versatile
in applications. Consider a straight line, moved through space according to a smooth
one-parameter Euclidean motion. The line generates a surface, a so-called ruled surface.
In mathematical terms, such a ruled surface may be described in parametric form,

x(u, v) = g(v) + u · e(v) (u, v) ∈ U ⊆ R
2.

e(v) : R → R
3 denotes the direction vector of the ruling or generator at parameter value

v. g(v) : R → R
3 is often called base curve or directrix.

Well-known objects of geometry are ruled surfaces: planes, right circular and general
cylinders or one-sheeted hyperboloids, for example. The simple origin of ruled surfaces
let them appear in various handcraft and production processes. In particular, production
technologies such as milling and mold creation process ruled surfaces at their core. At
larger scale, the simple generation and elegant shape of ruled surfaces attract architec-
ture. In Chapter 6 we will discuss applications and uses of ruled surfaces in much more
detail. For now, we sketch two examples from CNC milling and shape manufacturing to
outline our motivation for approximations with ruled surfaces.

Let us consider the geometric properties of CNC milling with cylindrical cutting tools,
so-called side or flank milling (cf. Fig. 5.1). At any time of the milling process, the
cutting tool’s position is defined by the locus of its axis. Given that the cylinder axis
is a straight line segment, we observe that the cutting tool’s motion is described by
a ruled surface. The cutter itself is ideally in contact with the base material along
its entire lateral surface. Consequently, the tool axis is required to be in fixed offset
distance (namely the tool’s radius) to the target shape. We obtain two requirements for
describing the tool path for flank milling. Once the tool’s axis must lie on a ruled surface
and second, this ruled surface is supposed to be in fixed offset to the target shape. As
in general the offset of a surface is not a ruled surface, both criteria may not be fulfilled
exactly and we face an approximation problem.

Another example for the wide use of ruled surfaces in production technologies is
heated-wire cutting. This technique originates from the model making community, where
model parts are cut by moving a heated wire under tension through a low melt point
material such as expanded polystyrene foam (Mayer and Moaveni, 2008). Identifying
the heated wire with a straight line segment we see that the cutting surfaces are ruled.
The simplicity of heated-wire cutting makes it a fast and inexpensive method and it
found many applications from rapid prototyping (Broek et al., 2002) to the production
of molds for architectural panels (Veltkamp, 2007). The question arises, how well general
non-ruled shapes may be processed with this technology. Given that the target shape
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meets certain geometric criteria, that we will detail below, an approximation with one
or more ruled surface patches will be feasible. From an abstract point of view we see
that we arrive at a very similar approximation problem as before: given a shape, the
task is to remodel it as a ruled surface. The second part of this thesis aims at developing
a comprehensive framework for such ruled surface approximations.

We will assume that the initial shape is given as discrete point set P . Point sets are a
very general representation for shapes and we ensure this way that our algorithms apply
to a wide range of input data. The approximating ruled surface patch will be modeled
as B-spline surface patch linear in one parameter direction. Building upon the work of
(Pottmann and Leopoldseder, 2003), we will set up an optimization framework, deform-
ing the B-spline surface patch until it approximates P in an optimal sense. Recalling the
terminology of the introductory chapter, the deformation of the approximating surface
coincides with our notion of a shape manipulator. We will match the approximating
shape with the target shape by solving for an unknown shape manipulator.

The contribution of the following chapters will be various extensions to this basic
approximation algorithm. In particular, we are going to address the initialization of
the optimization (initial approximating surface and choice of parameters), constraints
to the generator’s motion in space, applications to milling and architecture and certain
smoothness aspects.

5.1 Related Work

We organize the following review of related literature in three parts. First, we consider
contributions specific to the flank milling of ruled surfaces. Though these methods are
not explicitly related to our work, they give a good picture of the wide use of ruled
surfaces in the past. Second, we turn our attention to literature on the approximation of
surfaces with ruled surfaces. Finally, we survey related work that motivates our specific
approach of surface approximation.

Positioning a cylindrical cutter for the side milling of a ruled surface has been addressed
since years (Stute et al., 1979). As outlined above, this problem requires an approximate
solution. (Redonnet et al., 1998) for example propose to locate the tool’s axis such that it
touches both boundary directrices and a ruling. Undercutting errors (e.g. material that
gets accidentally removed by the cutter, see Fig. 6.1) have been specifically addressed by
(Tsay and Her, 2001) who give an analytic expression for the errors that are minimized
at each time step. (Bedi et al., 2003) do not consider the loci of tool axes directly but
examine the tool’s envelope surface as the cutter is slided along the boundary curves.
(Gong et al., 2005) build upon this method and suggest a least-squares optimization to
approximate the tool path as offset of the designed surface. (Lartigue et al., 2003) have
used B-spline surfaces to describe the loci of axes before. They obtain the final tool
path by directly minimizing the distance from the cutting cylinder’s envelope to a given
surface. (Senatore et al., 2008) combine the theoretical results of (Gong et al., 2005)
with the method of (Redonnet et al., 1998) and analyze the approximation error of their
envelope surface based technique. A different approach is taken by (Sprott and Ravani,
2008) who state the tool path generation problem for cylindrical milling in terms of line
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Figure 5.1: The tool path computation for cylindrical flank milling faces two constraints.
Once, the tool’s axis, being a straight line segment, moves on a ruled surface
(top, left). Second, the tool’s axis is required too move in constant offset
distance to the target shape (top, right). As both requirements may not be
met at the same time in general, a ruled surface approximation of the offset
surface is necessary (bottom).
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geometry. The authors build upon the observation that the surface normals along a non-
torsal ruling lie on a hyperbolic paraboloid. The cutting tool axis is then determined
from that family of rulings the initial generator originated from. More general milling
techniques with conical (Li et al., 2006) or toroidal (Roth et al., 2001) cutters have not
found such a comprehensive treatment as the cylindrical case.

Outside the milling community, ruled surfaces have been of interest in computer aided
geometric design (often with milling applications in mind). Given a surface, various
techniques of approximating it with ruled surfaces have been proposed. (Hoschek and
Schwanecke, 1998) consider ruled surfaces as envelopes of their tangent planes. The
authors employ dual tensor product B-spline surfaces linear in one parameter direction
to model the unknown ruled surface patch. Besides the interpolation of given rulings
or data points, the authors approximate scattered data, triangulated in a preprocessing
step, with a ruled surface. Interpolation and approximation with ruled surfaces with line
geometry is the topic of (Chen and Pottmann, 1999). The authors describe two affine
spaces in which the interpolation or approximation of a line set turns down to a curve
interpolation or approximation problem. Once, the end points of a line segment are
aggregated into a point in Euclidean 6-space. Second, the set of lines intersecting two
parallel planes is mapped from the Klein quadric into an affine 4-space by a stereographic
projection.

The reconstruction of and the approximation with torsal ruled surfaces have found
certain attention as well. (Hoschek and Schneider, 1997; Pottmann and Wallner, 2001)
consider developable surfaces as envelope of their one-parameter family of tangent planes,
(Peternell, 2004) tackles the problem from a Laguerre geometry point of view and (Kilian
et al., 2008) design and reconstruct developable surfaces in a discrete setup.

When it comes to approximation of arbitrary freeform surfaces, a single ruled surface
patch may not suffice to obtain an approximation of satisfactory quality. (Elber and
Fish, 1997) recursively approximate a given parametric surface with C0 joined patches
of ruled surfaces, until a global error estimate is satisfied. The authors construct a
ruled surface patch from two boundary curves, by linearly interpolating points of equal
parameter value. The obtained piecewise ruled surface approximation is offset such that
the cutting tool is tangent to the target surface locally. (Han et al., 2001) propose a more
general approach and segment a freeform surface into patches with approximately similar
normal vector. Respecting the different possible topologies of the patches, the authors
obtain ruled surfaces by linearly interpolating between the regions’ boundaries. With
rapid prototyping applications in mind, (Koc and Lee, 2002) slice a discrete point model
with parallel planes in adaptively varying distance. From the intersection contours,
a C0 continuous ruled surface approximation is obtained by connecting points on the
contours. However, as opposed to the previous two contributions, the authors minimize
the squared distance of corresponding boundary points to determine the ruled surface
patch’s parametrization.

In (Pottmann and Leopoldseder, 2003), the authors propose an active contour model
for surface approximation. An initial parametric surface (for example a B-spline surface)
is deformed by minimizing approximations of the squared distance function from the
approximating shape to the target shape until it fits the original model. Ruled surface
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approximation is a special case of this contribution by choosing a ruled fitting surface.
This is our method of choice for ruled surface approximation and we will extend and
constrain it in the following chapters.

The remaining part of this literature review is devoted to related work specific to this
method of B-spline surface approximation. The general problem of reconstructing spline
curves or surfaces from scattered point data has been of interest since the early days of
computer aided design (Cox, 1971; Hayes and Halliday, 1974). Typically, each data point
gets a unique point on the approximating parametric shape assigned. In this point on the
fitting shape, the distance function to the data point is described approximately. Sub-
sequently, an improved fitting is obtained from minimizing the approximated distance
term. Given that the point cloud is ordered, several rules for computing the parameter
values have been proposed such as the chord length or the centripetal parametrization
method, see (Farin, 1988) for an overview.

The choice of parameters has a strong effect on the final result and parameter cor-
rection strategies have been proposed to improve the initial selection. (Hoschek, 1988)
describes a linear approximation to exact foot point computation to update the param-
eter value such that the residual vector is nearly orthogonal to the approximating curve.
With the updated parameter values, the distance minimization is entered again. This
procedure is repeated until a satisfying approximation quality is achieved. Recalling
that shape matching problems are highly non-linear, it comes as no surprise that the
iterative nature of this approach yields good results. Higher-order approximations of
the foot point relation have been studied by (Saux and Daniel, 2003; Hu and Wallner,
2005). We are going to rely on exact foot point computations at each iteration (Hoschek
and Lasser, 1993).

Once a foot point was assigned to each data point, the distance from the fitting shape
to the target point cloud is approximated. Summation over the single distance approx-
imations yields the objective of a minimization problem bearing an updated position
of the fitting shape as solution. The order of distance approximation distinguishes the
different methods and we employ the terminology of (Wang et al., 2006) in the following
overview. Point to point methods minimize the length of the residual vector from data
points to foot point. Probably due to its simplicity, this method is the one widest spread
and has found many applications in curve (Plass and Stone, 1983; Hoschek, 1988; Saux
and Daniel, 2003) and surface fitting (Eck and Hoppe, 1996; Weiss et al., 2002).

In computer vision, active contours or snakes are widely employed for the recon-
struction of contours in images and beyond. Initially proposed by (Kass et al., 1988),
the iterative minimization of an external and an internal energy has been the motiva-
tion for many iterative methods for B-spline curve and surface fitting (Pottmann and
Leopoldseder, 2003; Wang et al., 2006). The internal energy resembles the approxima-
tions of the squared distance function we are about to discuss. The external energy
is typically a regularization or smoothing term, we are going to detail below as well.
Returning to our overview of distance approximation methods, (Blake and Isard, 1998)
propose to minimize the distance from the data point to the tangent plane in the foot
point in an active contour setup. Considering that the tangent plane encodes local infor-
mation about the foot point’s neighborhood, this point to tangent plane technique gives
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faster convergence than point to point methods. Further improvements with respect to
convergence yields the curvature based method by (Wang et al., 2006). In particular, this
work undertakes a thorough theoretic investigation of the convergence characteristics of
above three techniques.

All these methods have in common that they minimize approximations of the squared
distance function between fitting shape and point cloud. The reason for this lies mainly in
the easy to solve quadratic objectives that are typical for linear least-squares approaches.
Drawbacks immanent to least-squares, such as high sensitivity to outliers, are addressed
in (Flöry and Hofer, 2010). The authors consider non-smooth l1-optimization problems
arising from approximations of the unsigned distance function, as has been done for
registration in Chapter 3.

The remaining parts of this chapter are organized as follows. First, we shortly re-
view the active contour model of (Pottmann and Leopoldseder, 2003) for ruled surface
approximation. We proceed by discussing the initialization of the approximation algo-
rithm, both in terms of initial fitting shape and choice of parameters. We will conclude
this chapter by sketching a method of knot adaption for surface fitting.

5.2 Ruled Surface Approximation

In this section, we define the ruled surface approximation problem and briefly summarize
the algorithm in (Pottmann and Leopoldseder, 2003) for its solution. We show how it
integrates well into the general shape matching framework of the introductory chapter
and obtain this way the foundation for the remaining chapters of this work.

Let P = {pi ∈ R
3 : i = 1, . . . , n} denote a set of points in R

3, called the point
cloud henceforth. For tool path computations for cylindrical flank milling, P will
comprise samples in offset distance to the base shape. For general ruled surface ap-
proximation, P will comprise samples on the input shape. Moreover, let x(u, v) =∑mu

j=1 N1
j (u)

∑mv
k=1 Nd

k (v)djk be the approximating tensor product B-spline surface. D =
{djk} denotes the set of control points and Nd

k the k-th B-spline basis function of degree
d. For ruled surface approximation, we set the degree in the first parameter direction
u to 1. Hence, parameter u parametrizes the ruling at parameter v. If not stated
otherwise, we assume that the second parameter direction v will be of cubic degree,
d = 3. For the sake of simplicity, we summarize Ni(u, v) = N1

j (u)N3
k (v) and di = djk

for i = (j − 1)mv + k and write

x(u, v) =
m=mumv∑

i=1

Ni(u, v)di. (5.1)

If mu = 2 we speak of a single ruled surface patch, or simply a ruled surface. Given that
mu > 2, we call x(u, v) a ruled surface strip model.

We are going to modify the shape of a ruled B-spline surface in an optimization
framework. Therefore, we write

xδ(u, v) =
m∑

i=1

Ni(u, v)(di + δi)
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Figure 5.2: (Top, left) A ruled surface approximation. (Top, right) If the initial smooth-
ing weight is chosen too large, the fitting surface shrinks. (Bottom) If the
initial smoothing weight is chosen too small, the fitting surface’s visual ap-
pearance is not satisfying.

with δi ∈ R
3 for a deformed or updated approximating surface. Please note that we will

not modify the knot vectors of x(u, v) or the number of control points in D until Sec. 5.5.
We call δ = (δT

1 , . . . , δT
m) the control points’ displacement vector. In the terminology of

Chapter 1, the linear map

T : R
3m → R

3m, d �→ d + δ

denotes the shape manipulator for the geometric shape matching problem of ruled surface
approximation.

In this setup, we say that xδ approximates point cloud P best, if for given x0 and P ,

δ = argmin d2(xδ, P ) = argmin
n∑

k=1

d2(xδ,pk)

We see that this optimization problem is a special instance of the general shape matching
problem in Chapter 1. For a solution, we alternately optimize for best foot points and
control point displacements. Parametrization involves computation of the foot point
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xδ(uk, vk) of the shortest distance from x to pk ∈ P . In the foot points, the squared
distance from xδ to P is approximated and minimized. These steps are iterated until
the approximation error falls below a user-defined threshold.

We will restate the two approximations of the squared distance function d2 given in
Chapter 1 in the notation of the surface fitting problem. The point to point error term
reads as,

fP (δ) =
n∑

k=1

‖xδ(uk, vk) − pk‖2.

For the second-order Taylor approximation of d2, we observe that the gradient ∇d of
the distance function to x in a point x(uk, vk) coincides with the surface normal nk.
Consequently, the point to tangent plane error term is of the form,

fT (δ) =
n∑

k=1

[
nT

k ·
(
xδ(uk, vk) − pk

)]2
.

As the displacement map T of control points is linear and any point on x(u, v) is a
linear combination of elements in D, the objectives fP and fT are quadratic in the
unknown displacements δ and minimization amounts to the solution of a linear system
of equations.

Minimizing either approximation of the squared distance function yields mathematical
correct solutions. However, the emerging minimal shape might not be visually pleasing,
e.g. oscillations are frequently observed (cf. Fig. 5.2). To tackle this problem, a weighted
regularization or smoothing term is added to fP (δ) or fT (δ). A prominent example
originating from the literature on thin plate splines (Duchon, 1977) is the integral over
the squared second partial derivatives of xδ(u, v),

fs(δ) =
∫∫

(xδ
uu)2 + 2(xδ

uv)
2 + (xδ

vv)
2 du dv.

Numerical approximation of this smoothness measure with, for example, the trapezoidal
rule yields another term quadratic in δ that is added as weighted penalty term to the
distance term,

min
δ

fd(δ) + λ · fs(δ). (5.2)

Here, fd denotes any distance approximation fP or fT . Below, we will refer to λ as the
smoothing weight.

With above distance approximation, enhanced by a regularization term, we have the
main objective for the general shape matching algorithm of Chapter 1. For given ap-
proximating surface x we compute the foot points of the data points on x, obtain dis-
placements of the control points by minimizing Equ. (5.2) and modify x accordingly.
Given that the approximation error is above a user-defined threshold, we repeat these
steps. Two questions remain open with regard to this algorithm. How do we obtain
the initial fitting shape x0 and how do we select the initial smoothing weight λ? The
remaining sections of this chapter address these and related initialization topics.
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Figure 5.3: (Top, left) In an element of the target point cloud, a candidate ruling (blue) is
computed by local constrained registration of an initial pose (yellow). Com-
putation of candidate rulings in many samples of the point cloud yields a
dense line set (top, right), that is pruned, ordered and interpolated (bottom,
left). (Bottom, right) shows the final ruled surface approximation of the
point cloud.

5.3 Initial Fitting Shape

The ruled surface approximation algorithm solves a non-linear optimization problem in
an iterative way. In fact, as shown in (Wang et al., 2006), the point to point method is a
variant of a steepest descent method, whereas the point to tangent technique resembles
a Gauss-Newton minimization. As it is for non-linear optimization problems, good
initialization is of significant importance for convergence at all and convergence speed
in particular. For surface fitting, the initial solution x0 is given by the start shape of
the approximating surface. Automatic computation of x0 is not only convenient for
applications but lets us ensure certain important properties of the initial fitting shape.
For ruled surface fitting, such a property would be that the rulings of x0 are well aligned
with the asymptotic directions (tangential directions of vanishing normal curvature) in
points of the target shape.

In (Kilian et al., 2008), a discrete model for approximation with developable surfaces
is automatically initialized from a dense polyhedral mesh M . We shortly summarize this
method that estimates rulings in vertices of the input mesh. Consider a vertex p ∈ M
and the set of points on M in constant geodesic distance to p. A pair of opposite points
on this geodesic circle with minimal deviation in Euclidean and geodesic distance and
minimal turning normal vectors along its connecting geodesic is considered a candidate
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ruling. Without the additional check on normal twist this approach would be suitable
as first step of the following proposed initialization pipeline. However, an adapted ver-
sion handling point cloud inputs will comprise computational expensive neighborhood
queries. For this reason, we propose another technique based on registration, given that
we have already been concerned with registration in the first part of this work.

Given a point cloud P as above, our goal is to compute an initial ruled B-spline surface
patch x0. We will first determine possible ruling directions in the elements of P . From
this probably large set of candidate rulings we select a subset of high quality rulings in
a pruning step. After ordering the line segments in a robust way, we obtain the initial
fitting surface x0 by interpolating start and end points of the ordered rulings. We are
going to detail these steps in the following, Fig. 5.3 illustrates the different stages.

5.3.1 Ruling Estimation

Let pi be an element of the input point cloud P and lr a user-defined initial ruling length.
Typically, we choose lr five times the average point spacing of P . The computation of
a candidate ruling of length lr, passing though an ε-neighborhood of pi (to account for
possible noise), may be regarded as shape matching problem. Indeed, it can be seen as
registration problem aligning a straight line segment in an optimal sense locally to P .

Before describing this local shape matching in more detail we consider its initialization,
in particular the choice of initial ruling directions. We will base this initialization on
estimates of principal curvatures κ1, κ2 and corresponding principal curvature directions
of P in pi, that we obtain for example by fitting a polynomial to a neighborhood of pi

(Yang and Lee, 1999). Locally, tangential directions of vanishing normal curvature —
so-called asymptotic directions — resemble straight lines on P best (do Carmo, 1976).
The number of asymptotic directions in a point pi depends on the Gaussian curvature
K = κ1 · κ2 and may be derived for example from Dupin’s Indicatrix.

• In hyperbolic points (K < 0) two asymptotic directions exist. Accordingly, we will
compute two candidate rulings, each initialized from one of the asymptotic direc-
tions. The asymptotic directions may be computed from the principal curvature
directions with Euler’s curvature formula.

• In parabolic points (exactly one of κ1 and κ2 is zero) a single asymptotic direction
exists (and is given by the principal curvature direction to zero principal curvature).

• In elliptic points (K > 0) there are no asymptotic directions. If at all, we may
initialize with the principal curvature direction to principal curvature of minimal
absolute value.

• In umbilical points (κ1 = κ2) any tangential direction is a principal curvature
direction. We ignore such points.

From this overview we see that only points with Gaussian curvature K ≤ 0 promise good
local approximation. This observation generalizes to a global level, as ruled surfaces are
surfaces with negative or zero Gaussian curvature everywhere (do Carmo, 1976). An
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5 Ruled Surface Approximation

analysis of Gaussian curvature in points on the input shape is a helpful tool to decide
whether a ruled surface approximation of P is feasible.

Let us return to the shape matching problem for the computation of an initial ruling
in pi (see Fig. 5.3). Assume we dispose of an initial ruling direction and let r be a set
of equidistant samples on an initial ruling of length lr centered in pi. In the notation of
Chapter 1, registration of r to P amounts to the solution of

min d∗(P,m(r)) (5.3)

for unknown rigid body motion m. We refer to Chapters 2 and 3 for iterative minimiza-
tion approaches and remain with two observations. Once, the point to tangent plane
error terms will outperform the point to point methods significantly, as the displacements
will happen mostly in directions tangential to P . Second, minimization of Equ. (5.3)
may transform r out of an ε-neighborhood of pi. For this reason, we add a weighted (and
squared for least-squares optimizations) penalty term to Equ. (5.3) favoring proximity
of the ruling’s mid point rm to pi,

‖m(rm) − pi‖.

Algorithm. In summary, an algorithm for computing a candidate ruling in pi ∈ P
comprises the following steps.

• Initialize r according to the estimated principal curvatures in pi.

• Align r to P with above constrained registration.

• Extend r alternately beyond its start and end point and repeat the registration as
long as the fitting error is below user-defined δ. Otherwise, stop.

After computing ruling candidates in a subset of elements of P , we rate each ruling
according to its length. We prune the set of rulings by selecting the ruling with highest
rating and by removing any rulings close to it. Please note that for example in samples
of a double ruled surface patch we will possibly face two candidate rulings with equal
rating in a point. We do not consider this special case any further, as the regularization
term will smooth any inconsistencies in the subsequent ruled surface approximation.
We repeat this selection of best candidates until all rulings have either been chosen or
removed. We remain with a sparse set L of high-quality ruling candidates.

5.3.2 Ruling Interpolation

As a next step, we construct a B-spline surface from L. Therefore, we order the rulings
and interpolate them with a ruled B-spline surface. Defining a partial order in a mean-
ingful way as a binary relation on L fails for our purposes. However, the assumption that
the rulings are samples of a sufficiently smooth surface allows the following definition
(see also Fig. 5.4).
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Figure 5.4: Three candidate rulings are said to form an ordered triplet if the angles of
planes spanned by the end points of li and lj with l are below a user-defined
threshold αT (typically αT ∈ [π

6 , π
4 ]).

Definition (Ordered ruling triplet). Consider three rulings l, li = (aibi), lj = (ajbj) ∈
L. Furthermore, let na

i denote the normal of plane εa
i spanned by l and ai. na

j , nb
i and

nb
j shall be defined accordingly. Then, we call a triplet of rulings (li, l, lj) ordered, if the

angles between normals ∠(na
i ,n

a
j ) and ∠(nb

i ,n
b
j) are smaller than user-defined αT .

This ternary relation induces a binary relation on L. We write li ∼ lj if li and lj are
element of an ordered triplet but there exists no l ∈ L such that (li, l, lj) is ordered.
Please note that ∼ is not a partial order. However, we may call L′ = {l′1, . . . , l′m}
ordered if l′i ∼ l′i+1, ∀i = 1, . . . , m − 1. Let P be the set of not yet processed rulings,
initialized with L. Then, the algorithm in listing 5.1 computes an ordered set S of
rulings by recursively prepending, inserting and appending rulings to an initial pair of
rulings. It is possible that |S| < |L| if a ruling is included in few ordered triplets. This
is intended as such a ruling does not meet our assumption of a smooth base surface and
is consequently considered an outlier. If S is significantly smaller than L, the initial pair
of rulings included at least one outlier. In this case, we reinitialize with a pair from SC .

For a sketch of a runtime analysis, let n = |L|. The best-case occurs for example if
l2 ∼ l3 ∼ . . . ∼ ln ∼ l1 with (l1, l2) as initial pair. It is of linear asymptotic complexity
O(n). A worst-case starts with a pair (l1, ln) and repeatedly inserts the median element
after a linear search of P. We arrive at O(n) searches of linear complexity which reveals
a total worst-case complexity of O(n2). We omit an average-case analysis.

Finally, the ordered set of ruling end points is interpolated by a ruled B-spline surface
patch. The resulting surface x0 may be additionally extended beyond its boundaries
such that all elements of P have foot points in the interior of x0.

5.4 Initial Smoothing Weight

Besides the fitting shape, smoothing weight λ of Equ. (5.2) requires proper initialization.
This parameter controls the influence of the smoothing term in opposition to that of the
fitting term during optimization. Smoothing topics are frequently encountered in many
areas of applied mathematics, from image processing to signal processing and statistics.
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S = orderTriplets (P )
S := {P1,P2} ;
P := P \ {P1,P2} ;
orderTripletsInsert (S1 , P , prepend ) ;
orderTripletsInsert (S1 , P , i n s e r t ) ;
orderTripletsInsert (S1 , P , append ) ;

orderTripletsInsert ( l , P , d i r )
i f d i r = prepend then

f i nd l∗ ∈ P such that (l∗, l,next(l)) i s ordered
i f l∗ = ∅ then return ;
P := P \ l∗ ;
i n s e r t l∗ be f o r e l ;
orderTripletsInsert ( l∗ , P , prepend ) ;
orderTripletsInsert ( l∗ , P , i n s e r t ) ;

e l s e i f d i r = i n s e r t then
/∗ analog to d i r = prepend ∗/

e l s e i f d i r = append then
/∗ analog to d i r = prepend ∗/

Listing 5.1: Algorithm to determine an ordered set of rulings based on the definition of
ordered ruling triplets. P and S are efficiently realized as doubly linked lists.

While an automatic choice of smoothing parameters has especially been addressed in
statistics (Simonoff, 1998), smoothing weight selection in geometry processing is usu-
ally done manually. In the following, we are going to develop a heuristic to choose λ
automatically.

The combination of fitting and smoothing terms compares two quantities of different
type, once a sum of squared distances and second a measure for the fitting shape’s
bending energy. To combine the both, one is added weighted to the other. In its
simplest formulation, the objective at the i-th iteration may be written as,

fi(δ, λ) = fd(δ) + λ · fs(δ).

Here, fd(δ) = δT Adδ+2bT
d δ+kd denotes the fitting error term, fs(δ) = δT Asδ+2bT

s δ+ks

the smoothing term, δ the fitting surface’s unknown displacements and finally λ the
smoothing weight whose automatic choice is the topic of our considerations.

If λ is not chosen appropriately, the optimization fails to converge. Failed convergence
lets the approximating surface degenerate. If λ is too large, the fitting shape will collapse
into a single point in the limit (cf. Fig. 5.2, top right). Contrary, if λ is too small, the fit-
ting shape will oscillate strongly (cf. Fig. 5.2, bottom). Either case bears the same effect
on the control points’ updates from one iteration to another. The displacements will be
larger than in the successful setting. This observation motivates the following heuristic
to choose an initial smoothing weight. We determine initial smoothing weight λ∗ such
that the maximal displacement of control points is minimal after the first iteration.

The optimal control points’ update δ∗ depends on the choice of λ and is given as

62



5 Ruled Surface Approximation

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

f1

f0

λ∗
 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

Figure 5.5: Initial smoothing weight λ∗ is given for minimal l∞-norm of the updates
to the control points in the first iteration (bottom plots). Comparison of
initial error f0 to the error after the first approximation f1 indicates that λ∗

yields good initial convergence (top plots). Please note that all axes are of
logarithmic scale.

minimizer of above functional fi(δ, λ), quadratic in δ,

δ∗(λ) = −(Ad + λAs)−1 · (bd + λbs).

According to above heuristic, the initial smoothing weight is given by,

λ∗ = argmin λ∈R‖δ∗(λ)‖∞
Given that the ruled surface approximation algorithm is robust to the choice of λ up to
certain extents we do not attempt to solve above min-max problem exactly. Instead, we
discretize the solution space λk = 10−

k
2 and determine λ∗ from δ∗(λk).

To investigate the quality of so obtained λ∗, we compare the values of f0 and f1 (that
is the objective’s values before and after the first iteration) for λ fixed. In Fig. 5.5 we
observe, that for large λ, the optimization does not converge as f1 > f0. For decreasing
λ, we encounter a short interval of improving convergence before the ratio f0/f1 shows
only little change. λ∗, that is included as vertical line in Fig. 5.5, lies well in the small
interval of improving convergence. Fig. 5.6 shows f0, f1 and λ∗ for several more data
sets.

Above heuristic requires the solution of that many systems of linear equations as there
are samples λk. Apart from the computational complexity, this method yields good
initial smoothing weights as we have confirmed in above empirical tests. For point to
tangent plane minimizations, that typically comprise a line search in the computation of
δ∗ (cf. Wang et al., 2006), running times would be much higher. Moreover, a line search
will yield no degenerate updates but rather displacements of vanishing magnitude for
bad parameter configurations. As the point to point term is an upper bound to the point
to tangent plane term, fT (0) ≤ fP (0), we may either simply use the point to point’s
initial smoothing weight or multiply it by a factor of fT (0)/fP (0).

63



5 Ruled Surface Approximation

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

f1

f0

λ∗
 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01
E

rr
or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

 1

 100

 10000

 1e+06

 1e+08

 1e-10  1e-08  1e-06  0.0001  0.01

E
rr

or

     0

    20

 1e-10  1e-08  1e-06  0.0001  0.01
lambda

Figure 5.6: Further examples for the automatic initialization of the smoothing weight
(see also Fig. 5.5).
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Figure 5.7: (Top) A ruled surface approximation without knot adaption. The highlighted
control polygon distributes uniformly over the target shape. (Bottom) shows
a ruled surface approximation with knot adaption. In planar regions, there
are fewer control points. In regions with significant features such as the kink
along the lower boundary or the corners exhibit additional control points.

5.5 Knot Adaption

So far, we have considered the B-spline surface’s number of control points and definition
of knot vectors fixed. In this section, we want to solve this last remaining initialization
issue by adapting the knot vectors during approximation. As in our setup only the
knot vector to parameter v is of interest, we will loosely speak of the knot vector below.
Several methods as those summarized in (Dierckx, 1993) consider the entries of the knot
vector as unknowns, along with the control points. We will not follow this approach
as we are interested in changing the number of control points (basically the degrees
of freedom). Our primary goal will be to remove control points in regions where this
is feasible and add control points where this is necessary to achieve an approximation
within given tolerance ε.

(Yang et al., 2004) examine knot adaption for B-spline curve fitting in a setting very
similar to ours. The authors first approximate a given planar set of data points with
a B-spline curve. Then, they undertake a single post-processing step that first inserts
additional and then removes redundant control points. In either case, a modified set of
control points is locally fitted to the target geometry to obtain the new set of control
points. We will generalize the approach of (Yang et al., 2004) to the surface case. Instead
of including a post-processing step, we will interleave knot insertion and knot removal
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5 Ruled Surface Approximation

events with the iterations of the optimization, if the fitting’s average approximation
error is above ε after n initial iterations. Given that the approximating surface is a
B-spline surface of degree (1, d) with only 2 control points along the linear parameter,
the parameter domain can be seen as a series of rectangular domains. Each domain
corresponds to a tensor product Bézier surface segment. We compute the foot points of
the shortest distance from the data points to the approximating surface and determine
the average approximation error per domain. A knot will be inserted to surface segments
with average error above ε. From pairs of surface segments with average error below
a threshold ε/2, a knot will be removed. Both modifications will happen according
to very simple rules. Given that the knot adaption step is embedded in the iterative
minimization of the approximation error, introduced additional error will be optimized
in the subsequent iteration.

If the average approximation error in an interval [vi, vi+1] of the knot vector is larger
than ε, a control point gets inserted and the knot interval splits into two new intervals
[vi, v

∗] and [v∗, vi+1]. Knot insertion in combination with curve fitting is studied up
to some extent, see for example the comparison in (Cham and Cipolla, 1999). These
methods differ in the way v∗ is chosen. The new knot is always inserted with Boehm’s
knot insertion algorithm (Boehm, 1980). We choose the new knot value to be the interval
midpoint v∗ = (vi + vi+1)/2.

While knot insertion splits a knot interval into two, knot removal merges two adja-
cent knot intervals. Thus, we test the average error of pairs of surface segments for an
approximation error less than ε/2. For general knot removal no equivalent to Boehm’s
knot insertion algorithm exists. From the (d + 2) pairs of control points defining these
two surface segments, one pair needs to be discarded. There has been some work con-
sidering knot removal and especially knot removal introducing as little additional error
as possible, see (Eck and Hadenfeld, 1995) and the references therein. We simply delete
the middle pair of the control points (assuming d = 2k + 1).

Please note, that by alternating knot adaption with the iterations of the optimization,
we change the number of control points at a less local level than (Yang et al., 2004).
In the iteration after a knot adaption step, all the control points of the approximating
B-spline surface get optimized in any case. Fig. 5.7 visualizes the results of above knot
adaption procedure for an ruled surface approximation. The highlighted control polygon
shows how the number of control points gets reduced in planar regions while it increases
in the corner regions.
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6 Constrained Ruled Surface Approximation for Applications

In this chapter, we will extend the basic ruled surface approximation algorithm of the
previous chapter to include application specific constraints. These constraints will draw
their motivation from mainly two areas: production technologies and architecture. As
different these two may appear at first sight, we will see that problems of architecture
often resemble those of production technologies, simply at a larger scale.

Regarding production technologies, we will explore flank milling techniques with cylin-
drical cutting tools. If we recall that the basic ruled surface approximation yields a
least-squares fitting of the target shape’s offset, we avoid undercut errors (the removal
of too much material) by including linear side conditions. Second, we will constrain the
angle of the cutting tool with respect to its linearized motion. By requiring the cutter’s
top to advance its bottom, stress on the tool is minimized.

In contemporary architecture, the popularity of freeform surfaces not only fascinates
clients and fans but also challenges and sometimes puzzles engineers. Often, a one-to-one
realization of an architectural design is rendered impossible by limits of constructions or
simply money. Hence, a simplification of the initial shape is common1. With ruled sur-
faces being a one-parameter family of straight lines, this class of surfaces has proved to
be a suitable approximation entity for architecture, bearing favorable structural prop-
erties. Hence, we will investigate several applications of (strips of) ruled surfaces in
architecture.

Given that we have studied literature related to flank milling and ruled surface ap-
proximation extensively in the previous chapter, we will omit a review of related work
herein. The following discussion of flank milling and architectural applications will in-
clude further specific references if they have not been cited before.

6.1 Avoiding Undercut Errors

In its unconstrained formulation, the ruled surface approximation algorithm for cylin-
drical flank milling heads for a least-squares fitting of the target shape’s offset. With
respect to the target shape, we may identify two kinds of approximation errors. If too
much material is removed, we speak of undercut errors. The opposite case, when too
few material is cut away, is called overcut or scallop error (see Fig. 6.1). In applications,
undercut errors are considered more harmful than overcut errors. Hence, this section
will derive a method to avoid undercut at all, at the cost of larger overcut errors.

We will achieve undercut free approximations by constraining the ruled B-spline sur-
face fitting optimization problem. Side conditions to curve and surface approximation
have been discussed for different purposes in the past and we intend to give a short

1In architecture, this approximation is often called rationalization, which has nothing to do with the
algebraic notion of a rational function.
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Figure 6.1: (Left) In case of undercut errors, the cutting tool penetrates the target shape
and too much material is removed. (Right) The opposite case, when the
cutting tool does not touch the intended target shape, causes overcut error.
Residual material (depicted in yellow) remains. The trajectory of the tool’s
axis is included as blue curve.

summary in the following. Constraints may restrict the class of surfaces employed in the
approximation, e.g. surface fitting with ruled or developable surfaces (see the literature
discussion in the previous chapter). More generally, the constrained approximation of
point clouds with Bézier or B-spline curves or surfaces (Rogers, 1989; Bercovier and
Jacobi, 1994) may have various aims in minds such as increasing the quality of the final
fitting, simplifying it or ensuring certain geometric properties of the solution. Especially
the latter goal is addressed in detail by (Hoschek and Kaklis, 1996).

Below, we are going to consider the target point cloud as obstacle to the B-spline
surface approximation. Side conditions have been imposed on interpolation methods
with cubic splines and rational cubics to handle obstacles (Opfer and Oberle, 1988;
Meek et al., 2003). (Myles and Peters, 2005) construct splines of prescribed smoothness
obliged to stay in a channel with piecewise linear boundaries. (Lin and Wang, 2002)
border planar point clouds by a B-spline curve interpolation of boundary points. The
method sketched herein is discussed in more detail in (Flöry, 2009). Please note that in
terms of general constrained matching, the following considerations are related closely
to the penetration free registration of Chapter 2.

As before, we base our considerations on the signed distance function to a shape.
The sign of the distance function was defined with respect to a closed shape’s interior
in Chapter 1. For an orientable surface patch, we provide the following alternative
definition.

Definition. Let x(u, v) be an orientable (open) surface patch and n(u, v) its oriented
normal field. Then, the signed distance of a point p to x with foot point fp = x(up, vp)
and np = n(up, vp) is given by,

d(x,p) = sgn
(
nT

p · (p − fp)
)
· ‖p − fp‖.

For flank milling applications, interior and exterior of the target shape are well defined
and we let n(u, v) point away from the target shape (cf. Fig. 6.1). Undercut errors arise
in situations when the approximating surface x does not exactly interpolate the target

68



6 Constrained Ruled Surface Approximation for Applications

Figure 6.2: (Left) Least-squares approximation (blue) of a target shape (yellow). (Right)
undercut free and one-sided approximation of the same setup. The target
shape has been triangulated for better visualization.

offset point cloud P . More precisely speaking, undercut errors imply that the signed
distance to x of at least one element in P is positive.

Definition. x(u, v) is called an approximation without undercut error of P , if d∗(x, P )
is minimal and

d(x,p) ≤ 0 ∀p ∈ P.

We see that an undercut free approximation yields a one-sided approximation of the
target point cloud. Above requirement yields together with the ruled surface approxi-
mation objective of Equ. (5.2) a constrained non-linear minimization problem,

minδ fd(δ) + λ · fs(δ)
subject to d(x,p) ≤ 0 ∀p ∈ P.

In a similar fashion to Sec. 2.3, we linearize these constraints in the foot points x(uk, vk)
of pk ∈ P . We solve the constrained optimization problem in a sequence of quadratic
programs, with linear constraints of the form

n(uk, vk)T · (pk − x(uk, vk)) ≤ 0 ∀pk ∈ P.

With regard to the initial non-linear problem this may be seen as a variant of a Sequential
Quadratic Programming method (Nocedal and Wright, 1999). In (Flöry, 2009), setup
and convergence of this minimization are discussed in some detail. Fig. 5.1 and Fig. 6.2
show undercut free or one-sided approximations of point clouds.

6.2 Ruled Strip Models for Production Technologies

Before we continue our discussion of application specific constraints for flank milling,
we want to consider the use of ruled strip models for production technologies. In flank
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Figure 6.3: Strip models for production technologies: (Top, left) Simple reference ap-
proach with horizontal heated wire. (Center, left) A strip model approxi-
mation without undercut error. The wire configuration aligns well with the
model’s asymptotic lines in areas of negative Gaussian curvature. As the
residual histograms (top and center, right) confirm the approximation error
is improved. The bottom row shows an optimized single strip approximation
and a least-squares strip model fitting.
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milling, the mechanics and geometry of the milling process let strip models appear less
suitable. However, in specific heated-wire foam cutting configurations strip models occur
naturally. Recent developments increase the degrees of freedom of heated-wire cutters,
for example by adding a rotary device on which the uncut block is placed (Step Four
GmbH, 2007). In the following, we want to explore the possibilities of the so far described
algorithms for a geometry processing for heated-wire cutting with rotary table.

The use of a rotary device leads directly to strip models. At each fixed angular
position, the heated-wire cutter processes a ruled surface patch. The collection of these
patches yields a strip model describing an approximation of the initial target shape. In
Fig. 6.3, we intend to compare different methods of tool path computation for heated-wire
cutting. For all the examples, the same initial model resembling the shape of a bowling
pin was used. The spherical top part will not allow a ruled surface approximation of
good quality whereas the middle and bottom regions with negative Gaussian curvature
will be advantageous for this purpose. The target shape shall be approximated by 10
strips.

Our simple reference solution comprises consecutive horizontal cuts from top to bottom
(Fig. 6.3, top). Unless stated otherwise, we require an undercut free approximation. For
a first optimized solution, we employ a strip model in the form of Equ. (5.1) with
mu = 10, closed in u parameter direction. As expected, one-sided approximation yields
a fitting of less residual error (Fig. 6.3, center). The rulings of the approximating surface
align well with the asymptotic directions in regions with negative Gaussian curvature. If
we leave behind the ruled strip model for a moment and consider a single strip, we may
further constrain the approximation in a simple way to include further side conditions
(Fig. 6.3, bottom left). The heated wire’s end points are mounted and moved in vertical
planar frames. The size of these frames limits the solution space of the approximating
surface’s rulings. Without loss of generality, let the frames’ supporting planes ε0 and
ε1 be parallel to the (x, y)-coordinate plane. If we choose the control points of the
approximating ruled surface patch to be in either ε0 or ε1, we obtain for i = 1, . . . , m,

(0, 0, 1)T · δi = 0
xmin ≤ (1, 0, 0)T · di + δi ≤ xmax

ymin ≤ (0, 1, 0)T · di + δi ≤ ymax.

These linear constraints may be added to the ruled surface approximation’s objective
without any further modification. If undercut errors are irrelevant, a least-squares ap-
proximation of the target shape by a ruled strip model yields an optimal result (Fig.6.3,
bottom right). We will return to ruled strip models in our discussion of applications in
architecture.

6.3 Leading Tool Top

In this section, we will consider the side condition that the cutter’s top shall advance
its bottom (see Fig. 6.4). We will call this behavior, termed voreilen in German, leading
henceforth. A leading cylinder top induces a pulling motion of the cutting tool. The
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Figure 6.4: (Left) Linearized motion of the tool’s axis. The top point T advances the
bottom point B. (Right) The leading constraint is stated in terms of angle
α spanned by velocity vector v(p) and ruling direction e.

opposite, a pushing motion, would mean specific stress along the cutter that is imperative
to avoid.

6.3.1 A Kinematic Constraint

Let x̂(u, v), (u, v) ∈ Û ⊂ R
2, describe a ruled surface patch as above with u parametrizing

the generator. Moreover, let us assume that the striction curve, the locus of any possible
singular points, is outside the considered patch. We define the parameter line for constant
u ≡ 0, x̂(0, v), to be the trajectory of the tool’s axis bottom point B. We write e(v) =
x̂(1, v) − x̂(0, v) for the unnormalized generator of x̂. With this notation in mind, we
rewrite x̂(u, v) as being generated by a one-parameter motion,

x(u, v) = x̂(0, v) + u · e(v)
‖e(v)‖ = A(v)

u · e(0)
‖e(0)‖ + x̂(0, v) (u, v) ∈ U ⊂ R

2

with A(v) ∈ SO3. Basically, we obtain x(u, v) from x̂(u, v) through a reparametrization.
If we discuss kinematic properties of points or rulings in the following, we do so with
respect to above generating motion and x.

For investigating the local behavior of a one-parameter motion we rely one more time
on its first-order approximation (cf. Chapter 2). The velocity vector in a point coincides
with the tangent of its trajectory,

v(x(u, v)) = c̄(v) + c(v) × x(u, v) = xv(u, v).

and lets us define the leading constraint mathematically (see also Fig. 6.4).

Definition. In a point of a ruled surface patch, let α(u, v) = ∠(v(x(u, v)), e(v)) denote
the angle spanned by the velocity vector and the ruling’s direction vector. Then, x(u, v)
is said to be generated by a leading motion, if

α(u, v) ∈ [
π

2
− τ,

π

2
] ∀(u, v) ∈ U

for user-defined τ .
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x0 + λe

v(x0) e

v(x0 + λe)
λ(c × e)

Figure 6.5: In any point x0+λe on ruling e, the velocity vector is the sum of the velocity
vector in x0 ∈ e and a vector λ(c × e) orthogonal to e.

The upper bound can be rewritten as,

e(v)T · v(x(u, v)) ≥ 0 ∀(u, v) ∈ U. (6.1)

The lower bound — with τ typically ranging from 10◦ to 20◦ — reads,

cos α =
eT · v(x)
‖e‖‖v(x)‖ ≤ cos(

π

2
− τ) = sin(τ) (6.2)

6.3.2 Reducing the Number of Constraints

The inequality constraints of Equ. (6.1) and Equ. (6.2) must be fulfilled in any point
of the approximating ruled surface patch. In this section we seek to reduce the set of
points in which the side conditions must be checked.

Assume parameter v fixed. For the velocity vector v(x0 + λe) of a point on ruling
e = e(v) through x0 = x(0, v), we see that (cf. Fig. 6.5),

v(x0 + λe) = c̄ + c × x0 + λ(c × e) = v(x0) + λ(c × e).

Please note that the parameters of the velocity vector field (c̄, c) depend only on v and
are thus constant along e. Hence, the velocity vector in any point on e is the sum of
the velocity vector of x0 and a vector orthogonal to e. Moreover, α(u, v) = 0 implies e
and v(x0 + λe) linearly dependent, which may only be the case in singular points of the
ruled surface. Consequently, α(u, v) changes sign only in points of the striction curve, if
at all. These observations lead directly to the following results.

Lemma. Let x(u, v), (u, v) ∈ U ⊂ R
2, be a ruled surface patch as above. Then, the

following two properties hold for the velocity vectors v(x0 + λe) of points on a patch’s
generator e through x0.

• The projection of v(x(u, v)) onto e(v) is constant, eT · v(x0 + λe) = eT · v(x0).

• Angle α(u, v) is monotonic for increasing λ.
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Figure 6.6: As opposed to an unconstrained optimization (left) a tool path respecting
leading constraints (right) reduces stress along the cutting tool. Rulings
violating the constraints are colored in yellow, feasible rulings are shown in
blue.

We conclude for the first constraint of Equ. (6.1), that if it is fulfilled in one point on
e, it is fulfilled in all points on e. Thus, we have to include this constraint only once
per generator and we will do so for the bottom point x0. The monotonic behavior of
α(u, v) requires the second constraint in Equ. (6.2) to be checked only in the bottom
and top point of the cutting tool’s axis. In summary we see that we may reduce the set
of constraints to three per ruling.

6.3.3 Discretizing and Linearizing

Combining the leading constraints with the ruled surface approximation objective we
obtain another non-linear constrained optimization problem. Again, we solve it with
a Sequential Quadratic Programming method. We discretize x(u, v) in N rulings and
obtain a finite set of 3 ·N constraints. Recalling that the unknowns of the optimization
problem are the control points’ displacements δ, we write

Lδ(u, v) = eδ(v) · vδ(xδ(u, v)) = eδ(v) · xδ
v(0, v)

for the left-hand side of Equ. (6.1). According to above lemma, Lδ(u, v) does not depend
on parameter u and we omit it in the following. First-order Taylor approximation of
Lδ(v) with respect to λ yields upper bound constraints of the form,

∇LT (v)|δ=0 · δ ≥ −L0(v),

linear in δ.
For the lower bound constraints in Equ. (6.2), we have to deal additionally with the

product of norms in the denominator. We will ignore the dependency of these norms on
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Figure 6.7: Ruled surfaces in architecture: An electricity pylon by Vladimir Shukhov, the
roof of the Escoles Sagrada Famı́lia by Antoni Gaud́ı and the Philips Pavilion
by Le Corbusier and Iannis Xenakis (from left to right, photo credits: Igor
Kazus, Carlos Mart́ınez, (Jencks, 2000)).

the changing control points and we obtain an incomplete linearization of the constraints
only. We arrive at,

Lδ(v) ≤ sin(τ)‖e(v)‖‖v(x(0, v))‖
Lδ(v) ≤ sin(τ)‖e(v)‖‖v(x(1, v))‖

We see that we only need to include one of the two constraints, namely that with minimal
right-hand side. This observation gives the final expression for the second constraint,

∇LT (v)|δ=0 · δ ≤ −L0(v) + sin(τ) min
u=0,1

‖v(x(u, v))‖.

which is linear in δ.
Fig. 6.6 shows both an unconstrained and a leading ruled surface approximation of a

target shape. We show the fitting surface’s rulings color-coded. Rulings violating the
leading constraint are depicted in yellow, feasible rulings are visualized in blue.

6.4 Ruled Surfaces in Architecture

We have seen in Sec. 6.2 that multiple ruled surface patches arranged in a strip pattern
are well suitable to approximate complex objects. In the remainder of this chapter, we
will further explore these so-called ruled surface strip models with a special emphasis
on applications in architecture. In particular, we are going to address smoothness is-
sues along the common boundaries of adjacent strips, where such models are only C0

continuous in general.
From a geometric point of view, ruled strip models are of a hybrid nature. Consider

a strip model as a two parametric surface x(u, v) with parameter u describing the ruled
direction (cf. Equ. (5.1)). Parameter curves for constant v are polygonal lines and hence
discrete. Contrary, lines for constant u parameter are smooth curves that in the case of
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Figure 6.8: Ruled surfaces in architecture: Illustrative drawing (left) and photo (right)
of a restaurant in Xochimilco, Mexico, by Félix Candela (from Faber, 1963).

B-spline curves may be seen as result of a subdivision process from a coarse initial dis-
crete control polygon. Consequently, we may regard ruled strip models as semi-discrete
surface representations that have found some attention in literature recently (Pottmann
et al., 2008). Neglecting any smoothness considerations along common boundaries, work
previously cited from CAD and production technologies (Elber and Fish, 1997) or liter-
ature investigating the making of papercraft models (Mitani and Suzuki, 2004) comprise
strip model constructions.

Ruled surfaces have been part of the architectural discourse for more than one hundred
years (see Fig. 6.7 and Fig. 6.8). Towards the end of the 19th century, Russian engineer
Vladimir Shukhov and Spanish Catalan architect Antoni Gaud́ı independently discov-
ered the structural advantages of ruled surfaces for their works. Since then, numerous
architects employed ruled surfaces, among them popular names such as Le Corbusier,
Félix Candela or Frank Gehry. Despite the success of general doubly curved freeform
architecture, ruled surfaces remain topic of discussion in contemporary architectural
theory (Vollers, 2001; Kolarevic, 2003). In some way, our work bridges the structural
unaware point of view of general doubly curved designs with the constructional elegance
of ruled surfaces.

In the following, we are going to present three approaches towards a smooth appear-
ance of strip models. First, we smooth the discrete parameter lines of ruled strip models.
Second, we optimize for coinciding tangent planes and G1 continuity along the common
boundary of adjacent strips. Finally, we discuss a model for G2 continuous ruled surfaces
strips.

6.5 Smoothing Parameter Lines

The ruled surface approximation’s objective of Equ. (5.2) combines terms describing
fitting error and fairness of the solution. The latter is necessary for a satisfying visual
appearance of the final result. In this section, we want to increase our control on the final
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Figure 6.9: Ruled surface approximation of parts of a facade by Zaha Hadid Architects
for the Cagliari Contemporary Arts Center in Sardinia. The reconstructed
ruled surface patches are depicted in blue, general doubly curved blends are
shown in yellow.

shape of the approximating surface, in particular on the appearance of surface curves.
Let w(t) : t → (u, v) denote a mapping from the real numbers to the parameter space
[0, 1] × [0, 1] of a ruled strip model x(u, v). For w fixed, we will investigate two special
types of curves t → x(w(t)) on x,

• w(t) : t → (u(t), const), with u̇(t) ≡ 1, so-called u-parameter lines or polygonal
ruling lines to constant v parameter.

• w(t) : t → (const, v(t)), with v̇(t) ≡ 1, so-called v-parameter lines.

Please note that dotted expressions such as v̇ denote derivatives with respect to param-
eter t.

The topic of curve regularization has been addressed numerous times. Given that
the ruled surface approximation draws its motivation from active shape models, we will
employ methods from the active contour literature (Blake and Isard, 1998). As part of
an active contour’s internal energy, fairness terms for length and bending of the curve
are minimized. These read in our notation with regularization weights λi,

λ0

∫
t
‖ẋ(w(t))‖2 dt + λ1

∫
t
‖ẍ(w(t))‖2 dt. (6.3)

Let us consider v-parameter lines first, that is w(t) = (const, v(t)) with v̇(t) ≡ 1.
Observing that ẋ(w(t)) = xv(w(t)) and ẍ(w(t)) = xvv(w(t)) discretization yields,

λ0

n∑
k=1

∥∥∥xδ
v(const, vk)

∥∥∥2
+ λ1

n∑
k=1

∥∥∥xδ
vv(const, vk)

∥∥∥2
.

77



6 Constrained Ruled Surface Approximation for Applications

Figure 6.10: Smoothing of polygonal rulings lines (right) yields a visually more pleas-
ing ruled surface strip reconstruction than an unconstrained approximation
(left).

Here, δ describes the vector of unknown displacements of the B-spline surface’s control
points. We see, that this expression is quadratic in the unknowns δ. It is added without
further modification as additional penalty function to the approximation’s objective.

For a u-parameter line (a polygonal ruling line), the situation is slightly different. In
common strip boundary points sδ

k = xδ( k−1
mu−1 , const), k = 2, . . . , mu − 1 the surface

and in particular the u-parameter lines are not differentiable. Instead of minimizing
length and bending energies of a smooth curve we target a fairing of the discrete curve
(s1, s2, . . . , smu). Following above argumentation, this is directly achieved by replacing
the derivatives in Equ. (6.3) with finite differences and discretizing integrals,

λ0

mu−1∑
k=1

∥∥∥sδ
k+1 − sδ

k

∥∥∥2
+ λ1

mu−1∑
k=2

∥∥∥sδ
k+1 − 2sδ

k + sδ
k−1

∥∥∥2
.

Again, we obtain fairness terms quadratic in the unknowns δ that we add to the objective
in Equ. (5.2).

For construction, rulings and polygonal ruling lines are often realized as visible struc-
tural elements and hence their appearance is crucial. Above regularization terms de-
couple specific parameter lines from the general smoothing term and let us optimize
the shape of specific surface curves more exactly. In Fig. 6.10 and Fig. 6.11, these
regularizations have been applied to architectural models.

6.6 G1 continuous Strip Models

In this section we will enhance the ruled surface approximation by an additional penalty
term to obtain a higher degree of smoothness in common strip points. Recall, that the
ruled strip model is in general only C0 continuous in sk(v) = x(uk, v) for uk = k−1

mu−1 ,
k = 2, . . . , mu − 1.

The concept of parametric continuity is too restrictive to describe the geometric
requirements for smoothness of two joining surfaces, as it depends on the surfaces’
parametrizations. Two surfaces are said to meet Ck (parametric) continuous in a com-
mon boundary point if the first i = 0, . . . , k derivatives coincide. For applications in
geometry processing, the notion of geometric continuity is better suited. Two surfaces
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Figure 6.11: Detail of the facade of the Cagliari Contemporary Arts Center in Sardinia
by Zaha Hadid Architects. The initial surface was approximated by a strip
model comprising 14 strips. The optimization included penalties for G1

continuity and smooth polygonal ruling lines.

join Gk geometric continuous in a point if there exists a reparametrization such that
the surfaces agree Ck parameter continuous. Many specific notions of geometric con-
tinuity have found there way into the literature, see for example (Hoschek and Lasser,
1993; Peters, 2002) and the references therein. G1 continuity is equivalent to matching
tangent planes (Veron et al., 1976) whereas coinciding osculating paraboloids imply G2

continuous surfaces (Veron et al., 1976; Herron, 1987). For ruled surfaces in particular
(Schaaf and Ravani, 1998) derived a theory of higher-order contact. In CAD, conditions
for G1 continuous B-spline and NURBS surfaces are still actively studied (Shi et al.,
2004; Che et al., 2005). Related to our active shape setup are contributions like that of
(Milroy et al., 1995) who minimize the deviation of surface normals along common strip
boundaries in a non-linear least-squares optimization.

Consider a common boundary point of two strips, sk = x(uk, v0), uk as above and k
and v0 fixed (cf. Fig. 6.12, left). In above strip model, the partial derivative xv in sk

coincides with the tangent to the common boundary curve x(uk, v). Moreover, let x−
u

and x+
u be the left and right-hand side derivatives of x in sk with respect to u. Please

note that x−
u and x(uk, v0)− x(uk−1, v0) are linearly dependent, a similar relation holds

for x+
u . G1 continuity in sk requires the left-hand side tangent plane T− spanned by x−

u

and xv and the right-hand side tangent plane T+ spanned by x+
u and xv to coincide.

Hence, the condition that the three partial derivatives xv, x−
u and x+

u lie in a common
plane and are thus linearly dependent,

det(xv,x−
u ,x+

u ) = xT
v · (x−

u × x+
u ) = 0

is necessary for G1 continuity. Vanishing of the determinant is not equivalent to G1

continuity as the tangent planes could flip in sk. However, the regularization term of the
ruled surface approximation will prevent from such cases. Given that all three vectors
depend on the displacements δ of the active surface model, we optimize for G1 continuity
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u
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u
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u
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Figure 6.12: For G1 continuity in sk, tangent planes T− and T+ need to coincide (left).
For a G2 continuous ruled strip model, the asymptotic direction a− of the
left strip is required to be linearly dependent to the ruling direction of the
right strip and vice versa (right).

by adding the weighted penalty

fG1(δ) = λ

[
xT

v (δ)
‖xv(δ)‖

· x−
u (δ) × x+

u (δ)
‖x−

u (δ) × x+
u (δ)‖

]2

(6.4)

to the approximation’s objective. Linearization of the dot product yields along with
the point to tangent plane error term a Gauss-Newton iteration. A closer look at the
penalty leads to the following two observations.

Consider the crossed quadrilateral Q spanned by the origin O and the points xv, x−
u

and xv + x+
u . The diagonals of Q are O + s · x−

u and xv + t · x+
u . The distance of the

diagonals is given by xT
v ·
(

x−
u ×x+

u

‖x−
u ×x+

u ‖

)
. We see that minimization of above determinant

(basically the volume of the parallelepiped spanned by three tangent vectors) is closely
related to minimizing the diagonal distance. The latter measure is used in (Pottmann
et al., 2008) to reduce the tangent plane twist along a ruled surface’s generator to obtain
approximate developability.

In a second note, a simpler iterative approach could fix the right-hand side tangent
plane T+ (with normal n+ = x+

u × xv) and minimize the deviation of the left-hand side
tangent to T+, [

nT
+ · x−

u (δ)
]2

.

The same is done for T− and variable right-hand side tangent. Let us consider the first
case only and omit norms of vectors for a moment to ease the discussion. Differentiating
the dot product in Equ. (6.4) yields,

∇fG1(δ) = D(x+
u (δ) × xv(δ)) · x−

u (δ) + (x+
u (δ) × xv(δ)) · Dx−

u (δ).

Here, D denotes the Jacobian of an expression. For a first-order Taylor approximation
of fG1 we obtain,

fG1(δ) ≈ nT
+ · x−

u (0) +
(
nT

+ · Dx−
u

)T · δ + o(‖δ‖) = nT
+ · x−

u (δ) + o(‖δ‖).

80



6 Constrained Ruled Surface Approximation for Applications

sili−1

li

li+1

l̄i

S

Figure 6.13: Discrete model of G2 continuous ruled surface strips. The subsequent ruling
direction in si is given by that line l̄i intersecting pairwise skew li−1, li and
li+1.

Hence, minimization of the squared determinant comprises the terms of the simpler
iterative approach fixing tangent planes.

Fig. 6.11 shows a ruled strip model approximation with minimized tangent plane
deviation along common strip boundaries as part of a design by Zaha Hadid Architects.

6.7 G2 continuous Strip Models

For G2 continuity in a common boundary point sk, we require the osculating paraboloids
of adjacent strips to coincide. The osculating paraboloid is uniquely determined by three
pairwise different tangential directions and the normal curvatures therein. Given that
the strip model is G1 continuous in sk, the two adjacent strips share common normal
curvature in common boundary tangent direction xv. We obtain another tangent plus
normal curvature for each strip: the ruling directions of normal curvature zero.

Let a− be the second asymptotic direction of the left-hand strip (x−
u × a− 	= 0) and

let a+ be defined accordingly (see Fig. 6.12, right). If the asymptotic directions of the
left-hand side strip are pairwise linearly dependent to those of the right-side strip, they
define along with xv in sk the common osculating paraboloid of the two joining strips.
Note, that if the ruling directions x−

u and x+
u are linearly dependent, we obtain a single

ruled surface patch. As this would undo the benefits of a strip model, we require that
the ruling direction of one strip coincides with the general asymptotic direction on the
other strip. The rulings will form a zig-zag pattern if we repeat this construction over
several strips (cf. Fig. 6.14, left).

The linear dependency of asymptotic directions motivates the weighted penalty,

fG2(δ) = λ

[(
x−

u (δ)
‖x−

u (δ)‖ × a+(δ)
‖a+(δ)‖

)2

+
(

x+
u (δ)

‖x+
u (δ)‖ × a−(δ)

‖a−(δ)‖

)2
]

,

for a ruled surface approximation with optimized G2 continuity. Numerical experiments
for a+ and a− fixed over an iteration indicate, that the degrees of freedom of G2 con-
tinuous strip models are restricted. In order to evaluate this further, we will explore the
design possibilities in a discrete model of G2 continuous ruled strip models.
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Figure 6.14: Discrete G2 continuous ruled strip model: (left) the rulings follow a zig-zag
pattern, (right) color-coded strips.

Consider the discrete model of a ruled surface strip S in Fig. 6.13. Let li denote the
supporting line of a ruling incident to si. The ruling direction of subsequent strip T in
si shall be a discrete analogue to the asymptotic direction on a smooth ruled surface.
For a C2 continuous space curve c, the osculating plane in a point c(u) is given as limit
of the plane spanned by points c(u− h), c(u) and c(u + h) for h → 0. For three rulings
l(u−h), l(u), l(u+h) of a smooth ruled surface x(u, v), a similar construction yields an
osculating quadric (Hoschek, 1971).

The set of lines intersecting three pairwise skew lines l(u − h), l(u), l(u + h) is called
a regulus R(h) (Pottmann and Wallner, 2001). Any regulus lies on a quadric carrying
a complementary regulus R′(h). For h → 0 we obtain a limit regulus R whose carrier
quadric is called osculating quadric or Lie quadric. The Lie quadric has second-order
contact with x along l(u). Dupin’s Indicatrices and thus the asymptotic directions of
both surfaces coincide. As the quadric’s asymptotic directions are its generators, the
elements of R are the asymptotic directions of x along l(u). Hence, in the discrete
model, we choose the line passing though si ∈ li and intersecting li−1, li+1 as subsequent
generator l̄i.

The discrete model allows us to start from a single discrete ruled surface strip and
enhance it strip by strip according to above rule. Interactive experiments further indicate
that the design possibilities with G2 continuous ruled strip models are limited. Fig. 6.14
shows a discrete model of osculating ruled surface strips, revealing the expected zig-zag
pattern of ruling segments.
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Björck, Å., 1996. Numerical Methods for Least Squares Problems. SIAM.

Blake, A., Isard, M., 1998. Active Contours. Springer.

Boehm, W., 1980. Inserting new knots into B-spline curves. Computer Aided Design
12 (4), 199–201.

Botsch, M., Pauly, M., Gross, M., Kobbelt, L., 2006. PriMo: coupled prisms for intuitive
surface modeling. In: Proc. SGP 2006. pp. 11–20.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press.

Bradley, D., Boubekeur, T., Heidrich, W., 2008. Accurate multi-view reconstruction
using robust binocular stereo and surface meshing. In: Proc. CVPR 2008. pp. 1–8.
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Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., Pottmann, H., 2008. Curved
folding. ACM Trans. Graph. 27 (3), 75:1–75:9.

Kiwiel, K. C., 1990. Proximity control in bundle methods for convex nondifferentiable
minimization. Math. Program. 46, 105–122.

Koc, B., Lee, Y.-S., 2002. Adaptive ruled layers approximation of stl models and multi-
axis machining applications for rapid prototyping. Journal of Manufacturing Systems
21, 153–166.

Kolarevic, B. (Ed.), 2003. Architecture in the Digital Age: Design and Manufacturing.
Spon Press.

König, S., Gumhold, S., 2008. Image-based motion compensation for structured light
scanning of dynamic surfaces. Int. J. Intell. Syst. Technol. Appl. 5 (3/4), 434–441.

Kuhn, H. W., 1973. A note on Fermat’s problem. Math. Program. 4, 98–107.

Lartigue, C., Duc, E., Affouard, A., 2003. Tool path deformation in 5-axis flank milling
using envelope surface. Computer Aided Design 35 (4), 375 – 382.

Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton,
M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D., 2000. The Digital
Michelangelo project: 3D scanning of large statues. In: Proc. SIGGRAPH 2000. pp.
131–144.

Li, C., Bedi, S., Mann, S., 2006. Flank milling of a ruled surface with conical tools-an
optimization approach. Int. J. of Adv. Manufacturing Technology 29, 1115 – 1124.

Li, X., Guskov, I., 2005. Multi-scale features for approximate alignment of point-based
surfaces. In: Proc. SGP 2005. pp. 217–226.

Lin, H., Wang, G., 2002. Interval B-spline curve evaluation bounding point cloud. In:
Proc. PCCGA 2002. p. 424.

87



Bibliography

Lions, P.-L., 1982. Generalized Solutions of Hamilton-Jacobi Equations. Pitman.

Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H., 2007. Parameterization-free projec-
tion for geometry reconstruction. ACM Trans. Graph. 26 (3), 22.
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Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., Pottmann, H., 2008a. Curved
folding. ACM Trans. Graph. 27 (3), 75:1–75:9.
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